

March 16, 2017

Melanie Bachman, Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: AT&T Wireless Modifications to Telecommunication Facility – 975 Mix Avenue, Hamden, CT 06514 (aka 905 Mix Ave.)

Dear Ms. Bachman:

Enclosed please find an original and two copies of the following documents:

- Notice of Exempt Modification;
- Drawings of the proposal;
- The narrative portion of two structural Reports (1 failing and 1 passing with remedial measures);
- An RF emissions reports;
- A Parcel Map and owner identification; and
- Notification letters to the municipality, to Planning & Zoning, and the property and tower owner.

Also enclosed is a check in the amount of six hundred twenty five (\$625.00) for the filing fee.

Please note that the CSC database, AT&T's database and prior approvals list the site address as 975 Mix Avenue. However, the Hamden GIS database lists this property as 905 Mix Avenue; this GIS address is listed on the enclosed Parcel Map and Owner identification documents. An attempt to obtain GIS information for 975 Mix Avenue yielded no results; a copy of this print-out document is also enclosed. I have accordingly added "aka 905 Mix Ave." to the subject line of the enclosed letters.

I have submitted electronic copies of these documents via email to the CSC today. Please feel free to contact me with any questions or comments. Thank you for your kind cooperation in this matter.

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-286-4006 jandrews@empiretelecomm.com

Enclosures

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-286-4007 jandrews@empiretelecomm.com

March 16, 2007

Melanie Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

NOTICE OF EXEMPT MODIFICATION

975 Mix Avenue, Hamden, CT 06514 (aka 905 Mix Ave)

Lat: 41-22-42.78 (41.37855) Long. 72-55-4.32 (-72.91786667)

Dear Ms. Bachman:

AT&T Wireless currently maintains nine (9) antennas at the 61 foot level of an existing 65 foot monopole "stub" tower located on the rooftop of a four (4) story building at 975 Mix Avenue, in Hamden, CT. The tower is owned by Chestnut Hill North, LLC. The property is owned by Chestnut Hill North, LLC. AT&T Wireless now seeks to add three (3) new Remote Radio Units ("RRU") RRUS-11, add three (3) new RRUS-E2 and add one (1) DC6 surge suppressor, at the base of the monopole, to be mounted on the existing platform. Moreover, the applicant intends to upgrade the equipment by adding a second XMU, two (2) DC cables and one (1) fiber cable to the facility. Finally, AT&T proposes to structurally reinforce the base on the monopole.

The facility was approved by the Connecticut Siting Council in EM-CING-062-160823 on September 12, 2016. Six (6) conditions were enumerated in the Council's decision: 1) any deviation from the modification as specified in the Notice and supporting documentation shall render the acknowledgement invalid; 2) Any material changes to the modification as proposed shall require the filing of a new Notice with the Council; 3) Within 45 days after the completion of construction the Council shall be notified in writing that the construction has been completed; 4) Any nonfunctional antenna and associated antenna mounting equipment on this facility owned and operated by New Cingular Wireless PCS, LLC (AT&T) shall be removed within 60 days of the date the antennas ceased to function; 5) the validity of the action shall expire one year from the date of the letter; and 6) the applicant may request an extension of time beyond the one year deadline provided that such a request is submitted to the Council not less than 60 days prior to the expiration.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies section 16-50j-73 for construction that constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2). In accordance with RCSA section 16-50j-73, a copy of this letter and attachments is being sent to the Honorable Curt B. Leng, the Mayor of Hamden, as well as to Chestnut Hill North, LLC., the tower owner, to Chestnut Hill North, LLC, the property owner and to Dan Kops, the Town Planner, with the Hamden Department of Planning and Zoning.

The planned modifications to the facility fall squarely within those activities expressly provided for in RCSA section 50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in height of the existing structure.
- 2. The proposed modifications will not require an extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that will exceed state and local limits.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT&T Wireless respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under RCSA section 16-50j-72(b)(2).

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-286-4007 jandrews@empiretelecomm.com

Enclosures

cc: Honorable Curt B. Leng, Mayor of Hamden Chestnut Hill North, LLC, Attn: Steve Lopes, as the property owner and the tower owner Dan Kops, Town Planner, Hamden Department of Planning and Zoning.

March 16, 2017

Dan Kops, Town Planner Hamden Department of Planning and Zoning Hamden Government Center 2750 Dixwell Avenue Hamden, CT 06518

RE: AT&T Wireless Modifications to Telecommunication Facility – 975 Mix Avenue, Hamden, CT 06514 (aka 905 Mix Ave.)

Dear Mr. Kops:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains nine (9) antennas at the 61 foot level of an existing 65 foot monopole "stub" tower located on the rooftop of a four (4) story building at 975 Mix Avenue, in Hamden, CT. The tower is owned by Chestnut Hill North, LLC. The property is owned by Chestnut Hill North, LLC.

AT&T Wireless now seeks to add three (3) new Remote Radio Units ("RRU") RRUS-11, add three (3) new RRUS-E2, and add one (1) DC6 surge suppressor, at the base of the monopole, to be mounted on the existing platform. Moreover, the applicant intends to upgrade the equipment by adding a second XMU, two (2) DC cables and one (1) fiber cable to the facility. Finally, AT&T proposes to structurally reinforce the base on the monopole.

This letter is intended to serve as the required notice to the Department of Planning and Zoning of the municipality. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-286-4006 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

March 16, 2017

Honorable Curt B. Leng Hamden Government Center 2750 Dixwell Avenue Hamden, CT 06518

RE: AT&T Wireless Modifications to Telecommunication Facility – 975 Mix Avenue, Hamden, CT 06514 (aka 905 Mix Ave.)

Dear Mayor Leng:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains nine (9) antennas at the 61 foot level of an existing 65 foot monopole "stub" tower located on the rooftop of a four (4) story building at 975 Mix Avenue, in Hamden, CT. The tower is owned by Chestnut Hill North, LLC. The property is owned by Chestnut Hill North, LLC.

AT&T Wireless now seeks to add three (3) new Remote Radio Units ("RRU") RRUS-11, add three (3) new RRUS-E2, and add one (1) DC6 surge suppressor, at the base of the monopole, to be mounted on the existing platform. Moreover, the applicant intends to upgrade the equipment by adding a second XMU, two (2) DC cables and one (1) fiber cable to the facility. Finally, AT&T proposes to structurally reinforce the base on the monopole.

This letter is intended to serve as the required notice to the municipality. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-286-4006 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

March 16, 2017

Chestnut Hill North, LLC 1621 State Street New Haven, CT 06511 Attn: Steve Lopes

RE: AT&T Wireless Modifications to Telecommunication Facility – 975 Mix Avenue, Hamden, CT 06514 (aka 905 Mix Ave.)

Dear Mr. Lopes:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains nine (9) antennas at the 61 foot level of an existing 65 foot monopole "stub" tower located on the rooftop of a four (4) story building at 975 Mix Avenue, in Hamden, CT. The tower is owned by Chestnut Hill North, LLC. The property is owned by Chestnut Hill North, LLC.

AT&T Wireless now seeks to add three (3) new Remote Radio Units ("RRU") RRUS-11, add three (3) new RRUS-E2, and add one (1) DC6 surge suppressor, at the base of the monopole, to be mounted on the existing platform. Moreover, the applicant intends to upgrade the equipment by adding a second XMU, two (2) DC cables and one (1) fiber cable to the facility. Finally, AT&T proposes to structurally reinforce the base on the monopole.

This letter is intended to serve as the required notice to the tower owner and the property owner. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-286-4006 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144 jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

Scroll Down For Complete Property Detail

Click on the Google logo to go to Google Maps

Parcel Documents

Property Summary Card

Create Parcel Map

TOWN OF HAMDEN, CONNECTICUT GEOGRAPHIC & PROPERTY INFORMATION NETWORK
2750 DIXWELL AVENUE HAMDEN, CT 06518 203-287-2500 E-MAIL: GENERAL INFORMATION
» PROPERTY MAP DATABASE SEARCH RESULTS
Click on Parcel No. for a list of maps available for this property.
You have typed the Address 975 MIX AVE.
Back New Search Town of Hamden

Copyright© Town of Hamden, Connecticut, U.S.A. All rights reserved. All information is intended for your general knowledge only and is not a substitute for contacting the Town Hall or other departments listed at this web site.

You should promptly consult the specific office or department with any questions. Use of this web site and any information you find through it is subject to the Disclaimer.

Radio Frequency Emissions Analysis Report

AT&T Existing Facility

Site ID: CT2035

Hamden 975 Mix Avenue Hamden, CT 6514

February 23, 2017

Centerline Communications Project Number: 950006-037

Site Complian	ce Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	21.50 %

February 23, 2017

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT2035 – Hamden

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility located at **975 Mix Avenue, Hamden, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications facility that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT&T Wireless antenna facility located at **975 Mix Avenue, Hamden, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the facility. For this report the sample point is the top of a 6-foot person standing at the base of the facility.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
LTE	850 MHz	2	60
LTE	2300 MHz (WCS)	2	60
LTE	1900 MHz (PCS)	2	60
LTE	700 MHz	4	60

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz, 850 MHz, 1900 MHz (PCS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

	Antenna		Antenna Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	Kathrein 800-10121	61
А	2	Quintel QS66512-2	61
А	3	CCI HPA-65R-BUU-H6	61
В	1	Kathrein 800-10121	61
В	2	Quintel QS66512-2	61
В	3	CCI HPA-65R-BUU-H6	61
С	1	Kathrein 800-10121	61
С	2	Quintel QS66512-2	61
C	3	CCI HPA-65R-BUU-H6	61

Table	2:	Antenna	Data
-------	----	---------	------

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

			Antenna Gain		Total TX		
Antenna	Antenna Make /		(dBd)	Channel	Power		
ID	Model	Frequency Bands		Count	(W)	ERP (W)	MPE %
Antenna							
A1	Kathrein 800-10121	850 MHz	11.45	2	60	837.82	1.76
		850 MHz /					
		2300 MHz (WCS) /					
Antenna		1900 MHz (PCS) /	11.35 / 14.85 /				
A2	Quintel QS66512-2	700 MHz	13.85 / 10.85	8	480	9,674.76	14.96
Antenna	CCI HPA-65R-						
A3	BUU-H6	700 MHz	11.95	2	120	1,880.10	4.78
					Sector A Co	mposite MPE%	21.50
Antenna							
B1	Kathrein 800-10121	850 MHz	11.45	2	60	837.82	1.76
		850 MHz /					
		2300 MHz (WCS) /					
Antenna		1900 MHz (PCS) /	11.35 / 14.85 /				
B2	Quintel QS66512-2	700 MHz	13.85 / 10.85	8	480	9,674.76	14.96
Antenna	CCI HPA-65R-						
B3	BUU-H6	700 MHz	11.95	2	120	1,880.10	4.78
					Sector B Co	mposite MPE%	21.50
Antenna							
C1	Kathrein 800-10121	850 MHz	11.45	2	60	837.82	1.76
		850 MHz /					
		2300 MHz (WCS) /					
Antenna		1900 MHz (PCS) /	11.35 / 14.85 /		100		
C2	Quintel QS66512-2	700 MHz	13.85 / 10.85	8	480	9,674.76	14.96
Antenna	CCI HPA-65R-	500 1 41	11.05		120	1 000 10	4.50
C3	BUU-H6	700 MHz	11.95	2	120	1,880.10	4.78
					Sector C Co	mposite MPE%	21.50

Table 3: AT&T Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

Site Composite MPE%				
Carrier	MPE%			
AT&T – Max Sector Value	21.50 %			
No Additional Carriers Located at This Facility	NA			
Site Total MPE %:	21.50 %			

Table 4: All Carrier MPE Contributions

AT&T Sector A Total:	21.50 %
AT&T Sector B Total:	21.50 %
AT&T Sector C Total:	21.50 %
Site Total:	21.50 %

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

AT&T _ Frequency Band / Technology (All Sectors)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
AT&T 850 MHz UMTS	2	418.91	61	9.96	850 MHz	567	1.76%
AT&T 850 MHz LTE	2	818.75	61	19.46	850 MHz	567	3.43%
AT&T 2300 MHz (WCS) LTE	2	1,832.95	61	43.57	2300 MHz (WCS)	1000	4.36%
AT&T 1900 MHz (PCS) LTE	2	1,455.97	61	34.61	1900 MHz (PCS)	1000	3.46%
AT&T 700 MHz LTE	2	729.71	61	17.34	700 MHz	467	3.71%
AT&T 700 MHz LTE	2	940.05	61	22.34	700 MHz	467	4.78%
						Total:	21.50%

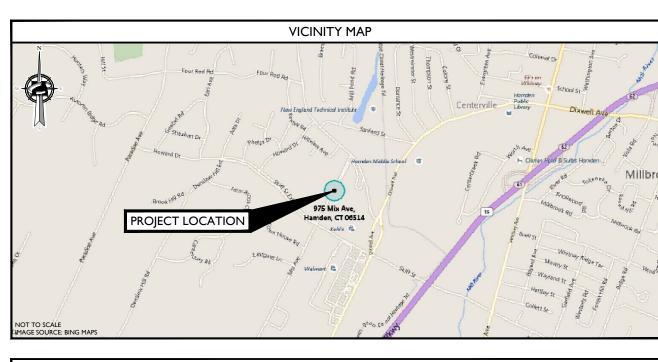
Table 6: AT&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	21.50 %
Sector B:	21.50 %
Sector C:	21.50 %
AT&T Maximum Total	21.50 %
(per sector):	21.50 /0
Site Total:	21.50 %
Site Compliance Status:	COMPLIANT


The anticipated composite MPE value for this site assuming all carriers present is **21.50** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767

SITE NAME: HAMDEN PROJECT: LTE MULTICARRIER ADD FA NUMBER: 10035036 SITE NUMBER: CT2035 975 MIX AVENUE HAMDEN, CT 06514 **NEW HAVEN COUNTY**

DRIVING DIRECTIONS

IRECTIONS FROM AT&T OFFICE AT 550 COCHITUATE ROAD, FARMINGHAM, M

DEPART RT-30 W / COCHITUATE RD TOWARD BURR ST. TURN BACK ON RT-30 E / COCHITUATE RD. TAKE RAMP RIGHT FOR 1-90 WEST TOWARD WORCESTER / SPRINGFIELD, AT EXIT 9. TAKE RAMP RIGHT FOR 1-9 DEFAULTS WY CONCIDENT AT END TOWARD BORK ST. TORN BACK ON FISUE? COCINITION R.D. TAKE RAMP RIGHT FOR 1-90 WEST TOWARD MICESTER? STRUGHED. AT EXIT 5, TAKE RAMP FOR UI-91 S. AT EXIT 7, TAKE RAMP FOR UI-91 S. AT EXIT 17, TAKE RAMP FOR UI-91 S. AT EXIT 7, TAKE RAMP FOR UI-91 S. AT

PROJECT TEAM

CLIENT REPRESE	ENTATIVE
COMPANY: ADDRESS:	EMPIRE TELECOM 16 ESOUIRE ROAD
CITY, STATE, ZIP: CONTACT:	BILLERICA, MA 01862 DAVID COOPER
E-MAIL:	DCOOPER@EMPIRETELCOMM.COM
ENGINEER	
COMPANY: ADDRESS: CITY, STATE, ZIP: CONTACT: PHONE: E-MAIL:	MASER CONSULTING CONNECTICUT 331 NEWMAN SPRINGS ROAD, SUITE 203 RED BANK, NJ 07701 MICHAEL CLEARY (656) 717-0412 x4105 MCLEARY@MASERCONSULTING.COM
RF ENGINEER	

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701 COMPANY: ADDRESS: CITY, STATE, ZIP: CONTACT: MD MATEEN E-MAIL: MM093Q@US.ATT.COM

SITE INFORMATION

APPLICANT/LESSEE	
eat&t	
NEW CINGULAR WIRELESS PCS, I 550 COCHITUATE ROAD FRAMINGHAM, MA 01701	TC
PROPERTY OWNER:	
NAME: ADDRESS: CITY, STATE, ZIP:	TBD 975 MIX AVENUE HAMDEN, CT 06514
LATITUDE:	41.37852° N
LONGITUDE:	72.9179161° W
LAT./LONG. TYPE:	NAD 83
AREA OF CONSTRUCTION:	TELECOMMUNICATIONS EQUIPMENT PLATFORM AND TOWER
ZONING/JURISDICTION:	NATIONAL, STATE & LOCAL CODES OR ORDINANCES
CURRENT/PROPOSED USE:	UNMANNED TELECOMMUNICATIONS FACILITY
HANDICAP REQUIREMENTS:	FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. HANDICAPPED ACCESS NOT REQUIRED.
CONSTRUCTION TYPE:	IIB
USE GROUP:	U

CONNECTICUT STATE I CODE (2016) & ALL SUB AMENDMENTS NATIONAL ELECTRIC C NATIONAL FIRE PROTEC ASSOCIATION 70 - 201 LIGHTNING PROTECTI AMERICAN CONCRETE

DO NOT SCALE DRAWINGS

SHEET	DESCRIPTION			
T-I	TITLE SHEET			
GN-I	GENERAL NOTES			
A-I	PARTIAL ROOF PLAN AND EQUIPMENT PLAN			
A-2	ELEVATION VIEW AND ANTENNA SCHEDULE			
A-3	ANTENNA LAYOUTS			
A-4	DETAILS			
A-5	DETAILS			
A-6	RF PLUMBING DIAGRAMS			
G-1	GROUNDING DETAILS			
S-1	STRUCTURAL DETAILS AND NOTES			
·				
PROJECT DESCRIPTION/SCOPE OF WORK				
THIS PROJECT WILL BE COMPRISED OF:				
ADD (3) NEW RRUS-11				

- ADD (3) NEW RRUS-E1 ADD (3) NEW RRUS-E2 ADD SECOND XMU ADD (1) DC6 ADD (2) DC CABLES
- ADD (I) FIBER CABLE

CODE COMPLIANCE

ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOLLOWING CODES.

BUILDING	6.	AMERICAN INSTITUTE OF STEEL
BSEQUENT		CONSTRUCTION 360-10
	7.	EIA/TIA-222 REVISION G
CODE 2014	8.	TIA 607 FOR GROUNDING
ECTION	9.	INSTITUTE FOR ELECTRICAL AND
4		ELECTRONICS ENGINEERS 81
ON CODE 201	10.	IEEE C2 LATEST EDITION
E INSTITUTE	11.	TELCORDIA GR-1275
	12.	ANSI T I.311

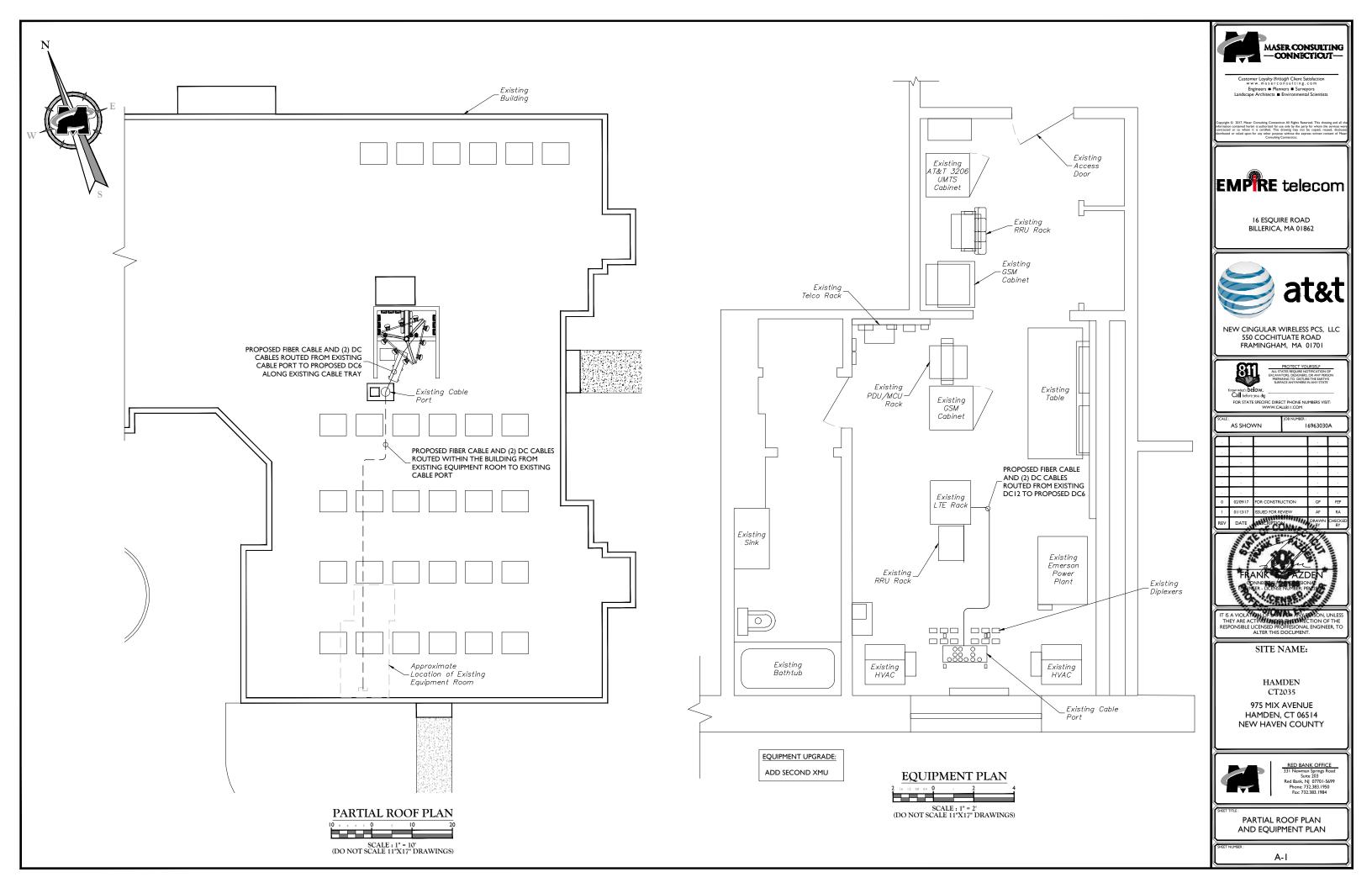
GENERAL CONTRACTOR NOTES

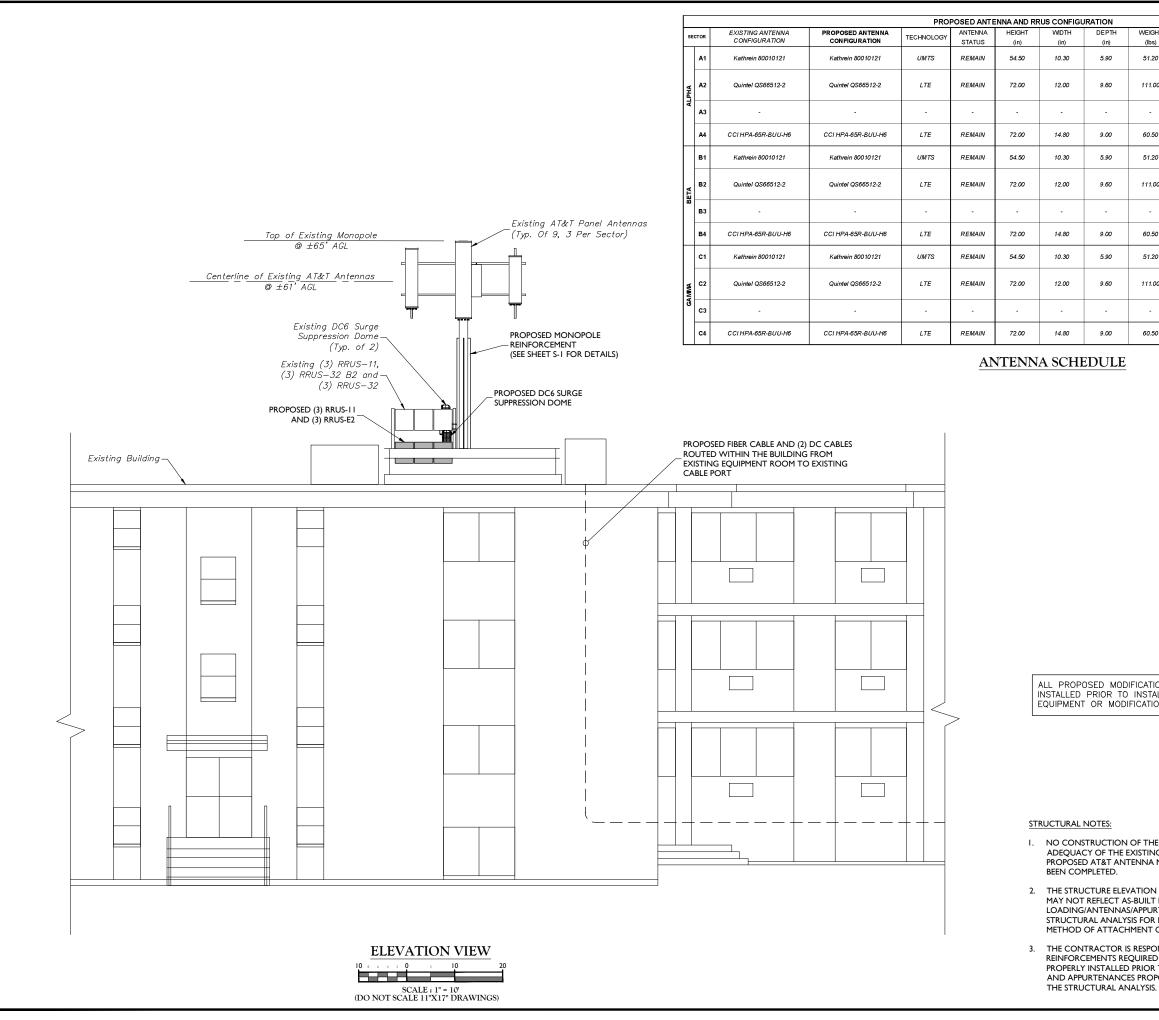
CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON TH JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE; NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

GENERAL NOTES:

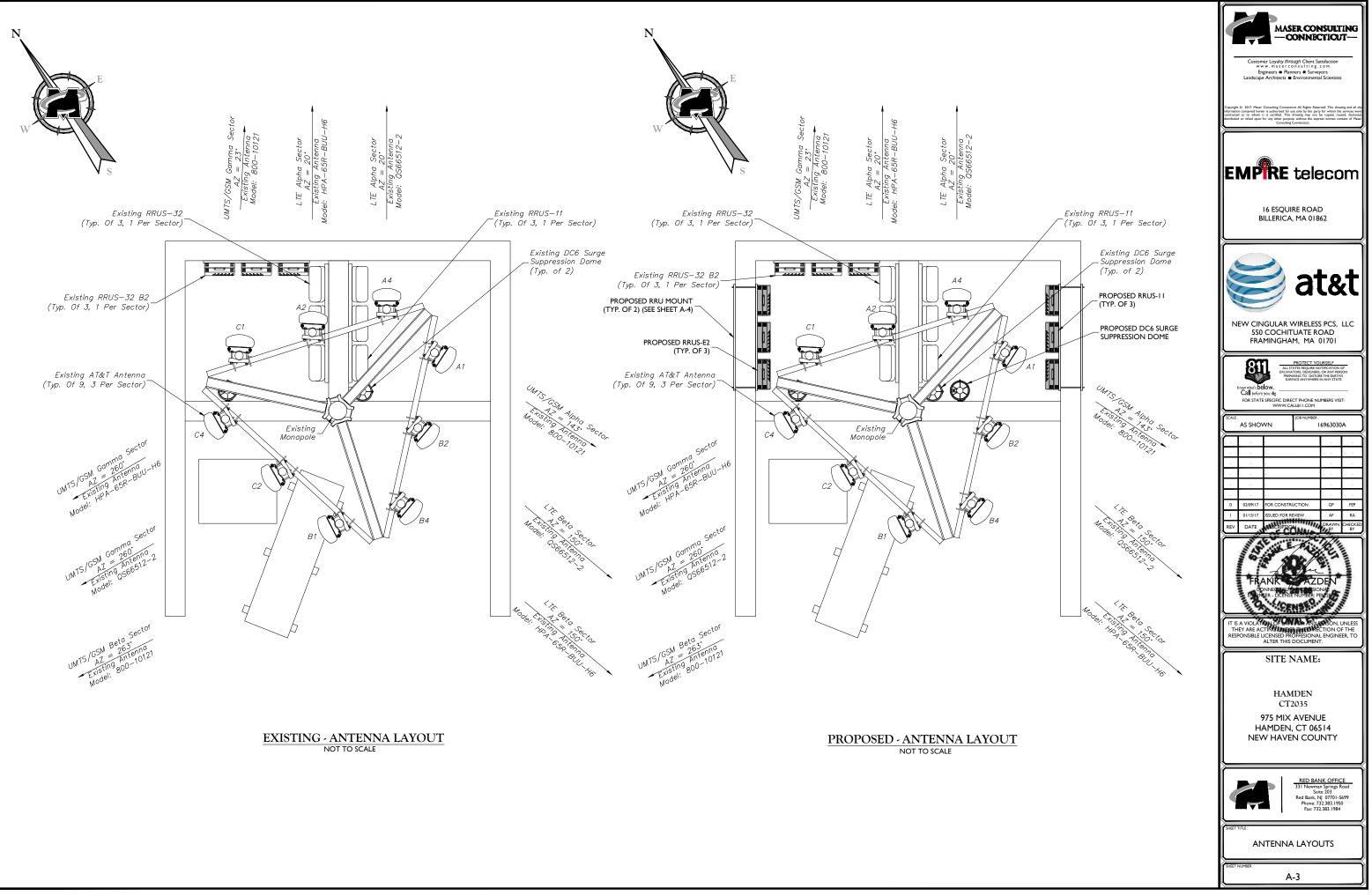

- I. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AH), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 50 HMS OR LESS.
- 4. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 6. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 7. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE EQUIPMENT GROUND RING WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK TO BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- 9. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 10. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 11. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED. ALL BENDS SHALL BE MADE WITH 12" RADIUS OR LARGER.
- 12. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE
- ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS EXCEPT FOR GROUND BAR CONNECTION FROM MGB TO OUTSIDE EXTERIOR GROUND SHALL ALL BE CADWELD CONNECTIONS.
- 14. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 15. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED TO THE TOWER GROUND BAR.
- 16. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 17. ALL EXTERIOR AND INTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 18. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE
- 19. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF MAIN GROUND WIRES WITH 1.#2 AWG TIN-PLATED COPPER GROUND
- 20. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G. NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO FACH END OF THE METAL CONDUIT.
- 21. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/4" IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #X AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50.
- 22. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:
 - CONTRACTOR EMPIRE TELECOM SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)


GROUND RING. IN ACCORDANCE WITH THE NEC

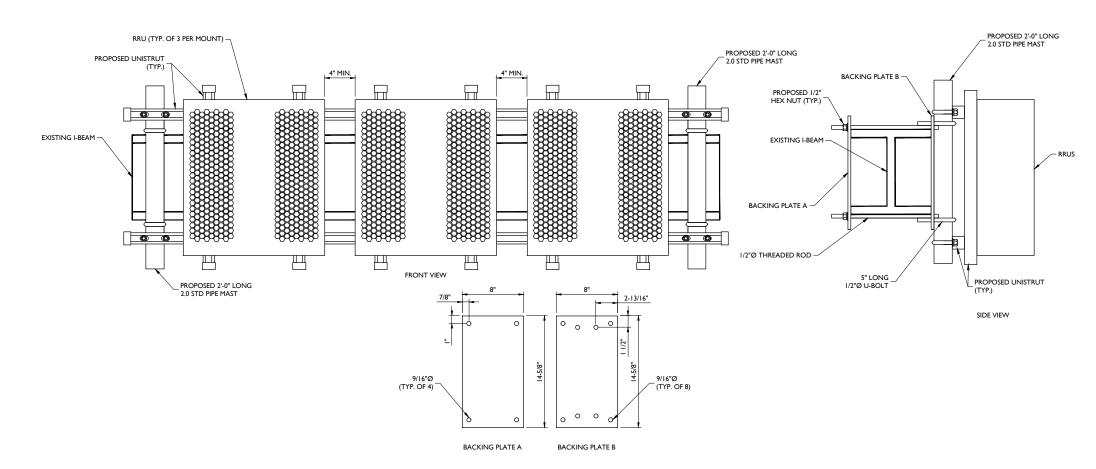
- OWNER AT&T (NEW CINGULAR WIRELESS PCS, LLC)
- 23. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 24. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 25. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES, SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.
- 26. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 27. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 28. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 29. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- 30. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 31. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 32. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE RESPONSIBLE ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION BJ CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.
- 33. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND SUBJECT TO THE APPROVAL OF THE OWNER AND/OR LOCAL UTILITIES.

- 34. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION.
- 35. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 36. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 37. THE SUBGRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 38. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- 39. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 40. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 41. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 42. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF THE CONTRACTOR.
- 43. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND TI CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 44. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.
- 45. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS
- 46. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (F) = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (F) = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES."
- 48. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 49. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 50. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN ALERT OF DANGEROUS EXPOSURE LEVELS.

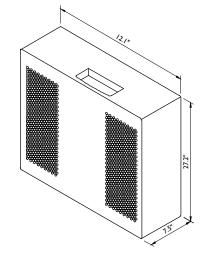
			-	
WEIGHT (lbs)	ANTENNA AZ M UTH	ANT. CL. ELEV (ft.)	RRUS CONFIGURATION	STATUS
51.20	143°	61.0'		-
111.00	20°	61.0'	RRUS-E2 RRUS-11 RRUS-32 B2 RRUS-32	NEW NEW REMAIN REMAIN
-	-	-	-	-
60.50	20°	61.0'	RRUS-11	REMAIN
51.20	263°	61.0'	-	-
111.00	150°	61.0'	RRUS-E2 RRUS-11 RRUS-32 B2 RRUS-32	NEW NEW REMAIN REMAIN
-	-	-	-	-
60.50	150°	61.0'	RRUS-11	REMAIN
51.20	23°	61.0'	-	-
111.00	260°	61.0'	RRUS-E2 RRUS-11 RRUS-32 B2 RRUS-32	NEW NEW REMAIN REMAIN
-	-	-	-	-
60.50	260°	61.0'	RRUS-11	REMAIN
			-	-


CATION	СОМ	PON	ENTS	SHALL	BE
ISTALLA	TION	OF	ANY	PROPO	SED
ATIONS	ΤO	EXIS	STING	EQUIPN	IENT.

NO CONSTRUCTION OF THE PROPOSED LOADING SHOWN SHALL PROCEED UNTIL ADEQUACY OF THE EXISTING STRUCTURE AND FOUNDATION, INCLUDING THE PROPOSED AT&T ANTENNA MOUNTING CONFIGURATION SHOWN HEREIN, HAS BEEN COMPLETED.

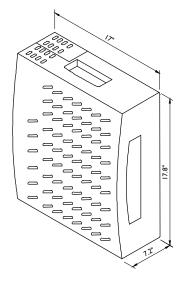

 THE STRUCTURE ELEVATION IS SHOWN FOR INFORMATIONAL PURPOSES ONLY AND MAY NOT REFLECT AS-BUILT FIELD CONDITIONS FOR ALL EXISTING INVENTORY LOADING/ANTENNAS/APPURTANENCES ON STRUCTURE. REFER TO THE LATEST STRUCTURAL ANALYSIS FOR EXISTING STRUCTURE LOADING AND THE PROPOSED METHOD OF ATTACHMENT OF THE PROPOSED ANTENNAS/CABLES.

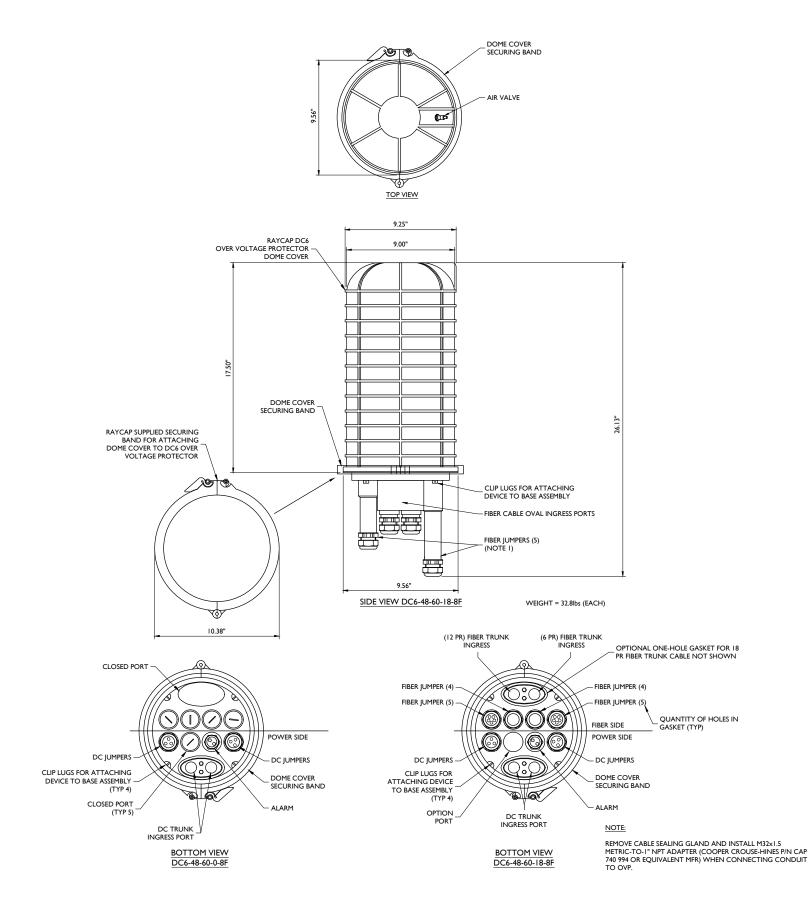
THE CONTRACTOR IS RESPONSIBLE TO CONFIRM THAT ANY IMPROVEMENTS AND REINFORCEMENTS REQUIRED BY THE STRUCTURAL ANALYSIS CERTIFICATION ARE PROPERLY INSTALLED PRIOR TO THE ADDITION OF ANTENNAS, CABLES, SUPPORTS AND APPURTENANCES PROPOSED ON THESE DRAWINGS OR OTHERWISE NOTED IN THE STRUCTURAL ANALYSIS.

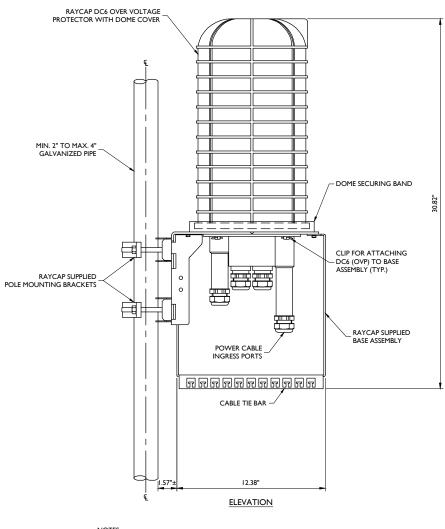


RRUS MOUNTING DETAIL

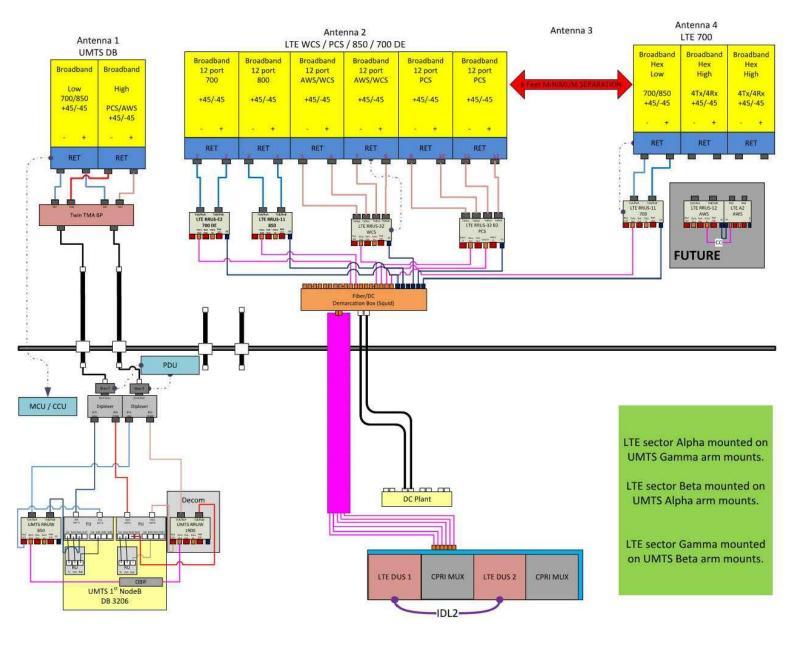
RRUS-E2 DETAIL


RRUS-32 B2 DIMENSIONS (H X W X D): 20.4" X 18.5" X 7.5" (INCLUDES SUNSHIELD) WEIGHT: 60 LBS


RRUS-11 DIMENSIONS (H X W X D): 17.8" X 17" X 7.2" (INCLUDES SUNSHIELD) WEIGHT: 55 LBS


RRUS-11 DETAIL

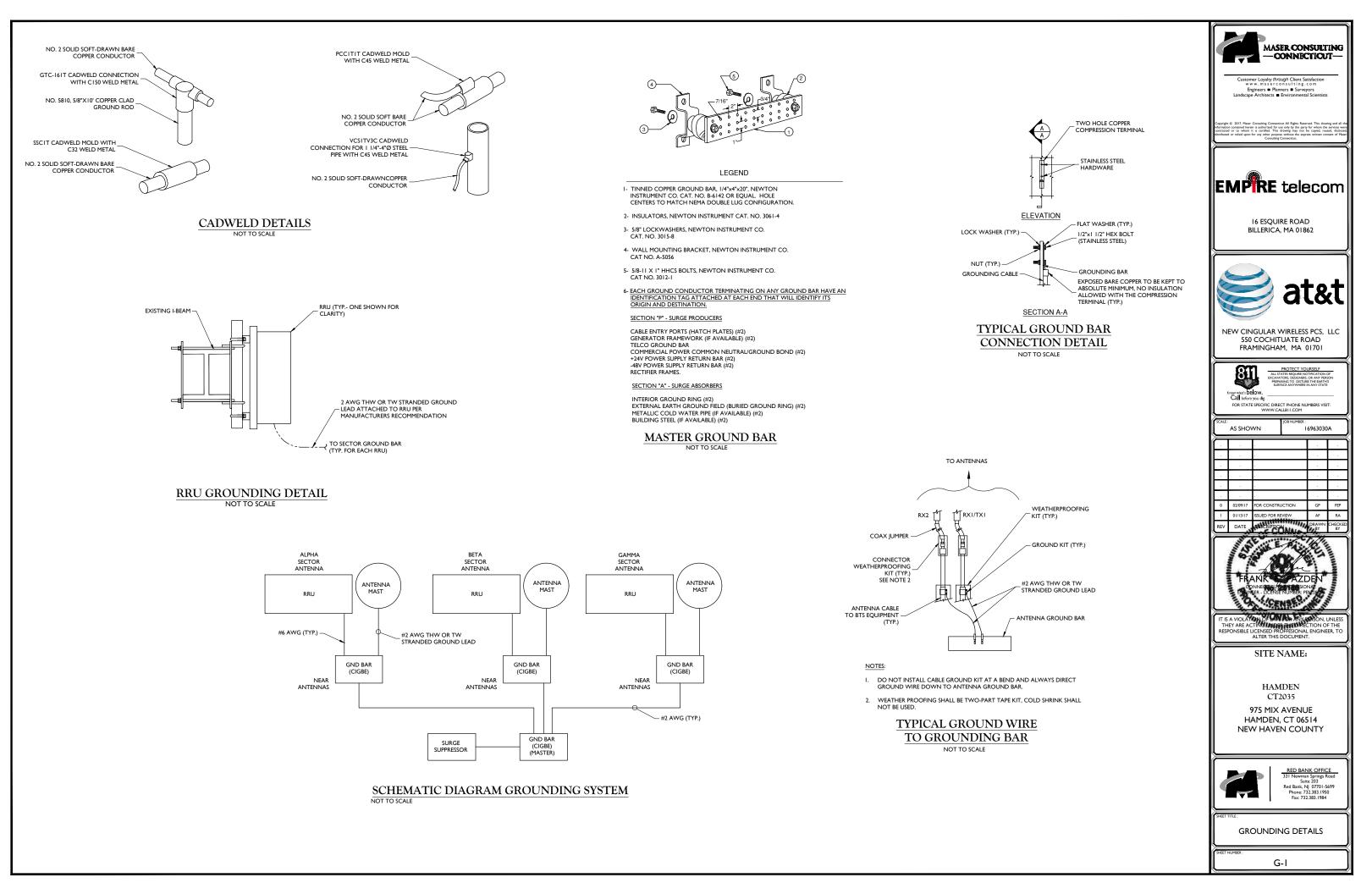
NOT TO SCALE


NOTES: RAYCAP VIA AT&T SUPPLIES THE DC6 OVER VOLTAGE PROTECTOR AND PIPE MOUNTING BRACKETS, SUBCONTRACTOR SHALL SUPPLY THE PIPE.

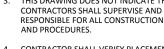
RAYCAP DC6-48-60-18-8F & DC6-48-60-0-8F DC POWER OVER VOLTAGE PROTECTOR (OVP) POLE MOUNT BASE ASSEMBLY NOT TO SCALE

DC6 SURGE SUPPRESSION DOME DETAIL NOT TO SCALE

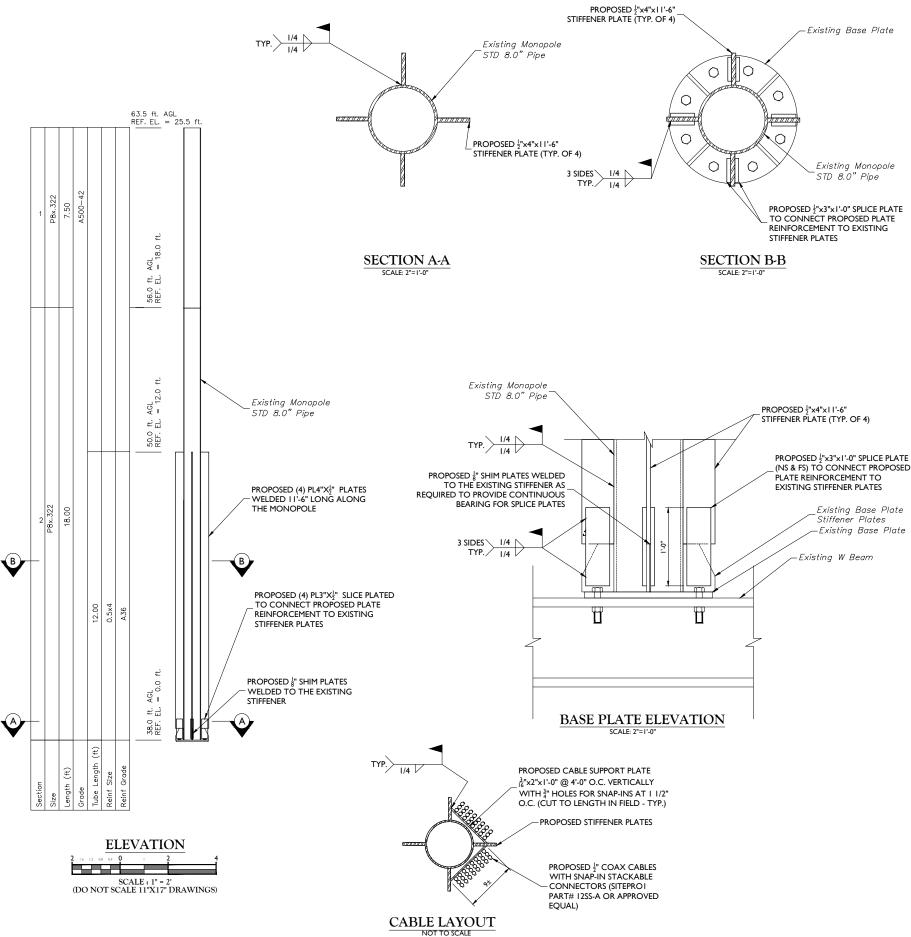
Diagram - Sector	A	Diagram File Name - CT2035_A_B_C_BrzRRH Add_4C_5C_Rev1 vsd					
Atoll Site Name	CTV2035	Location Name	HAMDEN	Market -	CONNECTICUT	Market Cluster	NEW ENGLAND
Comments:							



ALL SECTORS


NEW-ENGLAND_CONNECTICUT_CTV2035_2017-LTE-Next-Carrier_LTE_mm093q_PTN_10035036_61166_09-22-2016_Final-Approved_v2.00

RF PLUMBING DIAGRAMS



- CLEARANCES, AND DESIGN INTENT BEFORE FABRICATION STARTS
- DURING CONSTRUCTION
- 6. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THE PROPERTY IN THE VICINITY OF THE TOWER DURING CONSTRUCTION
- 7. DURING CONSTRUCTION THE CONTRACTOR SHALL COORDINATE WITH THE CONTRACTORS WORK SHALL BE REPAIRED AT THE CONTRACTORS EXPENSE.
- BACK CHARGES FOR CORRECTIVE WORK OR REPLACEMENT MATERIALS WILL NOT BE 8. COSTS ARE INCURRED.
- 9. POST CONSTRUCTION INSPECTION TO BE COMPLETED BY OTHERS.
- 10. ALL FIELD CONNECTIONS, UNLESS NOTED OTHERWISE , SHALL BE BOLTED.
- 11 CUTTING OR BURNING OF STEEL IN THE FIELD IS STRICTLY PROHIBITED
- 12. WHERE STEEL IS IN CONTACT WITH ALUMINUM PROVIDE ADEQUATE BARRIER TO PREVENT OXIDATION OF THE STEEL AND ALUMINUM.
- FLAT WASHER, ONE LOCK WASHER, AND ONE NUT UNLESS NOTED OTHERWISE.
- 14. COMPLY WITH ALL APPLICABLE REQUIREMENTS OF THE CURRENT EDITIONS OF THE FOLLOWING STANDARDS AND CODES
- 14.1. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) "SPECIFICATIONS FOR THE
- 14.2 STRUCTURAL MEMBERS"
- 14 3
- 14.4 14.5
- 14.6 IRON AND STEEL HARDWARE".
- 14.7 COATINGS ON IRON AND STEEL PRODUCTS".
- THICKNESS TO BE G90.
- 16. FIELD WELDING SHALL BE PERFORMED BY WELDERS THAT ARE CERTIFIED (AWS E70XX ELECTRODES FOR ALL WELDING.
- 17. ALL CONNECTIONS, UNLESS OTHERWISE NOTED, SHALL BE CONSTRUCTED WITH A MINIMUM EDGE DISTANCE OF 1 1/2 INCHES AND BOLT SPACING OF 3 INCHES.
- THE OUTSIDE FACE, AND NUTS DOWN OR ON THE SIDE MOST PROTECTED FROM WEATHER
- BE REPAIRED
- 20. TOUCH-UP ALL DAMAGE GALVANIZED STEEL WITH COLD ZINC, "GALVANOX", "DRY GALV.", "ZINC-IT" OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURER'S IN SHOP OR FIELD.
- ERECTION OF STRUCTURAL STEEL FOR BUILDINGS LOAD AND RESISTANCE FACTOR DESIGN"
- 22. MEMBERS SHALL BE LAID PLUMB AND TRUE AS SHOWN ON THE DRAWINGS.
- 23. COPE ALL FRAMING AT ENDS AS NECESSARY, UNLESS NOTED OTHERWISE.
- 24. THE GENERAL CONTRACTOR AND THEIR SUB-CONSULTANTS SHALL BE RESPONSIBLE FOR

1. IF THE EXISTING CONDITIONS ARE NOT AS REPRESENTED ON THESE DRAWINGS, MASER CONSULTING SHOULD BE CONTACTED IMMEDIATELY TO RE-RVALUATE THE STRUCTURE BASED ON THE FIELD CONDITIONS AND DIMENSIONS FOUND.

2. IT IS ASSUMED THAT ANY STRUCTURAL MODIFICATION WORK SPECIFIED ON THESE DRAWINGS WILL BE ACCOMPLISHED BY KNOWLEDGEABLE WORKMEN WITH TOWER/ANTENNA MOUNT CONSTRUCTION EXPERIENCE.

3. THIS DRAWING DOES NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTORS SHALL SUPERVISE AND DIRECT THE WORK AND THEY SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES,

4. CONTRACTOR SHALL VERIFY PLACEMENT OF ALL NEW PIECES FOR ADEQUATE FIT,

5. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE THE ERECTION PROCEDURE AND SEQUENCE TO INSURE THE STABILITY, SAFETY OF THE STRUCTURE AND MOUNTS (AS APPLICABLE), AND THE ADEQUACY OF TEMPORARY OR INCOMPLETE CONNECTIONS

WORK. THIS INCLUDES WHATEVER PROVISIONS NEED TO BE TAKEN TO PROTECT THE

TOWER/STRUCTURE OWNER AND CORDON OFF AREAS BELOW AND AROUND THE WORK TO PREVENT INJURY TO PERSONS AND/OR PROPERTY. DAMAGES RESULTING FROM THE

ACCEPTED UNLESS EXPRESSLY AUTHORIZED BY MASER CONSULTING BEFORE ANY SUCH

13. ALL BOLT HOLES SHALL BE $\frac{1}{16}$ " LARGER THAN BOLT DIAMETER. ALL BOLTS SHALL HAVE ONE

DESIGN, FABRICATION, AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS". AMERICAN IRON AND STEEL INSTITUTE (AISI) "DESIGN OF COLD FORMED STEEL

ASTM A563-04 "STANDARD SPECIFICATION FOR CARBON AND ALLOY STEEL NUTS". ASTM F436-03 "STANDARD SPECIFICATION FOR HARDENED STEEL WASHERS" ASTM A325-04 "STANDARD SPECIFICATION FOR STRUCTURAL BOLTS, STEEL, HEAT TREATED, 120/105 KSI MINIMUM TENSILE STRENGTH". ASTM A153/A153M-09 "STANDARD SPECIFICATION FOR ZINC COATING (HOT-DIP) ON

ASTM 123/A1123M-09 "STANDARD SPECIFICATION FOR ZINC (HOT-DIP GALVANIZED)

15. ALL STEEL WORK SHALL BE ASTM A572 GRADE 50 FOR W-FLANGE SECTIONS AND A36 FOR ALL OTHER SHAPES AND GALVANIZED UNLESS NOTED OTHERWISE, GALVANIZED COATING

"STANDARD QUALIFICATION PROCEDURE") TO PERFORM THE TYPE OF WORK REQUIRED. WELDS SHALL CONFORM TO AMERICAN WELDING SOCIETY (AWS) D1.1 "STRUCTURAL WELDING CODE - STEEL". PROVIDE THE MINIMUM SIZE PER PART 8 IN THE AISC "MANUAL OF STEEL CONSTRUCTION", LRFD 3RD EDITION, WHEN WELD SIZES ARE NOT SHOWN. USE

18. UNLESS NOTED OTHERWISE ALL BOLTS SHALL BE INSTALLED WITH HEADS UP OR TOWARD

19. USE PRECAUTIONS & PROCEDURES PER AWS D1.1 WHEN WELDING GALVANIZED MATERIALS. AT COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATING SHALL

GUIDELINES. TOUCH-UP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT APPLIED

21. ALL STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE CURRENT EDITION OF AISC "SPECIFICATIONS FOR DESIGN, FABRICATION AND

OBTAINING ALL PERMITS AND INSPECTIONS WHICH MAY BE REQUIRED FOR THE WORK

February 7, 2017

Mr. David Cooper Empire Telecom 16 Esquire Road Billerica, MA 01862

Re: Structural Evaluation AT&T: Site CT2035 FA # 10108060 Site Name: Hamden 975 Mix Avenue Hamden, CT 06514 Maser Consulting Project #: 16963030A

Dear Mr. Cooper,

In accordance with your request, Maser Consulting Connecticut prepared a modification design analysis to the existing monopole on the rooftop at the above referenced address.

Maser Consulting Connecticut has performed limited field observations on December 21th, 2016 to verify the existing visual condition of the structure and locate and quantify the existing wireless appurtenances, from ground level. This structural design is only valid for the appurtenances analyzed in the previous failing Antenna mount analysis and Structural analysis dated January 17, 2017.

The proposed modification design includes:

- 1) Welding (4) 4"x0.5" stiffener plates from the base plate up 12 ft. perpendicular to the monopole pipe section as shown in the Maser Consulting Structural Drawings.
- 2) Relocating Feedlines along the length of the monopole per the new layout design shown in the Structural Modification Construction Drawings.

See the Structural modification Construction Drawing prepared by Maser Consulting P.A. for further details.

Maser Consulting Connecticut has determined the modified monopole per the above mentioned proposed design has **ADEQUATE** structural capacity to support the existing and proposed installation. The Monopole and base plate are determined to be stressed to a maximum of **93.9%** of their structural capacity after proposed modifications are installed per Maser Consulting Recommendations. The equipment platform is determined to be stressed to a maximum of **89.0%** of its structural capacity with the maximum stress occurring at the column HSS member.

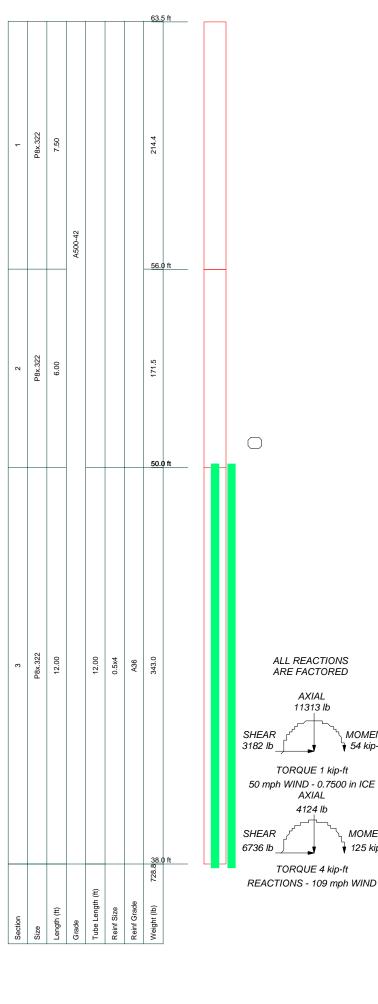
02/07/2017 Page 2 of 2 Prepared by GP Checked by FEP

Therefore, the proposed **AT&T** installation and proposed platform **CAN** be installed as intended, pending a passing structural analysis of the building.

Maser Consulting Connecticut reserves the right to amend this report if additional information about the existing monopole, platform and building structure is provided. No structural qualifications are made or implied by this document for the monopole, platform and building structure. The conclusions reached by Maser Consulting Connecticut in this report are only valid for the discrete and linear appurtenances listed in the previously completed mount analysis referenced above. Any change to the installation will require a revision to this structural analysis.

If you have any questions or comments, or require additional information, please do not hesitate to contact me.

Sincerely, Maser Consulting P.A.



Frank E. Pazden Geographic Discipline Leader Connecticut Professional Engineer PE License # 28188

Southan

Gowtham Penumatsa Structural Design Engineer

APPENDIX A

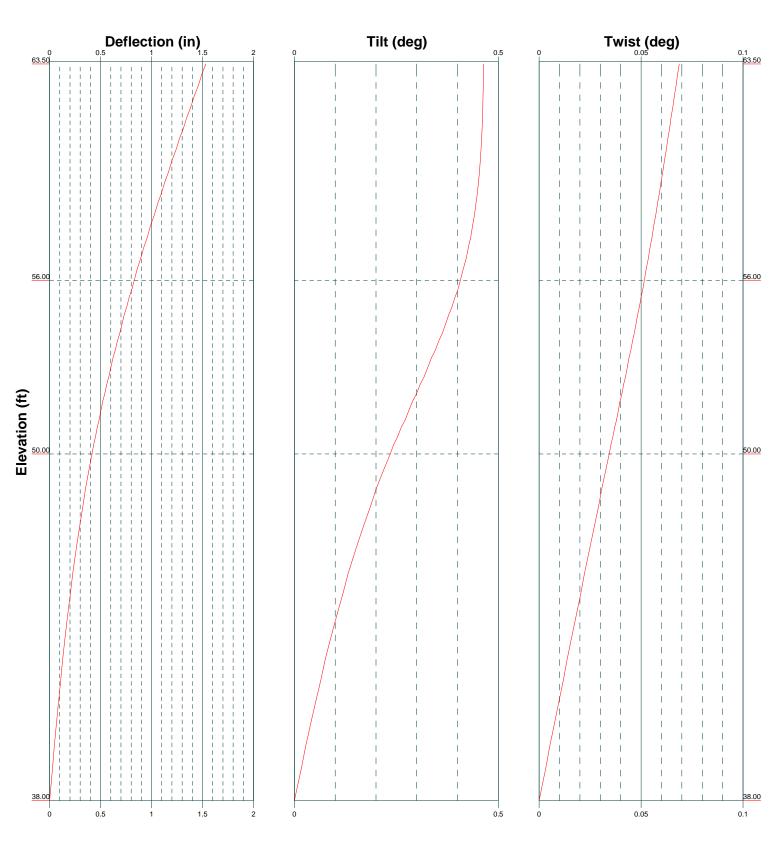
MATERIAL STRENGTH					
GRADE	Fy	Fu	GRADE	Fy	Fu
A500-42	42 ksi	58 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

- 1. Tower designed for Exposure B to the TIA-222-G Standard.
- 2. Tower designed for a 109 mph basic wind in accordance with the TIA-222-G Standard.
- 3. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 60 mph wind.

MOMENT

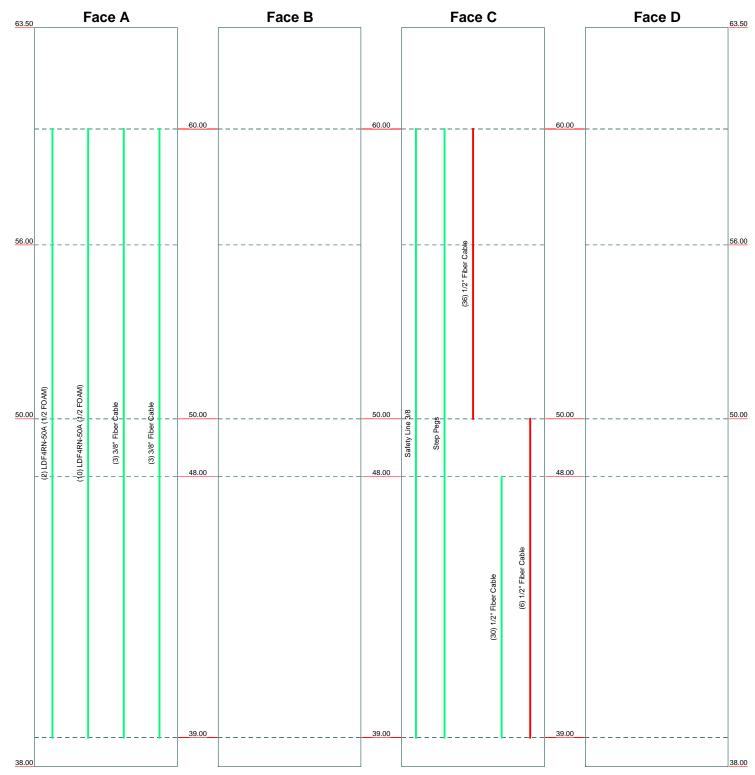
MOMENT 125 kip-ft


54 kip-ft

- Tower Structure Class II.
 Toyographic Category 1 with Crest Height of 0.00 ft
 Weld together tower sections have flange connections.
- Connections use galvanized A325 bolts, nuts and locking devices. Installation per 8. TIA/EIA-222 and AISC Specifications.
- Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 9. Standards.
- 10. Welds are fabricated with ER-70S-6 electrodes.

Maser Consulting P.A	
	Project: Hamde
	Client: Empire
Phone: 973.398.3110	Code: TIA-222

FAX: 973.398.3199


^{100.} 16963030A		
Project: Hamden		
Client: Empire Telecom	Drawn by: gpenumatsa	App'd:
	Date: 02/03/17	Scale: NTS
Path:	PPERPANAL AND AND A STREET AS A STREET AND A STREET AS	Dwg No. E-1

Maser Consulting P.A	^{Job:} 16963030A		
400 Valley Road	Project: Hamden		
Mt Arlington, NJ	Client: Empire Telecom	Drawn by: gpenumatsa	App'd:
	^{Code:} TIA-222-G	Date: 02/03/17	Scale: NTS
FAX: 973.398.3199	Path: C:Users/gpenumatsa/Desktop/Othe survor jobs/s	6963030A\Modification Analysis\TNX\Monopole Anlaysis	Dwg No. E-5

Feed Line Distribution Chart 38' - 63'6"

Flat _____ App In Face _____ App Out Face _____ Truss Leg

Maser Consulting P.A	^{Job:} 16963030A		
400 Valley Road	Project: Hamden		
Mt Arlington, NJ	Client: Empire Telecom	Drawn by: gpenumatsa	App'd:
	^{Code:} TIA-222-G	Date: 02/03/17	Scale: NTS
FAX: 973.398.3199	Path: C:\Users\gpenumatsa\Desktop\Othe survor jobs\	16963030A\Modification Analysis\TNX\Monopole Anlaysis	Dwg No. E-7

Elevation (ft)

Round

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

	Job		Page
ower		16963030A	1 of 19
sulting P.A	Project		Date
ley Road		Hamden	13:16:59 02/03/17
gton, NJ 3.398.3110 .398.3199	Client	Empire Telecom	Designed by gpenumatsa

Tower Input Data

There is a pole section.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 109 mph. Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Weld together tower sections have flange connections..

Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications..

Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.. Welds are fabricated with ER-70S-6 electrodes..

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
- ✓ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform

- Assume Legs Pinned
- Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r
- Retension Guys To Initial Tension √ Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Pole Section Geometry

Anna Tanu an	Job		Page
tnxTower		16963030A	2 of 19
Maser Consulting P.A	Project		Date
400 Valley Road		Hamden	13:16:59 02/03/17
Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199	Client	Empire Telecom	Designed by gpenumatsa

Section	Elevation	Section	Pole	Pole	Socket Length
		Length	Size	Grade	ft
	ft	fť			·
L1	63.50-56.00	7.50	P8x.322	A500-42	
				(42 ksi)	
L2	56.00-50.00	6.00	P8x.322	A500-42	
				(42 ksi)	
L3	50.00-38.00	12.00	P8x.322	A500-42	
				(42 ksi)	

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
L1 63.50-56.00				1	1	1			
L2 56.00-50.00				1	1	1			
L3 50.00-38.00				1	1.93	1			

Pole Reinforcing Data											
Height Above Base ft	Segment Length ft	No. of Segments	Offset in	Grade	Туре	Size	Unbraced Length ft	K	Bolt Hole Dia. in	Bolts per Row	Shear Lag Factor U
0.00	12.00	4	2.0000	A36 (36 ksi)	Flat Bar	0.5x4	0.00	1.00	0.0000	0	1.000

Monopole Base Plate Data

Base Plate Da	ta
Base plate is square	
Base plate is grouted	
Anchor bolt grade	A490N
Anchor bolt size	0.7500 in
Number of bolts	8
Embedment length	0.0000 in
f _c	50 ksi
Grout space	0.0000 in
Base plate grade	A36
Base plate thickness	1.7500 in
Bolt circle diameter	12.1700 in
Outer diameter	16.0000 in
Inner diameter	8.6250 in
Base plate type	Stiffened Plate
Bolts per stiffener	1
Stiffener thickness	0.3750 in
Stiffener height	6.0000 in

Feed Line/Linear Appurtenances - Entered As Round Or Flat

4	Job		Page
tnxTower		16963030A	3 of 19
Maser Consulting P.A	Project		Date
400 Valley Road		Hamden	13:16:59 02/03/17
Mt Arlington, NJ	Client		Designed by
Phone: 973.398.3110 FAX: 973.398.3199		Empire Telecom	gpenumatsa

Descrip	tion	Sector	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weight
				ft				in	in	plf
1/2" Fiber	Cable	С	Surface Ar (CaAa)	60.00 - 50.00	36	10	0.000 0.000	0.5000		1.00
1/2" Fiber	Cable	С	Surface Ar (CaAa)	50.00 - 39.00	6	4	$0.000 \\ 0.000$	0.5000		1.00

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		51	ft			ft²/ft	plf
LDF4RN-50A (1/2	А	No	CaAa (Out Of	60.00 - 39.00	2	No Ice	0.06	0.15
FOAM)			Face)			1/2" Ice	0.16	0.84
						1" Ice	0.26	2.14
LDF4RN-50A (1/2	Α	No	CaAa (Out Of	60.00 - 39.00	10	No Ice	0.06	0.15
FOAM)			Face)			1/2" Ice	0.16	0.84
						1" Ice	0.26	2.14
3/8" Fiber Cable	Α	No	CaAa (Out Of	60.00 - 39.00	3	No Ice	0.00	1.00
			Face)			1/2" Ice	0.15	1.61
						1" Ice	0.25	2.83
3/8" Fiber Cable	Α	No	CaAa (Out Of	60.00 - 39.00	3	No Ice	0.00	1.00
			Face)			1/2" Ice	0.15	1.61
						1" Ice	0.25	2.83
Safety Line 3/8	С	No	CaAa (Out Of	60.00 - 39.00	1	No Ice	0.04	0.22
			Face)			1/2" Ice	0.14	0.75
						1" Ice	0.24	1.28
Step Pegs	С	No	CaAa (Out Of	60.00 - 39.00	1	No Ice	0.02	1.50
			Face)			1/2" Ice	0.05	2.25
						1" Ice	0.08	3.00
1/2" Fiber Cable	С	No	CaAa (Out Of	48.00 - 39.00	30	No Ice	0.00	1.00
			Face)			1/2" Ice	0.15	1.61
						1" Ice	0.25	2.83

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation		2	2	In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
L1	63.50-56.00	А	0.000	0.000	0.000	3.057	31.20
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	2.000	0.230	150.88
		D	0.000	0.000	0.000	0.000	0.00
L2	56.00-50.00	А	0.000	0.000	0.000	4.586	46.80
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	3.000	0.345	226.32
		D	0.000	0.000	0.000	0.000	0.00
L3	50.00-38.00	А	0.000	0.000	0.000	8.407	85.80
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	2.200	1.005	354.92
		D	0.000	0.000	0.000	0.000	0.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Anna Tana an	Job		Page
tnxTower		16963030A	4 of 19
Maser Consulting P.A	Project		Date
400 Valley Road		Hamden	13:16:59 02/03/17
Mt Arlington, NJ Phone: 973.398.3110	Client		Designed by
FAX: 973.398.3119		Empire Telecom	gpenumatsa

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
L1	63.50-56.00	А	1.592	0.000	0.000	0.000	27.145	357.47
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	4.092	1.885	236.47
		D		0.000	0.000	0.000	0.000	0.00
L2	56.00-50.00	А	1.573	0.000	0.000	0.000	40.308	527.22
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	6.109	2.799	353.26
		D		0.000	0.000	0.000	0.000	0.00
L3	50.00-38.00	А	1.544	0.000	0.000	0.000	72.749	941.41
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	6.995	101.911	1599.10
		D		0.000	0.000	0.000	0.000	0.00

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	63.50-56.00	0.2693	-0.2018	-0.2117	-0.4548
L2	56.00-50.00	0.3524	-0.2641	-0.2287	-0.4944
L3	50.00-38.00	-0.1012	-0.1997	0.1486	0.1063

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K_a Ice
L1	7	1/2" Fiber Cable	56.00 - 60.00	1.0000	1.0000
L2	7	1/2" Fiber Cable	50.00 - 56.00	1.0000	1.0000
L3	9	1/2" Fiber Cable	39.00 - 50.00	1.0000	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft	0	ft		ft^2	ft^2	lb
80010121 9' Mount Pipe	Α	From Leg	$\frac{ft}{4.00}$	0.0000	61.00	No Ice	6.22	5.43	93.85
(AT&T)		e	-4.00			1/2" Ice	7.03	6.71	150.46
			0.00			1" Ice	7.86	8.00	214.13
Quintel QS66512-2 w/m pipe (AT&T)	А	From Leg	4.00 0.00	0.0000	61.00	No Ice 1/2" Ice	8.85 9.61	8.94 10.33	143.85 224.75

tran Toru or	Job		Page
tnxTower		16963030A	5 of 19
Maser Consulting P.A	Project		Date
400 Valley Road		Hamden	13:16:59 02/03/17
Mt Arlington, NJ	Client		Designed by
Phone: 973.398.3110 FAX: 973.398.3199		Empire Telecom	gpenumatsa

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	0	ft		ft^2	ft ²	lb
			$\frac{\pi}{0.00}$			1" Ice	10.39	11.73	314.20
HPA-65R-BUU-H6 W/Mt	А	From Leg	4.00	0.0000	61.00	No Ice	10.37	8.59	93.35
pipe		110111 208	4.00	0.0000	01.00	1/2" Ice	11.15	9.98	180.04
(AT&T)			0.00			1" Ice	11.94	11.39	275.42
80010121 9' Mount Pipe	В	From Leg	4.00	0.0000	61.00	No Ice	6.22	5.43	93.85
(AT&T)	_		-4.00			1/2" Ice	7.03	6.71	150.46
()			0.00			1" Ice	7.86	8.00	214.13
Quintel QS66512-2 w/m pipe	В	From Leg	4.00	0.0000	61.00	No Ice	8.85	8.94	143.85
(AT&T)		6	0.00			1/2" Ice	9.61	10.33	224.75
() /			0.00			1" Ice	10.39	11.73	314.20
HPA-65R-BUU-H6 W/Mt	В	From Leg	4.00	0.0000	61.00	No Ice	10.37	8.59	93.35
pipe		e	4.00			1/2" Ice	11.15	9.98	180.04
(AT&T)			0.00			1" Ice	11.94	11.39	275.42
80010121 9' Mount Pipe	С	From Leg	4.00	0.0000	61.00	No Ice	6.22	5.43	93.85
(AT&T)			-4.00			1/2" Ice	7.03	6.71	150.46
			0.00			1" Ice	7.86	8.00	214.13
Quintel QS66512-2 w/m pipe	С	From Leg	4.00	0.0000	61.00	No Ice	8.85	8.94	143.85
(AT&T)			0.00			1/2" Ice	9.61	10.33	224.75
			0.00			1" Ice	10.39	11.73	314.20
HPA-65R-BUU-H6 W/Mt	С	From Leg	4.00	0.0000	61.00	No Ice	10.37	8.59	93.35
pipe			4.00			1/2" Ice	11.15	9.98	180.04
(AT&T)			0.00			1" Ice	11.94	11.39	275.42
Modified T Frame	Α	None		0.0000	59.00	No Ice	9.63	9.63	164.00
(AT&T)						1/2" Ice	12.41	12.41	228.00
						1" Ice	15.20	15.20	292.00
Modified T Frame	В	None		0.0000	59.00	No Ice	9.63	9.63	164.00
(AT&T)						1/2" Ice	12.41	12.41	228.00
						1" Ice	15.20	15.20	292.00
Modified T Frame	С	None		0.0000	59.00	No Ice	9.63	9.63	164.00
(AT&T)						1/2" Ice	12.41	12.41	228.00
						1" Ice	15.20	15.20	292.00

Tower Pressures - No Ice

Section	Z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а			-	%	In	Out
					с					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 63.50-56.00	59.75	0.853	25	5.391	Α	0.000	5.391	5.391	100.00	0.000	3.057
					В	0.000	5.391		100.00	0.000	0.000
					С	0.000	5.391		100.00	2.000	0.230
					D	0.000	5.391		100.00	0.000	0.000
L2 56.00-50.00	53.00	0.824	24	4.313	Α	0.000	4.313	4.313	100.00	0.000	4.586
					В	0.000	4.313		100.00	0.000	0.000
					С	0.000	4.313		100.00	3.000	0.345
					D	0.000	4.313		100.00	0.000	0.000
L3 50.00-38.00	44.00	0.782	23	8.625	Α	0.000	16.646	16.646	100.00	0.000	8.407
					В	0.000	16.646		100.00	0.000	0.000

$G_{H} = 1.100$

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

Job		Page
	16963030A	6 of 19
Project		Date
	Hamden	13:16:59 02/03/17
Client	Empire Telecom	Designed by gpenumatsa

Section Elevation	z	K _Z	q_z	A_G	F a	A_F	A_R	A_{leg}	Leg %	$C_A A_A$ In	$C_A A_A$ Out
ft	ft		psf	ft^2	с е	ft^2	ft^2	ft^2	,.	Face ft ²	Face ft ²
, i i i i i i i i i i i i i i i i i i i	Ť				С	0.000	16.646		100.00	2.200	1.005
					D	0.000	16.646		100.00	0.000	0.000

Tower Pressure - With Ice

 $G_H = 1.100$

Section	z	Kz	q_z	tz	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 63.50-56.00	59.75	0.853	5	1.5917	7.380	Α	0.000	7.380	7.380	100.00	0.000	27.145
						В	0.000	7.380		100.00	0.000	0.000
						С	0.000	7.380		100.00	4.092	1.885
						D	0.000	7.380		100.00	0.000	0.000
L2 56.00-50.00	53.00	0.824	5	1.5728	5.885	Α	0.000	5.885	5.885	100.00	0.000	40.308
						В	0.000	5.885		100.00	0.000	0.000
						С	0.000	5.885		100.00	6.109	2.799
						D	0.000	5.885		100.00	0.000	0.000
L3 50.00-38.00	44.00	0.782	5	1.5438	11.713	Α	0.000	22.605	22.605	100.00	0.000	72.749
						В	0.000	22.605		100.00	0.000	0.000
						С	0.000	22.605		100.00	6.995	101.911
						D	0.000	22.605		100.00	0.000	0.000

Tower Pressure - Service

$G_H=1.100$

Section	Z	KZ	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 63.50-56.00	59.75	0.853	7	5.391	А	0.000	5.391	5.391	100.00	0.000	3.057
					В	0.000	5.391		100.00	0.000	0.000
					С	0.000	5.391		100.00	2.000	0.230
					D	0.000	5.391		100.00	0.000	0.000
L2 56.00-50.00	53.00	0.824	6	4.313	Α	0.000	4.313	4.313	100.00	0.000	4.586
					В	0.000	4.313		100.00	0.000	0.000
					С	0.000	4.313		100.00	3.000	0.345
					D	0.000	4.313		100.00	0.000	0.000
L3 50.00-38.00	44.00	0.782	6	8.625	Α	0.000	16.646	16.646	100.00	0.000	8.407
					В	0.000	16.646		100.00	0.000	0.000
					С	0.000	16.646		100.00	2.200	1.005
					D	0.000	16.646		100.00	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

tnxTower	
----------	--

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

Job		Page
	16963030A	7 of 19
Project		Date
	Hamden	13:16:59 02/03/17
Client	Empire Telecom	Designed by gpenumatsa

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	182.08	214.36	Α	1	1.2	25	1	1	5.391	465.13	62.02	D
63.50-56.00			В	1	1.2		1	1	5.391			
			С	1	1.2		1	1	5.391			
			D	1	1.2		1	1	5.391			
L2	273.12	171.49	Α	1	1.2	24	1	1	4.313	555.57	92.60	D
56.00-50.00			В	1	1.2		1	1	4.313			
			С	1	1.2		1	1	4.313			
			D	1	1.2		1	1	4.313			
L3	440.72	669.64	А	1	1.2	23	1	1	16.646	825.71	68.81	D
50.00-38.00			В	1	1.2		1	1	16.646			
			С	1	1.2		1	1	16.646			
			D	1	1.2		1	1	16.646			
Sum Weight:	895.92	1055.48						OTM	23.40	1846.42		
Ű									kip-ft			

		-	Γον	wer Fo	orce	s - N	o Ice	e - W	ind 45	To Face		
	A 1 1	G 16	Б		C		D	D		T.		C I
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			c						Face
ft	lb	lb	с е			psf			ft^2	lb	plf	
J:			-	1	1.2	25	1	1	<i>j</i> :			D
L1	182.08	214.36	A	1	1.2	25	1	1	5.391	465.13	62.02	D
63.50-56.00			B	1	1.2		1	1	5.391			
			С	1	1.2		1	1	5.391			
			D	1	1.2		1	1	5.391			
L2	273.12	171.49	Α	1	1.2	24	1	1	4.313	555.57	92.60	D
56.00-50.00			В	1	1.2		1	1	4.313			
			С	1	1.2		1	1	4.313			
			D	1	1.2		1	1	4.313			
L3	440.72	669.64	Α	1	1.2	23	1	1	16.646	730.07	60.84	D
50.00-38.00			В	1	1.2		1	1	16.646			
			С	1	1.2		1	1	16.646			
			D	1	1.2		1	1	16.646			
Sum Weight:	895.92	1055.48						OTM	22.83	1750.77		
									kip-ft			

	Tower Forces - With Ice - Wind Normal To Face													
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.		
Elevation	Weight lb	Weight lb	a c			psf			c.2	lb	- 10	Face		
<u>π</u> L1	593.93	363.37	e A	1	1.2	5	1	1	7.380	527.15	<i>plf</i> 70.29	D		
63.50-56.00			B C	1	1.2 1.2		1	1	7.380 7.380					
L2	880.49	289.06	D A	1	1.2 1.2	5	1	1	7.380 5.885	722.74	120.46	D		
56.00-50.00			B C	1	1.2 1.2		1	1	5.885 5.885					

	Job		Page
tnxTower		16963030A	8 of 19
Maser Consulting P.A	Project		Date
400 Valley Road		Hamden	13:16:59 02/03/17
Mt Arlington, NJ	Client		Designed by
Phone: 973.398.3110 FAX: 973.398.3199		Empire Telecom	gpenumatsa

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
			D	1	1.2		1	1	5.885			
L3	2540.52	1404.49	Α	1	1.2	5	1	1	22.605	1154.33	96.19	D
50.00-38.00			В	1	1.2		1	1	22.605			
			С	1	1.2		1	1	22.605			
			D	1	1.2		1	1	22.605			
Sum Weight:	4014.94	2056.92						OTM	29.23	2404.22		
									kip-ft			

	Tower Forces - With Ice - Wind 45 To Face														
	Section Add Self F e C_F a_F D_F D_R A_F F w Ctrl.														
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.			
Elevation	Weight	Weight	а									Face			
			С			psf									
ft	lb	lb	е						ft^2	lb	plf				
L1	593.93	363.37	Α	1	1.2	5	1	1	7.380	524.88	69.98	D			
63.50-56.00			В	1	1.2		1	1	7.380						
			С	1	1.2		1	1	7.380						
			D	1	1.2		1	1	7.380						
L2	880.49	289.06	А	1	1.2	5	1	1	5.885	720.07	120.01	D			
56.00-50.00			В	1	1.2	-	1	1	5.885						
			Ċ	1	1.2		1	1	5.885						
			Ď	1	1.2		1	1	5.885						
L3	2540.52	1404.49	A	1	1.2	5	1	1	22.605	1095.49	91.29	D			
50.00-38.00	2010.02	1101.19	B	1	1.2	5	1	1	22.605	10,0.17	<i>J</i> 1.2 <i>J</i>	D			
50.00 50.00			C	1	1.2		1	1	22.605						
			D	1	1.2		1	1	22.605						
Sum Weight:	4014.94	2056.92	D	1	1.2		1	OTM	22.003	2340.44					
Sum weight.	4014.94	2030.92						OTM		2540.44					
									kip-ft						

	Tower Forces - Service - Wind Normal To Face													
Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face		
ft	lb	lb	с е			psf			ft^2	lb	plf			
L1	182.08	214.36	Α	1	1.2	7	1	1	5.391	126.10	16.81	D		
63.50-56.00			В	1	1.2		1	1	5.391					
			С	1	1.2		1	1	5.391					
			D	1	1.2		1	1	5.391					
L2	273.12	171.49	Α	1	1.2	6	1	1	4.313	150.62	25.10	D		
56.00-50.00			В	1	1.2		1	1	4.313					
			С	1	1.2		1	1	4.313					
			D	1	1.2		1	1	4.313					
L3	440.72	669.64	А	1	1.2	6	1	1	16.646	223.86	18.65	D		
50.00-38.00			В	1	1.2		1	1	16.646					
			С	1	1.2		1	1	16.646					
			D	1	1.2		1	1	16.646					
Sum Weight:	895.92	1055.48						OTM	6.35 kip-ft	500.58				

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

Job		Page
	16963030A	9 of 19
Project		Date
	Hamden	13:16:59 02/03/17
Client	Empire Telecom	Designed by gpenumatsa

	Tower Forces - Service - Wind 45 To Face													
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.		
Elevation	Weight	Weight	a									Face		
			С			psf								
ft	lb	lb	е						ft^2	lb	plf			
L1	182.08	214.36	Α	1	1.2	7	1	1	5.391	126.10	16.81	D		
63.50-56.00			В	1	1.2		1	1	5.391					
			С	1	1.2		1	1	5.391					
			D	1	1.2		1	1	5.391					
L2	273.12	171.49	Α	1	1.2	6	1	1	4.313	150.62	25.10	D		
56.00-50.00			В	1	1.2		1	1	4.313					
			С	1	1.2		1	1	4.313					
			D	1	1.2		1	1	4.313					
L3	440.72	669.64	Α	1	1.2	6	1	1	16.646	197.93	16.49	D		
50.00-38.00			В	1	1.2		1	1	16.646					
			С	1	1.2		1	1	16.646					
			D	1	1.2		1	1	16.646					
Sum Weight:	895.92	1055.48						OTM	6.19 kip-ft	474.65				

Discrete Appurtenance Pressures - No Ice $G_{H} = 1.100$

Description	Aiming Azimuth	Weight	$Offset_x$	$Offset_z$	z	K_z	q_z	$C_A A_C$ Front	$C_A A_C$ Side
	0	lb	ft	ft	ft		psf	ft^2	ft^2
80010121 9' Mount Pipe	315.0000	93.85	-5.91	-0.25	61.00	0.858	25	6.22	5.43
Quintel QS66512-2 w/m	315.0000	143.85	-3.08	-3.08	61.00	0.858	25	8.85	8.94
pipe									
HPA-65R-BUU-H6	315.0000	93.35	-0.25	-5.91	61.00	0.858	25	10.37	8.59
W/Mt pipe									
80010121 9' Mount Pipe	45.0000	93.85	0.25	-5.91	61.00	0.858	25	6.22	5.43
Quintel QS66512-2 w/m	45.0000	143.85	3.08	-3.08	61.00	0.858	25	8.85	8.94
pipe									
HPA-65R-BUU-H6	45.0000	93.35	5.91	-0.25	61.00	0.858	25	10.37	8.59
W/Mt pipe									
80010121 9' Mount Pipe	135.0000	93.85	5.91	0.25	61.00	0.858	25	6.22	5.43
Quintel QS66512-2 w/m	135.0000	143.85	3.08	3.08	61.00	0.858	25	8.85	8.94
pipe									
HPA-65R-BUU-H6	135.0000	93.35	0.25	5.91	61.00	0.858	25	10.37	8.59
W/Mt pipe									
Modified T Frame	0.0000	164.00	0.00	0.00	59.00	0.850	25	9.63	9.63
Modified T Frame	0.0000	164.00	0.00	0.00	59.00	0.850	25	9.63	9.63
Modified T Frame	0.0000	164.00	0.00	0.00	59.00	0.850	25	9.63	9.63
	Sum	1485.15							
	Weight:								

		Discre	ete App	ourter	nance	Press	ures -	With	lce	$G_{H} = 1.100$		
Γ	Description	Aiming	Weight	$Offset_x$	$Offset_z$	z	Kz	q_z	$C_A A_C$	$C_A A_C$	tz	
		Azimuth °	lb	ft	ft	ft		psf	Front ft^2	Side ft ²	in	

tnxTower

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

	Job		Page
ower		16963030A	10 of 19
aultina DA	Project		Date
isulting P.A Iley Road		Hamden	13:16:59 02/03/17
ngton, NJ 73.398.3110 3.398.3199	Client	Empire Telecom	Designed by gpenumatsa

Description	Aiming	Weight	$Offset_x$	$Offset_z$	Z	K_z	q_z	$C_A A_C$	$C_A A_C$	t_z
î	Azimuth	ũ				-		Front	Side	-
	0	lb	ft	ft	ft		psf	ft^2	ft^2	in
80010121 9' Mount Pipe	315.0000	305.10	-5.91	-0.25	61.00	0.858	5	8.63	9.10	1.5950
Quintel QS66512-2 w/m	315.0000	438.50	-3.08	-3.08	61.00	0.858	5	11.18	12.95	1.5950
pipe										
HPA-65R-BUU-H6	315.0000	407.03	-0.25	-5.91	61.00	0.858	5	12.75	12.61	1.5950
W/Mt pipe										
80010121 9' Mount Pipe	45.0000	305.10	0.25	-5.91	61.00	0.858	5	8.63	9.10	1.5950
Quintel QS66512-2 w/m	45.0000	438.50	3.08	-3.08	61.00	0.858	5	11.18	12.95	1.5950
pipe										
HPA-65R-BUU-H6	45.0000	407.03	5.91	-0.25	61.00	0.858	5	12.75	12.61	1.5950
W/Mt pipe										
80010121 9' Mount Pipe	135.0000	305.10	5.91	0.25	61.00	0.858	5	8.63	9.10	1.5950
Quintel QS66512-2 w/m	135.0000	438.50	3.08	3.08	61.00	0.858	5	11.18	12.95	1.5950
pipe										
HPA-65R-BUU-H6	135.0000	407.03	0.25	5.91	61.00	0.858	5	12.75	12.61	1.5950
W/Mt pipe										
Modified T Frame	0.0000	367.49	0.00	0.00	59.00	0.850	5	18.48	18.48	1.5897
Modified T Frame	0.0000	367.49	0.00	0.00	59.00	0.850	5	18.48	18.48	1.5897
Modified T Frame	0.0000	367.49	0.00	0.00	59.00	0.850	5	18.48	18.48	1.5897
	Sum	4554.32					_			
	Weight:	-								

Discrete Appurtenance Pressures - Service $G_H = 1.100$

Description	Aiming	Weight	$Offset_x$	$Offset_z$	z	K_z	q_z	$C_A A_C$	$C_A A_C$
	Azimuth							Front	Side
	0	lb	ft	ft	ft		psf	ft^2	ft^2
80010121 9' Mount Pipe	315.0000	93.85	-5.91	-0.25	61.00	0.858	7	6.22	5.43
Quintel QS66512-2 w/m	315.0000	143.85	-3.08	-3.08	61.00	0.858	7	8.85	8.94
pipe									
HPA-65R-BUU-H6	315.0000	93.35	-0.25	-5.91	61.00	0.858	7	10.37	8.59
W/Mt pipe									
80010121 9' Mount Pipe	45.0000	93.85	0.25	-5.91	61.00	0.858	7	6.22	5.43
Quintel QS66512-2 w/m	45.0000	143.85	3.08	-3.08	61.00	0.858	7	8.85	8.94
pipe									
HPA-65R-BUU-H6	45.0000	93.35	5.91	-0.25	61.00	0.858	7	10.37	8.59
W/Mt pipe									
80010121 9' Mount Pipe	135.0000	93.85	5.91	0.25	61.00	0.858	7	6.22	5.43
Quintel QS66512-2 w/m	135.0000	143.85	3.08	3.08	61.00	0.858	7	8.85	8.94
pipe									
HPA-65R-BUU-H6	135.0000	93.35	0.25	5.91	61.00	0.858	7	10.37	8.59
W/Mt pipe									
Modified T Frame	0.0000	164.00	0.00	0.00	59.00	0.850	7	9.63	9.63
Modified T Frame	0.0000	164.00	0.00	0.00	59.00	0.850	7	9.63	9.63
Modified T Frame	0.0000	164.00	0.00	0.00	59.00	0.850	7	9.63	9.63
	Sum	1485.15							
	Weight:								

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Ζ	Moments, M_x	Moments, M_z	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Leg Weight	728.81					
Bracing Weight	326.67					

Maser C 400 V Mt An Phone: FAX: 9

	Job		Page
cTower		16963030A	11 of 19
Consulting P.A	Project		Date
0 Valley Road		Hamden	13:16:59 02/03/17
Arlington, NJ e: 973.398.3110 : 973.398.3199	Client	Empire Telecom	Designed by gpenumatsa

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Ζ	Moments, M_x	Moments, M_z	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Total Member Self-Weight	1055.48			-0.99	-1.38	
Total Weight	3436.55			-0.99	-1.38	
Wind 0 deg - No Ice		-27.07	-4210.21	-77.20	-0.76	2.16
Wind 45 deg - No Ice		2890.29	-2890.29	-54.03	-54.43	0.52
Wind 90 deg - No Ice		3623.12	27.07	-0.36	-68.30	-1.38
Wind 135 deg - No Ice		2928.58	2928.58	52.94	-55.31	-2.47
Wind 180 deg - No Ice		27.07	4210.21	75.23	-2.01	-2.16
Wind 225 deg - No Ice		-2890.29	2890.29	52.06	51.66	-0.52
Wind 270 deg - No Ice		-3623.12	-27.07	-1.61	65.53	1.38
Wind 315 deg - No Ice		-2928.58	-2928.58	-54.91	52.54	2.47
Member Ice	1001.44					
Total Weight Ice	10626.18			-3.34	-4.26	
Wind 0 deg - Ice		4.83	-3182.23	-49.83	-4.37	0.96
Wind 45 deg - Ice		2208.49	-2208.49	-35.98	-36.91	0.32
Wind 90 deg - Ice		2325.54	-4.83	-3.45	-36.70	-0.49
Wind 135 deg - Ice		2201.66	2201.66	29.15	-36.75	-1.01
Wind 180 deg - Ice		-4.83	3182.23	43.16	-4.15	-0.96
Wind 225 deg - Ice		-2208.49	2208.49	29.31	28.38	-0.32
Wind 270 deg - Ice		-2325.54	4.83	-3.23	28.18	0.49
Wind 315 deg - Ice		-2201.66	-2201.66	-35.82	28.22	1.01
Total Weight	3436.55			-0.99	-1.38	
Wind 0 deg - Service		-7.34	-1141.43	-21.68	-0.85	0.49
Wind 45 deg - Service		783.59	-783.59	-15.40	-15.40	0.10
Wind 90 deg - Service		982.26	7.34	-0.85	-19.16	-0.35
Wind 135 deg - Service		793.96	793.96	13.60	-15.64	-0.59
Wind 180 deg - Service		7.34	1141.43	19.64	-1.19	-0.49
Wind 225 deg - Service		-783.59	783.59	13.36	13.36	-0.10
Wind 270 deg - Service		-982.26	-7.34	-1.19	17.12	0.35
Wind 315 deg - Service		-793.96	-793.96	-15.64	13.60	0.59

Load Combinations

Comb.	Description
No.	···· • • •
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 45 deg - No Ice
5	0.9 Dead+1.6 Wind 45 deg - No Ice
6	1.2 Dead+1.6 Wind 90 deg - No Ice
7	0.9 Dead+1.6 Wind 90 deg - No Ice
8	1.2 Dead+1.6 Wind 135 deg - No Ice
9	0.9 Dead+1.6 Wind 135 deg - No Ice
10	1.2 Dead+1.6 Wind 180 deg - No Ice
11	0.9 Dead+1.6 Wind 180 deg - No Ice
12	1.2 Dead+1.6 Wind 225 deg - No Ice
13	0.9 Dead+1.6 Wind 225 deg - No Ice
14	1.2 Dead+1.6 Wind 270 deg - No Ice
15	0.9 Dead+1.6 Wind 270 deg - No Ice
16	1.2 Dead+1.6 Wind 315 deg - No Ice
17	0.9 Dead+1.6 Wind 315 deg - No Ice
18	1.2 Dead+1.0 Ice+1.0 Temp
19	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
20	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp
21	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
22	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

	Job		Page
wer		16963030A	12 of 19
lting P.A	Project		Date
Road		Hamden	13:16:59 02/03/17
on, NJ 98.3110 98.3199	Client	Empire Telecom	Designed by gpenumatsa
	D	escription	

Comb.	Description
No.	
23	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
24	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp
25	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
26	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 45 deg - Service
29	Dead+Wind 90 deg - Service
30	Dead+Wind 135 deg - Service
31	Dead+Wind 180 deg - Service
32	Dead+Wind 225 deg - Service
33	Dead+Wind 270 deg - Service
34	Dead+Wind 315 deg - Service

Maximum Member Forces

Section No.	Elevation	Component	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
INO.	ft	Type			lb		
x 1	(2.5.5(D 1		Comb.		kip-ft	kip-ft
L1	63.5 - 56	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-5887.89	-4.25	3.63
			Max. Mx	6	-2114.09	-19.68	1.02
			Max. My	2	-2087.53	-1.15	20.79
			Max. Vy	6	4279.53	-19.68	1.02
			Max. Vx	2	-4607.59	-1.15	20.79
			Max. Torque	17			-3.66
L2	56 - 50	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-7146.39	-4.51	3.82
			Max. Mx	6	-2692.67	-46.79	0.84
			Max. My	2	-2662.32	-1.21	51.07
			Max. Vy	6	4687.13	-46.79	0.84
			Max. Vx	2	-5479.99	-1.21	51.07
			Max. Torque	17			-3.94
L3	50 - 38	Pole	Max Tension	20	35990.91	2.44	-2.52
			Max. Compression	1	-1866.69	-0.48	0.31
			Max. Mx	6	-181.14	-57.44	-0.15
			Max. My	2	360.88	-0.05	65.68
			Max. Vy	6	5973.68	-57.44	-0.15
			Max. Vx	2	-6938.55	-0.05	65.68
			Max. Torque	17			-3.92
	38 - 50	Reinforcing	Max Tension	2	54947.48	0.00	-0.79
			Max. Compression	2	-57085.68	0.00	-0.00
			Max. Mx	2	-420.71	-0.01	-0.02
			Max. My	2	54947.48	0.00	-0.79
			Max. Vy	2	-1.84	-0.01	-0.02
			Max. Vx	2	-66.44	0.00	-0.79

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical lb	Horizontal, X lb	Horizontal, Z lb
Pole	Max. Vert	1	1866.69	-3.97	3.15
	Max. H _x	14	346.97	5960.79	39.90
	Max. Hz	2	-345.82	57.12	6939.31
	Max. M _x	2	65.68	57.12	6939.31

tn.

Maser 40 M Phor FA

nxTower	Job		Page
IN LOWEI		16963030A	13 of 19
er Consulting P.A	Project		Date
400 Valley Road		Hamden	13:16:59 02/03/17
Mt Arlington, NJ	Client		Designed by
hone: 973.398.3110 FAX: 973.398.3199		Empire Telecom	gpenumatsa

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lb
		Comb.			
	Max. Mz	6	57.44	-5973.32	-50.69
	Max. Torsion	9	3.92	-4812.38	-4832.31
	Min. Vert	20	-32699.88	-2461.00	2454.10
	Min. H _x	6	192.48	-5973.32	-50.69
	Min. Hz	10	-217.44	-33.72	-6929.12
	Min. M _x	10	-64.93	-33.72	-6929.12
	Min. Mz	14	-56.28	5960.79	39.90
	Min. Torsion	17	-3.92	4831.90	4810.55
Reinf @ Azimuth 90 deg	Max. Vert	6	50947.83	786.32	4.86
e	Max. H _x	6	50947.83	786.32	4.86
	Max. Hz	8	41392.37	524.84	471.35
	Min. Vert	15	-47132.93	596.18	15.64
	Min. H _x	25	162.25	-7.13	-0.10
	Min. Hz	4	40694.83	508.85	-461.84
Reinf @ Azimuth 0 deg	Max. Vert	2	57077.18	-6.04	-986.91
e	Max. H _x	4	40425.54	457.96	-503.12
	Max. H _z	22	-472.20	-2.58	5.79
	Min. Vert	11	-53425.65	-22.70	-783.94
	Min. H _x	16	41125.51	-466.13	-518.76
	Min. H _z	2	57077.18	-6.04	-986.91
Reinf @ Azimuth 270 deg	Max. Vert	14	48805.41	-730.15	-8.25
	Max. H _x	19	7981.19	11.19	-51.75
	Max. Hz	4	-38469.06	-390.21	433.26
	Min. Vert	6	-48983.00	-638.60	5.24
	Min. H _x	15	48788.18	-730.96	-6.30
	Min. Hz	16	39233.26	-479.75	-442.57
Reinf @ Azimuth 180 deg	Max. Vert	10	55464.62	8.82	940.24
U	Max. H _x	8	39504.62	448.52	485.74
	Max. H _z	10	55464.62	8.82	940.24
	Min. Vert	2	-54843.39	-11.86	820.70
	Min. H _x	4	-38199.66	-434.97	385.76
	Min. Hz	21	8490.20	40.58	-9.44

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Dead Only	3436.55	-0.00	0.00	-1.00	-1.41	0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	4123.86	-43.31	-6736.33	-124.56	-0.68	3.43
0.9 Dead+1.6 Wind 0 deg - No Ice	3092.90	-43.31	-6736.33	-123.88	-0.25	3.43
1.2 Dead+1.6 Wind 45 deg - No Ice	4123.86	4624.47	-4624.47	-87.06	-87.54	0.83
0.9 Dead+1.6 Wind 45 deg - No Ice	3092.90	4624.47	-4624.47	-86.50	-86.86	0.83
1.2 Dead+1.6 Wind 90 deg - No Ice	4123.86	5796.99	43.31	-0.19	-110.01	-2.19
0.9 Dead+1.6 Wind 90 deg - No Ice	3092.90	5796.99	43.31	0.11	-109.26	-2.19
1.2 Dead+1.6 Wind 135 deg - No Ice	4123.86	4685.72	4685.72	86.08	-88.97	-3.92

tnxT

Maser Con 400 Vall Mt Arlin Phone: 97 FAX: 973

	Job		Page
Tower		16963030A	14 of 19
nsulting P.A	Project		Date
illey Road		Hamden	13:16:59 02/03/17
ington, NJ 73.398.3110 73.398.3199	Client	Empire Telecom	Designed by gpenumatsa

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
0.9 Dead+1.6 Wind 135 deg -	3092.90	4685.72	4685.72	86.12	-88.28	-3.93
No Ice						
1.2 Dead+1.6 Wind 180 deg -	4123.86	43.31	6736.33	122.15	-2.69	-3.43
No Ice						
0.9 Dead+1.6 Wind 180 deg -	3092.90	43.31	6736.33	122.09	-2.26	-3.43
No Ice						
1.2 Dead+1.6 Wind 225 deg -	4123.86	-4624.47	4624.47	84.65	84.17	-0.83
No Ice						
0.9 Dead+1.6 Wind 225 deg -	3092.90	-4624.47	4624.47	84.70	84.34	-0.83
No Ice						
1.2 Dead+1.6 Wind 270 deg -	4123.86	-5796.99	-43.31	-2.21	106.63	2.19
No Ice						
0.9 Dead+1.6 Wind 270 deg -	3092.90	-5796.99	-43.31	-1.90	106.73	2.20
No Ice						
1.2 Dead+1.6 Wind 315 deg -	4123.86	-4685.72	-4685.72	-88.48	85.59	3.92
No Ice						
0.9 Dead+1.6 Wind 315 deg -	3092.90	-4685.72	-4685.72	-87.92	85.76	3.93
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	11313.49	-0.00	0.00	-3.73	-4.78	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	11313.49	4.83	-3182.22	-51.60	-4.89	0.94
Ice+1.0 Temp	11212 10	2200 10	22 00 40	25.24	20.20	0.00
1.2 Dead+1.0 Wind 45 deg+1.0	11313.49	2208.49	-2208.49	-37.34	-38.39	0.32
Ice+1.0 Temp			1.00	2.04	20.10	0.40
1.2 Dead+1.0 Wind 90 deg+1.0	11313.49	2325.54	-4.83	-3.84	-38.18	-0.48
Ice+1.0 Temp	11212.40	2201.65	2201.65	20.72	20.00	0.00
1.2 Dead+1.0 Wind 135	11313.49	2201.65	2201.65	29.72	-38.22	-0.99
deg+1.0 Ice+1.0 Temp	11212 40	4.02	2102.22	44.14	1.00	0.04
1.2 Dead+1.0 Wind 180	11313.49	-4.83	3182.22	44.14	-4.66	-0.94
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225	11313.49	-2208.49	2208.49	29.88	28.83	-0.32
deg+1.0 Ice+1.0 Temp	11515.49	-2208.49	2208.49	29.88	20.05	-0.52
1.2 Dead+1.0 Wind 270	11313.49	-2325.54	4.83	-3.61	28.63	0.48
deg+1.0 Ice+1.0 Temp	11515.49	-2323.34	4.65	-5.01	28.03	0.46
1.2 Dead+1.0 Wind 315	11313.49	-2201.65	-2201.65	-37.18	28.67	0.99
deg+1.0 Ice+1.0 Temp	11515.49	-2201.05	-2201.05	-57.10	28.07	0.99
Dead+Wind 0 deg - Service	3436.55	-7.34	-1141.43	-21.87	-1.24	0.49
Dead+Wind 0 deg - Service	3436.55	783.59	-783.59	-15.53	-15.93	0.10
Dead+Wind 90 deg - Service	3436.55	982.26	7.34	-0.83	-19.73	-0.35
Dead+Wind 135 deg - Service	3436.55	793.96	793.96	13.76	-16.17	-0.59
Dead+Wind 180 deg - Service	3436.55	7.34	1141.43	19.86	-1.58	-0.49
Dead+Wind 225 deg - Service	3436.55	-783.59	783.59	13.52	13.12	-0.10
Dead+Wind 220 deg - Service		-982.26	-7.34		16.92	0.35
6						0.59
Dead+Wind 270 deg - Service Dead+Wind 315 deg - Service	3436.55 3436.55	-982.26 -793.96	-7.34 -793.96	-1.17 -15.77	16.92 13.36	

Solution Summary

	Sur	n of Applied Forces	5		Sum of Reactions			
Load	PX	PY	PZ	PX	PY	PZ	% Error	
Comb.	lb	lb	lb	lb	lb	lb		
1	0.00	-3436.55	0.00	0.00	3436.55	-0.00	0.000%	
2	-43.31	-4123.86	-6736.33	43.31	4123.86	6736.33	0.000%	
3	-43.31	-3092.90	-6736.33	43.31	3092.90	6736.33	0.000%	
4	4624.47	-4123.86	-4624.47	-4624.47	4123.86	4624.47	0.000%	
5	4624.47	-3092.90	-4624.47	-4624.47	3092.90	4624.47	0.000%	
6	5796.99	-4123.86	43.31	-5796.99	4123.86	-43.31	0.000%	
7	5796.99	-3092.90	43.31	-5796.99	3092.90	-43.31	0.000%	
8	4685.72	-4123.86	4685.72	-4685.72	4123.86	-4685.72	0.000%	
9	4685.72	-3092.90	4685.72	-4685.72	3092.90	-4685.72	0.000%	

Areas Toosus are	Job		Page
tnxTower		16963030A	15 of 19
Maser Consulting P.A	Project		Date
400 Valley Road		Hamden	13:16:59 02/03/17
Mt Arlington, NJ	Client		Designed by
Phone: 973.398.3110 FAX: 973.398.3199		Empire Telecom	gpenumatsa

	Sui	n of Applied Forces	;		Sum of Reaction	s	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
10	43.31	-4123.86	6736.33	-43.31	4123.86	-6736.33	0.000%
11	43.31	-3092.90	6736.33	-43.31	3092.90	-6736.33	0.000%
12	-4624.47	-4123.86	4624.47	4624.47	4123.86	-4624.47	0.000%
13	-4624.47	-3092.90	4624.47	4624.47	3092.90	-4624.47	0.000%
14	-5796.99	-4123.86	-43.31	5796.99	4123.86	43.31	0.000%
15	-5796.99	-3092.90	-43.31	5796.99	3092.90	43.31	0.000%
16	-4685.72	-4123.86	-4685.72	4685.72	4123.86	4685.72	0.000%
17	-4685.72	-3092.90	-4685.72	4685.72	3092.90	4685.72	0.000%
18	0.00	-11313.49	0.00	0.00	11313.49	-0.00	0.000%
19	4.83	-11313.49	-3182.23	-4.83	11313.49	3182.22	0.000%
20	2208.49	-11313.49	-2208.49	-2208.49	11313.49	2208.49	0.000%
21	2325.54	-11313.49	-4.83	-2325.54	11313.49	4.83	0.000%
22	2201.66	-11313.49	2201.66	-2201.65	11313.49	-2201.65	0.000%
23	-4.83	-11313.49	3182.23	4.83	11313.49	-3182.22	0.000%
24	-2208.49	-11313.49	2208.49	2208.49	11313.49	-2208.49	0.000%
25	-2325.54	-11313.49	4.83	2325.54	11313.49	-4.83	0.000%
26	-2201.66	-11313.49	-2201.66	2201.65	11313.49	2201.65	0.000%
27	-7.34	-3436.55	-1141.43	7.34	3436.55	1141.43	0.000%
28	783.59	-3436.55	-783.59	-783.59	3436.55	783.59	0.000%
29	982.26	-3436.55	7.34	-982.26	3436.55	-7.34	0.000%
30	793.96	-3436.55	793.96	-793.96	3436.55	-793.96	0.000%
31	7.34	-3436.55	1141.43	-7.34	3436.55	-1141.43	0.000%
32	-783.59	-3436.55	783.59	783.59	3436.55	-783.59	0.000%
33	-982.26	-3436.55	-7.34	982.26	3436.55	7.34	0.000%
34	-793.96	-3436.55	-793.96	793.96	3436.55	793.96	0.000%

		Non-Li	inear Conve	rgence Results
Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00027610
3	Yes	4	0.00000001	0.00015578
4	Yes	4	0.00000001	0.00009399
5	Yes	4	0.00000001	0.00005924
6	Yes	4	0.00000001	0.00018024
7	Yes	4	0.00000001	0.00010127
8	Yes	4	0.00000001	0.00038439
9	Yes	4	0.00000001	0.00024845
10	Yes	4	0.00000001	0.00027694
11	Yes	4	0.00000001	0.00015718
12	Yes	4	0.00000001	0.00007078
13	Yes	4	0.00000001	0.00003786
14	Yes	4	0.00000001	0.00017965
15	Yes	4	0.00000001	0.00010103
16	Yes	4	0.00000001	0.00031149
17	Yes	4	0.00000001	0.00016343
18	Yes	4	0.00000001	0.00000615
19	Yes	4	0.00000001	0.00010611
20	Yes	4	0.00000001	0.00004605
21	Yes	4	0.00000001	0.00005247
22	Yes	4	0.00000001	0.00009887
23	Yes	4	0.00000001	0.00007393
24	Yes	4	0.00000001	0.00002273
25	Yes	4	0.00000001	0.00002803
26	Yes	4	0.00000001	0.00009444

		Job			Page
tnxTower Maser Consulting P.A 400 Valley Road			169	16 of 19	
		Project	F	lamden	Date 13:16:59 02/03/17
Phone:	rlington, NJ 973.398.3110 973.398.3199	Client	Empi	re Telecom	Designed by gpenumatsa
27	Yes	4	0.00000001	0.00000001	
28	Yes	4	0.00000001	0.00000001	
29	Yes	4	0.00000001	0.00000001	
30	Yes	4	0.00000001	0.00000001	
31	Yes	4	0.00000001	0.00000001	
32	Yes	4	0.00000001	0.00000001	
33	Yes	4	0.00000001	0.00000001	
34	Yes	4	0.00000001	0.00000001	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	63.5 - 56	1.533	28	0.4643	0.0685
L2	56 - 50	0.829	28	0.4051	0.0536
L3	50 - 38	0.416	28	0.2323	0.0358

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
61.00	80010121 9' Mount Pipe	28	1.286	0.4590	0.0642	4126
59.00	Modified T Frame	28	1.095	0.4475	0.0604	4126

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	63.5 - 56	8.048	2	2.3113	0.4453
L2	56 - 50	4.510	2	2.1009	0.3542
L3	50 - 38	2.326	2	1.2614	0.2389

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
61.00	80010121 9' Mount Pipe	2	6.818	2.3172	0.4194	977
59.00	Modified T Frame	2	5.859	2.2835	0.3964	977

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

	Job		Page
ower		16963030A	17 of 19
sulting P.A	Project		Date
lley Road		Hamden	13:16:59 02/03/17
ngton, NJ 73.398.3110	Client	Empire Telecom	Designed by
3.398.3199			gpenumatsa

Base Plate Design Data

Plate	Number	Anchor Bolt	Actual	Actual	Actual	Actual	Controlling	Critical
Thickness	of Anchor Bolts	Size	Allowable Ratio Bolt Tension lb	Allowable Ratio Concrete Stress ksi	Allowable Ratio Plate Stress ksi	Allowable Ratio Stiffener Stress ksi	Condition	Ratio
in		in	lD	KSI	KSI	KSI		
1.7500	8	0.7500	23112.00	8.379	28.722	7.266	Plate	0.89
			37441.40	51.000	32.400	32.400		~
			0.62	0.16	0.89	0.22		- 1

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L1	63.5 - 56 (1)	P8x.322	7.50	0.00	0.0	8.3993	-2088.77	317492.00	0.007
L2	56 - 50 (2)	P8x.322	6.00	0.00	0.0	8.3993	-2663.66	317492.00	0.008
L3	50 - 38 (3)	P8x.322	12.00	0.00	0.0	8.3993	-181.14	317492.00	0.001

Pole Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	63.5 - 56 (1)	P8x.322	21.18	69.96	0.303	0.00	69.96	0.000
L2	56 - 50 (2)	P8x.322	51.34	69.96	0.734	0.00	69.96	0.000
L3	50 - 38 (3)	P8x.322	57.44	69.96	0.821	0.00	69.96	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		lb	lb	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	63.5 - 56 (1)	P8x.322	4564.24	158746.00	0.029	0.73	105.90	0.007
L2	56 - 50 (2)	P8x.322	5436.38	158746.00	0.034	0.94	105.90	0.009
L3	50 - 38 (3)	P8x.322	5973.89	158746.00	0.038	2.19	105.90	0.021

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

	Job		Page
•		16963030A	18 of 19
P.A	Project		Date
.А		Hamden	13:16:59 02/03/17
	Client		Designed by
)		Empire Telecom	gpenumatsa

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	$Ratio V_u$	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{nv}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	63.5 - 56 (1)	0.007	0.303	0.000	0.029	0.007	0.311	1.000	4.8.2 🖌
L2	56 - 50 (2)	0.008	0.734	0.000	0.034	0.009	0.744	1.000	4.8.2 🖌
L3	50 - 38 (3)	0.001	0.821	0.000	0.038	0.021	0.825	1.000	4.8.2 🗸

Reinforcing Design Da	ta (Compression)
------------------------------	------------------

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L3	50 - 38	0.5x4	12.00	0.00	0.0 K=1.00	2.0000	-57036.70	64800.00	0.880

Reinforcing Bending Design Data

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L3	50 - 38	0.5x4	-0.00	0.68	0.001	0.79	5.40	0.146

Reinforcing Interaction Design Data

Section No.	Elevation	Size	Ratio P_u	Ratio M _{ux}	Ratio M _{uy}	Comb. Stress	Allow. Stress	Criteria
	ft		ϕP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
L3	50 - 38	0.5x4	0.880	0.001	0.146	0.913	1.000	4.8.1 🖌

Tension Checks

Reinforcing Design Data (Tension)

Areas Teach are	Job		Page	
tnxTower		16963030A	19 of 19	
Maser Consulting P.A	Project		Date	
400 Valley Road		Hamden	13:16:59 02/03/17	
Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199	Client	Empire Telecom	Designed by gpenumatsa	

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L3	50 - 38	0.5x4	12.00	0.00	0.0	2.0000	54947.50	64800.00	0.848

	Reinforcing Bending Design Data							
Section No.	Elevation	Size	M _{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L3	50 - 38	0.5x4	0.00	0.68	0.000	-0.79	5.40	0.146

Reinforcing Interaction Design Data

Section	Elevation	Size	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.			P_{u}	M_{ux}	$M_{\mu\nu}$	Stress	Stress	
	ft		ϕP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
L3	50 - 38	0.5x4	0.848	0.000	0.146	0.884	1.000	4.8.1 🖌
						~		

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass
No.	ft	Type		Element	lb	lb	Capacity	Fail
L1	63.5 - 56	Pole	P8x.322	1	-2088.77	317492.00	31.1	Pass
L2	56 - 50	Pole	P8x.322	2	-2663.66	317492.00	74.4	Pass
L3	50 - 38	Pole	P8x.322	3	399.95	317492.00	93.9	Pass
	50 - 38	Reinforcing	0.5x4	5	-57036.70	64800.00	91.3	Pass
							Summary	
						Pole (L3)	93.9	Pass
						Reinforcing	91.3	Pass
						(L3)		
						Base Plate	88.6	Pass
						RATING =	93.9	Pass

Program Version 7.0.5.1 - 2/1/2016 File:C:/Users/gpenumatsa/Desktop/Othe survor jobs/16963030A/Modification Analysis/TNX/Monopole Anlaysis.eri

Image: Image	Design Wind Load On A	Appurtenances:	
Basic Wind Speed(Nominal): $V = 109 \text{ MPH}$ (Figure A1-1e, p. 232)Antenna Centerline: $z := 40 \text{ fi}$ (Figure A1-1e, p. 232)Structure Class:Class = "II"(Table 2-1, P. 39)Exposure Category:Exp := "B"(Section 2.6.5.1, p. 12)Gust Effect Factor: $G_h = 0.85$ (Section 2.6.9, p. 16)Wind Directionality Factor: $K_d := 0.95$ (Table 2-2, P. 39)Topographic Category:Topo := "I"(Section 2.6.6.4, p. 14)Importance Factor: $1 := 10$ if Class = "II" = 1(Table 2-3, P. 39)Inportance Factor: $1 := 1.0$ if Class = "II" = 1(Table 2-3, P. 39)Force Coefficient: $C_{f_square}(h, w) := 12$ if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42Square Members $\left[1.2 + \frac{0.2}{4.5}(\frac{h}{w} - 2.5)\right]$ if $\frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ Square MembersValue Autor Coefficient: $C_{f_square}(h, w) := 10.7$ if $\frac{h}{h} \le 2.5$ Table 2-8, P. 42Current Coefficient: $C_{f_square}(h, w) := 10.7$ if $\frac{h}{w} < 2.5$ Table 2-8, P. 42Square Members 2.0 otherwiseSquare Members $0.7 + \frac{h}{4.5}(\frac{h}{w} - 7)$] if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42Round Members $[0.7 + \frac{0.1}{4.5}(\frac{h}{w} - 7)]$ if $\frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ Round Members $0.8 + \frac{0.4}{18}(\frac{h}{w} - 7)$] if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Intervention of the sector o	Inputs:	ANSI/T	A-222-G Reference
Antenna Centerline: $z := 40ft$ Structure Class:Class := "II"Structure Class:Class := "II"Exposure Category:Exp := "B"Gust Effect Factor: $G_h := 0.85$ Wind Directionality Factor: $K_d := 0.95$ Topographic Category:Topo := "1"Crest Height:CH := 0ftImportance Factor:I :=1.0 if Class = "II"(Table 2-3, P. 39)Force Coefficient: $C_{f_square}(h, w) :=$ 1.2 if $\frac{h}{w} \le 2.5$ Table 2-3, P. 39)Force Coefficient: $C_{f_square}(h, w) :=$ $1.4 + \frac{0.6}{18}(\frac{h}{w} - 2.5)]$ if $\frac{h}{w} > 7.5 + \frac{h}{w} \le 7$ Square Members2.0 otherwise $C_{f_sround}(h, w) :=$ 0.7 if $\frac{h}{w} \le 2.5$ $0.8 + \frac{0.4}{18}(\frac{h}{w} - 7)]$ if $\frac{h}{w} > 7.5 + \frac{h}{w} \le 7$ Round Members $[0.7 + \frac{0.1}{4.5}(\frac{h}{w} - 2.5)]$ if $\frac{h}{w} > 7.5 + \frac{h}{w} \le 7$	Location:	Hamden, CT	
Structure Class:Class := "II"(Table 2-1, P. 39)Exposure Category:Exp := "B"(Section 2.6.5.1, p. 12)Gust Effect Factor: $G_h := 0.85$ (Section 2.6.9, p. 16)Wind Directionality Factor: $K_d := 0.95$ (Table 2-2, P. 39)Topographic Category:Topo := "I"(Section 2.6.6.4, p. 14)Importance Factor:I:=1.0 if Class = "II"= 1Importance Factor:I:=1.10 if Class = "II"(Table 2-3, P. 39)Force Coefficient: $C_{f_square}(h,w) :=$ 1.2 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42Square Members $\left[1.2 + \frac{0.2}{4.5} \left(\frac{h}{w} - 2.5\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Square MembersCf_round(h,w) := 0.7 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42 $\left[0.7 + \frac{0.1}{4.5} \left(\frac{h}{w} - 2.5\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 $\left[0.8 + \frac{0.4}{18} \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 $\left[0.8 + \frac{0.4}{18} \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 $\left[0.8 + \frac{0.4}{18} \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42	Basic Wind Speed(Nominal):	V := 109 MPH	(Figure A1-1e, p. 232)
Exposure Category: Exp := "B" (Section 2.6.5.1, p. 12) Gust Effect Factor: $G_h := 0.85$ (Section 2.6.9, p. 16) Wind Directionality Factor: $K_d := 0.95$ (Table 2-2, P. 39) Topographic Category: Topo := "1" (Section 2.6.6.2, p. 13) Crest Height: CH := 0ft (Section 2.6.6.4, p. 14) Importance Factor: I:= 1.0 if Class = "II" = 1 Force Coefficient: $C_{f_square}(h,w) :=$ 1.2 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42 Square Members $\left[1.2 + \frac{0.2}{4.5} \left(\frac{h}{w} - 2.5 \right) \right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Square Members $C_{f_round}(h,w) :=$ 0.7 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42 Square Members $\left[0.7 + \frac{0.1}{4.5} \left(\frac{h}{w} - 7 \right) \right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 Square Members $\left[0.7 + \frac{0.1}{4.5} \left(\frac{h}{w} - 7 \right) \right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 Square Members $\left[0.7 + \frac{0.1}{4.5} \left(\frac{h}{w} - 7 \right) \right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 Square Members $\left[0.8 + \frac{0.4}{18} \left(\frac{h}{w} - 7 \right) \right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 Square Members $\left[1.2 \text{ otherwise} i$ $0.7 \text{ otherwise} i$ $0.7 \text{ otherwise} i$	Antenna Centerline:	z := 40 ft	
Gust Effect Factor: $\mathbf{E}_{\mathbf{p}} := \mathbf{"B}^{m}$ Here $\mathbf{H}_{\mathbf{p}} := \mathbf{H}_{\mathbf{p}}$ Gust Effect Factor: $\mathbf{G}_{\mathbf{h}} := 0.85$ (Section 2.6.9, p. 16)Wind Directionality Factor: $\mathbf{K}_{\mathbf{d}} := 0.95$ (Table 2-2, P. 39)Topographic Category:Topo := "1"(Section 2.6.6.2, p. 13)Crest Height:CH := 0ft(Section 2.6.6.4, p. 14)Importance Factor:I := $\begin{vmatrix} 1.0 & \text{if Class} = "II" & = 1 \\ 1.15 & \text{if Class} = "II" & = 1 \\ 1.15 & \text{if Class} = "II" & = 1 \\ 1.2 & \frac{62}{4.5} \left(\frac{h}{w} - 2.5\right) \end{vmatrix}$ if $\frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ Force Coefficient: $\mathbf{C}_{\mathbf{f}_square}(\mathbf{h}, \mathbf{w}) := \begin{vmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 \\ 2.0 & \text{otherwise} \end{vmatrix}$ Table 2-8, P. 42Square Members $\mathbf{S}_{\mathbf{q}_square}(\mathbf{h}, \mathbf{w}) := \begin{vmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ 0.7 & \frac{61}{4.5} \left(\frac{h}{w} - 7\right) \end{vmatrix}$ if $\frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ Table 2-8, P. 42Round Members $\mathbf{C}_{\mathbf{f}_round}(\mathbf{h}, \mathbf{w}) := \begin{vmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ 0.7 & \frac{61}{4.5} \left(\frac{h}{w} - 7\right) \end{bmatrix}$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42Round Members $\mathbf{C}_{\mathbf{f}_round}(\mathbf{h}, \mathbf{w}) := \begin{vmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ 1.2 & \text{otherwise} \end{vmatrix}$ Table 2-8, P. 42	Structure Class:	Class := "II"	(Table 2-1, P. 39)
Wind Directionality Factor: $K_d := 0.95$ (Table 2-2, P. 39)Topographic Category:Topo := "1"(Section 2.6.6.2, p. 13)Crest Height:CH := 0ft(Section 2.6.6.4, p. 14)Importance Factor:I :=1.0 if Class = "II" = 1(Table 2-3, P. 39)Force Coefficient: $C_{f_square}(h,w) :=$ 1.2 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42Square Members $\left[1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Square Members $C_{f_round}(h,w) :=$ 0.7 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42 $(0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Square Members $(0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 $(0.8 + \frac{0.4}{18} \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Round Members	Exposure Category:	Exp := "B"	(Section 2.6.5.1, p. 12)
$Topographic Category: Topo := "1" (Section 2.6.6.2, p. 13)$ $Crest Height: CH := 0ft (Section 2.6.6.4, p. 14)$ $Importance Factor: I := \begin{bmatrix} 1.0 & \text{if } Class = "II" & = 1 \\ 1.15 & \text{if } Class = "II" & = 1 \\ 1.15 & \text{if } Class = "II" & = 1 \\ 1.2 & \text{if } \frac{h}{w} \le 2.5 & \text{Table 2-3, P. 39} \end{bmatrix}$ $Force Coefficient: C_{f_square}(h, w) := \begin{bmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 \\ \left[1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5 \right) \right] & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \end{bmatrix}$ $Square Members$ $C_{f_round}(h, w) := \begin{bmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 7 \right) \end{bmatrix} & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ \begin{bmatrix} 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 7 \right) \end{bmatrix} & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \end{bmatrix}$ $Round Members$ $Round Members$ $I = \begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7 \right) \end{bmatrix} & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 1.2 & \text{otherwise} \end{bmatrix}$	Gust Effect Factor:	G _h := 0.85	(Section 2.6.9, p. 16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Wind Directionality Factor:	$K_{d} := 0.95$	(Table 2-2, P. 39)
$I:= \begin{bmatrix} 1.0 & \text{if } \text{Class} = "II" \\ 1.15 & \text{if } \text{Class} = "II" \end{bmatrix} = 1 \qquad (\text{Table 2-3, P. 39})$ $I:= \begin{bmatrix} 1.0 & \text{if } \text{Class} = "II" \\ 1.15 & \text{if } \text{Class} = "II" \end{bmatrix} \qquad (\text{Table 2-3, P. 39})$ $Force Coefficient: \qquad C_{f_square}(h, w) := \begin{bmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 \\ \left[1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5 \right) \right] & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \end{bmatrix}$ $Square Members$ $C_{f_round}(h, w) := \begin{bmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ \left[0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5 \right) \right] & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \end{bmatrix}$ $Round Members$ $C_{f_round}(h, w) := \begin{bmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ \left[0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5 \right) \right] & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \end{bmatrix}$ $Round Members$ $I:= \begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7 \right) \end{bmatrix} & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \end{bmatrix}$	Topographic Category:	Topo := "1"	(Section 2.6.6.2, p. 13)
I = I = I = I = I = I = I = I = I = I =	Crest Height:	CH := 0ft	(Section 2.6.6.4, p. 14)
$C_{f_round}(h,w) := \begin{bmatrix} 1.4 + \frac{310}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 2.0 \text{ otherwise} \end{bmatrix}$ $C_{f_round}(h,w) := \begin{bmatrix} 0.7 \text{ if } \frac{h}{w} \le 2.5 \\ 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} \text{ if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \\ \begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 1.2 \text{ otherwise} \end{bmatrix}$ $Table 2-8, P. 42$ $Round Members$	Importance Factor:	1.15 if Class = "III"	
$C_{f_round}(h,w) := \begin{bmatrix} 1.4 + \frac{310}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 2.0 \text{ otherwise} \end{bmatrix}$ $C_{f_round}(h,w) := \begin{bmatrix} 0.7 \text{ if } \frac{h}{w} \le 2.5 \\ 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} \text{ if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \\ \begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 1.2 \text{ otherwise} \end{bmatrix}$ $Table 2-8, P. 42$ $Round Members$	Force Coefficient:	$C_{f_square}(h, w) := \begin{bmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 \end{bmatrix}$	Table 2-8, P. 42
		$\left[1.4 + \frac{310}{18} \cdot \left(\frac{\pi}{w} - 7 \right) \right] \text{if } \frac{\pi}{w} > 7 \land \frac{\pi}{w} \le 25$	Square Members
		$C_{f_round}(h, w) := 0.7 \text{ if } \frac{h}{w} \le 2.5$	Table 2-8, P. 42
Terrain Exposure Constants: $\alpha :=$ 7.0 if Exp = "B" $Z_g :=$ 1200ft if Exp = "B" $K_{zmin} :=$ 0.70 if Exp = "B" 9.5 if Exp = "C" 11.5 if Exp = "D" 900ft if Exp = "C" 0.85 if Exp = "C" 1.03 if Exp = "D" 1.03 if Exp = "D"		$\begin{bmatrix} 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} \text{ if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ $\begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25$ 1.2 otherwise	Round Members
9.5 if $Exp = "C"$ 900ft if $Exp = "C"$ 0.85 if $Exp = "C"$ 11.5 if $Exp = "D"$ 700ft if $Exp = "D"$ 1.03 if $Exp = "D"$	Terrain Exposure Constants:	$\alpha := \begin{bmatrix} 7.0 & \text{if } Exp = "B" \\ 0.5 & \text{if } Exp = "B" \end{bmatrix} \begin{bmatrix} 2200 \text{ft} & \text{if } Exp = "B" \\ 0.00 \text{ft} & \text{if } Exp = "C" \end{bmatrix}$	nin := 0.70 if $Exp = "B"$
		9.5 If $Exp = "C"$ 900ft if $Exp = "C"$ 11.5 if $Exp = "D"$ 700ft if $Exp = "D"$	0.85 if Exp = "C" 1.03 if Exp = "D"
Table 2-4, P. 40			

Velocity Pressure Coefficient:	$K_{Z}(z) := \begin{bmatrix} K_{z} \leftarrow \max\left[2.01 \cdot \left(\frac{z}{Z_{g}}\right)^{\alpha}, K_{zmin}\right] \\ K_{z} \leftarrow \min(K_{z}, 2.01) \end{bmatrix}$	
Velocity Pressure Coefficient:	$K_{z} := Kz(z) = 0.761$	(Section 2.6.5, P. 13)
Velocity Pressure Coefficient:	$Kzt(z) := K_{zt} \leftarrow 1.0$ if Topo = "1"	(Section 2.6.6.4, p. 14)
		(Table 2-4 p. 40)
	$K_{t} \leftarrow \begin{bmatrix} 0.43 & \text{if Topo} = "2" \\ 0.53 & \text{if Topo} = "3" \\ 0.72 & \text{if Topo} = "4" \end{bmatrix}$	(Table 2-5 p. 40)
	otherwise $K_{e} \leftarrow \begin{bmatrix} 0.90 & \text{if Exp} = "B" \\ 1.00 & \text{if Exp} = "C" \\ 1.10 & \text{if Exp} = "D" \\ K_{t} \leftarrow \begin{bmatrix} 0.43 & \text{if Topo} = "2" \\ 0.53 & \text{if Topo} = "3" \\ 0.72 & \text{if Topo} = "4" \\ f \leftarrow \begin{bmatrix} 1.25 & \text{if Topo} = "2" \\ 2.00 & \text{if Topo} = "3" \\ 1.50 & \text{if Topo} = "3" \\ 1.50 & \text{if Topo} = "4" \\ K_{h} \leftarrow e^{\left(\frac{f \cdot z}{CH}\right)} \\ \left(1 + \frac{K_{e} \cdot K_{t}}{K_{h}}\right)^{2}$	(Table 2-5 p. 40)
	$K_{h} \leftarrow e^{\left(\frac{f \cdot z}{CH}\right)}$	(Section 2.6.6.4, P. 14)
	$\left(1 + \frac{K_e \cdot K_t}{K_h}\right)^2$	(Section 2.6.6.4, P. 14)
	$K_{zt} := Kzt(z) = 1$	
Velocity Pressure:	$q_z := 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V^2 \cdot I \cdot psf = 21.977 \cdot psf$	(Section 2.6.9.6, P. 25)

AT&T Wind Loading (No Ice):

<u>RRUS11</u>

Dimensions:	$h_{a1} := 19.7 \cdot in$ $w_{a1} := 17 \cdot in$ $d_{a1} := 7.2 \cdot in$
Weight:	$DL_{a1} := 65lbf$ Assumed 15lbs for mounting
Area (Normal):	$A_{N} := h_{a1} \cdot w_{a1} = 2.326 \text{ ft}^{2}$
Area (Side):	$A_{T} := h_{a1} \cdot d_{a1} = 0.985 \text{ ft}^{2}$
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}(h_{a1}, w_{a1}) = 1.2$
Force Coefficient (Side):	$C_{f_T} := C_{f_square}(h_{a1}, d_{a1}) = 1.21$
Front Effective Projected Area:	$EPA_N := C_{f_N} A_N = 2.791 \text{ ft}^2$
Side Effective Projected Area:	$EPA_T := C_{f_T} \cdot A_T = 1.192 \text{ ft}^2$
Effective Projected Area:	$EPA_a := max(EPA_N, EPA_T) = 2.791 \text{ ft}^2$
Wind Force:	$F_{a1} := q_z \cdot G_h \cdot EPA_a = 52.135 \cdot lbf$ (Section 2.6.9.2, P. 20)

<u>RRUS 32</u>

Dimensions:	$h_{a2} := 27.1 \cdot in$ $w_{a2} := 12$	$d_{a2} := 7.0 \cdot in$	
Weight:	$DL_{a2} := 65.7lbf$		
Area (Normal):	$A_{N} := h_{a2} \cdot w_{a2} = 2.258 \text{ ft}^{2}$		
Area (Side):	$A_{T} := h_{a2} \cdot d_{a2} = 1.317 \text{ ft}^{2}$		
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}(h_{a2}, w_{a2})$	= 1.2	
Force Coefficient (Side):	$C_{f_T} := C_{f_square}(h_{a2}, d_{a2}) =$	1.261	
Front Effective Projected Area:	$EPA_N := C_{f_N} \cdot A_N = 2.71 \text{ ft}^2$		
Side Effective Projected Area:	$EPA_T := C_{f_T} \cdot A_T = 1.661 \text{ ft}^2$		
Effective Projected Area:	$EPA_a := max(EPA_N, EPA_T) =$	2.71 ft^2	
Wind Force:	$\mathbf{F}_{a2} := \mathbf{q}_{z} \cdot \mathbf{G}_{h} \cdot \mathbf{EPA}_{a} = 50.625 \cdot \mathbf{F}_{a2}$	bf	(Section 2.6.9.2, P. 20)

RRUS 32 B2

Dimensions:	$h_{a1} := 29.9 \cdot in$ $w_{a1} := 13.3 \cdot in$	$d_{a1} := 9.5 \cdot in$
Weight:	DL _{a3} := 67.9lbf Assumed 15	5lbs for mounting
Area (Normal):	$A_{N} := h_{a1} \cdot w_{a1} = 2.762 \text{ ft}^{2}$	
Area (Side):	$A_{T} := h_{a1} \cdot d_{a1} = 1.973 \text{ ft}^{2}$	
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}(h_{a1}, w_{a1}) = 1$	1.2
Force Coefficient (Side):	$C_{f_T} := C_{f_square}(h_{a1}, d_{a1}) = 1$.229
Front Effective Projected Area:	$EPA_N := C_{f_N} \cdot A_N = 3.314 \text{ ft}^2$	
Side Effective Projected Area:	$EPA_T := C_{f_T} \cdot A_T = 2.424 \text{ ft}^2$	
Effective Projected Area:	$EPA_a := max(EPA_N, EPA_T) = 3$.314 ft ²
Wind Force:	$F_{a3} := q_z \cdot G_h \cdot EPA_a = 61.907 \cdot lbf$	(Section 2.6.9.2, P. 20)

RRUS E2

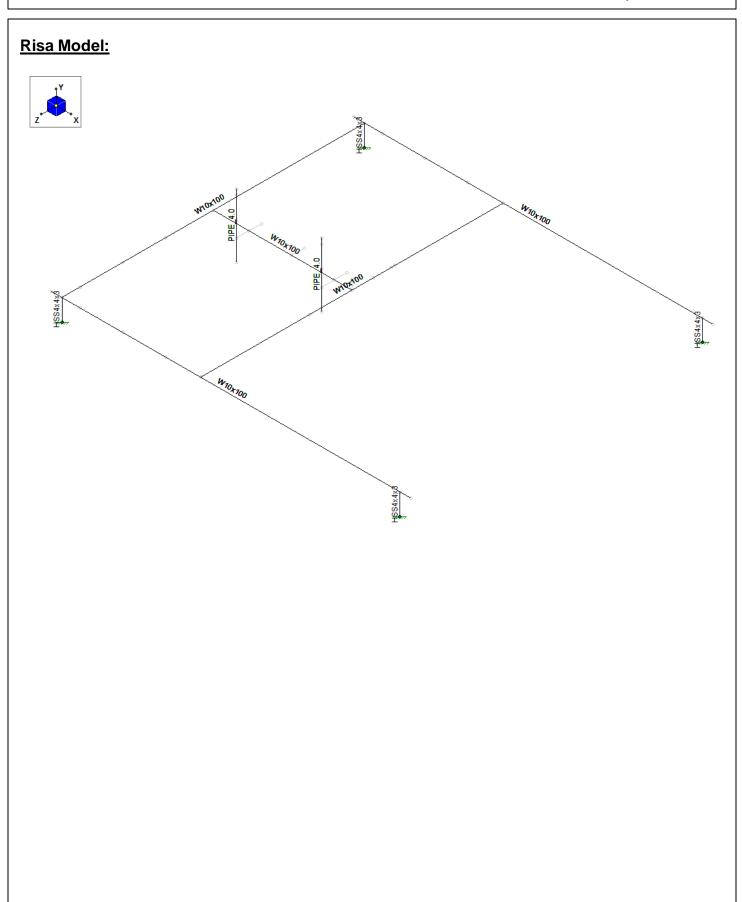
Dimensions:	$h_{a2} := 20.4 \cdot in$	$w_{a2} := 18.5 \cdot in$	$d_{a2} := 7.5 \cdot in$	
Weight:	$DL_{a4} := 75lbf$			
Area (Normal):	$A_{N} := h_{a2} \cdot w_{a2} = 2$.621 ft ²		
Area (Side):	$\mathbf{A}_{\mathrm{T}} \coloneqq \mathbf{h}_{a2} \cdot \mathbf{d}_{a2} = 1.$	062 ft^2		
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}$	$(h_{a2}, w_{a2}) = 1.2$		
Force Coefficient (Side):	$C_{f_T} := C_{f_square}$	$(h_{a2}, d_{a2}) = 1.21$		
Front Effective Projected Area:	$EPA_N := C_{f_N} \cdot A_N$	$= 3.145 \text{ ft}^2$		
Side Effective Projected Area:	$EPA_T \coloneqq C_{f_T} \cdot A_T$	$= 1.285 \text{ ft}^2$		
Effective Projected Area:	$EPA_a := max(EPA_b)$	$(N, EPA_T) = 3.145 \text{ ft}^2$	2	
Wind Force:	$\mathbf{F}_{a4} \coloneqq \mathbf{q}_{z} \cdot \mathbf{G}_{h} \cdot \mathbf{EPA}_{a}$	$_{\rm h} = 58.751 \cdot \rm{lbf}$		(Section 2.6.9.2, P. 20)

Powerwave TMA's TT19-08BP111-001

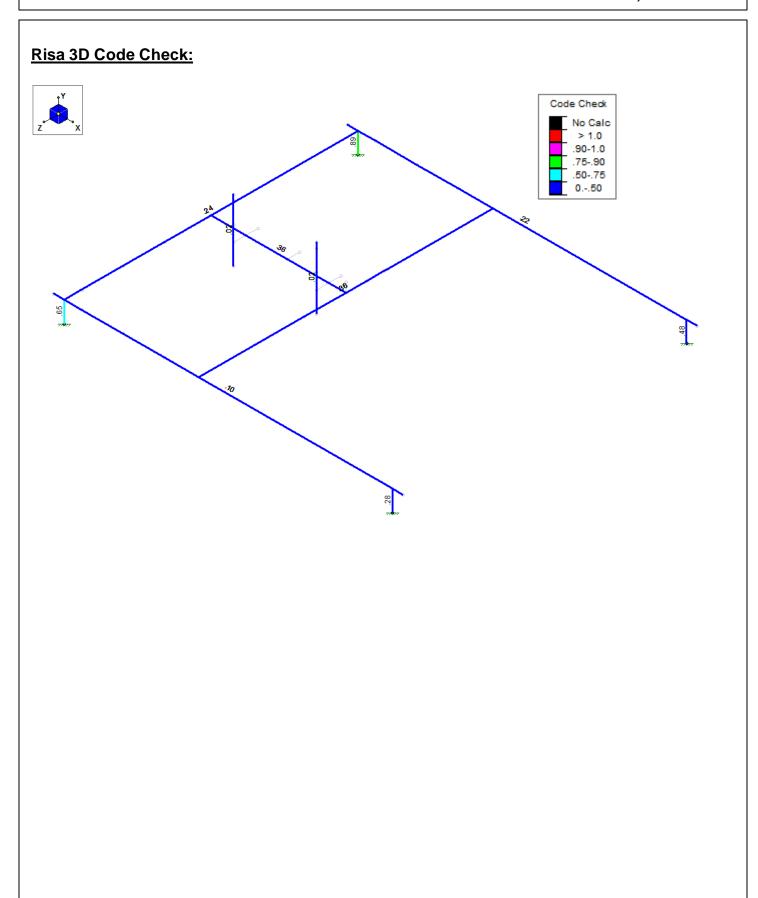
Dimensions:	$h_{a1} \coloneqq 9.9 \cdot in$ $w_{a1} \coloneqq 6.7 \cdot in$ $d_{a1} \coloneqq 5.4 \cdot in$	
Weight:	DL _{a5} := 16lbf Assumed 15lbs for mounting	
Area (Normal):	$A_{N} := h_{a1} \cdot w_{a1} = 0.461 \text{ ft}^{2}$	
Area (Side):	$A_{T} := h_{a1} \cdot d_{a1} = 0.371 \text{ ft}^{2}$	
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}(h_{a1}, w_{a1}) = 1.2$	
Force Coefficient (Side):	$C_{f_T} := C_{f_square}(h_{a1}, d_{a1}) = 1.2$	
Front Effective Projected Area:	$EPA_N := C_{f_N} \cdot A_N = 0.553 \text{ ft}^2$	
Side Effective Projected Area:	$EPA_T := C_{f_T} \cdot A_T = 0.446 \text{ ft}^2$	
Effective Projected Area:	$EPA_a := max(EPA_N, EPA_T) = 0.553 \text{ ft}^2$	
Wind Force:	$F_{a5} := q_z \cdot G_h \cdot EPA_a = 10.326 \cdot lbf$	(Section 2.6.9.2, P. 20)

DC6 Squid

Dimensions:	$h_{a2} := 24 \cdot in$	$w_{a2} := 11 \cdot in$	$d_{a2} := 11 \cdot in$		
Weight:	$DL_{a6} := 47.8lbf$				
Area (Normal):	$A_N := h_{a2} \cdot w_{a2} = 1$.833 ft ²			
Area (Side):	$A_{\mathrm{T}} \coloneqq h_{a2} \cdot d_{a2} = 1.$	833 ft^2			
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}$	$(h_{a2}, w_{a2}) = 1.2$			
Force Coefficient (Side):	$C_{f_T} := C_{f_square}$	$(h_{a2}, d_{a2}) = 1.2$			
Front Effective Projected Area:	$EPA_N := C_{f_N} \cdot A_N$	$f = 2.2 {\rm ft}^2$			
Side Effective Projected Area:	$EPA_T := C_{f_T} \cdot A_T$	$= 2.2 \mathrm{ft}^2$			
Effective Projected Area:	$EPA_a := max(EPA)$	$(N, EPA_T) = 2.2 \text{ ft}^2$			
Wind Force:	$\mathbf{F}_{a6} \coloneqq \mathbf{q}_{z} \cdot \mathbf{G}_{h} \cdot \mathbf{EPA}_{a}$	$a = 41.098 \cdot lbf$		(Section 2.6.9.2, P. 20))


Antenna Mount Loading:

4.0" STD Loading:


Height:	$h_{m1} := 60in$	
Width:	$w_{m1} := 4 \cdot in$	
Area:	$A_a := h_{m1} \cdot w_{m1} = 1.667 \text{ ft}^2$	
Width:	$C_{f} := C_{f_square}(h_{m1}, w_{m1}) = 1.667$	
Wind Load:	$\mathbf{f}_{m1} \coloneqq \mathbf{q}_z \cdot \mathbf{G}_h \cdot \mathbf{C}_f \cdot \mathbf{w}_{m1} = 10.378 \cdot \text{plf}$	(Section 2.6.9.2, P. 20)
W10 Beam Loading:		
Height:	$h_{m2} := 10in$	
Width:	$w_{m2} \coloneqq 12in$	
Area:	$A_a := h_{m2} \cdot w_{m2} = 0.833 \text{ ft}^2$	
Force Coefficient:	$C_f := C_{f_square}(h_{m2}, w_{m2}) = 1.2$	
Wind Load:	$f_{m2} := q_z \cdot G_h \cdot C_f \cdot w_{m2} = 22.417 \cdot plf$	(Section 2.6.9.2, P. 20)

Summary:

	<u>Dead Load</u> (No Ice)	<u>Wind Load</u> (No Ice)
RRUS 11	$DL_{a1} = 65 lbf$	$F_{a1} = 52 lbf$
RRUS 32	$DL_{a2} = 66 lbf$	$F_{a2} = 51 lbf$
RRUS 32 B2	$DL_{a3} = 68 lbf$	$F_{a3} = 62 lbf$
RRUS E2	$DL_{a4} = 75 lbf$	$F_{a4} = 59 lbf$
Powerwave TT19 TMA	$DL_{a5} = 16 lbf$	$F_{a5} = 10 lbf$
DC6 Squid	$DL_{a6} = 48 lbf$	$F_{a6} = 41 lbf$
4.0" Pipe Loading Loading		$f_{m1} = 10 \cdot plf$
W Beam Wind Loading:		$f_{m2} = 22 \cdot plf$

Existing Dead Load:

The total load of the Equipment platform, Monopole, Mount and Existing Antennas:

Equipment Platform:	1584lbs
Monopole :	3436lbs
Antenna Mount:	492lbs
Existing Antennas:	668.11bs
Existing RRH's+TMA+Squid	533.8lbf
$DL_{Exist} \coloneqq 1584lbf + 3020lbf$	$+ 492 lbf + 668 lbf + 533.8 lbf = 6.298 \times 10^{3} lbf$

Proposed Dead Load:

Total Weight of Proposed RRHS :

 $DL_{Prop} := 3DL_{a2} + 3DL_{a3} + 3DL_{a4} + 1DL_{a6} = 673.6 \cdot lbf$

 $\text{Ratio} := \frac{\text{DL}_{\text{Prop}}}{\text{DL}_{\text{Exist}}} \cdot 100 = 10.696$

16 Esquire Road Billerica, MA 01862

<u>LTE 4C/5C</u>

Structural Analysis & Antenna Mount Analysis

Site Name:	Hamden
FA #:	10035036
Site Number:	CTV2035
Site Address:	975 Mix Avenue
	Hamden, CT 06514
	New Heaven County
Maser Project Number:	16963030A

January 17, 2017

Monopole	Monopole	Equipment Platform
Pass/Fail	Fail	Pass
Utilization	185.1%	72.9
Conn	Frank E. Pazden, P. ecticut Professional PE License # 2818	Engineer

Objective:

The objective of this report is to determine the capacity of the existing equipment platform supporting the monopole at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

Introduction:

Maser Consulting Connecticut has performed limited field observations on December 21, 2016 to verify the existing condition of the structure and to locate and quantify the existing wireless appurtenances, where possible. This structural analysis is only valid for the appurtenances listed in the report. Additionally, Maser Consulting Connecticut has reviewed the following documents in completing this report:

- RFDS 1404033 provided by Empire Telecom, dated December 12, 2016.
- Rev A., Construction Drawings prepared by Maser Consulting Connecticut for project #16963030A.
- Previous Structural analysis prepared by Destek Engineering, LLC, dated, August 01, 2016.

The existing structure is a 4-Story residential building comprised of reinforced concrete slabs and supported on concrete masonry unit walls. The existing **AT&T** equipment is to be supported on an existing 25'-6" monopole supporting (9) panel antennas at a centerline of 61'-0" above grade level. The proposed equipment is to be mounted on the equipment platform on the rooftop that supports the monopole. The equipment platform is constructed of structural steel wide flange beams supported over concrete masonry unit walls on the rooftop of the building at an elevation of 34'-0" above the grade level. This report is based only upon this information, as well as the information obtained in the field.

Г	PROPOSED ANTENNA AND RRUS CONFIGURATION												
SE	CTOR	EXISTING ANTENNA CONFIGURATION	PROPOSED ANTENNA CONFIGURATION	TECHNOLOGY	ANTENNA STATUS	HEIGHT (in)	WIDTH (in)	DEPTH (in)	WEIGHT (lbs)	ANTENNA AZIMUTH	ANT. CL. ELEV (ft.)	RRUS CONFIGURATION	STATUS
	A1	Kathrein 80010121	Kathrein 80010121	UMTS	REMAIN	54.50	10.30	5.90	51.20	143°	61.0'	-	-
ALPHA	A2	Quintel QS66512-2	Quintel QS66512-2	LTE	REMAIN	72.00	12.00	9.60	111.00	20°	61.0'	RRUS-E2 RRUS-11 RRUS-32 RRUS-32 B2	NEW NEW REMAIN REMAIN
A	A3	-	-	-	-	-	-	-	-	-	-	-	-
	A 4	CCI HPA-65R-BUU-H6	CCI HPA-65R-BUU-H6	LTE	REMAIN	72.00	14.80	9.00	60.50	143°	61.0'	RRUS-11	NEW
	В1	Kathrein 80010121	Kathrein 80010121	UMTS	REMAIN	54.50	10.30	5.90	51.20	263°	61.0'	-	
BETA	B2	Quintel QS66512-2	Quintel QS66512-2	LTE	REMAIN	72.00	12.00	9.60	111.00	150°	61.0'	RRUS-E2 RRUS-11 RRUS-32 RRUS-32 B2	NEW NEW REMAIN REMAIN
"	В3	-	-	-	-	-	-	-	-	-	-	-	-
	В4	CCI HPA-65R-BUU-H6	CCI HPA-65R-BUU-H6	LTE	REMAIN	72.00	14.80	9.00	60.50	150°	61.0'	RRUS-11	NEW
	C1	Kathrein 80010121	Kathrein 80010121	UMTS	REMAIN	54.50	10.30	5.90	51.20	23°	61.0'		
GAMMA	C2	Quintel QS66512-2	Quintel QS66512-2	LTE	REMAIN	72.00	12.00	9.60	111.00	260°	61.0'	RRUS-E2 RRUS-11 RRUS-32 RRUS-32 B2	NEW NEW REMAIN REMAIN
GA	СЗ	-	-	-	-	-	-	-	-	-		-	-
	C4	CCI HPA-65R-BUU-H6	CCI HPA-65R-BUU-H6	LTE	REMAIN	72.00	14.80	9.00	60.50	260°	61.0'	RRUS-11	NEW

Discrete and Linear Appurtenances:

All existing and proposed RRU's are located at the base of monopole.

(3) RRUS 11, (3) RRUS 32, (3) RRUS E2 and (1) DC6 shall added to the equipment platform in addition to existing (3) RRUS 32, (3) RRUS 11 (6) TMA's and (1) DC6 Squid

Codes, Standards and Loading:

Maser Consulting Connecticut utilized the following codes and standards:

- 2016 Connecticut State Building Code, Incorporating The 2012 IBC
- Structural Standards for Antenna supporting Structures and Antennas ANSI/TIA 222-G for the monopole analysis.
 - Basic Wind Speed 109 mph (3 Second Gust)
 - Exposure Category B
 - Structure Class II
 - Topographic Category 1

Analysis Approach & Assumptions:

The analysis approach used in this structural analysis is based on the premise that if the existing monopole, equipment platform and the building structure are structurally adequate to support the existing and proposed equipment per the aforementioned codes and standards, or if the increase in the forces in the structure are deemed to be negligible or acceptable, then the proposed equipment can be installed as intended. TNX Tower and Risa-3D, 3D finite element modeling and analysis programs, were used to determine the capacity and usage of the existing monopole and equipment platform respectively.

The following assumptions were utilized in this report:

- Monopole Structural Steel Strength 42ksi (A500 Gr.42) Steel is assumed per the previous structural analysis.
- The base plate is assumed to be constructed of A36 (36 ksi) grade B steel.
- The anchor bolts are assumed to be made up of A325 (92 ksi) grade of steel.
- The equipment platform beams are assumed to be up of A992 (50 ksi) grade of steel
- The foundation of the building is not evaluated as a part of this analysis and this report is conducted assuming the foundation is structurally adequate to carry the existing and proposed equipment described herein.
- The antenna mount and its connections to the monopole are not analyzed as a part of this analysis report.
- It is assumed that the telecommunication equipment supports, antenna supports, existing structure and its foundation have been designed by a registered licensed professional engineer for the existing loads acting on the structure, as required by all applicable codes.
- It is assumed that information provided by the client regarding the structure itself, the antenna models, feed lines, and other relevant information is current and correct.
- It is assumed all other existing appurtenances, antennas, cables, etc. belonging to others have been
 installed and supported per code and per specifications so as not to damage any existing structural
 support members, and that any contributing loads from adjacent equipment has been taken into
 consideration for their design.
- Proposed equipment and locations should not deviate from the proposed locations noted herein and shown on the associated Maser Consulting Connecticut final Construction Drawings.

1/17/2017 Page 4 of 4 Prepared by GP Checked by FEP

Calculations:

The calculations are found in Appendix A of this report.

Conclusion:

The existing monopole was analyzed for the loading in the applicable codes and standards. The Monopole has been determined to be structurally **INADEQUATE** to support the proposed load configuration based upon the aforementioned assumptions. The Monopole has been determined to be stressed to a maximum of **185.1%** of its structural capacity with the maximum usage occurring at the 0'-18' section. The base plate has been determined to be over stressed and determined that it has **INADEQUATE** capacity with maximum usage occurring to be **177.2%**.

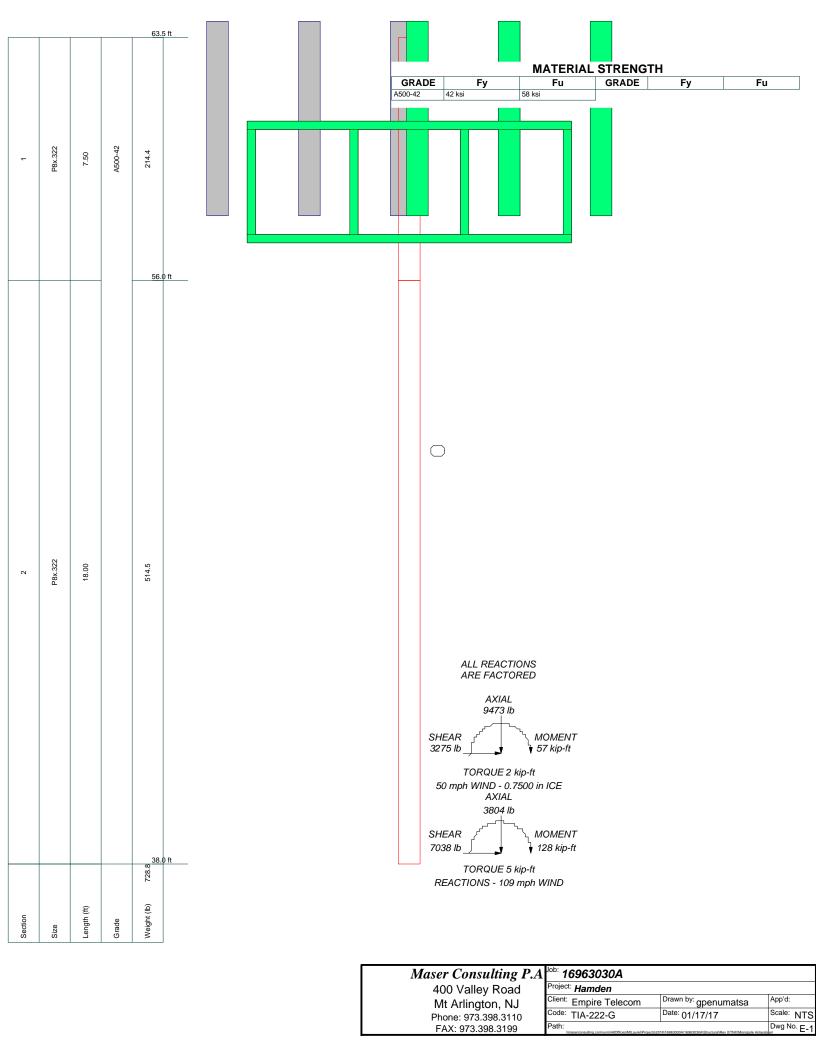
The existing dunnage platform with the existing monopole and proposed loading was analyzed for the loading in the applicable codes and standards. The existing dunnage platform has been determined to be structurally **ADEQUATE** to support the proposed and existing antennas, based upon the aforementioned assumptions. The dunnage platform has been determined to be stressed to a maximum of **72.1%** of its structural capacity with the maximum usage occurring at one of the column HSS member.

The building was not analyzed as a part of this report, but in comparison with the existing load condition analyzed, the proposed equipment is shielded for wind load and is a negligible addition of Gravity load. Therefore, the conclusions of the previous structural analysis still govern. Since the monopole and equipment platform are part of the same structural support system, the proposed **AT&T** installation **CANNOT** be placed as intended until the monopole is modified to support the proposed load condition. The designs of the monopole and baseplate modifications are not within the scope of this report and shall be completed under separate cover.

The conclusions reached by Maser Consulting Connecticut in this evaluation are only applicable for the existing structural members supporting the proposed **AT&T** telecommunications installation described herein. Further, no structural qualifications are made or implied by this document for the existing structure.

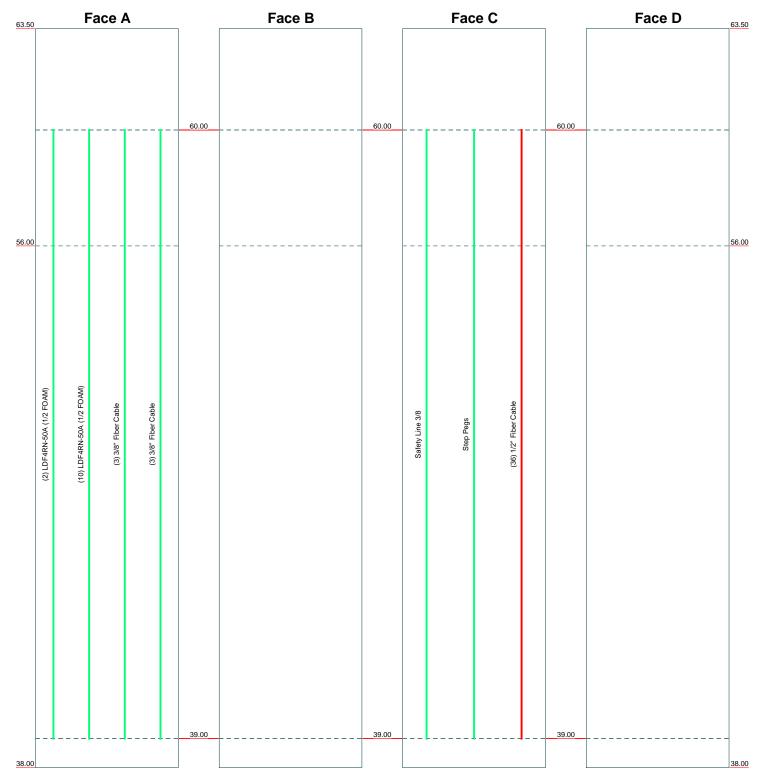
1/17/2017 Page 5 of 4 Prepared by GP Checked by FEP

We appreciate the opportunity to be of service on this project. If you should have any questions or require any additional information, please do not hesitate to call our office.


Sincerely, Maser Consulting Connecticut

Frank Pazden, P.E. Telecommunications Department Manager

Gowtham Penumatsa, E.I.T. Structural Design Engineer


\\maserconsulting.com\unm\AllOffices\MtLaurel\Projects\2016\16963000A\16963029A\Structural\Mount Analysis\Rev 0\Word\10035108.CT1146.East Hartford CT.Mount Analysis.Rev 0\

APPENDIX

Feed Line Distribution Chart 38' - 63'6"

Flat _____ App In Face _____ App Out Face _____ Truss Leg

Maser Consulting P.A	^{Job:} 16963030A		
	Project: Hamden		
Mt Arlington, NJ	Client: Empire Telecom	Drawn by: gpenumatsa	App'd:
	^{Code:} TIA-222-G	Date: 01/17/17	Scale: NTS
FAX: 973.398.3199	Path: Vmaserconsulting.com/unm/AilOffices/MtLaurel/Projects/20	16\16963000A\16963030A\Structural/Rev 0\TNX\Monopole Anlaysis	Dwg No. E-7

Elevation (ft)

Round

Maser Con 400 Va Mt Arlin Phone: 97 FAX: 97.

	Job		Page	
Fower		16963030A	1 of 16	
onsulting P.A	Project		Date	
alley Road		Hamden	17:27:26 01/17/17	
lington, NJ 973.398.3110 73.398.3199	Client	Empire Telecom	Designed by gpenumatsa	

Tower Input Data

There is a pole section.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 109 mph. Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Weld together tower sections have flange connections..

Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications...

Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards... Welds are fabricated with ER-70S-6 electrodes..

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- $\sqrt{}$ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile $\sqrt{}$ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform

- Assume Legs Pinned
- Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r
- Retension Guys To Initial Tension Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles
- $\sqrt{}$ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Pole Section Geometry

<i>tn</i> 3	xTower		lob		Јо в 16963030А					
Maser Consulting P.A 400 Valley Road			Project			Date 17:27:26 01/17/1				
Phon	t Arlington, NJ 1e: 973.398.3110 X: 973.398.3199		Client	E	impire Tele	ecom		Designed by gpenumatsa		
Section	Elevation	c	ection	Pole	Pole	Control				
Section	ft		ection ength ft	Pole Size	Grade	Socket L ft	engtn			
L1	63.50-56.00	, ,	7.50	P8x.322	A500-42 (42 ksi)					
L2	56.00-38.00	1	8.00	P8x.322	A500-42 (42 ksi)					
Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle			
Elevation	Area (per face)	Thickness		A_f	Factor A _r		Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing Horizontals	Stitch Bolt Spacing Redundants	
ft	ft^2	in					in	in	in	
1 63.50-56.00	÷			1	1	1				
2 56.00-38.00				1	1	1				

Monopole Base Plate Data

Base Plate Data				
Base plate is square				
Base plate is grouted				
Anchor bolt grade	A490N			
Anchor bolt size	1.0000 in			
Number of bolts	8			
Embedment length	100.0000 in			
\mathbf{f}_{c}	4 ksi			
Grout space	3.2500 in			
Base plate grade	A36			
Base plate thickness	1.5000 in			
Bolt circle diameter	12.1700 in			
Outer diameter	16.0000 in			
Inner diameter	8.6250 in			
Base plate type	Plain Plate			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Component Type	Placement	Total Number	Number Per Row	Start/End Position		Perimeter	Weight
			ft				in	in	plf
 1/2" Fiber Cable	С	Surface Ar	60.00 - 39.00	36	10	0.000	0.5000		1.00
		(CaAa)				0.000			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg			ft			ft^2/ft	plf
LDF4RN-50A (1/2	А	No	CaAa (Out Of	60.00 - 39.00	2	No Ice	0.06	0.15
FOAM)			Face)			1/2" Ice	0.16	0.84
						1" Ice	0.26	2.14
LDF4RN-50A (1/2	Α	No	CaAa (Out Of	60.00 - 39.00	10	No Ice	0.06	0.15
FOAM)			Face)			1/2" Ice	0.16	0.84

	Job		Page
tnxTower		16963030A	3 of 16
Maser Consulting P.A	Project		Date
400 Valley Road		Hamden	17:27:26 01/17/17
Mt Arlington, NJ	Client		Designed by
Phone: 973.398.3110 FAX: 973.398.3199		Empire Telecom	gpenumatsa

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		~ 1	ft			ft²/ft	plf
				·		1" Ice	0.26	2.14
3/8" Fiber Cable	А	No	CaAa (Out Of	60.00 - 39.00	3	No Ice	0.00	1.00
			Face)			1/2" Ice	0.15	1.61
						1" Ice	0.25	2.83
3/8" Fiber Cable	А	No	CaAa (Out Of	60.00 - 39.00	3	No Ice	0.00	1.00
			Face)			1/2" Ice	0.15	1.61
						1" Ice	0.25	2.83
Safety Line 3/8	С	No	CaAa (Out Of	60.00 - 39.00	1	No Ice	0.04	0.22
•			Face)			1/2" Ice	0.14	0.75
						1" Ice	0.24	1.28
Step Pegs	С	No	CaAa (Out Of	60.00 - 39.00	1	No Ice	0.02	1.50
			Face)			1/2" Ice	0.05	2.25
			,			1" Ice	0.08	3.00

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
	ft		ft^2	ft^2	ft^2	ft^2	lb
L1	63.50-56.00	А	0.000	0.000	0.000	3.057	31.20
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	2.000	0.230	150.88
		D	0.000	0.000	0.000	0.000	0.00
L2	56.00-38.00	А	0.000	0.000	0.000	12.993	132.60
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	8.500	0.977	641.24
		D	0.000	0.000	0.000	0.000	0.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
L1	63.50-56.00	А	1.592	0.000	0.000	0.000	27.145	357.47
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	4.092	1.885	236.47
		D		0.000	0.000	0.000	0.000	0.00
L2	56.00-38.00	А	1.554	0.000	0.000	0.000	113.056	1468.61
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	17.229	7.846	996.89
		D		0.000	0.000	0.000	0.000	0.00

	Feed Line Center of Pressure						
Section	Elevation	CP _X	CP _Z	CP _X	CPZ		
				Ice	Ice		
	ft	in	in	in	in		
L1	63.50-56.00	0.5503	-0.2018	-0.0667	-0.4548		
L2	56.00-38.00	0.7053	-0.2587	-0.0674	-0.4909		

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

Job		Page
	16963030A	4 of 16
Project		Date
	Hamden	17:27:26 01/17/17
Client	Empire Telecom	Designed by gpenumatsa

Shielding Factor Ka

Ī	Tower	Feed Line	Description	Feed Line	Ka	K_a
	Section	Record No.		Segment Elev.	No Ice	Ice
ſ	L1	7	1/2" Fiber Cable	56.00 - 60.00	1.0000	1.0000
	L2	7	1/2" Fiber Cable	39.00 - 56.00	1.0000	1.0000

			Di	screte T	ower L	oads			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	0		Vert ft ft ft	o	ft		ft^2	ft^2	lb
80010121 9' Mount Pipe (AT&T)	А	From Leg	4.00 -4.00	0.0000	61.00	No Ice 1/2" Ice	6.22 7.03	5.43 6.71	93.85 150.46
Quintel QS66512-2 w/m pipe (AT&T)	А	From Leg	$0.00 \\ 4.00 \\ 0.00$	0.0000	61.00	1" Ice No Ice 1/2" Ice	7.86 8.85 9.61	8.00 8.94 10.33	214.13 143.85 224.75
HPA-65R-BUU-H6 W/Mt pipe	А	From Leg	$0.00 \\ 4.00 \\ 4.00$	0.0000	61.00	1" Ice No Ice 1/2" Ice	10.39 10.37 11.15	11.73 8.59 9.98	314.20 93.35 180.04
(AT&T) 80010121 9' Mount Pipe (AT&T)	В	From Leg	0.00 4.00 -4.00	0.0000	61.00	1" Ice No Ice 1/2" Ice	11.94 6.22 7.03	11.39 5.43 6.71	275.42 93.85 150.46
Quintel QS66512-2 w/m pipe (AT&T)	В	From Leg	$0.00 \\ 4.00 \\ 0.00$	0.0000	61.00	1" Ice No Ice 1/2" Ice	7.86 8.85 9.61	8.00 8.94 10.33	214.13 143.85 224.75
HPA-65R-BUU-H6 W/Mt pipe	В	From Leg	$0.00 \\ 4.00 \\ 4.00$	0.0000	61.00	1" Ice No Ice 1/2" Ice	10.39 10.37 11.15	11.73 8.59 9.98	314.20 93.35 180.04
(AT&T) 80010121 9' Mount Pipe (AT&T)	С	From Leg	0.00 4.00 -4.00	0.0000	61.00	1" Ice No Ice 1/2" Ice	11.94 6.22 7.03	11.39 5.43 6.71	275.42 93.85 150.46
Quintel QS66512-2 w/m pipe (AT&T)	С	From Leg	$0.00 \\ 4.00 \\ 0.00$	0.0000	61.00	1" Ice No Ice 1/2" Ice	7.86 8.85 9.61	8.00 8.94 10.33	214.13 143.85 224.75
HPA-65R-BUU-H6 W/Mt pipe	С	From Leg	$0.00 \\ 4.00 \\ 4.00$	0.0000	61.00	1" Ice No Ice 1/2" Ice	10.39 10.37 11.15	11.73 8.59 9.98	314.20 93.35 180.04
(AT&T) Modified T Frame (AT&T)	А	None	0.00	0.0000	59.00	1" Ice No Ice 1/2" Ice	11.94 9.63 12.41	11.39 9.63 12.41	275.42 164.00 228.00
Modified T Frame (AT&T)	В	None		0.0000	59.00	1" Ice No Ice 1/2" Ice	15.20 9.63 12.41	15.20 9.63 12.41	292.00 164.00 228.00
Modified T Frame (AT&T)	С	None		0.0000	59.00	1" Ice No Ice 1/2" Ice	15.20 9.63 12.41	15.20 9.63 12.41	292.00 164.00 228.00
· · · ·						1" Ice	15.20	15.20	292.00

Job

Project

Client

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

	Page
16963030A	5 of 16
	Date
Hamden	17:27:26 01/17/17
- · -	Designed by
Empire Telecom	gpenumatsa

Tower Pressures - No Ice

 $G_H = 1.100$

Section	Z	K _Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 63.50-56.00	59.75	0.853	25	5.391	Α	0.000	5.391	5.391	100.00	0.000	3.057
					В	0.000	5.391		100.00	0.000	0.000
					С	0.000	5.391		100.00	2.000	0.230
					D	0.000	5.391		100.00	0.000	0.000
L2 56.00-38.00	47.00	0.796	23	12.938	Α	0.000	12.938	12.938	100.00	0.000	12.993
					В	0.000	12.938		100.00	0.000	0.000
					С	0.000	12.938		100.00	8.500	0.977
					D	0.000	12.938		100.00	0.000	0.000

Tower Pressure - With Ice

$G_{H} = 1.100$

Section	Z	K _Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						a				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 63.50-56.00	59.75	0.853	5	1.5917	7.380	А	0.000	7.380	7.380	100.00	0.000	27.145
						В	0.000	7.380		100.00	0.000	0.000
						С	0.000	7.380		100.00	4.092	1.885
						D	0.000	7.380		100.00	0.000	0.000
L2 56.00-38.00	47.00	0.796	5	1.5540	17.599	Α	0.000	17.599	17.599	100.00	0.000	113.056
						В	0.000	17.599		100.00	0.000	0.000
						С	0.000	17.599		100.00	17.229	7.846
						D	0.000	17.599		100.00	0.000	0.000

Tower Pressure - Service

$G_{H} = 1.100$

Section	z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In E	Out
ft	ft		psf	ft^2	с е	ft ²	ft ²	ft ²		Face	$Face fr^2$
<i>ji</i>	<i>Ji</i>			<i>Ji</i>	e	<i>Ji</i>	<i>Ji</i>	<i>Ji</i>	100.00	<i>Ji</i>	<i>Ji</i>
L1 63.50-56.00	59.75	0.853	7	5.391	Α	0.000	5.391	5.391	100.00	0.000	3.057
					В	0.000	5.391		100.00	0.000	0.000
					С	0.000	5.391		100.00	2.000	0.230
					D	0.000	5.391		100.00	0.000	0.000
L2 56.00-38.00	47.00	0.796	6	12.938	Α	0.000	12.938	12.938	100.00	0.000	12.993
					В	0.000	12.938		100.00	0.000	0.000
					С	0.000	12.938		100.00	8.500	0.977

tran	Job		Page
tnxTower		16963030A	6 of 16
Maser Consulting P.A	Project		Date
400 Valley Road		Hamden	17:27:26 01/17/17
Mt Arlington, NJ	Client		Designed by
Phone: 973.398.3110 FAX: 973.398.3199		Empire Telecom	gpenumatsa

Section	z	K _Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					a c				%	In Face	Out Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
					D	0.000	12.938		100.00	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	182.08	214.36	Α	1	1.2	25	1	1	5.391	465.13	62.02	D
63.50-56.00			В	1	1.2		1	1	5.391			
			С	1	1.2		1	1	5.391			
			D	1	1.2		1	1	5.391			
L2	773.84	514.46	Α	1	1.2	23	1	1	12.938	1542.84	85.71	D
56.00-38.00			В	1	1.2		1	1	12.938			
			С	1	1.2		1	1	12.938			
			D	1	1.2		1	1	12.938			
Sum Weight:	955.92	728.81						OTM	24.00	2007.97		
									kip-ft			

Tower Forces - No Ice - Wind 45 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	182.08	214.36	Α	1	1.2	25	1	1	5.391	465.13	62.02	D
63.50-56.00			В	1	1.2		1	1	5.391			
			С	1	1.2		1	1	5.391			
			D	1	1.2		1	1	5.391			
L2	773.84	514.46	Α	1	1.2	23	1	1	12.938	1542.84	85.71	D
56.00-38.00			В	1	1.2		1	1	12.938			
			С	1	1.2		1	1	12.938			
			D	1	1.2		1	1	12.938			
Sum Weight:	955.92	728.81						OTM	24.00	2007.97		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face												
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a c			psf						Face
ft	lb	lb	е						ft^2	lb	plf	
L1	593.93	363.37	Α	1	1.2	5	1	1	7.380	527.15	70.29	D
63.50-56.00			В	1	1.2		1	1	7.380			
			С	1	1.2		1	1	7.380			
			D	1	1.2		1	1	7.380			

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

Job		Page
	16963030A	7 of 16
Project		Date
	Hamden	17:27:26 01/17/17
Client	- ·	Designed by
	Empire Telecom	gpenumatsa

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L2	2465.50	862.31	Α	1	1.2	5	1	1	17.599	1965.41	109.19	D
56.00-38.00			В	1	1.2		1	1	17.599			
			С	1	1.2		1	1	17.599			
			D	1	1.2		1	1	17.599			
Sum Weight:	3059.44	1225.68						OTM	29.15	2492.56		
									kip-ft			

Tower Forces - With Ice - Wind 45 To Face

Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
ft	lb	lb	с е			psf			ft^2	lb	plf	
L1	593.93	363.37	Α	1	1.2	5	1	1	7.380	527.15	70.29	D
63.50-56.00			В	1	1.2		1	1	7.380			
			С	1	1.2		1	1	7.380			
			D	1	1.2		1	1	7.380			
L2	2465.50	862.31	Α	1	1.2	5	1	1	17.599	1965.41	109.19	D
56.00-38.00			В	1	1.2		1	1	17.599			
			С	1	1.2		1	1	17.599			
			D	1	1.2		1	1	17.599			
Sum Weight:	3059.44	1225.68						OTM	29.15	2492.56		
									kip-ft			

Tower Forces - Service - Wind Normal To Face

Section Elevation	Add Weight	Self Weight	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
Elevation	Weight	Weight	a c			psf						Гисе
ft	lb	lb	е			1 -5			ft^2	lb	plf	
L1	182.08	214.36	Α	1	1.2	7	1	1	5.391	126.10	16.81	D
63.50-56.00			В	1	1.2		1	1	5.391			
			С	1	1.2		1	1	5.391			
			D	1	1.2		1	1	5.391			
L2	773.84	514.46	Α	1	1.2	6	1	1	12.938	418.28	23.24	D
56.00-38.00			В	1	1.2		1	1	12.938			
			С	1	1.2		1	1	12.938			
			D	1	1.2		1	1	12.938			
Sum Weight:	955.92	728.81						OTM	6.51 kip-ft	544.38		

Tower Forces - Service - Wind 45 To Face

	Job		Page
tnxTower		16963030A	8 of 16
Magar Consulting DA	Project		Date
Maser Consulting P.A 400 Valley Road		Hamden	17:27:26 01/17/17
Mt Arlington, NJ	Client		Designed by
Phone: 973.398.3110 FAX: 973.398.3199		Empire Telecom	gpenumatsa

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	182.08	214.36	Α	1	1.2	7	1	1	5.391	126.10	16.81	D
63.50-56.00			В	1	1.2		1	1	5.391			
			С	1	1.2		1	1	5.391			
			D	1	1.2		1	1	5.391			
L2	773.84	514.46	Α	1	1.2	6	1	1	12.938	418.28	23.24	D
56.00-38.00			В	1	1.2		1	1	12.938			
			С	1	1.2		1	1	12.938			
			D	1	1.2		1	1	12.938			
Sum Weight:	955.92	728.81						OTM	6.51 kip-ft	544.38		

Description	A invite a	Weight	$Offset_x$	Offeret	_	K_{τ}	~	C A	C A
Description	Aiming Azimuth	weight	$O_{ff}set_x$	$Offset_z$	z	$\mathbf{\Lambda}_{z}$	q_z	C _A A _C Front	$C_A A_C$ Side
	°	lb	ft	ft	ft		psf	ft^2	ft ²
80010121 9' Mount Pipe	315.0000	93.85	-5.91	-0.25	61.00	0.858	25	6.22	5.43
Quintel QS66512-2 w/m	315.0000	143.85	-3.08	-3.08	61.00	0.858	25	8.85	8.94
pipe	215 0000	02.25	0.25	5.01	(1.00	0.050	25	10.27	0.50
HPA-65R-BUU-H6 W/Mt pipe	315.0000	93.35	-0.25	-5.91	61.00	0.858	25	10.37	8.59
80010121 9' Mount Pipe	45,0000	93.85	0.25	-5.91	61.00	0.858	25	6.22	5.43
Ouintel OS66512-2 w/m	45.0000	143.85	3.08	-3.08	61.00	0.858	25	8.85	8.94
pipe							-		
HPA-65R-BUU-H6	45.0000	93.35	5.91	-0.25	61.00	0.858	25	10.37	8.59
W/Mt pipe									
80010121 9' Mount Pipe	135.0000	93.85	5.91	0.25	61.00	0.858	25	6.22	5.43
Quintel QS66512-2 w/m	135.0000	143.85	3.08	3.08	61.00	0.858	25	8.85	8.94
pipe	125 0000	02.25	0.25	5.01	(1.00	0.050	25	10.27	0.50
HPA-65R-BUU-H6	135.0000	93.35	0.25	5.91	61.00	0.858	25	10.37	8.59
W/Mt pipe Modified T Frame	0.0000	164.00	0.00	0.00	59.00	0.850	25	9.63	9.63
Modified T Frame	0.0000	164.00	0.00	0.00	59.00	0.850	25	9.63	9.63
Modified T Frame							25		
woulled I Frame	0.0000	164.00	0.00	0.00	59.00	0.850	25	9.63	9.63
	Sum	1485.15							
	Weight:								

	Discrete Appurtenance Pressures - With Ice $G_{H} = 1.100$												
Description	Aiming Azimuth	Weight	$Offset_x$	$Offset_z$	Z	Kz	q_z	$C_A A_C$ Front	$C_A A_C$ Side	tz			
	0	lb	ft	ft	ft		psf	ft^2	ft^2	in			
80010121 9' Mount Pipe	315.0000	305.10	-5.91	-0.25	61.00	0.858	5	8.63	9.10	1.5950			
Quintel QS66512-2 w/m pipe	315.0000	438.50	-3.08	-3.08	61.00	0.858	5	11.18	12.95	1.5950			
HPA-65R-BUU-H6 W/Mt pipe	315.0000	407.03	-0.25	-5.91	61.00	0.858	5	12.75	12.61	1.5950			
80010121 9' Mount Pipe	45.0000	305.10	0.25	-5.91	61.00	0.858	5	8.63	9.10	1.5950			
Quintel QS66512-2 w/m	45.0000	438.50	3.08	-3.08	61.00	0.858	5	11.18	12.95	1.5950			
HPA-65R-BUU-H6 W/Mt pipe	45.0000	407.03	5.91	-0.25	61.00	0.858	5	12.75	12.61	1.5950			

Maser Consulting P.A 400 Valley Road Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199

Job		Page
	16963030A	9 of 16
Project		Date
	Hamden	17:27:26 01/17/17
Client	Empire Telecom	Designed by gpenumatsa

Description	Aiming	Weight	$Offset_x$	$Offset_z$	z	K_z	q_z	$C_A A_C$	$C_A A_C$	t_z
	Azimuth							Front	Side	
	0	lb	ft	ft	ft		psf	ft^2	ft^2	in
80010121 9' Mount Pipe	135.0000	305.10	5.91	0.25	61.00	0.858	5	8.63	9.10	1.5950
Quintel QS66512-2 w/m	135.0000	438.50	3.08	3.08	61.00	0.858	5	11.18	12.95	1.5950
pipe										
HPA-65R-BUU-H6	135.0000	407.03	0.25	5.91	61.00	0.858	5	12.75	12.61	1.5950
W/Mt pipe										
Modified T Frame	0.0000	367.49	0.00	0.00	59.00	0.850	5	18.48	18.48	1.5897
Modified T Frame	0.0000	367.49	0.00	0.00	59.00	0.850	5	18.48	18.48	1.5897
Modified T Frame	0.0000	367.49	0.00	0.00	59.00	0.850	5	18.48	18.48	1.5897
	Sum	4554.32								
	Weight:									

Discrete Appurtenance Pressures - Service G_H = 1.100

Description	Aiming	Weight	$Offset_x$	$Offset_z$	z	Kz	q_z	$C_A A_C$	$C_A A_C$
	Azimuth							Front	Side
	0	lb	ft	ft	ft		psf	ft^2	ft^2
80010121 9' Mount Pipe	315.0000	93.85	-5.91	-0.25	61.00	0.858	7	6.22	5.43
Quintel QS66512-2 w/m	315.0000	143.85	-3.08	-3.08	61.00	0.858	7	8.85	8.94
pipe									
HPA-65R-BUU-H6	315.0000	93.35	-0.25	-5.91	61.00	0.858	7	10.37	8.59
W/Mt pipe									
80010121 9' Mount Pipe	45.0000	93.85	0.25	-5.91	61.00	0.858	7	6.22	5.43
Quintel QS66512-2 w/m	45.0000	143.85	3.08	-3.08	61.00	0.858	7	8.85	8.94
pipe									
HPA-65R-BUU-H6	45.0000	93.35	5.91	-0.25	61.00	0.858	7	10.37	8.59
W/Mt pipe									
80010121 9' Mount Pipe	135.0000	93.85	5.91	0.25	61.00	0.858	7	6.22	5.43
Quintel QS66512-2 w/m	135.0000	143.85	3.08	3.08	61.00	0.858	7	8.85	8.94
pipe									
HPA-65R-BUU-H6	135.0000	93.35	0.25	5.91	61.00	0.858	7	10.37	8.59
W/Mt pipe									
Modified T Frame	0.0000	164.00	0.00	0.00	59.00	0.850	7	9.63	9.63
Modified T Frame	0.0000	164.00	0.00	0.00	59.00	0.850	7	9.63	9.63
Modified T Frame	0.0000	164.00	0.00	0.00	59.00	0.850	7	9.63	9.63
	Sum	1485.15							
	Weight:								

Force Totals

Load Case	Vertical Forces	Sum of Forces	Sum of Forces	Sum of Overturning	Sum of Overturning	Sum of Torques
	lb	X lb	Z lb	Moments, M_x	Moments, M_z	hin G
x xx 1 /		lD	10	kip-ft	kip-ft	kip-ft
Leg Weight	728.81					
Bracing Weight	0.00					
Total Member Self-Weight	728.81			-1.05	-2.00	
Total Weight	3169.88			-1.05	-2.00	
Wind 0 deg - No Ice		-27.07	-4371.76	-77.86	-1.38	3.04
Wind 45 deg - No Ice		3072.16	-3072.16	-54.93	-55.87	1.17
Wind 90 deg - No Ice		3374.97	27.07	-0.43	-67.28	-1.38
Wind 135 deg - No Ice		3110.44	3110.44	53.70	-56.75	-3.13
Wind 180 deg - No Ice		27.07	4371.76	75.75	-2.62	-3.04
Wind 225 deg - No Ice		-3072.16	3072.16	52.82	51.87	-1.17
Wind 270 deg - No Ice		-3374.97	-27.07	-1.68	63.28	1.38
Wind 315 deg - No Ice		-3110.44	-3110.44	-55.81	52.75	3.13

	Job
tnxTower	

Maser Consulting P.A

400 Valley Road Mt Arlington, NJ

Phone: 973.398.3110

FAX: 973.398.3199

Project

Client

Page 10 of 16 16963030A Date Hamden **Empire Telecom**

17:27:26 01/17/17 Designed by gpenumatsa

Load Vertical Sum of Sum of Torques Sum of Sum of Sum of Case Forces Forces Forces Overturning Overturning XΖ Moments, M_x Moments, M_z lb lb lb kip-ft kip-ft kip-ft 496.87 Member Ice Total Weight Ice 8839.44 -3.69 -4.89 -3270.57 Wind 0 deg - Ice 4.83 -50.11 -5.00 1.77 Wind 45 deg - Ice 2316.06 -2316.06 -36.59 -37.79 0.82 Wind 90 deg - Ice 1750.68 -3.80 -0.62 -4.83 -33.67 2309.22 2309.22 Wind 135 deg - Ice 29.05 -37.64 -1.69 3270.57 Wind 180 deg - Ice 42.73 -4.78 -1.77 -4.83 Wind 225 deg - Ice Wind 270 deg - Ice -2316.06 2316.06 29.21 28.01 -0.82 -1750.68 -3.58 23.88 0.62 4.83 Wind 315 deg - Ice -2309.22 -2309.22 -36.44 27.85 1.69 -2.00 Total Weight 3169.88 -1.05 Wind 0 deg - Service -7.34 -1185.23 -21.85 -0.85 0.49 Wind 45 deg - Service 832.89 -832.89 -15.63 -15.62 0.10 Wind 90 deg - Service 914.99 7.34 -0.85 -18.72 -0.35 Wind 135 deg - Service 843.27 13.82 843.27 -15.86 -0.59 Wind 180 deg - Service 7.34 1185.23 19.80 -1.19 -0.49 Wind 225 deg - Service -832.89 832.89 13.58 13.59 -0.10 Wind 270 deg - Service -914.99 -1.19 -7.34 16.68 0.35 13.82 Wind 315 deg - Service -843.27 -843.27 -15.87 0.59

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 45 deg - No Ice	
5	0.9 Dead+1.6 Wind 45 deg - No Ice	
6	1.2 Dead+1.6 Wind 90 deg - No Ice	
7	0.9 Dead+1.6 Wind 90 deg - No Ice	
8	1.2 Dead+1.6 Wind 135 deg - No Ice	
9	0.9 Dead+1.6 Wind 135 deg - No Ice	
10	1.2 Dead+1.6 Wind 180 deg - No Ice	
11	0.9 Dead+1.6 Wind 180 deg - No Ice	
12	1.2 Dead+1.6 Wind 225 deg - No Ice	
13	0.9 Dead+1.6 Wind 225 deg - No Ice	
14	1.2 Dead+1.6 Wind 270 deg - No Ice	
15	0.9 Dead+1.6 Wind 270 deg - No Ice	
16	1.2 Dead+1.6 Wind 315 deg - No Ice	
17	0.9 Dead+1.6 Wind 315 deg - No Ice	
18	1.2 Dead+1.0 Ice+1.0 Temp	
19	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
20	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp	
21	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
22	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp	
23	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
24	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp	
25	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
26	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 45 deg - Service	
29	Dead+Wind 90 deg - Service	
30	Dead+Wind 135 deg - Service	
31	Dead+Wind 180 deg - Service	
32	Dead+Wind 225 deg - Service	

Maser 400 Mt Phon FAX

T	Job		Page
xTower		16963030A	11 of 16
r Consulting P.A 100 Valley Road	Project	Hamden	Date 17:27:26 01/17/17
It Arlington, NJ one: 973.398.3110 XX: 973.398.3199	Client	Empire Telecom	Designed by gpenumatsa
XX: 973.398.3199			gpenumatsa

Comb.	Description	
No.		
33	Dead+Wind 270 deg - Service	
34	Dead+Wind 315 deg - Service	

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	lb	kip-ft	kip-ft
L1	63.5 - 56	Pole	Max Tension	19	0.05	0.01	-0.00
			Max. Compression	18	-5887.73	-4.46	3.69
			Max. Mx	6	-1919.40	-20.14	0.93
			Max. My	2	-1850.66	-1.09	21.20
			Max. Vy	6	4370.58	-20.14	0.93
			Max. Vx	2	-4707.71	-1.09	21.20
			Max. Torque	17			-3.74
L2	56 - 38	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-9473.42	-5.91	4.38
			Max. Mx	6	-3783.85	-109.88	0.28
			Max. My	2	-3773.83	-1.44	127.53
			Max. Vy	6	5414.00	-109.88	0.28
			Max. Vx	2	-7011.08	-1.44	127.53
			Max. Torque	17			-4.92

Maximum Reactions

Location	Condition	Gov. Load	Vertical lb	Horizontal, X lb	Horizontal, Z lb
		Comb.	10	10	10
Pole	Max. Vert	20	9473.42	-2316.10	2316.09
	Max. H _x	15	2852.90	5399.95	43.31
	Max. H _z	3	2852.90	43.31	6994.82
	Max. M _x	2	127.53	43.31	6994.82
	Max. M _z	6	109.88	-5399.95	-43.31
	Max. Torsion	9	4.91	-4976.71	-4976.71
	Min. Vert	15	2852.90	5399.95	43.31
	Min. H _x	6	3803.86	-5399.95	-43.31
	Min. Hz	11	2852.90	-43.31	-6994.82
	Min. M _x	10	-124.92	-43.31	-6994.82
	Min. Mz	14	-104.94	5399.95	43.31
	Min. Torsion	17	-4.92	4976.71	4976.71

Tower Mast Reaction Summary

Load Combination	Vertical	<i>Shear</i> _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
combination	lb	lb	lb	kip-ft	kip-ft	kip-ft
Dead Only	3169.88	0.00	-0.00	-1.09	-2.06	0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	3803.86	-43.31	-6994.82	-127.53	-1.43	4.77
0.9 Dead+1.6 Wind 0 deg - No Ice	2852.90	-43.31	-6994.82	-126.28	-0.81	4.79

tnxT

Maser Con 400 Va Mt Arlin Phone: 97 FAX: 97.

Tower	Job		Page
		16963030A	12 of 16
ongulting D A	Project		Date
o nsulting P.A Valley Road		Hamden	17:27:26 01/17/17
lington, NJ 973.398.3110 973.398.3199	Client	Empire Telecom	Designed by gpenumatsa

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
1.2 Dead+1.6 Wind 45 deg - No	3803.86	4915.46	-4915.46	-89.84	-91.00	1.85
Ice 0.9 Dead+1.6 Wind 45 deg - No	2852.90	4915.46	-4915.46	-88.87	-89.73	1.85
Ice 1.2 Dead+1.6 Wind 90 deg - No	3803.86	5399.95	43.31	-0.28	-109.88	-2.16
Ice 0.9 Dead+1.6 Wind 90 deg - No	2852.90	5399.95	43.31	0.05	-108.45	-2.17
Ice 1.2 Dead+1.6 Wind 135 deg -	3803.86	4976.71	4976.71	88.68	-92.44	-4.90
No Ice 0.9 Dead+1.6 Wind 135 deg -	2852.90	4976.71	4976.71	88.36	-91.15	-4.91
No Ice						
1.2 Dead+1.6 Wind 180 deg - No Ice	3803.86	43.31	6994.82	124.92	-3.48	-4.78
0.9 Dead+1.6 Wind 180 deg - No Ice	2852.90	43.31	6994.82	124.35	-2.84	-4.79
1.2 Dead+1.6 Wind 225 deg - No Ice	3803.86	-4915.46	4915.46	87.22	86.07	-1.86
0.9 Dead+1.6 Wind 225 deg - No Ice	2852.90	-4915.46	4915.46	86.92	86.06	-1.86
1.2 Dead+1.6 Wind 270 deg - No Ice	3803.86	-5399.95	-43.31	-2.33	104.94	2.17
0.9 Dead+1.6 Wind 270 deg - No Ice	2852.90	-5399.95	-43.31	-1.99	104.77	2.17
1.2 Dead+1.6 Wind 315 deg - No Ice	3803.86	-4976.71	-4976.71	-91.28	87.52	4.90
0.9 Dead+1.6 Wind 315 deg - No Ice	2852.90	-4976.71	-4976.71	-90.29	87.50	4.92
1.2 Dead+1.0 Ice+1.0 Temp	9473.42	0.01	-0.01	-4.38	-5.91	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	9473.42	4.85	-3270.62	-54.21	-6.02	1.73
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp	9473.42	2316.10	-2316.09	-39.70	-41.22	0.81
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	9473.42	1750.71	-4.84	-4.49	-36.92	-0.59
1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp	9473.42	2309.27	2309.24	30.78	-41.05	-1.63
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	9473.42	-4.82	3270.61	45.46	-5.78	-1.73
1.2 Dead+1.0 Wind 225	9473.42	-2316.08	2316.09	30.95	29.42	-0.81
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270	9473.42	-1750.70	4.82	-4.26	25.11	0.59
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 315	9473.42	-2309.24	-2309.27	-39.52	29.25	1.63
deg+1.0 Ice+1.0 Temp	21/0.00	7.24	1105 22	22.42	1.00	0.40
Dead+Wind 0 deg - Service Dead+Wind 45 deg - Service	3169.88 3169.88	-7.34 832.89	-1185.23 -832.89	-22.42 -16.05	-1.89 -17.02	0.48 0.10
•		832.89 914.99		-10.03	-17.02 -20.20	-0.34
Dead+Wind 90 deg - Service Dead+Wind 135 deg - Service	3169.88		7.34			-0.34 -0.58
e	3169.88	843.27	843.27	14.11	-17.26	
Dead+Wind 180 deg - Service	3169.88	7.34	1185.23	20.23	-2.24	-0.48
Dead+Wind 225 deg - Service	3169.88	-832.89	832.89	13.86	12.90	-0.10
Dead+Wind 270 deg - Service	3169.88	-914.99	-7.34	-1.27	16.08	0.34
Dead+Wind 315 deg - Service	3169.88	-843.27	-843.27	-16.30	13.14	0.58

Solution Summary

Mas Р

Job		Page
tnxTower	16963030A	13 of 16
aser Consulting P.A Project	t i i i i i i i i i i i i i i i i i i i	Date
400 Valley Road	Hamden	17:27:26 01/17/17
Mt Arlington, NJ Client		Designed by
Phone: 973.398.3110 FAX: 973.398.3199	Empire Telecom	gpenumatsa

		n of Applied Force.			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	0.00	-3169.88	0.00	-0.00	3169.88	0.00	0.000%
2	-43.31	-3803.86	-6994.82	43.31	3803.86	6994.82	0.000%
3	-43.31	-2852.90	-6994.82	43.31	2852.90	6994.82	0.000%
4	4915.46	-3803.86	-4915.46	-4915.46	3803.86	4915.46	0.000%
5	4915.46	-2852.90	-4915.46	-4915.46	2852.90	4915.46	0.000%
6	5399.95	-3803.86	43.31	-5399.95	3803.86	-43.31	0.000%
7	5399.95	-2852.90	43.31	-5399.95	2852.90	-43.31	0.000%
8	4976.71	-3803.86	4976.71	-4976.71	3803.86	-4976.71	0.000%
9	4976.71	-2852.90	4976.71	-4976.71	2852.90	-4976.71	0.000%
10	43.31	-3803.86	6994.82	-43.31	3803.86	-6994.82	0.000%
11	43.31	-2852.90	6994.82	-43.31	2852.90	-6994.82	0.000%
12	-4915.46	-3803.86	4915.46	4915.46	3803.86	-4915.46	0.000%
13	-4915.46	-2852.90	4915.46	4915.46	2852.90	-4915.46	0.000%
14	-5399.95	-3803.86	-43.31	5399.95	3803.86	43.31	0.000%
15	-5399.95	-2852.90	-43.31	5399.95	2852.90	43.31	0.000%
16	-4976.71	-3803.86	-4976.71	4976.71	3803.86	4976.71	0.000%
17	-4976.71	-2852.90	-4976.71	4976.71	2852.90	4976.71	0.000%
18	0.00	-9473.42	0.00	-0.01	9473.42	0.01	0.000%
19	4.83	-9473.42	-3270.57	-4.85	9473.42	3270.62	0.001%
20	2316.06	-9473.42	-2316.06	-2316.10	9473.42	2316.09	0.001%
21	1750.68	-9473.42	-4.83	-1750.71	9473.42	4.84	0.000%
22	2309.22	-9473.42	2309.22	-2309.27	9473.42	-2309.24	0.000%
23	-4.83	-9473.42	3270.57	4.82	9473.42	-3270.61	0.000%
24	-2316.06	-9473.42	2316.06	2316.08	9473.42	-2316.09	0.000%
25	-1750.68	-9473.42	4.83	1750.70	9473.42	-4.82	0.000%
26	-2309.22	-9473.42	-2309.22	2309.24	9473.42	2309.27	0.000%
27	-7.34	-3169.88	-1185.23	7.34	3169.88	1185.23	0.000%
28	832.89	-3169.88	-832.89	-832.89	3169.88	832.89	0.000%
29	914.99	-3169.88	7.34	-914.99	3169.88	-7.34	0.000%
30	843.27	-3169.88	843.27	-843.27	3169.88	-843.27	0.000%
31	7.34	-3169.88	1185.23	-7.34	3169.88	-1185.23	0.000%
32	-832.89	-3169.88	832.89	832.89	3169.88	-832.89	0.000%
33	-914.99	-3169.88	-7.34	914.99	3169.88	7.34	0.000%
34	-843.27	-3169.88	-843.27	843.27	3169.88	843.27	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00032941
3	Yes	4	0.00000001	0.00648114
4	Yes	4	0.00000001	0.00711644
5	Yes	4	0.00000001	0.00381850
6	Yes	4	0.00000001	0.00629291
7	Yes	4	0.00000001	0.00360125
8	Yes	5	0.00000001	0.00043652
9	Yes	4	0.00000001	0.00890096
10	Yes	5	0.00000001	0.00033808
11	Yes	4	0.00000001	0.00657192
12	Yes	4	0.00000001	0.00644238
13	Yes	4	0.00000001	0.00361221
14	Yes	4	0.00000001	0.00626961
15	Yes	4	0.00000001	0.00364382
16	Yes	5	0.00000001	0.00043349
17	Yes	4	0.00000001	0.00882210

tnx	Tower	Job	169	Page 14 of 16	
	Consulting P.A Valley Road	Project	Н	Date 17:27:26 01/17/17	
Phone	Arlington, NJ 2: 973.398.3110 : 973.398.3199	Client	Empi	Designed by gpenumatsa	
18	Yes	4	0.00000001	0.00033715	
19	Yes	4	0.00000001	0.00931628	
20	Yes	4	0.00000001	0.00606395	
21	Yes	4	0.00000001	0.00332860	
22	Yes	4	0.00000001	0.00730632	
23	Yes	4	0.00000001	0.00679566	
24	Yes	4	0.00000001	0.00280512	
25	Yes	4	0.00000001	0.00176849	
26	Yes	4	0.00000001	0.00688041	
27	Yes	4	0.00000001	0.00051492	
28	Yes	4	0.00000001	0.00013469	
29	Yes	4	0.00000001	0.00034507	
30	Yes	4	0.00000001	0.00056885	
31	Yes	4	0.00000001	0.00043773	
32	Yes	4	0.00000001	0.00008228	
33	Yes	4	0.00000001	0.00025670	
34	Yes	4	0.00000001	0.00053331	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	63.5 - 56	3.795	28	1.0202	0.0676
L2	56 - 38	2.219	28	0.9595	0.0531

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
61.00	80010121 9' Mount Pipe	28	3.241	1.0147	0.0631	1815
59.00	Modified T Frame	28	2.812	1.0029	0.0593	1815

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	63.5 - 56	19.987	4	5.2527	0.4846
L2	56 - 38	11.838	4	5.0377	0.3932

	Critical Deflections and Radius of Curvature - Design Wind							
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of		
	* *	Load	v			Curvature		
ft		Comb.	in	0	0	ft		

A	Job		Page	
tnxTower		16963030A	15 of 16	
Maser Consulting P.A	Project		Date	
400 Valley Road		Hamden	17:27:26 01/17/17	
Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199	Client	Empire Telecom	Designed by gpenumatsa	

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
61.00	80010121 9' Mount Pipe	4	17.131	5.2631	0.4573	372
59.00	Modified T Frame	4	14.916	5.2301	0.4339	372

Base Plate Design Data

Plate	Number	Anchor Bolt	Actual	Actual	Actual	Actual	Controlling	Ratio
Thickness	of Anchor	Size	Allowable	Allowable	Allowable	Allowable	Condition	
	Bolts		Ratio	Ratio	Ratio	Ratio		
			Bolt	Bolt	Plate	Stiffener		
			Tension	Compression	Stress	Stress		
in		in	lb	lb	ksi	ksi		
1.5000	8	1.0000	60772.94	61716.32	57.418		Plate	1 77 X
			66562.49	110493.74	32.400			1.,,
			0.96	0.61	1.77			

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L1	63.5 - 56 (1)	P8x.322	7.50	0.00	0.0	8.3993	-1852.19	317492.00	0.006
L2	56 - 38 (2)	P8x.322 4.8.2 (1.85 CR) - 2	18.00	0.00	0.0	8.3993	-3773.52	317492.00	0.012

Pole Bending Design Data

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	63.5 - 56 (1)	P8x.322	21.65	69.96	0.310	0.00	69.96	0.000
L2	56 - 38 (2)	P8x.322	128.10	69.96	1.831	0.00	69.96	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V_u	Actual T _u	ϕT_n	Ratio T_u
	ft		lb	lb	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	63.5 - 56 (1)	P8x.322	4666.54	158746.00	0.029	0.84	105.90	0.008
L2	56 - 38 (2)	P8x.322	7054.45	158746.00	0.044	4.90	105.90	0.046

	Job		Page
tnxTower		16963030A	16 of 16
Maser Consulting P.A	Project		Date
400 Valley Road		Hamden	17:27:26 01/17/17
Mt Arlington, NJ Phone: 973.398.3110 FAX: 973.398.3199	Client	Empire Telecom	Designed by gpenumatsa

No. V_u V_u T_u T_u $tip-ft$ $kip-ft$ $kip-ft$	Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
	No.			V_u		V_u	T		T_{u}
ψv_n ψv_n ψv_n		ft		lb	lb	ϕV_n	kip-ft	kip-ft	ϕT_n

	Pole Interaction Design Data								
Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.	ft	$\frac{P_u}{\phi P_n}$	$\frac{M_{ux}}{\phi M_{nx}}$	$\frac{M_{uy}}{\phi M_{ny}}$	$\frac{V_u}{\phi V_n}$	$\frac{T_u}{\phi T_n}$	Stress Ratio	Stress Ratio	
L1	63.5 - 56 (1)	0.006	0.310	0.000	0.029	0.008	0.317	1.000	4.8.2 🖌
L2	56 - 38 (2)	0.012	1.831	0.000	0.044	0.046	1.851 X	1.000	4.8.2 🗶

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{ { $	% Capacity	Pass Fail
L1	63.5 - 56	Pole	P8x.322	1	-1852.19	317492.00	31.7	Pass
L2	56 - 38	Pole	P8x.322	2	-3773.52	317492.00	185.1	Fail X
							Summary	
						Pole (L2)	185.1	Fail X
						Base Plate	177.2	Fail X
						RATING =	185.1	Fail 🗡

Program Version 7.0.5.1 - 2/1/2016 File://maserconsulting.com/unm/AllOffices/MtLaurel/Projects/2016/16963000A/16963030A/Structural/Rev 0/TNX/Monopole Anlaysis.eri

Image: Image	Design Wind Load On A	Appurtenances:	
Basic Wind Speed(Nominal): $V = 109 \text{ MPH}$ (Figure A1-1e, p. 232)Antenna Centerline: $z := 40 \text{ fi}$ (Figure A1-1e, p. 232)Structure Class:Class = "II"(Table 2-1, P. 39)Exposure Category:Exp := "B"(Section 2.6.5.1, p. 12)Gust Effect Factor: $G_h = 0.85$ (Section 2.6.9, p. 16)Wind Directionality Factor: $K_d := 0.95$ (Table 2-2, P. 39)Topographic Category:Topo := "I"(Section 2.6.6.4, p. 14)Importance Factor: $1 := 10$ if Class = "II" = 1(Table 2-3, P. 39)Inportance Factor: $1 := 1.0$ if Class = "II" = 1(Table 2-3, P. 39)Force Coefficient: $C_{f_square}(h, w) := 12$ if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42Square Members $\left[1.2 + \frac{0.2}{4.5}(\frac{h}{w} - 2.5)\right]$ if $\frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ Square MembersValue Autor Coefficient: $C_{f_square}(h, w) := 10.7$ if $\frac{h}{h} \le 2.5$ Table 2-8, P. 42Current Coefficient: $C_{f_square}(h, w) := 10.7$ if $\frac{h}{w} < 2.5$ Table 2-8, P. 42Square Members 2.0 otherwiseSquare Members $0.7 + \frac{h}{4.5}(\frac{h}{w} - 7)$] if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42Round Members $[0.7 + \frac{0.1}{4.5}(\frac{h}{w} - 7)]$ if $\frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ Round Members $0.8 + \frac{0.4}{18}(\frac{h}{w} - 7)$] if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Intervention of the sector o	Inputs:	ANSI/T	A-222-G Reference
Antenna Centerline: $z := 40ft$ Structure Class:Class := "II"Structure Class:Class := "II"Exposure Category:Exp := "B"Gust Effect Factor: $G_h := 0.85$ Wind Directionality Factor: $K_d := 0.95$ Topographic Category:Topo := "1"Crest Height:CH := 0ftImportance Factor:I :=1.0 if Class = "II"(Table 2-3, P. 39)Force Coefficient: $C_{f_square}(h, w) :=$ 1.2 if $\frac{h}{w} \le 2.5$ Table 2-3, P. 39)Force Coefficient: $C_{f_square}(h, w) :=$ $1.4 + \frac{0.6}{18}(\frac{h}{w} - 2.5)]$ if $\frac{h}{w} > 7.5 + \frac{h}{w} \le 7$ Square Members2.0 otherwise $C_{f_sround}(h, w) :=$ 0.7 if $\frac{h}{w} \le 2.5$ $0.8 + \frac{0.4}{18}(\frac{h}{w} - 7)]$ if $\frac{h}{w} > 7.5 + \frac{h}{w} \le 7$ Round Members $[0.7 + \frac{0.1}{4.5}(\frac{h}{w} - 2.5)]$ if $\frac{h}{w} > 7.5 + \frac{h}{w} \le 7$	Location:	Hamden, CT	
Structure Class:Class := "II"(Table 2-1, P. 39)Exposure Category:Exp := "B"(Section 2.6.5.1, p. 12)Gust Effect Factor: $G_h := 0.85$ (Section 2.6.9, p. 16)Wind Directionality Factor: $K_d := 0.95$ (Table 2-2, P. 39)Topographic Category:Topo := "I"(Section 2.6.6.4, p. 14)Importance Factor:I:=1.0 if Class = "II"= 1Importance Factor:I:=1.10 if Class = "II"(Table 2-3, P. 39)Force Coefficient: $C_{f_square}(h,w) :=$ 1.2 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42Square Members $\left[1.2 + \frac{0.2}{4.5} \left(\frac{h}{w} - 2.5\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Square MembersCf_round(h,w) := 0.7 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42 $\left[0.7 + \frac{0.1}{4.5} \left(\frac{h}{w} - 2.5\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 $\left[0.8 + \frac{0.4}{18} \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 $\left[0.8 + \frac{0.4}{18} \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 $\left[0.8 + \frac{0.4}{18} \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42	Basic Wind Speed(Nominal):	V := 109 MPH	(Figure A1-1e, p. 232)
Exposure Category: Exp := "B" (Section 2.6.5.1, p. 12) Gust Effect Factor: $G_h := 0.85$ (Section 2.6.9, p. 16) Wind Directionality Factor: $K_d := 0.95$ (Table 2-2, P. 39) Topographic Category: Topo := "1" (Section 2.6.6.2, p. 13) Crest Height: CH := 0ft (Section 2.6.6.4, p. 14) Importance Factor: I:= 1.0 if Class = "II" = 1 Force Coefficient: $C_{f_square}(h,w) :=$ 1.2 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42 Square Members $\left[1.2 + \frac{0.2}{4.5} \left(\frac{h}{w} - 2.5 \right) \right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Square Members $C_{f_round}(h,w) :=$ 0.7 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42 Square Members $\left[0.7 + \frac{0.1}{4.5} \left(\frac{h}{w} - 7 \right) \right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 Square Members $\left[0.7 + \frac{0.1}{4.5} \left(\frac{h}{w} - 7 \right) \right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 Square Members $\left[0.7 + \frac{0.1}{4.5} \left(\frac{h}{w} - 7 \right) \right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 Square Members $\left[0.8 + \frac{0.4}{18} \left(\frac{h}{w} - 7 \right) \right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 Square Members $\left[1.2 \text{ otherwise}$ 0.7 otherwise 1.2 otherwise T	Antenna Centerline:	z := 40 ft	
Gust Effect Factor: $\mathbf{E}_{\mathbf{p}} := \mathbf{"B}^{m}$ Here $\mathbf{H}_{\mathbf{p}} := \mathbf{H}_{\mathbf{p}}$ Gust Effect Factor: $\mathbf{G}_{\mathbf{h}} := 0.85$ (Section 2.6.9, p. 16)Wind Directionality Factor: $\mathbf{K}_{\mathbf{d}} := 0.95$ (Table 2-2, P. 39)Topographic Category:Topo := "1"(Section 2.6.6.2, p. 13)Crest Height:CH := 0ft(Section 2.6.6.4, p. 14)Importance Factor:I := $\begin{vmatrix} 1.0 & \text{if Class} = "II" & = 1 \\ 1.15 & \text{if Class} = "II" & = 1 \\ 1.15 & \text{if Class} = "II" & = 1 \\ 1.2 & \frac{62}{4.5} \left(\frac{h}{w} - 2.5\right) \end{vmatrix}$ if $\frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ Force Coefficient: $\mathbf{C}_{\mathbf{f}_square}(\mathbf{h}, \mathbf{w}) := \begin{vmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 \\ 2.0 & \text{otherwise} \end{vmatrix}$ Table 2-8, P. 42Square Members $\mathbf{S}_{\mathbf{q}_square}(\mathbf{h}, \mathbf{w}) := \begin{vmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ 0.7 & \frac{61}{4.5} \left(\frac{h}{w} - 7\right) \end{vmatrix}$ if $\frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ Table 2-8, P. 42Round Members $\mathbf{C}_{\mathbf{f}_round}(\mathbf{h}, \mathbf{w}) := \begin{vmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ 0.7 & \frac{61}{4.5} \left(\frac{h}{w} - 7\right) \end{bmatrix}$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42Round Members $\mathbf{C}_{\mathbf{f}_round}(\mathbf{h}, \mathbf{w}) := \begin{vmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ 1.2 & \text{otherwise} \end{vmatrix}$ Table 2-8, P. 42	Structure Class:	Class := "II"	(Table 2-1, P. 39)
Wind Directionality Factor: $K_d := 0.95$ (Table 2-2, P. 39)Topographic Category:Topo := "1"(Section 2.6.6.2, p. 13)Crest Height:CH := 0ft(Section 2.6.6.4, p. 14)Importance Factor:I :=1.0 if Class = "II" = 1(Table 2-3, P. 39)Force Coefficient: $C_{f_square}(h,w) :=$ 1.2 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42Square Members $\left[1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Square Members $C_{f_round}(h,w) :=$ 0.7 if $\frac{h}{w} \le 2.5$ Table 2-8, P. 42 $(0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Square Members $(0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Table 2-8, P. 42 $(0.8 + \frac{0.4}{18} \left(\frac{h}{w} - 7\right)\right]$ if $\frac{h}{w} > 7 \land \frac{h}{w} \le 25$ Round Members	Exposure Category:	Exp := "B"	(Section 2.6.5.1, p. 12)
$Topographic Category: Topo := "1" (Section 2.6.6.2, p. 13)$ $Crest Height: CH := 0ft (Section 2.6.6.4, p. 14)$ $Importance Factor: I := \begin{bmatrix} 1.0 & \text{if } Class = "II" & = 1 \\ 1.15 & \text{if } Class = "II" & = 1 \\ 1.15 & \text{if } Class = "II" & = 1 \\ 1.2 & \text{if } \frac{h}{w} \le 2.5 & \text{Table 2-3, P. 39} \end{bmatrix}$ $Force Coefficient: C_{f_square}(h, w) := \begin{bmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 \\ \left[1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5 \right) \right] & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \end{bmatrix}$ $Square Members$ $C_{f_round}(h, w) := \begin{bmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 7 \right) \end{bmatrix} & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ \begin{bmatrix} 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 7 \right) \end{bmatrix} & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \end{bmatrix}$ $Round Members$ $Round Members$ $I = \begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7 \right) \end{bmatrix} & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 1.2 & \text{otherwise} \end{bmatrix}$	Gust Effect Factor:	G _h := 0.85	(Section 2.6.9, p. 16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Wind Directionality Factor:	$K_{d} := 0.95$	(Table 2-2, P. 39)
$I:= \begin{bmatrix} 1.0 & \text{if } \text{Class} = "II" \\ 1.15 & \text{if } \text{Class} = "II" \end{bmatrix} = 1 \qquad (\text{Table 2-3, P. 39})$ $I:= \begin{bmatrix} 1.0 & \text{if } \text{Class} = "II" \\ 1.15 & \text{if } \text{Class} = "II" \end{bmatrix} \qquad (\text{Table 2-3, P. 39})$ $Force Coefficient: \qquad C_{f_square}(h, w) := \begin{bmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 \\ \left[1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5 \right) \right] & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \end{bmatrix}$ $Square Members$ $C_{f_round}(h, w) := \begin{bmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ \left[0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5 \right) \right] & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \end{bmatrix}$ $Round Members$ $C_{f_round}(h, w) := \begin{bmatrix} 0.7 & \text{if } \frac{h}{w} \le 2.5 \\ \left[0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5 \right) \right] & \text{if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \end{bmatrix}$ $Round Members$ $I:= \begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7 \right) \end{bmatrix} & \text{if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \end{bmatrix}$	Topographic Category:	Topo := "1"	(Section 2.6.6.2, p. 13)
I = I = I = I = I = I = I = I = I = I =	Crest Height:	CH := 0ft	(Section 2.6.6.4, p. 14)
$C_{f_round}(h,w) := \begin{bmatrix} 1.4 + \frac{310}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 2.0 \text{ otherwise} \end{bmatrix}$ $C_{f_round}(h,w) := \begin{bmatrix} 0.7 \text{ if } \frac{h}{w} \le 2.5 \\ 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} \text{ if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \\ \begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 1.2 \text{ otherwise} \end{bmatrix}$ $Table 2-8, P. 42$ $Round Members$	Importance Factor:	1.15 if Class = "III"	
$C_{f_round}(h,w) := \begin{bmatrix} 1.4 + \frac{310}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 2.0 \text{ otherwise} \end{bmatrix}$ $C_{f_round}(h,w) := \begin{bmatrix} 0.7 \text{ if } \frac{h}{w} \le 2.5 \\ 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} \text{ if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7 \\ \begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25 \\ 1.2 \text{ otherwise} \end{bmatrix}$ $Table 2-8, P. 42$ $Round Members$	Force Coefficient:	$C_{f_square}(h, w) := \begin{bmatrix} 1.2 & \text{if } \frac{h}{w} \le 2.5 \end{bmatrix}$	Table 2-8, P. 42
		$\left[1.4 + \frac{310}{18} \cdot \left(\frac{\pi}{w} - 7 \right) \right] \text{if } \frac{\pi}{w} > 7 \land \frac{\pi}{w} \le 25$	Square Members
		$C_{f_round}(h, w) := 0.7 \text{ if } \frac{h}{w} \le 2.5$	Table 2-8, P. 42
Terrain Exposure Constants: $\alpha :=$ 7.0 if Exp = "B" $Z_g :=$ 1200ft if Exp = "B" $K_{zmin} :=$ 0.70 if Exp = "B" 9.5 if Exp = "C" 11.5 if Exp = "D" 900ft if Exp = "C" 0.85 if Exp = "C" 1.03 if Exp = "D" 1.03 if Exp = "D"		$\begin{bmatrix} 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} \text{ if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ $\begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25$ 1.2 otherwise	Round Members
9.5 if $Exp = "C"$ 900ft if $Exp = "C"$ 0.85 if $Exp = "C"$ 11.5 if $Exp = "D"$ 700ft if $Exp = "D"$ 1.03 if $Exp = "D"$	Terrain Exposure Constants:	$\alpha := \begin{bmatrix} 7.0 & \text{if } Exp = "B" \\ 0.5 & \text{if } Exp = "B" \end{bmatrix} \begin{bmatrix} 2200 \text{ft} & \text{if } Exp = "B" \\ 0.00 \text{ft} & \text{if } Exp = "C" \end{bmatrix}$	nin := 0.70 if $Exp = "B"$
		9.5 if $Exp = "C"$ 11.5 if $Exp = "D"$ 900ft if $Exp = "C"$ 700ft if $Exp = "D"$	0.85 if Exp = "C" 1.03 if Exp = "D"
Table 2-4, P. 40			

Velocity Pressure Coefficient:	$K_{Z}(z) := \begin{bmatrix} K_{z} \leftarrow \max\left[2.01 \cdot \left(\frac{z}{Z_{g}}\right)^{\alpha}, K_{zmin}\right] \\ K_{z} \leftarrow \min(K_{z}, 2.01) \end{bmatrix}$	
Velocity Pressure Coefficient:	$K_{z} := Kz(z) = 0.761$	(Section 2.6.5, P. 13)
Velocity Pressure Coefficient:	$Kzt(z) := K_{zt} \leftarrow 1.0$ if Topo = "1"	(Section 2.6.6.4, p. 14)
		(Table 2-4 p. 40)
	$K_{t} \leftarrow \begin{bmatrix} 0.43 & \text{if Topo} = "2" \\ 0.53 & \text{if Topo} = "3" \\ 0.72 & \text{if Topo} = "4" \end{bmatrix}$	(Table 2-5 p. 40)
	otherwise $K_{e} \leftarrow \begin{bmatrix} 0.90 & \text{if Exp} = "B" \\ 1.00 & \text{if Exp} = "C" \\ 1.10 & \text{if Exp} = "D" \\ K_{t} \leftarrow \begin{bmatrix} 0.43 & \text{if Topo} = "2" \\ 0.53 & \text{if Topo} = "3" \\ 0.72 & \text{if Topo} = "4" \\ f \leftarrow \begin{bmatrix} 1.25 & \text{if Topo} = "2" \\ 2.00 & \text{if Topo} = "3" \\ 1.50 & \text{if Topo} = "3" \\ 1.50 & \text{if Topo} = "4" \\ K_{h} \leftarrow e^{\left(\frac{f \cdot z}{CH}\right)} \\ \left(1 + \frac{K_{e} \cdot K_{t}}{K_{h}}\right)^{2}$	(Table 2-5 p. 40)
	$K_{h} \leftarrow e^{\left(\frac{f \cdot z}{CH}\right)}$	(Section 2.6.6.4, P. 14)
	$\left(1 + \frac{K_e \cdot K_t}{K_h}\right)^2$	(Section 2.6.6.4, P. 14)
	$K_{zt} := Kzt(z) = 1$	
Velocity Pressure:	$q_z := 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V^2 \cdot I \cdot psf = 21.977 \cdot psf$	(Section 2.6.9.6, P. 25)

AT&T Wind Loading (No Ice):

<u>RRUS11</u>

Dimensions:	$h_{a1} := 19.7 \cdot in$ $w_{a1} := 17 \cdot in$ $d_{a1} := 7.2 \cdot in$
Weight:	$DL_{a1} := 65lbf$ Assumed 15lbs for mounting
Area (Normal):	$A_{N} := h_{a1} \cdot w_{a1} = 2.326 \text{ ft}^{2}$
Area (Side):	$A_{T} := h_{a1} \cdot d_{a1} = 0.985 \text{ ft}^{2}$
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}(h_{a1}, w_{a1}) = 1.2$
Force Coefficient (Side):	$C_{f_T} := C_{f_square}(h_{a1}, d_{a1}) = 1.21$
Front Effective Projected Area:	$EPA_N := C_{f_N} A_N = 2.791 \text{ ft}^2$
Side Effective Projected Area:	$EPA_T := C_{f_T} \cdot A_T = 1.192 \text{ ft}^2$
Effective Projected Area:	$EPA_a := max(EPA_N, EPA_T) = 2.791 \text{ ft}^2$
Wind Force:	$F_{a1} := q_z \cdot G_h \cdot EPA_a = 52.135 \cdot lbf$ (Section 2.6.9.2, P. 20)

<u>RRUS 32</u>

Dimensions:	$h_{a2} := 27.1 \cdot in$ $w_{a2} := 12$	$d_{a2} := 7.0 \cdot in$	
Weight:	$DL_{a2} := 65.7lbf$		
Area (Normal):	$A_{N} := h_{a2} \cdot w_{a2} = 2.258 \text{ ft}^{2}$		
Area (Side):	$A_{T} := h_{a2} \cdot d_{a2} = 1.317 \text{ ft}^{2}$		
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}(h_{a2}, w_{a2})$	= 1.2	
Force Coefficient (Side):	$C_{f_T} := C_{f_square}(h_{a2}, d_{a2}) =$	1.261	
Front Effective Projected Area:	$EPA_N := C_{f_N} \cdot A_N = 2.71 \text{ ft}^2$		
Side Effective Projected Area:	$EPA_T := C_{f_T} \cdot A_T = 1.661 \text{ ft}^2$		
Effective Projected Area:	$EPA_a := max(EPA_N, EPA_T) =$	2.71 ft^2	
Wind Force:	$\mathbf{F}_{a2} := \mathbf{q}_{z} \cdot \mathbf{G}_{h} \cdot \mathbf{EPA}_{a} = 50.625 \cdot \mathbf{F}_{a2}$	bf	(Section 2.6.9.2, P. 20)

RRUS 32 B2

Dimensions:	$h_{a1} := 29.9 \cdot in$ $w_{a1} := 13.3 \cdot in$	$d_{a1} := 9.5 \cdot in$
Weight:	DL _{a3} := 67.9lbf Assumed 1	5lbs for mounting
Area (Normal):	$A_{N} := h_{a1} \cdot w_{a1} = 2.762 \text{ ft}^{2}$	
Area (Side):	$A_{T} := h_{a1} \cdot d_{a1} = 1.973 \text{ ft}^{2}$	
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}(h_{a1}, w_{a1}) = 1$	1.2
Force Coefficient (Side):	$C_{f_T} := C_{f_square}(h_{a1}, d_{a1}) = 1$.229
Front Effective Projected Area:	$EPA_N := C_{f_N} \cdot A_N = 3.314 \text{ ft}^2$	
Side Effective Projected Area:	$EPA_T := C_{f_T} \cdot A_T = 2.424 \text{ ft}^2$	
Effective Projected Area:	$EPA_a := max(EPA_N, EPA_T) = 3$	0.314 ft ²
Wind Force:	$F_{a3} := q_z \cdot G_h \cdot EPA_a = 61.907 \cdot lbf$	(Section 2.6.9.2, P. 20)

RRUS E2

Dimensions:	$h_{a2} := 20.4 \cdot in$	$w_{a2} := 18.5 \cdot in$	$d_{a2} := 7.5 \cdot in$	
Weight:	$DL_{a4} := 75lbf$			
Area (Normal):	$A_{N} := h_{a2} \cdot w_{a2} = 2$.621 ft ²		
Area (Side):	$\mathbf{A}_{\mathrm{T}} \coloneqq \mathbf{h}_{a2} \cdot \mathbf{d}_{a2} = 1.$	062 ft^2		
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}$	$(h_{a2}, w_{a2}) = 1.2$		
Force Coefficient (Side):	$C_{f_T} := C_{f_square}$	$(h_{a2}, d_{a2}) = 1.21$		
Front Effective Projected Area:	$EPA_N := C_{f_N} \cdot A_N$	$= 3.145 \text{ ft}^2$		
Side Effective Projected Area:	$EPA_T \coloneqq C_{f_T} \cdot A_T$	$= 1.285 \text{ ft}^2$		
Effective Projected Area:	$EPA_a := max(EPA_b)$	$(N, EPA_T) = 3.145 \text{ ft}^2$	2	
Wind Force:	$\mathbf{F}_{a4} \coloneqq \mathbf{q}_{z} \cdot \mathbf{G}_{h} \cdot \mathbf{EPA}_{a}$	$_{\rm h} = 58.751 \cdot \rm{lbf}$		(Section 2.6.9.2, P. 20)

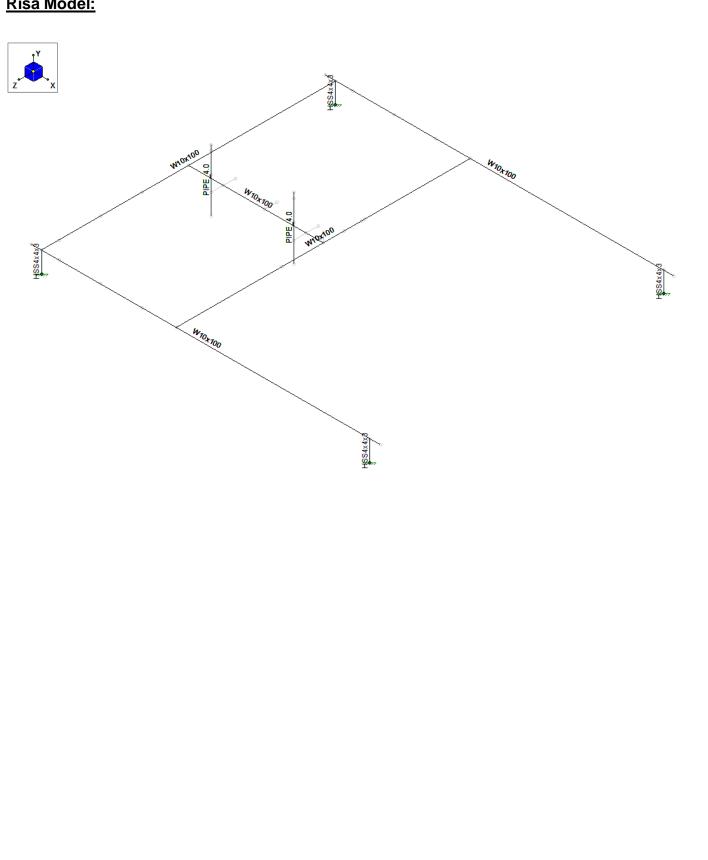
Powerwave TMA's TT19-08BP111-001

Dimensions:	$h_{a1} \coloneqq 9.9 \cdot in$ $w_{a1} \coloneqq 6.7 \cdot in$ $d_{a1} \coloneqq 5.4 \cdot in$	
Weight:	DL _{a5} := 16lbf Assumed 15lbs for mounting	
Area (Normal):	$A_{N} := h_{a1} \cdot w_{a1} = 0.461 \text{ ft}^{2}$	
Area (Side):	$A_{\rm T} := h_{a1} \cdot d_{a1} = 0.371 \text{ ft}^2$	
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}(h_{a1}, w_{a1}) = 1.2$	
Force Coefficient (Side):	$C_{f_T} := C_{f_square}(h_{a1}, d_{a1}) = 1.2$	
Front Effective Projected Area:	$EPA_N := C_{f_N} \cdot A_N = 0.553 \text{ ft}^2$	
Side Effective Projected Area:	$EPA_T := C_{f_T} \cdot A_T = 0.446 \text{ ft}^2$	
Effective Projected Area:	$EPA_a := max(EPA_N, EPA_T) = 0.553 \text{ ft}^2$	
Wind Force:	$F_{a5} := q_z \cdot G_h \cdot EPA_a = 10.326 \cdot lbf$	(Section 2.6.9.2, P. 20)

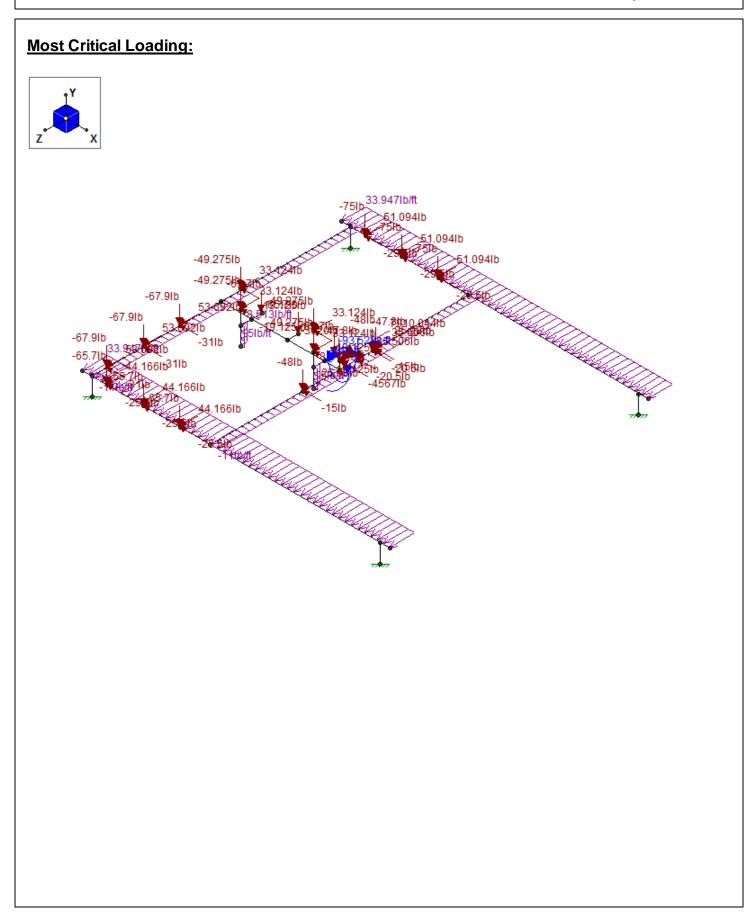
DC6 Squid

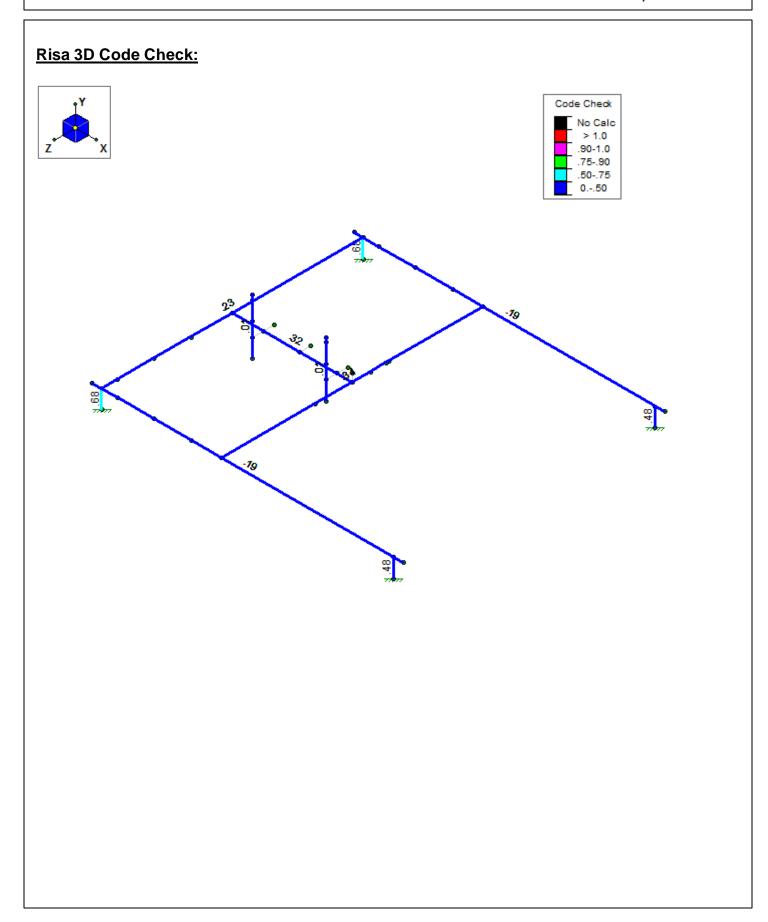
Dimensions:	$h_{a2} := 24 \cdot in$	$w_{a2} := 11 \cdot in$	$d_{a2} := 11 \cdot in$		
Weight:	$DL_{a6} := 47.8lbf$				
Area (Normal):	$A_N := h_{a2} \cdot w_{a2} = 1$.833 ft ²			
Area (Side):	$A_{\mathrm{T}} \coloneqq h_{a2} \cdot d_{a2} = 1.$	833 ft^2			
Force Coefficient (Normal):	$C_{f_N} := C_{f_square}$	$(h_{a2}, w_{a2}) = 1.2$			
Force Coefficient (Side):	$C_{f_T} := C_{f_square}$	$(h_{a2}, d_{a2}) = 1.2$			
Front Effective Projected Area:	$EPA_N := C_{f_N} \cdot A_N$	$f = 2.2 {\rm ft}^2$			
Side Effective Projected Area:	$EPA_T := C_{f_T} \cdot A_T$	$= 2.2 \mathrm{ft}^2$			
Effective Projected Area:	$EPA_a := max(EPA)$	$(N, EPA_T) = 2.2 \text{ ft}^2$			
Wind Force:	$\mathbf{F}_{a6} \coloneqq \mathbf{q}_{z} \cdot \mathbf{G}_{h} \cdot \mathbf{EPA}_{a}$	$h_{\rm h} = 41.098 \cdot {\rm lbf}$		(Section 2.6.9.2, P. 20))

Antenna Mount Loading:


4.0" STD Loading:

Height:	$h_{m1} := 60in$	
Width:	$w_{m1} := 4 \cdot in$	
Area:	$A_a := h_{m1} \cdot w_{m1} = 1.667 \text{ ft}^2$	
Force Coefficient:	$C_{f} := C_{f_square}(h_{m1}, w_{m1}) = 1.667$	
Wind Load:	$\mathbf{f}_{m1} \coloneqq \mathbf{q}_z \cdot \mathbf{G}_h \cdot \mathbf{C}_f \cdot \mathbf{w}_{m1} = 10.378 \cdot \text{plf}$	(Section 2.6.9.2, P. 20)
<u>W10 Beam Loading:</u>		
Height:	$h_{m2} := 10in$	
Width:	$w_{m2} \coloneqq 12in$	
Area:	$A_a := h_{m2} \cdot w_{m2} = 0.833 \text{ ft}^2$	
Force Coefficient:	$C_f := C_{f_square}(h_{m2}, w_{m2}) = 1.2$	
Wind Load:	$f_{m2} := q_z \cdot G_h \cdot C_f \cdot w_{m2} = 22.417 \cdot plf$	(Section 2.6.9.2, P. 20)


Summary:


	<u>Dead Load</u> (No Ice)	<u>Wind Load</u> (No Ice)
RRUS 11	$DL_{a1} = 65 lbf$	$F_{a1} = 52 lbf$
RRUS 32	$DL_{a2} = 66 lbf$	$F_{a2} = 51 lbf$
RRUS 32 B2	$DL_{a3} = 68 lbf$	$F_{a3} = 62 lbf$
RRUS E2	$DL_{a4} = 75 lbf$	$F_{a4} = 59 lbf$
Powerwave TT19 TMA	$DL_{a5} = 16 lbf$	$F_{a5} = 10 lbf$
DC6 Squid	$DL_{a6} = 48 lbf$	$F_{a6} = 41 lbf$
4.0" Pipe Loading Loading		$f_{m1} = 10 \cdot plf$
W Beam Wind Loading:		$f_{m2} = 22 \cdot plf$

Mount Analysis FA #: 10009966 Site Name:Jackson National Site ID:551D3804

Existing Dead Load:

The total load of the Equipment platform, Monopole, Mount and Existing Antennas:

Equipment Platform:	1584lbs
Monopole :	3020lbs
Antenna Mount:	492lbs
Existing Antennas:	668.11bs
Existing RRH's+TMA+Squid	533.8lbf
$DL_{Exist} := 1584lbf + 3020lbf$	$+ 492 \text{lbf} + 668 \text{lbf} + 533.8 \text{lbf} = 6.298 \times 10^3 \text{lbf}$

Proposed Dead Load:

Total Weight of Proposed RRHS :

 $DL_{Prop} := 3DL_{a2} + 3DL_{a3} + 3DL_{a4} + 1DL_{a6} = 673.6 \cdot lbf$

 $\text{Ratio} := \frac{\text{DL}_{\text{Prop}}}{\text{DL}_{\text{Exist}}} \cdot 100 = 10.696$