

February 1, 2019

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Regarding:	Notice of Exempt Modification – Equipment Modifications
Property Address:	315 Old Hartford Road; Colchester, CT 06415 (the "Property")
Applicant:	AT&T Mobility ("AT&T") Site # CT5346

Dear Ms. Bachman:

AT&T currently maintains a (9) wireless telecommunications facility on an existing 60-foot monopole at the above-referenced address, latitude 41.58000000, longitude -72.35000000. Said monopole is owned by AT&T, is operated by Crown Castle, and the property is owned by Cell Tower Lease Acquisition LLC (Exhibit 1).

AT&T desires to modify its existing telecommunications facility by removing (3) panel antennas and replacing with (3) new panel antennas and upgrading ancillary equipment as follows: swap (6) remote radio head units and add (3) low band combiners. The existing mount will also be reinforced as shown in the Antenna Mount Modification Design & Analysis by Maser Consulting Connecticut, dated October 18, 2018 and shown in the Construction Drawings provided. The centerline height of the existing antennas and ancillary tower-mounted equipment is and will remain at 57 feet.

Please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72 (b)(2). In accordance with R.C.S.A. §16-50j-73, a copy of this letter is being sent to the Honorable Art Shilosky, First Selectman of the Town of Colchester; Daphne Schaub, the Zoning Enforcement Officer of the Town of Colchester; Randall Benson, the Town Planner; Cell Tower Lease Acquisition LLC, as property owner; AT&T as tower owner, and the tower operator Crown Castle.

The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72 (b)(2). Specifically:

- 1. The planned modification will not result in an increase in the height of the existing structure. The swapped antennas and accessory equipment to be swapped will be installed at the existing height of 57 feet on the 60-foot monopole.
- 2. The proposed modifications will not involve any changes to AT&T's ground-space footprint, and therefore and therefore will not require an extension of the site boundary.
- 3. The proposed modification will not increase the noise level at the facility by six decibels or more, or to levels that exceed state and local criteria.

- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above Federal Communications Commission (FCC) safety standard. An RF emissions calculation (Exhibit 4) for AT&T's modified facility is herein provided.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- The existing structure and its foundation can support AT&T's proposed modifications. Please see enclosed structural analysis completed by Jacobs Engineering Group dated January 3, 2019 (Exhibit 3), which takes into account the Antenna Mount Modification Design & Analysis by Maser Consulting Connecticut, dated October 18, 2018 (Exhibit 5)
- 7. Proof of mailing to the municipal officials and property owners specified below is also provided.

For the foregoing reasons, AT&T respectfully requests that the proposed installation be allowed within the exempt modifications under R.C.S.A. §16-50j-72 (b)(2).

Sincerely,

Kristen White

Kristen White Site Acquisition Specialist Empire Telecom USA, LLC kwhite@empiretelecomm.com

Enclosures:	Exhibit 1 – Field Card and GIS Map
	Exhibit 2 – Construction Drawings
	Exhibit 3 – Structural Analysis
	Exhibit 4 – RF Emissions Analysis Report Evaluation
	Exhibit 5 - Antenna Mount Modification Design & Analysis

cc:

Hon. Art Shilosky First Selectman's Office 127 Norwich Ave. Colchester, CT 06415

Daphne Schaub Colchester Zoning Department 127 Norwich Ave. Colchester, CT 06415

Randall Benson Colchester, CT Town Planner 127 Norwich Ave. Colchester, CT 06415 Crown Castle 3 Corporate Park Drive Suite 101 Clifton Park, NY 12065 Attn: Paul Pedicone

Cell Tower Lease Acquisition LLC C/O CT Corporation System, Agent 155 Federal Street, Suite 700 Boston, MA, 02110

AT&T Mobility ATT Tax Manager 909 Chestnut St. St. Louis, MO 63101

EXHIBIT 1

Property Listing Report

Map Block Lot 09-00/

09-00/012-000/TWR Account

PID

105120

Property Information

Property Location Owner Co-Owner Mailing Address	315 OLD HA AT&T MOBI ATT TAX MA 909 CHESTM ST LOUIS	LITY	RD	
Co-Owner Mailing Address	ATT TAX MA	NAGER		
Mailing Address	909 CHESTN	_		
_		IUT ST		
_	STLOUIS			
		ľ	ON	63101
Land Use	4310	Tel Rel Tw	I	
Land Class				
Zoning Code				
Census Tract				
Sub Lot				
Neighborhood				
Acreage	0			
Utilities				
Lot Setting/Desc				
Survey Map				
Additional Info			_	

Photo				
	HI A	-		
Sketch			 	

Primary Construction Details

Year Built	
Stories	
Building Style	
Building Use	
Building Condition	
Floors	
Total Rooms	

Bedrooms	
Full Bathrooms	
Half Bathrooms	
Bath Style	
Kitchen Style	
Roof Style	
Roof Cover	

Exterior Walls	
Interior Walls	
Heating Type	
Heating Fuel	
АС Туре	
Gross Bldg Area	
Total Living Area	

Property Listing Report

Map Block Lot 09-00

ot 09-00/012-000/TWR

Account

11AT0010

Valuation Summary

(Assessed value = 70% of Appraised Value)

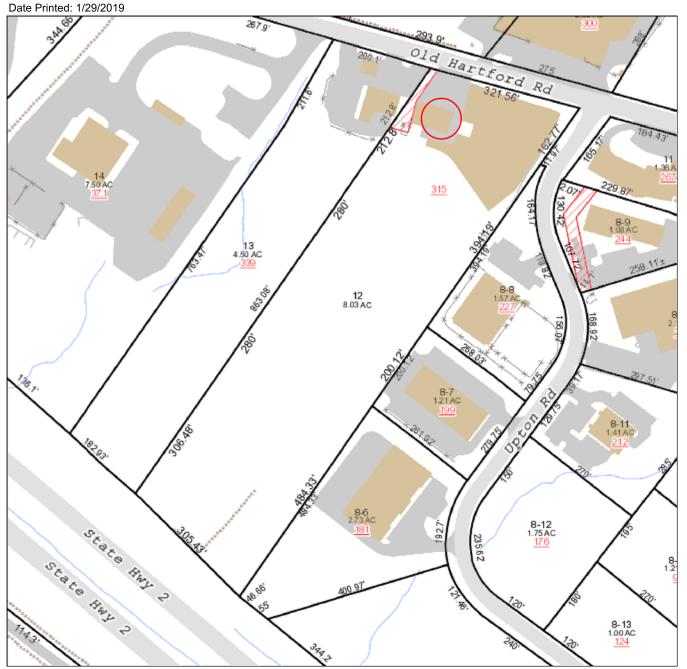
Item	Appraised	Assessed
Buildings	0	0
Extras	0	0
Outbuildings	247300	173100
Land	0	0
Total	247300	173100

Sub Areas

Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
otal Area		0

Outbuilding and Extra Items

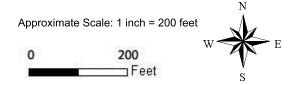
Туре	Description
Cell Tower	1.00 SITES
Cell Shed	240.00 S.F.
Fence 8' Chain	140.00 L.F.


Sales History

Owner of Record	Book/ Page	Sale Date	Sale Price
AT&T MOBILITY	000/ 000	10/1/2011	

Town of Colchester

Geographic Information System (GIS)



Print Map

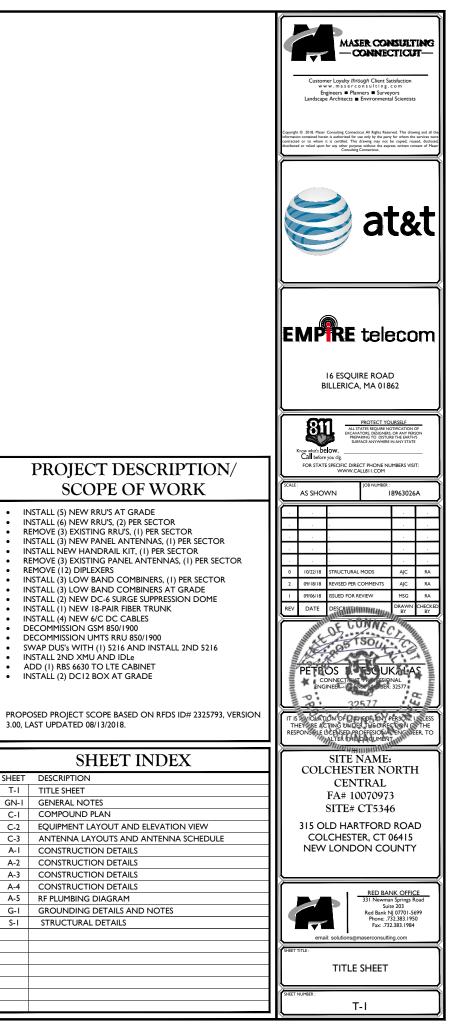
MAP DISCLAIMER - NOTICE OF LIABILITY

This map is for assessment purposes only. It is not for legal description or conveyances. All information is subject to verification by any user. The Town of Colchester and its mapping contractors assume no legal responsibility for the information contained herein.

EXHIBIT 2

PROJECT NOTES

- SITE INFORMATION OBTAINED FROM THE FOLLOWING
- A. PLAN ENTITLED "COLCHESTER" PREPARED BY COM EX CONSULTANTS OF MOUTAIN LAKES, NJ LAST REVISED 02/08/2016.
- B. LIMITED FIELD OBSERVATION BY MASER CONSULTING ON 06/14/2018.
- . THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES, ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITY COMPANIES OR OTHER PUBLIC/GOVERNING AUTHORITIES.
- . THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
- 4. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER, IN WRITING, OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF BIDS OR PERFORMANCE OF WORK.
- 5. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING SITE IMPROVEMENTS PRIOR TO COMMENCING CONSTRUCTION. THE CONTRACTOR SHALL REPAIR ANY DAMAGE AS A RESULT OF CONSTRUCTION OF THIS FACILITY AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- 5. THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATERIALS, EQUIPMENT AND LABOR REQUIRED TO COMPLETE THIS PROJECT. ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS.
- THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING THE BID TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWINGS.
- 8. THE CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THESE DRAWINGS MUST BE VERIFIED. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- SINCE THE CELL SITE MAY BE ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE REQUIRED TO BE WORN TO ALERT OF ANY POTENTIALLY DANGEROUS EXPOSURE LEVELS.
- 10. THE PROPOSED FACILITY WILL CAUSE AN INSIGNIFICANT OR "DE-MINIMUS" INCREASE IN STORM WATER RUNOFF, THEREFORE. NO DRAINAGE STRUCTURES ARE PROPOSED.
- 11. NO NOISE, SMOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO CAUSE A NUISANCE.
- 2. THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION (NO HANDICAP ACCESS IS REQUIRED).
- 13. THE FACILITY DOES NOT REQUIRE POTABLE WATER OR SANITARY SERVICE.
- 14. CONTRACTOR SHALL VERIFY ANTENNA ELEVATION AND AZIMUTHS WITH RF ENGINEERING PRIOR TO INSTALLATION.
- 5. THE TOWER, MOUNTS AND ANTENNAS SHALL BE DESIGNED TO MEET EIA/TIA-222-G AS PER IBC REQUIREMENTS.
- ALL STRUCTURAL ELEMENTS SHALL BE HOT DIPPED GALVANIZED STEEL.
- 17. CONTRACTOR MUST FIELD LOCATE ALL EXISTING UNDERGROUND UTILITIES PRIOR TO ANY EXCAVATION.
- 18. CONSTRUCTION SHALL NOT COMMENCE UNTIL COMPLETION OF A PASSING STRUCTURAL ANALYSIS CERTIFIED BY A LICENSED PROFESSIONAL ENGINEER. THE STRUCTURAL ANALYSIS IS TO BE PERFORMED BY OTHERS.


COPYRIGHT © 2018, MASER CONSULTING CONNECTICUT ALL RIGHTS RESERVED

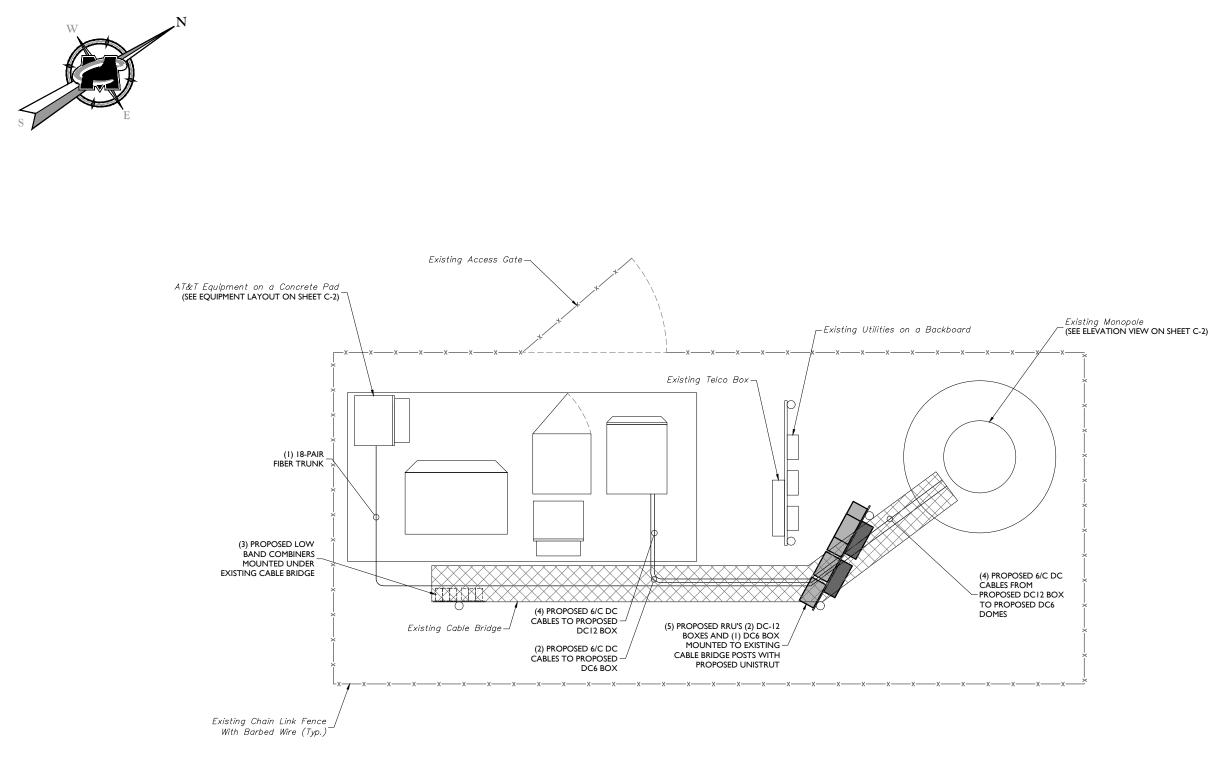
THIS DRAWING AND ALL THE INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED. THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN CONSENT OF MASER CONSULTING CONNECTICUT.

SITE NAME: COLCHESTER NORTH CENTRAL FA NUMBER: 10070973 SITE NUMBER: CT5346 3C -MRCTB032309 4C - MRCTB032279 5C - MRCTB032230 6C - MRCTB032273 RETROFIT - MRCTB032284 315 OLD HARTFORD ROAD COLCHESTER, CT 06415 NEW LONDON COUNTY

VICINITY MAP PROJECT INFORMATION SITE INFORMATION 41.5806919° N LATITUDE: LONGITUDE: 72.3503989° W NEW LONDON COUNTY **IURISDICTION** APPLICANT/LESSEE COMPANY: NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD ADDRESS: CITY, STATE, ZIP FRAMINGHAM, MA 01701 TOWER OWNER COMPANY AT&T MOBILITY 550 COCHITUATE ROAD, SUITE 550 13 & 14 ADDRESS: CITY, STATE, ZIP: FRAMINGHAM, MA 01701 CLIENT REPRESENTATIVE PROIECT LOCATIO COMPANY: EMPIRE TELECOM ADDRESS: CITY, STATE, ZIP: 16 ESQUIRE ROAD BILLERICA, MA 01862 CONTACT: DAVID COOPER DCOOPER@EMPIRETELECOM.COM E-MAIL: SITE ACQUISITION EMPIRE TELECOM ADDRESS: 16 ESQUIRE ROAD CITY, STATE, ZIP: BILLERICA, MA 01862 CONTACT: DAVID COOPER DCOOPER@EMPIRETELECOM.COM CODE COMPLIANCE F-MAIL · ENGINEER ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF C-3 THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE COMPANY: MASER CONSULTING CONNECTICUT CONSTRUED TO PERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOLLOWING CODES ADDRESS: 331 NEWMAN SPRINGS ROAD, SUITE 203 1. 2016 CONNECTICUT STATE BUILDING CODE. INSTITUTE FOR ELECTRICAL AND ELECTRONICS 8 CITY, STATE, ZIP RED BANK NI 07701-5699 A-3 INCORPORATING THE 2012 IBC ENGINEERS 81 IEEE C2 LATEST EDITION CONTACT: ROBERT ANDREWS 2. 2014 NATIONAL ELECTRICAL CODE - NFPA 70 TELCORDIA GR-1275 PHONE (856) 797-0412 RANDREWS@MASERCONSULTING.COM E-MAIL: 3. 2012 NFPA 101 10. ANSI T1.311 4. AMERICAN INSTITUTE OF STEEL CONSTRUCTION П. PROPOSED USE: UNMANNED TELECOM FACILITY 360-10 5. AMERICAN CONCRETE INSTITUTE HANDICAP REQUIREMENTS: FACILITY IS UNMANNED 12. AND NOT FOR HUMAN HABITATION. HANDICAPPED ACCESS NOT REQUIRED. 13. CONSTRUCTION TYPE: IIB 6. TIA-222-G 7. TIA 607 FOR GROUNDING 14. USE GROUP: U

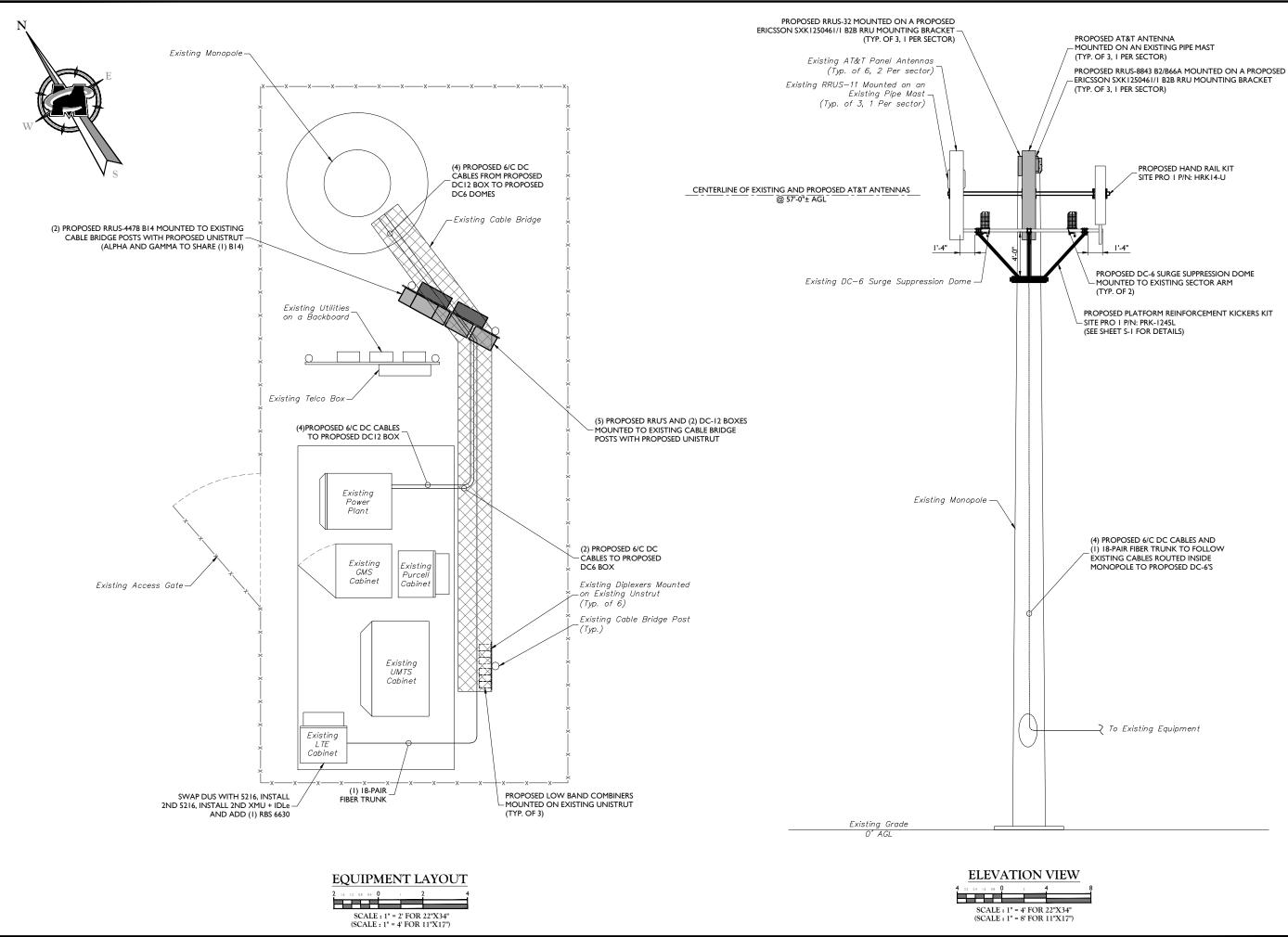
GENERAL NOTES:

- 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ). THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 50 HMS OR LESS.
- 4. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- 5. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 6. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR, STRANDED COPPER CONDUCTORS WITH GREEN INSULATION. SIZED IN ACCORDANCE WITH THE NEC. SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT
- 7. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE EQUIPMENT GROUND RING WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES. 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS: 2 AWG STRANDED COPPER FOR OUTDOOR BTS
- 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK TO BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- 9. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 10. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 11. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE
- ADEQUATELY SUPPORTED. ALL BENDS SHALL BE MADE WITH 12" RADIUS OR LARGER. 12. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 13. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS EXCEPT FOR GROUND BAR CONNECTION FROM MGB TO OUTSIDE EXTERIOR GROUND SHALL ALL BE CADWELD CONNECTIONS.
- 14. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS
- 15. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED TO THE TOWER GROUND BAR.
- 16. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS
- 17. ALL EXTERIOR AND INTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 18. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 19. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF MAIN GROUND WIRES WITH 1-#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR
- 20. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G. NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 21. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/4" IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50.
- 22. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:


CONTRACTOR - EMPIRE TELECOM SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION) AT&T (NEW CINGULAR WIRELESS PCS, LLC) OWNER -

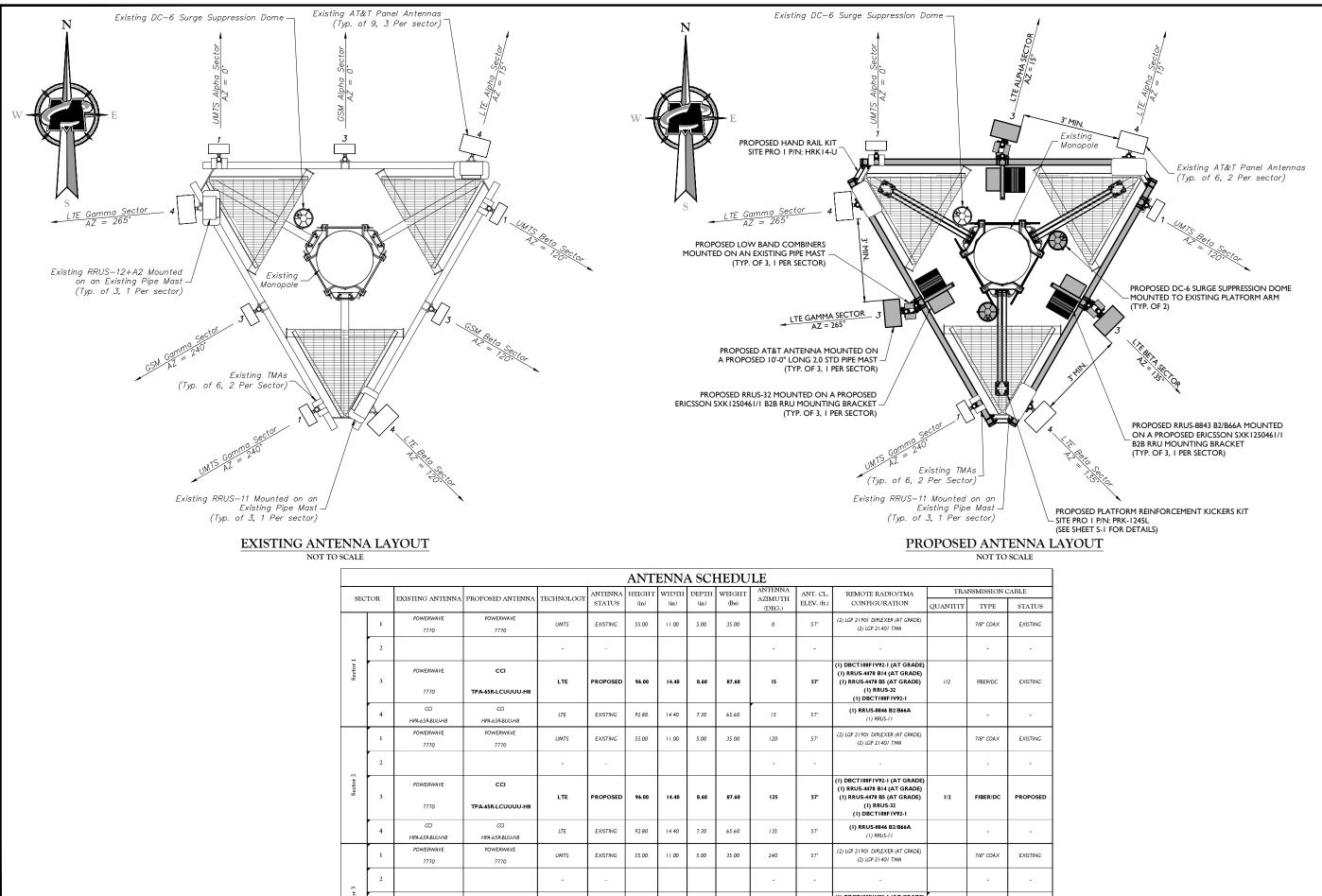
- 23. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 24. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY
- 25. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK
- 26. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES. ORDINANCES AND APPLICABLE REGULATIONS
- 27. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS

- 28. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 29. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- 30 THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS PAVEMENTS CURRS LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF
- 31. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 32. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE RESPONSIBLE ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.
- 33. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK. AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND SUBJECT TO THE APPROVAL OF THE OWNER AND/OR LOCAL LITUITIES.
- 34. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION
- 35. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION, EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 36. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 37. THE SUBGRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION
- 38. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- 39. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 40. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 41. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION
- 42. PRIOR TO THE SUBMISSION OF BIDS. THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF THE CONTRACTOR
- 43. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER. GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR
- 44. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.
- 45. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS.
- 46. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- 47. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES."
- 48. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION
- 49. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR, ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 50. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN ALERT OF DANGEROUS EXPOSURE LEVELS.


FOR STATE SE AS SHOWN DATE

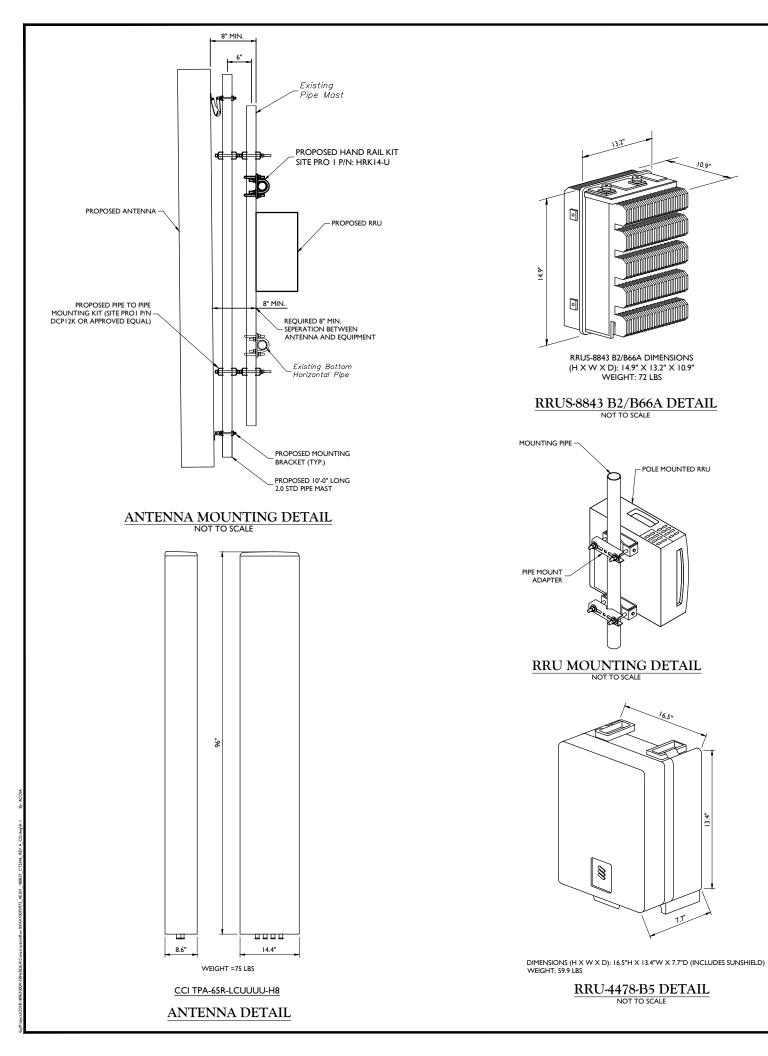
COMPOUN	ND PLAN	
2 1.6 1.2 0.8 0.4 0 1	2	4
SCALE : 1" = 2'] (SCALE : 1" = 4' I		

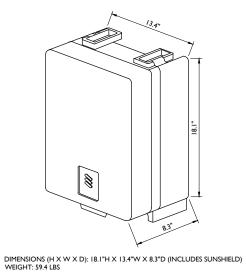
Copyright	En Landscap	her Loyalty th yw.maser ggineers = Pk e Architects	SEER CODE CONNECT rough Client Sa inners S Survey Environmentz ctor Al Fights Rese use only the parts drawing my not drawing my not g Connector.	tisfaction c o m vors al Scientists	fT —			
			at	t 8	at			
E	MP	16 ESQL	IRE ROAE	þ	m			
	ROTECT YOURSELF ALSTATE BECINE MOTIFICATION OF ALSTATE BECINE MOTIFICATION OF ALSTATE BECINE MOTIFICATION OF ALSTATE BECINE OF AND AND AND AND ALSTATE BECINE OF HONE NUMBERS VISIT: FOR STATE SPECIFIC DIRECT PHONE NUMBERS VISIT:							
SCALE		www.o	IOB NUMBER :		\equiv			
Ļ	AS SHO	ŴN	1	8963026	ia j			
[-						
		-			· ·			
		-						
0	10/22/18	· STRUCTURA	L MODS	AJC	RA			
2	09/18/18		COMMENTS	AJC	RA			
I REV	09/06/18 DATE	ISSUED FOR	REVIEW	MSG DRAWN BY	RA CHECKED BY			
≽	- MIII	annun C	ONNE	BY				
	Sall Contraction	22	SOU	40	- In the second se			
THE REAL PROPERTY.		OS		CALA NAL 32577	THIMPHOND			
IT IS TH RESI	POINT IEY REAC PONSIFLE I		VEDS J. NY F ER THE DIREC ROFFESIONA DOCUMENT		LESS THE ER, TO			
	COL	SITE CHES	NAME: FER NC TRAL		ł			
		SITE#	0070973 CT534	6				
	315 OLD HARTFORD ROAD COLCHESTER, CT 06415 NEW LONDON COUNTY							
\sim			RED BAN	NK OFFIC				
	ema	il: solutions#	331 Newmai Suit Red Bank N Phone: .7: Fax: .732	n Springs F e 203 IJ 07701-56 32.383.195 2.383.1984	load			
SHEET	email: solutions@maserconsulting.com SHET TITLE: COMPOUND PLAN							
	NUMBER :				\dashv			
SHEET			C-1					



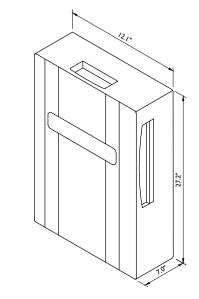
ERICSSON SXK1250461/1 B2B RRU MOUNTING BRACKET

PROPOSED DC-6 SURGE SUPPRESSION DOME


PROPOSED PLATFORM REINFORCEMENT KICKERS KIT

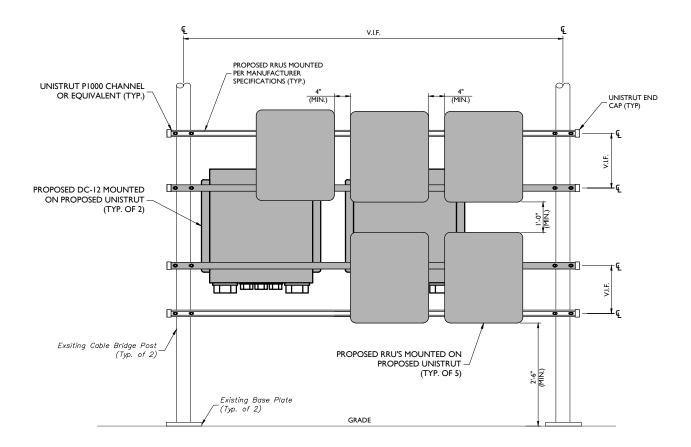


						ANT	ENNA	A SCI	HEDU	LE					
SEC	TOR	EXISTING ANTENNA	PROPOSED ANTENNA	TECHNOLOGY	ANTENNA		WIDTH			ANTENNA AZIMUTH	ANT. CL.	REMOTE RADIO/TMA	TRA	NSMISSION C	CABLE
		POWERWAVE	POWERWAVE		STATUS	(in)	(in)	(in)	(lbs)	(DEG.)	ELEV. (ft.)	CONFIGURATION (2) LGP 21901 DIPLEXER (AT GRADE)	QUANTITY	TYPE	STATUS
	1	7770	7770	UMTS	EXISTING	55.00	11.00	5.00	35.00	0	57'	(2) LGP 21401 TMA		7/8" COAX	EXISTING
	2			-	-					-		-			
Sector 1	3	POWERWAVE 7770	CCI TPA-65R-LCUUUU-H8	LTE	PROPOSED	96.00	14.40	8.60	87.60	15	57'	(I) DBCT108FIV92-I (AT GRADE) (I) RRUS-4478 BI4 (AT GRADE) (I) RRUS-4478 BS (AT GRADE) (I) RRUS-32 (I) DBCT108FIV92-I	1/2	RBER/DC	EXISTING
	4	CCI HPA-65R-BUU-H8	CCI HPA-65R-BUU-H8	LTE	EXISTING	92.80	14.40	7.30	65.60	15	57'	(I) RRUS-8846 B2/B66A (I) RRUS-11		-	-
	1	POWERWAVE 7770	POWERWAVE 7770	UMTS	EXISTING	55.00	11.00	5.00	35.00	120	57'	(2) LGP 21901 DIPLEXER (AT GRADE) (2) LGP 21401 TMA		7/8" COAX	EXISTING
	2			-	-					-	-	-			-
Sector 2	3	POWERWAVE 7770	CCI TPA-65R-LCUUUU-H8	LTE	PROPOSED	96.00	14.40	8.60	87.60	135	57'	(I) DBCT108FIV92-I (AT GRADE) (I) RRUS-4478 BI4 (AT GRADE) (I) RRUS-4478 B5 (AT GRADE) (I) RRUS-32 (I) DBCT108FIV92-I	1/2	FIBER/DC	PROPOSED
	4	CCI HPA-65R-BUU-H8	CCI HPA-65R-BUU-H8	LTE	EXISTING	92.80	14.40	7.30	65.60	135	57'	(I) RRUS-8846 B2/B66A (I) RRUS-II		-	-
	1	POWERWAVE 7770	POWERWAVE 7770	UMTS	EXISTING	55.00	11.00	5.00	35.00	240	57'	(2) LGP 21901 DIPLEXER (AT GRADE) (2) LGP 21401 TMA		7/8" COAX	EXISTING
e.	2				-					-	-	-		-	-
Sector 3	3	POWERWAVE 7770	CCI TPA-65R-LCUUUU-H8	LTE	PROPOSED	96.00	14.40	8.60	87.60	265	57'	(I) DBCT108FIV92-I (AT GRADE) (I) RRUS-4478 BI4 (AT GRADE) (I) RRUS-32 (I) DBCT108FIV92-I	2	DC	PROPOSED
	4	CCI HPA-65R-BUU-H8	CCI HPA-65R-BUU-H8	LTE	EXISTING	92.80	14.40	7.30	65.60	265	57'	(I) RRUS-8846 B2/B66A (I) RRUS-II		-	-



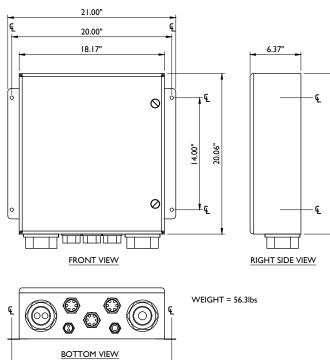
PROPOSED RRU PROPOSED ERICSSON SXK1250461/1 B2B RRU MOUNTING BRACKET _PROPOSED PIPE MOUNT - PROPOSED RRU

RRUS-4478 B14 DETAIL NOT TO SCALE



RRUS-32 DIMENSIONS (H \times W \times D): 27.2" \times 12.1" \times 7.0" (INCLUDES SUNSHIELD) WEIGHT: 53 LBS

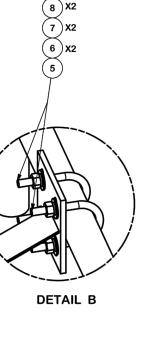
RRUS-32 DETAIL

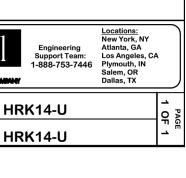


NOTES:

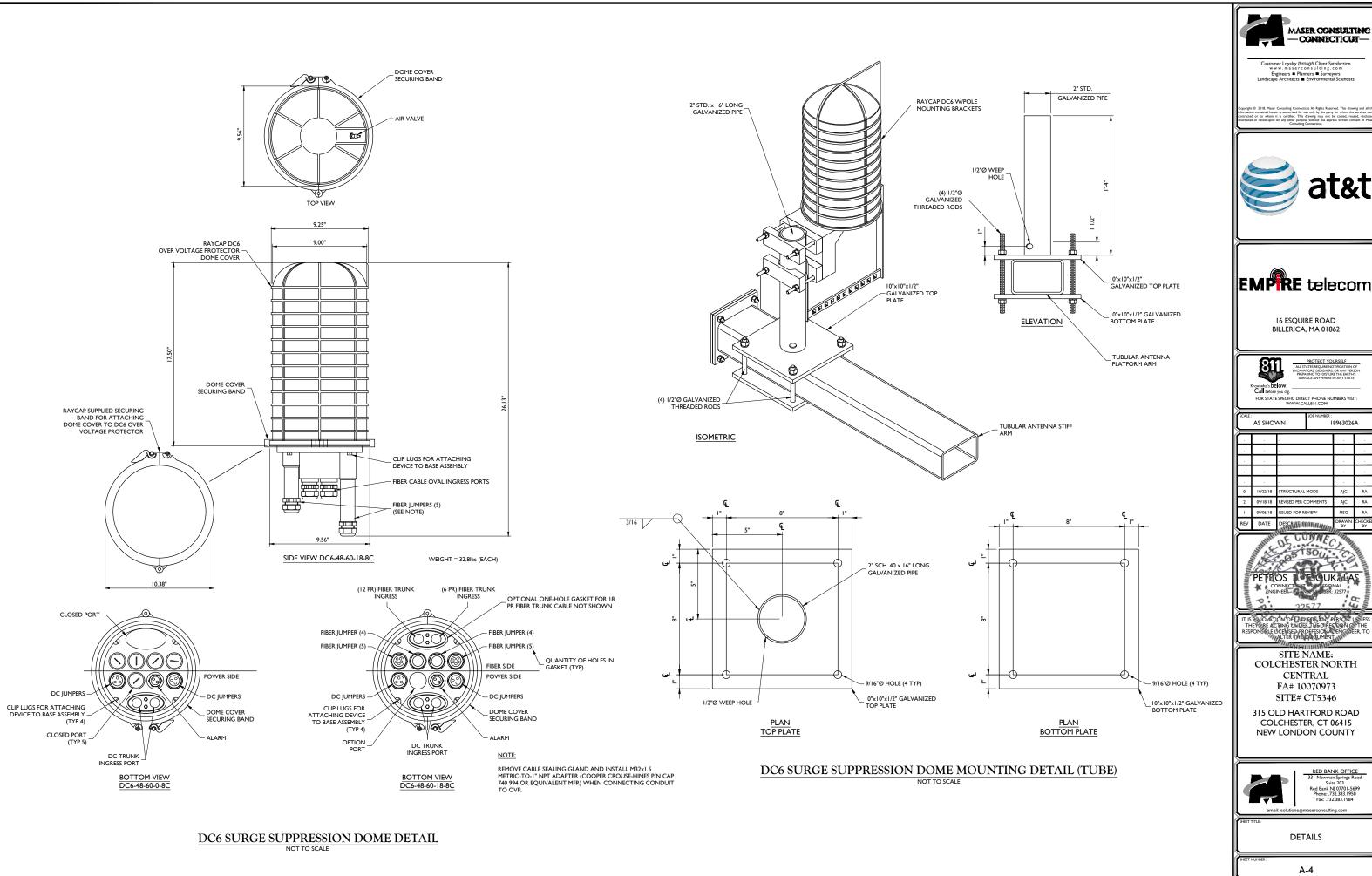
- INSTALL VERTICAL UNISTRUT CHANNELS AS REQUIRED TO ALIGN FRAME WITH EQUIPMENT MOUNTING HOLES. FASTEN UNISTRUT CHANNELS TOGETHER WITH 3/8" UNISTRUT BOLTING HARDWARE AND SPRING NUTS.
- 2. MOUNT RRU'S TO UNISTRUT PER MANUFACTURER'S SPECIFICATIONS.
- 3. MOUNT FRAME AS CLOSE TO PLATFORM AS POSSIBLE.
- 4. NO PAINTING OF THE RRUS IS ALLOWED.

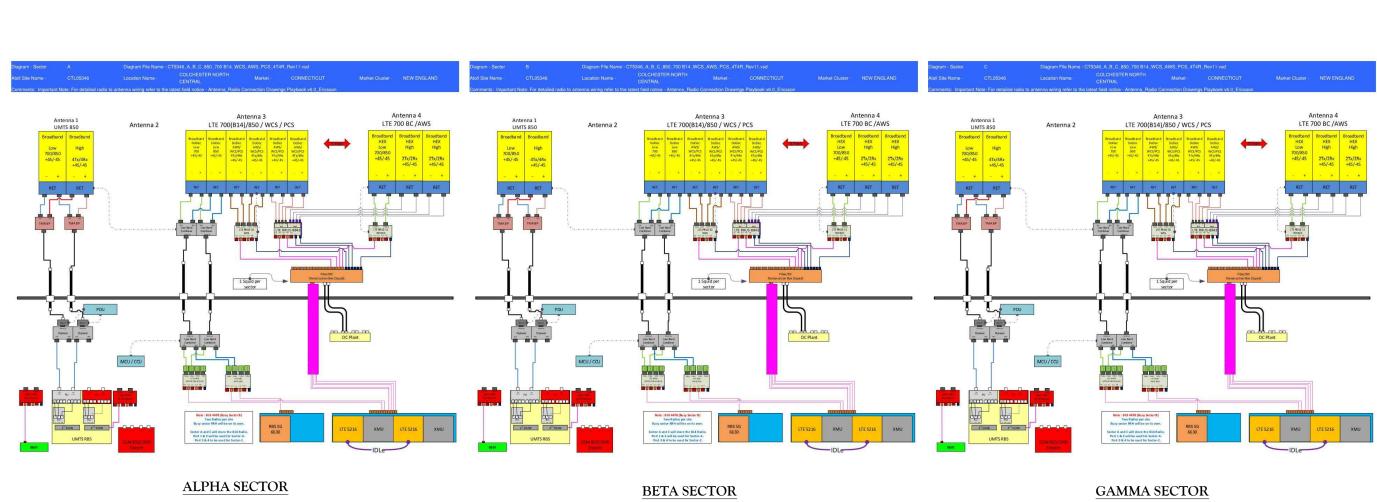
RRU/DC-12 MOUNTING DETAIL (AT GRADE)

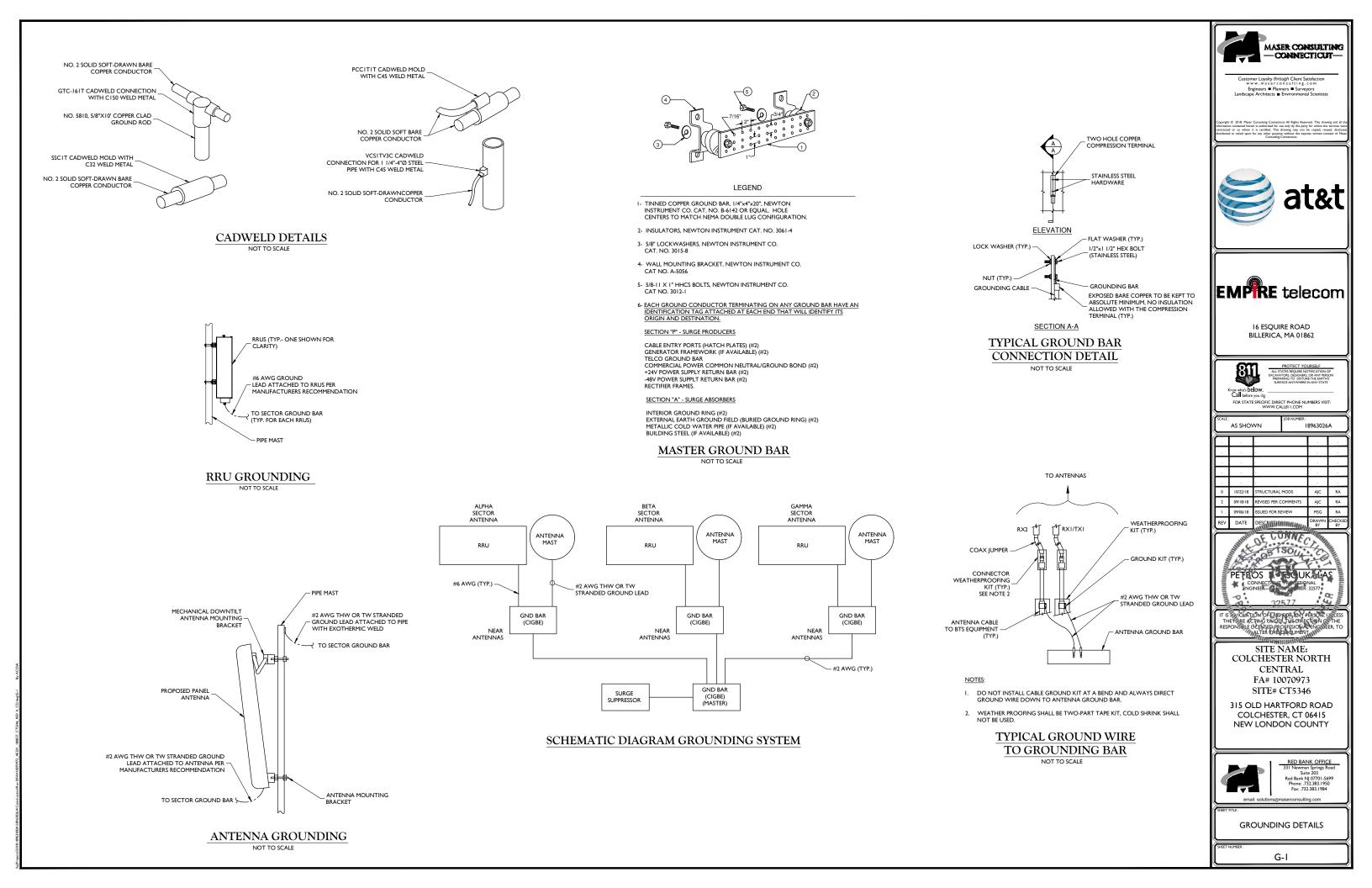

DC12-48-60-25E OVERVOLTAGE PROTECTION & POWER MANAGEMENT JUNCTION BOX NOT TO SCALE

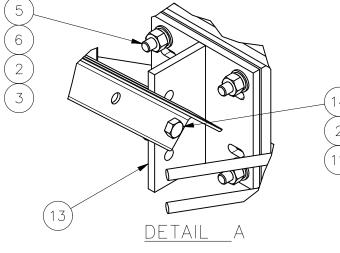

Association of the pages whole for the page whole for the pages whole for the page whole for the page whole for the page whole for the pages whole							
at&t							
EMPRE telecom							
REGISTER SECURE ANY STATE Know white below. Call before you dig. FOR STATE SPECIFIC DIRECT PHONE NUMBERS VISIT:							
WWW.CALLBII.COM SCALE: JOB NUMBER:							
AS SHOWN I8963026A							
0 10/22/18 STRUCTURAL MODS AJC RA							
2 09/18/18 REVISED PER COMMENTS AJC RA 1 09/06/18 ISSUED FOR REVIEW MSG RA							
REV DATE DESCRIPTION DRAWN CHECKE BY							
PETFOS I. DOUKALAS CONNECTIVE VANISSIONAL ENGINEEL DEVENTIONESSIONAL 22577							
IT IS A VIOLATION OF DUP TOP, SM PERSON, USES THEY REACTING DUBLET HEIMFECTON OF THE RESPONSILE USED PROFESIONAL ENTRY AND THE USE THAD QUMBRT							
SITE NAME: COLCHESTER NORTH CENTRAL FA# 10070973 SITE# CT5346 315 OLD HARTFORD ROAD COLCHESTER, CT 06415 NEW LONDON COUNTY							
RED BANK OFFICE 331 Newman Springs Road Suite 203 Red Bank (N 075699 Phone: 772.383.1980 Fax: 732.383.1984							
email: solutions@maserconsulting.com							
SHEET NUMBER :							

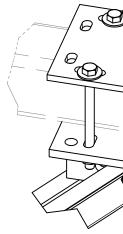
90


	DTNO	PARTS LIST			
	RT NO.		LENGTH	UNIT WT.	NET WT.
	 AHCP	2-3/8" OD X 174" SCH 40 GALVANIZED PIPE ANGLE HANDRAIL CORNER PLATE	174 in	55.75 12.92	167.24 38.76
	 SCX2	CROSSOVER PLATE	7 in	4.80	57.56
	JB1300	1/2" X 3" X 5" X 2" U-BOLT (HDG.)	7 10	0.73	17.56
	JB1212	1/2" X 2-1/2" X 4-1/2" X 2" U-BOLT (HDG.)		0.73	43.90
	12FW	1/2" HDG USS FLATWASHER		0.03	43.90
	 12FW	1/2" HDG LOCKWASHER		0.03	1.67
	12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	8.60
		8 x2 7 x2 6 x2 5 0 0 0 0 0 0 0 0 0 0 0 0 0		j∑x2	


TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESC		N UNIVERSAL HAND FOR 14' PLATF 2-3/8" & 2-7/8" ANTE	ORM			SITE PRO	
ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO).	DRAWN BY CEK 3/10/2015	ENG. APPROVA	L	PART	NO.	н
PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.		suв 01	DRAWING USAGE CUSTOMER	CHECKED BY BMC 3/1	10/2015	DWG.	NO.	н




BASED ON: RF ENGINEERING DESIGN ENTITLED "NEW-ENGLAND_CONNECTICUT_CTL05346_2019-LTE-Next-Carrier_LTE_mm093q_2051A0GWHX_10070973_25960_04-10-2018_As-Built-In-Progress_v3.00", LAST REVISED 08/13/2018.


RF PLUMBING DIAGRAMS

				PARTS LIST)
	ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.	ASER CONSULTING
	1	3	X-LWRM	RING MOUNT WELDMENT		68.81	206.42	-CONNECTICUT-
	2	36	G58LW	5/8" HDG LOCKWASHER		0.03	0.94 Customer Loyal	ty through Client Satisfaction erconsulting.com
	3	30	A58NUT	5/8" HDG A325 HEX NUT		0.13	3.90	Planners ■ Surveyors cts ■ Environmental Scientists
	4	9	G58R-24	5/8" x 24" THREADED ROD (HDG.)		0.55	4.94	Connecticut All Rights Reserved. This drawing and all the
	4	9	G58R-48	5/8" x 48" THREADED ROD (HDG.)		0.55	4.94	connecticat AII kights Keserved. I his drawing and all the eaf for use only by the party for whom the services were 1. This drawing may not be copied, reused, disclosed, r purpose without the express written consent of Maser nsulting Connecticut.
	5	12	A58234	5/8" x 2-3/4" HDG A325 HEX BOLT	2 3/4 in	0.36	4.27	
	6	12	A58FW	5/8" HDG A325 FLATWASHER		0.03	0.41	
	7	24	G12FW	1/2" HDG USS FLATWASHER		0.03	0.82	
	8	12	G12LW	1/2" HDG LOCKWASHER		0.01	0.17	at&t
	9	12	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	0.86	
	10	3	SCX4	CROSSOVER PLATE	8 1/2 in	6.02	18.06	
	11	6	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	0.78	
	12	6	X-254923	PLATFORM REINFORCEMENT KIT ANGLE	84 in	22.83	137.00	
	13	6	X-253992	T-BRACKET FOR REINFORCEMENT KIT		13.55	81.27 FMPR	E telecom
	14	6	G5802	5/8" x 2" HDG HEX BOLT GR5		0.27	1.62	
	15	12	G12065	1/2" x 6-1/2" HDG HEX BOLT GR5 FULL THREAD	6 1/2 in	0.41	4.91	QUIRE ROAD
						TOTAL WT.		ICA, MA 01862
(5 6 2 3))))						2 09/18/18 REVSEE 1 09/08/18 SSUE REV DATE DESC PETROS CONNEC ENGINEE ENGINEE ENGINE	LINTRAL 10070973 31 Newman Spring Road STER, CT 06415 JDON COUNTY
ITE PRO1	P/N:PI	<u> RK-124</u> 5	5 <u>L</u>			(11)		URAL DETAILS

SITE PRO1

C

12

 $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$

EXHIBIT 3

Date: January 03, 2019

Rebecca Klein

Crown Castle

3530 Toringdon Way

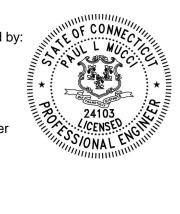
Charlotte, NC 28277	770-701-2500
Subject:	Structural Analysis Report
Carrier Designation:	AT&T Mobility Co-LocateCarrier Site Number:CT5346Carrier Site Name:COLCHESTER NORTH CENTRAL
Crown Castle Designation:	Crown Castle BU Number:842860Crown Castle Site Name:COLCHESTER NORTH CENTRALCrown Castle JDE Job Number:550197Crown Castle Work Order Number:1676752Crown Castle Order Number:472822 Rev. 0
Engineering Firm Designation:	Jacobs Engineering Group, Inc. Project Number: 1676752
Site Data:	315 OLD HARTFORD ROAD, COLCHESTER, New London County, CT Latitude 41° 34' 49.69", Longitude -72° 21' 0.07" 60 Foot - Monopole Tower
Dear Rebecca Klein,	•

Jacobs Engineering Group, Inc. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity


This analysis utilizes an ultimate 3-second gust wind speed of 128 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by:

Jhon Michael Felismino Structural Engineer

Respectfully submitted by:

Paul L. Mucci, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

- Table 5 Tower Component Stresses vs. Capacity
- 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 60 ft Monopole tower mapped by Tower Engineering Professionals.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	128 mph
Exposure Category: Topographic Factor:	128 mph C 1
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
		3	cci antennas	HPA-65R-BUU-H8 w/ Mount Pipe			
	57.0	3	cci antennas	TPA-65R-LCUUUU-H8 w/ Mount Pipe			
		3	powerwave technologies	7770.00 w/ Mount Pipe			
	55.0	3		ericsson	RADIO 8843		3/8
		3	ericsson	RRUS 32	3		
53.0		3	kaelus	DBCT108F1V92-1	6 12	3/4 7/8	
		3	raycap	DC6-48-60-18-8F	1	2 [Conduit]	
		3	ericsson	RRUS 11 B12			
	54.0	6	powerwave technologies	LGP21401			
		1	sitepro 1	PRK-1245L [Kicker Kit]			
	53.0	1	sitepro 1	QMSP-384 [Platform Mount]			
		1	sitepro 1	HRK14-U [Handrail Kit]			

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	68.0	1	rfs celwave	BMR12		
58.0	58.0	1 tower mounts Side Arm Mount [SO 701- 1]		1	1/2	
	45.0	1	andrew	DB438-A		
44.0	44.0	1	tower mounts	Side Arm Mount [SO 701- 1]	1	1/2

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	32.0	1	andrew	DB438-A		
31.0	32.0 1		pctel	MYA1505K	2	1/2
01.0	31.0	1	tower mounts	Side Arm Mount [SO 701- 1]	~	1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Dr. Clarence Welti, P.E., P.C.	5142093	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Tower Engineering Professionals (Mapped)	6060632	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Tower Engineering Professionals (Mapped)	6041767	CCISITES
MOUNT ANALYSIS	Maser Consulting Connecticut	18963026A	CROWN CASTLE EMAIL

3.1) Analysis Method

tnxTower (version 8.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built and maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) Material grades were not provided at the time of analysis. The following were assumed in this analysis:

Component	Grade
Base Plate	A572-50
Anchor Rods	A615-75
Concrete Strength	f'c = 3,000 psi
Foundation Steel Reinforcement	fy = 60 ksi

This analysis may be affected if any assumptions are not valid or have been made in error. Jacobs Engineering Group, Inc. should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	60 - 36	Pole	TP32.125x27.375x0.1875	1	-6.47	1132.72	21.5	Pass
L2	36 - 0	Pole	TP37.875x32.125x0.2188	2	-10.62	1549.94	43.8	Pass
							Summary	
						Pole (L2)	43.8	Pass
						Rating =	43.8	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	39.1	Pass
1	Base Plate	0	12.9	Pass
1	Base Foundation Structural	0	22.8	Pass
1	Base Foundation Soil Interaction	0	16.0	Pass

	Structure Rating (max from all components) =	43.8%
Nataa.		

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity.

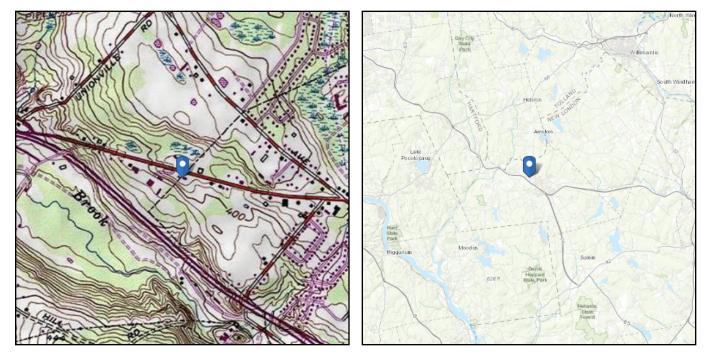
4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

Location


ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 420.23 ft (NAVD 88)

 Latitude:
 41.580469

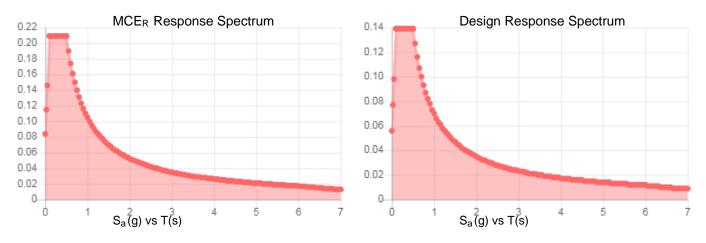
 Longitude:
 -72.350019

Wind

Results:

Wind Speed:	128 Vmph
10-year MRI	78 Vmph
25-year MRI	88 Vmph
50-year MRI	96 Vmph
100-year MRI	105 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Wed Jan 02 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.174	S _{DS} :	0.139	
S ₁ :	0.062	S _{D1} :	0.07	
F _a :	1.2	Τ _L :		
F _v :	1.7	PGA :	0.088	
S _{MS} :		PGA M:	0.105	
S _{M1} :		F _{PGA} :	1.2	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Wed Jan 02 2019

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Wed Jan 02 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

																					MA	TERIA	LST	RENG	TH			
																GRADE			Fy			Fu		RADE		Fy		Fu
								<u>60.0 ft</u>							1. 2. 3. 4. 5. 6. 7. 8.	Tower is Tower d Tower d Tower d Tower is in thickr Deflecti Tower F Topogra TiA-222 TOW EF	is loc desig desig is als ness ions Risk aphi 2-H	gned fc gned fc so desi s with h are ba Catego c Catego Annex	or Expos or a 128 gned fon neight. ised upc ory II. gory 1 w S	ondon ure C mph b r a 50 on a 60	TO to Co to ti pasi mpl	he TIA-2 c wind in h basic v ph wind.	nnectio 22-H S accor vind wi	cut. Standard dance v ith 1.27	d. with th	e TIA-22 Ice is c	22-H Star	ndard. d to increase
£	24.0000	18	0.1875	27.3750	32.1250		1.4																					
						A572-60		<u>36.0 ft</u>	_																			
7	36.000	18	0.2188	32.1250	37.8750		3.0	0.0 ft					SHI 3 K 50 mp SHE 11 K	1: EAR TORQL h WIND AX 1	ACTC XIAL 19 K JE 1 JE 1 1 XIAL 11 K	0RED MO, 131 kip-ft 2750 in IC 517	1 kip	⊳-ft \\T										
Section	Length (ft)	Number of Sides	Thickness (in)	Top Dia (in)	Bot Dia (in)	Grade	Weight (K) 4.4	<u>u.u tt</u>	_		ШĻ	1 1 1	 REAC	TORQL TIONS -	JE 3 - 128	kip-ft 3 mph Wll	IND											

Jacobs Engineering Group, Inc. 5449 Bells Ferry Road Acworth, GA 30102 Phone: 770-701-2500 FAX: 770-701-2501

^{Job:} COLCHESTE	^{ob:} COLCHESTER NORTH CENTRAL										
Project: BU#842860 WC											
Client: Crown Castle	Drawn by: Jhon Michael Felismino	App'd:									
^{Code:} TIA-222-H		Scale: NTS									
Path:	OW CAREAUPPI WOMEING COLO-ESTERIOSTI CENTRACING INTERACING INTERACINGUESCHERING WOMPIFEIS LOS 20190124	Dwg No. E-1									

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in New London County, Connecticut.
- 2) Tower base elevation above sea level: 420.0000 ft.
- 3) Basic wind speed of 128 mph.
- 4) Risk Category II.
- 5) Exposure Category C.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height 0.0000 ft.
- 9) Nominal ice thickness of 1.2750 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56.00 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Deflections calculated using a wind speed of 60 mph.
- 14) TIA-222-H Annex S.
- 15) A non-linear (P-delta) analysis was used.
- 16) Pressures are calculated at each section.
- 17) Stress ratio used in pole design is 1.05.
- 18) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Options

- Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r
- Retension Guys To Initial Tension $\sqrt{}$ Bypass Mast Stability Checks
- $\sqrt{}$ Bypass Mast Stability Checks $\sqrt{}$ Use Azimuth Dish Coefficients
- $\sqrt{}$ Use Azimuth Dish Coefficients $\sqrt{}$ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice

Exemption

Poles √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	60.0000- 36.0000	24.0000	0.00	18	27.3750	32.1250	0.1875	0.7500	A572-60 (60 ksi)
L2	36.0000- 0.0000	36.0000		18	32.1250	37.8750	0.2188	0.8750	A572-60 (60 ksi)

				Taper	ed Pole	e Prop	erties				
Section	Tip Dia. in	Area in ²	l in⁴	r in	C	I/C in ³	J in⁴	It/Q in ²	w in	w/t	
L1	27.7684 32.5917	16.1800 19.0068	1510.9617 2449.3362	9.6516 11.3378	13.9065 16.3195	108.6515 150.0865	3023.9116 4901.8953	8.0915 9.5052	4.4880 5.3240	23.93 28.39	-
L2	32.5868 38.4255	22.1529 26.1452	2849.1789 4683.8571		16.3195 19.2405	174.5874 243.4374	5702.1069 9373.8774	11.0786 13.0751	5.2690 6.2810	24.08	57
Tower	Gus	set G	usset Gu	ssat Grada /	Adjust. Factor	Adjust.	Weight M	ult Double	Anale Doui	hle Anale	Double Angle
Elevatio		a Thi	ckness	sser Grader	Af Af	Factor A _r	Weight M	Stitch Spac Diago	Bolt Sti cing S	tch Bolt pacing rizontals	Stitch Bolt Spacing Redundants
ft	fť		in					ir	ר	in	in
L1 60.000 36.0000	-				1	1	1				
L2 36.000 0.0000					1	1	1				

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	't Type	Placement ft		Number Per Row	Start/En d Position	Diamete r	Perimete r	Weight plf
***		Calculation						in	in	
Safety Line 3/8	В	No	Surface Af (CaAa)	60.0000 - 0.0000	1	1	-0.400 -0.400	0.0000	0.7500	0.22
***			(Caria)	0.0000			0.100			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Туре	ft			ft²/ft	plf
_DF4-50A(1/2")	С	No	No	Inside Pole	58.0000 -	1	No Ice	0.0000	0.15
()					8.0000		1/2" Ice	0.0000	0.15
							1" Ice	0.0000	0.15
							2" Ice	0.0000	0.15
LDF5-50A(7/8)	С	No	No	Inside Pole	53.0000 -	12	No Ice	0.0000	0.33
					8.0000		1/2" Ice	0.0000	0.33
							1" Ice	0.0000	0.33
							2" Ice	0.0000	0.33
FB-L98B-034-	С	No	No	Inside Pole	53.0000 -	3	No Ice	0.0000	0.06
XXX(3/8)					8.0000		1/2" Ice	0.0000	0.06
							1" Ice	0.0000	0.06
							2" Ice	0.0000	0.06
WR-VG86ST-	С	No	No	Inside Pole	53.0000 -	6	No Ice	0.0000	0.58
BRD(3/4'')					8.0000		1/2" Ice	0.0000	0.58
							1" Ice	0.0000	0.58
							2" Ice	0.0000	0.58
LDF4-50A(1/2")	С	No	No	Inside Pole	44.0000 -	1	No Ice	0.0000	0.15
					8.0000		1/2" Ice	0.0000	0.15
							1" Ice	0.0000	0.15
							2" Ice	0.0000	0.15
LDF4-50A(1/2'')	С	No	No	Inside Pole	31.0000 -	2	No Ice	0.0000	0.15
					8.0000		1/2" Ice	0.0000	0.15
							1" Ice	0.0000	0.15
							2" Ice	0.0000	0.15

Description	Face	Allow	Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	or Leg	Shield	From Toraue	t Type	ft	Number		ft²/ft	plf
	Log		Calculation	<i>,</i> ,	'n			10 / 10	<i>p</i> "
2" Rigid Conduit	С	No	No	Inside Pole	53.0000 -	1	No Ice	0.0000	2.80
					8.0000		1/2" Ice	0.0000	2.80
							1" Ice	0.0000	2.80
							2" Ice	0.0000	2.80

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft ²	ft ²	ft ²	ĸ
L1	60.0000-36.0000	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.18
L2	36.0000-0.0000	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.31

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	A_R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	к
L1	60.0000-36.0000	A	1.323	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	6.349	0.000	0.08
		С		0.000	0.000	0.000	0.000	0.18
L2	36.0000-0.0000	А	1.200	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	8.643	0.000	0.10
		С		0.000	0.000	0.000	0.000	0.31

		Feed	Line Ce	nter of Pi	ressure
Section	Elevation	CP _X	CPz	CP _x Ice	CP _Z Ice
	ft	in	in	in	in
L1	60.0000-36.0000	0.0000	0.0000	-0.6346	-1.2834
L2	36.0000-0.0000	0.0000	0.0000	-0.5966	-1.2038

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No lce	K₄ Ice
L1	9	Safety Line 3/8	36.00 -	1.0000	1.0000
			60.00		
L2	9	Safety Line 3/8	0.00 - 36.00	1.0000	1.0000

			Disci	rete Tov	ver Load	ds			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft ²	K
Lightning Rod 5/8"x8'	С	From Leg	0.0000 0.00 4.00	0.0000	60.0000	No Ice 1/2" Ice 1" Ice 2" Ice	0.5000 1.3135 2.1437 3.6130	0.5000 1.3135 2.1437 3.6130	0.01 0.02 0.03 0.07
*** Level 58 *** BMR12	В	From Leg	4.0000 0.00 10.00	0.0000	58.0000	No Ice 1/2" Ice 1" Ice 2" Ice	6.9361 15.3236 17.4038 20.7954	6.9361 15.3236 17.4038 20.7954	0.12 0.21 0.31 0.56
Side Arm Mount [SO 701- 1]	В	From Leg	2.0000 0.00 0.00	0.0000	58.0000	No Ice 1/2" Ice 1" Ice 2" Ice	0.8500 1.1400 1.4300 2.0100	1.6700 2.3400 3.0100 4.3500	0.07 0.08 0.09 0.12
*** Level 53 *** Platform Mount [LP 403-1]	С	None		0.0000	53.0000	No Ice 1/2" Ice 1" Ice 2" Ice	18.8500 24.3000 29.7500 40.6500	18.8500 24.3000 29.7500 40.6500	1.50 1.80 2.09 2.69
Miscellaneous [NA 509-3]	С	None		0.0000	53.0000	2 ICe No Ice 1/2" Ice 1" Ice 2" Ice	11.8400 16.9600 22.0800 32.3200	11.8400 16.9600 22.0800 32.3200	0.28 0.30 0.32 0.36
Miscellaneous [NA 507-1]	С	None		0.0000	53.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.8000 6.7000 8.6000 12.4000	4.8000 6.7000 8.6000 12.4000	0.25 0.29 0.34 0.44
7770.00 w/ Mount Pipe	A	From Leg	4.0000 0.00 4.00	0.0000	53.0000	No Ice 1/2" Ice 1" Ice 2" Ice	5.7460 6.1791 6.6067 7.4880	4.2543 5.0137 5.7109 7.1553	0.06 0.10 0.16 0.29
7770.00 w/ Mount Pipe	В	From Leg	4.0000 0.00 4.00	0.0000	53.0000	No Ice 1/2" Ice 1" Ice 2" Ice	5.7460 6.1791 6.6067 7.4880	4.2543 5.0137 5.7109 7.1553	0.06 0.10 0.16 0.29
7770.00 w/ Mount Pipe	С	From Leg	4.0000 0.00 4.00	0.0000	53.0000	2 ICe No Ice 1/2" Ice 1" Ice 2" Ice	5.7460 6.1791 6.6067 7.4880	4.2543 5.0137 5.7109 7.1553	0.06 0.10 0.16 0.29
HPA-65R-BUU-H8 w/ Mount Pipe	A	From Leg	4.0000 0.00 4.00	0.0000	53.0000	No Ice 1/2" Ice 1" Ice 2" Ice	13.5881 14.1897 14.7983 16.0364	10.7958 12.1244 13.1669 15.2853	0.08 0.18 0.29 0.54
HPA-65R-BUU-H8 w/ Mount Pipe	В	From Leg	4.0000 0.00 4.00	0.0000	53.0000	No Ice 1/2" Ice 1" Ice	13.5881 14.1897 14.7983 16.0364	10.7958 12.1244 13.1669 15.2853	0.08 0.18 0.29 0.54

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft		ft		ft²	ft ²	К
			ft ft	0					
HPA-65R-BUU-H8 w/	С	From Leg	4.0000	0.0000	53.0000	2" lce No lce	13.5881	10.7958	0.08
Mount Pipe	U	FIOIII Leg	0.00	0.0000	55.0000	1/2"	14.1897	12.1244	0.08
Mount i pe			4.00			lce	14.7983	13.1669	0.29
			4.00			1" lce 2" lce	16.0364	15.2853	0.54
TPA-65R-LCUUUU-H8 w/	А	From Leg	4.0000	0.0000	53.0000	No lce	13.5353	10.9597	0.11
Mount Pipe	~	TTOIL LOG	0.00	0.0000	33.0000	1/2"	14.2380	12.4861	0.22
Modifici ipe			4.00			lce	14.9495	14.0367	0.33
						1" Ice	16.3081	16.3910	0.59
						2" Ice		1010010	0.00
TPA-65R-LCUUUU-H8 w/	В	From Leg	4.0000	0.0000	53.0000	No Ice	13.5353	10.9597	0.11
Mount Pipe		0	0.00			1/2"	14.2380	12.4861	0.22
•			4.00			Ice	14.9495	14.0367	0.33
						1" Ice	16.3081	16.3910	0.59
						2" Ice			
TPA-65R-LCUUUU-H8 w/	С	From Leg	4.0000	0.0000	53.0000	No Ice	13.5353	10.9597	0.11
Mount Pipe			0.00			1/2"	14.2380	12.4861	0.22
			4.00			Ice	14.9495	14.0367	0.33
						1" Ice	16.3081	16.3910	0.59
						2" Ice			
(2) DC6-48-60-18-8F	A	From Leg	4.0000	0.0000	53.0000	No Ice	0.9167	0.9167	0.03
			0.00			1/2"	1.4583	1.4583	0.05
			2.00			Ice	1.6431	1.6431	0.07
						1" Ice	2.0417	2.0417	0.12
	в	From Log	4 0000	0.0000	F2 0000	2" Ice	0.0167	0.0167	0.03
DC6-48-60-18-8F	Б	From Leg	4.0000 0.00	0.0000	53.0000	No Ice 1/2''	0.9167 1.4583	0.9167 1.4583	0.03
			2.00			lce	1.6431	1.4565	0.05
			2.00			1" Ice	2.0417	2.0417	0.12
					50 0000	2" Ice		0.0070	
(2) LGP21401	A	From Leg	4.0000	0.0000	53.0000	No Ice	1.1040	0.2070	0.01
			0.00			1/2"	1.2388	0.2738	0.02
			1.00			lce 1" lce	1.3810	0.3475	0.03
						2" Ice	1.6877	0.5208	0.05
(2) LGP21401	В	From Leg	4.0000	0.0000	53.0000	No Ice	1.1040	0.2070	0.01
(2) LGF21401	Б	FIOIII Leg	0.00	0.0000	55.0000	1/2"	1.2388	0.2070	0.01
			1.00			lce	1.3810	0.3475	0.02
			1.00			1" Ice	1.6877	0.5208	0.05
						2" Ice	1.0011	0.0200	0.00
(2) LGP21401	С	From Leg	4.0000	0.0000	53.0000	No Ice	1.1040	0.2070	0.01
()		5	0.00			1/2"	1.2388	0.2738	0.02
			1.00			Ice	1.3810	0.3475	0.03
						1" lce 2" lce	1.6877	0.5208	0.05
DBCT108F1V92-1	А	From Leg	4.0000	0.0000	53.0000	No Ice	0.6372	0.6042	0.03
		1.000 209	0.00	010000	00.0000	1/2"	0.7401	0.7050	0.04
			2.00			lce	0.8504	0.8133	0.04
						1" Ice	1.0932	1.0519	0.07
						2" Ice			
DBCT108F1V92-1	В	From Leg	4.0000	0.0000	53.0000	No Ice	0.6372	0.6042	0.03
		0	0.00			1/2"	0.7401	0.7050	0.04
			2.00			Ice	0.8504	0.8133	0.04
						1" lce 2" lce	1.0932	1.0519	0.07
DBCT108F1V92-1	С	From Leg	4.0000	0.0000	53.0000	No Ice	0.6372	0.6042	0.03
	0	on Log	0.00	0.0000	00.0000	1/2"	0.7401	0.7050	0.03
			2.00			lce	0.8504	0.8133	0.04
			2.00			1" Ice	1.0932	1.0519	0.07
						2" Ice			0.07
RRUS 32	А	From Leg	4.0000	0.0000	53.0000	No Ice	2.8571	1.7766	0.06
RRUS 32		=-9							
			0.00			1/Z	3.0830	1.9677	0.08
			0.00 2.00			1/2'' Ice	3.0830 3.3163	1.9677 2.1658	0.08 0.10

60 Ft Monopole Tower Structural Analysis Project Number 1676752, Order 472822, Revision 0

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
			ft ft ft	٥	ft		ft²	ft²	К
RRUS 32	В	From Leg	4.0000 0.00	0.0000	53.0000	2" Ice No Ice 1/2"	2.8571 3.0830	1.7766 1.9677	0.06 0.08
			2.00			Ice 1" Ice 2" Ice	3.3163 3.8052	2.1658 2.5829	0.10 0.16
RRUS 32	С	From Leg	4.0000	0.0000	53.0000	No Ice	2.8571	1.7766	0.06
		0	0.00			1/2"	3.0830	1.9677	0.08
			2.00			lce	3.3163	2.1658	0.10
						1" Ice 2" Ice	3.8052	2.5829	0.16
RADIO 8843	А	From Leg	4.0000	0.0000	53.0000	No Ice	3.5000	2.3593	0.09
			0.00			1/2"	3.7426	2.5658	0.11
			2.00			lce	3.9926	2.7794	0.15
	_	_				1" lce 2" lce	4.5148	3.2370	0.22
RADIO 8843	В	From Leg	4.0000	0.0000	53.0000	No Ice	3.5000	2.3593	0.09
			0.00			1/2"	3.7426	2.5658 2.7794	0.11 0.15
			2.00			lce 1" lce 2" lce	3.9926 4.5148	3.2370	0.15
RADIO 8843	С	From Leg	4.0000	0.0000	53.0000	No Ice	3.5000	2.3593	0.09
	U U	e 20g	0.00	010000	00.0000	1/2"	3.7426	2.5658	0.11
			2.00			Ice	3.9926	2.7794	0.15
						1" lce 2" lce	4.5148	3.2370	0.22
RRUS 11 B12	А	From Leg	4.0000	0.0000	53.0000	No Ice	2.8333	1.1821	0.05
			0.00			1/2"	3.0426	1.3299	0.07
			1.00			lce 1" lce 2" lce	3.2593 3.7148	1.4848 1.8259	0.10 0.15
RRUS 11 B12	В	From Leg	4.0000	0.0000	53.0000	No Ice	2.8333	1.1821	0.05
	_	e 20g	0.00	010000	00.0000	1/2"	3.0426	1.3299	0.07
			1.00			Ice	3.2593	1.4848	0.10
						1" lce 2" lce	3.7148	1.8259	0.15
RRUS 11 B12	С	From Leg	4.0000	0.0000	53.0000	No Ice	2.8333	1.1821	0.05
			0.00			1/2"	3.0426	1.3299	0.07
			1.00			lce 1" lce 2" lce	3.2593 3.7148	1.4848 1.8259	0.10 0.15
*** DB438-A	В	From Leg	4.0000	0.0000	44.0000	No Ice	0.6222	0.6222	0.01
DD+00 //	D	Troin Log	0.00	0.0000	44.0000	1/2"	0.7302	0.7302	0.01
			1.00			Ice	0.8469	0.8469	0.02
						1" lce 2" lce	1.1062	1.1062	0.05
Side Arm Mount [SO 701-	В	From Leg	2.0000	0.0000	44.0000	No Ice	0.8500	1.6700	0.07
1]		-	0.00			1/2"	1.1400	2.3400	0.08
			0.00			lce	1.4300	3.0100	0.09
						1" lce 2" lce	2.0100	4.3500	0.12
*** DB438-A	В	From Face	4.0000	1.0000	31.0000	No Ice	0.6222	0.6222	0.01
			0.00			1/2"	0.7302	0.7302	0.01
			0.00			Ice 1" Ice	0.8469 1.1062	0.8469 1.1062	0.02 0.05
MYA1506K	в	From Face	0.0000	1.0000	31.0000	2" Ice No Ice	0.3125	1.1029	0.01
	U	TUITEALE	0.000	1.0000	51.0000	1/2"	0.3125	1.7018	0.01
			0.00			lce	0.6745	2.3081	0.12
			-			1" Ice 2" Ice	1.0662	3.5428	0.51
Side Arm Mount [SO 701-	В	From Face	2.0000	0.0000	31.0000	No Ice	0.8500	1.6700	0.07
							1.1400	2.3400	0.08

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		fť	ft²	К
			0.00			1/2" Ice 1" Ice 2" Ice	1.4300 2.0100	3.0100 4.3500	0.09 0.12
***						∠ ice			

Load Combinations

Comh	Description
Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice
31	1.2 Dead+1.0 Wind 120 deg+1.0 lce
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice
33	1.2 Dead+1.0 Wind 180 deg+1.0 lce
34	1.2 Dead+1.0 Wind 210 deg+1.0 lce
35	1.2 Dead+1.0 Wind 240 deg+1.0 lce
36	1.2 Dead+1.0 Wind 270 deg+1.0 lce
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice
38	1.2 Dead+1.0 Wind 330 deg+1.0 lce
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
	-

Comb. No. 50

Dead+Wind 330 deg - Service

Description

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре		Load		Moment	Moment
No.				Comb.	ĸ	kip-ft	kip-ft
L1	60 - 36	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-12.58	-3.17	-0.75
			Max. Mx	8	-6.47	-155.33	0.13
			Max. My	14	-6.47	-0.78	-154.99
			Max. Vy	8	8.51	-155.33	0.13
			Max. Vx	14	8.55	-0.78	-154.99
			Max. Torque	5			-2.30
L2	36 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-18.99	-4.12	-0.09
			Max. Mx	8	-10.62	-515.35	0.63
			Max. My	14	-10.62	-0.75	-516.86
			Max. Vy	8	11.38	-515.35	0.63
			Max. Vx	14	11.45	-0.75	-516.86
			Max. Torque	17			2.51

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Pole	Max. Vert	30	18.99	-2.83	0.00
	Max. H _x	21	7.97	11.37	-0.01
	Max. H _z	2	10.62	-0.01	11.44
	Max. M _x	2	516.49	-0.01	11.44
	Max. Mz	8	515.35	-11.37	0.01
	Max. Torsion	17	2.51	5.69	-9.91
	Min. Vert	23	7.97	9.85	5.72
	Min. H _x	8	10.62	-11.37	0.01
	Min. Hz	14	10.62	0.01	-11.44
	Min. M _x	14	-516.86	0.01	-11.44
	Min. Mz	20	-512.21	11.37	-0.01
	Min. Torsion	5	-2.51	-5.69	9.91

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	ĸ	ĸ	ĸ	kip-ft	kip-ft	kip-ft
Dead Only	8.85	0.00	0.00	0.16	-1.29	-0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	10.62	0.01	-11.44	-516.49	-2.39	2.48
0.9 Dead+1.0 Wind 0 deg - No Ice	7.97	0.01	-11.44	-515.47	-1.99	2.49
1.2 Dead+1.0 Wind 30 deg - No Ice	10.62	5.69	-9.91	-447.67	-259.17	2.50
0.9 Dead+1.0 Wind 30 deg - No Ice	7.97	5.69	-9.91	-446.80	-258.24	2.51
1.2 Dead+1.0 Wind 60 deg - No Ice	10.62	9.85	-5.72	-258.86	-446.92	1.85
0.9 Dead+1.0 Wind 60 deg - No Ice	7.97	9.85	-5.72	-258.37	-445.61	1.86
1.2 Dead+1.0 Wind 90 deg - No Ice	10.62	11.37	-0.01	-0.63	-515.35	0.71

tnxTower Report - version 8.0.4.0

Load Combination	Vertical K	Shear _x K	Shear _z K	Overturning Moment, M _x kip-ft	Overturning Moment, M _z kip-ft	Torque kip-ft
.9 Dead+1.0 Wind 90 deg -	7.97	11.37	-0.01	-0.68	-513.89	0.7 ⁻
lo Ice .2 Dead+1.0 Wind 120 deg	10.62	9.85	5.72	257.82	-446.10	-0.63
No Ice 9 Dead+1.0 Wind 120 deg	7.97	9.85	5.72	257.24	-444.79	-0.63
No Ice .2 Dead+1.0 Wind 150 deg	10.62	5.68	9.91	447.23	-257.75	-1.80
No Ice 9 Dead+1.0 Wind 150 deg	7.97	5.68	9.91	446.27	-256.83	-1.80
No Ice .2 Dead+1.0 Wind 180 deg	10.62	-0.01	11.44	516.86	-0.75	-2.48
No Ice .9 Dead+1.0 Wind 180 deg	7.97	-0.01	11.44	515.75	-0.36	-2.49
No Ice .2 Dead+1.0 Wind 210 deg No Ice	10.62	-5.69	9.91	448.05	256.03	-2.5
.9 Dead+1.0 Wind 210 deg No Ice	7.97	-5.69	9.91	447.08	255.89	-2.5
.2 Dead+1.0 Wind 240 deg No Ice	10.62	-9.85	5.72	259.23	443.78	-1.8
9 Dead+1.0 Wind 240 deg No Ice	7.97	-9.85	5.72	258.65	443.26	-1.8
2 Dead+1.0 Wind 270 deg No Ice	10.62	-11.37	0.01	1.01	512.21	-0.7
9 Dead+1.0 Wind 270 deg No Ice	7.97	-11.37	0.01	0.96	511.55	-0.7
2 Dead+1.0 Wind 300 deg No Ice	10.62	-9.85	-5.72	-257.44	442.96	0.6
9 Dead+1.0 Wind 300 deg No Ice	7.97	-9.85	-5.72	-256.96	442.45	0.6
2 Dead+1.0 Wind 330 deg	10.62	-5.68	-9.91	-446.86	254.61	1.8
9 Dead+1.0 Wind 330 deg No Ice	7.97	-5.68	-9.91	-445.98	254.48	1.8
2 Dead+1.0 Ice 2 Dead+1.0 Wind 0	18.99 18.99	0.00 0.00	0.00 -2.86	0.09 -127.79	-4.12 -4.41	0.0- 3.0
g+1.0 lce 2 Dead+1.0 Wind 30	18.99	1.42	-2.48	-110.80	-67.82	0.9
g+1.0 lce 2 Dead+1.0 Wind 60	18.99	2.46	-1.43	-64.10	-114.16	0.7
g+1.0 lce 2 Dead+1.0 Wind 90	18.99	2.83	-0.00	-0.19	-131.02	0.3
g+1.0 lce 2 Dead+1.0 Wind 120	18.99	2.45	1.43	63.79	-113.88	-0.7
g+1.0 lce 2 Dead+1.0 Wind 150	18.99	1.42	2.47	110.70	-67.33	-0.6
g+1.0 lce 2 Dead+1.0 Wind 180	18.99	-0.00	2.86	127.97	-3.85	-0.8
g+1.0 lce 2 Dead+1.0 Wind 210	18.99	-1.42	2.48	110.98	59.55	-0.9
g+1.0 lce 2 Dead+1.0 Wind 240	18.99	-2.46	1.43	64.27	105.89	-0.7
g+1.0 lce 2 Dead+1.0 Wind 270	18.99	-2.83	0.00	0.37	122.75	-0.3
g+1.0 lce 2 Dead+1.0 Wind 300	18.99	-2.45	-1.43	-63.61	105.61	0.1
g+1.0 lce 2 Dead+1.0 Wind 330	18.99	-1.42	-2.47	-110.52	59.06	0.6
g+1.0 lce ead+Wind 0 deg - Service	8.85	0.00	-2.25	-101.29	-1.47	0.4
ead+Wind 30 deg - Service	8.85	1.12	-1.95	-87.78	-51.88	0.4
ead+Wind 60 deg - Service	8.85	1.94	-1.13	-50.70	-88.75	0.3
ead+Wind 90 deg - Service	8.85	2.24	-0.00	-0.00	-102.18	0.
ead+Wind 120 deg - ervice	8.85	1.94	1.12	50.74	-88.58	-0.
ead+Wind 150 deg - ervice	8.85	1.12	1.95	87.93	-51.60	-0.3
ead+Wind 180 deg - ervice	8.85	-0.00	2.25	101.60	-1.15	-0.4

60 Ft Monopole Tower Structural Analysis Project Number 1676752, Order 472822, Revision 0

Load Combination	Vertical			Overturning Moment, M _x	Overturning Moment, M _z	Torque	
	К	K	ĸ	kip-ft	kip-ft	kip-ft	
Dead+Wind 210 deg - Service	8.85	-1.12	1.95	88.09	49.27	-0.49	
Dead+Wind 240 deg - Service	8.85	-1.94	1.13	51.02	86.13	-0.36	
Dead+Wind 270 deg - Service	8.85	-2.24	0.00	0.32	99.57	-0.14	
Dead+Wind 300 deg - Service	8.85	-1.94	-1.12	-50.43	85.97	0.12	
Dead+Wind 330 deg - Service	8.85	-1.12	-1.95	-87.62	48.99	0.35	

Solution Summary

	Sur	n of Applied Force	20		Sum of Reactio	20	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	70 LIIUI
1	0.00	-8.85	0.00	0.00	8.85	0.00	0.000%
2	0.00	-10.62	-11.44	-0.01	10.62	11.44	0.000%
3	0.01	-7.97	-11.44	-0.01	7.97	11.44	0.000%
4	5.69	-10.62	-9.91	-5.69	10.62	9.91	0.000%
5	5.69	-7.97	-9.91	-5.69	7.97	9.91	0.000%
6	9.85	-10.62	-5.72	-9.85	10.62	5.72	0.000%
7	9.85	-7.97	-5.72	-9.85	7.97	5.72	0.000%
8	11.37	-10.62	-0.01	-11.37	10.62	0.01	0.000%
9	11.37	-7.97	-0.01	-11.37	7.97	0.01	0.000%
10	9.85	-10.62	5.72	-9.85	10.62	-5.72	0.000%
10	9.85	-7.97	5.72	-9.85	7.97	-5.72	0.000%
12	5.68	-10.62	9.91	-5.68	10.62	-9.91	0.000%
12	5.68	-7.97	9.91	-5.68	7.97	-9.91	0.000%
13	-0.01	-10.62	11.44	0.01	10.62	-11.44	0.000%
14	-0.01	-7.97	11.44	0.01	7.97	-11.44	0.000%
16	-5.69	-10.62	9.91	5.69	10.62	-9.91	0.000%
10	-5.69	-7.97	9.91 9.91	5.69 5.69	7.97	-9.91	0.000%
17	-5.69 -9.85	-10.62	5.72	5.69 9.85	10.62	-9.91	0.000%
19	-9.85	-7.97	5.72	9.85	7.97	-5.72	0.000%
20	-11.37	-10.62	0.01	11.37	10.62	-0.01	0.000%
21	-11.37	-7.97	0.01	11.37	7.97	-0.01	0.000%
22	-9.85	-10.62	-5.72	9.85	10.62	5.72	0.000%
23	-9.85	-7.97	-5.72	9.85	7.97	5.72	0.000%
24	-5.68	-10.62	-9.91	5.68	10.62	9.91	0.000%
25	-5.68	-7.97	-9.91	5.68	7.97	9.91	0.000%
26	0.00	-18.99	0.00	0.00	18.99	0.00	0.000%
27	0.00	-18.99	-2.86	-0.00	18.99	2.86	0.000%
28	1.42	-18.99	-2.48	-1.42	18.99	2.48	0.000%
29	2.46	-18.99	-1.43	-2.46	18.99	1.43	0.000%
30	2.83	-18.99	-0.00	-2.83	18.99	0.00	0.000%
31	2.45	-18.99	1.43	-2.45	18.99	-1.43	0.000%
32	1.42	-18.99	2.47	-1.42	18.99	-2.47	0.000%
33	-0.00	-18.99	2.86	0.00	18.99	-2.86	0.000%
34	-1.42	-18.99	2.48	1.42	18.99	-2.48	0.000%
35	-2.46	-18.99	1.43	2.46	18.99	-1.43	0.000%
36	-2.83	-18.99	0.00	2.83	18.99	-0.00	0.000%
37	-2.45	-18.99	-1.43	2.45	18.99	1.43	0.000%
38	-1.42	-18.99	-2.47	1.42	18.99	2.47	0.000%
39	0.00	-8.85	-2.25	-0.00	8.85	2.25	0.000%
40	1.12	-8.85	-1.95	-1.12	8.85	1.95	0.000%
41	1.94	-8.85	-1.13	-1.94	8.85	1.13	0.000%
42	2.24	-8.85	-0.00	-2.24	8.85	0.00	0.000%
43	1.94	-8.85	1.12	-1.94	8.85	-1.12	0.000%
44	1.12	-8.85	1.95	-1.12	8.85	-1.95	0.000%
45	-0.00	-8.85	2.25	0.00	8.85	-2.25	0.000%
46	-1.12	-8.85	1.95	1.12	8.85	-1.95	0.000%
47	-1.94	-8.85	1.13	1.94	8.85	-1.13	0.000%
48	-2.24	-8.85	0.00	2.24	8.85	-0.00	0.000%
49	-1.94	-8.85	-1.12	1.94	8.85	1.12	0.000%
50	-1.12	-8.85	-1.95	1.12	8.85	1.95	0.000%

		NON-Linea	ir Converge	nce kesu
Load	Converged?	Number	Displacement	Force
Combination	Convergeu:	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00008469
3	Yes	4	0.00000001	0.00005225
3		4		
4 5	Yes	-	0.0000001	0.00012331
	Yes	4	0.0000001	0.00007605
6	Yes	4	0.0000001	0.00006392
7	Yes	4	0.0000001	0.00003933
8	Yes	4	0.0000001	0.00002901
9	Yes	4	0.0000001	0.00001787
10	Yes	4	0.0000001	0.00004720
11	Yes	4	0.0000001	0.00002835
12	Yes	4	0.00000001	0.00009656
13	Yes	4	0.0000001	0.00005930
14	Yes	4	0.00000001	0.00008433
15	Yes	4	0.0000001	0.00005201
16	Yes	4	0.0000001	0.00007834
17	Yes	4	0.0000001	0.00004858
18	Yes	4	0.0000001	0.00010318
19	Yes	4	0.0000001	0.00006369
20	Yes	4	0.0000001	0.00002921
21	Yes	4	0.0000001	0.00001804
22	Yes	4	0.0000001	0.00006156
23	Yes	4	0.0000001	0.00003759
24	Yes	4	0.0000001	0.00005654
25	Yes	4	0.0000001	0.00003479
26	Yes	4	0.0000001	0.0000001
27	Yes	4	0.0000001	0.00002380
28	Yes	4	0.0000001	0.00002730
29	Yes	4	0.0000001	0.00002029
30	Yes	4	0.00000001	0.00001105
31	Yes	4	0.0000001	0.0000001
32	Yes	4	0.00000001	0.00001828
33	Yes	4	0.00000001	0.00002398
34	Yes	4	0.00000001	0.00002378
35	Yes	4	0.00000001	0.00002064
36	Yes	4	0.00000001	0.00000995
37	Yes	4	0.00000001	0.00000001
38	Yes	4	0.00000001	0.00001491
39	Yes	4	0.00000001	0.00000001
40	Yes	4	0.00000001	0.00000001
41	Yes	4	0.00000001	0.00000001
42	Yes	4	0.00000001	0.00000001
43	Yes	4	0.00000001	0.00000001
44	Yes	4	0.00000001	0.00000001
44	Yes	4	0.00000001	0.00000001
45 46	Yes	4	0.00000001	0.00000001
40 47	Yes	4	0.00000001	0.00000001
47 48		4		
-	Yes		0.0000001	0.00000001
49	Yes	4	0.0000001	0.00000001
50	Yes	4	0.00000001	0.0000001

Non-Linear Convergence Results

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	с	с
L1	60 - 36	1.754	42	0.2165	0.0034
L2	36 - 0	0.729	42	0.1750	0.0018

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
60.0000	Lightning Rod 5/8"x8	42	1.754	0.2165	0.0034	51284
58.0000	BMR12	42	1.660	0.2143	0.0033	51284
53.0000	Platform Mount [LP 403-1]	42	1.426	0.2084	0.0029	36631
44.0000	DB438-A	42	1.031	0.1944	0.0023	16026
31.0000	DB438-A	42	0.574	0.1583	0.0015	12407

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	c	c
L1	60 - 36	8.808	4	1.0801	0.0174
L2	36 - 0	3.676	4	0.8803	0.0090

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	c	c	ft
60.0000	Lightning Rod 5/8"x8'	4	8.808	1.0801	0.0174	10307
58.0000	BMR12	4	8.336	1.0698	0.0167	10307
53.0000	Platform Mount [LP 403-1]	4	7.168	1.0423	0.0148	7362
44.0000	DB438-A	4	5.188	0.9754	0.0116	3220
31.0000	DB438-A	4	2.897	0.7969	0.0075	2493

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	Lu	Kl∕r	A	P _u	f P _n	Ratio P _u
	ft		ft	ft		in²	К	ĸ	f P _n
L1	60 - 36 (1)	TP32.125x27.375x0.1875	24.000 0	0.0000	0.0	19.006 8	-6.47	1078.78	0.006
L2	36 - 0 (2)	TP37.875x32.125x0.2188	36.000 0	0.0000	0.0	26.145 2	-10.62	1476.13	0.007

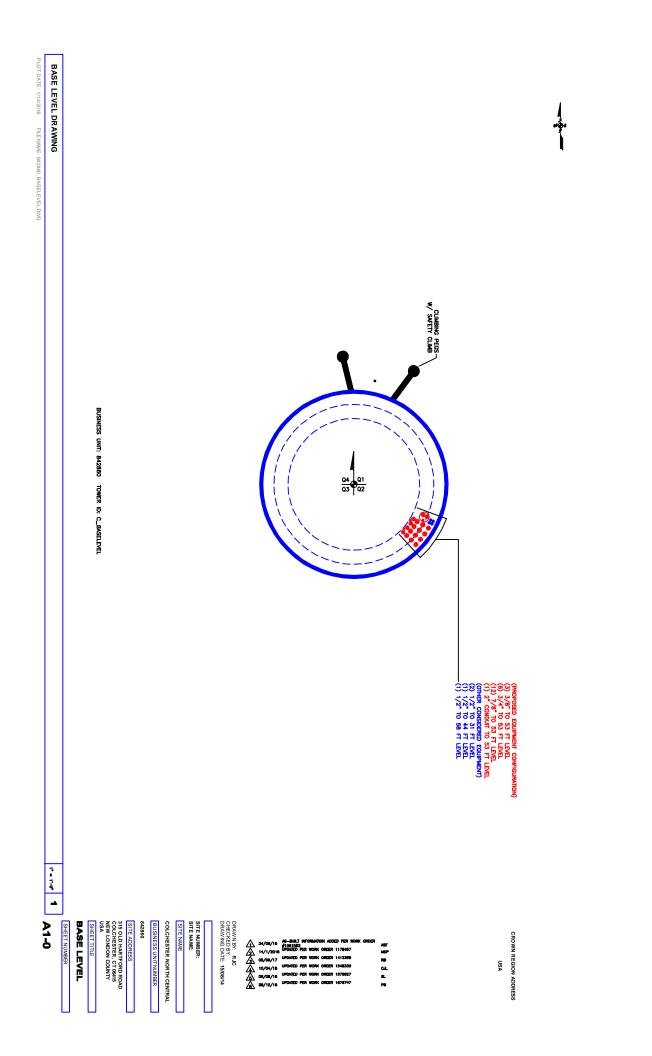
Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	f M _{nx}	Ratio M _{ux}	M _{uy}	f M _{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	f M _{nx}	kip-ft	kip-ft	f M _{ny}
L1	60 - 36 (1)	TP32.125x27.375x0.1875	155.55	709.88	0.219	0.00	709.88	0.000
L2	36 - 0 (2)	TP37.875x32.125x0.2188	517.28	1145.35	0.452	0.00	1145.35	0.000

Section No.	Elevation	Size	M _{ux}	f M _{nx}	Ratio M	M _{uy}	f M _{ny}	Ratio M
	ft		kip-ft	kip-ft	f M _{nx}	kip-ft	kip-ft	f M _{ny}

Pole Shear Design Data

Section	Elevation	Size	Actual	f V _n	Ratio	Actual	f T _n	Ratio
No.			Vu		Vu	T_u		Tu
	ft		K	K	f V _n	kip-ft	kip-ft	f T _n
L1	60 - 36 (1)	TP32.125x27.375x0.1875	8.55	307.91	0.028	1.85	851.12	0.002
L2	36 - 0 (2)	TP37.875x32.125x0.2188	11.43	423.55	0.027	2.50	1380.58	0.002


Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	f P _n	f M _{nx}	f M _{ny}	f V _n	f T _n	Ratio	Ratio	
L1	60 - 36 (1)	0.006	0.219	0.000	0.028	0.002	0.226	1.050	4.8.2 🖌
L2	36 - 0 (2)	0.007	0.452	0.000	0.027	0.002	0.460	1.050	4.8.2 🖌

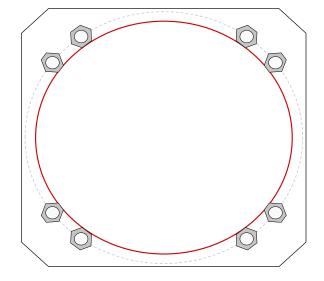
Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	60 - 36	Pole	TP32.125x27.375x0.1875	1	-6.47	1132.72	21.5	Pass
L2	36 - 0	Pole	TP37.875x32.125x0.2188	2	-10.62	1549.94	43.8	Pass
							Summary	
						Pole (L2)	43.8	Pass
						RATING =	43.8	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS


Monopole Base Plate Connection

Site Info		
	BU #	842860
	Site Name	COLCHESTER NORTH CENTRAL
	Order #	472822 Rev.0

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
I _{ar} (in)	1.25

Applied Loads	
Moment (kip-ft)	517.28
Axial Force (kips)	10.62
Shear Force (kips)	11.43
*TIA-222-H Section 15.5 App	plied

Connection Properties	A		
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)
(8) 2" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 41" BC	Pu_c = 76.95	φPn_c = 187.5	Stress Rating
	Vu = 1.43	φVn = 56.25	39.1%
Base Plate Data	Mu = n/a	φMn = n/a	Pass
42" OD x 2.5" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)			
	Base Plate Summary		
Stiffener Data	Max Stress (ksi):	6.08	(Flexural)
N/A	Allowable Stress (ksi):	45	
	Stress Rating:	12.9%	Pass
Pole Data	ů.		
37.875" x 0.22" 18-sided pole (A572-60; Fy=60 ksi, Fu=75 ksi)			

	₫
	Ì
	ē
	┓
	_
	er_
	5
	Ę
	ă
	<u>a</u>
	₫
I	2

		2	# of Layers		n/a ft	Groundwater Depth	
	Soil Profile	Soil					
	n 15.5	*Rating per TIA-222-H Section 15.5	*Rating per T				
	16.0%	Structural Foundation Rating*	Structural Fou		ω	Tie Size	
	22.8%	Soil Interaction Rating*	Soil Int		8.625 in	Clear Cover to Ties	
					12	Rebar Size	
•	16.0%	Rating*			16	Rebar Quantity	
•	3509.01	Critical Moment Capacity	Critical N		6.5 ft	Pier Diameter	
•	590.11	Critical Moment (kip-ft)	Critica	de	to 16.83' below gra	From 0.17' above grade to 16.83' below grade	
•	6.32	Critical Depth (ft from TOC)	Critical De		ction 1	Pier Section 1	
Uplift		Reinforced Concrete Capacity Compression	Reinforced Co		0.17 ft	Ext. Above Grade	
•	5.6%	Rating*			16.83 ft	Depth	
•	112.16	Axial (kips)			ign Data	Pier Design Data	
•	1901.79	Fotal Capacity (kips)	Tot				
•	101.54	Weight of Concrete (kips)	Weight c		60 ksi	Rebar Strength, Fy:	
•	597.30	End Bearing (kips)	m		3 ksi	Concrete Strength, f'c:	
•	1304.49	Skin Friction (kips)	S		roperties	Material Properties	
Uplift	Compression U	apacity	Soil Vertical Capacity				
•	22.8%	Rating*			11.43	Shear Force (kips)	
•	590.13	Max Moment (kip-ft)	Max		10.62	Axial Force (kips)	
•	5.55	Soil Safety Factor			517.28	Moment (kip-ft)	
•	6.26	$D_{v=0}$ (ft from TOC)		Uplift	Comp. U		
Uplift	Compression U	pacity	Soil Lateral Capacity		Loads	Applied Loads	
	Analysis Results	Analysi					
				e	Monopole	Tower Type:	
					т	TIA-222 Revison:	
					472822 Rev.0	Order Number: 472822 Rev.0	
				NORTI	Site Name: COLCHESTER NORT	Site Name:	
					BU # : 842860	BU#:	

—

Check Limitation Apply TIA-222-H Section 15.5: ~

Cohesionless		24	7.20	7.20	0.000	0.000	32		150	165	16.83 11.83	16.83	л	2
Cohesionless					0.000	0.000			150	165	5	5	0	-
Soil Type	SPT Blow Count	Ult. Gross Bearing SPT Blow Capacity Count (ksf)	Ultimate Skin Friction Uplift Override (ksf)	Ultimate Skin Friction Comp Override (ksf)		Calculated Calculated Ultimate Skin Ultimate Skin Friction Comp Friction Uplift (ksf) (ksf)	Angle of Friction (degrees)	Cohesion (ksf)	Vconcrete (pcf)	V soii (pcf)	Thickness (ft)	Bottom (ft)	Top (ft)	Layer
							2	# of Layers			ft	n/a	ter Depth	Groundwater Depth

٢

٦

EXHIBIT 4

Radio Frequency Emissions Analysis Report

AT&T Existing Facility

Site ID: CT5346

FA#: 10070973

Colchester North Central 315 Old Hartford Road Colchester, CT 06415

January 3, 2019

Centerline Communications Project Number: 950006-164

Site Complian	ce Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	36.50 %

January 3, 2019

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT5346 - Colchester North Central

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility located at **315 Old Hartford Road, Colchester, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure and can exercise control over the potentia

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT&T Wireless antenna facility located at **315 Old Hartford Road, Colchester, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
LTE	700 MHz (Band 14)	2	40
LTE	850 MHz	2	40
LTE	1900 MHz (PCS)	4	40
5G	850 MHz	2	25
LTE	2300 MHz (WCS)	4	30
LTE	700 MHz	2	40
LTE	2100 MHz (AWS)	4	30

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz, 850 MHz, 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	Powerwave 7770	57
А	2	CCI TPA-65R-LCUUUU-H8	57
А	3	CCI HPA-65R-BUU-H8	57
В	1	Powerwave 7770	57
В	2	CCI TPA-65R-LCUUUU-H8	57
В	3	CCI HPA-65R-BUU-H8	57
С	1	Powerwave 7770	57
С	2	CCI TPA-65R-LCUUUU-H8	57
С	3	CCI HPA-65R-BUU-H8	57

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

				Chann			
Antenna			Antenna Gain	el	Total TX		
ID	Antenna Make / Model	Frequency Bands	(dBd)	Count	Power (W)	ERP (W)	MPE %
Antenna	Powerwave	Trequency Danus	(uDu)	Count			IVII L 70
Antenna Al	7770	850 MHz	11.4	2	60	828.23	2.02
	1110	700 MHz (Band 14) /	11.4	2	00	020.23	2.02
		850 MHz /					
Antenna	CCI	1900 MHz (PCS) /	12.95 / 13.45 /				
A2	TPA-65R-LCUUUU-H8	2300 MHz (WCS)	13.75 / 14.45	12	490	11,592.50	21.55
Antenna	CCI	700 MHz /	13.15 / 15.25 /			,	
A3	HPA-65R-BUU-H8	2100 MHz (AWS)	0 / 0	6	200	5,671.89	10.45
		· · · ·			Sector A Comp	osite MPE%	34.01
Antenna	Powerwave				•		
B1	7770	850 MHz	11.4	2	60	828.23	2.02
		700 MHz (Band 14) /					
		850 MHz /					
Antenna	CCI	1900 MHz (PCS) /	12.95 / 13.45 /				
B2	TPA-65R-LCUUUU-H8	2300 MHz (WCS)	13.75 / 14.45	12	490	11,592.50	21.55
Antenna	CCI	700 MHz /	13.15 / 15.25 /				
B3	HPA-65R-BUU-H8	2100 MHz (AWS)	0 / 0	6	200	5,671.89	10.45
					Sector B Comp	osite MPE%	34.01
Antenna	Powerwave						
C1	7770	850 MHz	11.4	2	60	828.23	2.02
		700 MHz (Band 14) /					
		850 MHz /					
Antenna	CCI	1900 MHz (PCS) /	12.95 / 13.45 /				
C2	TPA-65R-LCUUUU-H8	2300 MHz (WCS)	13.75 / 14.45	12	490	11,592.50	21.55
Antenna	CCI	700 MHz /	13.15 / 15.25 /				
C3	HPA-65R-BUU-H8	2100 MHz (AWS)	0 / 0	6	200	5,671.89	10.45
					Sector C Comp	osite MPE%	34.01

Table 3: AT&T Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

Site Composite MPE%	
Carrier	MPE%
AT&T – Max Per Sector Value	34.01 %
Ken-Tronics	2.49 %
Site Total MPE %:	36.50 %

Table 4: All Carrier MPE Contributions

AT&T Sector A Total:	34.01 %
AT&T Sector B Total:	34.01 %
AT&T Sector C Total:	34.01 %
Site Total:	36.50 %

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

AT&T _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
AT&T 850 MHz UMTS	2	414.12	57	11.45	850 MHz	567	2.02%
AT&T 700 MHz LTE	2	788.97	57	21.81	700 MHz	467	4.67%
AT&T 850 MHz LTE	2	885.24	57	24.47	850 MHz	567	4.32%
AT&T 1900 MHz (PCS) LTE	4	948.55	57	52.44	1900 MHz (PCS)	1000	5.24%
AT&T 850 MHz 5G	2	553.27	57	15.29	850 MHz	567	2.70%
AT&T 2300 MHz (WCS) LTE	4	835.84	57	46.21	2300 MHz (WCS)	1000	4.62%
AT&T 700 MHz LTE	2	826.15	57	22.84	700 MHz	467	4.89%
AT&T 2100 MHz (AWS) LTE	4	1,004.90	57	55.56	2100 MHz (AWS)	1000	5.56%
						Total:	34.01%

Table 6: AT&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	34.01 %
Sector B:	34.01 %
Sector C:	34.01 %
AT&T Maximum Total (per sector):	34.01 %
Site Total:	36.50 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **36.50** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767

EXHIBIT 5

sts

cienti

S

ental

nvironm

ш

S

C t

Φ

rchit

4

pe

В

dsc

La

S

eyor

r V

Su

S

ner

g

9

eers

2

σ

ш

Antenna Mount Modification Design & Analysis

FOR

CT5346 – Colchester North Central

FA # 10070973 315 Old Hartford Road Colchester, CT 06415 New London County

3C - MRCTB032309 4C - MRCTB032279 5C - MRCTB032230 6C - MRCTB032273 Retrofit - MRCTB032284

Mount Utilization (Without Modification): 150.7% Mount Utilization (With Modification): 82.2% Cost Estimate: \$2,000-\$3,000

October 18, 2018

Prepared For

AT&T 550 Cochituate Road Framingham, MA 01701

Prepared By

finB www.maserconsulting.com

Objective:

The objective of this report is to determine the capacity of the existing antenna support mount with the proposed modification at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

Introduction:

Maser Consulting Connecticut has performed limited field observations on June 13, 2018 to verify the existing condition of the structure and to locate and quantify the existing wireless appurtenances where possible, from ground level. Maser Consulting Connecticut has reviewed the following documents in completing this report:

• RFDS 2325793 provided by Empire, dated August 13, 2018.

• Mount Mapping provided by provided by Empire.

• As-Built Construction Drawings provided by Empire, dated May 12, 2016.

• Previous Construction Drawings prepared by Hudson Design Group LLC, Rev 1, dated November 12, 2008.

The existing and proposed **AT&T** equipment is to be supported on the existing antenna support platform mount with the proposed modification constructed of structural steel antenna support pipes supported by pipes, angles and tubes at a centerline of approximately 57'-0" above ground level. This report is based only upon this information.

Codes, Standards and Loading:

Maser Consulting Connecticut utilized the following codes and standards:

- 2016 Connecticut State Building Code, Incorporating The 2012 IBC
- Structural Standards for Antenna Supporting Structures and Antennas ANSI/TIA-222-G
 - Ultimate Wind Speed 130 mph
 - Nominal Wind Speed 101 mph
 - Exposure Category C
 - Structural Class II
 - Topographic Category 1
 - Ice Wind 50 mph
 - Ice Thickness 0.75"
- Specification for Structural Steel Buildings ANSI/AISC 360-05, American Institute of Steel Construction (AISC)

Loading used in this analysis is found in **Appendix A** of this report.

Analysis Approach & Assumptions:

The analysis approach used in this structural analysis is based on the premise that if the existing antenna support platform mount with the proposed modification is structurally adequate to support the proposed and existing equipment per the aforementioned codes and standards, or if the increase in the forces in the structure is deemed to be negligible or acceptable, then the proposed equipment can be installed as intended.

The existing antenna support mount with the proposed modification has been modeled in RISA-3D, a comprehensive structural analysis program, as the controlling condition. The program performs design checks of structures under user specified loads. The user specified loads have been calculated separately based on the requirements of the above referenced codes. The program performs an analysis based on the steel code to determine the adequacy of the members, and produces the reactions at the connection points of the mounts to the existing structure.

General Site Design Assumption:

- All engineering services are performed on the basis that the information used is current and correct.
- It is assumed that the telecommunication equipment supports, antenna supports, and existing structure have been designed by a registered licensed professional engineer for the existing loads acting on the structure, as required by all applicable codes, prior to the proposed modifications listed within this report, if any.
- It is assumed that information provided by the client regarding the structure itself, the antenna models, feed lines, and other relevant information is current and correct.
- It is the responsibility of the client to ensure that the information provided to Maser Consulting Connecticut and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that the original design, material production, fabrication, and erection of the existing structure was performed in accordance with accepted industry design standards and in accordance with all applicable codes. Further, it is assumed that the existing structure and appurtenances have been properly maintained in accordance with all applicable codes and manufacturer's specifications and no structural defects and/or deterioration to the structural members has occurred.
- It is assumed all other existing appurtenances, antennas, cables, etc. belonging to others have been installed and supported per code and per specifications so as not to damage any existing structural support members, and that any contributing loads from adjacent equipment has been taken into consideration for their design.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information we supply.

Site Specific Assumptions and Design Parameters:

The following assumptions have been utilized in this report:

- The existing platform mount is a SitePro1 Quick-Pick Full Walkway Monopole Platform (Part Number: QMSP-384)
- Handrail Kit (SitePro1 P/N: HRK14-U) is installed at 48" vertical distance from the bottom horizontal face members.
- Structural Steel Tubes are constructed of A500 Grade B Steel
- Structural Steel Pipes are constructed of A53 Grade B Steel
- Structural Steel Angles are constructed of A36 Steel

The following design parameters have been utilized in this report:

- The proposed antennas in position 3 in all sectors shall replace the existing antennas, on three

 (3) proposed 10'-0" long 2.5 STD pipe masts, which shall be attached to the horizontal mount
 face tube via crossover plates.
- The proposed RRUS 8843 B66A B2 and RRUS-32 shall be installed back to back, on three (3) proposed RRU Mount Brackets (Ericsson P/N: SXK1250461/1 B2B) which shall be attached to the proposed antenna pipes in **position 3** in all sectors.
- The proposed RRUS 4478 B14 and RRUS 4478 B5 shall be installed on the existing Unistrut frames, at the ground level.
- The proposed DC-6's shall be installed on two (2) proposed 16" long 2.0 STD pipes, which shall be attached to the existing standoff tubes, via a 10"x10"x1/2" galvanized plates, in the Alpha & Beta sectors.
- The proposed DBCT108F1V92-1 Diplexers shall be installed on the proposed antenna pipes in **position 3** in all sectors.

The proposed modification consists of the following:

 Install one (1) proposed Platform Reinforcement Kickers Kit (SitePro1 P/N: PRK-1245L), which shall be attached to the existing standoff HSS at 1'-6" from the corner edge, and shall be installed 4 ft below the existing platform's collar attachment to monopole.

Please refer to the final drawings prepared by Maser Consulting Connecticut for more details.

Calculations:

The calculations are found in Appendix A of this report.

Conclusion:

Maser Consulting Connecticut has determined the existing antenna support platform mount with the proposed modification has **ADEQUATE** structural capacity to support the existing and proposed loadings. The existing antenna support mount with the proposed modification has been determined to be stressed to a maximum of **82.2%** of its structural capacity with the maximum usage occurring at the existing grating support angles. Therefore, the proposed **AT&T** installation **CAN** be installed as intended, **once the proposed modification is installed as intended**.

The conclusions reached by Maser Consulting Connecticut in this evaluation are only applicable for the existing and proposed structural members supporting the proposed **AT&T** telecommunications installation described herein. Further, no structural qualifications are made or implied by this document for the existing structure. The existing mount was checked up to, and including, the bolts that attach to the mount's collar. However, no structural qualifications are made or implied by this document for the existing mount collar.

Maser Consulting Connecticut reserves the right to amend this report if additional information about the existing members is provided. The conclusions reached by Maser Consulting Connecticut in this report are only valid for the appurtenances listed in this report. Any change to the installation will require a revision to this structural analysis.

We appreciate the opportunity to be of service on this project. If you should have any questions or require any additional information, please do not hesitate to call our office.

Sincerely,

Maser Consulting Connecticut

Petros E. Tsoukalas, P.E. Geographic Discipline Leader

Turn Basar

Clara Basanti Engineer

\\maserconsulting.com\\uj\Projects\2018\18963000A\18963026A\Structural\Mount Analysis - Mods\Rev 0\Word\Report.docx

APPENDIX A

ATT	Computed By:	СВ
CTL05436 - Colchester North Central	Date:	10/18/2018
18963026A	Verified By:	SMS
Antenna Mount Modification Design & Analysis	Page:	1
		Version 4.0

Version 4.0

LOADING SUMMARY

Quantity	Manufacturer	Antenna/ Appurtenance	Status	Sector	T
3	POWERWAVE	7770	Existing	Alpha, Beta, & Gamma	ľ
3	CCI	HPA-65R-BUU-H8	Existing	Alpha, Beta, & Gamma	
3	CCI	TPA-65R-LCUUUU-H8	Proposed	Alpha, Beta, & Gamma	
3	ERICSSON	RRUS 11	Existing	Alpha, Beta, & Gamma	
2	ERICSSON	RRUS 4478 B14	Proposed	Alpha & Beta	(At Grade
3	ERICSSON	RRUS 4478 B5	Proposed	Alpha, Beta, & Gamma	(At Grade
3	ERICSSON	RRUS 32	Proposed	Alpha, Beta, & Gamma	
3	ERICSSON	RRUS 8843 B2 B66A	Proposed	Alpha, Beta, & Gamma	
6	POWERWAVE	LGP 21401 TMA	Existing	Alpha, Beta, & Gamma	
3	RAYCAP	DC6-48-60-18-8C	Existing/Proposed	Alpha, Beta, & Gamma	
6	KAELUS	DBCT108F1V92-1 Low-Band Combiner	Proposed	Alpha, Beta, & Gamma	

Client:	ATT	Computed By:	СВ	
Site Name:	CTL05436 - Colchester North Central	Date:	10/18/2018	
Project No.	18963026A	Verified By:	SMS	
Title:	Antenna Mount Modification Design & Analysis	Page:	2	

I. DESIGN INPUTS

Calculations for gravity and lateral loading on equipment and support mounts are determined as per the ANSI/TIA-222-G Code, Addendum 2

		<u>Reference</u>	<u>Equation</u>
Wind Load Inputs Parameters			
Antenna Centerline	z 57 ft		
Ultimate Wind Speed	V _u 130 mph		
Nominal Wind Speed (3 sec. Gust):	V 101 mph	Ref. 1, Eqn. 16-33	
Nominal Wind Speed with Ice (3 sec. gust):	V _i 50.0 mph	(Figure a5-2a, p. 233)	
Maintenance Wind Speed:	V _m 30.0 mph		
Service Wind Speed:	V _s 60.0 mph	(Figure a5-2a, p. 233)	
Design Ice Thickness:	t _i 0.75 in	(Figure A1-2a, p. 233)	
Exposure Category:	С	Ref. 3, Section 2.6.5.1	
Structure Class:	11	Ref. 3, Table 2-1	
Gust Effect Factor:	G _h 1.10	Ref. 3, Section 2.6.7	
Wind Directionality Factor:	К _d 0.95	Ref. 3, Table 2-2	
Topographic Category:	1	Ref. 3, Section 2.6.6.2	
Wind Load Coefficients			
Importance Factors:			
Non-Iced:	1	Ref. 3, Table 2-3	
Iced:	l _{ice} 1	(Table 2-3, P. 39)	
Exposure Category Coefficients:			
3-s Gust-Speed Power Law Exponent:	α 9.5	Ref. 3, Table 2-4	
Nominal Height of the Atmospheric Boundary Layer:	Z_g 900 ft	Ref. 3, Table 2-4	
Min. Value for k _z :	Kz _{min} 0.85	Ref. 3, Table 2-4	
Terrain Constant:	К _е 1.00	Ref. 3, Table 2-4	
Velocity Pressure Exposure Coefficient:	K _z 1.124	Ref. 3, Section 2.6.5.2	=2.01 $\cdot (z/z_g)^{2/\alpha}$
Topographic Category Coefficients:			
Topographic Constant:	K _t N/A	Ref. 3, Table 2-5	
Height Attenuation Factor:	f N/A	Ref. 3, Table 2-5	
Height Reduction Factor:	K _h N/A	Ref. 3, Section 2.6.6.4	=e ^(f-z/H)
Topographic Factor:	K _{zt} 1.00	Ref.3, Section 2.6.6.4	$= [1 + (K_e \cdot K_t / K_h)]^2$
Ice Accumulation:			
Ice Velocity Pressure Exposure Coefficient:	K _{iz} 1.06		$=(z/33)^{0.10}$
Factored Ice Thickness:	t _{iz} 1.58 in	(Section 2.6.8, p. 16)	$= 2.0 \cdot t_i \cdot I \cdot K_{iz} \cdot K_{zt}$
Ice Density:	ρ _i 56.00 pcf		
Design Wind Pressures:			
Velocity Pressure:	q z 27.73 psf	Ref. 3, Section 2.6.9.6	$= 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V^2 \cdot I$
Velocity Pressure (With Ice):	q _{zi} 6.84 psf	(Section 2.6.9.6, P. 25)	=.00256· K_z · K_{zt} · K_d · V_i ² · I
Velocity Pressure (Maintenance):	q _{zm} 2.46 psf	(Section 2.6.9.6, P. 25)	=.00256· K_z · K_{zt} · K_d · V_m ² · I
Velocity Pressure (Service):	q _{zs} 9.84 psf	(Section 2.6.9.6, P. 25)	$=.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V_i^{z} \cdot I$

Site Name: CTL05436 - Colchester North Central Date: 10/18/20* Project No. 18963026A Verified By: SMS	Client:	ATT	Computed By:	СВ
······································	Site Name:	CTL05436 - Colchester North Central	Date:	10/18/2018
	Project No.	_18963026A	Verified By:	SMS
Itte: Antenna Mount Modification Design & Analysis Page: 3	Title:	Antenna Mount Modification Design & Analysis	Page:	3

II. CALCULATIONS

Wind Load on Appurtenances

Dimensions and Force Coefficients

		Non-Iced Condition									Iced Condition						
	n	Mounting Pipe	;			Equipment				Mounting Pip	e			Equipment			
Antenna/ Appurtenance	Length (in)	Diameter (in)	Force Coefficient	Height (in)	Width (in)	Depth (in)	Force Co	oefficient	Length (in)	Diameter (in)	Force Coefficient	Height (in)	Width (in)	Depth (in)	Force Co	efficient	
	(11)	(11)	C _a	(11)	(11)	(11)	C _{a Front}	C _{a Side}	(11)	(11)	C _a	(111)	(11)	(11)	C _{a Front}	C _{a Side}	
7770	72.0	2.375	1.200	55.00	11.00	5.00	1.31	1.53	75.2	5.5	0.946	58.17	14.17	8.17	1.27	1.40	
HPA-65R-BUU-H8	108.0	2.375	1.200	92.80	14.40	7.30	1.38	1.59	111.2	5.5	1.090	95.97	17.57	10.47	1.33	1.47	
TPA-65R-LCUUUU-H8	120.0	2.875	1.200	96.00	14.40	8.60	1.39	1.54	123.2	6.0	1.097	99.17	17.57	11.77	1.34	1.45	
RRUS 11	0.0	0.000	0.000	19.70	17.00	7.20	1.20	1.21	0.0	0.0	0.000	22.87	20.17	10.37	1.20	1.20	
RRUS 32	0.0	0.000	0.000	27.20	12.00	7.00	1.20	1.26	0.0	0.0	0.000	30.37	15.17	10.17	1.20	1.22	
RRUS 8843 B2 B66A	0.0	0.000	0.000	14.90	13.20	10.90	1.20	1.20	0.0	0.0	0.000	18.07	16.37	14.07	1.20	1.20	
LGP 21401 TMA	0.0	0.000	0.000	13.80	14.40	3.70	1.20	1.25	0.0	0.0	0.000	16.97	17.57	6.87	1.20	1.20	
DC6-48-60-18-8C	16.0	2.375	0.794	31.40	10.20	10.20	0.71	0.71	19.2	5.5	0.721	34.57	13.37	13.37	0.70	0.70	
DBCT108F1V92-1 Low-Band Combiner	0.0	0.000	0.000	8.00	6.20	6.50	1.20	1.20	0.0	0.0	0.000	11.17	9.37	9.67	1.20	1.20	

		N	on-Iced Cond	ition		Iced Conditio	n	Maintenan	ce Condition	
Antenna/ Appurtenance	# of Brackets	Wind Force (lbs.)		Gravity (lbs.)	Wind Force (lbs.)		Gravity (lbs.)	Wind Force (lbs.)		
		F _N	F _T		F _N	F _T		F _N	F _T	
7770	2	89.1	66.4	17.5	30.3	27.7	64.1	7.9	5.9	
HPA-65R-BUU-H8	2	199.2	146.7	32.8	61.3	56.2	137.2	17.7	13.0	
TPA-65R-LCUUUU-H8	2	211.5	178.4	43.8	65.5	65.4	146.8	18.8	15.8	
RRUS 11	1	85.1	36.4	55.7	28.9	14.9	73.9	7.6	3.2	(RRUS 11 is partially shielded by antenna from side wind)
RRUS 32	1	83.0	50.9	52.9	28.9	19.7	75.8	7.4	4.5	(RRUS 8843 B2 B66A is shielded by RRUS 32 from front wind)
RRUS 8843 B2 B66A	1	50.0	41.3	72.0	18.5	15.9	54.5	4.4	3.7	(RRUS 8843 B2A B66A & RRUS 32 are partially shielded by antenna from side wind)
LGP 21401 TMA	1	50.5	13.6	30.0	18.7	7.3	45.0	4.5	1.2	
DC6-48-60-18-8C	1	48.4	54.7	26.2	16.9	20.9	65.7	4.3	4.9	
DBCT108F1V92-1 Low-Band Combiner	1	12.6	13.2	18.3	6.6	6.8	19.0	1.1	1.2	
* ALL CALCULATED LOAD			T THE TOTAL COLU			LLOADS BY THE M		T C		_

* ALL CALCULATED LOADS ARE PER MOUNTING BRACKET. TO GET THE TOTAL EQUIPMENT LOAD, MULTIPLY THE INDIVIDUAL LOADS BY THE NUMBER OF BRACKETS

• Wind Load on Framing Members

				Non	-Iced Condition	on	Iced Condition					Maintenance Condition	
Member	Member	Length (in)	Member	Exposed Wind	Force Coefficient		Exposed Wind Height	Depth	Length	Force Coefficient	Wind Load	0	Wind Load (plf)
Category	Shape	Surrac	Surface	Height (in)	Ca	(plf)	(in)	(in)	(in)	Ca	(plf)	(plf)	
Pipe	Pipe 2.0	108	Round	2.38	1.20	7.24	5.54	5.54	111.17	1.09	3.79	7.66	0.64
Pipe	Pipe 3.0	54	Round	3.50	0.99	8.78	6.67	6.67	57.17	0.83	3.49	9.84	0.78
Square HSS	HSS 4X4	47	Square	4.00	1.56	15.84	7.17	7.17	50.17	1.40	6.29	14.02	1.41
Pipe	Pipe 2.5	120	Round	2.88	1.20	8.77	6.04	6.04	123.17	1.10	4.15	8.63	0.78
Pipe	Pipe 2.0	170	Round	2.38	1.20	7.24	5.54	5.54	173.17	1.20	4.17	7.66	0.64
											Grating	17.12	psf
Double Angle	2L2.5x2.5	80	Square	5.00	1.70	21.60	8.17	5.67	83.17	1.51	7.71	13.89	1.92

Client:	ATT	Computed By:	СВ
Site Name:	CTL05436 - Colchester North Central	Date:	10/18/2018
Project No.	18963026A	Verified By:	SMS
Title:	Antenna Mount Modification Design & Analysis	Page:	4

BASIC EQUATIONS

		ANSI/TIA-222-G Reference
Importance Factor:	I:= 1.0 if Class = "II"	Table 2-3, Pg. 39
	1.15 if Class = "III"	

Force Coefficient: (Square)	$C_{f_square}(h, w) :=$		⁻ able 2-8, P. 42
		$\left[1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5\right)\right] \text{ if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$	
		$\begin{bmatrix} 1.2 + \frac{0.2}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} \text{ if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ $\begin{bmatrix} 1.4 + \frac{0.6}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25$	
		2.0 otherwise	

Force Coefficient:	$C_{f_round}(h, w) :=$	0.7 if $\frac{h}{w} \le 2.5$	Table 2-8, P. 42
(Round)		$\begin{bmatrix} 0.7 + \frac{0.1}{4.5} \cdot \left(\frac{h}{w} - 2.5\right) \end{bmatrix} \text{ if } \frac{h}{w} > 2.5 \land \frac{h}{w} \le 7$ $\begin{bmatrix} 0.8 + \frac{0.4}{18} \cdot \left(\frac{h}{w} - 7\right) \end{bmatrix} \text{ if } \frac{h}{w} > 7 \land \frac{h}{w} \le 25$ 1.2 otherwise	

Terrain Exposure Constants:

Table 2-4, P. 40

$$\alpha := \begin{bmatrix} 7.0 & \text{if Exp} = "B" & Z_g := \\ 9.5 & \text{if Exp} = "C" & \\ 11.5 & \text{if Exp} = "D" & \\ \end{bmatrix} \begin{bmatrix} 1200 \text{ft if Exp} = "B" & K_{zmin} := \\ 900 \text{ft if Exp} = "C" & \\ 700 \text{ft if Exp} = "C" & \\ 1.03 & \text{if Exp} = "D" & \\ \end{bmatrix} \begin{bmatrix} 0.70 & \text{if Exp} = "B" & \\ 0.85 & \text{if Exp} = "C" & \\ 1.03 & \text{if Exp} = "D" & \\ \end{bmatrix}$$

Client:	ATT	Computed By:	СВ
Site Name:	CTL05436 - Colchester North Central	Date:	10/18/2018
Project No.	18963026A	Verified By:	SMS
Title:	Antenna Mount Modification Design & Analysis	Page:	5

BASIC EQUATIONS

Velocity Pressure Coefficient:

$K_{z}(z) := \begin{bmatrix} K_{z} \leftarrow \max\left[2.01 \cdot \left(\frac{z}{Z_{g}}\right)^{\alpha}, K_{zmin}\right] \\ K_{z} \leftarrow \min(K_{z}, 2.01) \end{bmatrix}$

 $K_z := Kz(z)$

Section 2.6.5, P. 13

ANSI/TIA-222-G Reference

 $K_{zt} := Kzt(z)$

Velocity Pressure:

Section 2.6.9.6, P. 25

 $q_z := 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V^2 \cdot I \cdot psf$

	ATT	Computed By:	СВ
ne:	CTL05436 - Colchester North Central	Date:	10/18/2018
No.	18963026A	Verified By:	SMS
	Antenna Mount Modification Design & Analysis	Page:	6

LOAD EQUATIONS

Client: Site Nam Project N Title:

WIND LOAD

Area (Normal): Area (Side): Force Coefficient (Normal): Force Coefficient (Side): Pipe Area (Normal): Pipe Area (Side): Force Coefficient (Normal): Normal Effective Projected Area: Side Effective Projected Area: Effective Projected Area: Wind Force:

ICE DEAD LOAD

Largest Out-to-Out Dimension: Cross Sectional Area of Ice: Total Ice Dead Load:

ICE WIND LOAD

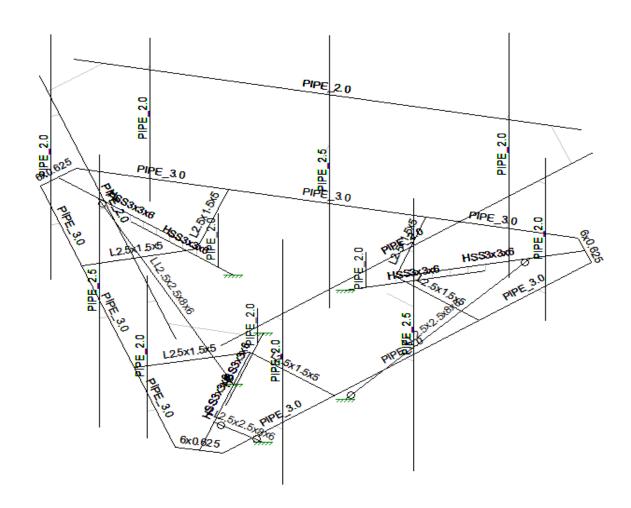
Dimensions:

Area (Normal): Area (Side): Force Coefficient (Normal): Force Coefficient (Side): Pipe Area (Normal): Pipe Area (Side): Force Coefficient (Normal): Normal Effective Projected Area: Side Effective Projected Area: Effective Projected Area: $\begin{aligned} AN_{area} &= H_{ant} \cdot Want \\ AT_{area} &= H_{ant} \cdot Dant \\ C_{fn} &= C_{fsquare}(H_{ant}, Want) \\ C_{fs} &= C_{fsquare}(H_{ant}, Dant) \\ AN_p &= \max[(L_p - H_{ant}) * Dp, 0] \\ AT_p &= L_p \cdot Dp \\ C_{fp} &= C_{fround}(Lp, Dp) \\ E_{pan} &= (C_{fn} \cdot ANarea) + (Cfp \cdot ANp) \\ E_{pat} &= (C_{fs} \cdot ATarea) + (Cfp \cdot ATp) \\ EPA &= \max(E_{pan}, Epat) \\ F_{ant} &= q_z \cdot Gh \cdot EPA \end{aligned}$

$$\begin{split} D_{ant} &= \sqrt{D_{ant}^{2} + W_{ant}^{2}} \\ A_{ice_ant} &= \pi \cdot tiz \cdot (Dant + tiz) \\ DL_{ice_ant} &= \mathbf{\rho_{i}} \cdot (Aice__{ant} \cdot Hant) \end{split}$$

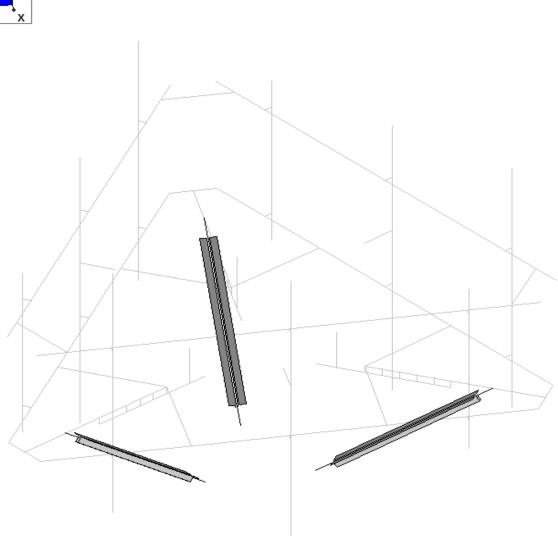
$$\begin{split} H_{i_{ant}} &= H_{ant} + 2tiz \\ W_{i_{ant}} &= W_{ant} + 2tiz \\ D_{i_{ant}} &= D_{ant} + 2tiz \\ AIN_{area} &= H_{i_{ant}} \cdot W_{i_{ant}} \\ AIT_{area} &= H_{i_{ant}} \cdot D_{i_{ant}} \\ Ci_{fn} &= C_{fsquare}(H_{i_{ant}}, W_{i_{ant}}) \\ Ci_{fs} &= C_{fsquare}(H_{i_{ant}}, D_{i_{ant}}) \\ AN_{p} &= \max[(L_{ip} - H_{i_{ant}}) * D_{ip}, 0] \\ AT_{p} &= L_{ip} \cdot Dip \\ C_{fp} &= C_{fround}(L_{ip}, D_{ip}) \\ E_{pain} &= (Ci_{fn} \cdot ANarea) + (Cfp \cdot ANp) \\ E_{pait} &= max(E_{pain}, Epait) \\ F_{i_{ant}} &= q_{z} \cdot Gh \cdot EPAi \end{split}$$

Client:	ATT	Computed By:	CB
Site Name:	CTL05436 - Colchester North Central	Date:	10/18/2018
Project No.	18963026A	Verified By:	SMS
Title:	Antenna Mount Modification Design & Analysis	Page:	7


III. ATTACHMENTS

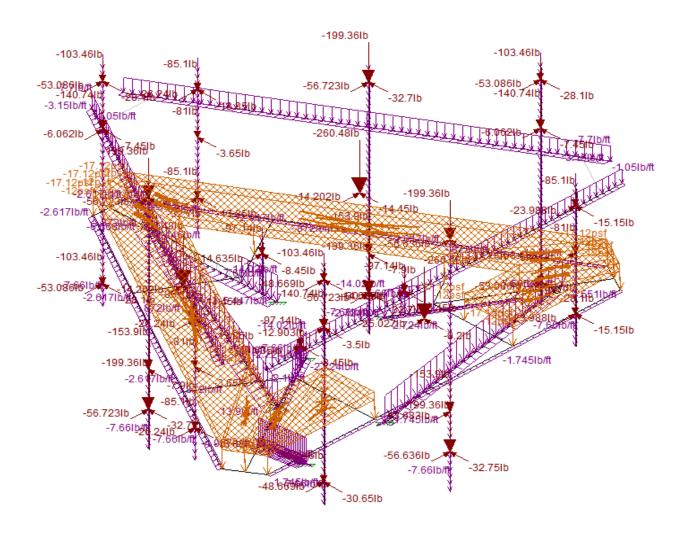
Client:	ATT	Computed By:	СВ
Site Name:	CTL05436 - Colchester North Central	Date:	10/18/2018
Project No.	18963026A	Verified By:	SMS
Title:	Antenna Mount Modification Design & Analysis	Page:	8
	Antenna mount mounication Design & Allalysis	raye.	0

RISA MODEL



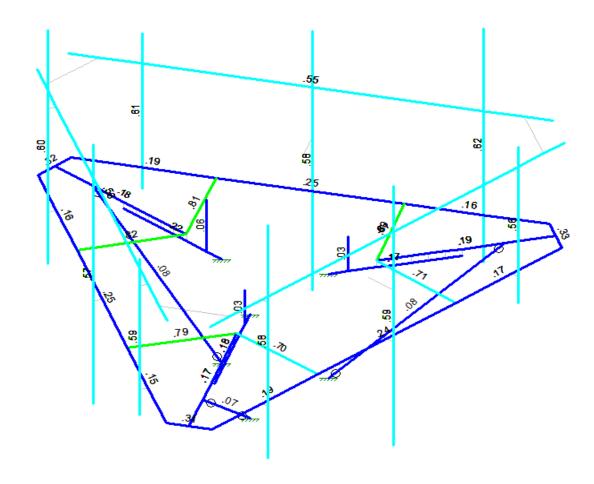
Client:	ATT	Computed By:	СВ
Site Name:	CTL05436 - Colchester North Central	Date:	10/18/2018
Project No.	18963026A	Verified By:	SMS
Title:	Antenna Mount Modification Design & Analysis	Page:	9

PROPOSED MODIFICATION MEMBERS



Client:	ATT	Computed By:	СВ
Site Name:	CTL05436 - Colchester North Central	Date:	10/18/2018
Project No.	18963026A	Verified By:	SMS
Title:	Antenna Mount Modification Design & Analysis	Page:	10

RISA WORST CASE LOADING


Loads: LC 24, 1.2D+1.0ICE+1.0W9ICE Envelope Only Solution

ATT	Computed By:	СВ
CTL05436 - Colchester North Central	Date:	10/18/2018
18963026A	Verified By:	SMS
Antenna Mount Modification Design & Analysis	Page:	11
	CTL05436 - Colchester North Central 18963026A	CTL05436 - Colchester North Central Date:

RISA CODE CHECK

Mount to Tower Connection Check:

- Applied Tension:
- Applied Shear:
- Applied Shear:
- Applied Torque:
- Applied Moment: Applied Moment:

Number of Bolts:

Bolts Vertical Spacing:

Bolts Horizontal Spacing:

Applied Tension at Bolt:

Applied Shear at Bolt:

Bolt Type Used:

Nominal Tensile Stress, Fnt:

Nominal Shear Stress, Fnv:

Nominal Bolt Diameter:

Gross Area of the Bolt:

Net Area of the Bolt:

Strength Reduction Factor, ϕ :

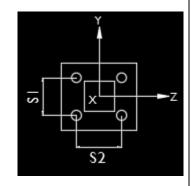
Rx := 5537.9.lbf	From Risa 3D LRFD Loading
Ry := 676.2lbf	From Risa 3D LRFD Loading
$Rz := 4845.3 \cdot lbf$	From Risa 3D LRFD Loading
$Mx := 820.3 \cdot lbf \cdot ft$	From Risa 3D LRFD Loading
$My := 2131.9lbf \cdot ft$	From Risa 3D LRFD Loading
$Mz := 718.9 \cdot lbf \cdot ft$	From Risa 3D LRFD Loading
n := 4	Per Mapping
$S_1 := 4in$	Per Mapping
-	Der Monning
$S_2 := 4in$	Per Mapping

 $P_{a.t} := \frac{Rx}{n} + \frac{2My}{n \cdot S_2} + \frac{2Mz}{n \cdot S_1} = 5660.7 \, lbf$

A325N

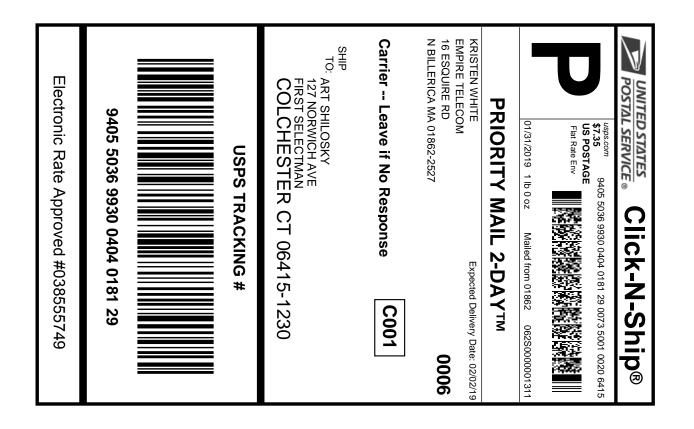
 $F_{n.t} := 90$ ksi

 $F_{n.v} := 54ksi$


 $d_b := \frac{5}{8} in$

 $A_{b.g} := 0.307 in^2$

 $A_{b.n} := 0.226 in^2$


 $\phi := 0.75$

$$P_{a.v} := \frac{\sqrt{Ry^2 + Rz^2}}{n} + \frac{2Mx}{\sqrt{S_1^2 + S_2^2}} = 4703.3 \text{ lbf}$$

AISC, Table J3-2, P. 16.1-104
AISC, Table J3-2, P. 16.1-104
Per Mapping
AISC, Table 7-18, P. 7-83
AISC, Table 7-18, P. 7-83

Combined Tension And Shear Check		
Nominal Tensile Reduced Fntr	$F_{n.t.r} \coloneqq 1.3 \cdot F_{n.t} - \frac{F_{n.t}}{\phi \cdot F_{n.v}} \cdot \frac{P_{a.v}}{A_{b.g}} = 83 \cdot ksi$	AISC Eq. J3-3a, P. 16.1-109
Nominal Shear Reduced Fntv	$F_{n.v.r} \coloneqq 1.3 \cdot F_{n.v} - \frac{F_{n.v}}{\phi \cdot F_{n.t}} \cdot \frac{P_{a.t}}{A_{b.g}} = 55.4 \cdot ksi$	AISC Eq. J3-3a, P. 16.1-109
Bolt Nominal Tensive Strength	$R_{n.t} := F_{n.t} \cdot A_{b.g} = 27.6 \cdot kip$	
Tension Check	Check := $ "OK" \text{ if } \phi \cdot R_{n,t} \ge P_{a,t}$ "NOT GOOD" otherwise Check = "OK"	
Tension Ratio	$\text{Ratio}_t := \frac{P_{a.t}}{\phi \cdot R_{n.t}}$ $\text{Ratio}_t = 27.3 \cdot \%$	
Bolt Nominal Shear Strength	$R_{n.v} := F_{n.v} \cdot A_{b.g} = 16.6 \cdot kip$	
Shear Check	Check := $ "OK" \text{ if } \phi \cdot R_{n,v} \ge P_{a,v}$ "NOT GOOD" otherwise	
	Check = "OK"	
Shear Ratio	$Ratio_{v} := \frac{P_{a.v}}{\phi \cdot R_{n.v}} \qquad Ratio_{v} = 37.8 \cdot \%$	

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Track Another Package +

Tracking Number: 9405503699300404018129

On Time

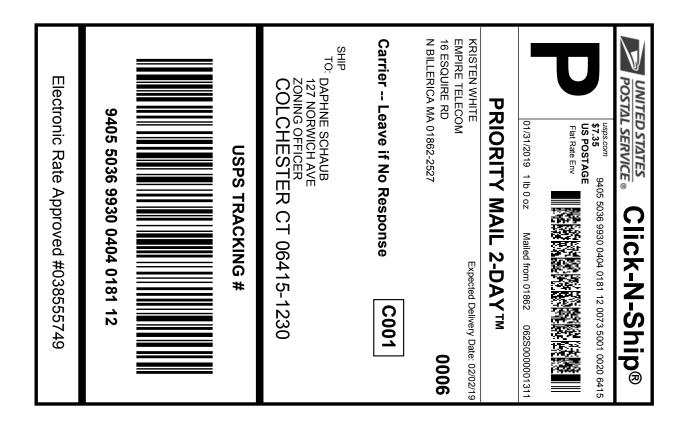
Expected Delivery on

MONDAY

FEBRUARY 2019 (i)

See Product Information \checkmark

⊘ Delivered


February 4, 2019 at 11:03 am Delivered, Left with Individual COLCHESTER, CT 06415

Get Updates 🗸

Text & Email Updates	\checkmark
Tracking History	\checkmark
Product Information	\checkmark

See Less 🔨

Can't find what you're looking for?

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Track Another Package +

Tracking Number: 9405503699300404018112

On Time

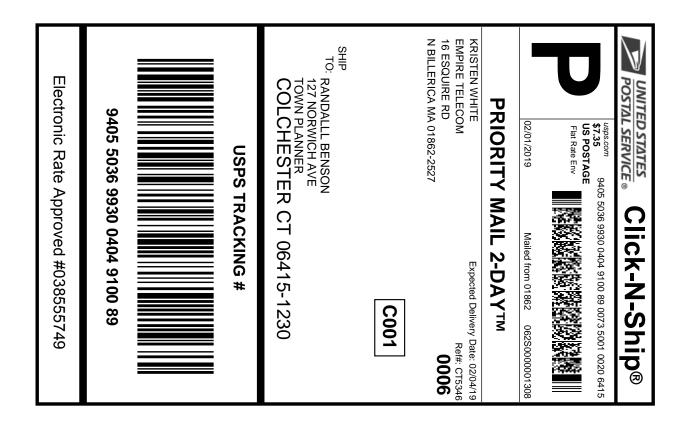
Expected Delivery on

MONDAY

FEBRUARY 2019 (i)

See Product Information \checkmark

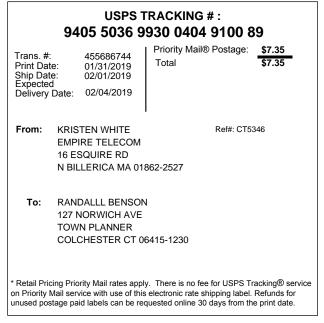
⊘ Delivered


February 4, 2019 at 11:03 am Delivered, Left with Individual COLCHESTER, CT 06415

Get Updates 🗸

Text & Email Updates	\checkmark
Tracking History	\checkmark
Product Information	\checkmark

See Less 🔨


Can't find what you're looking for?

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Track Another Package +

Tracking Number: 9405503699300404910089

On Time

Expected Delivery on

MONDAY

FEBRUARY 2019 (i)

See Product Information \checkmark

\bigotimes	De	livered
--------------	----	---------

February 4, 2019 at 11:03 am Delivered, Left with Individual COLCHESTER, CT 06415

Get Updates 🗸

Text & Email Updates	\checkmark
Tracking History	\checkmark
Product Information	\checkmark

See Less 🔨

Can't find what you're looking for?

Feedback

UPS CampusShip: View/Print Label

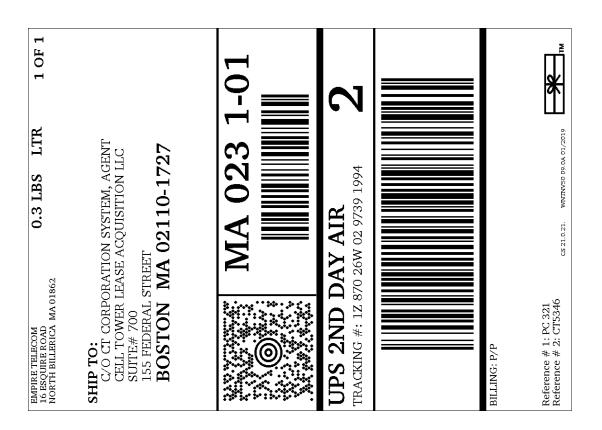
- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup


Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

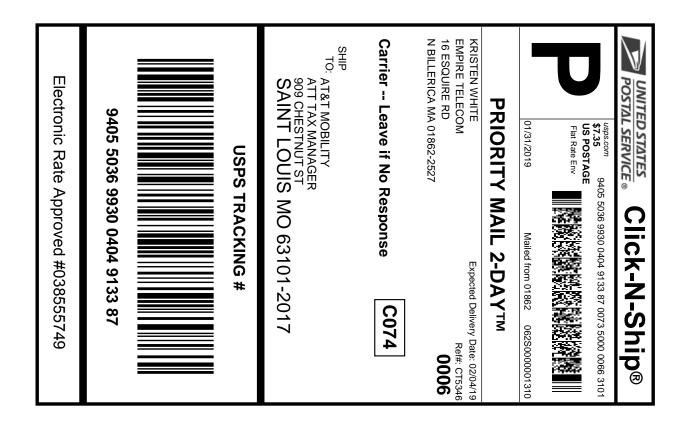
UPS Access PointTM MACLF-LOCKR-STOP & SHOP #480 299 CHELMSFORD ST CHELMSFORD ,MA 01824 UPS Access PointTM JERRY'S VARIETY 1172 LAWRENCE ST LOWELL ,MA 01852

UPS Access PointTM THE UPS STORE 101 GREAT RD BEDFORD ,MA 01730

FOLD HERE

Delivery Notification

Dear Customer,


This notice serves as proof of delivery for the shipment listed below.

Tracking Number:	1Z 870 26W 02 9739 199 4
Reference Number(s)	:PC 321, CT5346
Service:	UPS 2nd Day Air
Weight:	.30 Lb
Shipped/Billed On:	01/31/2019
Delivered On:	02/04/2019 11:45 A.M.
Delivered To:	155 FEDERAL ST
	BOSTON, MA, US 02110
Received By:	DEPINA
Location:	Office

Thank you for giving us this opportunity to serve you.

Sincerely, UPS

Tracking results provided by UPS: 02/15/2019 11:50 A.M. ET

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Track Another Package +

Tracking Number: 9405503699300404913387

On Time

Expected Delivery on

MONDAY

FEBRUARY 2019 (i)

See Product Information \checkmark

⊘ Delivered

February 4, 2019 at 9:47 am Delivered, Front Desk/Reception/Mail Room SAINT LOUIS, MO 63101

Get Updates 🗸

Text & Email Updates	\sim
Tracking History	\checkmark
Product Information	\checkmark

See Less 🔨

Can't find what you're looking for?

UPS CampusShip: View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM MACLF-LOCKR-STOP & SHOP #480 299 CHELMSFORD ST CHELMSFORD ,MA 01824 UPS Access PointTM JERRY'S VARIETY 1172 LAWRENCE ST LOWELL ,MA 01852

UPS Access PointTM THE UPS STORE 101 GREAT RD BEDFORD ,MA 01730

FOLD HERE

Proof of Delivery

Dear Customer,

This notice serves as proof of delivery for the shipment listed below.

Tracking Number

1Z87026W0296693580

Weight

0.30 LBS

Service

UPS 2nd Day Air®

Shipped / Billed On 01/31/2019

Delivered On

02/04/2019 10:58 A.M.

Delivered To

CLIFTON PARK, NY, US

Received By

RHOADES

Left At

Inside Delivery

Thank you for giving us this opportunity to serve you. Details are only available for shipments delivered within the last 120 days. Please print for your records if you require this information after 120 days.

Sincerely,

UPS

Tracking results provided by UPS: 02/15/2019 11:48 A.M. EST