CCROWN

Crown Castle 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

July 18, 2016

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for AT&T/LTE 3C Crown Site BU: 876352 AT&T Site ID: CTL01053 94 East High Street, East Hampton, CT 06424 Latitude: 41° 35' 14.2''/Longitude: -72° 29' 19.6''

Dear Ms. Bachman:

AT&T currently maintains nine (9) antennas at the 93-foot level of the existing 117.5-foot monopole tower at 94 East High Street in East Hampton, CT. The tower is owned by Crown Castle. The property is owned by Paul and Sandy's Too Inc. AT&T now intends to\ install three (3) RRU11's.

The Town of East Hampton could not confirm the original date and conditions of zoning.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to Ms. Patience Anderson, Chairperson, Town Council for the Town of East Hampton, as well as the property owner, and Crown Castle is the tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

The Foundation for a Wireless World. CrownCastle.com Melanie A. Bachman July 18, 2016 Page 2

6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Jeffrey Barbadora.

Sincerely,

Jeffrey Barbadora Real Estate Specialist 12 Gill Street, Suite 5800, Woburn, MA 01801 781-729-0053 Jeff.Barbadora@crowncastle.com

Attachments:

- Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes
- Tab 2: Exhibit-2: Structural Modification Report
- Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)
- cc: Ms. Patience Anderson, Chairperson Town of East Hampton Town Council 20 East High Street East Hampton, CT 06424

Paul and Sandy's Too Inc. 93 East High Street East Hampton, CT 06424

94 EAST HIGH ST #CELL

Location	94 EAST HIGH ST #CELL	Mblu	26/ 85/ 16/ /
Acct#	R07038	Owner	PAULS + SANDYS TOO INC
Assessment	\$249,480	Appraisal	\$356,400
PID	5476	Building Count	1

Current Value

Appraisal					
Valuation Year	Improvements	Land	Total		
2015	\$156,400	\$200,000	\$356,400		
Assessment					
Valuation Year	Improvements	Land	Total		
2015	\$109,480	\$140,000	\$249,480		

Owner of Record

Owner Co-Owner	PAULS + SANDYS TOO INC	Sale Price Certificate	\$0
Address	93 EAST HIGH ST	Book & Page	344/ 096
EAST HAMPTON, CT 06424	EAST HAMPTON, CT 06424	Sale Date	01/28/2002
		Instrument	29

Ownership History

Ownership History						
Owner Sale Price Certificate Book & Page Instrument Sale Date						
PAULS + SANDYS TOO INC	\$0		344/ 096	29	01/28/2002	

Building Information

Year Built:			
Living Area:	0		
Replacement Cost:	\$0		
Building Percent Good:			
Replacement Cost			
Less Depreciation:	\$0		
	Building Att	ibutes	
Field		Description	
Style		Outbuildings	
Model			

Building Photo

Legend

>

Grade:	
Story Height	
Foundation	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Flr 2	
Heat Fuel	
Heat Type:	
АС Туре:	
Total Bedrooms:	
Total Bthrms:	
Total Half Baths:	
# Extra Fixtures	
Total Rooms:	
Bath Style:	
Kitchen Style:	
Fireplace	
Fin Basement	
Fin Bsmt Qual	
Bsmt. Garages	
Gas Fireplace	

(http://images.vgsi.com/photos/EastHamptonCTPhotos//default.j

Building Layout

Building Layout

Building Sub-Areas (sq ft)

No Data for Building Sub-Areas

<

Extra Features

Extra Features	Legend
No Data for Extra Features	

Land

Land U	lse
--------	-----

Use Code202DescriptionCommercial Land & OBZoneCNeighborhoodCOMAlt Land ApprNoCategoryC

Land Line Valuation

Size (Acres)	1
Frontage	
Depth	
Assessed Value	\$140,000
Appraised Value	\$200,000

Outbuildings

Outbuildings

Legend

Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
BLD	Building			360 SF	\$54,000	1
SHD1	Shed	FR	Frame	120 S.F.	\$2,400	1
CEL	Cell Tower			1 UNITS	\$100,000	1

Valuation History

Appraisal						
Valuation Year Improvements Land Total						
2014	\$156,400	\$200,000	\$356,400			
2012	\$156,400	\$200,000	\$356,400			
2011	\$156,400	\$200,000	\$356,400			

Assessment										
Valuation Year	Improvements	Land	Total							
2014	\$109,480	\$140,000	\$249,480							
2012	\$109,480	\$140,000	\$249,480							
2011	\$109,480	\$140,000	\$249,480							

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

WIRELESS COMMUNICATIONS FACILITY CT1053 - LTE 2C CROWN CASTLE, INC. SITE NO: 876352 EAST HAMPTON 94 EAST HIGH STREET EAST HAMPTON, CT 06424

GENERAL NOTES

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2003 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2005 CONNECTICUT SUPPLEMENT AND 2009 AMENDMENTS, INCLUDING THE TIA/EIA-222 REVISION "F" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2005 CONNECTICUT FIRE SAFETY CODE AND 2009 AMENDMENTS, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. THE COMPOUND, TOWER, PRIMARY GROUND RING, ELECTRICAL SERVICE TO THE METER BANK AND TELEPHONE SERVICE TO THE DEMARCATION POINT ARE PROVIDED BY SITE OWNER. AS BUILT FIELD CONDITIONS REGARDING THESE ITEMS SHALL BE CONFIRMED BY THE CONTRACTOR. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS. THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN 3. THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 4. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL. AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 5. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 6. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 7. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 8. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING BUILDING'S/PROPERTY'S OPERATIONS, COORDINATE WORK WITH BUILDING/PROPERTY OWNER.

- 10. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 11. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 12. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 13. ANY AND ALL ERRORS. DISCREPANCIES. AND 'MISSED" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE AT&T CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 14. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 15. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 16. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES. AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 17. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 18. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 19. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 20. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED PRIOR TO ANY EXCAVATION WORK. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

		_

SITE DIRECTIONS

TO: 94 EAST HIGH STREET EAST HAMPTON, CT FROM: 500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT HEAD NORTHEAST ON ENTERPRISE DR TOWARD CAPITAL BLVD 0.31 MI 0.27 MI TURN LEFT ONTO CAPITAL BLVD 3. TURN LEFT ONTO WEST ST 0.30 MI 4. TURN LEFT TO MERGE ONTO I-91 S TOWARD NEW HAVEN 1.41 MI 5. TAKE EXIT 22S ONTO CT-9S 5.55 MI 6. TURN RIGHT ONTO CT-17/ST JOHNS SQ 0.18 MI 7. TURN RIGHT ONTO CT-66/MAIN ST 0.94 MI 8. TURN RIGHT ONTO MARLBOROUGH ST. CONTINUE TO FOLLOW CT-66 8.95 MI 9. 94 EAST HIGH ST IS ON THE RIGHT

PRO	JFCT	SU	MMA	RY

- THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY NCLUDING THE FOLLOWING:
- A. INSTALL (3) NEW RRUS-11 BEHIND EXISTING POSITION 4 ANTENNA.

PROJECT INFORMATION

AT&T SITE NUMBER:	CT1053
AT&T SITE NAME:	EAST HAMPTON
SITE ADDRESS:	CROWN CASTLE, INC. SITE NO: 876352 94 EAST HIGH STREET EAST HAMPTON, CT 06424
LESSEE/APPLICANT:	NEW CINGULAR WIRELESS PCS, LLC 500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067
ENGINEER:	CENTEK ENGINEERING, INC. 63–2 NORTH BRANFORD RD. BRANFORD, CT. 06405
PROJECT COORDINATES:	LATITUDE: $41^{-}35'-14.26"$ N LONGITUDE: $72^{-}-29'-19.54"$ W GROUND ELEVATION: $\pm 669'$ AMSL GROUND ELEVATION REFERENCED FROM GOOGLE EARTH. COORDINATES REFERENCED FROM RFD DOCUMENTS.

SHEET INDEX							
SHT. NO.	DESCRIPTION	REV.					
T-1	TITLE SHEET	0					
N-1	NOTES AND SPECIFICATIONS	0					
C-1	PLANS, ELEVATION AND DETAILS	0					
C-2	LTE 2C EQUIPMENT DETAILS	0					
E—1	LTE SCHEMATIC DIAGRAM AND NOTES	0					
E-2	LTE WIRING DIAGRAM	0					
E-3	TYPICAL ELECTRICAL DETAILS	0					

PROFESSIONAL ENGINEER SEAL							Definition of the second struction of the second struction of the second struction of the second struction	REV. DATE DRAWN BY CHK*D BY DESCRIPTION
AT&T MORILITY		WIRFLESS COMMUNICATIONS FACILITY				ON EAST HIGH STREET		
DA ^T SC/ JOI	TE: ALE 3	<u>=:</u> NO	0: A: 1:	5/ 5 I 60	11, NO 71.	δ) ΞΤ		

NOTES AND SPECIFICATIONS

DESIGN BASIS

GOVERNING CODE: 2003 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2005 CT STATE BUILDING CODE AND 2009 AMENDMENTS.

- DESIGN CRITERIA:
- WIND LOAD: PER EIA/TIA 222 F-96 (ANTENNA MOUNTS): 85 MPH (FASTEST • MILE), EQUIVALENT TO 100 MPH (3 SECOND GUST)
- BUILDING CLASSIFICATION: II (BASED ON IBC TABLE 1604.5) •
- BASIC WIND SPEED (OTHER STRUCTURE): 105 MPH (3 SECOND GUST) • (EXPOSURE B/IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-02) PER 2003 INTERNATIONAL BUILDING CODE (IBC) AS MODIFIED BY THE 2005 CONNECTICUT SUPPLEMENT AND 2009 AMMENDMENT.
- SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-02 MINIMUM DESIGN LOADS • FOR BUILDING AND OTHER STRUCTURES.

GENERAL NOTES:

- ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING CODE.
- DRAWINGS INDICATE THE MINIMUM STANDARDS. BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 3. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.
- THE CONTRACTOR SHALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL 5. OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES.
- ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, 6. SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS, ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY 7. CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE SAFETY CODES AND 8. REGULATIONS DURING ALL PHASES OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR PROVIDING AND MAINTAINING ADEQUATE SHORING. BRACING. AND BARRICADES AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY. CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY.
- THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION 9. PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING SITE OPERATIONS, COORDINATE WORK WITH NORTHEAST UTILITIES
- 10. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER FOUNDATION REMEDIATION WORK IS COMPLETE. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, TEMPORARY BRACING, GUYS OR TIEDOWNS, WHICH MIGHT BE NECESSARY.
- 11. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 12. SHOP DRAWINGS, CONCRETE MIX DESIGNS, TEST REPORTS, AND OTHER SUBMITTALS PERTAINING TO STRUCTURAL WORK SHALL BE FORWARDED TO THE OWNER FOR REVIEW BEFORE FABRICATION AND/OR INSTALLATION IS MADE. SHOP DRAWINGS SHALL INCLUDE ERECTION DRAWINGS AND COMPLETE DETAILS OF CONNECTIONS AS WELL AS MANUFACTURER'S SPECIFICATION DATA WHERE APPROPRIATE. SHOP DRAWINGS SHALL BE CHECKED BY THE CONTRACTOR AND BEAR THE CHECKER'S INITIALS BEFORE BEING SUBMITTED FOR REVIEW.
- 13. NO DRILLING WELDING OR TAPING ON CL&P OWNED EQUIPMENT.
- 14. REFER TO DRAWING T1 FOR ADDITIONAL NOTES AND REQUIREMENTS.

STRUCTURAL STEEL

- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
 - STRUCTURAL STEEL (W SHAPES) -- ASTM A992 (FY = 50 KSI) STRUCTURAL STEEL (OTHER SHAPES) --- ASTM A36 (FY = 36 KSI)
 - STRUCTURAL HSS (RECTANGULAR SHAPES) --- ASTM A500 GRADE B, (FY = 46 KSI)
 - STRUCTURAL HSS (ROUND SHAPES) --- ASTM A500 GRADE B, (FY = 42 KSI)
 - PIPE---ASTM A53 (FY = 35 KSI)
 - CONNECTION BOLTS---ASTM A325-N U-BOLTS---ASTM A36
 - ANCHOR RODS---ASTM F 1554 WELDING ELECTRODE --- ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS. ELEVATIONS AND DETAILS.
- 3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER **REVIEW.**
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF

18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER

PAINT NOTES

PAINTING SCHEDULE:

- 1. ANTENNA PANELS:
- SHERWIN WILLIAMS POLANE-B B. COLOR TO BE MATCHED WITH EXISTING TOWER STRUCTURE.
- 2. COAXIAL CABLES:
- A. ONE COAT OF DTM BONDING PRIMER (2-5 MILS. DRY FINISH) B. TWO COATS OF DTM ACRYLIC PRIMER/FINISH (2.5-5 MILS. DRY FINISH) C. COLOR TO BE FIELD MATCHED WITH EXISTING STRUCTURE.

EXAMINATION AND PREPARATION:

- 1. DO NOT APPLY PAINT IN SNOW, RAIN, FOG OR MIST OR WHEN RELATIVE HUMIDITY EXCEEDS 85%. DO NOT APPLY PAINT TO DAMP OR WET SURFACES.
- 2. VERIFY THAT SUBSTRATE CONDITIONS ARE READY TO RECEIVE WORK. EXAMINE SURFACE SCHEDULED TO BE FINISHED PRIOR TO COMMENCEMENT OF WORK. REPORT ANY CONDITION THAT MAY POTENTIALLY AFFECT PROPER APPLICATION.
- 3. TEST SHOP APPLIED PRIMER FOR COMPATIBILITY WITH SUBSEQUENT COVER MATERIALS.
- 4. PERFORM PREPARATION AND CLEANING PROCEDURE IN STRICT ACCORDANCE WITH COATING MANUFACTURER'S INSTRUCTIONS FOR EACH SUBSTRATE CONDITION.
- CORRECT DEFECTS AND CLEAN SURFACES WHICH AFFECT WORK OF THIS SECTION. REMOVE EXISTING COATINGS THAT EXHIBIT LOOSE SURFACE DEFECTS.
- 6. IMPERVIOUS SURFACE: REMOVE MILDEW BY SCRUBBING WITH SOLUTION OF TRI-SODIUM PHOSPHATE AND BLEACH. RINSE WITH CLEAN WATER AND ALLOW SURFACE TO DRY.
- ALUMINUM SURFACE SCHEDULED FOR PAINT FINISH: REMOVE SURFACE CONTAMINATION BY STEAM OR HIGH-PRESSURE WATER. REMOVE OXIDATION WITH ACID ETCH AND SOLVENT WASHING. APPLY ETCHING PRIMER IMMEDIATELY FOLLOWING CLEANING.
- 8. FERROUS METALS: CLEAN UNGALVANIZED FERROUS METAL SURFACES THAT HAVE NOT BEEN SHOP COATED; REMOVE OIL, GREASE, DIRT, LOOSE MILL SCALE, AND OTHER FOREIGN SUBSTANCES. USE SOLVENT OR MECHANICAL CLEANING METHODS THAT COMPLY WITH THE STEEL STRUCTURES PAINTING COUNCIL'S (SSPC) RECOMMENDATIONS. TOUCH UP BARE AREAS AND SHOP APPLIED PRIME COATS THAT HAVE BEEN DAMAGED. WIRE BRUSH, CLEAN WITH SOLVENTS RECOMMENDED BY PAINT MANUFACTURER, AND TOUCH UP WITH THE SAME PRIMER AS THE SHOP COAT.
- 9. GALVANIZED SURFACES: CLEAN GALVANIZED SURFACES WITH NON-PETROLEUM-BASED SOLVENTS SO SURFACE IS FREE OF OIL AND SURFACE CONTAMINANTS. REMOVE PRETREATMENT FROM GALVANIZED SHEET METAL FABRICATED FROM COIL STOCK BY MECHANICAL METHODS.
- 10. ANTENNA PANELS: REMOVE ALL OIL, DUST, GREASE, DIRT, AND OTHER FOREIGN MATERIAL TO ENSURE ADEQUATE ADHESION. PANELS MUST BE WIPED WITH METHYL ETHYL KETONE (MEK).
- 11. COAXIAL CABLES: REMOVE ALL OIL, DUST, GREASE. DIRT, AND OTHER FOREIGN MATERIAL TO ENSURE ADEQUATE ADHESION.

CLEANING:

COLLECT WASTE MATERIAL, WHICH MAY CONSTITUTE A FIRE HAZARD, PLACE IN CLOSED METAL CONTAINERS AND REMOVE DAILY FROM SITE.

APPLICATION:

- APPLY PRODUCTS IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS.
- 2. DO NOT APPLY FINISHES TO SURFACES THAT ARE NOT DRY.
- 3. APPLY EACH COAT TO UNIFORM FINISH.
- 4. APPLY EACH COAT OF PAINT SLIGHTLY DARKER THAN PRECEDING COAT UNLESS OTHERWISE APPROVED.
- 5. SAND METAL LIGHTLY BETWEEN COATS TO ACHIEVE REQUIRED FINISH.
- 6. VACUUM CLEAN SURFACES FREE OF LOOSE PARTICLES. USE TACK CLOTH JUST PRIOR TO APPLYING NEXT COAT.
- 7. ALLOW APPLIED COAT TO DRY BEFORE NEXT COAT IS APPLIED.

COMPLETED WORK:

- 1. SAMPLES: PREPARE 24" X 24" SAMPLE AREA FOR REVIEW.
- 2. MATCH APPROVED SAMPLES FOR COLOR, TEXTURE AND COVERAGE, REMOVE REFINISH OR REPAINT WORK NOT IN COMPLIANCE WITH SPECIFIED REQUIREMENTS.

ROFESSIONAL ENGINEER SEAL	CONVECTION OF CONVECTION			Devision of the service of the servi	REV. DATE DRAWN BY CHK'D BY DESCRIPTION
	ENte			&t	
	Centered on Solutions*	(203) 488-0580 (2003) 488-0580	(200) 400-000, rux 63-2 North Branford Road Branford, CT 06405		www.Centekeng.com
AT&T MOBILITY	WIRELESS COMMUNICATIONS FACILITY	EAST HAMPTON	SITE NUMBER: CT1053	94 EAST HIGH STREET	EAST NAME ION, OI U0424
DAT SCA JOE	E: LE: NO.	05/ AS 160 DTES CIFIC	211/10 NOTEL 71.04 S AN CATIO	6 D ONS	
She	et No.	N- 2	- 1 of <u>7</u>		

DUS41 ALARM CABLE \sim

RRU (REMOTE RADIO UNIT)									
EQUIPMENT	DIMENSIONS	WEIGHT	CLEARANCES						
MAKE: ERICSSON MODEL: RRUS 11	17.8"L x 17.3"W x 7.2"D	50 LBS.	ABOVE: 16" MIN. BELOW: 12" MIN. FRONT: 36" MIN.						
NOTES: 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING.									

ERICSSON RRUS 11 DETAIL

RRUS 11 UNIT.-

TYPICAL (1) PER SECTOR.

SCALE: 1" = 1'-0"

LTE SCHEMATIC DIAGRAM

NOT TO SCALE

E-1

LTE SCHEMATIC DIAGRAM NOTES:

- BREAKERS TO BE TAGGED AND LOCKED OUT. A 20A (MIN.) OR 30A (MAX.) BREAKER FOR RRUS MAY BE SUBSTITUTED FOR THE RECOMMENDED 25A BREAKER. SIZE 12 CONDUCTORS MAY BE USED ONLY WITH 20A BREAKERS.
- LEAVE COILED AND PROTECTED UNTIL TERMINATED. DC AND FIBER CABLE SHALL BE ROUTED WITH THE EXISTING COAX CABLE.
- 4. DC SURGE PROTECTION SHELF SHALL BE RAYCAP DCx-48-60-RM.
- FIBER & DC DISTRIBUTION BOX W/DC SURGE PROTECTION SHALL BE RAYCAP DC6-48-60-18-8F. 6. SUPPORT FIBER & DC POWER CABLES WITH SNAP-IN HANGERS SPACED NO GREATER THAN 3 FEET APART ON TOWER. SUPPORT
- FIBER AND DC POWER CABLES INSIDE MONOPOLE WITH CABLE HOISTING GRIPS AT 250 FT MAXIMUM INTERVALS. DRESS CABLES TO PREVENT CONTACT WITH ENTRANCE AND EXIT OPENINGS. CONDUIT TO BE USED ON A TOWER IF THE RRU IS MORE THAN 10' FROM THE DISTRIBUTION UNITS. MAX CABLE LENGTH IS 16
- FFFT 8. SINGLE-CONDUCTOR DC POWER CABLES SHALL BE TELCOFLEX[®] OR KS24194[™], COPPER, UL LISTED RHH NON-HALOGEN, LOW SMOKE WITH BRAIDED COVER, TYPE TC (1/0 AND LARGER). UNLESS OTHERWISE NOTED, STRANDING SHALL BE CLASS B (TYPE III) FOR CABLES SIZES 14, 12 & 10 AWG AND CLASS I (TYPE IV) FOR SIZES 8 AWG AND LARGER. CABLES SHALL BE COLOR CODED RED FOR +24V, BLUE FOR -48V AND GRAY FOR 24V AND 48V RETURN CONDUCTORS. MULTI-CONDUCTOR DC POWER CABLES SHALL BE COPPER, CLASS B STRANDING WITH FLAME RETARDANT PVC JACKET, TYPE TC, UL LISTED FOR 90°C DRY/
- 75°C WET INSTALLATION. 9. GROUNDING WIRES SHALL BE COPPER, GREEN THHN/THWN UL LISTED FOR 90°C DRY/75°C WET INSTALLATION. MINIMUM SIZE IS 6 AWG UNLESS NOTED OTHERWISE.
- 10. FIBER OPTIC CABLES SHALL BE INSTALLED IN FLEXIBLE CONDUIT AS SCOPED BY MARKET.
- 11. RET CONTROL FROM THE RRU IS AN OPTIONAL METHOD OF CONNECTION. REFER TO RF DATA SHEET FOR APPLICABILITY. 12. RBS 6601 VARIANT 2 REQUIRES A 25A BREAKER AND 10 AWG (MIN.) CONDUCTORS. REPLACE EXISTING 15A OR 20A BREAKERS AND 12 AWG CONDUCTORS WHEN UPGRADING AN EXISTING RBS 6601 VARIANT 1.

Sheet No. 5

LTE WIRING DIAGRAM NOTES:

- 1. LABEL THE DC POWER CABLES AT BOTH ENDS OF EVERY WIRE AND IN ANY PULL BOX IF USED. LABEL SHALL BE DURABLE, SELF ADHESIVE, WRAPPED LONGITUDINALLY ALONG THE CABLE AND STATE THE SECTOR, FREQUENCY BAND AND POLARITY; I.E. "A-1900+". CABLE AND WIRE LABELS SHOWN ARE REPRESENTATIVE AND MAY BE MODIFIED AS DIRECTED BY AT&T.
- 2. INSTALL ON BASEBAND EQUIPMENT RACK.
- 3. THE BARE GROUND WIRE OF EACH MULTI-CONDUCTOR CABLE SHALL BE CONNECTED TO THE "P" GROUND BAR ON THE RACK. WHEN A SHIELDED CABLE IS USED, THE DRAIN WIRE ALSO SHALL BE CONNECTED TO THE "P" GROUND BAR.
- 5. SEE LTE SCHEMATIC DIAGRAM DETAIL 1/E-1 FOR BREAKER RATING.

4. CABLE GROUND WIRE AND SHIELD DRAIN WIRE TO BE LEFT UN-TERMINATED AT RRU AND DC POWER PLANT.

LEGEND

- 1. TINNED COPPER GROUND BAR, 1/4"x 4"x 20", NEWTON INSTRUMENT CO. HOLE CENTERS TO MATCH NEMA DOUBLE LUG .
- 2. INSULATORS, NEWTON INSTRUMENT CAT. NO. 2. 3061-4.
- 3. 3. 5/8" LOCK WASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8.
- 4. WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. 4. CAT NO. A-6056.
- 5. STAINLESS STEEL SECURITY SCREWS.

TOWER

Sheet No. 7

of

May 10, 2016

Charles Trask B+T Group Crown Castle 1717 S. Boulder, Suite 300 3530 Toringdon Way Suite 300 Tulsa, OK 74119 Charlotte, NC 28277 (918) 587-4630 (980) 209-8228 btwo@btgrp.com Subject: **Structural Analysis Report** Carrier Designation: AT&T Mobility Co-Locate Carrier Site Number: CTL01053 Carrier Site Name: East Hampton East Crown Castle Designation: Crown Castle BU Number: 876352 Crown Castle Site Name: **Richard Wall** Crown Castle JDE Job Number: 375557 Crown Castle Work Order Number: 1230683 Crown Castle Application Number: 344087 Rev. 0 **Engineering Firm Designation: B+T Group Project Number:** 92595.005.01 Site Data: 94 East Hight Street, East Hampton, Middlesex County, CT Latitude 41° 35' 14.2", Longitude -72° 29' 19.6" 117.5 Foot - Monopole Tower

Dear Charles Trask,

B+T Group is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 899758, in accordance with application 344087, revision 0.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment

*Sufficient Capacity

Note: See Table 1 and Table 2 for the proposed and existing/reserved loading, respectively. *The structure has sufficient capacity once the loading changes described in the recommendation section of this report are completed.

This analysis has been performed in accordance with the TIA/EIA-222-F standard and 2005 CT State Building Code with 2009 amendment based upon a wind speed of 85 mph fastest mile.

All equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at *B*+*T Group* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a cril.

Respectfully submitted by: B+T Engineering, Inc.

Brandon Sevier, E.I. Project Engineer Chad E. Tuttle, P.E. Engineer of Record COA: PEC.0001564 Expires: 02/10/2017

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

- Table 1 Proposed Antenna and Cable Information
- Table 2 Existing and Reserved Antenna and Cable Information
- Table 3 Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary) Table 6 – Tower Components vs. Capacity 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 117.5 ft. Monopole tower designed by Engineered Endeavors, Inc. in May of 1999. The tower was originally designed for a wind speed of 89.25 mph per TIA/EIA-222-F. This tower has been modified by Semaan Engineering in April of 2005 and B+T Group in September 2012 and those modifications are incorporated in this analysis.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
91.0	93.0	3	Ericsson	RRUS 11			

Table 1 -	Proposed	Antenna	and Cable	Information
	rioposeu	Antenna		mormation

Table 2 -	Existing and	Reserved	Antenna a	and (Cable	Information
	LAIStilly allu	ILESEIVEU	AIIIGIIIIa	anuv		mormation

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
	120.0	1	Decibel	DB264-A			
	130.0	1	Decibel	DB420-A		7/8	
117.0	126.0	1	Decibel	ASP-2011	2		
		1	Gabriel	GHF3W-23	3	1-1/4	1
	110.0	3	Alcatel Lucent	TD-RRH8x20-25	1	3/8	
	119.0	3	Rfs Celwave	APXVSPP18-C-A20	1	1/2	
		3	Rfs Celwave	APXVTM14-C-120		Feed Line Size (in) 7/8 1-1/4 5/8 3/8 1/2 1-5/8 1-1/4 1-5/8 1-1/4 1-1/4 3/4	
	117.0	1		Platform Mount [LP 712-1]			
	118.0	3	Alcatel Lucent	800MHz 2X50W RRH W/Filter			1
115.0		3	Alcatel Lucent	PCS 1900MHz 4x45W-65MHz			
	115.0	1		Side Arm Mount [SO 102-3]			
		3	Alcatel Lucent	RRH2X60-AWS			
		3	Alcatel Lucent	RRH2X60-PCS	2		
	108.0	6	Andrew	HBXX-6517DS-A2M		1-5/8	2
105.0		6	Andrew	LNX-6514DS-A1M			
		1	Rfs Celwave	DB-B1-6C-12AB-0Z			
	105.0	6	Rfs Celwave	FD9R6004/2C-3L	10	1 1/1	4
	105.0	1		Platform Mount [LP 1201-1]	12	1-1/4	
		3	Ericsson	RRUS 11			
	02.0	3	Kmw Comm.	AM-X-CD-16-65-00T-RET			
	93.0	6	Powerwave Tech.	7770.00	12	1-5/8	
91.0		1	Raycap	DC6-48-60-18-8F	3	1-1/4 3/4	1
		6	Powerwave Tech.	LGP 17201	1	3/8	
115.0 105.0 91.0	91.0	6	Powerwave Tech.	LGP21903		3/8	
		1		Platform Mount [LP 1201-1]			

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
75.0	76.0	1	Lucent	KS24019-L112A	1	1/2	1
75.0	75.0 1		Side Arm Mount [SO 701-1]		1/2		

Notes:

1) Existing Equipment

2) Reserved Equipment

Table 3 - Design Antenna and Cable Information

Mounting Level (ft) Center Line Elevation (ft)		Number of Antennas	Antenna Antenna Model Manufacturer		Number of Feed Lines	Feed Line Size (in)
117.5 117.5	117.5	12	Decibel	DB 980		
	1	Generic	Low Profile Platform			
105 105		12	Swedcom	ALP 9212		
		1	Generic	Low Profile Platform]	
		12	Swedcom	ALP 9212		
95	95	1	Generic	Low Profile Platform]	

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
Online Application	AT&T Mobility Co Locate, Rev# 0	344087	CCI Sites
Tower Manufacturer Drawing	EEI, Job No. 5069	2122777	CCI Sites
Tower Modification Drawing	Semaan Engineering Solutions, Date: 04/08/2005	2055770	CCI Sites
Post Modification Inspection	TEP, Date: 10/31/2005	1956331	CCI Sites
Tower Modification Drawing	B+T Group, Date: 09/18/2012	3250765	CCI Sites
Post Modification Inspection	B+T Group, Date: 11/02/2012	3404046	CCI Sites
Foundation Drawing	EEI, Job No. 5069	2122776	CCI Sites
Geotech Report	Clough, Harbour & Associates LLP, Project No. 7472.07.03	1532964	CCI Sites
Antenna Configuration	Crown CAD Package	Date: 05/03/2016	CCI Sites

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.
- 5) Mount areas and weights are assumed based on photographs provided.

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	117.5 - 86.29	Pole	TP22.9x15x0.188	1	-9.171	675.938	95.6	Pass
L2	86.29 - 42.627	Pole	TP33.46x21.66x0.313	2	-15.378	1647.855	99.2	Pass
L3	42.627 - 29.083	Pole	TP36.222x31.644x0.398	3	-19.420	1979.758	99.8	Pass
L4	29.083 - 0	Pole	TP43.5x36.222x0.411	4	-22.594	2281.683	95.6	Pass
							Summary	
						Pole (L3)	99.8	Pass
						RATING =	99.8	Pass

Table 5 - Section Capacity (Summary)

Table 6 - Tower Component Stresses vs. Capacity – LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	Base	81.1	Pass
1	Base Plate	Base	93.1	Pass
1	Base Foundation (Structure)	Base	98.3	Pass
1	Base Foundation (Soil Interaction)	Base	70.4	Pass

Structure Rating (max from all components) =	99.8%
--	-------

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and foundation have sufficient capacity to carry the existing, reserved, and proposed loading. In order for the results of this analysis to be considered valid the loading modification listed below must be completed.

Loading Changes:

- 1.) The (3) RRH2x60-AWS and (3) RRH2x60-PCS at 105' to be installed behind the proposed antennas to shield front wind area.
- 2.) The (3) proposed RRUS 11 at 91' to be installed behind the existing antennas to shield front wind area.

No structural modifications are required at this time, provided that the above listed changes are implemented.

APPENDIX A

TNXTOWER OUTPUT

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
APXVSPP18-C-A20 w/ Mount Pipe (E)	117	(2) HBXX-6517DS-A2M w/ Mount Pipe	105
APXVSPP18-C-A20 w/ Mount Pipe (E)	117	(R)	
APXVSPP18-C-A20 w/ Mount Pipe (E)	117	RRH2X60-PCS (R)	105
APXVTM14-C-120 w/ Mount Pipe (E)	117	RRH2X60-PCS (R)	105
APXVTM14-C-120 w/ Mount Pipe (E)	117	RRH2X60-PCS (R)	105
APXVTM14-C-120 w/ Mount Pipe (E)	117	RRH2X60-AWS (R)	105
TD-RRH8x20-25 (E(Partially	117	RRH2X60-AWS (R)	105
Shielded))		RRH2X60-AWS (R)	105
TD-RRH8x20-25 (E(Partially	117	DB-B1-6C-12AB-0Z (R)	105
Shielded))		Platform Mount [LP 1201-1] (E-Per	105
TD-RRH8x20-25 (E(Partially	117	Photo)	
DR420 A (E)	117	(2) FD9R6004/2C-3L (E)	105
DP264 A (E)	117	(2) 7770.00 w/ Mount Pipe (E)	91
DB204-A(E)	117	(2) 7770.00 w/ Mount Pipe (E)	91
ASP-2011 (E)	117	AM-X-CD-16-65-00T-RET w/ Mount	91
(2) 5' X 2" Pipe Mount (E-Per Photo)	117		04
(2) 5 X 2 Pipe Mount (E-Per Photo)	117	Pipe (E)	91
(2) 5' x 2" Pipe Mount (E-Per Photo)	117	AM-X-CD-16-65-00T-RET w/ Mount	91
Platform Mount [LP 712-1] (E)	117	Pipe (E)	
GHF3W-23 (E)	117	(2) GP21903 (E(Shielded))	91
PCS 1900MHz 4x45W-65MHz (E)	115	(2) I GP21903 (E(Shielded))	91
PCS 1900MHz 4x45W-65MHz (E)	115	(2) I GP21903 (E(Shielded))	91
800MHz 2X50W RRH W/FILTER	115	DC6-48-60-18-8F (E)	91
	115	BRUS 11 (E)	
	115	RRUS 11 (E)	91
800WHZ 2X50W RRH W/FILTER (E)	115	RRUS 11 (E)	91
3 x 2 Pipe Mount (E-For TME/Photo)	115	LGP 17201 (E(Shielded))	91
2' x 2" Pipe Mount (E-For TME/Photo)	115	LGP 17201 (E(Shielded))	91
Side Arm Mount (C-FOI TME/FIDIO)	115	LGP 17201 (E(Shielded))	91
	115	LGP 17201 (E)	91
(E-Offset/Photo)	115	LGP 17201 (E)	91
(2) FD9R6004/2C-3L (E)	105	LGP 17201 (E)	91
(2) $ED9R6004/2C_{-3}$ (E)	105	BRUS 11 (P)	91
(2) I NX-6514DS-A1M w/ Mount Pine	105	RRUS 11 (P)	91
(R)	100	RRUS 11 (P)	91
(2) LNX-6514DS-A1M w/ Mount Pipe	105	5' x 2" Pipe Mount (E-For TME)	91
(Ŕ)		5' x 2" Pipe Mount (E-For TME)	01
(2) LNX-6514DS-A1M w/ Mount Pipe	105	5' x 2" Pipe Mount (E-For TME)	91
(R)		Platform Mount [LP 1201-1] (F)	91
(2) HBXX-6517DS-A2M w/ Mount Pipe	105	(2) 7770 00 w/ Mount Rine (E)	01
	105	Side Arm Mount ISO 701-11 (E)	75
(2) HBXX-6517DS-A2M w/ Mount Pipe	105	KS24019-1 1124 (E)	75
(1)		1024010-L112A (E)	15

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi	55.370413ksi	55 ksi	70 ksi
54.690296ksi	55 ksi	70 ksi			

TOWER DESIGN NOTES

- 1. Tower is located in Middlesex County, Connecticut.
- 2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
- 3. Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 50 mph wind.
- 5. TOWER RATING: 99.8%

AXIAL 38 K

1

TORQUE 0 kip-ft

AXIAL 26 K

TORQUE 1 kip-ft

MOMENT

MOMENT

2083 kip-ft

550 kip-ft

B+T Group	^{Job:} 92595.005.01 - Ricl	hard Wall, CT (BU	#876352
1717 S Boulder Ave, Suite 300	Project:		
B+T GRP Tulsa OK 74119	Client: Crown Castle	Drawn by: bsevier	App'd:
Phone: (918) 587-4630	Code: TIA/EIA-222-F	Date: 05/10/16	Scale: NTS
FAX: (918) 295-0265	Path: S:Projects/Crown Castle/92000/92595 876352 Richard Wall/E	Engineering/InxTower\92595 005 01 RICHARD WALL CT AS	Dwg No. E-1

Г	B+T Group	^{Job:} 92595.005.01 - Ric	hard Wall, CT (BU	#876352
	1717 S Boulder Ave. Suite 300	Project:		
B+T GRP	Tulsa OK 74119	Client: Crown Castle	Drawn by: bsevier	App'd:
	Phone: (918) 587-4630	Code: TIA/EIA-222-F	Date: 05/10/16	Scale: NTS
	FAX: (918) 295-0265	Path: S:Projects/Crown Castle/92000/92595 876352 Richard Wi	al/Engineering/trx/Tower/92595 005 01 RICHARD WALL CT A/	Dwg No. E-5

Feed Line Distribution Chart 0' - 117'6"

Flat _____ App In Face _____ App Out Face _____ Truss Leg

Г	B+T Group	^{Job:} 92595.005.01 - Ricl	hard Wall, CT (BU	#876352
	1717 S Boulder Ave, Suite 300	Project:		
B+T GRP	Tulsa OK 74119	Client: Crown Castle	Drawn by: bsevier	App'd:
	Phone: (918) 587-4630	Code: TIA/EIA-222-F	Date: 05/10/16	Scale: NTS
	FAX: (918) 295-0265	Path: S:Projects/Crown Castle/92000/92595 876352 Richard Walf	Engineering/mxTower192595 005 01 RICHARD WALL CT AS	Dwg No. E-7

Elevation (ft)

Round

B+T Group 1717 S Boulder Ave, Suite 300

Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by bsevier

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard. The following design criteria apply:

Tower is located in Middlesex County, Connecticut.

Job

Project

Client

Basic wind speed of 85 mph.

Nominal ice thickness of 0.750 in.

Ice thickness is considered to increase with height.

Ice density of 56.000 pcf.

A wind speed of 38 mph is used in combination with ice.

Temperature drop of 50.000 °F.

Deflections calculated using a wind speed of 50 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.333.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Consider Moments - LegsDistribute Leg Loads As UniformUse ASCE 10 X-Brace Ly RulesConsider Moments - HorizontalsAssume Legs PinnedCalculate Redundant Bracing ForcesConsider Moments - DiagonalsAssume Rigid Index PlateIgnore Redundant Members in FEAUse Moment MagnificationUse Clear Spans For Wind AreaSR Leg Bolts Resist CompressionUse Code Stress RatiosUse Clear Spans For KL/rAll Leg Panels Have Same AllowableUse Code Safety Factors - GuysRetension Guys To Initial TensionOffset Girt At FoundationEscalate Ice√Bypass Mast Stability Checks√Always Use Max Kz√Use Azimuth Dish Coefficients√Use Special Wind Profile√Project Wind Area of Appurt.Use TIA-222-G Bracing Resist. ExemptionUse Diamond Inner Bracing (4 Sided)Triangulate Diamond Inner Bracing√SR Members Are ConcentricTreat Feed Line Bundles As Cylinder√		Options			
	Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification √ Use Code Stress Ratios √ Use Code Safety Factors - Guys √ Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric	Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks Use Azimuth Dish Coefficients Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder	V V	Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets	

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
	ft	Length	Length	of Sidas	Diameter in	Diameter	Thickness	Radius	
	Ji	Ji	Ji	Silles	111	in	111	in	
L1	117.500-86.290	31.210	3.417	18	15.000	22.900	0.188	0.750	A572-65
									(65 ksi)
L2	86.290-42.627	47.080	4.750	18	21.660	33.460	0.313	1.250	A572-65
									(65 ksi)
L3	42.627-29.083	18.294	0.000	18	31.644	36.222	0.398	1.592	54.690296ksi
									(55 ksi)
I.4	20 083 0 000	20.083		18	36 222	43 500	0.411	1.646	55 370413kei
L4	29.003-0.000	29.005		10	30.222	45.500	0.411	1.040	(551)
									(33 KSI)

B+T Group

Project

Client

1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

10:28:26 05/10/16 Designed by

bsevier

				Та	pered P	ole Pr	operties	6			
Section	Tip Dia.	Area	I	r	<u>С</u>	<i>I/C</i>	J	It/Q	w	w/t	
L1	15.231	8.815	244.360		7.620	<u>111</u> 32.068	489.042	4.408	2.31	0 12.32	
	23.253	13.517	880.928	8.063	11.633	75.725	1763.015	6.760	3.70	0 19.73	5
L2	22.864	21.174	1219.102	7.578	11.003	110.794	2439.808	10.589	3.26	2 10.439) -
L3	33.340	32.878	4364.012	11.092	16.075	302.914	9745.335	10.442	4.86	9 17.08.	2
	36.781	45.261	7338.586	12.718	18.401	398.816	14686.828	22.635	5.67	5 14.250	6
L4	36.781	46.770	7577.623	12.713	18.401	411.806	15165.217	23.389	5.65	1 13.733 2 16.840	3
	1.1/1	50.275	13177.77	+ 15.270	22.070	571.557	20417.337	20.145	0.75.	2 10.040	<u>)</u>
Tower	Gus	set	Gusset (Gusset Grade	Adjust. Factor	Adjust.	Weight Mu	lt. Doubl	e Angle	Double Angle	Double Angle
Elevation	n Are	ea T	hickness		A_f	Factor		Stitc	h Bolt	Stitch Bolt	Stitch Bolt
	(per f	ace)				A_r		Spa Diag	cing conals	Spacing Horizontals	Spacing Redundants
ft	ft^2	2	in					1	in	in	in
L1					1	1	1				
17.500-86.	.29										
L2					1	1	1				
86.290-42.6	527										
L3 2 627-29 0	183				1	1	0.981084	ŀ			
L4	105				1	1	0.98208				
29.083-0.0	00										

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face Allow	Component	Placement	Total	Number	Clear	Width or	Perimeter	Weight
	or Shield	Type		Number	Per Row	Spacing	Diameter		
	Leg		ft			in	in	in	klf
d									

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Component	Placement	Face	Lateral	#		$C_A A_A$	Weight
	or	Shield	Type		Offset	Offset				
	Leg			ft	in	(Frac FW)			ft²/ft	klf
LDF4-50A(1/	Α	No	Inside Pole	117.000 - 0.000	0.000	0	1	No Ice	0.000	0.000
2")								1/2" Ice	0.000	0.000
(E)								1" Ice	0.000	0.000
								2" Ice	0.000	0.000
								4" Ice	0.000	0.000
LDF2-50A(3/	Α	No	Inside Pole	117.000 - 0.000	0.000	0	1	No Ice	0.000	0.000
8")								1/2" Ice	0.000	0.000
(E)								1" Ice	0.000	0.000
								2" Ice	0.000	0.000
								4" Ice	0.000	0.000
LDF5-50A(7/	А	No	Inside Pole	117.000 - 0.000	0.000	0	2	No Ice	0.000	0.000
8")								1/2" Ice	0.000	0.000
(E)								1" Ice	0.000	0.000

tnxTower

Job

Project

Client

92595.005.01 - Richard Wall, CT (BU #876352)

Page 3 of 19

Date

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by bsevier

Description	Face or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#		$C_A A_A$	Weight
	Leg			ft	in	(Frac FW)			ft²/ft	klf
								2" Ice	0.000	0.000
** 0 . **								4" Ice	0.000	0.000
** Sprint **	٨	No	Calls (Out Of Ease)	117,000 0,000	0.000	0	1	No Iso	0.154	0.001
A M5I(1 1/4")	A	INO	CaAa (Out Of Face)	117.000 - 0.000	0.000	0	1	1/2" Ice	0.154	0.001
(E Exposed)								172 ICC	0.254	0.002
(E-Exposed)								2" Ice	0.554	0.004
								2" Ice	0.954	0.010
HB114-1-08U	А	No	CaAa (Out Of Face)	117 000 - 0 000	0.000	0	2	No Ice	0.000	0.020
4-M5J(1 1/4")		110	04114 (041 011400)	11,1000 01000	01000	Ŭ	-	1/2" Ice	0.000	0.002
(E-Outside								1" Ice	0.000	0.004
Shielded)								2" Ice	0.000	0.010
,								4" Ice	0.000	0.028
HJ4.5-50(5/8")	А	No	Inside Pole	117.000 - 0.000	0.000	0	1	No Ice	0.000	0.000
(E)								1/2" Ice	0.000	0.000
								1" Ice	0.000	0.000
								2" Ice	0.000	0.000
								4" Ice	0.000	0.000
d										
LDF6-50A(1-	А	No	Inside Pole	105.000 - 0.000	0.000	0	12	No Ice	0.000	0.001
1/4")								1/2" Ice	0.000	0.001
(E)								1" Ice	0.000	0.001
								2" Ice	0.000	0.001
			x : 1 x 1	105000 0000	0.000	0		4" Ice	0.000	0.001
HB158-1-08U	А	No	Inside Pole	105.000 - 0.000	0.000	0	2	No Ice	0.000	0.002
8-S8F18(1								1/2" Ice	0.000	0.002
5/8")								1" Ice	0.000	0.002
(K)								2" Ice 4" Ice	0.000	0.002
/								4" Ice	0.000	0.002
2" Rigid	C	No	Incide Dole	91.000 0.000	0.000	0	2	No Ice	0.000	0.003
Conduit	C	INU	Inside I ofe	91.000 - 0.000	0.000	0	2	1/2" Ice	0.000	0.003
(F)								1" Ice	0.000	0.003
(L)								2" Ice	0.000	0.003
								4" Ice	0.000	0.003
WR-VG86ST-	С	No	Inside Pole	91.000 - 0.000	0.000	0	2	No Ice	0.000	0.001
BRD(3/4")								1/2" Ice	0.000	0.001
(E-Inside								1" Ice	0.000	0.001
Conduit)								2" Ice	0.000	0.001
,								4" Ice	0.000	0.001
FB-L98B-002-	С	No	Inside Pole	91.000 - 0.000	0.000	0	1	No Ice	0.000	0.000
75000(3/8")								1/2" Ice	0.000	0.000
(E-Inside								1" Ice	0.000	0.000
Conduit)								2" Ice	0.000	0.000
								4" Ice	0.000	0.000
LCF158-50A(С	No	Inside Pole	91.000 - 0.000	0.000	0	12	No Ice	0.000	0.001
1-5/8")								1/2" Ice	0.000	0.001
(E)								1" Ice	0.000	0.001
								2" Ice	0.000	0.001
	C	N		01.000 0.000	0.000	0	1	4" Ice	0.000	0.001
LDF6-50A(1-	C	No	CaAa (Out Of Face)	91.000 - 0.000	0.000	0	1	No Ice	0.155	0.001
1/4") (E. E								1/2" Ice	0.255	0.002
(E-Exposed)								1" Ice	0.555	0.004
								\angle Ice	0.555	0.009
I DE6 504(1	C	No	CaAa (Out Of Ease)	91.000 0.000	0.000	0	r	4 Ice	0.933	0.028
LDF0-30A(1-	U	INO	Carra (Out OI race)	91.000 - 0.000	0.000	0	7	1/2" Loo	0.000	0.001
(F-Outside								172 ICC 1" Ice	0.000	0.002
Shielded)								2" Ice	0.000	0.004
Sillendedy								4" Ice	0.000	0.028
d										

tnxT	'ower

Project

Client

Job 92595.005.01 - Richard Wall, CT (BU #876352)

Date

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by bsevier

10:28:26 05/10/16

Description	Face or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#		$C_A A_A$	Weight
	Leg			ft	in	(Frac FW)			ft²/ft	klf
LDF4-50A(1/	А	No	CaAa (Out Of Face)	75.000 - 0.000	0.000	0	1	No Ice	0.000	0.000
2")								1/2" Ice	0.000	0.001
(E-Outside								1" Ice	0.000	0.002
Shielded)								2" Ice	0.000	0.007
4								4" Ice	0.000	0.023
Safety Line	В	No	CaAa (Out Of Face)	117.500 - 0.000	0.000	0	1	No Ice	0.037	0.000
3/8								1/2" Ice	0.137	0.001
(E)								1" Ice	0.238	0.001
								2" Ice	0.437	0.002
								4" Ice	0.838	0.004
d Climbing	D	No	Calla (Out Of Face)	117 500 112 000	26.000	0	1	No Ioo	0.584	0.005
L addar (Elat)	Б	INU	CaAa (Out Of Pace)	117.300 - 113.000	50.000	0	1	1/2" Loo	1.020	0.005
(F)								1/2 ICC	1.050	0.007
(L)								1 Icc 2" Icc	2 269	0.009
								2 ICC 4" Icc	2.308	0.013
4								4 100	4.132	0.021
MP3-03	А	No	CaAa (Out Of Face)	47.000 - 27.000	0.000	0	1	No Ice	0.262	0.000
(Surface Af)			· · · · · · · · · · · · · · · · · · ·					1/2" Ice	0.345	0.000
(E)								1" Ice	0.428	0.000
								2" Ice	0.595	0.000
								4" Ice	0.928	0.000
MP3-03	В	No	CaAa (Out Of Face)	47.000 - 27.000	0.000	0	1	No Ice	0.262	0.000
(Surface Af)								1/2" Ice	0.345	0.000
(E)								1" Ice	0.428	0.000
								2" Ice	0.595	0.000
								4" Ice	0.928	0.000
d MP3-04	Δ	No	CaAa (Out Of Face)	30 500 - 0 000	0.000	0	1	No Ice	0.268	0.000
(Surface Af)	11	110		50.500 0.000	0.000	0	1	1/2" Ice	0.352	0.000
(Surface Ar)								172 ICC	0.332	0.000
(L)								2" Ice	0.455	0.000
								2 Ice	0.002	0.000
MP3-04	в	No	CaAa (Out Of Face)	30 500 - 0 000	0.000	0	1	No Ice	0.268	0.000
(Surface Af)	Б	110		50.500 0.000	0.000	0	1	1/2" Ice	0.200	0.000
(E)								1" Ice	0.332	0.000
								2" Ice	0.455	0.000
								4" Ice	0.935	0.000
d								- 100	0.755	0.000

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	Κ
L1	117.500-86.290	А	0.000	0.000	0.000	4.729	0.351
		В	0.000	0.000	0.000	3.798	0.029
		С	0.000	0.000	0.000	0.730	0.087
L2	86.290-42.627	А	0.000	0.000	0.000	7.868	0.697
		В	0.000	0.000	0.000	2.782	0.010
		С	0.000	0.000	0.000	6.768	0.804
L3	42.627-29.083	А	0.000	0.000	0.000	6.010	0.217
		В	0.000	0.000	0.000	4.432	0.003
		С	0.000	0.000	0.000	2.099	0.249
L4	29.083-0.000	А	0.000	0.000	0.000	12.828	0.465
		В	0.000	0.000	0.000	9.440	0.006
		С	0.000	0.000	0.000	4.508	0.535

Crown Castle

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
L1	117.500-86.290	А	0.858	0.000	0.000	0.000	9.997	0.588
		В		0.000	0.000	0.000	12.595	0.073
		С		0.000	0.000	0.000	1.538	0.123
L2	86.290-42.627	А	0.811	0.000	0.000	0.000	15.984	1.087
		В		0.000	0.000	0.000	10.897	0.049
		С		0.000	0.000	0.000	14.258	1.142
L3	42.627-29.083	А	0.757	0.000	0.000	0.000	10.231	0.335
		В		0.000	0.000	0.000	8.653	0.015
		С		0.000	0.000	0.000	4.297	0.347
L4	29.083-0.000	А	0.750	0.000	0.000	0.000	21.086	0.694
		В		0.000	0.000	0.000	17.698	0.030
		С		0.000	0.000	0.000	8.870	0.726

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	117.500-86.290	0.087	-0.107	0.256	-0.102
L2	86.290-42.627	-0.096	-0.094	-0.062	-0.084
L3	42.627-29.083	0.170	-0.231	0.256	-0.254
L4	29.083-0.000	0.171	-0.235	0.256	-0.262

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft ft	0	ft		ft ²	ft^2	Κ
d			J .						
APXVSPP18-C-A20 w/	А	From Leg	4.000	0.000	117.000	No Ice	8.498	6.946	0.083
Mount Pipe		0	0.000			1/2" Ice	9.149	8.127	0.151
(E)			2.000			1" Ice	9.767	9.021	0.227
						2" Ice	11.031	10.844	0.406
						4" Ice	13.679	14.851	0.909
APXVSPP18-C-A20 w/	В	From Leg	4.000	0.000	117.000	No Ice	8.498	6.946	0.083
Mount Pipe		e	0.000			1/2" Ice	9.149	8.127	0.151
(E)			2.000			1" Ice	9.767	9.021	0.227
						2" Ice	11.031	10.844	0.406
						4" Ice	13.679	14.851	0.909
APXVSPP18-C-A20 w/	С	From Leg	4.000	0.000	117.000	No Ice	8.498	6.946	0.083
Mount Pipe		-	0.000			1/2" Ice	9.149	8.127	0.151
(E)			2.000			1" Ice	9.767	9.021	0.227
						2" Ice	11.031	10.844	0.406

Job 92595.005.01 - Richard Wall, CT (BU #876352)

Page 6 of 19

Date

Project

Client

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by bsevier

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft^2	ft ²	K
						4" Ice	13.679	14.851	0.909
APXVTM14-C-120 w/	А	From Leg	4.000	0.000	117.000	No Ice	7.134	4.959	0.077
Mount Pipe			0.000			1/2" Ice	7.662	5.754	0.131
(E)			2.000			1" Ice	8.183	6.472	0.193
						2" Ice	9.256	8.010	0.338
ADXXTX (14 C 120/	р	E	4 000	0.000	117.000	4" Ice	11.526	11.412	0.752
APAVIMI4-C-120 W/	В	From Leg	4.000	0.000	117.000	NO ICE	7.134	4.959	0.077
Mount Pipe			0.000			1/2" Ice	/.002	5./54	0.131
(E)			2.000			1 Ice 2" Ice	0.105	0.472	0.193
						2 ICe 4" Ice	9.230	8.010 11.412	0.558
$A \mathbf{P} \mathbf{Y} \mathbf{V} \mathbf{T} \mathbf{M} 1 4 \subset 1 2 0 \mathbf{w} \mathbf{V}$	C	From Lag	4 000	0.000	117.000	A ICC	7 134	11.412	0.752
Mount Pine	C	FIOIII Leg	4.000	0.000	117.000	1/2" Ice	7.134	4.939	0.077
(E)			2,000			1/2 ICC	8 183	6 472	0.103
(L)			2.000			2" Ice	9.165	8 010	0.193
						2 ICC 4" Ice	11 526	11 412	0.338
TD_RRH8v20_25	Δ	From Leg	4 000	0.000	117.000	No Ice	1 000	1 703	0.752
(F(Partially Shielded))	Α	110III Leg	0.000	0.000	117.000	1/2" Ice	1 330	1.705	0.070
(L(I artially Shielded))			2 000			172 Ice	1.550	2 145	0.128
			2.000			2" Ice	2 320	2.143	0.128
						2 Ice 4" Ice	3 640	3 680	0.201
TD_RRH8x20-25	в	From Leg	4 000	0.000	117 000	No Ice	1 000	1 703	0.070
(E(Partially Shielded))	Б	D Trom Deg	0.000	0.000	117.000	1/2" Ice	1.330	1.920	0.070
(E(I artially Shielded))			2 000			1" Ice	1.660	2 145	0.128
			2.000			2" Ice	2 320	2 622	0.201
						4" Ice	3 640	3 680	0.397
TD-RRH8x20-25	С	From Leg	4 000	0.000	117 000	No Ice	1 000	1 703	0.070
(E(Partially Shielded))	ally Shielded))		0.000	0.000	0.000 117.000	1/2" Ice	1.330	1.920	0.097
(E(Furthany Shielded))			2 000			1" Ice	1.660	2 145	0.128
			2.000			2" Ice	2.320	2.622	0.201
						4" Ice	3.640	3.680	0.397
East Hampton CT									
DB420-A	А	From Leg	4.000	0.000	117.000	No Ice	3.330	3.330	0.034
(E)			0.000			1/2" Ice	5.994	5.994	0.044
			13.000			1" Ice	8.658	8.658	0.054
						2" Ice	13.986	13.986	0.075
						4" Ice	24.642	24.642	0.116
DB264-A	В	From Leg	4.000	0.000	117.000	No Ice	3.160	3.160	0.036
(E)			0.000			1/2" Ice	5.688	5.688	0.047
			13.000			1" Ice	8.216	8.216	0.058
						2" Ice	13.272	13.272	0.079
						4" Ice	23.384	23.384	0.122
ASP-2011	С	From Leg	4.000	0.000	117.000	No Ice	1.063	1.063	0.004
(E)			0.000			1/2" Ice	1.931	1.931	0.013
			9.000			1" Ice	2.817	2.817	0.028
						2" Ice	4.224	4.224	0.074
						4" Ice	6.421	6.421	0.240
(2) 5' x 2" Pipe Mount	А	From Leg	4.000	0.000	117.000	No Ice	1.000	1.000	0.029
(E-Per Photo)			0.000			1/2" Ice	1.393	1.393	0.037
			0.000			1" Ice	1.703	1.703	0.048
						2" Ice	2.351	2.351	0.082
		_				4" Ice	3.778	3.778	0.196
(2) 5' x 2" Pipe Mount	В	From Leg	4.000	0.000	117.000	No Ice	1.000	1.000	0.029
(E-Per Photo)			0.000			1/2" Ice	1.393	1.393	0.037
			0.000			1" Ice	1.703	1.703	0.048
						2" Ice	2.351	2.351	0.082
						4" Ice	3.778	3.778	0.196

tnxT	ower
1111	Uwer

Job 92595.005.01 - Richard Wall, CT (BU #876352)

Page 7 of 19

Date

B+T Group 1717 S Boulder Ave, Suite 300 Project

Client

Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown	Castle

Designed by bsevier

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft^2	ft^2	Κ
(2) 5' x 2" Pipe Mount (E-Per Photo)	С	From Leg	4.000 0.000 0.000	0.000	117.000	No Ice 1/2" Ice 1" Ice	1.000 1.393 1.703	1.000 1.393 1.703	0.029 0.037 0.048
Platform Mount [LP 712-1]	С	None		0.000	117.000	2" Ice 4" Ice No Ice	2.351 3.778 24.530	2.351 3.778 24.530	0.082 0.196 1.335
(E)						1/2" Ice 1" Ice 2" Ice 4" Ice	29.940 35.350 46.170 67.810	29.940 35.350 46.170 67.810	1.646 1.956 2.577 3.820
d						4 100	07.810	07.010	5.820
PCS 1900MHz 4x45W-65MHz (E-Offset/Photo)	А	From Leg	2.000 0.000 3.000	0.000	115.000	No Ice 1/2" Ice 1" Ice	2.709 2.948 3.195	2.611 2.847 3.092	0.060 0.083 0.110
PCS 1900MHz	в	From Leg	2.000	0.000	115.000	2" Ice 4" Ice No Ice	3.716 4.862 2.709	3.608 4.744 2.611	0.173 0.347 0.060
4x45W-65MHz (E)		0	0.000 3.000			1/2" Ice 1" Ice 2" Ice	2.948 3.195 3.716	2.847 3.092 3.608	0.083 0.110 0.173
PCS 1900MHz 4x45W-65MHz	С	From Leg	2.000	0.000	115.000	4" Ice No Ice 1/2" Ice	4.862 2.709 2.948	4.744 2.611 2.847	0.347 0.060 0.083
(E)			3.000			1" Ice 2" Ice 4" Ice	3.195 3.716 4.862	3.092 3.608 4 744	0.110 0.173 0.347
800MHz 2X50W RRH W/FILTER (E-Offset/Photo)	А	From Leg	2.000 0.000 3.000	0.000	115.000	No Ice 1/2" Ice 1" Ice 2" Ice	2.401 2.613 2.833 3.300	2.254 2.460 2.675 3.132	0.064 0.086 0.111 0.172
800MHz 2X50W RRH W/FILTER (E)	В	From Leg	2.000 0.000 3.000	0.000	115.000	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.337 2.401 2.613 2.833 3.300	4.148 2.254 2.460 2.675 3.132	0.338 0.064 0.086 0.111 0.172
800MHz 2X50W RRH W/FILTER (E)	С	From Leg	2.000 0.000 3.000	0.000	115.000	4" Ice No Ice 1/2" Ice 1" Ice	4.337 2.401 2.613 2.833	4.148 2.254 2.460 2.675	0.338 0.064 0.086 0.111
3' x 2" Pipe Mount	А	From Leg	2.000	0.000	115.000	2" Ice 4" Ice No Ice	3.300 4.337 0.583	3.132 4.148 0.583	0.172 0.338 0.011
(E-For IME/Photo)			0.000			1/2" Ice 1" Ice 2" Ice 4" Ice	0.770 0.967 1.417 2.536	0.770 0.967 1.417 2.536	0.017 0.024 0.047 0.126
3' x 2" Pipe Mount (E-For TME/Photo)	В	From Leg	2.000 0.000 0.000	0.000	115.000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.583 0.770 0.967 1.417 2.536	0.583 0.770 0.967 1.417 2.536	0.011 0.017 0.024 0.047 0.126
3' x 2" Pipe Mount (E-For TME/Photo)	С	From Leg	2.000 0.000 0.000	0.000	115.000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.583 0.770 0.967 1.417 2.536	0.583 0.770 0.967 1.417 2.536	0.011 0.017 0.024 0.047 0.126
Side Arm Mount [SO 102-3]	С	None		0.000	115.000	No Ice	3.000	3.000	0.081

tnxT	ower

Project

Client

Job 92595.005.01 - Richard Wall, CT (BU #876352)

Page 8 of 19

Date

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119

Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by bsevier

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	0	ft		ft^2	ft ²	K
(E)			<u> </u>			1/2" Ice	3.480	3.480	0.111
(2)						1" Ice	3.960	3.960	0.141
						2" Ice	4.920	4.920	0.201
						4" Ice	6.840	6.840	0.321
d			1 0 0 0	0.000	105 000		0.0/5	0.007	0.000
(2) FD9R6004/2C-3L	А	From Leg	4.000	0.000	105.000	No Ice	0.367	0.085	0.003
(E)			0.000			1/2" Ice	0.451	0.136	0.005
			0.000			I" Ice	0.543	0.196	0.009
						2" Ice	0.755	0.343	0.020
	D	F 1	1.000	0.000	105 000	4" Ice	1.281	0.740	0.063
(2) FD9R6004/2C-3L	В	From Leg	4.000	0.000	105.000	No Ice	0.367	0.085	0.003
(E)			0.000			1/2" Ice	0.451	0.136	0.005
			0.000			I" Ice	0.543	0.196	0.009
						2" Ice	0.755	0.343	0.020
	C	F 1	1.000	0.000	105 000	4" Ice	1.281	0.740	0.063
(2) FD9R6004/2C-3L	C	From Leg	4.000	0.000	105.000	No Ice	0.367	0.085	0.003
(E)			0.000			1/2" Ice	0.451	0.136	0.005
			0.000			1" Ice	0.543	0.196	0.009
						2" Ice	0.755	0.343	0.020
(2) INV (514DC A1M/		E I	4 000	0.000	105 000	4 [°] Ice	1.281	0.740	0.063
(2) LINA-0514DS-AIM W/	A	From Leg	4.000	0.000	105.000	1/2" Lee	8.048	7.082	0.065
(P)			2,000			1/2 ICe	9.303	0.275	0.134
(K)			5.000			1 ICe	9.930	9.165	0.211
						2 ICe	11.204	11.025	0.393
(2) I NY 6514DS A 1M w/	В	From Lag	4 000	0.000	105 000	4 ICC	8 648	7.082	0.902
(2) LINA-0514DS-AIIM W	Б	From Leg	4.000	0.000	105.000	1/2" Loo	0.040	7.082 8.272	0.003
(P)			3,000			1/2 ICC	9.303	0.275	0.134
(K)			5.000			2" Ice	11 204	11 023	0.211
						2 ICC 4" Ice	13 872	15.063	0.393
(2) I_{NX} (514DS- A_{1M} w/	C	From Leg	4 000	0.000	105 000	No Ice	8 648	7 082	0.965
Mount Pine	C	1 Ioni Leg	0.000	0.000	105.000	1/2" Ice	9 305	8 273	0.134
(R)			3,000			1" Ice	9.930	9 185	0.134
(11)			5.000			2" Ice	11.204	11.023	0.393
						4" Ice	13 872	15.063	0.902
(2) HBXX-6517DS-A2M w/	А	From Leg	4 000	0.000	105 000	No Ice	8 976	6 963	0.067
Mount Pipe	11	110III Leg	0.000	0.000	105.000	1/2" Ice	9.647	8.182	0.137
(R)			3.000			1" Ice	10.291	9.144	0.215
			21000			2" Ice	11.595	11.022	0.398
						4" Ice	14.321	15.027	0.914
(2) HBXX-6517DS-A2M w/	В	From Leg	4.000	0.000	105.000	No Ice	8.976	6.963	0.067
Mount Pipe		e	0.000			1/2" Ice	9.647	8.182	0.137
(R) ¹			3.000			1" Ice	10.291	9.144	0.215
						2" Ice	11.595	11.022	0.398
						4" Ice	14.321	15.027	0.914
(2) HBXX-6517DS-A2M w/	С	From Leg	4.000	0.000	105.000	No Ice	8.976	6.963	0.067
Mount Pipe		e	0.000			1/2" Ice	9.647	8.182	0.137
(R)			3.000			1" Ice	10.291	9.144	0.215
						2" Ice	11.595	11.022	0.398
						4" Ice	14.321	15.027	0.914
RRH2X60-PCS	А	From Leg	4.000	0.000	105.000	No Ice	0.000	2.011	0.055
(R)		U	0.000			1/2" Ice	0.000	2.218	0.075
			3.000			1" Ice	0.000	2.435	0.099
						2" Ice	0.000	2.894	0.155
						4" Ice	0.000	3.915	0.313
RRH2X60-PCS	В	From Leg	4.000	0.000	105.000	No Ice	0.000	2.011	0.055
(R)		· ·	0.000			1/2" Ice	0.000	2.218	0.075

Job 92595.005.01 - Richard Wall, CT (BU #876352) Page 9 of 19

Date

Project

Client

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by bsevier

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	0		Vert ft ft ft	o	ft		ft^2	ft ²	K
			3.000			1" Ice	0.000	2.435	0.099
						2" Ice	0.000	2.894	0.155
						4" Ice	0.000	3.915	0.313
RRH2X60-PCS	С	From Leg	4.000	0.000	105.000	No Ice	0.000	2.011	0.055
(R)			0.000			1/2" Ice	0.000	2.218	0.075
			3.000			1" Ice 2" Ice	0.000	2.435	0.099
						2 ICC 4" Ice	0.000	2.094	0.133
RRH2X60-AWS	А	From Leg	4 000	0.000	105 000	No Ice	0.000	1 816	0.060
(R)	11	Tiom Leg	0.000	0.000	105.000	1/2" Ice	0.000	2.075	0.083
			3.000			1" Ice	0.000	2.360	0.109
						2" Ice	0.000	2.957	0.173
						4" Ice	0.000	4.253	0.354
RRH2X60-AWS	В	From Leg	4.000	0.000	105.000	No Ice	0.000	1.816	0.060
(R)			0.000			1/2" Ice	0.000	2.075	0.083
			3.000			1" Ice	0.000	2.360	0.109
						2" Ice	0.000	2.957	0.173
	G	F I	4 000	0.000	105 000	4" Ice	0.000	4.253	0.354
RRH2X60-AWS	С	From Leg	4.000	0.000	105.000	No Ice	0.000	1.816	0.060
(R)			2.000			1/2" Ice	0.000	2.075	0.083
			3.000			2" Ice	0.000	2.300	0.109
						2" Ice	0.000	4 253	0.354
DB-B1-6C-12AB-0Z	А	From Leg	4,000	0.000	105.000	No Ice	3.924	2.557	0.021
(R)		8	0.000			1/2" Ice	4.197	2.794	0.050
			3.000			1" Ice	4.478	3.040	0.082
						2" Ice	5.066	3.557	0.158
						4" Ice	6.347	4.696	0.360
Platform Mount [LP 1201-1]	С	None		0.000	105.000	No Ice	23.100	23.100	2.100
(E-Per Photo)						1/2" Ice	26.800	26.800	2.500
						1" Ice	30.500	30.500	2.900
						2" Ice	37.900	37.900	3.700
.1						4" Ice	52.700	52.700	5.300
(2) 7770.00 w/ Mount Pine		From Log	4 000	0.000	01.000	No Ioo	6 1 1 0	1 254	0.055
(2) / / /0.00 w/ Would Tipe	A	FIOIDLeg	4.000	0.000	91.000	1/2" Ice	6.626	5.014	0.055
			2.000			1" Ice	7.128	5.711	0.157
			2.000			2" Ice	8.164	7.155	0.287
						4" Ice	10.360	10.412	0.665
(2) 7770.00 w/ Mount Pipe	В	From Leg	4.000	0.000	91.000	No Ice	6.119	4.254	0.055
(E)		-	0.000			1/2" Ice	6.626	5.014	0.103
			2.000			1" Ice	7.128	5.711	0.157
						2" Ice	8.164	7.155	0.287
	~		1 0 0 0	0.000	01.000	4" Ice	10.360	10.412	0.665
(2) $77/0.00$ w/ Mount Pipe	C	From Leg	4.000	0.000	91.000	No Ice	6.119	4.254	0.055
(E)			0.000			1/2" Ice	0.020	5.014	0.103
			2.000			2" Ice	7.120 8.164	7 155	0.137
						2 Ice	10 360	10 412	0.287
AM-X-CD-16-65-00T-RET	А	From Leg	4 000	0.000	91.000	No Ice	8 498	6 304	0.005
w/ Mount Pipe	11	Tiom Leg	0.000	0.000	91.000	1/2" Ice	9.149	7.479	0.139
(E)			2.000			1" Ice	9.767	8.368	0.212
~ /						2" Ice	11.031	10.179	0.385
						4" Ice	13.679	14.024	0.874
AM-X-CD-16-65-00T-RET	В	From Leg	4.000	0.000	91.000	No Ice	8.498	6.304	0.074
w/ Mount Pipe			0.000			1/2" Ice	9.149	7.479	0.139
(E)			2.000			1" Ice	9.767	8.368	0.212

tnxT	'ower

Job 92595.005.01 - Richard Wall, CT (BU #876352) Page 10 of 19

Date

Project

Client

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by bsevier

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	٥	ft		ft^2	ft ²	Κ
			<u> </u>			2" Ice	11.031	10.179	0.385
						4" Ice	13.679	14.024	0.874
AM-X-CD-16-65-00T-RET	С	From Leg	4.000	0.000	91.000	No Ice	8.498	6.304	0.074
w/ Mount Pipe			0.000			1/2" Ice	9.149	7.479	0.139
(E)			2.000			1" Ice	9.767	8.368	0.212
						2" Ice	11.031	10.179	0.385
(2) I GP21903	Δ	From Leg	4 000	0.000	91.000	No Ice	0.000	0 184	0.011
(E(Shielded))	А	110111 Leg	0.000	0.000	21.000	1/2" Ice	0.000	0.248	0.013
(E(Binefaced))			0.000			1" Ice	0.000	0.322	0.013
						2" Ice	0.000	0.494	0.028
						4" Ice	0.000	0.943	0.072
(2) LGP21903	В	From Leg	4.000	0.000	91.000	No Ice	0.000	0.184	0.011
(E(Shielded))			0.000			1/2" Ice	0.000	0.248	0.013
			0.000			1" Ice	0.000	0.322	0.017
						2" Ice	0.000	0.494	0.028
(2) I CD21002	G	F I	4.000	0.000	01.000	4" Ice	0.000	0.943	0.072
(2) LGP21903	C	From Leg	4.000	0.000	91.000	No Ice	0.000	0.184	0.011
(E(Shielded))			0.000			1/2" Ice	0.000	0.248	0.013
			0.000			2" Ice	0.000	0.322	0.017
						2 Ice	0.000	0.494	0.028
DC6-48-60-18-8F	А	From Leg	4.000	0.000	91.000	No Ice	1.467	1.467	0.019
(E)		110m Log	0.000	01000	,110000	1/2" Ice	1.667	1.667	0.037
			2.000			1" Ice	1.878	1.878	0.057
						2" Ice	2.333	2.333	0.105
						4" Ice	3.378	3.378	0.239
RRUS 11	А	From Leg	4.000	0.000	91.000	No Ice	3.249	1.373	0.048
(E)			0.000			1/2" Ice	3.491	1.551	0.068
			2.000			1" Ice	3.741	1.738	0.092
						2" Ice	4.268	2.138	0.150
DDUS 11	D	From Log	4 000	0.000	01.000	4º Ice	5.420 2.240	3.042	0.310
(F)	Б	FIOIII Leg	4.000	0.000	91.000	1/2" Ice	3.249	1.575	0.048
(L)			2 000			1" Ice	3 741	1.331	0.000
			2.000			2" Ice	4.268	2.138	0.150
						4" Ice	5.426	3.042	0.310
RRUS 11	С	From Leg	4.000	0.000	91.000	No Ice	3.249	1.373	0.048
(E)		-	0.000			1/2" Ice	3.491	1.551	0.068
			2.000			1" Ice	3.741	1.738	0.092
						2" Ice	4.268	2.138	0.150
I CD 15001			1 0 0 0	0.000	01.000	4" Ice	5.426	3.042	0.310
LGP 1/201	А	From Leg	4.000	0.000	91.000	No Ice	0.000	0.518	0.031
(E(Shielded))			0.000			1/2" Ice	0.000	0.640	0.042
			0.000			1 Ice 2" Ice	0.000	0.770	0.033
						2 Icc 4" Ice	0.000	1.030	0.193
LGP 17201	В	From Leg	4,000	0.000	91,000	No Ice	0.000	0.518	0.031
(E(Shielded))	Б	Liem Deg	0.000	0.000	21.000	1/2" Ice	0.000	0.640	0.042
(())			0.000			1" Ice	0.000	0.770	0.055
						2" Ice	0.000	1.056	0.089
						4" Ice	0.000	1.733	0.193
LGP 17201	С	From Leg	4.000	0.000	91.000	No Ice	0.000	0.518	0.031
(E(Shielded))			0.000			1/2" Ice	0.000	0.640	0.042
			0.000			1" Ice	0.000	0.770	0.055
						2" Ice	0.000	1.056	0.089
						4" Ice	0.000	1.733	0.193

tnxT	'ower

Project

Client

Job 92595.005.01 - Richard Wall, CT (BU #876352) Page 11 of 19

Date

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by bsevier

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	0	ft		ft^2	ft ²	K
LGP 17201	А	From Leg	4.000	0.000	91.000	No Ice	1.946	0.518	0.031
(E)			0.000			1/2" Ice	2.134	0.640	0.042
			0.000			1" Ice	2.330	0.770	0.055
						4" Ice	2.749	1.030	0.089
I GP 17201	В	From Lag	4 000	0.000	91.000	A ICC	1.046	0.518	0.193
(F)	Б	From Leg	4.000	0.000	91.000	1/2" Ice	2 134	0.518	0.031
			0.000			1" Ice	2 3 3 0	0.040	0.042
			0.000			2" Ice	2.749	1.056	0.089
						4" Ice	3.690	1.733	0.193
LGP 17201	С	From Leg	4.000	0.000	91.000	No Ice	1.946	0.518	0.031
(E)		8	0.000			1/2" Ice	2.134	0.640	0.042
			0.000			1" Ice	2.330	0.770	0.055
						2" Ice	2.749	1.056	0.089
						4" Ice	3.690	1.733	0.193
RRUS 11	А	From Leg	4.000	0.000	91.000	No Ice	0.000	1.373	0.048
(P)			0.000			1/2" Ice	0.000	1.551	0.068
			2.000			1" Ice	0.000	1.738	0.092
						2" Ice	0.000	2.138	0.150
	_					4" Ice	0.000	3.042	0.310
RRUS 11	В	From Leg	4.000	0.000	91.000	No Ice	0.000	1.373	0.048
(P)			0.000			1/2" Ice	0.000	1.551	0.068
			2.000			l" Ice	0.000	1.738	0.092
						2" Ice	0.000	2.138	0.150
DDUC 11	C	Enom Lag	4 000	0.000	01.000	4" Ice	0.000	3.042	0.310
	C	From Leg	4.000	0.000	91.000	1/2" Loo	0.000	1.575	0.048
(P)			2.000			1/2 ICe	0.000	1.331	0.008
			2.000			2" Ice	0.000	2 138	0.150
						2" Ice	0.000	3.042	0.150
5' x 2" Pipe Mount	А	From Leg	4.000	0.000	91.000	No Ice	1.000	1.000	0.029
(E-For TME)		TTOIL 200	0.000	01000	911000	1/2" Ice	1.393	1.393	0.037
			0.000			1" Ice	1.703	1.703	0.048
						2" Ice	2.351	2.351	0.082
						4" Ice	3.778	3.778	0.196
5' x 2" Pipe Mount	В	From Leg	4.000	0.000	91.000	No Ice	1.000	1.000	0.029
(E-For TME)			0.000			1/2" Ice	1.393	1.393	0.037
			0.000			1" Ice	1.703	1.703	0.048
						2" Ice	2.351	2.351	0.082
	~		4.000	0.000	01.000	4" Ice	3.778	3.778	0.196
5' x 2" Pipe Mount	С	From Leg	4.000	0.000	91.000	No Ice	1.000	1.000	0.029
(E-For IME)			0.000			1/2" Ice	1.393	1.393	0.037
			0.000			1" Ice	1.703	1.703	0.048
						4" Ice	2.331	2.331	0.082
Platform Mount [LP 1201 1]	C	None		0.000	91.000	A ICC	23 100	23 100	2 100
(F)	C	None		0.000	91.000	1/2" Ice	26.800	26.800	2.100
						1" Ice	30,500	30,500	2.500
						2" Ice	37.900	37.900	3.700
						4" Ice	52.700	52.700	5.300
d									
KS24019-L112A	С	From Leg	2.000	0.000	75.000	No Ice	0.156	0.156	0.005
(E)			0.000			1/2" Ice	0.225	0.225	0.007
			1.000			1" Ice	0.302	0.302	0.009
						2" Ice	0.484	0.484	0.018
Side Arm Mount [SO 701 1]	C	Erone Las	1 000	0.000	75 000	4 Ice	0.951	0.951	0.056
Side Arm Mount [SO /01-1]	U	riom Leg	1.000	0.000	/3.000	INO ICE	0.000	1.0/0	0.005

<i>tnxTower</i>	Job 92595.005.01 - Richard Wall, CT (BU #876352)	Page 12 of 19
B+T Group 1717 S Boulder Ave, Suite 300	Project	Date 10:28:26 05/10/16
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by bsevier

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			vert ft ft ft	0	ft		ft^2	ft ²	Κ
(E)			0.000 0.000			1/2" Ice 1" Ice 2" Ice 4" Ice	1.140 1.430 2.010 3.170	2.340 3.010 4.350 7.030	0.079 0.093 0.121 0.177

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	Κ
GHF3W-23	В	Grid	From	4.000	0.000		117.000	3.000	No Ice	7.070	0.000
(E)			Leg	0.000					1/2" Ice	7.470	0.040
			_	2.000					1" Ice	7.860	0.000
									2" Ice	8.660	0.000
									4" Ice	10.250	0.000
d											

Load Combinations

Comb.	Description
No.	•
1	Dead Only
2	Dead+Wind 0 deg - No Ice
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 60 deg - No Ice
5	Dead+Wind 90 deg - No Ice
6	Dead+Wind 120 deg - No Ice
7	Dead+Wind 150 deg - No Ice
8	Dead+Wind 180 deg - No Ice
9	Dead+Wind 210 deg - No Ice
10	Dead+Wind 240 deg - No Ice
11	Dead+Wind 270 deg - No Ice
12	Dead+Wind 300 deg - No Ice
13	Dead+Wind 330 deg - No Ice
14	Dead+Ice+Temp
15	Dead+Wind 0 deg+Ice+Temp
16	Dead+Wind 30 deg+Ice+Temp
17	Dead+Wind 60 deg+Ice+Temp
18	Dead+Wind 90 deg+Ice+Temp
19	Dead+Wind 120 deg+Ice+Temp
20	Dead+Wind 150 deg+Ice+Temp
21	Dead+Wind 180 deg+Ice+Temp
22	Dead+Wind 210 deg+Ice+Temp
23	Dead+Wind 240 deg+Ice+Temp
24	Dead+Wind 270 deg+Ice+Temp

<i>tnxTower</i>

B+T Group 1717 S Boulder Ave, Suite 300

Tulsa, OK 74119

Phone: (918) 587-4630 FAX: (918) 295-0265

Job

Project

Client

Crown Castle

bsevier

Comb.	Description
No.	
25	Dead+Wind 300 deg+Ice+Temp
26	Dead+Wind 330 deg+Ice+Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 30 deg - Service
29	Dead+Wind 60 deg - Service
30	Dead+Wind 90 deg - Service
31	Dead+Wind 120 deg - Service
32	Dead+Wind 150 deg - Service
33	Dead+Wind 180 deg - Service
34	Dead+Wind 210 deg - Service
35	Dead+Wind 240 deg - Service
36	Dead+Wind 270 deg - Service
37	Dead+Wind 300 deg - Service
38	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
L1	117.5 - 86.29	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-18.011	-0.169	0.868
			Max. Mx	5	-9.182	-285.193	-0.332
			Max. My	2	-9.180	0.524	285.040
			Max. Vy	11	-16.911	284.920	0.585
			Max. Vx	8	16.926	-0.977	-284.518
			Max. Torque	13			-1.254
L2	86.29 - 42.627	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-25.478	0.351	1.123
			Max. Mx	11	-15.384	1058.512	1.511
			Max. My	2	-15.382	1.975	1059.411
			Max. Vy	11	-19.643	1058.512	1.511
			Max. Vx	8	19.675	-2.530	-1058.968
			Max. Torque	13			-1.256
L3	42.627 - 29.083	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-30.272	0.530	1.297
			Max. Mx	11	-19.423	1430.624	2.023
			Max. My	2	-19.422	2.650	1432.049
			Max. Vy	11	-21.059	1430.624	2.023
			Max. Vx	8	21.090	-3.310	-1431.561
			Max. Torque	13			-1.111
L4	29.083 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-37.823	0.844	1.610
			Max. Mx	11	-25.953	2075.666	2.836
			Max. My	2	-25.953	3.726	2077.927
			Max. Vy	11	-23.372	2075.666	2.836
			Max. Vx	8	23.403	-4.506	-2077.328
			Max. Torque	13			-1.172

Project

Job

Client

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by bsevier

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	Κ	Κ	Κ
		Comb.			
Pole	Max. Vert	25	37.823	5.165	2.994
	Max. H _x	11	25.967	23.358	0.024
	Max. Hz	2	25.967	0.034	23.385
	Max. M _x	2	2077.927	0.034	23.385
	Max. Mz	5	2075.312	-23.357	-0.034
	Max. Torsion	7	1.146	-11.708	-20.291
	Min. Vert	1	25.967	0.000	0.000
	Min. H _x	5	25.967	-23.357	-0.034
	Min. Hz	8	25.967	-0.043	-23.389
	Min. M _x	8	-2077.328	-0.043	-23.389
	Min. Mz	11	-2075.666	23.358	0.024
	Min. Torsion	13	-1.172	11.699	20.296

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment M	Overturning Moment M	Torque
Combination	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
Dead Only	25.967	0.000	0.000	-0.518	0.172	0.000
Dead+Wind 0 deg - No Ice	25.967	-0.034	-23.385	-2077.927	3.726	0.740
Dead+Wind 30 deg - No Ice	25.967	11.637	-20.204	-1794.046	-1033.012	0.091
Dead+Wind 60 deg - No Ice	25.967	20.197	-11.657	-1035.429	-1793.705	-0.362
Dead+Wind 90 deg - No Ice	25.967	23.357	0.034	3.008	-2075.312	-0.782
Dead+Wind 120 deg - No Ice	25.967	20.257	11.742	1043.689	-1800.486	-1.114
Dead+Wind 150 deg - No Ice	25.967	11.708	20.291	1803.079	-1040.618	-1.146
Dead+Wind 180 deg - No Ice	25.967	0.043	23.389	2077.328	-4.506	-0.747
Dead+Wind 210 deg - No Ice	25.967	-11.609	20.220	1794.969	1029.892	-0.086
Dead+Wind 240 deg - No Ice	25.967	-20.189	11.663	1035.101	1793.064	0.374
Dead+Wind 270 deg - No Ice	25.967	-23.358	-0.024	-2.836	2075.666	0.750
Dead+Wind 300 deg - No Ice	25.967	-20.241	-11.732	-1043.602	1798.849	1.108
Dead+Wind 330 deg - No Ice	25.967	-11.699	-20.296	-1804.774	1039.911	1.172
Dead+Ice+Temp	37.823	-0.000	-0.000	-1.610	0.844	-0.000
Dead+Wind 0 deg+Ice+Temp	37.823	-0.094	-5.943	-546.545	12.687	0.217
Dead+Wind 30 deg+Ice+Temp	37.823	2.936	-5.103	-468.078	-267.373	0.120
Dead+Wind 60 deg+Ice+Temp	37.823	5.110	-2.943	-270.727	-466.827	-0.018
Dead+Wind 90 deg+Ice+Temp	37.823	5.914	0.008	-0.880	-540.662	-0.172
Dead+Wind 120 deg+Ice+Temp	37.823	5.135	2.977	271.169	-469.735	-0.359
Dead+Wind 150 deg+Ice+Temp	37.823	2.964	5.138	468.881	-270.589	-0.449
Dead+Wind 180 deg+Ice+Temp	37.823	0.016	5.915	539.595	-0.970	-0.340
Dead+Wind 210 deg+Ice+Temp	37.823	-2.934	5.104	464.813	268.942	-0.119
Dead+Wind 240 deg+Ice+Temp	37.823	-5.174	2.890	260.517	476.660	0.141
Dead+Wind 270 deg+Ice+Temp	37.823	-5.946	-0.060	-9.102	546.480	0.341
Dead+Wind 300 deg+Ice+Temp	37.823	-5.165	-2.994	-276.703	475.240	0.358
Dead+Wind 330 deg+Ice+Temp	37.823	-3.025	-5.139	-472.466	280.102	0.279
Dead+Wind 0 deg - Service	25.967	-0.012	-8.092	-720.642	1.402	0.262
Dead+Wind 30 deg - Service	25.967	4.027	-6.991	-622.230	-357.962	0.031
Dead+Wind 60 deg - Service	25.967	6.988	-4.034	-359.272	-621.644	-0.129
Dead+Wind 90 deg - Service	25.967	8.082	0.012	0.684	-719.265	-0.276
Dead+Wind 120 deg - Service	25.967	7.009	4.063	361.425	-624.009	-0.391
Dead+Wind 150 deg - Service	25.967	4.051	7.021	624.660	-360.610	-0.401
Dead+Wind 180 deg - Service	25.967	0.015	8.093	719.719	-1.452	-0.261

<i>tnxTower</i>	

Job

Client

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Page 15 of 19 Date 10:28:26 05/10/16 Designed by bsevier

- · ·					<u> </u>	~
Load	Vertical	$Shear_x$	Shear _z	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Dead+Wind 210 deg - Service	25.967	-4.017	6.997	621.834	357.104	-0.030
Dead+Wind 240 deg - Service	25.967	-6.986	4.036	358.441	621.647	0.129
Dead+Wind 270 deg - Service	25.967	-8.082	-0.008	-1.342	719.613	0.262
Dead+Wind 300 deg - Service	25.967	-7.004	-4.060	-362.113	623.662	0.390
Dead+Wind 330 deg - Service	25.967	-4.048	-7.023	-625.967	360.585	0.414

Solution Summary

	Sur	n of Applied Force	s		Sum of Reaction	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	Κ	Κ	Κ	Κ	K	Κ	
1	0.000	-25.967	0.000	0.000	25.967	0.000	0.000%
2	-0.034	-25.967	-23.385	0.034	25.967	23.385	0.000%
3	11.637	-25.967	-20.204	-11.637	25.967	20.204	0.000%
4	20.197	-25.967	-11.657	-20.197	25.967	11.657	0.000%
5	23.357	-25.967	0.034	-23.357	25.967	-0.034	0.000%
6	20.257	-25.967	11.742	-20.257	25.967	-11.742	0.000%
7	11.708	-25.967	20.291	-11.708	25.967	-20.291	0.000%
8	0.043	-25.967	23.389	-0.043	25.967	-23.389	0.000%
9	-11.609	-25.967	20.220	11.609	25.967	-20.220	0.000%
10	-20.189	-25.967	11.663	20.189	25.967	-11.663	0.000%
11	-23.358	-25.967	-0.024	23.358	25.967	0.024	0.000%
12	-20.241	-25.967	-11.732	20.241	25.967	11.732	0.000%
13	-11.699	-25.967	-20.296	11.699	25.967	20.296	0.000%
14	0.000	-37.823	0.000	0.000	37.823	0.000	0.000%
15	-0.094	-37.823	-5.943	0.094	37.823	5.943	0.000%
16	2.936	-37.823	-5.103	-2.936	37.823	5.103	0.000%
17	5.110	-37.823	-2.943	-5.110	37.823	2.943	0.000%
18	5.914	-37.823	0.008	-5.914	37.823	-0.008	0.000%
19	5.135	-37.823	2.977	-5.135	37.823	-2.977	0.000%
20	2.964	-37.823	5.138	-2.964	37.823	-5.138	0.000%
21	0.016	-37.823	5.915	-0.016	37.823	-5.915	0.000%
22	-2.934	-37.823	5.104	2.934	37.823	-5.104	0.000%
23	-5.174	-37.823	2.890	5.174	37.823	-2.890	0.000%
24	-5.946	-37.823	-0.060	5.946	37.823	0.060	0.000%
25	-5.165	-37.823	-2.993	5.165	37.823	2.994	0.000%
26	-3.025	-37.823	-5.139	3.025	37.823	5.139	0.000%
27	-0.012	-25.967	-8.092	0.012	25.967	8.092	0.000%
28	4.027	-25.967	-6.991	-4.027	25.967	6.991	0.000%
29	6.988	-25.967	-4.034	-6.988	25.967	4.034	0.000%
30	8.082	-25.967	0.012	-8.082	25.967	-0.012	0.000%
31	7.009	-25.967	4.063	-7.009	25.967	-4.063	0.000%
32	4.051	-25.967	7.021	-4.051	25.967	-7.021	0.000%
33	0.015	-25.967	8.093	-0.015	25.967	-8.093	0.000%
34	-4.017	-25.967	6.997	4.017	25.967	-6.997	0.000%
35	-6.986	-25.967	4.036	6.986	25.967	-4.036	0.000%
36	-8.082	-25.967	-0.008	8.082	25.967	0.008	0.000%
37	-7.004	-25.967	-4.060	7.004	25.967	4.060	0.000%
38	-4.048	-25.967	-7.023	4.048	25.967	7.023	0.000%

Date

Project

Job

Client

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

10:28:26 05/10/16 Designed by

bsevier

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	contengeut	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00065148
3	Yes	5	0.00000001	0.00060687
4	Yes	5	0.00000001	0.00060818
5	Yes	4	0.00000001	0.00052415
6	Yes	5	0.00000001	0.00058972
7	Yes	5	0.00000001	0.00063266
8	Yes	4	0.00000001	0.00080442
9	Yes	5	0.00000001	0.00059692
10	Yes	5	0.00000001	0.00059906
11	Yes	4	0.00000001	0.00059750
12	Yes	5	0.00000001	0.00063040
13	Yes	5	0.00000001	0.00058641
14	Yes	4	0.00000001	0.00001298
15	Yes	5	0.00000001	0.00028297
16	Yes	5	0.00000001	0.00031802
17	Yes	5	0.00000001	0.00031826
18	Yes	5	0.00000001	0.00027940
19	Yes	5	0.00000001	0.00031835
20	Yes	5	0.00000001	0.00032189
21	Yes	5	0.00000001	0.00027846
22	Yes	5	0.00000001	0.00031389
23	Yes	5	0.00000001	0.00031711
24	Yes	5	0.00000001	0.00028303
25	Yes	5	0.00000001	0.00032923
26	Yes	5	0.00000001	0.00032584
27	Yes	4	0.00000001	0.00016737
28	Yes	5	0.00000001	0.00005659
29	Yes	5	0.00000001	0.00005678
30	Yes	4	0.00000001	0.00014659
31	Yes	5	0.00000001	0.00005335
32	Yes	5	0.00000001	0.00006136
33	Yes	4	0.00000001	0.00017495
34	Yes	5	0.00000001	0.00005452
35	Yes	5	0.00000001	0.00005486
36	Yes	4	0.00000001	0.00014736
37	Yes	5	0.00000001	0.00006100
38	Yes	5	0.00000001	0.00005302

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	117.5 - 86.29	29.699	38	2.502	0.011
L2	89.707 - 42.627	16.374	38	1.917	0.004
L3	47.377 - 29.083	4.052	38	0.825	0.001
L4	29.083 - 0	1.467	38	0.497	0.000

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Client

Crown Castle

Page

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
119.000	GHF3W-23	38	29.699	2.502	0.011	9900
117.000	APXVSPP18-C-A20 w/ Mount Pipe	38	29.443	2.492	0.011	9900
115.000	PCS 1900MHz 4x45W-65MHz	38	28.423	2.453	0.010	9900
105.000	(2) FD9R6004/2C-3L	38	23.394	2.256	0.007	3959
91.000	(2) 7770.00 w/ Mount Pipe	38	16.919	1.948	0.004	1896
75.000	KS24019-L112A	38	10.944	1.530	0.002	2034

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	117.5 - 86.29	85.297	13	7.194	0.032
L2	89.707 - 42.627	47.104	13	5.517	0.010
L3	47.377 - 29.083	11.676	13	2.376	0.002
L4	29.083 - 0	4.229	13	1.432	0.001

Critical Deflections and Radius of Curvature - Design Wind

Floyation	Appurtonance	Con	Deflection	Tilt	Twist	Padius of
Lievation	Appunenunce	Gov.	Deflection	1111	1 Wisi	Kaatus oj Cumustumo
		Loaa				Curvaiure
ft		Comb.	in	0	0	ft
119.000	GHF3W-23	13	85.297	7.194	0.032	3539
117.000	APXVSPP18-C-A20 w/ Mount Pipe	13	84.566	7.166	0.032	3539
115.000	PCS 1900MHz 4x45W-65MHz	13	81.641	7.055	0.030	3539
105.000	(2) FD9R6004/2C-3L	13	67.231	6.488	0.021	1414
91.000	(2) 7770.00 w/ Mount Pipe	13	48.666	5.607	0.011	674
75.000	KS24019-L112A	13	31.510	4.406	0.005	718

Compression Checks

			Pol	e Des	ign D	ata				
Section No.	Elevation	Size	L	Lu	Kl/r	F _a	A	Actual P	Allow.	Ratio P
1101	ft		ft	ft		ksi	in^2	K	K	P_a
L1	117.5 - 86.29 (1)	TP22.9x15x0.188	31.210	0.000	0.0	39.000	13.002	-9.171	507.080	0.018
L2	86.29 - 42.627 (2)	TP33.46x21.66x0.313	47.080	0.000	0.0	39.000	31.697	-15.378	1236.200	0.012
L3	42.627 - 29.083	TP36.222x31.644x0.398	18.294	0.000	0.0	32.814	45.261	-19.420	1485.190	0.013
L4	29.083 - 0 (4)	TP43.5x36.222x0.411	29.083	0.000	0.0	33.222	51.522	-22.594	1711.690	0.013

Job

B+T Group Boulder Ave. Suite 300 Project

Client

1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Pole Bending Design Data

Section	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
No.			M_x	f_{bx}	F_{bx}	f_{bx}	M_y	f_{by}	F_{by}	f_{by}
	ft		kip-ft	ksi	ksi	F_{bx}	kip-ft	ksi	ksi	F_{by}
L1	117.5 - 86.29	TP22.9x15x0.188	286.125	49.019	39.000	1.257	0.000	0.000	39.000	0.000
	(1)									
L2	86.29 - 42.627	TP33.46x21.66x0.313	1062.34	51.099	39.000	1.310	0.000	0.000	39.000	0.000
	(2)		2							
L3	42.627 -	TP36.222x31.644x0.398	1435.79	43.202	32.814	1.317	0.000	0.000	32.814	0.000
	29.083 (3)		2							
L4	29.083 - 0 (4)	TP43.5x36.222x0.411	1750.97	42.001	33.222	1.264	0.000	0.000	33.222	0.000
			5							

Pole Shear Design Data

Section	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
No.			V	f_v	F_{v}	f_{ν}	Т	f_{vt}	F_{vt}	f_{vt}
	ft		K	ksi	ksi	F_{v}	kip-ft	ksi	ksi	F_{vt}
L1	117.5 - 86.29 (1)	TP22.9x15x0.188	16.959	1.304	26.000	0.100	1.254	0.105	26.000	0.004
L2	86.29 - 42.627 (2)	TP33.46x21.66x0.313	19.715	0.622	26.000	0.048	1.088	0.025	26.000	0.001
L3	42.627 - 29.083 (3)	TP36.222x31.644x0.398	21.129	0.467	21.876	0.043	1.111	0.016	21.876	0.001
L4	29.083 - 0 (4)	TP43.5x36.222x0.411	22.364	0.434	22.148	0.039	1.143	0.013	22.148	0.001

Pole Interaction Design Data

Section No.	Elevation	Ratio P	$Ratio f_{bx}$	$Ratio f_{by}$	$Ratio f_v$	$Ratio f_{vt}$	Comb. Stress	Allow. Stress	Criteria
	ft	P_a	F_{bx}	F_{by}	F_{v}	F_{vt}	Ratio	Ratio	
L1	117.5 - 86.29 (1)	0.018	1.257	0.000	0.100	0.004	1.278	1.333	H1-3+VT 🖌
L2	86.29 - 42.627 (2)	0.012	1.310	0.000	0.048	0.001	1.323	1.333	H1-3+VT 🖌
L3	42.627 - 29.083 (3)	0.013	1.317	0.000	0.043	0.001	1.330	1.333	H1-3+VT 🖌
L4	29.083 - 0 (4)	0.013	1.264	0.000	0.039	0.001	1.278	1.333	H1-3+VT 🖌

B+T Group 1717 S Boulder Ave, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Client

Project

Crown Castle

Designed by bsevier

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$SF*P_{allow} \ K$	% Capacity	Pass Fail
L1	117.5 - 86.29	Pole	TP22.9x15x0.188	1	-9.171	**	**	**
L2	86.29 - 42.627	Pole	TP33.46x21.66x0.313	2	-15.378	**	**	**
L3	42.627 - 29.083	Pole	TP36.222x31.644x0.398	3	-19.420	**	**	**
L4	29.083 - 0	Pole	TP43.5x36.222x0.411	4	-22.594	**	**	**
							Summary	
						Pole (L3)	**	**
						RATING =	**	**

**See Appendix C - Additional Calculations

Program Version 7.0.5.1 - 2/1/2016

APPENDIX B

BASE LEVEL DRAWING

BUSINESS UNIT:876352

APPENDIX C

ADDITIONAL CALCULATIONS

													Section	Failure %																										
												Top	evation	Failure																										
												ottom	vation El	ailure F																										
												Bo	Ele	Fa		2	m	4	ŝ	9	~	20 0	5, 6	01	11	1 5	14	14	16	17	18	20	21	22	23	25	26	27	28	30
												Equivalent	Weight	Mult.	1.00	1.00	0.98	0.98																						
													uivalent	haft Fy	65.0	65.0	53.3	53.9																						
Γ	/Comp	. J'8-	280	-8C	-&C	-&C	-8C	-&C	8C	-8°C	I	valent	haft Eq	ckness S	1875	3125	3980	4115																						
	ap Ten					-						Equ	tom S	neter Thi	000 0.	0.0091	223 0.	000																						
	on				-								Bot	ter Dian	00 22.5	01 33.4	45 36.2	23 43.5																						
C 400	Positi	ц		ш	ш	u.	ш		ш.	ш			Top	s Diame	15.00	21.66	31.64	36.22																						
mononio	Type													# of Side	18	0 18	18	18																						
	ΔIΛ													Lap Splice	3.4170	4.7500	0.000	0.000																						
	Top												section	Length	31.2100	47.0800	18.2940	29.0830																						
	ottom	0	>										•,	o Height	17.5000	89.7070	47.3770	29.0830																						
L	ā										I	ntrol	ress	atio Top	6% 1	9.2%	.8%	.6%																						
Γ	amo		, U	0	U.	U.	0	U	0	U	I	S	1.3 St	city R.	i6	6	6	6																						
	Ten/C	Τ8.	T8	Τ8	Τ8	Т8	Τ8	T&	T8	Τ8			3 Reir	Capa																										
	Gap	· -	0	0	0	0	0	0	0	0			Reinf.	Type																										
	Position	ц	. u.	ш	ш	u.	ш	u	L	ш			Reinf. 3	QTY																										
a one one of a	Type												Rein. 2	Capacity																										
d	OTY N												Reinf. 2	Type																										
	Top	-											einf. 2	QTY																										
	ttom												sin. 1 R	pacity			9.8%	5.6%																						
L	BG										1		rf. 1 Re	pe Cal			303 9	304 9																						
Γ	ami	•		0	<i>(</i>)	0	0			٤,	Ī		.1 Rei	, T			MP	MP																						
	Ten/Co	T8.6	T&C	T&C	T&C	T&C	T&C	T& 0	T&C	T&C		pa	Reinf	v D			m	m											_	_	_	_								_
	Gap		0	0	0	0	0	0	0	0		Reinforo	Shaft	Capacit	92.6%	99.2%	82.8%	80.4%																						
	Position	ш	. u.	ш	ш.	ш	ш	u.	ш	ш		Original	Ultimate	Stress	80	80	80	80																						
the weeks of the	Type	MP304	MP303										Original	field Stress	65	65	65	65																						
iod	QTY M	, rr	n m										Original	hickness 1	0.1875	0.3125	0.3125	0.3125																						
	Top	0.083	(5.833										Top	evation T	17.5000	89.7070	47.3770	29.0830																						
	ttom	0	.083 4										ttom	ration Ele	6.2900 1	2.6270	9.0830	0.0000																						
	Bot	Γ	29.								[Bot	Eleva	8	4	2	-																						

Carelo

AeroSolutions LLC Optimizing Your Syner Inhumbacher	500.011 at rom P artwary Suite 100 8 ou M er, CO 80.301 7 20-304-6882
0	

% Error in berated Yield Stress	DP ole5R Check	22.4%	0.5%	0.4%	0.2%	1.5%	2.6%	2.6%	2.7%	
Derate d Ield Stress [EDPoleFy El	65.0	65.0	65.0	65.0	65.0	53.2	53.3	53.9	
W eight Y	PoletVM	1.00	1.00	1.00	1.00	1.00	0.98	0.98	0.98	
hickness (in)	EPoleT	0.1875	0.1875	0.5000	0.3125	0.6250	0.7235	0.3980	0.4115	
trolling tress Ratio	mpSR	0.002	0.956	0.415	0.992	0.506	0.537	1 866'0	0.956	866-0
nent of satisfield	wbi Cc	44 0	783 0	248 0	064 0	219	0178 0	9 688.	\$200 0	
Mor Mor	0 Vdu		02	55 2	17 4	84	3.8 10		52 15	
set bit hea	oYBor Cor	8	100	8	33	9	200	4	3 00	
Cerr Cerr Off	nISR Comp	00	00	00	00	0	537 0.0	968 010	926 0.0	998
total once St R() R	ein1P Rei						69.0 0.	128.3 0.	74.9 0.	0
[otal ment of ta (in ⁴)	A Vato Tite		-		-		1325	1543	3116	
nsion only or sion & Mo	in17C Rei						r&c	r&c	T&C	
Gap Te Sap Te bite and ack of Tee	in1Gop Re						0	0	0	
osition P (FRat, E -Cornet) R	ein1Pos Re						u.	u	4	
Model	Rein1 Model R						MP303	MP303	MP304	
40	ein 10ty						3	3		
inforced le Stress Ratio	PoleSR Rc	0.002	0.956	0.415	0.992	0.5 06	0.444	0.828	0.804	2660
forsion Shear Re Stress Pol	olePutAC R	80	0.01	80	800	80	000	000	80	
Shear Stress (ksi)	PoleFatcRF	8	80	8	80	8	800	80	8	
Axial Stress (Isi)	8 PoleFaAct R	80	0.71	0.27	0.49	0.25	0.26	0.55	0.61	
Bending Stress (ksi)	AP ole Rh4 a	0.1	49.0	21.3	51.1	26.1	22.8	42.5	41.2	
Moment in Pole when Reinforce	Po kMom a	0.3	286.2	344.5	1062.4	1092.9	1006.3	1133.9	1591.2	
Stress Ratio	2 PoleSR	0.002	0.956	0.415	0.992	0.506	0.510	1.046	1.049	1.049
Torsion Shear Stress (ksi)	ct PoleFvtAc	80	0.11	0.04	0.03	0.01	0.01	0.02	0.02	
Shear Stress Øtsil	ict PoleFwt	000	80	80	80	80	000	000	000	
e Aeial Strees Biresi	4ct PoleFor	000	0.71	0.27	0.49	0.25	0.26	0.55	0.61	
w Bendi Stres 3(ki) 1 (ki)	IV PoleRb	7 0.1	7 49.0	7 21.3	7 S1.1	7 26.3	7 26.2	7 53.8	7 53.5	
able Allow all She ess Stre sil (Is	efo Pole	2.0 3.4	24	2.0 3.4	24	20 34	2.0 34	2.0 34	2.0 3.4	
wable ding Allow ment Ax ngth Str filo	P of	10.1 Si	03.7 Si	10.5 S.	81.6 Si	80.7 S.	92.7 S.	86.4 Si	08.5 SI	
Allon mable Ber nding Mon tress Stre ksi) (11-	NeFb Pol	52.0 13	52.0 30	52.0 84	52.0 10	52.0 21	52.0 22	52.0 13	52.0 20	
Mic Mic Mgonal Be mpact S Iterion (NeWTF Pc	100	153	51 5	133 5	60	62 5	151 5	184	
orsion Po onstant Cc (in*) Cr	Polei Pc	484	1552	4465	8008	16317	17576	11490	19985	
Section T Modulus C	PoleS	32	8	194	250	<u>8</u>	529	320	464	
Distance to Extreme Fiber (in)	PoleC	7.60	11.17	11.59	16.36	16.33	16.73	18.11	21.75	
Angle Offset to Pole Flat	PoleCPoint	TRUE	TRUE	TRUE	TRUE	•	0	0	0	
Percent of Composit e Moment of Inertia	PoleiPer	100%	100%	100%	100%	100%	87%	3464	76%	
Moment of Inertia	Polei	2.44	783	2.248	4064	8219	8854	5796	10.084	
Area 6n ²	PoleA	88	13.0	35.5	31.7	63.4	65.0	35.6	42.8	
th Midth (in)	Marod A	2.31	3.55	3.16	5.14	4.66	4.80	5.84	7.12	
Yield Streng (Isi	T Pole	75 65	75 65	8	22	8	59	25 65	25 65	
Thickr In con	Pole	0.18	351 0.18	000 0.50	595 0.31	565 0.62	500 0.62	223 0.31	000 0.31	
ber des 00 (ides Pole	8 15.0	8 22.0	8 22.9	32.2	8 32.6	8 33.4	8 36.2	8 43.5	
tion Nurr	sion Pole	0	3	3	1	1	1 1	1.1.	2 1	
tar Tori Øl (kip	tor Tors	12 0	7.0 1	7.2 1.	9.7 1.	9.8	0.1 1.	1 11	3.4 1.	
pressi Sh Kibi Qu	ression She	000	22	3.7 1.5	5.4 15	5.8 15	6.8 21	9.4 2.	6.0 2.	
nent Com tipl on (nent Comp	13	\$2 5	4.5 5	52.4 1.	1 929	1 6.95	35.7 1.	\$2.9 2.	
ation Mor (ft-)	ation Mbn	17.5 (707 25	5.29 34	377 10	\$33 10.	627 11	083 14	0 20	
Elev Ction []	ction Bev	1	2	8	4 47.	5 45	6 42	7 25		
š	Å		L		L	L		L		

1 of 4

S/10/2016 10:25 AM

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev F		
Site Data		
BU#:	876352	
Site Name:	RICHARD V	VALL
App #:	344087 Rev	ision # 0/
Pole Ma	anufacturer:	Other
An	chor Rod Da	ata
Qty:	12	
Diam:	2.25	in
Rod Material:	A615-J	
Strength (Fu):	100	ksi
Yield (Fy):	75	ksi
Bolt Circle:	52	in
	Plate Data	

	Plate Data	
Diam:	58	in
Thick:	1.75	in
Grade:	60	ksi
Single-Rod B-eff:	11.51	in

Stiffener Da	ata (Welding a	at both sides)
Config:	1	*
Weld Type:	Fillet	
Groove Depth:	0.625	< Disregard
Groove Angle:		< Disregard
Fillet H. Weld:	0.625	in
Fillet V. Weld:	0.375	in
Width:	7	in
Height:	20	in
Thick:	0.75	in
Notch:	0.5	in
Grade:	36	ksi
Weld str.:	70	ksi

	Pole Data	
Diam:	43.5	in
Thick:	0.3125	in
Grade:	65	ksi
# of Sides:	18	"0" IF Round
Fu	80	ksi
Reinf. Fillet Weld	0	"0" if None

Stress	s Increase F	actor
ASIF:	1.333	

				_	
	Reactions				
	Moment:	2082.9362	ft-kips		
	Axial:	25.9533	kips		
	Shear:	23.441739	kips		
				-	
			-		
If No stiffeners	s, Criteria:	AISC ASD	<-Only Applca	ble to Un	stiffened Cases
			-		
Anchor Ro	od Results				Stiffened
Maximum F	Rod Tensior	n:	158.1	Kips	Service, ASD
Allowable 7	Fension:		195.0	Kips	Fty*ASIF
Anchor Ro	d Stress Ra	tio:	81.1%	Pass	
Raso Plate	Desults				
Dase Flate	Results		Flexural Ch	leck	Stiffened
Base Plate	Stress:		Flexural Ch 48.0	ieck ksi	Stiffened Service, ASD
Base Plate Allowable F	Stress: Plate Stress		Flexural Ch 48.0 60.0	ieck ksi ksi	Stiffened Service, ASD 0.75*Fy*ASIF
Base Plate Allowable F Base Plate	Stress: Plate Stress Stress Rati	:: io:	Flexural Ch 48.0 60.0 80.1%	ieck ksi ksi Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length:
Base Plate Allowable F Base Plate	Stress: Plate Stress Stress Rati	: io:	Flexural Ch 48.0 60.0 80.1%	ieck ksi ksi Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length: N/A, Roark
Base Plate Allowable F Base Plate	Stress: Plate Stress Stress Rati	io:	Flexural Ch 48.0 60.0 80.1%	ieck ksi ksi Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length: N/A, Roark
Base Plate Allowable F Base Plate Stiffener R	Stress: Plate Stress Stress Rati	:: io:	Flexural Ch 48.0 60.0 80.1%	ieck ksi ksi Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length: N/A, Roark
Base Plate Allowable F Base Plate Stiffener R Horizontal	Stress: Plate Stress Stress Rati	:: io:	Flexural Ch 48.0 60.0 80.1% 69.5%	ieck ksi ksi Pass Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length: N/A, Roark
Base Plate Allowable F Base Plate Stiffener R Horizontal Vertical We	Stress: Plate Stress Stress Rati Results Weld : eld:	io:	Flexural Ch 48.0 60.0 80.1% 69.5% 42.4%	eck ksi ksi Pass Pass Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length: N/A, Roark
Stiffener R Horizontal Vertical We Plate Flex+S	Stress: Plate Stress Stress Rati Results Weld : eld: Shear, fb/Fb+	:: io: (fv/Fv)^2:	Flexural Ch 48.0 60.0 80.1% 69.5% 42.4% 28.7%	eck ksi Pass Pass Pass Pass Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length: N/A, Roark
Stiffener R Horizontal ¹ Vertical We Plate Flex+S Plate Tensio	Stress: Plate Stress Stress Rati Results Weld : eld: Shear, fb/Fb+ n+Shear, ft/Fb+	:: io: (fv/Fv)^2: =t+(fv/Fv)^2:	Flexural Ch 48.0 60.0 80.1% 69.5% 42.4% 28.7% 87.1%	eck ksi Pass Pass Pass Pass Pass Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length: N/A, Roark
Stiffener R Horizontal Vertical We Plate Flex+S Plate Comp	Results Stress: Plate Stress Stress Rati Results Weld : eld: Shear, fb/Fb+ on+Shear, ft/F o. (AISC Bra	:: io: (fv/Fv)^2: Et+(fv/Fv)^2: acket):	Flexural Ch 48.0 60.0 80.1% 69.5% 42.4% 28.7% 87.1% 93.1%	eck ksi Pass Pass Pass Pass Pass Pass Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length: N/A, Roark
Stiffener R Horizontal Vertical We Plate Flex+S Plate Tensic Plate Comp	Results Stress: Plate Stress Stress Rati Results Weld : eld: Shear, fb/Fb+ on+Shear, ft/F o. (AISC Bra	:: io: (fv/Fv)^2: ⁻ t+(fv/Fv)^2: acket):	Flexural Ch 48.0 60.0 80.1% 69.5% 42.4% 28.7% 87.1% 93.1%	eck ksi Pass Pass Pass Pass Pass Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length: N/A, Roark
Stiffener R Horizontal Vertical We Plate Tensic Plate Comp Pole Resu	Results Stress: Plate Stress Stress Rati Results Weld : eld: Shear, fb/Fb+ on+Shear, ft/F o. (AISC Bra	:: io: (fv/Fv)^2: =t+(fv/Fv)^2: acket):	Flexural Ch 48.0 60.0 80.1% 69.5% 42.4% 28.7% 87.1% 93.1%	eck ksi Pass Pass Pass Pass Pass Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length: N/A, Roark
Base Plate Base Plate Allowable F Base Plate Stiffener R Horizontal Vertical We Plate Flex+S Plate Tensic Plate Comp Pole Resu Pole Punchin	Results Stress: Plate Stress Stress Rati Results Weld : eld: Shear, fb/Fb+ on+Shear, ft/F o. (AISC Bra Its ng Shear Che	:: io: (fv/Fv)^2: ^E t+(fv/Fv)^2: acket): eck:	Flexural Ch 48.0 60.0 80.1% 69.5% 42.4% 28.7% 87.1% 93.1%	eck ksi Pass Pass Pass Pass Pass Pass Pass	Stiffened Service, ASD 0.75*Fy*ASIF Y.L. Length: N/A, Roark

* 0 = none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

** Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

CCIFTS 1.2.108.14286 - Phase 1-2

BU:	876352	
Site Name:	Richard Wall, CT	
App Number:	344087 Rev. 0	
Work Order:	1230683	

Monopole Drilled Pier

Input	
Criteria	
TIA Revision:	F
ACI 318 Revision:	2002
Seismic Category:	В
Forces	
Compression	26 kips
Shear	23 kips
Moment	2083 k-ft
Swelling Force	0 kips
Foundation Dimensions	
Pier Diameter:	6 ft
Ext. above grade:	1 ft
Depth below grade:	22 ft
Material Properties	
Number of Rebar:	14
Rebar Size:	11
Tie Size	5
Rebar tensile strength:	60 ksi
Concrete Strength:	3000 psi
Ultimate Concrete Strain	0.003 in/in
Clear Cover to Ties:	4 in

Soil Profile: Soil

Laye	Thickness er (ft)	From (ft)	To (ft)	Unit Weight (pcf)	Cohesion (psf)	Friction Angle (deg)	Ultimate Uplift Skin Friction (ksf)	Ultimate Comp. Skin Friction (ksf)	Ultimate Bearing Capacity (ksf)	SPT 'N' Counts
1	3.3	0	3.3	120	0	0	0	0	0	
2	3.2	3.3	6.5	120	0	33			0	
3	4.5	6.5	11	120	0	33			0	
4	11	11	22	120	0	33			12	

Analysis Results

ateral Capacity apth to Zero Shear: 5.36 ft ax Moment, Mu: 2226.93 k-ft iil Safety Factor: 2.84 fety Factor Req'd: 2 RATING: 70.4% xial Capacity in Friction (k): 121.62 kips id Bearing (k): 169.65 kips imp. Capacity (k), ¢Cn: 291.26 kips imp. (k), Cu: 33.80 kips RATING: 11.6%			
ateral Capacity apth to Zero Shear: 5.36 ft ax Moment, Mu: 2226.93 k-ft iil Safety Factor: 2.84 fety Factor Req'd: 2 RATING: 70.4% xial Capacity in Friction (k): 121.62 kips id Bearing (k): 169.65 kips imp. Capacity (k), qCn: 291.26 kips imp. (k), Cu: 33.80 kips RATING: 11.6%			
epth to Zero Shear: 5.36 ft ax Moment, Mu: 2226.93 k-ft jil Safety Factor: 2.84 fety Factor Req'd: 2 RATING: 70.4% xial Capacity in Friction (k): 121.62 kips id Bearing (k): 169.65 kips ymp. Capacity (k), ¢Cn: 291.26 kips ymp. (k), Cu: 33.80 kips RATING: 11.6%	Soil Lateral Ca	apacity	
ax Moment, Mu: 2226.93 k-ft iil Safety Factor: 2.84 fety Factor Req'd: 2 RATING: 70.4% xial Capacity in Friction (k): 121.62 kips id Bearing (k): 169.65 kips mp. Capacity (k), ¢Cn: 291.26 kips imp. (k), Cu: 33.80 kips RATING: 11.6%	Depth to 2	Zero Shear:	5.36 ft
hil Safety Factor: 2.84 [fety Factor Req'd: 2 RATING: 70.4% xial Capacity in Friction (k): 121.62 kips Id Bearing (k): 169.65 kips imp. Capacity (k), ¢Cn: 291.26 kips imp. (k), Cu: 33.80 kips RATING: 11.6%	Max Mom	ient, Mu:	2226.93 k-ft
fety Factor Req'd: 2 RATING: 70.4% xial Capacity 121.62 kips in Friction (k): 121.62 kips id Bearing (k): 169.65 kips ymp. Capacity (k), φCn: 291.26 kips ymp. (k), Cu: 33.80 kips RATING: 11.6%	Soil Safety	/ Factor:	2.84
RATING: 70.4% xial Capacity	Safety Fac	tor Req'd:	2
xial Capacity in Friction (k): 121.62 kips id Bearing (k): 169.65 kips imp. Capacity (k), φCn: 291.26 kips imp. (k), Cu: 33.80 kips RATING: 11.6%		RATING:	70.4%
xial Capacity in Friction (k): 121.62 kips id Bearing (k): 169.65 kips pmp. Capacity (k), φCn: 291.26 kips pmp. (k), Cu: 33.80 kips RATING: 11.68			
in Friction (k): 121.62 kips d Bearing (k): 169.65 kips pmp. Capacity (k), ¢Cn: 291.26 kips pmp. (k), Cu: 33.80 kips RATING: 11.6%	Soil Axial Cap	acity	
nd Bearing (k): 169.65 kips nmp. Capacity (k), ϕ Cn: 291.26 kips nmp. (k), Cu: 33.80 kips RATING: 11.6%	Skin Friction	on (k):	121.62 kips
omp. Capacity (k), ϕ Cn: 291.26 kips omp. (k), Cu: 33.80 kips RATING: 11.6%	End Bearin	ng (k):	169.65 kips
omp. (k), Cu: 33.80 kips RATING: 11.6%	Comp. Cap	pacity (k), φCn:	291.26 kips
RATING: 11.6%	Comp. (k),	, Cu:	33.80 kips
		RATING:	11.6%

Overall Foundation Rating: 98.3%

5/10/2016

CROWN CASTLE

Date:

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

AT&T Existing Facility

Site ID: CT1053

East Hampton 94 East High Street East Hampton, CT 06424

July 10, 2016

EBI Project Number: 6216003142

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general public allowable limit:	14.84 %			

July 10, 2016

AT&T Mobility – New England Attn: Cameron Syme, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT1053 - East Hampton

EBI Consulting was directed to analyze the proposed AT&T facility located at **94 East High Street, East Hampton, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed AT&T Wireless antenna facility located at **94 East High Street**, **East Hampton, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 UMTS channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 2 UMTS channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (700 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 5) 2 GSM channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 6) 2 GSM channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.

- 7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 8) For the following calculations the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antennas used in this modeling are the Powerwave 7770 and the KMW AM-X-CD-16-65-00T-RET for transmission in the 700 MHz, 850 MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 10) The antenna mounting height centerlines of the proposed antennas are **95 feet** above ground level (AGL) for **Sector A**, **95 feet** above ground level (AGL) for **Sector B** and **95 feet** above ground level (AGL) for **Sector C**.
- 11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

AT&T Site Inventory and Power Data by Antenna

Sector:	А	Sector:	В	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Powerwave 7770	Make / Model:	Powerwave 7770	Make / Model:	Powerwave 7770
Gain:	11.4 / 13.4 dBd	Gain:	11.4 / 13.4 dBd	Gain:	11.4 / 13.4 dBd
Height (AGL):	95 feet	Height (AGL):	95 feet	Height (AGL):	95 feet
Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	120 Watts	Total TX Power(W):	120 Watts	Total TX Power(W):	120 Watts
ERP (W):	2,140.89	ERP (W):	2,140.89	ERP (W):	2,140.89
Antenna A1 MPE%	1.26 %	Antenna B1 MPE%	1.26 %	Antenna C1 MPE%	1.26 %
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	KMW AM-X-CD- 16-65-00T-RET	Make / Model:	KMW AM-X-CD- 16-65-00T-RET	Make / Model:	KMW AM-X-CD- 16-65-00T-RET
Gain:	13.35 / 15.25 / 0 / 0 dBd	Gain:	13.35 / 15.25 / 0 / 0 dBd	Gain:	13.35 / 15.25 / 0 / 0 dBd
Height (AGL):	95 feet	Height (AGL):	95 feet	Height (AGL):	95 feet
Frequency Bands	700 MHz / 1900 MHz (PCS)	Frequency Bands	700 MHz / 1900 MHz (PCS)	Frequency Bands	700 MHz / 1900 MHz (PCS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	240 Watts	Total TX Power(W):	240 Watts	Total TX Power(W):	240 Watts
ERP (W):	6,614.85	ERP (W):	6,614.85	ERP (W):	6,614.85
Antenna A2 MPE%	4.35 %	Antenna B2 MPE%	4.35 %	Antenna C2 MPE%	4.35 %
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Powerwave 7770	Make / Model:	Powerwave 7770	Make / Model:	Powerwave 7770
Gain:	11.4 / 13.4 dBd	Gain:	11.4 / 13.4 dBd	Gain:	11.4 / 13.4 dBd
Height (AGL):	95 feet	Height (AGL):	95 feet	Height (AGL):	95 feet
Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	120 Watts	Total TX Power(W):	120 Watts	Total TX Power(W):	120 Watts
ERP (W):	2,140.89	ERP (W):	2,140.89	ERP (W):	2,140.89
Antenna A3 MPE%	1.26 %	Antenna B3 MPE%	1.26 %	Antenna C3 MPE%	1.26 %

Site Composite MPE%				
Carrier	MPE%			
AT&T – Max per sector	6.86 %			
Town	1.47 %			
Sprint	0.97 %			
Verizon Wireless	4.88 %			
Nextel	0.66 %			
Site Total MPE %:	14.84 %			

AT&T Sector A Total:	6.86 %
AT&T Sector B Total:	6.86 %
AT&T Sector C Total:	6.86 %
Site Total:	14.84 %

AT&T _ Max Values Per Sector	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
AT&T 850 MHz UMTS	2	414.12	95	3.76	850 MHz	567	0.66 %
AT&T 1900 MHz (PCS) UMTS	2	656.33	95	5.96	1900 MHz (PCS)	1000	0.60 %
AT&T 700 MHz LTE	2	1,297.63	95	11.78	700 MHz	467	2.52 %
AT&T 1900 MHz (PCS) LTE	2	2,009.79	95	18.24	1900 MHz (PCS)	1000	1.82 %
AT&T 850 MHz GSM	2	414.12	95	3.76	850 MHz	567	0.66 %
AT&T 1900 MHz (PCS) GSM	2	656.33	95	5.96	1900 MHz (PCS)	1000	0.60 %
						Total:	6.85 %

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)		
Sector A:	6.86 %		
Sector B:	6.86 %		
Sector C:	6.86 %		
AT&T Maximum Total	6.86 %		
(per sector):			
Site Total:	14.84 %		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **14.84** % of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.