

February 28, 2019

Melanie A. Bachman Executive D irector Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Antenna Swap
Property Address: 323 ROUTE 81 KILLINGWORTH, CT (the "Property")

Applicant: New Cingular Wireless PCS, LLC ("AT&T")

Dear Ms. Bachman:

On behalf of AT&T, please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72(b)(2).

AT&T currently maintains a wireless telecommunications facility consisting of nine (9) wireless telecommunication antennas at an antenna center line height of 133-feet on an existing 140 foot-self-support tower, owned Valley Shore Emergency Communications Inc., and located on the Killingworth town Property (the "Tower"). On February 18th, 1987 a decision and order by the Connecticut Sitting Council who directed that a Certificate of Environmental Compatibility and Public Need as provided by Section 16-50K of the General Statues of Connecticut (CGS) was issued to Metro Mobile PCS of Hartford Inc., for the construction, operation, and of a cellular mobile phone telecommunication tower and associated equipment in the Killingworth Connecticut subject to conditions. SEE ATTACHED.

The Connecticut Siting Council (the "Council") approved AT&T's use of the Tower in the following subsequent prior decisions;

EM-CING-070-081203- New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 323 Route 81, **Killingworth**, Connecticut.

EM-AT&T-070-121211 – AT&T Mobility notice of intent to modify an existing telecommunications facility located at 323 Route 81, **Killingworth**, Connecticut.

AT&T now intends to REMOVE (6) PANEL ANTENNAS, INSTALL (6) PANEL ANTENNAS, REMOVE (3) RRUS-11, INSTALL (3) 441S B2S INSTALL (3) B2/B66A 8843 INSTALL (3) BS/12 4449 INSTALL (1) DC/FIBER DC6-48-60-18-8C-EV AND (1) DC ONLY DC6-48-60-0-8C-EV W/ (1) FIBER AND (4) DC CABLES.

In accordance with R.C.S.A. §16-50j-73, a copy of this letter is being sent to Catherine lino, First Selectwoman and the Assessor Michael Bekech of the Town of Killingworth, Town Hall, 323 Route 81, Killingworth, CT 06419; owner of the land. A copy of this letter is also being sent to Valley Shore Emergency Communications Inc., Director: Richard Darin 315 Spencer Plains Rd, Westbrook, CT 06498; owner of the tower.

The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72(b) (2)

- The proposed modifications will not result in an increase in the height of the existing tower. AT&T's replacement antennas will be installed at the 133-foot level of the 140foot self-support tower.
- 2. The proposed modifications will not involve any changes to ground-mounted equipment and, therefore, will not require and extension of the site boundary.
- 3. The proposed modifications will not increase the noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative worst-case RF emissions calculation for AT&T's modified facility is provided in the RF Emissions Compliance Report, included in Tab 2.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The tower and its foundation can support AT&T's proposed modifications. (See Structural Analysis Report included in Tab 3).

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. §16-50j-72(b)(2).

Sincerely,

David Barbagallo

David Barbagallo | Real Estate Specialist Smartlink 85 Rangeway Rd Bldg. #3 Suite 102 North Billerica | MA 01862-2105

(M) 860-681-7708

(F) 801-346-2771

David.barbagallo@smartlinkllc.com

Enclosures

CC w/enclosures:

Catherine lino, First Selectwoman and the Assessor of the Town of Killingworth Michael Bekech; owner of the property.

Valley Shore Emergency Communications Inc., Director: Richard Darin tower owner

DOCKET NO. 69

AN APPLICATION OF METRO MOBILE CTS OF HARTFORD, INC., FOR A CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED FOR THE CONSTRUCTION, MAINTENANCE, AND OPERATION OF FACILITIES TO PROVIDE CELLULAR SERVICE IN THE TOWNS OF KILLINGWORTH, MIDDLETOWN, AND OLD SAYBROOK, CONNECTICUT.

: CONNECTICUT SITING

COUNCIL

February 18, 1987

DECISION AND ORDER

:

Pursuant to the foregoing opinion, the Connecticut Siting Council (Council) hereby directs that a Certificate of Environmental Compatibility and Public Need as provided by Section 16-50k of the General Statutes of Connecticut (CGS) be issued to Metro Mobile CTS of Hartford, Inc., for the construction, operation, and maintenance of a cellular mobile phone telecommunication tower and associated equipment in the town of Killingworth, Connecticut. The proposed Middletown and Old Saybrook sites are rejected without prejudice.

The facility shall be constructed, operated, and maintained as specified in the Council's record on this matter, and subject to the following conditions.

- 1. The tower, including antennas, shall be no taller than necessary to provide the proposed service, and in no event shall exceed 173 feet.
- 2. A fence not lower than eight feet shall surround the tower and its associated equipment building.
- 3. Unless necessary to comply with condition number four, below, no lights shall be installed on the tower.
- 4. The facility shall be constructed in accordance with all applicable federal, state, and municipal laws and regulations.

- 5. The certificate holder shall comply with sections 16-50j-75 through 16-50j-77 of the Regulations of State Agencies, providing for development and management (D&M) plans and reporting. The D&M plan shall provide plans for evergreen screening around the fenced perimeter.
- 6. No construction activities shall take place outside the hours of 7:00 A.M. to 7:00 P.M., Monday through Saturday.
- 7. The certificate holder or its successor shall notify the Council if and when directional antennas or any equipment other than that listed in the D&M plan is added to the facility.
- 8. The certificate holder or its successor shall permit public or private entities to share space on the tower, for due consideration received, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 9. If the tower does not provide or permanently cease to provide cellular service following completion of construction, this Decision and Order shall be void and the tower and all associated equipment shall be dismantled and removed or reapplication for any new use shall be made to the Council before any such new use is made.
- 10. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the issuance of this Decision and Order, or within three years of the completion of any appeal taken in this Decision.

11. The certificate holder shall comply with any future radiofrequency (RF) standards promulgated by state or federal regulatory agencies.

Upon the establishment of any new governmental RF standards, the facilities granted in this Decision shall continue to be in compliance with such standards.

Pursuant to CGS section 16-50p, we hereby direct that a copy of the Decision and Order be served on each person listed below. A notice of the issuance shall be published in the Hartford Courant, the New Haven Register, the Middletown Press, and the Clinton Recorder.

CERTIFICATION

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut, this 18th day of February 1987.

Council Members		Vote Cast	
	Middletown	Killingworth	Old Saybrook
Gloria Dibble Pond	No	Yes	No
Commissioner John Downey Designee: Commissioner Peter G. Boucher	No	Yes	Yes
Bun Designee: Brian Emerick	No	Yes	Yes
Designee: Brian Emerick Owen L. Clark Owen L. Clark	No No	Yes	Yes
Fred J. Dooky) No	Yes	No
Mortimer A. Gelston) No	Yes	No
James G. Horsfall) No	Yes	No
William Smith)	Absent	
Colin C. Tait) No	No	No

STATE OF CONNECTICUT)					
	:	SS.	New Britain,	February	18,	1987
COUNTY OF HARTFORD)					

I hereby certify that the foregoing is a true and correct copy of the decision and order issued by the Connecticut Siting Council, State of Connecticut.

ATTEST:

John C. Kelly
Executive Director
Connecticut Siting Council

I certify that a copy of the opinion and decision and order have been forwarded by mail to all parties of record on 2-19-81

ATTEST:

Stanley J. Modzelesky Executive Assistant

Connecticut Siting Council

323

Search Results

Parcel Details

Return To Search Results

323 ROUTE 81

KILLINGWORTH TOWN OF

323 ROUTE 81 KILLINGWORTH, CT 06419

> Parcel ID: 24-07 Lot Size (ac): 42.5 Sale Price: \$0

Links

Abutters

Parcel Details

Scroll 'g Bird's Eye

Photo

Parcel

Google Map

move Parcel

Copy and paste the following string into an email to link to the current map vie

0.2km 1000ft

Print Map

Size:	▼	
-------	---	--

Scale: 1" = ft. Title:

Close Print

Delivered Tuesday 3/12/2019 at 11:47 am

DELIVERED

Signed for by: M.OTOOLE

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Smartlink LLC
Dave Barbagallo
265 Lincoln St
KENSINGTON, CT US 06037
860 681-7708

TO

Town of Killingworth
Catherine Lino First Select woman
KILLINGWORTH, CT US 06419
860 663-1765

Ask FedEx

Shipment Facts

DELIVERY ATTEMPTS

1

TOTAL SHIPMENT WEIGHT

1 lbs / 0.45 kgs

SPECIAL HANDLING SECTION

Deliver Weekday

Travel History

ACTUAL DELIVERY

Tue 3/12/2019 11:47 am

DELIVERED TO

Receptionist/Front Desk

TERMS

Shipper

STANDARD TRANSIT

(?

3/14/2019 by 4:30 pm

Expand History \

TOTAL PIECES

1

PACKAGING

FedFx Pak

SHIP DATE

(?)

Mon 3/11/2019

Local

OUR COMPANY

About FedEx

Our Portfolio

Investor Relations

Careers

FedEx Blog

Corporate Responsibility

Newsroom

Contact Us

MORE FROM FEDEX

FedEx Compatible

Developer Resource Center

FedEx Cross Border

LANGUAGE

Change Country

E	ng	Ш	S	ľ

© FedEx 1995-2018

Feedback | Site Map | Terms of Use | Security & Privacy

Delivered Tuesday 3/12/2019 at 11:47 am

DELIVERED

Signed for by: M.OTOOLE

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Smartlink LLC
Dave Barbagallo
265 Lincoln St
KENSINGTON, CT US 06037
860 681-7708

TO

Town of Killingworth Michael Bekech Assessor KILLINGWORTH, CT US 06419 860 663-1765 Ask FedEx

Shipment Facts

DELIVERY ATTEMPTS

1

TOTAL SHIPMENT WEIGHT

1 lbs / 0.45 kgs

SPECIAL HANDLING SECTION

Deliver Weekday

Travel History

ACTUAL DELIVERY

Tue 3/12/2019 11:47 am

DELIVERED TO

Receptionist/Front Desk

TERMS

Shipper

STANDARD TRANSIT

(?

3/14/2019 by 4:30 pm

Expand History \

TOTAL PIECES

1

PACKAGING

FedFx Pak

SHIP DATE

(?)

Mon 3/11/2019

Local

OUR COMPANY

About FedEx

Our Portfolio

Investor Relations

Careers

FedEx Blog

Corporate Responsibility

Newsroom

Contact Us

MORE FROM FEDEX

FedEx Compatible

Developer Resource Center

FedEx Cross Border

LANGUAGE

Change Country

E	ng	Ш	S	ľ

© FedEx 1995-2018

Feedback | Site Map | Terms of Use | Security & Privacy

Delivered Tuesday 3/12/2019 at 12:47 pm

DELIVERED

Signed for by: P.JACKSON

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Smartlink LLC
Dave Barbagallo
265 Lincoln St
KENSINGTON, CT US 06037
860 681-7708

TO

Valley Shore Emergency Communicatio
Richard Darin
WESTBROOK, CT US 06498
860 399-7921

Shipment Facts

DELIVERY ATTEMPTS

1

TOTAL SHIPMENT WEIGHT

0.5 lbs / 0.23 kgs

SPECIAL HANDLING SECTION

Deliver Weekday

Travel History

ACTUAL DELIVERY

Tue 3/12/2019 12:47 pm

DELIVERED TO

Receptionist/Front Desk

TERMS

Shipper

STANDARD TRANSIT

(?

3/14/2019 by 8:00 pm

Expand History \

TOTAL PIECES

1

PACKAGING

FedEx Envelope

SHIP DATE

(?)

Mon 3/11/2019

Local

OUR COMPANY

About FedEx

Our Portfolio

Investor Relations

Careers

FedEx Blog

Corporate Responsibility

Newsroom

Contact Us

MORE FROM FEDEX

FedEx Compatible

Developer Resource Center

FedEx Cross Border

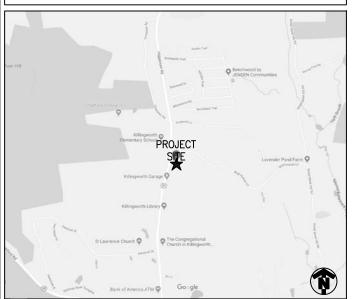
LANGUAGE

Change Country

۲ľ	ηg	Ш	S	ľ

© FedEx 1995-2018

Feedback | Site Map | Terms of Use | Security & Privacy


SHEET INDEX NO. DESCRIPTION T1 TITLE SHEET C1 GENERAL NOTES OVERALL & ENLARGED SITE PLAN C3 ELEVATION VIEW C4 ANTENNA ORIENTATION PLAN EQUIPMENT DETAILS C5 EQUIPMENT DETAILS PLUMBING DIAGRAM GROUNDING DETAILS

DRIVING DIRECTIONS

FROM 550 COCHITUATE RD.:

GET ON I-90 WEST/MASSACHUSETTS TURNPIKE FROM SPEEN STREET. HEAD NORTHEAST TOWARD SPEEN STREET. TURN RIGHT TOWARD SPEEN STREET. TURN RIGHT ONTO COCHITUATE ROAD. USE THE RIGHT LANE TO TAKE THE RAMP TO I-90/MASSPIKE/SPRINGFIELD/BOSTON. KEEP LEFT AT THE FORK, FOLLOW SIGNS FOR I-90 WEST/MASSACHUSETTS TURNPIKE/WORCESTER/SPRINGFIELD AND MERGE ONTO 1-90 WEST/MASSACHUSETTS TURNPIKE. CONTINUE ON 1-90
WEST/MASSACHUSETTS TURNPIKE TO YOUR DESTINATION IN HADDAM. TAKE EXIT CT-9 SOUTH. MERGE ONTO I-90 WEST/MASSACHUETTS TURNPIKE. USE THE RIGHT 2 LANES TO TAKE EXIT 9 FOR I-84 TOWARD US-20/HARTFORD/NEW YORK CITY. CONTINUE ONTO I-84. USE THE LEFT 2 LANES TO TAKE EXIT 57 FOR CT-15 SOUTH TOWARD I-91 SOUTH/CHARTER OAK BRIDGE/NEW YORK CITY. CONTINUE ONTO CT-15 SOUTH. CONTINUE ONTO CT-15 SOUTH/US-5 SOUTH. TAKE EXIT 86 TO MERGE ONTO I-91 SOUTH TOWARD NEW HAVEN/NEW YORK CITY. USE THE LEFT LANE TO TAKE EXIT 22S TO MERGE ONTO CT-9 SOUTH TOWARD MIDDLETOWN/OLD SAYBROOK. TAKE EXIT 9 FOR CT-81 TOWARD KILLINGWORTH/CLINTON. TURN RIGHT ONTO CT-81 SOUTH/KILLINGWORTH ROAD.

LOCATION MAP

PROJECT

LTE 2C/3C/4C/RETROFIT

KILLINGWORTH-RTE 81

CELL SITE ID

CTL02045

FA SITE NUMBER

10034999

PACE ID

MRCTB035091/MRCTB035254 MRCTB035289/MRCTB035122

SITE ADDRESS

323 ROUTE 81 KILLINGWORTH, CT 06419

STRUCTURE TYPE

SELF SUPPORT

PROJECT TEAM

PROJECT MANAGER

INFINIGY[®]

ENGINEER

SCOPE OF WORK (PER LTE RFDS, DATED: 01/23/2019, V4.00):

- HANDICAP ACCESS REQUIREMENTS ARE NOT REQUIRED.
- FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION.
- FACILITY HAS NO PLUMBING OR REFRIGERANTS.
- THIS FACILITY SHALL MEET OR EXCEED ALL FAA AND FCC REGULATORY
- ALL NEW MATERIAL SHALL BE FURNISHED AND INSTALLED BY CONTRACTOR UNLESS NOTED OTHERWISE. EQUIPMENT, ANTENNAS/RRU AND CABLES FURNISHED BY OWNER AND INSTALLED BY CONTRACTOR.

TOWER SCOPE

- REMOVE (6) PANEL ANTENNAS
- INSTALL (6) PANEL ANTENNAS
- REMOVE (3) RRUS-11
- INSTALL (3) 4415 B25
- INSTALL (3) B2/B66A 8843
- INSTALL (3) B5/12 4449
- INSTALL (1) DC/FIBER DC6-48-60-18-8C-EV AND (1) DC ONLY DC6-48-60-0-8C-EV W/ (1) FIBER AND (4) DC CABLES

GROUND SCOPE

- SWAP DUS WITH 6630
 ADD 2ND 6630 FOR 5G

PROJECT SUMMARY

SITE NAME: KILLINGWORTH-RET 81

CELL SITE ID: CTL02045

FA SITE #: 10034999

323 ROUTE 81 SITE ADDRESS: KILLINGWORTH, CT 06419

COUNTY: MIDDLESEX

SITE COORDINATES: LATITUDE: 41.3694639° N (NAD 83) 72.5642211° W (NAD 83) LONGITUDE: ELEVATION: ±448' (AMSL)

(AGL) RAD CENTER

LANDLORD: VALLEY SHORE COMMUNICATIONS INC.

P.O. BOX 497 WESTBROOK, CT 06498 (203) 399-2435

AT&T MOBILITY APPLICANT:

550 COCHITUATE RD. FRAMINGHAM, MA 01701

SMARTLINK, LLC CLIENT REPRESENTATIVE:

85 RANGEWAY RD. SUITE 102 NORTH BILLERICA, MA 01862

ED WEISSMAN CONTACT: (917) 528-1857

INFINIGY ENGINEER:

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

CONTACT: ALEX WELLER (518) 690-0790

2015 IBC/2018 CONNECTICUT STATE BUILDING **BUILDING CODE:**

CODE (ANSI/TIA-222-G)
UNIFORM BUILDING CODE
BUILDING OFFICIALS & CODE ADMINISTRATORS UNIFORM MECHANICAL CODE

TOLL FREE: 1-800-922-4455 OR

CONNECTICUT STATUTE

Call before you dig. WORKING DAYS NOTICE

UNIFORM PLUMBING CODE LOCAL BUILDING CODE CITY/COUNTY ORDINANCES

NATIONAL ELECTRICAL CODE (LATEST EDITION) ELECTRICAL CODE:

Know what's below.

工

1106-A0001-C

KILLINGWORTH-RTE 81

CTL02045 FA# 10034999

Drawing Scale: AS NOTED

02/26/19

TITLE PAGE

T1

GENERAL NOTES

PART 1 - GENERAL REQUIREMENTS

- 1.1 THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOILOWING:
 - A. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION

 B. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN

 AND MANUFACTURE OF THE FOOMMUNICATIONS FOUIPMENT.
 - C. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70 (NATIONAL ELECTRICAL CODE "NEC").
 - D. AND NFPA 101 (LIFE SAFETY CODE).
 - E. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM).
 - F. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE).

1.2 DEFINITIONS:

A: WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.

B: COMPANY: AT&T CORPORATION

- C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT.
- D: CONTRACTOR: CONSTRUCTION CONTRACTOR; CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK.
- E: THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK.
- 1.3 POINT OF CONTACT: COMMUNICATION BETWEEN THE COMPANY AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE COMPANY SITE DEVELOPMENT SPECIALIST OR OTHER PROJECT COORDINATOR APPOINTED TO MANAGE THE PROJECT FOR THE COMPANY.
- 1.4 ON-SITE SUPERVISION: THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.
- 1.5 DRAWINGS, SPECIFICATIONS AND DETAILS REQUIRED AT JOBSITE: THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS, STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES, AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.
 - A. THE JOBSITE DRAWINGS, SPECIFICATIONS AND DETAILS SHALL BE CLEARLY MARKED DAILY IN PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS.
- 1.6 USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.

1.7 NOTICE TO PROCEED:

A. NO WORK SHALL COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED.

B. UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE AT&T WITH AN OPERATIONAL WIRELESS FACILITY.

PART 2 - EXECUTION

- 2.1 TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE, POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSORS OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS.
- 2.2 ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.
- 2.3 TESTING: REQUIREMENTS FOR TESTING BY THIS CONTRACTOR SHALL BE AS INDICATED HEREWITH, ON THE CONSTRUCTION DRAWINGS, AND IN THE INDIVIDUAL SECTIONS OF THESE SPECIFICATIONS. SHOULD COMPANY CHOOSE TO ENGAGE ANY THIRD-PARTY TO CONDUCT ADDITIONAL TESTING, THE CONTRACTOR SHALL COOPERATE WITH AND PROVIDE A WORK AREA FOR COMPANY'S TEST AGENCY.

- 2.4 COMPANY FURNISHED MATERIAL AND EQUIPMENT: ALL HANDLING, STORAGE AND INSTALLATION OF COMPANY FURNISHED MATERIAL AND EQUIPMENT SHALL BE IN ACCORDANCE WITH THE REQUIREMENTS OF THE CONTRACT DOCUMENTS AND WITH THE MANUFACTURER'S INSTRUCTIONS AND RECOMMENDATIONS.
 - A. CONTRACTOR SHALL PROCURE ALL OTHER REQUIRED WORK RELATED MATERIALS NOT PROVIDED BY AT&T TO SUCCESSFULLY CONSTRUCT A WIRELESS FACILITY.
- 2.5 DIMENSIONS: VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS.
- 2.6 EXISTING CONDITIONS: NOTIFY THE COMPANY REPRESENTATIVE OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.

PART 3 - RECEIPT OF MATERIAL & EQUIPMENT

- i.1 RECEIPT OF MATERIAL AND EQUIPMENT: CONTRACTOR IS RESPONSIBLE FOR AT&T PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL: A. ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT.
- B. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES.
 C. TAKE RESPONSIBILITY FOR FOURMENT AND PROVIDE INSURANCE
- C. TARE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE
 PROTECTION AS REQUIRED IN AGREEMENT.
 D. RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY—FOUR HOURS
- D. RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS AFTER RECEIPT, REPORT TO AT&T OR ITS DESIGNATED PROJECT REPRESENTATIVE OF SUCH.
- E. PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING. F. COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE TO SITE.

PART 4 - GENERAL REQUIREMENTS FOR CONSTRUCTION

- 4.1 CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.
- 4.2 EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS.
- 4.3 CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION.
 - A. IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY
 - B. CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD.
- 4.4 CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS.
 SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY
 CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM
 TO OPICINAL CONDITION.
- 4.5 CONDUCT TESTING AS REQUIRED HEREIN.

PART 5 - TESTS AND INSPECTIONS

- 5.1 TESTS AND INSPECTIONS:
 - A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS. INSPECTIONS AND PROJECT DOCUMENTATION.
 - B. CONTRACTOR SHALL COORDINATE TEST AND INSPECTION SCHEDULES WITH COMPANY'S REPRESENTATIVE WHO MUST BE ON SITE TO WITNESS SUCH TESTS AND INSPECTIONS.
 - C. WHEN THE USE OF A THIRD PARTY INDEPENDENT TESTING AGENCY IS REQUIRED, THE AGENCY THAT IS SELECTED MUST PERFORM SUCH WORK ON A REGULAR BASIS IN THE STATE WHERE THE PROJECT IS LOCATED AND HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER CONDITIONS
 - D. THE THIRD PARTY TESTING AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES.
 - E. SITE RESISTANCE TO EARTH TESTING PER EXHIBIT: CELL SITE GROUNDING SYSTEM DESIGN.

- F. ANTENNA AND COAX SWEEP TESTS PER EXHIBIT: ANTENNA TRANSMISSION LINE ACCEPTANCE STANDARDS.
- G. ALL OTHER TESTS REQUIRED BY COMPANY OR JURISDICTION.

PART 6 - TRENCHING AND BACKFILLING

- 6.1 TRENCHING AND BACKFILLING: THE CONTRACTOR SHALL PERFORM ALL EXCAVATION OF EVERY DESCRIPTION AND OF WHATEVER SUBSTANCES ENCOUNTERED, TO THE DEPTHS INDICATED ON THE CONSTRUCTION DRAWINGS OR AS OTHERWISE SPECIFIED.
- A. PROTECTION OF EXISTING UTILITIES: THE CONTRACTOR SHALL CHECK WITH THE LOCAL UTILITIES AND THE RESPECTIVE UTILITY LOCATOR COMPANIES PRIOR TO STARTING EXCAVATION OPERATIONS IN EACH RESPECTIVE AREA TO ASCERTAIN THE LOCATIONS OF KNOWN UTILITY LINES. THE LOCATIONS, NUMBER AND TYPES OF EXISTING UTILITY LINES DETAILED ON THE CONSTRUCTION DRAWINGS ARE APPROXIMATE AND DO NOT REPRESENT EXACT INFORMATION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR REPAIRING ALL LINES DAMAGED DURING EXCAVATION AND ALL ASSOCIATED OPERATIONS. ALL UTILITY LINES UNCOVERED DURING THE EXCAVATION OPERATIONS, SHALL BE PROTECTED FROM DAMAGE DURING EXCAVATION AND ASSOCIATED OPERATIONS. ALL REPAIRS SHALL BE APPROVED BY THE UTILITY COMPANY.
- B. HAND DIGGING: UNLESS APPROVED IN WRITING OTHERWISE, ALL DIGGING WITHIN AN EXISTING CELL SITE COMPOUND IS TO BE DONE BY HAND.
- C. DURING EXCAVATION, MATERIAL SUITABLE FOR BACKFILLING SHALL BE STOCKPILED IN AN ORDERLY MANNER A SUFFICIENT DISTANCE FROM THE BANKS OF THE TRENCH TO AVOID OVERLOADING AND TO PREVENT SLIDES OR CAVE—INS. ALL EXCAVATED MATERIALS NOT REQUIRED OR SUITABLE FOR BACKFILL SHALL BE REMOVED AND DISPOSED OF AT THE CONTRACTOR'S EXPENSE.
- D. GRADING SHALL BE DONE AS MAY BE NECESSARY TO PREVENT SURFACE WATER FROM FLOWING INTO TRENCHES OR OTHER EXCAVATIONS, AND ANY WATER ACCUMULATING THEREIN SHALL BE REMOVED BY PUMPING OR BY OTHER APPROVED METHOD.
- E. SHEETING AND SHORING SHALL BE DONE AS NECESSARY FOR THE PROTECTION OF THE WORK AND FOR THE SAFETY OF PERSONNEL. UNLESS OTHERWISE INDICATED, EXCAVATION SHALL BE BY OPEN CUT, EXCEPT THAT SHORT SECTIONS OF A TRENCH MAY BE TUNNELED IF, THE CONDUIT CAN BE SAFELY AND PROPERLY INSTALLED AND BACKFILL CAN BE PROPERLY TAMPED IN SUCH TUNNEL SECTIONS. EARTH EXCAVATION SHALL COMPRISE ALL MATERIALS AND SHALL INCLUDE CLAY, SILT, SAND, MUCK, GRAVEL, HARDPAN, LOOSE SHALE, AND LOOSE STONE.
- TRENCHES SHALL BE OF NECESSARY WIDTH FOR THE PROPER LAYING OF THE CONDUIT OR CABLE, AND THE BANKS SHALL BE AS NEARLY VERTICAL AS PRACTICABLE. THE BOTTOM OF THE TRENCHES SHALL BE ACCURATELY GRADED TO PROVIDE UNIFORM BEARING AND SUPPORT FOR EACH SECTION OF THE CONDUIT OR CABLE ON UNDISTURBED SOIL AT EVERY POINT ALONG ITS ENTIRE LENGTH. EXCEPT WHERE ROCK IS ENCOUNTERED, CARE SHALL BE TAKEN NOT TO EXCAVATE BELOW THE DEPTHS INDICATED. WHERE ROCK EXCAVATIONS ARE NECESSARY, THE ROCK SHALL BE EXCAVATED TO A MINIMUM OVER DEPTH OF 6 INCHES BELOW THE TRENCH DEPTHS INDICATED ON THE CONSTRUCTION DRAWINGS OR SPECIFIED. OVER DEPTHS IN THE ROCK EXCAVATION AND UNAUTHORIZED OVER DEPTHS SHALL BE THOROUGHLY BACK FILLED AND TAMPED TO THE APPROPRIATE GRADE. WHENEVER WET OR OTHERWISE UNSTABLE SOIL THAT IS INCAPABLE OF PROPERLY SUPPORTING THE CONDUIT OR CABLE IS ENCOUNTERED IN THE BOTTOM OF THE TRENCH SUCH SOLID SHALL BE REMOVED TO A MINIMUM OVER DEPTH OF 6 INCHES AND THE TRENCH BACKFILLED TO THE PROPER GRADE WITH EARTH OF OTHER SUITABLE MATERIAL, AS HEREINAFTER
- BACKFILLING OF TRENCHES. TRENCHES SHALL NOT BE BACKFILLED UNTIL ALL SPECIFIED TESTS HAVE BEEN PERFORMED AND ACCEPTED. WHERE COMPACTED BACKFILL IS NOT INDICATED THE TRENCHES SHALL BE CAREFULLY BACKFILLED WITH SELECT MATERIAL SUCH AS EXCAVATED SOILS THAT ARE FREE OF ROOTS, SOD, RUBBISH OR STONES, DEPOSITED IN 6 INCH LAYERS AND THOROUGHLY AND CAREFULLY RAMMED UNTIL THE CONDUIT OR CABLE HAS A COVER OF NOT LESS THAN 1 FOOT. THE REMAINDER OF THE BACKFILL MATERIAL SHALL BE GRANULAR IN NATURE AND SHALL NOT CONTAIN ROOTS, SOD, RUBBING, OR STONES OF 2-1/2 INCH MAXIMUM DIMENSION. BACKFILL SHALL BE CAREFULLY PLACED IN THE TRENCH AND IN 1 FOOT LAYERS AND EACH LAYER TAMPED. SETTLING THE BACKFILL WITH WATER WILL BE PERMITTED. THE SURFACE SHALL BE GRADED TO A REASONABLE UNIFORMITY AND THE MOUNDING OVER THE TRENCHES LEFT IN A UNIFORM AND NEAT CONDITION.

SYMBOL	DESCRIPTION
\bigcirc	CIRCUIT BREAKER
ㅁ	NON-FUSIBLE DISCONNECT SWITCH
E	FUSIBLE DISCONNECT SWITCH
	SURFACE MOUNTED PANEL BOARD
Т	TRANSFORMER
	KILOWATT HOUR METER
JB	JUNCTION BOX
РВ	PULL BOX TO NEC/TELCO STANDARDS
	UNDERGROUND UTILITIES
•	EXOTHERMIC WELD CONNECTION
	MECHANICAL CONNECTION
□ OR ⊗	GROUND ROD
□I OR 🔯	GROUND ROD WITH INSPECTION SLEEVE
	GROUND BAR
€	120AC DUPLEX RECEPTACLE
—— G ——	GROUND CONDUCTOR
— eu —— eu —— eu —	DC POWER AND FIBER OPTIC TRUNK CABLES
— t — t — t —	DC POWER CABLES
(",)	EPRESENTS DETAIL NUMBER EF. DRAWING NUMBER

ABBREVIATIONS

COAX ISOLATED GROUND BAR EXTERNAL CIGBE MIGB MASTER ISOLATED GROUND BAR SST SELF SUPPORTING TOWER **GPS** GLOBAL POSITIONING SYSTEM TYP. **TYPICAL** DWG **DRAWING** BCW BARE COPPER WIRE BFG BELOW FINISH GRADE PVC POLYVINYL CHLORIDE CAB CABINET С **CONDUIT** SS STAINLESS STEEL GROUND AWG AMERICAN WIRE GAUGE **RGS** RIGID GALVANIZED STEEL AHJ AUTHORITY HAVING JURISDICTION TTI NA TOWER TOP LOW NOISE AMPLIFIER UNO UNLESS NOTED OTHERWISE **EMT** ELECTRICAL METALLIC TUBING **AGL** ABOVE GROUND LEVEL

INFINIGY ENGINEERING, PLLC 1033 Watervliet Shaker Rd Albany, NY 12205 Office # (Fill) 869-0790 E.C. J. 6400 0000

ISSUED FOR PERMIT	BMM	02/26,	
ISSUED FOR REVIEW	BMM	07/26,	
Submittal / Revision	Appr	Date:	
Tawn:	BMM	Date:	01/31/19
Date:			

______1106-A0001-i

CTL02045 FA# 10034999

KILLINGWORTH-RTE 81

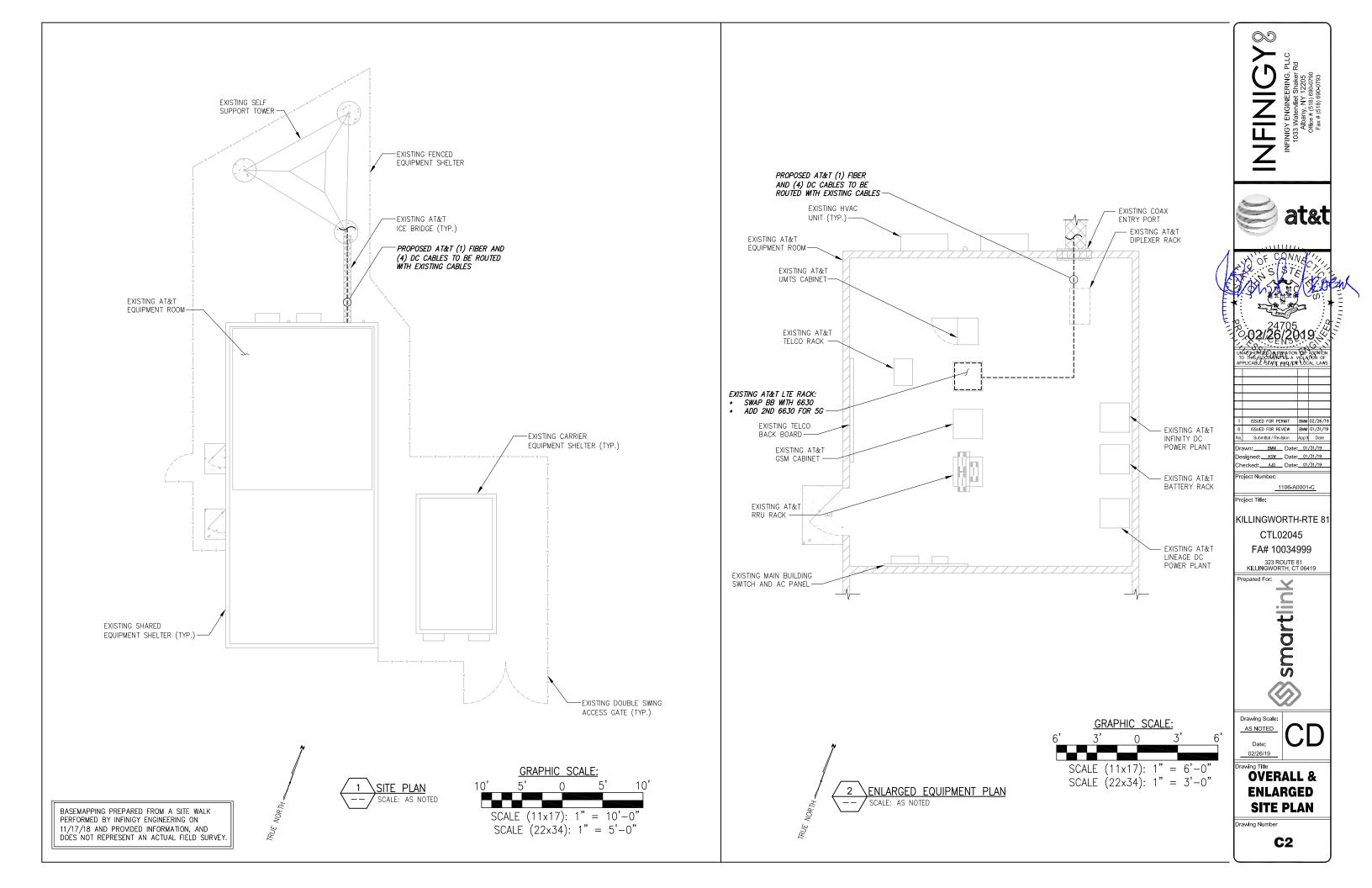
323 ROUTE 81 KILLINGWORTH, CT 06419

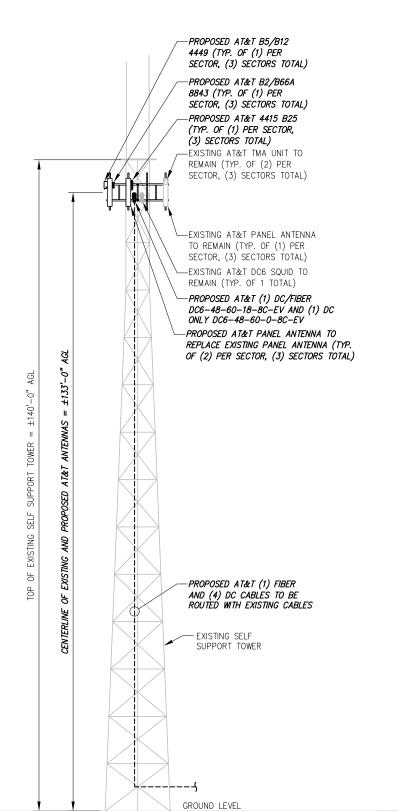
smartlink smartlink

Drawing Scale:

AS NOTED

Date:


Date: 02/26/19


ing Title

GENERAL

NOTES

Drawing Number

١	NOTE:
١	• FOR ADDITIONAL STRUCTURAL INFORMATION PERTAINING TO TH
١	TOWER STRUCTURE, SEE 'STRUCTURAL ANALYSIS REPORT'
١	COMPLETED BY INFINIGY, DATED 02/05/19.
١	• FOR ADDITIONAL STRUCTURAL INFORMATION PERTAINING TO TH
١	ANTENNA MOUNT, SEE FAILING 'MOUNT ANALYSIS REPORT'
- 1	

COMPLETED BY INFINIGY, DATED 02/05/19. MOUNT MUST BE REPLACED PRIOR TO INSTALLATION OF THE PROPOSED EQUIPMENT.

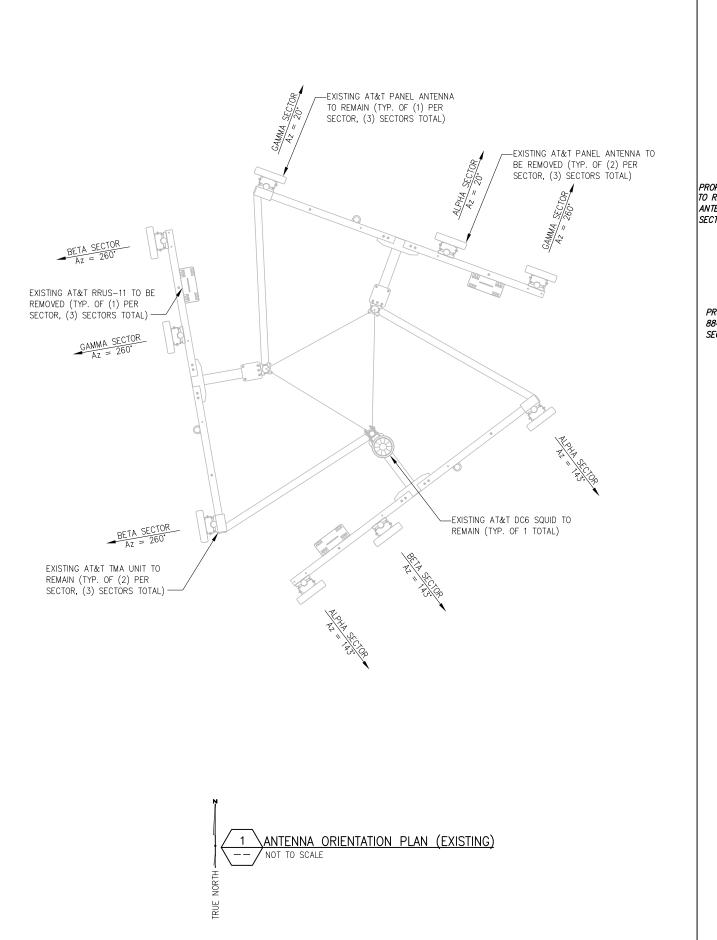
SEPARATION NOTE:

- 3 FEET MINIMUM SEPARATION BETWEEN LTE ANTENNA
- 6 FEET MINIMUM SEPARATION BETWEEN 700BC & 700 DE

	FINAL ANTENNA CONFIGURATION & CABLE SCHEDULE BASED ON LTE RFDS DATED 01/23/19, V 4.00										
SECTOR	SECTOR ANTENNA STATUS & MANF/MODEL DIPLEXER RRUS AZIMUTH & HEIGHT TYPE LENGTH UNI									RAYCAP	1
SECTOR	POSITION	TECHNOLOGY	MANF/MODEL	DIPLEXER	TUNOS	AZIMOTT	€ HEIGHT	TYPE	LENGTH	UNIT]
	A-1	(E) UMTS 850	POWERWAVE 7770	(2) (E) LGP21401		143°	±133'	(2) (E) 1-5/8" COAX	±180'		
ALPHA	A-2							(2) (E) 1-5/8" COAX			
ALPHA	A-3	(P) LTE 1900	KATHREIN 840–370799K		(1) (P) 4415 B25	20°	±133'	(1) (E) FIBER CABLE (2) (E) DC CABLES			
	A-4	(P) LTE 700/850/AWS /5G 850	KATHREIN 800–10966		(1) (P) B5/B12 4449 (1) (P) B2/B66A 8843	20°	±133'	SEE A-3 FOR CABLE INFORMATION			
	B-1	(E) UMTS 850	POWERWAVE 7770	(2) (E) LGP21401		260°	±133'	(2) (E) 1-5/8" COAX	±180')' -8C–EV -8C–EV	
BETA	B-2							(2) (E) 1-5/8" COAX		.60-18-	
DETA	B-3	(P) LTE 1900	KATHREIN 800–10991K		(1) (P) 4415 B25	143°	±133'	(1) (P) FIBER CABLE (4) (P) DC CABLES		(1) (P) DCG 'SQUID' (1) (P) DCG-48-60-18-8C-EV (1) (P) DCG-48-60-0-8C-EV	
	B-4	(P) LTE 700/850/AWS /5G 850	KATHREIN 800–10965		(1) (P) B5/B12 4449 (1) (P) B2/B66A 8843	143°	±133'	SEE A-3 FOR CABLE INFORMATION		(3) (9) (9)	
	G-1	(E) UMTS 850	POWERWAVE 7770	(2) (E) LGP21401		20°	±133'	(2) (E) 1-5/8" COAX	±180'		
GAMMA	G-2							(2) (E) 1-5/8" COAX			
	G-3	(P) LTE 1900	KATHREIN 800–10991K		(1) (P) 4415 B25	260°	±133'	SEE A-3 FOR CABLE INFORMATION			
	G-4	(P) LTE 700/850/AWS /5G 850	KATHREIN 800–10965		(1) (P) B5/B12 4449 (1) (P) B2/B66A 8843	260°	±133'	SEE A-3 FOR CABLE INFORMATION			

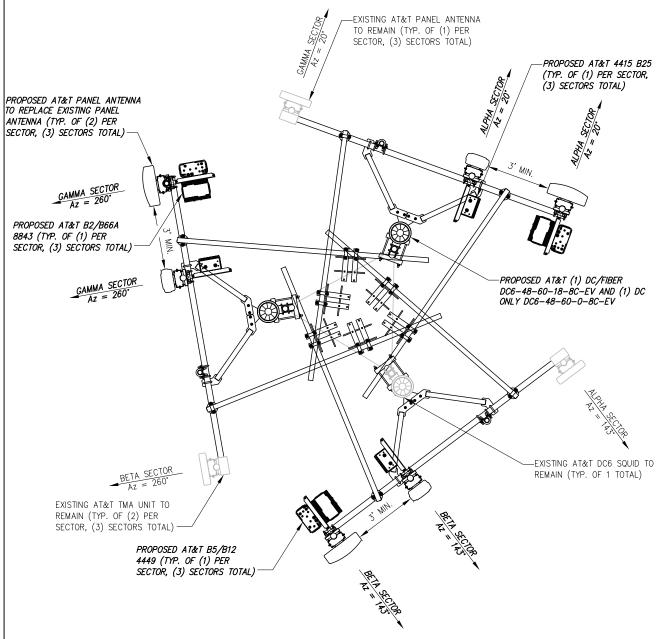
CTL02045 FA# 10034999 323 ROUTE 81 KILLINGWORTH, CT 06419

KILLINGWORTH-RTE 81



Drawing Scale: AS NOTED

02/26/19


ELEVATION VIEW

rawing Number

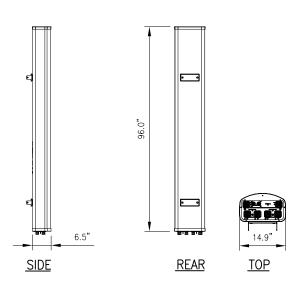
- 3 FEET MINIMUM SEPARATION BETWEEN LTE ANTENNA
 6 FEET MINIMUM SEPARATION BETWEEN 700BC & 700 DE

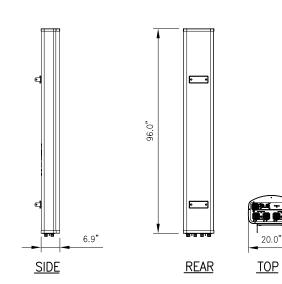
- NOTE;
 FOR ADDITIONAL STRUCTURAL INFORMATION PERTAINING TO THE TOWER STRUCTURE, SEE 'STRUCTURAL ANALYSIS REPORT'
- COMPLETED BY INFINIGY, DATED 02/05/19.
 FOR ADDITIONAL STRUCTURAL INFORMATION PERTAINING TO THE
 ANTENNA MOUNT, SEE FAILING 'MOUNT ANALYSIS REPORT'
 COMPLETED BY INFINIGY, DATED 02/05/19. MOUNT MUST BE
 REPLACED PRIOR TO INSTALLATION OF THE PROPOSED EQUIPMENT.

CTL02045 FA# 10034999 323 ROUTE 81 KILLINGWORTH, CT 06419

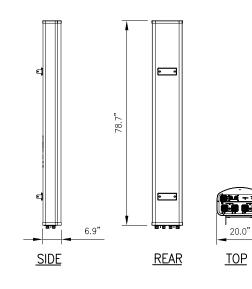
KILLINGWORTH-RTE 81

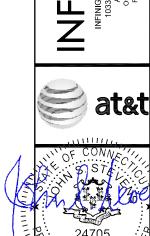
oject Title:


smartlin


Drawing Scale: AS NOTED

02/26/19


ANTENNA **ORIENTATION PLAN**


rawing Number

02/26/2019 NACTHORIZED ATTURN TION FOR ADM O THIS DOCUMENT US A VIOLATIO PPLICABLE STATE INITED TO LOCAL

 \mathbb{C}

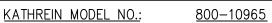
KATHREIN MODEL NO .: 840-370799K

FIBERGLASS, RADOME MATERIAL: RADOME COLOR: LIGHT GRAY 96.0"x14.9"x6.5" DIMENSIONS, HxWxD: WEIGHT, W/ PRE-MOUNTED BRACKETS: CONNECTOR: 105.8 LBS 7-16 DIN FEMALE

KATHREIN MODEL NO.:	800-10966	
RADOME MATERIAL: RADOME COLOR:	FIBERGLASS, LIGHT GRAY	

96.0"x20.0"x6.9"

7-16 DIN FEMALE


114.6 LBS

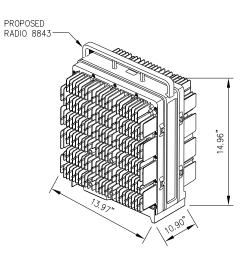
DIMENSIONS, HxWxD: WEIGHT, W/ PRE-MOUNTED BRACKETS: CONNECTOR:

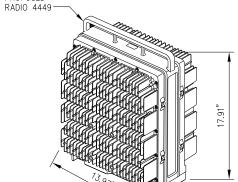
KATHREIN MODEL NO .: 800-10991K

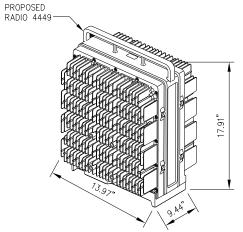
FIBERGLASS, RADOME MATERIAL: RADOME COLOR: LIGHT GRAY 78.7"x20.0"x6.9" DIMENSIONS, HxWxD: WEIGHT. W/

PRE-MOUNTED BRACKETS: CONNECTOR: 100.9 LBS 7-16 DIN FEMALE

FIBERGLASS, RADOME MATERIAL: RADOME COLOR: LIGHT GRAY 78.7"x20.0"x6.9" DIMENSIONS, HxWxD: WEIGHT. W/


PRE-MOUNTED BRACKETS: CONNECTOR: 108.6 LBS 7-16 DIN FEMALE





RADIO 8843 SPECIFICATIONS

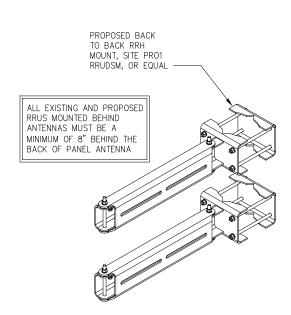
- HxWxD, (INCHES): 14.96"x13.97"x10.90" WEIGHT (LBS): 71.87
- COLOR : GRÁY

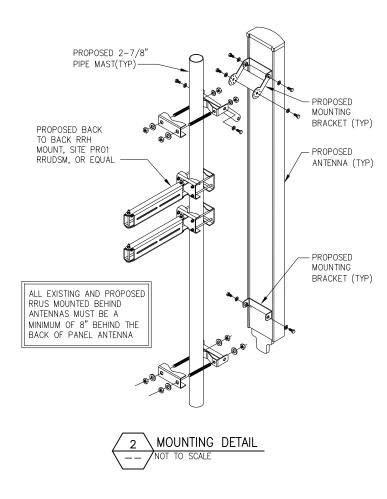
RADIO 4449 SPECIFICATIONS

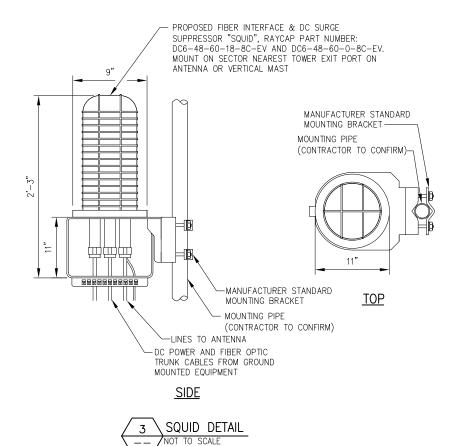
- HxWxD, (INCHES): 17.91"x13.97"x9.44"
- WEIGHT (LBS): 70.54
- COLOR : GRÁY

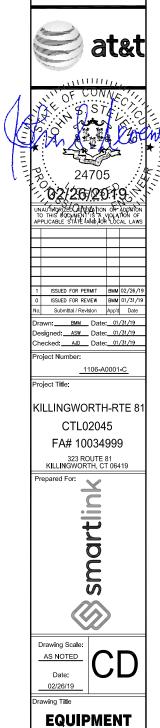
RADIO 4415 SPECIFICATIONS

- HxWxD, (INCHES): 16.53"x13.46"x6.29"
- WEIGHT (LBS): 47.4
- COLOR: NCS S 1002-B/NCS S 6502-B

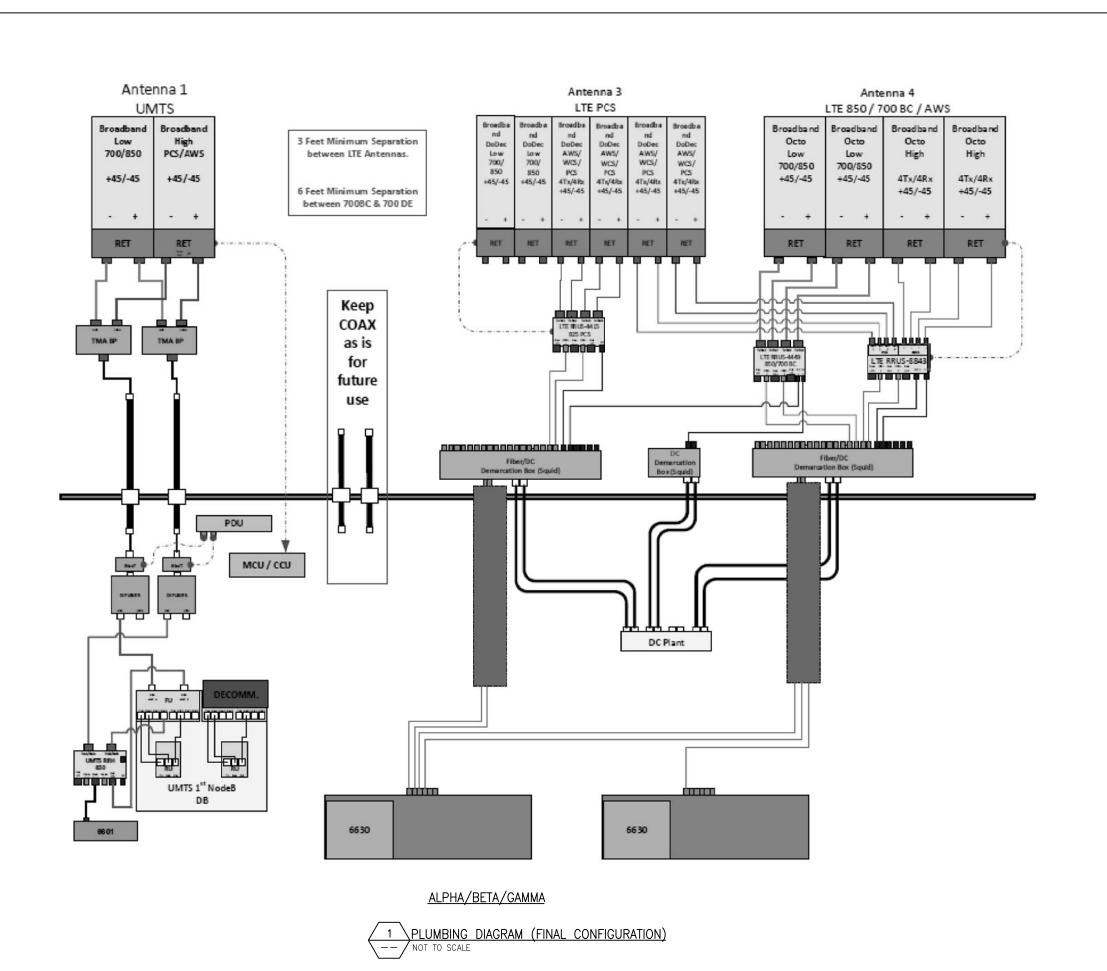

ERICSSON RADIO 8843 DETAIL NOT TO SCALE



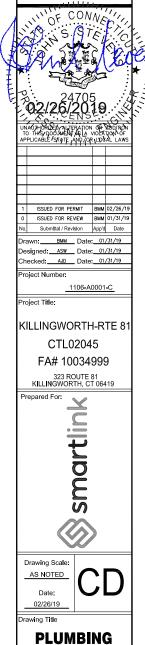

rawing Number


BACK TO BACK PIPE MOUNT DETAIL

NOT TO SCALE

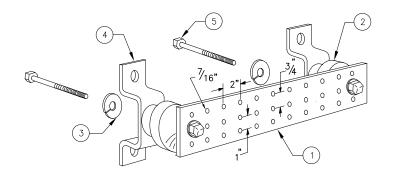


DETAILS


C5A

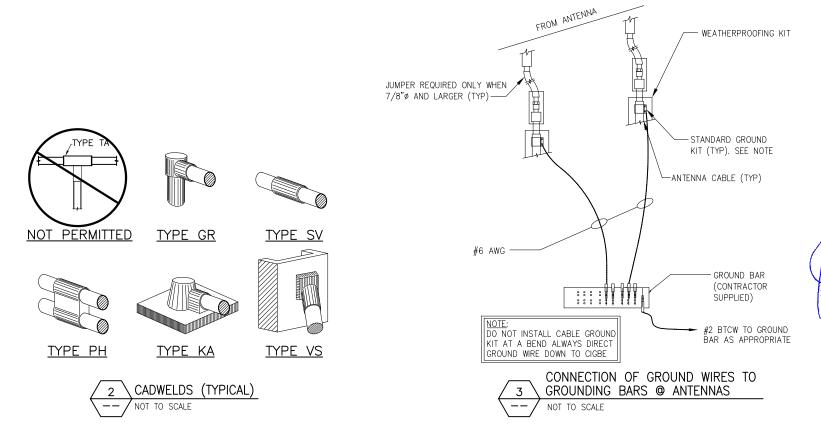
rawing Number

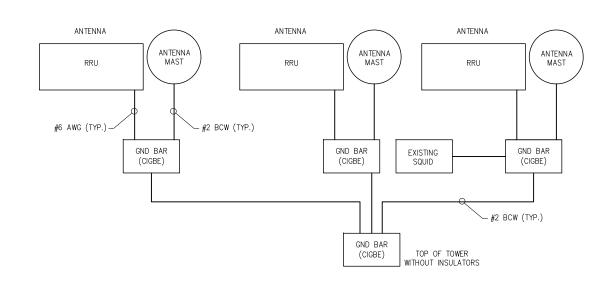
NFINIGY ENGINEERING, PLLC
1033 Watervilet Shaker Rd
Albany, NY 12205
Office # (518) 690-0793
Fax # (518) 690-0793



DIAGRAM

C6


rawing Number



LEGEND

- 1 SOLID TINNED COPPER GROUND BAR, 1/4"x 4"x 20" MIN., NEWTON INSTRUMENT CO. HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION
- 2 INSULATORS, NEWTON INSTRUMENT CAT. NO. 3061-4
- 3 5/8" LOCKWASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8
- 4 WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-6056
- 5 5/8-11 X 1" H.H.C.S. BOLTS, NEWTON INSTRUMENT CO. CAT NO. 3012-1
- 6 GROUND BAR SHALL BE SIZED TO ACCOMODATE ALL GROUNDING CONNECTIONS
 REQUIRED PLUS PROVIDE 50% SPARE CAPACITY
- 7 GROUND BARS SHALL NEITHER BE FIELD FABRICATED NOR NEW HOLES DRILLED
- 8 GROUND LUGS SHALL MATCH THE HOLE SPACING ON THE BAR
- 9 HARDWARE DIAMETER SHALL BE MINIMUM 3/8"

smartlin

Date: 02/26/19

GROUNDING DETAILS

Drawing Number

1033 WATERVLIET SHAKER RD, ALBANY, NY 12205

Structural Analysis Report

February 5, 2019

Site Name	Killingworth – RTE 81
Site Number	CTL02045
FA Number	10034999
PACE Number	MRCTB035091/ MRCTB035254/ MRCTB035289/ MRCTB035122
Client	Smartlink
Carrier	AT&T
Infinigy Job Number	499-006
Site Location	323 Route 81 Killingworth, CT 06419 41° 22' 10.07" N NAD83 72° 33' 51.20" W NAD83
Mount Centerline EL.	140.0 ft
Tower Classification	Self-Support
Structural Usage	74.7%
Overall Result	Pass

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The tower and foundation are therefore deemed adequate to support the existing and proposed loading as listed in this report.

Brenden Archer Project Engineer II

Structural Analysis Report

February 5, 2019

Contents

Introduction	3
Supporting Documentation	3
Analysis Code Requirements	3
Conclusion.	3
Existing and Reserved Loading.	4
To Be Removed.	4
Proposed Loading.	4
Final Configuration.	5
Structure Usages.	5
Foundation Reactions.	5
Deflection, Twist, and Sway	5
Assumptions and Limitations	6
Calculations	Appended

February 5, 2019

Introduction

Infinity Engineering has been requested to perform a structural analysis on the existing 140' Self-Support. All supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The tower was analyzed using tnxTower version 8.0.4.0 tower analysis software.

Supporting Documentation

Construction Drawings	Infinigy Engineering, Job #499-006, dated January 31, 2019
RFDS	AT&T RFDS ID #2572167, dated January 23, 2019
Previous Tower Analysis	Hudson Design Group, dated November 30, 2012
Modification Drawings	Hudson Design Group, dated December 7, 2012

Analysis Code Requirements

Wind Speed	101 mph (3-Second Gust, V _{ASD}) / 130 mph (3-Second Gust, V _{ULT})
Wind Speed w/ ice	40 mph (3-Second Gust, V _{ASD}) w/ 3/4" ice
TIA Revision	ANSI/TIA-222-G
Adopted IBC	2015 IBC/ 2018 Connecticut State Building Code
Structure Class	II
Exposure Category	В
Topographic Category	1
Calculated Crest Height	0

Conclusion

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The tower and foundation are therefore deemed adequate to support the existing and proposed loading as listed in this report.

If you have any questions, require additional information, or actual conditions differ from those as detailed in this report please contact me via the information below:

Brenden Archer
Project Engineer II | Infinigy
1033 Watervliet Shaker Road, Albany, NY 12205
(O) (518) 690-0790
barcher@infinigy.com | www.infinigy.com

February 5, 2019

Existing and Reserved Loading

Mount Height (ft)	Qty.	Appurtenance	Mount Type	Coax & Lines	Carrier
145.0	3	Decibel DB-810	C: 1 - A	(3) 1-5/8"	
140.0	1	Decibel DB-411-A	Side Arm	(11) 7/8"	
	1	Decibel DB225-A			
	6	Powerwave 7770			
	1	Powerwave P65-17-XLH-RR	$\frac{1}{\text{Frame}}$ (1) F	(12) 1 5/02	
122.0	1	KMW AM-X-CD-16-65-00T-RET		(12) 1-5/8" (1) Fiber (2) DC	AT 6-T
133.0	1	Commscope SBNH-1D4545A			· /
	3	Ericsson RRUS-11			
	6	Powerwave LGP-21401			
	1	Raycap DC6-48-60-18-8F			
123.0	1	MF-900B	MF-900B Direct		
80.0	1	Generic 1' Square Panel	Side Arm		
75.0	1	Decibel DB225-A Direct			
66.0	1	Omni 3"x12' Side Arm			

To Be Removed

Mount Height (ft)	Qty.	Appurtenance	Mount Type	Coax & Lines	Carrier
	3	Powerwave 7770			
	1	Powerwave P65-17-XLH-RR			
133.0	1	KMW AM-X-CD-16-65-00T-RET			AT&T
	1	Commscope SBNH-1D4545A			
	3	Ericsson RRUS-11			

Proposed Loading

Mount Height (ft)	Qty.	Appurtenance	Mount Type	Coax & Lines	Carrier
	1	Kathrein 840-370799K			
	2	Kathrein 800-10991K			
	1	Kathrein 800-10966			
133.0	2	Kathrein 800-10965		(1) Fiber	AT&T
133.0	3	Ericsson RRUS-4415 B25	(4) DC		AI&I
	3	Ericsson RRUS-8843 B2/B66A			
	3	Ericsson RRUS-4449 B5/B12			
	2	Raycap DC6-48-60-18-8F			

February 5, 2019

Final Configuration

Mount Height (ft)	Qty.	Appurtenance	Mount Type	Coax & Lines	Carrier
145.0	3	Decibel DB-810	Cida A	(3) 1-5/8"	
140.0	1	Decibel DB-411-A	Side Arm	(11) 7/8"	
	1	Decibel DB225-A			
	3	Powerwave 7770			
	1	Kathrein 840-370799K			
	2	Kathrein 800-10991K			
	1	Kathrein 800-10966		(12) 1-5/8"	ı
133.0	2	Kathrein 800-10965	Sector	(2) Fiber	AT&T
	3	Ericsson RRUS-4415 B25	Frame (6) DC		
	3	Ericsson RRUS-8843 B2/B66A			
	3	Ericsson RRUS-4449 B5/B12]		
	6	Powerwave LGP-21401			
	3	Raycap DC6-48-60-18-8F			
123.0	1	MF-900B	MF-900B Direct		
80.0	1	Generic 1' Square Panel Side A			
75.0	1	Decibel DB225-A	Direct		
66.0	1	Omni 3"x12'	Side Arm		

Structure Usages

	Summary	
Leg (T7)	62.5	Pass
Diagonal (T2)	74.7	Pass
Secondary Horizontal (T5)	14.0	Pass
Top Girt (T1)	0.4	Pass
RATING =	74. 7	Pass

Foundation Reactions

Reaction Data	Analysis Reactions	Result
Base Compression (kip)	16.4	68.8%
Base Shear (kip)	18.2	35.6%
Base Moment (kip-ft)	0.0	53.3%

Deflection, Twist, and Sway

Antenna Elevation (ft)	Deflection (in)	Twist (°)	Sway (°)
133.0	2.617	0.052	0.183

^{*}Per ANSI/TIA-222-G Section 2.8.2 maximum serviceability structural deflection limit is 3% of structure height.

^{*}Per ANSI/TIA-222-G Section 2.8.2 maximum serviceability structural twist and sway limit is 4 degrees.

^{*}Per ANSI/TIA-222-G Section 2.8.3 deflection, Twist, and sway values were calculated using a basic 3-second gust wind speed of 60 mph.

^{*}It is the responsibility of the client to ensure their proposed and/or existing equipment will meet ANSI/TIA-222-G Annex D or other appropriate microwave signal degradation limits based on the provided values above.

February 5, 2019

Assumptions and Limitations

Our structural calculations are completed assuming all information provided to Infinigy Engineering is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition of "like new" and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report Infinigy Engineering should be notified immediately to complete a revised evaluation.

Our evaluation is completed using standard TIA, AISC, ACI, and ASCE methods and procedures. Our structural results are proprietary and should not be used by others as their own. Infinigy Engineering is not responsible for decisions made by others that are or are not based on our supplied assumptions and conclusions.

This report is an evaluation of the tower structure only and does not reflect adequacy of any existing antenna mounts, mount connections, or coax mounting attachments. These elements are assumed to be adequate for the purposes of this analysis and are assumed to have been installed per their manufacturer requirements.

CTL02045 Page | 6

L2 1/2x2 1/2x5/16 L2 1/2x L2 1/2x2 1/2x5/16 L2 1/2x 12.64 10.6	L2 1/2x2 1/2x5/16 L2 1/2x2 1/2x5/16	121 121
		/2x2 1/2x5/16
	12.64	
	12.64	
	12.64	
		12.64
N.A. L2 1/2x2 1/2x3/16 10.61	9 @ 6.66667	N.A. L2 112x3 112x3/16 10.61 9 @ 6.66667 2023
L2 1/2x2 1/2x3/16 10.61 8.58	10.61	10.61 10050
		1665.0
	4 @	0.8991

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
DB810K-XC	145	Radio 4449 (ATI)	133
DB810K-XC	145	Radio 4449 (ATI)	133
DB810K-XC	145	RRUS 8843 (ATI)	133
Angle Side Arm	140	RRUS 8843 (ATI)	133
Angle Side Arm	140	RRUS 8843 (ATI)	133
Angle Side Arm	140	(2) LGP21401 (ATI)	133
DB411-A	140	(2) LGP21401 (ATI)	133
DB225-A	133	(2) LGP21401 (ATI)	133
800-10966 (ATI)	133	DC6-48-60-0-8F (ATI)	133
800-10965 (ATI)	133	DC6-48-60-0-8F (ATI)	133
800-10965 (ATI)	133	DC6-48-60-0-8F (ATI)	133
7770 (ATI)	133	Pipe Sector Frame (ATI)	133
7770 (ATI)	133	Pipe Sector Frame (ATI)	133
7770 (ATI)	133	Pipe Sector Frame (ATI)	133
840-370799K (ATI)	133	MF-900B	123
800-10991K (ATI)	133	1' Square Panel	80
800-10991K (ATI)	133	Pipe Side Arm	80
RRUS 4415 (ATI)	133	DB225-A	75
RRUS 4415 (ATI)	133	12' Omni	60
RRUS 4415 (ATI)	133	Pipe Side Arm	60
Radio 4449 (ATI)	133		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

- 1. Tower designed for Exposure B to the TIA-222-G Standard.
- Tower designed for a 101 mph basic wind in accordance with the TIA-222-G Standard.
- Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 60 mph wind.
- Tower Structure Class II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 74.7%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 164478 lb SHEAR: 18156 lb

UPLIFT: -142781 lb SHEAR: 15685 lb

AXIAL 74868 lb SHEAR MOMENT 7920 lb 699609 lb-ft

TORQUE 5406 lb-ft 50 mph WIND - 0.7500 in ICE

AXIAL 23847 lb SHEAR MOMENT 28766 lb 2263841 lb-ft

TORQUE 24491 lb-ft REACTIONS - 101 mph WIND

> Infinigy Engineering PLLC ob: CTL02045 1033 Watervliet Shaker Rd. Project: **499-006** ^{Client:} Smartlink Drawn by: BArcher Albany, NY Date: 02/05/19 Scale: NTS Code: TIA-222-G Phone: (518) 690-0790 Dwg No. E-1 FAX: (518) 690-0790

Infinigy Engineering PLLC

1033 Watervliet Shaker Rd. Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	1 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client	Smartlink	Designed by BArcher

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 140.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 4.50 ft at the top and 16.70 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 101 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

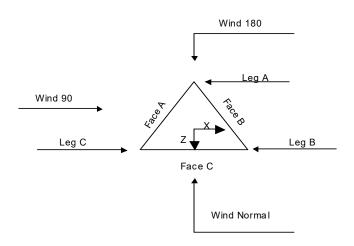
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice
 - Always Use Max Kz Use Special Wind Profile
- √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

- Distribute Leg Loads As Uniform Assume Legs Pinned
- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- √ Retension Guys To Initial Tension Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.
- ✓ Autocalc Torque Arm Areas
 Add IBC .6D+W Combination
 Sort Capacity Reports By Component
- √ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs


- Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check
 Use TIA-222-G Bracing Resist. Exemption
 Use TIA-222-G Tension Splice Exemption
 Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	2 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client	Smartlink	Designed by BArcher

Triangular Tower

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	140.00-120.00			4.50	1	20.00
T2	120.00-100.00			4.50	1	20.00
T3	100.00-80.00			6.55	1	20.00
T4	80.00-60.00			8.58	1	20.00
T5	60.00-40.00			10.61	1	20.00
T6	40.00-20.00			12.64	1	20.00
T7	20.00-0.00			14.67	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	140.00-120.00	4.00	X Brace	No	No	0.0000	0.0000
T2	120.00-100.00	4.00	X Brace	No	No	0.0000	0.0000
T3	100.00-80.00	5.00	X Brace	No	No	0.0000	0.0000
T4	80.00-60.00	6.67	X Brace	No	Yes	0.0000	0.0000
T5	60.00-40.00	6.67	X Brace	No	Yes	0.0000	0.0000
T6	40.00-20.00	6.67	X Brace	No	Yes	0.0000	0.0000
T7	20.00-0.00	10.00	X Brace	No	Yes	0.0000	0.0000

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	3 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client		Designed by
	Smartlink	BArcher

Tower Section Geometry (cont'd)							
Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade	
T1 140.00-120.00	Pipe	ROHN 3.5 STD	A572-50 (50 ksi)	Single Angle	L1 1/2x1 1/2x1/8	A36 (36 ksi)	
T2 120.00-100.00	Pipe	ROHN 3.5 STD	A572-50 (50 ksi)	Single Angle	L1 1/2x1 1/2x1/8	A36 (36 ksi)	
T3 100.00-80.00	Pipe	Rohn 3.5 X-STR	A572-50 (50 ksi)	Single Angle	L2x2x1/8	A36 (36 ksi)	
T4 80.00-60.00	Pipe	Rohn 3.5 X-STR	A572-50 (50 ksi)	Single Angle	L2 1/2x2 1/2x3/16	A36 (36 ksi)	
T5 60.00-40.00	Arbitrary Shape	Rohn 3.5 X-STR w/ Third Pipe	A572-50 (50 ksi)	Single Angle	L2 1/2x2 1/2x3/16	A36 (36 ksi)	
T6 40.00-20.00	Arbitrary Shape	Rohn 4 X-STR w/ Third Pipe	A572-50 (50 ksi)	Single Angle	L2 1/2x2 1/2x5/16	A36 (36 ksi)	
T7 20.00-0.00	Pipe	ROHN 5 X-STR	A572-50 (50 ksi)	Single Angle	L3x3x3/8	A36 (36 ksi)	

Tower Section Geometry (cont'd)							
Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade	
T1 140.00-120.00	Single Angle	L3x3x1/4	A36 (36 ksi)	Solid Round		A36 (36 ksi)	

	Tower Section Geometry (cont'd)							
Tower Elevation ft	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade		
4 80.00-60.00	Single Angle	L2 1/2x2 1/2x3/16	A36	Solid Round		A572-50		
	8 8		(36 ksi)			(50 ksi)		
Γ5 60.00-40.00	Single Angle	L2 1/2x2 1/2x3/16	A36	Solid Round		À572-50		
			(36 ksi)			(50 ksi)		
Γ6 40.00-20.00	Single Angle	L2 1/2x2 1/2x5/16	A36	Solid Round		A572-50		
			(36 ksi)			(50 ksi)		
T7 20.00-0.00	Single Angle	L3x3x3/8	A36	Solid Round		A572-50		
			(36 ksi)			(50 ksi)		

Tower Section Geometry (cont'd)

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	4 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client	0 1111	Designed by
	Smartlink	BArcher

Tower Elevation	Gusset Area	Gusset Thickness	Gusset Grade	Adjust. Factor	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt	Double Angle Stitch Bolt
Lievanon	(per face)	THICKNESS		A_f	A_r		Spacing	Spacing	Spacing
	(per juce)				n_r		Diagonals	Horizontals	Redundants
ft	ft ²	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T4 80.00-60.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T5 60.00-40.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T6 40.00-20.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T7 20.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft	, and the second			Y	Y	Y	Y	Y	Y	Y
T1	No	No	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
T2	No	No	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T3	No	No	1	1	1	1	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
T4	No	No	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T5	No	No	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T6	No	No	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
Т7 20.00-0.00	No	No	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation	Leg		Diagor	ıal	Top G	irt	Botton	Girt	Mid	Girt	Long Ho	rizontal	Short Hor	rizontal
ft	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	\overline{U}
	Deduct in		Deduct in		Deduct in		Width Deduct		Width Deduct		Width Deduct		Width Deduct	
	111		111		111		in		in		in		in	
T1 140.00-120.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	5 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client		Designed by
	Smartlink	BArcher

Tower	Leg		Diago	nal	Top G	irt	Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
Elevation														
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T2	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00														
T3	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00														
T4 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow Shield	Exclude	Component	Placement	Face	Lateral	#	#	Clear		Perimeter	Weight
	or	Snieia	From	Туре	c	Offset	Offset			1 0	Diameter	•	10
	Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
	-		Calculation										
1 5/8	С	No	No	Ar (CaAa)	140.00 - 8.00	0.0000	0.1	3	3	1.8000 1.9800	1.9800		1.04
7/8	С	No	No	Ar (CaAa)	140.00 - 8.00	0.0000	0.1	2	2	1.1100	1.1100		0.54
7/8	A	No	No	Ar (CaAa)	140.00 - 8.00	0.0000	0.1	9	9	1.1100	1.1100		0.54

1 5/8	В	No	No	Ar (CaAa)	133.00 -	0.0000	-0.4	12	6	1.8000	1.9800		1.04
(AT&T)				,	8.00					1.9800			
1-1/2	В	No	No	Ar (CaAa)	133.00 -	0.0000	0	1	1	0.4000	1.8600		0.79
(AT&T)				` /	8.00					1.8600			
1-1/2	В	No	No	Ar (CaAa)	133.00 -	0.0000	0	1	1	0.4000	1.8600		0.79
(AT&T)				, i	8.00					1.8600			
1	В	No	No	Ar (CaAa)	133.00 -	0.0000	0	2	2	0.4000	1.2500		0.58
(AT&T)				. /	8.00					1.2500			
1	В	No	No	Ar (CaAa)	133.00 -	0.0000	0	4	2	0.4000	1.2500		0.58
(AT&T)					8.00					1.2500			

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft ²	ft ²	ft^2	lb
T1	140.00-120.00	A	0.000	0.000	19.980	0.000	97.20
		В	0.000	0.000	45.474	0.000	228.07
		C	0.000	0.000	16.320	0.000	84.00
T2	120.00-100.00	A	0.000	0.000	19.980	0.000	97.20
		В	0.000	0.000	69.960	0.000	350.88
		C	0.000	0.000	16.320	0.000	84.00
T3	100.00-80.00	A	0.000	0.000	19.980	0.000	97.20
		В	0.000	0.000	69.960	0.000	350.88
		C	0.000	0.000	16.320	0.000	84.00
T4	80.00-60.00	A	0.000	0.000	19.980	0.000	97.20

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	6 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client	Smartlink	Designed by
	Smartiink	BArcher

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft ²	ft ²	ft ²	lb
		В	0.000	0.000	69.960	0.000	350.88
		C	0.000	0.000	16.320	0.000	84.00
T5	60.00-40.00	A	0.000	0.000	19.980	0.000	97.20
		В	0.000	0.000	69.960	0.000	350.88
		C	0.000	0.000	16.320	0.000	84.00
T6	40.00-20.00	A	0.000	0.000	19.980	0.000	97.20
		В	0.000	0.000	69.960	0.000	350.88
		C	0.000	0.000	16.320	0.000	84.00
T7	20.00-0.00	A	0.000	0.000	11.988	0.000	58.32
		В	0.000	0.000	41.976	0.000	210.53
		C	0.000	0.000	9.792	0.000	50.40

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft ²	ft ²	ft^2	ft ²	lb
T1	140.00-120.00	A	1.720	0.000	0.000	56.926	0.000	784.60
		В		0.000	0.000	84.538	0.000	1654.40
		C		0.000	0.000	55.563	0.000	700.44
T2	120.00-100.00	A	1.692	0.000	0.000	56.758	0.000	773.57
		В		0.000	0.000	129.245	0.000	2514.93
		C		0.000	0.000	55.179	0.000	689.20
T3	100.00-80.00	A	1.658	0.000	0.000	56.560	0.000	760.62
		В		0.000	0.000	128.287	0.000	2479.45
		C		0.000	0.000	54.727	0.000	676.05
T4	80.00-60.00	A	1.617	0.000	0.000	56.318	0.000	744.84
		В		0.000	0.000	127.114	0.000	2436.39
		C		0.000	0.000	54.173	0.000	660.09
T5	60.00-40.00	A	1.564	0.000	0.000	56.004	0.000	724.45
		В		0.000	0.000	125.590	0.000	2381.02
		C		0.000	0.000	53.454	0.000	639.59
T6	40.00-20.00	A	1.486	0.000	0.000	55.549	0.000	695.02
		В		0.000	0.000	123.372	0.000	2301.69
		C		0.000	0.000	52.409	0.000	610.26
T7	20.00-0.00	A	1.331	0.000	0.000	32.791	0.000	382.49
		В		0.000	0.000	71.385	0.000	1289.16
		C		0.000	0.000	30.205	0.000	332.28

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	140.00-120.00	0.4236	-6.8378	-0.3181	-4.1092
T2	120.00-100.00	1.6787	-10.7850	1.0099	-7.3472
T3	100.00-80.00	1.8164	-13.3510	1.0968	-9.5681
T4	80.00-60.00	1.7757	-14.3991	1.0817	-10.9155
T5	60.00-40.00	1.6810	-14.9615	1.0257	-12.0799
T6	40.00-20.00	1.7325	-16.1633	0.9813	-13.3731
T7	20.00-0.00	1.4810	-13.8961	0.6983	-11.9142

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job	Page
CTL02045	7 of 16
Project	Date
499-006	15:12:54 02/04/19
Client Smartlink	Designed by BArcher

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
T1	1	1 5/8	120.00 -	0.6000	0.5118
			140.00		
T1	2	7/8	120.00 -	0.6000	0.5118
T.1	2	7/0	140.00	0.6000	0.5110
T1	3	7/8	120.00 -	0.6000	0.5118
T1	5	1 5/8	140.00 120.00 -	0.6000	0.5118
11	3	1 5/6	133.00	0.0000	0.5116
T1	6	1-1/2	120.00 -	0.6000	0.5118
			133.00		
T1	7	1-1/2	120.00 -	0.6000	0.5118
	0		133.00	0.6000	0.7110
T1	8	1	120.00 -	0.6000	0.5118
T1	9	1	133.00 120.00 -	0.6000	0.5118
	,	1	133.00	0.0000	0.5116
T2	1	1 5/8	100.00 -	0.6000	0.5866
			120.00		
T2	2	7/8	100.00 -	0.6000	0.5866
			120.00		
T2	3	7/8	100.00 -	0.6000	0.5866
T2	5	1 5/8	120.00 100.00 -	0.6000	0.5866
12	3	1 5/8	120.00	0.0000	0.3800
T2	6	1-1/2	100.00 -	0.6000	0.5866
			120.00		
T2	7	1-1/2	100.00 -	0.6000	0.5866
		_	120.00		0.7066
T2	8	1	100.00 - 120.00	0.6000	0.5866
T2	9	1	120.00	0.6000	0.5866
12		1	120.00	0.0000	0.5800
Т3	1	1 5/8	80.00 - 100.00	0.6000	0.6000
Т3	2	7/8	80.00 - 100.00	0.6000	0.6000
Т3	3	7/8		0.6000	0.6000
T3	5	1 5/8		0.6000	0.6000
T3 T3	6 7	1-1/2 1-1/2	80.00 - 100.00 80.00 - 100.00	0.6000 0.6000	0.6000 0.6000
T3	8	1-1/2	80.00 - 100.00	0.6000	0.6000
T3	9	1	80.00 - 100.00	0.6000	0.6000
T4	1	1 5/8	60.00 - 80.00	0.6000	0.6000
T4	2 3	7/8	60.00 - 80.00	0.6000	0.6000
T4	3	7/8	60.00 - 80.00	0.6000	0.6000
T4	5	1 5/8	60.00 - 80.00	0.6000	0.6000
T4 T4	6 7	1-1/2 1-1/2	60.00 - 80.00 60.00 - 80.00	0.6000 0.6000	0.6000 0.6000
T4	8	1-1/2	60.00 - 80.00	0.6000	0.6000
T4	9	1	60.00 - 80.00	0.6000	0.6000
T5	1	1 5/8	40.00 - 60.00	0.6000	0.6000
T5	2 3	7/8	40.00 - 60.00	0.6000	0.6000
T5	3	7/8	40.00 - 60.00	0.6000	0.6000
T5	5	1 5/8	40.00 - 60.00	0.6000	0.6000
T5 T5	6 7	1-1/2 1-1/2	40.00 - 60.00 40.00 - 60.00	0.6000 0.6000	0.6000 0.6000
T5	8	1-1/2	40.00 - 60.00	0.6000	0.6000
T5	9		40.00 - 60.00		

Infinigy Engineering PLLC
1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	8 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client	0 " "	Designed by
	Smartlink	BArcher

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T6	1	1 5/8	20.00 - 40.00	0.6000	0.6000
T6	2	7/8	20.00 - 40.00	0.6000	0.6000
Т6	3	7/8	20.00 - 40.00	0.6000	0.6000
T6	5	1 5/8	20.00 - 40.00	0.6000	0.6000
T6	6	1-1/2	20.00 - 40.00	0.6000	0.6000
T6	7	1-1/2	20.00 - 40.00	0.6000	0.6000
T6	8	1	20.00 - 40.00	0.6000	0.6000
Т6	9	1	20.00 - 40.00	0.6000	0.6000
T7	1	1 5/8	8.00 - 20.00	0.6000	0.6000
T7	2	7/8	8.00 - 20.00	0.6000	0.6000
T7	3	7/8	8.00 - 20.00	0.6000	0.6000
T7	5	1 5/8	8.00 - 20.00	0.6000	0.6000
T7	6	1-1/2	8.00 - 20.00	0.6000	0.6000
T7	7	1-1/2	8.00 - 20.00	0.6000	0.6000
T7	8	1	8.00 - 20.00	0.6000	0.6000
T7	9	1	8.00 - 20.00	0.6000	0.6000

Discrete Tower Loads

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Type	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			Vert	0	C.		c.2	c.2	11
			ft	Ŭ	ft		ft^2	ft^2	lb
			ft						
A1 - C: 1 - A	A	F I	ft	0.0000	140.00	No Ice	0.82	6.23	150.00
Angle Side Arm	A	From Leg	1.00 0.00	0.0000	140.00	1/2" Ice	1.10	6.23 8.47	
			0.00			1" Ice	1.10	10.20	230.00 310.00
Amala Sida Amm	В	Enom I ac	1.00	0.0000	140.00	No Ice	0.82	6.23	150.00
Angle Side Arm	ь	From Leg	0.00	0.0000	140.00	1/2" Ice	1.10	8.47	230.00
			0.00			1" Ice	1.40	10.20	310.00
Angle Side Arm	C	From Leg	1.00	0.0000	140.00	No Ice	0.82	6.23	150.00
Aligic Side Alili	C	110III Leg	0.00	0.0000	140.00	1/2" Ice	1.10	8.47	230.00
			0.00			1" Ice	1.40	10.20	310.00
DB810K-XC	A	From Leg	2.00	0.0000	145.00	No Ice	3.63	3.63	35.00
DB610K-AC	Α	110III Leg	0.00	0.0000	143.00	1/2" Ice	5.10	5.10	61.88
			0.00			1" Ice	6.60	6.60	98.03
DB810K-XC	В	From Leg	2.00	0.0000	145.00	No Ice	3.63	3.63	35.00
DB010K-AC	ь	1 Ioni Leg	0.00	0.0000	143.00	1/2" Ice	5.10	5.10	61.88
			0.00			1" Ice	6.60	6.60	98.03
DB810K-XC	C	From Leg	2.00	0.0000	145.00	No Ice	3.63	3.63	35.00
DB010K AC	C	1 Ioni Leg	0.00	0.0000	143.00	1/2" Ice	5.10	5.10	61.88
			0.00			1" Ice	6.60	6.60	98.03
DB411-A	C	None	0.00	0.0000	140.00	No Ice	1.50	1.50	25.00
DB III II		rvoire		0.0000	110.00	1/2" Ice	2.70	2.70	32.50
						1" Ice	3.90	3.90	40.00
DB225-A	A	From Leg	3.68	0.0000	133.00	No Ice	3.21	3.21	37.00
			1.56			1/2" Ice	5.78	5.78	48.10
			0.00			1" Ice	8.35	8.35	59.20
800-10966	A	From Leg	3.00	0.0000	133.00	No Ice	13.61	7.35	81.90
(AT&T)			-6.00			1/2" Ice	14.21	7.94	155.92
` /			0.00			1" Ice	14.82	8.54	237.75
800-10965	В	From Leg	3.00	0.0000	133.00	No Ice	13.81	5.83	108.60
(AT&T)		5	-6.00			1/2" Ice	14.35	6.32	185.13

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	9 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client	Our codition to	Designed by
	Smartlink	BArcher

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Wei
	Leg	- 1	Lateral Vert	•					
			ft	0	ft		ft²	ft^2	11:
			ft		Ji		Ji	Ji	10
			ft 0.00			1" Ice	14.89	6.82	268.
800-10965	C	From Leg	3.00	0.0000	133.00	No Ice	13.81	5.83	108
(AT&T)		Ü	-6.00			1/2" Ice	14.35	6.32	185
,			0.00			1" Ice	14.89	6.82	268
7770	A	From Leg	3.00	0.0000	133.00	No Ice	5.51	2.93	35.
(AT&T)			6.00			1/2" Ice	5.87	3.27	67.
,			0.00			1" Ice	6.23	3.63	105
7770	В	From Leg	3.00	0.0000	133.00	No Ice	5.51	2.93	35.
(AT&T)		8	6.00			1/2" Ice	5.87	3.27	67.
()			0.00			1" Ice	6.23	3.63	105
7770	C	From Leg	3.00	0.0000	133.00	No Ice	5.51	2.93	35.
(AT&T)	Ü	110111 208	6.00	0.0000	122.00	1/2" Ice	5.87	3.27	67.
(111601)			0.00			1" Ice	6.23	3.63	105
840-370799K	A	From Leg	3.00	0.0000	133.00	No Ice	13.66	7.19	105
(AT&T)		110111 208	-3.00	0.0000	122.00	1/2" Ice	14.26	7.78	179
(11141)			0.00			1" Ice	14.87	8.37	260
800-10991K	В	From Leg	3.00	0.0000	133.00	No Ice	13.81	5.83	100
(AT&T)	Ь	1 Ioni Leg	-3.00	0.0000	133.00	1/2" Ice	14.35	6.32	177
(11161)			0.00			1" Ice	14.89	6.82	261
800-10991K	C	From Leg	3.00	0.0000	133.00	No Ice	13.81	5.83	100
(AT&T)	C	1 Tolli Leg	-3.00	0.0000	133.00	1/2" Ice	14.35	6.32	177
(11141)			0.00			1" Ice	14.89	6.82	261
RRUS 4415	A	From Leg	3.00	0.0000	133.00	No Ice	1.85	0.82	44.
(AT&T)	21	1 Tolli Leg	-3.00	0.0000	133.00	1/2" Ice	2.02	0.94	58.
(AI&I)			0.00			1" Ice	2.20	1.07	74.
RRUS 4415	В	From Leg	3.00	0.0000	133.00	No Ice	1.85	0.82	44.
(AT&T)	ь	1 Ioni Leg	-3.00	0.0000	133.00	1/2" Ice	2.02	0.94	58.
(11141)			0.00			1" Ice	2.20	1.07	74.
RRUS 4415	C	From Leg	3.00	0.0000	133.00	No Ice	1.85	0.82	44.
(AT&T)	C	1 Ioni Leg	-3.00	0.0000	133.00	1/2" Ice	2.02	0.94	58.
(11141)			0.00			1" Ice	2.20	1.07	74.
Radio 4449	A	From Leg	3.00	0.0000	133.00	No Ice	4.19	2.45	74.
(AT&T)	7.	Trom Leg	-6.00	0.0000	155.00	1/2" Ice	4.45	2.67	109
(11141)			0.00			1" Ice	4.71	2.89	147
Radio 4449	В	From Leg	3.00	0.0000	133.00	No Ice	4.19	2.45	74.
(AT&T)	Ь	1 Tolli Leg	-6.00	0.0000	133.00	1/2" Ice	4.45	2.67	109
(11161)			0.00			1" Ice	4.71	2.89	147
Radio 4449	C	From Leg	3.00	0.0000	133.00	No Ice	4.19	2.45	74.
(AT&T)	C	1.5111 2.05	-6.00	0.0000	155.50	1/2" Ice	4.45	2.67	109
()			0.00			1" Ice	4.71	2.89	147
RRUS 8843	Α	From Leg	3.00	0.0000	133.00	No Ice	1.75	1.36	72.
(AT&T)		208	-6.00	0.0000	123.00	1/2" Ice	1.91	1.51	90.
(/-)			0.00			1" Ice	2.09	1.67	111
RRUS 8843	В	From Leg	3.00	0.0000	133.00	No Ice	1.75	1.36	72.
(AT&T)	2		-6.00			1/2" Ice	1.91	1.51	90.
(/-)			0.00			1" Ice	2.09	1.67	111
RRUS 8843	C	From Leg	3.00	0.0000	133.00	No Ice	1.75	1.36	72.
(AT&T)			-6.00			1/2" Ice	1.91	1.51	90.
(/-)			0.00			1" Ice	2.09	1.67	111
(2) LGP21401	A	From Leg	3.00	0.0000	133.00	No Ice	0.82	0.35	17.
(AT&T)		208	6.00	0.0000	122.00	1/2" Ice	0.94	0.44	23.
()			0.00			1" Ice	1.06	0.54	30.
(2) LGP21401	В	From Leg	3.00	0.0000	133.00	No Ice	0.82	0.35	17.
(AT&T)	D	206	6.00	0.0000	122.00	1/2" Ice	0.94	0.44	23.
(11161)			0.00			1" Ice	1.06	0.54	30.
(2) LGP21401	C	From Leg	3.00	0.0000	133.00	No Ice	0.82	0.35	17.
(~) 01 1701	_	1 TOILLE	5.00	0.0000	155.00	110 100	0.02	0.55	1/.

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	10 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client	Smartlink	Designed by BArcher

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weigh
			Vert ft ft ft	٥	ft		ft²	ft²	lb
			0.00			1" Ice	1.06	0.54	30.86
DC6-48-60-0-8F	A	From Leg	0.50	0.0000	133.00	No Ice	2.04	2.04	32.80
(AT&T)		Trom Leg	0.00	0.0000	155.00	1/2" Ice	2.23	2.23	54.09
(111621)			0.00			1" Ice	2.43	2.43	78.44
DC6-48-60-0-8F	В	From Leg	0.50	0.0000	133.00	No Ice	2.04	2.04	32.80
(AT&T)		Trom Leg	0.00	0.0000	155.00	1/2" Ice	2.23	2.23	54.09
(111641)			0.00			1" Ice	2.43	2.43	78.44
DC6-48-60-0-8F	C	From Leg	0.50	0.0000	133.00	No Ice	2.04	2.04	32.80
(AT&T)	Ü	110111 208	0.00	0.0000	122.00	1/2" Ice	2.23	2.23	54.09
(111641)			0.00			1" Ice	2.43	2.43	78.44
Pipe Sector Frame	A	From Leg	0.50	0.0000	133.00	No Ice	14.40	7.20	300.0
(AT&T)			0.00			1/2" Ice	19.50	10.50	415.0
()			0.00			1" Ice	24.60	13.80	530.0
Pipe Sector Frame	В	From Leg	0.50	0.0000	133.00	No Ice	14.40	7.20	300.0
(AT&T)			0.00			1/2" Ice	19.50	10.50	415.0
()			0.00			1" Ice	24.60	13.80	530.0
Pipe Sector Frame	C	From Leg	0.50	0.0000	133.00	No Ice	14.40	7.20	300.0
(AT&T)			0.00			1/2" Ice	19.50	10.50	415.0
,			0.00			1" Ice	24.60	13.80	530.0

Pipe Side Arm	В	From Leg	1.00	0.0000	80.00	No Ice	0.46	3.55	150.0
•		C	0.00			1/2" Ice	0.62	4.93	175.0
			0.00			1" Ice	0.78	5.89	200.0
1' Square Panel	В	From Leg	2.00	0.0000	80.00	No Ice	1.20	0.32	20.00
•		C	0.00			1/2" Ice	1.34	0.40	27.9
			0.00			1" Ice	1.48	0.49	37.70
DB225-A	В	From Leg	0.50	0.0000	75.00	No Ice	3.21	3.21	37.00
			0.00			1/2" Ice	5.78	5.78	48.10
			0.00			1" Ice	8.35	8.35	59.20
Pipe Side Arm	В	From Leg	1.00	0.0000	60.00	No Ice	0.46	3.55	150.0
=		C	0.00			1/2" Ice	0.62	4.93	175.0
			0.00			1" Ice	0.78	5.89	200.0
12' Omni	В	From Leg	2.00	0.0000	60.00	No Ice	3.60	3.60	12.00
		C	0.00			1/2" Ice	4.83	4.83	38.06
			6.00			1" Ice	6.08	6.08	71.92

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft ²	lb
MF-900B	A	Paraboloid w/o	From	0.50	0.0000		123.00	1.33	No Ice	2.66	13.00
		Radome	Leg	0.00					1/2" Ice	1.58	21.09
				0.00					1" Ice	3.16	29.10

Load Combinations

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	11 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client		Designed by
	Smartlink	BArcher

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41 42	Dead+Wind 60 deg - Service
	Dead+Wind 90 deg - Service
43 44	Dead+Wind 120 deg - Service
	Dead+Wind 150 deg - Service
45 46	Dead+Wind 180 deg - Service
	Dead+Wind 210 deg - Service
47 48	Dead+Wind 240 deg - Service
48 49	Dead+Wind 270 deg - Service Dead+Wind 300 deg - Service
49 50	Dead+Wind 300 deg - Service Dead+Wind 330 deg - Service
	Dead - Willia 550 deg - Service

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	140 - 120	2.897	39	0.1852	0.0549
T2	120 - 100	2.113	39	0.1740	0.0455

tnxT	'ower	•
------	-------	---

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	12 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client	0	Designed by
	Smartlink	BArcher

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T3	100 - 80	1.429	39	0.1389	0.0286
T4	80 - 60	0.889	39	0.1080	0.0167
T5	60 - 40	0.491	39	0.0742	0.0110
T6	40 - 20	0.219	39	0.0469	0.0055
T7	20 - 0	0.057	39	0.0229	0.0020

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
145.00	DB810K-XC	39	2.897	0.1852	0.0549	172870
140.00	Angle Side Arm	39	2.897	0.1852	0.0549	172870
133.00	DB225-A	39	2.617	0.1834	0.0523	123478
123.00	MF-900B	39	2.227	0.1773	0.0474	50947
80.00	Pipe Side Arm	39	0.889	0.1080	0.0167	32920
75.00	DB225-A	39	0.776	0.0997	0.0150	34009
60.00	Pipe Side Arm	39	0.491	0.0742	0.0110	38427

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	ft	Deflection in	Load Comb.	0	٥
T1	140 - 120	12.984	2	0.8278	0.2493
T2	120 - 100	9.480	2	0.7783	0.2064
T3	100 - 80	6.415	2	0.6219	0.1299
T4	80 - 60	3.990	2	0.4841	0.0759
T5	60 - 40	2.207	2	0.3326	0.0497
T6	40 - 20	0.984	2	0.2102	0.0249
T7	20 - 0	0.258	2	0.1027	0.0092

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
145.00	DB810K-XC	2	12.984	0.8278	0.2493	39161
140.00	Angle Side Arm	2	12.984	0.8278	0.2493	39161
133.00	DB225-A	2	11.732	0.8198	0.2374	27972
123.00	MF-900B	2	9.986	0.7928	0.2152	11541
80.00	Pipe Side Arm	2	3.990	0.4841	0.0759	7332
75.00	DB225-A	2	3.486	0.4471	0.0681	7573
60.00	Pipe Side Arm	2	2.207	0.3326	0.0497	8561

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd. Albany, NY

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	13 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client	Smartlink	Designed by BArcher

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	140 - 120	ROHN 3.5 STD	20.00	4.00	35.9 K=1.00	2.6795	-21590.80	109730.00	0.197 1
T2	120 - 100	ROHN 3.5 STD	20.03	4.01	36.0 K=1.00	2.6795	-47798.70	109694.00	0.436 1
Т3	100 - 80	Rohn 3.5 X-STR	20.03	5.01	46.0 K=1.00	3.6890	-69780.80	142199.00	0.491 1
T4	80 - 60	Rohn 3.5 X-STR	20.03	3.47	31.8 K=1.00	3.6890	-90734.50	154146.00	0.589 1
T5	60 - 40	Rohn 3.5 X-STR w/ Third Pipe	20.03	3.44	30.1 K=1.00	4.7470	-113531.00	199909.00	0.568 1
Т6	40 - 20	Rohn 4 X-STR w/ Third Pipe	20.03	3.43	25.6 K=1.00	5.6510	-137241.00	242403.00	0.566 ¹
T7	20 - 0	ROHN 5 X-STR	20.03	5.18	33.8 K=1.00	6.1120	-158209.00	253029.00	0.625 1

¹ P_u / ϕP_n controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	140 - 120	L1 1/2x1 1/2x1/8	6.02	2.79	112.9 K=1.00	0.3594	-3349.62	5949.86	0.563 1
T2	120 - 100	L1 1/2x1 1/2x1/8	7.50	3.67	148.9 K=1.00	0.3594	-2735.29	3662.33	0.747 1
Т3	100 - 80	L2x2x1/8	9.71	4.81	145.2 K=1.00	0.4844	-3338.29	5190.27	0.643 1
T4	80 - 60	L2 1/2x2 1/2x3/16	12.25	6.13	148.5 K=1.00	0.9020	-4533.26	9237.72	0.491 1
T5	60 - 40	L2 1/2x2 1/2x3/16	13.99	7.00	169.7 K=1.00	0.9020	-5118.97	7077.10	0.723 1
Т6	40 - 20	L2 1/2x2 1/2x5/16	15.81	7.88	193.5 K=1.00	1.4600	-6061.27	8812.53	0.688 1
Т7	20 - 0	L3x3x3/8	19.03	9.54	195.1 K=1.00	2.1100	-7130.00	12525.40	0.569 1

¹ P_u / ϕP_n controls

Secondary Horizontal Design Data (Compression)

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job		Page
	CTL02045	14 of 16
Project		Date
	499-006	15:12:54 02/04/19
Client		Designed by
	Smartlink	BArcher

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T4	80 - 60	L2 1/2x2 1/2x3/16	10.26	9.93	153.1 K=1.00	0.9020	-679.39	8691.42	0.078 1
T5	60 - 40	L2 1/2x2 1/2x3/16	12.29	11.96	184.5 K=1.00	0.9020	-841.28	5988.96	0.140 1
Т6	40 - 20	L2 1/2x2 1/2x5/16	13.65	13.27	209.3 K=1.00	1.4600	-1016.10	7530.99	0.135 1
Т7	20 - 0	L3x3x3/8	15.16	14.70	193.2 K=1.00	2.1100	-1066.45	12774.60	0.083 1

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	140 - 120	L3x3x1/4	4.50	4.17	84.5 K=1.00	1.4400	-117.01	32049.10	0.004 1

¹ P_u / ϕP_n controls

Tension Checks

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	140 - 120	ROHN 3.5 STD	20.00	4.00	35.9	2.6795	18594.40	120579.00	0.154 1
T2	120 - 100	ROHN 3.5 STD	20.03	4.01	36.0	2.6795	43172.40	120579.00	0.358 1
Т3	100 - 80	Rohn 3.5 X-STR	20.03	5.01	46.0	3.6890	63287.40	166004.00	0.381 1
T4	80 - 60	Rohn 3.5 X-STR	20.03	3.47	31.8	3.6890	81952.40	166004.00	0.494 1
T5	60 - 40	Rohn 3.5 X-STR w/ Third Pipe	20.03	3.44	30.1	4.7470	101583.00	213615.00	0.476 1
Т6	40 - 20	Rohn 4 X-STR w/ Third Pipe	20.03	3.43	25.6	5.6510	121085.00	254295.00	0.476 1
T7	20 - 0	ROHN 5 X-STR	20.03	5.18	33.8	6.1120	137882.00	275039.00	0.501 1

Infinity Engineering PLLC 1033 Watervliet Shaker Rd. Albany NY

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Ī	Job	Page
	CTL02045	15 of 16
	Project	Date
	499-006	15:12:54 02/04/19
	Client Smartlink	Designed by BArcher

¹ P_u / ϕP_n controls

	Diagonal Design Data (Tension)								
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	140 - 120	L1 1/2x1 1/2x1/8	6.02	2.79	71.9	0.3594	3282.98	11643.80	0.282 1
T2	120 - 100	L1 1/2x1 1/2x1/8	7.50	3.67	94.8	0.3594	2699.55	11643.80	0.232 1
Т3	100 - 80	L2x2x1/8	9.71	4.81	92.2	0.4844	3296.28	15693.80	0.210 1
T4	80 - 60	L2 1/2x2 1/2x3/16	12.25	6.13	94.5	0.9020	4250.30	29224.80	0.145 1
T5	60 - 40	L2 1/2x2 1/2x3/16	13.99	7.00	108.0	0.9020	4796.17	29224.80	0.164 1
Т6	40 - 20	L2 1/2x2 1/2x5/16	15.81	7.88	124.3	1.4600	5512.81	47304.00	0.117 1
Т7	20 - 0	L3x3x3/8	19.03	9.54	125.4	2.1100	6165.22	68364.00	0.090 1

¹ P_u / ϕP_n controls

Secondary Horizontal Design Data	(Tension)
----------------------------------	-----------

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T4	80 - 60	L2 1/2x2 1/2x3/16	10.26	9.93	153.1	0.9020	691.05	29224.80	0.024 1
T5	60 - 40	L2 1/2x2 1/2x3/16	12.29	11.96	184.5	0.9020	887.30	29224.80	0.030 1
Т6	40 - 20	L2 1/2x2 1/2x5/16	12.97	12.59	198.6	1.4600	1134.47	47304.00	0.024 1
Т7	20 - 0	L3x3x3/8	15.16	14.70	193.2	2.1100	1091.43	68364.00	0.016 1

¹ P_u / ϕP_n controls

Top	Girt	Design	Data ((Tension)
-----	------	--------	--------	-----------

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	140 - 120	L3x3x1/4	4.50	4.17	53.8	1.4400	116.31	46656.00	0.002 1

Infinigy Engineering PLLC 1033 Watervliet Shaker Rd.

Albany, NY Phone: (518) 690-0790 FAX: (518) 690-0790

Job	Page
CTL02045	16 of 16
Project	Date
499-006	15:12:54 02/04/19
Client Smartlink	Designed by BArcher


Section Capacity Table

Section	Elevation	Component	Size	Critical	P	ϕP_{allow}	%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
T1	140 - 120	Leg	ROHN 3.5 STD	3	-21590.80	109730.00	19.7	Pass
		Diagonal	L1 1/2x1 1/2x1/8	10	-3349.62	5949.86	56.3	Pass
		Top Girt	L3x3x1/4	4	-117.01	32049.10	0.4	Pass
T2	120 - 100	Leg	ROHN 3.5 STD	39	-47798.70	109694.00	43.6	Pass
		Diagonal	L1 1/2x1 1/2x1/8	42	-2735.29	3662.33	74.7	Pass
T3	100 - 80	Leg	Rohn 3.5 X-STR	72	-69780.80	142199.00	49.1	Pass
		Diagonal	L2x2x1/8	75	-3338.29	5190.27	64.3	Pass
T4	80 - 60	Leg	Rohn 3.5 X-STR	99	-90734.50	154146.00	58.9	Pass
		Diagonal	L2 1/2x2 1/2x3/16	102	-4533.26	9237.72	49.1	Pass
		Secondary Horizontal	L2 1/2x2 1/2x3/16	108	-679.39	8691.42	7.8	Pass
T5	60 - 40	Leg	Rohn 3.5 X-STR w/ Third Pipe	129	-113531.00	199909.00	56.8	Pass
		Diagonal	L2 1/2x2 1/2x3/16	132	-5118.97	7077.10	72.3	Pass
		Secondary Horizontal	L2 1/2x2 1/2x3/16	138	-841.28	5988.96	14.0	Pass
T6	40 - 20	Leg	Rohn 4 X-STR w/ Third Pipe	159	-137241.00	242403.00	56.6	Pass
		Diagonal	L2 1/2x2 1/2x5/16	162	-6061.27	8812.53	68.8	Pass
		Secondary Horizontal	L2 1/2x2 1/2x5/16	176	-1016.10	7530.99	13.5	Pass
T7	20 - 0	Leg	ROHN 5 X-STR	189	-158209.00	253029.00	62.5	Pass
		Diagonal	L3x3x3/8	192	-7130.00	12525.40	56.9	Pass
		Secondary Horizontal	L3x3x3/8	207	-1066.45	12774.60	8.3	Pass
		•					Summary	
						Leg (T7)	62.5	Pass
						Diagonal (T2)	74.7	Pass
						Secondary Horizontal (T5)	14.0	Pass
						Top Girt (T1)	0.4	Pass
						RATING =	74.7	Pass

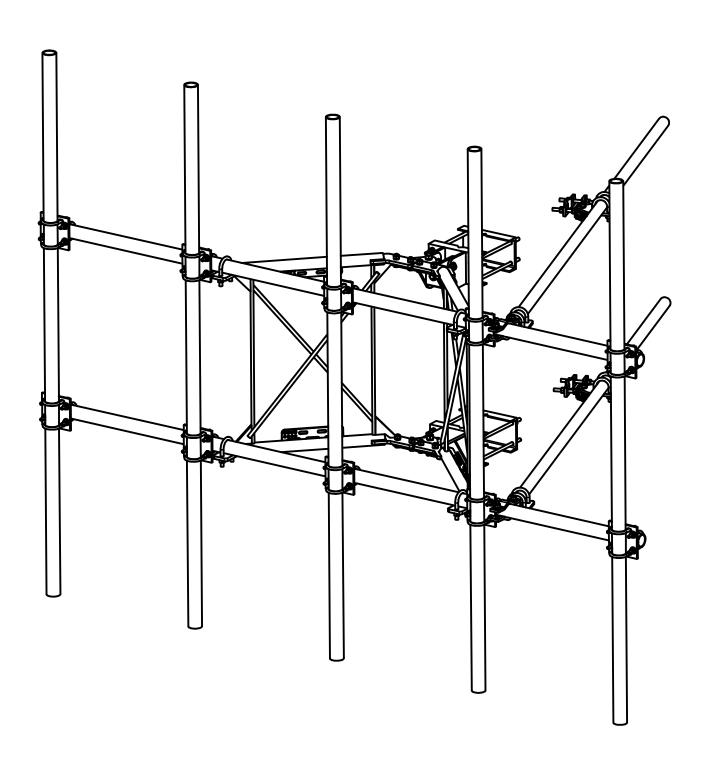
¹ P_u / ϕP_n controls

 $Program\ Version\ 8.0.4.0\ -\ 8/15/2018\ File: C:/Users/BArcher/Desktop/Archerb/Towers/CTL02045/CTL02045_Existing.eri$

Date: 2/5/2019
Site Name: CTL02045
Client: Smartlink
Infinigy Job #: 499-006
Analysis/Design: Analysis
Column Shape: Circle
Footing Shape: Square
Tower Type: Self Support

Infinigy Engineering PLLC Pad + Pier Calculations ACI 318-11

Loading Data									
TIA Code Revision: ANSI/TIA-222-G									
Uplift:	0.0	kips							
Axial:	16.4	kips							
Shear:	18.2	kips							
Moment:	0	k-ft							


Soil Data				
Soil Type:	Clay			
Water Table Depth:	7	ft		
Soil Dry Unit Weight:	105.0	pcf		
ø Angle:	30	deg		
Cohesion:	1000	psf		
Ultimate Skin Friction:	500	psf		
Friction Coefficient:	0.4			
Ultimate Bearing Pressure:	6000	psf		

Column Data				
Concrete Strength:	3000	psi		
Column Diameter:	3	ft		
Column Total Length:	9.9	ft		
Column Height above ground:	0.8	ft		
Vertical Rebar Strength:		psi		
Vertical Rebar Size:		(#10) max.		
Vertical Rebar Quantity:		(4) min.		
Tie Rebar Strength:		psi		
Tie Rebar Size:		(#3) max.		
Tie Rebar Spacing:		in		
Rebar Clear Distance:		in		

Footing Data						
Concrete Strength:	3000	psi				
Footing Length:	8.5	ft				
Footing Width:	10.6	ft				
Footing Thickness:	3.100	ft				
Horizontal Rebar Strength:		psi				
Horizontal Rebar Size:						
Horizontal Rebar Quantity:						
Rebar Clear Distance:		in				
Dowel Strength:		psi				
Dowel Size:		(#11) max.				
Dowel Development Length:		in				
Dowel Quantity:						

Concrete Stren	ngth Check	
Footing One-Way Shear Ratio:	1.89	%

Soil Stability Check				
фs Bearing:	0.75			
φs Uplift:	0.75			
Bearing Ratio:	4.04	%		
Sliding Ratio:	35.59	%		
Toe Pressure Ratio:	68.77	%		
Overturning Ratio:	53.25	%		

	PARTS LIST					
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	2	X-VFAW	SUPPORT ARM		71.41	142.81
2	1	X-HDCAMDSS	CLAMP WELDMENT FOR BCAM-HD		28.59	28.59
3	1	X-HDMHTP	HEAVY DUTY MULTI-HOLE TAPER PLATE WELDMENT		29.36	29.36
4	2	X-VFAPL3	VFA-HD PIVOT PLATE	24 in	9.69	19.38
5	2	X-HDLCBB	HEAVY DUTY LEG CONNECTION BACKING BRACKET	13 in	16.66	33.33
6	1	X-HDCAMSS	ANGLE ADJUSTMENT WELDMENT FOR BCAM-HD		16.51	16.51
7	4	X-SPTB	SLIDING PIPE TIE BACK PLATE	5 1/2 in	5.87	23.49
8	1	X-HDCAMSP	POSITIONING PLATE WELDMENT FOR BCAM-HD		2.58	2.58
9	4	X-TBCA	TIE BACK CLIP ANGLE		2.01	8.02
10	10	SCX2	CROSSOVER PLATE	7 in	4.80	47.96
11	4	MCP	CLAMP HALF 1/2" THICK, 11-5/8" LONG	12 1/16 in	3.59	14.37
12	8	DCP	1/2" THICK, 5-3/4" CNTER TO CENTER CLAMP HALF	8 1/8 in	2.36	18.90
13	2	P2126	2-3/8" X 126" (2" SCH. 40) GALVANIZED PIPE	126 in	40.75	81.50
14	2	P30150	2-7/8" X 150" (2-1/2" SCH. 40) GALVANIZED PIPE	150 in	76.94	153.87
15	2	A34212	3/4" x 2-1/2" UNC HEX BOLT (A325)	2 1/2 in	0.48	0.96
16	2	G34LW	3/4" HDG LOCKWASHER 0.04 0			0.09
17	2	G34NUT	3/4" HDG HEAVY 2H HEX NUT 0.21		0.42	
18	4	G58R-8	5/8" x 8" THREADED ROD (HDG.) 0.70		2.79	
19	4	G58R-12	5/8" x 12" THREADED ROD (HDG.)		1.05	4.18
20	8	G58R-18	5/8" x 18" THREADED ROD (HDG.)	18 in	0.40	3.19
21	4	X-UB5300	5/8" X 3" X 5-1/4" X 2-1/2" U-BOLT (HDG.)		1.15	4.60
22	8	X-UB5258	` '			8.00
23	4	G5802				1.08
24	8	A582114	5/8" x 2-1/4" HDG A325 HEX BOLT	2 1/4 in	0.31	2.50
25	8	G5804	5/8" x 4" HDG HEX BOLT GR5		0.44	3.55
26	25	G58FW	5/8" HDG USS FLATWASHER	1/8 in	0.07	1.76
27	66	G58LW	5/8" HDG LOCKWASHER		0.03	1.72
28	71	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	9.22
30	48	X-UB1300	1/2" X 3" X 5" X 2" GALV U-BOLT		0.74	35.45
30	20	X-UB1212	1/2" X 2-1/2" X 4-1/2" X 2" GALV. U-BOLT		0.66	13.13
31	80	G12FW	1/2" HDG USS FLATWASHER	3/32 in	0.03	2.73
32	80	G12LW	1/2" HDG LOCKWASHER	1/8 in	0.01	1.11
33	80	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	5.73
34	2	G5807	5/8" x 7" HDG HEX BOLT GR5 FULL THREAD	7 in	0.70	1.41
35	1	G5806	5/8" x 6" HDG HEX BOLT GR5 FULL THREAD	6 in	0.53	0.53
36	5	P30120	2-7/8" x 120" (2-1/2" SCH. 40) GALVANIZED PIPE	120 in	58.07	290.33
					TOTAL WT. #	1024.51

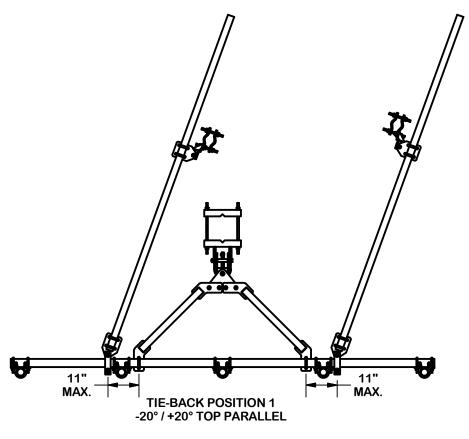
TOLERANCE NOTES

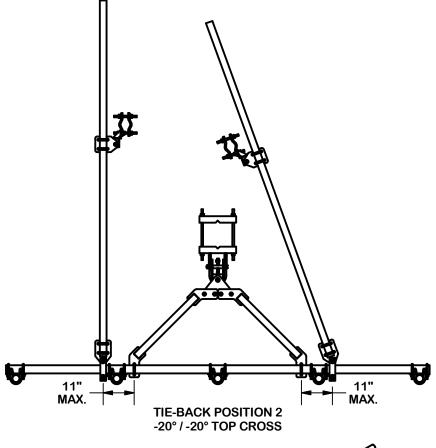
TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030")
DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE

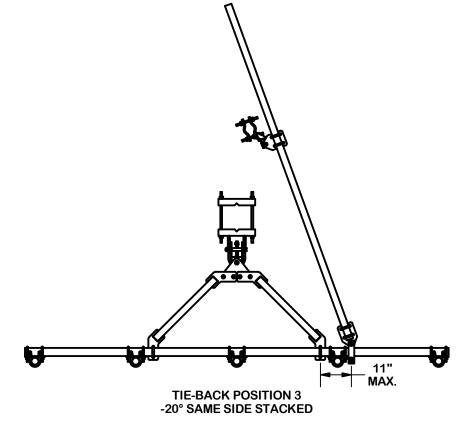
ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")

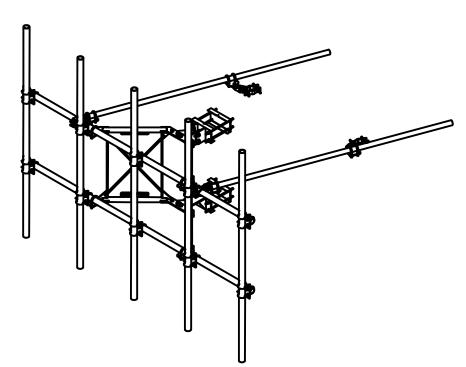
PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.

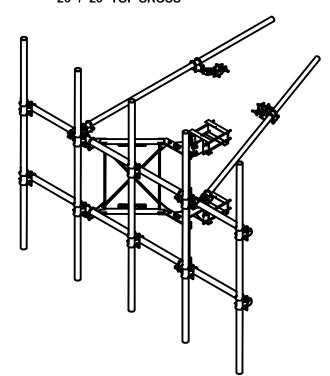
DESCRIPTION 12' 6" HEAVY DUTY V-FRAME ASSEMBLY W/ 2 STIFF ARMS & MOUNT PIPES

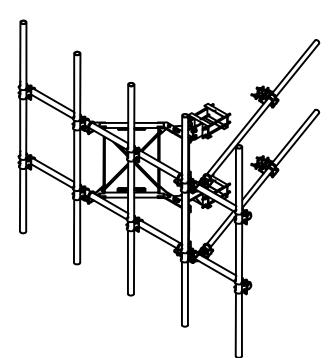

Engineering Support Team: 1-888-753-7446


Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX


						\
CPD NO.		D NO. DRAWN BY		ENG. APPR	OVAL	P/
SF	21	CSL	1/25/2017			
CLASS	SUB	DRAWING	USAGE	CHECKED	ВҮ	D۱
87	02	CUS	STOMER	BMC	5/3/2018	


PART NO.		
	VFA12-WLL-30120	
DWG. NO.		
	VFA12-WLL-30120	


TIE-BACK POSITIONS



TOLERANCE NOTES

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030")
DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.

DESCRIPTION 12' 6" HEAVY DUTY V-FRAME ASSEMBLY W/ 2 STIFF ARMS

CUSTOMER

& MOUNT PIPES

ENG. APPROVAL

CHECKED BY

BMC

A valmont T COMMANY

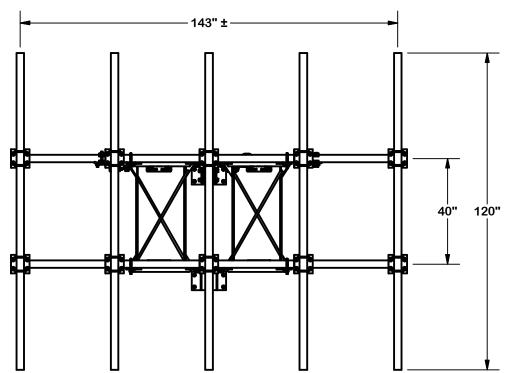
Engineering Support Team: 1-888-753-7446

Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

ı						
	CPD N	0.	DRAWN I	BY		
	SP1		CSL	1/25/2017		
	CL ASS	SHR	DRAWING	GUSAGE		

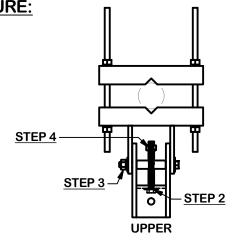
87

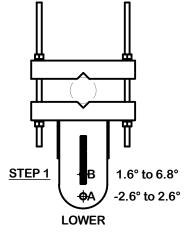
02

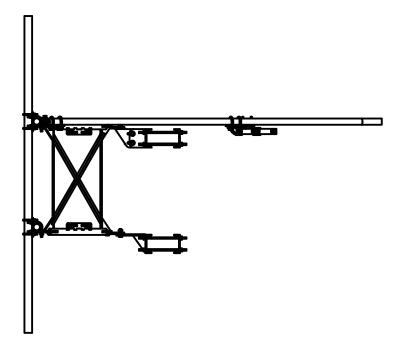

DWG. NO. 5/3/2018

VFA12-WLL-30120

VFA12-WLL-30120


OF PAGE





ANGLE CALIBRATING PROCEDURE:

- 1. MEASURE TOWER TAPER AND PICK LOWER BRACKET **HOLE:**
 - HOLE A = -2.6° TO 2.6°
 - HOLE B = 1.6° TO 6.8°
- 2. USE CALIBRATING BOLT TO ADJUST FRAME TO **DESIRED TAPER**
- 3. TORQUE LOCKING BOLTS TO 100 ft.-lbs.
- 4. ADVANCE LOCKING NUT TO POSITIONING PLATE, THEN TIGHTEN.

5/3/2018

TOLERANCE NOTES

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES ($\pm\,0.030$ ") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES

BENDS ARE ± 1/2 DEGREE ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")

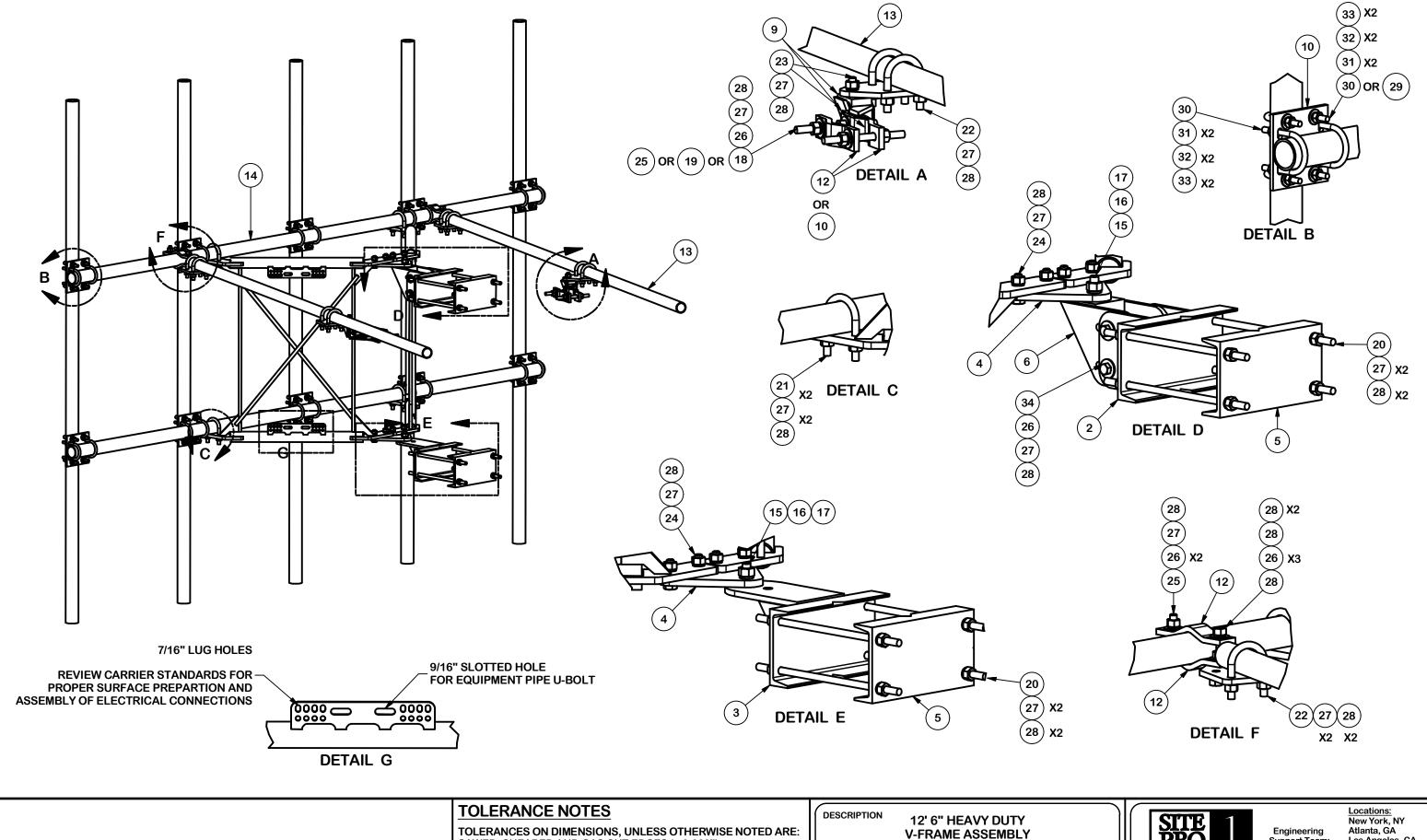
PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF

DESCRIPTION **12' 6" HEAVY DUTY V-FRAME ASSEMBLY** W/ 2 STIFF ARMS & MOUNT PIPES

CUSTOMER

A valmont T COMPANY

VFA12-WLL-30120


Atlanta, GA Support Team: 1-888-753-7446 Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

ENG. APPROVAL CPD NO. DRAWN BY 1/25/2017 SP1 CSL DRAWING USAGE CLASS SUB CHECKED BY 87 02

BMC

VFA12-WLL-30120 DWG. NO.

OF PAGE

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030")
DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030")

ALL OTHER ASSEMBLY (± 0.060")

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.

W/ 2 STIFF ARMS & MOUNT PIPES

A valmont T COMPANY

Engineering Support Team: 1-888-753-7446

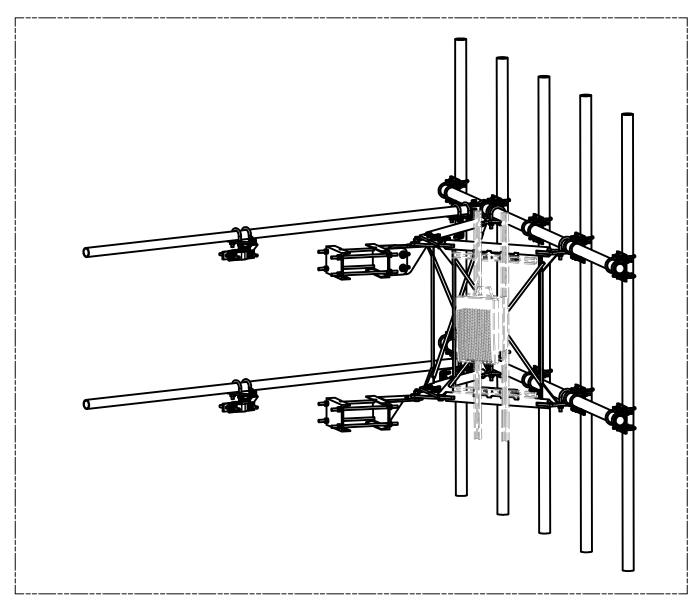
Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

OF PAGE

CPD NO.		DRAWN BY		ENG. APPROVAL
SF	21	CSL	1/25/2017	
CLASS	SUB	DRAWING USAGE		CHECKED BY

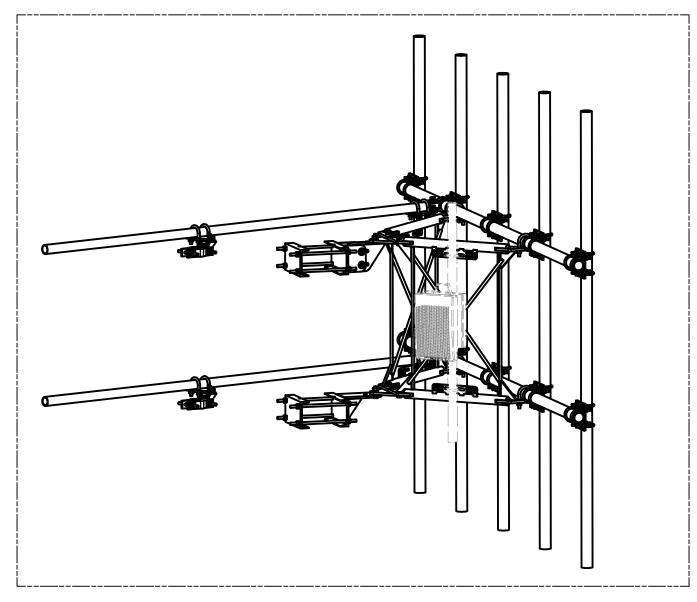
CUSTOMER

BMC


87

02

DWG. NO. 5/3/2018


VFA12-WLL-30120

VFA12-WLL-30120

UNISTRUT AND HARDWARE SOLD SEPARATELY.

REQUIRES 3/8" HARDWARE

EQUIPMENT PIPE AND HARDWARE SOLD SEPARATELY.

REQUIRES 1/2" HARDWARE AND 2-3/8" TO 4-1/2" O.D. PIPE

TOLERANCE NOTES

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030")
DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030")

ALL OTHER ASSEMBLY (± 0.060")

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.

DESCRIPTION 12' 6" HEAVY DUTY V-FRAME ASSEMBLY W/ 2 STIFF ARMS & MOUNT PIPES

CUSTOMER

CPD NO.

87

SP1

02

SITE PRO 1

Engineering Support Team: 1-888-753-7446

VFA12-WLL-30120

eering Atlanta, GA
t Team: Los Angeles, CA
53-7446 Plymouth, IN
Salem, OR
Dallas, TX

DRAWN BY
CSL 1/25/2017 ENG. APPROVAL
DRAWING USAGE CHECKED BY
DRAWING USAGE CHECKED BY
DRAWING USAGE
CHECKED BY
DWG. NO.

5/3/2018

BMC

OF 5

Smartlink on behalf of AT&T Mobility, LLC Site FA – 10034999 USID – 59409 Site ID – CT2045 Site Name – KILLINGWORTH-RTE 81 (MRCTB035091-MRCTB035254-MRCTB035289-MRCTB035122)

323 ROUTE 81 KILLINGWORTH, CT 06419

Latitude: N41-22-10.07 Longitude: W72-33-51.20 Structure Type: Self-Support

Report generated date: March 8, 2019

Report by: Sam Cosgrove

Customer Contact: David Barbagallo

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Sitesafe logo is a registered trademark of Site Safe, LLC. All rights reserved.

Table of Contents

1	GENERAL SITE SUMMARY	2
1.	.1 Report Summary	2
1.	.2 FALL ARREST ANCHOR POINT SUMMARY	2
1.	.3 SIGNAGE SUMMARY	3
2	SCALE MAPS OF SITE	4
3	ANTENNA INVENTORY	6
4	EMISSION PREDICTIONS	7
5	SITE COMPLIANCE	11
5.	5.1 SITE COMPLIANCE STATEMENT	11
5.	2.2 ACTIONS FOR SITE COMPLIANCE	11
6	REVIEWER CERTIFICATION	12
APF	PENDIX A – STATEMENT OF LIMITING CONDITIONS	13
APF	PENDIX B - REGULATORY BACKGROUND INFORMATION	14
F	CC Rules and Regulations	14
С	DSHA Statement	15
APF	PENDIX C – SAFETY PLAN AND PROCEDURES	16
APF	PENDIX D – RF EMISSIONS	17
APF	PENDIX E – ASSUMPTIONS AND DEFINITIONS	18
	General Model Assumptions	
	JSE OF GENERIC ANTENNAS	
	DEFINITIONS	
APF	PENDIX F – REFERENCES	21

1 General Site Summary

1.1 Report Summary

AT&T Mobility, LLC	Summary
Max Cumulative Simulated RFE Level on the	<1% General Public Limit
Ground	
Max Cumulative Simulated RFE Level on the	<1% General Public Limit
Ground	
Compliant per FCC Rules and Regulations?	Will Be Compliant
Compliant per AT&T Mobility, LLC's Policy?	No

The following documents were provided by the client and were utilized to create this report:

RFDS: NEW-ENGLAND_CONNECTICUT_CT2045_2019-LTE-Next-Carrier_LTE_sp656b_PTN_10034999_59409_09-19-2018_Final-Approved_v4.00

CD's: 10034999_AE201_190226_CTL02045_REV1

RF Powers Used: NEW-ENGLAND_CONNECTICUT_CT2045_2019-LTE-Next-Carrier_LTE_sp656b_PTN_10034999_59409_09-19-2018_Final-Approved_v4.00

1.2 Fall Arrest Anchor Point Summary

Fall Arrest Anchor &	Parapet Available (Y/N)	Parapet Height (inches)	Fall Arrest Anchor Available (Y/N)
Parapet Info			
Roof Safety Info	N	N/A	N

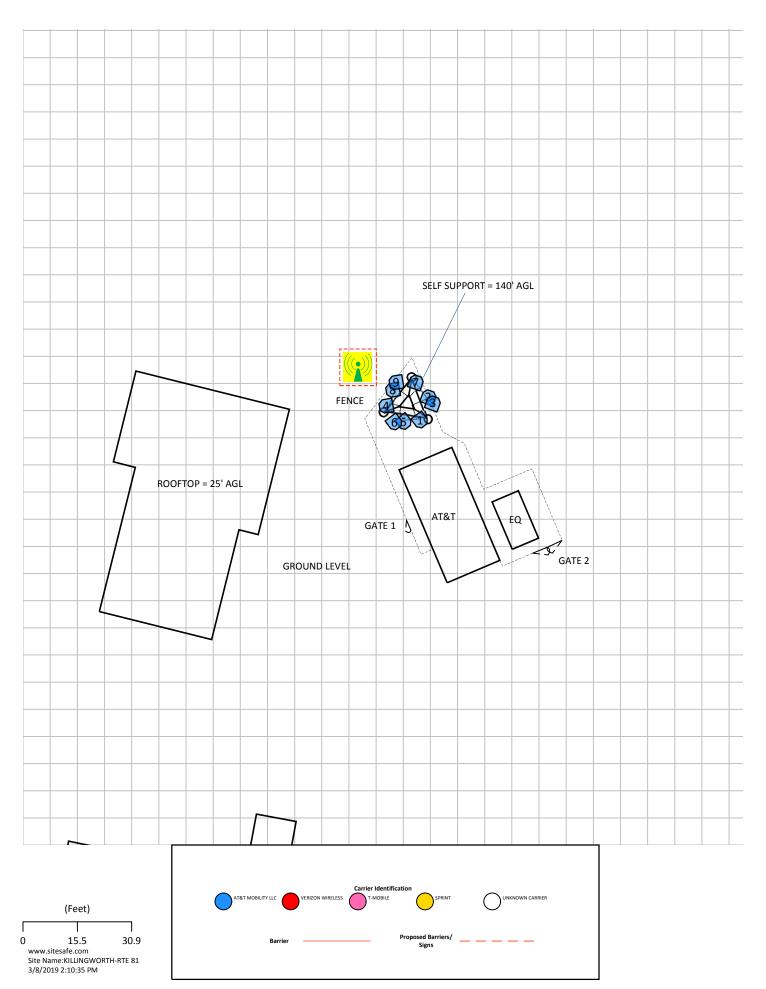
1.3 Signage Summary

a. Existing AT&T Signage

AT&T Signage Locations	Information 1	Information 2	Notice	Notice 2	Caution	Caution 2B	Warning	Warning 2	Barriers
Access	mommanom	IIIIOIIIIIIIIIII Z	1401100	TYONCE 2	Caonon	COOHOTT 2D	***airiiiig	Walting 2	Damers
Point(s)									
Alpha									
Beta									
Gamma									
Delta									
Epsilon									

b. Proposed AT&T Signage

	b. Hoposcu /	<u>gg</u>							
AT&T Signage Locations		INFORMATION	Notice	Notice	CAUTION	CAUTION 0	A NATURAL DESIGNATION OF THE PROPERTY OF THE P	NO ASTATORIC	
	Information 1	Information 2	Notice	Notice 2	Caution	Caution 2B	Warning	Warning 2	Barriers
Access						1			
Point(s)									
Alpha									
Beta									
Gamma									
Delta									
Epsilon									



2 Scale Maps of Site

The following diagrams are included:

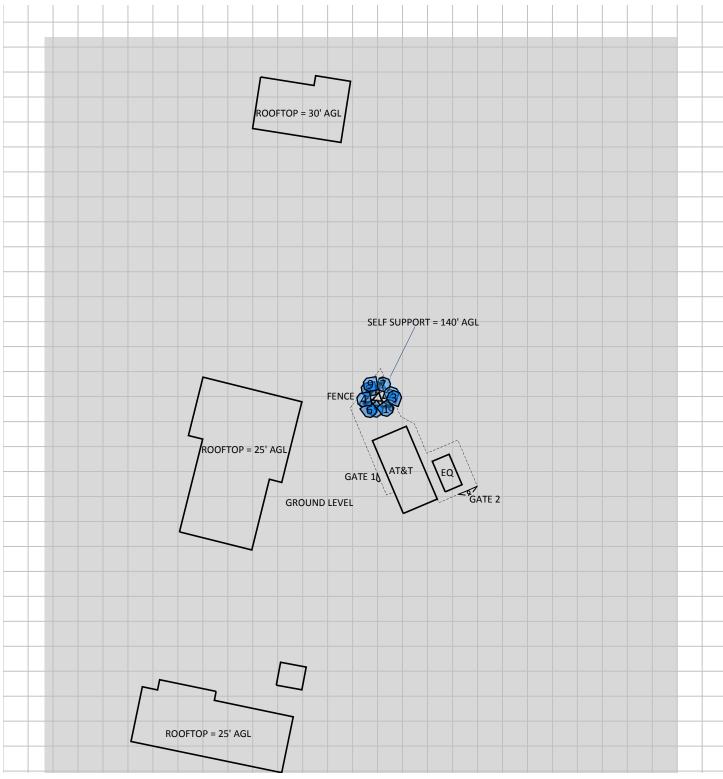
- Site Scale Map
- RF Exposure Diagram
- RF Exposure Diagram –Detail View
- RF Exposure Diagram –Elevation View

3 Antenna Inventory

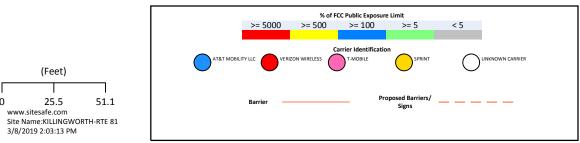
The following antenna inventory was obtained by the customer and was utilized to create the site model diagrams:

Ant				TX Freq		Az	Hor BW	Ant Len		Power	Power	Misc	TX	Total ERP	Ant Gain	Z		
ID	Operator	Antenna Make & Model	Туре	(MHz)	Tech	(Deg)	(Deg)	(ft)	Power	Type	Unit	Loss	Count	(Watts)	(dBd)	(AGL)	MDT	EDT
1	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	UMTS	143	82	4.6	312.6	ERP	Watt	0	1	312.6	11.51	130.7'	0°	8°
2	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 80010991	Panel	1900	LTE	20	65	6.6	3664.376	ERP	Watt	0	1	3664.4	14.14	129.7'	0°	6°
3	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	737	LTE	20	63.9	6.6	1475.707	ERP	Watt	0	1	1475.7	12.5	129.7'	0°	3°
3	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	850	LTE	20	61.7	6.6	1000	ERP	Watt	0	1	1000	13.62	129.7'	0°	3°
3	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	2100	AWS	20	65.2	6.6	3837.072	ERP	Watt	0	1	3837.1	16.48	129.7'	0°	6°
3	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	850	5G	20	61.7	6.6	1000	ERP	Watt	0	1	1000	13.62	129.7'	0°	3°
4	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	UMTS	260	82	4.6	312.6	ERP	Watt	0	1	312.6	11.51	130.7'	0°	4°
5	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 80010991	Panel	1900	LTE	143	65	6.6	3664.376	ERP	Watt	0	1	3664.4	14.14	129.7'	0°	2°
6	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	737	LTE	143	63.9	6.6	1475.707	ERP	Watt	0	1	1475.7	12.5	129.7'	0°	6°
6	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	850	LTE	143	61.7	6.6	1000	ERP	Watt	0	1	1000	13.62	129.7'	0°	6°
6	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	2100	AWS	143	65.2	6.6	3837.072	ERP	Watt	0	1	3837.1	16.48	129.7'	0°	3°
6	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	850	5G	143	61.7	6.6	1000	ERP	Watt	0	1	1000	13.62	129.7'	0°	6°
7	AT&T MOBILITY LLC	Powerwave 7770	Panel	850	UMTS	20	82	4.6	312.6	ERP	Watt	0	1	312.6	11.51	130.7'	0°	4°
8	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 80010991	Panel	1900	LTE	260	65	6.6	3664.376	ERP	Watt	0	1	3664.4	14.14	129.7'	0°	2°
9	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	2100	AWS	260	65.2	6.6	3837.072	ERP	Watt	0	1	3837.1	16.48	129.7'	0°	3°
9	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	850	5G	260	61.7	6.6	1000	ERP	Watt	0	1	1000	13.62	129.7'	0°	2°
9	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	737	LTE	260	63.9	6.6	1475.707	ERP	Watt	0	1	1475.7	12.5	129.7'	0°	2°
9	AT&T MOBILITY LLC (Proposed)	Kathrein-Scala 800-10965	Panel	850	LTE	260	61.7	6.6	1000	ERP	Watt	0	1	1000	13.62	129.7'	0°	2°

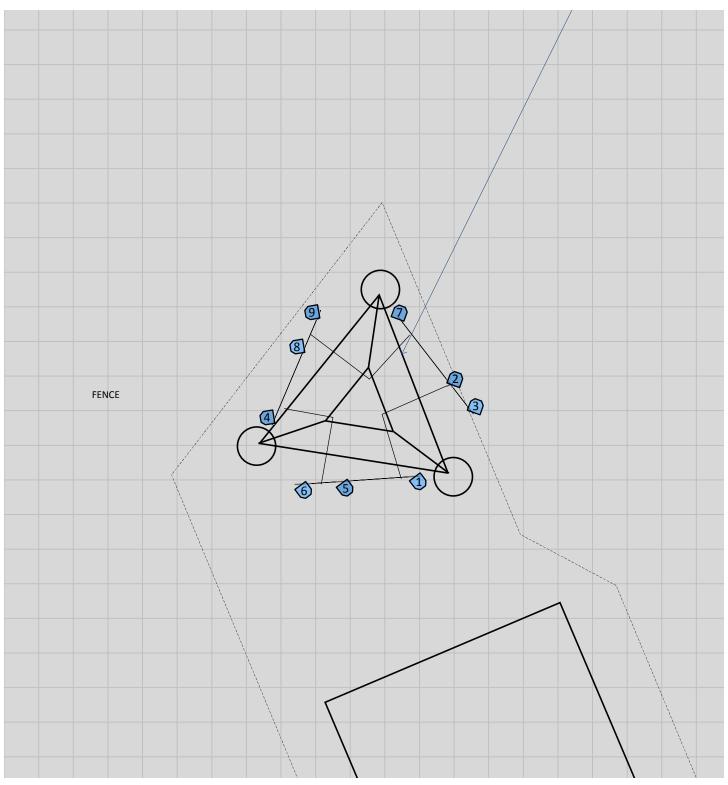
NOTE: X, Y and Z indicate relative position of the bottom of the antenna to the origin location on the site, displayed in the model results diagram. Specifically, the Z reference indicates the bottom of the antenna height above the main site level unless otherwise indicated. The distance to the bottom of the antenna is calculated by subtracting half of the length of the antenna from the antenna centerline. Effective Radiated Power (ERP) is provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed.


4 Emission Predictions

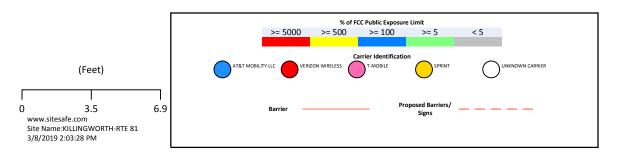
In the RF Exposure Simulations below all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas. The total analyzed elevations in the below RF Exposure Simulations are listed below.

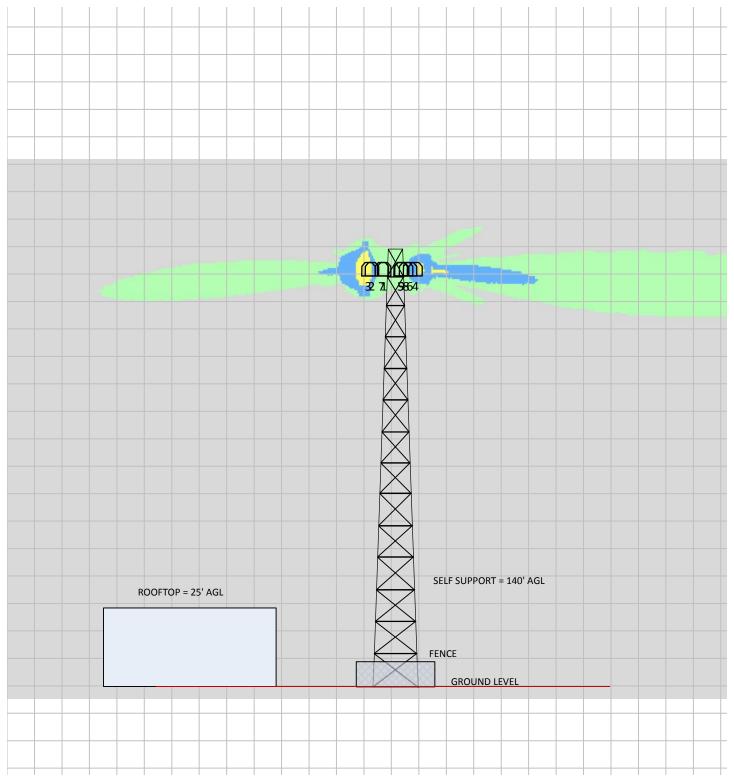

- Ground Level = 0'
- Rooftop = 25'
- Rooftop = 30'

The Antenna Inventory heights are referenced to the same level.

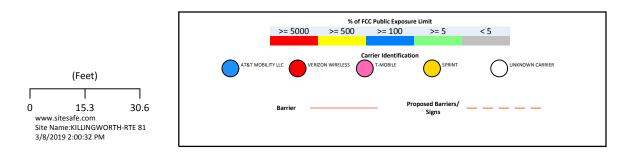


% of FCC Public Exposure Limit Spatial average 0' - 6'





% of FCC Public Exposure Limit Spatial average 0' - 6'



Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

RF Exposure Simulation For: KILLINGWORTH-RTE 81 Elevation View

% of FCC Public Exposure Limit

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Single Level (0)

5 Site Compliance

5.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the AT&T Mobility, LLC's proposed deployment plan could result in the site being rendered non-compliant.

Modeling is used for determining compliance and the percentage of MPE contribution.

5.2 Actions for Site Compliance

Based on FCC regulations, common industry practice, and our understanding of AT&T Mobility, LLC RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

AT&T Mobility, LLC will be made compliant if the following changes are implemented:

Site Access Location

(1) Yellow Caution 2B sign(s) required.

Notes:

- Data concerning all other carriers on site was unavailable and therefore not included in this report.
- Signage may already be in place. Sitesafe does not have record of any
 existing signage because there were no previous visits or data supplied
 regarding them. All remediation is based on a worst-case scenario.
- Any existing signage that conflicts with the proposed signage in this report should be removed per AT&T Signage Posting Rules.

6 Reviewer Certification

The reviewer whose signature appears below hereby certifies and affirms:

That I am an employee of Sitesafe, LLC., in Vienna, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio-frequency Radiation; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Sam Cosgrove.

March 8, 2019

Appendix A – Statement of Limiting Conditions

Sitesafe has provided computer generated model(s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

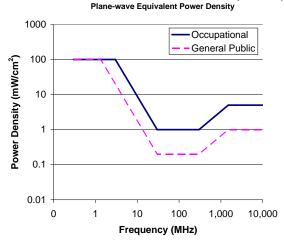
Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.

Appendix B - Regulatory Background Information

FCC Rules and Regulations

In 1996, the Federal Communications Commission (FCC) adopted regulations for the evaluating of the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996 the FCC periodically reviews these rules and regulations as per their congressional mandate.

FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.


Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:

FCC Limits for Maximum Permissible Exposure (MPE)

Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-			5	6
100,000				

Limits for General Population/Uncontrolled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-			1.0	30
100,000				

f = frequency in MHz

OSHA Statement

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:

- (a) Each employer -
 - (1) shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
 - (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lock Out Tag Out procedure aimed to control the unexpected energization or start up of machines when maintenance or service is being performed.

^{*}Plane-wave equivalent power density

Appendix C – Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

<u>General Maintenance Work:</u> Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

<u>Training and Qualification Verification:</u> All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a workers understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet based courses).

Physical Access Control: Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
- Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

RF Signage: Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

<u>Assume all antennas are active:</u> Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

<u>Maintain a 3 foot clearance from all antennas:</u> There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

Site RF Emissions Diagram: Section 4 of this report contains an RF Diagram that outlines various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access is restricted and only properly trained individuals can gain access to the antenna locations.

Appendix D - RF Emissions

The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

- Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit.
- Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
- Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
- Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
- Red represents areas predicted to have exposure more than 10 times the
 Occupational MPE limits. Red indicates that the RF levels must be reduced prior to
 access. An RF Safety Plan is required which outlines how to reduce the RF energy in
 these areas prior to access.

Appendix E – Assumptions and Definitions

General Model Assumptions

In this site compliance report, it is assumed that all antennas are operating at **full power** at all times. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0. The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100% of the General Public MPE level may not actually occur, but are shown as a prediction that could be realized. Sites afe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

Use of Generic Antennas

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.

Definitions

5% Rule – The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible taking corrective actions to bring the site into compliance.

Compliance – The determination of whether a site is safe or not with regards to Human Exposure to Radio Frequency Radiation from transmitting antennas.

Decibel (dB) – A unit for measuring power or strength of a signal.

Duty Cycle – The percent of pulse duration to the pulse period of a periodic pulse train. Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

Effective (or Equivalent) Isotropic Radiated Power (EIRP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

Effective Radiated Power (ERP) – In a given direction, the relative gain of a transmitting antenna with respect to the maximum directivity of a half wave dipole multiplied by the net power accepted by the antenna from the connecting transmitter.

Gain (of an antenna) – The ratio of the maximum intensity in a given direction to the maximum radiation in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antennas as compared to an omni directional antenna.

General Population/Uncontrolled Environment – Defined by the FCC, as an area where exposure to RF energy may occur to persons who are **unaware** of the potential for exposure and who have no control of their exposure. General Population is also referenced as General Public.

Generic Antenna – For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of antenna models to select a worst case scenario antenna to model the site.

Isotropic Antenna – An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

Maximum Measurement – This measurement represents the single largest measurement recorded when performing a spatial average measurement.

Maximum Permissible Exposure (MPE) – The maximum levels of RF exposure a person may be exposed to without harmful effect and with acceptable safety factor.

Occupational/Controlled Environment – Defined by the FCC, as an area where Radio Frequency Radiation (RFR) exposure may occur to persons who are aware of the

potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

OET Bulletin 65 – Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of Radio Frequency radiation on Humans. The guideline was published in August 1997.

OSHA (Occupational Safety and Health Administration) – Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

Radio Frequency (RF) – The frequencies of electromagnetic waves which are used for radio communications. Approximately 3 kHz to 300 GHz.

Radio Frequency Exposure (RFE) – The amount of RF power density that a person is or might be exposed to.

Spatial Average Measurement – A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average power density an average sized human will be exposed to at a location.

Transmitter Power Output (TPO) – The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.

Appendix F - References

The following references can be followed for further information about RF Health and Safety.

Sitesafe, LLC.

http://www.sitesafe.com

FCC Radio Frequency Safety

http://www.fcc.gov/encyclopedia/radio-frequency-safety

National Council on Radiation Protection and Measurements (NCRP)

http://www.ncrponline.org

Institute of Electrical and Electronics Engineers, Inc., (IEEE)

http://www.ieee.org

American National Standards Institute (ANSI)

http://www.ansi.org

Environmental Protection Agency (EPA)

http://www.epa.gov/radtown/wireless-tech.html

National Institutes of Health (NIH)

http://www.niehs.nih.gov/health/topics/agents/emf/

Occupational Safety and Health Agency (OSHA)

http://www.osha.gov/SLTC/radiofrequencyradiation/

International Commission on Non-Ionizing Radiation Protection (ICNIRP)

http://www.icnirp.org

World Health Organization (WHO)

http://www.who.int/peh-emf/en/

National Cancer Institute

http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones

American Cancer Society (ACS)

http://www.cancer.org/docroot/PED/content/PED 1 3X Cellular Phone Towers.asp?sitearea=PED

European Commission Scientific Committee on Emerging and Newly Identified Health Risks

http://ec.europa.eu/health/ph risk/committees/04 scenihr/docs/scenihr o 022.pdf

Fairfax County, Virginia Public School Survey

http://www.fcps.edu/fts/safety-security/RFEESurvey/

UK Health Protection Agency Advisory Group on Non-ionising Radiation http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAwebC/1317133826368
Norwegian Institute of Public Health

http://www.fhi.no/dokumenter/545eea7147.pdf