

Crown Castle 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

February 19, 2016

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for AT&T/ LTE 3C Crown Site BU: 842860 AT&T Site ID: CT5346 315 Old Hartford Road, Colchester, CT 06415 Latitude: 41° 34' 49.69'' / Longitude: -72° 21' 0.07''

Dear Ms. Bachman:

AT&T currently maintains six (6) antennas at the 57-foot level of the existing 60-foot monopole at 315 Old Hartford Road in Colchester, CT. The tower is owned by Crown Castle. The property is owned by the Cell Tower Lease Acquisition LLC. AT&T now intends to replace three (3) antennas with three (3) new 700 MHz antennas. These antennas would be installed at the 57-foot level of the tower. AT&T also intends to install three (3) RRU's and three (3) A2 modules.

This facility was approved by the by the Connecticut Siting Council in Petition No. 605 on January 21, 2003. This tower was approved without conditions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to Mr. Art Shilosky, First Selectman, Town of Colchester, as well as the property owner, and Crown Castle is the tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.

Melanie A. Bachman February 19, 2016 Page 2

- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Jeffrey Barbadora.

Sincerely,

Jeffrey Barbadora Real Estate Specialist 12 Gill Street, Suite 5800, Woburn, MA 01801 781-729-0053 Jeff.Barbadora@crowncastle.com

Attachments:

- Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes
- Tab 2: Exhibit-2: Structural Modification Report
- Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)
- cc: Mr. Art Shilosky, First Selectman 127 Norwich Avenue Colchester, CT 06415

Cell Tower Lease Acquisition LLC Dept 3342 Carol Stream, IL 60132-3342

PETITION OF AT&T WIRELESS TO THE CONNECTICUT SITING COUNCIL FOR A DECLARATORY RULING THAT NO CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED IS REQUIRED TO REPLACE AN EXISTING TOWER FACILITY IN COLCHESTER, CONNECTICUT

PETITION NO.

JANUARY 21, 2003

PETITION FOR DECLARATORY RULING REPLACEMENT OF EXISTING 50' TOWER 315 OLD HARTFORD ROAD, COLCHESTER, CONNECTICUT

)

)

)

)

)

)

)

I. <u>Introduction</u>

۰,

AT&T Wireless PCS, LLC ("AT&T") hereby petitions the Connecticut Siting Council ("Council") pursuant to Sections 16-50j-38 and 16-50j-39 of the Regulations of Connecticut State Agencies ("R.C.S.A.") for a declaratory ruling that a Certificate of Environmental Compatibility and Public Need ("Certificate") is not required under the provisions of Connecticut General Statutes ("C.G.S.") § 16-50k to replace an existing tower at 315 Old Hartford Road in the Town of Colchester, Connecticut. AT&T will replace an existing 60' lattice tower located at the property, add its own antennas and construct other equipment at grade (the "Facility"). AT&T respectfully submits that the replacement tower and Facility proposed by AT&T present no significant adverse environmental impacts which would otherwise warrant review by the Council in a full docket and Certificate proceeding. As such, AT&T respectfully requests a declaratory ruling that its modifications to the existing tower and construction of the Facility do not require a Certificate.

II. <u>Existing Facility</u>

٦,

The existing facility at 315 Old Hartford Road consists of a 60' lattice tower immediately adjacent to a large commercial garage used by a busing company. The existing tower is currently being used for communications by Laidlaw Bus Company, on property owned by the Clark Family Partnership. The tower is accessory to the principal use of the premises and does not have the structural capacity to support AT&T's proposed antennas. <u>See</u> letter of structural integrity prepared by Dewberry-Goodkind, Inc., annexed hereto as Exhibit A. Land uses surrounding the proposed Facility are predominantly commercial and the property is in close proximity to Route 2.

III. Proposed AT&T Modifications

AT&T is licensed by the Federal Communications Commission ("FCC") to provide PCS services in this area of the State of Connecticut. As shown on the enclosed plans prepared by Dewberry-Goodkind, Inc., including a site plan, detail plan and elevation, AT&T Wireless proposes to replace an existing 60' lattice tower with a 60' monopole tower. The replacement monopole will be slightly relocated for construction purposes. Existing whip and yagi antennas used by the bus company will be relocated to the replacement tower. AT&T will also install six panel antennas at the 57.5" level of the tower with associated equipment cabinets (2 proposed, 2 future, each 76"H x 30" W x 30" D) installed on a 10'-3'4" x 6'-0" concrete pad located near the base of the replacement tower and surrounded by a 6' chain link fence.

IV. The Proposed Modifications Will Not Have a Substantial Adverse Environmental Effect

A comparison of existing and proposed conditions reveals no substantial adverse environmental impacts associated with AT&T's Facility. The proposed Facility involves the replacement of an existing 60' lattice tower with a 60' monopole tower. The replacement tower will be the same height as the existing tower and will not create a structure in the landscape that is out of scale vertically with the surrounding landscape, nor adversely impact the surrounding commercial properties. See site plan. The tower is currently at capacity with replacement being the only practical option to accommodate AT&T's proposed antennas. See Exhibit A.

The replacement tower will be constructed in an already disturbed area that is currently paved and the limits of disturbance of all construction activities will be confined to the greatest extent possible. The existing driveway will also be utilized to access the proposed Facility. All erosion and sediment control measures shall be installed, as necessary, and in accordance with the "Connecticut Guidelines for Soil Erosion and Sediment Control" and amendments, as published by the Connecticut Council on Soil and Water Conservation.

The operation of AT&T's antennas will not increase the total radio frequency electromagnetic power density at the site to a level at or above the applicable standards. As set forth in an Emissions Report prepared by Nader Soliman, RF Engineer, annexed hereto as Exhibit B, the total radio frequency power density at the replacement tower site's boundary will not be increased to or above the standard adopted by the Connecticut Department of Environmental Protection as set forth in Section 22a-162 of the Connecticut General Statutes and the MPE limits established by the Federal Communications Commission.

V. <u>Conclusion</u>

٩.

AT&T Wireless will not need to establish an entirely new telecommunications tower facility to provide coverage in this area of Colchester should the replacement tower be approved. The proposed replacement tower and associated Facility modifications are consistent with legislative findings outlined in Section 16-50g and 16-50aa of the General Statutes of Connecticut that seek to avoid the unnecessary proliferation of towers in the State. For all the foregoing reasons, AT&T Wireless petitions the Connecticut Siting Council for a determination that the proposed replacement tower and other improvements do not require a Certificate of Environmental Compatibility and Public Need and that the Council issue an order approving same.

Respectfully Submitted,

Christopher B. Fisher On behalf of AT&T Wireless

cc: First Selectman, Town of Colchester Sue Silva, Bechtel

	Ρ	ROJECT INFORMATION		
SCOPE OF WOR	ANTENNAS. OF (6) EXIS (3) SECTOR • AT&T RRUS (3) NEW RF TOTAL OF (FOR A TOTA	NNAS: (1) NEW ANTENNA PER SECTOR, FOR A TO (2) EXISTING ANTENNAS PER SECTOR FOR 3 S STING ANTENNAS TO REMAIN. (1) EXISTING ANTE RS, FOR A TOTAL OF (3) EXISTING ANTENNAS TO : (1) NEW RRUS PER SECTOR WITH (3) SECTORS RUS. (1) NEW A2 MODULE PER SECTOR FOR (3) (3) NEW A2 MODULES. (1) EXISTING RRU PER S AL OF (3) EXISTING RRUS. D: (1) EXISTING DC-6 SQUID TO REMAIN.	SECTORS, FOR A TOTAL ENNA PER SECTOR FOR BE REMOVED. S, FOR A TOTAL OF SECTORS, FOR A	
SITE ADDRESS:	315 OLD HAR COLCHESTER,			
		41° 34' 50.49084"N		
LONGITUDE: USID:	25960	-72°21'01.43604"W		
TOWER OWNER:		Y		
TYPE OF SITE:	MONOPOLE/OU	JTDOOR EQUIPMENT		
MONOPOLE HEI	GHT: 60'-0"±			
RAD CENTER:	57'-0"±			
CURRENT USE:	UNMANNED WI	RELESS TELECOMMUNICATIONS FACILITY		
PROPOSED USE	: UNMANNED WI	RELESS TELECOMMUNICATIONS FACILITY		
		DRAWING INDEX	REV.	START OU
T-1	TITLE SHEET		0	CT-3 N N TOWARD E
GN-1	GROUNDING & G	ENERAL NOTES	0	HARTFORD
A-1	COMPOUND LAYO		0	_
A-2 A-3	EQUIPMENT LAYO		0	-
A-3 A-4	DETAILS	S & ELEVATIONS	0	_
G-1		-LINE DIAGRAM & DETAILS	0	
		APPROVALS		Hartford Rd
		APPROVE AND ACCEPT THESE DOCUMENTS AND A THE CONSTRUCTION DESCRIBED HEREIN, ALL D		H Ing
TO REVIEW BY		G DEPARTMENT AMD MAY IMPOSE CHANGES OR S		1
DISCIPLINE:		NAME:		
SITE ACQUISITIC)N:			
CONSTRUCTION				
AT&T PROJECT	MANAGER:			
	⊨►EX	EMPRE		
115	ultants	telecom	SITE NAME: COLCHEST	
MOUNTAIN I PHONE:	JITE E39 LAKES, NJ 07046 862.209.4300 862.209.4301	16 ESQUIRE ROAD	COLCHESTER NEW LONDC	, CT 06415

BILLERICA, MA 01821

15	OLD	HARII	FORI) RO
COL	CHES	STER,	СТ	0641
NEV	V LC	NDON	СС	UNTY

FA CODE: 10070973 **SITE NUMBER: CT5346** SITE NAME: COLCHESTER **NORTH CENTRAL** BUN #: 842860

VICINITY	MAP

ONTO WEST ST, MERGE ONTO N VIA EXIT 25 TOWARD GLAS	ISE DR TOWARD CAPITOL BLVD, TURN LEFT I—91 N VIA THE RAMP ON THE LEFT TOWA TONBURY, MERGE ONTO CT—2E TOWARD NO ER, TURN LEFT AT MILL HILL RD, TURN SL HE RIGHT.	ARD HARTFO DRWICH , TA	RD, MERGE ON KE EXIT 17		THIS DOO DUPLICAT USE BY REGULATO
				2.	THE FACI ACCESSE REQUIRE REQUIRIN
W Ra	Chanticlair Public Golf Course	85		3.	CONTRAC AND SHA PROCEED
2	SITE LOCATION	antro -	85		
Mill Hill Rd		000 0			
5346 TH CENTRAL ROAD	550 COCHITUATE ROAD	0	02/08/16	ISSU	IED AS FINAL

550 COCHITUATE ROAD

FRAMINGHAM, MA 01701

COMPANY: ADDRESS:

CLIENT REPRESENTATIVE

CONTACT: PHONE: EMAIL:

SITE ACQUISITION: COMPANY:

ADDRESS: CONTACT: PHONE: EMAIL:

EMPIRE TELECOM 16 ESQUIRE ROAD BILLERICA, MA 01821 DAVID COOPER 617-639-4908 dcooper@empiretelecomm.com

COMPANY: ADDRESS: CONTACT: PHONE:

EMPIRE TELECOM 16 ESQUIRE ROAD BILLERICA, MA 01821 DAVID COOPER 617-639-4908 dcooper@empiretelecomm.com

ENGINEERING:

EMAIL:

COMPANY: ADDRESS:

CONTACT: PHONE: EMAIL:

COM-EX CONSULTANTS, LLC 115 ROUTE 46 SUITE E39 MOUNTAIN LAKES, NJ 07046 NICHOLAS D. BARILE, P.E. 862-209-4300 nbarile@comexconsultants.com

JW

BY

DRAWN E

REVISIONS

DESIGNED BY: NJM

DATE

SCALE: AS SHOWN

DOCUMENT IS THE CREATION, DESIGN, PROPERTY, AND COPYRIGHTED WORK OF AT&T. ANY CATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED ATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

ACILITY IS AN UNMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. IT IS ONLY SED BY TRAINED TECHNICIANS FOR PERIODIC ROUTINE MAINTENANCE AND THEREFORE DOES NOT RE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS IRING PUBLIC ACCESS PER ADA REQUIREMENTS.

RACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE SHALL IMMEDIATELY NOTIFY THE AT&T REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE EDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

PROJECT TEAM

EMPIRE TELECOM 16 ESQUIRE ROAD BILLERICA, MA 01821 DAVID COOPER 617-639-4908 dcooper@empiretelecomm.com **RF ENGINEER:**

COMPANY: ADDRESS:

CONTACT: PHONE: EMAIL:

COMPANY:

ADDRESS:

CONTACT:

PHONE:

EMAIL:

AT&T MOBILITY - NEW ENGLAND 550 COCHITUATE ROAD SUITE 550 13 & 14 FRAMINGHAM, MA 01701 CAMERON SYME 508-596-7146 cs6970@att.com

CONSTRUCTION MANAGEMENT:

EMPIRE TELECOM 16 ESQUIRE ROAD BILLERICA, MA 01821 GRZEGORZ "GREG" DORMAN 484-683-1750 gdorman@empiretelecomm.com

GENERAL NOTES

CONNECTICUT LAW REQUIRES TWO WORKING DAYS NOTICE PRIOR TO ANY EARTH MOVING ACTIVITIES BY CALLING 800-922-4455 OR DIAL 811

		SEAL:	A	T&T	
NDB	NDB		DRAWING TITLE:	SHEET	
СНК	APP'D	CT LICENDRALED 28643	JOB NUMBER	DRAWING NUMBER	REV
BY: NJI			15162-EMP	T-1	0

GROUNDING NOTES:

- 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR NEW GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. TESTS SHALL BE PERFORMED IN ACCORDANCE WITH 25471-000-3PS-EG00-0001, DESIGN & TESTING OF FACILITY GROUNDING FOR CELL SITES.
- 4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 6. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 7. APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED WITH STAINLESS STEEL HARDWARE TO THE BRIDGE AND THE TOWER GROUND BAR.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 11. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH 6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 12. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G., NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 13. ALL TOWER GROUNDING SYSTEMS SHALL COMPLY WITH THE REQUIREMENTS OF ANSI/TIA 222. FOR TOWERS BEING BUILT TO REV-G OF THE STANDARD, THE WIRE SIZE OF THE BURIED GROUND RING AND CONNECTIONS BETWEEN THE TOWER AND THE BURIED GROUND RING SHALL BE CHANGED FROM 2 AWG TO 2/0 AWG. IN ADDITION, THE MINIMUM LENGTH OF THE GROUND RODS SHALL BE INCREASED FROM EIGHT FEET (8') TO TEN FEET (10').
- 14. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE 1/2" OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID TINNED COPPER GROUND WIRE, PER NEC 250.50.

GENERAL NOTES:

- 1. FOR THE PURP

- ONLY.
- 5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES. AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 6. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- CONTRACTOR.
- 9. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 10. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OFF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 11. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 12. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.
- 13. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS UNLESS OTHERWISE SPECIFIED. ALL CONCRETING WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.
- 14. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy=36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCH UP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.

- AFTER MIDNIGHT.

SITE NUMBER: CT5346

SITE NAME: COLCHESTER NORTH CENTRAL

315 OLD HARTFORD ROAD COLCHESTER, CT 06415 NEW LONDON COUNTY

POSE OF CONSTRUCTION	DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:	
CONTRACTOR -	EMPIRE TELECOM	
SUBCONTRACTOR -	GENERAL CONTRACTOR (CONSTRUCTION)	
OWNER -	AT&T MOBILITY	
OEM -	ORIGINAL EQUIPMENT MANUFACTURER	

2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR (EMPIRE TELECOM).

3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

4. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE

7. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE

8. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR. ROUTING OF TRENCHING SHALL BE APPROVED BY CONTRACTOR

15. CONSTRUCTION SHALL COMPLY WITH SPECIFICATION 25741-000-3APS-A00Z-00002, "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES.'

16. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.

17. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK MAY NEED TO BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS

18. SINCE THE CELL SITE MAY BE ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE REQUIRED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.

- STANDARDS:
- CONCRETE
- THIRTEENTH EDITION

- TELECOMMUNICATIONS
- GROUNDING OF ELECTRONIC EQUIPMENT

						SEAL:	P	T&T	
0	02/08/16	ISSUED AS FINAL	JW	NDB	NDB		drawing title:	GENERAL NOTES	
NO.	DATE SCALE: AS S	REVISIONS DESIGNED BY: NJM	BY DRAWN	СНК	APP'D	PROFECTIONALS ENGINEER - CT LICENVONALS 28643 -	JOB NUMBER 15162-EMP	DRAWING NUMBER	REV O

19. SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.

• INTERNATIONAL BUILDING CODE: IBC 2009 WITH LOCAL & COUNTY AMENDMENTS

NATIONAL ELECTRICAL CODE: NEC 2011 WITH LOCAL & COUNTY AMENDMENTS

• FIRE/LIFE SAFETY CODE: NFPA-101 2009 WITH LOCAL & COUNTY AMENDMENTS

20. SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING

• AMERICAN CONCRETE INSTITUTE (ACI) 318, BUILDING CODE REQUIREMENTS FOR STRUCTURAL

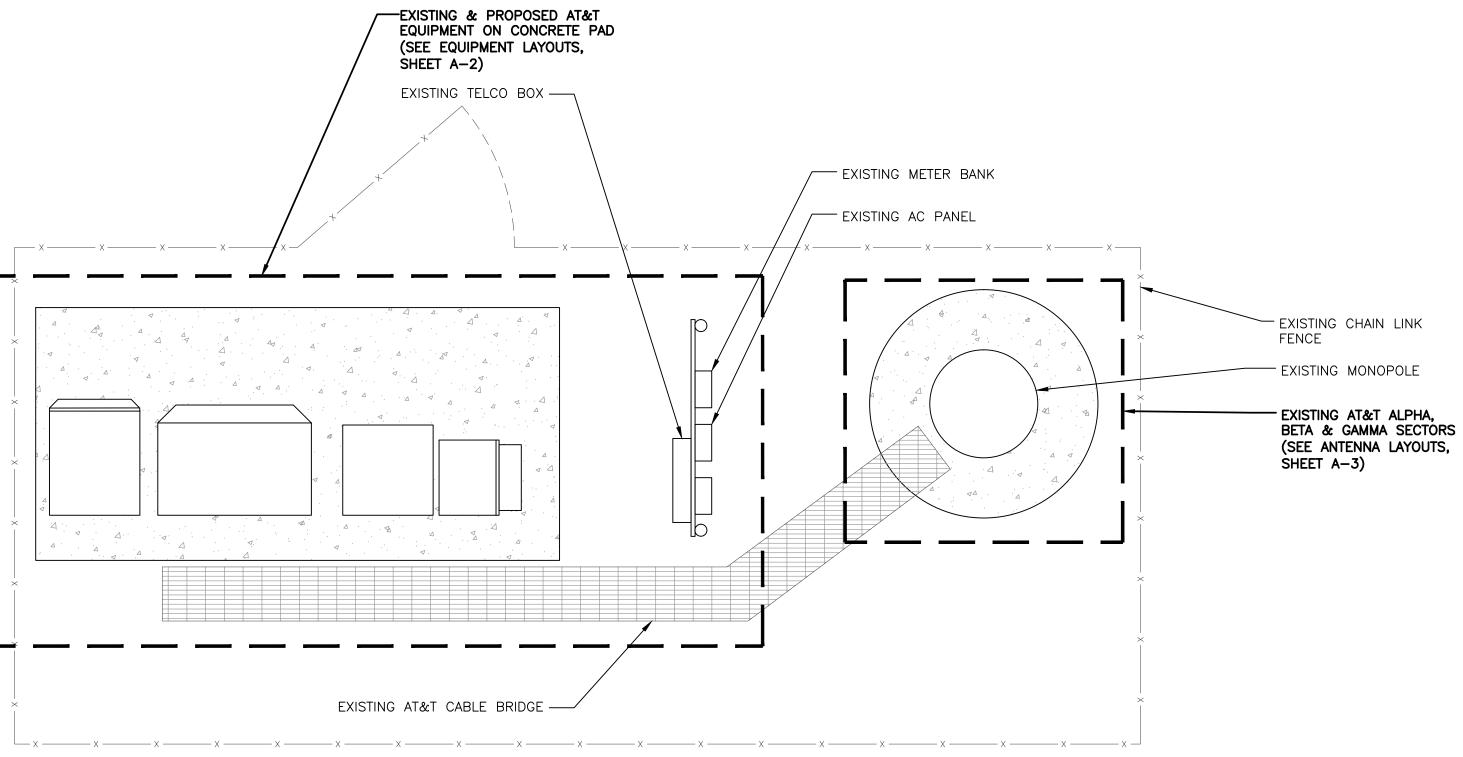
AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC), MANUAL OF STEEL CONSTRUCTION,

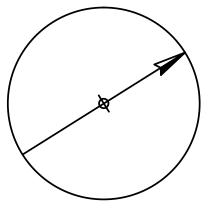
AMERICAN SOCIETY OF TESTING OF MATERIALS, ASTM

• TELECOMMUNICATIONS INDUSTRY ASSOCIATION (ANSI/TIA-222-G-1), STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWER AND ANTENNA SUPPORTING STRUCTURES:

• TIA 607, COMMERCIAL BUILDING GROUNDING AND BONDING REQUIREMENTS FOR

OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION. OSHA


• INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) 81, GUIDE FOR MEASURING EARTH RESISTIVELY, GROUND IMPEDANCE, AND EARTH SURFACE POTENTIALS OF A GROUND SYSTEM IEEE 1100 (1999) RECOMMENDED PRACTICE FOR POWERING AND


• TELCORDIA GR-1503. COAXIAL CABLE CONNECTIONS

21. FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.

22. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA AND SUBMIT TO THE ENGINEER ANY DISCREPANCIES FROM THE DRAWINGS.

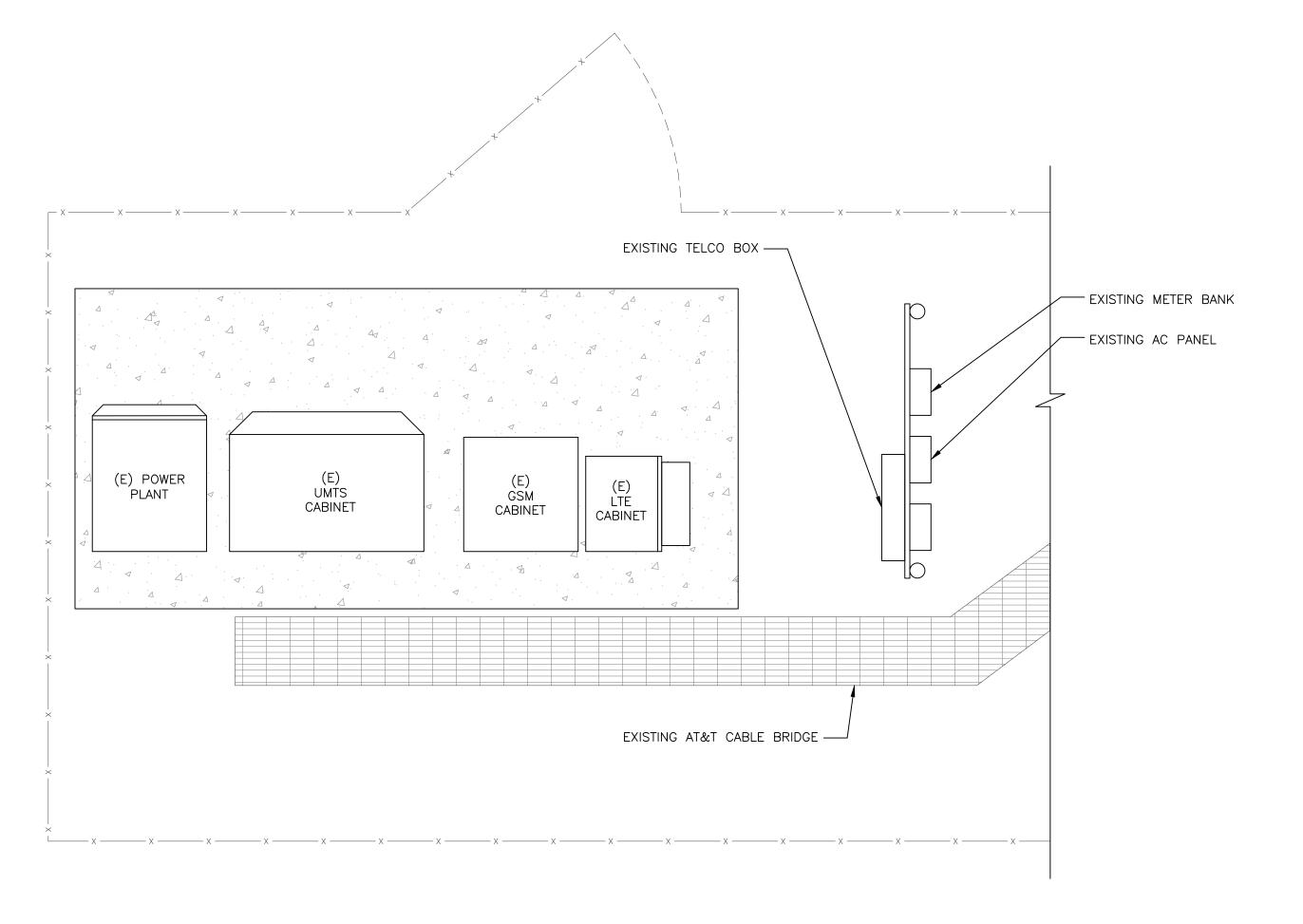
23. INFORMATION SHOWN ON THIS SET OF PLANS TAKEN FROM DRAWINGS PREPARED BY HUDSON DESIGN GROUP FOR A RECENT UPGRADE DATED 08/17/2012. CONTRACTOR TO NOTIFY DESIGN ENGINEER OF ANY DISCREPANCIES PRIOR TO COMMENCEMENT OF CONSTRUCTION.

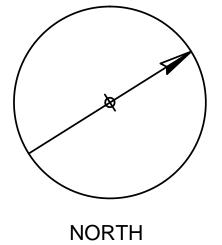
NORTH

SITE NUMBER: CT5346

SITE NAME: COLCHESTER NORTH CENTRAL

315 OLD HARTFORD ROAD COLCHESTER, CT 06415 NEW LONDON COUNTY


COMPOUND LAYOUT SCALE: 3/8" = 1'-0"


1**'-**4" 2'-8" 5**'-4"** GRAPHIC SCALE: 3/8"=1'-0"

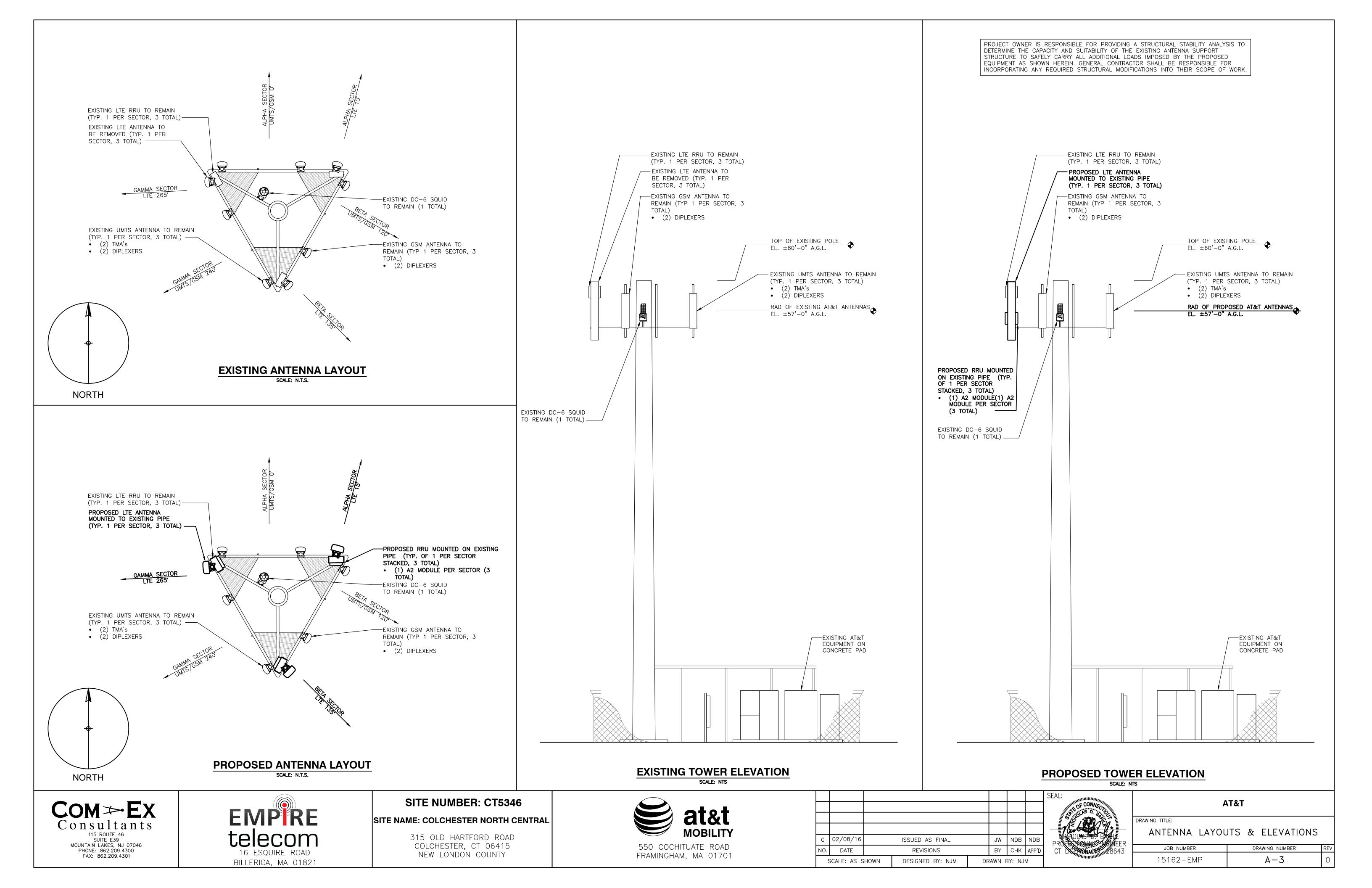
							SEAL:	ļ	T&T	
	02/08/16				114/		EIGHOLMO2800 BACHE	DRAWING TITLE:	ND LAYOUT	
NO.	, ,		ISSUED AS FINAL REVISIONS		JW BY		PROFILES COMMENTER	JOB NUMBER	DRAWING NUMBER	REV
	SCALE: AS S	HOWN	DESIGNED BY: NJM	DF		BY: NJI		15162-EMP	A-1	0

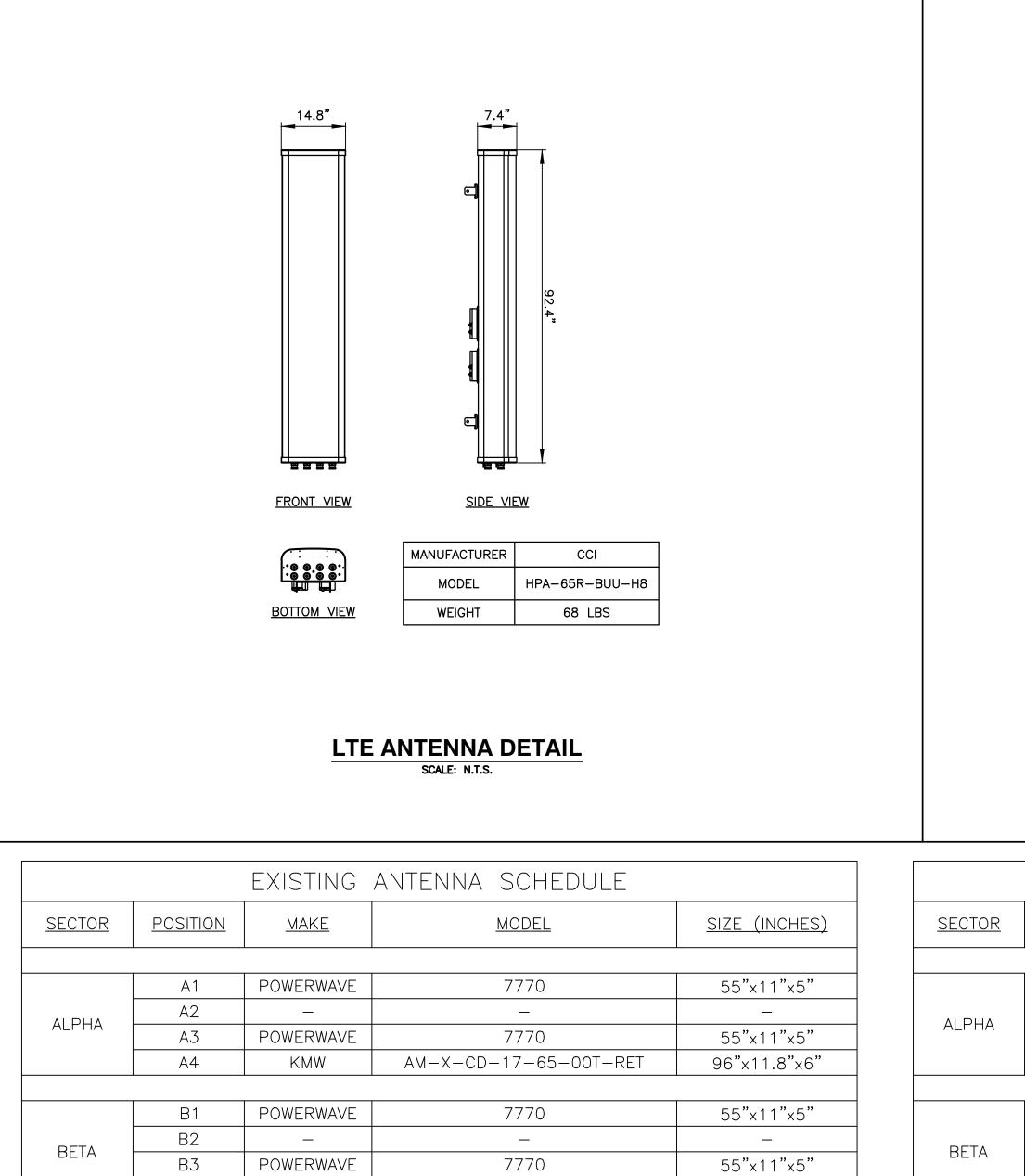
NOTE: CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA AND SUBMIT TO THE ENGINEER ANY DISCREPANCIES FROM THE DRAWINGS.

Consultants Consultants 115 ROUTE 46 SUITE E39 MOUNTAIN LAKES, NJ 07046 PHONE: 862.209.4300 FAX: 862.209.4301

SITE NUMBER: CT5346

SITE NAME: COLCHESTER NORTH CENTRAL


315 OLD HARTFORD ROAD COLCHESTER, CT 06415 NEW LONDON COUNTY


EXISTING EQUIPMENT LAYOUT SCALE: 1/2" = 1'-0"

GRAPHIC SCALE: 1/2"=1'-0"

at &t						SEAL:	Д	T&T	
MOBILITY	0 02/08/16	ISSUED AS FINAL	WL	NDB	NDB		DRAWING TITLE:	NT LAYOUT	
COCHITUATE ROAD	NO. DATE	REVISIONS	BY	снк	APP'D	CT LICE VONALLED SINGLED	JOB NUMBER	DRAWING NUMBER	REV
MINGHAM, MA 01701	SCALE: AS SHOWN	DESIGNED BY: NJM	DRAWN				15162-EMP	A-2	0

AM-X-CD-17-65-00T-RET

7770

—

7770

SBNH-1D6565C

GAMMA

96"x11.8"x6"

55"x11"x5"

—

55"x11"x5"

96.4"x11.9"x7.1"

Β4

G1

G2

G3

G4

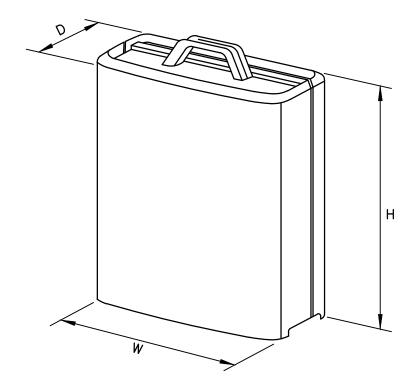
GAMMA

KMW

POWERWAVE

_

POWERWAVE


ANDREW

SITE NUMBER: CT5

SITE NAME: COLCHESTER NORTH

315 OLD HARTFORD ROAD COLCHESTER, CT 06415 NEW LONDON COUNTY

MODEL	L × W × H	WEIGHT
*RRUS-11	19.69" x 16.97" x 7.17"	50.7 LBS
RRUS-12	20.4"x18.5"x7.5"	58 LBS
A2 MODULE	16.4" x 15.2" x 3.4"	22 LBS

*DENOTES EXISTING.

RRUS DETAIL

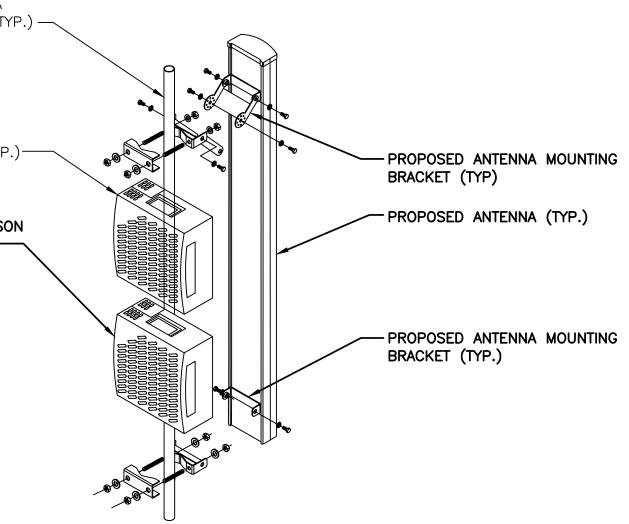
	FINAL ANT	ENNA SCHEDULE	
POSITION	MAKE	MODEL	<u>size (inches)</u>
A1	POWERWAVE	7770	55"x11"x5"
A2	—	—	—
A3	POWERWAVE	7770	55"x11"x5"
A4	CCI	HPA-65R-BUU-H8	92.4"x14.8"x7.4"
B1	POWERWAVE	7770	55"x11"x5"
B2	—	—	_
В3	POWERWAVE	7770	55"x11"x5"
B4	CCI	HPA-65R-BUU-H8	92.4"x14.8"x7.4"
G1	POWERWAVE	7770	55"x11"x5"
G2	_	_	_
G3	POWERWAVE	7770	55"x11"x5"
G4	CCI	HPA-65R-BUU-H8	92.4"x14.8"x7.4"

		PROPOS	ED RRU SCHE	DULE	
<u>SECTOR</u>	MAKE	MODEL	<u>SIZE (INCHES)</u>	ADDITIONAL COMPONENT	<u>size (inches)</u>
	1	·			
	ERICSSON	RRUS-12	20.4"x18.5"x9.5"	ERICSSON A2 MODULE	16.4"x15.2"x3.4"
ALPHA	ERICSSON	RRUS-11 (EXISTING)	19.7"x16.9"x7.2"	_	-
	_	_	_		
	-				
	ERICSSON	RRUS-12	20.4"x18.5"x9.5"	ERICSSON A2 MODULE	16.4"x15.2"x3.4"
BETA	ERICSSON	RRUS-11 (EXISTING)	19.7"x16.9"x7.2"	_	_
	_	-	_		
	ERICSSON	RRUS-12	20.4"x18.5"x9.5"	ERICSSON A2 MODULE	16.4"x15.2"x3.4"
GAMMA	ERICSSON	RRUS-11 (EXISTING)	19.7"x16.9"x7.2"	-	_
	_	_	_		

PROJECT OWNER IS RESPONSIBLE FOR PROVIDING A STRUCTURAL STABILITY ANALYSIS TO DETERMINE THE CAPACITY AND SUITABILITY OF THE EXISTING ANTENNA SUPPORT STRUCTURE TO SAFELY CARRY ALL ADDITIONAL LOADS IMPOSED BY THE PROPOSED EQUIPMENT AS SHOWN HEREIN. GENERAL CONTRACTOR SHALL BE RESPONSIBLE FOR INCORPORATING ANY REQUIRED STRUCTURAL MODIFICATIONS INTO THEIR SCOPE OF WORK.

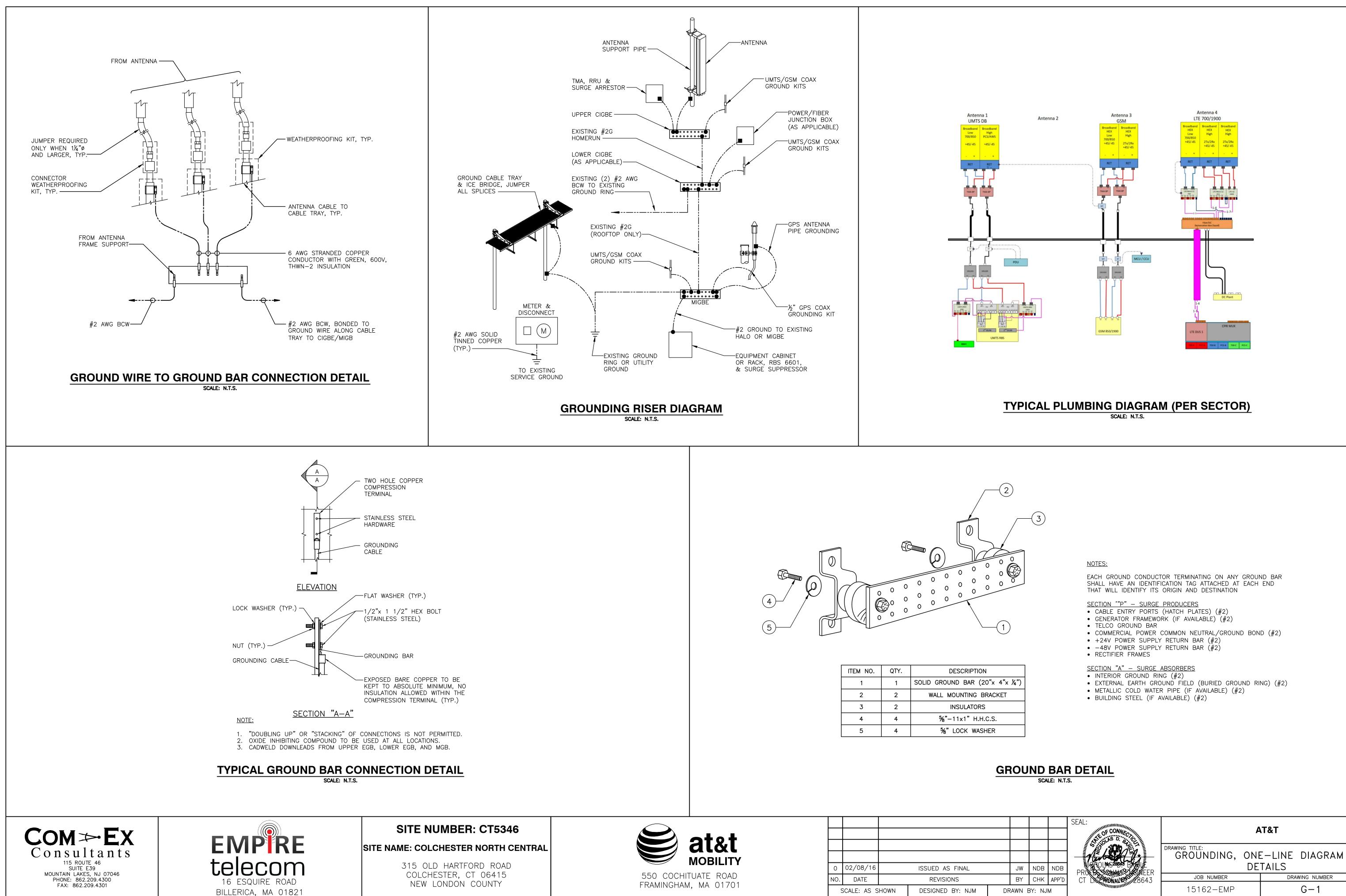
53	46
Ή	CENTRAL

AD 5



							_
Î	0	02/08/16		ISSUED AS FINAL			
	NO.	DATE		REVISIONS		ΒY	
	S	SCALE: AS S	HOWN	OWN DESIGNED BY: NJM DR			3`

EXISTING ANTENNA MOUNTING PIPE (TYP.)-


EXISTING RRU (TYP.)-

PROPOSED ERICSSON RRU (TYP.)

ANTENNA AND RRU MOUNTING DETAIL

		SEAL:	A	T&T	
		THE LAS D. OF CHILL			
			DRAWING TITLE:		
			l DE	TAILS	
NDB	NDB	BINGHULARSZOPS BARALE PROFONSYCHIAGESFINGISFER			_
СНК	APP'D	CT LICENDIALES 28643	JOB NUMBER	DRAWING NUMBER	REV
BY: NJ			15162-EMP	A-4	0

ITEM NO.	QTY.	DESCRIPTION	
1	1	SOLID GROUND BAR (20"x 4"x ¼")	
2 2 WALL MOUNTING BRACKET			
3	2	INSULATORS	
4	4	%"−11×1" H.H.C.S.	
5 4 5%" LOCK WASHER			

0	02/08/16		ISSUED AS FINAL			
NO.	DATE		REVISIONS			
	SCALE: AS S	HOWN	DESIGNED BY: NJM	DR	RAWN E	3

		DRAWING TITLE: GROUNDING,			DIAGRAM	&	
	AND DAVOLE		DE	TAILS			
K APP'D CT KEPKON	NET :: 198643	JOB NUMBER		DRA	WING NUMBER		REV
NJM	initian 20010	15162-EMP			G-1		0

Date: Janurary 21, 2016

Charles Trask Crown Castle 3530 Toringdon Way Suite 300 Charlotte, NC 28277 980-209-8228	250 Col 614	ul J. Ford and Company DE. Broadstreet umbus, OH 9-221-6679 Is@pjfweb.com
Subject: Structural Analysis I	Report	
Carrier Designation:	<i>AT&T Mobility</i> Co-Locate Carrier Site Number: Carrier Site Name:	CT5346 Colchester North Central
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Work Order Numbe Crown Castle Application Numbe	
Engineering Firm Designation:	Paul J. Ford and Company Projec	t Number: 37515-3391.001.7805
Site Data:	315 OLD HARTFORD ROAD, COLCH Latitude <i>41° 34' 49.69"</i> , Longitude 61 Foot - Monopole Tower	· · · · · ·

Dear Charles Trask,

Paul J. Ford and Company is pleased to submit this **"Structural Analysis Report"** to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 850729, in accordance with application 322537, revision 0.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Existing + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing loading, respectively.

The analysis has been performed in accordance with the TIA/EIA-222-F standard and the 2005 CT State Building Code based upon a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

We at *Paul J. Ford and Company* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by: Jeffrey Krus, P.E., LEED Al **Project Engineer**

Date: Janurary 21, 2016

Charles Tras Crown Castle 3530 Toringd Charlotte, NC 980-209-8225	on Way Suite 300 2 28277	250 Col 614	ul J. Ford and Company) E. Broadstreet umbus, OH 221-6679 s@pjfweb.com
Subject:	Structural Analysis F	Report	
Carrier Desig	gnation:	<i>AT&T Mobility</i> Co-Locate Carrier Site Number: Carrier Site Name:	CT5346 Colchester North Central
Crown Castl	e Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Work Order Numbe Crown Castle Application Numbe	
Engineering	Firm Designation:	Paul J. Ford and Company Projec	t Number: 37515-3391.001.7805
Site Data:		315 OLD HARTFORD ROAD, COLCH Latitude <i>41° 34' 49.69"</i> , Longitude 61 Foot - Monopole Tower	

Dear Charles Trask,

Paul J. Ford and Company is pleased to submit this **"Structural Analysis Report"** to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 850729, in accordance with application 322537, revision 0.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Existing + Proposed Equipment Note: See Table I and Table II for the proposed and existing loading, respectively. **Sufficient Capacity**

The analysis has been performed in accordance with the TIA/EIA-222-F standard and the 2005 CT State Building Code based upon a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

We at *Paul J. Ford and Company* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Jeffrey Krus, P.E., LEED AP Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable InformationTable 2 - Existing Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 – Tower Components vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 61 ft Monopole tower. The monopole was field mapped, by GPD & Northeast Towers Inc, and a sketch, dated 12/3/08, doucments this field mapping. The foundation was mapped by GPD and a report, dated November 16, 2012, documents the results of this field mapping. The original design specifications for the monopole are unknown.

2) ANALYSIS CRITERIA

The analysis has been performed in accordance with the TIA/EIA-222-F standard and the 2005 CT State Building Code based upon a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

Mounting Level (ft)	Elovation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
50.0		3	cci antennas	HPA-65R-BUU-H8 w/ Mount Pipe			
53.0	55.0	3	ericsson	RRUS 12	-	-	
		3	ericsson	RRUS A2			

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note									
59.00	69.0	1	rfs celwave	BMR12			1									
59.00	59.0	1	tower mounts	Side Arm Mount [SO 701-1]	-	-										
		2	powerwave technologies	P65-17-XLH-RR w/ Mount Pipe			2									
			1	andrew	SBNH-1D6565C w/ Mount Pipe	-	-	2								
	55.0	55.0	55.0	3	ericsson	RRUS-11										
53.0				55.0	55.0	55.0	55.0	55.0	55.0	00.0	00.0	55.0	6	powerwave technologies	7770.00 w/ Mount Pipe	12
		6	powerwave technologies	LGP21401	2 1	3/4" 3/8"	1									
		1	raycap	DC6-48-60-18-8F												
	53.0	1	tower mounts	Platform Mount [LP 403-1]												
44.0	44.0	1	andrew	DB438-A	1	1/2"	1									
44.0	44.0	1	tower mounts	Side Arm Mount [SO 701-1]		1/2										
30.0	30.0	2	andrew	DB438-A	2	1/2"	1									
30.0	30.0	1	tower mounts	Side Arm Mount [SO 701-1]	2	1/2										

Notes:

1) Existing Equipment

2) Equipment To Be Removed

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Dr. Clarence Welti, P.E., P.C. February, 19, 2003	5142093	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Tower Engineering Professionals TEP: 65064-71810 December 30, 2015	6060632	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Tower Engineering Professionals TEP # 65064-72261 December 28, 2015	6041767	CCISITES

3.1) Analysis Method

tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.
- 5.)

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	60 - 36	Pole	TP32.125x27.375x0.204	1	-4.48	975.39	15.7	Pass
L2	36 - 0	Pole	TP37.875x31.1872x0.22	2	-8.16	1208.45	40.3	Pass
							Summary	
						Pole (L2)	40.3	Pass
						Rating =	40.3	Pass

Table 4 - Section Capacity (Summary)

	omponent otresses vs.			
Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	-	27.3%	Pass
1	Base Plate	-	3.0%	Pass
1	Base Foundation Steel	-	14.9%	Pass
1	Base Foundation Soil Interaction	-	73.6%	Pass

Table 5 - Tower Component Stresses vs. Capacity – LC5

Structure Rating (max from all components) =	73.6%
--	-------

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

2) Capacities up to 105% are considered acceptable based on analysis methods used.

4.1) Recommendations

The monopole and its foundation have sufficient capacity to carry the existing and proposed loads. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard. The following design criteria apply:

- 1) Tower is located in New London County, Connecticut.
- 2) Basic wind speed of 85.00 mph.
- 3) Nominal ice thickness of 0.7500 in.
- 4) Ice thickness is considered to increase with height.
- 5) Ice density of 56.00 pcf.
- 6) A wind speed of 37.60 mph is used in combination with ice.
- 7) Deflections calculated using a wind speed of 50.00 mph.
- 8) A non-linear (P-delta) analysis was used.
- 9) Pressures are calculated at each section.
- 10) Stress ratio used in pole design is 1.333.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- ✓ Use Code Stress Ratios
 ✓ Use Code Safety Factors Guys
- $\sqrt{}$ Escalate Ice

Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination Distribute Leg Loads As Uniform Assume Legs Pinned

- $\sqrt{}$ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks

Use Azimuth Dish Coefficients
 Project Wind Area of Appurt.
 Autocalc Torque Arm Areas
 SR Members Have Cut Ends
 Sort Capacity Reports By Component
 Triangulate Diamond Inner Bracing
 Use TIA-222-G Tension Splice
 Capacity Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- ✓ Consider Feedline Torque Include Angle Block Shear Check Poles
 ✓ Include Shear-Torsion Interaction
- Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	60.0000- 36.0000	24.0000	2.68	18	27.3750	32.1250	0.2040	0.8160	A572-60 (60 ksi)
L2	36.0000- 0.0000	38.6771		18	31.1872	37.8750	0.2200	0.8800	A572-60 (60 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	I/C	J	lt/Q	W	w/t
	in	in²	in⁴	in	in	in ³	in⁴	in ²	in	
L1	27.7973	17.5931	1640.93	351 9.6457	13.9065	117.9977	3284.0294	8.7982	4.4590	21.858
	32.6206	20.6687	2660.74	11.3320) 16.3195	163.0411	5325.0003	10.3363	5.2950	25.956
L2	32.1383	21.6237	2619.81	187 10.9933	3 15.8431	165.3605	5243.0845	10.8139	5.1017	23.19
	38.4593	26.2937	4710.15	529 13.3675	5 19.2405	244.8041	9426.5036	13.1494	6.2788	28.54
Tower Elevation	Gus n Are (per fa	a Th	Gusset ickness	Gusset Grad	eAdjust. Facto A _f	r Adjust. Factor A _r	Weight N	lult. Double Stitch Spa Diago	cing S	ible Angle titch Bolt Spacing prizontals
ft	fť	2	in					iı	า	in
L1 60.000 36.0000	-				1	1	1			
L2 36.000 0.0000					1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg			ft			ft²/ft	plf
LDF4-50A(1/2")	C	No	Inside Pole	59.0000 - 8.0000	1	No Ice	0.0000	0.15
. ,						1/2" Ice	0.0000	0.15
						1" Ice	0.0000	0.15
						2" Ice	0.0000	0.15
						4" Ice	0.0000	0.15
LDF5-50A(7/8)	С	No	Inside Pole	53.0000 - 8.0000	12	No Ice	0.0000	0.33
						1/2" Ice	0.0000	0.33
						1" Ice	0.0000	0.33
						2" Ice	0.0000	0.33
						4" Ice	0.0000	0.33
B-L98B-034-XXX(3/8)	С	No	Inside Pole	53.0000 - 8.0000	1	No Ice	0.0000	0.06
· · · · · · · · · · · · · · · · · · ·						1/2" Ice	0.0000	0.06
						1" Ice	0.0000	0.06
						2" Ice	0.0000	0.06
						4" Ice	0.0000	0.06
WR-VG86ST-	С	No	Inside Pole	53.0000 - 8.0000	2	No Ice	0.0000	0.58
BRD(3/4")						1/2" Ice	0.0000	0.58
						1" Ice	0.0000	0.58
						2" Ice	0.0000	0.58
						4" Ice	0.0000	0.58
LDF4-50A(1/2")	С	No	Inside Pole	44.0000 - 8.0000	1	No Ice	0.0000	0.15
						1/2" Ice	0.0000	0.15
						1" Ice	0.0000	0.15
						2" Ice	0.0000	0.15
						4" Ice	0.0000	0.15
LDF4-50A(1/2")	С	No	Inside Pole	29.0000 - 8.0000	2	No Ice	0.0000	0.15
						1/2" Ice	0.0000	0.15
						1" Ice	0.0000	0.15
						2" Ice	0.0000	0.15
						4" Ice	0.0000	0.15
2" (Nominal) Conduit	С	No	Inside Pole	56.0000 - 8.0000	1	No Ice	0.0000	0.72
(-					1/2" Ice	0.0000	0.72
						1" Ice	0.0000	0.72
						2" Ice	0.0000	0.72
						4" Ice	0.0000	0.72

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft^2	ft^2	ft^2	ft^2	К
L1	60.0000-36.0000	А	0.000	0.000	0.000	0.000	0.00

tnxTower Report - version 6.1.4.1

Tower Sectio	Tower Elevation	Face	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft^2	ft ²	ft^2	ft^2	к
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.11
L2	36.0000-0.0000	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.18

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	ĸ
L1	60.0000-36.0000	Α	0.784	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.11
L2	36.0000-0.0000	А	0.750	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.18

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _x Ice	CPz Ice
	ft	in	in	in	in
L1	60.0000-36.0000	0.0000	0.0000	0.0000	0.0000
L2	36.0000-0.0000	0.0000	0.0000	0.0000	0.0000

			Disc	rete Tov	ver Loa	ds			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
ightning Rod 8' x 5/8"	С	From Leg	0.0000 0.00 4.00	0.0000	61.0000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.5000 1.3135 2.1437 3.6130 5.6835	0.5000 1.3135 2.1437 3.6130 5.6835	0.01 0.01 0.02 0.06 0.20
BMR12	С	From Leg	4.0000 0.00 10.00	0.0000	59.0000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	13.2600 15.3236 17.4038 20.7954 25.7289	13.2600 15.3236 17.4038 20.7954 25.7289	0.12 0.21 0.31 0.56 1.21
de Arm Mount [SO 701- 1]	С	From Leg	2.0000 0.00 0.00	0.0000	60.0000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.8500 1.1400 1.4300 2.0100 3.1700	1.6700 2.3400 3.0100 4.3500 7.0300	0.07 0.08 0.09 0.12 0.18

RRUS-11	С	From Leg	4.0000 0.00	0.0000	53.0000	No Ice 1/2''	3.2486 3.4905	1.3726 1.5510	0.05 0.07

tnxTower Report - version 6.1.4.1

			Lateral	Adjustmen t			Front	Side	
			Vert ft ft ft	o	ft		ft²	ft²	К
			2.00			Ice	3.7411	1.7380	0.09
						1" Ice 2" Ice 4" Ice	4.2682 5.4260	2.1381 3.0418	0.15 0.31
2) 7770.00 w/ Mount Pipe	С	From Leg	4.0000	0.0000	53.0000	No Ice	6.2208	4.8204	0.09
		-	0.00			1/2"	6.7144	5.5082	0.14
			2.00			Ice	7.2182	6.2127	0.21
						1" lce 2" lce	8.2568	7.6716	0.36
	-					4" Ice	10.4762	11.0613	0.76
(2) LGP21401	С	From Leg	4.0000	0.0000	53.0000	No Ice	1.2880	0.3640	0.01
			0.00			1/2" Ice	1.4453	0.4785 0.6017	0.02
			2.00			1" Ice	1.6112 1.9690	0.8739	0.03 0.05
						2" Ice	2.7882	1.5220	0.03
						4" Ice	2.1002	1.0220	0.11
DC6-48-60-18-8F	С	From Leg	4.0000	0.0000	53.0000	No Ice	1.4667	1.4667	0.02
		-	0.00			1/2"	1.6667	1.6667	0.04
			2.00			Ice	1.8778	1.8778	0.06
						1" Ice	2.3333	2.3333	0.11
						2" lce 4" lce	3.3778	3.3778	0.24
HPA-65R-BUU-H8 w/	С	From Leg	4.0000	0.0000	53.0000	4 Ice No Ice	13.5328	9.5823	0.10
Mount Pipe	C	I TOILI Leg	4.0000	0.0000	55.0000	1/2"	14.3352	11.0517	0.10
Mount ipe			2.00			lce	15.1425	12.4963	0.30
						1" Ice	16.7076	14.7516	0.55
						2" Ice	19.9544	19.4621	1.22
RRUS 12	С	From Leg	4.0000	0.0000	53.0000	4" lce No lce	3.6692	1.4875	0.06
	U	Troin Log	0.00	0.0000	00.0000	1/2"	3.9256	1.6727	0.08
			2.00			lce	4.1907	1.8665	0.11
						1" Ice	4.7468	2.2800	0.17
						2" Ice	5.9627	3.2107	0.34
RRUS A2	С	From Leg	4.0000	0.0000	53.0000	4" lce No lce	2.4107	0.5345	0.02
RR03 AZ	C	FIOIIILeg	4.0000	0.0000	55.0000	1/2"	2.6193	0.5345	0.02
			2.00			lce	2.8366	0.8079	0.05
						1" Ice	3.2970	1.1159	0.09
						2" Ice	4.3216	1.8356	0.20
***						4" Ice			
RRUS-11	А	From Leg	4.0000	0.0000	53.0000	No Ice	3.2486	1.3726	0.05
			0.00			1/2"	3.4905 3.7411	1.5510	0.07
			2.00			Ice 1" Ice	4.2682	1.7380 2.1381	0.09 0.15
						2" Ice	5.4260	3.0418	0.31
						4" Ice	0200	010110	0.01
2) 7770.00 w/ Mount Pipe	А	From Leg	4.0000	0.0000	53.0000	No Ice	6.2208	4.8204	0.09
		-	0.00			1/2"	6.7144	5.5082	0.14
			2.00			lce	7.2182	6.2127	0.21
						1" Ice	8.2568	7.6716	0.36
						2" lce 4" lce	10.4762	11.0613	0.76
(2) LGP21401	А	From Leg	4.0000	0.0000	53.0000	No Ice	1.2880	0.3640	0.01
			0.00			1/2"	1.4453	0.4785	0.02
			2.00			Ice 1" Ice	1.6112 1.9690	0.6017 0.8739	0.03
						2" Ice	2.7882	0.8739	0.05 0.14
						4" Ice	2.1002	1.5220	0.14
HPA-65R-BUU-H8 w/	А	From Leg	4.0000	0.0000	53.0000	No Ice	13.5328	9.5823	0.10
Mount Pipe		Ŭ	0.00			1/2"	14.3352	11.0517	0.20
			2.00			Ice	15.1425	12.4963	0.30
						1" Ice	16.7076	14.7516	0.55
						2" Ice	19.9544	19.4621	1.22

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	٥	ft		ft ²	ft ²	К
RRUS 12	A	From Leg	ft 4.0000	0.0000	53.0000	No Ice	3.6692	1.4875	0.06
	~	T TOILLEG	0.00	0.0000	33.0000	1/2"	3.9256	1.6727	0.08
			2.00			lce	4.1907	1.8665	0.00
			2.00			1" Ice	4.7468	2.2800	0.17
						2" Ice	5.9627	3.2107	0.17
						4" Ice			
RRUS A2	А	From Leg	4.0000	0.0000	53.0000	No Ice	2.4107	0.5345	0.02
			0.00			1/2"	2.6193	0.6669	0.03
			2.00			Ice	2.8366	0.8079	0.05
						1" Ice	3.2970	1.1159	0.09
						2" lce 4" lce	4.3216	1.8356	0.20
****	_								
RRUS-11	В	From Leg	4.0000	0.0000	53.0000	No Ice	3.2486	1.3726	0.05
			0.00			1/2"	3.4905	1.5510	0.07
			2.00			lce	3.7411	1.7380	0.09
						1" Ice	4.2682	2.1381	0.15
						2" lce 4" lce	5.4260	3.0418	0.31
2) 7770.00 w/ Mount Pipe	В	From Leg	4.0000	0.0000	53.0000	No Ice	6.2208	4.8204	0.09
_)	_		0.00	0.0000	00.0000	1/2"	6.7144	5.5082	0.14
			2.00			Ice	7.2182	6.2127	0.21
						1" Ice	8.2568	7.6716	0.36
						2" Ice	10.4762	11.0613	0.76
		F	4 0000	0.0000	50 0000	4" Ice	4 0000	0.0040	0.04
(2) LGP21401	В	From Leg	4.0000	0.0000	53.0000	No Ice	1.2880	0.3640	0.01
			0.00			1/2"	1.4453	0.4785	0.02
			2.00			Ice	1.6112	0.6017	0.03
						1" lce 2" lce	1.9690 2.7882	0.8739 1.5220	0.05 0.14
						4" Ice			
HPA-65R-BUU-H8 w/	В	From Leg	4.0000	0.0000	53.0000	No Ice	13.5328	9.5823	0.10
Mount Pipe			0.00			1/2"	14.3352	11.0517	0.20
			2.00			Ice	15.1425	12.4963	0.30
						1" Ice	16.7076	14.7516	0.55
						2" lce 4" lce	19.9544	19.4621	1.22
RRUS 12	В	From Leg	4.0000	0.0000	53.0000	A Ice No Ice	3.6692	1.4875	0.06
	D	I IOIII Leg	0.00	0.0000	55.0000	1/2"	3.9256	1.6727	0.08
			2.00			lce	4.1907	1.8665	0.00
			2.00			1" Ice	4.7468	2.2800	0.17
						2" Ice	5.9627	3.2107	0.34
						4" Ice			
RRUS A2	В	From Leg	4.0000	0.0000	53.0000	No Ice	2.4107	0.5345	0.02
			0.00			1/2"	2.6193	0.6669	0.03
			2.00			Ice	2.8366	0.8079	0.05
						1" Ice	3.2970	1.1159	0.09
						2" lce 4" lce	4.3216	1.8356	0.20
Platform Mount [LP 403-1]	С	None		0.0000	53.0000	No Ice	18.8500	18.8500	1.50
						1/2"	24.3000	24.3000	1.80
						Ice	29.7500	29.7500	2.09
						1" Ice	40.6500	40.6500	2.69
						2" Ice	62.4500	62.4500	3.87
***						4" Ice			

DB438-A	В	From Leg	4.0000	0.0000	44.0000	No Ice	0.6222	0.6222	0.01
			0.00			1/2"	0.7302	0.7302	0.01
			0.00			Ice	0.8469	0.8469	0.02
						1" Ice	1.1062	1.1062	0.05
						2" Ice	1.7284	1.7284	0.12
Side Arm Mount [SO 701-	В	From Leg	2.0000	0.0000	44.0000	4" lce No lce	0.8500	1.6700	0.07

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft ²	K
***			0.00			Ice 1" Ice 2" Ice 4" Ice	1.4300 2.0100 3.1700	3.0100 4.3500 7.0300	0.09 0.12 0.18
MYA1505K	В	From Leg	0.0000 0.00 1.00	0.0000	29.0000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.5400 1.2100 1.8800 3.2200 5.9000	0.5400 1.2100 1.8800 3.2200 5.9000	0.00 0.00 0.01 0.01 0.01
(2) DB438-A	В	From Leg	4.0000 0.00 1.00	0.0000	29.0000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.6222 0.7302 0.8469 1.1062 1.7284	0.6222 0.7302 0.8469 1.1062 1.7284	0.01 0.01 0.02 0.05 0.12
Side Arm Mount [SO 701- 1]	В	From Leg	2.0000 0.00 0.00	0.0000	29.0000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.8500 1.1400 1.4300 2.0100 3.1700	1.6700 2.3400 3.0100 4.3500 7.0300	0.07 0.08 0.09 0.12 0.18

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice	
15	Dead+Wind 0 deg+Ice	
16	Dead+Wind 30 deg+Ice	
17	Dead+Wind 60 deg+Ice	
18	Dead+Wind 90 deg+Ice	
19	Dead+Wind 120 deg+Ice	
20	Dead+Wind 150 deg+Ice	
21	Dead+Wind 180 deg+Ice	
22	Dead+Wind 210 deg+Ice	
23	Dead+Wind 240 deg+Ice	
24	Dead+Wind 270 deg+Ice	
25	Dead+Wind 300 deg+Ice	
26	Dead+Wind 330 deg+Ice	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	

tnxTower Report - version 6.1.4.1

Comb.		Description	
No.			
31	Dead+Wind 120 deg - Service		
32	Dead+Wind 150 deg - Service		
33	Dead+Wind 180 deg - Service		
34	Dead+Wind 210 deg - Service		
35	Dead+Wind 240 deg - Service		
36	Dead+Wind 270 deg - Service		
37	Dead+Wind 300 deg - Service		
38	Dead+Wind 330 deg - Service		

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
Pole	Max. Vert	14	12.31	-0.00	0.00
	Max. H _x	11	8.16	8.23	-0.01
	Max. H _z	2	8.16	-0.01	8.27
	Max. M _x	2	369.78	-0.01	8.27
	Max. Mz	5	368.28	-8.23	0.01
	Max. Torsion	13	2.78	4.10	7.16
	Min. Vert	10	8.16	7.13	-4.14
	Min. H _x	5	8.16	-8.23	0.01
	Min. H _z	8	8.16	0.01	-8.27
	Min. M _x	8	-371.28	0.01	-8.27
	Min. M _z	11	-368.96	8.23	-0.01
	Min. Torsion	7	-2.78	-4.10	-7.16

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
Combination	К	К	к	kip-ft	kip-ft	kip-ft
Dead Only	8.16	0.00	0.00	0.74	0.34	, 0.00
Dead+Wind 0 deg - No Ice	8.16	0.01	-8.27	-369.78	0.28	-2.10
Dead+Wind 30 deg - No Ice	8.16	4.12	-7.17	-320.17	-184.02	-0.86
Dead+Wind 60 deg - No Ice	8.16	7.13	-4.14	-184.57	-318.92	0.61
Dead+Wind 90 deg - No Ice	8.16	8.23	-0.01	0.69	-368.28	1.92
Dead+Wind 120 deg - No Ice	8.16	7.12	4.13	185.96	-318.87	2.71
Dead+Wind 150 deg - No Ice	8.16	4.10	7.16	321.61	-183.92	2.78
Dead+Wind 180 deg - No Ice	8.16	-0.01	8.27	371.28	0.40	2.10
Dead+Wind 210 deg - No Ice	8.16	-4.12	7.17	321.67	184.70	0.86
Dead+Wind 240 deg - No Ice	8.16	-7.13	4.14	186.06	319.60	-0.61
Dead+Wind 270 deg - No Ice	8.16	-8.23	0.01	0.81	368.96	-1.92
Dead+Wind 300 deg - No Ice	8.16	-7.12	-4.13	-184.46	319.55	-2.71
Dead+Wind 330 deg - No Ice	8.16	-4.10	-7.16	-320.11	184.60	-2.78
Dead+lce	12.31	0.00	-0.00	1.43	0.95	0.00
Dead+Wind 0 deg+Ice	12.31	0.00	-1.88	-85.21	0.94	-0.51
Dead+Wind 30 deg+lce	12.31	0.94	-1.63	-73.61	-42.06	-0.19
Dead+Wind 60 deg+lce	12.31	1.62	-0.94	-41.90	-73.54	0.18
Dead+Wind 90 deg+lce	12.31	1.87	-0.00	1.43	-85.05	0.50
Dead+Wind 120 deg+Ice	12.31	1.62	0.94	44.76	-73.52	0.69
Dead+Wind 150 deg+Ice	12.31	0.93	1.63	76.48	-42.03	0.69
Dead+Wind 180 deg+lce	12.31	-0.00	1.88	88.10	0.97	0.51
Dead+Wind 210 deg+Ice	12.31	-0.94	1.63	76.49	43.97	0.19
Dead+Wind 240 deg+Ice	12.31	-1.62	0.94	44.78	75.45	-0.18
Dead+Wind 270 deg+Ice	12.31	-1.87	0.00	1.46	86.96	-0.50
Dead+Wind 300 deg+Ice	12.31	-1.62	-0.94	-41.87	75.43	-0.69
Dead+Wind 330 deg+Ice	12.31	-0.93	-1.63	-73.60	43.95	-0.69
Dead+Wind 0 deg - Service	8.16	0.00	-2.86	-127.47	0.32	-0.73
Dead+Wind 30 deg - Service	8.16	1.43	-2.48	-110.29	-63.45	-0.30
Dead+Wind 60 deg - Service	8.16	2.47	-1.43	-63.37	-110.13	0.21
Dead+Wind 90 deg - Service	8.16	2.85	-0.00	0.73	-127.21	0.66
Dead+Wind 120 deg -	8.16	2.46	1.43	64.84	-110.11	0.94

61 Ft Monopole Tower Structural Analysis Project Number 37515-3391.001.7805, Application 322537, Revision 0

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	К	ĸ	К	kip-ft	kip-ft	kip-ft
Service						
Dead+Wind 150 deg - Service	8.16	1.42	2.48	111.77	-63.42	0.96
Dead+Wind 180 deg - Service	8.16	-0.00	2.86	128.96	0.36	0.73
Dead+Wind 210 deg - Service	8.16	-1.43	2.48	111.79	64.13	0.30
Dead+Wind 240 deg - Service	8.16	-2.47	1.43	64.87	110.81	-0.21
Dead+Wind 270 deg - Service	8.16	-2.85	0.00	0.77	127.89	-0.66
Dead+Wind 300 deg - Service	8.16	-2.46	-1.43	-63.34	110.79	-0.94
Dead+Wind 330 deg - Service	8.16	-1.42	-2.48	-110.28	64.10	-0.96

Solution Summary

	Sun	n of Applied Force	es		Sum of Reaction	ns	
Load	PX	'' PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-8.16	0.00	0.00	8.16	-0.00	0.000%
2	0.01	-8.16	-8.27	-0.01	8.16	8.27	0.000%
3	4.12	-8.16	-7.17	-4.12	8.16	7.17	0.001%
4	7.13	-8.16	-4.14	-7.13	8.16	4.14	0.001%
5	8.23	-8.16	-0.01	-8.23	8.16	0.01	0.000%
6	7.12	-8.16	4.13	-7.12	8.16	-4.13	0.000%
7	4.10	-8.16	7.16	-4.10	8.16	-7.16	0.000%
8	-0.01	-8.16	8.27	0.01	8.16	-8.27	0.000%
9	-4.12	-8.16	7.17	4.12	8.16	-7.17	0.000%
10	-7.13	-8.16	4.14	7.13	8.16	-4.14	0.001%
11	-8.23	-8.16	0.01	8.23	8.16	-0.01	0.000%
12	-7.12	-8.16	-4.13	7.12	8.16	4.13	0.000%
13	-4.10	-8.16	-7.16	4.10	8.16	7.16	0.000%
14	0.00	-12.31	0.00	-0.00	12.31	0.00	0.000%
15	0.00	-12.31	-1.88	-0.00	12.31	1.88	0.002%
16	0.94	-12.31	-1.63	-0.94	12.31	1.63	0.002%
17	1.62	-12.31	-0.94	-1.62	12.31	0.94	0.002%
18	1.87	-12.31	-0.00	-1.87	12.31	0.00	0.002%
19	1.62	-12.31	0.94	-1.62	12.31	-0.94	0.002%
20	0.93	-12.31	1.63	-0.93	12.31	-1.63	0.002%
21	-0.00	-12.31	1.88	0.00	12.31	-1.88	0.002%
22	-0.94	-12.31	1.63	0.94	12.31	-1.63	0.002%
23	-1.62	-12.31	0.94	1.62	12.31	-0.94	0.002%
24	-1.87	-12.31	0.00	1.87	12.31	-0.00	0.002%
25	-1.62	-12.31	-0.94	1.62	12.31	0.94	0.002%
26	-0.93	-12.31	-1.63	0.93	12.31	1.63	0.002%
27	0.00	-8.16	-2.86	-0.00	8.16	2.86	0.000%
28	1.43	-8.16	-2.48	-1.43	8.16	2.48	0.003%
29	2.47	-8.16	-1.43	-2.47	8.16	1.43	0.003%
30	2.85	-8.16	-0.00	-2.85	8.16	0.00	0.000%
31	2.46	-8.16	1.43	-2.46	8.16	-1.43	0.000%
32	1.42	-8.16	2.48	-1.42	8.16	-2.48	0.000%
33	-0.00	-8.16	2.86	0.00	8.16	-2.86	0.000%
34	-1.43	-8.16	2.48	1.43	8.16	-2.48	0.003%
35	-2.47	-8.16	1.43	2.47	8.16	-1.43	0.003%
36	-2.85	-8.16	0.00	2.85	8.16	-0.00	0.000%
37	-2.46	-8.16	-1.43	2.46	8.16	1.43	0.000%
38	-1.42	-8.16	-2.48	1.42	8.16	2.48	0.000%

Non-Linear Convergence Results

1 Yes 6 0.0000001 0.0000001 2 Yes 9 0.0000001 0.0000001 3 Yes 8 0.0000001 0.00010001 4 Yes 8 0.0000001 0.0000582 5 Yes 9 0.0000001 0.0000503 6 Yes 9 0.0000001 0.0000522 7 Yes 9 0.0000001 0.00005246 8 Yes 9 0.0000001 0.00005246 8 Yes 9 0.0000001 0.0000531 10 Yes 8 0.0000001 0.0000531 11 Yes 9 0.0000001 0.0000531 12 Yes 9 0.0000001 0.0000001 13 Yes 7 0.0000001 0.0000001 14 Yes 7 0.0000001 0.00010317 15 Yes 7 0.0000001 0.0001317 19 Yes	Load	Converged?	Number	Displacement	Force
2 Yes 9 0.0000001 0.0006449 3 Yes 8 0.0000001 0.0006582 5 Yes 9 0.0000001 0.0006582 7 Yes 9 0.0000001 0.0006852 7 Yes 9 0.0000001 0.0006487 9 Yes 9 0.0000001 0.0006487 9 Yes 9 0.0000001 0.0006487 9 Yes 9 0.0000001 0.0006487 10 Yes 9 0.0000001 0.0006713 11 Yes 9 0.0000001 0.0006713 13 Yes 9 0.0000001 0.00009126 14 Yes 6 0.0000001 0.00010914 15 Yes 7 0.0000001 0.00010914 16 Yes 7 0.0000001 0.00019126 18 Yes 7 0.0000001 0.000191222 20 Yes	Combination		of Cycles	Tolerance	Tolerance
3 Yes 8 0.0000001 0.00011080 4 Yes 8 0.0000001 0.0006522 5 Yes 9 0.0000001 0.000503 6 Yes 9 0.0000001 0.0006852 7 Yes 9 0.0000001 0.00006487 9 Yes 9 0.0000001 0.0004367 9 Yes 9 0.0000001 0.0004487 9 Yes 9 0.0000001 0.0004487 9 Yes 9 0.0000001 0.00004487 9 Yes 9 0.0000001 0.00005019 12 Yes 9 0.0000001 0.0000011 13 Yes 7 0.0000001 0.0000011 15 Yes 7 0.0000001 0.00001317 16 Yes 7 0.0000001 0.0001228 21 Yes 7 0.0000001 0.0001228 22 Yes					
4 Yes 8 0.00000001 0.00006582 5 Yes 9 0.00000001 0.00008592 7 Yes 9 0.00000001 0.00007246 8 Yes 9 0.00000001 0.00004877 9 Yes 9 0.00000001 0.00004877 10 Yes 8 0.00000001 0.00004877 11 Yes 9 0.00000001 0.00001038 11 Yes 9 0.00000001 0.00005019 12 Yes 9 0.00000001 0.00009126 14 Yes 6 0.00000001 0.00009126 15 Yes 7 0.00000001 0.00009130 17 Yes 7 0.00000001 0.0001377 19 Yes 7 0.00000001 0.0001377 19 Yes 7 0.00000001 0.0001377 20 Yes 7 0.00000001 0.000137556 22 <td>2</td> <td></td> <td></td> <td></td> <td></td>	2				
5 Yes 9 0.00000001 0.00005003 6 Yes 9 0.00000001 0.00008592 7 Yes 9 0.00000001 0.00008592 7 Yes 9 0.00000001 0.00008487 9 Yes 9 0.00000001 0.00006487 10 Yes 9 0.00000001 0.00005019 12 Yes 9 0.00000001 0.00005019 12 Yes 9 0.00000001 0.0000001 13 Yes 9 0.00000001 0.0000001 14 Yes 6 0.00000001 0.0000001 15 Yes 7 0.00000001 0.000001 16 Yes 7 0.00000001 0.00011948 20 Yes 7 0.00000001 0.000119228 21 Yes 7 0.00000001 0.00013313 20 Yes 7 0.00000001 0.00013333 24			8		
6 Yes 9 0.0000001 0.00008592 7 Yes 9 0.0000001 0.00007246 8 Yes 9 0.0000001 0.00004867 9 Yes 9 0.00000001 0.00004367 10 Yes 9 0.00000001 0.00005019 12 Yes 9 0.00000001 0.0000011 13 Yes 9 0.00000001 0.0000011 14 Yes 6 0.00000001 0.0000011 15 Yes 7 0.00000001 0.00001994 16 Yes 7 0.00000001 0.00001317 19 Yes 7 0.00000001 0.0001228 21 Yes 7 0.00000001 0.0001228 23 Yes 7 0.00000001 0.0001228 24 Yes 7 0.00000001 0.0001228 25 Yes 7 0.00000001 0.00012213 26					
7 Yes 9 0.0000001 0.00007246 8 Yes 9 0.0000001 0.00006487 9 Yes 9 0.0000001 0.00004367 10 Yes 8 0.0000001 0.0000383 11 Yes 9 0.0000001 0.0000519 12 Yes 9 0.0000001 0.000001 13 Yes 9 0.0000001 0.000001 14 Yes 6 0.0000001 0.000001 15 Yes 7 0.0000001 0.000001 16 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.00011317 20 Yes 7 0.0000001 0.0001317 21 Yes 7 0.0000001 0.00011555 22 Yes	5				
8 Yes 9 0.0000001 0.0006487 9 Yes 9 0.0000001 0.0004367 10 Yes 8 0.0000001 0.0000519 11 Yes 9 0.0000001 0.00006713 13 Yes 9 0.0000001 0.0000011 15 Yes 7 0.0000001 0.0000011 15 Yes 7 0.0000001 0.000019130 16 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0011948 20 Yes 7 0.0000001 0.00012228 21 Yes 7 0.0000001 0.00012228 23 Yes 7 0.0000001 0.00012213 26 Yes 7 0.0000001 0.00012213 27 Yes					
9 Yes 9 0.0000001 0.0004367 10 Yes 8 0.0000001 0.0001938 11 Yes 9 0.0000001 0.00005019 12 Yes 9 0.0000001 0.00006713 13 Yes 9 0.0000001 0.00000126 14 Yes 6 0.0000001 0.0000001 15 Yes 7 0.0000001 0.00009126 16 Yes 7 0.0000001 0.00009130 17 Yes 7 0.0000001 0.00001317 19 Yes 7 0.0000001 0.0001194 20 Yes 7 0.0000001 0.0001194 20 Yes 7 0.0000001 0.00012228 21 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.000172 25 Yes 7 0.0000001 0.00012213 27 Ye					
10 Yes 8 0.0000001 0.0001938 11 Yes 9 0.0000001 0.00005019 12 Yes 9 0.0000001 0.0000613 13 Yes 9 0.0000001 0.000001 14 Yes 6 0.0000001 0.000001 15 Yes 7 0.0000001 0.00008130 17 Yes 7 0.0000001 0.00013769 18 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001317 20 Yes 7 0.0000001 0.0001317 20 Yes 7 0.0000001 0.0001317 20 Yes 7 0.0000001 0.00013228 21 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.0001772 25 Yes <td>8</td> <td></td> <td>9</td> <td></td> <td></td>	8		9		
11 Yes 9 0.0000001 0.00005019 12 Yes 9 0.0000001 0.00006713 13 Yes 9 0.0000001 0.00009126 14 Yes 6 0.0000001 0.0000001 15 Yes 7 0.0000001 0.00009130 16 Yes 7 0.0000001 0.00009130 17 Yes 7 0.0000001 0.00008769 18 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001228 21 Yes 7 0.0000001 0.00011595 22 Yes 7 0.0000001 0.00019383 24 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.000121213 29 Yes 7 0.0000001 0.000121213 30					
12 Yes 9 0.0000001 0.00006713 13 Yes 9 0.0000001 0.000001 14 Yes 6 0.0000001 0.0000001 15 Yes 7 0.0000001 0.000001 16 Yes 7 0.0000001 0.00008769 18 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.00011228 21 Yes 7 0.0000001 0.0001228 23 Yes 7 0.0000001 0.00009383 24 Yes 7 0.0000001 0.000172 25 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012213 30 Yes 7 0.0000001 0.0000012123 30 Ye					
13 Yes 9 0.0000001 0.00009126 14 Yes 6 0.0000001 0.0000001 15 Yes 7 0.0000001 0.00009130 16 Yes 7 0.0000001 0.00008130 17 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.00011228 21 Yes 7 0.0000001 0.0001228 21 Yes 7 0.0000001 0.0001228 23 Yes 7 0.0000001 0.0001228 24 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.00012213 27 Yes 7 0.0000001 0.0001213 27 Yes 7 0.0000001 0.00012123 30 Yes 8 0.0000001 0.000012123 31					
14 Yes 6 0.0000001 0.0000001 15 Yes 7 0.0000001 0.0001994 16 Yes 7 0.0000001 0.00009130 17 Yes 7 0.0000001 0.00008769 18 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.00011948 20 Yes 7 0.0000001 0.0001228 21 Yes 7 0.0000001 0.0001595 22 Yes 7 0.0000001 0.0001888 23 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012131 26 Yes 7 0.0000001 0.00012133 27 Yes 8 0.0000001 0.00012133 30 Y		Yes			
15 Yes 7 0.0000001 0.00010994 16 Yes 7 0.0000001 0.00009130 17 Yes 7 0.0000001 0.00008769 18 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001144 20 Yes 7 0.0000001 0.0001228 21 Yes 7 0.0000001 0.0001228 22 Yes 7 0.0000001 0.0001888 23 Yes 7 0.0000001 0.00009888 23 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012131 26 Yes 7 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00012123 30	13	Yes		0.0000001	0.00009126
16 Yes 7 0.0000001 0.0009130 17 Yes 7 0.0000001 0.00008769 18 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.0001228 21 Yes 7 0.0000001 0.0001228 21 Yes 7 0.0000001 0.0001228 21 Yes 7 0.0000001 0.0001228 22 Yes 7 0.0000001 0.0001888 23 Yes 7 0.0000001 0.0009383 24 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.00012213 26 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00006039 33 Ye			6		
17 Yes 7 0.0000001 0.0008769 18 Yes 7 0.0000001 0.0001317 19 Yes 7 0.0000001 0.00011948 20 Yes 7 0.0000001 0.00012228 21 Yes 7 0.0000001 0.0001228 21 Yes 7 0.0000001 0.0001228 22 Yes 7 0.0000001 0.0001888 23 Yes 7 0.0000001 0.0009383 24 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.00012213 26 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012123 30 Yes 7 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00006039 33	15	Yes		0.0000001	0.00010994
18 Yes 7 0.0000001 0.00010317 19 Yes 7 0.0000001 0.00011948 20 Yes 7 0.0000001 0.00012228 21 Yes 7 0.0000001 0.0001855 22 Yes 7 0.0000001 0.0009883 23 Yes 7 0.0000001 0.0009883 24 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.0001801 26 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012213 27 Yes 7 0.0000001 0.00012213 30 Yes 7 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00004401 31 Yes 8 0.0000001 0.00005354 32 <t< td=""><td>16</td><td>Yes</td><td>7</td><td>0.0000001</td><td>0.00009130</td></t<>	16	Yes	7	0.0000001	0.00009130
19 Yes 7 0.0000001 0.00011948 20 Yes 7 0.0000001 0.00012228 21 Yes 7 0.0000001 0.00012228 21 Yes 7 0.0000001 0.0001883 22 Yes 7 0.0000001 0.0009883 23 Yes 7 0.0000001 0.0009383 24 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.00012213 26 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012213 27 Yes 7 0.0000001 0.00012213 30 Yes 7 0.00000001 0.00012123 30 Yes 8 0.00000001 0.00012123 30 Yes 8 0.00000001 0.00004401 31 Yes 8 0.00000001 0.00005354 32	17		7	0.0000001	0.00008769
20 Yes 7 0.0000001 0.0012228 21 Yes 7 0.0000001 0.00011595 22 Yes 7 0.0000001 0.0009888 23 Yes 7 0.0000001 0.0009383 24 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.00012213 27 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012213 27 Yes 7 0.0000001 0.00012213 30 Yes 7 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00004401 31 Yes 8 0.00000001 0.00006078 32 Yes 8 0.00000001 0.00005354 34 Yes 7 0.00000001 0.00013889 35	18	Yes	7	0.0000001	0.00010317
21 Yes 7 0.0000001 0.0011595 22 Yes 7 0.0000001 0.0009888 23 Yes 7 0.0000001 0.0009383 24 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.00011772 25 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012213 27 Yes 7 0.0000001 0.0001256 28 Yes 7 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00004401 31 Yes 8 0.00000001 0.00006039 32 Yes 8 0.00000001 0.00005354 34 Yes 7 0.00000001 0.00012548 36	19	Yes		0.0000001	0.00011948
22 Yes 7 0.0000001 0.0009888 23 Yes 7 0.0000001 0.0009383 24 Yes 7 0.0000001 0.0001772 25 Yes 7 0.0000001 0.00011772 25 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012213 27 Yes 7 0.0000001 0.00012213 29 Yes 7 0.00000001 0.00012123 30 Yes 8 0.00000001 0.00012123 30 Yes 8 0.0000001 0.000012123 30 Yes 8 0.00000001 0.00004401 31 Yes 8 0.00000001 0.00006039 32 Yes 8 0.00000001 0.00005354 34 Yes 7 0.00000001 0.00013889 35 Yes 7 0.00000001 0.00012548 36		Yes		0.0000001	0.00012228
23 Yes 7 0.0000001 0.0009383 24 Yes 7 0.0000001 0.00010772 25 Yes 7 0.0000001 0.00011801 26 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00013145 29 Yes 7 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00004401 31 Yes 8 0.0000001 0.0006078 32 Yes 8 0.0000001 0.00005354 34 Yes 7 0.0000001 0.00013889 35 Yes 7 0.0000001 0.00012548 36 Yes 8 0.0000001 0.00004450	21	Yes	7	0.0000001	0.00011595
24 Yes 7 0.0000001 0.00010772 25 Yes 7 0.0000001 0.00011801 26 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00013145 29 Yes 7 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00004401 31 Yes 8 0.0000001 0.00006078 32 Yes 8 0.0000001 0.00005354 34 Yes 7 0.0000001 0.00013899 35 Yes 7 0.0000001 0.00012548 36 Yes 8 0.00000001 0.00004450	22	Yes	7	0.0000001	0.00009888
25 Yes 7 0.0000001 0.0001801 26 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.00012213 27 Yes 7 0.0000001 0.00012213 28 Yes 7 0.0000001 0.00013145 29 Yes 7 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00004401 31 Yes 8 0.0000001 0.00006078 32 Yes 8 0.00000001 0.0000639 33 Yes 8 0.00000001 0.00005354 34 Yes 7 0.00000001 0.00013899 35 Yes 7 0.00000001 0.00012548 36 Yes 8 0.00000001 0.00004450	23	Yes	7	0.0000001	0.00009383
26 Yes 7 0.0000001 0.00012213 27 Yes 8 0.0000001 0.0005256 28 Yes 7 0.0000001 0.00013145 29 Yes 7 0.0000001 0.0001213 30 Yes 8 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00004401 31 Yes 8 0.00000001 0.00006078 32 Yes 8 0.00000001 0.0000639 33 Yes 8 0.00000001 0.00005354 34 Yes 7 0.00000001 0.00013899 35 Yes 7 0.00000001 0.00012548 36 Yes 8 0.00000001 0.00004450	24	Yes	7	0.0000001	0.00010772
27 Yes 8 0.0000001 0.0005256 28 Yes 7 0.0000001 0.00013145 29 Yes 7 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00004401 31 Yes 8 0.0000001 0.0006078 32 Yes 8 0.0000001 0.0006039 33 Yes 8 0.0000001 0.00005354 34 Yes 7 0.00000001 0.00013899 35 Yes 8 0.0000001 0.00012548 36 Yes 8 0.00000001 0.00014450	25	Yes	7	0.0000001	0.00011801
28 Yes 7 0.0000001 0.00013145 29 Yes 7 0.0000001 0.00012123 30 Yes 8 0.0000001 0.00004401 31 Yes 8 0.0000001 0.0006078 32 Yes 8 0.0000001 0.0006039 33 Yes 8 0.0000001 0.00005354 34 Yes 7 0.0000001 0.00013899 35 Yes 7 0.00000001 0.00012548 36 Yes 8 0.00000001 0.00014450	26	Yes	7	0.0000001	0.00012213
29Yes70.00000010.0001212330Yes80.00000010.000440131Yes80.00000010.000607832Yes80.00000010.000603933Yes80.00000010.000535434Yes70.00000010.0001398935Yes80.00000010.0001254836Yes80.00000010.0001450	27	Yes	8	0.0000001	0.00005256
30 Yes 8 0.0000001 0.0004401 31 Yes 8 0.0000001 0.00006078 32 Yes 8 0.0000001 0.0006039 33 Yes 8 0.0000001 0.00005354 34 Yes 7 0.0000001 0.00013989 35 Yes 7 0.0000001 0.00012548 36 Yes 8 0.0000001 0.00004450	28	Yes	7	0.0000001	0.00013145
31Yes80.00000010.000607832Yes80.00000010.000603933Yes80.00000010.000535434Yes70.00000010.0001398935Yes70.00000010.0001254836Yes80.00000010.0004450	29	Yes	7	0.0000001	0.00012123
32 Yes 8 0.0000001 0.0006039 33 Yes 8 0.0000001 0.00005354 34 Yes 7 0.0000001 0.00013989 35 Yes 7 0.0000001 0.00012548 36 Yes 8 0.0000001 0.0001450	30	Yes	8	0.0000001	0.00004401
33 Yes 8 0.0000001 0.00005354 34 Yes 7 0.0000001 0.00013989 35 Yes 7 0.0000001 0.00012548 36 Yes 8 0.0000001 0.00014450	31	Yes	8	0.0000001	0.00006078
33 Yes 8 0.0000001 0.00005354 34 Yes 7 0.0000001 0.00013989 35 Yes 7 0.0000001 0.00012548 36 Yes 8 0.0000001 0.00014450	32	Yes		0.0000001	0.00006039
34 Yes 7 0.0000001 0.00013989 35 Yes 7 0.0000001 0.00012548 36 Yes 8 0.0000001 0.0004450	33	Yes		0.00000001	0.00005354
35 Yes 7 0.0000001 0.00012548 36 Yes 8 0.0000001 0.00004450		Yes		0.0000001	0.00013989
36 Yes 8 0.0000001 0.00004450	35	Yes		0.00000001	0.00012548
					0.00004450
37 Yes 8 0.0000001 0.00005657	37	Yes	8	0.00000001	0.00005657
38 Yes 8 0.0000001 0.0006410					

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	٥
L1	60 - 36	2.186	34	0.2668	0.0076
L2	38.6771 - 0	1.050	33	0.2281	0.0038

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	٥	ft
61.0000	Lightning Rod 8' x 5/8"	34	2.186	0.2668	0.0076	39104
60.0000	Side Arm Mount [SO 701-1]	34	2.186	0.2668	0.0076	39104
59.0000	BMR12	34	2.128	0.2657	0.0074	39104
53.0000	RRUS-11	33	1.784	0.2586	0.0063	27931
44.0000	DB438-A	33	1.301	0.2428	0.0047	12220
29.0000	MYA1505K	33	0.681	0.1879	0.0025	12229

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	۰
L1	60 - 36	6.277	8	0.7626	0.0220
L2	38.6771 - 0	3.019	8	0.6552	0.0110

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	0	ft
61.0000	Lightning Rod 8' x 5/8"	8	6.277	0.7626	0.0220	13698
60.0000	Side Arm Mount [SO 701-1]	8	6.277	0.7626	0.0220	13698
59.0000	BMR12	8	6.111	0.7597	0.0214	13698
53.0000	RRUS-11	8	5.124	0.7406	0.0181	9784
44.0000	DB438-A	8	3.739	0.6968	0.0135	4280
29.0000	MYA1505K	8	1.958	0.5400	0.0073	4283

Compression Checks

	Pole Design Data									
Section No.	Elevation	Size	L	Lu	Kl/r	F _a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in²	K	ĸ	Pa
L1 L2	60 - 36 (1) 36 - 0 (2)	TP32.125x27.375x0.204 TP37.875x31.1872x0.22	24.0000 38.6771	0.0000 0.0000	0.0 0.0	36.000 34.478	20.3257 26.2937	-4.48 -8.16	731.72 906.56	0.006 0.009

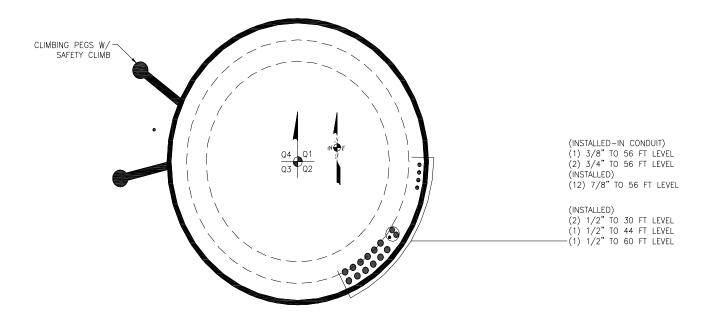
Pole Bending Design Data

Section No.	Elevation ft	Size	Actual M _x kip-ft	Actual f _{bx} ksi	Allow. F _{bx} ksi	$\frac{Ratio}{f_{bx}}$ $\frac{F_{bx}}{F_{bx}}$	Actual M _y kip-ft	Actual f _{by} ksi	Allow. F _{by} ksi	Ratio f _{by} F _{by}
L1	60 - 36 (1)	TP32.125x27.375x0.204	95.94	7.303	36.000	0.203	0.00	0.000	36.000	0.000
L2	36 - 0 (2)	TP37.875x31.1872x0.22	371.28	18.200	34.478	0.528	0.00	0.000	34.478	

Pole Shear Design Data

Section No.	Elevation ft	Size	Actual V K	Actual f _v ksi	Allow. F _v ksi	Ratio $\frac{f_v}{E_v}$	Actual T kip-ft	Actual f _{vt} ksi	Allow. F _{vt} ksi	$\frac{Ratio}{f_{vt}}$
L1 L2	60 - 36 (1) 36 - 0 (2)	TP32.125x27.375x0.204 TP37.875x31.1872x0.22	5.94 8.27	0.292 0.315	24.000 24.000	0.025	2.46 2.10	0.091 0.050	24.000 24.000	0.004

Pole Interaction Design Data

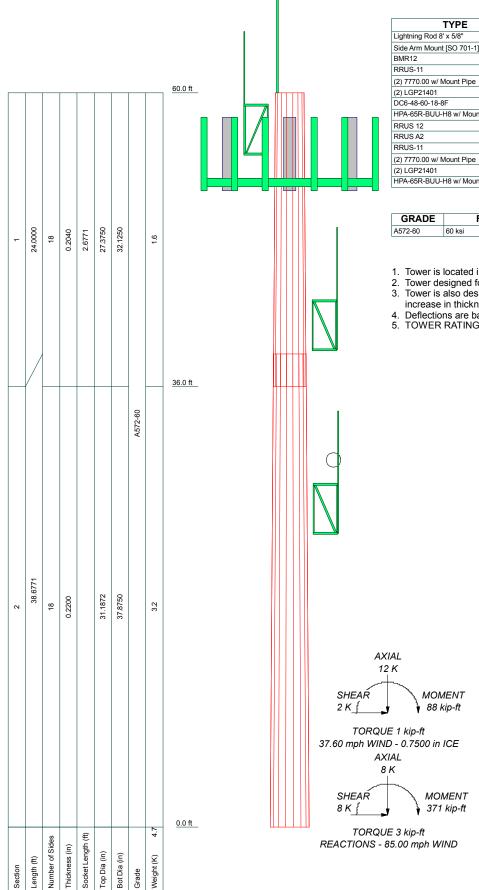

Section No.	Elevation	Ratio P	Ratio f _{bx}	Ratio f _{by}	Ratio f _v	Ratio f _{vt}	Comb. Stress	Allow. Stress	Criteria
	ft	Pa	F _{bx}	F _{by}	Fv	F _{vt}	Ratio	Ratio	
L1	60 - 36 (1)	0.006	0.203	0.000	0.025	0.004	0.209	1.333	H1-3+VT 🖌
L2	36 - 0 (2)	0.009	0.528	0.000	0.026	0.002	0.537	1.333	H1-3+VT 🖌

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF*P _{allow} K	% Capacity	Pass Fail
L1	60 - 36	Pole	TP32.125x27.375x0.204	1	-4.48	975.39	15.7	Pass
L2	36 - 0	Pole	TP37.875x31.1872x0.22	2	-8.16	1208.45	40.3	Pass
							Summary	
						Pole (L2)	40.3	Pass
						RATING =	40.3	Pass

APPENDIX B

BASE LEVEL DRAWING



APPENDIX C

ADDITIONAL CALCULATIONS

Program Version 6.1.4.1 - 12/17/2013 File:G:/TOWER/375_Crown_Castle/2015/37515-3391_842860_COLCHESTER NORTH CENTRA/37515-3391.001.7805_SA_1159623/Project Info/37515-3391.001.7805.eri

Program Version 6.1.4.1 - 12/17/2013 File:G:/TOWER/375_Crown_Castle/2015/37515-3391_842860_COLCHESTER NORTH CENTRA/37515-3391.001.7805_SA_1159623/Project Info/37515-3391.001.7805.eri

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 8' x 5/8"	61	RRUS 12	53
Side Arm Mount [SO 701-1]	60	RRUS A2	53
BMR12	59	RRUS-11	53
RRUS-11	53	(2) 7770.00 w/ Mount Pipe	53
(2) 7770.00 w/ Mount Pipe	53	(2) LGP21401	53
(2) LGP21401	53	HPA-65R-BUU-H8 w/ Mount Pipe	53
DC6-48-60-18-8F	53	RRUS 12	53
HPA-65R-BUU-H8 w/ Mount Pipe	53	RRUS A2	53
RRUS 12	53	Platform Mount [LP 403-1]	53
RRUS A2	53	DB438-A	44
RRUS-11	53	Side Arm Mount [SO 701-1]	44
(2) 7770.00 w/ Mount Pipe	53	MYA1505K	29
(2) LGP21401	53	(2) DB438-A	29
HPA-65R-BUU-H8 w/ Mount Pipe	53	Side Arm Mount [SO 701-1]	29

MATERIAL STRENGTH

RADE	Fy	Fu	GRADE	Fy	Fu					
60	60 ksi	75 ksi								

TOWER DESIGN NOTES

- 1. Tower is located in New London County, Connecticut.
- Tower designed for a 85.00 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 Tower is also designed for a 37.60 mph basic wind with 0.75 in ice. Ice is considered to
- increase in thickness with height.
- Deflections are based upon a 50.00 mph wind.
 TOWER RATING: 40.3%

Paul J. Ford and Company 250 E. Broadstreet Suite 600 Columbus, OH. Phone: 614-221-6679 FAX:

^{lob:} 149 ft Monopole / Seneca Project: PJF 37515-2554 / BU 842277 Client: Crown Castle Drawn by: Jeffrey Krus App'd: Scale: NTS Date: 01/22/16 Code: TIA/EIA-222-F Dwg No. E-1 Path

Square, Stiffened / Unstiffened Base Plate, Any Rod Material - Rev. F /G

Assumptions: 1) Rod groups at corners. Total # rods divisible by 4. Maximum total # of rods = 48 (12 per Corner). 2) Rod Spacing = Straight Center-to-Center distance between any (2) adjacent rods (same corner)

3) Clear space between bottom of leveling nut and top of concrete not exceeding (1)*(Rod Diameter)

, ,	n of leveling nut and top of concrete not excee	eding (1)*(Rod Diameter)	
Site Data	Base Reactions		
BU#: ⁸⁴²⁸⁶⁰	TIA Revision: F		
Site Name:	Unfactored Moment, M: 371	ft-kips	
App #:	Unfactored Axial, P: 8	kips	
Anchor Rod Data	Unfactored Shear, V: 8	kips	
Qty: 8			
Diam: 2.25 in	Anchor Rod Results		
Rod Material: A615-J	TIA F> Maximum Rod Tension	53.3 Kips	
Yield, Fy: 75 ksi	Allowable Tension:	195.0 Kips	
Strength, Fu: 100 ksi	Anchor Rod Stress Ratio:	27.3% Pass	
Bolt Circle: 41 in			
Anchor Spacing: 6 in			
Plate Data	Base Plate Results	Flexural Check	PL Ref. Data
W=Side: 42 in	Base Plate Stress:	1.5 ksi	Yield Line (in):
Thick: 2.5 in	Allowable PL Bending Stress:	50.0 ksi	19.40
Grade: <u>50</u> ksi	Base Plate Stress Ratio:	3.0% Pass	Max PL Length:
Clip Distance: 6 in			19.40
	N/A - Unstiffened		
Stiffener Data (Welding at both sides)	Stiffener Results		
Configuration: Unstiffened	Horizontal Weld :	N/A	
Weld Type:**	Vertical Weld:	N/A	
Groove Depth: in **	Plate Flex+Shear, fb/Fb+(fv/Fv)^2:	N/A	
Groove Angle: degrees	Plate Tension+Shear, ft/Ft+(fv/Fv)^2:	N/A	
Fillet H. Weld: < Disregard	Plate Comp. (AISC Bracket):	N/A	
<u>Fillet</u> V. Weld: in	Pole Results		
Width: in	Pole Punching Shear Check:	N/A	1
Height:in	Max PL Length		
Thick:in	Yield Line		
Notch: in	# Anchors at corner=	L	
Grade: ksi			
Weld str.: ksi	€ Anchor,	Typ. TIFFENED CONFIGURATION	
		SSUMED IN TOOL	
Pole Data		THE D.C.	
Diam: 40 in			
Thick: 0.3125 in		Input Clear Space at B.C. for <u>Single</u>	
Grade: 42 ksi		Anchor Case	
# of Sides: 0 "0" IF Round	Pole w/		
	Pole w/ DIAM =	,) D	
	Anchor Spac Stiffener Sp	cing Same As	
	Except for S	acing, <u>Signle</u> Corner ut Clear Space)	
Stress Increase Factor		ar clear space)	
Stress increase racior			

ASD ASIF: 1.333

** Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

1

Page:

Date:

By:

DRILLED PIER SOIL AND STEEL ANALYSIS - TIA/FIA-222-F

	DRILLED PIER SOIL AND	STEEL ANALYSIS - TIA/EIA-222-F
<u>Unfactored Base Reactions</u> Moment, M = Shear, V = Axial Load, P =	Comp. (+) Tension (-) 371.0 k-ft 8.0 kips 8.0 kips	Safety Factors / Load Factors / Ø FactorsTower Type =Monopole DPACI Code =ACI 318-02Seismic Design Category =DReference Standard =TIA/EIA-222-FUse 1.3 Load Factor?Yes
OTM =	372.3 0.0 k-ft @ Gro	bund Load Factor = 1.30
Drilled Pier Parameters		Safety Factor Φ Factor
Diameter =	<u>6.5</u> ft	Soil Lateral Resistance = 2.00 0.75
Height Above Grade =	0.16667 ft	Skin Friction = 2.00 0.75
Depth Below Grade =	16.83333333 ft	End Bearing = <u>2.00</u> 0.75
fc' =	3 ksi	Concrete Wt. Resist Uplift = 1.25
= 33	0.003 in/in	
Mat Ftdn. Cap Width = Mat Ftdn. Cap Length = Depth Below Grade =	ft ft ft	Load Combinations Checked per TIA/EIA-222-F 1. Ult. Skin Friction/2.00 + Ult. End Bearing/2.00 + Effective Soil Wt Buoyant Conc. Wt. ≥ Comp. 2. Ult. Skin Friction/2.00 + Buoyant Conc. Wt./1.25 ≥ Uplift 3. Ult. Skin Friction/1.50 + Buoyant Conc. Wt./1.50 ≥ Uplift
Steel Parameters		Soil Parameters
Number of Bars =	16	Water Table Depth = 99.00 ft
Rebar Size =	#11	Depth to Ignore Soil = <u>5.00</u> ft
Rebar Fy =	<u>60</u> ksi	Depth to Full Cohesion = 0 ft
Rebar MOE = Tie Size =	29000 ksi	Full Cohesion Starts at?* Ground
	#3	Above Full Cohesion Lateral Resistance = 4(Cohesion)(Dia)(H)
Side Clear Cover to Ties =	8.625 in	Below Full Cohesion Lateral Resistance = 8(Cohesion)(Dia)(H)
Direct Embed Pole Shaft Pa	arameters	Maximum Capacity Ratios
Dia @ Grade =	in	Maximum Soil Ratio = 110.0%
Dia @ Depth Below Grade =	in	Maximum Steel Ratio = 105.0%
Number of Sides =		thists. The skilled size foundation was each and using the methodalary 12 the set (DLO)
Thickness =	in	*Note: The drilled pier foundation was analyzed using the methodology in the software 'PLS- Caisson' (Version 8.10, or newer, by Power Line Systems, Inc.). Per the methods in PLS-
Fy =	ksi	Caisson (version 8.10, or newer, by Power Line Systems, inc.). Per the methods in PLS- Caisson, the soil reactions of cohesive soils are calculated using 8CD independent of the
Backfill Condition =		depth of the soil layer. The depth of soil to be ignored at the top of the drilled pier is based
Define Soil Layers	rengh = Unconfined Compressive Strength / 2	the recommendations of the site specific geotechnical report. In the absence of any recommendations, the frost depth at the site or one half of the drilled pier diameter
Note. Corresion - Onurained Shear Sti	rengn – onconinieu compressive sirengin / 2	(whichever is greater) shall be ignored.

	Thickness	Unit Weight	Cohesion	Friction Angle		Ultimate End Bearing	Comp. Ult. Skin Friction	Tension Ult. Skin Friction	Depth
Layer	ft	pcf	psf	degrees	Soil Type	psf	psf	psf	ft
1	5	0	0	0	Sand				5
2	3	110	0	30	Sand				8
3	2.0833333	165	0	30	Sand				10.0833333
4	7	165	0	30	Sand	80000			17.0833333
5									
6									
7									
8									
9									
10									
11									
12									

Soil Results: Overturning

Depth to COR =
Bending Moment, M =
Resisting Moment, Ma =
MOMENT RATIO =

13.74 ft, from Grade 482.23 k-ft, from COR 635.03 k-ft, from COR 75.9% ΟΚ

0.00 kips

15.93 sq in

24.96 sq in

OK

67.69 kips

0.0%

Soil Results: Uplift Uplift, T =

Allowable Uplift Cap., Ta = **UPLIFT RATIO =**

Steel Results (ACI 318-02):

Minimum Steel Area = Actual Steel Area =

Allowable Min Axial, Pa = Allowable Max Axial, Pa =

-1036.80 kips, Where Ma = 0 k-ft 5447.51 kips, Where Ma = 0 k-ft

Shear, V =	
Resisting Shear, Va =	

8.00 kips 10.53 kips

SHEAR RATIO =

75.9% OK

Soil Results: Compression

Compression, C =	8.00	kips
Allowable Comp. Cap., Ca =	1302.02	kips
COMPRESSION RATIO =	0.6%	OK

Axial Load, P =	44.92	kips @ 7.25 ft Below Grade
Moment, M =	425.69	k-ft @ 7.25 ft Below Grade
Allowable Moment, Ma =	2751.16	k-ft
MOMENT RATIO =	15.5%	OK

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

AT&T Existing Facility

Site ID: CT5346

Colchester North Central 315 Old Hartford Road Colchester, CT 6415

February 17, 2016

EBI Project Number: 6216000633

Site Compliance Summary			
Compliance Status:	COMPLIANT		
Site total MPE% of			
FCC general public	22.17 %		
allowable limit:			

February 17, 2016

AT&T Mobility – New England Attn: Cameron Syme, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT5346 - Colchester North Central

EBI Consulting was directed to analyze the proposed AT&T facility located at **315 Old Hartford Road**, **Colchester**, **CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure and can exercise control over the potentia

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed AT&T Wireless antenna facility located at **315 Old Hartford Road, Colchester, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (700 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 2) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 3) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 2 UMTS channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 UMTS channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.

- 6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 7) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antennas used in this modeling are the CCI HPA-65R-BUU-H8 and the Powerwave 7770.00 for transmission in the 700 MHz, 850 MHz and1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antenna mounting height centerline of the proposed antennas is **55 feet** above ground level (AGL).
- 10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

AT&T Site Inventory and Power Data

G (С , ,	В	S (G
Sector:	A	Sector:	2	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	CCI	Make / Model:	CCI	Make / Model:	CCI
	OPA-65R-BUU-H8		OPA-65R-BUU-H8		OPA-65R-BUU-H8
Gain:	13.15 / 14.95 dBd	Gain:	13.15 / 14.95 dBd	Gain:	13.15 / 14.95 dBd
Height (AGL):	55 feet	Height (AGL):	55 feet	Height (AGL):	55 feet
Frequency Bands	700 MHz /	Frequency Bands	700 MHz /	Frequency Bands	700 MHz /
Frequency Bands	1900 MHz (PCS)	riequency Danus	1900 MHz (PCS)	requency bands	1900 MHz (PCS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	240	Total TX Power(W):	240	Total TX Power(W):	240
ERP (W):	6,229.75	ERP (W):	6,229.75	ERP (W):	6,229.75
Antenna A1 MPE%	13.56	Antenna B1 MPE%	13.56	Antenna C1 MPE%	13.56
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Powerwave 7770.00	Make / Model:	Powerwave 7770.00	Make / Model:	Powerwave 7770.00
Gain:	11.4 dBd	Gain:	11.4 dBd	Gain:	11.4 dBd
Height (AGL):	55 feet	Height (AGL):	55 feet	Height (AGL):	55 feet
Frequency Bands	1900 MHz (PCS)	Frequency Bands	1900 MHz (PCS)	Frequency Bands	1900 MHz (PCS)
Channel Count	2	Channel Count	2	Channel Count	2
Total TX Power(W):	60	Total TX Power(W):	60	Total TX Power(W):	60
ERP (W):	1,312.66	ERP (W):	1,312.66	ERP (W):	1,312.66
Antenna A2 MPE%	1.97	Antenna B2 MPE%	1.97	Antenna C2 MPE%	1.97
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Powerwave 7770.00	Make / Model:	Powerwave 7770.00	Make / Model:	Powerwave 7770.00
Gain:	11.4 / 13.4 dBd	Gain:	11.4 / 13.4 dBd	Gain:	11.4 / 13.4 dBd
Height (AGL):	55 feet	Height (AGL):	55 feet	Height (AGL):	55 feet
	850 MHz /		850 MHz /	г. р. 1	850 MHz /
Frequency Bands	1900 MHz (PCS)	Frequency Bands	1900 MHz (PCS)	Frequency Bands	1900 MHz (PCS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	120	Total TX Power(W):	120	Total TX Power(W):	120
ERP (W):	2,140.89	ERP (W):	2,140.89	ERP (W):	2,140.89
Antenna A3 MPE%	4.15	Antenna B3 MPE%	4.15	Antenna C3 MPE%	4.15

Site Composite MPE%				
Carrier	MPE%			
AT&T – Max per sector	19.68 %			
Ken-Tronics	2.49 %			
Site Total MPE %: 22.17 %				

AT&T Sector 1 Total:	19.68 %
AT&T Sector 2 Total:	19.68 %
AT&T Sector 3 Total:	19.68 %
Site Total:	22.17 %

AT&T _ Per Sector	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
AT&T 700 MHz LTE	2	1239.92	55	37.11	700	467	7.95 %
AT&T 1900 MHz (PCS) LTE	2	1975.65	55	56.17	1900	1000	5.62 %
AT&T 1900 MHz (PCS) GSM	2	656.33	55	19.65	1900	1000	1.97 %
AT&T 850 MHz UMTS	2	414.12	55	12.40	850	567	2.19 %
AT&T 1900 MHz (PCS) UMTS	2	656.33	55	16.65	1900	1000	1.97 %
						Total:	19.68 %

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector 1:	19.68 %
Sector 2:	19.68 %
Sector 3 :	19.68 %
AT&T Maximum Total (per sector):	19.68 %
Site Total:	22.17 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is 22.17% of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan **RF** Engineering Director

EBI Consulting 21 B Street Burlington, MA 01803