Crown Castle
3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065

September 15, 2016

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: \quad Notice of Exempt Modification for AT\&T/ LTE 3C Crown Site BU: 842862
 AT\&T Site ID: CT5048
 259 Commerce Street, East Haven, CT 06512
 Latitude: $41^{\circ} 15$ ' 22.88"/ Longitude: -72 $52 ' ~ 32.8 " ~$

Dear Ms. Bachman:
AT\&T currently maintains six (6) antennas at the 55 -foot level of the existing 59 -foot monopole tower at 259 Commerce Street in East Haven, CT. The tower is owned by Crown Castle. The property is owned by Stephen Viglione. AT\&T now intends to replace three (3) antenna with three (3) new antennas. These antennas would be installed at the 55 -foot level of the tower. AT\&T also intends to install three (3) RRUS12/A2s.

This facility was approved by the by the Connecticut Siting Council in Petition No. 634 on July 8, 2003. This approval was given without conditions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to the Honorable Joseph A. Maturo, Jr., Mayor, Town of East Haven, as well as the property owner, and Crown Castle is the tower owner.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Jeffrey Barbadora.

Sincerely,
Jeffrey Barbadora
Real Estate Specialist
12 Gill Street, Suite 5800, Woburn, MA 01801
781-729-0053
Jeff.Barbadora@crowncastle.com
Attachments:
Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes
Tab 2: Exhibit-2: Structural Modification Report
Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

cc: The Honorable Joseph A. Maturo, Jr., Mayor Town of East Haven 250 Main Street
East Haven, CT 06512
Stephen Viglione
259 Commerce Street
East Haven, CT 06512

Petition No. 634
AT\&T Wireless
East Haven, Connecticut
Staff Report
July 8, 2003

On June 10, 2003, Connecticut Siting Council (Council) member Philip T. Ashton and S. Derek Phelps of staff met with AT\&T Wireless representatives at 259 Commerce Street in East Haven. Other persons in attendance were Lucia Chiocchio, Esq., of Cuddy \& Feder LLP; Doug Frost, Engineering Technician, of NATCOMM, LLC; Kumar Rughoobur, RF Engineer, of WFI; Ray Vergati, Project Director, of Optasite, Inc.; and George Mingione, Planning and Zoning Administrator of the Town of East Haven. AT\&T Wireless proposes to replace and expand an existing lattice tower and is petitioning the Council for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need (Certificate) is required for the modification.

Specifically, AT\&T Wireless proposes to replace and expand an existing 48' lattice tower (with a whip antenna extending to 61') with a 57' monopole to be relocated approximately 8 ' to 10 ' from the location of the existing tower. AT\&T would attach six panel antennas on T-arms to the replacement tower. The property owner's whip antenna would not be reinstalled.

The existing lattice tower is located adjacent to the west side of the existing tower. The replacement monopole is 9 ' taller than the existing tower, but the overall height of the proposed facility will be approximately 1' lower in total height.

The proposed tower needs to be relocated approximately 8^{\prime} to 10 ' from the location of the existing lattice tower for construction purposes. Associated equipment cabinets will be installed on a 7 ’ $\mathrm{x} 13^{\prime}$ concrete pad located at the base of the pole surrounded by an 8^{\prime} vinyl stockade fence, which will be screened with 6' evergreen trees. The utilities will be installed underground.

At the request of the Council, AT\&T Wireless wrote to six nearby residents on June 12, 2003, whose homes are within sight of the proposed tower location to advise them of the petition application. Those homeowners are: Antonio Rossano; Robert A. Esposito; Rita Compano; Phyllis Naqstri and Linda Lawson; Sebatiano and Maria DiBona; and Anne M. Fitzgerald. These persons were asked to forward comments to the Council by June 3, 2003. One resident, Rita Compano, sent a letter stating that she is not in favor of the petition primarily on the basis of concerns that it will adversely affect the property value of her home.

George Mingione, Planning and Zoning Administrator of the Town of East Haven, wrote to the Council in a letter dated June 11, 2003, stating that the town's preference is for vinyl fencing around the tower compound, not less than six feet tall, with evergreen plantings.

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2011.

TOWN of EAST HAVEN ASSESSOR

Information on the Property Records for the Municipality of East Haven was last updated on 9/15/2016.

Parcel Information

Location:	259 COMMERCE ST	Property Use:	Industrial	Primary Use:	Light Industrial
Unique ID:	V0098600	Map Block Lot:	0901013005	Acres:	0.49
490 Acres:	0.00	Zone:	LI-2	Volume /	$0322 / 0838$
Developers Map / Lot:	PT.4\&7	Census:	1801000		

Value Information

	Appraised Value	70% Assessed Value
Land	114,000	79,800

	Appraised Value	70% Assessed Value
Buildings	201,930	141,350
Detached Outbuildings	884,070	618,850
Total	$1,200,000$	840,000

Owner's Information

Owner's Data
VIGLIONE STEPHEN J
259 COMMERCE ST
EAST HAVEN CT 06512

Building 1

Category:	Industrial	Use:	Light Manu	GLA:	20,660
Stories:	1.00	Construction:	Average	Year Built:	1956
Heating:	FHA	Fuel:	Gas	Cooling Percent:	20%
Siding:	Concrete Block/B. V. Solid	Roof Material:		Beds/Units:	0

Special Features

Wet Sprinklers	3160

Attached Components

Type:	Year Built:	Area:
Canopy	1984	2,078
Covered Loading Dock	1984	783

Building 2

Category:	Cell Tower	Use:	Cell Tower	GLA:	1
Stories:	0.00	Construction:	Average	Year Built:	2011

Heating:		Fuel:		Cooling Percent:	0%
Siding:		Roof Material:		Beds/Units:	0

Special Features

Attached Components

Detached Outbuildings

Type:	Year Built:	Length:	Width:	Area:
Monopole Cell Towers	2011		1	
Monopole Cell Towers	2012		1	
Cell Tower Mounted roof top	2011		1	
Cell Tower Mounted roof top	2011			
Fencing	1956			1
Paving	1956		400	

Owner History - Sales

Owner Name	Volume	Page	Sale Date	Deed Type	Valid Sale	Sale Price
VIGLIONE STEPHEN J	322	838	$03 / 19 / 1981$		No	\$0

Building Permits

| Permit
 Number | Permit
 Type | Date
 Opened | Date
 Closed | Permit
 Status | Reason |
| :--- | :--- | :--- | :--- | :--- | :--- | | |
| :--- |

Information Published With Permission From The Assessor

enereal constructon

for the puroose

3.

 AL Work carrid out shal corpl mi al

6. UNESS Mo

17. THEV COOTRACTOR SHALL CONNACT TUUTY HOCATNG
18. OENEAL Contractor stall coronat AND MANAN

25. Contractor sial MMMz igstrance To HE

27. THE Suacrab shal ge froubt ro Amoth unfor

O. NO MOR To PAMENT.

31. Convonctor. Shall leave premses in a clean

34. No OROOOTTOOR STORAGE OR SOLD WASTE CONTANERS ARE

 antenna mounting
NTENNA MOUNTNC
0. DESIGN AND CONSTRUCTION OF ANTENNA SUPPORTS SHALL

 Cor Hict misi in silil

 ToRQUE RECUREMNNTS
51. All Re Re OMNECTONS SHALL be TIGHENED bY A Toroue

Gier \& Power cable mounine

 Coaxal cable notes
62. Trpes Ano Siss of tit Aitina cable are base on

63. Cantriactor sthal verif The down- TIL of Each

65. all jumpers to the antennas from the main

TRaNSMSSION LINE SHALL EE $1 / 2^{\circ}$ DIA. LDF ANO SHALL

 RECoMMENAatoon.

 general cable ano eoupment notes

73. CONTRACTOR SIAAL REERERCEE HiE TOWER STRUCTVRAL STreution rounina

 omill

at\&t

smartink
 ${ }^{362}$ SUELION ROAD

FULLEIRTON

 TEL: 847.90.8.8400
COA\# PEC. 0001444

\section*{| EEV | DATE | DESCRPTION |
| :--- | :--- | :--- |
| | BY | |} | | | |
| :--- | :--- | :--- |
| $106 / 28 / 16$ | 90% REVEW | KC |
| $108 / 16 / 16$ | FOR PERMIT | KC |

SITE NAME
EAST HAVEN
SOUTH
SITE NUMBER:
CTLO5048
CROWN BU \# 842862
SITE ADDRESS
EAST COMMERCE ST.
EAVEN, CT 06512

NOTES AND SPECIFICATIONS

July 20, 2016

Charles Trask
Crown Castle
3530 Toringdon Way Suite 300
Charlotte, NC 28277
(980) 209-8228

Subject:

Carrier Designation:

Crown Castle Designation:
Structural Analysis Report
AT\&T Mobility Co-Locate
Carrier Site Number:
CTL05048
Carrier Site Name:
B+T Group
1717 S. Boulder, Suite 300
Tulsa, OK 74119
(918) 587-4630
btwo@btgrp.com

Crown Castle BU Number: 842862
Crown Castle Site Name:
East Haven South
Crown Castle JDE Job Number: 380603
Crown Castle Work Order Number: 1272843
Crown Castle Application Number:
348867 Rev. 4
B+T Group Project Number:
98372.003.01

259 Commerce Street, East Haven, New Haven County, CT Latitude $41^{\circ} 15^{\prime}$ 22.88', Longitude -72 $52 ' 32.8^{\prime \prime}$ 58 Foot - Monopole Tower

Dear Charles Trask,
$B+T$ Group is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 927506, in accordance with application 348867, revision 4.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

```
LC5: Existing + Proposed Equipment
Note: See Table 1 and Table 2 for the proposed and existing loading, respectively.
```


Sufficient Capacity

This analysis has been performed in accordance with the TIA/EIA-222-F standard and 2005 CT State Building Code with 2009 amendment based upon a wind speed of 85 mph fastest mile.

All equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at $B+T$ Group appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:
B+T Engineering, Inc.

Jason Brock, E.I.
Project Engineer

Chad E. Tuttle, P.E.
Engineer of Record
COA: PEC. 0001564 Expires: 02/10/2017

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing Antenna and Cable Information
Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output

6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 58 ft . Monopole tower designed by FWT, Inc. in September of 2003. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-F.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{array}{\|c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
54.0	55.0	3	CCI Antennas	HPA-65R-BUU-H6	--	--	--
		3	Ericsson	RRUS12/RRUS A2			

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Antennas } \end{aligned}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
54.0	57.0	6	Kathrein	86010025	$\begin{aligned} & 6 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 7 / 8 \\ & 5 / 8 \\ & 3 / 8 \end{aligned}$	1
		6	Powerwave Tech.	LGP 21403			
		3	Ericsson	RRUS 11			
		1	Raycap	DC6-48-60-18-8F			
	55.0	3	Kathrein	80010121			
		3	KMW Comm.	AM-X-CD-16-65-00T-RET	--	--	2
	54.0	1	--	T-Arm Mount [TA 702-3]	--	--	1
47.0	47.0	3	Commscope	ATBT-BOTTOM-24V	$\begin{gathered} 12 \\ 6 \end{gathered}$	$\begin{gathered} 7 / 8 \\ 1-5 / 8 \end{gathered}$	1
		3	Commscope	LNX-6515DS-VTM			
		6	Ericsson	1900 MHZ G			
		3	Ericsson	KRY 112 144/1			
		3	RFS Celwave	APX16DWV-16DWVS-C			
		1	--	Platform Mount [LP 303-1]			
37.0	37.0	3	RFS Celwave	APXV18-206517S-C	6	1-5/8	1
Notes: 1) Existing Equipment 2) Equipment To Be Removed; Not Considered in This Analysis							

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{array}{\|c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
57.0	57.0	1	Generic	10' L.P Sectored Mount	--	--
		9	Generic	6'x1'x3" Panel Antenna		
52.0	52.0	2	Generic	4' STD Dish	--	--
47.0	47.0	1	Generic	10' L.P Sectored Mount	--	--
		9	Generic	6'x1'x3" Panel Antenna		

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
Online Application	AT\&T Mobility Co-Locate Rev\# 4	348867	CCI Sites
Tower Manufacturer Drawing	FWT Inc., Job No.J030902001	4291655	CCI Sites
Foundation Drawing	FWT Inc., Job No.J030902001	4529325	CCI Sites
Geotech Report	Jaworski Geotech Inc., Project No.03368G	4291659	CCI Sites
Antenna Configuration	Crown CAD Package	Date:07/18/2016	CCI Sites

3.1) Analysis Method
tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.
5) Mount areas and weights are assumed based on photographs provided.

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	\% Capacity	Pass / Fail
L1	$58-50.5$	Pole	TP19.078×17.393x0.188	1	-0.859	584.448	3.4	Pass
L2	$50.5-0$	Pole	TP30.05x18.141x0.188	2	-7.969	899.526	68.7	Pass
							Summary	
						Pole (L2)	68.7	Pass
					RATING $=$	68.7	Pass	

Table 6 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	Base	61.4	Pass
1	Base Plate	Base	64.7	Pass
1	Base Foundation(Structure)	Base	31.9	Pass
1	Base Foundation (Soil Interaction)	Base	44.7	Pass

Structure Rating (max from all components) $=$	68.7%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the existing and proposed loads. No modifications are required at this time.

APPENDIX A
TNXTOWER OUTPUT

Client: Crown Castle	Drawn by: jbrock	App'd:
Code: TIA/EIA-222-F	Date: 07/20/16	Scale: NTS
Path:		${ }_{\text {dei }}{ }^{\text {dwg No. }}$ E-1

Twist (deg)

B+T Group B+T GRP 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) $587-4630$ FAX: (918) 295-0265	${ }^{\text {Pob: }} 98372.003 .01$ - EAST HAVEN SOUTH, CT (BU\# 84286		
	Client: Crown Castle	Drawn by: jbrock	App'd:
	Code: TIA/EIA-222-F	Date: 07/20/16	Scale: NTS

\qquad Round \qquad Flat \qquad App In Face \qquad App Out Face \qquad Truss Leg

tnxTower	Job 983	HAVEN SOU	$\begin{array}{ll} \hline \text { Page } \\ & \\ & \\ \text { of } 14 \end{array}$
B+T Group 1717 S Boulder Ave, Suite 300	Project		Date 15:59:21 07/20/16
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by jbrock

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in New Haven County, Connecticut.
Basic wind speed of 85 mph .
Nominal ice thickness of 0.750 in.
Ice thickness is considered to increase with height.
Ice density of 56.000 pcf .
A wind speed of 38 mph is used in combination with ice.
Temperature drop of $50.000^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
RE: Feedline Distribution Chart for transmission lines distribution..
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

[^0]Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
\checkmark Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-G Bracing Resist. Exemption
Use TIA-222-G Tension Splice Exemption Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	58.000-50.500	7.500	2.500	18	17.393	19.078	0.188	0.750	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L2	50.500-0.000	53.000		18	18.141	30.050	0.188	0.750	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

tnxTower	Job 98372.003.01 - EAST HAVEN SOUTH, CT (BU\# 842862)		$\begin{array}{ll} \text { Page } \\ & 2 \text { of } 14 \end{array}$
B+T Group 1717 S Boulder Ave, Suite 300	Project		$\begin{array}{\|l} \text { Date } \\ \text { 15:59:21 07/20/16 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by jbrock

Tapered Pole Properties

Section	Tip Dia.	Area in	I $i n^{2}$	r in	C in	I / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w in	
L1	17.661	10.239	382.955	6.108	8.836	43.342	766.414	5.121	2.731	14.566
	19.372	11.242	506.846	6.706	9.692	52.297	1014.359	5.622	3.028	
L2	18.992	10.685	435.128	6.374	9.216	47.215	870.829	5.343	2.863	16.148
	30.514	17.772	2002.277	10.601	15.265	131.164	4007.188	8.888	4.959	26.447

Tower Elevation ft	Gusset Area (per face) \qquad	Gusset Thickness in	Gusset Grad	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1				1	1	1			
58.000-50.500									
L2				1	1	1			
50.500-0.000									

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement $f t$	Total Number	Number Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight klf

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight klf
LDF2-50(3/8") (E)	C	No	Inside Pole	54.000-0.000	1	No Ice	0.000	0.000
						1/2" Ice	0.000	0.000
						$1{ }^{1 \prime}$ Ice	0.000	0.000
						2 l Ice	0.000	0.000
						4" Ice	0.000	0.000
LDF5-50A(7/8") (E)	C	No	Inside Pole	54.000-0.000	6	No Ice	0.000	0.000
						1/2" Ice	0.000	0.000
						$1{ }^{\prime \prime}$ Ice	0.000	0.000
						2 l Ice	0.000	0.000
						4" Ice	0.000	0.000
$9776(5 / 8 ")$ (E-Inside Conduite)	C	No	Inside Pole	54.000-0.000	2	No Ice	0.000	0.000
						1/2" Ice	0.000	0.000
						$1{ }^{\prime \prime}$ Ice	0.000	0.000
						2 " Ice	0.000	0.000
						4 " Ice	0.000	0.000
2-1/4" Rigid Conduit (E)	C	No	CaAa (Out Of Face)	54.000-0.000	1	No Ice	0.225	0.003
						1/2" Ice	0.325	0.005
						$1{ }^{\prime \prime}$ Ice	0.425	0.007
						2" Ice	0.625	0.013
						4 " Ice	1.025	0.034
_								
2" Rigid Conduit (E)	B	No	Inside Pole	47.000-0.000	6	No Ice	0.000	0.003
						1/2" Ice	0.000	0.003
						$1{ }^{\prime \prime}$ Ice	0.000	0.003

tnXTOWer	Job $98372.003 .01 ~-~ E A S T ~ H A V E N ~ S O U T H, ~ C T ~(B U \# ~ 842862) ~$	Page
	Project	Client \quad Crown Castle

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight klf
AVA7-50(1-5/8") (E)	B	No	Inside Pole	47.000-0.000	6	2" Ice	0.000	0.003
						4 " Ice	0.000	0.003
						No Ice	0.000	0.001
						1/2" Ice	0.000	0.001
					12	$1{ }^{\prime \prime}$ Ice	0.000	0.001
	B	No	Inside Pole	47.000-0.000		2" Ice	0.000	0.001
LDF5-50A(7/8") (E)						4 " Ice	0.000	0.001
						No Ice	0.000	0.000
						1/2" Ice	0.000	0.000
						$1^{\prime \prime}$ Ice	0.000	0.000
	C	No	Inside Pole	37.000-0.000		2 " Ice	0.000	0.000
LDF7-50A(1-5/8") (E)					6	4 " Ice	0.000	0.000
						No Ice	0.000	0.001
						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
						$2^{\prime \prime}$ Ice	0.000	0.001
Safety Line 3/8 (E)						4 " Ice	0.000	0.001
	A	No	CaAa (Out Of Face)	58.000-0.000	1			
						No Ice	0.037	0.000
						1/2" Ice	0.137	0.001
						$1{ }^{1 \prime}$ Ice	0.238	0.001
						2 " Ice	0.437	0.002
						4 " Ice	0.838	0.004
$\begin{gathered} * * * * \\ \text { LDF4P-50A(1/2") } \\ \text { (E-Light cord) } \end{gathered}$	B	No	Inside Pole	58.000-0.000	1			
							0.000	0.000
						1/2" Ice	0.000	0.000
						1 " Ice	0.000	0.000
						2 " Ice	0.000	0.000
						4 " Ice	0.000	0.000
_								

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation $f t$	Face	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	$f t$		$f t^{2}$	$f t^{2}$	${f t^{2}}^{2}$	$f t^{2}$	K
L1	$58.000-50.500$	A	0.000	0.000	0.000	0.281	0.002
		B	0.000	0.000	0.000	0.000	0.001
		C	0.000	0.000	0.000	0.787	0.020
L2	$50.500-0.000$	A	0.000	0.000	0.000	1.894	0.011
		B	0.000	0.000	0.000	0.000	1.181
		C	0.000	0.000	0.000	11.363	0.465

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation ft \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Ice
Thickness
in \& A_{R}
$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$
In Face In Face ft^{2} \& $C_{A} A_{A}$
Out Face
$f t^{2}$ \& Weight
K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{58.000-50.500} \& A \& \multirow[t]{3}{*}{0.796} \& 0.000 \& 0.000 \& 0.000 \& 1.475 \& 0.008

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.001

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 1.345 \& 0.030

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{50.500-0.000} \& A \& \multirow[t]{3}{*}{0.750} \& 0.000 \& 0.000 \& 0.000 \& 9.933 \& 0.054

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 1.181

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 19.402 \& 0.619

\hline
\end{tabular}

tnxTower	Job 98372.003.01 - EAST HAVEN SOUTH, CT (BU\# 842862)		Page 4 of 14
B+T Group 1717 S Boulder Ave, Suite 300	Project		$\begin{aligned} & \text { Date } \\ & \text { 15:59:21 07/20/16 } \end{aligned}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by jbrock

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{Z}$
			Ice	Ice	
	$f t$	in	in	in	in
L1	$58.000-50.500$	-0.128	0.022	-0.179	-0.118
L2	$50.500-0.000$	-0.259	0.100	-0.369	-0.005

Discrete Tower Loads

tnxTower	Job 98372.003.01 - EAST HAVEN SOUTH, CT (BU\# 842862)		$\begin{array}{ll} \hline \text { Page } \\ & 5 \text { of } 14 \end{array}$
B+T Group 1717 S Boulder Ave, Suite 300	Project		Date 15:59:21 07/20/16
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by jbrock

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
ft \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ Front |
| :--- |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multirow{8}{*}{| 80010121 w/ Mount Pipe |
| :--- |
| (E) |} \& \multirow{7}{*}{B} \& \multirow{7}{*}{From Leg} \& \multirow[t]{3}{*}{1.000} \& \multirow{6}{*}{0.000} \& \multirow{6}{*}{54.000} \& 1" Ice \& 6.676 \& 6.046 \& 0.168

\hline \& \& \& \& \& \& 2" Ice \& 7.695 \& 7.526 \& 0.298

\hline \& \& \& \& \& \& 4 " Ice \& 9.858 \& 10.832 \& 0.675

\hline \& \& \& 3.000 \& \& \& No Ice \& 5.685 \& 4.600 \& 0.066

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 6.182 \& 5.351 \& 0.114

\hline \& \& \& 1.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.676 \& 6.046 \& 0.168

\hline \& \& \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{54.000} \& 2" Ice \& 7.695 \& 7.526 \& 0.298

\hline \& \multirow{5}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \& \& 4 " Ice \& 9.858 \& 10.832 \& 0.675

\hline \multirow[t]{5}{*}{| 80010121 w/ Mount Pipe |
| :--- |
| (E) |} \& \& \& 3.000 \& \& \& No Ice \& 5.685 \& 4.600 \& 0.066

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 6.182 \& 5.351 \& 0.114

\hline \& \& \& 1.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.676 \& 6.046 \& 0.168

\hline \& \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{54.000} \& 2" Ice \& 7.695 \& 7.526 \& 0.298

\hline \& \multirow{4}{*}{A} \& \& \& \& \& 4 " Ice \& 9.858 \& 10.832 \& 0.675

\hline \multirow[t]{4}{*}{| (2) 86010025 |
| :--- |
| (E) |} \& \& \& 3.000 \& \& \& No Ice \& 0.163 \& 0.136 \& 0.001

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.229 \& 0.199 \& 0.003

\hline \& \& \& 3.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.302 \& 0.270 \& 0.005

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{54.000} \& 2" Ice \& 0.476 \& 0.439 \& 0.014

\hline \multirow{5}{*}{| (2) 86010025 |
| :--- |
| (E) |} \& \& \& \& \& \& 4" Ice \& 0.927 \& 0.879 \& 0.051

\hline \& \& \& 3.000 \& \& \& No Ice \& 0.163 \& 0.136 \& 0.001

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.229 \& 0.199 \& 0.003

\hline \& \& \& 3.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.302 \& 0.270 \& 0.005

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{54.000} \& 2" Ice \& 0.476 \& 0.439 \& 0.014

\hline \multirow{4}{*}{| (2) 86010025 |
| :--- |
| (E) |} \& \& \& \& \& \& 4" Ice \& 0.927 \& 0.879 \& 0.051

\hline \& \& \& 3.000 \& \& \& No Ice \& 0.163 \& 0.136 \& 0.001

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.229 \& 0.199 \& 0.003

\hline \& \& \& 3.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.302 \& 0.270 \& 0.005

\hline \multirow{5}{*}{| (2) LGP 21403 |
| :--- |
| (E) |} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{54.000} \& 2" Ice \& 0.476 \& 0.439 \& 0.014

\hline \& \& \& \& \& \& 4" Ice \& 0.927 \& 0.879 \& 0.051

\hline \& \& \& 3.000 \& \& \& No Ice \& 1.288 \& 0.364 \& 0.014

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.445 \& 0.479 \& 0.021

\hline \& \& \& 3.000 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.611 \& 0.602 \& 0.030

\hline \multirow{5}{*}{| (2) LGP 21403 |
| :--- |
| (E) |} \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{54.000} \& 2 " Ice \& 1.969 \& 0.874 \& 0.055

\hline \& \& \& \& \& \& 4" Ice \& 2.788 \& 1.522 \& 0.135

\hline \& \& \& 3.000 \& \& \& No Ice \& 1.288 \& 0.364 \& 0.014

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.445 \& 0.479 \& 0.021

\hline \& \& \& 3.000 \& \& \& $1^{\prime \prime}$ Ice \& 1.611 \& 0.602 \& 0.030

\hline \multirow{6}{*}{| (2) LGP 21403 |
| :--- |
| (E) |} \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{54.000} \& 2 " Ice \& 1.969 \& 0.874 \& 0.055

\hline \& \& \& \& \& \& 4" Ice \& 2.788 \& 1.522 \& 0.135

\hline \& \& \& 3.000 \& \& \& No Ice \& 1.288 \& 0.364 \& 0.014

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.445 \& 0.479 \& 0.021

\hline \& \& \& 3.000 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.611 \& 0.602 \& 0.030

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{54.000} \& 2 " Ice \& 1.969 \& 0.874 \& 0.055

\hline \multirow{4}{*}{| RRUS 11 |
| :--- |
| (E) |} \& \& \& \& \& \& 4" Ice \& 2.788 \& 1.522 \& 0.135

\hline \& \& \& 3.000 \& \& \& No Ice \& 3.249 \& 1.373 \& 0.048

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.491 \& 1.551 \& 0.068

\hline \& \& \& 3.000 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.741 \& 1.738 \& 0.092

\hline \multirow{6}{*}{| RRUS 11 |
| :--- |
| (E) |} \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{54.000} \& 2" Ice \& 4.268 \& 2.138 \& 0.150

\hline \& \& \& \& \& \& 4" Ice \& 5.426 \& 3.042 \& 0.310

\hline \& \& \& 3.000 \& \& \& No Ice \& 3.249 \& 1.373 \& 0.048

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.491 \& 1.551 \& 0.068

\hline \& \& \& 3.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.741 \& 1.738 \& 0.092

\hline \& \multirow{6}{*}{C} \& \multirow{6}{*}{From Leg} \& \& \multirow{6}{*}{0.000} \& \multirow{6}{*}{54.000} \& 2" Ice \& 4.268 \& 2.138 \& 0.150

\hline \multirow{5}{*}{| RRUS 11 |
| :--- |
| (E) |} \& \& \& \& \& \& 4" Ice \& 5.426 \& 3.042 \& 0.310

\hline \& \& \& 3.000 \& \& \& No Ice \& 3.249 \& 1.373 \& 0.048

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.491 \& 1.551 \& 0.068

\hline \& \& \& 3.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.741 \& 1.738 \& 0.092

\hline \& \& \& \& \& \& 2 " Ice \& 4.268 \& 2.138 \& 0.150

\hline
\end{tabular}

tnxTower	Job 983	HAVEN SOU	Page 6 of 14
B+T Group 1717 S Boulder Ave, Suite 300	Project		$\begin{aligned} & \text { Date } \\ & \text { 15:59:21 07/20/16 } \end{aligned}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by jbrock

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment 0	Placement $f t$		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight K
DC6-48-60-18-8F (E)	A	From Leg		0.000	54.000	4" Ice	5.426	3.042	0.310
			3.000			No Ice	1.467	1.467	0.019
			0.000			1/2" Ice	1.667	1.667	0.037
			3.000			$1^{\prime \prime}$ Ice	1.878	1.878	0.057
						2 " Ice	2.333	2.333	0.105
	A					4 " Ice	3.378	3.378	0.239
6' x 2" Mount Pipe (E-per photo)		From Leg	1.000	0.000	54.000	No Ice	1.425	1.425	0.022
			0.000			1/2' Ice	1.925	1.925	0.033
			-2.000			$1^{\prime \prime}$ Ice	2.294	2.294	0.048
						2 " Ice	3.060	3.060	0.090
						4 " Ice	4.702	4.702	0.231
6^{\prime} x $2^{\prime \prime}$ Mount Pipe (E-per photo)	B	From Leg		0.000	54.000	No Ice	1.425	1.425	0.022
			0.000			$1 / 2^{\prime \prime} \text { Ice }$	1.925	1.925	0.033
			-2.000			$1^{\prime \prime}$ Ice	2.294	2.294	0.048
						2 " Ice	3.060	3.060	0.090
						$4{ }^{\text {" Ice }}$	4.702	4.702	0.231
6' x 2" Mount Pipe (E-per photo)	C	From Leg		0.000	54.000	No Ice	1.425	1.425	0.022
			0.000			1/2' Ice	1.925	1.925	0.033
			-2.000			$1{ }^{\prime \prime}$ Ice	2.294	2.294	0.048
						2 " Ice	3.060	3.060	0.090
						4 " Ice	4.702	4.702	0.231
Side Arm Mount [SO 102-3] (E)	C	None		0.000	52.000	No Ice	3.000	3.000	0.081
						1/2" Ice	3.480	3.480	0.111
						$1^{\prime \prime}$ Ice	3.960	3.960	0.141
						2 " Ice	4.920	4.920	0.201
						4 " Ice	6.840	6.840	0.321
T-Arm Mount [TA 702-3] (E)	C	None		0.000	54.000	No Ice	5.640	5.640	0.339
						1/2" Ice	6.550	6.550	0.429
						$1^{\prime \prime}$ Ice	7.460	7.460	0.519
						$2^{\prime \prime}$ Ice	9.280	9.280	0.699
						4 " Ice	12.920	12.920	1.059
_									
APX16DWV-16DWVS-C w/ Mount Pipe (E)	A	From Leg	4.000	0.000	47.000	No Ice	7.466	3.494	0.061
			0.000			1/2' Ice	7.994	4.263	0.110
			0.000			$1^{\prime \prime}$ Ice	8.518	4.960	0.165
						2 " Ice	9.595	6.403	0.298
						4 " Ice	11.873	9.490	0.683
APX16DWV-16DWVS-C w/ Mount Pipe (E)	B	From Leg	4.000	0.000	47.000	No Ice	7.466	3.494	0.061
			0.000			1/2' Ice	7.994	4.263	0.110
			0.000			$1^{\prime \prime}$ Ice	8.518	4.960	0.165
						$2^{\prime \prime}$ Ice	9.595	6.403	0.298
						4 " Ice	11.873	9.490	0.683
APX16DWV-16DWVS-C w/ Mount Pipe (E)	C	From Leg	4.000	0.000	47.000	No Ice	7.466	3.494	0.061
			0.000			1/2' Ice	7.994	4.263	0.110
			0.000			$1^{\prime \prime}$ Ice	8.518	4.960	0.165
						$2^{\prime \prime}$ Ice	9.595	6.403	0.298
						4" Ice	11.873	9.490	0.683
LNX-6515DS-VTM w/ Mount Pipe (E)	A	From Leg	4.000	0.000	47.000	No Ice	11.683	9.842	0.083
			0.000			1/2' Ice	12.404	11.366	0.173
			0.000			$1^{\prime \prime}$ Ice	13.135	12.914	0.273
						2 " Ice	14.601	15.267	0.506
						4" Ice	17.875	20.139	1.151
LNX-6515DS-VTM w/ Mount Pipe (E)	B	From Leg	4.000	0.000	47.000	No Ice	11.683	9.842	0.083
			0.000			1/2' Ice	12.404	11.366	0.173
			0.000			$1^{\prime \prime}$ Ice	13.135	12.914	0.273
						2 " Ice	14.601	15.267	0.506
						4 " Ice	17.875	20.139	1.151

tnxTower	Job 98372.003.01 - EAST HAVEN SOUTH, CT (BU\# 842862)		$\begin{array}{ll} \hline \text { Page } \\ & \\ \end{array}$
B+T Group 1717 S Boulder Ave, Suite 300	Project		Date 15:59:21 07/20/16
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by jbrock

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or Leg
\end{tabular} \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$
Front

$f t^{2}$ \& $C_{A} A_{A}$ Side $f t^{2}$ \& Weight

\hline \multirow[t]{5}{*}{| LNX-6515DS-VTM w/ |
| :--- |
| Mount Pipe |
| (E) |} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{47.000} \& No Ice \& 11.683 \& 9.842 \& 0.083

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 12.404 \& 11.366 \& 0.173

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 13.135 \& 12.914 \& 0.273

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 14.601 \& 15.267 \& 0.506

\hline \& \& \& \& \& \& 4" Ice \& 17.875 \& 20.139 \& 1.151

\hline \multirow[t]{5}{*}{| (2) 1900 MHZ G |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{47.000} \& No Ice \& 0.272 \& 0.506 \& 0.018

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.348 \& 0.620 \& 0.024

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.432 \& 0.743 \& 0.032

\hline \& \& \& \& \& \& 2" Ice \& 0.627 \& 1.015 \& 0.055

\hline \& \& \& \& \& \& 4" Ice \& 1.119 \& 1.664 \& 0.129

\hline \multirow[t]{5}{*}{| (2) 1900 MHZ G |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{47.000} \& No Ice \& 0.272 \& 0.506 \& 0.018

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.348 \& 0.620 \& 0.024

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 0.432 \& 0.743 \& 0.032

\hline \& \& \& \& \& \& 2" Ice \& 0.627 \& 1.015 \& 0.055

\hline \& \& \& \& \& \& 4" Ice \& 1.119 \& 1.664 \& 0.129

\hline \multirow[t]{5}{*}{| (2) 1900 MHZ G |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{47.000} \& No Ice \& 0.272 \& 0.506 \& 0.018

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.348 \& 0.620 \& 0.024

\hline \& \& \& 0.000 \& \& \& $1{ }^{1 \prime}$ Ice \& 0.432 \& 0.743 \& 0.032

\hline \& \& \& \& \& \& 2" Ice \& 0.627 \& 1.015 \& 0.055

\hline \& \& \& \& \& \& 4" Ice \& 1.119 \& 1.664 \& 0.129

\hline \multirow[t]{5}{*}{| KRY 112 144/1 |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{47.000} \& No Ice \& 0.408 \& 0.204 \& 0.011

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.497 \& 0.273 \& 0.014

\hline \& \& \& 0.000 \& \& \& 1 " Ice \& 0.594 \& 0.351 \& 0.019

\hline \& \& \& \& \& \& 2" Ice \& 0.815 \& 0.533 \& 0.032

\hline \& \& \& \& \& \& 4" Ice \& 1.359 \& 0.999 \& 0.082

\hline \multirow[t]{5}{*}{| KRY 112 144/1 |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{47.000} \& No Ice \& 0.408 \& 0.204 \& 0.011

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.497 \& 0.273 \& 0.014

\hline \& \& \& 0.000 \& \& \& 1 " Ice \& 0.594 \& 0.351 \& 0.019

\hline \& \& \& \& \& \& 2 " Ice \& 0.815 \& 0.533 \& 0.032

\hline \& \& \& \& \& \& 4" Ice \& 1.359 \& 0.999 \& 0.082

\hline \multirow[t]{5}{*}{| KRY 112 144/1 |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{47.000} \& No Ice \& 0.408 \& 0.204 \& 0.011

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.497 \& 0.273 \& 0.014

\hline \& \& \& 0.000 \& \& \& 1 " Ice \& 0.594 \& 0.351 \& 0.019

\hline \& \& \& \& \& \& 2 " Ice \& 0.815 \& 0.533 \& 0.032

\hline \& \& \& \& \& \& 4" Ice \& 1.359 \& 0.999 \& 0.082

\hline \multirow[t]{5}{*}{| ATBT-BOTTOM-24V |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{47.000} \& No Ice \& 0.121 \& 0.075 \& 0.003

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.172 \& 0.119 \& 0.004

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 0.232 \& 0.172 \& 0.006

\hline \& \& \& \& \& \& 2" Ice \& 0.377 \& 0.303 \& 0.013

\hline \& \& \& \& \& \& 4" Ice \& 0.771 \& 0.668 \& 0.045

\hline \multirow[t]{5}{*}{| ATBT-BOTTOM-24V |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{47.000} \& No Ice \& 0.121 \& 0.075 \& 0.003

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.172 \& 0.119 \& 0.004

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 0.232 \& 0.172 \& 0.006

\hline \& \& \& \& \& \& 2 " Ice \& 0.377 \& 0.303 \& 0.013

\hline \& \& \& \& \& \& 4" Ice \& 0.771 \& 0.668 \& 0.045

\hline \multirow[t]{5}{*}{| ATBT-BOTTOM-24V |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{47.000} \& No Ice \& 0.121 \& 0.075 \& 0.003

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.172 \& 0.119 \& 0.004

\hline \& \& \& 0.000 \& \& \& 1 " Ice \& 0.232 \& 0.172 \& 0.006

\hline \& \& \& \& \& \& 2" Ice \& 0.377 \& 0.303 \& 0.013

\hline \& \& \& \& \& \& 4 " Ice \& 0.771 \& 0.668 \& 0.045

\hline \multirow[t]{5}{*}{7'x2" Antenna Mount Pipe (E)} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{47.000} \& No Ice \& 1.663 \& 1.663 \& 0.026

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.391 \& 2.391 \& 0.039

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 2.825 \& 2.825 \& 0.056

\hline \& \& \& \& \& \& 2" Ice \& 3.706 \& 3.706 \& 0.105

\hline \& \& \& \& \& \& 4" Ice \& 5.578 \& 5.578 \& 0.266

\hline \multirow[t]{2}{*}{| 7'x2" Antenna Mount Pipe |
| :--- |
| (E) |} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 4.000 \& \multirow[t]{2}{*}{0.000} \& \multirow[t]{2}{*}{47.000} \& No Ice \& 1.663 \& 1.663 \& 0.026

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.391 \& 2.391 \& 0.039

\hline
\end{tabular}

tnXTOWer	Job $98372.003 .01 ~-~ E A S T ~ H A V E N ~ S O U T H, ~ C T ~(B U \# ~ 842862) ~$	Page
	Project	Client \quad Crown Castle

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ ft	Azimuth Adjustment 。	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
7'x2" Antenna Mount Pipe (E)	C	From Leg	0.000	0.000	47.000	1" Ice	2.825	2.825	0.056
						2 " Ice	3.706	3.706	0.105
						4 " Ice	5.578	5.578	0.266
			4.000			No Ice	1.663	1.663	0.026
			0.000			1/2" Ice	2.391	2.391	0.039
			0.000			1" Ice	2.825	2.825	0.056
	C	None		0.000	47.000	2 " Ice	3.706	3.706	0.105
						4 " Ice	5.578	5.578	0.266
Platform Mount [LP 303-1] (E)						No Ice	14.660	14.660	1.250
						1/2" Ice	18.870	18.870	1.481
						1 " Ice	23.080	23.080	1.713
						2 " Ice	31.500	31.500	2.175
						4 " Ice	48.340	48.340	3.101

APXV18-206517S-C w/ Mount Pipe (E-Direct to mount pole)	A	From Leg	1.000	0.000	37.000	No Ice	5.404	4.700	0.052
			0.000			1/2" Ice	5.960	5.860	0.097
			0.000			1 " Ice	6.481	6.734	0.150
						2 " Ice	7.547	8.515	0.280
						4 " Ice	9.919	12.277	0.679
APXV18-206517S-C w/ Mount Pipe (E)	B	From Leg	1.000	0.000	37.000	No Ice	5.404	4.700	0.052
			0.000			1/2" Ice	5.960	5.860	0.097
			0.000			1 " Ice	6.481	6.734	0.150
						2 " Ice	7.547	8.515	0.280
						4 " Ice	9.919	12.277	0.679
APXV18-206517S-C w/ Mount Pipe (E)	C	From Leg	1.000	0.000	37.000	No Ice	5.404	4.700	0.052
			0.000			1/2" Ice	5.960	5.860	0.097
			0.000			1" Ice	6.481	6.734	0.150
						2 " Ice	7.547	8.515	0.280
						4 " Ice	9.919	12.277	0.679
_									

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice+Temp	
15	Dead+Wind 0 deg+Ice+Temp	
16	Dead+Wind 30 deg+Ice+Temp	

tnxTower	Job 9837	HAVEN SOUT	Page 9 of	
B+T Group 1717 S Boulder Ave, Suite 300	Project		Date15:59:21 07/20/16	
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by jbrock	

Comb.		Description
No.		
17	Dead+Wind 60 deg+Ice+Temp	
18	Dead+Wind 90 deg+Ice+Temp	
19	Dead+Wind 120 deg+Ice+Temp	
20	Dead+Wind 150 deg+Ice+Temp	
21	Dead+Wind 180 deg+Ice+Temp	
22	Dead+Wind 210 deg+Ice+Temp	
23	Dead+Wind 240 deg+Ice+Temp	
24	Dead+Wind 270 deg+Ice+Temp	
25	Dead+Wind 300 deg+Ice+Temp	
26	Dead+Wind 330 deg+Ice+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

Maximum Member Forces

$\left.\begin{array}{cccccccc}\hline \begin{array}{c}\text { Section } \\ \text { No. }\end{array} & \begin{array}{c}\text { Elevation } \\ f t\end{array} & \begin{array}{c}\text { Component } \\ \text { Type }\end{array} & \text { Condition } & \begin{array}{c}\text { Gov. } \\ \text { Load }\end{array} & \begin{array}{c}\text { Force } \\ \text { Comb. }\end{array} & \begin{array}{c}\text { Major Axis } \\ \text { Moment } \\ \text { kip- } f t\end{array} & \begin{array}{c}\text { Minor Axis } \\ \text { Moment }\end{array} \\ \text { L1 } & & & & \text { Kip- } f t\end{array}\right]$

		Maximum Reactions			
Location	Rondition				Gov. Load
	Comb.	Vertical	Horizontal, X	Horizontal, Z	
			K	K	
Pole	Max. Vert	24	12.241	2.140	0.000
	Max. H_{x}	11	7.980	8.701	0.000
	Max. H_{z}	2	7.980	0.000	8.701
	Max. M_{x}	2	375.098	0.000	8.701
	Max. M_{z}	5	374.962	-8.701	0.000
	Max. Torsion	4	0.180	-7.535	4.350
	Min. Vert	1	7.980	0.000	0.000

tnxTower	Job 98372.003.01 - EAST HAVEN SOUTH, CT (BU\# 842862)		$\begin{aligned} & \text { Page } 10 \text { of } 14 \end{aligned}$
B+T Group 1717 S Boulder Ave, Suite 300	Project		$\begin{aligned} & \text { Date } \\ & \text { 15:59:21 07/20/16 } \end{aligned}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265			Designed by jbrock

Location	Condition	Gov. Load	Vertical Comb.	K	Horizontal, X
		5	Horizontal, Z K		
	Min. H_{x}	5	7.980	-8.701	
	Min. H_{Z}	8	7.980	0.000	0.000
	Min. M_{x}	8	-375.098	0.000	-8.701
	Min. M_{z}	11	-375.234	8.701	-8.701
	Min. Torsion	10	-0.180	7.535	0.000
					-4.350

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear $_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	7.980	0.000	0.000	0.001	0.134	0.000
Dead+Wind 0 deg - No Ice	7.980	0.000	-8.701	-375.098	0.136	-0.052
Dead+Wind 30 deg - No Ice	7.980	4.350	-7.535	-324.844	-187.413	-0.134
Dead+Wind 60 deg - No Ice	7.980	7.535	-4.350	-187.549	-324.708	-0.180
Dead+Wind 90 deg - No Ice	7.980	8.701	0.000	0.000	-374.962	-0.178
Dead+Wind 120 deg - No Ice	7.980	7.535	4.350	187.549	-324.708	-0.129
Dead+Wind 150 deg - No Ice	7.980	4.350	7.535	324.844	-187.413	-0.045
Dead+Wind 180 deg - No Ice	7.980	0.000	8.701	375.098	0.136	0.052
Dead+Wind 210 deg - No Ice	7.980	-4.350	7.535	324.844	187.685	0.134
Dead+Wind 240 deg - No Ice	7.980	-7.535	4.350	187.549	324.980	0.180
Dead+Wind 270 deg - No Ice	7.980	-8.701	0.000	0.000	375.234	0.179
Dead+Wind 300 deg - No Ice	7.980	-7.535	-4.350	-187.549	324.980	0.129
Dead+Wind 330 deg - No Ice	7.980	-4.350	-7.535	-324.844	187.685	0.045
Dead+Ice+Temp	12.241	0.000	0.000	-0.074	0.271	0.000
Dead+Wind 0 deg+Ice+Temp	12.241	0.000	-2.140	-93.198	0.278	-0.018
Dead+Wind 30 deg+Ice+Temp	12.241	1.070	-1.853	-80.722	-46.281	-0.041
Dead+Wind 60 deg+Ice+Temp	12.241	1.853	-1.070	-46.638	-80.365	-0.052
Dead+Wind 90 deg+Ice+Temp	12.241	2.140	0.000	-0.079	-92.841	-0.050
Dead+Wind 120 deg+Ice+Temp	12.241	1.853	1.070	46.481	-80.365	-0.034
Dead+Wind 150 deg+Ice+Temp	12.241	1.070	1.853	80.565	-46.281	-0.009
Dead+Wind 180 deg+Ice+Temp	12.241	0.000	2.140	93.040	0.278	0.018
Dead+Wind 210 deg+Ice+Temp	12.241	-1.070	1.853	80.565	46.838	0.041
Dead+Wind 240 deg+Ice+Temp	12.241	-1.853	1.070	46.481	80.922	0.052
Dead+Wind 270 deg+Ice+Temp	12.241	-2.140	0.000	-0.079	93.397	0.050
Dead+Wind 300 deg+Ice+Temp	12.241	-1.853	-1.070	-46.638	80.922	0.034
Dead+Wind 330 deg+Ice+Temp	12.241	-1.070	-1.853	-80.722	46.838	0.009
Dead+Wind 0 deg - Service	7.980	0.000	-3.011	-129.821	0.136	-0.018
Dead+Wind 30 deg - Service	7.980	1.505	-2.607	-112.428	-64.774	-0.046
Dead+Wind 60 deg - Service	7.980	2.607	-1.505	-64.911	-112.292	-0.062
Dead+Wind 90 deg - Service	7.980	3.011	0.000	0.000	-129.685	-0.062
Dead+Wind 120 deg - Service	7.980	2.607	1.505	64.911	-112.292	-0.045
Dead+Wind 150 deg - Service	7.980	1.505	2.607	112.428	-64.774	-0.015
Dead+Wind 180 deg - Service	7.980	0.000	3.011	129.821	0.136	0.018
Dead+Wind 210 deg - Service	7.980	-1.505	2.607	112.428	65.047	0.046
Dead+Wind 240 deg - Service	7.980	-2.607	1.505	64.911	112.565	0.062
Dead+Wind 270 deg - Service	7.980	-3.011	0.000	0.000	129.957	0.062
Dead+Wind 300 deg - Service	7.980	-2.607	-1.505	-64.911	112.565	0.045
Dead+Wind 330 deg - Service	7.980	-1.505	-2.607	-112.428	65.047	0.015

tnxTower	Job 98372.003.01 - EAST HAVEN SOUTH, CT (BU\# 842862)		$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$
B+T Group 1717 S Boulder Ave, Suite 300	Project		$\begin{aligned} & \text { Date } \\ & \text { 15:59:21 07/20/16 } \end{aligned}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by jbrock

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	PZ	
Comb.	K	K	K	K	K	K	
1	0.000	-7.980	0.000	0.000	7.980	0.000	0.000\%
2	0.000	-7.980	-8.701	0.000	7.980	8.701	0.000\%
3	4.350	-7.980	-7.535	-4.350	7.980	7.535	0.000\%
4	7.535	-7.980	-4.350	-7.535	7.980	4.350	0.000\%
5	8.701	-7.980	0.000	-8.701	7.980	0.000	0.000\%
6	7.535	-7.980	4.350	-7.535	7.980	-4.350	0.000\%
7	4.350	-7.980	7.535	-4.350	7.980	-7.535	0.000\%
8	0.000	-7.980	8.701	0.000	7.980	-8.701	0.000\%
9	-4.350	-7.980	7.535	4.350	7.980	-7.535	0.000\%
10	-7.535	-7.980	4.350	7.535	7.980	-4.350	0.000\%
11	-8.701	-7.980	0.000	8.701	7.980	0.000	0.000\%
12	-7.535	-7.980	-4.350	7.535	7.980	4.350	0.000\%
13	-4.350	-7.980	-7.535	4.350	7.980	7.535	0.000\%
14	0.000	-12.241	0.000	0.000	12.241	0.000	0.000\%
15	0.000	-12.241	-2.140	0.000	12.241	2.140	0.000\%
16	1.070	-12.241	-1.853	-1.070	12.241	1.853	0.000\%
17	1.853	-12.241	-1.070	-1.853	12.241	1.070	0.000\%
18	2.140	-12.241	0.000	-2.140	12.241	0.000	0.000\%
19	1.853	-12.241	1.070	-1.853	12.241	-1.070	0.000\%
20	1.070	-12.241	1.853	-1.070	12.241	-1.853	0.000\%
21	0.000	-12.241	2.140	0.000	12.241	-2.140	0.000\%
22	-1.070	-12.241	1.853	1.070	12.241	-1.853	0.000\%
23	-1.853	-12.241	1.070	1.853	12.241	-1.070	0.000\%
24	-2.140	-12.241	0.000	2.140	12.241	0.000	0.000\%
25	-1.853	-12.241	-1.070	1.853	12.241	1.070	0.000\%
26	-1.070	-12.241	-1.853	1.070	12.241	1.853	0.000\%
27	0.000	-7.980	-3.011	0.000	7.980	3.011	0.000\%
28	1.505	-7.980	-2.607	-1.505	7.980	2.607	0.000\%
29	2.607	-7.980	-1.505	-2.607	7.980	1.505	0.000\%
30	3.011	-7.980	0.000	-3.011	7.980	0.000	0.000\%
31	2.607	-7.980	1.505	-2.607	7.980	-1.505	0.000\%
32	1.505	-7.980	2.607	-1.505	7.980	-2.607	0.000\%
33	0.000	-7.980	3.011	0.000	7.980	-3.011	0.000\%
34	-1.505	-7.980	2.607	1.505	7.980	-2.607	0.000\%
35	-2.607	-7.980	1.505	2.607	7.980	-1.505	0.000\%
36	-3.011	-7.980	0.000	3.011	7.980	0.000	0.000\%
37	-2.607	-7.980	-1.505	2.607	7.980	1.505	0.000\%
38	-1.505	-7.980	-2.607	1.505	7.980	2.607	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00000001
3	Yes	4	0.00000001	0.00034964
4	Yes	4	0.00000001	0.00038664
5	Yes	4	0.00000001	0.00004772
6	Yes	4	0.00000001	0.00034386
7	Yes	4	0.00000001	0.00037329
8	Yes	4	0.00000001	0.00000001
9	Yes	4	0.00000001	0.00037740
10	Yes	4	0.00000001	0.00034288
11	Yes	4	0.00000001	0.00004775
12	Yes	4	0.00000001	0.00038508
13	Yes	4	0.00000001	0.00035314

tnxTower	Job 983	HAVEN SOU	$\begin{aligned} & \text { Page } \\ & \\ & 12 \text { of } 14 \end{aligned}$
B+T Group 1717 S Boulder Ave, Suite 300	Project		Date 15:59:21 07/20/16
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by jbrock

14	Yes	4	0.00000001	0.00000001
15	Yes	4	0.00000001	0.00015424
16	Yes	4	0.00000001	0.00016722
17	Yes	4	0.00000001	0.00016774
18	Yes	4	0.00000001	0.00015358
19	Yes	4	0.00000001	0.00016633
20	Yes	4	0.00000001	0.00016673
21	Yes	4	0.00000001	0.00015346
22	Yes	4	0.00000001	0.00016762
23	Yes	4	0.00000001	0.00016730
24	Yes	4	0.00000001	0.00015456
25	Yes	4	0.00000001	0.00016865
26	Yes	4	0.00000001	0.00016804
27	Yes	4	0.00000001	0.00000001
28	Yes	4	0.00000001	0.00000001
29	Yes	4	0.00000001	0.00002837
30	Yes	4	0.00000001	0.00000001
31	Yes	4	0.00000001	0.00000001
32	Yes	4	0.00000001	0.00002567
33	Yes	4	0.00000001	0.00000001
34	Yes	4	0.00000001	0.00002648
35	Yes	4	0.00000001	0.00000001
36	Yes	4	0.00000001	0.00000001
37	Yes	4	0.00000001	0.00002805
38	Yes	4	0.00000001	0.00000001

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	$f t$	in	Comb.	\circ	\circ
L1	$58-50.5$	5.532	37	0.713	0.001
L2	$53-0$	4.785	37	0.712	0.001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	\circ	\circ
58.000	(2) Obstruction Lighting	37	5.532	0.713	0.001	4805
54.000	HPA-65R-BUU-H6 w/ Mount Pipe	37	4.931	0.713	0.001	4805
52.000	Side Arm Mount [SO 102-3]	37	4.642	0.710	0.001	4426
47.000	APX16DWV-16DWVS-C w/ Mount	37	3.973	0.692	0.001	4430
	Pipe					
37.000	APXV18-206517S-C w/ Mount Pipe	36	2.829	0.611	0.001	5627

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		\circ
	ft	in	Comb.	\circ	\circ

tnxTower	Job		$\begin{aligned} & \text { Page } \\ & \\ & 13 \text { of } 14 \end{aligned}$
B+T Group 1717 S Boulder Ave, Suite 300	Project		Date 15:59:21 07/20/16
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by jbrock

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	$f t$	in	Comb.	\circ	\circ
L1	$58-50.5$	15.966	11	2.058	0.004
L2	$53-0$	13.812	11	2.055	0.004

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	\circ	ft
58.000	(2) Obstruction Lighting	11	15.966	2.058	0.004	1669
54.000	HPA-65R-BUU-H6 w/ Mount Pipe	11	14.232	2.058	0.004	1669
52.000	Side Arm Mount [SO 102-3]	11	13.400	2.050	0.004	1537
47.000	APX16DWV-16DWVS-C w/ Mount	11	11.467	1.997	0.004	1538
	PRipe					
37.000	APXV18-206517S-C w/ Mount Pipe	11	8.167	1.764	0.003	1953

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P_{a}	$\begin{gathered} \text { Ratio } \\ P \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		ksi	in^{2}	K	K	P_{a}
L1	58-50.5 (1)	TP19.078x17.393x0.188	7.500	0.000	0.0	39.000	11.242	-0.859	438.446	0.002
L2	50.5-0 (2)	TP30.05x18.141x0.188	53.000	0.000	0.0	37.971	17.772	-7.969	674.813	0.012

Pole Bending Design Data

Section No.	Elevation $f t$	Size	Actual M_{x} kip- $f t$	Actual $f_{b x}$ ksi	Allow. $F_{b x}$ ksi	$\begin{gathered} \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \end{gathered}$	$\begin{gathered} \hline \text { Actual } \\ M_{y} \\ \text { kip-ft } \end{gathered}$	$\begin{gathered} \text { Actual } \\ f_{b y} \\ k s i \end{gathered}$	Allow. $F_{\text {by }}$ ksi	$\begin{gathered} \text { Ratio } \\ f_{\text {by }} \\ \hline F_{\text {by }} \\ \hline \end{gathered}$
L1	58-50.5 (1)	TP19.078x17.393x0.188	7.476	1.715	39.000	0.044	0.000	0.000	39.000	0.000
L2	50.5-0 (2)	TP30.05x18.141x0.188	375.234	34.330	37.971	0.904	0.000	0.000	37.971	0.000

Pole Shear Design Data										
Section No.	Elevation	Size	Actual V	Actual f_{v}	Allow. F_{v}	Ratio f_{v}	Actual T	Actual $f_{v t}$	Allow. $F_{v t}$	Ratio $f_{v t}$
	$f t$		K	ksi	ksi	F_{v}	kip-ft	ksi	ksi	$F_{v t}$
L1	58-50.5 (1)	TP19.078x17.393x0.188	1.718	0.153	26.000	0.012	0.002	0.000	26.000	0.000
L2	50.5-0 (2)	TP30.05x18.141x0.188	8.711	0.490	26.000	0.038	0.180	0.008	26.000	0.000

tnXTOWer	Job $98372.003 .01 ~-~ E A S T ~ H A V E N ~ S O U T H, ~ C T ~(B U \# ~ 842862) ~$	Page
	Project	Client \quad Crown Castle

Pole Interaction Design Data

Section No．	Elevation $f t$	Ratio P P_{a}	$\begin{gathered} \begin{array}{c} \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 \text {. } \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{\text {by }} \\ \hline F_{b y} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{v} \\ \hline F_{v} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{v t} \\ \hline F_{v t} \\ \hline \end{gathered}$	Comb． Stress Ratio	Allow． Stress Ratio	Criteria
L1	58－50．5（1）	0.002	0.044	0.000	0.012	0.000	0.046	1.333	H1－3＋VT
L2	50．5－0（2）	0.012	0.904	0.000	0.038	0.000	0.916	1.333	H1－3＋VT

Section Capacity Table

Section No．	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ K \end{gathered}$	\％ Capacity	Pass Fail
L1	58－50．5	Pole	TP19．078x17．393x0．188	1	－0．859	584.448	3.4	Pass
L2	50．5－0	Pole	TP30．05x18．141x0．188	2	－7．969	899.526	68.7	Pass
						Pole（L2） RATING＝	$\begin{gathered} \text { Summary } \\ 68.7 \\ 68.7 \end{gathered}$	$\begin{aligned} & \text { Pass } \\ & \text { Pass } \end{aligned}$

APPENDIX B
BASE LEVEL DRAWING

(INSTALLED)
(12) 7/8" TO 47 FT LEVEL
(INSTALLED-IN CONDUIT)
(6) $1-5 / 8^{\prime \prime}$ TO 47 FT LEVEL
(INSTALLED-IN 2-1/4" CONDUIT)
(1) $3 / 8^{\prime \prime}$ TO 54 FT LEVEL
(2) $5 / 8$ " TO 54 FT LEVEL (INSTALLED)
(6) $7 / 8$ " TO 54 FT LEVEL

APPENDIX C
ADDITIONAL CALCULATIONS

Square, Stiffened / Unstiffened Base Plate, Any Rod Material - Rev. F /G
Assumptions:

1) Rod groups at corners. Total \# rods divisible by 4. Maximum total \# of rods = 48 (12 per Corner).
2) Rod Spacing = Straight Center-to-Center distance between any (2) adjacent rods (same corner)
3) Clear space between bottom of leveling nut and top of concrete not exceeding (1)*(Rod Diameter)

Site Data		
BU\#: 842862		
Site Name: EAST HAVEN SOUTH, CT App \#: 348867 Rev. 4		
Anchor Rod Data		
Eta Factor, $\mathrm{\eta}$	0.5	TIA G (Fig. 4-4)
Qty: Rod Material: Yield, Fy: Strength, Fu: Bolt Circle:	4	
	2.25	in
	A615-J	
	75	ksi
	100	ksi
	37	in

Base Reactions		
TIA Revision:	F	
Unfactored Moment, M:	375	ft-kips
Unfactored Axial, $\mathrm{P}:$	8	kips
Unfactored Shear, $\mathrm{V}:$	9	kips

Anchor Rod Results

TIA F --> Maximum Rod Tension
Allowable Tension:
119.7 Kips

Anchor Rod Stress Ratio: 195.0 Kips

Plate Data		
W=Side:	33	in
Thick:	2	in
Grade	60	ksi
Clip Distance:	3	in

Base Plate Results	Flexural Check	PL Ref. Data
Base Plate Stress:	38.8 ksi	Yield Line (in):
Allowable PL Bending Stress:	60.0 ksi	16.62
Base Plate Stress Ratio:	64.7% Pass	Max PL Length:
		16.62
N/A - Unstiffened		

Stiffener Data (Welding at both sides)		
Configuration:	Unstiffened	
Weld Type:		**
Groove Depth:		<-- Disregard
Groove Angle:		<-- Disregard
Fillet H. Weld:		in
Fillet V. Weld:		in
Width:		in
Height:		in
Thick:		in
Notch:		in
Grade:		ksi
Weld str.:		ksi

Pole Data		
Diam:	30.05	in
Thick:	0.1875	in
Grade	65	ksi
\# of Sides:	18	"0" IF Round

Stress Increase Factor		
ASD ASIF:	1.333	

Stiffener Results
Horizontal Weld : N/A
Vertical Weld: N/A
Plate Flex+Shear, fb/Fb+(fv/Fv)^2: N/A
Plate Tension+Shear, ft/Ft+(fv/Fv)^2: N/A
Plate Comp. (AISC Bracket): N/A
Pole Results
Pole Punching Shear Check: N/A

[^1]

Smartlink LLC on behalf of
 AT\&T Mobility, LLC
 Site FA - 10071016
 Site ID - CT5048 (2C)
 USID - 24481
 Site Name - East Haven South
 Site Compliance Report

259 Commerce Street
East Haven, CT 06512

Latitude: N41-15-23.01
Longitude: W72-52-32.88
Structure Type: Monopole
Report generated date: September 13, 2016
Report by: Sam Cosgrove
Customer Contact: Kristen Smith

AT\&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Sitesafe logo is a registered trademark of Site Safe, Inc. All rights reserved.

Table of Contents

1 GENERAL SITE SUMMARY 2
1.1 Report Summary 2
2 SCALE MAPS OF SITE 3
3 ANTENNA INVENTORY 5
4 EMISSION PREDICTIONS 6
5 SITE COMPLIANCE 9
5.1 Site Compliance Statement 9
5.2 Actions for Site Compliance 9
6 ENGINEER CERTIFICATION 10
APPENDIX A - STATEMENT OF LIMITING CONDITIONS 11
APPENDIX B - REGULATORY BACKGROUND INFORMATION 12
FCC Rules and Regulations 12
OSHA StATEMENT 13
APPENDIX C - SAFETY PLAN AND PROCEDURES 14
APPENDIX D - RF EMISSIONS 15
APPENDIX E - ASSUMPTIONS AND DEFINITIONS 16
General Model Assumptions 16
Use of Generic Antennas 16
Definitions 17
APPENDIX F - REFERENCES 19

1 General Site Summary

1.1 Report Summary

AT\&T Mobility, LLC	Summary
Access to Antennas Locked?	Yes
RF Sign(s) @ access point(s)	None
RF Sign(s) @ antennas	None
Barrier(s) @ sectors	None
Max cumulative simulated RFE level on the Ground Level	<1\% General Public Limit
FCC \& AT\&T Compliant?	Will Be Compliant

The following documents were provided by the client and were utilized to create this report:

RFDS: NEW-ENGLAND_CONNECTICUT_CTU5048_2017-LTE-Next-Carrier_LTE2C_om636a_PTN_...

CD's: 10071016_AE201_160816_CTLO5048_REV1 (1) JW appvd 8-19-16

2 Scale Maps of Site

The following diagrams are included:

- Site Scale Map
- RF Exposure Diagram
- Elevation View

Scale Map Key		
Existing Sign	-------* Proposed Barrier	GPS Reading
Proposed Sign	\square Existing Barrier	Anchor Point

Site Scale Map For: East Haven South

(Feet)

A business af FDH VELOCITEL

3 Antenna Inventory

The following antenna inventory on this and the following page, were obtained by the customer and were utilized to create the site model diagrams:

Ant ID	Operator	Antenna Make \& Model	Type	TX Freq (MHz)	$\begin{gathered} \text { Az } \\ \text { (Deg) } \end{gathered}$	Hor BW (Deg)	Ant Len (ft)	Ant Gain (dBd)	$\begin{aligned} & \text { 2G GSM } \\ & \text { Radio(s) } \\ & \hline \end{aligned}$	3G UMTS Radio(s)	$\begin{gathered} \text { 4G } \\ \text { Radio(s) } \end{gathered}$	Total ERP (Watts)	X	Y	$\begin{gathered} Z \\ (A G L) \end{gathered}$
1	AT\&T MOBILITY LLC (PROPOSED)	CCI Antennas HPA-65R-BUU-H6	Panel	737	10	66.2	6	11.68	0	0	1	827.9	185.7'	269.7'	54'
1	AT\&T MOBILITY LLC (PROPOSED)	CCI Antennas HPA-65R-BUU-H6	Panel	1900	10	61.1	6	14.53	0	0	1	3258.4	185.7'	269.7'	54'
2	AT\&T MOBILITY LLC	Kathrein-Scala 800-10121	Panel	850	10	87.6	4.5	11.35	0	1	0	304.1	191.4'	266.4'	54.7'
2	AT\&T MOBILITY LLC	Kathrein-Scala 800-10121	Panel	850	10	87.6	4.5	11.35	1	0	0	155.6	191.4'	266.4'	54.7 ${ }^{\prime}$
2	AT\&T MOBILITY LLC	Kathrein-Scala 800-10121	Panel	1900	10	85.7	4.5	14.32	0	1	0	502.3	191.4'	266.4'	54.7'
3	AT\&T MOBILITY LLC (PROPOSED)	CCI Antennas HPA-65R-BUU-H6	Panel	737	120	66.2	6	11.68	0	0	1	827.9	190.9'	261.8'	54^{\prime}
3	AT\&T MOBILITY LLC (PROPOSED)	CCI Antennas HPA-65R-BUU-H6	Panel	1900	120	61.1	6	14.53	0	0	1	3258.4	190.9'	261.8'	54'
4	AT\&T MOBILITY LLC	Kathrein-Scala 800-10121	Panel	850	120	87.6	4.5	11.35	0	1	0	304.1	185.7'	257.5'	54.7'
4	AT\&T MOBILITY LLC	Kathrein-Scala 800-10121	Panel	850	120	87.6	4.5	11.35	1	0	0	155.6	185.7'	257.5'	54.7
4	AT\&T MOBILITY LLC	Kathrein-Scala 800-10121	Panel	1900	120	85.7	4.5	14.32	0	1	0	479.7	185.7	257.5'	54.7
5	AT\&T MOBILITY LLC (PROPOSED)	CCI Antennas HPA-65R-BUU-H6	Panel	737	240	66.2	6	11.68	0	0	1	827.9	180.2'	260.9'	54'
5	AT\&T MOBILITY LLC (PROPOSED)	CCI Antennas HPA-65R-BUU-H6	Panel	1900	240	61.1	6	14.53	0	0	1	3258.4	180.2'	260.9'	54'
6	AT\&T MOBILITY LLC	Kathrein-Scala 800-10121	Panel	850	240	87.6	4.5	11.35	0	1	0	299.9	181.1'	268'	$54.7{ }^{\prime}$
6	AT\&T MOBILITY LLC	Kathrein-Scala 800-10121	Panel	850	240	87.6	4.5	11.35	1	0	0	152.8	181.1'	268'	54.7 ${ }^{\prime}$
6	AT\&T MOBILITY LLC	Kathrein-Scala 800-10121	Panel	1900	240	85.7	4.5	14.32	0	1	0	458.1	181.1'	268'	54.7'

NOTE: $\quad X, Y$ and Z indicate relative position of the bottom of the antenna to the origin location on the site, displayed in the model results diagram. Specifically, the Z reference indicates the bottom of the antenna height above the main site level unless otherwise indicated. The distance to the bottom of the antenna is calculated by subtracting half of the length of the antenna from the antenna centerline. Effective Radiated Power (ERP) is provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed. For other operators at this site the use of "Generic" as an antenna model or "Unknown" for a wireless operator means the information with regard to operator, their FCC license and/or antenna information was not available nor could it be secured while on site. Other operator's equipment, antenna models and powers used for modeling are based on obtained information or Sitesafe experience.

4 Emission Predictions

In the RF Exposure Simulations below all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas.

The Antenna Inventory heights are referenced to the same level.

\% of FCC Public Exposure Limit
Spatial average 0' - 6'

Spatial average 0' - 6'

5 Site Compliance

5.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

AT\&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the AT\&T Mobility, LLC's proposed deployment plan could result in the site being rendered noncompliant.

Modeling is used for determining compliance and the percentage of MPE contribution.

5.2 Actions for Site Compliance

Based on FCC regulations, common industry practice, and our understanding of AT\&T Mobility, LLC RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

AT\&T Mobility, LLC will be made compliant if the following changes are implemented:

Site Access Location

Yellow caution 2 sign required near the antenna area.
Note: the monopole is located in a public area. Signage should be installed near the antenna area.

6 Engineer Certification

The professional engineer whose seal appears on the cover of this document hereby certifies and affirms that:

I am registered as a Professional Engineer in the jurisdiction indicated in the professional engineering stamp on the cover of this document; and

That I am an employee of Sitesafe, Inc., in Arlington, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio-frequency Radiation; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Sam Cosgrove.

September 13, 2016

Appendix A - Statement of Limiting Conditions

Sitesafe has provided computer generated model(s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.

Appendix B - Regulatory Background Information
 FCC Rules and Regulations

In 1996, the Federal Communication Commission (FCC) adopted regulations for the evaluating of the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996 the FCC periodically reviews these rules and regulations as per their congressional mandate.

FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.

Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:

Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) ($\mathrm{mW} / \mathrm{cm}^{2}$)	Averaging Time $\|E\|^{2}$, $\|\mathrm{H}\|^{2}$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$\left(900 / \mathrm{f}^{2}\right)^{*}$	6
30-300	61.4	0.163	1.0	6
300-1500	--	--	f/300	6
1500-	--	--	5	6
100,000				

Limits for General Population/Uncontrolled Exposure (MPE)				
Frequency	Electric	Magnetic	Power	Averaging Time $\|E\|^{2}$,
Range	Field	Field	Density (S)	$\|\mathrm{H}\|^{2}$ or S (minutes)
(MHz)	Strength (E) $(\mathrm{V} / \mathrm{m})$	Strength $(\mathrm{H})(\mathrm{A} / \mathrm{m})$		
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	--	-	$\mathrm{f} / 1500$	30
$1500-$	--	-	1.0	30

100,000
$\mathrm{f}=$ frequency in $\mathrm{MHz} \quad$ *Plane-wave equivalent power density

OSHA Statement

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:
(a) Each employer -
(1) shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
(2) shall comply with occupational safety and health standards promulgated under this Act.
(b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lock Out Tag Out procedure aimed to control the unexpected energization or start up of machines when maintenance or service is being performed.

Appendix C - Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

General Maintenance Work: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

Training and Qualification Verification: All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a workers understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet based courses).

Physical Access Control: Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
- Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

RF Signage: Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

Maintain a 3 foot clearance from all antennas: There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

Site RF Emissions Diagram: Section 4 of this report contains an RF Diagram that outlines various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access is restricted and only properly trained individuals can gain access to the antenna locations.

Appendix D - RF Emissions

The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

- Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit.
- Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
- Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
- Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
- Red represents areas predicted to have exposure more than 10 times the Occupational MPE limits. Red indicates that the RF levels must be reduced prior to access. An RF Safety Plan is required which outlines how to reduce the RF energy in these areas prior to access.

Appendix E-Assumptions and Definitions

General Model Assumptions

In this site compliance report, it is assumed that all antennas are operating at full power at all times. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT\&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0 . The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100\% of the General Public MPE level may not actually occur, but are shown as a prediction that could be realized. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

Use of Generic Antennas

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.

Definitions

$\mathbf{5 \%}$ Rule - The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible taking corrective actions to bring the site into compliance.

Compliance - The determination of whether a site is safe or not with regards to Human Exposure to Radio Frequency Radiation from transmitting antennas.

Decibel (dB) - A unit for measuring power or strength of a signal.
Duty Cycle - The percent of pulse duration to the pulse period of a periodic pulse train. Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

Effective (or Equivalent) Isotropic Radiated Power (EIRP) - The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

Effective Radiated Power (ERP) - In a given direction, the relative gain of a transmitting antenna with respect to the maximum directivity of a half wave dipole multiplied by the net power accepted by the antenna from the connecting transmitter.

Gain (of an antenna) - The ratio of the maximum intensity in a given direction to the maximum radiation in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antennas as compared to an omni directional antenna.

General Population/Uncontrolled Environment - Defined by the FCC, as an area where exposure to RF energy may occur to persons who are unaware of the potential for exposure and who have no control of their exposure. General Population is also referenced as General Public.

Generic Antenna - For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of antenna models to select a worst case scenario antenna to model the site.

Isotropic Antenna - An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

Maximum Measurement - This measurement represents the single largest measurement recorded when performing a spatial average measurement.

Maximum Permissible Exposure (MPE) - The maximum levels of RF exposure a person may be exposed to without harmful effect and with acceptable safety factor.

Occupational/Controlled Environment - Defined by the FCC, as an area where Radio Frequency Radiation (RFR) exposure may occur to persons who are aware of the
potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

OET Bulletin 65 - Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of Radio Frequency radiation on Humans. The guideline was published in August 1997.

OSHA (Occupational Safety and Health Administration) - Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

Radio Frequency (RF) - The frequencies of electromagnetic waves which are used for radio communications. Approximately 3 kHz to 300 GHz .

Radio Frequency Exposure (RFE) - The amount of RF power density that a person is or might be exposed to.

Spatial Average Measurement - A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average power density an average sized human will be exposed to at a location.

Transmitter Power Output (TPO) - The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.

Appendix F - References

The following references can be followed for further information about RF Health and Safety.

Sitesafe, Inc.
http://www.sitesafe.com
FCC Radio Frequency Safety
http://www.fcc.gov/encyclopedia/radio-frequency-safety
National Council on Radiation Protection and Measurements (NCRP)
http://www.ncrponline.org
Institute of Electrical and Electronics Engineers, Inc., (IEEE)
http://www.ieee.org
American National Standards Institute (ANSI)
http://www.ansi.org
Environmental Protection Agency (EPA)
http://www.epa.gov/radtown/wireless-tech.html
National Institutes of Health (NIH)
http://www.niehs.nih.gov/health/topics/agents/emf/
Occupational Safety and Health Agency (OSHA)
http://www.osha.gov/SLTC/radiofrequencyradiation/
International Commission on Non-Ionizing Radiation Protection (ICNIRP)
http://www.icnirp.org
World Health Organization (WHO)
http://www.who.int/peh-emf/en/
National Cancer Institute
http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones
American Cancer Society (ACS)
http://www.cancer.org/docroot/PED/content/PED_1_3X_Cellular_Phone_Towers.asp?sit earea=PED
European Commission Scientific Committee on Emerging and Newly Identified Health Risks
http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_022.pdf
Fairfax County, Virginia Public School Survey
http://www.fcps.edu/fts/safety-security/RFEESurvey/
UK Health Protection Agency Advisory Group on Non-ionising Radiation
http://www.hpa.org.uk/webw/HPAweb\&HPAwebStandard/HPAweb_C/1317133826368
Norwegian Institute of Public Health
http://www.fhi.no/dokumenter/545eea7147.pdf

PROJECT	$\mathbf{8 4 2 8 6 2}$ - EAST HAVEN SOUTH, CT				
SUBJECT	Foundation Analysis				
DATE	$\mathbf{0 7 / 2 0 / 1 6}$		PAGE	1	OF

Monopole Pad \& Pier Foundation Analysis

Design Loads:	
Shear:	Input unfactored loads
Moment:	$\frac{\mathbf{9 . 0}}{}$ kips
Tower Height:	$\frac{\mathbf{3 7 5 . 0}}{} \mathrm{ft}$-kips
Tower Weight:	$\mathbf{5 8 . 0}$
ft	
kips	

Pad \& Pier Dimensions / Properties:

Pole Diameter at Base:
Bearing Depth:
Pad Width:
Neglected Depth:
Thickness:
Pier Diameter:
Pier Height Above Grade:
BP Dist. Above Pier:
Clear Cover:
Pier Rebar Size:
Pier Rebar Quanity:
Pad Rebar Size:
Pad Rebar Quanity:
Pier Tie Size:
Tie Quanity:
Rebar Yield Strength:
Concrete Strength:
Concrete Unit Weight:

14.0 FT

Elevation Overview

Summary of Results

Req'd Pier Diam.	OK
Overturning	44.7%
Shear Capacity	21.0%
Bearing	25.7%
Pad Shear - 1-way	21.6%
Pad Shear - 2-way	3.1%
Pad Moment Capacity	12.3%
Pier Moment Capacity	31.9%

[^0]: Consider Moments - Legs
 Consider Moments - Horizontals
 Consider Moments - Diagonals
 Use Moment Magnification
 $\sqrt{ }$ Use Code Stress Ratios
 $\sqrt{ }$ Use Code Safety Factors - Guys
 $\sqrt{ }$ Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

[^1]: ** Note: for complete joint penetration groove welds the groove depth must be exactly $1 / 2$ the stiffener thickness for calculation purposes

