

April 30, 2019

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Regarding:	Notice of Exempt Modification - Equipment, Mount, and Tower
	Modifications
Property Address:	268 Windham Avenue; a.k.a. 112 Munn Road; Colchester, CT
	06415 (the "Property")
Applicant:	AT&T Mobility ("AT&T", Site # CT2284)

Dear Ms. Bachman:

AT&T currently maintains a wireless telecommunications facility on an existing 320-foot selfsupport tower at the above-referenced address, latitude N 41.59250000 // longitude W -72.32166667. The property is owned by The State of Connecticut via the Connecticut Department of Emergency Services and Public Protection; Division of Statewide Emergency Telecommunications.

AT&T desires to modify its existing (6) panel antenna telecommunications facility by adding three (3) panel antennas and modifying its ancillary tower-installed equipment as follows: add (6) remote radio units (RRUs) and add (1) DC squid surge suppressor with associated cables at the existing mount height of 200'.

To support the proposed equipment, minor modifications to the existing tower are proposed, as detailed on sheets SK-1 through SK-2 of the February 22, 2019 Structural Analysis by AECOM. AT&T also proposes to reinforce the existing antenna mount. Said mount reinforcement is shown in the Construction Drawings provided and is considered in the Structural Analysis by AECOM, dated February 22, 2019 (see reference on page 8). The mount reinforcement is also accounted for in the Mount Analysis by Centek Engineering, Inc., attached as Exhibit 4 hereto.

Please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72 (b)(2). In accordance with R.C.S.A. §16-50j-73, a copy of this letter is being sent to Art Shilosky, the First Selectman of the Town of Colchester, Randall Benson, Town Planner of the Town of Colchester, and Brian Benito of the Connecticut Department of Emergency Services and Public Protection; Division of Statewide Emergency Telecommunications, as property owner.

The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72 (b)(2). Specifically:

- 1. The planned modification will not result in an increase in the height of the existing structure. The added antennas, reinforced mount, and accessory equipment will be installed at the existing height of 200 feet on the 320-foot self-support tower.
- 2. The proposed modifications will not involve any changes to AT&T's ground-space footprint, and therefore and therefore will not require an extension of the site boundary.
- 3. The proposed modification will not increase the noise level at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above Federal Communications Commission (FCC) safety standard. An RF emissions calculation for AT&T's modified facility is herein provided.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. Once the mount is reinforced and the modifications indicated on the February 22, 2019 Structural Analysis by AECOM are performed, the structure and its foundation can support AT&T's proposed modifications.

For the foregoing reasons, AT&T respectfully requests that the proposed installation be allowed within the exempt modifications under R.C.S.A. §16-50j-72 (b)(2).

Sincerely, Julia Coughlin

Julia Coughlin Site Acquisition Specialist Empire Telecom USA, LLC jcoughlin@empiretelecomm.com

Exhibit 1 – Property Card and Map
Exhibit 2 – Construction Drawings
Exhibit 3 – Structural Analysis
Exhibit 4 – Mount Analysis
Exhibit 5 - RF Emissions Analysis Report Evaluation

Art Shilosky, First Selectman
Town of Colchester
127 Norwich Avenue
Colchester, CT 06415Brian Benito
Connecticut Department of Emergency Services
and Public Protection; Division of Statewide
Emergency Telecommunications - CTS Unit
1111 Country Club Road
Middletown, CT 06457Randall Benson, Planning & Zoning Department
Town of Colchester
127 Norwich Avenue
Colchester, CT 06415Brian Benito
Connecticut Department of Emergency Services
and Public Protection; Division of Statewide
Emergency Telecommunications - CTS Unit
11111 Country Club Road
Middletown, CT 06457

EXHIBIT 1

Property Listing Report

Map Block Lot

06-04/010-001/TWR Account

Г

PID

105094

Property Information

Owner Co-Owner		ICUT STAT		
Co-Owner		CONNECTICUT STATE OF		
	VERIZON WIRELESS			
Mailing Address	PO BOX 2	549		
Co-Owner Mailing Address Land Use Land Class Zoning Code Census Tract ub Lot Neighborhood Acreage Utilities Lot Setting/Desc	ADDISON		тх	75001
Land Use	4310	Tel Rei T	w	
Land Class	I			
Zoning Code				
Census Tract				
Sub Lot				
Neighborhood				
Acreage	0			
Utilities				
Lot Setting/Desc				
Survey Map				
Additional Info				

Photo		
	No Photo Available	
Sketch		

Primary Construction Details

Year Built	
Stories	
Building Style	
Building Use	
Building Condition	
Floors	
Total Rooms	

Bedrooms	
Full Bathrooms	
Half Bathrooms	
Bath Style	
Kitchen Style	_
Roof Style	
Roof Cover	

Exterior Walls	
Interior Walls	
Heating Type	
Heating Fuel	
АС Туре	
Gross Bldg Area	
Total Living Area	

Property Listing Report

Map Block Lot

06-04/010-001/TWR

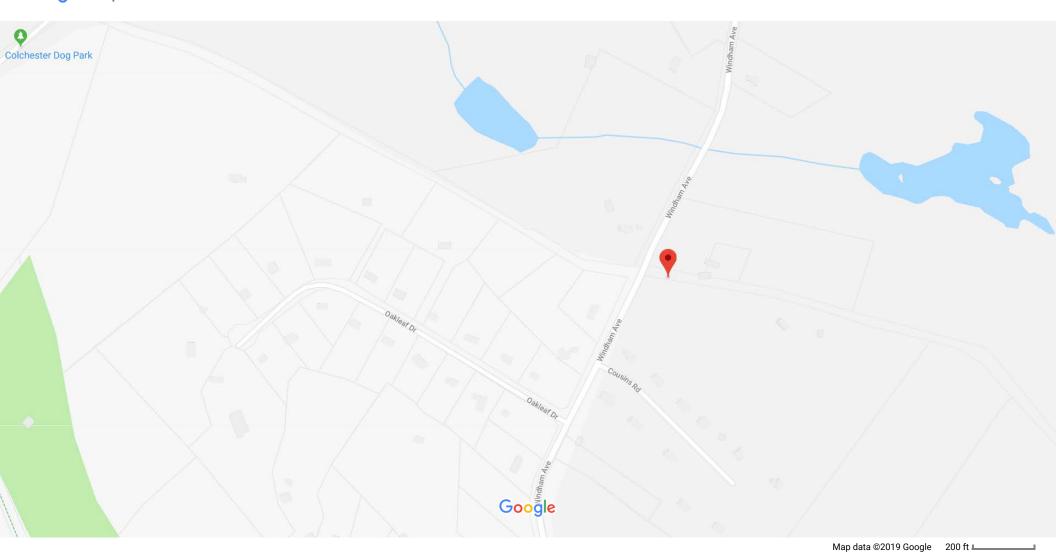
Valuation Summary (Assessed value = 70% of Appraised Value)

Item	Appraised	Assessed
Buildings	0	0
Extras	0	0
Outbuildings	909600	636700
Land	0	0
Total	909600	636700

Sub Areas

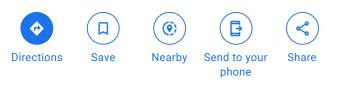
Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
tal Area		0

Outbuilding and Extra Items


Гуре	Description
Cell Shed	1600.00 S.F.
Cell Shed	240.00 S.F.
Cell Tower	3.00 SITES
Fence 8' Chain	400.00 L.F.

Sales History

Owner of Record	Book/ Page	Sale Date	Sale Price
CONNECTICUT STATE OF	000/ 000	10/1/2011	0


11AT0001

Google Maps 41°35'33.0"N 72°19'18.0"W

41°35'33.0"N 72°19'18.0"W

41.592500, -72.321667

- Oclichester Public Schools, Colchester, CT 06415
- • HMVH+28 Colchester, Connecticut

EXHIBIT 2

WIRELESS COMMUNICATIONS FACILITY CT2284 - LTE 2C COLCHESTER MUNN ROAD STATE POLICE 268 WINDHAM AVENUE COLCHESTER, CT 06415

SITE DIRECTIONS

GENERAL NOTES

1.	ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE, INCLUDING THE TIA-222 REVISION "G" STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES, 2018 CONNECTICUT FIRE SAFETY CODE AND, NATIONAL ELECTRICAL CODE AND LOCAL CODES.	10.	DRA SHC LAW CON WOF COE
2.	THE COMPOUND, TOWER, PRIMARY GROUND RING, ELECTRICAL SERVICE TO THE METER BANK AND TELEPHONE SERVICE TO THE DEMARCATION POINT ARE PROVIDED BY SITE OWNER. AS BUILT FIELD CONDITIONS REGARDING THESE ITEMS SHALL BE CONFIRMED BY THE CONTRACTOR. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.	12.	ALL COM ALL CON CON THE
3.	CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.		ANY TO MAN THE BE CON THE
4.	CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.	15.	ACC CON TO CHE MAN
5.	CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.	16.	
6.	CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.	17.	COC AND ELE RES
7.	SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO		ALL REV CON REC NO
8.	OWNER UPON COMPLETION OF PROJECT. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS		ALL RES LIAE DAM THE
9.	AND WORK OF THE SUBCONTRACTORS. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS		48 UTIL EXC MAR

THAT MAY BE NECESSARY. MAINTAIN EXISTING BUILDING'S/PROPERTY'S

OPERATIONS, COORDINATE WORK WITH BUILDING/PROPERTY OWNER.

- WINGS INDICATE THE MINIMUM ST OULD BE INDICATED TO BE SUBST S, CODES, RULES, OR REGULATIO NTRACTOR SHALL INCLUDE IN HIS RK CORRECTLY IN ACCORDANCE DES, RULES OR REGULATIONS WIT
- UTILITY WORK SHALL BE IN ACC MPANY REQUIREMENTS AND SPECIFICATIONS.
- NTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY NDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY ESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- AND ALL ERRORS, DISCREPANCIES, AND 'MISSED" ITEMS ARE BE BROUGHT TO THE ATTENTION OF THE AT&T CONSTRUCTION AGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL ESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL ALLOWED FOR MISSED ITEMS.
- TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND CEPTED BY THE OWNER.
- NTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE ECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION IAGER FOR REVIEW.
- GLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO BRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT
- ORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT D ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF CTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE SPONSIBILITY OF THE CONTRACTOR.
- EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE /IEWED BY CONTRACTOR AND ALL APPLICABLE SUB-NTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S COMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT COST TO OWNER OR CONSTRUCTION MANAGER.
- BLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF AGED DURING CONSTRUCTION ACTIVITIES.
- HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL LITIES SHALL BE IDENTIFIED AND CLEARLY MARKED PRIOR TO ANY CAVATION WORK. CONTRACTOR SHALL MAINTAIN AND PROTECT RKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. 21. CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES THE CONTRACTOR.

TANDARDS, BUT IF ANY WORK TANDARD TO ANY ORDINANCES, ONS BEARING ON THE WORK, THE WORK AND SHALL EXECUTE THE
WORK AND STALL EXECUTE THE WITH SUCH ORDINANCES, LAWS, TH NO INCREASE IN COSTS.
CORDANCE WITH LOCAL UTILITY

EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY

NTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM

CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS,

DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE SPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD

CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST

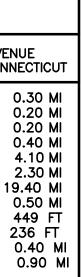
INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY

FROM: 500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT	TO:	268 WINDHAM AVENUE COLCHESTER, CONNEC
 HEAD NORTHEAST ON ENTERPRISE DR TOWARD CAPITAL BLVD TURN LEFT ONTO CAPITAL BLVD TURN LEFT ONTO STATE HWY 411 TURN LEFT TO MERGE ONTO I-91 N MERGE ONTO I-91 N TAKE EXIT 25-26 TO MERGE ONTO CT-3 N TOWARD GLASTONBURY TAKE THE EXIT ONTO CT-2 E TOWARD NORWICH TAKE EXIT 18 FOR CT-16 TOWARD COLCHESTER TURN LEFT ONTO MAIN ST TURN RIGHT TO STAY ON MAIN ST CONTINUE ONTO LEBANON AVE SLIGHT LEFT ONTO WINDHAM AVE 		0.3 0.2 0.4 4. 2.3 19.4 0.5 44 230 0.4 0.4
VICINITY MAP	SCAL	E: 1" = 1000'

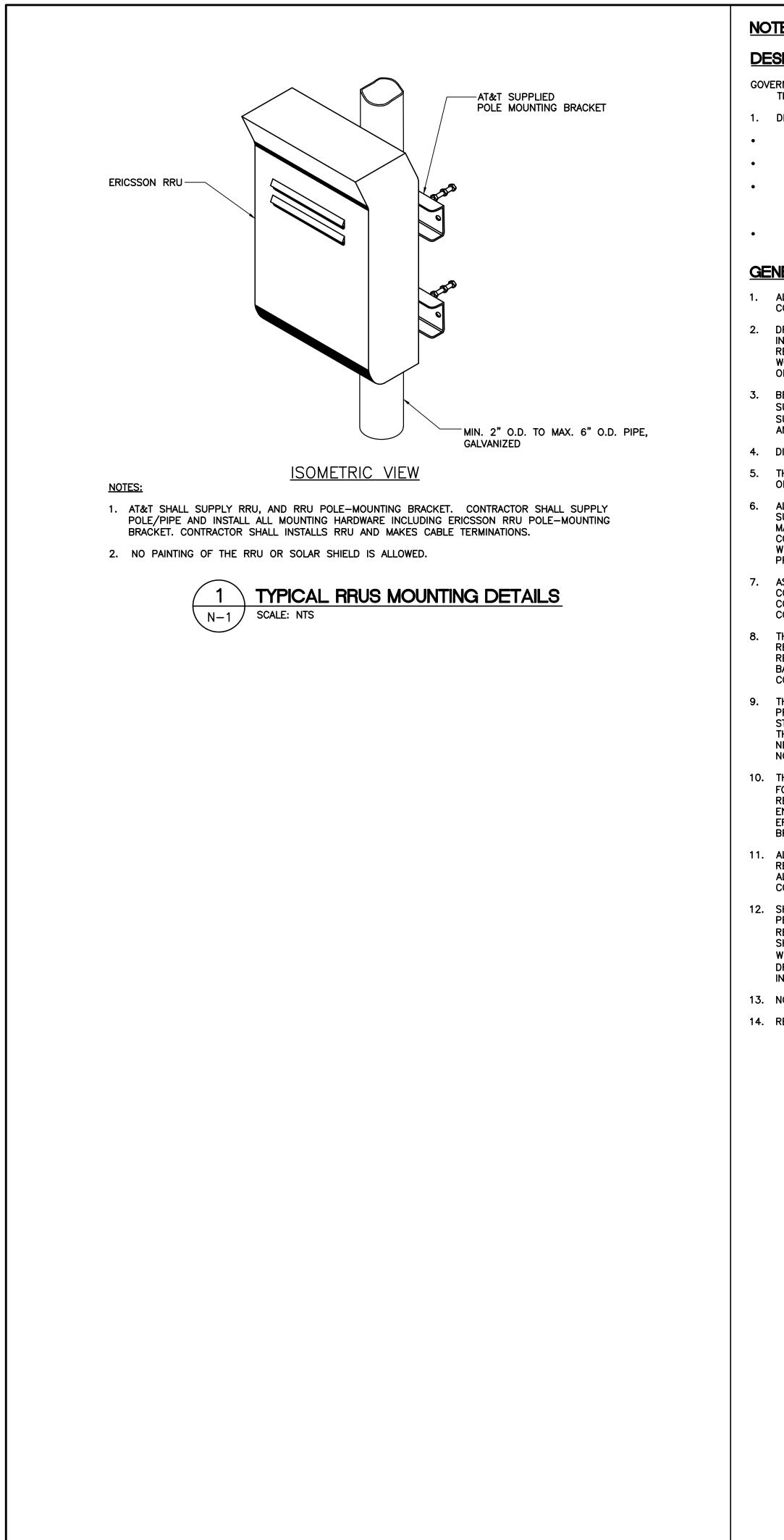
Centered on Solutions" Centered on Solutions" Centered on Solutions" (203) 488-0580 (203) 480-050 (203) 480-050 (2

Sheet No. 1 of 8

PROJECT SUMMARY


- THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING:
- A. INSTALL PROPOSED LTE HEXPORT ANTENNA AT POSITION 4 (1) PER SECTOR, TOTAL OF (3).
- B. INSTALL (3) NEW RRUS-11 BEHIND POSITION 4 ANTENNAS. INSTALL (3) NEW RRUS- 32 B2 BEHIND POSITION 4 ANTENNAS.
- D. INSTALL (1) DC FIBER SQUID SURGE ARRESTOR BEHIND
- POSTION 1 ANTENNA. E. INSTALL XMU IN EXISTING LTE RACK IN EXISTING EQUIPMENT
- SHELTER. F. ANTENNA MOUNTED MODIFICATION REQUIRED. REFER TO

PROJECT INFORMATION


ACCOMPANYING DRAWINGS.

AT&T SITE NUMBER:	CT2284
AT&T SITE NAME:	COLCHESTER MUNN ROAD STATE POLICE
SITE ADDRESS:	268 WINDHAM AVENUE COLCHESTER, CT 06415
LESSEE/APPLICANT:	AT&T MOBILITY 500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067
ENGINEER:	CENTEK ENGINEERING, INC. 63–2 NORTH BRANFORD RD. BRANFORD, CT 06405
PROJECT COORDINATES:	LATITUDE: $41^{-}35^{-}33.5^{"}$ N LONGITUDE: $72^{-}-19^{-}16.2^{"}$ W GROUND ELEVATION: $\pm 650^{'}$ AMSL SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH.

SHEET	INDEX	
SHT. NO.	DESCRIPTION	REV.
T-1	TITLE SHEET	1
N-1	NOTES, SPECIFICATIONS AND DETAILS	1
C-1	PLANS AND ELEVATION	1
C-2	LTE 2C EQUIPMENT DETAILS	1
C-3	MOUNT MODIFICATION	1
E-1	LTE SCHEMATIC DIAGRAM AND NOTES	1
E-2	LTE WIRING DIAGRAM	1
E-3	TYPICAL ELECTRICAL DETAILS	1

NOTES AND SPECIFICATIONS

BUILDING AND OTHER STRUCTURES.

DESIGN BASIS:

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CT STATE BUILDING CODE AND AMENDMENTS.

DESIGN CRITERIA:

WIND LOAD: PER TIA 222 G (ANTENNA MOUNTS): 90-105 MPH (3 SECOND GUST) RISK CATEGORY: II (BASED ON IBC TABLE 1604.5)

NOMINAL DESIGN SPEED (OTHER STRUCTURE): 101 MPH (Vasd) (EXPOSURE B/IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10) PER 2015 INTERNATIONAL BUILDING CODE (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE. SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR

GENERAL NOTES:

1. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING CODE.

DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.

3. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.

4. DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.

THE CONTRACTOR SHALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES.

6. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS, ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.

AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.

8. THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE SAFETY CODES AND REGULATIONS DURING ALL PHASES OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR PROVIDING AND MAINTAINING ADEQUATE SHORING, BRACING, AND BARRICADES AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY.

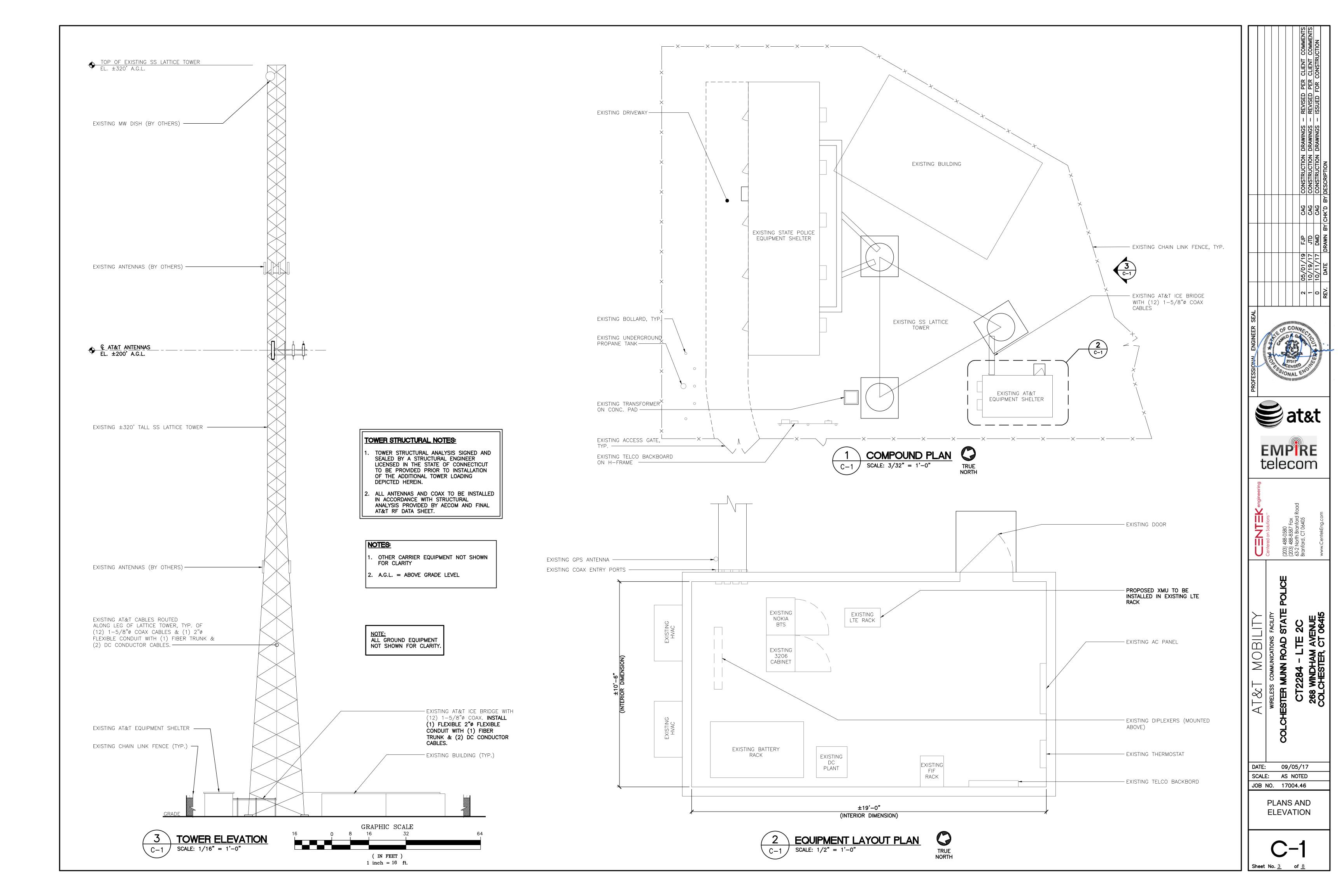
9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING SITE OPERATIONS, COORDINATE WORK WITH NORTHEAST UTILITIES

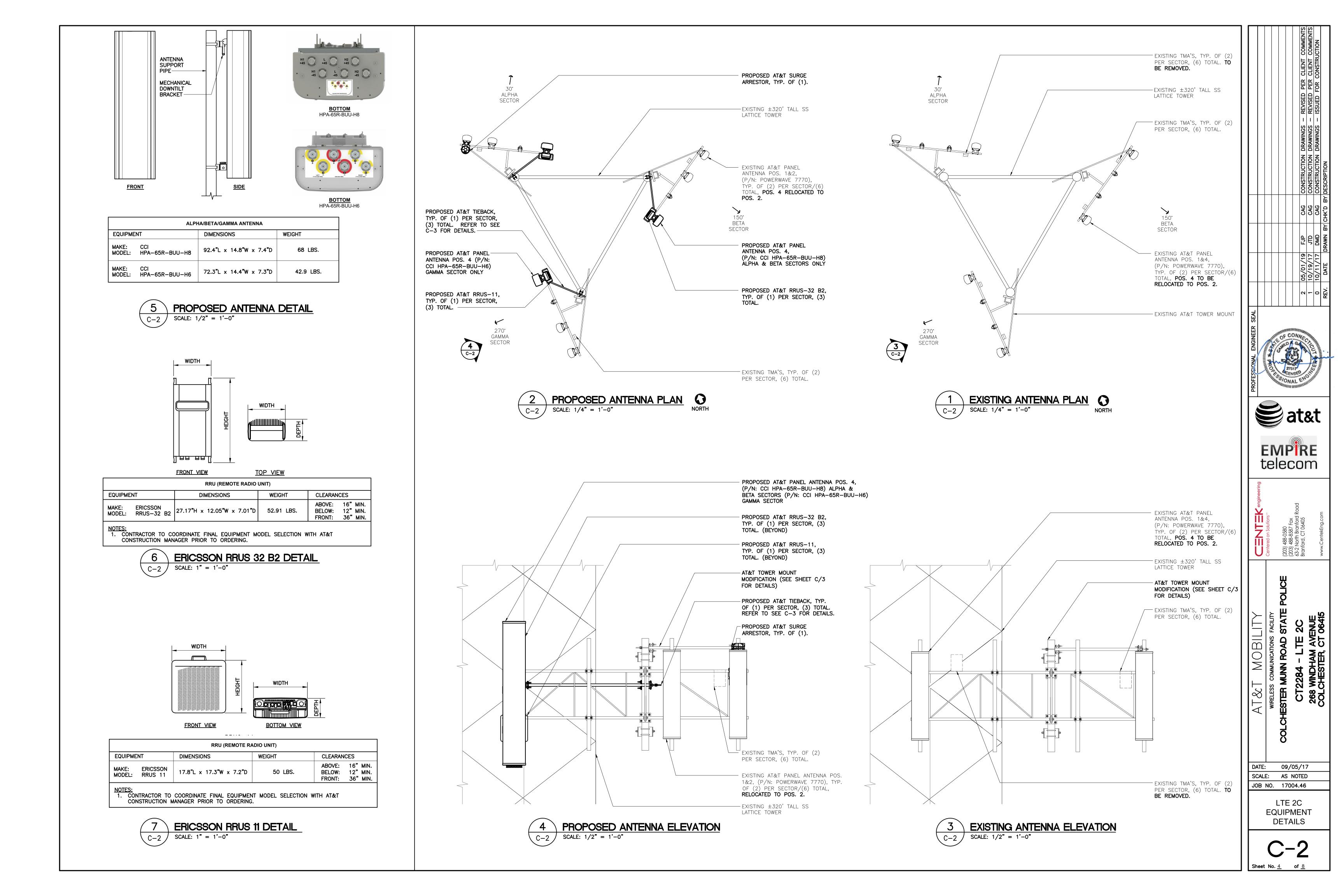
10. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER FOUNDATION REMEDIATION WORK IS COMPLETE. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, TEMPORARY BRACING, GUYS OR TIEDOWNS, WHICH MIGHT BE NECESSARY.

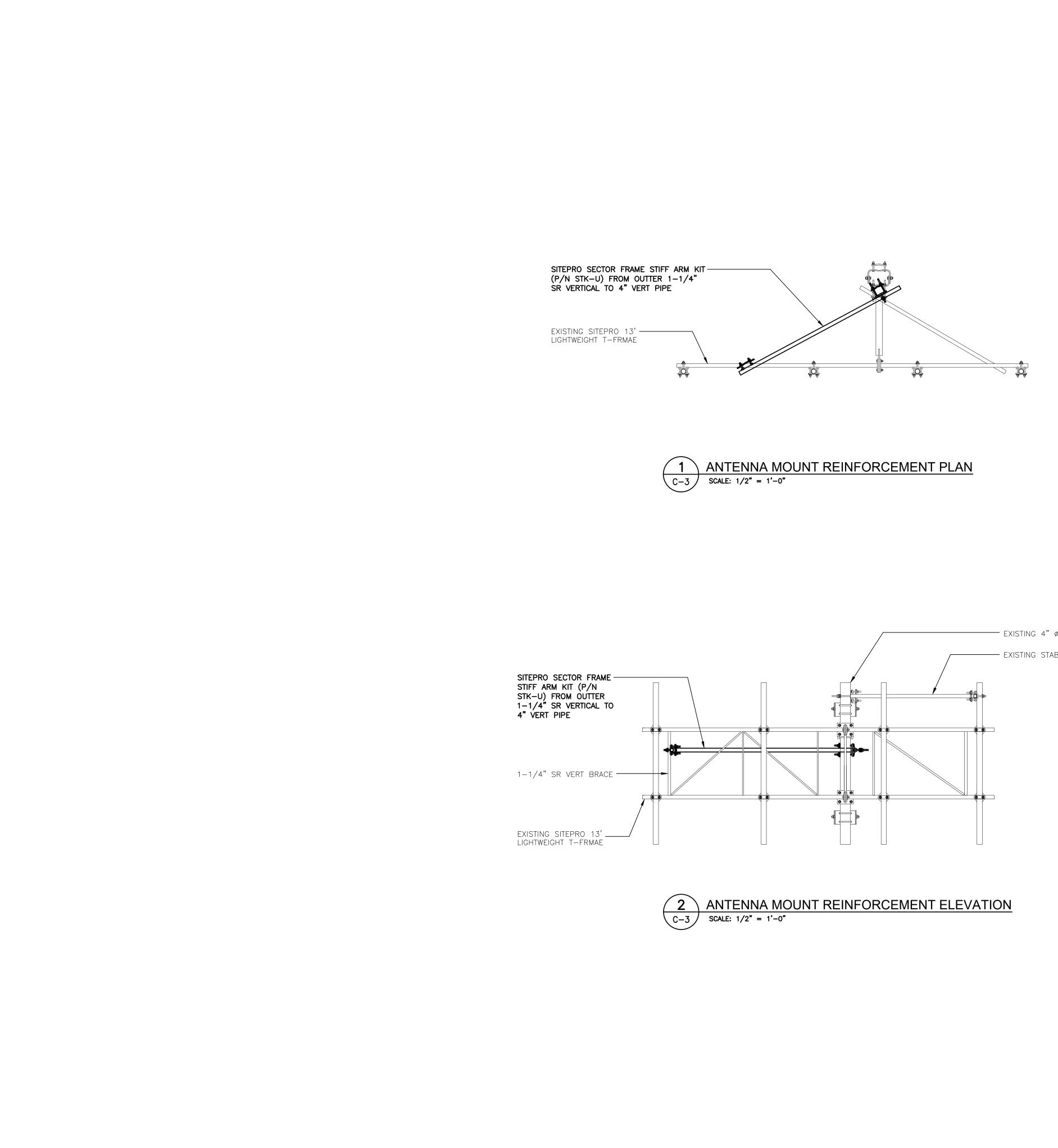
11. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.

12. SHOP DRAWINGS, CONCRETE MIX DESIGNS, TEST REPORTS, AND OTHER SUBMITTALS PERTAINING TO STRUCTURAL WORK SHALL BE FORWARDED TO THE OWNER FOR REVIEW BEFORE FABRICATION AND/OR INSTALLATION IS MADE. SHOP DRAWINGS SHALL INCLUDE ERECTION DRAWINGS AND COMPLETE DETAILS OF CONNECTIONS AS WELL AS MANUFACTURER'S SPECIFICATION DATA WHERE APPROPRIATE. SHOP DRAWINGS SHALL BE CHECKED BY THE CONTRACTOR AND BEAR THE CHECKER'S INITIALS BEFORE BEING SUBMITTED FOR REVIEW.

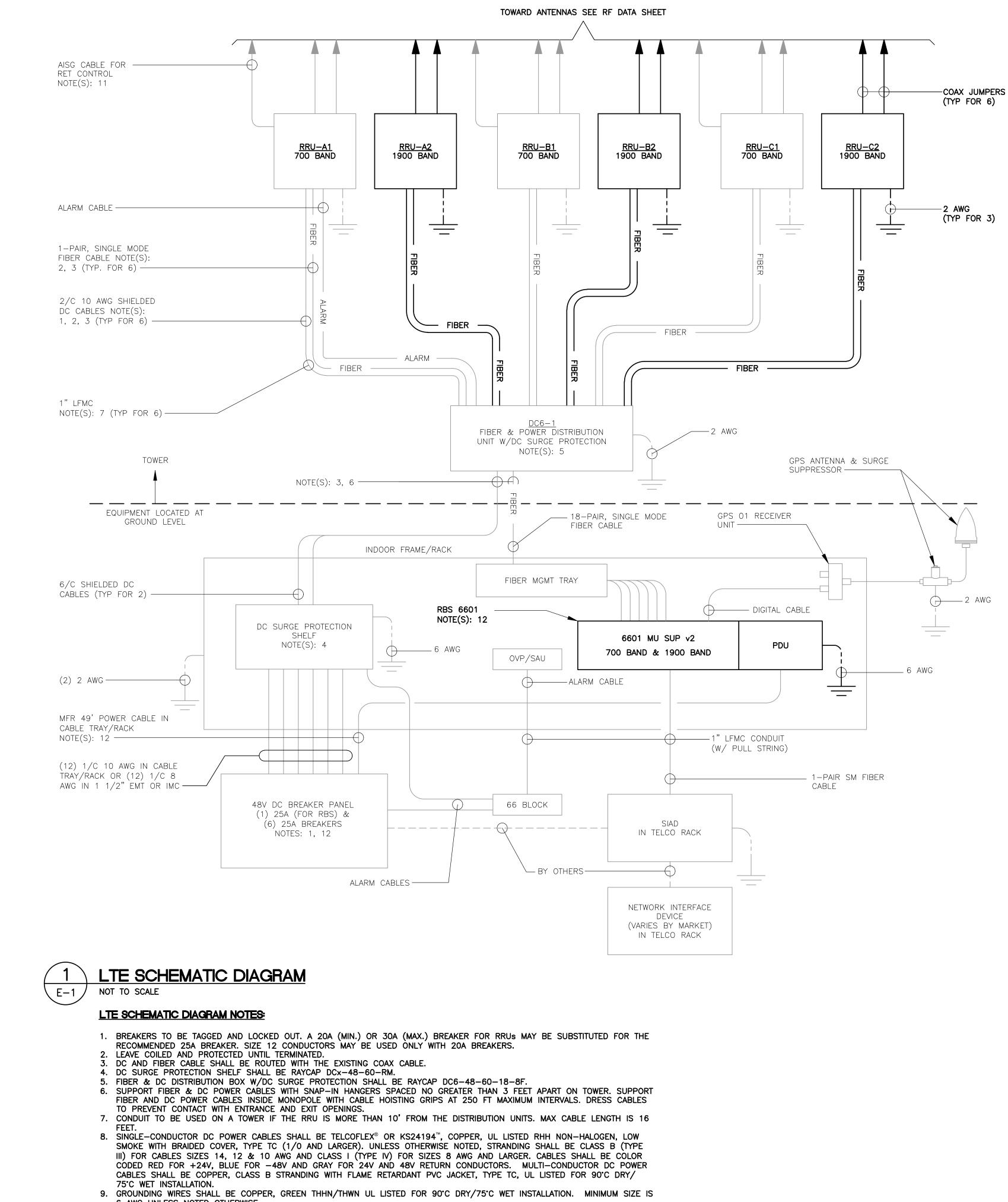
13. NO DRILLING WELDING OR TAPING ON EVERSOURCE OWNED EQUIPMENT.


14. REFER TO DRAWING T1 FOR ADDITIONAL NOTES AND REQUIREMENTS.


STRUCTURAL STEEL

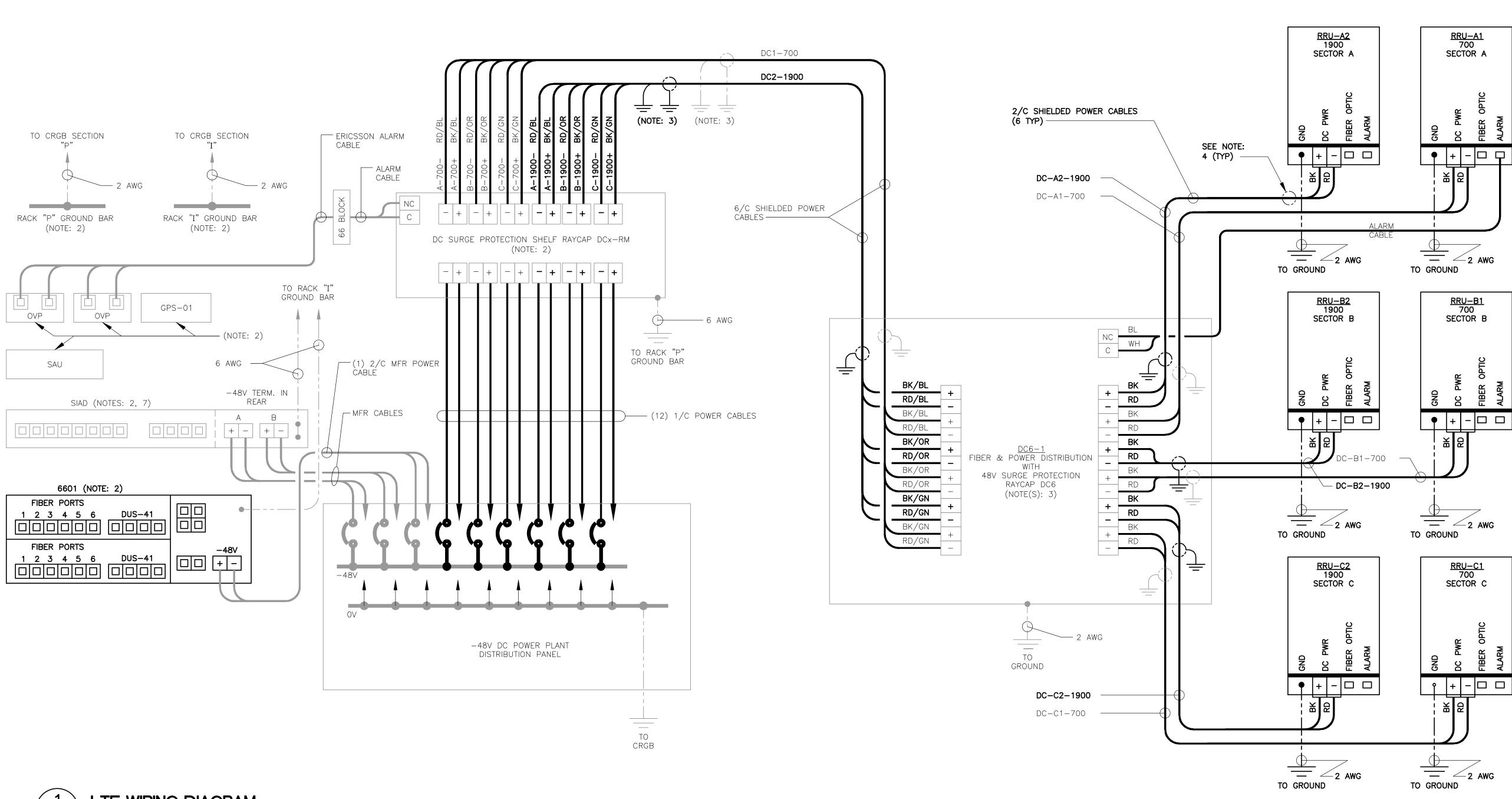

1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DE

- A. STRUCTURAL STEEL (W SHAPES)---ASTM A992 (FY = 50
- B. STRUCTURAL STEEL (OTHER SHAPES) --- ASTM A36 (FY =
 C. STRUCTURAL HSS (RECTANGULAR SHAPES) -- ASTM A500 (
- (FY = 46 KSI)D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE
- (FY = 42 KSI)
- E. PIPE---ASTM A53 (FY = 35 KSI) F. CONNECTION BOLTS---ASTM A325-N
- G. U-BOLTS---ASTM A36
- H. ANCHOR RODS---ASTM F 1554 I. WELDING ELECTRODE---ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPA APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE TH SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORC SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERE ELEVATIONS AND DETAILS.
- 3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECT WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONS
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP AN MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE TH
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTI DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, A DISTORTIONS OR DEFECTS.
- AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASI NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PA ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANI FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPI COATINGS" ON IRONS AND STEEL PRODUCTS.
- ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IR HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRIC OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CON REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REC REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/
- 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A32 SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIE
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BO
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEA TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE
- COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYIN OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF F
 INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH
- PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INS


		CLIENT COMMENTS CLIENT COMMENTS CONSTRUCTION
	PAINT NOTES	CLIENT CC
DESIGN (ASD)	PAINTING SCHEDULE: 1. <u>ANTENNA PANELS:</u>	
50 KSI) = 36 KSI) D GRADE B,	A. SHERWIN WILLIAMS POLANE—B B. COLOR TO BE MATCHED WITH EXISTING TOWER STRUCTURE.	REVISED PER REVISED PER ISSUED FOR
DE B,	 <u>COAXIAL CABLES:</u> A. ONE COAT OF DTM BONDING PRIMER (2-5 MILS. DRY FINISH) B. TWO COATS OF DTM ACRYLIC PRIMER/FINISH (2.5-5 MILS. DRY FINISH) C. COLOR TO BE FIELD MATCHED WITH EXISTING STRUCTURE. 	
	EXAMINATION AND PREPARATION:	DRAWINGS DRAWINGS DRAWINGS
DPY TO ENGINEER FOR FFORE SUBMITTING TO	1. DO NOT APPLY PAINT IN SNOW, RAIN, FOG OR MIST OR WHEN RELATIVE HUMIDITY EXCEEDS 85%. DO NOT APPLY PAINT TO DAMP OR WET SURFACES.	NOLL
THE FOLLOWING: PRCING, ANCHORAGE, RECTION DRAWINGS,	2. VERIFY THAT SUBSTRATE CONDITIONS ARE READY TO RECEIVE WORK. EXAMINE SURFACE SCHEDULED TO BE FINISHED PRIOR TO COMMENCEMENT OF WORK. REPORT ANY CONDITION THAT MAY POTENTIALLY AFFECT PROPER APPLICATION.	CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION DESCRIPTION
CTED IN ACCORDANCE	3. TEST SHOP APPLIED PRIMER FOR COMPATIBILITY WITH SUBSEQUENT COVER MATERIALS.	
ANCHORS, THE STRUCTURE.	4. PERFORM PREPARATION AND CLEANING PROCEDURE IN STRICT ACCORDANCE WITH COATING MANUFACTURER'S INSTRUCTIONS FOR EACH SUBSTRATE CONDITION.	CAG CAG CAG CAG
CTICAL SECTIONS FOR	5. CORRECT DEFECTS AND CLEAN SURFACES WHICH AFFECT WORK OF THIS SECTION. REMOVE EXISTING COATINGS THAT EXHIBIT LOOSE SURFACE DEFECTS.	JTD DMD RAWN BY
, AND FREE FROM	6. IMPERVIOUS SURFACE: REMOVE MILDEW BY SCRUBBING WITH SOLUTION OF TRI-SODIUM PHOSPHATE AND BLEACH. RINSE WITH CLEAN WATER AND ALLOW SURFACE TO DRY.	
ASIONS AND PAINT IN	7. ALUMINUM SURFACE SCHEDULED FOR PAINT FINISH: REMOVE SURFACE CONTAMINATION BY STEAM OR HIGH-PRESSURE WATER. REMOVE OXIDATION WITH ACID ETCH AND SOLVENT WASHING. APPLY ETCHING PRIMER IMMEDIATELY FOLLOWING	05/01/ 10/19/ V. DATE
ANIZED AFTER PPED GALVANIZED)	 CLEANING. 8. FERROUS METALS: CLEAN UNGALVANIZED FERROUS METAL SURFACES THAT HAVE NOT BEEN SHOP COATED; REMOVE OIL, GREASE, DIRT, LOOSE MILL SCALE, AND OTHER 	
BE GALVANIZED IN IRON AND STEEL	FOREIGN SUBSTANCES. USE SOLVENT OR MECHANICAL CLEANING METHODS THAT COMPLY WITH THE STEEL STRUCTURES PAINTING COUNCIL'S (SSPC) RECOMMENDATIONS. TOUCH UP BARE AREAS AND SHOP APPLIED PRIME COATS THAT HAVE BEEN DAMAGED. WIRE BRUSH, CLEAN WITH SOLVENTS RECOMMENDED BY PAINT MANUFACTURER, AND TOUCH UP WITH THE SAME PRIMER AS THE SHOP COAT.	ENGINEER SEAL
RICATED, DAMAGED OR CONDITIONS TO REQUIRE ENGINEER	9. GALVANIZED SURFACES: CLEAN GALVANIZED SURFACES WITH NON-PETROLEUM-BASED SOLVENTS SO SURFACE IS FREE OF OIL AND SURFACE CONTAMINANTS. REMOVE PRETREATMENT FROM GALVANIZED SHEET METAL FABRICATED FROM COIL STOCK BY	27517
1/4 INCHES. 325. ALL BOLTS IUM OF TWO BOLTS,	MECHANICAL METHODS. 10. ANTENNA PANELS: REMOVE ALL OIL, DUST, GREASE, DIRT, AND OTHER FOREIGN MATERIAL TO ENSURE ADEQUATE ADHESION. PANELS MUST BE WIPED WITH METHYL ETHYL KETONE (MEK).	SSEE CENSED OF THINK
LIES.	11. COAXIAL CABLES: REMOVE ALL OIL, DUST, GREASE. DIRT, AND OTHER FOREIGN MATERIAL TO ENSURE ADEQUATE ADHESION.	at&t
BOLTED. BEARING SURFACES TO	CLEANING: 1. COLLECT WASTE MATERIAL, WHICH MAY CONSTITUTE A FIRE HAZARD, PLACE IN	
	CLOSED METAL CONTAINERS AND REMOVE DAILY FROM SITE.	EMPRE
TO AN ACCURACY OF	APPLICATION: 1. APPLY PRODUCTS IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS.	telecom
HE COLUMN. YING THE ENGINEER	2. DO NOT APPLY FINISHES TO SURFACES THAT ARE NOT DRY.	
F PRECEDING WORK. TH BOLTING SHALL BE	 APPLY EACH COAT TO UNIFORM FINISH. APPLY EACH COAT OF PAINT SLIGHTLY DARKER THAN PRECEDING COAT UNLESS 	
SUBMITTED TO THE	5. SAND METAL LIGHTLY BETWEEN COATS TO ACHIEVE REQUIRED FINISH.	L Koad
INSPECTION.	 SAND METAL LIGHTLT BETWEEN COATS TO ACHIEVE REQUIRED FINISH. VACUUM CLEAN SURFACES FREE OF LOOSE PARTICLES. USE TACK CLOTH JUST PRIOR TO APPLYING NEXT COAT. 	Centered on Solutions ¹ Centered on Solutions ¹ (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405 www.CentekEng.com
	7. ALLOW APPLIED COAT TO DRY BEFORE NEXT COAT IS APPLIED. COMPLETED WORK:	Centered Centered (203) 488 63-2 Nor Branford www.Ce
	 SAMPLES: PREPARE 24" X 24" SAMPLE AREA FOR REVIEW. MATCH APPROVED SAMPLES FOR COLOR, TEXTURE AND COVERAGE. REMOVE REFINISH 	
	OR REPAINT WORK NOT IN COMPLIANCE WITH SPECIFIED REQUIREMENTS.	POLICE
		AT&T MOBII WRELESS COMMUNICATIONS WRELESS COMMUNICATIONS ESTER MUNN ROAD CT2284 - LTE 268 WNDHAM AVE 268 WNDHAM AVE COLCHESTER, CT
		T&T MOE WIRELESS COMMUNICATI STER MUNN RO/ CT2284 - L ⁻ 268 WINDHAM COLCHESTER,
		$ T \otimes $ wireless wireless CT2 CT2 CC2 COLC
		DATE: 09/05/17
		SCALE: AS NOTED
		JOB NO. 17004.46 NOTES,
		SPECIFICATIONS AND DETAILS
		N-1
		Sheet No. <u>2</u> of <u>8</u>

PROFESSIONAL ENGINEER SEAL		OFC	2 05/01/19 FJP CAG CONSTRUCTION DRAWINGS – REVISED PER CLIENT COMMENTS	1 10/19/17 JTD CAG CONSTRUCTION DRAWINGS - REVISED PER CLIENT COMMENTS	CAG CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION	REV. DATE DRAWN BY CHK'D BY DESCRIPTION
	el	AF ec		RE	1	
AT&T MOBILITY	WIRELESS COMMUNICATIONS FACILITY Centered on Solutions**	COLCHESTER MUNN ROAD STATE POLICE (203) 488-0580	CT2284 – LTE 2C Branford Road Branford, CT 06405	268 WINDHAM AVENUE		
	e: no.	AS 170	(05/1 NOTEL 104.46 JNT CATI)	N	
Sheet	C No.		- 3 of <u>8</u>)		

- 6 AWG UNLESS NOTED OTHERWISE. 10. FIBER OPTIC CABLES SHALL BE INSTALLED IN FLEXIBLE CONDUIT AS SCOPED BY MARKET.
- 11. RET CONTROL FROM THE RRU IS AN OPTIONAL METHOD OF CONNECTION. REFER TO RF DATA SHEET FOR APPLICABILITY. 12. RBS 6601 VARIANT 2 REQUIRES A 25A BREAKER AND 10 AWG (MIN.) CONDUCTORS. REPLACE EXISTING 15A OR 20A BREAKERS AND 12 AWG CONDUCTORS WHEN UPGRADING AN EXISTING RBS 6601 VARIANT 1.

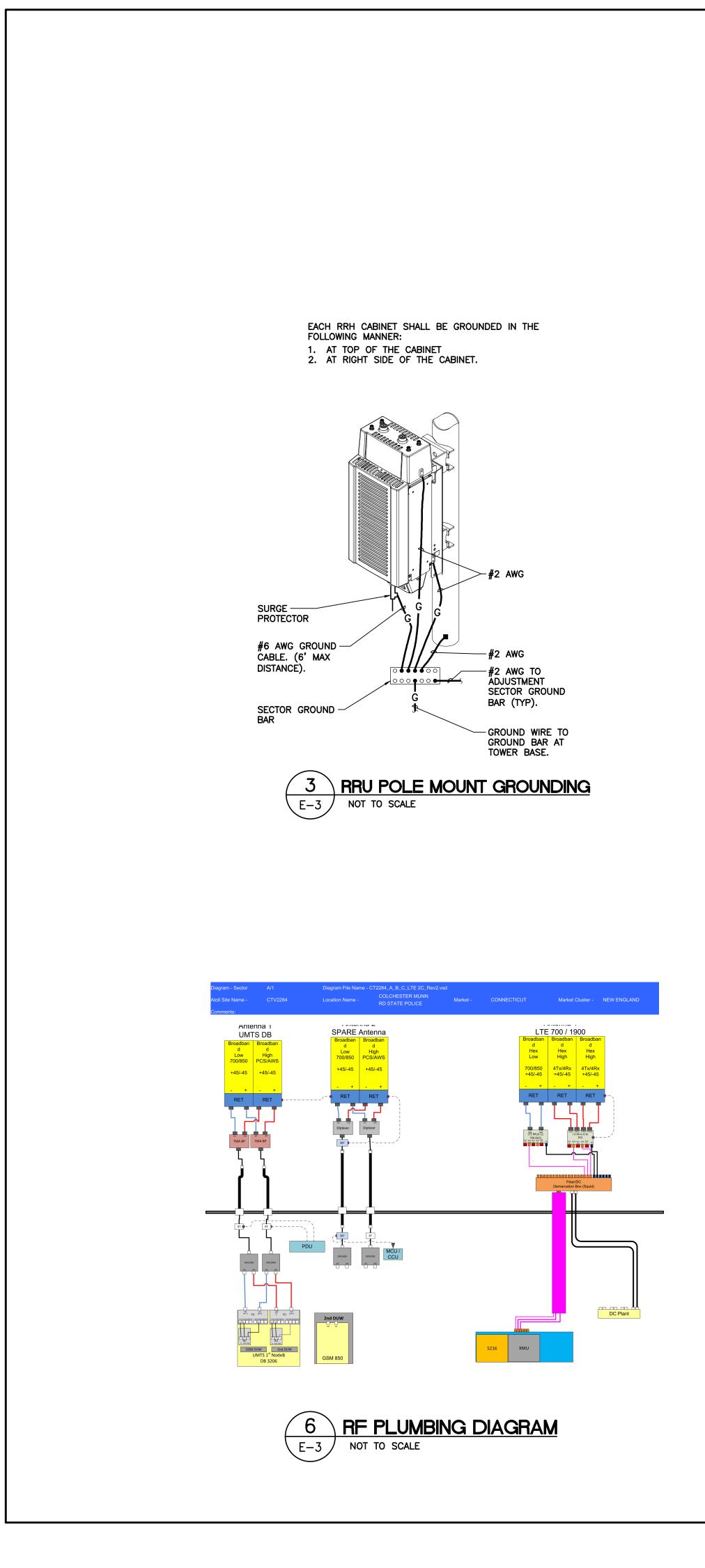

- PRIOR TO SUBMITTAL OF BID. 17. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN
- 18. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.
- 19. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250–122. (MIN. #12 AWG).
- 20. CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 5 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

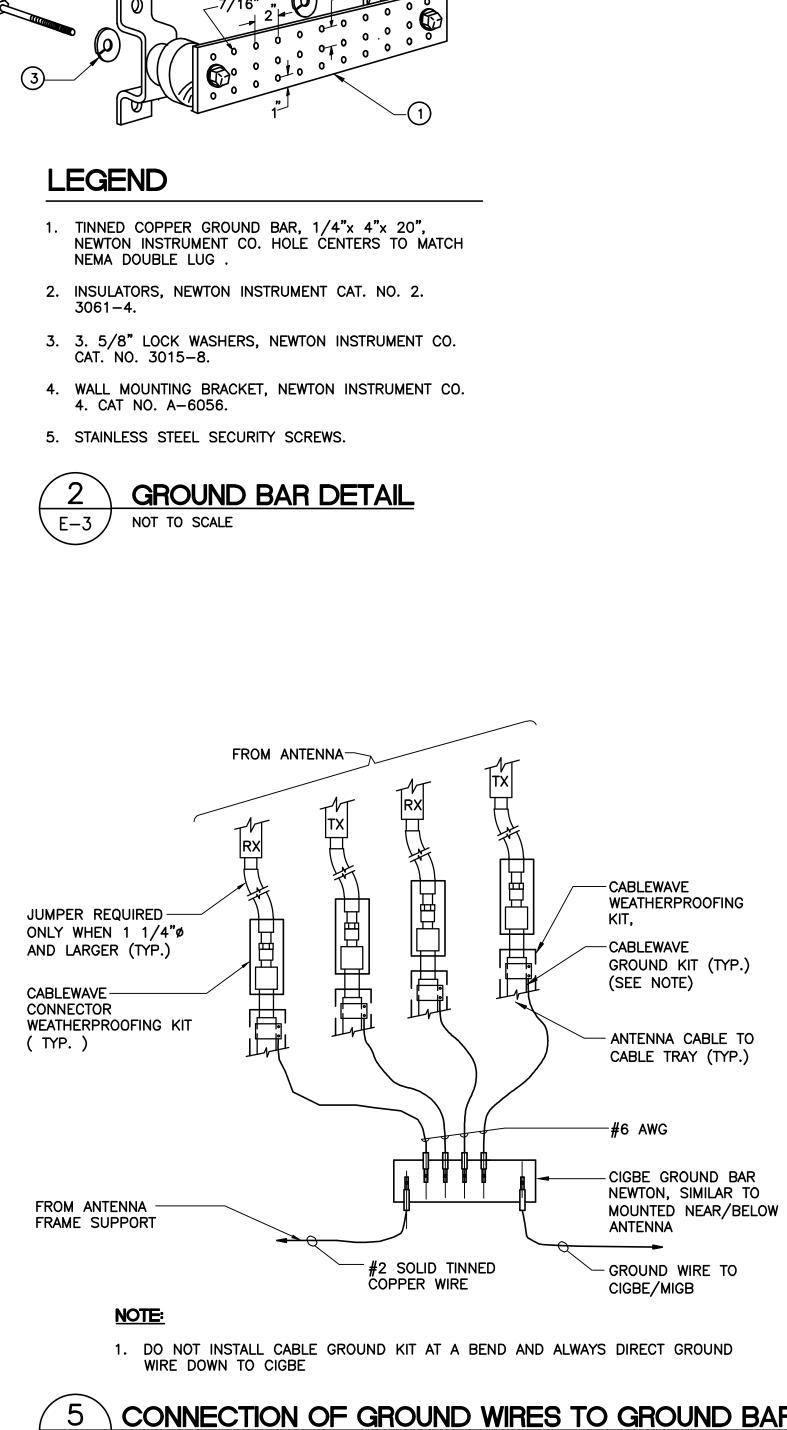
TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:

TEST 1: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.

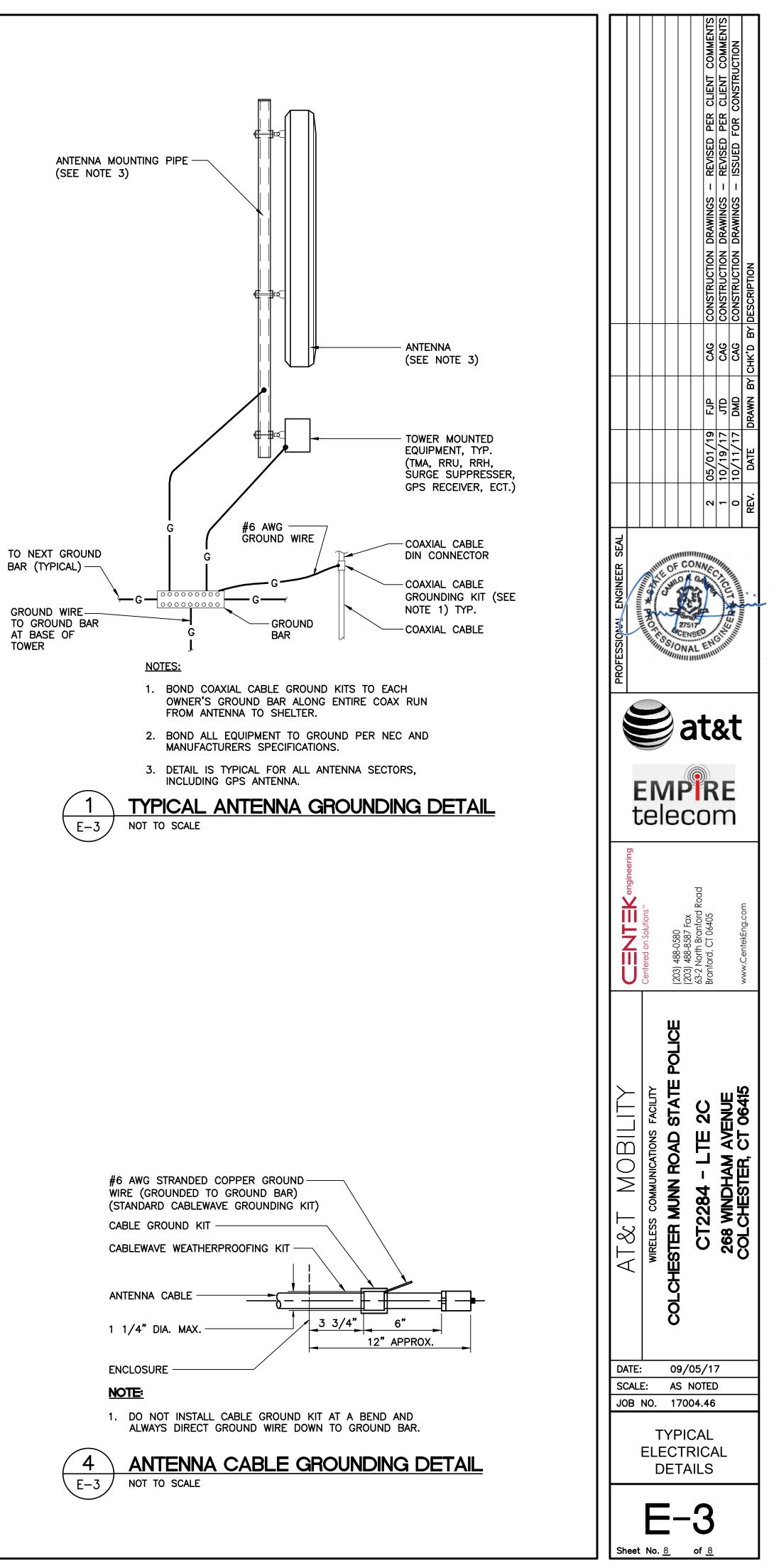
- 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST
- 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND
- 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.
- B. TESTING SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNERS CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.
- C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING.


LTE WIRING DIAGRAM NOT TO SCALE


LTE WIRING DIAGRAM NOTES:

- 1. LABEL THE DC POWER CABLES AT BOTH ENDS OF EVERY WIRE AND IN ANY PULL BOX IF USED. LABEL SHALL BE DURABLE, SELF ADHESIVE, WRAPPED LONGITUDINALLY ALONG THE CABLE AND STATE THE SECTOR, FREQUENCY BAND AND POLARITY; I.E. "A-1900+". CABLE AND WIRE LABELS SHOWN ARE REPRESENTATIVE AND MAY BE MODIFIED AS DIRECTED BY AT&T.
- 2. INSTALL ON BASEBAND EQUIPMENT RACK.
- RACK. WHEN A SHIELDED CABLE IS USED, THE DRAIN WIRE ALSO SHALL BE CONNECTED TO THE "P" GROUND BAR.
- 5. SEE LTE SCHEMATIC DIAGRAM DETAIL 1/E-1 FOR BREAKER RATING.

3. THE BARE GROUND WIRE OF EACH MULTI-CONDUCTOR CABLE SHALL BE CONNECTED TO THE "P" GROUND BAR ON THE 4. CABLE GROUND WIRE AND SHIELD DRAIN WIRE TO BE LEFT UN-TERMINATED AT RRU AND DC POWER PLANT.



CONNECTION OF GROUND WIRES TO GROUND BAR NOT TO SCALE

E-3

TOWER

EXHIBIT 3

Submitted to Empire Telecom USA, LLC 16 Esquire Road Billerica, MA 01862

Verizon Wireless 99 East River Drive East Hartford, CT 06108 Submitted by AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 February 22, 2019

DETAILED STRUCTURAL ANALYSIS AND MODIFICATION OF AN EXISTING 320' SELF SUPPORTING LATTICE TOWER AND FOUNDATION FOR PROPOSED ANTENNA ARRANGEMENT

AT&T Site Number : CT2284 Site Address: 112 Mu

112 Munn Road Colchester, Connecticut

EMP-008 VZ5-217

TABLE OF CONTENTS

- 1. EXECUTIVE SUMMARY
- 2. INTRODUCTION
- 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
- 4. FINDINGS AND EVALUATION
- 5. CONCLUSIONS AND RECOMMENDATIONS
- 6. DRAWINGS AND DATA
 - REINFORCEMENT DRAWINGS SK-1 THROUGH SK-2
 - SEISMIC BASE SHEAR ANALYSIS
 - TNX TOWER INPUT / OUTPUT SUMMARY
 - TNX TOWER FEEDLINE DISTRIBUTION CHART
 - TNX TOWER FEEDLINE PLAN
 - TNX TOWER DEFLECTION, TILT, AND TWIST
 - TNX TOWER DETAILED OUTPUT
 - ANCHOR BOLT ANALYSIS
 - FOUNDATION ANALYSIS
 - ANALYSIS UNDER TIA-222-F DESIGN CRITERIA (DESPP / CSP)
 - REFERENCE AT&T CONSTRUCTION DRAWINGS (DATED OCTOBER 19, 2017)

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis and modification of the 320' Self-supporting lattice tower located at 112 Munn Road in Colchester, Connecticut.

The structural analysis was conducted in accordance with the 2018 Connecticut State Building Code which include the TIA-222-G¹ Standard, 2015 International Building Code, the 2018 Connecticut State Building Code Amendments, the AISC² Load Resistance Factor Design (LRFD), the ASCE 7^3 design Code, and the Connecticut State Police Requirements which include the TIA/EIA-222-F⁴.

The antenna loading considered in the analysis consists of all the existing antennas, transmission lines and ancillary items as outlined in the Introduction Section of this report.

Proposed Antennas Carrier Antenna Center Elevation Remove: AT&T (6) TMA Units (Existing) @ 200' (6) SBNHH-1D65B Panel Antennas VZW @ 220' (3) Nokia 2x60-700 MHz RRH Units (Existing) (3) Nokia 2x90-AWS RRH Units Install: (2) CCI HPA-65R-BUU-H8 Panel Antennas (1 Alpha Sector, 1 Beta Sector) (1) CCI HPA-65R-BUU-H6 Panel Antenna (1 Gamma Sector) (3) Ericsson RRUS-11 RRH Units (3) Ericsson RRUS-32 B2 RRH Units AT&T @ 200' (1) Raycap DC6 Surge Arrestor Unit (Proposed) (3) SitePro1 Sector Frame Stiff Arm Kit (Part # STK-U) attaching to Existing Mount Assembly (6) Commscope JAHH-65B-R3B Panels (2 per Sector) (3) Commcsope BSAMNT-SBS-2-2 Panel **Mounts for JAHH Panels** (3) Samsung B2/B66A RRH-BR049 (RFV01U-D1A) RRH Units VZW @ 220' (3) Samsung B5/B13 RRH-BR04C (Proposed) (RFV01UD2A) RRH Units (3) Commscope CBC78T-DS-43-2X **Diplexer Units**

The proposed AT&T & Verizon Wireless (VZW) antenna upgrades are listed below:

1. TIA = Telecommunications Industry Association Structural Standard for Antenna Supporting Structures and Antennas (Version G)

2. AISC = American Institute of Steel Construction (14th Edition)

3. ASCE 7 = American Society of Civil Engineers Standard 7 (2010 Edition)

4. TIA/EIA = Telecommunications Industry Association Structural Standard for Antenna Supporting Structures and Antennas (Version F)

1. EXECUTIVE SUMMARY (continued):

The results of the analysis indicated the existing tower structure did not have enough capacity for the proposed loading conditions above. The tower structure and anchor components require modifications shown on SK-1 through SK-2. Once the modifications indicated on sheets SK-1 through SK-2 are performed the modified tower along with the existing tower anchor bolts and foundation are considered structurally adequate with the wind load specification specified above with the existing and proposed antenna loading herein. The maximum structural capacity calculated herein is 93.4%.

This analysis results (herein) have considered the design requirements of the Department of Energy Services and Public Protection (DESPP) / Connecticut State Police (CSP) for the 90 MPH wind with $\frac{1}{2}$ " concurrent radial ice as proposed for use under the TIA-222-F design standard. This analysis (with permission from the DESPP) is NOT considering the combined Twist and Sway requirements for this analysis results.

This analysis is based on:

- 1) The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- Tower geometry, structural member sizes, and antenna mount assembly taken from original construction drawings (Rohn File #: 43233AE) prepared by Rohn Industries, Inc., approved May 10, 2001.
- Previous structural analysis and reinforcement by URS Corporation for Verizon Wireless, project number VZ5-122 / 36922280, signed and sealed July 13, 2012 with updated modification sketches signed and sealed December 18, 2013. (<u>Note: Only foundation components have been constructed from this report</u>).
- 4) Antenna inventory provided by Connecticut State Police via e-mail on April 14, 2016.
- Previous structural analysis and tower modification performed by AECOM on behalf of AT&T, project number 60529362 / SAI-095, signed and sealed on February 6, 2017.
- 6) Tower climb and antenna inventory performed by Hightower Solutions Inc. (dated May 25, 2017), on behalf of KM Consulting Engineers, Inc. and the Connecticut State Police, obtained via e-mail dated November 9, 2017.
- 7) Proposed antenna inventory update to AT&T antennas via Radio Frequency Data Sheet (RFDS), Dated May 12, 2017, along with associated construction drawings date October 19, 2017, obtained via e-mail dated March 20, 2018.
- 8) Antenna inventory updates to the Motorola / Connecticut State Police obtained via email dated March 22, 2018.
- 9) Updated analysis design requirements per the Department of Energy Services and Public Protection (DESPP) / Connecticut State Police (CSP), obtained via-email dated November 30, 2018.
- 10) Proposed antenna inventory update to Verizon Wireless (VZW) antenna via RDFS, dated December 8, 2018, obtained via e-mail dated December 20, 2018.
- 11) Antenna inventory as specified in Sections 2 and 6 of this report

1. **EXECUTIVE SUMMARY** (continued):

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the antenna, cabling and mount configuration used, as well as the physical condition of the tower members, connections and foundations. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please contact this office at (860) 990-6767.

MUNICIPALITY Sincerely, AECOM Richard A. Sambor, P. E. Mo. 9057

Senior Structural Engineer

RAS/mcd

2. INTRODUCTION

The subject tower is located at 112 Munn Road in Colchester, Connecticut. The structure is a 320' self-supporting lattice tower structure designed by Rohn Industries, Inc.

The tower geometry and structure member sizes were taken from the original construction drawings (Rohn File #: 43233AE) prepared by Rohn Industries, Inc., approved May 10, 2001.

The structural analysis was conducted in accordance with the following:

- TIA-222-G Standard for Standard for a wind velocity of range of 105 mph to 120 mph (3second gust) and 50 mph (3-second gust) concurrent with 0.75" ice thickness, considered to increase in thickness with height
- 2015 International Building Code with 2018 Connecticut State Building Code Amendments for a wind speed of 108 mph (3-second gust)
- 2010 AISC Load Resistance Factor Design (LRFD)
- 2010 ASCE 7 Minimum Design Loads for Buildings and Other Structures for the ice thickness referenced in the TIA-222-G Standard
- Connecticut State Police Requirements for a wind velocity of 90 mph (fastest mile) and 90 mph (fastest mile) concurrent with 0.5" ice, analyzed under the TIA/EIA-222-F design Standard.

The inventory together with the proposed AT&T & VZW antenna arrangement is summarized in the table below:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) Lightning Rod	HTS-35 Tower (existing)	Leg Mount	325'	N/A
(1) Lighted Beacon	HTS-34 Tower (existing)	Tower Mount	325'	(1) 1/2" coax cable
(1) PD-128 Omni/Dipole Antenna	HTS-33 CSP-2 (existing)	6' Side Arm Mount	322'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) BA-1012 Omni Antenna	HTS-32 CSP-1 (existing)	6' Side Arm Mount	318'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) ANT450F6 Antenna	HTS-31 (existing)	6' Side Arm Mount	317'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) SC479-HF1LDF (D00- E6085) Omni Antenna	HTS-30 CSP-52 (existing)	6' Side Arm Mount	297'	(1) 1-5/8" coax cable (AVA7-50A)
(1) PD-340 Dipole Antenna	HTS-29 CSP-4 (existing)	6' Side Arm Mount	290'	(1) 7/8" coax cable (LCF78-50JA-A7)

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) OGT9-840 Omni Antenna	HTS-28 CSP-15 (existing)	6' Side Arm Mount	285'	(1) 1-5/8" coax cable (AVA7-50A)
(1) DB-809T3 Omni Antenna	HTS-26 CSP-14 (existing)	Shared with HTS-25 Mount	285'	(1) 1-5/8" coax cable (AVA7-50A)
(1) (inverted) SC479- HF1LDF (D00I-E6085) Omni Antenna (1) 432-83H TTA Unit	HTS-27 CSP-54,55 (existing)	6' Side Arm Mount	284'	(1) 1-5/8" coax cable (AVA7-50A) (2) 1/2" coax cable
(1) (inverted) SC479- HF1LDF (D00I-E6085) Omni Antenna	HTS-25 CSP-53 (existing)	6' Side Arm Mount	283'	(1) 1-5/8" coax cable (AVA7-50A)
(1) PD-440 Dipole Antenna	HTS-24 DEHMS-6 (existing)	Shared with HTS-23 Mount	262'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) (inverted) SC479- HF1LDF Omni Antenna	HTS-23 CSP-51 (existing)	6' Side Arm Mount	261'	(1) 1-5/8" coax cable (AVA7-50A)
(1) SC479-HF1LDF Omni Antenna	HTS-22 DEP-5 (existing)	Shared with HTS-21 Mount	248'	(1) 1-5/8" coax cable (AVA7-50A)
(2) (inverted) SC479- HF1LDF Omni Antennas (1) TMA Unit	HTS-21 CSP-16,17 (existing)	(1)T-Arm Frame Mount	246'	(2) 1-5/8" coax cable (AVA7-50A) (1) 1/2" coax cable
(1) PD-1142 Omni Antenna	HTS-20 DEHMS-7 (existing)	6' Side Arm Mount	244'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) 531-70 Dipole Antenna	HTS-19 CSP-8 (existing)	6' Side Arm Mount	235'	(1) 7/8" coax cable (LCF78-50JA-A7)
(6) JAHH-65B-R3B Panel Antennas (2 per Sector) (3) B2/B66A RRH-BR049 (RFV01U-D1A) RRH Unit (3) B5/B13 RRH-BR04C (RFV01U-D2A) RRH Unit (3) CBC78T-DS-43-2X Diplexer Units	VZW (Proposed)	(3) BSAMNT- SBS-2-2 Panel Mounts for JAHH Antennas Shared with Below Mount	220'	See Below Cables
(3) LNX-6512DS-VTM (2) OVP-RC3DC-3315- PF-48 OVP Units	HTS- 16,17,18 VZW (existing)	(3) T-Arms (existing)	220'	(6) 1 5/8" coax cables (existing) (2) HB158-1-08U8-S8J18 Fiber Optic Cable

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(2) CCI HPA-65R-BUU- H8 (1A, 1B) (1) CCI HPA-65R-BUU- H6 (1C) (3) RRUS-11 RRH Units (3) RRUS-32 B2 RRH Units (1) DC6-48-60-0-8C Surge Arrestor	AT&T (Proposed)	(3) SitePro1 STK- U Mount Stiff- Arm Kits added to Existing Mounts (indicated below)	200'	See Below Cables
 (6) Powerwave 7770 Panel Antennas (2) Powerwave LGP 21401 TMA Units (2) LGP 13519 Diplexer Units 	HTS-15 AT&T (existing)	(3) T-Arm mounts with (1) Stiff-Arm connected to Tower Structure	200'	 (12) 1 5/8" coax cables (1) Fiber Optic Cable & (2) DC Cables within 2" Flex Conduit
(1) 1151-3N Omni Antenna	HTS-14 NEU-32 (existing)	Shared with HTS- 13 Mount	177'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) DB586-Y Omni Antenna	HTS-12 NEU-48 (existing)	6' Side Arm Mount	176'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) (inverted) DB586-Y Omni Antenna (1) TTA Unit	HTS-13 NEU-49,50 (existing)	6' Side Arm Mount	174'	(1) 7/8" coax cable (LCF78-50JA-A7) (1) ½" coax cable (LDF4-50A)
(3) Small Lighted Tower Beacon Lights	HTS-11 Tower (existing)	Mounted to Leg	164'	(1) 3/8" coax cable
(1) ANT450F6 Antenna	HTS-10 CSP (existing)	6' Side Arm Mount	153'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) 6' Dish with Radome	CSP (existing)	Pipe Mounted to Leg	145'	(1) WG65 elliptical cable
(1) PD-156S Yagi Antenna	HTS-9 DEP-9 (existing)	Shared with HTS- 8 Mount	137'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) DB-212 Dipole Antenna	HTS-8 NEU-33 (existing)	6' Side Arm Mount	134'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) 3' Dish Antenna	CSP (existing)	Pipe Mounted to Leg	120'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) Ice Shield (for HTS-5 Dish)	HTS-7 CSP (existing)	Pipe Mounted to Leg	118'	N/A
(1) Ice Shield (for HTS-4 Dish)	HTS-6 CSP (existing)	Pipe Mounted to Leg	118'	N/A
(1) 3' Dish with Radome	HTS-5 CSP-13 (existin8g)	Pipe Mount to Leg	113'	(1) WE108 coax cable

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) 8' Dish Antenna w/ Shroud	HTS-4 CSP (existing)	Pipe mounted to Leg	106'	(1) WE 65 Elliptical Cable
(1) PD-458 Omni Antenna	HTS-3 CTT-18 (existing)	Shared with HTS- 2 Mount	105'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) Yagi Antenna	HTS-2 CSP (existing)	6' Side Arm Mount	103'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) PD-688 Yagi Antenna	HTS-1 FBI-31 (existing)	6' Side Arm Mount	91'	(1) 7/8" coax cable (LCF78-50JA-A7)

<u>Notes:</u> Antenna ID numbering (HTS-#) obtained from Tower Existing Inventory via tower climb, performed by Hightower Solutions, Inc. dated May 25, 2017. CSP numbering and elevations provided by CSP inventory obtained via e-mail dated April 14, 2016.

This structural analysis of the communications tower was performed by AECOM, on behalf of AT&T and Verizon Wireless (VZW). The purpose of this analysis was to investigate the structural integrity of the modified tower and the previously modified foundation for existing and proposed antenna loads in compliance with the 2018 Connecticut State Building Code. This analysis was conducted to evaluate stress on the tower and the effect forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with, the TIA-222-G–Structural Standard for Antenna Towers and Antenna Supporting Structures and Antennas, the 2015 International Building Code with 2018 Connecticut State Building Code Amendments and the American Institute of Steel Construction (AISC) Manual of Steel Construction – Load Resistance Factor Design (LRFD)

The structural analysis was conducted using TNX Tower version 8.0.5.0 and used the following conditions for this tower review (following the TIA-222-G Standard):

- Structure Class 3 (Essential Communications)
 - NOTE: ASCE 7 and CT State Building Code Applied Risk Category 4 for design wind loads (see below)
- Topographic Category 3 (Tower location on top of hill rolling wind conditions considered)
 - Crest Height used for analysis: (approximate elevations listed below)
 - Tower Base Elevation = 590 feet
 - High point (2 mile Radius) = 637 feet (Ref. Peak of hill near Amston Lake)
 - Low Point (2 mile Radius) = 410 feet (Ref. Bench mark Elevation near local Cemetery)
 - "H" = (Avg of High/Low) Base Elevation = (637+410)/2 590 = <u>66.5</u> feet
- Exposure Class C (Open Terrain with scattered obstructions)
- Load Conditions:
 - Two load conditions were evaluated as shown which were compared to design stresses according to AISC and TIA/EIA-222-G Standard.

Basic Wind Speed:

- TIA-222-G:
 - New London County (Wind Speed Range): V = 105 mph 120 mph (3-second gust) [Annex of TIA/EIA-222-G 2006]
 - IBC 2015 w/ 2018 CT State Building Code Amendment:
 - (2015) IBC Section 1609.1.1 Determination of Wind Loads Exception 5 "Designs using TIA-222" applies for determination of Design Wind Load obtained as "V.ult" are to be converted to "V.asd" when applying the TIA-222-G design Standard (under Section 1609.3) for Basic Wind Speed.
 - (2018) CT State Building Code Amendment to the IBC Section 1609.3 wind loads are obtained from Appendix N of the State Building Code.
 - V.asd = 108 mph (3-Second Gust) Wind Design Parameter for the Town of Southbury, Connecticut for Risk Category four (IV) for essential communications (Connecticut State Police).

LOAD CONDITION 1 = 108 MPH (3-SECOND GUST) WIND LOAD (WITHOUT ICE) + TOWER DEAD LOAD Load Condition 2 = 50 mph (3-second gust) Wind Load (with ice) + Ice Load + Tower Dead Load

Ice thickness used for this analysis is **0.75 inch** (assumed to start at the base of the tower) and is considered to increase in thickness with height. The initial ice thickness for design is referenced in the Annex of TIA-222-G and follows the same design criteria as the ASCE 7 Standard.

The load condition below implements the design requirements of the Department of Energy Services and Public Protection (DESPP) / Connecticut State Police (CSP) for the 90 MPH wind with ½" concurrent radial ice as proposed for use under the TIA-222-F design standard. This analysis (with permission from the DESPP) is NOT considering the combined Twist and Sway requirements for this analysis results.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS (cont.)

Load Condition 3 = 90 mph (fastest mile) Wind Load (with Ice) + Ice Load + Dead Load

Seismic event consideration factors/values for design:

- S.s = 0.174 (2018 CT State Building Code Location Specific Value)
- S.1 = 0.061 (2018 CT State Building Code Location Specific Value)
- Site Classification = "D"
- Seismic Design Category = "B" (2015 International Building Code)
- F.a = 1.6 (Obtained from TIA-222-G Table 2-12 Considering above conditions)
- F.v = 2.4 (Obtained from TIA-222-G Table 2-13 Considering above conditions)

Strength Limit State Load Combinations (TIA-222-G Section 2.3.2):

The structural analysis herein has considered the following load combinations within the analysis:

- 1. 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.6 Wind load without ice
- 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.0 Dead weight of ice due to factored ice thickness + 1.0 Concurrent wind load with factored ice thickness + 1.0 Load effects due to temperature
- 3. 1.2 Dead Load Tower structure + 1.0 Dead Load Guy Assemblies + 1.0 Earthquake Load
- NOTE 1: The above **bolded** load combination is considered to create the governing design loads per the results of the analysis.
- NOTE 2: The above "Dead Load Guy Assemblies" are not considered as part of the analysis and are considered as a value of zero.
- NOTE 3: The "Load effects due to temperature" do not apply for structures that are selfsustaining (from the TIA-222-G Standard)

4. FINDINGS AND EVALUATION

Combined axial and bending stresses on the existing tower structure were evaluated to compare with strength design in accordance with AISC (LRFD). The results of an initial analysis indicated that the existing tower structure did not have enough capacity to support the proposed loading conditions. The tower structure requires modifications shown on SK-1 through SK-2. Once the modification indicated on sheets SK-1 through SK-2 are performed, the modified tower structure, existing tower anchors bolts and existing foundation are considered structurally adequate within the wind load specification and with the existing and proposed antenna loading herein.

The combined values for the tower sway (deflection) and the tower twist (rotation) are NOT required for this analysis, as requested by the Department of Energy Services and Public Protection (DESPP) / Connecticut State Police (CSP). These figures combined are included within this report as reference and information only.

Component / (Section No.)	Controlling Component/ Elevation	Stress (% capacity)	Pass/Fail
Leg (T16)	ROHN 12 EH w/ L8x8x1/2 w/ (2) / Compression / 30' - 60'	64.9	Pass
Diagonal (T12)	L5x5x1/2 / Compression / 120' – 140'	90.4	Pass
Horizontal (T16)	ROHN 3.5 EH (P4x0.318") / Compression / 30' – 60'	93.3	Pass
Top Grit (T1)	L1-3/4x1-3/4x3/16 / Compression / 300' – 320''	2.6	Pass
Redundant Horizontal Bracing (T17)	ROHN 1.5 STD (P1.9x0.145") / Compression / 0'-30'	93.4	Pass
Redundant Diagonal Bracing (T16)	ROHN 2 EH (P2.5x0.218") / Compression / 0'-30'	90.6	Pass
Inner Bracing (T15)	ROHN 3 STD (P3x0.216) / 0' - 30'	0.5	Pass
Bolt Checks(T12)	@ Diagonal Connection (Bolt Shear) (1) A325X 7/8" Dia. / 120' – 140'	90.4	Pass

Proposed Tower Component Stress vs. Capacity Summary

Foundation Summary

Component	Required	Computed	% Capacity	Pass/Fail
Anchor Rod Capacity (TIA-222-G – 4.9.9)	Ratio < 1.0	0.660	66.0	Pass
Foundation – Drilled Pier Soil Failure Cone Uplift Capacity	1451.51 (Factored Resistance)	725.960	66.7	Pass
Foundation – Drilled Pier Bearing Capacity	1442.54 kip (Factored Resistance)	1278.94	88.7	Pass
Foundation – Drilled Pier Uplift Capacity	865.26 kip (Factored Resistance)	725.960	83.9	Pass
Structure Rating (Maximum from all Components) =			93.4 %	Pass

4. FINDINGS AND EVALUATION (cont.)

Maximum Deformations – Proposed Condition

TIA-222-G Section 2.8.2 - Limit State Deformations

- 1. A rotation of 4 degrees about the vertical axis (twist) or any horizontal axis (sway) of the structure
- 2. A horizontal displacement (in feet) of 3% of the height of the structure.

	Current		Allowable	
Load Case Description	Sway	Displacement	Sway	Displacement
	(degree)	(Feet)	(degree)	(Feet)
Service Wind Load	0.3975	1.429	4.0	9.6

Tower Twist & Sway at Top (Connecticut State Police Requirements – TIA/EIA-222-F):

Description	Current	Total	Allowable	
Tower Twist (degrees)	0.4306	0.9110	0.750	
Tower Sway (degrees)	0.4804	0.9110	0.750	

NOTE: Above combined Twist and Sway results are for information and reference only, per the direction of the DESPP / CSP.

5. CONCLUSIONS

The results of the analysis indicated the existing tower structure did not have enough capacity for the proposed loading conditions above. The tower structure and anchor components require modifications shown on SK-1 through SK-2. Once the modifications indicated on sheets SK-1 through SK-2 are performed the modified tower along with the existing tower anchor bolts and foundation are considered structurally adequate with the wind load specification specified with the existing and proposed antenna loading herein. The maximum structural capacity calculated herein is 93.4%.

Limitations/Assumptions:

This report is based on the following:

- 1) Tower inventory as listed in this report.
- 2) Tower is properly installed and maintained.
- 3) All members are as specified in the original design documents and are in good condition.
- 4) All required members are in place.
- 5) All bolts are in place and are properly tightened.
- 6) Tower is in plumb condition.
- 7) All member protective coatings are in good condition.
- 8) All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 9) Foundations are in good condition without defects and were properly constructed to support original design loads as specified in the original design documents.

AECOM is not responsible for any modifications completed prior to or hereafter in which AECOM is not or was not directly involved. Modifications include but are not limited to:

- A. Adding antennas
- B. Removing/replacing antennas
- C. Adding coaxial cables

AECOM hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact AECOM. AECOM disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The tower owner shall refer to TIA-222-G Section 14.2 for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. It is also recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions

6. DRAWINGS AND DATA

.

REINFORCEMENT DRAWINGS SK-1 THROUGH SK-2

GENERAL CONSTRUCTION NOTES

- ALL WORK SHALL COMPLY WITH THE CONNECTICUT STATE BUILDING AND LIFE SAFETY CODES, SUPPLEMENTS AND AMENDMENTS.
- 2. CONTRACTOR IS TO REVIEW ALL DRAWINGS AND NOTES IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUB-CONTRACTORS AND ALL RELATED PARTIES. THE SUB-CONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON DRAWINGS OR WRITTEN IN SPECIFICATIONS.
- 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION AND ELECTRICAL SUB-CONTRACTORS SHALL PAY FOR THEIR PERMITS.
- 6. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS ON SITE AT ALL TIMES AND ENSURE THE DISTRIBUTION OF NEW DRAWINGS TO SUB-CONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. CONTRACTOR SHALL FURNISH 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. INSTALLATION OF THIS WIRELESS COMMUNICATIONS EQUIPMENT SITE REQUIRES WORK IN THE IMMEDIATE VICINITY OF EXISTING OPERATING TELECOMMUNICATION SYSTEMS. THE CONTRACTOR SHALL PROVIDE AND COORDINATE THE METHODS OF PROTECTION WITH THE VARIOUS TELECOMMUNICATION CARRIERS AND THE TOWER OWNER. THERE SHALL BE NO INTERRUPTION OF OPERATION WITHOUT TIMELY COORDINATION WITH AND APPROVAL BY THE VARIOUS COMMUNICATIONS OPERATORS INCLUDING THE CONNECTICUT STATE POLICE.
- B. THE REINFORCEMENT OF PORTIONS OF THIS TOWER STRUCTURE MAY AFFECT CRITICAL CONNECTICUT STATE POLICE ANTENNAS. NO MOVEMENT, ALTERATION, OR DISCONNECTION OF CONNECTICUT STATE POLICE ANTENNAS MAY OCCUR WITHOUT THE NOTIFICATION AND APPROVAL OF THE CONNECTICUT STATE POLICE. CONTACT THE NETWORK CONTROL CENTER AT 860-865-8008.
- . TOWER REINFORCING WORK AFFECTING CRITICAL CONNECTICUT STATE POLICE ANTENNAS MAY BE REQUIRED TO BE CONDUCTED AT TIMES AS DETERMINED BY THE REQUIREMENTS OF THE CONNECTICUT STATE POLICE.

STRUCTURAL NOTES

AS REFERENCED IN THE CODE.

STRUCTURAL STEEL MATERIAL NOTES:

STRUCTURAL STEEL BEAMS, CHANNELS, PLATES	
ANGLE SIZE 2-1/2"x2-1/2"x1/4" AND SMALLER	
ANGLE SIZE GREATER THAN 2-1/2"x2-1/2"x1/4" A 572-Gr. 50	
EVICTING TOWER LED DOUBL DIDE	
EXISTING TOWER LEG ROHN PIPE A 572-Gr. 50	
CTRUCTURAL CTEEL CUMUL CONFORMA TO ALL THE REQUIREMENTS OF THE ACTIVE CONFORMATION	
STRUCTURAL STEEL SHALL CONFORM TO ALL THE REQUIREMENTS OF THE ASTM SPECIFICATIO	N.
AS DECEDENCED IN THE CODE	

UNLESS OTHERWISE NOTED, ALL STEEL WILL BE GALVANIZED IN ACCORDANCE WITH ASTM 12.3 AFTER FABRICATION. TOUCH UP ALL DAMAGED GALVANIZED STEEL WITH APPROVED COLD ZINC, "GALVANOX", "DRY GALV", "ZINC-IT", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURERS GUIDELINES. TOUCH-UP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT APPLIED IN SHOP OR FIELD.

SHOP AND ERECTION DRAWINGS SHALL BE SUBMITTED FOR ALL STRUCTURAL STEEL WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. SUBMIT 2 SETS OF PRINTS FOR THE ENGINEER REVIEW. REFER TO NOTE 12

MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.

THE OMISSION OF ANY MATERIAL THAT WAS SHOWN ON THE CONTRACT DRAWINGS SHALL NOT RELIEVE THE CONTRACTOR OF PROVIDING THE SAME.

CONNECTIONS / FIELD ASSEMBLY NOTES:

BOLTED CONNECTIONS: UNLESS OTHERWISE NOTED, ALL JOINTS ARE SLIP CRITICAL TYPE, REQUIRING 5/8", 7/8" & 1" DIA. A325X & A490X BOLTS, A563 NUTS AND F436 WASHERS, ALL GALVANIZED. BEVELED WASHERS SHALL BE USED ON BEAM FLANGES HAVING A SLOPE GREATER THAN 1:20.

ALL WELDING SHALL BE DONE BY A CERTIFIED WELDER IN ACCORDANCE WITH AWS STANDARDS, USING E70XX ELECTRODES UNLESS OTHERWISE NOTED. WHERE WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZES PER "PREQUALIFIED WELDED JOINTS" TABLES IN AISC "MANUAL OF STEEL CONSTRUCTION", 14TH EDITION.

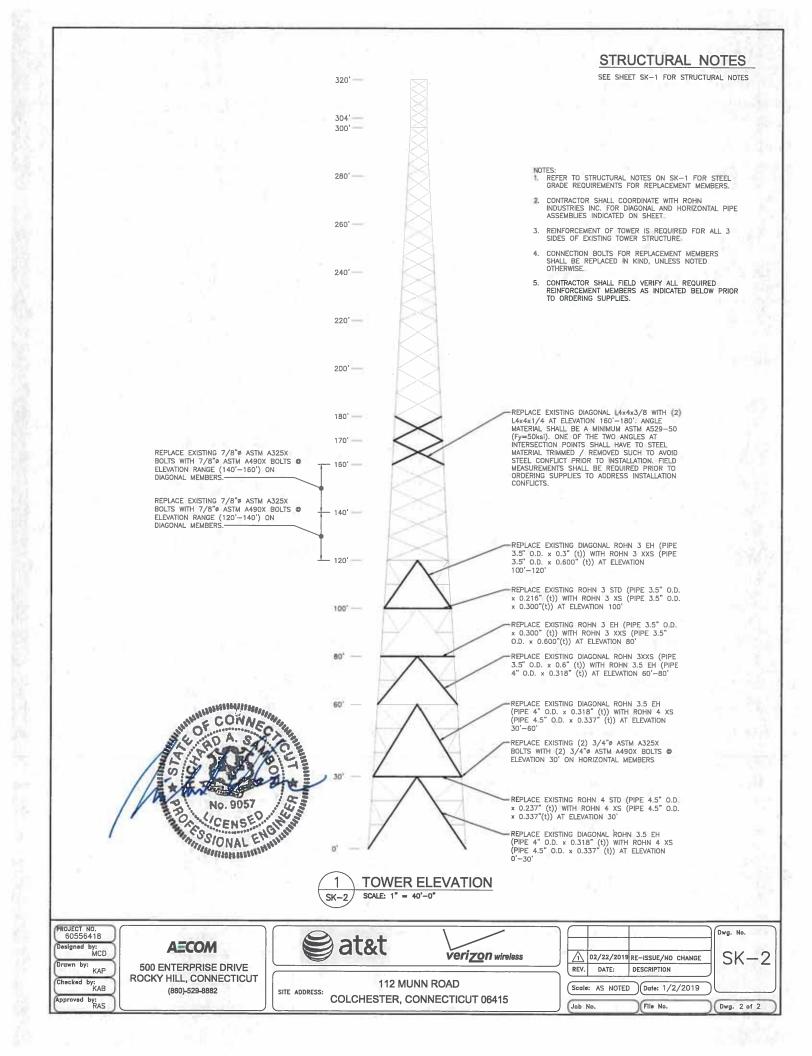
IF WELDING GALVANIZED MATERIALS, USE PRECAUTIONS & PROCEDURES PER AWS D1.1.

STRUCTURE IS DESIGNED TO BE LEVEL AND PLUMB, SELF-SUPPORTING AND STABLE AFTER WORK IS COMPLETED.

COMMENCEMENT OF WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.

- 10. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER MFR'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR ARCHITECT.
- 11. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 12. SHOP DRAWINGS ARE REQUIRED. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS ON THE TOWER AND INCLUDE THE GATHERED INFORMATION ON THE SHOP DRAWINGS. NOTE ANY DISCREPANCIES ENCOUNTERED ON THE SHOP DRAWINGS. NO FABRICATION OR INSTALLATION OF STEEL SHALL OCCUR PRIOR TO THE RECEIPT AND APPROVAL OF SHOP DRAWINGS.
- CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ARCHITECT FOR REVIEW. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTAL TO THE ARCHITECT FOR REVIEW.
- 14. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURE AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 15. CONTRACTOR TO CONTACT "CALL BEFORE YOU DIG" AT 1-800-922-4455 TO VERIFY AND IDENTIFY THE EXACT LOCATIONS OF ALL UNDERGROUND UTILITIES AND OBSTRUCTIONS IDENTIFIED PRIOR TO COMMENCING WORK IN THE CONTRACT AREA.
- 16. CONTRACTOR SHALL COMPLY WITH OWNER ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 17. EXISTING DIMENSIONS OF STRUCTURE SHOWN ON THESE DOCUMENTS ARE BASED ON ORIGINAL TOWER CONSTRUCTION DRAWINGS PERFORMED BY ROHN INDUSTRIES, INC., DATED MAY 2001, AND ARE NOT GUARANTEED. CONTRACTOR SHALL TAKE FIELD DIMENSIONS AS NECESSARY TO ASSURE PROPER FIT OF ALL FINISHED WORK AND SHALL ASSUME FULL RESPONSIBILITY FOR THEIR ACCURACY. WHEN SHOP DRAWINGS BASED ON FIELD MEASUREMENT ARE SUBMITTED FOR REVIEW, DIMENSIONS ARE PROVIDED FOR THE ENGINEER'S REFERENCE ONLY.
- CONTRACTOR TO VERIFY REQUIRED CLEARANCES INCLUDING BUT NOT LIMITED TO EXISTING BUILDINGS, EQUIPMENT PADS AND SHELTERS PRIOR TO COMMENCING WORK.
- 19. THE CONTRACTOR IS RESPONSIBLE FOR THE STABILITY OF THE STRUCTURE DURING CONSTRUCTION. NO MEMBER OF THE TOWER SHALL BE LEFT DISCONNECTED FOR THE NEXT WORKING DAY. THE CONTRACTOR SHALL BE AWARE OF WEATHER AND WIND CONDITIONS AND NOT PERFORM MEMBER REPLACEMENT IN A WIND.

INSPECTIONS:


SPECIAL INSPECTIONS ARE REQUIRED PER THE CODE FOR STRUCTURAL STEEL WORK.

OWNER WILL SUPPLY THE SERVICES OF A SPECIAL INSPECTOR AND TESTING AGENTS AS REQUIRED. CONTRACTOR SHALL COORDINATE INSPECTIONS OF FABRICATOR'S AND ERECTOR'S WORK AND MATERIALS TO MEET THE REQUIREMENTS OF THE STATEMENT OF SPECIAL INSPECTIONS FOR THIS PROJECT.

COPIES OF TESTING AND INSPECTION REPORTS WILL BE PROVIDED TO THE CONNECTICUT STATE POLICE, BUILDING OFFICIAL, ENGINEER OF RECORD AND CONTRACTOR.

PROJECT NO. 60556418 Designed by: MCD Drawn by:	by: KAP KAB KAB KAB KAB KAB KAB KAB KAB	at&t	verizon wireless	A 02/22/2019 RE-ISSUE/NO CHANGE REV. DATE: DESCRIPTION	Dwg. No. SK-1
Checked by: KAB		SITE ADDRESS:	NN ROAD ONNECTICUT 06415	Scale: AS NOTED Date: 1/2/2019 Job No. (File No.	Dwg. 1 of 2

SEISMIC BASE SHEAR ANALYSIS

Seismic (Vs) Base Shear Implementing ANSI/TIA-222-G, IBC 2015 & Connecticut State Building Code of 2018

Calculation of Seismic Base Shear Implementing ANSI/TIA-222-G, IBC 2015 & & CT State Building Code 2018.

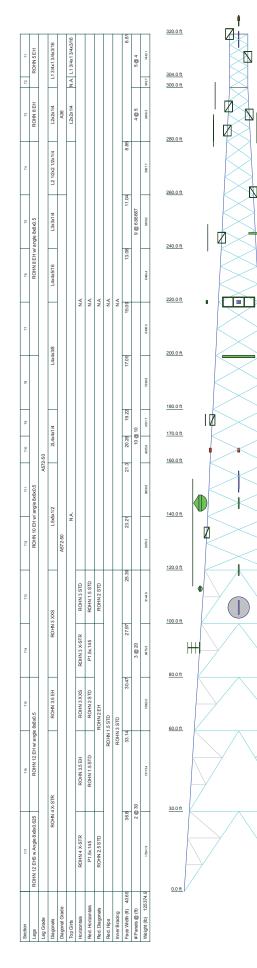
Colchester, CT -Site Class "D" Location: $S_{DS} = \frac{2}{3}F_A S_S, \text{ where } S_S = 0.174 \text{ and } F_A = 1.6 \text{ } S_{DS} = \frac{2}{3}F_A S_S = \frac{2}{3} * 1.6 * 0.174 = 0.1856$ $S_{D1} = \frac{2}{3}F_V S_1, \text{ where } S_1 = 0.061 \text{ } \text{ and } F_V = 2.4 \text{ } S_{D1} = \frac{2}{3}F_V S_1 = \frac{2}{3} * 2.4 * 0.061 = 0.0976$

TIA-222-G SECTION 2.7 EARTHQUAKE LOADS (PROCEDURES):

1. Importance Factor "I" (tables 2-3 TIA-222-G) = 1.5 (Structure Class 3)

ANSI/TIA-222-G 2.7.7.1 (TOTAL BASE SEISMIC SHEAR (Vs)

W=DL TOWER = 125.375 Kips W=Antennas/Mounts = 8.211 Kips <u>= 8.236 Kips</u> 141.822 Kips = WT Total = "W" W=Cables

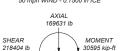

 $V_{s} = \frac{S_{DS} * W * I}{R} = \frac{0.1856 * 141.822 kips * 1.5}{3.0} = 13.1611 \ kips, \quad \text{where } R = 3.0 \text{ for Lattice}$ Tower

$$V_{S.min} = \frac{0.5 * S_{D1} * W * I}{R} = \frac{0.5 * 0.0976 * 141.822 \ kips * 1.5}{3.0} = 3.4868 \ kips$$

*By visual inspection, the above "Base Shear" value when considering the following Load Combination is less that the base shear of wind on structure.

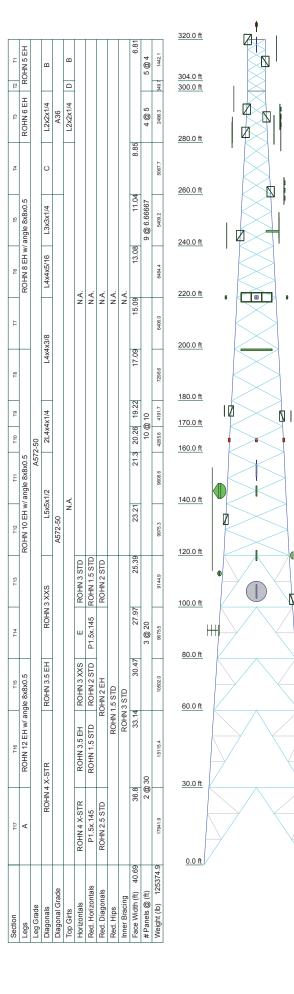
1.2 * DL + 1.0 E < 1.2 DL + 1.6 W, (128 Kips), therefore seismic effect on structure Does NOT control Design.

TNX TOWER INPUT / OUTPUT SUMMARY



TYPE	ELEVATION	TYPE	ELEVATIO	
Lights (HTS-34)	325	RFV01U-D1A RRH Unit (Verizon RRH)	220	
ning Rod 5/8x4" (HTS-35)	325	RFV01U-D2A RRH Unit (Verizon RRH)	220	
8-1 (HTS-33)	322	CBC78T-DS-43-2X Diplexer (Verizon)	220	
e Mount Standoff (HTS-33)	320	CBC78T-DS-43-2X Diplexer (Verizon)	220	
12-0 (HTS-32)	318	CBC78T-DS-43-2X Diplexer (Verizon)	220	
50F6 (HTS-31)	316.5	7770.00 (AT <u>I</u>)	200	
e Mount Standoff (HTS-32)	315	(2) LGP21401 TMA Unit (ATI)	200	
Pipe Mount (HTS-31)	311.5	HPA-65R-BUU-H6 Panel (ATI)	200	
9-HF1LDF (HTS-30)	297	(2) LGP21401 TMA Unit (ATI)	200	
e Mount Standoff (HTS-30)	293	RRUS-11 (ATI)	200	
0-1 (HTS-29)	290	7770.00 (AT <u>I</u>)	200	
e Mount Standoff (HTS-29)	290	RRUS-32 (ATI)	200	
9T3E-XC (HTS-26)	285	7770.00 (AT <u>T</u>)	200	
I-840 (HTS-28)	285	HPA-65R-BUU-H8 Panel (ATI)	200	
e Mount Standoff (HTS-27,28,TTA)	284.5	RRUS-11 (ATI)	200	
TMA/TTA)	284.5	7770.00 (ATI)	200	
e Mount Standoff (HTS-25,26,TTA)	284	HPA-65R-BUU-H8 Panel (ATI)	200	
TMA/TTA)	284	RRUS-32 (ATI)	200	
9-HF1LDF (HTS-27)	284	7770.00 (ATI)	200	
9-HF1LDF (HTS-25)	283	(2) LGP21401 TMA Unit (ATT)	200	
0-2 (HTS-24)	261.5	PiROD 12' Lightweight T-Frame (ATI)	200	
9-HF1LDF(D00-E6085) (HTS-23)	261	7770.00 (ATI)	200	
e Mount Standoff (HTS-23, 24)	261	PiROD 12' Lightweight T-Frame (ATI)	200	
42-1 (HTS-22)	248	PiROD 12' Lightweight T-Frame (ATL)	200	
9-HF1LDF(D00I-E6085) (Inverted)	246	STK-U Stiffener Side Arm Attachment (ATI)	200	
21a)	240	STK-U Stiffener Side Arm Attachment (ATT)	200	
9-HF1LDF(D00I-E6085) (Inverted)	246	DC6-48-60-0-8C Squid / Surge Arrestor (AT1)	200	
-21b)		STK-U Stiffener Side Arm Attachment (ATI)	200	
T-Boom (1) (HTS-21 (a,b) - HTS 22)	246	RRUS-11 (ATL)	200	
42-1 (HTS-20)	244	RRUS-32 (ATI)	200	
e Mount Standoff (HTS-20)	244	DB586-Y (HTS-12)	176	
0HD Exposed Dipole Antenna (HTS-19)	235	Pirod 4' Side Mount Standoff (1) (HTS-12)	176	
e Mount Standoff (HTS-19)	235	DB586-Y (inverted) (HTS-13)	176	
ont VFA-10-U V-Frame (Verizon)	220	Pirod 4' Side Mount Standoff (1) (HTS-13.14.TTA)	174	
ont VFA-10-U V-Frame (Verizon)	220	430-94C-09168-M-11048 TTA (TMA/TTA Control	174	
ont VFA-10-U V-Frame (Verizon)	220	Unit)	174	
-65B-R3B Panel Antenna (Verizon-AWS)	220	DB586-Y (HTS-14)	174	
-65B-R3B Panel Antenna (Verizon-PCS)	220	L-810 Obstruction Lighting (1) (HTS-11b)	164	
3512DS-VTM (Verizon-850)	220	L-810 Obstruction Lighting (1) (HTS-11c)	164	
INT-SBS-2-2 (JAHH Antenna Bracket (for 2))	220	L-810 Obstruction Lighting (1) (HTS-11a)	164	
on-PCS/AWS)		5'3"x4" Pipe Mount (HTS-10)	153	
1U-D1A RRH Unit (Verizon RRH)	220	ANT450F6 (HTS-10)	153	
1U-D2A RRH Unit (Verizon RRH)	220	4'x4" Pipe Mount (CSP Dish Mt. @ 145)	145	
1-6C-12AB-0Z / DC-3315-PF-48 Dist. Box	220	Commscope PAR6-59W-PXA/A (CSP Proposed)	145	
on)		PD156S (HTS-9)	137	
-65B-R3B Panel Antenna (Verizon-AWS)	220	DB212-1 (HTS-8)	134	
-65B-R3B Panel Antenna (Verizon-PCS)	220	6' Side Mount Standoff (HTS-8_9)	134	
S512DS-VTM (Verizon-850)	220	4'x4" Pipe Mount (CSP Dish Mt. @ 120)	120	
INT-SBS-2-2 (JAHH Antenna Bracket (for 2))	220	HPD3-4.7 (CSP Proposed)	120	
on-PCS/AWS)		Andrew 2' w/Radome (HTS-5)	113	
1U-D1A RRH Unit (Verizon RRH)	220	PA8-65 (HTS-4)	106	
1U-D2A RRH Unit (Verizon RRH)	220	5'3"x4" Pipe Mount (HTS-4)	106	
I-6C-12AB-0Z / DC-3315-PF-48 Dist. Box	220	PD458 (HTS-3)	105	
on)		PD458 (HTS-3) Pirod 4' Side Mount Standoff (1) (HTS-2 _3)	105	
-65B-R3B Panel Antenna (Verizon-AWS)	220		103	
-65B-R3B Panel Antenna (Verizon-PCS)	220	PD688S-4 (HTS-2) PD688S-4 (HTS-1)	91	
6512DS-VTM (Verizon-850)	220			
INT-SBS-2-2 (JAHH Antenna Bracket (for 2)) on-PCS/AWS)	220	4'x4" Pipe Mount (HTS-1)	91	

MATERIAL STRENGTH


GRADE	Fy	Fu	GRADE	Fy	Fu		
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi		

MAX. CORNER REACTIONS AT BASE:

TORQUE 382 kip-ft REACTIONS - 101 mph WIND

AECOM	^{Job:} 320' Rohn SSVMW		
500 Enterprise Drive, Suite 3B	Project: CSP Tower - Colchester, CT		
Rocky Hill, CT	Client: (MODification) VZW-217/ EMP-008 - "G"	Drawn by: MCD	App'd:
	Code: TIA-222-G	Date: 02/22/19	Scale: NTS
FAX: 860-529-3991	Path:		Dwg No. E-1

		SYN	IBOL LIST	ſ		
MARK		SIZE	MARK	SIZE		
Α	ROHN 12 EHS w Angle 8x8x0.625		D	N.A.		
В	L1 3/4x1 3/4x3/16		E	ROHN 3 X-STR		
С	L2 1/2x2 1/2x1/4					
		MATERI		NGTH		
GRAD	E Fy	Fu	GRAD	E Fy	Fu	
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi	

TOWER DESIGN NOTES

- 1. Tower designed for Exposure C to the TIA-222-G Standard.
- rower designed for a 101 mph basic wind in accordance with the TIA-222-G Standard.
 Tower designed for a 101 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
 Deflections are based upon a 60 mph wind.
 Tower Structure Cleac III.
- 5.
- Tower Structure Class III. Topographic Category 3 with Crest Height of 66.50 ft 6.
- P-Delta Displacement Effects are not applicable to this tower for this case (TIA-222-G 7. Section 3.5)
- 8. Wind speed shown as 101 MPH times the Importance Factor (1.15) equals the wind speed required for Risk 4/TIA-G Risk 3 wind speed of 108 MPH. 9. TOWER RATING: 93.4%

ALL REACTIONS ARE FACTORED

 \triangle

₿ +++

MAX. CORNER REACTIONS AT BASE: DOWN: 924766 lb SHEAR: 128286 lb

> UPLIFT: -725960 lb SHEAR: 105814 lb

50 mph WIND - 0.7500 in ICE

AXIAL 169631 lb

SHEAR

218404 lb

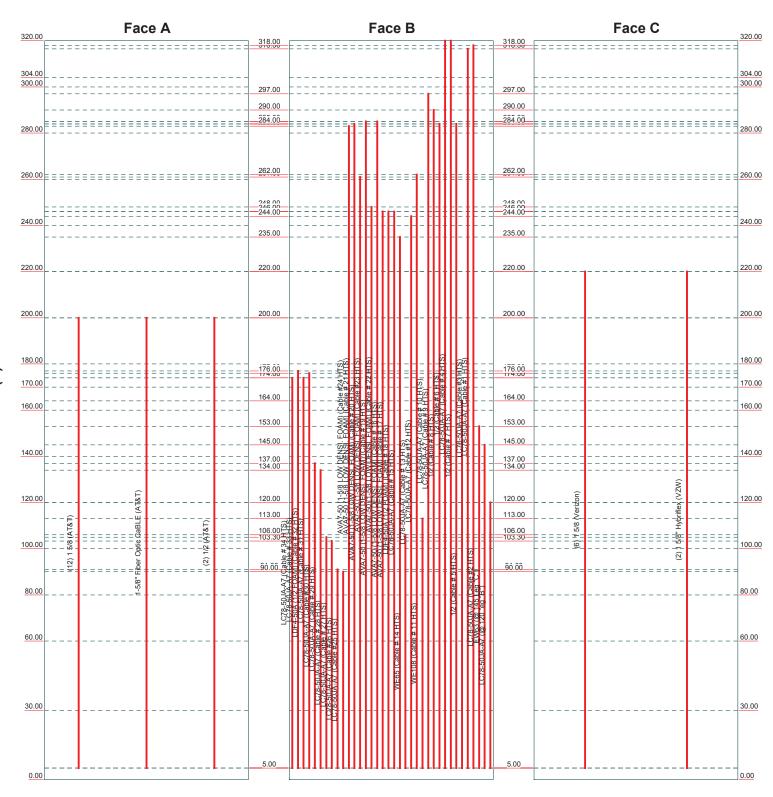
5

MOMENT 30595 kip-ft

TORQUE 382 kip-ft REACTIONS - 101 mph WIND

AECOM	^{Job:} 320' Rohn SSVMW			
500 Enterprise Drive, Suite 3B	Project: CSP Tower - Colchester, CT			
Rocky Hill, CT	Client: (MODification) VZW-217/ EMP-008 - "G"	Drawn by: MCD	App'd:	
Phone: 860-529-8882	^{Code:} TIA-222-G	Date: 02/22/19	Scale:	NTS
FAX: 860-529-3991	Path: Prinsen/Tesser/Security/Action/Consecurity/Security/2018/12 ATAT EMP-005 V25277 MODEB GEVes 2018/221 V2FEMPMX05even		Dwg No	[.] E-1

TNX TOWER FEEDLINE DISTRIBUTION CHART


Feed Line Distribution Chart 0' - 320'

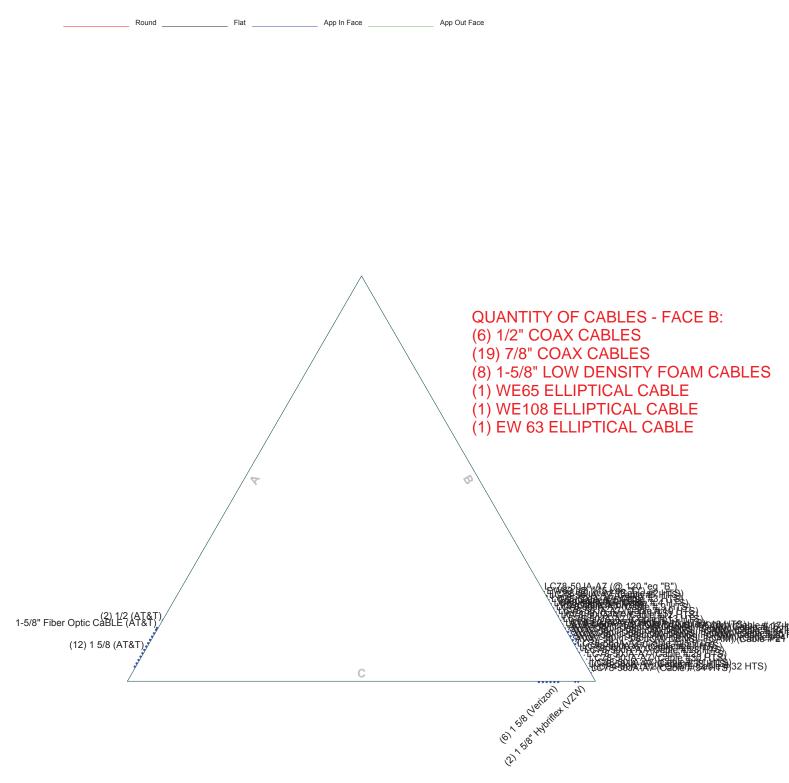
App In Face

- 320

App Out Face

Truss Leg

AECOM	^{Job:} 320' Rohn SSVMW			
500 Enterprise Drive, Suite 3B	Project: CSP Tower - Colchester, CT			
Rocky Hill, CT	Client: (MODification) VZW-217/ EMP-008 - "G"	Drawn by: MCD	App'd:	
Phone: 860-529-8882	^{Code:} TIA-222-G	Date: 02/22/19	Scale:	NTS
FAX: 860-529-3991	Path: Physics/Teconflucturable/control Connection/Conne		Dwg N	^{o.} E-7


Elevation (ft)

Round

Flat

TNX TOWER FEEDLINE PLAN

Feed Line Plan

AECOM	^{Job:} 320' Rohn SSVMW			
500 Enterprise Drive, Suite 3B	Project: CSP Tower - Colchester, CT			
Rocky Hill, CT	Client: (MODification) VZW-217/ EMP-008 - "G"	Drawn by: MCD	App'd:	
Phone: 860-529-8882	^{Code:} TIA-222-G	Date: 02/22/19	Scale:	NTS
FAX: 860-529-3991	Path: Princed/term/devade/control/constant/Constant/Control/Co		Dwg N	^{o.} E-7

TNX TOWER DETAILED OUTPUT

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	320' Rohn SSVMW	1 of 96
Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 320.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 6.81 ft at the top and 40.69 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

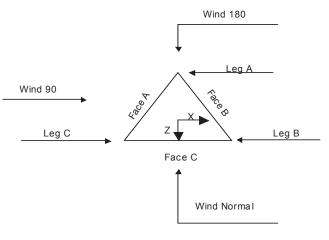
Basic wind speed of 101 mph. Structure Class III. Exposure Category C. Topographic Category 3. Crest Height 66.50 ft. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. P-Delta Displacement Effects are not applicable to this tower for this case (TIA-222-G Section 3.5). Wind speed shown as 101 MPH times the Importance Factor (1.15) equals the wind speed required for Risk 4/TIA-G Risk 3 wind speed of 108 MPH.. Pressures are calculated at each section. Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section √ Secondary Horizontal Braces Leg
- Use Diamond Inner Bracing (4 Sided) √ SR Members Have Cut Ends
- SR Members Are Concentric


Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- $\sqrt{}$ Use Clear Spans For Wind Area
- $\sqrt{}$ Use Clear Spans For KL/r
- Retension Guys To Initial Tension Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients √ Project Wind Area of Appurt. Autocalc Torque Arm Areas
- Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- $\sqrt{\text{SR Leg Bolts Resist Compression}}$
- ✓ All Leg Panels Have Same Allowable Offset Girt At Foundation
- $\sqrt{}$ Consider Feed Line Torque
- √ Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

to Town	Job		Page
tnxTower	320' Rohn SSVMW		2 of 96
АЕСОМ	Project		Date
500 Enterprise Drive, Suite 3B		CSP Tower - Colchester, CT	11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

<u>Triangular Tower</u>

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database	*	Width	of	Length
					Sections	Ũ
	ft			ft		ft
T1	320.00-304.00			6.81	1	16.00
T2	304.00-300.00			6.81	1	4.00
Т3	300.00-280.00			6.81	1	20.00
T4	280.00-260.00			8.85	1	20.00
T5	260.00-240.00			11.04	1	20.00
T6	240.00-220.00			13.08	1	20.00
Τ7	220.00-200.00			15.09	1	20.00
T8	200.00-180.00			17.09	1	20.00
Т9	180.00-170.00			19.22	1	10.00
T10	170.00-160.00			20.26	1	10.00
T11	160.00-140.00			21.30	1	20.00
T12	140.00-120.00			23.21	1	20.00
T13	120.00-100.00			25.39	1	20.00
T14	100.00-80.00			27.97	1	20.00
T15	80.00-60.00			30.47	1	20.00
T16	60.00-30.00			33.14	1	30.00
T17	30.00-0.00			36.80	1	30.00

tnxTower

Project

Client

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

3 of 96

11:31:15 02/22/19

Page

Date

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	320.00-304.00	4.00	X Brace	No	No	0.0000	0.0000
T2	304.00-300.00	4.00	X Brace	No	No	0.0000	0.0000
T3	300.00-280.00	5.00	X Brace	No	No	0.0000	0.0000
T4	280.00-260.00	6.67	X Brace	No	No	0.0000	0.0000
T5	260.00-240.00	6.67	X Brace	No	No	0.0000	0.0000
T6	240.00-220.00	6.67	X Brace	No	No	0.0000	0.0000
Τ7	220.00-200.00	10.00	X Brace	No	No	0.0000	0.0000
Τ8	200.00-180.00	10.00	X Brace	No	No	0.0000	0.0000
Т9	180.00-170.00	10.00	X Brace	No	No	0.0000	0.0000
T10	170.00-160.00	10.00	X Brace	No	No	0.0000	0.0000
T11	160.00-140.00	10.00	X Brace	No	No	0.0000	0.0000
T12	140.00-120.00	10.00	X Brace	No	No	0.0000	0.0000
T13	120.00-100.00	20.00	K1 Down	No	Yes	0.0000	0.0000
T14	100.00-80.00	20.00	K1 Down	No	Yes	0.0000	0.0000
T15	80.00-60.00	20.00	K1 Down	No	Yes	0.0000	0.0000
T16	60.00-30.00	30.00	K2 Down	No	Yes	0.0000	0.0000
T17	30.00-0.00	30.00	K2 Down	No	Yes	0.0000	0.0000

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Туре	Size	Grade
1 320.00-304.00	Pipe	ROHN 5 EH	A572-50	Equal Angle	L1 3/4x1 3/4x3/16	A36
	1		(50 ksi)	1 0		(36 ksi)
2 304.00-300.00	Pipe	ROHN 5 EH	À572-50	Equal Angle	L1 3/4x1 3/4x3/16	A36
	1		(50 ksi)	1 0		(36 ksi)
13 300.00-280.00	Pipe	ROHN 6 EH	À572-50	Equal Angle	L2x2x1/4	A36
	1		(50 ksi)	1 0		(36 ksi)
4 280.00-260.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	À572-50	Equal Angle	L2 1/2x2 1/2x1/4	A36
	5 1	6	(50 ksi)	1 0		(36 ksi)
5 260.00-240.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	À572-50	Equal Angle	L3x3x1/4	À572-50
	• •	-	(50 ksi)			(50 ksi)
6 240.00-220.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	À572-50	Equal Angle	L4x4x5/16	À572-50
	• •	-	(50 ksi)			(50 ksi)
7 220.00-200.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	A572-50	Equal Angle	L4x4x3/8	A572-50
	• •	-	(50 ksi)			(50 ksi)
18 200.00-180.00	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Equal Angle	L4x4x3/8	A572-50
		8x8x0.5	(50 ksi)			(50 ksi)
69 180.00-170.00	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Double Equal	2L4x4x1/4	A572-50
	• •	8x8x0.5	(50 ksi)	Angle		(50 ksi)
T10	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Double Equal	2L4x4x1/4	A572-50
170.00-160.00	• •	8x8x0.5	(50 ksi)	Angle		(50 ksi)
T11	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Equal Angle	L5x5x1/2	A572-50
160.00-140.00		8x8x0.5	(50 ksi)			(50 ksi)
T12	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Equal Angle	L5x5x1/2	A572-50
140.00-120.00		8x8x0.5	(50 ksi)			(50 ksi)
T13	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Pipe	ROHN 3 XXS	A572-50
120.00-100.00		8x8x0.5	(50 ksi)			(50 ksi)
14 100.00-80.00	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Pipe	ROHN 3 XXS	A572-50
		8x8x0.5	(50 ksi)			(50 ksi)
T15 80.00-60.00	Arbitrary Shape	ROHN 12 EH w/ angle	A572-50	Pipe	ROHN 3.5 EH	A572-50
	-	8x8x0.5	(50 ksi)			(50 ksi)
T16 60.00-30.00	Arbitrary Shape	ROHN 12 EH w/ angle	A572-50	Pipe	ROHN 4 X-STR	A572-50
		8x8x0.5	(50 ksi)			(50 ksi)
T17 30.00-0.00	Arbitrary Shape	ROHN 12 EHS w Angle	A572-50	Pipe	ROHN 4 X-STR	A572-50

tnxTower	Job 320' Rohn SSVMW	Page 4 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) VZW-217/ EMP-008 - "G	" Designed by MCD

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade	
		8x8x0.625	(50 ksi)			(50 ksi)	

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 320.00-304.00	Equal Angle	L1 3/4x1 3/4x3/16	A36 (36 ksi)	Solid Round		A36 (36 ksi)
T3 300.00-280.00	Equal Angle	L2x2x1/4	A36 (36 ksi)	Solid Round		A36 (36 ksi)

Tower Section Geometry (cont'd)									
Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal		
Elevation	of Mid	Туре	Size	Grade	Туре	Size	Grade		
ft	Girts								
T13	None	Flat Bar		A36	Pipe	ROHN 3 STD	A572-50		
120.00-100.00				(36 ksi)	*		(50 ksi)		
Г14 100.00-80.00	None	Flat Bar		A36	Pipe	ROHN 3 X-STR	A572-50		
				(36 ksi)	*		(50 ksi)		
T15 80.00-60.00	None	Flat Bar		A36	Pipe	ROHN 3 XXS	A572-50		
				(36 ksi)	*		(50 ksi)		
T16 60.00-30.00	None	Flat Bar		A36	Pipe	ROHN 3.5 EH	À572-50		
				(36 ksi)	1		(50 ksi)		
T17 30.00-0.00	None	Flat Bar		A36	Pipe	ROHN 4 X-STR	À572-50		
				(36 ksi)	1		(50 ksi)		

Tower	Secondary	Secondary Horizontal	Secondary	Inner Bracing	Inner Bracing Size	Inner Bracing Grade
Elevation	Horizontal Type	Size	Horizontal Grade	Туре		Graae
ft			Grade			
	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
120.00-100.00	1		(50 ksi)	I		(50 ksi)
T14 100.00-80.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
	1		(50 ksi)	I		(50 ksi)
T15 80.00-60.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
	1		(50 ksi)	I		(50 ksi)
T16 60.00-30.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
	1		(50 ksi)	I		(50 ksi)
T17 30.00-0.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
			(50 ksi)	*		(50 ksi)

tnxTower

Job Page 320' Rohn SSVMW 5 of 96 Project Date CSP Tower - Colchester, CT 11:31:15 02/22/19 Client Designed by (MODification) VZW-217/ EMP-008 - "G" MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Tower Section Geometry (cont'd)

Tower	Redundant		Redundant	Redundant	K Factor
Elevation	Bracing		Туре	Size	
	Grade				
ft					
T13	A572-50	Horizontal (1)	Pipe	ROHN 1.5 STD	1
120.00-100.00	(50 ksi)	Diagonal (1)	Pipe	ROHN 2 STD	1
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip Diagonal (1)	Pipe	ROHN 2.5 STD	1
T14	A572-50	Horizontal (1)	Pipe	P1.5x.145	1
100.00-80.00	(50 ksi)	Diagonal (1)	Pipe	ROHN 2 EH	1
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip Diagonal (1)	Pipe	ROHN 2.5 STD	1
T15	A572-50	Horizontal (1)	Pipe	ROHN 2 STD	1
80.00-60.00	(50 ksi)	Diagonal (1)	Pipe	ROHN 2 EH	1
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip Diagonal (1)	Pipe	ROHN 3 STD	1
T16	A572-50	Horizontal (1)	Pipe	ROHN 1.5 STD	1
60.00-30.00	(50 ksi)	Horizontal (2)		ROHN 2 XXS	
		Diagonal (1)	Pipe	ROHN 2 EH	1
		Diagonal (2)		ROHN 2.5 STD	
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip (2)	-	ROHN 2 STD	
		Hip Diagonal (1)	Pipe	ROHN 2 STD	1
		Hip Diagonal (2)	-	ROHN 2 STD	1
T17	A572-50	Horizontal (1)	Pipe	P1.5x.145	1
30.00-0.00	(50 ksi)	Horizontal (2)	-	ROHN 2.5 EH	
		Diagonal (1)	Pipe	ROHN 2.5 STD	1
		Diagonal (2)	-	ROHN 2.5 STD	
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip (2)	-	ROHN 2 STD	
		Hip Diagonal (1)	Pipe	ROHN 2.5 STD	1
		Hip Diagonal (2)	•	ROHN 2.5 STD	1

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
320.00-304.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
304.00-300.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
300.00-280.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
280.00-260.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
260.00-240.00			(36 ksi)						
T6	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
240.00-220.00			(36 ksi)						
Τ7	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
220.00-200.00			(36 ksi)						
T8	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000

tnxTower	Job	320' Rohn SSVMW	Page 6 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in					in	in	in
200.00-180.00			(36 ksi)						
Т9	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
180.00-170.00			(36 ksi)						
T10	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
170.00-160.00			(36 ksi)						
T11	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
160.00-140.00			(36 ksi)						
T12	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T13	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T14	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T15	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
80.00-60.00			(36 ksi)						
T16	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
60.00-30.00			(36 ksi)						
T17 30.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

						K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	Х	X	X	Х	X
ft	0			Y	Y	Y	Y	Y	Y	Y
Ť1	Yes	No	1	1	1	1	1	1	1	1
320.00-304.00				1	1	1	1	1	1	1
T2	Yes	No	1	1	1	1	1	1	1	1
304.00-300.00				1	1	1	1	1	1	1
Т3	Yes	No	1	1	1	1	1	1	1	1
300.00-280.00				1	1	1	1	1	1	1
T4	Yes	No	1	1	1	1	1	1	1	1
280.00-260.00				1	1	1	1	1	1	1
T5	Yes	No	1	1	1	1	1	1	1	1
260.00-240.00				1	1	1	1	1	1	1
T6	Yes	No	1	1	1	1	1	1	1	1
240.00-220.00				1	1	1	1	1	1	1
Τ7	Yes	No	1	1	1	1	1	1	1	1
220.00-200.00				1	1	1	1	1	1	1
T8	Yes	No	1	1	1	1	1	1	1	1
200.00-180.00				1	1	1	1	1	1	1
Т9	Yes	No	1	1	1	1	1	1	1	1
180.00-170.00				1	1	1	1	1	1	1
T10	Yes	No	1	1	1	1	1	1	1	1
170.00-160.00				1	1	1	1	1	1	1
T11	Yes	No	1	1	1	1	1	1	1	1
160.00-140.00				1	1	1	1	1	1	1
T12	Yes	No	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
T13	No	No	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T14	No	No	1	1	1	1	1	1	1	1

	Job		Page
tnxTower		320' Rohn SSVMW	7 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

						K Fac	ctors ¹			
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
100.00-80.00				1	1	1	1	1	1	1
T15	No	No	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T16	No	No	1	1	1	1	1	1	1	1
60.00-30.00				1	1	1	1	1	1	1
T17	No	No	1	1	1	1	1	1	1	1
30.00-0.00				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Elevation	Leg		Diago	nal	Top G	lirt	Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
ft	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct	U	Net Width Deduct	U	Net Width Deduct	U	Net Width Deduct	U
							in		in		in		in	
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
320.00-304.00			0.0000		0.0000	0	0.0000		0.0000		0.0000		0.0000	0.55
T2	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
304.00-300.00 T3	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
300.00-280.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
280.00-260.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
260.00-240.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
240.00-220.00														
Τ7	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
220.00-200.00														
Т8	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
200.00-180.00														
Т9	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
180.00-170.00														
T10	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
170.00-160.00														
T11	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00			0.0000		0.0000	0	0.0000		0.0000		0.0000		0.0000	0.55
T12	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T13 120.00-100.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T14	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T15	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.73	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T16	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
60.00-30.00	0.0000	1	0.0000	0.75	0.0000	0.15	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T17 30.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

tnxTower

Job Page 320' Rohn SSVMW 8 of 96 Project Date CSP Tower - Colchester, CT 11:31:15 02/22/19 Client Designed by (MODification) VZW-217/ EMP-008 - "G" MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	izontal	Short Hor	izontal
Elevation	Connection	0				_						-			
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Flange	1.0000	6	0.6250	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
320.00-304.00	•	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T2	Flange	1.0000	0	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
304.00-300.00	-	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T3	Flange	1.0000	8	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
300.00-280.00	•	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T4	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
280.00-260.00	•	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T5	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
260.00-240.00	•	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T6	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
240.00-220.00	Ū.	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
Τ7	Flange	1.0000	12	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
220.00-200.00	C	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
Τ8	Flange	1.0000	12	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
200.00-180.00	C	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
Т9	Flange	1.0000	12	0.8750	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
180.00-170.00	C	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T10	Flange	1.0000	0	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
170.00-160.00	C	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T11	Flange	1.0000	12	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00	C	A325N		A490X		A325N		A325N		A325N		A325N		A325N	
T12	Flange	1.0000	12	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00	C	A325N		A490X		A325N		A325N		A325N		A325N		A325N	
T13	Flange	1.0000	12	0.7500	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
120.00-100.00	U	A325N		A325X		A325N		A325N		A325N		A325X		A325N	
T14	Flange	1.0000	16	0.7500	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
100.00-80.00		A325N		A325X		A325N		A325N		A325N		A325X		A325N	
T15	Flange	1.0000	16	0.7500	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
80.00-60.00	8-	A325N		A325X	-	A325N	-	A325N	-	A325N	-	A325X	-	A325N	-
T16	Flange	1.0000	16	0.8750	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
60.00-30.00	8-	A325N		A325X	-	A325N		A325N		A325N	-	A325X	-	A325N	
T17 30.00-0.00	Flange	1.0000	24	0.8750	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
	1	A325N	- ·	A325X	5	A325N		A325N		A325N	Ŭ	A490X	-	A325N	v

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation	~ 1	ft	in	(Frac FW)		Row	in	in	in	plf
1 5/8 (AT&T)	А	No	No	Ar (CaAa)	200.00 - 5.00	0.0000	-0.42	12	12	1.9800	1.9800		1.04
1 5/8 (Verizon)	С	No	No	Ar (CaAa)	220.00 - 5.00	0.0000	-0.4	6	6	1.9800	1.9800		1.04
1 5/8" Hybriflex (VZW)	С	No	No	Ar (CaAa)	220.00 - 5.00	0.0000	-0.46	2	2	1.6000	1.6000		1.85
LC78-50JA-A	В	No	No	Ar (CaAa)	174.00 -	0.0000	0.48	1	1	1.0900	1.0900		0.28

tnxTower

Job		Page
	320' Rohn SSVMW	9 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client		Designed by
	(MODification) VZW-217/ EMP-008 - "G"	MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Description	or	Allow Shield	Exclude From	Component Type		Face Offset	Lateral Offset	#			Diameter	Perimeter	Weight
	Leg		<i>Torque</i> <i>Calculation</i>		ft	in	(Frac FW)		Row	in	in	in	plf
7			culculution		5.00								
(Cable # 34													
HTS) LC78-50JA-A 7	В	No	No	Ar (CaAa)	177.00 - 5.00	0.0000	0.47	1	1	1.0900	1.0900		0.28
(Cable # 33 HTS)					5.00								
LDF4-50A (1/2 FOAM) (Cable # 32	В	No	No	Ar (CaAa)	174.00 - 5.00	3.0000	0.48	1	1	0.6300	0.6300		0.15
HTS) LC78-50JA-A 7	В	No	No	Ar (CaAa)	176.00 - 5.00	3.0000	0.47	1	1	1.0900	1.0900		0.28
(Cable # 31 HTS) LC78-50JA-A	В	No	No	Ar (CaAa)	137.00 -	3.0000	0.46	1	1	1.0900	1.0900		0.28
7 (Cable #30 HTS)					5.00								
LC78-50JA-A 7 (Cable # 29	В	No	No	Ar (CaAa)	134.00 - 5.00	3.0000	0.45	1	1	1.0900	1.0900		0.28
HTS) LC78-50JA-A 7 (Cable # 28	В	No	No	Ar (CaAa)	105.00 - 5.00	3.0000	0.44	1	1	1.0900	1.0900		0.28
(Cable # 28 HTS) LC78-50JA-A 7	В	No	No	Ar (CaAa)	103.30 - 5.00	3.0000	0.43	1	1	1.0900	1.0900		0.28
(Cable # 27 HTS)													
LC78-50JA-A 7 (Cable #26	В	No	No	Ar (CaAa)	91.00 - 5.00	0.0000	0.43	1	1	1.0900	1.0900		0.28
HTS) LC78-50JA-A 7	В	No	No	Ar (CaAa)	90.00 - 5.00	0.0000	0.42	1	1	1.0900	1.0900		0.28
(Cable #25 HTS)													
AVA7-50 (1-5/8 LOW DENSI. FOAM)	В	No	No	Ar (CaAa)	283.00 - 5.00	3.0000	0.41	1	1	1.9800	1.9800		0.72
(Cable #24 HTS) AVA7-50	В	No	No	Ar (CaAa)	284.00 -	0.0000	0.41	1	1	1.9800	1.9800		0.72
(1-5/8 LOW DENSI. FOAM) (Cable # 21					5.00								
HTS) AVA7-50 (1-5/8 LOW DENSI. FOAM) (Cable # 20	В	No	No	Ar (CaAa)	261.00 - 5.00	0.0000	0.4	1	1	1.9800	1.9800		0.72
(Cable # 20 HTS) AVA7-50 (1-5/8 LOW DENSI.	В	No	No	Ar (CaAa)	285.00 - 5.00	3.0000	0.4	1	1	1.9800	1.9800		0.72

	Job		Page
tnxTower		320' Rohn SSVMW	10 of 96
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		CSP Tower - Colchester, CT	11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
	8		Calculation		51		(РIJ
FOAM) (Cable #23 HTS) AVA7-50 (1-5/8 LOW DENSI. FOAM)	В	No	No	Ar (CaAa)	248.00 - 5.00	0.0000	0.39	1	1	1.9800	1.9800		0.72
(Cable # 19 HTS) AVA7-50 (1-5/8 LOW DENSI. FOAM)	В	No	No	Ar (CaAa)	285.00 - 5.00	3.0000	0.39	1	1	1.9800	1.9800		0.72
(Cable # 22 HTS) AVA7-50 (1-5/8 LOW DENSI. FOAM)	В	No	No	Ar (CaAa)	246.00 - 5.00	0.0000	0.38	1	1	1.9800	1.9800		0.72
(Cable # 16 HTS) AVA7-50 (1-5/8 LOW DENSI. FOAM) (Cable # 17	В	No	No	Ar (CaAa)	246.00 - 5.00	3.0000	0.38	1	1	1.9800	1.9800		0.72
(Cable # 17 HTS) LDF4-50A (1/2 FOAM) (Cable # 18	В	No	No	Ar (CaAa)	246.00 - 5.00	6.0000	0.38	1	1	0.6300	0.6300		0.15
HTS) LC78-50JA-A 7 (Cable # 15	В	No	No	Ar (CaAa)	235.00 - 5.00	0.0000	0.37	1	1	1.0900	1.0900		0.28
HTS) WE65 (Cable # 14	В	No	No	Af (CaAa)	106.00 - 5.00	3.0000	0.37	1	1	1.5836	1.5836		0.53
HTS) LC78-50JA-A 7 (Cable # 13	В	No	No	Ar (CaAa)	244.00 - 5.00	0.0000	0.36	1	1	1.0900	1.0900		0.28
HTS) LC78-50JA-A 7 (Cable #12	В	No	No	Ar (CaAa)	262.00 - 5.00	0.0000	0.35	1	1	1.0900	1.0900		0.28
HTS) WE108 (Cable # 11	В	No	No	Af (CaAa)	113.00 - 5.00	3.0000	0.35	1	1	1.0149	1.0149		0.35
HTS) LC78-50JA-A 7 (Cable # 10	В	No	No	Ar (CaAa)	297.00 - 5.00	0.0000	0.34	1	1	1.0900	1.0900		0.28
(Cable # 10 HTS) LC78-50JA-A 7 (Cable # 9	В	No	No	Ar (CaAa)	290.00 - 5.00	0.0000	0.33	1	1	1.0900	1.0900		0.28
(Cable # 9 HTS) 1/2 (Cable # 8 HTS)	В	No	No	Ar (CaAa)	284.00 - 5.00	3.0000	0.33	1	1	0.5800	0.5800		0.25

tnxTower

Job

Bage 11 of 96 320' Rohn SSVMW 11 of 96 CSP Tower - Colchester, CT Date (MODification) VZW-217/ EMP-008 - "G" Designed by MCD MCD

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation	~ 1	ft	in	(Frac FW)		Row	in	in	in	plf
1/2 (Cable # 6	В	No	No	Ar (CaAa)	320.00 - 5.00	6.0000	0.33	1	1	0.5800	0.5800		0.25
HTS) LC78-50JA-A 7 (Cable # 4	В	No	No	Ar (CaAa)	320.00 - 5.00	0.0000	0.32	1	1	1.0900	1.0900		0.28
HTS) 1/2 (Cable # 7	В	No	No	Ar (CaAa)	284.00 - 5.00	3.0000	0.32	1	1	0.5800	0.5800		0.25
HTS) 1/2 (Cable # 5	В	No	No	Ar (CaAa)	164.00 - 5.00	6.0000	0.32	1	1	0.5800	0.5800		0.25
HTS) LC78-50JA-A 7 (Cable #3	В	No	No	Ar (CaAa)	316.50 - 5.00	0.0000	0.31	1	1	1.0900	1.0900		0.28
HTS) LC78-50JA-A 7 (Cable #1	В	No	No	Ar (CaAa)	318.00 - 5.00	0.0000	0.3	1	1	1.0900	1.0900		0.28
HTS) LC78-50JA-A 7	В	No	No	Ar (CaAa)	153.00 - 5.00	3.0000	0.3	1	1	1.0900	1.0900		0.28
(Cable #2 HTS) * CSP Proposed													
Cables EW63 (@ 145 Leg	В	No	No	Af (CaAa)	145.00 - 5.00	0.0000	0.29	1	1	1.5742	1.5742		0.51
"C") LC78-50JA-A 7 (@ 120 "eg	В	No	No	Ar (CaAa)	120.00 - 5.00	0.0000	0.28	1	1	1.0900	1.0900		0.28
"B") 1-5/8" Fiber Optic CaBLE	А	No	No	Ar (CaAa)	200.00 - 5.00	0.0000	-0.37	1	1	1.9800	1.9800		1.85
(AT&T) 1/2 (AT&T)	А	No	No	Ar (CaAa)	200.00 - 5.00	0.0000	-0.35	2	2	0.5800	0.5800		0.25

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation		ft^2	ft^2	In Face ft ²	Out Face	lb
	ft		Ji	Ji	JI	ft²	10
T1	320.00-304.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	5.561	0.000	15.90
		С	0.000	0.000	0.000	0.000	0.00
T2	304.00-300.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	1.540	0.000	4.36
		С	0.000	0.000	0.000	0.000	0.00
T3	300.00-280.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	14.473	0.000	43.60
		С	0.000	0.000	0.000	0.000	0.00
T4	280.00-260.00	А	0.000	0.000	0.000	0.000	0.00

tnxTower	Job 320' Rohn SSVMW	Page 12 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
		В	0.000	0.000	30.636	0.000	101.88
		С	0.000	0.000	0.000	0.000	0.00
T5	260.00-240.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	41.134	0.000	137.02
		С	0.000	0.000	0.000	0.000	0.00
T6	240.00-220.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	53.315	0.000	176.60
		С	0.000	0.000	0.000	0.000	0.00
T7	220.00-200.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	53.860	0.000	178.00
		С	0.000	0.000	30.160	0.000	198.80
T8	200.00-180.00	А	0.000	0.000	53.800	0.000	296.60
		В	0.000	0.000	53.860	0.000	178.00
		B C	0.000	0.000	30.160	0.000	198.80
T9	180.00-170.00	А	0.000	0.000	26.900	0.000	148.30
		В	0.000	0.000	29.035	0.000	94.36
		С	0.000	0.000	15.080	0.000	99.40
T10	170.00-160.00	A	0.000	0.000	26.900	0.000	148.30
		В	0.000	0.000	31.062	0.000	99.90
		С	0.000	0.000	15.080	0.000	99.40
T11	160.00-140.00	Ā	0.000	0.000	53.800	0.000	296.60
		В	0.000	0.000	65.549	0.000	208.99
		С	0.000	0.000	30.160	0.000	198.80
T12	140.00-120.00	A	0.000	0.000	53.800	0.000	296.60
		В	0.000	0.000	73.626	0.000	227.28
		Ċ	0.000	0.000	30.160	0.000	198.80
T13	120.00-100.00	Ă	0.000	0.000	53.800	0.000	296.60
		В	0.000	0.000	81.475	0.000	245.45
		Ċ	0.000	0.000	30.160	0.000	198.80
T14	100.00-80.00	Ā	0.000	0.000	53.800	0.000	296.60
		В	0.000	0.000	92.098	0.000	270.08
		Ē	0.000	0.000	30.160	0.000	198.80
T15	80.00-60.00	A	0.000	0.000	53.800	0.000	296.60
	50.00 00.00	В	0.000	0.000	94.169	0.000	275.40
		Č	0.000	0.000	30.160	0.000	198.80
T16	60.00-30.00	Ă	0.000	0.000	80.700	0.000	444.90
	30.00 20.00	В	0.000	0.000	141.253	0.000	413.10
		C	0.000	0.000	45.240	0.000	298.20
T17	30.00-0.00	A	0.000	0.000	67.250	0.000	370.75
	50.00 0.00	B	0.000	0.000	117.711	0.000	344.25
		C	0.000	0.000	37.700	0.000	248.50

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
T1	320.00-304.00	A	2.347	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	33.025	0.000	569.18
		С		0.000	0.000	0.000	0.000	0.00
T2	304.00-300.00	А	2.340	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	9.027	0.000	155.39
		С		0.000	0.000	0.000	0.000	0.00
T3	300.00-280.00	А	2.330	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	75.994	0.000	1331.40
		С		0.000	0.000	0.000	0.000	0.00
T4	280.00-260.00	А	2.314	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	143.089	0.000	2557.39

tnxTower	Job	320' Rohn SSVMW	Page 13 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
800 Enterprise Drive, Suite 38 Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness	- 2	- 2	In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
		С		0.000	0.000	0.000	0.000	0.00
T5	260.00-240.00	А	2.296	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	183.505	0.000	3288.12
		С		0.000	0.000	0.000	0.000	0.00
T6	240.00-220.00	А	2.278	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	233.247	0.000	4163.61
		С		0.000	0.000	0.000	0.000	0.00
T7	220.00-200.00	А	2.258	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	234.475	0.000	4154.54
		С		0.000	0.000	95.573	0.000	1662.50
T8	200.00-180.00	А	2.236	0.000	0.000	158.995	0.000	2877.67
		В		0.000	0.000	232.775	0.000	4093.89
		С		0.000	0.000	95.297	0.000	1648.37
T9	180.00-170.00	А	2.220	0.000	0.000	79.358	0.000	1429.33
		В		0.000	0.000	127.144	0.000	2212.02
		С		0.000	0.000	47.540	0.000	818.62
T10	170.00-160.00	А	2.208	0.000	0.000	79.262	0.000	1422.80
		В		0.000	0.000	138.818	0.000	2391.36
		С		0.000	0.000	47.465	0.000	814.81
T11	160.00-140.00	А	2.190	0.000	0.000	158.229	0.000	2825.60
		В		0.000	0.000	292.474	0.000	4991.97
		С		0.000	0.000	94.700	0.000	1617.91
T12	140.00-120.00	А	2.166	0.000	0.000	157.832	0.000	2798.68
		В		0.000	0.000	321.040	0.000	5420.41
		С		0.000	0.000	94.390	0.000	1602.18
T13	120.00-100.00	А	2.144	0.000	0.000	157.450	0.000	2772.89
		В		0.000	0.000	350.400	0.000	5856.69
		С		0.000	0.000	94.093	0.000	1587.11
T14	100.00-80.00	А	2.124	0.000	0.000	157.125	0.000	2750.98
		В		0.000	0.000	389.875	0.000	6456.26
		С		0.000	0.000	93.840	0.000	1574.31
T15	80.00-60.00	А	2.112	0.000	0.000	156.925	0.000	2737.56
		В		0.000	0.000	398.287	0.000	6561.42
		С		0.000	0.000	93.684	0.000	1566.47
T16	60.00-30.00	А	2.116	0.000	0.000	235.486	0.000	4112.91
		В		0.000	0.000	598.278	0.000	9870.81
		С		0.000	0.000	140.602	0.000	2353.55
T17	30.00-0.00	А	2.124	0.000	0.000	196.410	0.000	3438.97
		В		0.000	0.000	500.053	0.000	8276.09
		С		0.000	0.000	117.302	0.000	1968.03

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	320.00-304.00	2.5641	0.7801	5.5190	1.5393
T2	304.00-300.00	2.9465	0.8949	6.5121	1.8226
Т3	300.00-280.00	5.5104	1.9274	11.3315	3.6052
Τ4	280.00-260.00	6.7680	2.7938	18.3241	6.7732
T5	260.00-240.00	9.5286	4.1017	24.1902	9.3730
Т6	240.00-220.00	12.0303	5.2661	29.9190	11.8756
Τ7	220.00-200.00	19.6839	11.0496	41.1815	20.3890
Т8	200.00-180.00	5.5497	15.7914	17.3101	26.1060
Т9	180.00-170.00	6.8684	17.2063	20.8282	28.7907
T10	170.00-160.00	8.0523	18.2356	24.0905	30.7546
T11	160.00-140.00	8.6557	18.2598	26.0722	31.7159

tnxTower	Job	320' Rohn SSVMW	Page 14 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T12	140.00-120.00	10.8452	19.7771	30.5995	34.4382
T13	120.00-100.00	16.9467	26.4578	39.5617	40.6225
T14	100.00-80.00	21.4296	29.5103	47.1895	45.0200
T15	80.00-60.00	21.9208	29.7729	50.0642	47.3669
T16	60.00-30.00	23.7816	32.3510	54.2906	51.4314
T17	30.00-0.00	22.4220	30.6726	53.7118	51.0924

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	*	Segment Elev.	No Ïce	Ice
T1	31	1/2	304.00 -	0.6000	0.4913
			320.00		
T1	32	LC78-50JA-A7	304.00 -	0.6000	0.4913
			320.00		
T1	35	LC78-50JA-A7	304.00 -	0.6000	0.4913
			316.50		
T1	36	LC78-50JA-A7	304.00 -	0.6000	0.4913
			318.00		
T2	31	1/2	300.00 -	0.6000	0.5200
			304.00		
T2	32	LC78-50JA-A7	300.00 -	0.6000	0.5200
			304.00		
T2	35	LC78-50JA-A7	300.00 -	0.6000	0.5200
			304.00		
T2	36	LC78-50JA-A7	300.00 -	0.6000	0.5200
			304.00		
Т3	14	AVA7-50 (1-5/8 LOW	280.00 -	0.6000	0.5461
		DENSI. FOAM)	283.00		
Т3	15	AVA7-50 (1-5/8 LOW	280.00 -	0.6000	0.5461
		DENSI. FOAM)	284.00		
Т3	17	AVA7-50 (1-5/8 LOW	280.00 -	0.6000	0.5461
		DENSI. FOAM)	285.00		
Т3	19	AVA7-50 (1-5/8 LOW	280.00 -	0.6000	0.5461
		DENSI. FOAM)	285.00		
Т3	28	LC78-50JA-A7	280.00 -	0.6000	0.5461
			297.00		
Т3	29	LC78-50JA-A7	280.00 -	0.6000	0.5461
			290.00		
Т3	30	1/2	280.00 -	0.6000	0.5461
			284.00		
Т3	31	1/2	280.00 -	0.6000	0.5461
			300.00	0.0000	0.0453
Т3	32	LC78-50JA-A7	280.00 -	0.6000	0.5461
			300.00	0 60	
Т3	33	1/2	280.00 -	0.6000	0.5461
			284.00	0 60	
Т3	35	LC78-50JA-A7	280.00 -	0.6000	0.5461
<i>T</i> . •			300.00	0 (000	0.5465
Т3	36	LC78-50JA-A7	280.00 -	0.6000	0.5461
			300.00	0.0000	0.0000
T4	14	AVA7-50 (1-5/8 LOW	260.00 -	0.6000	0.6000
		DENSI. FOAM)	280.00	0.0000	0.0000
T4	15	AVA7-50 (1-5/8 LOW	260.00 -	0.6000	0.6000
		DENSI. FOAM)	280.00		

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT

Rocky Hill, C1 Phone: 860-529-8882 FAX: 860-529-3991

JobPage
15 of 96ProjectDate
11:31:15 02/22/19. Suite 3B
T
8882
8991CSP Tower - Colchester, CTClientDesigned by
MCD

Tower	Feed Line	Description	Food Line	K	K
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
T4	16	AVA7-50 (1-5/8 LOW	260.00 -	0.6000	0.6000
		DENSI. FOAM)	261.00		
T4	17	AVA7-50 (1-5/8 LOW DENSI. FOAM)	260.00 - 280.00	0.6000	0.6000
T4	19	AVA7-50 (1-5/8 LOW	260.00 -	0.6000	0.6000
		DENSI. FOAM)	280.00		
T4	26	LC78-50JA-A7	260.00 -	0.6000	0.6000
T4	28	LC78-50JA-A7	262.00 260.00 -	0.6000	0.6000
14	20	LC/0-303A-A/	280.00	0.0000	0.0000
T4	29	LC78-50JA-A7	260.00 -	0.6000	0.6000
π4	20	1/2	280.00	0 (000	0 (000
T4	30	1/2	260.00 - 280.00	0.6000	0.6000
T4	31	1/2	260.00 -	0.6000	0.6000
			280.00		
T4	32	LC78-50JA-A7	260.00 -	0.6000	0.6000
T4	33	1/2	280.00 260.00 -	0.6000	0.6000
14	55	1/2	280.00	0.0000	0.0000
T4	35	LC78-50JA-A7	260.00 -	0.6000	0.6000
T4	26		280.00	0.000	0.6000
14	36	LC78-50JA-A7	260.00 - 280.00	0.6000	0.0000
Т5	14	AVA7-50 (1-5/8 LOW	240.00 -	0.6000	0.6000
		DENSI. FOAM)	260.00		
Т5	15	AVA7-50 (1-5/8 LOW DENSI. FOAM)	240.00 -	0.6000	0.6000
Т5	16	AVA7-50 (1-5/8 LOW	260.00 240.00 -	0.6000	0.6000
		DENSI. FOAM)	260.00		
Т5	17	AVA7-50 (1-5/8 LOW	240.00 -	0.6000	0.6000
Т5	18	DENSI. FOAM) AVA7-50 (1-5/8 LOW	260.00 240.00 -	0.6000	0.6000
15	10	DENSI. FOAM)	240.00 - 248.00	0.0000	0.0000
T5	19	AVA7-50 (1-5/8 LOW	240.00 -	0.6000	0.6000
T .6	20	DENSI. FOAM)	260.00	0 (000	0 (000
Т5	20	AVA7-50 (1-5/8 LOW DENSI. FOAM)	240.00 - 246.00	0.6000	0.6000
Т5	21	AVA7-50 (1-5/8 LOW	240.00 -	0.6000	0.6000
		DENSI. FOAM)	246.00		
Т5	22	LDF4-50A (1/2 FOAM)	240.00 -	0.6000	0.6000
Т5	25	LC78-50JA-A7	246.00 240.00 -	0.6000	0.6000
	-		244.00		
T5	26	LC78-50JA-A7	240.00 -	0.6000	0.6000
Т5	28	LC78-50JA-A7	260.00 240.00 -	0.6000	0.6000
13	20	LC/0-30JA-A/	240.00 - 260.00	0.0000	0.0000
Т5	29	LC78-50JA-A7	240.00 -	0.6000	0.6000
T .5	20		260.00	0.0000	0 (000
Т5	30	1/2	240.00 - 260.00	0.6000	0.6000
Т5	31	1/2	240.00 -	0.6000	0.6000
			260.00		
Т5	32	LC78-50JA-A7	240.00 -	0.6000	0.6000
Т5	33	1/2	260.00 240.00 -	0.6000	0.6000
15	55		260.00	0.0000	
Т5	35	LC78-50JA-A7	240.00 -	0.6000	0.6000
Т5	36	LC78-50JA-A7	260.00 240.00 -	0.6000	0.6000
13	30	LC/0-30JA-A/	240.00 - 260.00	0.0000	0.0000
I I	I I			I	

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT

Phone: 860-529-8882 FAX: 860-529-3991

 Job
 Page

 320' Rohn SSVMW
 16 of 96

 Project
 Date

 , Suite 3B
 CSP Tower - Colchester, CT
 11:31:15 02/22/19

 CT
 Client
 Designed by

 8882
 (MODification) VZW-217/ EMP-008 - "G"
 MCD

Tower	Feed Line	Deceviation	Feed Line	V	V
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
T6	14	AVA7-50 (1-5/8 LOW	220.00 -	0.6000	0.6000
TC	1.5	DENSI. FOAM)	240.00	0.000	0.0000
Т6	15	AVA7-50 (1-5/8 LOW DENSL FOAM)	220.00 - 240.00	0.6000	0.6000
Т6	16	AVA7-50 (1-5/8 LOW	220.00 -	0.6000	0.6000
		DENSI. FOAM)	240.00		
Т6	17	AVA7-50 (1-5/8 LOW DENSL FOAM)	220.00 - 240.00	0.6000	0.6000
Т6	18	AVA7-50 (1-5/8 LOW	220.00 -	0.6000	0.6000
		DENSI. FOAM)	240.00		
Т6	19	AVA7-50 (1-5/8 LOW DENSI. FOAM)	220.00 - 240.00	0.6000	0.6000
Т6	20	AVA7-50 (1-5/8 LOW	220.00 -	0.6000	0.6000
		DENSI. FOAM)	240.00		
Т6	21	AVA7-50 (1-5/8 LOW DENSI. FOAM)	220.00 - 240.00	0.6000	0.6000
Т6	22	LDF4-50A (1/2 FOAM)	220.00 -	0.6000	0.6000
			240.00		
Т6	23	LC78-50JA-A7	220.00 -	0.6000	0.6000
Т6	25	LC78-50JA-A7	235.00 220.00 -	0.6000	0.6000
			240.00		
Т6	26	LC78-50JA-A7	220.00 -	0.6000	0.6000
Т6	28	LC78-50JA-A7	240.00 220.00 -	0.6000	0.6000
10			240.00	0.0000	0.0000
Т6	29	LC78-50JA-A7	220.00 -	0.6000	0.6000
Т6	30	1/2	240.00 220.00 -	0.6000	0.6000
10	50	1/2	240.00	0.0000	0.0000
Т6	31	1/2	220.00 -	0.6000	0.6000
Т6	32	LC78-50JA-A7	240.00 220.00 -	0.6000	0.6000
10	52		240.00	0.0000	
Т6	33	1/2	220.00 -	0.6000	0.6000
Т6	35	LC78-50JA-A7	240.00 220.00 -	0.6000	0.6000
10	55		240.00		
Т6	36	LC78-50JA-A7	220.00 -	0.6000	0.6000
Т7	2	1 5/8	240.00 200.00 -	0.6000	0.6000
17	2	1 5/6	220.00	0.0000	0.0000
Τ7	3	1 5/8" Hybriflex	200.00 -	0.6000	0.6000
Т7	14	AVA7-50 (1-5/8 LOW	220.00 200.00 -	0.6000	0.6000
17		DENSI. FOAM)	220.00	0.0000	0.0000
Т7	15	AVA7-50 (1-5/8 LOW	200.00 -	0.6000	0.6000
Т7	16	DENSI. FOAM) AVA7-50 (1-5/8 LOW	220.00 200.00 -	0.6000	0.6000
1/	10	DENSI. FOAM)	200.00 - 220.00		
Τ7	17	AVA7-50 (1-5/8 LOW	200.00 -	0.6000	0.6000
Т7	18	DENSI. FOAM) AVA7-50 (1-5/8 LOW	220.00 200.00 -	0.6000	0.6000
1/	10	DENSI. FOAM)	200.00 - 220.00		
Т7	19	AVA7-50 (1-5/8 LOW	200.00 -	0.6000	0.6000
Т7	20	DENSI. FOAM) AVA7-50 (1-5/8 LOW	220.00 200.00 -	0.6000	0.6000
1/	20	DENSI. FOAM)	200.00 - 220.00	0.0000	0.0000
Т7	21	AVA7-50 (1-5/8 LOW	200.00 -	0.6000	0.6000
Т7	22	DENSI. FOAM) LDF4-50A (1/2 FOAM)	220.00 200.00 -	0.6000	0.6000
17	22	221.2011(1/210/101)	220.00		0.0000
-	-				-

tnxTower

Page Job 17 of 96 320' Rohn SSVMW Project Date CSP Tower - Colchester, CT 11:31:15 02/22/19 Client Designed by (MODification) VZW-217/ EMP-008 - "G" MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Section Record no. Segment Letter No Lee Lee T 23 LC78-501A-A7 220.00 0.6000 0.6000 T7 25 LC78-501A-A7 220.00 0.6000 0.6000 T7 26 LC78-501A-A7 220.00 0.6000 0.6000 T7 28 LC78-501A-A7 200.00 0.6000 0.6000 T7 29 LC78-501A-A7 200.00 0.6000 0.6000 T7 30 1/2 200.00 0.6000 0.6000 T7 31 1/2 200.00 0.6000 0.6000 T7 33 1/2 200.00 0.6000 0.6000 T7 33 1/2 200.00 0.6000 0.6000 T7 35 LC78-501A-A7 200.00 0.6000 0.6000 T8 1 1.5/8 180.00 0.6000 0.6000 T8 1 1.5/8 180.00 0.6000 0.6000	Tower Section	Feed Line	Description	Feed Line Segment Elev.	K _a No Isa	K _a Isa
17 25 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 26 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 28 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 29 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 29 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 30 $L/2$ 200.00 0.6000 0.6000 17 31 $L/2$ 200.00 0.6000 0.6000 17 32 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 35 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 36 $LC78-50JA-A7$ 200.00 0.6000 0.6000 18 1 $1.5/8$ 180.00 0.6000 0.6000 18 1 $1.5/8$ 180.00 0.6000 0.6000 18 1	Section T7	Record No.	1070 5014 47		No Ice	Ice
17 25 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 26 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 29 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 29 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 30 $L2$ 200.00 0.6000 0.6000 17 30 $L2$ 200.00 0.6000 0.6000 17 31 $L2$ 200.00 0.6000 0.6000 17 32 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 33 $L2$ 200.00 220.00 220.00 17 35 $LC78-50JA-A7$ 200.00 0.6000 0.6000 17 36 $LC78-50JA-A7$ 200.00 0.6000 0.6000 18 1 15.8 $180.00 - 0.6000$ 0.6000 0.6000 18 1 15.8 $180.00 - 0.6000$ 0.6000	17	23	LC/8-50JA-A/		0.6000	0.6000
T7 26 LC78-50JA-A7 200.00 0.6000 0.6000 T7 28 LC78-50JA-A7 200.00 0.6000 0.6000 T7 29 LC78-50JA-A7 200.00 0.6000 0.6000 T7 30 1/2 200.00 0.6000 0.6000 T7 31 1/2 200.00 0.6000 0.6000 T7 32 LC78-50JA-A7 200.00 0.6000 0.6000 T7 33 1/2 200.00 0.6000 0.6000 T7 35 LC78-50JA-A7 200.00 0.6000 0.6000 T7 36 LC78-50JA-A7 200.00 0.6000 0.6000 T8 1 15/8 180.00 0.6000 0.6000 T8 1 15/8 180.00 0.6000 0.6000 T8 14 AVA7-50 (1-5/8 LOW 180.00 0.6000 0.6000 T8 15 AVA7-50 (1-5/8 LOW 180.0	Т7	25	LC78-50JA-A7	200.00 -	0.6000	0.6000
T7 28 LC78-50JA-A7 200.00 - 0.6000 0.6000 0.6000 T7 29 LC78-50JA-A7 200.00 - 0.6000 0.6000 0.6000 T7 30 1/2 200.00 - 0.6000 0.6000 0.6000 T7 31 1/2 200.00 - 0.6000 0.6000 0.6000 T7 32 LC78-50JA-A7 200.00 - 0.6000 0.6000 0.6000 T7 33 1/2 200.00 - 0.6000 0.6000 0.6000 T7 35 LC78-50JA-A7 200.00 - 0.6000 0.6000 0.6000 T8 1 1.5/8 180.00 - 0.6000 0.6000 0.6000 T8 1 1.5/8 180.00 - 0.6000 0.6000 0.6000 T8 14 AVA7-50 (1-5/8 LOW 180.00 - 0.6000 0.6000 0.6000 T8 14 AVA7-50 (1-5/8 LOW 180.00 - 0.6000 0.6000 0.6000 T8 16 AVA7-50 (1-5/8 LOW 180.00 - 0.6000 0.6000 0.6000	Т7	26	LC78-50JA-A7	200.00 -	0.6000	0.6000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т7	28	LC78-50JA-A7	200.00 -	0.6000	0.6000
T7 30 $1/2$ 2000 0.6000 220.00 T7 31 $1/2$ 200.00 0.6000 0.6000 T7 32 LC78-50JA-A7 200.00 0.6000 0.6000 T7 33 $1/2$ 200.00 0.6000 0.6000 T7 35 LC78-50JA-A7 200.00 0.6000 0.6000 T7 36 LC78-50JA-A7 200.00 0.6000 0.6000 T8 1 $15/8$ 180.00 0.6000 0.6000 T8 2 $15/8$ 180.00 0.6000 0.6000 T8 3 $15/8$ Hybriflex 180.00 0.6000 0.6000 T8 14 AVA7-50 (1-5/8 LOW 180.00 0.6000 0.6000 T8 15 AVA7-50 (1-5/8 LOW 180.00 0.6000 0.6000 T8 16 AVA7-50 (1-5/8 LOW 180.00 0.6000 0.6000 T8 17 AVA7-50 (1-5/8 LOW 180.00 0.6000 0.6000 T8	Т7	29	LC78-50JA-A7	200.00 -	0.6000	0.6000
T7 31 $1/2$ 2000 0.6000 0.6000 T7 32 LC78-50IA-A7 20000 0.6000 0.6000 T7 33 $1/2$ 20000 0.6000 0.6000 T7 33 $1/2$ 20000 0.6000 0.6000 T7 36 LC78-50IA-A7 200.00 0.6000 0.6000 T8 1 $1.5/8$ 180.00 0.6000 0.6000 T8 2 $1.5/8$ 180.00 0.6000 0.6000 T8 3 $1.5/8''$ Hybriflex 200.00 0.6000 0.6000 T8 14 AVA7-50 (1-5/8 LOW 180.00 0.6000 0.6000 T8 15 AVA7-50 (1-5/8 LOW 180.00 0.6000 0.6000 T8 17 AVA7-50 (1-5/8 LOW 180.00 0.6000 0.6000 T8 17 AVA7-50 (1-5/8 LOW 180.00 0.6000 0.6000 T8 18 <td>Τ7</td> <td>30</td> <td>1/2</td> <td>200.00 -</td> <td>0.6000</td> <td>0.6000</td>	Τ7	30	1/2	200.00 -	0.6000	0.6000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т7	31	1/2	200.00 -	0.6000	0.6000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Τ7	32	LC78-50JA-A7	200.00 -	0.6000	0.6000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Τ7	33	1/2	200.00 -	0.6000	0.6000
T8 1 $15/8$ 220.00 0.6000 0.6000 T8 2 $15/8$ $180.00 - 200.00$ 0.6000 0.6000 T8 3 $15/8''$ Hybriflex $180.00 - 200.00$ 0.6000 0.6000 T8 3 $15/8''$ Hybriflex $180.00 - 200.00$ 0.6000 0.6000 T8 14 AVA7-50 ($1-5/8$ LOW $180.00 - 0.6000$ 0.6000 T8 15 AVA7-50 ($1-5/8$ LOW $180.00 - 0.6000$ 0.6000 T8 16 AVA7-50 ($1-5/8$ LOW $180.00 - 0.6000$ 0.6000 T8 17 AVA7-50 ($1-5/8$ LOW $180.00 - 0.6000$ 0.6000 T8 17 AVA7-50 ($1-5/8$ LOW $180.00 - 0.6000$ 0.6000 T8 19 AVA7-50 ($1-5/8$ LOW $180.00 - 0.6000$ 0.6000 T8 19 AVA7-50 ($1-5/8$ LOW $180.00 - 0.6000$ 0.6000 T8 20 AVA7-50 ($1-5/8$ LOW $180.00 - 0.6000$ 0.6000 T8 21 AVA7-50 ($1-5/8$ LOW	Т7	35	LC78-50JA-A7	200.00 -		0.6000
T8 2 $15/8$ 200.00 0.6000 0.6000 T8 3 $15/8^{\circ}$ Hybriflex $180.00 - 200.00$ 0.6000 0.6000 T8 14 AVA7-50 (1-5/8 LOW $180.00 - 200.00$ 0.6000 0.6000 T8 14 AVA7-50 (1-5/8 LOW $180.00 - 0.6000$ 0.6000 0.6000 T8 15 AVA7-50 (1-5/8 LOW $180.00 - 0.6000$ 0.6000 0.6000 T8 16 AVA7-50 (1-5/8 LOW $180.00 - 0.6000$ 0.6000 0.6000 T8 17 AVA7-50 (1-5/8 LOW $180.00 - 0.6000$ 0.6000 0.6000 T8 18 AVA7-50 (1-5/8 LOW $180.00 - 0.6000$ 0.6000 0.6000 T8 19 AVA7-50 (1-5/8 LOW $180.00 - 0.6000$ 0.6000 0.6000 T8 20 AVA7-50 (1-5/8 LOW $180.00 - 0.6000$ 0.6000 0.6000 T8 21 AVA7-50 (1-5/8 LOW $180.00 - 0.6000$ 0.6000 0.6000 T8 22 L				220.00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				200.00		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				200.00		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				200.00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			DENSI. FOAM)	200.00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			DENSI. FOAM)	200.00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			DENSI. FOAM)	200.00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			DENSI. FOAM)	200.00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			DENSI. FOAM)	200.00		
T8 21 DENSI. FOAM) AVA7-50 (1-5/8 LOW DENSI. FOAM) 200.00 200.00 0.6000 0.6000 T8 22 LDF4-50A (1/2 FOAM) 180.00 - 200.00 0.6000 0.6000 T8 23 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 25 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 26 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 26 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 28 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 29 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 30 1/2 180.00 - 200.00 0.6000 0.6000 T8 31 1/2 180.00 - 200.00 0.6000 0.6000 T8 32 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000			DENSI. FOAM)	200.00		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			DENSI. FOAM) AVA7-50 (1-5/8 LOW	200.00		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Т8	22	DENSI. FOAM)	200.00 180.00 -	0.6000	0.6000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Т8	23	LC78-50JA-A7	180.00 -	0.6000	0.6000
T8 26 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 28 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 29 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 29 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 30 1/2 180.00 - 200.00 0.6000 0.6000 T8 31 1/2 180.00 - 200.00 0.6000 0.6000 T8 32 LC78-50JA-A7 180.00 - 0.6000 0.6000 0.6000	Т8	25	LC78-50JA-A7	180.00 -	0.6000	0.6000
T8 28 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 29 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 30 1/2 180.00 - 200.00 0.6000 0.6000 T8 30 1/2 180.00 - 200.00 0.6000 0.6000 T8 31 1/2 180.00 - 200.00 0.6000 0.6000 T8 32 LC78-50JA-A7 180.00 - 0.6000 0.6000 0.6000	Т8	26	LC78-50JA-A7	180.00 -	0.6000	0.6000
T8 29 LC78-50JA-A7 180.00 - 200.00 0.6000 0.6000 T8 30 1/2 180.00 - 200.00 0.6000 0.6000 0.6000 T8 31 1/2 180.00 - 200.00 0.6000 0.6000 0.6000 T8 31 1/2 180.00 - 200.00 0.6000 0.6000 0.6000 T8 32 LC78-50JA-A7 180.00 - 0.6000 0.6000	Т8	28	LC78-50JA-A7	180.00 -	0.6000	0.6000
T8 30 1/2 180.00 - 200.00 0.6000 0.6000 T8 31 1/2 180.00 - 200.00 0.6000 0.6000 T8 32 LC78-50JA-A7 180.00 - 180.00 - 0.6000 0.6000	Т8	29	LC78-50JA-A7	180.00 -	0.6000	0.6000
T8 31 1/2 180.00 - 200.00 0.6000 0.6000 T8 32 LC78-50JA-A7 180.00 - 180.00 - 0.6000 0.6000	Т8	30	1/2	180.00 -	0.6000	0.6000
T8 32 LC78-50JA-A7 180.00 - 0.6000 0.6000	Т8	31	1/2	180.00 -	0.6000	0.6000
	Т8	32	LC78-50JA-A7	180.00 -	0.6000	0.6000

tnxTower

Client

320' Rohn SSVMW Project CSP Tower - Colchester, CT

Page 18 of 96 Date 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.	*	Segment Elev.	No Ice	Ice
Т8	33	1/2	180.00 -	0.6000	0.6000
TO	25		200.00	0 (000	0.0000
Т8	35	LC78-50JA-A7	180.00 - 200.00	0.6000	0.6000
Т8	36	LC78-50JA-A7	180.00 -	0.6000	0.6000
10	50	LC/6-50JA-A/	200.00	0.0000	0.0000
Т8	41	1-5/8" Fiber Optic CaBLE	180.00 -	0.6000	0.6000
		Ĩ	200.00		
Т8	42	1/2	180.00 -	0.6000	0.6000
			200.00		
Т9	1	1 5/8	170.00 -	0.6000	0.6000
Т9	2	1 5/8	180.00 170.00 -	0.6000	0.6000
19	2	1 3/8	180.00	0.0000	0.0000
Т9	3	1 5/8" Hybriflex	170.00 -	0.6000	0.6000
	5	10,0 11,01101	180.00	0.0000	0.0000
Т9	4	LC78-50JA-A7	170.00 -	0.6000	0.6000
			174.00		
Т9	5	LC78-50JA-A7	170.00 -	0.6000	0.6000
			177.00		
Т9	6	LDF4-50A (1/2 FOAM)	170.00 -	0.6000	0.6000
TO	7		174.00	0.0000	0.000
Т9	/	LC78-50JA-A7	170.00 - 176.00	0.6000	0.6000
Т9	14	AVA7-50 (1-5/8 LOW	170.00 -	0.6000	0.6000
17	14	DENSI. FOAM)	180.00	0.0000	0.0000
Т9	15	AVA7-50 (1-5/8 LOW	170.00 -	0.6000	0.6000
		DENSI. FOAM)	180.00		
Т9	16	AVA7-50 (1-5/8 LOW	170.00 -	0.6000	0.6000
	. –	DENSI. FOAM)	180.00		
Т9	17	AVA7-50 (1-5/8 LOW	170.00 -	0.6000	0.6000
Т9	1.0	DENSI. FOAM)	180.00	0.000	0.000
19	18	AVA7-50 (1-5/8 LOW DENSI. FOAM)	170.00 - 180.00	0.6000	0.6000
Т9	19	AVA7-50 (1-5/8 LOW	170.00 -	0.6000	0.6000
17	15	DENSI. FOAM)	180.00	0.0000	0.0000
Т9	20	AVA7-50 (1-5/8 LOW	170.00 -	0.6000	0.6000
		DENSI. FOAM)	180.00		
Т9	21	AVA7-50 (1-5/8 LOW	170.00 -	0.6000	0.6000
		DENSI. FOAM)	180.00		
Т9	22	LDF4-50A (1/2 FOAM)	170.00 -	0.6000	0.6000
Т9	22	1 079 5014 47	180.00	0.6000	0.6000
19	23	LC78-50JA-A7	170.00 - 180.00	0.6000	0.6000
Т9	25	LC78-50JA-A7	170.00 -	0.6000	0.6000
.,,	20	20,00000000	180.00	0.0000	0.0000
Т9	26	LC78-50JA-A7	170.00 -	0.6000	0.6000
			180.00		
Т9	28	LC78-50JA-A7	170.00 -	0.6000	0.6000
		× 080 -071	180.00	0 / 000-	0.0000
Т9	29	LC78-50JA-A7	170.00 -	0.6000	0.6000
Т9	30	1/2	180.00 170.00 -	0.6000	0.6000
19	30	1/2	1/0.00 - 180.00	0.0000	0.0000
Т9	31	1/2	170.00 -	0.6000	0.6000
1)	51	1/2	180.00	0.0000	0.0000
Т9	32	LC78-50JA-A7	170.00 -	0.6000	0.6000
			180.00		
Т9	33	1/2	170.00 -	0.6000	0.6000
	_		180.00		
Т9	35	LC78-50JA-A7	170.00 -	0.6000	0.6000
	I		180.00		

tnxTower

10//01

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

 Job
 Page

 320' Rohn SSVMW
 19 of 96

 Project
 Date

 CSP Tower - Colchester, CT
 11:31:15 02/22/19

 Client
 Designed by

 (MODification) VZW-217/ EMP-008 - "G"
 MCD

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
T9	36	LC78-50JA-A7	170.00 -	0.6000	0.6000
Т9	41	1-5/8" Fiber Optic CaBLE	180.00 170.00 -	0.6000	0.6000
Т9	42	1/2	180.00 170.00 -	0.6000	0.6000
T10	1	1 5/8	180.00 160.00 - 170.00	0.6000	0.6000
T10	2	1 5/8	160.00 - 170.00	0.6000	0.6000
T10	3	1 5/8" Hybriflex	160.00 - 170.00	0.6000	0.6000
T10	4	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	5	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	6	LDF4-50A (1/2 FOAM)	160.00 - 170.00	0.6000	0.6000
T10	7	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	14	AVA7-50 (1-5/8 LOW DENSI. FOAM)	160.00 - 170.00	0.6000	0.6000
T10 T10	15	AVA7-50 (1-5/8 LOW DENSI. FOAM)	160.00 - 170.00	0.6000	0.6000
T10 T10	16 17	AVA7-50 (1-5/8 LOW DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 - 170.00 160.00 -	0.6000	0.6000 0.6000
T10	18	DENSI. FOAM) AVA7-50 (1-5/8 LOW	170.00 160.00 -	0.6000	0.6000
T10	19	DENSI. FOAM) AVA7-50 (1-5/8 LOW	170.00 160.00 -	0.6000	0.6000
T10	20	DENSI. FOAM) AVA7-50 (1-5/8 LOW	170.00 160.00 -	0.6000	0.6000
T10	21	DENSI. FOAM) AVA7-50 (1-5/8 LOW	170.00 160.00 -	0.6000	0.6000
T10	22	DENSI. FOAM) LDF4-50A (1/2 FOAM)	170.00 160.00 -	0.6000	0.6000
T10	23	LC78-50JA-A7	170.00 160.00 - 170.00	0.6000	0.6000
T10	25	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	26	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	28	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	29	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	30	1/2	160.00 - 170.00	0.6000	0.6000
T10	31	1/2	160.00 - 170.00	0.6000	0.6000
T10	32	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	33	1/2	160.00 - 170.00	0.6000	0.6000 0.6000
T10 T10	34 35	1/2 LC78-50JA-A7	160.00 - 164.00 160.00 -	0.6000	0.6000
T10	36	LC78-50JA-A7	170.00 160.00 -	0.6000	0.6000
			170.00		

tnxTower

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

 Job
 Page

 320' Rohn SSVMW
 20 of 96

 Project
 Date

 CSP Tower - Colchester, CT
 11:31:15 02/22/19

 Client
 Designed by

 (MODification) VZW-217/ EMP-008 - "G"
 MCD

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.	1.5/0" Eiler Orti- C-DIE	Segment Elev.	No Ice	Ice
T10	41	1-5/8" Fiber Optic CaBLE	160.00 - 170.00	0.6000	0.6000
T10	42	1/2	160.00 - 170.00	0.6000	0.6000
T11	1	1 5/8	140.00 - 160.00	0.6000	0.6000
T11	2	1 5/8	140.00 - 160.00	0.6000	0.6000
T11	3	1 5/8" Hybriflex	140.00 - 160.00	0.6000	0.6000
T11	4	LC78-50JA-A7	140.00 - 160.00	0.6000	0.6000
T11	5	LC78-50JA-A7	140.00 - 160.00	0.6000	0.6000
T11	6	LDF4-50A (1/2 FOAM)	140.00 - 160.00	0.6000	0.6000
T11	7	LC78-50JA-A7	140.00 - 160.00	0.6000	0.6000
T11	14	AVA7-50 (1-5/8 LOW DENSI. FOAM)	140.00 - 160.00	0.6000	0.6000
T11 T11	15 16	AVA7-50 (1-5/8 LOW DENSI. FOAM) AVA7-50 (1-5/8 LOW	140.00 - 160.00 140.00 -	0.6000	0.6000 0.6000
T11 T11	10	AVA7-50 (1-5/8 LOW DENSI. FOAM) AVA7-50 (1-5/8 LOW	140.00 - 160.00 140.00 -	0.6000	0.6000
T11	17	DENSI. FOAM) AVA7-50 (1-5/8 LOW	140.00 - 160.00 140.00 -	0.6000	0.6000
T11	19	DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 140.00 -	0.6000	0.6000
T11	20	DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 140.00 -	0.6000	0.6000
T11	21	DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 140.00 -	0.6000	0.6000
T11	22	DENSI. FOAM) LDF4-50A (1/2 FOAM)	160.00 140.00 -	0.6000	0.6000
T11	23	LC78-50JA-A7	160.00 140.00 - 160.00	0.6000	0.6000
T11	25	LC78-50JA-A7	140.00 - 160.00	0.6000	0.6000
T11	26	LC78-50JA-A7	140.00 - 160.00	0.6000	0.6000
T11	28	LC78-50JA-A7	140.00 - 160.00	0.6000	0.6000
T11	29	LC78-50JA-A7	140.00 - 160.00	0.6000	0.6000
T11	30	1/2	140.00 - 160.00	0.6000	0.6000
T11	31	1/2	140.00 - 160.00	0.6000	0.6000
T11	32	LC78-50JA-A7	140.00 - 160.00	0.6000	0.6000
T11	33	1/2	140.00 - 160.00	0.6000	0.6000
T11 T11	34 35	1/2 LC78-50JA-A7	140.00 - 160.00 140.00 -	0.6000	0.6000 0.6000
T11 T11	35 36	LC78-50JA-A7	140.00 - 160.00 140.00 -	0.6000	0.6000
T11	37	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
			153.00		I

tnxT

1	ower	

Project

Client

Page 21 of 96 320' Rohn SSVMW Date CSP Tower - Colchester, CT 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Section Recard No. Distription Feed Allow of the second No. No lace No lace T11 39 EW63 140.00 0.6000 0.6000 T11 41 1-5/8" Fiber Optic CaBLE 140.00 0.6000 0.6000 T11 42 1/2 145.00 0.6000 0.6000 T12 1 15/8 120.00 0.6000 0.6000 T12 2 15/8 120.00 0.6000 0.6000 T12 3 15.8" Hybriflex 120.00 0.6000 0.6000 T12 4 LC78-50JA-A7 120.00 0.6000 0.6000 T12 5 LC78-50JA-A7 120.00 0.6000 0.6000 T12 6 LDF4-50A (1/2 FOAM) 120.00 0.6000 0.6000 T12 7 LC78-50JA-A7 120.00 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 0.6000 0.6000 T12 9 LC78-50JA-A7	Tower	Feed Line	Description	Feed Line	Ka	K _a
T11 39 EW63 $1000 - 0.6000$ 0.6000 0.6000 T11 41 $1-5/8^{or}$ Fiber Optic CaBLE $140.00 - 0.6000$ 0.6000 0.6000 T11 42 $1/2$ $140.00 - 0.6000$ 0.6000 0.6000 T12 1 $15/8$ $120.00 - 0.6000$ 0.6000 0.6000 T12 2 $15/8$ $120.00 - 0.6000$ 0.6000 0.6000 T12 3 $15/8^{or}$ Hybriflex $120.00 - 0.6000$ 0.6000 0.6000 T12 4 $LC78-50JA-A7$ $120.00 - 0.6000$ 0.6000 0.6000 T12 6 $LDF4-50A (1/2 FOAM)$ $120.00 - 0.6000$ 0.6000 0.6000 T12 7 $LC78-50JA-A7$ $120.00 - 0.6000$ 0.6000 0.6000 T12 8 $LC78-50JA-A7$ $120.00 - 0.6000$ 0.6000 0.6000 T12 9 $LC78-50JA-A7$ $120.00 - 0.6000$ 0.6000 0.6000 T12 14 AVA7-50 (1-5/8 LOW			Description			
11 41 1-5/8" Fiber Optic CaBLE 140.00 0.6000 0.6000 111 42 1/2 140.00 0.6000 0.6000 112 1 1.5/8 120.00 0.6000 0.6000 112 2 1.5/8 120.00 0.6000 0.6000 112 3 1.5/8" Hybriflex 120.00 0.6000 0.6000 112 4 LC78-50JA-A7 120.00 0.6000 0.6000 112 5 LC78-50JA-A7 120.00 0.6000 0.6000 112 6 LDF4-50A (1/2 FOAM) 120.00 0.6000 0.6000 112 7 LC78-50JA-A7 120.00 0.6000 0.6000 112 8 LC78-50JA-A7 120.00 0.6000 0.6000 112 9 LC78-50JA-A7 120.00 0.6000 0.6000 112 14 AVA7-50 (1-58 LOW 120.00 0.6000 0.6000 112 15 AVA7-50 (1-58 LOW 120.00 </td <td></td> <td></td> <td>EW63</td> <td></td> <td></td> <td></td>			EW63			
11 42 $1/2$ 160.00 0.6000 0.6000 T12 1 15/8 120.00 0.6000 0.6000 T12 2 15/8 120.00 0.6000 0.6000 T12 3 $15/8^{\circ}$ Hybriflex 120.00 0.6000 0.6000 T12 4 LC78-50JA-A7 120.00 0.6000 0.6000 T12 5 LC78-50JA-A7 120.00 0.6000 0.6000 T12 6 LDF4-50A (1/2 FOAM) 120.00 0.6000 0.6000 T12 7 LC78-50JA-A7 120.00 0.6000 0.6000 T12 8 LC78-50JA-A7 120.00 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 0.6000 0.6000 T12 14 AVA7-50 (1-5/8 LOW 120.00 0.6000 0.6000 T12 15 AVA7-50 (1-5/8 LOW 120.00 0.6000 0.6000 T12						
T11 42 1/2 140.00 0.6000 0.6000 T12 1 1.5/8 120.00 0.6000 0.6000 T12 2 1.5/8 120.00 0.6000 0.6000 T12 3 1.5/8" Hybriflex 120.00 0.6000 0.6000 T12 4 LC78-50JA-A7 120.00 0.6000 0.6000 T12 5 LC78-50JA-A7 120.00 0.6000 0.6000 T12 6 LDF4-50A (1/2 FOAM) 120.00 0.6000 0.6000 T12 7 LC78-50JA-A7 120.00 0.6000 0.6000 T12 8 LC78-50JA-A7 120.00 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 0.6000 0.6000 T12 14 AVA7-50 (1-5/8 LOW 120.00 0.6000 0.6000 T12 15 AVA7-50 (1-5/8 LOW 120.00 0.6000 0.6000 T12 16 AVA7-50 (1-5/8 LOW 120.00	T11	41	1-5/8" Fiber Optic CaBLE		0.6000	0.6000
112 1 15/8 120.00 - 140.00 0.6000 0.6000 T12 2 15/8 120.00 - 140.00 0.6000 0.6000 T12 3 15/8" Hybriflex 120.00 - 140.00 0.6000 0.6000 T12 4 LC78-50JA-A7 120.00 - 140.00 0.6000 0.6000 T12 6 LDF4-50A (1/2 FOAM) 120.00 - 140.00 0.6000 0.6000 T12 7 LC78-50JA-A7 120.00 - 140.00 0.6000 0.6000 T12 8 LC78-50JA-A7 120.00 - 120.00 - 0.6000 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 - 137.00 0.6000 0.6000 T12 14 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 0.6000 T12 14 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 0.6000 T12 15 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 0.6000 T12 18 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000		10				
T12 1 15/8 120.00 - 0.6000 0.6000 T12 2 15/8 120.00 - 0.6000 0.6000 T12 3 15/8" Hybrilex 120.00 - 0.6000 0.6000 T12 4 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 5 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 6 LDF4-50A (1/2 FOAM) 120.00 - 0.6000 0.6000 T12 7 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 8 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 14 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 T12 14 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 T12 15 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 T12 AVA7-50 (1-5/8 LOW	T11	42	1/2		0.6000	0.6000
140.00 140.00 140.00 T12 2 1.5/8 120.00 - 0.6000 0.6000 T12 3 1.5/8 Hybriflex 120.00 - 0.6000 0.6000 T12 4 LC78-50JA-A7 120.00 - 0.6000 0.6000 0.6000 T12 5 LC78-50JA-A7 120.00 - 0.6000 0.6000 0.6000 T12 6 LDF4-50A (1/2 FOAM) 120.00 - 0.6000 0.6000 0.6000 T12 7 LC78-50JA-A7 120.00 - 0.6000 0.6000 0.6000 T12 8 LC78-50JA-A7 120.00 - 0.6000 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 - 0.6000 0.6000 0.6000 T12 14 AVA7-50 (1-58 LOW 120.00 - 0.6000 0.6000 0.6000 T12 14 AVA7-50 (1-58 LOW 120.00 - 0.6000 0.6000 0.6000 T12 16 AVA7-50 (1-58 LOW 120.00 - 0.6000 0.6000 0.6000 T12 17 AVA7-50 (1-58 LOW	т12	1	1.5/8		0.6000	0.6000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	112	1	1 5/8		0.0000	0.0000
140.00 140.00 0.6000 0.6000 T12 3 $15/8"$ Hybriflex $120.00 - 140.00$ 0.6000 0.6000 T12 4 $LC78-50JA-A7$ $120.00 - 16000$ 0.6000 0.6000 T12 5 $LC78-50JA-A7$ $120.00 - 16000$ 0.6000 0.6000 T12 6 $LDF4-50A$ ($1/2$ FOAM) $120.00 - 16000$ 0.6000 0.6000 T12 7 $LC78-50JA-A7$ $120.00 - 16000$ 0.6000 0.6000 T12 8 $LC78-50JA-A7$ $120.00 - 0.6000$ 0.6000 0.6000 T12 9 $LC78-50JA-A7$ $120.00 - 0.6000$ 0.6000 0.6000 T12 14 $AVA7-50$ ($1-5/8$ LOW $120.00 - 0.6000$ 0.6000 0.6000 T12 15 $AVA7-50$ ($1-5/8$ LOW $120.00 - 0.6000$ 0.6000 0.6000 T12 16 $AVA7-50$ ($1-5/8$ LOW $120.00 - 0.6000$ 0.6000 0.6000 T12 17 $AVA7-50$ ($1-5/8$ LOW $120.00 - 0$	T12	2	1.5/8		0.6000	0.6000
140.00 140.00 0.6000 0.6000 0.6000 T12 4 LC78-50JA-A7 120.00 - 1.6000 0.6000 0.6000 T12 6 LDF4-50A (1/2 FOAM) 120.00 - 1.6000 0.6000 0.6000 T12 6 LDF4-50A (1/2 FOAM) 120.00 - 1.6000 0.6000 0.6000 T12 7 LC78-50JA-A7 120.00 - 1.6000 0.6000 0.6000 T12 8 LC78-50JA-A7 120.00 - 1.6000 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 - 1.6000 0.6000 0.6000 T12 14 AVA7-50 (1-5% LOW 120.00 - 1.6000 0.6000 0.6000 T12 15 AVA7-50 (1-5% LOW 120.00 - 1.6000 0.6000 0.6000 T12 16 AVA7-50 (1-5% LOW 120.00 - 1.6000 0.6000 0.6000 T12 17 AVA7-50 (1-5% LOW 120.00 - 1.6000 0.6000 0.6000 T12 18 AVA7-50 (1-5% LOW 120.00 - 1.6000 0.6000 0.6000						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T12	3	1 5/8" Hybriflex	120.00 -	0.6000	0.6000
140.00 140.00 160.00 T12 5 LC78-50JA-A7 120.00 0.6000 0.6000 T12 6 LDF4-50A (1/2 FOAM) 120.00 0.6000 0.6000 T12 7 LC78-50JA-A7 120.00 0.6000 0.6000 T12 8 LC78-50JA-A7 120.00 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 0.6000 0.6000 T12 14 AVA7-50 (1-5% LOW 120.00 0.6000 0.6000 T12 15 AVA7-50 (1-5% LOW 120.00 0.6000 0.6000 T12 16 AVA7-50 (1-5% LOW 120.00 0.6000 0.6000 T12 17 AVA7-50 (1-5% LOW 120.00 0.6000 0.6000 T12 18 AVA7-50 (1-5% LOW 120.00 0.6000 0.6000 T12 19 AVA7-50 (1-5% LOW 120.00 0.6000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T12	4	LC78-50JA-A7		0.6000	0.6000
112 140.00 (120.00 - 0.6000) 140.00 (140.00) T12 7 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 7 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 8 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 14 AVA7-50 (1-5% LOW 120.00 - 0.6000 0.6000 T12 15 AVA7-50 (1-5% LOW 120.00 - 0.6000 0.6000 T12 16 AVA7-50 (1-5% LOW 120.00 - 0.6000 0.6000 T12 17 AVA7-50 (1-5% LOW 120.00 - 0.6000 0.6000 T12 17 AVA7-50 (1-5% LOW 120.00 - 0.6000 0.6000 T12 18 AVA7-50 (1-5% LOW 120.00 - 0.6000 0.6000 T12 19 AVA7-50 (1-5% LOW 120.00 - 0.6000 0.6000 T12 21 AVA7-50 (1-5% LOW 120.00 - 0.6000 0.60	т12	5	LC78 5014 47		0.6000	0.6000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	112	5	LC/8-30JA-A/		0.0000	0.0000
T12 T LC78-50JA-A7 140.00 0.6000 0.6000 T12 8 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 9 LC78-50JA-A7 120.00 - 0.6000 0.6000 T12 14 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 T12 15 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 T12 16 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 T12 17 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 T12 17 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 T12 18 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 T12 19 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 T12 20 AVA7-50 (1-5/8 LOW 120.00 - 0.6000 0.6000 T12	T12	6	LDF4-50A (1/2 FOAM)		0.6000	0.6000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T12	7	LC78-50JA-A7		0.6000	0.6000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T12	8	LC78-50JA-A7		0.6000	0.6000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	т12	0	LC78 5014 47		0.6000	0.6000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	112	2	LC/8-30JA-A/		0.0000	0.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T12	14	AVA7-50 (1-5/8 LOW		0.6000	0.6000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T12	15		120.00 -	0.6000	0.6000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T12	16			0.6000	0.6000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	т12	17			0.6000	0,6000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	112	17			0.0000	0.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T12	18			0.6000	0.6000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T12	19	AVA7-50 (1-5/8 LOW	120.00 -	0.6000	0.6000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		• •				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T12	20	AVA7-50 (1-5/8 LOW		0.6000	0.6000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	т12	21			0.6000	0.6000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	112	21			0.0000	0.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T12	22	, , , , , , , , , , , , , , , , , , , ,		0.6000	0.6000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			× /	140.00		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T12	23	LC78-50JA-A7		0.6000	0.6000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.5	1 000 0010 10		0 (000	0.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	112	25	LC/8-50JA-A/		0.6000	0.6000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	т12	26	LC78-5014-47		0.6000	0.6000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	112	20	LC / 0-503/A-A/		0.0000	0.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T12	28	LC78-50JA-A7		0.6000	0.6000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
T12 30 1/2 120.00 - 140.00 0.6000 0.6000 T12 31 1/2 120.00 - 140.00 0.6000 0.6000 T12 32 LC78-50JA-A7 120.00 - 140.00 0.6000 0.6000 T12 33 1/2 120.00 - 140.00 0.6000 0.6000 T12 33 1/2 120.00 - 140.00 0.6000 0.6000 T12 34 1/2 120.00 - 0.6000 0.6000 0.6000	T12	29	LC78-50JA-A7		0.6000	0.6000
T12 31 1/2 140.00 120.00 - 140.00 0.6000 0.6000 T12 32 LC78-50JA-A7 120.00 - 140.00 0.6000 0.6000 T12 33 1/2 120.00 - 140.00 0.6000 0.6000 T12 34 1/2 120.00 - 140.00 0.6000 0.6000	T10	20	1/0		0 (000	0.0000
T12 31 1/2 120.00 - 140.00 0.6000 0.6000 T12 32 LC78-50JA-A7 120.00 - 140.00 0.6000 0.6000 T12 33 1/2 120.00 - 140.00 0.6000 0.6000 T12 33 1/2 120.00 - 140.00 0.6000 0.6000 T12 34 1/2 120.00 - 0.6000 0.6000	112	30	1/2		0.6000	0.6000
T12 32 LC78-50JA-A7 140.00 120.00 - 140.00 0.6000 0.6000 T12 33 1/2 120.00 - 140.00 0.6000 0.6000 T12 34 1/2 120.00 - 140.00 0.6000 0.6000	T12	31	1/2		0.6000	0.6000
T12 32 LC78-50JA-A7 120.00 - 140.00 0.6000 0.6000 T12 33 1/2 120.00 - 140.00 0.6000 0.6000 T12 34 1/2 120.00 - 140.00 0.6000 0.6000	112	51	1/2		5.0000	0.0000
T12 33 1/2 120.00 - 140.00 0.6000 0.6000 T12 34 1/2 120.00 - 0.6000 0.6000	T12	32	LC78-50JA-A7	120.00 -	0.6000	0.6000
T12 34 1/2 140.00 120.00 - 0.6000 0.6000						
T12 34 1/2 120.00 - 0.6000 0.6000	T12	33	1/2		0.6000	0.6000
	т12	24	1/2		0 6000	0 6000
	112	34	1/2			0.0000
	• I	I		140.00	I	I I

tnxTower

Client

Page 22 of 96 320' Rohn SSVMW Project Date CSP Tower - Colchester, CT 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Tower	Feed Line	Description	Feed Line	Ka	K
Section	Record No.	Description	Segment Elev.	к _а No Ice	K _a Ice
T12	35	LC78-50JA-A7	120.00 -	0.6000	0.6000
			140.00		
T12	36	LC78-50JA-A7	120.00 -	0.6000	0.6000
T12	37	LC78-50JA-A7	140.00 120.00 -	0.6000	0.6000
112	57	LC/0-303A-A/	140.00	0.0000	0.0000
T12	39	EW63	120.00 -	0.6000	0.6000
			140.00		
T12	41	1-5/8" Fiber Optic CaBLE	120.00 -	0.6000	0.6000
T12	42	1/2	140.00 120.00 -	0.6000	0.6000
112	42	1/2	140.00	0.0000	0.0000
T13	1	1 5/8		0.6000	0.6000
			120.00		
T13	2	1 5/8	100.00 -	0.6000	0.6000
T13	3	1 5/8" Hybriflex	120.00 100.00 -	0.6000	0.6000
113	5	1 5/6 Hydrillex	120.00	0.0000	0.0000
T13	4	LC78-50JA-A7	100.00 -	0.6000	0.6000
		_	120.00		
T13	5	LC78-50JA-A7	100.00 -	0.6000	0.6000
T13	6	LDF4-50A (1/2 FOAM)	120.00 100.00 -	0.6000	0.6000
115	0	LD14-30A(1/2 TOAWI)	120.00	0.0000	0.0000
T13	7	LC78-50JA-A7	100.00 -	0.6000	0.6000
			120.00		
T13	8	LC78-50JA-A7	100.00 -	0.6000	0.6000
T13	9	LC78-50JA-A7	120.00 100.00 -	0.6000	0.6000
115	2	LC/0-303A-A/	120.00	0.0000	0.0000
T13	10	LC78-50JA-A7	100.00 -	0.6000	0.6000
			105.00		
T13	11	LC78-50JA-A7	100.00 -	0.6000	0.6000
T13	14	AVA7-50 (1-5/8 LOW	103.30 100.00 -	0.6000	0.6000
115	14	DENSI. FOAM)	120.00	0.0000	0.0000
T13	15	AVA7-50 (1-5/8 LOW	100.00 -	0.6000	0.6000
		DENSI. FOAM)	120.00		
T13	16	AVA7-50 (1-5/8 LOW	100.00 -	0.6000	0.6000
T13	17	DENSI. FOAM) AVA7-50 (1-5/8 LOW	120.00 100.00 -	0.6000	0.6000
115	17	DENSI. FOAM)	120.00	0.0000	0.0000
T13	18	AVA7-50 (1-5/8 LOW	100.00 -	0.6000	0.6000
		DENSI. FOAM)	120.00	0 (000	0.0000
T13	19	AVA7-50 (1-5/8 LOW DENSI. FOAM)	100.00 -	0.6000	0.6000
T13	20	AVA7-50 (1-5/8 LOW	120.00 100.00 -	0.6000	0.6000
115	20	DENSI. FOAM)	120.00	0.0000	0.0000
T13	21	AVA7-50 (1-5/8 LOW	100.00 -	0.6000	0.6000
	<i>.</i>	DENSI. FOAM)	120.00	0	0.000
T13	22	LDF4-50A (1/2 FOAM)	100.00 -	0.6000	0.6000
T13	23	LC78-50JA-A7	120.00 100.00 -	0.6000	0.6000
115	25	LC/0-505A-A/	120.00	0.0000	0.0000
T13	24	WE65	100.00 -	0.6000	0.6000
	, -	x 8=0 =0x/ · · =	106.00	0	0 0
T13	25	LC78-50JA-A7	100.00 -	0.6000	0.6000
T13	26	LC78-50JA-A7	120.00 100.00 -	0.6000	0.6000
115	20	LC/0-505A-A/	120.00	0.0000	0.0000
T13	27	WE108	100.00 -	0.6000	0.6000
			113.00		

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Page Job 23 of 96 320' Rohn SSVMW Project Date CSP Tower - Colchester, CT 11:31:15 02/22/19 Client Designed by (MODification) VZW-217/ EMP-008 - "G" MCD

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
T13	28	LC78-50JA-A7	100.00 -	0.6000	0.6000
			120.00		
T13	29	LC78-50JA-A7	100.00 -	0.6000	0.6000
T13	30	1/2	120.00 100.00 -	0.6000	0.6000
115	30	1/2	120.00	0.0000	0.0000
T13	31	1/2	100.00 -	0.6000	0.6000
			120.00		
T13	32	LC78-50JA-A7	100.00 -	0.6000	0.6000
T12	22	1/2	120.00	0.000	0.0000
T13	33	1/2	100.00 - 120.00	0.6000	0.6000
T13	34	1/2	100.00 -	0.6000	0.6000
			120.00		
T13	35	LC78-50JA-A7	100.00 -	0.6000	0.6000
712	26		120.00	0.000	0.0000
T13	36	LC78-50JA-A7	100.00 - 120.00	0.6000	0.6000
T13	37	LC78-50JA-A7	100.00 -	0.6000	0.6000
115	57		120.00	0.0000	0.0000
T13	39	EW63	100.00 -	0.6000	0.6000
			120.00		
T13	40	LC78-50JA-A7	100.00 -	0.6000	0.6000
T13	41	1-5/8" Fiber Optic CaBLE	120.00 100.00 -	0.6000	0.6000
115	41	1-5/8 Fiber Optic CaBLE	120.00	0.0000	0.0000
T13	42	1/2	100.00 -	0.6000	0.6000
			120.00		
T14	1		80.00 - 100.00	0.6000	0.6000
T14	2		80.00 - 100.00	0.6000	0.6000
T14	3	1 5/8" Hybriflex		0.6000	0.6000
T14 T14	4 5	LC78-50JA-A7 LC78-50JA-A7		$0.6000 \\ 0.6000$	0.6000 0.6000
T14	6	LDF4-50A (1/2 FOAM)		0.6000	0.6000
T14	7	LC78-50JA-A7		0.6000	0.6000
T14	8	LC78-50JA-A7		0.6000	0.6000
T14	9	LC78-50JA-A7		0.6000	0.6000
T14	10	LC78-50JA-A7		0.6000	0.6000
T14 T14	11 12	LC78-50JA-A7 LC78-50JA-A7	80.00 - 100.00 80.00 - 91.00	$0.6000 \\ 0.6000$	0.6000 0.6000
T14 T14	12	LC78-50JA-A7	80.00 - 91.00	0.6000	0.6000
T14	13	AVA7-50 (1-5/8 LOW		0.6000	0.6000
		DENSI. FOAM)			
T14	15	AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
714	17	DENSI. FOAM)	00.00 100.00	0.000	0.0000
T14	16	AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
T14	17	DENSI. FOAM) AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
	1,	DENSI. FOAM)	100.00	0.0000	0.0000
T14	18	AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
		DENSI. FOAM)			
T14	19	AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
T14	20	DENSI. FOAM)	80.00 100.00	0.6000	0,6000
T14	20	AVA7-50 (1-5/8 LOW DENSI. FOAM)	80.00 - 100.00	0.6000	0.6000
T14	21	AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
	21	DENSI. FOAM)	100.00	2.0000	2.0000
T14	22	LDF4-50A (1/2 FOAM)		0.6000	0.6000
T14	23	LC78-50JA-A7		0.6000	0.6000
T14	24		80.00 - 100.00	0.6000	0.6000
T14 T14	25 26	LC78-50JA-A7 LC78-50JA-A7		$0.6000 \\ 0.6000$	$0.6000 \\ 0.6000$
114	20	LC/0-30JA-A/	00.00 - 100.00	0.0000	0.0000

tnxTower

Job		Page
	320' Rohn SSVMW	24 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client		Designed by
	(MODification) VZW-217/ EMP-008 - "G"	MCD

MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.	NE100	Segment Elev.	No Ice	Ice
T14	27		80.00 - 100.00	0.6000	0.6000
T14 T14	28 29	LC78-50JA-A7 LC78-50JA-A7		0.6000 0.6000	0.6000 0.6000
T14 T14	29 30	LC / 8-30JA-A/ 1/2		0.6000	0.6000
T14 T14	30		80.00 - 100.00	0.6000	0.6000
T14 T14	31	LC78-50JA-A7		0.6000	0.6000
T14 T14	33		80.00 - 100.00	0.6000	0.6000
T14	34		80.00 - 100.00	0.6000	0.6000
T14	35	LC78-50JA-A7		0.6000	0.6000
T14	36	LC78-50JA-A7	80.00 - 100.00	0.6000	0.6000
T14	37	LC78-50JA-A7	80.00 - 100.00	0.6000	0.6000
T14	39	EW63	80.00 - 100.00	0.6000	0.6000
T14	40	LC78-50JA-A7	80.00 - 100.00	0.6000	0.6000
T14	41	1-5/8" Fiber Optic CaBLE	80.00 - 100.00	0.6000	0.6000
T14	42	1/2	80.00 - 100.00	0.6000	0.6000
T15	1	1 5/8	60.00 - 80.00	0.6000	0.6000
T15	2	1 5/8		0.6000	0.6000
T15	3	1 5/8" Hybriflex	60.00 - 80.00	0.6000	0.6000
T15	4	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	5	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	6	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.6000
T15	7	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	8	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	9	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	10	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15 T15	11 12	LC78-50JA-A7	60.00 - 80.00	0.6000	$0.6000 \\ 0.6000$
T15 T15	12	LC78-50JA-A7 LC78-50JA-A7	60.00 - 80.00 60.00 - 80.00	0.6000 0.6000	0.6000
T15 T15	13	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
115	14	DENSI. FOAM)	00.00 - 80.00	0.0000	0.0000
T15	15	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
115	15	DENSI. FOAM)	00.00 00.00	0.0000	0.0000
T15	16	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
		DENSI. FOAM)			
T15	17	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
		DENSI. FOAM)			
T15	18	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
		DENSI. FOAM)			
T15	19	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
		DENSI. FOAM)			
T15	20	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
		DENSI. FOAM)			
T15	21	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
	~ ~	DENSI. FOAM)		0 (000	0 6060
T15	22	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.6000
T15	23	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	24	WE65	60.00 - 80.00	0.6000	0.6000
T15 T15	25 26	LC78-50JA-A7 LC78-50JA-A7	60.00 - 80.00 60.00 - 80.00	0.6000	0.6000 0.6000
T15 T15	20 27	LC /8-50JA-A/ WE108		0.6000 0.6000	0.6000
T15 T15	27	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15 T15	28	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	30	1/2	60.00 - 80.00	0.6000	0.6000
T15	31	1/2	60.00 - 80.00	0.6000	0.6000
T15	32	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	33	1/2	60.00 - 80.00	0.6000	0.6000
T15	34	1/2	60.00 - 80.00	0.6000	0.6000
T15	35	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	36	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	37	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	39	EW63		0.6000	0.6000
T15	40	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000

tnxT

Tower	
-------	--

Project

Client

Page 25 of 96 320' Rohn SSVMW Date CSP Tower - Colchester, CT 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

r	T		D : (V	V
	Tower	Feed Line	Description	Feed Line	K_a	K _a
ł	Section T15	Record No. 41	1-5/8" Fiber Optic CaBLE	Segment Elev. 60.00 - 80.00	No Ice 0.6000	Ice 0.6000
	T15	41	1-5/8 110er Optie CaBLE 1/2	60.00 - 80.00	0.6000	0.6000
	T16	1	1 5/8	30.00 - 60.00	0.6000	0.6000
	T16	2	1 5/8	30.00 - 60.00	0.6000	0.6000
	T16	3	1 5/8" Hybriflex	30.00 - 60.00	0.6000	0.6000
	T16	4	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	5	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	6	LDF4-50A (1/2 FOAM)	30.00 - 60.00	0.6000	0.6000
	T16	7	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	8	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	9	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	10	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	11	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16 T16	12 13	LC78-50JA-A7 LC78-50JA-A7	30.00 - 60.00 30.00 - 60.00	$0.6000 \\ 0.6000$	0.6000 0.6000
	T16	13	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
	110	14	DENSI. FOAM)	30.00 - 00.00	0.0000	0.0000
	T16	15	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
	110	15	DENSI, FOAM)	50.00 00.00	0.0000	0.0000
	T16	16	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
			DENSI. FOAM)			
	T16	17	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
			DENSI. FOAM)			
	T16	18	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
			DENSI. FOAM)			
	T16	19	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
	T16	20	DENSI. FOAM)	30.00 - 60.00	0.6000	0.6000
	110	20	AVA7-50 (1-5/8 LOW DENSI, FOAM)	30.00 - 60.00	0.6000	0.6000
	T16	21	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
	110	21	DENSI. FOAM)	50.00 - 00.00	0.0000	0.0000
	T16	22	LDF4-50A (1/2 FOAM)	30.00 - 60.00	0.6000	0.6000
	T16	23	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	24	WE65	30.00 - 60.00	0.6000	0.6000
	T16	25	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	26	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	27	WE108	30.00 - 60.00	0.6000	0.6000
	T16	28	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	29	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	30	1/2	30.00 - 60.00	0.6000	0.6000
	T16 T16	31 32	1/2 LC78-50JA-A7	30.00 - 60.00 30.00 - 60.00	$0.6000 \\ 0.6000$	0.6000 0.6000
	T16	32	1/2	30.00 - 60.00	0.6000	0.6000
	T16	33	1/2	30.00 - 60.00	0.6000	0.6000
	T16	35	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	36	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	37	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	39	EW63	30.00 - 60.00	0.6000	0.6000
	T16	40	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
	T16	41	1-5/8" Fiber Optic CaBLE	30.00 - 60.00	0.6000	0.6000
	T16	42	1/2	30.00 - 60.00	0.6000	0.6000
	T17	1	1 5/8	5.00 - 30.00	0.6000	0.6000
	T17	2	1 5/8 1 5/9" Urbriflay	5.00 - 30.00	0.6000	0.6000
	T17 T17	3	1 5/8" Hybriflex LC78-50JA-A7	5.00 - 30.00 5.00 - 30.00	$0.6000 \\ 0.6000$	0.6000 0.6000
	T17 T17	45	LC78-50JA-A7 LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
	T17 T17	6	LDF4-50A (1/2 FOAM)	5.00 - 30.00	0.6000	0.6000
	T17	7	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
	T17	8	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
	T17	9	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
	T17	10	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
	T17	11	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000

tnxTower

Job		Page
	320' Rohn SSVMW	26 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client		Designed by
	(MODification) VZW-217/ EMP-008 - "G"	MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev. No Ice		Ice
T17	12	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	13	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	14	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	15	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	16	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	17	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	18	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	19	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	20	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	21	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	22	LDF4-50A (1/2 FOAM)	5.00 - 30.00	0.6000	0.6000
T17	23	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	24	WE65	5.00 - 30.00	0.6000	0.6000
T17	25	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	26	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	27	WE108	5.00 - 30.00	0.6000	0.6000
T17	28	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	29	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	30	1/2	5.00 - 30.00	0.6000	0.6000
T17	31	1/2	5.00 - 30.00	0.6000	0.6000
T17	32	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	33	1/2	5.00 - 30.00	0.6000	0.6000
T17	34	1/2	5.00 - 30.00	0.6000	0.6000
T17	35	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	36	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	37	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	39	EW63	5.00 - 30.00	0.6000	0.6000
T17	40	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	41	1-5/8" Fiber Optic CaBLE	5.00 - 30.00	0.6000	0.6000
T17	42	1/2	5.00 - 30.00	0.6000	0.6000

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft^2	ft^2	lb
*** EMP-005 AT&T Inventory									
PiROD 12' Lightweight T-Frame (AT&T)	А	None		0.0000	200.00	No Ice 1/2" Ice 1" Ice	10.20 16.20 22.20	10.20 16.20 22.20	253.00 355.00 457.00
PiROD 12' Lightweight T-Frame	В	None		0.0000	200.00	No Ice 1/2" Ice	10.20 16.20	10.20 16.20	253.00 355.00

tnxTower	Job	320' Rohn SSVMW	Page 27 of 96
AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
			Vert ft ft ft	0	ft		ft^2	ft ²	lb
(AT&T)						1" Ice	22.20	22.20	457.00
PiROD 12' Lightweight	С	None		0.0000	200.00	No Ice	10.20	10.20	253.00
T-Frame						1/2" Ice	16.20	16.20	355.00
(AT&T)		. .	2 00	0.0000	200.00	1" Ice	22.20	22.20	457.00
7770.00	А	From Leg	3.00	0.0000	200.00	No Ice	10.03	5.60	20.00
(AT&T)			-6.00			1/2" Ice	10.61	6.15	70.47
7770.00		Enous Las	0.00	0.0000	200.00	1" Ice	11.20	6.71	130.07
7770.00	А	From Leg	3.00	0.0000	200.00	No Ice 1/2" Ice	10.03	5.60	20.00
(AT&T)			-2.00 0.00			1/2 Ice	10.61	6.15 6.71	70.47
HPA-65R-BUU-H8 Panel		Erom Log		0.0000	200.00	No Ice	11.20 12.99	7.48	130.07 68.00
	А	From Leg	3.00 6.00	0.0000	200.00	1/2" Ice	12.99	8.06	140.4
(AT&T)			0.00			1" Ice	13.09	8.64	220.44
(2) LGP21401 TMA Unit	А	From Leg	3.00	0.0000	200.00	No Ice	0.47	0.12	7.70
(AT&T)	A	Prom Leg	4.00	0.0000	200.00	1/2" Ice	0.47	0.12	10.71
(AIGI)			0.00			1" Ice	0.67	0.24	14.96
RRUS-32	А	From Leg	3.00	0.0000	200.00	No Ice	3.20	1.85	60.00
(AT&T)	11	110III Log	6.00	0.0000	200.00	1/2" Ice	3.46	2.08	81.11
(mar)			1.50			1" Ice	3.73	2.31	105.42
RRUS-11	А	From Leg	3.00	0.0000	200.00	No Ice	2.99	1.25	50.00
(AT&T)	11	110III Log	6.00	0.0000	200.00	1/2" Ice	3.23	1.41	69.57
(mar)			-1.50			1" Ice	3.47	1.59	92.08
7770.00	В	From Leg	3.00	0.0000	200.00	No Ice	10.03	5.60	20.00
(AT&T)	5	TTOM LOB	-6.00	0.0000	200.00	1/2" Ice	10.61	6.15	70.47
()			0.00			1" Ice	11.20	6.71	130.0
7770.00	В	From Leg	3.00	0.0000	200.00	No Ice	10.03	5.60	20.00
(AT&T)		e	-6.00			1/2" Ice	10.61	6.15	70.47
			0.00			1" Ice	11.20	6.71	130.0
HPA-65R-BUU-H8 Panel	В	From Leg	3.00	0.0000	200.00	No Ice	12.99	7.48	68.00
(AT&T)			6.00			1/2" Ice	13.69	8.06	140.4
			0.00			1" Ice	14.40	8.64	220.44
(2) LGP21401 TMA Unit	В	From Leg	3.00	0.0000	200.00	No Ice	0.47	0.12	7.70
(AT&T)			4.00			1/2" Ice	0.56	0.17	10.71
			0.00			1" Ice	0.67	0.24	14.96
RRUS-32	В	From Leg	3.00	0.0000	200.00	No Ice	3.20	1.85	60.00
(AT&T)			6.00			1/2" Ice	3.46	2.08	81.11
			1.50			1" Ice	3.73	2.31	105.42
RRUS-11	В	From Leg	3.00	0.0000	200.00	No Ice	2.99	1.25	50.00
(AT&T)			6.00			1/2" Ice	3.23	1.41	69.57
	~		-1.50			1" Ice	3.47	1.59	92.08
7770.00	С	From Leg	3.00	0.0000	200.00	No Ice	10.03	5.60	20.00
(AT&T)			-6.00			1/2" Ice	10.61	6.15	70.47
7770.00	C	F I	0.00	0.0000	200.00	1" Ice	11.20	6.71	130.0
7770.00	С	From Leg	3.00	0.0000	200.00	No Ice	10.03	5.60	20.00
(AT&T)			-2.00			1/2" Ice	10.61	6.15	70.47
	C	Enous Las	0.00	0.0000	200.00	1" Ice	11.20	6.71	130.07
HPA-65R-BUU-H6 Panel	С	From Leg	3.00	0.0000	200.00	No Ice 1/2" Ice	10.12	5.49	48.00
(AT&T)			6.00				10.69	5.94	105.33
(2) LGP21401 TMA Unit	В	From Lag	0.00 3.00	0.0000	200.00	1" Ice No Ice	11.26 0.47	6.41 0.12	168.95 7.70
	В	From Leg	3.00 4.00	0.0000	200.00	No Ice 1/2" Ice			
(AT&T)						1/2" Ice	0.56 0.67	0.17 0.24	10.71
RRUS-32	В	From Leg	0.00 3.00	0.0000	200.00	No Ice	3.20	1.85	14.96 60.00
(AT&T)	Б	r tom Leg	5.00 6.00	0.0000	200.00	1/2" Ice	3.46	2.08	81.11
(AIQI)			1.50			1/2 Ice	3.40	2.08	105.42
RRUS-11	В	From Leg	3.00	0.0000	200.00	No Ice	2.99	1.25	50.00

tnxTower	Job		Page
that ower		320' Rohn SSVMW	28 of 96
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		CSP Tower - Colchester, CT	11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client		Designed by
		(MODification) VZW-217/ EMP-008 - "G"	MCD

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft^2	ft ²	lb
	_		-1.50			1" Ice	3.47	1.59	92.08
DC6-48-60-0-8C Squid / Surge Arrestor (AT&T)	С	None		0.0000	200.00	No Ice 1/2" Ice 1" Ice	1.79 2.02 2.27	1.79 2.02 2.27	27.00 47.39 70.57
STK-U Stiffener Side Arm Attachment	А	None		0.0000	200.00	No Ice 1/2" Ice	0.07 0.11	4.01 5.00	63.79 95.84
(AT&T) STK-U Stiffener Side Arm Attachment	В	None		0.0000	200.00	1" Ice No Ice 1/2" Ice	0.16 0.07 0.11	6.01 4.01 5.00	138.17 63.79 95.84
(AT&T) STK-U Stiffener Side Arm Attachment	С	None		0.0000	200.00	1" Ice No Ice 1/2" Ice	0.16 0.07 0.11	6.01 4.01 5.00	138.17 63.79 95.84
(AT&T) *** EMP-005 AT&T Inventory * CSP Antenna Inventory -						1" Ice	0.16	6.01	138.17
via Hightower Solutions PD688S-4 (HTS-1)	С	From Leg	0.50 0.00 0.00	0.0000	91.00	No Ice 1/2" Ice 1" Ice	0.35 0.63 0.91	0.35 0.63 0.91	3.75 4.88 6.00
4'x4" Pipe Mount (HTS-1)	С	From Leg	0.00 0.00 0.00 0.00	0.0000	91.00	No Ice 1/2" Ice 1" Ice	1.07 1.58 1.84	1.07 1.58 1.84	44.00 56.99 73.03
PD688S-4 (HTS-2)	В	From Leg	3.00 0.00 0.00	0.0000	103.00	No Ice 1/2" Ice 1" Ice	0.35 0.63 0.91	0.35 0.63 0.91	3.75 4.88 6.00
Pirod 4' Side Mount Standoff (1) (HTS-2 & 3)	В	From Leg	0.00 0.00 0.00	0.0000	103.00	No Ice 1/2" Ice 1" Ice	2.72 4.91 7.10	2.72 4.91 7.10	50.00 89.00 128.00
PD458 (HTS-3)	В	From Leg	3.00 0.00 0.00	0.0000	105.00	No Ice 1/2" Ice 1" Ice	2.88 4.34 5.83	2.88 4.34 5.83	20.00 46.22 77.59
5'3"x4" Pipe Mount (HTS-4)	А	From Leg	0.00 0.00 0.00	0.0000	106.00	No Ice 1/2" Ice 1" Ice	1.45 2.21 2.54	1.45 2.21 2.54	57.00 73.81 94.43
 * Ice Shield - Place Holder HTS-6 / Leg A / 118' * Ice Shield - Place Holder HTS-7 / Leg C / 118' 			0.00			1 100	2.34	2.54	77.75
DB212-1 (HTS-8)	С	From Leg	6.00 0.00 0.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	4.40 8.42 12.45	4.40 8.42 12.45	31.00 70.21 134.11
6' Side Mount Standoff (HTS-8 & 9)	С	From Leg	0.00 0.00 0.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	6.50 8.50 10.50	6.50 8.50 10.50	100.00 170.00 240.00
PD156S (HTS-9)	С	From Leg	6.00 0.00 0.00	0.0000	137.00	No Ice 1/2" Ice 1" Ice	0.44 0.79 1.14	0.44 0.79 1.14	5.00 6.50 8.00
ANT450F6 (HTS-10)	А	From Leg	0.00 0.50 0.00 0.00	0.0000	153.00	No Ice 1/2" Ice 1" Ice	1.14 1.90 2.73 3.40	1.14 1.90 2.73 3.40	8.00 8.00 22.34 41.96
5'3"x4" Pipe Mount (HTS-10)	А	From Leg	0.00 0.00 0.00 0.00	0.0000	153.00	No Ice 1/2" Ice 1" Ice	1.42 2.21 2.54	1.42 2.21 2.54	57.00 73.81 94.43
L-810 Obstruction Lighting (1) (HTS-11a)	А	From Leg	0.00 0.25 0.00 0.00	0.0000	164.00	No Ice 1/2" Ice 1" Ice	0.36 0.52 0.70	0.36 0.52 0.70	6.65 12.44 19.93

tnxTower

Project

Client

320' Rohn SSVMW CSP Tower - Colchester, CT

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

11:31:15 02/22/19

29 of 96

Page

Date

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral						
			Vert ft	0	ft		ft^2	ft^2	lb
			ft		Ji		Ji	Ji	10
L-810 Obstruction Lighting	В	From Leg		0.0000	164.00	No Ice	0.36	0.36	6.65
(1)	D	rioni Leg	0.00	0.0000	101.00	1/2" Ice	0.52	0.50	12.44
(HTS-11b)			0.00			1" Ice	0.70	0.70	19.93
L-810 Obstruction Lighting	С	From Leg	0.25	0.0000	164.00	No Ice	0.36	0.36	6.65
(1)		U	0.00			1/2" Ice	0.52	0.52	12.44
(HTS-11c)			0.00			1" Ice	0.70	0.70	19.93
DB586-Y	С	From Leg	3.00	0.0000	176.00	No Ice	1.01	1.01	8.25
(HTS-12)			0.00			1/2" Ice	1.28	1.28	16.59
			0.00			1" Ice	1.56	1.56	28.01
Pirod 4' Side Mount Standoff	С	From Leg	0.00	0.0000	176.00	No Ice	2.72	2.72	50.00
(1)		_	0.00			1/2" Ice	4.91	4.91	89.00
(HTS-12)			0.00			1" Ice	7.10	7.10	128.00
DB586-Y (inverted)	В	From Leg	4.00	0.0000	174.00	No Ice	1.01	1.01	8.25
(HTS-13)		_	0.00			1/2" Ice	1.28	1.28	16.59
			0.00			1" Ice	1.56	1.56	28.01
Pirod 4' Side Mount Standoff	В	From Leg	0.00	0.0000	174.00	No Ice	2.72	2.72	50.00
(1)			0.00			1/2" Ice	4.91	4.91	89.00
(HTS-13,14,TTA)			0.00			1" Ice	7.10	7.10	128.00
430-94C-09168-M-11048	В	From Leg	2.00	0.0000	174.00	No Ice	1.63	0.95	30.00
TTA			0.00			1/2" Ice	1.81	1.09	37.44
(TMA/TTA Control Unit)			0.00			1" Ice	1.99	1.24	52.22
DB586-Y	В	From Leg	4.00	0.0000	174.00	No Ice	1.01	1.01	8.25
(HTS-14)		e	0.00			1/2" Ice	1.28	1.28	16.59
× ,			0.00			1" Ice	1.56	1.56	28.01
* HTS 15-18 Are VZw/AT&T Carrier Antennas									
531-70HD Exposed Dipole	А	From Leg	6.00	0.0000	235.00	No Ice	5.91	5.91	50.00
Antenna	Α	110iii Log	0.00	0.0000	255.00	1/2" Ice	7.68	7.68	79.03
(HTS-19)			0.00			1" Ice	9.47	9.47	125.80
6' Side Mount Standoff	А	From Leg	0.00	0.0000	235.00	No Ice	6.50	6.50	125.80
(HTS-19)	Α	From Leg	0.00	0.0000	255.00	1/2" Ice	8.50	8.50	170.00
(1113-17))			0.00			1" Ice	10.50	10.50	240.00
PD1142-1	С	From Leg	6.00	0.0000	244.00	No Ice	1.32	1.32	10.00
(HTS-20)	C	110iii Log	0.00	0.0000	244.00	1/2" Ice	3.21	3.21	23.85
(1113-20)			0.00			1" Ice	5.12	5.12	49.42
6' Side Mount Standoff	С	From Leg	0.00	0.0000	244.00	No Ice	6.50	6.50	100.00
(HTS-20)	C	110iii Log	0.00	0.0000	244.00	1/2" Ice	8.50	8.50	170.00
(1113-20)			0.00			1" Ice	10.50	10.50	240.00
SC479-HF1LDF(D00I-E6085	В	From Leg	3.00	0.0000	246.00	No Ice	5.06	5.06	34.00
) (Inverted)	Ъ	110111 208	0.00	0.0000	2.0.00	1/2" Ice	6.54	6.54	69.82
(HTS-21a)			0.00			1" Ice	8.04	8.04	114.98
SC479-HF1LDF(D00I-E6085	В	From Leg	3.00	0.0000	246.00	No Ice	5.06	5.06	34.00
) (Inverted)	D	110III Leg	0.00	0.0000	210.00	1/2" Ice	6.54	6.54	69.82
(HTS-21b)			0.00			1" Ice	8.04	8.04	114.98
Sabre T-Boom (1)	В	From Leg	0.00	0.0000	246.00	No Ice	35.40	35.40	471.00
(HTS-21 (a,b) - HTS 22)	D	110III Leg	0.00	0.0000	210.00	1/2" Ice	46.90	46.90	690.00
((4,0)			0.00			1" Ice	58.40	58.40	909.00
PD1142-1	В	From Leg	3.00	0.0000	248.00	No Ice	1.32	1.32	10.00
(HTS-22)	-		0.00			1/2" Ice	3.21	3.21	23.85
(0.00			1" Ice	5.12	5.12	49.42
SC479-HF1LDF(D00-E6085)	В	From Leg	6.00	0.0000	261.00	No Ice	5.06	5.06	34.00
(HTS-23)	-		0.00			1/2" Ice	6.54	6.54	69.82
()			0.00			1" Ice	8.04	8.04	114.98
	В	From Leg	0.00	0.0000	261.00	No Ice	6.50	6.50	100.00
6' Side Mount Standoff									
6' Side Mount Standoff (HTS-23, 24)	D		0.00			1/2" Ice	8.50	8.50	170.00

tnxTower

Project

Client

320' Rohn SSVMW	
CSP Tower - Colchester, CT	

Page 30 of 96

Date 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
	Leg		Lateral						
			Vert ft	0	ft		ft^2	ft^2	lb
			ft ft		<i>Jv</i>		<i>Jv</i>	JU	10
PD440-2	В	From Leg	6.00	0.0000	261.50	No Ice	1.38	1.38	19.00
(HTS-24)		-	0.00			1/2" Ice	2.48	2.48	24.70
			0.00			1" Ice	3.59	3.59	30.40
SC479-HF1LDF	С	From Leg	6.00	0.0000	283.00	No Ice	4.08	4.08	34.00
(HTS-25)			0.00			1/2" Ice	6.54	6.54	69.82
6' Side Mount Standoff	C	Enous Las	0.00	0.0000	294.00	1" Ice	8.04	8.04	114.9
(HTS-25,26,TTA)	С	From Leg	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.0000	284.00	No Ice 1/2" Ice	6.50 8.50	6.50 8.50	100.0 170.0
(1113-23,20,11A)			0.00			1" Ice	10.50	10.50	240.0
DB809T3E-XC	С	From Leg	6.00	0.0000	285.00	No Ice	4.00	4.00	39.00
(HTS-26)	C	rioni Leg	0.00	0.0000	200.00	1/2" Ice	5.70	5.70	69.70
()			0.00			1" Ice	7.17	7.17	109.5
TMA	С	From Leg	3.00	0.0000	284.00	No Ice	1.06	0.45	20.00
(TMA/TTA)		-	0.00			1/2" Ice	1.21	0.57	26.53
			0.00			1" Ice	1.37	0.71	34.91
SC479-HF1LDF	В	From Leg	6.00	0.0000	284.00	No Ice	4.08	4.08	34.00
(HTS-27)			0.00			1/2" Ice	6.54	6.54	69.82
			0.00			1" Ice	8.04	8.04	114.9
6' Side Mount Standoff	В	None		0.0000	284.50	No Ice	6.50	6.50	100.0
(HTS-27,28,TTA)						1/2" Ice	8.50	8.50	170.0
	р	News		0.0000	294 50	1" Ice	10.50	10.50	240.0
	В	None		0.0000	284.50	No Ice	1.06	0.45	20.00
(TMA/TTA)						1/2" Ice 1" Ice	1.21 1.37	0.57 0.71	26.53 34.91
OGT9-840	В	From Leg	3.00	0.0000	285.00	No Ice	2.27	2.27	18.50
(HTS-28)	Б	Tioni Leg	0.00	0.0000	205.00	1/2" Ice	3.44	3.44	36.09
(1115 20)			0.00			1" Ice	4.61	4.61	60.98
PD340-1	В	From Leg	6.00	0.0000	290.00	No Ice	3.30	3.30	40.00
(HTS-29)		U	0.00			1/2" Ice	5.94	5.94	52.00
· · · ·			0.00			1" Ice	8.58	8.58	64.00
6' Side Mount Standoff	В	From Leg	0.00	0.0000	290.00	No Ice	6.50	6.50	100.0
(HTS-29)			0.00			1/2" Ice	8.50	8.50	170.0
			0.00			1" Ice	10.50	10.50	240.0
SC479-HF1LDF	С	From Leg	6.00	0.0000	297.00	No Ice	4.06	4.06	34.00
(HTS-30)			0.00			1/2" Ice	6.54	6.54	69.82
6' Side Mount Standoff	C	Enous Las	0.00	0.0000	202.00	1" Ice	8.04	8.04	114.9
	С	From Leg	0.00 0.00	0.0000	293.00	No Ice 1/2" Ice	6.50 8.50	6.50 8.50	100.0
(HTS-30)			0.00			1" Ice	10.50	10.50	170.0 240.0
ANT450F6	В	From Leg	5.00	0.0000	316.50	No Ice	1.90	1.90	8.00
(HTS-31)	2		0.00		2 10.00	1/2" Ice	2.73	2.73	22.34
()			0.00			1" Ice	3.40	3.40	41.96
4'x4" Pipe Mount	В	From Leg	0.00	0.0000	311.50	No Ice	1.01	1.01	44.00
(HTS-31)		C	0.00			1/2" Ice	1.58	1.58	56.99
. ,			0.00			1" Ice	1.84	1.84	73.03
BA1012-0	А	From Leg	6.00	0.0000	318.00	No Ice	0.47	0.47	2.20
(HTS-32)			0.00			1/2" Ice	0.96	0.96	6.61
		_	0.00			1" Ice	1.31	1.31	14.14
6' Side Mount Standoff	А	From Leg	0.00	0.0000	315.00	No Ice	6.50	6.50	100.0
(HTS-32)			0.00			1/2" Ice	8.50	8.50	170.0
DD120-1	C		0.00	0.0000	222.00	1" Ice	10.50	10.50	240.0
PD128-1	С	From Leg	6.00	0.0000	322.00	No Ice	1.00	1.00	13.00
(HTS-33)			0.00 0.00			1/2" Ice 1" Ice	1.80	1.80	16.90
	С	From Leg	0.00	0.0000	320.00	No Ice	2.60 6.50	2.60 6.50	20.80 100.0
		FIONT LEY	0.00	1111111	1/1/10	IND ICC	0 10	0 10	1000
6' Side Mount Standoff (HTS-33)	C	110111 208	0.00	0.0000	520.00	1/2" Ice	8.50	8.50	170.00

tnxTower

Project

Client

Page 320' Rohn SSVMW Date CSP Tower - Colchester, CT 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

31 of 96

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft ft	0	ft		ft^2	ft ²	lb
Dual Lights (HTS-34)	А	None		0.0000	325.00	No Ice 1/2" Ice	4.00 4.80	4.00 4.80	250.00 400.00
Lightning Rod 5/8x4' (HTS-35)	С	None		0.0000	325.00	1" Ice No Ice 1/2" Ice 1" Ice	5.60 0.25 0.66 0.97	5.60 0.25 0.66 0.97	550.00 31.00 33.82 39.29
* CSP Proposed 4'x4" Pipe Mount (CSP Dish Mt. @ 145)	С	None		0.0000	145.00	No Ice 1/2" Ice	1.05 1.58	1.05 1.58	44.00 56.99
4'x4" Pipe Mount (CSP Dish Mt. @ 120)	В	None		0.0000	120.00	1" Ice No Ice 1/2" Ice 1" Ice	1.84 1.06 1.58 1.84	1.84 1.06 1.58 1.84	73.03 44.00 56.99 73.03
* VZW Proposed 12/07/2018 Valmont VFA-10-U V-Frame (Verizon)	А	None		0.0000	220.00	No Ice 1/2" Ice	7.95 8.33	4.45 4.74	285.00 343.57
Valmont VFA-10-U V-Frame (Verizon)	В	None		0.0000	220.00	1" Ice No Ice 1/2" Ice	8.71 7.95 8.33	5.04 4.45 4.74	407.08 285.00 343.57
Valmont VFA-10-U V-Frame (Verizon)	С	None		0.0000	220.00	1" Ice No Ice 1/2" Ice	8.71 7.95 8.33	5.04 4.45 4.74	407.08 285.00 343.57
JAHH-65B-R3B Panel Antenna (Verizon-AWS)	А	From Leg	5.00 6.00 0.00	0.0000	220.00	1" Ice No Ice 1/2" Ice 1" Ice	8.71 9.66 10.22 10.79	5.04 5.98 6.44 6.91	407.08 126.30 184.38 248.75
JAHH-65B-R3B Panel Antenna (Verizon-PCS)	А	From Leg	5.00 5.50 0.00	0.0000	220.00	No Ice 1/2" Ice 1" Ice	9.66 10.22 10.79	5.98 6.44 6.91	126.30 184.38 248.75
(Verizon-850) (Verizon-850)	А	From Leg	5.00 -3.00 0.00	0.0000	220.00	No Ice 1/2" Ice 1" Ice	5.61 6.01 6.41	3.30 3.66 4.04	30.00 63.32 102.51
BSAMNT-SBS-2-2 (JAHH Antenna Bracket (for 2)) (Verizon-PCS/AWS)	А	From Leg	5.00 6.00 0.00	0.0000	220.00	No Ice 1/2" Ice 1" Ice	3.78 4.84 5.64	3.56 4.62 5.41	116.83 175.06 240.44
RFV01U-D1A RRH Unit (Verizon RRH)	А	From Leg	5.00 0.00 0.00	0.0000	220.00	No Ice 1/2" Ice 1" Ice	1.88 2.05 2.22	1.25 1.39 1.54	97.50 115.84 136.97
RFV01U-D2A RRH Unit (Verizon RRH)	А	From Leg	5.00 0.00 0.00	0.0000	220.00	No Ice 1/2" Ice 1" Ice	1.88 2.05 2.22	1.01 1.14 1.28	82.00 98.43 117.53
DB-B1-6C-12AB-0Z / DC-3315-PF-48 Dist. Box (Verizon)	А	From Leg	5.00 0.00 0.00	0.0000	220.00	No Ice 1/2" Ice 1" Ice	4.42 4.72 5.02	2.90 3.16 3.43	32.00 63.48 98.72
JAHH-65B-R3B Panel Antenna (Verizon-AWS)	В	From Leg	5.00 6.00 0.00	0.0000	220.00	No Ice 1/2" Ice 1" Ice	9.66 10.22 10.79	5.98 6.44 6.91	126.30 184.38 248.75
JAHH-65B-R3B Panel Antenna (Verizon-PCS)	В	From Leg	5.00 5.50 0.00	0.0000	220.00	No Ice 1/2" Ice 1" Ice	9.66 10.22 10.79	5.98 6.44 6.91	126.30 184.38 248.75
LNX-6512DS-VTM (Verizon-850)	В	From Leg	5.00 -3.00 0.00	0.0000	220.00	No Ice 1/2" Ice 1" Ice	5.61 6.01 6.41	3.30 3.66 4.04	30.00 63.32 102.51
BSAMNT-SBS-2-2 (JAHH Antenna Bracket (for 2)) (Verizon-PCS/AWS)	В	From Leg	5.00 6.00 0.00	0.0000	220.00	No Ice 1/2" Ice 1" Ice	3.78 4.84 5.64	3.56 4.62 5.41	116.83 175.06 240.44
RFV01U-D1A RRH Unit	В	From Leg	5.00	0.0000	220.00	No Ice	1.88	1.25	97.50

tnxTower

Project

Client

320' Rohn SSVMW	
CSP Tower - Colchester, CT	

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

32 of 96

11:31:15 02/22/19

Page

Date

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft ft	0	ft		ft ²	ft^2	lb
(Verizon RRH)			0.00			1/2" Ice	2.05	1.39	115.84
((())))			0.00			1" Ice	2.22	1.54	136.97
RFV01U-D2A RRH Unit	В	From Leg	5.00	0.0000	220.00	No Ice	1.88	1.01	82.00
(Verizon RRH)			0.00			1/2" Ice	2.05	1.14	98.43
			0.00			1" Ice	2.22	1.28	117.53
DB-B1-6C-12AB-0Z /	В	From Leg	5.00	0.0000	220.00	No Ice	4.42	2.90	32.00
DC-3315-PF-48 Dist. Box		0	0.00			1/2" Ice	4.72	3.16	63.48
(Verizon)			0.00			1" Ice	5.02	3.43	98.72
JAHH-65B-R3B Panel	С	From Leg	5.00	0.0000	220.00	No Ice	9.66	5.98	126.30
Antenna		0	6.00			1/2" Ice	10.22	6.44	184.38
(Verizon-AWS)			0.00			1" Ice	10.79	6.91	248.75
JAHH-65B-R3B Panel	С	From Leg	5.00	0.0000	220.00	No Ice	9.66	5.98	126.30
Antenna		U	5.50			1/2" Ice	10.22	6.44	184.38
(Verizon-PCS)			0.00			1" Ice	10.79	6.91	248.75
LNX-6512DS-VTM	С	From Leg	5.00	0.0000	220.00	No Ice	5.61	3.30	30.00
(Verizon-850)		e	-3.00			1/2" Ice	6.01	3.66	63.32
			0.00			1" Ice	6.41	4.04	102.51
BSAMNT-SBS-2-2 (JAHH	С	From Leg	5.00	0.0000	220.00	No Ice	3.78	3.56	116.83
Antenna Bracket (for 2))		e	6.00			1/2" Ice	4.84	4.62	175.06
(Verizon-PCS/AWS)			0.00			1" Ice	5.64	5.41	240.44
RFV01U-D1A RRH Unit	С	From Leg	5.00	0.0000	220.00	No Ice	1.88	1.25	97.50
(Verizon RRH)		-	0.00			1/2" Ice	2.05	1.39	115.84
			0.00			1" Ice	2.22	1.54	136.97
RFV01U-D2A RRH Unit	С	From Leg	5.00	0.0000	220.00	No Ice	1.88	1.01	82.00
(Verizon RRH)		_	0.00			1/2" Ice	2.05	1.14	98.43
			0.00			1" Ice	2.22	1.28	117.53
CBC78T-DS-43-2X Diplexer	Α	From Leg	5.00	0.0000	220.00	No Ice	0.37	0.51	22.00
(Verizon)			0.00			1/2" Ice	0.45	0.60	28.34
			0.00			1" Ice	0.53	0.70	36.37
CBC78T-DS-43-2X Diplexer	В	From Leg	5.00	0.0000	220.00	No Ice	0.37	0.51	22.00
(Verizon)			0.00			1/2" Ice	0.45	0.60	28.34
			0.00			1" Ice	0.53	0.70	36.37
CBC78T-DS-43-2X Diplexer	С	From Leg	5.00	0.0000	220.00	No Ice	0.37	0.51	22.00
(Verizon)		-	0.00			1/2" Ice	0.45	0.60	28.34
			0.00			1" Ice	0.53	0.70	36.37
* VZW Proposed 12/07/2018									

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	lb
* CSP Inventory from							, v	· · · ·			
HighTower Solutions											
Climb											
PA8-65	Α	Paraboloid	From	0.50	Worst		106.00	8.00	No Ice	50.27	285.00
(HTS-4)		w/Shroud (HP)	Leg	$\begin{array}{c} 0.00 \\ 0.00 \end{array}$					1/2" Ice 1" Ice	51.29 52.31	548.30 811.60
Andrew 2' w/Radome	С	Paraboloid	From	0.50	Worst		113.00	2.00	No Ice	3.14	70.00

tnxTower	Job		Page
that ower		320' Rohn SSVMW	33 of 96
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		CSP Tower - Colchester, CT	11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	lb
(HTS-5)		w/Radome	Leg	0.00					1/2" Ice	3.41	282.00
				0.00					1" Ice	3.68	494.00
* CSP Proposed											
Commscope	С	Paraboloid	From	0.50	Worst		145.00	6.00	No Ice	28.27	310.00
PAR6-59W-PXA/A		w/Radome	Leg	0.00					1/2" Ice	29.07	460.00
(CSP Proposed)			-	0.00					1" Ice	29.86	610.00
HPD3-4.7	В	Paraboloid w/o	From	0.50	Worst		120.00	3.00	No Ice	7.07	105.00
(CSP Proposed)		Radome	Leg	0.00					1/2" Ice	7.47	143.35
· • · ·				0.00					1" Ice	7.86	181.69

222-G Verification Constants

	** •
Constant	Value
Wind Importance Factor Without Ice	1.15
Wind Importance Factor With Ice Factor	1
Ice Importance Factor	1.25
K _d	0.85
Z_{g}	900
α	9.5
K _{zmin}	0.85
Ke	1
Kt	0.53
f	2

Section	Elem.	Size	С	С	F	е	е	A_r	A_r	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	а		w/Ice		w/Ice		w/Ice
					С						
ft					е			ft^2	ft^2	ft^2	ft^2
T1	1	ROHN 5 EH	63.677	54.203	С	0.209	0.509	7.417	13.677	3.355	9.43
320.00-304.00											
	1	ROHN 5 EH	63.677	54.203	А	0.209	0.509	7.417	13.677	3.355	9.43
	2	ROHN 5 EH	63.677	54.203	С	0.209	0.509	7.417	13.677	3.355	9.43
	2	ROHN 5 EH	63.677	54.203	В	0.209	0.509	7.417	13.677	3.355	9.43
	3	ROHN 5 EH	63.677	54.203	В	0.209	0.509	7.417	13.677	3.355	9.43
	3	ROHN 5 EH	63.677	54.203	Α	0.209	0.509	7.417	13.677	3.355	9.43
					А		Sum:	14.835	27.354	6.710	18.86
					В			14.835	27.354	6.710	18.86
					С			14.835	27.354	6.710	18.86
T2	31	ROHN 5 EH	63.46	53.939	С	0.201	0.48	1.854	3.414	0.832	2.30
304.00-300.00											
	31	ROHN 5 EH	63.46	53.939	А	0.201	0.48	1.854	3.414	0.832	2.30
	32	ROHN 5 EH	63.46	53.939	С	0.201	0.48	1.854	3.414	0.832	2.30
	32	ROHN 5 EH	63.46	53.939	В	0.201	0.48	1.854	3.414	0.832	2.30
	33	ROHN 5 EH	63.46	53.939	В	0.201	0.48	1.854	3.414	0.832	2.30
	33	ROHN 5 EH	63.46	53.939	Α	0.201	0.48	1.854	3.414	0.832	2.30
					А		Sum:	3.709	6.828	1.664	4.60
					В			3.709	6.828	1.664	4.60
					С			3.709	6.828	1.664	4.60
Т3	40	ROHN 6 EH	75.255	59.18	С	0.207	0.454	11.061	18.842	4.976	12.45
300.00-280.00											
	40	ROHN 6 EH	75.255	59.18	Α	0.207	0.454	11.061	18.842	4.976	12.45

222-G Section Verification ArRr By Element

tnxTower

Project

Client

320' Rohn SSVMW

Page 34 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Section	Elem.	Size	С	С	F	е	е	A_r	A_r	$A_r R_r$	$A_r R_r$
Elevation	Num.	5120	Ũ	w/Ice	a	U	w/Ice		w/Ice		w/Ice
0					С			c2	c2	c2	<i>c</i> .2
ft	41	ROHN 6 EH	75.255	59.18	e C	0.207	0.454	$\frac{ft^2}{11.061}$	$\frac{ft^2}{18.842}$	$\frac{ft^2}{4.976}$	$\frac{ft^2}{12.458}$
	41	ROHN 6 EH	75.255	59.18	В	0.207	0.454	11.001	18.842	4.976	12.458
	42	ROHN 6 EH	75.255	59.18	B	0.207	0.454	11.001	18.842	4.976	12.458
	42	ROHN 6 EH	75.255	59.18	Ā	0.207	0.454	11.061	18.842	4.976	12.458
					А		Sum:	22.122	37.684	9.951	24.917
					В			22.122	37.684	9.951	24.917
					С			22.122	37.684	9.951	24.917
T4					А		Sum:	0.000	0.000	0.000	0.000
280.00-260.00					В			0.000	0.000	0.000	0.000
					С		a	0.000	0.000	0.000	0.000
T5					A		Sum:	0.000	0.000	0.000	0.000
260.00-240.00					B C			0.000 0.000	0.000	$0.000 \\ 0.000$	$0.000 \\ 0.000$
T6					A		Sum:	0.000	$0.000 \\ 0.000$	0.000	0.000
240.00-220.00					B		Suill.	0.000	0.000	0.000	0.000
240.00-220.00					C			0.000	0.000	0.000	0.000
Τ7					Ă		Sum:	0.000	0.000	0.000	0.000
220.00-200.00					В		oum.	0.000	0.000	0.000	0.000
					С			0.000	0.000	0.000	0.000
Т8					А		Sum:	0.000	0.000	0.000	0.000
200.00-180.00					В			0.000	0.000	0.000	0.000
					С			0.000	0.000	0.000	0.000
Т9					А		Sum:	0.000	0.000	0.000	0.000
180.00-170.00					B			0.000	0.000	0.000	0.000
T10					C		G	0.000	0.000	0.000	0.000
T10 170.00-160.00					A B		Sum:	0.000 0.000	0.000 0.000	$0.000 \\ 0.000$	$0.000 \\ 0.000$
170.00-100.00					C			0.000	0.000	0.000	0.000
T11					A		Sum:	0.000	0.000	0.000	0.000
160.00-140.00					В		~	0.000	0.000	0.000	0.000
					С			0.000	0.000	0.000	0.000
T12					А		Sum:	0.000	0.000	0.000	0.000
140.00-120.00					В			0.000	0.000	0.000	0.000
					С			0.000	0.000	0.000	0.000
T13 120.00-100.00	214	ROHN 3 STD	36.594	37.584	С	0.131	0.212	7.130	15.864	3.874	9.150
120.00-100.00	215	ROHN 3 XXS	36.594	37.584	С	0.131	0.212	6.882	15.311	3.739	8.830
	215	ROHN 1.5 STD	19.865	29.862	C	0.131	0.212	0.930	3.030	0.526	1.747
	210	ROHN 2 STD	24.831	32.155	C	0.131	0.212	2.092	5.867	1.183	3.384
	218	ROHN 3 XXS	36.594	37.584	Č	0.131	0.212	6.882	15.311	3.739	8.830
	219	ROHN 1.5 STD	19.865	29.862	С	0.131	0.212	0.930	3.030	0.526	1.747
	220	ROHN 2 STD	24.831	32.155	С	0.131	0.212	2.092	5.867	1.183	3.384
	221	ROHN 3 STD	36.594	37.584	В	0.131	0.212	7.130	15.864	3.874	9.150
	222	ROHN 3 XXS	36.594		В	0.131	0.212	6.882	15.311	3.739	8.830
	223	ROHN 1.5 STD	19.865	29.862	В	0.131	0.212	0.930	3.030	0.526	1.747
	224	ROHN 2 STD	24.831	32.155	B	0.131	0.212	2.092	5.867	1.183	3.384
	225	ROHN 3 XXS	36.594	37.584 29.862	B	0.131	0.212 0.212	6.882 0.930	15.311	3.739 0.526	8.830
	226 227	ROHN 1.5 STD ROHN 2 STD	19.865 24.831	29.862 32.155	B B	0.131 0.131	0.212	2.092	3.030 5.867	0.526	1.747 3.384
	227	ROHN 2 STD ROHN 3 STD	36.594	37.584	A	0.131	0.212	7.130	15.864	3.874	5.584 9.150
	230	ROHN 3 XXS	36.594	37.584	A	0.131	0.212	6.882	15.311	3.739	8.830
	231	ROHN 1.5 STD	19.865	29.862	A	0.131	0.212	0.930	3.030	0.526	1.747
	233	ROHN 2 STD	24.831	32.155	А	0.131	0.212	2.092	5.867	1.183	3.384
	234	ROHN 3 XXS	36.594	37.584	А	0.131	0.212	6.882	15.311	3.739	8.830
	235	ROHN 1.5 STD	19.865	29.862	А	0.131	0.212	0.930	3.030	0.526	1.747
	236	ROHN 2 STD	24.831	32.155	А	0.131	0.212	2.092	5.867	1.183	3.384
					A		Sum:	26.937	64.278	14.773	37.073
					B			26.937	64.278	14.773	37.073
T14	247	ROHN 3 X-STR	36 201	37.188	C C	0.122	0.2	26.937 7.883		14.773 4.283	37.073 10.026
114	247	NOTIN 3 A-STK	30.391	37.100	U	0.122	0.2	1.083	17.430	4.263	10.020

tnxTower

Project

Client

320' Rohn SSVMW

Page 35 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Section	Elem.	Size	С	С	F	е	е	A_r	A_r	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	а		w/Ice	,	w/Ice	, ,	w/Ice
C.					С			c.2	c.2	c.2	c.2
<i>ft</i> 100.00-80.00					е			ft ²	ft^2	ft^2	ft ²
100.00-80.00	248	ROHN 3 XXS	36.391	37.188	С	0.122	0.2	7.109	15.738	3.863	9.042
	249	P1.5x.145	19.755	29.509	Č	0.122	0.2	1.033	3.341	0.584	1.919
	250	ROHN 2 EH	24.746	31.813	С	0.122	0.2	2.178	6.067	1.232	3.486
	251	ROHN 3 XXS	36.391	37.188	С	0.122	0.2	7.109	15.738	3.863	9.042
	252	P1.5x.145	19.755	29.509	C	0.122	0.2	1.033	3.341	0.584	1.919
	253 254	ROHN 2 EH ROHN 3 X-STR	24.746 36.391	31.813 37.188	C B	0.122 0.122	0.2 0.2	2.178 7.883	6.067 17.450	1.232 4.283	3.486 10.026
	254	ROHN 3 XXS	36.391	37.188	B	0.122	0.2	7.109	17.430	3.863	9.042
	256	P1.5x.145	19.755	29.509	B	0.122	0.2	1.033	3.341	0.584	1.919
	257	ROHN 2 EH	24.746	31.813	В	0.122	0.2	2.178	6.067	1.232	3.486
	258	ROHN 3 XXS	36.391	37.188	В	0.122	0.2	7.109	15.738	3.863	9.042
	259	P1.5x.145	19.755	29.509	B	0.122	0.2	1.033	3.341	0.584	1.919
	260 263	ROHN 2 EH ROHN 3 X-STR	24.746 36.391	31.813 37.188	B A	0.122 0.122	0.2 0.2	2.178 7.883	6.067 17.450	1.232 4.283	3.486 10.026
	263	ROHN 3 XXS	36.391	37.188	A	0.122	0.2	7.109	17.430	3.863	9.042
	265	P1.5x.145	19.755	29.509	A	0.122	0.2	1.033	3.341	0.584	1.919
	266	ROHN 2 EH	24.746	31.813	А	0.122	0.2	2.178	6.067	1.232	3.486
	267	ROHN 3 XXS	36.391	37.188	А	0.122	0.2	7.109	15.738	3.863	9.042
	268	P1.5x.145	19.755	29.509	A	0.122	0.2	1.033	3.341	0.584	1.919
	269	ROHN 2 EH	24.746	31.813	A	0.122	0.2	2.178	6.067	1.232	3.486
					A B		Sum:	28.523 28.523	67.741 67.741	15.639 15.639	38.919 38.919
					C			28.523	67.741	15.639	38.919
T15 80.00-60.00	280	ROHN 3 XXS	36.44	37.123	č	0.13	0.205	8.612	19.005	4.686	10.934
	281	ROHN 3.5 EH	41.645	39.526	С	0.13	0.205	8.384	17.237	4.348	9.916
	282	ROHN 2 STD	24.727	31.716	С	0.13	0.205	1.402	3.897	0.794	2.242
	283	ROHN 2 EH	24.779	31.74	C	0.13	0.205	2.253	6.251	1.275	3.596
	284 285	ROHN 3.5 EH ROHN 2 STD	41.645 24.727	39.526 31.716	C C	0.13 0.13	0.205 0.205	8.384 1.402	17.237 3.897	4.348 0.794	9.916 2.242
	285	ROHN 2 STD	24.727	31.74	C	0.13	0.203	2.253	6.251	1.275	2.242 3.596
	280	ROHN 3 XXS	36.44	37.123	В	0.13	0.205	8.612	19.005	4.686	10.934
	288	ROHN 3.5 EH	41.645	39.526	В	0.13	0.205	8.384	17.237	4.348	9.916
	289	ROHN 2 STD	24.727	31.716	В	0.13	0.205	1.402	3.897	0.794	2.242
	290	ROHN 2 EH	24.779	31.74	В	0.13	0.205	2.253	6.251	1.275	3.596
	291	ROHN 3.5 EH	41.645	39.526	B	0.13	0.205	8.384	17.237	4.348	9.916
	292 293	ROHN 2 STD ROHN 2 EH	24.727 24.779	31.716 31.74	B B	0.13 0.13	0.205 0.205	1.402 2.253	3.897 6.251	0.794 1.275	2.242 3.596
	295	ROHN 3 XXS	36.44	37.123	A	0.13	0.205	8.612	19.005	4.686	10.934
	297	ROHN 3.5 EH	41.645	39.526	A	0.13	0.205	8.384	17.237	4.348	9.916
	298	ROHN 2 STD	24.727	31.716	А	0.13	0.205	1.402	3.897	0.794	2.242
	299	ROHN 2 EH	24.779	31.74	Α	0.13	0.205	2.253	6.251	1.275	3.596
	300	ROHN 3.5 EH	41.645		A	0.13	0.205	8.384	17.237	4.348	9.916
	301 302	ROHN 2 STD ROHN 2 EH	24.727	31.716 31.74	A	0.13 0.13	0.205 0.205	1.402 2.253		0.794 1.275	2.242 3.596
	302	KOIIN 2 EII	24.779	51.74	A A	0.15	0.203 Sum:	32.691	73.775	17.518	42.443
					В		oun.	32.691	73.775	17.518	42.443
					С			32.691	73.775		42.443
T16 60.00-30.00	313	ROHN 3.5 EH	42.455		С	0.122	0.191	10.693	22.004		12.609
	314	ROHN 4 X-STR	47.762		C	0.122	0.191	12.823	24.881	6.237	14.258
	315	ROHN 1.5 STD	20.166		C	0.122	0.191	0.790	2.551 5.789	0.447	1.462
	316 317	ROHN 2 XXS ROHN 2 EH	25.208 25.261		C C	0.122 0.122	0.191 0.191	2.081 1.972	5.789 5.480	1.176 1.115	3.317 3.140
	318	ROHN 2.5 STD	30.515		C	0.122	0.191	3.288	8.127	1.859	4.657
	319	ROHN 4 X-STR	47.762		Č	0.122	0.191	12.823	24.881	6.237	14.258
	320	ROHN 1.5 STD	20.166	30.044	С	0.122	0.191	0.790	2.551	0.447	1.462
	321	ROHN 2 XXS	25.208		C	0.122	0.191	2.081	5.789	1.176	3.317
	322	ROHN 2 EH	25.261		C	0.122	0.191	1.972		1.115	3.140
	323 324	ROHN 2.5 STD ROHN 3.5 EH		34.821 40.333	C B	0.122 0.122	0.191 0.191	3.288 10.693		1.859 5.485	4.657 12.609
I	524	NOTIN 3.3 EII	42.433	+0.555	ы	0.122	0.191	10.095	22.004	5.465	12.009

tnxTower

Project

Client

320' Rohn SSVMW

Page 36 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Section	Elem.	Size	С	С	F	е	е	A_r	A_r	$A_r R_r$	$A_r R_r$
Elevation	Num.	5120	Ũ	w/Ice	a	U	w/Ice		w/Ice		w/Ice
					С			- 2	- 2	- 2	- 2
ft	225	DOIDI 4 V STD	47.7()	42 792	e	0.122	0.101	ft^2	ft^2	ft^2	ft^2
	325 326	ROHN 4 X-STR ROHN 1.5 STD	47.762 20.166	42.783 30.044	B B	0.122 0.122	0.191 0.191	12.823 0.790	24.881 2.551	6.237 0.447	14.258 1.462
	320	ROHN 2 XXS	25.208	32.371	B	0.122	0.191	2.081	5.789	1.176	3.317
	328	ROHN 2 EH	25.261	32.396	В	0.122	0.191	1.972	5.480	1.115	3.140
	329	ROHN 2.5 STD	30.515	34.821	В	0.122	0.191	3.288	8.127	1.859	4.657
	330	ROHN 4 X-STR	47.762	42.783	В	0.122	0.191	12.823	24.881	6.237	14.258
	331 332	ROHN 1.5 STD ROHN 2 XXS	20.166 25.208	30.044 32.371	B	0.122 0.122	0.191 0.191	0.790 2.081	2.551 5.789	0.447 1.176	1.462 3.317
	333	ROHN 2 ZAS	25.208	32.371	B B	0.122	0.191	1.972	5.480	1.176	3.140
	334	ROHN 2.5 STD	30.515	34.821	B	0.122	0.191	3.288	8.127	1.859	4.657
	339	ROHN 3.5 EH	42.455	40.333	А	0.122	0.191	10.693	22.004	5.485	12.609
	340	ROHN 4 X-STR	47.762	42.783	Α	0.122	0.191	12.823	24.881	6.237	14.258
	341	ROHN 1.5 STD	20.166	30.044	A	0.122	0.191	0.790	2.551	0.447	1.462
	342 343	ROHN 2 XXS ROHN 2 EH	25.208 25.261	32.371 32.396	A A	0.122 0.122	0.191 0.191	2.081 1.972	5.789 5.480	1.176 1.115	3.317 3.140
	343	ROHN 2.5 STD	30.515	34.821	A	0.122	0.191	3.288	8.127	1.859	4.657
	345	ROHN 4 X-STR	47.762	42.783	A	0.122	0.191	12.823	24.881	6.237	14.258
	346	ROHN 1.5 STD	20.166	30.044	А	0.122	0.191	0.790	2.551	0.447	1.462
	347	ROHN 2 XXS	25.208	32.371	A	0.122	0.191	2.081	5.789	1.176	3.317
	348 349	ROHN 2 EH	25.261 30.515	32.396	A	0.122	0.191 0.191	1.972 3.288	5.480 8.127	1.115 1.859	3.140 4.657
	549	ROHN 2.5 STD	50.515	34.821	A A	0.122	0.191 Sum:	52.602	115.660	27.154	66.277
					B		oum.	52.602	115.660	27.154	66.277
					С			52.602	115.660	27.154	66.277
T17 30.00-0.00	364	ROHN 4 X-STR	50.087	44.95	С	0.117	0.183	13.402	26.053	6.343	14.897
	365	ROHN 4 X-STR	50.087	44.95	C	0.117	0.183	13.245	25.749	6.269	14.723
	366 367	P1.5x.145 ROHN 2.5 EH	21.148 32	31.591 36.601	C C	0.117 0.117	0.183 0.183	0.887 2.812	2.870 6.966	0.501 1.589	1.641 3.983
	368	ROHN 2.5 STD	32	36.601	C	0.117	0.183	2.470	6.119	1.395	3.499
	369	ROHN 2.5 STD	32	36.601	Č	0.117	0.183	3.506	8.686	1.981	4.967
	370	ROHN 4 X-STR	50.087	44.95	С	0.117	0.183	13.245	25.749	6.269	14.723
	371	P1.5x.145	21.148	31.591	C	0.117	0.183	0.887	2.870	0.501	1.641
	372	ROHN 2.5 EH	32	36.601	C	0.117	0.183	2.812	6.966	1.589	3.983
	373 374	ROHN 2.5 STD ROHN 2.5 STD	32 32	36.601 36.601	C C	0.117 0.117	0.183 0.183	2.470 3.506	6.119 8.686	1.395 1.981	3.499 4.967
	375	ROHN 4 X-STR	50.087	44.95	В	0.117	0.183	13.402	26.053	6.343	14.897
	376	ROHN 4 X-STR	50.087	44.95	В	0.117	0.183	13.245	25.749	6.269	14.723
	377	P1.5x.145	21.148	31.591	В	0.117	0.183	0.887	2.870	0.501	1.641
	378	ROHN 2.5 EH	32	36.601	B	0.117	0.183	2.812	6.966	1.589	3.983
	379 380	ROHN 2.5 STD ROHN 2.5 STD	32 32	36.601 36.601	B B	0.117 0.117	0.183 0.183	2.470 3.506	6.119 8.686	1.395 1.981	3.499 4.967
	381	ROHN 4 X-STR	50.087	44.95	B	0.117	0.183	13.245	25.749	6.269	14.723
	382	P1.5x.145	21.148	31.591	В	0.117	0.183	0.887	2.870	0.501	1.641
	383	ROHN 2.5 EH	32	36.601	В	0.117	0.183	2.812	6.966		3.983
	384	ROHN 2.5 STD	32	36.601	B	0.117	0.183	2.470	6.119	1.395	3.499
	385 390	ROHN 2.5 STD ROHN 4 X-STR	32 50.087	36.601 44.95	B A	0.117 0.117	0.183 0.183	3.506 13.402	8.686 26.053	1.981 6.343	4.967 14.897
	390	ROHN 4 X-STR	50.087	44.95	A	0.117	0.183	13.402	25.749	6.269	14.897
	392	P1.5x.145	21.148	31.591	A	0.117	0.183	0.887	2.870	0.501	1.641
	393	ROHN 2.5 EH	32	36.601	А	0.117	0.183	2.812	6.966	1.589	3.983
	394	ROHN 2.5 STD	32	36.601	A	0.117	0.183	2.470	6.119	1.395	3.499
	395	ROHN 2.5 STD	32	36.601	A	0.117	0.183	3.506	8.686	1.981	4.967
	396 397	ROHN 4 X-STR P1.5x.145	50.087 21.148	44.95 31.591	A A	0.117 0.117	0.183 0.183	13.245 0.887	25.749 2.870	6.269 0.501	14.723 1.641
	398	ROHN 2.5 EH	32	36.601	A	0.117	0.183	2.812	6.966	1.589	3.983
	399	ROHN 2.5 STD	32	36.601	A	0.117	0.183	2.470	6.119	1.395	3.499
	400	ROHN 2.5 STD	32	36.601	Α	0.117	0.183	3.506	8.686	1.981	4.967
					A		Sum:	59.240	126.835	29.812	72.522
					B C			59.240 59.240	126.835 126.835	29.812 29.812	72.522 72.522
1	I I		I	I	C	I I	I	39.240	120.033	29.012	12.322

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	320' Rohn SSVMW	37 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section Elevation	Elem. Num.	Size	С	C w/Ice	F a	е	e w/Ice	A_r	A _r w/Ice	$A_r R_r$	A _r R _r w∕Ice
ft					c e			ft ²	ft^2	ft^2	ft^2

222-G Section Verification Tables - No Ice

Section Elevation	Z_{wind}	Z _{ice}	Kz	K_h	K _{zt}	tz	q_z	F a	е	$A_r R_r$
Lievation								c C		
ft	ft	ft				in	psf	e		ft^2
T1 320.00-304.00	312.00	<i>J</i> ¹	1.608	11890.1	1		41	A	0.209	6.710
11.520.00 501.00	512.00		1.000	110/011				В	0.209	6.710
								Ĉ	0.209	6.710
T2 304.00-300.00	302.00		1.597	8801.76	1		41	A	0.201	1.664
								В	0.201	1.664
								С	0.201	1.664
T3 300.00-280.00	290.00		1.584	6135.24	1		40	А	0.207	9.951
								В	0.207	9.951
								С	0.207	9.951
T4 280.00-260.00	270.00		1.56	3362.03	1		40	А	0.237	0.000
								В	0.237	0.000
								С	0.237	0.000
T5 260.00-240.00	250.00		1.535	1842.35	1.001		39	А	0.219	0.000
								В	0.219	0.000
								С	0.219	0.000
T6 240.00-220.00	230.00		1.508	1009.58	1.001		39	Α	0.223	0.000
								B	0.223	0.000
77 220 00 200 00	210.00		1.40	552 220	1.000		20	С	0.223	0.000
T7 220.00-200.00	210.00		1.48	553.239	1.002		38	A	0.181	0.000
								B	0.181	0.000
T8 200 00 180 00	100.00		1 4 4 0	202.169	1.002		27	C	0.181	0.000
T8 200.00-180.00	190.00		1.449	303.168	1.003		37	A B	0.187 0.187	0.000 0.000
								Б С	0.187	0.000
T9 180.00-170.00	175.00		1.424	193.09	1.005		37	A	0.187	0.000
19 180.00-170.00	175.00		1.424	195.09	1.005		57	B	0.177	0.000
								C	0.177	0.000
T10 170.00-160.00	165.00		1.406	142.937	1.007		36	A	0.171	0.000
110 170.00 100.00	102.00		1.100	1 12.757	1.007		50	В	0.171	0.000
								Č	0.171	0.000
T11 160.00-140.00	150.00		1.378	91.038	1.012		36	Ă	0.181	0.000
								В	0.181	0.000
								С	0.181	0.000
T12 140.00-120.00	130.00		1.337	49.888	1.021		35	А	0.173	0.000
								В	0.173	0.000
								С	0.173	0.000
T13 120.00-100.00	110.00		1.291	27.338	1.039		34	А	0.131	14.773
								В	0.131	14.773
								С	0.131	14.773
T14 100.00-80.00	90.00		1.238	14.981	1.072		34	А	0.122	15.639
								В	0.122	15.639
							_	С	0.122	15.639
T15 80.00-60.00	70.00		1.174	8.209	1.133		34	A	0.13	17.518
								B	0.13	17.518
T1 ((0.00.00.00.00	15.00		1.07	2.07	1 202		25	C	0.13	17.518
T16 60.00-30.00	45.00		1.07	3.87	1.293		35	А	0.122	27.154

AECOM 500 Enterprise Drive, Suite 3B

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	320' Rohn SSVMW	38 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD
		MOD

Sectio		Z_{wind}	Z _{ice}	Kz	K_h	K _{zt}	t_z	q_z	F	е	$A_r R_r$
Elevat	on								a c		
ft		ft	ft				in	psf	е		ft^2
									В	0.122	27.154
									С	0.122	27.154
T17	30.00-0.00	15.00		0.85	1.57	1.789		39	А	0.117	29.812
									В	0.117	29.812
									С	0.117	29.812

222-G Section Verification Tables - Ice

Section	Z_{wind}	Z_{ice}	K_z	K_h	K_{zt}	t_z	q_z	F	е	$A_r R_r$
Elevation								а		
								С		
ft	ft	ft				in	psf	е		ft^2
T1 320.00-304.00	312.00	312.00	1.608	11890.1	1	2.3474	9	А	0.509	36.468
								В	0.509	36.468
								С	0.509	36.468
T2 304.00-300.00	302.00	302.00	1.597	8801.76	1	2.3397	9	А	0.48	8.477
								В	0.48	8.477
								С	0.48	8.477
T3 300.00-280.00	290.00	290.00	1.584	6135.24	1	2.3303	9	А	0.454	44.325
								В	0.454	44.325
								С	0.454	44.325
T4 280.00-260.00	270.00	270.00	1.56	3362.03	1	2.3138	8	А	0.388	15.976
								В	0.388	15.976
								С	0.388	15.976
T5 260.00-240.00	250.00	250.00	1.535	1842.35	1.001	2.2963	8	А	0.361	18.127
								В	0.361	18.127
								С	0.361	18.127
T6 240.00-220.00	230.00	230.00	1.508	1009.58	1.001	2.2776	8	А	0.359	20.544
								В	0.359	20.544
								С	0.359	20.544
T7 220.00-200.00	210.00	210.00	1.48	553.239	1.002	2.2577	8	А	0.284	15.968
								В	0.284	15.968
								С	0.284	15.968
T8 200.00-180.00	190.00	190.00	1.449	303.168	1.003	2.2364	8	А	0.283	17.406
								В	0.283	17.406
								С	0.283	17.406
T9 180.00-170.00	175.00	175.00	1.424	193.09	1.005	2.2197	8	А	0.271	9.205
							-	В	0.271	9.205
								С	0.271	9.205
T10 170.00-160.00	165.00	165.00	1.406	142.937	1.007	2.2081	8	A	0.263	9.535
								В	0.263	9.535
								С	0.263	9.535
T11 160.00-140.00	150.00	150.00	1.378	91.038	1.012	2.1904	8	A	0.271	20.145
								В	0.271	20.145
								С	0.271	20.145
T12 140.00-120.00	130.00	130.00	1.337	49.888	1.021	2.1665	7	А	0.26	21.434
								В	0.26	21.434
								С	0.26	21.434
T13 120.00-100.00	110.00	110.00	1.291	27.338	1.039	2.1435	7	A	0.212	37.073
					-	-		В	0.212	37.073
								Ċ	0.212	37.073
T14 100.00-80.00	90.00	90.00	1.238	14.981	1.072	2.1239	7	A	0.2	38.919
							,	В	0.2	38.919
								Ċ	0.2	38.919
T15 80.00-60.00	70.00	70.00	1.174	8.209	1.133	2.1119	7	Ā	0.205	42.443
								В	0.205	42.443
								Ċ	0.205	42.443
• •	I	I	1	. 1		I	I	÷	0.200	

tnxTower

Job		Page
	320' Rohn SSVMW	39 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Section	Z_{wind}	Z_{ice}	K_z	K_h	K_{zt}	t_z	q_z	F	е	$A_r R_r$
Elevation								а		
ft	ft	ft				in	psf	с е		ft^2
T16 60.00-30.00	45.00	45.00	1.07	3.87	1.293	2.1159	8	А	0.191	66.277
								В	0.191	66.277
								С	0.191	66.277
T17 30.00-0.00	15.00	15.00	0.85	1.57	1.789	2.1241	8	А	0.183	72.522
								В	0.183	72.522
								С	0.183	72.522

222-G Section Verification Tables - Service

Section	Z_{wind}	Z _{ice}	Kz	K_h	Kzt	t_z	q_z	F	е	$A_r R_r$
Elevation	2 wind	21ce	112	110	\mathbf{x}_{2l}	42	q_z	a	C	219209
Literation								c		
ft	ft	ft				in	psf	е		ft^2
T1 320.00-304.00	312.00	0	1.608	11890.1	1		13	А	0.209	6.710
								В	0.209	6.710
								С	0.209	6.710
T2 304.00-300.00	302.00		1.597	8801.76	1		13	А	0.201	1.664
								В	0.201	1.664
								С	0.201	1.664
T3 300.00-280.00	290.00		1.584	6135.24	1		12	А	0.207	9.951
								В	0.207	9.951
								С	0.207	9.951
T4 280.00-260.00	270.00		1.56	3362.03	1		12	А	0.237	0.000
								В	0.237	0.000
								С	0.237	0.000
T5 260.00-240.00	250.00		1.535	1842.35	1.001		12	А	0.219	0.000
								В	0.219	0.000
TTC 2 40 00 220 00			1 500	1000 50	1 001		10	С	0.219	0.000
T6 240.00-220.00	230.00		1.508	1009.58	1.001		12	A	0.223	0.000
								В	0.223	0.000
77 220 00 200 00	210.00		1.40	552 220	1 000		10	С	0.223	0.000
T7 220.00-200.00	210.00		1.48	553.239	1.002		12	A	0.181	0.000
								B	0.181	0.000
TR 200 00 100 00	100.00		1 4 4 0	202.170	1 002		1.1	С	0.181	0.000
T8 200.00-180.00	190.00		1.449	303.168	1.003		11	A B	0.187	0.000 0.000
								В С	0.187	0.000
T9 180.00-170.00	175.00		1.424	193.09	1.005		11	A	0.187 0.177	0.000
19 180.00-170.00	175.00		1.424	195.09	1.005		11	B	0.177	0.000
								C	0.177	0.000
T10 170.00-160.00	165.00		1.406	142.937	1.007		11	A	0.171	0.000
110 170.00 100.00	105.00		1.400	172.757	1.007			B	0.171	0.000
								Č	0.171	0.000
T11 160.00-140.00	150.00		1.378	91.038	1.012		11	Ă	0.181	0.000
				,				В	0.181	0.000
								С	0.181	0.000
T12 140.00-120.00	130.00		1.337	49.888	1.021		11	A	0.173	0.000
								В	0.173	0.000
								С	0.173	0.000
T13 120.00-100.00	110.00		1.291	27.338	1.039		11	А	0.131	14.773
								В	0.131	14.773
								С	0.131	14.773
T14 100.00-80.00	90.00		1.238	14.981	1.072		10	А	0.122	15.639
								В	0.122	15.639
								С	0.122	15.639
T15 80.00-60.00	70.00		1.174	8.209	1.133		10	А	0.13	17.518
I								В	0.13	17.518

Job		Page
	320' Rohn SSVMW	40 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client		Designed by
	(MODification) VZW-217/ EMP-008 - "G"	MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Section Elevation	Z_{wind}	Z _{ice}	Kz	K_h	K _{zt}	t_z	q_z	F a	е	$A_r R_r$
ft	ft	ft				in	psf	c e		ft^2
<i>Jt</i>	Ji	Ji					<i>psj</i>	C	0.13	17.518
T16 60.00-30.00	45.00		1.07	3.87	1.293		11	А	0.122	27.154
								В	0.122	27.154
								С	0.122	27.154
T17 30.00-0.00	15.00		0.85	1.57	1.789		12	А	0.117	29.812
								В	0.117	29.812
								С	0.117	29.812

Tower Pressures - No Ice

$G_H = 0.850$

Section	Ζ	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С		2			Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	312.00	1.608	41	116.377	Α	9.512	14.835	14.835	60.93	0.000	0.000
320.00-304.00					В	9.512	14.835		60.93	5.561	0.000
					С	9.512	14.835		60.93	0.000	0.000
T2	302.00	1.597	41	29.094	А	2.147	3.709	3.709	63.34	0.000	0.000
304.00-300.00					В	2.147	3.709		63.34	1.540	0.000
					С	2.147	3.709		63.34	0.000	0.000
Т3	290.00	1.584	40	167.656	Α	12.596	22.122	22.122	63.72	0.000	0.000
300.00-280.00					В	12.596	22.122		63.72	14.473	0.000
					С	12.596	22.122		63.72	0.000	0.000
T4	270.00	1.56	40	216.829	Α	51.464	0.000	37.788	73.43	0.000	0.000
280.00-260.00					В	51.464	0.000		73.43	30.636	0.000
					С	51.464	0.000		73.43	0.000	0.000
T5	250.00	1.535	39	259.126	А	56.868	0.000	37.778	66.43	0.000	0.000
260.00-240.00					В	56.868	0.000		66.43	41.134	0.000
					С	56.868	0.000		66.43	0.000	0.000
Т6	230.00	1.508	39	299.625	Α	66.901	0.000	37.776	56.46	0.000	0.000
240.00-220.00					В	66.901	0.000		56.46	53.315	0.000
					С	66.901	0.000		56.46	0.000	0.000
Τ7	210.00	1.48	38	339.725	А	61.588	0.000	37.775	61.34	0.000	0.000
220.00-200.00					В	61.588	0.000		61.34	53.860	0.000
					С	61.588	0.000		61.34	30.160	0.000
Т8	190.00	1.449	37	385.076	А	71.846	0.000	45.633	63.52	53.800	0.000
200.00-180.00					В	71.846	0.000		63.52	53.860	0.000
					С	71.846	0.000		63.52	30.160	0.000
Т9	175.00	1.424	37	208.387	Α	36.864	0.000	22.815	61.89	26.900	0.000
180.00-170.00					B	36.864	0.000		61.89	29.035	0.000
					С	36.864	0.000		61.89	15.080	0.000
T10	165.00	1.406	36	218.787	A	37.492	0.000	22.815	60.85	26.900	0.000
170.00-160.00					В	37.492	0.000		60.85	31.062	0.000
					С	37.492	0.000		60.85	15.080	0.000
T11	150.00	1.378	36	467.070	A	84.562	0.000	45.617	53.94	53.800	0.000
160.00-140.00					B	84.562	0.000		53.94	65.549	0.000
	120.00	1 2 2 7	2.5		С	84.562	0.000	15 (25	53.94	30.160	0.000
T12	130.00	1.337	35	507.978	A	87.738	0.000	45.637	52.02	53.800	0.000
140.00-120.00					B	87.738	0.000		52.02	73.626	0.000
	110.00	1.001			С	87.738	0.000	1	52.02	30.160	0.000
T13	110.00	1.291	34	555.591	A	45.673	26.937	45.673	62.90	53.800	0.000
120.00-100.00					B	45.673	26.937		62.90	81.475	0.000
	00.00	1.000		(0(200	C	45.673	26.937	15 (()	62.90	30.160	0.000
T14	90.00	1.238	34	606.388	А	45.666	28.523	45.666	61.55	53.800	0.000

tnxTower	Job 320' Rohn SSVMW	Page 41 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) VZW-217/ EMP-008 - "G	B ^{III} Designed by MCD

Section	Ζ	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
100.00-80.00					В	45.666	28.523		61.55	92.098	0.000
					С	45.666	28.523		61.55	30.160	0.000
T15	70.00	1.174	34	662.098	А	53.708	32.691	53.708	62.16	53.800	0.000
80.00-60.00					В	53.708	32.691		62.16	94.169	0.000
					С	53.708	32.691		62.16	30.160	0.000
T16	45.00	1.07	35	1088.08	Α	80.523	52.602	80.523	60.49	80.700	0.000
60.00-30.00				3	В	80.523	52.602		60.49	141.253	0.000
					С	80.523	52.602		60.49	45.240	0.000
T17 30.00-0.00	15.00	0.85	39	1202.12	А	81.480	59.240	81.480	57.90	67.250	0.000
				2	В	81.480	59.240		57.90	117.711	0.000
					С	81.480	59.240		57.90	37.700	0.000

Tower Pressure - With Ice

Section	Ζ	Kz	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
					a 2	С	a.2	22	22		Face	Face
ft	ft	4 60.0	psf	in	ft^2	е	ft^2	ft^2	ft^2	10.05	ft ²	ft^2
T1	312.00	1.608	9	2.3474	122.637	Α	9.512	52.873	27.354	43.85	0.000	0.000
320.00-304.00						В	9.512	52.873		43.85	33.025	0.000
						С	9.512	52.873		43.85	0.000	0.000
T2	302.00	1.597	9	2.3397	30.654	Α	2.147	12.569	6.828	46.40	0.000	0.000
304.00-300.00						B	2.147	12.569		46.40	9.027	0.000
	200.00	1 50 4	0		175 101	С	2.147	12.569	27 (04	46.40	0.000	0.000
T3	290.00	1.584	9	2.3303	175.434	A	12.596	67.037	37.684	47.32	0.000	0.000
300.00-280.00						В	12.596	67.037		47.32	75.994	0.000
	250.00	1.56	0			С	12.596	67.037	40.000	47.32	0.000	0.000
T4	270.00	1.56	8	2.3138	224.554	A	61.768	25.316		55.22	0.000	0.000
280.00-260.00						В	61.768	25.316		55.22	143.089	0.000
The second se	250.00	1.525	0	2 20 (2	266 700	С	61.768	25.316		55.22	0.000	0.000
T5	250.00	1.535	8	2.2963	266.790	A	67.092	29.225	48.001	49.84	0.000	0.000
260.00-240.00						B	67.092	29.225		49.84	183.505	0.000
TC	220.00	1 500	0	2 2776	207 227	С	67.092	29.225	47.016	49.84	0.000	0.000
T6	230.00	1.508	8	2.2776	307.227	A	77.041	33.169	47.916	43.48	0.000	0.000
240.00-220.00						B	77.041	33.169		43.48	233.247	0.000
T . 7	210.00	1.40	0	0.0577	247.260	С	77.041	33.169	47.026	43.48	0.000	0.000
T7	210.00	1.48	8	2.2577	347.260	A	71.639	26.881	47.826	48.54	0.000	0.000
220.00-200.00						B	71.639	26.881		48.54	234.475	0.000
770	100.00	1 4 4 0	0	2 22 4	202 5 42	С	71.639	26.881	55.500	48.54	95.573	0.000
T8	190.00	1.449	8	2.2364	392.542	A	81.804	29.311	55.592	50.03	158.995	0.000
200.00-180.00						B	81.804	29.311		50.03	232.775	0.000
Т9	175.00	1.424	8	2.2197	212.092	C	81.804	29.311 15.592	27.750	50.03 48.36	95.297 79.358	0.000
	175.00	1.424	8	2.2197	212.092	A	41.805		27.756			0.000
180.00-170.00						B	41.805	15.592		48.36	127.144	0.000
T10	165.00	1 400	8	2 2001	222.473	С	41.805	15.592	27 720	48.36	47.540	0.000
T10	165.00	1.406	8	2.2081	222.473	A	42.408	16.205	27.730	47.31	79.262	0.000
170.00-160.00						B	42.408	16.205		47.31	138.818	0.000
T11	150.00	1.378	8	2.1904	474 200	C	42.408	16.205	55 266	47.31	47.465	0.000
160.00-140.00	150.00	1.3/8	8	2.1904	474.380	A	94.312	34.122	55.366	43.11	158.229	0.000
160.00-140.00						B	94.312	34.122		43.11	292.474	0.000
T10	120.00	1 2 2 7	7	21665	515 210	C	94.312	34.122	55 295	43.11	94.700	0.000
T12	130.00	1.337	/	2.1665	515.210	A	97.386	36.484	55.285	41.30	157.832	0.000
140.00-120.00						B	97.386	36.484		41.30	321.040	0.000
						С	97.386	36.484		41.30	94.390	0.000

 $G_H = 0.850$

tnxTower	Job	320' Rohn SSVMW	Page 42 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section	Ζ	Kz	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T13	110.00	1.291	7	2.1435	562.751	А	55.227	64.278	55.227	46.21	157.450	0.000
120.00-100.00						В	55.227	64.278		46.21	350.400	0.000
						С	55.227	64.278		46.21	94.093	0.000
T14	90.00	1.238	7	2.1239	613.482	А	55.130	67.741	55.130	44.87	157.125	0.000
100.00-80.00						В	55.130	67.741		44.87	389.875	0.000
						С	55.130	67.741		44.87	93.840	0.000
T15 80.00-60.00	70.00	1.174	7	2.1119	669.154	Α	63.122	73.775	63.122	46.11	156.925	0.000
						В	63.122	73.775		46.11	398.287	0.000
						С	63.122	73.775		46.11	93.684	0.000
T16 60.00-30.00	45.00	1.07	8	2.1159	1098.682	А	94.664	115.660	94.664	45.01	235.486	0.000
						В	94.664	115.660		45.01	598.278	0.000
						С	94.664	115.660		45.01	140.602	0.000
T17 30.00-0.00	15.00	0.85	8	2.1241	1212.765	А	95.680	126.835	95.680	43.00	196.410	0.000
						В	95.680	126.835		43.00	500.053	0.000
						С	95.680	126.835		43.00	117.302	0.000

Tower Pressure - Service

$G_H = 0.850$

Section	Ζ	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation	-	2	92		a	117	** <u>K</u>	1 leg	%	In	Out
12101411011					c				, 0	Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	312.00	1.608	13	116.377	А	9.512	14.835	14.835	60.93	0.000	0.000
320.00-304.00					В	9.512	14.835		60.93	5.561	0.000
					С	9.512	14.835		60.93	0.000	0.000
T2	302.00	1.597	13	29.094	А	2.147	3.709	3.709	63.34	0.000	0.000
304.00-300.00					В	2.147	3.709		63.34	1.540	0.000
					С	2.147	3.709		63.34	0.000	0.000
Т3	290.00	1.584	12	167.656	А	12.596	22.122	22.122	63.72	0.000	0.000
300.00-280.00					В	12.596	22.122		63.72	14.473	0.000
					С	12.596	22.122		63.72	0.000	0.000
T4	270.00	1.56	12	216.829	Α	51.464	0.000	37.788	73.43	0.000	0.000
280.00-260.00					В	51.464	0.000		73.43	30.636	0.000
					С	51.464	0.000		73.43	0.000	0.000
T5	250.00	1.535	12	259.126	Α	56.868	0.000	37.778	66.43	0.000	0.000
260.00-240.00					В	56.868	0.000		66.43	41.134	0.000
					С	56.868	0.000		66.43	0.000	0.000
T6	230.00	1.508	12	299.625	Α	66.901	0.000	37.776	56.46	0.000	0.000
240.00-220.00					В	66.901	0.000		56.46	53.315	0.000
					С	66.901	0.000		56.46	0.000	0.000
Τ7	210.00	1.48	12	339.725	Α	61.588	0.000	37.775	61.34	0.000	0.000
220.00-200.00					В	61.588	0.000		61.34	53.860	0.000
					С	61.588	0.000		61.34	30.160	0.000
Т8	190.00	1.449	11	385.076	Α	71.846	0.000	45.633	63.52	53.800	0.000
200.00-180.00					В	71.846	0.000		63.52	53.860	0.000
					С	71.846	0.000		63.52	30.160	0.000
Т9	175.00	1.424	11	208.387	А	36.864	0.000	22.815	61.89	26.900	0.000
180.00-170.00					В	36.864	0.000		61.89	29.035	0.000
					С	36.864	0.000		61.89	15.080	0.000
T10	165.00	1.406	11	218.787	А	37.492	0.000	22.815	60.85	26.900	0.000
170.00-160.00					В	37.492	0.000		60.85	31.062	0.000
					С	37.492	0.000		60.85	15.080	0.000
T11	150.00	1.378	11	467.070	А	84.562	0.000	45.617	53.94	53.800	0.000

Project

Client

320' Rohn SSVMW	

CSP Tower - Colchester, CT

Page 43 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification)	VZW-217/ EMP-008 - '	'G"
(-

11:31:15 02/22/19 Designed by MCD

Section	Ζ	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation			-		а			0	%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
160.00-140.00					В	84.562	0.000		53.94	65.549	0.000
					С	84.562	0.000		53.94	30.160	0.000
T12	130.00	1.337	11	507.978	Α	87.738	0.000	45.637	52.02	53.800	0.000
140.00-120.00					В	87.738	0.000		52.02	73.626	0.000
					С	87.738	0.000		52.02	30.160	0.000
T13	110.00	1.291	11	555.591	А	45.673	26.937	45.673	62.90	53.800	0.000
120.00-100.00					В	45.673	26.937		62.90	81.475	0.000
					С	45.673	26.937		62.90	30.160	0.000
T14	90.00	1.238	10	606.388	Α	45.666	28.523	45.666	61.55	53.800	0.000
100.00-80.00					В	45.666	28.523		61.55	92.098	0.000
					С	45.666	28.523		61.55	30.160	0.000
T15	70.00	1.174	10	662.098	А	53.708	32.691	53.708	62.16	53.800	0.000
80.00-60.00					В	53.708	32.691		62.16	94.169	0.000
					С	53.708	32.691		62.16	30.160	0.000
T16	45.00	1.07	11	1088.08	А	80.523	52.602	80.523	60.49	80.700	0.000
60.00-30.00				3	В	80.523	52.602		60.49	141.253	0.000
					С	80.523	52.602		60.49	45.240	0.000
T17 30.00-0.00	15.00	0.85	12	1202.12	А	81.480	59.240	81.480	57.90	67.250	0.000
				2	В	81.480	59.240		57.90	117.711	0.000
					С	81.480	59.240		57.90	37.700	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	15.90	1442.07	Α	0.209	2.566	41	1	1	16.223	1568.86	98.05	C
320.00-304.00			В	0.209	2.566		1	1	16.223			
			С	0.209	2.566		1	1	16.223			
T2	4.36	349.72	Α	0.201	2.592	41	1	1	3.811	374.34	93.58	С
304.00-300.00			В	0.201	2.592		1	1	3.811			
			С	0.201	2.592		1	1	3.811			
Т3	43.60	2496.34	А	0.207	2.573	40	1	1	22.547	2291.85	114.59	C
300.00-280.00			В	0.207	2.573		1	1	22.547			
			С	0.207	2.573		1	1	22.547			
T4	101.88	5067.66	Α	0.237	2.476	40	1	1	51.464	4936.84	246.84	C
280.00-260.00			В	0.237	2.476		1	1	51.464			
			С	0.237	2.476		1	1	51.464			
T5	137.02	5409.17	Α	0.219	2.532	39	1	1	56.868	5621.20	281.06	C
260.00-240.00			В	0.219	2.532		1	1	56.868			
			С	0.219	2.532		1	1	56.868			
T6	176.60	6484.36	Α	0.223	2.52	39	1	1	66.901	6570.98	328.55	C
240.00-220.00			В	0.223	2.52		1	1	66.901			
			С	0.223	2.52		1	1	66.901			
Τ7	376.80	6406.00	Α	0.181	2.66	38	1	1	61.588	6890.36	344.52	C
220.00-200.00			В	0.181	2.66		1	1	61.588			
			С	0.181	2.66		1	1	61.588			
T8	673.40	7298.65	Α	0.187	2.641	37	1	1	71.846	8594.90	429.75	C
200.00-180.00			В	0.187	2.641		1	1	71.846			
			С	0.187	2.641		1	1	71.846			
Т9	342.06	4191.71	А	0.177	2.675	37	1	1	36.864	4386.92	438.69	C
180.00-170.00			В	0.177	2.675		1	1	36.864			
			С	0.177	2.675		1	1	36.864			
T10	347.60	4265.58	А	0.171	2.694	36	1	1	37.492	4452.75	445.28	C
170.00-160.00			В	0.171	2.694		1	1	37.492			
			С	0.171	2.694		1	1	37.492			

tnxTower

Job		Page
	320' Rohn SSVMW	44 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client		Designed by

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification)	VZW-217/ EMP-008 - "G"
(MODINGUIGH)	

Designed by MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			-						Face
	0	0	с			psf						
ft	lb	lb	е						ft^2	lb	plf	
T11	704.39	9608.59	Α	0.181	2.661	36	1	1	84.562	9521.59	476.08	С
160.00-140.00			В	0.181	2.661		1	1	84.562			
			С	0.181	2.661		1	1	84.562			
T12	722.68	9975.29	Α	0.173	2.69	35	1	1	87.738	9797.31	489.87	С
140.00-120.00			В	0.173	2.69		1	1	87.738			
			С	0.173	2.69		1	1	87.738			
T13	740.85	9144.95	Α	0.131	2.844	34	1	1	60.446	7894.74	394.74	С
120.00-100.00			В	0.131	2.844		1	1	60.446			
			С	0.131	2.844		1	1	60.446			
T14	765.48	9675.54	А	0.122	2.876	34	1	1	61.305	8117.86	405.89	С
100.00-80.00			В	0.122	2.876		1	1	61.305			
			С	0.122	2.876		1	1	61.305			
T15	770.80	10501.98	А	0.13	2.845	34	1	1	71.226	8934.95	446.75	С
80.00-60.00			В	0.13	2.845		1	1	71.226			
			С	0.13	2.845		1	1	71.226			
T16	1156.20	15115.36	А	0.122	2.876	35	1	1	107.677	14101.40	470.05	С
60.00-30.00			В	0.122	2.876		1	1	107.677			
			С	0.122	2.876		1	1	107.677			
T17	963.50	17941.94	А	0.117	2.896	39	1	1	111.292	15044.45	501.48	С
30.00-0.00			В	0.117	2.896		1	1	111.292			
			С	0.117	2.896		1	1	111.292			
Sum Weight:	8043.12	125374.92						OTM	15885.76	119101.29		
Ũ									kip-ft			

			Γον	ver Fo	orces	5 - N	o Ice	- Wi	nd 45 ⁻	To Face		
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			1						Face
	Ū.	Ũ	с			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	15.90	1442.07	А	0.209	2.566	41	0.825	1	14.558	1419.82	88.74	С
320.00-304.00			В	0.209	2.566		0.825	1	14.558			
			С	0.209	2.566		0.825	1	14.558			
T2	4.36	349.72	А	0.201	2.592	41	0.825	1	3.435	340.59	85.15	С
304.00-300.00			В	0.201	2.592		0.825	1	3.435			
			С	0.201	2.592		0.825	1	3.435			
Т3	43.60	2496.34	Α	0.207	2.573	40	0.825	1	20.343	2096.96	104.85	С
300.00-280.00			В	0.207	2.573		0.825	1	20.343			
			С	0.207	2.573		0.825	1	20.343			
T4	101.88	5067.66	А	0.237	2.476	40	0.825	1	42.458	4181.81	209.09	С
280.00-260.00			В	0.237	2.476		0.825	1	42.458			
			С	0.237	2.476		0.825	1	42.458			
T5	137.02	5409.17	А	0.219	2.532	39	0.825	1	46.916	4781.42	239.07	С
260.00-240.00			В	0.219	2.532		0.825	1	46.916			
			С	0.219	2.532		0.825	1	46.916			
T6	176.60	6484.36	А	0.223	2.52	39	0.825	1	55.194	5604.44	280.22	С
240.00-220.00			В	0.223	2.52		0.825	1	55.194			
			С	0.223	2.52		0.825	1	55.194			
T7	376.80	6406.00	А	0.181	2.66	38	0.825	1	50.810	5968.31	298.42	С
220.00-200.00			В	0.181	2.66		0.825	1	50.810			
			С	0.181	2.66		0.825	1	50.810			
Т8	673.40	7298.65	А	0.187	2.641	37	0.825	1	59.273	7547.28	377.36	С
200.00-180.00			В	0.187	2.641		0.825	1	59.273			
			С	0.187	2.641		0.825	1	59.273			

tnxTower

Project

Client

320' Rohn SSVMW

CSP Tower - Colchester, CT

Page 45 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification)	VZW-217/ EMP-008 - '	'G"
(mobilioudion)		-

11:31:15 02/22/19 Designed by MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
Т9	342.06	4191.71	А	0.177	2.675	37	0.825	1	30.413	3850.84	385.08	С
180.00-170.00			В	0.177	2.675		0.825	1	30.413			
			С	0.177	2.675		0.825	1	30.413			
T10	347.60	4265.58	Α	0.171	2.694	36	0.825	1	30.931	3909.29	390.93	С
170.00-160.00			В	0.171	2.694		0.825	1	30.931			
			С	0.171	2.694		0.825	1	30.931			
T11	704.39	9608.59	Α	0.181	2.661	36	0.825	1	69.763	8330.31	416.52	С
160.00-140.00			В	0.181	2.661		0.825	1	69.763			
			С	0.181	2.661		0.825	1	69.763			
T12	722.68	9975.29	А	0.173	2.69	35	0.825	1	72.384	8573.23	428.66	С
140.00-120.00			В	0.173	2.69		0.825	1	72.384			
			С	0.173	2.69		0.825	1	72.384			
T13	740.85	9144.95	Α	0.131	2.844	34	0.825	1	52.453	7232.95	361.65	С
120.00-100.00			В	0.131	2.844		0.825	1	52.453			
			С	0.131	2.844		0.825	1	52.453			
T14	765.48	9675.54	Α	0.122	2.876	34	0.825	1	53.313	7456.12	372.81	С
100.00-80.00			В	0.122	2.876		0.825	1	53.313			
			С	0.122	2.876		0.825	1	53.313			
T15	770.80	10501.98	А	0.13	2.845	34	0.825	1	61.827	8163.08	408.15	С
80.00-60.00			В	0.13	2.845		0.825	1	61.827			
			С	0.13	2.845		0.825	1	61.827			
T16	1156.20	15115.36	Α	0.122	2.876	35	0.825	1	93.585	12885.47	429.52	С
60.00-30.00			В	0.122	2.876		0.825	1	93.585			
			С	0.122	2.876		0.825	1	93.585			
T17	963.50	17941.94	Α	0.117	2.896	39	0.825	1	97.033	13681.70	456.06	С
30.00-0.00			В	0.117	2.896		0.825	1	97.033			
			С	0.117	2.896		0.825	1	97.033			
Sum Weight:	8043.12	125374.92						OTM	13960.91	106023.63		
÷									kip-ft			

	Tower Forces - No Ice - Wind 60 To Face												
G .:	4.1.1	G 1/	Г		C		D	D	4	<i>L</i>		C I	
Section	Add Weight	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.	
Elevation	Weight	Weight	а									Face	
G	lb	lb	С			psf			ft^2	lb	16		
ft			e	0.000	2544	4.1	0.0	1	J.		<i>plf</i>	0	
T1	15.90	1442.07	A	0.209	2.566	41	0.8	1	14.320	1398.53	87.41	С	
320.00-304.00			B	0.209	2.566		0.8	l	14.320				
			С	0.209	2.566		0.8	l	14.320			~	
T2	4.36	349.72	Α	0.201	2.592	41	0.8	1	3.381	335.77	83.94	С	
304.00-300.00			В	0.201	2.592		0.8	1	3.381				
			С	0.201	2.592		0.8	1	3.381				
Т3	43.60	2496.34	А	0.207	2.573	40	0.8	1	20.028	2069.12	103.46	С	
300.00-280.00			В	0.207	2.573		0.8	1	20.028				
			С	0.207	2.573		0.8	1	20.028				
T4	101.88	5067.66	А	0.237	2.476	40	0.8	1	41.171	4073.95	203.70	С	
280.00-260.00			В	0.237	2.476		0.8	1	41.171				
			С	0.237	2.476		0.8	1	41.171				
T5	137.02	5409.17	Α	0.219	2.532	39	0.8	1	45.494	4661.45	233.07	С	
260.00-240.00			В	0.219	2.532		0.8	1	45.494				
			С	0.219	2.532		0.8	1	45.494				
T6	176.60	6484.36	Ă	0.223	2.52	39	0.8	1	53.521	5466.37	273.32	С	
240.00-220.00			В	0.223	2.52		0.8	1	53.521			_	
0.00			Ĉ	0.223	2.52		0.8	1	53.521				

tnxTower

Project

Client

320' Rohn SSVMW

CSP Tower - Colchester, CT

Page 46 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification)	VZW-217/ EMP-008 - "G	i"
(mobilioadion)		

11:31:15 02/22/19 Designed by MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T7	376.80	6406.00	Α	0.181	2.66	38	0.8	1	49.270	5836.59	291.83	С
220.00-200.00			В	0.181	2.66		0.8	1	49.270			
			С	0.181	2.66		0.8	1	49.270			
T8	673.40	7298.65	Α	0.187	2.641	37	0.8	1	57.477	7397.62	369.88	С
200.00-180.00			В	0.187	2.641		0.8	1	57.477			
			С	0.187	2.641		0.8	1	57.477			
Т9	342.06	4191.71	Α	0.177	2.675	37	0.8	1	29.491	3774.26	377.43	С
180.00-170.00			В	0.177	2.675		0.8	1	29.491			
			С	0.177	2.675		0.8	1	29.491			
T10	347.60	4265.58	Α	0.171	2.694	36	0.8	1	29.994	3831.65	383.17	С
170.00-160.00			В	0.171	2.694		0.8	1	29.994			
			С	0.171	2.694		0.8	1	29.994			
T11	704.39	9608.59	Α	0.181	2.661	36	0.8	1	67.649	8160.13	408.01	С
160.00-140.00			В	0.181	2.661		0.8	1	67.649			
			С	0.181	2.661		0.8	1	67.649			
T12	722.68	9975.29	Α	0.173	2.69	35	0.8	1	70.190	8398.36	419.92	С
140.00-120.00			В	0.173	2.69		0.8	1	70.190			
			С	0.173	2.69		0.8	1	70.190			
T13	740.85	9144.95	Α	0.131	2.844	34	0.8	1	51.311	7138.41	356.92	С
120.00-100.00			В	0.131	2.844		0.8	1	51.311			
			С	0.131	2.844		0.8	1	51.311			
T14	765.48	9675.54	А	0.122	2.876	34	0.8	1	52.171	7361.59	368.08	С
100.00-80.00			В	0.122	2.876		0.8	1	52.171			
			С	0.122	2.876		0.8	1	52.171			
T15	770.80	10501.98	А	0.13	2.845	34	0.8	1	60.484	8052.81	402.64	С
80.00-60.00			В	0.13	2.845		0.8	1	60.484			
			С	0.13	2.845		0.8	1	60.484			~
T16	1156.20	15115.36	Α	0.122	2.876	35	0.8	1	91.572	12711.77	423.73	С
60.00-30.00			В	0.122	2.876		0.8	1	91.572			
			С	0.122	2.876		0.8	1	91.572			~
T17	963.50	17941.94	A	0.117	2.896	39	0.8	1	94.996	13487.03	449.57	С
30.00-0.00			B	0.117	2.896		0.8	1	94.996			
			С	0.117	2.896		0.8	1	94.996			
Sum Weight:	8043.12	125374.92						OTM	13685.94	104155.39		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	15.90	1442.07	Α	0.209	2.566	41	0.85	1	14.796	1441.11	90.07	С
320.00-304.00			В	0.209	2.566		0.85	1	14.796			
			С	0.209	2.566		0.85	1	14.796			
T2	4.36	349.72	А	0.201	2.592	41	0.85	1	3.489	345.41	86.35	С
304.00-300.00			В	0.201	2.592		0.85	1	3.489			
			С	0.201	2.592		0.85	1	3.489			
T3	43.60	2496.34	Α	0.207	2.573	40	0.85	1	20.658	2124.80	106.24	С
300.00-280.00			В	0.207	2.573		0.85	1	20.658			
			С	0.207	2.573		0.85	1	20.658			
T4	101.88	5067.66	А	0.237	2.476	40	0.85	1	43.745	4289.67	214.48	С
280.00-260.00			В	0.237	2.476		0.85	1	43.745			
			С	0.237	2.476		0.85	1	43.745			

tnxTower

Project

Client

320' Rohn SSVMW

Page 47 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"
$(V \cup D) (U \cup U) = (V \cup U$

CSP Tower - Colchester, CT

Designed by MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			-						Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T5	137.02	5409.17	А	0.219	2.532	39	0.85	1	48.338	4901.38	245.07	С
260.00-240.00			В	0.219	2.532		0.85	1	48.338			
			С	0.219	2.532		0.85	1	48.338			
T6	176.60	6484.36	Α	0.223	2.52	39	0.85	1	56.866	5742.52	287.13	С
240.00-220.00			В	0.223	2.52		0.85	1	56.866			
T7	276.00	(10(00	С	0.223	2.52	20	0.85	1	56.866	(100.02	205.00	C
T7	376.80	6406.00	A	0.181	2.66	38	0.85	1	52.350	6100.03	305.00	С
220.00-200.00			B	0.181	2.66		0.85	1	52.350			
TO	(72.40	7209 (5	C	0.181	2.66	37	0.85 0.85	1	52.350	7(0(04	384.85	С
T8 200.00-180.00	673.40	7298.65	A B	0.187 0.187	2.641 2.641	37	0.85	1	61.069 61.069	7696.94	384.83	C
200.00-180.00			C	0.187	2.641		0.85	1	61.069			
Т9	342.06	4191.71	A	0.187	2.675	37	0.85	1	31.334	3927.42	392.74	С
180.00-170.00	542.00	4191./1	B	0.177	2.675	57	0.85	1	31.334	3927.42	392.14	C
100.00-170.00			C	0.177	2.675		0.85	1	31.334			
T10	347.60	4265.58	A	0.171	2.694	36	0.85	1	31.869	3986.93	398.69	С
170.00-160.00	547.00	4205.50	B	0.171	2.694	50	0.85	1	31.869	5700.75	570.07	C
170.00 100.00			C	0.171	2.694		0.85	1	31.869			
T11	704.39	9608.59	Ă	0.181	2.661	36	0.85	1	71.877	8500.49	425.02	С
160.00-140.00			В	0.181	2.661		0.85	1	71.877			-
			С	0.181	2.661		0.85	1	71.877			
T12	722.68	9975.29	А	0.173	2.69	35	0.85	1	74.577	8748.10	437.40	С
140.00-120.00			В	0.173	2.69		0.85	1	74.577			
			С	0.173	2.69		0.85	1	74.577			
T13	740.85	9144.95	Α	0.131	2.844	34	0.85	1	53.595	7327.49	366.37	С
120.00-100.00			В	0.131	2.844		0.85	1	53.595			
			С	0.131	2.844		0.85	1	53.595			
T14	765.48	9675.54	А	0.122	2.876	34	0.85	1	54.455	7550.66	377.53	С
100.00-80.00			В	0.122	2.876		0.85	1	54.455			
			С	0.122	2.876		0.85	1	54.455			~
T15	770.80	10501.98	Α	0.13	2.845	34	0.85	1	63.170	8273.34	413.67	С
80.00-60.00			B	0.13	2.845		0.85	1	63.170			
T 1(1156.00	15115.26	С	0.13	2.845	25	0.85	1	63.170	12050 10	425.21	C
T16	1156.20	15115.36	A	0.122	2.876	35	0.85	1	95.598	13059.18	435.31	С
60.00-30.00			B	0.122	2.876		0.85 0.85	1	95.598 95.598			
T17	963.50	17941.94	C A	0.122 0.117	2.876 2.896	39	0.85	1	95.598 99.070	13876.38	462.55	С
30.00-0.00	905.30	1/741.94	A B	0.117	2.896	39	0.85	1	99.070 99.070	138/0.38	402.33	
50.00-0.00			в С	0.117	2.896		0.85	1	99.070 99.070			
Sum Weight:	8043.12	125374.92	U	0.11/	2.090		0.85	OTM	14235.89	107891.87		
Sum weight.	0045.12	123374.92						UTIVI	kip-ft	10/071.0/		
									кір-п			

	Tower Forces - With Ice - Wind Normal To Face												
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.	
Elevation	Weight	Weight	а			-						Face	
ft	lb	lb	с е			psf			ft^2	lb	plf		
	569.18		A	0.509	1.889	9	1	1	45.981	766.60	47.91	С	
320.00-304.00			В	0.509	1.889		1	1	45.981				
			С	0.509	1.889		1	1	45.981				
T2	155.39	1272.99	Α	0.48	1.927	9	1	1	10.623	185.90	46.47	С	
304.00-300.00			В	0.48	1.927		1	1	10.623				
			С	0.48	1.927		1	1	10.623				

tnxTower

Project AECOM Client

Job

CSP Tower - Colchester, CT

320' Rohn SSVMW

48 of 96 Date

Page

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			-						Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T3	1331.40	7605.74	А	0.454	1.967	9	1	1	56.921	1123.99	56.20	С
300.00-280.00			В	0.454	1.967		1	1	56.921			
			С	0.454	1.967		1	1	56.921			
T4	2557.39	12926.42	Α	0.388	2.089	8	1	1	77.744	1791.14	89.56	С
280.00-260.00			В	0.388	2.089		1	1	77.744			
			С	0.388	2.089		1	1	77.744			
T5	3288.12	14220.37	А	0.361	2.146	8	1	1	85.219	2080.81	104.04	С
260.00-240.00			В	0.361	2.146		1	1	85.219			
			С	0.361	2.146		1	1	85.219			~
T6	4163.61	16903.26	A	0.359	2.152	8	1	1	97.585	2442.75	122.14	С
240.00-220.00			B	0.359	2.152		1	1	97.585			
T7	5017.02	15557 50	C	0.359	2.152	0	1	1	97.585	27(2.70	120.14	G
T7	5817.03	15557.50	A	0.284	2.34	8	1	1	87.606	2762.78	138.14	С
220.00-200.00			B	0.284	2.34		1	1	87.606			
TO	9(10.02	17512.14	C	0.284 0.283	2.34	8	1	1	87.606	2526 51	17(22	C
T8	8619.93	17512.14	A B	0.283	2.342	8	1	1	99.210 99.210	3526.51	176.33	С
200.00-180.00			В С	0.283	2.342 2.342		1 1	1	99.210 99.210			
Т9	4459.97	10277.40		0.283	2.342	8	1	1	51.010	1011 00	101 10	С
180.00-170.00	4459.97	10277.40	A B	0.271	2.377	8	1	1	51.010	1811.80	181.18	C
180.00-170.00			ь С	0.271	2.377		1	1	51.010			
T10	4628.97	10469.57	A	0.271	2.398	8	1	1	51.944	1859.72	185.97	С
170.00-160.00	4028.97	10409.57	B	0.263	2.398	0	1	1	51.944	1039.72	105.97	C
170.00-100.00			C	0.263	2.398		1	1	51.944			
T11	9435.48	21612.45	A	0.203	2.398	8	1	1	114.456	3864.21	193.21	С
160.00-140.00	7455.40	21012.45	B	0.271	2.377	0	1	1	114.456	5004.21	1)5.21	C
100.00 140.00			C	0.271	2.377		1	1	114.456			
T12	9821.27	22383.07	A	0.271	2.408	7	1	1	118.819	3980.21	199.01	С
140.00-120.00	,021.2,	22000.07	В	0.26	2.408	,	1	1	118.819	0,00.21	1777.01	e
1.0.00 120.00			C	0.26	2.408		1	1	118.819			
T13	10216.69	19669.68	Ă	0.212	2.555	7	1	1	92.299	3704.22	185.21	С
120.00-100.00			В	0.212	2.555	,	1	1	92.299	- /		÷
			C	0.212	2.555		1	1	92.299			
T14	10781.55	20433.81	A	0.2	2.595	7	1	1	94.049	3856.89	192.84	С
100.00-80.00			В	0.2	2.595		1	1	94.049			-
			С	0.2	2.595		1	1	94.049			
T15	10865.45	22432.42	А	0.205	2.581	7	1	1	105.565	4071.57	203.58	С
80.00-60.00			В	0.205	2.581		1	1	105.565			
			С	0.205	2.581		1	1	105.565			
T16	16337.26	33424.13	А	0.191	2.625	8	1	1	160.941	6439.34	214.64	С
60.00-30.00			В	0.191	2.625		1	1	160.941			
			С	0.191	2.625		1	1	160.941			
T17	13683.09	37493.82	А	0.183	2.652	8	1	1	168.202	6570.14	219.00	С
30.00-0.00			В	0.183	2.652		1	1	168.202			
			С	0.183	2.652		1	1	168.202			
Sum Weight:	116731.79	289629.62						OTM	6586.03	50838.56		
									kip-ft			

Tower Forces - With Ice - Wind 45 To Face												
Ctul		E		σ	Π		C		E	C -14	4.1.1	9+ :
Ctrl. Face	w	F	A_E	D_R	D_F	q_z	C_F	е	r a	Self Weight	Add Weight	Section Elevation
		11.	c2			psf			С	11.	11.	a
	w plf	F lb	A_E ft^2	D_R	D_F	q _z psf	C_F	е	F a c e	Self Weight Ib	Add Weight Ib	Section Elevation ft

tnxTower

Project

Client

320' Rohn SSVMW

Page 49 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 -	"G"
· · · · · ·	

CSP Tower - Colchester, CT

Designed by MCD

11:31:15 02/22/19

Section	Add	Self	F	е	C_F	a	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a	c	C_F	q_z	D_F	D_R	Δ1 <u>E</u>	1	VV	Face
Lievation	ii eigni	ii cigiii	c			psf						1 400
ft	lb	lb	e			P~J			ft^2	lb	plf	
T1	569.18	5434.85	Α	0.509	1.889	9	0.825	1	44.316	743.21	46.45	С
320.00-304.00			В	0.509	1.889		0.825	1	44.316			
			С	0.509	1.889		0.825	1	44.316			
T2	155.39	1272.99	Α	0.48	1.927	9	0.825	1	10.248	180.55	45.14	С
304.00-300.00			В	0.48	1.927		0.825	1	10.248			
			С	0.48	1.927		0.825	1	10.248			
Т3	1331.40	7605.74	Α	0.454	1.967	9	0.825	1	54.716	1092.23	54.61	С
300.00-280.00			В	0.454	1.967		0.825	1	54.716			
			С	0.454	1.967	_	0.825	1	54.716			
T4	2557.39	12926.42	A	0.388	2.089	8	0.825	1	66.935	1628.24	81.41	С
280.00-260.00			B	0.388	2.089		0.825	1	66.935			
ΤC	2200 12	1 4220 27	C	0.388	2.089	0	0.825	1	66.935	1001.05	05.00	C
T5 260.00-240.00	3288.12	14220.37	A	0.361	2.146	8	0.825	1	73.478	1901.85	95.09	С
260.00-240.00			B C	0.361	2.146		0.825	1	73.478			
т(4163.61	16903.26		0.361 0.359	2.146 2.152	8	0.825 0.825	1	73.478 84.103	2240.24	112.01	С
T6 240.00-220.00	4105.01	10905.20	A B	0.359	2.152	0	0.825	1	84.103	2240.24	112.01	C
240.00-220.00			Б С	0.359	2.152		0.825	1	84.103			
Т7	5817.03	15557.50	A	0.284	2.132	8	0.825	1	75.070	2561.67	128.08	С
220.00-200.00	5617.05	15557.50	B	0.284	2.34	0	0.825	1	75.070	2501.07	120.00	C
220.00-200.00			C	0.284	2.34		0.825	1	75.070			
Т8	8619.93	17512.14	A	0.283	2.342	8	0.825	1	84.895	3301.12	165.06	С
200.00-180.00	0017.75	17012.11	B	0.283	2.342	0	0.825	1	84.895	5501.12	100.00	C
200.00 100.00			C	0.283	2.342		0.825	1	84.895			
Т9	4459.97	10277.40	Ă	0.271	2.377	8	0.825	1	43.694	1696.67	169.67	С
180.00-170.00			В	0.271	2.377	Ŭ	0.825	1	43.694			-
			С	0.271	2.377		0.825	1	43.694			
T10	4628.97	10469.57	Α	0.263	2.398	8	0.825	1	44.522	1743.14	174.31	С
170.00-160.00			В	0.263	2.398		0.825	1	44.522			
			С	0.263	2.398		0.825	1	44.522			
T11	9435.48	21612.45	Α	0.271	2.377	8	0.825	1	97.952	3611.27	180.56	С
160.00-140.00			В	0.271	2.377		0.825	1	97.952			
			С	0.271	2.377		0.825	1	97.952			
T12	9821.27	22383.07	Α	0.26	2.408	7	0.825	1	101.777	3720.95	186.05	С
140.00-120.00			В	0.26	2.408		0.825	1	101.777			
			С	0.26	2.408	_	0.825	1	101.777			
T13	10216.69	19669.68	A	0.212	2.555	7	0.825	1	82.635	3551.00	177.55	С
120.00-100.00			B	0.212	2.555		0.825	1	82.635			
771.4	10701 55	20422.01	С	0.212	2.555	7	0.825	1	82.635	2702.27	105.16	0
T14	10781.55	20433.81	A	0.2	2.595	7	0.825	1	84.402	3703.27	185.16	С
100.00-80.00			B	0.2 0.2	2.595		0.825	1	84.402			
T15	10865.45	22432.42	C	0.205	2.595 2.581	7	0.825 0.825	1	84.402 94.518	3896.17	194.81	С
80.00-60.00	10803.43	22432.42	A B	0.205	2.581	/	0.825	1	94.518 94.518	5890.17	194.01	C
80.00-00.00				0.205	2.581		0.825		94.518			
T16	16337.26	33424.13	C A	0.205	2.581	8	0.825	1	94.518 144.375	6161.29	205.38	С
60.00-30.00	10557.20	55724.15	B	0.191	2.625	0	0.825	1	144.375	0101.29	203.30	Č
00.00-50.00			C	0.191	2.625		0.825	1	144.375			
T17	13683.09	37493.82	A	0.191	2.652	8	0.825	1	151.458	6257.87	208.60	С
30.00-0.00	15005.07	57775.02	B	0.183	2.652	0	0.825	1	151.458	0237.07	200.00	Č
20.00 0.00			C	0.183	2.652		0.825	1	151.458			
Sum Weight:	116731.79	289629.62		2.105				OTM	6176.37	47990.75		
and a gran									kip-ft			
					1							

Tower Forces - With Ice - Wind 60 To Face

tnxTo

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page		
ower		320' Rohn SSVMW	50 of 96		
СОМ	Project		Date		
Drive, Suite 3B		CSP Tower - Colchester, CT	11:31:15 02/22/19		
Hill, CT 0-529-8882 1-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD		

Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl. Face
Lievation	n eigni	" eigni	C C			psf						Tuce
ft	lb	lb	е						ft^2	lb	plf	
T1	569.18	5434.85	A	0.509	1.889	9	0.8	1	44.078	739.87	46.24	С
320.00-304.00			B C	0.509	1.889		0.8	1	44.078 44.078			
Т2	155.39	1272.99	A	0.509 0.48	1.889 1.927	9	0.8 0.8	1	44.078	179.79	44.95	С
304.00-300.00	155.57	12/2.99	B	0.48	1.927		0.8	1	10.194	1/).//	75	C
501.00 500.00			C	0.48	1.927		0.8	1	10.194			
Т3	1331.40	7605.74	А	0.454	1.967	9	0.8	1	54.401	1087.70	54.38	С
300.00-280.00			В	0.454	1.967		0.8	1	54.401			
			С	0.454	1.967		0.8	1	54.401			
T4	2557.39	12926.42	A	0.388	2.089	8	0.8	1	65.391	1604.97	80.25	С
280.00-260.00			B	0.388	2.089		0.8	1	65.391			
Т5	3288.12	14220.37	C A	0.388 0.361	2.089 2.146	8	0.8 0.8	1	65.391 71.800	1876.29	93.81	С
260.00-240.00	5200.12	14220.37	B	0.361	2.140	0	0.8	1	71.800	18/0.29	95.01	C
200.00-240.00			C	0.361	2.140		0.8	1	71.800			
Т6	4163.61	16903.26	Ă	0.359	2.152	8	0.8	1	82.176	2211.31	110.57	С
240.00-220.00			В	0.359	2.152	_	0.8	1	82.176			
			С	0.359	2.152		0.8	1	82.176			
Τ7	5817.03	15557.50	А	0.284	2.34	8	0.8	1	73.279	2532.94	126.65	С
220.00-200.00			В	0.284	2.34		0.8	1	73.279			
	0.010.00	17510.14	С	0.284	2.34	0	0.8	1	73.279	2260.02	1 (2, 15	a
T8	8619.93	17512.14	A	0.283	2.342	8	0.8	1	82.850	3268.92	163.45	С
200.00-180.00			B C	0.283 0.283	2.342 2.342		0.8 0.8	1	82.850 82.850			
Т9	4459.97	10277.40	A	0.283	2.342	8	0.8	1	42.649	1680.22	168.02	С
180.00-170.00		10277.40	B	0.271	2.377	0	0.8	1	42.649	1000.22	100.02	C
100.00 1,0.00			Č	0.271	2.377		0.8	1	42.649			
T10	4628.97	10469.57	А	0.263	2.398	8	0.8	1	43.462	1726.49	172.65	С
170.00-160.00			В	0.263	2.398		0.8	1	43.462			
			С	0.263	2.398		0.8	1	43.462			
T11	9435.48	21612.45	A	0.271	2.377	8	0.8	1	95.594	3575.14	178.76	С
160.00-140.00			B C	0.271	2.377		0.8	1	95.594			
T12	9821.27	22383.07	A	0.271 0.26	2.377 2.408	7	0.8 0.8	1	95.594 99.342	3683.91	184.20	С
140.00-120.00	9621.27	22383.07	B	0.20	2.408		0.8	1	99.342	5065.91	104.20	C
110.00 120.00			C	0.26	2.408		0.8	1	99.342			
T13	10216.69	19669.68	A	0.212	2.555	7	0.8	1	81.254	3529.11	176.46	С
120.00-100.00			В	0.212	2.555		0.8	1	81.254			
			С	0.212	2.555		0.8	1	81.254			
T14	10781.55	20433.81	Α	0.2	2.595	7	0.8	1	83.023	3681.32	184.07	С
100.00-80.00			B	0.2	2.595		0.8	1	83.023			
T15	10865.45	22422 42	C	0.2	2.595	7	0.8	1	83.023 92.940	2071 12	102.50	C
T15 80.00-60.00	10805.45	22432.42	A B	0.205 0.205	2.581 2.581	/	0.8 0.8	1	92.940 92.940	3871.12	193.56	С
80.00-00.00			C	0.205	2.581		0.8	1	92.940			
T16	16337.26	33424.13	A	0.191	2.625	8	0.8	1	142.008	6121.57	204.05	С
60.00-30.00	10007.20		B	0.191	2.625		0.8	1	142.008	0121.07	201.00	Ŭ
			C	0.191	2.625		0.8	1	142.008			
T17	13683.09	37493.82	А	0.183	2.652	8	0.8	1	149.066	6213.27	207.11	С
30.00-0.00			В	0.183	2.652		0.8	1	149.066			
			С	0.183	2.652		0.8	1	149.066			
Sum Weight:	116731.79	289629.62						OTM	6117.85	47583.92		
									kip-ft			

tnxTower

Project

Client

	Page
320' Rohn SSVMW	51 of 96
	Date
CSP Tower - Colchester, CT	11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а	-	-1	42	- 1	- 1		-		Face
	U	0	С			psf						
ft	lb	lb	е			10			ft^2	lb	plf	
T1	569.18	5434.85	Α	0.509	1.889	9	0.85	1	44.554	746.55	46.66	С
320.00-304.00			В	0.509	1.889		0.85	1	44.554			
			С	0.509	1.889		0.85	1	44.554			
T2	155.39	1272.99	А	0.48	1.927	9	0.85	1	10.301	181.32	45.33	С
304.00-300.00			В	0.48	1.927		0.85	1	10.301			
			С	0.48	1.927		0.85	1	10.301			~
T3	1331.40	7605.74	A	0.454	1.967	9	0.85	1	55.031	1096.77	54.84	С
300.00-280.00			B	0.454	1.967		0.85	1	55.031			
T4	2557.20	12026 42	C	0.454	1.967	8	0.85 0.85	1	55.031	1651.51	02 50	С
280.00-260.00	2557.39	12926.42	A B	0.388 0.388	2.089 2.089	8	0.85	1	68.479 68.479	1031.31	82.58	C
280.00-200.00			с С	0.388	2.089		0.85	1	68.479			
Т5	3288.12	14220.37	A	0.361	2.089	8	0.85	1	75.155	1927.42	96.37	С
260.00-240.00	5200.12	14220.57	B	0.361	2.146	0	0.85	1	75.155	1727.42	20.57	C
200.00 210.00			C	0.361	2.146		0.85	1	75.155			
Т6	4163.61	16903.26	Ă	0.359	2.152	8	0.85	1	86.029	2269.17	113.46	С
240.00-220.00			В	0.359	2.152		0.85	1	86.029			
			С	0.359	2.152		0.85	1	86.029			
T7	5817.03	15557.50	Α	0.284	2.34	8	0.85	1	76.861	2590.40	129.52	С
220.00-200.00			В	0.284	2.34		0.85	1	76.861			
			С	0.284	2.34		0.85	1	76.861			
Т8	8619.93	17512.14	А	0.283	2.342	8	0.85	1	86.940	3333.32	166.67	С
200.00-180.00			В	0.283	2.342		0.85	1	86.940			
			С	0.283	2.342		0.85	1	86.940			~
T9	4459.97	10277.40	A	0.271	2.377	8	0.85	1	44.739	1713.12	171.31	С
180.00-170.00			B	0.271	2.377		0.85	1	44.739			
T10	4628.97	10469.57	C A	0.271 0.263	2.377 2.398	8	0.85 0.85	1	44.739 45.582	1759.80	175.98	С
170.00-160.00	4028.97	10409.37	B	0.263	2.398	0	0.85	1	45.582	1/39.80	1/3.98	C
170.00-100.00			C	0.263	2.398		0.85	1	45.582			
T11	9435.48	21612.45	Ă	0.271	2.377	8	0.85	1	100.310	3647.41	182.37	С
160.00-140.00	9 155.10	21012.15	B	0.271	2.377	0	0.85	1	100.310	5017.11	102.57	Ũ
			С	0.271	2.377		0.85	1	100.310			
T12	9821.27	22383.07	А	0.26	2.408	7	0.85	1	104.211	3757.99	187.90	С
140.00-120.00			В	0.26	2.408		0.85	1	104.211			
			С	0.26	2.408		0.85	1	104.211			
T13	10216.69	19669.68	А	0.212	2.555	7	0.85	1	84.015	3572.89	178.64	С
120.00-100.00			В	0.212	2.555		0.85	1	84.015			
			С	0.212	2.555	_	0.85	1	84.015			
T14	10781.55	20433.81	A	0.2	2.595	7	0.85	1	85.780	3725.21	186.26	С
100.00-80.00			B	0.2	2.595		0.85	1	85.780			
T15	10865.45	22432.42	C	0.2 0.205	2.595 2.581	7	0.85 0.85	1	85.780 96.097	3921.23	196.06	С
80.00-60.00	10805.45	22432.42	A B	0.203		/	0.85	1	96.097	5921.25	190.00	C
80.00-00.00			в С	0.205	2.581 2.581		0.85	1	96.097			
T16	16337.26	33424.13	A	0.191	2.625	8	0.85	1	146.741	6201.01	206.70	С
60.00-30.00	10557.20	55127.15	B	0.191	2.625	0	0.85	1	146.741	0201.01	200.70	
2000 20000			C	0.191	2.625		0.85	1	146.741			
T17	13683.09	37493.82	A	0.183	2.652	8	0.85	1	153.850	6302.48	210.08	С
30.00-0.00			В	0.183	2.652		0.85	1	153.850			-
			С	0.183	2.652		0.85	1	153.850			
Sum Weight:	116731.79	289629.62						OTM	6234.90	48397.58		
_									kip-ft			

tnxTower

Job		Page
	320' Rohn SSVMW	52 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client		Designed by
	(MODification) VZW-217/ EMP-008 - "G"	MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	0	C_F	a	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	г a	е	C_F	q_z	D_F	D_R	A_E	Г	W	Face
Brevation	,, eig	,, eight	c			psf						1 000
ft	lb	lb	е			I "J			ft^2	lb	plf	
T1	15.90	1442.07	А	0.209	2.566	13	1	1	16.223	481.44	30.09	С
320.00-304.00			В	0.209	2.566		1	1	16.223			
	1.26	2 40 72	С	0.209	2.566	12	1	1	16.223	114.00	20 72	G
T2	4.36	349.72	A	0.201	2.592	13	1	1 1	3.811	114.88	28.72	С
304.00-300.00			B C	0.201 0.201	2.592 2.592		1 1	1	3.811 3.811			
Т3	43.60	2496.34	A	0.201	2.573	12	1	1	22.547	703.31	35.17	С
300.00-280.00	15.00	2190.51	B	0.207	2.573	12	1	1	22.547	/05.51	55.17	C
			С	0.207	2.573		1	1	22.547			
T4	101.88	5067.66	А	0.237	2.476	12	1	1	51.464	1515.00	75.75	С
280.00-260.00			В	0.237	2.476		1	1	51.464			
	105.00	5 400 1 5	С	0.237	2.476	10	1	1	51.464	1595.01	06.05	
T5	137.02	5409.17	A	0.219	2.532	12	1 1	1 1	56.868	1725.01	86.25	С
260.00-240.00			B C	0.219 0.219	2.532 2.532		1	1	56.868 56.868			
Т6	176.60	6484.36	A	0.219	2.552	12	1	1	66.901	2016.47	100.82	С
240.00-220.00	170.00	0404.50	B	0.223	2.52	12	1	1	66.901	2010.47	100.02	C
			С	0.223	2.52		1	1	66.901			
T7	376.80	6406.00	Α	0.181	2.66	12	1	1	61.588	2114.48	105.72	С
220.00-200.00			В	0.181	2.66		1	1	61.588			
	(TA) (A)		С	0.181	2.66		1	1	61.588			~
T8	673.40	7298.65	A	0.187	2.641	11	1	1	71.846	2637.56	131.88	С
200.00-180.00			B C	0.187	2.641		1 1	1 1	71.846			
Т9	342.06	4191.71	A	0.187 0.177	2.641 2.675	11	1	1	71.846 36.864	1346.24	134.62	С
180.00-170.00	542.00	4191.71	B	0.177	2.675	11	1	1	36.864	1340.24	154.02	C
100.00 170.00			Č	0.177	2.675		1	1	36.864			
T10	347.60	4265.58	Α	0.171	2.694	11	1	1	37.492	1366.44	136.64	С
170.00-160.00			В	0.171	2.694		1	1	37.492			
			С	0.171	2.694		1	1	37.492			
T11	704.39	9608.59	A	0.181	2.661	11	1	1	84.562	2921.94	146.10	С
160.00-140.00			B C	0.181 0.181	2.661 2.661		1 1	1 1	84.562			
T12	722.68	9975.29	A	0.181	2.601	11	1	1	84.562 87.738	3006.55	150.33	С
140.00-120.00	722.00	JJ15.2J	B	0.173	2.69	11	1	1	87.738	5000.55	150.55	C
			C	0.173	2.69		1	1	87.738			
T13	740.85	9144.95	А	0.131	2.844	11	1	1	60.446	2422.70	121.14	С
120.00-100.00			В	0.131	2.844		1	1	60.446			
			С	0.131	2.844		1	1	60.446			
T14	765.48	9675.54	A	0.122	2.876	10	1	1	61.305	2491.17	124.56	С
100.00-80.00			B C	0.122 0.122	2.876 2.876		1 1	1 1	61.305 61.305			
T15	770.80	10501.98	A	0.122	2.870	10	1	1	71.226	2741.92	137.10	С
80.00-60.00	770.00	10501.90	B	0.13	2.845	10	1	1	71.226	2741.72	137.10	C
			C	0.13	2.845		1	1	71.226			
T16	1156.20	15115.36	Ā	0.122	2.876	11	1	1	107.677	4327.37	144.25	С
60.00-30.00			В	0.122	2.876		1	1	107.677			
			С	0.122	2.876		1	1	107.677			
T17	963.50	17941.94	A	0.117	2.896	12	1	1	111.292	4616.77	153.89	С
30.00-0.00			B	0.117	2.896		1	1	111.292			
Sum Weight:	80/2 12	125374 02	С	0.117	2.896		1	1 OTM	111.292 4874.95	36540.24		
Sum weight:	8043.12	125374.92						OTM	48/4.95 kip-ft	36549.24		
			I	I					KIP II			

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT

> Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	320' Rohn SSVMW	53 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client		Designed by
	(MODification) VZW-217/ EMP-008 - "G"	MCD

Tower Forces - Service - Wind 45 To Face Section Add Self F C_F D_F D_R FCtrl е q_z A_E w Elevation Weight Weight а Face psf С ft^2 lh lh lb plf е ft T1 15.90 1442.07 0.209 2.566 0.825 14.558 435.71 27.23 А 13 1 C 320.00-304.00 14.558 В 0.209 2.566 0.825 1 С 0.209 2.566 0.825 1 14.558 349.72 2.592 0.825 С T2 4.36 А 0.201 13 3.435 104.52 26.13 1 304.00-300.00 В 0.201 2.592 0.825 1 3.435 0.201 2.592 0.825 3.435 С 1 С T3 43.60 2496.34 А 0.207 2.573 12 0.825 1 20.343 643.51 32.18 300.00-280.00 2.573 0.825 20.343 В 0.207 1 С 0.207 2.573 20.343 0.825 1 T4 101.88 5067.66 0.237 2.476 12 0.825 42.458 1283.30 64.16 С А 1 280.00-260.00 0.237 2.476 0.825 42.458 В 1 С 0.237 2.476 0.825 1 42.458 5409.17 137.02 0.219 46.916 С T5 А 2 532 12 0.825 1 1467.30 73.36 260.00-240.00 В 0.219 2.532 0.825 1 46.916 46.916 0.219 2.532 С 0.825 1 T6 176.60 6484.36 А 0.223 2.52 12 0.825 1 55.194 1719.87 85.99 С 240.00-220.00 55.194 в 0 2 2 3 2.52 0.825 1 С 0.223 2.52 0.825 1 55.194 6406.00 2.66 С T7 376.80 0 1 8 1 12 0.825 50.810 1831.53 91.58 А 1 220.00-200.00 В 0.181 2.66 0.825 1 50.810 С 0.181 2.66 0.825 50.810 1 T8 7298.65 С 673.40 А 0.187 2.641 11 0.825 1 59.273 2316.07 115.80 200.00-180.00 В 0.187 2.641 0.825 59.273 1 С 0.187 2.641 0.825 1 59.273 Т9 342.06 4191.71 А 0.177 2.675 11 0.825 1 30.413 1181.73 118.17 С 180.00-170.00 В 0.177 2.675 0.825 1 30.413 0.177 2.675 0.825 30.413 С 1 T10 347.60 4265.58 А 0.171 2.694 11 0.825 1 30.931 1199.66 119.97 С 170.00-160.00 В 0.171 2.694 0.825 30.931 1 С 0.171 2.694 0.825 1 30.931 9608.59 С T11 704.39 А 0.181 2.661 11 0.825 1 69.763 2556.37 127.82 160.00-140.00 В 0.181 2.661 0.825 1 69.763 С 0.181 2.661 0.825 1 69.763 T12 722.68 9975.29 А 0.173 2.69 11 0.825 1 72.384 2630.91 131.55 С 140.00-120.00 0.825 72.384 В 0.173 2.69 1 С 0.173 2.69 0.825 1 72.384 T13 740.85 9144.95 А 0.131 2.844 11 0.825 1 52.453 2219.61 110.98 С 120.00-100.00 В 0.131 2.844 0.825 1 52.453 52.453 С 0.131 2.844 0.825 1 T14 765.48 9675.54 0.122 10 0.825 53.313 2288.10 114.40 С Α 2.876 1 100.00-80.00 В 0.122 2.876 0.825 1 53.313 0.122 2.876 53.313 С 0.825 1 T15 770.80 10501.98 А 0.13 2.845 10 0.825 1 61.827 2505.05 125.25 С 80.00-60.00 B 0.13 2.845 0.825 61.827 1 С 0.13 2.845 0.825 1 61.827 1156.20 15115.36 0.122 93 585 3954.23 131.81 С T16 2.876 11 0.825 А 1 60.00-30.00 В 0.122 2.876 0.825 1 93.585 2.876 93.585 С 0 1 2 2 0.825 1 963.50 17941.94 0.117 2.896 12 0.825 97.033 4198.58 139.95 С T17 А 1 30.00-0.00 97.033 0.117 2.896 0.825 B 1 С 0.117 2.896 0.825 97.033 1 Sum Weight: 8043.12 125374.92 OTM 4284.26 32536.03 kip-ft

tnxTower

Job		Page
	320' Rohn SSVMW	54 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client		Designed by
	(MODification) VZW-217/ EMP-008 - "G"	MCD

Tower Forces - Service - Wind 60 To Face Section Add Self F C_F D_F D_R A_E F Ctrl. е q_z w Elevation Weight Weight а Face psf С lb lb ft^2 lb plf ft е T1 15.90 1442.07 0.209 2.566 13 0.8 14.320 429.17 26.82 С А 1 320.00-304.00 0.209 2 566 14 320 B 0.8 1 С 0.209 2.566 0.8 1 14.320 349.72 2.592 103.04 С T2 4.36 0.201 13 0.8 3.381 25.76 А 1 304.00-300.00 В 0.201 2.592 0.8 1 3.381 С 2.592 0.201 0.8 3.381 1 T3 43.60 2496.34 А 0.207 2.573 12 0.8 1 20.028 634.96 31.75 С 300.00-280.00 0 2 0 7 2 573 0.8 20.028 В 1 С 0.207 2.573 0.8 1 20.028 1250.19 С T4101.88 5067.66 А 0 2 3 7 2 4 7 6 12 0.8 1 41.171 62.51 280.00-260.00 В 0.237 2.476 0.8 1 41.171 С 0.237 2.476 0.8 41 171 1 **T**5 137.02 5409.17 А 0.219 2.532 12 0.8 1 45.494 1430.48 71.52 С 260.00-240.00 В 0.219 2.532 0.8 1 45.494 С 0.219 2.532 0.8 1 45.494 T6 176.60 6484.36 Α 0.223 2.52 12 0.8 1 53.521 1677.49 83.87 С 240.00-220.00 В 0.223 2.52 0.8 1 53.521 С 0.223 2.52 0.8 53.521 1 С T7 376.80 6406.00 А 0.181 2.66 12 0.8 1 49.270 1791.11 89.56 220.00-200.00 В 0.181 2.66 0.8 49.270 1 С 0.181 2.66 0.8 1 49.270 Τ8 673.40 7298.65 А 0.187 2.641 11 0.8 1 57.477 2270.15 113.51 С 200.00-180.00 В 0.187 2.641 0.8 1 57.477 С 0.187 2.641 0.8 1 57.477 Т9 342.06 4191.71 А 0.177 2.675 11 0.8 1 29.491 1158.23 115.82 С 180.00-170.00 В 0.177 29.491 2.675 0.8 1 С 0.177 2.675 0.8 1 29.491 T10 347.60 4265.58 А 0.171 2.694 11 0.8 1 29.994 1175.84 117.58 С 170.00-160.00 2.694 В 0.171 0.8 1 29.994 0.171 29.994 С 2.694 0.8 1 704.39 9608.59 2504.14 125.21 С 0.181 2.661 11 0.8 67.649 T11 Α 1 160.00-140.00 В 67.649 0.181 2.661 0.8 1 С 0.181 2.661 0.8 67.649 1 T12 722.68 9975.29 А 0.173 2.69 11 0.8 1 70.190 2577.25 128.86 С 140.00-120.00 0.173 2.69 0.8 70.190 В 1 С 0.173 2.69 0.8 1 70.190 740.85 9144.95 11 2190.60 109.53 С T13 0.131 2.844 0.8 51.311 А 1 120.00-100.00 В 0.131 2.844 0.8 1 51.311 0 1 3 1 2.844 0.8 51.311 С 1 765.48 9675.54 0.122 2.876 10 0.8 52.171 2259.09 112.95 С T14 А 1 100.00-80.00 В 0.122 2.876 0.8 52,171 1 0.122 2.876 0.8 52.171 С 1 T15 770.80 10501.98 0.13 2.845 10 0.8 60.484 2471.21 123.56 С Α 1 80.00-60.00 В 0.13 2.845 0.8 60.484 1 С 0.13 2.845 0.8 60.484 1 С T16 1156.20 15115.36 А 0.122 2.876 11 0.8 1 91.572 3900.93 130.03 60.00-30.00 В 0.122 2.876 0.8 1 91.572 С 0.122 2.876 0.8 1 91.572 963.50 17941.94 А 0.117 2.896 12 0.8 94.996 4138.84 137.96 С T17 1 30.00-0.00 В 0.117 2.896 0.8 1 94.996 94.996 С 0.117 2.896 0.8 1 8043.12 125374.92 Sum Weight: OTM 4199.88 31962.72 kip-ft

AECOM 500 Enterprise Drive, Suite 3B

> Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

tnxTower

Job		Page
	320' Rohn SSVMW	55 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Tower Forces - Service - Wind 90 To Face Section Add Self F C_F D_F D_R A_E F Ctrl. е w q_z Elevation Weight Weight а Face psf С ft^2 lb lb lb е plf T1 15.90 1442.07 0.209 2.566 13 0.85 14.796 442.24 27.64 С А 1 320.00-304.00 В 0.209 2.566 0.85 1 14.796 С 0.209 2 566 0.85 14.796 1 T2 4.36 349.72 А 0.201 2.592 13 0.85 1 3.489 106.00 26.50 С 304.00-300.00 0.201 2.592 0.85 3.489 B 1 С 0.201 2.592 0.85 1 3.489 Т3 43.60 2496.34 А 0.207 2.573 12 0.85 1 20.658 652.05 32.60 С 300.00-280.00 В 0.207 2.573 0.85 1 20.658 2.573 0.207 0.85 20.658 С 1 43.745 1316.40 С Т4 101.88 5067.66 А 0.237 2.476 12 0.85 1 65.82 280.00-260.00 В 0.237 2.476 0.85 1 43.745 С 0.237 2.476 0.85 1 43.745 T5 137.02 5409.17 0.219 2.532 12 0.85 48.338 1504.11 75.21 С А 1 260.00-240.00 В 0.219 2.532 0.85 1 48.338 0.219 С 2.532 0.85 1 48.338 T6 176.60 6484.36 А 0.223 2.52 12 0.85 1 56.866 1762.24 88.11 С 240.00-220.00 0.223 В 2.52 0.85 1 56.866 С 0.223 2.52 0.85 1 56.866 376.80 6406.00 0.181 12 52.350 1871.95 93.60 С Τ7 А 2.66 0.85 1 220.00-200.00 B 0.181 2.66 0.85 1 52.350 52.350 С 0.181 2.66 0.85 1 7298.65 0.85 С 673.40 0.187 2.641 11 61.069 2362.00 118.10 **T**8 Α 1 200.00-180.00 В 0.187 2.641 0.85 61.069 1 61.069 0.187 2.641 С 0.85 1 Т9 342.06 4191.71 А 0.177 2.675 11 0.85 1 31.334 1205.23 120.52 С 180.00-170.00 0 1 7 7 31.334 B 2.675 0.85 1 С 0.177 2.675 0.85 1 31.334 С 347.60 4265.58 0.171 2.694 11 31.869 1223.49 122.35 T10 0.85 А 1 170.00-160.00 В 0.171 2.694 0.85 1 31.869 0.171 2.694 С 31.869 0.85 1 T11 704.39 9608.59 0.181 2.661 11 0.85 71.877 2608.59 130.43 С А 1 160.00-140.00 2.661 71.877 0.181 0.85 B 1 0.181 2.661 0.85 71.877 С 1 T12 722.68 9975.29 А 0.173 2.69 11 0.85 74.577 2684.58 134.23 С 1 140.00-120.00 В 0.173 2.69 0.85 1 74.577 С 0.173 2.69 0.85 74.577 1 С T13 740.85 9144.95 А 0.131 2.844 11 0.85 1 53.595 2248.63 112.43 120.00-100.00 В 0.131 2.844 0.85 1 53.595 С 0.131 2.844 0.85 1 53.595 T14 765.48 9675.54 0.122 2.876 10 0.85 54.455 2317.11 115.86 С А 1 100.00-80.00 B 0.122 2.876 0.85 1 54.455 С 0.122 2.876 0.85 1 54.455 10501.98 10 С T15 770.80 А 0.13 2.845 0.85 1 63.170 2538.88 126.94 80.00-60.00 в 0.13 2.845 0.85 63.170 1 С 0.13 2.845 0.85 1 63.170 T16 1156.20 15115.36 0.122 2.876 11 0.85 95.598 4007.54 133.58 С А 1 60.00-30.00 В 0.122 2.876 0.85 1 95.598 95.598 0.122 2.876 0.85 С 1 С T17 963.50 17941.94 А 0.117 2.896 12 0.85 1 99.070 4258.32 141.94 30.00-0.00 В 0.117 2.896 0.85 1 99.070 С 0.117 2.896 0.85 1 99.070 8043.12 125374.92 4368.64 33109.35 Sum Weight: OTM

AECOM 500 Enterprise Drive, Suite 3B

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

AECOM 500 Enterprise Drive, Suite 3B

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	320' Rohn SSVMW	56 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
									kip-ft			

Force Totals										
Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques				
Case	Forces	Forces	Forces	Overturning	Overturning					
		X	Ζ	Moments, M_x	Moments, M_z					
	lb	lb	lb	kip-ft	kip-ft	kip-ft				
leg Weight	73044.53									
Bracing Weight	52330.39									
Total Member Self-Weight	125374.92			52.17	-23.73					
otal Weight	141359.30			52.17	-23.73					
Wind 0 deg - No Ice		-138.26	-136294.69	-19395.51	3.33	157.68				
Vind 30 deg - No Ice		62414.10	-108257.89	-15347.66	-8897.50	226.64				
Wind 45 deg - No Ice		87017.39	-87029.83	-12319.21	-12392.71	238.89				
Wind 60 deg - No Ice		105006.76	-60554.66	-8548.33	-14944.34	234.80				
Wind 90 deg - No Ice		125067.67	138.26	79.23	-17818.14	180.16				
Wind 120 deg - No Ice		118088.55	68267.08	9799.45	-16876.50					
Vind 135 deg - No Ice		92497.09	92509.53	13239.58	-13208.73	15.90				
Wind 150 deg - No Ice		62653.57	108396.15	15479.07	-8944.37	-46.47				
Vind 180 deg - No Ice		138.26	121348.79	17300.04	-50.79	-157.68				
Vind 210 deg - No Ice		-62414.10	108257.89	15452.01	8850.04					
Vind 225 deg - No Ice		-87017.39	87029.83	12423.56	12345.25					
Vind 240 deg - No Ice		-117950.29	68027.61	9752.58	16801.98					
Vind 270 deg - No Ice		-125067.67	-138.26	25.11	17770.69					
Vind 300 deg - No Ice		-105145.02	-60794.13	-8595.20	14923.94					
Vind 315 deg - No Ice		-87212.92	-87225.36	-12357.49	12383.52					
Vind 330 deg - No Ice		-62653.57	-108396.15	-15374.72	8896.91	46.47				
fember Ice	164254.70	02055.57	100570.15	15571.72	0070.71	10.11				
otal Weight Ice	438138.22			642.69	-661.41					
Vind 0 deg - Ice		-34.91	-58077.68	-7514.68	-654.59	161.68				
Vind 30 deg - Ice		27786.26	-48165.34	-6114.30	-4558.27					
Vind 45 deg - Ice		39026.11	-39028.73	-4830.95	-6134.55					
Vind 60 deg - Ice		47457.48	-27381.29	-3196.00	-7316.43					
Vind 90 deg - Ice		55632.99	34.91	649.52	-8466.95					
Wind 120 deg - Ice		50310.99	29069.07	4727.29	-7728.71	46.25				
Wind 135 deg - Ice		40226.17	40228.79	6291.51	-6309.73					
Wind 150 deg - Ice		27846.73	48200.25	7406.51	-4570.08					
Wind 180 deg - Ice		34.91	54823.04	8331.89	-668.23					
Vind 210 deg - Ice		-27786.26	48165.34	7399.69	3235.45					
Vind 225 deg - Ice		-39026.11	39028.73	6116.33	4811.73	-218.09				
Vind 240 deg - Ice		-50276.08	29008.61	4715.48	6399.07					
Vind 270 deg - Ice		-55632.99	-34.91	635.87	7144.13	-146.75				
Vind 300 deg - Ice		-47492.39	-27441.75	-3207.81	6000.43					
Vind 315 deg - Ice		-39075.48	-39078.10	-4840.59	4821.38					
/ind 330 deg - Ice		-27846.73	-48200.25	-6121.12	3247.27	66.65				
otal Weight	141359.30	-2/040./3	-+0200.23	-0121.12	-23.73					
Vind 0 deg - Service	141337.30	-42.43	-41825.47	-5963.48	-23.73 5.97	48.39				
Vind 30 deg - Service		19153.34	-33221.67	-3903.48	-2725.48					
Wind 45 deg - Service		26703.49	-26707.30	-4/21.29 -3791.93	-2723.48 -3798.07					
		32223.98	-28707.30	-2634.74		73.31				
Wind 60 deg - Service					-4581.11					
Vind 90 deg - Service		38380.18	42.43	12.84	-5463.01	55.29				
Vind 120 deg - Service		36238.46	20949.48	2995.74	-5174.04					
Vind 135 deg - Service		28385.07	28388.89	4051.43	-4048.49	4.88				

tnxTower	Job	320' Rohn SSVMW	Page 57 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Ζ	Moments, M_x	Moments, M_z	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Wind 150 deg - Service		19226.83	33264.10	4738.67	-2739.86	-14.26
Wind 180 deg - Service		42.43	37238.94	5297.48	-10.64	-48.39
Wind 210 deg - Service		-19153.34	33221.67	4730.37	2720.80	-69.55
Wind 225 deg - Service		-26703.49	26707.30	3801.01	3793.39	-73.31
Wind 240 deg - Service		-36196.03	20875.99	2981.35	5161.06	-72.07
Wind 270 deg - Service		-38380.18	-42.43	-3.77	5458.33	-55.29
Wind 300 deg - Service		-32266.41	-18656.22	-2649.13	4584.73	-23.69
Wind 315 deg - Service		-26763.49	-26767.31	-3803.68	3805.14	-4.88
Wind 330 deg - Service		-19226.83	-33264.10	-4729.59	2735.19	14.26

Load Combinations

Comb. No.	Description	
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead + 1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 30 deg - No Ice	
5	0.9 Dead+1.6 Wind 30 deg - No Ice	
6	1.2 Dead+1.6 Wind 45 deg - No Ice	
7	0.9 Dead+1.6 Wind 45 deg - No Ice	
8	1.2 Dead + 1.6 Wind 45 deg = 1.0 lec	
9	0.9 Dead+1.6 Wind 60 deg - No Ice	
10	1.2 Dead+1.6 Wind 90 deg - No Ice	
11	0.9 Dead+1.6 Wind 90 deg - No Ice	
12	1.2 Dead + 1.6 Wind 120 deg - No Ice	
13	0.9 Dead+1.6 Wind 120 deg - No Ice	
13	1.2 Dead + 1.6 Wind 125 deg = No Ice	
15	0.9 Dead + 1.6 Wind 135 deg - No Ice	
16	1.2 Dead + 1.6 Wind 150 deg - No Ice	
17	0.9 Dead+1.6 Wind 150 deg - No Ice	
18	1.2 Dead+1.6 Wind 180 deg - No Ice	
19	0.9 Dead+1.6 Wind 180 deg - No Ice	
20	1.2 Dead + 1.6 Wind 100 deg + No Ice	
20	0.9 Dead+1.6 Wind 210 deg - No Ice	
22	1.2 Dead+1.6 Wind 225 deg - No Ice	
23	0.9 Dead + 1.6 Wind 225 deg - No Ice	
23	1.2 Dead+1.6 Wind 240 deg - No Ice	
25	0.9 Dead+1.6 Wind 240 deg - No Ice	
26	1.2 Dead + 1.6 Wind 270 deg - No Ice	
20	0.9 Dead + 1.6 Wind 270 deg + No Ice	
28	1.2 Dead+1.6 Wind 300 deg - No Ice	
29	0.9 Dead + 1.6 Wind 300 deg - No Ice	
30	1.2 Dead+1.6 Wind 315 deg - No Ice	
31	0.9 Dead + 1.6 Wind 315 deg - No Ice	
32	1.2 Dead+1.6 Wind 330 deg - No Ice	
33	0.9 Dead+1.6 Wind 330 deg - No Ice	
34	1.2 Dead+1.0 Ice+1.0 Temp	
35	1.2 Dead + 1.0 Rec + 1.0 remp 1.2 Dead + 1.0 Wind 0 deg + 1.0 Ice + 1.0 Temp	
36	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
37	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
38	1.2 Dead+1.0 Wind 43 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	
39	1.2 Dead+1.0 Wind 00 deg+1.0 Ice+1.0 Temp	
40	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	
40	1.2 Dead+1.0 Wind 125 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp	
42	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	

A T	Job		Page
tnxTower		320' Rohn SSVMW	58 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Comb.	Description
No.	
43	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
44	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
45	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp
46	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
47	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
48	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
49	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp
50	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
51	Dead+Wind 0 deg - Service
52	Dead+Wind 30 deg - Service
53	Dead+Wind 45 deg - Service
54	Dead+Wind 60 deg - Service
55	Dead+Wind 90 deg - Service
56	Dead+Wind 120 deg - Service
57	Dead+Wind 135 deg - Service
58	Dead+Wind 150 deg - Service
59	Dead+Wind 180 deg - Service
60	Dead+Wind 210 deg - Service
61	Dead+Wind 225 deg - Service
62	Dead+Wind 240 deg - Service
63	Dead+Wind 270 deg - Service
64	Dead+Wind 300 deg - Service
65	Dead+Wind 315 deg - Service
66	Dead+Wind 330 deg - Service

			Maximum	Mem	ber For	ces	
Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial lb	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
T1	320 - 304	Leg	Max Tension	29	4478.73	0.03	0.01
		e	Max. Compression	24	-6064.52	-0.02	-0.01
			Max. Mx	10	-505.28	0.20	0.00
			Max. My	16	-1679.57	-0.01	0.14
			Max. Vy	10	-316.69	0.00	0.00
			Max. Vx	3	395.08	0.00	0.00
		Diagonal	Max Tension	20	1285.02	0.00	0.00
		e	Max. Compression	4	-1277.30	0.00	0.00
			Max. Mx	40	417.34	0.03	-0.00
			Max. My	16	-204.44	0.00	-0.00
			Max. Vy	40	-34.86	0.03	-0.00
			Max. Vx	16	0.15	0.00	-0.00
		Top Girt	Max Tension	3	95.62	0.00	0.00
		*	Max. Compression	8	-108.04	0.00	0.00
			Max. Mx	34	-56.16	-0.09	0.00
			Max. Vy	34	55.72	0.00	0.00
T2	304 - 300	Leg	Max Tension	29	6671.84	0.00	0.01
		-	Max. Compression	24	-8663.70	0.34	-0.03
			Max. Mx	24	-8663.70	0.34	-0.03
			Max. My	2	-8636.36	0.09	0.31
			Max. Vy	24	-142.04	0.34	-0.03
			Max. Vx	2	-138.96	0.09	0.31
		Diagonal	Max Tension	20	1484.81	0.00	0.00
		-	Max. Compression	4	-1505.04	0.00	0.00
			Max. Mx	40	420.45	0.03	-0.00
			Max. My	4	-1481.40	0.00	0.00
			Max. Vy	40	-34.81	0.03	-0.00
			Max. Vx	4	-0.04	0.00	0.00
T3	300 - 280	Leg	Max Tension	19	20126.05	-0.13	0.03

tnxTower

Project

Client

320' Rohn SSVMW

Page 59 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
	J-	- <i>J F</i> +		Comb.	lb	kip-ft	kip-ft
			Max. Compression	24	-25470.88	0.57	0.12
			Max. Mx	13	-24708.30	0.57	-0.17
			Max. My	14	3397.74	-0.15	-0.63
			Max. Vy	8	-490.47	-0.13	0.03
			Max. Vx	14	-731.98	-0.04	-0.08
		Diagonal	Max Tension	10	3547.65	0.00	0.00
		Diagonai		10		0.00	0.00
			Max. Compression Max. Mx	43	-3576.36 750.57	0.00	-0.01
				43		0.05	0.01
			Max. My		-1354.17		
			Max. Vy	43	51.17	0.05	-0.01
		T. C. (Max. Vx	47	-2.87	0.00	0.00
		Top Girt	Max Tension	1	0.00	0.00	0.00
			Max. Compression	48	-31.37	0.00	0.00
			Max. Mx	34	-24.66	-0.11	0.00
			Max. My	34	-22.59	0.00	0.00
			Max. Vy	34	63.02	0.00	0.00
			Max. Vx	34	-1.86	0.00	0.00
T4	280 - 260	Leg	Max Tension	19	40605.76	-0.33	-0.00
			Max. Compression	12	-51467.45	0.90	-0.08
			Max. Mx	25	-50258.99	0.90	-0.06
			Max. My	16	-4348.10	-0.02	-0.80
			Max. Vy	3	-551.08	0.90	0.14
			Max. Vx	4	794.24	-0.02	-0.56
		Diagonal	Max Tension	10	5433.69	0.00	0.00
		-	Max. Compression	10	-5467.00	0.00	0.00
			Max. Mx	43	808.48	0.10	0.01
			Max. My	38	-1600.33	0.09	-0.01
			Max. Vy	43	73.72	0.10	0.01
			Max. Vx	38	4.49	0.00	0.00
T5	260 - 240	Leg	Max Tension	19	68345.01	-0.21	-0.46
		8	Max. Compression	12	-87852.71	2.70	-0.13
			Max. Mx	24	-87109.86	2.71	0.61
			Max. My	20	-7373.31	0.01	2.64
			Max. Vy	3	-785.78	2.70	-0.48
			Max. Vx	20	1393.04	-0.03	-0.45
		Diagonal	Max Tension	26	8615.64	0.00	0.00
		Diagonai		20 24	-9061.08	0.00	0.00
			Max. Compression Max. Mx				0.00
				43	956.17	0.15	
			Max. My	37	-2289.79	0.14	-0.02
			Max. Vy	43	98.92	0.15	0.02
T	2.40 220	T	Max. Vx	37	5.69	0.00	0.00
T6	240 - 220	Leg	Max Tension	19	104907.11	-0.54	-0.02
			Max. Compression	12	-134618.56	2.21	-0.05
			Max. Mx	24	-101194.05	2.71	0.61
			Max. My	20	-7588.85	0.01	2.64
			Max. Vy	25	658.84	2.70	0.61
			Max. Vx	4	-625.03	0.01	-2.64
		Diagonal	Max Tension	26	11044.23	0.00	0.00
			Max. Compression	24	-11675.44	0.00	0.00
			Max. Mx	38	1240.50	0.25	-0.04
			Max. My	44	-2294.58	0.24	0.04
			Max. Vy	38	149.84	0.25	-0.04
			Max. Vx	44	-8.37	0.00	0.00
T7	220 - 200	Leg	Max Tension	9	146866.96	-0.88	-0.18
		-	Max. Compression	12	-188982.58	2.29	-0.07
			Max. Mx	12	-188982.58	2.29	-0.07
			Max. My	4	-12516.94	-0.14	-3.20
			Max. Vy	28	-2488.54	-1.87	0.05
			Max. Vx	20	2262.68	0.02	0.48
		Diagonal	Max Tension	32	16288.19	0.00	0.00

tnxTower

Project

Client

Page 60 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	U U			Comb.	lb	kip-ft	kip-ft
			Max. Mx	37	2142.04	0.36	-0.05
			Max. My	36	2759.52	0.34	-0.06
			Max. Vy	37	179.23	0.36	-0.05
			Max. Vx	36	10.42	0.00	0.00
T8	200 - 180	Leg	Max Tension	19	201761.68	-1.64	-0.00
			Max. Compression	12	-257893.40	5.07	-0.16
			Max. Mx	12	-257893.40	5.07	-0.16
			Max. My	20	-18095.08	0.05	3.70
			Max. Vy	28	-2856.05	-1.82	0.07
			Max. Vx	20	2709.92	0.07	-0.25
		Diagonal	Max Tension	26	20518.62	0.00	0.00
			Max. Compression	24	-20801.86	0.00	0.00
			Max. Mx	43	2572.17	0.44	0.06
			Max. My	44	-3883.32	0.42	0.07
			Max. Vy	43	199.72	0.44	0.06
			Max. Vx	44	-11.64	0.00	0.00
T9	180 - 170	Leg	Max Tension	19	230705.85	-4.38	0.38
		C C	Max. Compression	12	-293796.77	2.33	-0.11
			Max. Mx	12	-292556.21	5.07	-0.16
			Max. My	20	-18814.13	0.05	3.70
			Max. Vy	3	829.70	5.04	-0.37
			Max. Vx	24	836.64	-2.46	3.59
		Diagonal	Max Tension	26	22580.67	0.00	0.00
			Max. Compression	24	-23031.66	0.00	0.00
			Max. Mx	43	2695.74	-0.63	-0.09
			Max. My	44	-5466.61	-0.60	-0.10
			Max. Vy	43	-275.70	-0.63	-0.09
			Max. Vx	44	15.93	0.00	0.00
T10	170 - 160	Leg	Max Tension	19	260520.83	-2.26	-0.01
110	170 100	105	Max. Compression	12	-330925.97	4.61	-0.08
			Max. Mx	12	-330925.97	4.61	-0.08
			Max. My	20	-21914.12	0.11	3.28
			Max. Vy	3	-715.91	4.58	-0.26
			Max. Vx	24	-704.60	-2.14	3.16
		Diagonal	Max Tension	26	23621.09	0.00	0.00
		Diagonai	Max. Compression	20	-23867.14	0.00	0.00
			Max. Mx	43	2892.36	-0.68	-0.10
			Max. My	37	-4626.70	-0.61	0.10
			Max. Vy	43	-288.79	-0.68	-0.10
			Max. Vx	37	-16.42	0.00	0.00
T11	160 - 140	Leg	Max Tension	19	322291.41	-2.66	-0.16
111	100 - 140	Leg	Max. Compression	12	-408451.47	5.87	-0.39
			Max. Max. Mx	12	-408451.47	5.87	-0.39
			Max. My	12	63457.53	-0.99	-4.15
				2		5.85	0.17
			Max. Vy May Vy		-1005.82		
		Diagonal	Max. Vx May Tangian	14	-1187.27	-0.99	-4.15
		Diagonal	Max Tension	26	27767.77	0.00	0.00
			Max. Compression	24	-28675.68	0.00	0.00
			Max. Mx	43	5642.73	0.82	-0.08
			Max. My	45	4684.76	0.80	0.11
			Max. Vy	43	321.22	0.82	-0.08
T10	140 120	т	Max. Vx	45	-16.30	0.00	0.00
T12	140 - 120	Leg	Max Tension	19	385044.27	-3.02	0.00
			Max. Compression	12	-487928.21	-2.86	0.20
			Max. Mx	12	-448203.35	5.87	-0.39
			Max. My	20	-30482.90	-1.06	6.31
			Max. Vy	2	1050.43	3.12	0.01
			Max. Vx	14	1148.26	-1.01	-5.58
		Diagonal	Max Tension	26	29953.46	0.00	0.00
			Max. Compression	24	-30554.34	0.00	0.00
			Max. Mx	42	5925.36	0.97	-0.13

tnxTower

Project

Client

320' Rohn SSVMW

Page 61 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	J -			Comb.	lb	kip-ft	kip-ft
			Max. My	45	3546.64	0.97	0.14
			Max. Vy	42	349.10	0.97	-0.13
			Max. Vx	45	-19.84	0.00	0.00
T13	120 - 100	Leg	Max Tension	19	395981.40	0.87	0.19
		-	Max. Compression	12	-504576.86	-14.82	0.09
			Max. Mx	12	-503817.96	21.64	0.30
			Max. My	20	-33488.63	-2.54	13.83
			Max. Vy	12	4649.17	21.64	0.30
			Max. Vx	20	-2810.72	-2.54	13.83
		Diagonal	Max Tension	27	48108.08	-0.22	-0.04
			Max. Compression	24	-50451.40	0.00	0.00
			Max. Mx	43	5577.50	-0.40	0.00
			Max. My	26	-49441.70	-0.16	-0.19
			Max. Vy	43	-162.43	-0.40	0.00
			Max. Vx	26	15.26	-0.16	-0.19
		Horizontal	Max Tension	26	26902.40	-0.19	0.00
			Max. Compression	25	-26940.89	-0.19	-0.03
			Max. Mx	43	-1991.92	-0.53	-0.01
			Max. My	2	3234.73	-0.12	0.06
			Max. Vy Max. Vx	43 2	193.13 -4.81	-0.53 0.00	-0.01 0.00
		Redund Horz 1	Max Tension	12	8763.95	0.00	0.00
		Bracing					
			Max. Compression	12	-8763.95	0.00	0.00
			Max. Mx	34	1854.38	0.07	0.00
		D 1 1 D 1	Max. Vy	34	-43.97	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	12	7951.20	0.00	0.00
			Max. Compression	12	-7951.20	0.00	0.00
			Max. Mx	34	1202.70	0.13	0.00
			Max. Vy	34	-46.35	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	27	23.26	0.00	0.00
			Max. Compression	10	-49.09	0.00	0.00
			Max. Mx	34	-26.50	0.07	0.00
			Max. Vy	34	-43.97	0.00	0.00
		Redund Hip Diagonal 1 Bracing	Max Tension	35	112.30	0.00	0.00
		0 0	Max. Compression	47	-127.85	0.00	0.00
			Max. Mx	34	93.14	0.43	0.00
			Max. Vy	34	114.42	0.00	0.00
		Inner Bracing	Max Tension	27	7.75	0.00	0.00
			Max. Compression	35	-31.43	0.00	0.00
			Max. Mx	34	-26.93	0.48	0.00
		_	Max. Vy	34	-151.57	0.00	0.00
T14	100 - 80	Leg	Max Tension	19	449673.89	9.11	1.35
			Max. Compression	12	-573259.14	-18.65	-0.58
			Max. Mx	12	-572125.95	24.85	0.38
			Max. My	20	-35457.22	-2.54	13.83
			Max. Vy	12	4715.13	24.85	0.38
		Diagonal	Max. Vx Max Tension	20 27	2579.82 50210.51	-2.54 -0.26	13.83 -0.04
		Diagonal	Max. Compression	27	-53273.34	-0.20	-0.04 0.00
			Max. Mx	43	5942.54	-0.45	0.00
			Max. My	26	-49358.85	-0.43	-0.18
			Max. Vy	43	176.20	-0.45	0.00
			Max. Vx	26	-14.41	-0.17	-0.18
		Horizontal	Max Tension	26	29611.54	-0.31	0.00
			Max. Compression	20	-30615.48	-0.36	-0.03
			Max. Mx	43	1260.04	-0.71	-0.01
			Max. My	2	5464.39	-0.22	0.06
				-			

tnxTower

320' Rohn SSVMW

Page 62 of 96

Date

Job

Project

Client

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
	5	<i>JT</i> -		Comb.	lb	kip-ft	kip-ft
			Max. Vy	43	-239.08	-0.71	-0.01
			Max. Vx	2	-4.54	0.00	0.00
		Redund Horz 1 Bracing	Max Tension	12	9957.64	0.00	0.00
			Max. Compression	12	-9957.64	0.00	0.00
			Max. Mx	34	1494.90	0.08	0.00
			Max. Vy	34	47.92	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	12	8445.06	0.00	0.00
			Max. Compression	12	-8445.06	0.00	0.00
			Max. Mx	34	1267.45	0.17	0.00
			Max. Vy	34	-56.55	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	27	21.07	0.00	0.00
			Max. Compression	10	-47.87	0.00	0.00
			Max. Mx	34	-27.26	0.08	0.00
			Max. Vy	34	-47.92	0.00	0.00
		Redund Hip Diagonal 1 Bracing	Max Tension	35	109.74	0.00	0.00
			Max. Compression	47	-124.80	0.00	0.00
			Max. Mx	34	92.35	0.50	0.00
			Max. Vy	34	-124.44	0.00	0.00
		Inner Bracing	Max Tension	27	4.55	0.00	0.00
			Max. Compression	35	-32.92	0.00	0.00
			Max. Mx	34	-28.69	0.58	0.00
			Max. Vy	34	-165.67	0.00	0.00
T15	80 - 60	Leg	Max Tension	19	506805.65	12.33	1.25
			Max. Compression	12	-645786.49	-15.08	-1.05
			Max. Mx	12	-645207.78	26.36	0.75
			Max. My	20	-42103.71	-3.78	24.96
			Max. Vy	12	-4925.04	26.36	0.75
			Max. Vx	20	-4124.80	-3.78	24.96
		Diagonal	Max Tension	27	47379.70	-0.18	-0.04
			Max. Compression	24	-51194.73	0.00	0.00
			Max. Mx	43	5416.15	-0.42	0.00
			Max. My	26	-47682.27	-0.13	-0.22
			Max. Vy	43	159.76	-0.42	0.00
			Max. Vx	26	-16.94	0.00	0.00
		Horizontal	Max Tension	26	30054.73	-0.65	0.00
			Max. Compression	24	-31059.52	-0.72	-0.02
			Max. Mx	43	-3462.57	-1.13	-0.01
			Max. My	2	263.37	-0.55	0.05
			Max. Vy	43	354.54	-1.13	-0.01
		Redund Horz 1	Max. Vx Max Tension	2 12	-3.24 11220.10	0.00 0.00	0.00 0.00
		Bracing	Max. Compression	12	-11220.10	0.00	0.00
			Max. Compression Max. Mx	34	2313.54	0.00	0.00
			Max. Vy	34 34	2313.54 60.81	0.12	0.00
		Redund Diag 1 Bracing	Max Tension	12	8973.17	0.00	0.00
		2	Max. Compression	12	-8973.17	0.00	0.00
			Max. Mx	34	1324.43	0.19	0.00
			Max. Vy	34	61.38	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	27	29.10	0.00	0.00
			Max. Compression	2	-52.30	0.00	0.00
			Max. Mx	34	-27.96	0.10	0.00
			Max. Vy	34	-51.86	0.00	0.00
		Redund Hip	Max Tension	35	132.75	0.00	0.00
		Diagonal 1 Bracing		-			

tnxTower

320' Rohn SSVMW

Page 63 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991 Job

Project

Client

CSP Tower - Colchester, CT

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

11:31:15 02/22/19

No. T16	ft 60 - 30	Type Inner Bracing Leg Diagonal Horizontal	Max. Compression Max. Mx Max. Vy Max Tension Max. Compression Max. Mx Max. Vy Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vy Max. Compression Max. Mx Max. My Max. Vy Max. Ny Max. Mx Max. My	Load Comb. 47 34 34 27 35 34 34 19 12 12 4 12 4 12 4 12 4 12 4 27 24 18 26 47 24 10 25	<i>lb</i> -152.41 108.48 -160.29 4.91 -40.78 -34.97 -179.62 560976.75 -715226.69 -705365.37 -46506.00 6597.76 5406.16 69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05 -35715.56	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Moment kip-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.34 0.70 0.94 -36.07 0.94 -36.07 -0.08 0.00 0.39 -0.69 0.10 0.43 0.00
T16	60 - 30	Leg Diagonal Horizontal	Max. Mx Max. Vy Max Tension Max. Compression Max. Mx Max. Vy Max Tension Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Compression Max. Compression Max. Compression Max. Compression Max. Compression Max. Compression	47 34 34 27 35 34 34 19 12 12 12 4 12 4 12 4 27 24 18 26 47 24 10	-152.41 108.48 -160.29 4.91 -40.78 -34.97 -179.62 560976.75 -715226.69 -705365.37 -46506.00 6597.76 5406.16 69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05	$\begin{array}{c} 0.00\\ 0.68\\ 0.00\\ 0.00\\ 0.00\\ 0.68\\ 0.00\\ 7.42\\ 4.45\\ 36.36\\ -5.60\\ 36.36\\ -5.60\\ -0.36\\ 0.00\\ -0.49\\ 0.24\\ -0.32\\ -0.33\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 2.34\\ 0.70\\ 0.94\\ -36.07\\ -0.94\\ -36.07\\ -0.08\\ 0.00\\ 0.39\\ -0.69\\ 0.10\\ 0.43\\ 0.00\\ \end{array}$
T16	60 - 30	Leg Diagonal Horizontal	Max. Mx Max. Vy Max Tension Max. Compression Max. Mx Max. Vy Max Tension Max. My Max. My Max. Vy Max. Vy Max. Vy Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Compression Max. Compression Max. Compression Max. Compression Max. Compression Max. Compression	34 34 27 35 34 34 19 12 12 4 12 4 12 4 27 24 18 26 47 24 10	$108.48 \\ -160.29 \\ 4.91 \\ -40.78 \\ -34.97 \\ -179.62 \\ 560976.75 \\ -71522.6.69 \\ -705365.37 \\ -46506.00 \\ 6597.76 \\ 5406.16 \\ 69213.73 \\ -74980.00 \\ 51055.96 \\ -71847.25 \\ 134.66 \\ 92.78 \\ 35787.05 \\ \end{array}$	$\begin{array}{c} 0.68\\ 0.00\\ 0.00\\ 0.00\\ 0.68\\ 0.00\\ 7.42\\ 4.45\\ 36.36\\ -5.60\\ 36.36\\ -5.60\\ -0.36\\ 0.00\\ -0.49\\ 0.24\\ -0.32\\ -0.33\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 2.34\\ 0.70\\ 0.94\\ -36.07\\ -0.94\\ -36.07\\ -0.08\\ 0.00\\ 0.39\\ -0.69\\ 0.10\\ 0.43\\ 0.00\\ \end{array}$
T16	60 - 30	Leg Diagonal Horizontal	Max. Vy Max Tension Max. Compression Max. Mx Max. Vy Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vy Max. Vx Max Tension Max. Vx Max Tension Max. Compression Max. Compression Max. Compression Max. Compression Max. Compression	34 27 35 34 34 19 12 12 4 12 4 12 4 27 24 18 26 47 24 10	-160.29 4.91 -40.78 -34.97 -179.62 560976.75 -715226.69 -705365.37 -46506.00 6597.76 5406.16 69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.68\\ 0.00\\ 7.42\\ 4.45\\ 36.36\\ -5.60\\ 36.36\\ -5.60\\ -0.36\\ 0.00\\ -0.49\\ 0.24\\ -0.32\\ -0.33\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 2.34\\ 0.70\\ 0.94\\ -36.07\\ -0.94\\ -36.07\\ -0.08\\ 0.00\\ 0.39\\ -0.69\\ 0.10\\ 0.43\\ 0.00\\ \end{array}$
T16	60 - 30	Leg Diagonal Horizontal	Max Tension Max. Compression Max. Mx Max. Vy Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vy Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Vx Max Tension Max. Vx Max Tension Max. Compression Max. Compression Max. Compression Max. Mx	27 35 34 34 19 12 12 4 12 4 12 4 27 24 18 26 47 24 10	$\begin{array}{r} 4.91\\ -40.78\\ -34.97\\ -179.62\\ 560976.75\\ -715226.69\\ -705365.37\\ -46506.00\\ 6597.76\\ 5406.16\\ 69213.73\\ -74980.00\\ 51055.96\\ -71847.25\\ 134.66\\ 92.78\\ 35787.05\end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.68\\ 0.00\\ 7.42\\ 4.45\\ 36.36\\ -5.60\\ 36.36\\ -5.60\\ -0.36\\ 0.00\\ -0.49\\ 0.24\\ -0.32\\ -0.33\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 2.34\\ 0.70\\ 0.94\\ -36.07\\ 0.94\\ -36.07\\ -0.08\\ 0.00\\ 0.39\\ -0.69\\ 0.10\\ 0.43\\ 0.00\\ \end{array}$
T16	60 - 30	Leg Diagonal Horizontal	Max. Compression Max. Mx Max. Vy Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Compression Max. Compression Max. My Max. Vy Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Compression Max. Compression Max. Compression Max. Mx	35 34 34 19 12 12 4 12 4 12 4 27 24 18 26 47 24 10	$\begin{array}{r} -40.78\\ -34.97\\ -179.62\\ 560976.75\\ -715226.69\\ -705365.37\\ -46506.00\\ 6597.76\\ 5406.16\\ 69213.73\\ -74980.00\\ 51055.96\\ -71847.25\\ 134.66\\ 92.78\\ 35787.05\end{array}$	$\begin{array}{c} 0.00\\ 0.68\\ 0.00\\ 7.42\\ 4.45\\ 36.36\\ -5.60\\ 36.36\\ -5.60\\ -0.36\\ 0.00\\ -0.49\\ 0.24\\ -0.32\\ -0.33\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 2.34\\ 0.70\\ 0.94\\ -36.07\\ 0.94\\ -36.07\\ -0.98\\ 0.00\\ 0.39\\ -0.69\\ 0.10\\ 0.43\\ 0.00\\ \end{array}$
T16	60 - 30	Diagonal Horizontal	Max. Mx Max. Vy Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Compression Max. Compression Max. Mx	34 34 19 12 12 4 12 4 27 24 18 26 47 24 10	-34.97 -179.62 560976.75 -715226.69 -705365.37 -46506.00 6597.76 5406.16 69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05	$\begin{array}{c} 0.68\\ 0.00\\ 7.42\\ 4.45\\ 36.36\\ -5.60\\ 36.36\\ -5.60\\ -0.36\\ 0.00\\ -0.49\\ 0.24\\ -0.32\\ -0.33\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 2.34\\ 0.70\\ 0.94\\ -36.07\\ -0.94\\ -36.07\\ -0.08\\ 0.00\\ 0.39\\ -0.69\\ 0.10\\ 0.43\\ 0.00\\ \end{array}$
T16	60 - 30	Diagonal Horizontal	Max. Vy Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Compression Max. Compression Max. Compression Max. Compression	34 19 12 12 4 12 4 27 24 18 26 47 24 10	-179.62 560976.75 -715226.69 -705365.37 -46506.00 6597.76 5406.16 69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05	$\begin{array}{c} 0.00\\ 7.42\\ 4.45\\ 36.36\\ -5.60\\ 36.36\\ -5.60\\ -0.36\\ 0.00\\ -0.49\\ 0.24\\ -0.32\\ -0.33\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 2.34\\ 0.70\\ 0.94\\ -36.07\\ -0.94\\ -36.07\\ -0.08\\ 0.00\\ 0.39\\ -0.69\\ 0.10\\ 0.43\\ 0.00\\ \end{array}$
T16	60 - 30	Diagonal Horizontal	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vy Max. Tension Max. Compression Max. Compression Max. Mx	19 12 12 4 12 4 27 24 18 26 47 24 10	560976.75 -715226.69 -705365.37 -46506.00 6597.76 5406.16 69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05	$\begin{array}{c} 7.42 \\ 4.45 \\ 36.36 \\ -5.60 \\ 36.36 \\ -5.60 \\ -0.36 \\ 0.00 \\ -0.49 \\ 0.24 \\ -0.32 \\ -0.33 \\ 0.00 \end{array}$	$\begin{array}{c} 2.34\\ 0.70\\ 0.94\\ -36.07\\ -0.94\\ -36.07\\ -0.08\\ 0.00\\ 0.39\\ -0.69\\ 0.10\\ 0.43\\ 0.00\\ \end{array}$
110	00 - 30	Diagonal Horizontal	Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Mx	12 12 4 12 4 27 24 18 26 47 24 10	-715226.69 -705365.37 -46506.00 6597.76 5406.16 69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05	$\begin{array}{c} 4.45\\ 36.36\\ -5.60\\ 36.36\\ -5.60\\ -0.36\\ 0.00\\ -0.49\\ 0.24\\ -0.32\\ -0.33\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.70\\ 0.94\\ -36.07\\ 0.94\\ -36.07\\ -0.08\\ 0.00\\ 0.39\\ -0.69\\ 0.10\\ 0.43\\ 0.00\\ \end{array}$
		Horizontal	Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Mx	12 4 12 4 27 24 18 26 47 24 10	-705365.37 -46506.00 6597.76 5406.16 69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05	36.36 -5.60 36.36 -5.60 -0.36 0.00 -0.49 0.24 -0.32 -0.33 0.00	$\begin{array}{c} 0.94 \\ -36.07 \\ 0.94 \\ -36.07 \\ -0.08 \\ 0.00 \\ 0.39 \\ -0.69 \\ 0.10 \\ 0.43 \\ 0.00 \end{array}$
		Horizontal	Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Mx	4 12 4 27 24 18 26 47 24 10	-46506.00 6597.76 5406.16 69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05	-5.60 36.36 -5.60 -0.36 0.00 -0.49 0.24 -0.32 -0.33 0.00	-36.07 0.94 -36.07 -0.08 0.00 0.39 -0.69 0.10 0.43 0.00
		Horizontal	Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Mx	12 4 27 24 18 26 47 24 10	6597.76 5406.16 69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05	36.36 -5.60 -0.36 0.00 -0.49 0.24 -0.32 -0.33 0.00	$\begin{array}{c} 0.94 \\ -36.07 \\ -0.08 \\ 0.00 \\ 0.39 \\ -0.69 \\ 0.10 \\ 0.43 \\ 0.00 \end{array}$
		Horizontal	Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Mx	4 27 24 18 26 47 24 10	5406.16 69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05	-5.60 -0.36 0.00 -0.49 0.24 -0.32 -0.33 0.00	-36.07 -0.08 0.00 0.39 -0.69 0.10 0.43 0.00
		Horizontal	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx	27 24 18 26 47 24 10	69213.73 -74980.00 51055.96 -71847.25 134.66 92.78 35787.05	-0.36 0.00 -0.49 0.24 -0.32 -0.33 0.00	-0.08 0.00 0.39 -0.69 0.10 0.43 0.00
		Horizontal	Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx	24 18 26 47 24 10	-74980.00 51055.96 -71847.25 134.66 92.78 35787.05	0.00 -0.49 0.24 -0.32 -0.33 0.00	0.00 0.39 -0.69 0.10 0.43 0.00
			Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx	18 26 47 24 10	51055.96 -71847.25 134.66 92.78 35787.05	-0.49 0.24 -0.32 -0.33 0.00	0.39 -0.69 0.10 0.43 0.00
			Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx	26 47 24 10	-71847.25 134.66 92.78 35787.05	0.24 -0.32 -0.33 0.00	-0.69 0.10 0.43 0.00
			Max. Vy Max. Vx Max Tension Max. Compression Max. Mx	47 24 10	134.66 92.78 35787.05	-0.32 -0.33 0.00	0.10 0.43 0.00
			Max. Vx Max Tension Max. Compression Max. Mx	24 10	92.78 35787.05	-0.33 0.00	0.43 0.00
			Max Tension Max. Compression Max. Mx	10	35787.05	0.00	0.00
			Max. Compression Max. Mx				
			Max. Mx	25	-35715.56	0.40	0.01
						-0.49	-0.04
			Max. Mv	43	-2789.54	-1.16	-0.02
				3	-1068.58	-0.24	0.08
			Max. Vy	43	325.31	-1.16	-0.02
			Max. Vx	3	-4.80	0.00	0.00
		Redund Horz 1 Bracing	Max Tension	12	12440.47	0.00	0.00
			Max. Compression	12	-12440.47	0.00	0.00
			Max. Mx	34	2598.89	0.05	0.00
			Max. Vy	34	-37.68	0.00	0.00
		Redund Horz 2 Bracing	Max Tension	12	12440.47	0.00	0.00
			Max. Compression	12	-12440.47	0.00	0.00
			Max. Mx	34	2598.89	0.34	0.00
			Max. Vy	34	-124.02	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	12	12553.93	0.00	0.00
		Draonig	Max. Compression	12	-12553.93	0.00	0.00
			Max. Mx	34	2172.10	0.12	0.00
			Max. Vy	34	-43.52	0.00	0.00
		Redund Diag 2	Max Tension	12	8141.39	0.00	0.00
		Bracing					
			Max. Compression	12	-8141.39	0.00	0.00
			Max. Mx	34	1332.79	0.37	0.00
		Redund Hip 1	Max. Vy Max Tension	34 25	103.69 169.41	0.00 0.00	0.00 0.00
		Bracing	Max. Compression	10	-177.22	0.00	0.00
				34		0.00	0.00
			Max. Mx		-12.78		
		Redund Hip 2	Max. Vy Max Tension	34 25	-37.68 71.94	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$
		Bracing	Max Compression	10	-97.57	0.00	0.00
			Max. Compression	10		0.00	0.00
			Max. Mx	34	-36.93	0.24	0.00
		Redund Hip	Max. Vy Max Tension	34 10	-88.35 356.36	0.00 0.00	0.00 0.00
		Diagonal 1 Bracing	Max. Compression	26	-367.70	0.00	0.00
			Max. Mx	34	72.26	0.28	0.00
		Redund Hip	Max. Vy Max Tension	34 8	79.48 121.93	0.00 0.00	0.00 0.00

tnxTower

Project

Client

320' Rohn SSVMW

Page 64 of 96

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

11:31:15 02/22/19

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Momen
	<i>J</i> -	~ F -		Comb.	lb	kip-ft	kip-ft
		Diagonal 2 Bracing					
			Max. Compression	24	-142.44	0.00	0.00
			Max. Mx	34	67.28	0.53	0.00
			Max. Vy	34	118.85	0.00	0.00
		Inner Bracing	Max Tension	25	43.99	0.00	0.00
			Max. Compression	8	-60.28	0.00	0.00
			Max. Mx	34	-28.83	0.81	0.00
			Max. Vy	34	-195.66	0.00	0.00
T17	30 - 0	Leg	Max Tension	19	644883.54	13.38	4.24
			Max. Compression	12	-822463.00	4.12	0.84
			Max. Mx	12	-817652.11	32.30	1.31
			Max. My	4	-50474.23	-5.59	-36.06
			Max. Vy	12	3712.42	32.30	1.31
			Max. Vx	4	-5249.02	-5.59	-36.06
		Diagonal	Max Tension	27	71155.07	-0.29	-0.08
		*	Max. Compression	24	-74412.70	0.00	0.00
			Max. Mx	18	48953.28	-0.45	0.33
			Max. My	26	-70459.12	0.13	-0.63
			Max. Vy	47	148.60	-0.35	0.10
			Max. Vx	24	82.42	-0.36	0.40
		Horizontal	Max Tension	11	38627.14	0.00	0.00
			Max. Compression	24	-42078.35	-0.88	-0.06
			Max. Mx	43	251.95	-1.53	-0.03
			Max. My	2	10158.06	-0.60	0.11
			Max. Vy	43	-407.07	-1.53	-0.03
			Max. Vx	2	6.15	-0.60	0.11
		Redund Horz 1	Max Tension	12	14327.25	0.00	0.00
		Bracing					
			Max. Compression	12	-14327.25	0.00	0.00
			Max. Mx	34	3048.59	0.06	0.00
			Max. Vy	34	-42.04	0.00	0.00
		Redund Horz 2 Bracing	Max Tension	12	14327.25	0.00	0.00
			Max. Compression	12	-14327.25	0.00	0.00
			Max. Mx	34	3008.14	0.42	0.00
			Max. Vy	34	-136.01	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	12	13328.58	0.00	0.00
		B	Max. Compression	12	-13328.58	0.00	0.00
			Max. Mx	34	2027.10	0.16	0.00
			Max. Vy	34	-54.79	0.00	0.00
		Redund Diag 2 Bracing	Max Tension	12	8954.81	0.00	0.00
			Max. Compression	12	-8954.81	0.00	0.00
			Max. Mx	34	1613.88	0.44	0.00
			Max. Vy	34	115.85	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	25	147.10	0.00	0.00
		- 0	Max. Compression	10	-159.91	0.00	0.00
			Max. Mx	34	-17.79	0.06	0.00
			Max. Vy	34	-42.04	0.00	0.00
		Redund Hip 2 Bracing	Max Tension	27	63.61	0.00	0.00
		0	Max. Compression	10	-92.17	0.00	0.00
			Max. Mx	34	-41.10	0.30	0.00
			Max. Vy	34	-98.52	0.00	0.00
		Redund Hip Diagonal 1 Bracing	Max Tension	10	322.90	0.00	0.00
			Max. Compression	26	-335.83	0.00	0.00
			Max. Mx	34	91.31	0.41	0.00
			IVIAX. IVIX	54	91.51	0.41	0.00

Anna Tonu an	Job	Page
tnxTower	320' Rohn SSVMW	65 of 96
AECOM	Project	Date
500 Enterprise Drive, Suite 3B	CSP Tower - Colchester, CT	11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	0	<i>J</i> 1		Comb.	lb	kip-ft	kip-ft
		Redund Hip Diagonal 2 Bracing	Max Tension	8	118.63	0.00	0.00
			Max. Compression	35	-142.31	0.00	0.00
			Max. Mx	34	84.00	0.79	0.00
			Max. Vy	34	164.31	0.00	0.00
		Inner Bracing	Max Tension	25	40.26	0.00	0.00
		-	Max. Compression	8	-62.96	0.00	0.00
			Max. Mx	34	-35.48	1.00	0.00
			Max. Vy	34	217.99	0.00	0.00

|--|

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lb
		Comb.			
Leg C	Max. Vert	24	921238.62	113553.50	-59347.80
-	Max. H _x	24	921238.62	113553.50	-59347.80
	Max. Hz	7	-708979.86	-89702.62	51630.09
	Min. Vert	9	-723306.24	-94108.71	48192.95
	Min. H _x	9	-723306.24	-94108.71	48192.95
	Min. Hz	24	921238.62	113553.50	-59347.80
Leg B	Max. Vert	12	924766.37	-111977.33	-62596.20
•	Max. H _x	29	-724384.82	92506.72	51396.31
	Max. Hz	33	-643193.73	75818.96	56908.89
	Min. Vert	29	-724384.82	92506.72	51396.31
	Min. H _x	12	924766.37	-111977.33	-62596.20
	Min. Hz	14	859679.30	-100607.55	-64060.73
Leg A	Max. Vert	2	920453.57	3598.82	128107.96
•	Max. H _x	26	55995.84	16542.90	5122.95
	Max. Hz	2	920453.57	3598.82	128107.96
	Min. Vert	19	-725960.20	-3573.01	-105753.22
	Min. H _x	13	-392832.00	-17600.03	-57934.44
	Min. Hz	19	-725960.20	-3573.01	-105753.22

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	<i>Shear</i> _z	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Dead Only	141359.30	0.00	0.00	52.17	-23.73	0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	169631.16	-221.22	-218233.57	-30442.95	14.83	251.80
0.9 Dead+1.6 Wind 0 deg - No Ice	127223.37	-221.22	-218233.57	-30458.60	21.94	251.80
1.2 Dead+1.6 Wind 30 deg - No Ice	169631.16	99943.59	-173352.97	-24076.40	-13937.41	362.63
0.9 Dead+1.6 Wind 30 deg - No Ice	127223.37	99943.59	-173352.97	-24092.05	-13930.29	362.63
1.2 Dead+1.6 Wind 45 deg - No Ice	169631.16	139342.42	-139362.33	-19326.60	-19413.83	382.49
0.9 Dead+1.6 Wind 45 deg - No Ice	127223.37	139342.42	-139362.33	-19342.25	-19406.71	382.49
1.2 Dead+1.6 Wind 60 deg - No	169631.16	168151.18	-96968.49	-13414.52	-23410.11	376.29

tnxTow

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

ver	Job	320' Rohn SSVMW	Page 66 of 96
1 ve, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
CT 9-8882 9-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Load Combination	Vertical lb	Shear _x lb	Shear _z Ib	Overturning Moment, M_x kip-ft	Overturning Moment, M _z kip-ft	Torque kip-ft
Ice	10	10	10	кір-јі	кір-јі	кір-јі
0.9 Dead+1.6 Wind 60 deg - No Ice	127223.37	168151.18	-96968.49	-13430.17	-23402.99	376.2
1.2 Dead+1.6 Wind 90 deg - No Ice	169631.16	200270.33	221.21	105.90	-27921.34	289.12
0.9 Dead+1.6 Wind 90 deg - No Ice	127223.37	200270.33	221.21	90.25	-27914.22	289.12
1.2 Dead+1.6 Wind 120 deg - No Ice	169631.16	189082.04	109308.36	15352.88	-26463.99	124.49
0.9 Dead+1.6 Wind 120 deg - No Ice	127223.37	189082.04	109308.36	15337.23	-26456.87	124.4
1.2 Dead+1.6 Wind 135 deg - No Ice	169631.16	148109.94	148129.85	20742.11	-20704.12	26.3
0.9 Dead+1.6 Wind 135 deg - No Ice	127223.37	148109.94	148129.85	20726.46	-20697.01	26.3
1.2 Dead+1.6 Wind 150 deg - No Ice	169631.16	100326.75	173574.19	24244.91	-14012.41	-73.5
0.9 Dead+1.6 Wind 150 deg - No Ice	127223.37	100326.75	173574.19	24229.25	-14005.29	-73.50
1.2 Dead+1.6 Wind 180 deg - No Ice	169631.16	221.22	194320.13	27091.84	-71.77	-251.80
0.9 Dead+1.6 Wind 180 deg - No Ice	127223.37	221.22	194320.13	27076.19	-64.65	-251.80
1.2 Dead+1.6 Wind 210 deg - No Ice	169631.16	-99943.59	173352.97	24201.61	13880.46	-362.63
0.9 Dead+1.6 Wind 210 deg - No Ice	127223.37	-99943.59	173352.97	24185.96	13887.58	-362.6
1.2 Dead+1.6 Wind 225 deg - No Ice	169631.16	-139342.42	139362.33	19451.81	19356.88	-382.4
0.9 Dead+1.6 Wind 225 deg - No Ice	127223.37	-139342.42	139362.33	19436.16	19364.00	-382.49
1.2 Dead+1.6 Wind 240 deg - No Ice	169631.16	-188860.82	108925.21	15277.89	26363.74	-376.2
0.9 Dead+1.6 Wind 240 deg - No Ice	127223.37	-188860.82	108925.21	15262.23	26370.86	-376.2
1.2 Dead+1.6 Wind 270 deg - No Ice	169631.16	-200270.33	-221.21	19.31	27864.39	-289.12
0.9 Dead+1.6 Wind 270 deg - No Ice	127223.37	-200270.33	-221.21	3.66	27871.51	-289.12
1.2 Dead+1.6 Wind 300 deg - No Ice	169631.16	-168372.39	-97351.64	-13489.51	23396.46	-124.4
0.9 Dead+1.6 Wind 300 deg - No Ice	127223.37	-168372.39	-97351.64	-13505.16	23403.58	-124.4
1.2 Dead+1.6 Wind 315 deg - No Ice	169631.16	-139655.26	-139675.17	-19387.84	19418.11	-26.3
0.9 Dead+1.6 Wind 315 deg - No Ice	127223.37	-139655.26	-139675.17	-19403.49	19425.23	-26.3
1.2 Dead+1.6 Wind 330 deg - No Ice	169631.16	-100326.75	-173574.19	-24119.70	13955.46	73.5
0.9 Dead+1.6 Wind 330 deg - No Ice	127223.37	-100326.75	-173574.19	-24135.35	13962.58	73.5
1.2 Dead+1.0 Ice+1.0 Temp	466410.08	0.00	0.00	653.13	-666.15	0.0
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	466410.08	-34.91	-58077.69	-7252.46	-659.33	161.6
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	466410.08	27786.27	-48165.35	-5891.44	-4440.37	213.4
1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp	466410.08	39026.11	-39028.74	-4647.83	-5966.62	218.0
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	466410.08	47457.48	-27381.29	-3064.00	-7110.62	207.9
1.2 Dead+1.0 Wind 90 deg+1.0	466410.08	55633.00	34.91	659.95	-8226.40	146.7

tnxTower	Job 320' Rohn SSVMW	Page 67 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	466410.08	50311.00	29069.08	4611.83	-7515.40	46.25
deg+1.0 Ice+1.0 Temp	466410.00	40226.17	10000 70	(12(20	(120.72	10.50
1.2 Dead+1.0 Wind 135	466410.08	40226.17	40228.79	6126.20	-6138.73	-10.56
deg+1.0 Ice+1.0 Temp	466410.00	27046 72	10000 06	7204 51	4450 10	(((5
1.2 Dead+1.0 Wind 150	466410.08	27846.73	48200.26	7204.51	-4452.18	-66.65
deg+1.0 Ice+1.0 Temp	466410.00	24.01	5 4 9 2 2 0 5	9000 10	(72.09	1(1(0
1.2 Dead+1.0 Wind 180	466410.08	34.91	54823.05	8099.19	-672.98	-161.68
deg+1.0 Ice+1.0 Temp	466410.00	2770(27	40165.25	7107 (0	2100.07	212.40
1.2 Dead+1.0 Wind 210	466410.08	-27786.27	48165.35	7197.69	3108.06	-213.40
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225	466410.08	-39026.11	39028.74	5954.08	4634.31	-218.09
deg+1.0 Ice+1.0 Temp	400410.08	-39020.11	39028.74	3934.00	4034.31	-218.09
1.2 Dead+1.0 Wind 240	466410.08	-50276.09	29008.61	4600.01	6176.27	-207.93
deg+1.0 Ice+1.0 Temp	400410.08	-30270.09	29008.01	4000.01	01/0.27	-207.95
1.2 Dead+1.0 Wind 270	466410.08	-55633.00	-34.91	646.30	6894.09	-146.75
deg+1.0 Ice+1.0 Temp	400410.08	-55055.00	-34.91	040.50	0094.09	-140.75
1.2 Dead+1.0 Wind 300	466410.08	-47492.39	-27441.75	-3075.82	5785.13	-46.25
deg+1.0 Ice+1.0 Temp	+00+10.00		-2/++1./5	-5075.82	5765.15	-40.23
1.2 Dead+1.0 Wind 315	466410.08	-39075.48	-39078.10	-4657.48	4643.95	10.56
deg+1.0 Ice+1.0 Temp	400410.00	57075.40	57070.10	-057.10	+0+5.75	10.50
1.2 Dead+1.0 Wind 330	466410.08	-27846.73	-48200.25	-5898.26	3119.88	66.65
deg+1.0 Ice+1.0 Temp	100110100	27010175	10200.20	0000.20	0119.00	00.00
Dead+Wind 0 deg - Service	141359.30	-42.43	-41856.56	-5798.70	-15.42	48.29
Dead+Wind 30 deg - Service	141359.30	19168.89	-33248.59	-4577.62	-2691.42	69.55
Dead+Wind 45 deg - Service	141359.30	26725.47	-26729.28	-3666.62	-3741.78	73.36
Dead+Wind 60 deg - Service	141359.30	32250.90	-18598.27	-2532.70	-4508.26	72.17
Dead+Wind 90 deg - Service	141359.30	38411.26	42.43	60.48	-5373.50	55.45
Dead+Wind 120 deg - Service	141359.30	36265.38	20965.02	2984.80	-5093.98	23.88
Dead+Wind 135 deg - Service	141359.30	28407.05	28410.87	4018.44	-3989.26	5.06
Dead+Wind 150 deg - Service	141359.30	19242.37	33291.02	4690.27	-2705.80	-14.10
Dead+Wind 180 deg - Service	141359.30	42.43	37270.03	5236.30	-32.03	-48.29
Dead+Wind 210 deg - Service	141359.30	-19168.89	33248.59	4681.96	2643.97	-69.55
Dead+Wind 225 deg - Service	141359.30	-26725.47	26729.28	3770.96	3694.33	-73.36
Dead+Wind 240 deg - Service	141359.30	-36222.95	20891.53	2970.42	5038.22	-72.17
Dead+Wind 270 deg - Service	141359.30	-38411.26	-42.43	43.87	5326.04	-55.45
Dead+Wind 300 deg - Service	141359.30	-32293.33	-18671.76	-2547.09	4469.11	-23.88
Dead+Wind 315 deg - Service	141359.30	-26785.47	-26789.29	-3678.37	3706.07	-5.06
Dead+Wind 330 deg - Service	141359.30	-19242.37	-33291.02	-4585.92	2658.35	14.10

Solution Summary

	Sui	m of Applied Force.	5		Sum of Reaction	S.	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	0.00	-141359.30	0.00	-0.00	141359.30	-0.00	0.000%
2	-221.22	-169631.16	-218233.55	221.22	169631.16	218233.57	0.000%
3	-221.22	-127223.37	-218233.55	221.22	127223.37	218233.57	0.000%
4	99943.58	-169631.16	-173352.96	-99943.59	169631.16	173352.97	0.000%
5	99943.58	-127223.37	-173352.96	-99943.59	127223.37	173352.97	0.000%
6	139342.41	-169631.16	-139362.32	-139342.42	169631.16	139362.33	0.000%
7	139342.41	-127223.37	-139362.32	-139342.42	127223.37	139362.33	0.000%
8	168151.16	-169631.16	-96968.48	-168151.18	169631.16	96968.49	0.000%
9	168151.16	-127223.37	-96968.48	-168151.18	127223.37	96968.49	0.000%
10	200270.32	-169631.16	221.22	-200270.33	169631.16	-221.21	0.000%
11	200270.32	-127223.37	221.22	-200270.33	127223.37	-221.21	0.000%
12	189082.02	-169631.16	109308.35	-189082.04	169631.16	-109308.36	0.000%
13	189082.02	-127223.37	109308.35	-189082.04	127223.37	-109308.36	0.000%

tnxTower	Job	320' Rohn SSVMW	Page 68 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
1 · · ·	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

	Su	m of Applied Forces			Sum of Reaction	s	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	70 En 01
14	148109.93	-169631.16	148129.84	-148109.94	169631.16	-148129.85	0.000%
15	148109.93	-127223.37	148129.84	-148109.94	127223.37	-148129.85	0.000%
16	100326.74	-169631.16	173574.17	-100326.75	169631.16	-173574.19	0.000%
17	100326.74	-127223.37	173574.17	-100326.75	127223.37	-173574.19	0.000%
18	221.22	-169631.16	194320.11	-221.22	169631.16	-194320.13	0.000%
19	221.22	-127223.37	194320.11	-221.22	127223.37	-194320.13	0.000%
20	-99943.58	-169631.16	173352.96	99943.59	169631.16	-173352.97	0.000%
21	-99943.58	-127223.37	173352.96	99943.59	127223.37	-173352.97	0.000%
22	-139342.41	-169631.16	139362.32	139342.42	169631.16	-139362.33	0.000%
23	-139342.41	-127223.37	139362.32	139342.42	127223.37	-139362.33	0.000%
24	-188860.81	-169631.16	108925.20	188860.82	169631.16	-108925.21	0.000%
25	-188860.81	-127223.37	108925.20	188860.82	127223.37	-108925.21	0.000%
26	-200270.32	-169631.16	-221.22	200270.33	169631.16	221.21	0.000%
27	-200270.32	-127223.37	-221.22	200270.33	127223.37	221.21	0.000%
28	-168372.38	-169631.16	-97351.64	168372.39	169631.16	97351.64	0.000%
29	-168372.38	-127223.37	-97351.64	168372.39	127223.37	97351.64	0.000%
30	-139655.25	-169631.16	-139675.16	139655.26	169631.16	139675.17	0.000%
31	-139655.25	-127223.37	-139675.16	139655.26	127223.37	139675.17	0.000%
32	-100326.74	-169631.16	-173574.17	100326.75	169631.16	173574.19	0.000%
33	-100326.74	-127223.37	-173574.17	100326.75	127223.37	173574.19	0.000%
34	0.00	-466410.08	0.00	-0.00	466410.08	-0.00	0.000%
35	-34.91	-466410.08	-58077.68	34.91	466410.08	58077.69	0.000%
36	27786.26	-466410.08	-48165.34	-27786.27	466410.08	48165.35	0.000%
37	39026.11	-466410.08	-39028.73	-39026.11	466410.08	39028.74	0.000%
38	47457.48	-466410.08	-27381.29	-47457.48	466410.08	27381.29	0.000%
39	55632.99	-466410.08	34.91	-55633.00	466410.08	-34.91	0.000%
40	50310.99	-466410.08	29069.07	-50311.00	466410.08	-29069.08	0.000%
41	40226.17	-466410.08	40228.79	-40226.17	466410.08	-40228.79	0.000%
42	27846.73	-466410.08	48200.25	-27846.73	466410.08	-48200.26	0.000%
43	34.91	-466410.08	54823.04	-34.91	466410.08	-54823.05	0.000%
44	-27786.26	-466410.08	48165.34	27786.27	466410.08	-48165.35	0.000%
45	-39026.11	-466410.08	39028.73	39026.11	466410.08	-39028.74	0.000%
46	-50276.08	-466410.08	29008.61	50276.09	466410.08	-29008.61	0.000%
47	-55632.99	-466410.08	-34.91	55633.00	466410.08	34.91	0.000%
48	-47492.39	-466410.08	-27441.75	47492.39	466410.08	27441.75	0.000%
49	-39075.48	-466410.08	-39078.10	39075.48	466410.08	39078.10	0.000%
50	-27846.73	-466410.08	-48200.25	27846.73	466410.08	48200.25	0.000%
51	-42.43	-141359.30	-41856.55	42.43	141359.30	41856.56	0.000%
52	19168.88	-141359.30	-33248.59	-19168.89	141359.30	33248.59	0.000%
53	26725.46	-141359.30	-26729.28	-26725.47	141359.30	26729.28	0.000%
54	32250.90	-141359.30	-18598.27	-32250.90	141359.30	18598.27	0.000%
55	38411.26	-141359.30	42.43	-38411.26	141359.30	-42.43	0.000%
56	36265.37	-141359.30	20965.02	-36265.38	141359.30	-20965.02	0.000%
57	28407.05	-141359.30	28410.87	-28407.05	141359.30	-28410.87	0.000%
58	19242.37	-141359.30	33291.02	-19242.37	141359.30	-33291.02	0.000%
59	42.43	-141359.30	37270.03	-42.43	141359.30	-37270.03	0.000%
60	-19168.88	-141359.30	33248.59	19168.89	141359.30	-33248.59	0.000%
61 62	-26725.46	-141359.30	26729.28	26725.47 36222.95	141359.30	-26729.28	0.000%
62 63	-36222.95 -38411.26	-141359.30 -141359.30	20891.53 -42.43	36222.95 38411.26	141359.30 141359.30	-20891.53 42.43	0.000% 0.000%
63 64	-32293.33	-141359.30	-42.43 -18671.76	32293.33	141359.30	42.43	0.000%
65	-26785.47	-141359.30	-26789.28	26785.47	141359.30	26789.29	0.000%
65 66	-19242.37	-141359.30	-33291.02	19242.37	141359.30	33291.02	0.000%
00	-17242.37	-171337.30	-55271.02	17272.37	171557.50	55271.02	0.00070

Maximum Tower Deflections - Service Wind

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	320' Rohn SSVMW	69 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client		Designed by
	(MODification) VZW-217/ EMP-008 - "G"	MCD

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	320 - 304	4.570	56	0.1032	0.0478
T2	304 - 300	4.221	56	0.1026	0.0481
Т3	300 - 280	4.133	56	0.1021	0.0483
T4	280 - 260	3.702	56	0.0993	0.0470
T5	260 - 240	3.276	56	0.0976	0.0442
T6	240 - 220	2.856	56	0.0946	0.0395
Τ7	220 - 200	2.451	56	0.0900	0.0356
T8	200 - 180	2.067	56	0.0841	0.0325
Т9	180 - 170	1.701	56	0.0779	0.0291
T10	170 - 160	1.531	56	0.0742	0.0278
T11	160 - 140	1.367	56	0.0703	0.0264
T12	140 - 120	1.067	56	0.0617	0.0241
T13	120 - 100	0.803	56	0.0522	0.0218
T14	100 - 80	0.583	56	0.0428	0.0182
T15	80 - 60	0.404	56	0.0329	0.0153
T16	60 - 30	0.256	51	0.0241	0.0120
T17	30 - 0	0.094	51	0.0110	0.0060

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
325.00	Dual Lights	56	4.570	0.1032	0.0478	Inf
322.00	PD128-1	56	4.570	0.1032	0.0478	Inf
320.00	6' Side Mount Standoff	56	4.570	0.1032	0.0478	Inf
318.00	BA1012-0	56	4.526	0.1032	0.0478	Inf
316.50	ANT450F6	56	4.494	0.1031	0.0478	Inf
315.00	6' Side Mount Standoff	56	4.461	0.1031	0.0479	Inf
311.50	4'x4" Pipe Mount	56	4.385	0.1030	0.0479	Inf
297.00	SC479-HF1LDF	56	4.068	0.1017	0.0483	355676
293.00	6' Side Mount Standoff	56	3.981	0.1011	0.0481	413836
290.00	PD340-1	56	3.916	0.1007	0.0480	481703
285.00	DB809T3E-XC	56	3.809	0.1000	0.0475	662889
284.50	6' Side Mount Standoff	56	3.798	0.0999	0.0475	688773
284.00	6' Side Mount Standoff	56	3.788	0.0998	0.0474	713189
283.00	SC479-HF1LDF	56	3.766	0.0997	0.0473	765494
261.50	PD440-2	56	3.308	0.0977	0.0445	Inf
261.00	SC479-HF1LDF(D00-E6085)	56	3.298	0.0977	0.0444	Inf
248.00	PD1142-1	56	3.023	0.0960	0.0415	404203
246.00	SC479-HF1LDF(D00I-E6085)	56	2.981	0.0956	0.0410	351838
	(Inverted)					
244.00	PD1142-1	56	2.939	0.0953	0.0405	311579
235.00	531-70HD Exposed Dipole Antenna	56	2.753	0.0936	0.0384	242259
220.00	Valmont VFA-10-U V-Frame	56	2.451	0.0900	0.0356	219859
200.00	PiROD 12' Lightweight T-Frame	56	2.067	0.0841	0.0325	355590
176.00	DB586-Y	56	1.632	0.0765	0.0285	143178
174.00	DB586-Y (inverted)	56	1.598	0.0757	0.0283	162647
164.00	L-810 Obstruction Lighting (1)	56	1.432	0.0719	0.0270	146367
153.00	ANT450F6	56	1.258	0.0675	0.0255	129439
145.00	Commscope PAR6-59W-PXA/A	56	1.139	0.0640	0.0247	144392
137.00	PD156S	56	1.025	0.0603	0.0238	142539
134.00	DB212-1	56	0.984	0.0589	0.0235	132020
120.00	HPD3-4.7	56	0.803	0.0522	0.0218	99665
113.00	Andrew 2' w/Radome	56	0.721	0.0489	0.0206	102777
106.00	PA8-65	56	0.644	0.0456	0.0193	108651
105.00	PD458	56	0.634	0.0452	0.0191	109546

Anna Towner	Job		Page
tnxTower		320' Rohn SSVMW	70 of 96
АЕСОМ	Project		Date
500 Enterprise Drive, Suite 3B		CSP Tower - Colchester, CT	11:31:15 02/22/19
800 Enterprise Drive, Suite 38 Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
103.00	PD688S-4	56	0.613	0.0442	0.0188	111434
91.00	PD688S-4	56	0.498	0.0383	0.0169	136266

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	320 - 304	23.616	12	0.5320	0.2491
T2	304 - 300	21.815	12	0.5286	0.2509
T3	300 - 280	21.364	12	0.5261	0.2516
T4	280 - 260	19.142	12	0.5118	0.2450
T5	260 - 240	16.948	12	0.5026	0.2306
T6	240 - 220	14.778	12	0.4873	0.2061
Τ7	220 - 200	12.692	12	0.4643	0.1856
T8	200 - 180	10.708	12	0.4338	0.1696
T9	180 - 170	8.818	12	0.4020	0.1516
T10	170 - 160	7.937	12	0.3834	0.1447
T11	160 - 140	7.091	12	0.3634	0.1377
T12	140 - 120	5.539	12	0.3187	0.1258
T13	120 - 100	4.171	12	0.2695	0.1138
T14	100 - 80	3.033	12	0.2210	0.0951
T15	80 - 60	2.106	12	0.1701	0.0799
T16	60 - 30	1.334	13	0.1246	0.0623
T17	30 - 0	0.489	2	0.0566	0.0311

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
325.00	Dual Lights	12	23.616	0.5320	0.2491	741966
322.00	PD128-1	12	23.616	0.5320	0.2491	741966
320.00	6' Side Mount Standoff	12	23.616	0.5320	0.2491	741966
318.00	BA1012-0	12	23.391	0.5319	0.2493	741966
316.50	ANT450F6	12	23.222	0.5318	0.2494	741966
315.00	6' Side Mount Standoff	12	23.053	0.5317	0.2495	741966
311.50	4'x4" Pipe Mount	12	22.660	0.5312	0.2498	436448
297.00	SC479-HF1LDF	12	21.027	0.5239	0.2516	69899
293.00	6' Side Mount Standoff	12	20.580	0.5209	0.2509	81843
290.00	PD340-1	12	20.247	0.5186	0.2500	95941
285.00	DB809T3E-XC	12	19.693	0.5150	0.2477	134579
284.50	6' Side Mount Standoff	12	19.638	0.5147	0.2475	140219
284.00	6' Side Mount Standoff	12	19.583	0.5143	0.2472	146307
283.00	SC479-HF1LDF	12	19.473	0.5137	0.2467	159833
261.50	PD440-2	12	17.113	0.5033	0.2321	415827
261.00	SC479-HF1LDF(D00-E6085)	12	17.058	0.5031	0.2316	404985
248.00	PD1142-1	12	15.640	0.4944	0.2163	80126
246.00	SC479-HF1LDF(D00I-E6085) (Inverted)	12	15.423	0.4928	0.2137	69579
244.00	PD1142-1	12	15.207	0.4910	0.2112	61505
235.00	531-70HD Exposed Dipole Antenna	12	14.247	0.4824	0.2003	47553

Project

Client

Bage 71 of 96 320' Rohn SSVMW Date CSP Tower - Colchester, CT 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification)	VZW-217/	EMP-008 -	"G"
----------------	----------	-----------	-----

Designed by MCD

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
220.00	Valmont VFA-10-U V-Frame	12	12.692	0.4643	0.1856	42882
200.00	PiROD 12' Lightweight T-Frame	12	10.708	0.4338	0.1696	70904
176.00	DB586-Y	12	8.461	0.3948	0.1487	27807
174.00	DB586-Y (inverted)	12	8.285	0.3910	0.1474	31665
164.00	L-810 Obstruction Lighting (1)	12	7.424	0.3715	0.1405	28473
153.00	ANT450F6	12	6.527	0.3485	0.1332	25087
145.00	Commscope PAR6-59W-PXA/A	12	5.910	0.3305	0.1285	27959
137.00	PD156S	12	5.322	0.3115	0.1243	27638
134.00	DB212-1	12	5.108	0.3041	0.1227	25641
120.00	HPD3-4.7	12	4.171	0.2695	0.1138	19449
113.00	Andrew 2' w/Radome	12	3.746	0.2527	0.1075	19985
106.00	PA8-65	12	3.350	0.2358	0.1007	21028
105.00	PD458	12	3.296	0.2334	0.0997	21185
103.00	PD688S-4	12	3.189	0.2285	0.0978	21520
91.00	PD688S-4	12	2.594	0.1979	0.0879	26353

Bolt Design Data

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e Criteria
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Diagonal A325X 0.6250 1 1285.02 5811.33 0.221 1 T2 304 Diagonal A325X 0.6250 1 1484.81 5811.33 0.256 1 T3 300 Leg A325X 0.6250 1 1484.81 5811.33 0.256 1 T3 300 Leg A325X 0.6250 1 3547.65 9107.81 0.048 1 T4 280 Leg A325X 0.6250 1 5433.69 11962.50 0.096 1 T5 260 Leg A325X 0.7500 1 5433.69 11962.50 0.454 1 Diagonal A325X 0.7500 1 8615.64 14137.50 0.609 1 Diagonal A325X 0.7500 1 8615.64 14137.50 0.625 1 T6 240 Leg A325X 0.7500 1 11044.20 17671.90 0.625 1 T7 220 Leg A325X 0.7500 1 17073.60	Bolt Tension
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Member Block Shear
Diagonal A325X 0.6250 1 3547.65 9107.81 0.048 T4 280 Leg A325N 1.0000 8 5075.72 53014.40 0.096 1 T5 260 Leg A325N 1.0000 8 5075.72 53014.40 0.096 1 T5 260 Leg A325N 1.0000 8 8543.13 53014.40 0.454 1 T5 260 Leg A325N 1.0000 8 8543.13 53014.40 0.161 1 Diagonal A325N 0.7500 1 8615.64 14137.50 0.609 1 Diagonal A325N 1.0000 8 13113.40 53014.40 0.247 1 Diagonal A325N 0.7500 1 11044.20 17671.90 0.625 1 T7 220 Leg A325N 1.0000 12 12238.90 53014.40 0.231 1 T8 200	Member Block Shear
T4 280 Leg A325N 1.0000 8 5075.72 53014.40 0.096 1 Diagonal A325X 0.7500 1 5433.69 11962.50 0.454 1 T5 260 Leg A325X 0.7500 1 5433.69 11962.50 0.454 1 T5 260 Leg A325X 0.7500 1 8615.64 14137.50 0.609 1 T6 240 Leg A325X 0.7500 1 8615.64 14137.50 0.609 1 T6 240 Leg A325X 0.7500 1 11044.20 17671.90 0.625 1 T7 220 Leg A325X 0.7500 1 11044.20 17671.90 0.625 1 Diagonal A325X 0.7500 1 17073.60 21868.40 0.781 1 T8 200 Leg A325N 1.0000 12 16813.50 53014.40 0.317 1 Diagonal A325X 0.8750 1 20518.60 </td <td>Bolt Tension</td>	Bolt Tension
Diagonal A325X 0.7500 1 5433.69 11962.50 0.454 1 T5 260 Leg A325X 0.7500 1 5433.69 11962.50 0.454 1 T5 260 Leg A325X 0.7500 1 8615.64 14137.50 0.161 1 Diagonal A325X 0.7500 1 8615.64 14137.50 0.609 1 T6 240 Leg A325X 0.7500 1 11044.20 17671.90 0.625 1 T7 220 Leg A325X 0.7500 1 11044.20 17671.90 0.625 1 T7 220 Leg A325X 0.7500 1 17073.60 21868.40 0.781 1 Diagonal A325X 0.7500 1 17073.60 21868.40 0.317 1 T8 200 Leg A325X 0.8750 1 20518.60 24862.50 0.825 1 Diagonal A325X 0.8750 1 20518.60 24862.50	Member Block Shear
T5 260 Leg A325N 1.0000 8 8543.13 53014.40 0.161 1 Diagonal A325X 0.7500 1 8615.64 14137.50 0.609 1 T6 240 Leg A325X 0.7500 1 1044.20 17671.90 0.247 1 Diagonal A325X 0.7500 1 11044.20 17671.90 0.625 1 T7 220 Leg A325N 1.0000 12 12238.90 53014.40 0.231 1 Diagonal A325X 0.7500 1 17073.60 21868.40 0.781 1 T8 200 Leg A325N 1.0000 12 16813.50 53014.40 0.317 1 Diagonal A325X 0.8750 1 20518.60 24862.50 0.825 1 T9 180 Leg A325N 1.0000 12 19225.50 53014.40 0.363 1 Diagonal A325X 0.8750 1 20518.60 24862.50 0.825 1	Bolt Tension
Diagonal A325X 0.7500 1 8615.64 14137.50 0.609 1 T6 240 Leg A325N 1.0000 8 13113.40 53014.40 0.247 1 Diagonal A325X 0.7500 1 11044.20 17671.90 0.625 1 T7 220 Leg A325X 0.7500 1 11044.20 17671.90 0.625 1 Diagonal A325X 0.7500 1 17073.60 21868.40 0.781 1 T8 200 Leg A325X 0.8750 1 20518.60 24862.50 0.825 1 T9 180 Leg A325X 0.8750 1 20518.60 24862.50 0.363 1	Member Block Shear
T6 240 Leg A325N 1.0000 8 13113.40 53014.40 0.247 1 Diagonal A325X 0.7500 1 11044.20 17671.90 0.625 1 T7 220 Leg A325N 1.0000 12 12238.90 53014.40 0.231 1 Diagonal A325X 0.7500 1 17073.60 21868.40 0.781 1 T8 200 Leg A325N 1.0000 12 16813.50 53014.40 0.317 1 Diagonal A325X 0.8750 1 20518.60 24862.50 0.825 1 T9 180 Leg A325N 1.0000 12 19225.50 53014.40 0.363 1 Diagonal A325N 0.8750 1 20518.60 24862.50 0.825 1	Bolt Tension
T6 240 Leg A325N 1.0000 8 13113.40 53014.40 0.247 1 Diagonal A325X 0.7500 1 11044.20 17671.90 0.625 1 T7 220 Leg A325X 0.7500 1 11044.20 17671.90 0.625 1 Diagonal A325X 0.7500 1 17073.60 21868.40 0.781 1 T8 200 Leg A325X 0.7500 1 17073.60 21868.40 0.317 1 Diagonal A325X 0.8750 1 20518.60 24862.50 0.825 1 T9 180 Leg A325N 1.0000 12 19225.50 53014.40 0.363 1 Diagonal A325N 0.8750 1 20518.60 24862.50 0.825 1	Member Bearing
Diagonal A325X 0.7500 1 11044.20 17671.90 0.625 1 T7 220 Leg A325N 1.0000 12 12238.90 53014.40 0.231 1 Diagonal A325X 0.7500 1 17073.60 21868.40 0.781 1 T8 200 Leg A325X 0.8750 1 20518.60 24862.50 0.825 1 T9 180 Leg A325X 0.8750 1 20580.70 23150.00 1	Bolt Tension
T7 220 Leg A325N 1.0000 12 12238.90 53014.40 0.231 1 Diagonal A325X 0.7500 1 17073.60 21868.40 0.781 1 T8 200 Leg A325N 1.0000 12 16813.50 53014.40 0.317 1 Diagonal A325X 0.8750 1 20518.60 24862.50 0.825 1 T9 180 Leg A325N 1.0000 12 19225.50 53014.40 0.363 1	Member Bearing
Diagonal A325X 0.7500 1 17073.60 21868.40 0.781 1 T8 200 Leg A325N 1.0000 12 16813.50 53014.40 0.317 1 Diagonal A325X 0.8750 1 20518.60 24862.50 0.825 1 T9 180 Leg A325X 0.8750 1 20518.60 24862.50 0.825 1 Diagonal A325X 0.8750 12 19225.50 53014.40 0.363 1	Bolt Tension
T8 200 Leg A325N 1.0000 12 16813.50 53014.40 0.317 1 Diagonal A325X 0.8750 1 20518.60 24862.50 0.825 1 T9 180 Leg A325N 1.0000 12 19225.50 53014.40 0.363 1 Diagonal A325N 1.0000 12 19225.00 53014.40 0.363 1	Bolt Shear
Diagonal A325X 0.8750 1 20518.60 24862.50 0.825 1 T9 180 Leg A325N 1.0000 12 19225.50 53014.40 0.363 1 Diagonal A325N 0.8750 1 23580.70 23150.00 1	Bolt Tension
T9 180 Leg A325N 1.0000 12 19225.50 53014.40 0.363 1 Discord A225X 0.8750 1 22580.70 22150.00 1	Member Bearing
Diagonal A225V 0.8750 1 22580.70 22150.00	Bolt Tension
	Member Bearing
T10 170 Diagonal A325X 0.8750 1 23621.10 33150.00 0.713 V 1	Member Bearing
T11 160 Leg A325N 1.0000 12 26857.60 53014.40 0.507 V 1	Bolt Tension
Diagonal A490X 0.8750 1 27767.80 33150.00 0.838 V 1	Member Bearing
T12 140 Leg A325N 1.0000 12 32087.00 53014.40 0.605 V 1	Bolt Tension

tnxTower	Job	320' Rohn SSVMW	Page 72 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.	C.	Туре	Grade		Of	Load	Load	Load	Ratio	
	ft			in	Bolts	per Bolt lb	per Bolt lb	Allowable		
		Diagonal	A490X	0.8750	1	29953.50	33150.00	0.904 🖌	1	Member Bearin
T13	120	Leg	A325N	1.0000	12	32913.60	53014.40	0.621	1	Bolt Tension
		Diagonal	A325X	0.7500	3	16817.10	21868.40	0.769	1	Bolt Shear
		Horizontal	A325X	0.7500	2	13470.40	21868.40	0.616 🖌	1	Bolt Shear
T14	100	Leg	A325N	1.0000	16	28037.30	53014.40	0.529	1	Bolt Tension
		Diagonal	A325X	0.7500	3	17757.80	21868.40	0.812	1	Bolt Shear
		Horizontal	A325X	0.7500	2	15307.70	21868.40	0.700	1	Bolt Shear
T15	80	Leg	A325N	1.0000	16	31600.00	53014.40	0.596	1	Bolt Tension
		Diagonal	A325X	0.7500	3	17064.90	21868.40	0.780	1	Bolt Shear
		Horizontal	A325X	0.7500	2	15529.80	21868.40	0.710	1	Bolt Shear
T16	60	Leg	A325N	1.0000	16	34432.50	53014.40	0.649	1	Bolt Tension
		Diagonal	A325X	0.8750	3	24993.30	29765.40	0.840	1	Bolt Shear
		Horizontal	A325X	0.7500	2	17893.50	21868.40	0.818	1	Bolt Shear
T17	30	Leg	A325N	1.0000	24	26538.90	53014.40	0.501	1	Bolt Tension
		Diagonal	A325X	0.8750	3	24804.20	29765.40	0.833	1	Bolt Shear
		Horizontal	A490X	0.7500	2	21039.20	27335.50	0.770	1	Bolt Shear

Compression Checks

		Leg	Desig	n Dat	a (Co	mpres	sion)		
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T1	320 - 304	ROHN 5 EH	16.00	4.00	26.1 K=1.00	6.1120	-6064.52	261674.00	0.023 1
T2	304 - 300	ROHN 5 EH	4.00	4.00	26.1 K=1.00	6.1120	-8663.70	261674.00	0.033 1
T3	300 - 280	ROHN 6 EH	20.03	5.01	27.4 K=1.00	8.4049	-25470.90	358043.00	0.071 1
T4	280 - 260	ROHN 8 EH w/ angle 8x8x0.5	20.04	6.68	27.0 K=1.00	20.5036	-51467.40	874859.00	0.059 1
T5	260 - 240	ROHN 8 EH w/ angle 8x8x0.5	20.03	6.68	27.0 K=1.00	20.5036	-87852.70	874884.00	0.100 1
Т6	240 - 220	ROHN 8 EH w/ angle 8x8x0.5	20.03	6.68	27.0 K=1.00	20.5036	-134619.00	874888.00	0.154 1
Τ7	220 - 200	ROHN 8 EH w/ angle 8x8x0.5	20.03	10.02	40.4 K=1.00	20.5036	-188983.00	818638.00	0.231 1
Т8	200 - 180	ROHN 10 EH w/ angle 8x8x0.5	20.04	10.02	34.6 K=1.00	23.8453	-257893.00	982914.00	0.262 1
Т9	180 - 170	ROHN 10 EH w/ angle 8x8x0.5	10.02	10.02	34.6 K=1.00	23.8453	-293797.00	982929.00	0.299 1

tnxTower	Job	320' Rohn SSVMW	Page 73 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	lb	lb	ϕP_n
									V .
T10	170 - 160	ROHN 10 EH w/ angle 8x8x0.5	10.02	10.02	34.6 K=1.00	23.8453	-330926.00	982929.00	0.337
T11	160 - 140	ROHN 10 EH w/ angle 8x8x0.5	20.03	10.02	34.6 K=1.00	23.8453	-408451.00	982978.00	0.416
T12	140 - 120	ROHN 10 EH w/ angle 8x8x0.5	20.04	10.02	34.6 K=1.00	23.8453	-487928.00	982899.00	0.496
T13	120 - 100	ROHN 10 EH w/ angle 8x8x0.5	20.06	10.03	34.7 K=1.00	23.8453	-504577.00	982763.00	0.513
T14	100 - 80	ROHN 10 EH w/ angle 8x8x0.5	20.05	10.03	34.7 K=1.00	23.8453	-573259.00	982792.00	0.583
T15	80 - 60	ROHN 12 EH w/ angle 8x8x0.5	20.06	10.03	29.9 K=1.00	26.9670	-645787.00	1136630.00	0.568
T16	60 - 30	ROHN 12 EH w/ angle 8x8x0.5	30.07	10.02	29.9 K=1.00	26.9670	-715227.00	1136700.00	0.629
T17	30 - 0	ROHN 12 EHS w Angle 8x8x0.625	30.08	10.03	30.2 K=1.00	33.3120	-822463.00	1402320.00	0.587

Diagonal	Design Data	(Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
110.	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	320 - 304	L1 3/4x1 3/4x3/16	7.90	3.56	124.4 K=1.00	0.6211	-1277.30	8910.59	0.143 1
T2	304 - 300	L1 3/4x1 3/4x3/16	7.90	3.56	124.4 K=1.00	0.6211	-1505.04	8910.59	0.169 1
Т3	300 - 280	L2x2x1/4	9.94	4.68	143.7 K=1.00	0.9380	-3576.36	10268.60	0.348 1
T4	280 - 260	L2 1/2x2 1/2x1/4	12.59	5.83	142.4 K=1.00	1.1900	-5467.00	13248.50	0.413 1
Т5	260 - 240	L3x3x1/4	14.38	6.72	136.3 K=1.00	1.4400	-9061.08	17507.10	0.518 1
Т6	240 - 220	L4x4x5/16	16.19	7.64	116.9 K=1.01	2.4000	-11675.40	39677.10	0.294 1
T7	220 - 200	L4x4x3/8	19.37	9.30	141.7 K=1.00	2.8600	-17073.60	32190.20	0.530 1
Т8	200 - 180	L4x4x3/8	21.20	10.21	155.6 K=1.00	2.8600	-20801.90	26701.10	0.779 ¹
Т9	180 - 170	2L4x4x1/4	22.13	10.68	102.5 K=1.00	3.8800	-23031.70	76901.90	0.299 1
T10	170 - 160	2L4x4x1/4	23.06	11.15	107.0 K=1.00	3.8800	-23867.10	72580.70	0.329 1
T11	160 - 140	L5x5x1/2	24.84	12.01	146.6 K=1.00	4.7500	-28675.70	49897.30	0.575 1
T12	140 - 120	L5x5x1/2	26.78	13.03	159.0 K=1.00	4.7500	-30554.30	42434.90	0.720 1

tnxTower	Job		Page
<i>lnx10wer</i>		74 of 96	
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		CSP Tower - Colchester, CT	11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T13	120 - 100	ROHN 3 XXS	24.42	12.21	139.9 K=1.00	5.4664	-50451.40	63081.40	0.800 1
T14	100 - 80	ROHN 3 XXS	25.15	12.58	144.1 K=1.00	5.4664	-53273.30	59442.80	0.896 1
T15	80 - 60	ROHN 3.5 EH	25.98	12.99	119.3 K=1.00	3.6784	-51194.70	58371.00	0.877 1
T16	60 - 30	ROHN 4 X-STR	35.21	11.74	95.4 K=1.00	4.4074	-74980.00	101988.00	0.735
T17	30 - 0	ROHN 4 X-STR	36.27	12.09	98.2 K=1.00	4.4074	-74412.70	97939.00	0.760 1

¹ $P_u / \phi P_n$ controls

	Horizontal Design Data (Compression)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio P_u		
	ft		ft	ft		in ²	lb	lb	ϕP_n		
T13	120 - 100	ROHN 3 STD	25.39	12.22	126.1 K=1.00	2.2285	-26940.90	31679.40	0.850		
T14	100 - 80	ROHN 3 X-STR	27.97	13.51	142.7 K=1.00	3.0159	-30615.50	33455.50	0.915		
T15	80 - 60	ROHN 3 XXS	30.47	14.76	169.2 K=1.00	5.4664	-31059.50	43132.20	0.720		
T16	60 - 30	ROHN 3.5 EH	33.14	16.04	147.3 K=1.00	3.6784	-35715.60	38300.30	0.933		
T17	30 - 0	ROHN 4 X-STR	36.80	17.87	145.2 K=1.00	4.4074	-42078.40	47220.90	0.891		

¹ $P_u / \phi P_n$ controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	А	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T1	320 - 304	L1 3/4x1 3/4x3/16	6.81	6.35	182.6 K=0.82	0.6211	-108.04	4209.52	0.026 1
Т3	300 - 280	L2x2x1/4	6.81	6.35	166.0 K=0.85	0.9380	-31.37	7691.25	0.004 1

tnxTower

 Job
 Page

 320' Rohn SSVMW
 75 of 96

 Project
 Date

 CSP Tower - Colchester, CT
 11:31:15 02/22/19

 Client
 Designed by

 (MODification) VZW-217/ EMP-008 - "G"
 MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Redundant Horizontal (1) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T13	120 - 100	ROHN 1.5 STD	6.35	5.88	113.3 K=1.00	0.7995	-8763.95	14083.10	0.622 1
T14	100 - 80	P1.5x.145	6.99	6.52	125.7 K=1.00	0.7995	-9957.64	11432.70	0.871 1
T15	80 - 60	ROHN 2 STD	7.62	7.09	108.0 K=1.00	1.0745	-11220.10	20598.10	0.545 1
T16	60 - 30	ROHN 1.5 STD	5.52	4.99	96.2 K=1.00	0.7995	-12440.50	18282.30	0.680 1
T17	30 - 0	P1.5x.145	6.13	5.60	108.0 K=1.00	0.7995	-14327.20	15339.00	0.934 1

¹ P_u / ϕP_n controls

	F	Redundant Ho	rizonta	l (2)	Desig	n Data	a (Comp	ressior	ר)
Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T16	60 - 30	ROHN 2 XXS	11.05	10.52	179.6 K=1.00	2.6559	-12440.50	18604.80	0.669 1
T17	30 - 0	ROHN 2.5 EH	12.27	11.74	152.4 K=1.00	2.2535	-14327.20	21919.90	0.654 1

¹ $P_u / \phi P_n$ controls

Redundant Diagonal (1) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T13	120 - 100	ROHN 2 STD	11.52	10.57	161.1 K=1.00	1.0745	-7951.20	9352.65	0.850 1
T14	100 - 80	ROHN 2 EH	11.86	10.98	171.6 K=1.00	1.4807	-8445.06	11364.10	0.743 1
T15	80 - 60	ROHN 2 EH	12.18	11.36	177.4 K=1.00	1.4807	-8973.17	10626.30	0.844 1
T16	60 - 30	ROHN 2 EH	11.15	9.95	155.3 K=1.00	1.4807	-12553.90	13862.10	0.906 1
T17	30 - 0	ROHN 2.5 STD	11.41	10.31	130.6 K=1.00	1.7040	-13328.60	22579.60	0.590 ¹

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT

Phone: 860-529-8882

FAX: 860-529-3991

Job Page 76 of 96 Project CSP Tower - Colchester, CT 11:31:15 02/22/19 Client (MODification) VZW-217/ EMP-008 - "G" Designed by MCD

Redundant Diagonal (2) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T16	60 - 30	ROHN 2.5 STD	14.46	13.72	173.8 K=1.00	1.7040	-8141.39	12742.30	0.639 1
T17	30 - 0	ROHN 2.5 STD	15.33	14.63	185.3 K=1.00	1.7040	-8954.81	11206.60	0.799 ¹

¹ $P_u / \phi P_n$ controls

		Redundant	: Hip (1) Des	ign Da	ata (C	ompres	sion)	
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T13	120 - 100	ROHN 1.5 STD	6.35	6.35	122.3 K=1.00	0.7995	-49.09	12066.60	0.004 1
T14	100 - 80	ROHN 1.5 STD	6.99	6.99	134.8 K=1.00	0.7995	-47.87	9943.20	0.005 1
T15	80 - 60	ROHN 1.5 STD	7.62	7.62	146.8 K=1.00	0.7995	-52.30	8378.50	0.006 1
T16	60 - 30	ROHN 1.5 STD	5.52	5.52	106.5 K=1.00	0.7995	-177.22	15708.50	0.011 1
T17	30 - 0	ROHN 1.5 STD	6.13	6.13	118.2 K=1.00	0.7995	-159.91	12924.00	0.012 1

¹ P_u / ϕP_n controls

Redundant Hip (2) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	А	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T16	60 - 30	ROHN 2 STD	11.05	11.05	168.4 K=1.00	1.0745	-97.57	8559.02	0.011
T17	30 - 0	ROHN 2 STD	12.27	12.27	187.0 K=1.00	1.0745	-92.17	6941.18	0.013 1

¹ P_u / ϕP_n controls

Redundant Hip Diagonal (1) Design Data (Compression)

tree Tores and	Job		Page
tnxTower		320' Rohn SSVMW	77 of 96
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		CSP Tower - Colchester, CT	11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T13	120 - 100	ROHN 2.5 STD	15.15	15.15	191.9 K=1.00	1.7040	-127.85	10450.60	0.012 1
T14	100 - 80	ROHN 2.5 STD	16.00	16.00	202.6 K=1.00	1.7040	-124.80	9375.46	0.013 1
T15	80 - 60	ROHN 3 STD	16.88	16.88	174.1 K=1.00	2.2285	-152.41	16617.70	0.009 1
T16	60 - 30	ROHN 2 STD	14.10	14.10	214.9 K=1.00	1.0745	-367.70	5254.92	0.070 1
T17	30 - 0	ROHN 2.5 STD	14.88	14.88	188.4 K=1.00	1.7040	-335.83	10840.00	0.031 1

¹ $P_u / \phi P_n$ controls

Redundant Hip Diagonal (2) Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P_{u}
	ft		ft	ft		in ²	lb	lb	ϕP_n
T16	60 - 30	ROHN 2 STD	17.91	17.91	273.1 K=1.00	1.0745	-142.44	3255.91	0.044 1
T17	30 - 0	KL/R > 250 (C) - 357 ROHN 2.5 STD	19.28	19.28	244.2 K=1.00	1.7040	-142.31	6453.40	0.022 1

¹ $P_u / \phi P_n$ controls

		Inner B	racing	Desig	n Dat	a (Cor	npress	ion)	
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T13	120 - 100	ROHN 3 STD	12.69	12.69	130.9 K=1.00	2.2285	-31.43	29370.40	0.001
T14	100 - 80	ROHN 3 STD	13.99	13.99	144.2 K=1.00	2.2285	-32.92	24201.90	0.001 1
T15	80 - 60	ROHN 3 STD	15.24	15.24	157.1 K=1.00	2.2285	-40.78	20393.40	0.002 1
T16	60 - 30	ROHN 3 STD	16.57	16.57	170.9 K=1.00	2.2285	-60.28	17239.70	0.003 1
T17	30 - 0	ROHN 3 STD	18.40	18.40	189.8 K=1.00	2.2285	-62.96	13981.00	0.005 1

tnxTower

AECOM

500 Enterprise Drive, Suite 3B

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	320' Rohn SSVMW	78 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client		Designed by
	(MODification) VZW-217/ EMP-008 - "G"	MCD

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
100.	ft		ft	ft		in ²	lb	lb	$\frac{1}{\phi P_n}$
T1	320 - 304	ROHN 5 EH	16.00	4.00	26.1	6.1120	4478.73	275039.00	0.016
T2	304 - 300	ROHN 5 EH	4.00	4.00	26.1	6.1120	6671.84	275039.00	0.024
T3	300 - 280	ROHN 6 EH	20.03	5.01	27.4	8.4049	20150.80	378222.00	0.053
T4	280 - 260	ROHN 8 EH w/ angle 8x8x0.5	20.04	6.68	27.0	20.5036	40605.80	922662.00	0.044 1
Т5	260 - 240	ROHN 8 EH w/ angle 8x8x0.5	20.03	6.68	27.0	20.5036	68345.00	922662.00	0.074 1
T6	240 - 220	ROHN 8 EH w/ angle 8x8x0.5	20.03	6.68	27.0	20.5036	104907.00	922662.00	0.114
Τ7	220 - 200	ROHN 8 EH w/ angle 8x8x0.5	20.03	10.02	40.4	20.5036	146867.00	922662.00	0.159
Т8	200 - 180	ROHN 10 EH w/ angle 8x8x0.5	20.04	10.02	34.6	23.8453	201762.00	1073040.00	0.188
Т9	180 - 170	ROHN 10 EH w/ angle 8x8x0.5	10.02	10.02	34.6	23.8453	230706.00	1073040.00	0.215
T10	170 - 160	ROHN 10 EH w/ angle 8x8x0.5	10.02	10.02	34.6	23.8453	260521.00	1073040.00	0.243
T11	160 - 140	ROHN 10 EH w/ angle 8x8x0.5	20.03	10.02	34.6	23.8453	322291.00	1073040.00	0.300
T12	140 - 120	ROHN 10 EH w/ angle 8x8x0.5	20.04	10.02	34.6	23.8453	385044.00	1073040.00	0.359
T13	120 - 100	ROHN 10 EH w/ angle 8x8x0.5	20.06	10.03	34.7	23.8453	395984.00	1073040.00	0.369
T14	100 - 80	ROHN 10 EH w/ angle 8x8x0.5	20.05	10.03	34.7	23.8453	449674.00	1073040.00	0.419
T15	80 - 60	ROHN 12 EH w/ angle 8x8x0.5	20.06	10.03	29.9	26.9670	506806.00	1213520.00	0.418
T16	60 - 30	ROHN 12 EH w/ angle 8x8x0.5	30.07	10.02	29.9	26.9670	560977.00	1213520.00	0.462 1
T17	30 - 0	ROHN 12 EHS w Angle 8x8x0.625	30.08	10.03	30.2	33.3120	644884.00	1499040.00	0.430

	Diagonal Design Data (Tension)								
Section	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio
No.	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$
T1	320 - 304	L1 3/4x1 3/4x3/16	7.90	3.56	82.2	0.3604	1285.02	15675.30	0.082 1

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	320' Rohn SSVMW	79 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T2	304 - 300	L1 3/4x1 3/4x3/16	7.90	3.56	82.2	0.3604	1484.81	15675.30	0.095 ¹
Т3	300 - 280	L2x2x1/4	9.94	4.68	94.6	0.5629	3547.65	24485.10	0.145 1
T4	280 - 260	L2 1/2x2 1/2x1/4	12.59	5.83	93.1	0.7284	5433.69	31687.00	0.171 ¹
T5	260 - 240	L3x3x1/4	14.38	6.72	88.5	0.9159	8615.64	44652.00	0.193 ¹
Т6	240 - 220	L4x4x5/16	16.19	7.64	75.2	1.5949	11044.20	77752.40	0.142 ¹
Τ7	220 - 200	L4x4x3/8	19.37	9.30	92.1	1.8989	16288.20	92571.70	0.176 ¹
Т8	200 - 180	L4x4x3/8	21.20	10.21	101.1	1.8637	20518.60	90857.80	0.226 ¹
Т9	180 - 170	2L4x4x1/4	22.13	10.68	104.0	2.5350	22580.70	123581.00	0.183 ¹
T10	170 - 160	2L4x4x1/4	23.06	11.15	108.4	2.5350	23621.10	123581.00	0.191 ¹
T11	160 - 140	L5x5x1/2	24.84	12.01	94.8	3.1875	27767.80	155391.00	0.179 ¹
T12	140 - 120	L5x5x1/2	26.78	13.03	102.7	3.1875	29953.50	155391.00	0.193 ¹
T13	120 - 100	ROHN 3 XXS	24.42	12.21	139.9	5.4664	48108.10	245987.00	0.196 ¹
T14	100 - 80	ROHN 3 XXS	25.15	12.58	144.1	5.4664	50210.50	245987.00	0.204 1
T15	80 - 60	ROHN 3.5 EH	25.98	12.99	119.3	3.6784	47379.70	165529.00	0.286 ¹
T16	60 - 30	ROHN 4 X-STR	35.21	11.74	95.4	4.4074	69213.70	198335.00	0.349 ¹
T17	30 - 0	ROHN 4 X-STR	36.27	12.09	98.2	4.4074	71155.10	198335.00	0.359 1

¹ P_u / ϕP_n controls

Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	А	P_u	ϕP_n	Ratio P_u
1101	ft		ft	ft		in^2	lb	lb	$\frac{1}{\phi P_n}$
T13	120 - 100	ROHN 3 STD	25.39	12.22	126.1	2.2285	26902.40	100281.00	0.268 1
T14	100 - 80	ROHN 3 X-STR	27.97	13.51	142.7	3.0159	29611.50	135717.00	0.218 1
T15	80 - 60	ROHN 3 XXS	30.47	14.76	169.2	5.4664	30054.70	245987.00	0.122 ¹
T16	60 - 30	ROHN 3.5 EH	33.14	16.04	147.3	3.6784	35787.10	165529.00	0.216 1

tnxTower	Job		Page
that ower		320' Rohn SSVMW	80 of 96
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		CSP Tower - Colchester, CT	11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T17	30 - 0	ROHN 4 X-STR	36.80	17.87	145.2	4.4074	38627.10	198335.00	0.195 1

¹ $P_u / \phi P_n$ controls

	Top Girt Design Data (Tension)								
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T1	320 - 304	L1 3/4x1 3/4x3/16	6.81	6.35	141.8	0.6211	95.62	20123.40	0.005 1

¹ $P_u / \phi P_n$ controls

	Redundant Horizontal (1) Design Data (Tension)											
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u			
	ft		ft	ft		in^2	lb	lb	ϕP_n			
T13	120 - 100	ROHN 1.5 STD	6.35	5.88	113.3	0.7995	8763.95	35975.60	0.244 1			
T14	100 - 80	P1.5x.145	6.99	6.52	125.7	0.7995	9957.64	35975.60	0.277 1			
T15	80 - 60	ROHN 2 STD	7.62	7.09	108.0	1.0745	11220.10	48353.90	0.232 1			
T16	60 - 30	ROHN 1.5 STD	5.52	4.99	96.2	0.7995	12440.50	35975.60	0.346 ¹			
T17	30 - 0	P1.5x.145	6.13	5.60	108.0	0.7995	14327.20	35975.60	0.398 1			

Redundant Horizontal (2) Design Data (Tension)									
Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T16	60 - 30	ROHN 2 XXS	11.05	10.52	179.6	2.6559	12440.50	119516.00	0.104 1
T17	30 - 0	ROHN 2.5 EH	12.27	11.74	152.4	2.2535	14327.20	101409.00	0.141 1

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	320' Rohn SSVMW	81 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

¹ $P_u / \phi P_n$ controls

Redundant Diagonal (1) Design Data (Tension)										
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u	
	ft		ft	ft		in ²	lb	lb	ϕP_n	
T13	120 - 100	ROHN 2 STD	11.52	10.57	161.1	1.0745	7951.20	48353.90	0.164 1	
T14	100 - 80	ROHN 2 EH	11.86	10.98	171.6	1.4807	8445.06	66630.70	0.127 1	
T15	80 - 60	ROHN 2 EH	12.18	11.36	177.4	1.4807	8973.17	66630.70	0.135 1	
T16	60 - 30	ROHN 2 EH	11.15	9.95	155.3	1.4807	12553.90	66630.70	0.188 1	
T17	30 - 0	ROHN 2.5 STD	11.41	10.31	130.6	1.7040	13328.60	76682.30	0.174 1	

¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T16	60 - 30	ROHN 2.5 STD	14.46	13.72	173.8	1.7040	8141.39	76682.30	0.106 1
T17	30 - 0	ROHN 2.5 STD	15.33	14.63	185.3	1.7040	8954.81	76682.30	0.117 ¹

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T13	120 - 100	ROHN 1.5 STD	6.35	6.35	122.3	0.7995	23.26	35975.60	0.001
T14	100 - 80	ROHN 1.5 STD	6.99	6.99	134.8	0.7995	21.07	35975.60	0.001 1
T15	80 - 60	ROHN 1.5 STD	7.62	7.62	146.8	0.7995	29.10	35975.60	0.001 1
T16	60 - 30	ROHN 1.5 STD	5.52	5.52	106.5	0.7995	169.41	35975.60	0.005 1
T17	30 - 0	ROHN 1.5 STD	6.13	6.13	118.2	0.7995	147.10	35975.60	0.004 1

tnxTower	Job	Page
<i>lnx10wer</i>	320' Rohn SSVMW	82 of 96
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 11:31:15 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.						. 2			P_u
	ft		ft	ft		in²	lb	lb	ϕP_n

¹ $P_u / \phi P_n$ controls

Redundant Hip (2) Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T16	60 - 30	ROHN 2 STD	11.05	11.05	168.4	1.0745	71.94	48353.90	0.001 1
T17	30 - 0	ROHN 2 STD	12.27	12.27	187.0	1.0745	63.61	48353.90	0.001 1

¹ $P_u / \phi P_n$ controls

		Redundant H	ip Diaç	gonal	(1) De	esign	Data (T	ension)	
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T13	120 - 100	ROHN 2.5 STD	15.15	15.15	191.9	1.7040	112.30	76682.30	0.001
T14	100 - 80	ROHN 2.5 STD	16.00	16.00	202.6	1.7040	109.74	76682.30	0.001 1
T15	80 - 60	ROHN 3 STD	16.88	16.88	174.1	2.2285	132.75	100281.00	0.001 1
T16	60 - 30	ROHN 2 STD	14.10	14.10	214.9	1.0745	356.36	48353.90	0.007 ¹
T17	30 - 0	ROHN 2.5 STD	14.88	14.88	188.4	1.7040	322.90	76682.30	0.004 1

Redundant Hip Diagonal (2) Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T16	60 - 30	ROHN 2 STD	17.91	17.91	273.1	1.0745	121.93	48353.90	0.003 1
T17	30 - 0	ROHN 2.5 STD	19.28	19.28	244.2	1.7040	118.63	76682.30	0.002 1

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	320' Rohn SSVMW	83 of 96
Project		Date
	CSP Tower - Colchester, CT	11:31:15 02/22/19
Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD

¹ $P_u / \phi P_n$ controls

	Inner Bracing Design Data (Tension)										
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u		
	ft		ft	ft		in^2	lb	lb	ϕP_n		
T13	120 - 100	ROHN 3 STD	12.69	12.69	130.9	2.2285	7.75	100281.00	0.000 1		
T14	100 - 80	ROHN 3 STD	13.99	13.99	144.2	2.2285	4.55	100281.00	0.000 1		
T15	80 - 60	ROHN 3 STD	15.24	15.24	157.1	2.2285	4.91	100281.00	0.000 1		
T16	60 - 30	ROHN 3 STD	16.57	16.57	170.9	2.2285	43.99	100281.00	0.000 1		
T17	30 - 0	ROHN 3 STD	18.40	18.40	189.8	2.2285	40.26	100281.00	0.000 1		

¹ $P_u / \phi P_n$ controls

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
T1	320 - 304	Leg	ROHN 5 EH	1	-6064.52	261674.00	2.3	Pass
		Leg	ROHN 5 EH	2	-5996.41	261674.00	2.3	Pass
		Leg	ROHN 5 EH	3	-6036.34	261674.00	2.3	Pass
T2	304 - 300	Leg	ROHN 5 EH	31	-8663.70	261674.00	3.3	Pass
		Leg	ROHN 5 EH	32	-8599.88	261674.00	3.3	Pass
		Leg	ROHN 5 EH	33	-8636.36	261674.00	3.3	Pass
T3	300 - 280	Leg	ROHN 6 EH	40	-25470.90	358043.00	7.1	Pass
		Leg	ROHN 6 EH	41	-25260.70	358043.00	7.1	Pass
		Leg	ROHN 6 EH	42	-24921.30	358043.00	7.0	Pass
T4	280 - 260	Leg	ROHN 8 EH w/ angle 8x8x0.5	70	-51346.00	874859.00	5.9	Pass
							9.5 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	71	-51467.40	874859.00	5.9	Pass
							9.5 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	72	-50867.90	874859.00	5.8	Pass
		-	-				9.6 (b)	
T5	260 - 240	Leg	ROHN 8 EH w/ angle 8x8x0.5	91	-87109.90	874884.00	10.0	Pass
		-	-				16.1 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	92	-87852.70	874884.00	10.0	Pass
		•					16.0 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	93	-86548.30	874884.00	9.9	Pass
		•					16.1 (b)	
T6	240 - 220	Leg	ROHN 8 EH w/ angle 8x8x0.5	112	-133834.00	874888.00	15.3	Pass
		C	C				24.7 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	113	-134619.00	874888.00	15.4	Pass
		C	C				24.6 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	114	-133545.00	874888.00	15.3	Pass
		0	č				24.7 (b)	
T7	220 - 200	Leg	ROHN 8 EH w/ angle 8x8x0.5	133	-187832.00	818638.00	22.9	Pass
		-0					23.1 (b)	

tnxTower

Project

Client

320' Rohn SSVMW

Page 84 of 96

Date 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

CSP Tower - Colchester, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${{}^{ { $	% Capacity	Pass Fail
		Leg	ROHN 8 EH w/ angle 8x8x0.5	134	-188983.00	818638.00	23.1	Pass
		Leg	ROHN 8 EH w/ angle 8x8x0.5	135	-187665.00	818638.00	22.9	Pass
		248		100	10,000.00	010020.00	23.1 (b)	1 400
Т8	200 - 180	Leg	ROHN 10 EH w/ angle 8x8x0.5	148	-256055.00	982914.00	26.1	Pass
10	200 - 180	LUg	KOTIN TO ETT W/ aligie 6X6X0.5	140	-250055.00	982914.00	31.7 (b)	1 455
		T	DOIDI 10 EU/	1.40	257802.00	092014.00		D
		Leg	ROHN 10 EH w/ angle 8x8x0.5	149	-257893.00	982914.00	26.2	Pass
							31.5 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	150	-255918.00	982914.00	26.0	Pass
							31.7 (b)	
Т9	180 - 170	Leg	ROHN 10 EH w/ angle 8x8x0.5	163	-291755.00	982929.00	29.7	Pass
							36.2 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	164	-293797.00	982929.00	29.9	Pass
		•	-				36.1 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	165	-291535.00	982929.00	29.7	Pass
		105	Romit to En w ungle oxoxo.5	100	271000.00	/02/2/.00	36.3 (b)	1 455
T10	170 - 160	Lag	ROHN 10 EH w/ angle 8x8x0.5	172	-328730.00	982929.00	33.4	Pass
110	170 - 100	Leg						
		Leg	ROHN 10 EH w/ angle 8x8x0.5	173	-330926.00	982929.00	33.7	Pass
		Leg	ROHN 10 EH w/ angle 8x8x0.5	174	-328498.00	982929.00	33.4	Pass
T11	160 - 140	Leg	ROHN 10 EH w/ angle 8x8x0.5	181	-406341.00	982978.00	41.3	Pass
							50.5 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	182	-408451.00	982978.00	41.6	Pass
							50.5 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	183	-405766.00	982978.00	41.3	Pass
		-0	8				50.7 (b)	
T12	140 - 120	Leg	ROHN 10 EH w/ angle 8x8x0.5	196	-485703.00	982899.00	49.4	Pass
112	140 120	LUS	Romit to En w/ ungle oxoxo.5	170	403703.00	/020//.00	60.3 (b)	1 455
		Lag	DOIDN 10 ELL w/ angla 9x9x0 5	197	-487928.00	982899.00	49.6	Deca
		Leg	ROHN 10 EH w/ angle 8x8x0.5	197	-48/928.00	982899.00		Pass
		T		100	10100(00	00000000	60.3 (b)	D
		Leg	ROHN 10 EH w/ angle 8x8x0.5	198	-484926.00	982899.00	49.3	Pass
							60.5 (b)	
T13	120 - 100	Leg	ROHN 10 EH w/ angle 8x8x0.5	211	-502064.00	982763.00	51.1	Pass
							61.8 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	212	-504577.00	982763.00	51.3	Pass
		•	-				61.9 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	213	-501437.00	982763.00	51.0	Pass
		8					62.1 (b)	
T14	100 - 80	Leg	ROHN 10 EH w/ angle 8x8x0.5	244	-570551.00	982792.00	58.1	Pass
117	100 - 00	•	ROHN 10 EH w/ angle 8x8x0.5	245	-573259.00	982792.00	58.3	Pass
		Leg	e		-569828.00	982792.00	58.0	
TT 1 C	00 (0	Leg	ROHN 10 EH w/ angle 8x8x0.5	246				Pass
T15	80 - 60	Leg	ROHN 12 EH w/ angle 8x8x0.5	277	-642838.00	1136630.00	56.6	Pass
							59.4 (b)	
		Leg	ROHN 12 EH w/ angle 8x8x0.5	278	-645787.00	1136630.00	56.8	Pass
							59.5 (b)	
		Leg	ROHN 12 EH w/ angle 8x8x0.5	279	-642064.00	1136630.00	56.5	Pass
		e	e				59.6 (b)	
T16	60 - 30	Leg	ROHN 12 EH w/ angle 8x8x0.5	310	-712131.00	1136700.00	62.6	Pass
110	00 00	248		010	, 12101.00	1120700.00	64.7 (b)	1 400
		Leg	ROHN 12 EH w/ angle 8x8x0.5	311	715227.00	1136700.00	62.9	Pass
		LUg	KOIIIV 12 EII w/ aligie 6x6x0.5	511	-/13227.00	1150700.00		1 455
		T		212	711400.00	112(700.00	64.8 (b)	D
		Leg	ROHN 12 EH w/ angle 8x8x0.5	312	-/11408.00	1136700.00	62.6	Pass
		_					64.9 (b)	_
T17	30 - 0	Leg	ROHN 12 EHS w Angle	361	-819071.00	1402320.00	58.4	Pass
			8x8x0.625					
		Leg	ROHN 12 EHS w Angle	362	-822463.00	1402320.00	58.7	Pass
		-	8x8x0.625					
		Leg	ROHN 12 EHS w Angle	363	-818240.00	1402320.00	58.3	Pass
		200	8x8x0.625	2.55	010210.00	02520.00	20.2	- 400
T1	320 - 304	Diagonal	L1 3/4x1 3/4x3/16	7	-1270.13	8910.59	14.3	Pass
11	520 - 504	Diagonal	L1 J/4A1 J/4AJ/10	/	-12/0.13	0710.37		1.922
		Dia	I 1 2/4-1 2/4 2/17	0	12(0.11	0010 50	22.0 (b)	P
		Diagonal	L1 3/4x1 3/4x3/16	8	-1269.11	8910.59	14.2 22.0 (b)	Pass

tnxTower

Project

Client

320' Rohn SSVMW

Page 85 of 96

Date 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

CSP Tower - Colchester, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
		Diagonal	L1 3/4x1 3/4x3/16	9	-1253.16	8910.59	14.1	Pass
		Diagonal	L1 3/4x1 3/4x3/16	10	-1242.00	8910.59	21.5 (b) 13.9	Pass
		Diagonal	L1 3/4x1 3/4x3/16	11	-1277.30	8910.59	21.5 (b) 14.3	Pass
		-					22.1 (b)	
		Diagonal	L1 3/4x1 3/4x3/16	12	-1276.58	8910.59	14.3 22.1 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	13	-1030.63	8910.59	11.6 17.7 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	14	-1031.03	8910.59	11.6	Pass
		Diagonal	L1 3/4x1 3/4x3/16	15	-1020.09	8910.59	17.7 (b) 11.4	Pass
		Diagonal	L1 3/4x1 3/4x3/16	16	-1007.48	8910.59	17.3 (b) 11.3	Pass
		-					17.3 (b)	
		Diagonal	L1 3/4x1 3/4x3/16	17	-1076.87	8910.59	12.1 18.5 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	18	-1077.16	8910.59	12.1 18.5 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	19	-776.95	8910.59	8.7	Pass
		Diagonal	L1 3/4x1 3/4x3/16	20	-791.39	8910.59	13.4 (b) 8.9	Pass
		-		21	-707.58		13.4 (b) 7.9	Pass
		Diagonal	L1 3/4x1 3/4x3/16			8910.59	11.9 (b)	
		Diagonal	L1 3/4x1 3/4x3/16	22	-683.55	8910.59	7.7 11.8 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	23	-809.15	8910.59	9.1	Pass
		Diagonal	L1 3/4x1 3/4x3/16	24	-807.60	8910.59	13.9 (b) 9.1	Pass
		Diagonal	L1 3/4x1 3/4x3/16	25	-481.27	8910.59	13.9 (b) 5.4	Pass
		-					8.2 (b)	
		Diagonal	L1 3/4x1 3/4x3/16	26	-555.65	8910.59	6.2 9.2 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	27	-241.61	8910.59	2.7 3.8 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	28	-248.39	8910.59	2.8	Pass
		Diagonal	L1 3/4x1 3/4x3/16	29	-548.54	8910.59	4.0 (b) 6.2	Pass
		Diagonal	L1 3/4x1 3/4x3/16	30	-469.10	8910.59	9.1 (b) 5.3	Pass
		•					8.0 (b)	
T2	304 - 300	Diagonal	L1 3/4x1 3/4x3/16	34	-1429.03	8910.59	16.0 24.2 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	35	-1428.20	8910.59	16.0 24.2 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	36	-1468.56	8910.59	16.5	Pass
		Diagonal	L1 3/4x1 3/4x3/16	37	-1435.55	8910.59	24.4 (b) 16.1	Pass
		Diagonal	L1 3/4x1 3/4x3/16	38	-1505.04	8910.59	24.4 (b) 16.9	Pass
		-					25.6 (b)	
		Diagonal	L1 3/4x1 3/4x3/16	39	-1504.88	8910.59	16.9 25.5 (b)	Pass
Т3	300 - 280	Diagonal	L2x2x1/4	46	-3572.28	10268.60	34.8	Pass
		Diagonal	L2x2x1/4	47	-3576.36	10268.60	39.0 (b) 34.8	Pass
		Diagonal	L2x2x1/4	48	-2509.55	10268.60	38.9 (b) 24.4	Pass
		2 mgonui		10		10200.00		1 400

tnxTower

Project

Client

320' Rohn SSVMW

Page 86 of 96

Date 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

CSP Tower - Colchester, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${{\mathscr O}P_{allow}}\ lb$	% Capacity	Pass Fail
							27.4 (b)	
		Diagonal	L2x2x1/4	49	-2719.56	10268.60	26.5 27.5 (b)	Pass
		Diagonal	L2x2x1/4	50	-2901.39	10268.60	27.5 (0) 28.3 29.4 (b)	Pass
		Diagonal	L2x2x1/4	51	-2667.81	10268.60	29.4 (0) 26.0 29.2 (b)	Pass
		Diagonal	L2x2x1/4	52	-2691.65	11287.50	23.8	Pass
		Diagonal	L2x2x1/4	53	-2690.71	11287.50	29.4 (b) 23.8	Pass
		Diagonal	L2x2x1/4	54	-2124.43	11287.50	29.4 (b) 18.8	Pass
		Diagonal	L2x2x1/4	55	-2214.40	11287.50	23.3 (b) 19.6	Pass
		Diagonal	L2x2x1/4	56	-2236.74	11287.50	23.2 (b) 19.8	Pass
		Diagonal	L2x2x1/4	57	-2145.44	11287.50	23.4 (b) 19.0	Pass
		Diagonal	L2x2x1/4	58	-2095.87	12397.20	23.5 (b) 16.9	Pass
		Diagonal	L2x2x1/4	59	-2128.16	12397.20	23.0 (b) 17.2	Pass
		Diagonal	L2x2x1/4	60	-1615.59	12397.20	22.9 (b) 13.0	Pass
		Diagonal	L2x2x1/4	61	-1592.51	12397.20	17.3 (b) 12.8	Pass
		Diagonal	L2x2x1/4	62	-2065.82	12397.20	17.3 (b) 16.7	Pass
		Diagonal	L2x2x1/4	63	-1986.70	12397.20	21.8 (b) 16.0	Pass
		Diagonal	L2x2x1/4	64	-1637.23	13499.80	21.8 (b) 12.1	Pass
		Diagonal	L2x2x1/4	65	-1640.80	13499.80	17.6 (b) 12.2	Pass
		Diagonal	L2x2x1/4	66	-1499.10	13499.80	17.5 (b) 11.1	Pass
		Diagonal	L2x2x1/4	67	-1479.37	13499.80	15.7 (b) 11.0	Pass
		Diagonal	L2x2x1/4	68	-1574.54	13499.80	15.7 (b) 11.7	Pass
		Diagonal	L2x2x1/4	69	-1545.48	13499.80	16.5 (b) 11.4	Pass
T4	280 - 260	Diagonal	L2 1/2x2 1/2x1/4	73	-5465.71	13248.50	16.6 (b) 41.3	Pass
		Diagonal	L2 1/2x2 1/2x1/4	74	-5467.00	13248.50	45.4 (b) 41.3	Pass
		Diagonal	L2 1/2x2 1/2x1/4	75	-4465.28	13248.50	45.4 (b) 33.7	Pass
		Diagonal	L2 1/2x2 1/2x1/4	76	-4802.42	13248.50	37.2 (b) 36.2	Pass
		Diagonal	L2 1/2x2 1/2x1/4	77	-4443.48	13248.50	37.0 (b) 33.5	Pass
		Diagonal	L2 1/2x2 1/2x1/4	78	-4156.50	13248.50	34.5 (b) 31.4	Pass
		Diagonal	L2 1/2x2 1/2x1/4	79	-4975.94	14735.30	34.6 (b) 33.8	Pass
		Diagonal	L2 1/2x2 1/2x1/4	80	-4981.93	14735.30	41.3 (b) 33.8	Pass
		Diagonal	L2 1/2x2 1/2x1/4	81	-3820.95	14735.30	41.3 (b) 25.9	Pass
		č					31.7 (b)	

tnxTower

320' Rohn SSVMW

Page 87 of

Date

87 of 96

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991 Job

Project

Client

(MODification) VZW-217/ EMP-008 - "G"

CSP Tower - Colchester, CT

Designed by MCD

11:31:15 02/22/19

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${\scriptstyle ilde{ heta}P_{allow}\ lb}$	% Capacity	Pass Fail
		Diagonal	L2 1/2x2 1/2x1/4	82	-4099.42	14735.30	27.8	Pass
		Diagonal	L2 1/2x2 1/2x1/4	83	-4098.81	14735.30	31.6 (b) 27.8	Pass
		Diagonal	L2 1/2x2 1/2x1/4	84	-3819.08	14735.30	31.6 (b) 25.9	Pass
		Diagonal	L2 1/2x2 1/2x1/4	85	-4571.81	16299.00	31.8 (b) 28.0	Pass
		-					38.0 (b)	
		Diagonal	L2 1/2x2 1/2x1/4	86	-4580.07	16299.00	28.1 38.0 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	87	-3199.23	16299.00	19.6 26.6 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	88	-3466.68	16299.00	21.3	Pass
		Diagonal	L2 1/2x2 1/2x1/4	89	-3692.14	16299.00	26.5 (b) 22.7	Pass
		Diagonal	L2 1/2x2 1/2x1/4	90	-3392.00	16299.00	28.1 (b) 20.8	Pass
Τ.	260 240	-					28.3 (b)	
T5	260 - 240	Diagonal	L3x3x1/4	94	-9061.08	17507.10	51.8 60.7 (b)	Pass
		Diagonal	L3x3x1/4	95	-8655.81	17507.10	49.4 60.9 (b)	Pass
		Diagonal	L3x3x1/4	96	-7820.27	17507.10	44.7	Pass
		Diagonal	L3x3x1/4	97	-8587.11	17507.10	56.4 (b) 49.0	Pass
		Diagonal	L3x3x1/4	98	-6077.52	17507.10	54.8 (b) 34.7	Pass
		Diagonal	L3x3x1/4	99	-5676.54	17507.10	39.7 (b) 32.4	Pass
		-					39.9 (b)	
		Diagonal	L3x3x1/4	100	-7439.20	19162.60	38.8 51.2 (b)	Pass
		Diagonal	L3x3x1/4	101	-7269.67	19162.60	37.9 51.2 (b)	Pass
		Diagonal	L3x3x1/4	102	-6458.88	19162.60	33.7	Pass
		Diagonal	L3x3x1/4	103	-6978.00	19162.60	46.3 (b) 36.4	Pass
		Diagonal	L3x3x1/4	104	-5545.76	19162.60	45.4 (b) 28.9	Pass
		-					36.8 (b)	
		Diagonal	L3x3x1/4	105	-5231.41	19162.60	27.3 36.9 (b)	Pass
		Diagonal	L3x3x1/4	106	-6671.05	21034.60	31.7 46.6 (b)	Pass
		Diagonal	L3x3x1/4	107	-6624.17	21034.60	31.5	Pass
		Diagonal	L3x3x1/4	108	-5686.08	21034.60	46.7 (b) 27.0	Pass
		Diagonal	L3x3x1/4	109	-6137.53	21034.60	40.6 (b) 29.2	Pass
		Diagonal	L3x3x1/4	110	-5115.96	21034.60	40.0 (b) 24.3	Pass
		-					33.8 (b)	
		Diagonal	L3x3x1/4	111	-4812.57	21034.60	22.9 33.9 (b)	Pass
T6	240 - 220	Diagonal	L4x4x5/16	115	-11675.40	39677.10	29.4 62.3 (b)	Pass
		Diagonal	L4x4x5/16	116	-11034.50	39677.10	27.8	Pass
		Diagonal	L4x4x5/16	117	-10796.00	39677.10	62.5 (b) 27.2	Pass
		Diagonal					61.2 (b)	

tnxTower

Project

Client

320' Rohn SSVMW

Page 88 of 96

Date 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

CSP Tower - Colchester, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
							61.0 (b)	
		Diagonal	L4x4x5/16	119	-8379.30	39677.10	21.1	Pass
		Diagonal	L4x4x5/16	120	-8237.23	39677.10	45.6 (b) 20.8	Pass
		Diagonal	L4X4X3/10	120	-0237.23	59077.10	45.6 (b)	1 455
		Diagonal	L4x4x5/16	121	-10830.80	42138.30	25.7	Pass
		Diagonal	I 4. 4. 5/16	100	10455 60	42138.30	58.9 (b) 24.8	Desa
		Diagonal	L4x4x5/16	122	-10455.60	42136.30	59.7 (b)	Pass
		Diagonal	L4x4x5/16	123	-10156.00	42138.30	24.1	Pass
		Diagonal	L4x4x5/16	124	-10659.40	42138.30	58.8 (b)	Pass
		Diagonal	L4X4X3/10	124	-10039.40	42136.30	25.3 57.1 (b)	F 455
		Diagonal	L4x4x5/16	125	-7541.85	42138.30	17.9	Pass
		Diagonal	L4x4x5/16	126	-7489.16	42138.30	42.1 (b) 17.8	Pass
		Diagonal	L4X4X3/10	120	-/409.10	42138.30	42.1 (b)	1 455
		Diagonal	L4x4x5/16	127	-10801.20	44552.90	24.2	Pass
		Diagonal	L4x4x5/16	128	-10321.60	44552.90	58.0 (b) 23.2	Pass
		Diugonui	E IX IXO/ TO	120	10521.00	11552.90	58.2 (b)	1 455
		Diagonal	L4x4x5/16	129	-9512.57	44552.90	21.4	Pass
		Diagonal	L4x4x5/16	130	-10342.80	44552.90	55.2 (b) 23.2	Pass
		-	2			11002.50	53.4 (b)	1 400
		Diagonal	L4x4x5/16	131	-7179.50	44552.90	16.1	Pass
		Diagonal	L4x4x5/16	132	-6806.80	44552.90	38.1 (b) 15.3	Pass
		-					38.2 (b)	
Τ7	220 - 200	Diagonal	L4x4x3/8	136	-17047.60	32190.20	53.0 78.0 (b)	Pass
		Diagonal	L4x4x3/8	137	-16307.10	32190.20	50.7	Pass
		-					76.7 (b)	
		Diagonal	L4x4x3/8	138	-16320.90	32190.20	50.7 76.8 (b)	Pass
		Diagonal	L4x4x3/8	139	-17073.60	32190.20	53.0	Pass
		D' I	14 4 2/0	1.40	12565 50	22100.20	78.1 (b)	D
		Diagonal	L4x4x3/8	140	-12565.50	32190.20	39.0 58.3 (b)	Pass
		Diagonal	L4x4x3/8	141	-12540.80	32190.20	39.0	Pass
		Diagonal	L4x4x3/8	142	-15887.50	35301.80	58.2 (b) 45.0	Pass
		Diagonal	L4X4X3/8	142	-15887.50	55501.80	72.7 (b)	1 455
		Diagonal	L4x4x3/8	143	-15218.80	35301.80	43.1	Pass
		Diagonal	L4x4x3/8	144	-15155.90	35301.80	71.4 (b) 42.9	Pass
		-					71.1 (b)	1 455
		Diagonal	L4x4x3/8	145	-15862.20	35301.80	44.9	Pass
		Diagonal	L4x4x3/8	146	-11767.70	35301.80	72.5 (b) 33.3	Pass
		-					54.4 (b)	
		Diagonal	L4x4x3/8	147	-11711.70	35301.80	33.2 54.4 (b)	Pass
Т8	200 - 180	Diagonal	L4x4x3/8	151	-20801.90	26701.10	77.9	Pass
		-					82.3 (b)	
		Diagonal	L4x4x3/8	152	-20546.30	26701.10	76.9 82.5 (b)	Pass
		Diagonal	L4x4x3/8	153	-20250.80	26701.10	75.8	Pass
		Diagonal	L4x4x3/8	154	-20678.50	26701.10	81.4 (b) 77.4	Pass

tnxTower

Project

Client

320' Rohn SSVMW

Page 89 of 96

Date 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

CSP Tower - Colchester, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${{}^{ { $	% Capacity	Pass Fail
		Diagonal	L4x4x3/8	155	-15949.70	26701.10	59.7 63.8 (b)	Pass
		Diagonal	L4x4x3/8	156	-15946.50	26701.10	59.7 63.8 (b)	Pass
		Diagonal	L4x4x3/8	157	-20209.20	29291.80	69.0	Pass
		Diagonal	L4x4x3/8	158	-19454.30	29291.80	77.5 (b) 66.4	Pass
		Diagonal	L4x4x3/8	159	-19466.30	29291.80	77.9 (b) 66.5 78.0 (b)	Pass
		Diagonal	L4x4x3/8	160	-20268.60	29291.80	78.0 (b) 69.2 77.7 (b)	Pass
		Diagonal	L4x4x3/8	161	-15064.20	29291.80	51.4 59.5 (b)	Pass
		Diagonal	L4x4x3/8	162	-14970.00	29291.80	59.5 (b) 51.1 59.5 (b)	Pass
Т9	180 - 170	Diagonal	2L4x4x1/4	166	-23031.70	76901.90	29.9 67.9 (b)	Pass
		Diagonal	2L4x4x1/4	167	-22662.40	76901.90	29.5 68.1 (b)	Pass
		Diagonal	2L4x4x1/4	168	-21965.70	76901.90	28.6 66.1 (b)	Pass
		Diagonal	2L4x4x1/4	169	-22682.00	76901.90	29.5 65.8 (b)	Pass
		Diagonal	2L4x4x1/4	170	-17612.30	76901.90	22.9 52.6 (b)	Pass
		Diagonal	2L4x4x1/4	171	-17564.10	76901.90	22.8 52.6 (b)	Pass
T10	170 - 160	Diagonal	2L4x4x1/4	175	-23867.10	72580.70	32.9 71.1 (b)	Pass
		Diagonal	2L4x4x1/4	176	-23690.20	72580.70	32.6 71.3 (b)	Pass
		Diagonal	2L4x4x1/4	177	-22675.80	72580.70	31.2 68.3 (b)	Pass
		Diagonal	2L4x4x1/4	178	-23336.00	72580.70	32.2 68.0 (b)	Pass
		Diagonal	2L4x4x1/4	179	-18383.00	72580.70	25.3 55.0 (b)	Pass
		Diagonal	2L4x4x1/4	180	-18362.70	72580.70	25.3 55.1 (b)	Pass
T11	160 - 140	Diagonal	L5x5x1/2	184	-28675.70	49897.30	57.5 83.6 (b)	Pass
		Diagonal	L5x5x1/2	185	-28078.30	49897.30	56.3 83.8 (b)	Pass
		Diagonal	L5x5x1/2	186	-26353.90	49897.30	52.8 78.7 (b)	Pass
		Diagonal	L5x5x1/2	187	-27739.30	49897.30	55.6 78.5 (b)	Pass
		Diagonal	L5x5x1/2	188	-23003.70	49897.30	46.1 66.1 (b)	Pass
		Diagonal	L5x5x1/2	189	-22239.50	49897.30	44.6 66.1 (b)	Pass
		Diagonal	L5x5x1/2	190	-26165.20	53704.40	48.7 78.8 (b)	Pass
		Diagonal	L5x5x1/2	191	-26106.80	53704.40	48.6 78.9 (b)	Pass
		Diagonal	L5x5x1/2	192	-24912.90	53704.40	46.4 75.8 (b)	Pass
		Diagonal	L5x5x1/2	193	-25466.20	53704.40	47.4 75.2 (b)	Pass
		Diagonal	L5x5x1/2	194	-20465.30	53704.40	38.1	Pass

tnxTower

Project

Client

320' Rohn SSVMW

Page QA

90 of 96 Date

11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

(MODification) VZW-217/ EMP-008 - "G"

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
							61.7 (b)	
		Diagonal	L5x5x1/2	195	-20443.90	53704.40	38.1	Pass
		U					61.7 (b)	
T12	140 - 120	Diagonal	L5x5x1/2	199	-30554.30	42434.90	72.0	Pass
		-					90.2 (b)	
		Diagonal	L5x5x1/2	200	-30119.10	42434.90	71.0	Pass
							90.4 (b)	
		Diagonal	L5x5x1/2	201	-27268.20	42434.90	64.3	Pass
							82.0 (b)	
		Diagonal	L5x5x1/2	202	-28983.30	42434.90	68.3	Pass
							81.7 (b)	_
		Diagonal	L5x5x1/2	203	-24814.70	42434.90	58.5	Pass
							70.8 (b)	
		Diagonal	L5x5x1/2	204	-23642.70	42434.90	55.7	Pass
		D' 1		205	20127.20	15005.00	70.9 (b)	D
		Diagonal	L5x5x1/2	205	-28137.30	45905.00	61.3	Pass
		Discoul	L 551/2	200	28002.20	45005 00	84.7 (b)	D
		Diagonal	L5x5x1/2	206	-28092.30	45905.00	61.2	Pass
		Diagonal	L5x5x1/2	207	25628 00	45905.00	84.8 (b)	Dess
		Diagonal	L5X5X1/2	207	-25638.90	45905.00	55.9 79.3 (b)	Pass
		Diagonal	L5x5x1/2	208	-26190.70	45905.00	57.1	Pass
		Diagonal	LJXJX1/2	208	-20190.70	43903.00	77.3 (b)	1 455
		Diagonal	L5x5x1/2	209	-21993.10	45905.00	47.9	Pass
		Diagonai	L3X3X1/2	209	-21995.10	43903.00	66.1 (b)	r ass
		Diagonal	L5x5x1/2	210	-21941.90	45905.00	47.8	Pass
		Diagonai	LJXJX1/2	210	-21941.90	43903.00	66.4 (b)	1 455
T13	120 - 100	Diagonal	ROHN 3 XXS	215	-50451.40	63081.40	80.0	Pass
115	120 100	Diagonal	ROHN 3 XXS	213	-49655.90	63081.40	78.7	Pass
		Diagonal	ROHN 3 XXS	222	-45955.30	63081.40	72.9	Pass
		Diagonal	ROHN 3 XXS	225	-48512.60	63081.40	76.9	Pass
		Diagonal	ROHN 3 XXS	231	-40703.50	63081.40	64.5	Pass
		Diagonal	ROHN 3 XXS	234	-39265.60	63081.40	62.2	Pass
T14	100 - 80	Diagonal	ROHN 3 XXS	248	-53273.30	59442.80	89.6	Pass
		Diagonal	ROHN 3 XXS	251	-52072.80	59442.80	87.6	Pass
		Diagonal	ROHN 3 XXS	255	-49396.90	59442.80	83.1	Pass
		Diagonal	ROHN 3 XXS	258	-51833.10	59442.80	87.2	Pass
		Diagonal	ROHN 3 XXS	264	-43600.90	59442.80	73.3	Pass
		Diagonal	ROHN 3 XXS	267	-42201.80	59442.80	71.0	Pass
T15	80 - 60	Diagonal	ROHN 3.5 EH	281	-51194.70	58371.00	87.7	Pass
		Diagonal	ROHN 3.5 EH	284	-49528.60	58371.00	84.9	Pass
		Diagonal	ROHN 3.5 EH	288	-46824.10	58371.00	80.2	Pass
		Diagonal	ROHN 3.5 EH	291	-49653.50	58371.00	85.1	Pass
		Diagonal	ROHN 3.5 EH	297	-41621.30	58371.00	71.3	Pass
		Diagonal	ROHN 3.5 EH	300	-39850.70	58371.00	68.3	Pass
T16	60 - 30	Diagonal	ROHN 4 X-STR	314	-74980.00	101988.00	73.5	Pass
							84.0 (b)	
		Diagonal	ROHN 4 X-STR	319	-72164.20	101988.00	70.8	Pass
							80.8 (b)	
		Diagonal	ROHN 4 X-STR	325	-68571.70	101988.00	67.2	Pass
							76.8 (b)	
		Diagonal	ROHN 4 X-STR	330	-72846.60	101988.00	71.4	Pass
							81.6 (b)	_
		Diagonal	ROHN 4 X-STR	340	-61859.90	101988.00	60.7	Pass
							69.3 (b)	_
		Diagonal	ROHN 4 X-STR	345	-59455.20	101988.00	58.3	Pass
	20	D	DOIDL			0.000.000	66.6 (b)	P
T17	30 - 0	Diagonal	ROHN 4 X-STR	365	-74412.70	97939.00	76.0	Pass
		D' 1	DOIDL 1 M CTD	250	72404.00	07020.00	83.3 (b)	D
		Diagonal	ROHN 4 X-STR	370	-73494.00	97939.00	75.0 82.3 (b)	Pass

tnxTower

Project

Client

320' Rohn SSVMW

Page 91 o

91 of 96 Date

11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

CSP Tower - Colchester, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
1101	-	Diagonal	ROHN 4 X-STR	376	-67979.90	97939.00	69.4	Pass
		Diagonal	ROHN 4 X-STR	381	-71655.70	97939.00	76.1 (b) 73.2 80.2 (b)	Pass
		Diagonal	ROHN 4 X-STR	391	-58797.40	97939.00	60.0 65.8 (b)	Pass
		Diagonal	ROHN 4 X-STR	396	-57188.50	97939.00	58.4 64.0 (b)	Pass
T13	120 - 100	Horizontal	ROHN 3 STD	214	-26940.90	31679.40	85.0	Pass
110	120 100	Horizontal	ROHN 3 STD	221	-25564.00	31679.40	80.7	Pass
		Horizontal	ROHN 3 STD	230	-20998.90	31679.40	66.3	Pass
T14	100 - 80	Horizontal	ROHN 3 X-STR	247	-30615.50	33455.50	91.5	Pass
		Horizontal	ROHN 3 X-STR	254	-29713.00	33455.50	88.8	Pass
		Horizontal	ROHN 3 X-STR	263	-24507.90	33455.50	73.3	Pass
T15	80 - 60	Horizontal	ROHN 3 XXS	280	-31059.50	43132.20	72.0	Pass
		Horizontal	ROHN 3 XXS	287	-29920.10	43132.20	69.4	Pass
		Horizontal	ROHN 3 XXS	296	-24346.20	43132.20	56.4	Pass
T16	60 - 30	Horizontal	ROHN 3.5 EH	313	-35715.60	38300.30	93.3	Pass
		Horizontal	ROHN 3.5 EH	324	-34342.80	38300.30	89.7	Pass
		Horizontal	ROHN 3.5 EH	339	-28014.50	38300.30	73.1	Pass
T17	30 - 0	Horizontal	ROHN 4 X-STR	364	-42078.40	47220.90	89.1	Pass
		Horizontal	ROHN 4 X-STR	375	-40365.00	47220.90	85.5	Pass
		Horizontal	ROHN 4 X-STR	390	-32810.10	47220.90	69.5	Pass
T1	T1 320 - 304	Top Girt	L1 3/4x1 3/4x3/16	4	-107.11	4209.52	2.5	Pass
		Top Girt	L1 3/4x1 3/4x3/16	5	-108.04	4209.52	2.6	Pass
		Top Girt	L1 3/4x1 3/4x3/16	6	-107.27	4209.52	2.5	Pass
T3	300 - 280	Top Girt	L2x2x1/4	43	-26.86	7691.25	0.6	Pass
		Top Girt	L2x2x1/4	44	-28.87	7691.25	0.6	Pass
		Top Girt	L2x2x1/4	45	-31.37	7691.25	0.6	Pass
T13	120 - 100	Redund Horz 1 Bracing	ROHN 1.5 STD	216	-8720.31	14083.10	61.9	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	219	-8763.95	14083.10	62.2	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	223	-8763.95	14083.10	62.2	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	226	-8709.44	14083.10	61.8	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	232	-8709.44	14083.10	61.8	Pass
T14	100 - 80	Redund Horz 1 Bracing Redund Horz 1	ROHN 1.5 STD	235 249	-8720.31	14083.10	61.9 86.7	Pass
114	100 - 80	Bracing	P1.5x.145		-9910.62	11432.70 11432.70		Pass
		Redund Horz 1 Bracing	P1.5x.145	252	-9957.64		87.1	Pass
		Redund Horz 1 Bracing Redund Horz 1	P1.5x.145 P1.5x.145	256 259	-9957.64 -9898.07	11432.70 11432.70	87.1 86.6	Pass Pass
		Bracing Redund Horz 1	P1.5x.145	259	-9898.07	11432.70	86.6	Pass
		Bracing Redund Horz 1	P1.5x.145	268	-9910.62	11432.70	86.7	Pass
T15	80 - 60	Bracing Redund Horz 1	ROHN 2 STD	282	-11168.90	20598.10	54.2	Pass
-	- • •	Bracing Redund Horz 1	ROHN 2 STD	285	-11220.10	20598.10	54.5	Pass
		Bracing Redund Horz 1	ROHN 2 STD	289	-11220.10	20598.10	54.5	Pass
		Bracing Redund Horz 1 Bracing	ROHN 2 STD	292	-11155.50	20598.10	54.2	Pass

Job tnxTower

Project

Client

320' Rohn SSVMW

Page 92 of 96

Date 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

CSP Tower - Colchester, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
		Redund Horz 1	ROHN 2 STD	298	-11155.50	20598.10	54.2	Pass
		Bracing Redund Horz 1	ROHN 2 STD	301	-11168.90	20598.10	54.2	Pass
T16	60 - 30	Bracing Redund Horz 1	ROHN 1.5 STD	315	-12384.50	18282.30	67.7	Pass
		Bracing Redund Horz 1	ROHN 1.5 STD	320	-12440.50	18282.30	68.0	Pass
		Bracing Redund Horz 1	ROHN 1.5 STD	326	-12440.50	18282.30	68.0	Pass
		Bracing Redund Horz 1 Bracing	ROHN 1.5 STD	331	-12368.20	18282.30	67.7	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	341	-12368.20	18282.30	67.7	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	346	-12384.50	18282.30	67.7	Pass
T17	30 - 0	Redund Horz 1 Bracing	P1.5x.145	366	-14266.20	15339.00	93.0	Pass
		Redund Horz 1 Bracing	P1.5x.145	371	-14327.20	15339.00	93.4	Pass
		Redund Horz 1 Bracing	P1.5x.145	377	-14327.20	15339.00	93.4	Pass
		Redund Horz 1 Bracing	P1.5x.145	382	-14248.30	15339.00	92.9	Pass
		Redund Horz 1 Bracing	P1.5x.145	392	-14248.30	15339.00	92.9	Pass
		Redund Horz 1 Bracing	P1.5x.145	397	-14266.20	15339.00	93.0	Pass
T16	60 - 30	Redund Horz 2 Bracing	ROHN 2 XXS	316	-12384.50	18604.80	66.6	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	321	-12440.50	18604.80	66.9	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	327	-12440.50	18604.80	66.9	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	332	-12368.20	18604.80	66.5	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	342	-12368.20	18604.80	66.5	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	347	-12384.50	18604.80	66.6	Pass
T17	30 - 0	Redund Horz 2 Bracing	ROHN 2.5 EH	367	-14266.20	21919.90	65.1	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	372	-14327.20	21919.90	65.4	Pass
		Redund Horz 2	ROHN 2.5 EH	378	-14327.20	21919.90	65.4	Pass
		Bracing Redund Horz 2 Bracing	ROHN 2.5 EH	383	-14248.30	21919.90	65.0	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	393	-14248.30	21919.90	65.0	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	398	-14266.20	21919.90	65.1	Pass
T13	120 - 100	Redund Diag 1 Bracing	ROHN 2 STD	217	-7911.60	9352.65	84.6	Pass
		Redund Diag 1 Bracing	ROHN 2 STD	220	-7951.20	9352.65	85.0	Pass
		Redund Diag 1 ROHN 2 STD Bracing	224	-7951.20	9352.65	85.0	Pass	
		Redund Diag 1 Bracing	ROHN 2 STD	227	-7901.74	9352.65	84.5	Pass
		Redund Diag 1	ROHN 2 STD	233	-7901.74	9352.65	84.5	Pass

tnxTower

Project

Client

320' Rohn SSVMW

Page 93 of 96

Date 11:31:15 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) VZW-217/ EMP-008 - "G"

CSP Tower - Colchester, CT

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${\scriptstyle ilde{ heta}P_{allow}\ lb}$	% Capacity	Pass Fail
		Bracing Redund Diag 1	ROHN 2 STD	236	-7911.60	9352.65	84.6	Pass
T14	100 - 80	Bracing Redund Diag 1	ROHN 2 EH	250	-8405.18	11364.10	74.0	Pass
		Bracing Redund Diag 1	ROHN 2 EH	253	-8445.06	11364.10	74.3	Pass
		Bracing Redund Diag 1 Bracing	ROHN 2 EH	257	-8445.06	11364.10	74.3	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	260	-8394.54	11364.10	73.9	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	266	-8394.54	11364.10	73.9	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	269	-8405.18	11364.10	74.0	Pass
T15	80 - 60	Redund Diag 1 Bracing	ROHN 2 EH	283	-8932.20	10626.30	84.1	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	286	-8973.17	10626.30	84.4	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	290	-8973.17	10626.30	84.4	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	293	-8921.47	10626.30	84.0	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	299	-8921.47	10626.30	84.0	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	302	-8932.20	10626.30	84.1	Pass
T16	60 - 30	Redund Diag 1 Bracing	ROHN 2 EH	317	-12497.50	13862.10	90.2	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	322	-12553.90	13862.10	90.6	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	328	-12553.90	13862.10	90.6	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	333	-12481.00	13862.10	90.0	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	343	-12481.00	13862.10	90.0	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	348	-12497.50	13862.10	90.2	Pass
T17	30 - 0	Redund Diag 1 Bracing	ROHN 2.5 STD	368	-13271.80	22579.60	58.8	Pass
		Redund Diag 1 Bracing	ROHN 2.5 STD	373	-13328.60	22579.60	59.0	Pass
		Redund Diag 1 Bracing	ROHN 2.5 STD	379	-13328.60	22579.60	59.0	Pass
		Redund Diag 1 Bracing	ROHN 2.5 STD	384	-13255.20	22579.60	58.7	Pass
		Redund Diag 1 Bracing	ROHN 2.5 STD	394	-13255.20	22579.60	58.7	Pass
		Redund Diag 1 Bracing	ROHN 2.5 STD	399	-13271.80	22579.60	58.8	Pass
Т16	60 - 30	Redund Diag 2 Bracing	ROHN 2.5 STD	318	-8104.77	12742.30	63.6	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	323	-8141.39	12742.30	63.9	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	329	-8141.39	12742.30	63.9	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	334	-8094.09	12742.30	63.5	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	344	-8094.09	12742.30	63.5	Pass

Page Job tnxTower 94 of 96 320' Rohn SSVMW Project Date AECOM CSP Tower - Colchester, CT 11:31:15 02/22/19 500 Enterprise Drive, Suite 3B Rocky Hill, CT Client Designed by Phone: 860-529-8882 FAX: 860-529-3991 (MODification) VZW-217/ EMP-008 - "G" MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${\scriptstyle {\it { } \hspace{15cm} } \hspace{15cm} P_{allow} \ lb}$	% Capacity	Pass Fail
110.		Redund Diag 2	ROHN 2.5 STD	349	-8104.77	12742.30	63.6	Pass
T17	30 - 0	Bracing Redund Diag 2	ROHN 2.5 STD	369	-8916.67	11206.60	79.6	Pass
		Bracing Redund Diag 2	ROHN 2.5 STD	374	-8954.81	11206.60	79.9	Pass
		Bracing Redund Diag 2 Bracing	ROHN 2.5 STD	380	-8954.81	11206.60	79.9	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	385	-8905.48	11206.60	79.5	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	395	-8905.48	11206.60	79.5	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	400	-8916.67	11206.60	79.6	Pass
T13	120 - 100	Redund Hip 1 Bracing	ROHN 1.5 STD	228	-47.89	12066.60	0.4	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	237	-39.84	12066.60	0.3	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	239	-49.09	12066.60	0.4	Pass
T14	100 - 80	Redund Hip 1 Bracing	ROHN 1.5 STD	261	-47.09	9943.20	0.5	Pass
		Redund Hip 1	ROHN 1.5 STD	270	-40.54	9943.20	0.4	Pass
		Bracing Redund Hip 1	ROHN 1.5 STD	272	-47.87	9943.20	0.5	Pass
T15	80 - 60	Bracing Redund Hip 1	ROHN 1.5 STD	294	-52.30	8378.50	0.6	Pass
		Bracing Redund Hip 1	ROHN 1.5 STD	303	-40.83	8378.50	0.5	Pass
		Bracing Redund Hip 1	ROHN 1.5 STD	305	-50.65	8378.50	0.6	Pass
T16	60 - 30	Bracing Redund Hip 1	ROHN 1.5 STD	335	-166.87	15708.50	1.1	Pass
		Bracing Redund Hip 1	ROHN 1.5 STD	350	-143.06	15708.50	0.9	Pass
		Bracing Redund Hip 1	ROHN 1.5 STD	354	-177.22	15708.50	1.1	Pass
T17	30 - 0	Bracing Redund Hip 1	ROHN 1.5 STD	386	-149.16	12924.00	1.2	Pass
		Bracing Redund Hip 1	ROHN 1.5 STD	401	-125.93	12924.00	1.0	Pass
		Bracing Redund Hip 1 Bracing	ROHN 1.5 STD	405	-159.91	12924.00	1.2	Pass
T16	60 - 30	Redund Hip 2 Bracing	ROHN 2 STD	336	-92.22	8559.02	1.1	Pass
		Redund Hip 2 Bracing	ROHN 2 STD	351	-79.47	8559.02	0.9	Pass
		Redund Hip 2 Bracing	ROHN 2 STD	355	-97.57	8559.02	1.1	Pass
T17	30 - 0	Redund Hip 2	ROHN 2 STD	387	-86.75	6941.18	1.2	Pass
		Bracing Redund Hip 2	ROHN 2 STD	402	-74.27	6941.18	1.1	Pass
		Bracing Redund Hip 2	ROHN 2 STD	406	-92.17	6941.18	1.3	Pass
T13	120 - 100	Bracing Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	229	-126.08	10450.60	1.2	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	238	-115.78	10450.60	1.1	Pass
		Redund Hip Diagonal	ROHN 2.5 STD	240	-127.85	10450.60	1.2	Pass

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

320' Rohn SSVMW Project CSP Tower - Colchester, CT Client

(MODification) VZW-217/ EMP-008 - "G"

Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{ heta P_{allow}}_{lb}$	% Capacity	Pass Fail
T14	100 - 80	l Bracing Redund Hip Diagonal	ROHN 2.5 STD	262	-123.54	9375.46	1.3	Pass
		1 Bracing Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	271	-114.12	9375.46	1.2	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	273	-124.80	9375.46	1.3	Pass
T15	80 - 60	Redund Hip Diagonal 1 Bracing	ROHN 3 STD	295	-150.55	16617.70	0.9	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 3 STD	304	-136.59	16617.70	0.8	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 3 STD	306	-152.41	16617.70	0.9	Pass
T16	60 - 30	Redund Hip Diagonal 1 Bracing	ROHN 2 STD	337	-339.49	5254.92	6.5	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2 STD	352	-279.90	5254.92	5.3	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2 STD	356	-367.70	5254.92	7.0	Pass
T17	30 - 0	Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	388	-308.07	10840.00	2.8	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	403	-252.91	10840.00	2.3	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	407	-335.83	10840.00	3.1	Pass
T16	60 - 30	Redund Hip Diagonal 2 Bracing	ROHN 2 STD	338	-141.17	3255.91	4.3	Pass
		Redund Hip Diagonal 2 Bracing	ROHN 2 STD	353	-141.09	3255.91	4.3	Pas
-	••••	Redund Hip Diagonal 2 Bracing	ROHN 2 STD	357	-142.44	3255.91	4.4	Pass
T17	30 - 0	Redund Hip Diagonal 2 Bracing	ROHN 2.5 STD	389	-139.45	6453.40	2.2	Pass
		Redund Hip Diagonal 2 Bracing	ROHN 2.5 STD	404	-142.31	6453.40	2.2	Pass
T 12	120 100	Redund Hip Diagonal 2 Bracing	ROHN 2.5 STD	408	-141.97	6453.40	2.2	Pase
T13	120 - 100	Inner Bracing	ROHN 3 STD	241	-31.43	29370.40	0.3	Pass
		Inner Bracing	ROHN 3 STD	242	-27.40	29370.40	0.3	Pass
		Inner Bracing	ROHN 3 STD	243	-29.88	29370.40	0.3	Pass
T14	100 - 80	Inner Bracing	ROHN 3 STD	274	-32.92	24201.90	0.3	Pass
		Inner Bracing	ROHN 3 STD	275	-29.20	24201.90	0.3	Pass
		Inner Bracing	ROHN 3 STD	276	-31.43	24201.90	0.4	Pass
T15	80 - 60	Inner Bracing	ROHN 3 STD	307	-40.78	20393.40	0.4	Pass
		Inner Bracing	ROHN 3 STD	308	-35.95	20393.40	0.4	Pass
		Inner Bracing	ROHN 3 STD	309	-38.85	20393.40	0.4	Pass
T16	60 - 30	Inner Bracing	ROHN 3 STD	358	-60.05	17239.70	0.4	Pass
		Inner Bracing	ROHN 3 STD	359	-59.72	17239.70	0.4	Pass
		Inner Bracing	ROHN 3 STD	360	-60.28	17239.70	0.4	Pass
T17	30 - 0	Inner Bracing	ROHN 3 STD	409	-62.76	13981.00	0.5	Pass
		Inner Bracing	ROHN 3 STD	410	-62.47	13981.00	0.5	Pass
		Inner Bracing	ROHN 3 STD	411	-62.96	13981.00	0.5	Pass
		niner Blacing	KOIII (J SID	+11	-02.70	15701.00		1 453
						L (T1C)	Summary	D
						Leg (T16)	64.9	Pass
						Diagonal (T12)	90.4	Pass
						Horizontal (T16)	93.3	Pass
						Top Girt (T1)	2.6	Pass
						Redund	93.4	Pas

Page 95 of 96

Date 11:31:15 02/22/19

tnxTower	Job 320' Rohn SSVMW		Page 96 of 96	
AECOM 500 Enterprise Drive, Suite 3B	Project	CSP Tower - Colchester, CT	Date 11:31:15 02/22/19	
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	(MODification) VZW-217/ EMP-008 - "G"	Designed by MCD	

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
						Horz 1		
						Bracing		
						(T17)		
						Redund	66.9	Pass
						Horz 2		
						Bracing		
						(T16)		
						Redund	90.6	Pass
						Diag 1		
						Bracing		
						(T16)		
						Redund	79.9	Pass
						Diag 2		
						Bracing		
						(T17)		
						Redund Hip	1.2	Pass
						1 Bracing		
						(T17)		
						Redund Hip	1.3	Pass
						2 Bracing		
						(T17)		
						Redund Hip	7.0	Pass
						Diagonal 1		
						Bracing		
						(T16)		
						Redund Hip	4.4	Pass
						Diagonal 2		
						Bracing		
						(T16)		
						Inner	0.5	Pass
						Bracing		
						(T17)		
						Bolt Checks	90.4	Pass
						RATING =	93.4	Pass

Program Version 8.0.5.0 - 11/28/2018 File:P:/Projects/Telcom/StructuralsByLocation/Connecticut/ColchesterCSP#50/12_AT&T_EMP-005_VZ5-217_MOD/ERI_G/Fixing_20181221_VZW-EMP-MO Diffication.eri

ANCHOR BOLT EVALUATION

AECO Job Descriptio	320' Rohn SSVMW - Colch	A-222-G)	Project No. E Computed by Checked by		Page of 17 Sheet 1 of 4 Date 02/22/19 Date		
	AN	CHOR BOLT	ANALY	SIS			
Input E	Data						
Towe	r Reactions:						
U	plift:	Uplift := 725.960 · kips	user input				
S	hear:	Shear := 128.286 · kips	user input				
С	ompression:	Compression := 924.766 · k	tips user input				
Anch	or Bolt Data:						
U	se ASTM A354 Grade BC						
Ν	umber of Anchor Bolts = N	<u>N</u> := 24	user input				
В	olt Ultimate Strength:	$F_u := 125 \cdot ksi$	user input				
В	olt Yield Strength:	Fy := 109·ksi	user input				
В	olt Modulus:	E := 29000 · ksi	user input				
Т	hickness of Anchor Bolts	D := 1.0in	user input				
Т	hreads per Inch:	n := 8	user input				
С	oefficient of Friction:	$\mu := 0.55$	user input	(for baseplate with	grout ASCE 10-15)		
	ength from top of pier to ottom of leveling nut:	$L_{ar} := 0$ in	user input				
В	olt Modulus:	<u>E</u> := 29000·ksi	user input				

ob	320' Pohn SS\MM/ Colobootor CT	Project No.	EMP-008 / VZW-217	Page of		
escription	320' Rohn SSVMW - Colchester, CT Anchor Bolt Analysis (TIA-222-G)	Computed by		Date 02/22/19		
	Proposed Inventory - MODification Analysis	Checked by		Date		
Anchor I	Bolt Section Properties:					
Gr	oss Area of Bolt:					
	$A_g := \frac{\pi}{4} \cdot D^2$	$A_g = 0.79 \cdot in^2$				
Ne	t Area of Bolt:					
	$A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^2$	$A_n = 0.61 \cdot in^2$				
Ne	t Diameter:					
	$D_n := D - \frac{0.9743 in}{n}$	$D_n = 0.88 \cdot in$				
Ra	dius of Gyration of Bolt:					
	$r := \frac{D_n}{4}$	$r = 0.22 \cdot in$				
Pla	astic Section Modulus of Bolt:					
	$Z_{x} := \frac{D_{n}^{3}}{6}$	$Z_x = 0.11 \cdot in^3$				
Forces:						
Tens	sion Force:	Resistance Factor f	or Flexure (ANSI/TIA	A-222-G 4.7):		
	$T_u := \frac{\text{Uplift}}{N}$	$\phi_{\rm f} \coloneqq 0.9$				
	$T_u = 30.25 \cdot kip$	Resistance Factor f	or Anchor Bolt (ANSI	/TIA-222-G 4.5.4		
	$T_{ub} := T_u$	$\varphi_b := 0.80$				
		Resistance Factor for Tension (ANSI/TIA-222-G 4.9.6.1):				
		$\varphi_t := 0.75$				
She	ar Force:	Resistance Factor f	or Shear (ANSI/TIA-2	222-G 4.9.6.3):		
	$V_u := \frac{Shear}{N}$	$\phi_v := 0.75$				
	$V_u = 5.35 \cdot kip$ $V_{ub} := V_u$					

A_CU	M			Page	of
ob	320' Rohn SSVMW - Colchester, CT		EMP-008 / VZW-217		
Description	Anchor Bolt Analysis (TIA-222-G) Proposed Inventory - MODification Analysis	Computed by Checked by	MCD	Date Date	02/22/19
				Duic .	
<u>ANSI/TIA</u>	-222-G 4.7.1 Flexural Members:				
Nomi	nal Flexure Strength, Mn:				
	$M_n := Fy \cdot Z_x$				
	$M_n = 1.03 \cdot ft \cdot kip$				
	$\phi_{f} \cdot M_n = 0.92 \cdot ft \cdot kip$				
Арр	lied Moment due to Shear (worst case lever arm), M	J:			
	$M_u := L_{ar} \cdot V_u$				
	$M_u = 0 \cdot ft \cdot kip$				
Fle	exure Check:				
	FlexureCheck := if $(M_u \le \phi_f M_n, "OK", "NO GOOD")$	')	K.		
	FlexureCheck = "OK"		$\frac{M_{\rm u}}{M_{\rm r}} = 0.\%$		
ANSI/TI	A-222-G 4.9.6.1 Tensile Strength:	+ I			
Des	ign Tensile Strength, Rnt:				
	$R_{nt} := F_u \cdot A_n$				
	$R_{nt} = 75.72 \cdot ft \cdot kip$				
	$\phi_t \cdot R_{nt} = 56.79 \cdot ft \cdot kip$				
Те	nsion Check:				
	TensionCheck := if $(T_u \le \phi_t \cdot R_{nt}, "OK", "NO GOOD")$) ₁	$\Gamma_{\rm u} = 53.26.9/$		
	TensionCheck = "OK"	ϕ_t	$\frac{\Gamma_{\rm u}}{R_{\rm nt}} = 53.26 \cdot \%$		
<u>ANSI/TI</u>	A-222-G 4.9.6.3 Design Shear Strength:				
De	sign Shear Strength, Rnv:				
	$R_{nv} \coloneqq 0.45 \cdot F_u \cdot A_g$				
	$R_{nv} = 44.18 \cdot ft \cdot kip$				
	$\phi_{v} \cdot R_{nv} = 33.13 \cdot ft \cdot kip$				
Sh	ear Check:				
	ShearCheck := if $(V_u \le \varphi_v \cdot R_{nv}, "OK", "NO GOOD")$		$\frac{V_u}{V_u} = 16.13.\%$		
	ShearCheck = "OK"	¢	$\overline{\mathbf{p}_{v} \cdot \mathbf{R}_{nv}} = 16.13.\%$		

AECO	Μ			Page	of
Job	320' Rohn SSVMW - Colchester, CT	Project No.	EMP-008 / VZW-217	Sheet	4 of 4
Description	Anchor Bolt Analysis (TIA-222-G)	Computed by	MCD	Date	02/22/19
	Proposed Inventory - MODification Analysis	Checked by		Date	

ANSI/TIA-222-G 4.9.6.4 Combined Shear and Tension:

$$\left[\frac{V_{ub}}{\left(\varphi_{v}\cdot R_{nv}\right)}\right]^{2} + \left[\frac{T_{ub}}{\left(\varphi_{t}\cdot R_{nt}\right)}\right]^{2} \leq 1$$

$$\left[\frac{V_{ub}}{\left(\varphi_{v}\cdot R_{nv}\right)}\right]^{2} + \left[\frac{T_{ub}}{\left(\varphi_{t}\cdot R_{nt}\right)}\right]^{2} = 0.31$$

Combined Shear and Tension Check:

ShearAndTensionCheck := if
$$\left[\left[\frac{V_{ub}}{(\phi_v \cdot R_{nv})} \right]^2 + \left[\frac{T_{ub}}{(\phi_t \cdot R_{nt})} \right]^2 \le 1, "OK", "NO GOOD" \right]$$

ShearAndTensionCheck = "OK"

ANSI/TIA-222-G 4.9.9 Anchor Rods (Capacity):

$$\frac{\left[T_u + \left(\frac{V_u}{\eta}\right)\right]}{\phi_b \cdot P_n} \le 1$$

η := 0.55

user input from ANSI/TIA-222-G 4.9.9

$$\frac{\left[T_{u} + \left(\frac{V_{u}}{\eta}\right)\right]}{\phi_{b} \cdot F_{u} \cdot A_{n}} = 0.660$$

Capacity Check:

$$CapacityCheck := if \left[\frac{\left[T_u + \left(\frac{V_u}{\eta} \right) \right]}{\phi_b \cdot F_u \cdot A_n} \le 1, "OK", "NO \text{ } GOOD" \right]$$

FOUNDATION EVALUATION

AECO	M						Page	of
Job		/MW - Colcheste		Project No.		8 / VZW-217		
Description	Evaluation of D	orilled Pier Caiss	on	_Computed by	I	MCD	Date	02/22/19
	Proposed Inver	ntory - MODificat	ion Analysis	Checked by			Date	
3 SIDED	SELF SUPPORT	ING TOWER FO	UNDATION DRILLE	PIER				
Compressio	on:	DownLoad :=	924.766 kips	$\gamma c := 150 pcf$		Concrete unit weight		
Uplift:		uplift:= 725.96	50 kips	$\gamma w := 62.4 pc$	f	Water unit we	eight	
Depth Negl Skin Frictio	ected for on at the top	Depthunbond	<mark>:= 4∙ft</mark>	$\gamma s := 120 pcf$ Soil unit weight		ht		
Drill Caisso	n length	CasissonLeng	th:= 35.5 ft	$Pier\phi := 7.5 d$	ft	Pier diameter		
Water Table	e Below grade:	Wd := $10 \cdot ft$	Per BL Companies	$hg := 0.5 \cdot ft$		Height of Pie	r Above	grade
Ave allowal	ble Shear		Report 9.13.2000					
at Depth of	4' to 10'	f1 := (380psf)	·2.0	SoilBearing	Capacity	= (6.7ksf)·2.	<mark>.0</mark>	
Ave allowal at Depth of		f2 := (700psf)	·2.0	Allowable Bear Bearing Capac			35' x 2	for Ultimat

NOTE: Values are indicated as "Allowable Stress" figures. Per TIA-222-G Section 9.4 (Design Strength), Allowable values may be multiplied to obtain Design Strength values before applying reduction factors.

Loading:

TotalDownLoad:= DownLoad + 1.2 $\left[\pi \cdot \frac{\text{Pier}\phi^2}{4} \cdot (\text{CasissonLength}\gamma c)\right]$

TotalDownLoad = 1207.07kips

Pierweight:=
$$0.9 \left[\pi \cdot \frac{\text{Pier}\phi^2}{4} \cdot \left[(\text{Wd} + \text{hg}) \cdot \gamma \text{c} + (\text{CasissonLength} - \text{Wd} - \text{hg}) \cdot (\gamma \text{c} - \gamma \text{w}) \right] \right]$$

Pierweight= 149.7 kips

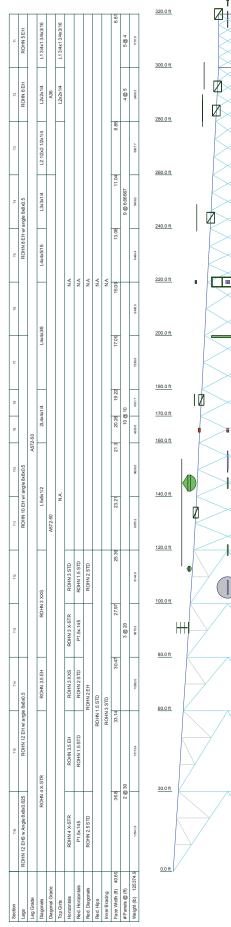
Soilshear:= $\pi \cdot \text{Pier} \phi [f1 \cdot (Wd - \text{Depthunbond}) + f2 \cdot (\text{CasissonLength} - Wd - hg)]$

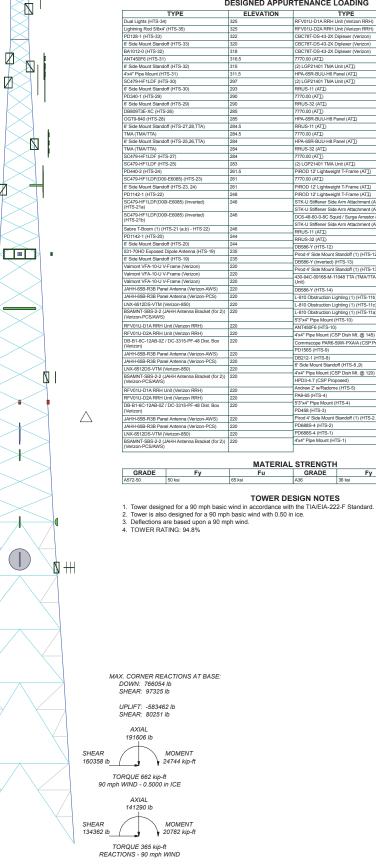
Soilshear = $932.11 \cdot kips$

Compression Capacity:

TotalDownLoadCapacity := 0.75 · Soilshear + 0.75 SoilBearingCapacity $\left(\pi \cdot \frac{\text{Pier}\phi^2}{4}\right)$

 $TotalDownLoadCapacity = 1143.08 \cdot kips$

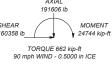

Tension Capacity:


TotalUpLiftCapacity := 0.75Soilshear + 0.75Pierweight

TotalUpLiftCapacity = 811.36 · kips

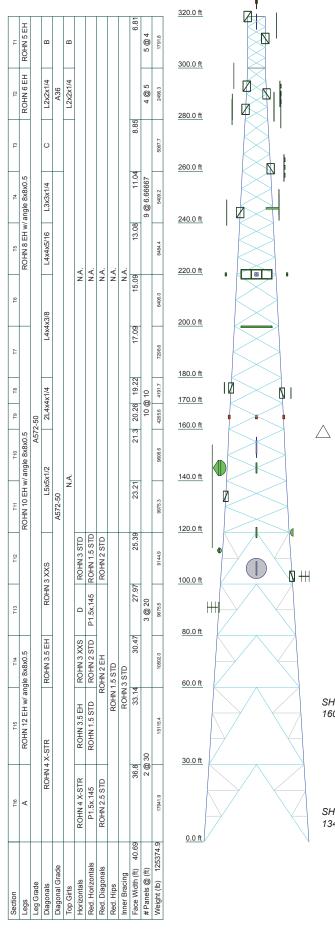
_			
AECO	M		Page of
Job	320' Rohn SSVMW - Colchester, CT	Project No. EMP-008 / VZW-21	·
Description	Evaluation of Drilled Pier Caisson	Computed by MCD	Date 02/22/19
	Proposed Inventory - MODification Analysis	Checked by	Date
Check Cone	Failure		
ConeFailur	reCapacity := $\frac{[(CasissonLength - hg) \cdot tan(30)]}{4}$	$\cdot \text{deg}) \cdot 2 + \text{Pier}\phi]^2 \cdot \pi \cdot \frac{\text{CasissonLer}}{3}$	$hgth - hg \cdot (69pcf)$
ConeFailu		he appoximate average of submerged ered in uplifting failure cone.	d soil (25 ft) and dry
CheckCone	eFailureCapacity := if (uplift < ConeFailureC	Capacity, "Okay", "No Good")	
CheckCon	eFailureCapacity = "Okay"	1	:0
Checkeon	or undeclupacity only	upl 0.75ConeFail	$\frac{\text{ift}}{\text{ureCapacity}} = 66.7 \cdot \%$
_			
	ion Check (Previous foundation Mod. o	designed by URS dated 7/13/	2012 (VZ5-122)):
Add Concre	ete around existing caisson foundations		
L _{modificati}	on := 12 ft Depth _{modification} := 4 ft		
	$_{2}$ Pier ϕ^{2}		2
Area _{modif}	$fication := L_{\text{modification}}^2 - \pi \cdot \frac{\text{Pier}\varphi^2}{4}$	$Area_{modification} = 99.8$	2ft^2
Weightmc	$dification := Area_{modification} \cdot Depth_{modification} \cdot$	γc Weight _{modification} = 5	9.89 kip
SoilBeari	<mark>ngCapacity_{4ft} := (2ksf)·2.0</mark> Ultimate Soil Bearin	ng Capacity at 4' Below> Based on	Boring Logs
TotalDowr	Load ₂ := TotalDownLoad + 1.2Weight _{modific}	TotalDownLoad ₂ = 1278	3.94∙kip
TotalDowr	hLoadCapacity ₂ := TotalDownLoadCapacity	+ 0.75Area _{modification} · SoilBearing	gCapacity _{4ft}
		TotalDownLoadCapacit	$y_2 = 1442.54 \cdot kip$
CheckDow	mLoadCapacity ₂ := if(TotalDownLoad ₂ < T	CotalDownLoadCapacity2, "Okay"	, "No Good")
	$nLoadCapacity_2 = "Okay"$	TotalDown	, Loada
	menucupueny ₂ – Onuy		$\frac{\text{ILOad}_2}{\text{dCapacity}_2} = 88.7.\%$
			uCapacity ₂
TotalUpLi	ftCapacity ₂ := TotalUpLiftCapacity + 0.9Weig	ght _{modification}	
TotalUpLi	$ftCapacity_2 = 865.26 \cdot kips$		
CheckUpL	iftCapacity ₂ := if(uplift < TotalUpLiftCapac	city ₂ , "Okay" , "No Good" up	lift = \$3.00.9
	X	TotalUpLi	$\frac{110}{\text{ftCapacity}_2} = 83.90.\%$
CheckUpL	iftCapacity ₂ = "Okay"		

ANALYSIS UNDER TIA-222-F DESIGN CRITERIA (DESPP / CSP)


ł

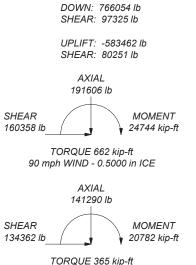

TYPE	ELEVATION	TYPE	ELEVATION
Dual Lights (HTS-34)	325	RFV01U-D1A RRH Unit (Verizon RRH)	220
ightning Rod 5/8x4" (HTS-35)	325	RFV01U-D2A RRH Unit (Verizon RRH)	220
PD128-1 (HTS-33)	322	CBC78T-DS-43-2X Diplexer (Verizon)	220
5' Side Mount Standoff (HTS-33)	320	CBC78T-DS-43-2X Diplexer (Verizon)	220
3A1012-0 (HTS-32)	318	CBC78T-DS-43-2X Diplexer (Verizon)	220
ANT450F6 (HTS-31)	316.5	7770.00 (AT <u>I</u>)	200
5' Side Mount Standoff (HTS-32)	315	(2) LGP21401 TMA Unit (ATI)	200
Vx4" Pipe Mount (HTS-31)	311.5	HPA-65R-BUU-H6 Panel (ATI)	200
SC479-HF1LDF (HTS-30)	297	(2) LGP21401 TMA Unit (ATI)	200
S' Side Mount Standoff (HTS-30)	293	RRUS-11 (ATI)	200
PD340-1 (HTS-29)	290	7770.00 (AT <u>I</u>)	200
5' Side Mount Standoff (HTS-29)	290	RRUS-32 (ATI)	200
0B809T3E-XC (HTS-26)	285	7770.00 (AT <u>I</u>)	200
OGT9-840 (HTS-28)	285	HPA-65R-BUU-H8 Panel (ATI)	200
Side Mount Standoff (HTS-27,28,TTA)	284.5	RRUS-11 (ATI)	200
'MA (TMA/TTA)	284.5	7770.00 (AT <u>I</u>)	200
Side Mount Standoff (HTS-25,26,TTA)	284	HPA-65R-BUU-H8 Panel (ATT)	200
'MA (TMA/TTA)	284	RRUS-32 (ATI)	200
6C479-HF1LDF (HTS-27)	284	7770.00 (AT <u>I</u>)	200
6C479-HF1LDF (HTS-25)	283	(2) LGP21401 TMA Unit (AT <u>I</u>)	200
2D440-2 (HTS-24)	261.5	PiROD 12' Lightweight T-Frame (ATT)	200
SC479-HF1LDF(D00-E6085) (HTS-23)	261	7770.00 (AT <u>I</u>)	200
Side Mount Standoff (HTS-23, 24)	261	PiROD 12' Lightweight T-Frame (ATI)	200
D1142-1 (HTS-22)	248	PiROD 12' Lightweight T-Frame (ATI)	200
C479-HF1LDF(D00I-E6085) (Inverted) HTS-21a)	246	STK-U Stiffener Side Arm Attachment (ATI)	200
C479-HF1LDF(D00I-E6085) (Inverted)	246	STK-U Stiffener Side Arm Attachment (ATI)	200
HTS-21b)	240	DC6-48-60-0-8C Squid / Surge Arrestor (ATI)	200
abre T-Boom (1) (HTS-21 (a,b) - HTS 22)	246	STK-U Stiffener Side Arm Attachment (ATI)	200
D1142-1 (HTS-20)	244	RRUS-11 (ATI)	200
Side Mount Standoff (HTS-20)	244	RRUS-32 (ATI)	200
31-70HD Exposed Dipole Antenna (HTS-19)	235	DB586-Y (HTS-12)	176
Side Mount Standoff (HTS-19)	235	Pirod 4' Side Mount Standoff (1) (HTS-12)	176
almont VFA-10-U V-Frame (Verizon)	220	DB586-Y (inverted) (HTS-13)	174
almont VFA-10-U V-Frame (Verizon)	220	Pirod 4' Side Mount Standoff (1) (HTS-13,14,TTA)	174
almont VFA-10-U V-Frame (Verizon)	220	430-94C-09168-M-11048 TTA (TMA/TTA Control Unit)	174
AHH-65B-R3B Panel Antenna (Verizon-AWS)	220	DB586-Y (HTS-14)	174
AHH-65B-R3B Panel Antenna (Verizon-PCS)	220	L-810 Obstruction Lighting (1) (HTS-11b)	164
NX-6512DS-VTM (Verizon-850)	220	L-810 Obstruction Lighting (1) (HTS-11c)	164
SAMNT-SBS-2-2 (JAHH Antenna Bracket (for 2))	220	L-810 Obstruction Lighting (1) (HTS-11a)	164
Verizon-PCS/AWS)		5'3"x4" Pipe Mount (HTS-10)	153
RFV01U-D1A RRH Unit (Verizon RRH)	220	ANT450F6 (HTS-10)	153
RFV01U-D2A RRH Unit (Verizon RRH)	220	4'x4" Pipe Mount (CSP Dish Mt. @ 145)	145
B-B1-6C-12AB-0Z / DC-3315-PF-48 Dist. Box	220	Commscope PAR6-59W-PXA/A (CSP Proposed)	145
Verizon)		PD156S (HTS-9)	137
AHH-65B-R3B Panel Antenna (Verizon-AWS)	220	DB212-1 (HTS-8)	134
AHH-65B-R3B Panel Antenna (Verizon-PCS)	220	6' Side Mount Standoff (HTS-8_9)	134
NX-6512DS-VTM (Verizon-850)	220	4'x4" Pipe Mount (CSP Dish Mt. @ 120)	120
ISAMNT-SBS-2-2 (JAHH Antenna Bracket (for 2)) Verizon-PCS/AWS)	220	HPD3-4.7 (CSP Proposed)	120
	220	Andrew 2' w/Radome (HTS-5)	113
RFV01U-D1A RRH Unit (Verizon RRH)	220	PA8-65 (HTS-4)	106
FV01U-D2A RRH Unit (Verizon RRH)	220	5'3"x4" Pipe Mount (HTS-4)	106
0B-B1-6C-12AB-0Z / DC-3315-PF-48 Dist. Box Verizon)	220	PD458 (HTS-3)	105
AHH-65B-R3B Panel Antenna (Verizon-AWS)	220	Pirod 4' Side Mount Standoff (1) (HTS-2 "3)	103
AHH-65B-R3B Panel Antenna (Verizon-PCS)	220	PD688S-4 (HTS-2)	103
NX-6512DS-VTM (Verizon-850)	220	PD688S-4 (HTS-1)	91
3SAMNT-SBS-2-2 (JAHH Antenna Bracket (for 2))	220	4'x4" Pipe Mount (HTS-1)	91

MATERIAL STRENGTH


ADE	Fy	Fu	GRADE	Fy	Fu
	50 ksi	65 ksi	A36	36 ksi	58 ksi

MAX. CORNER REACTIONS AT BASE:

	AECOM	^{Job:} 320' Rohn SSVMW		
500 Er	terprise Drive, Suite 3B	Project: CSP Tower - Colchester, CT		
	Rocky Hill, CT	Client: (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Drawn by: MCD	App'd:
	Phone: 860-529-8882	Code: TIA/EIA-222-F	Date: 02/22/19	Scale: NTS
	FAX: 860-529-3991	Path:		Dwg No. E-1



	SYMBOL LIST						
MARK	SIZE	MARK	SIZE				
A	ROHN 12 EHS w Angle 8x8x0.625	С	L2 1/2x2 1/2x1/4				
В	L1 3/4x1 3/4x3/16	D	ROHN 3 X-STR				
	MATERIAL STRENGTH						

MATERIAL STRENGTH							
GRADE	Fy	Fu	GRADE	Fy	Fu		
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi		

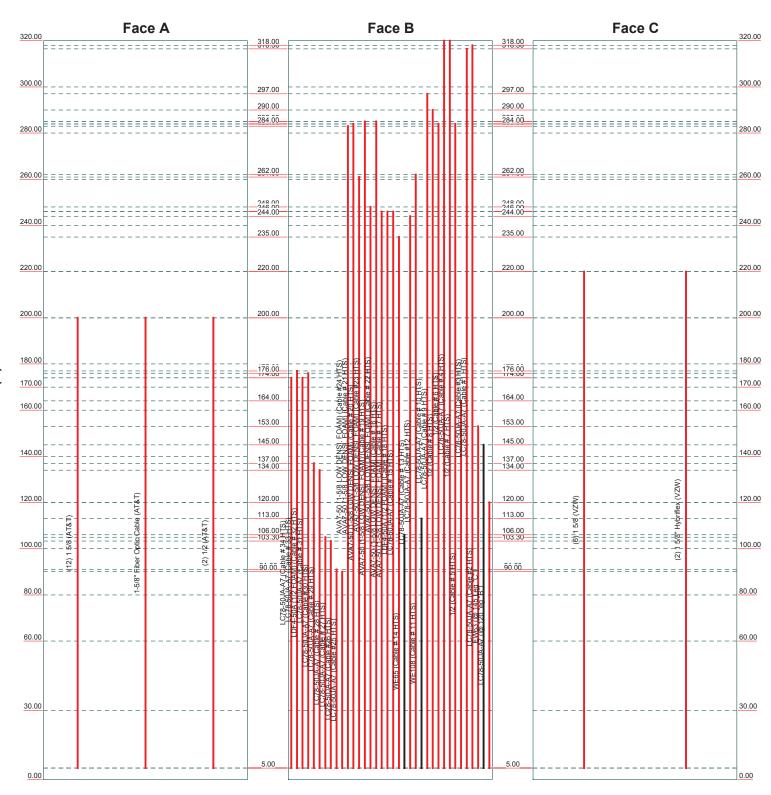
TOWER DESIGN NOTES

Tower designed for a 90 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 Tower is also designed for a 90 mph basic wind with 0.50 in ice.
 Deflections are based upon a 90 mph wind.
 TOWER RATING: 94.8%

MAX. CORNER REACTIONS AT BASE:

REACTIONS - 90 mph WIND

AECOM	^{Job:} 320' Rohn SSVMW		
500 Enterprise Drive, Suite 3B	Project: CSP Tower - Colchester, CT		
Rocky Hill, CT	Client: (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Drawn by: MCD	App'd:
	Code: TIA/EIA-222-F	Date: 02/22/19	Scale: NTS
FAX: 860-529-3991	Path: Physicilitesetileseti		Dwg No. E-1

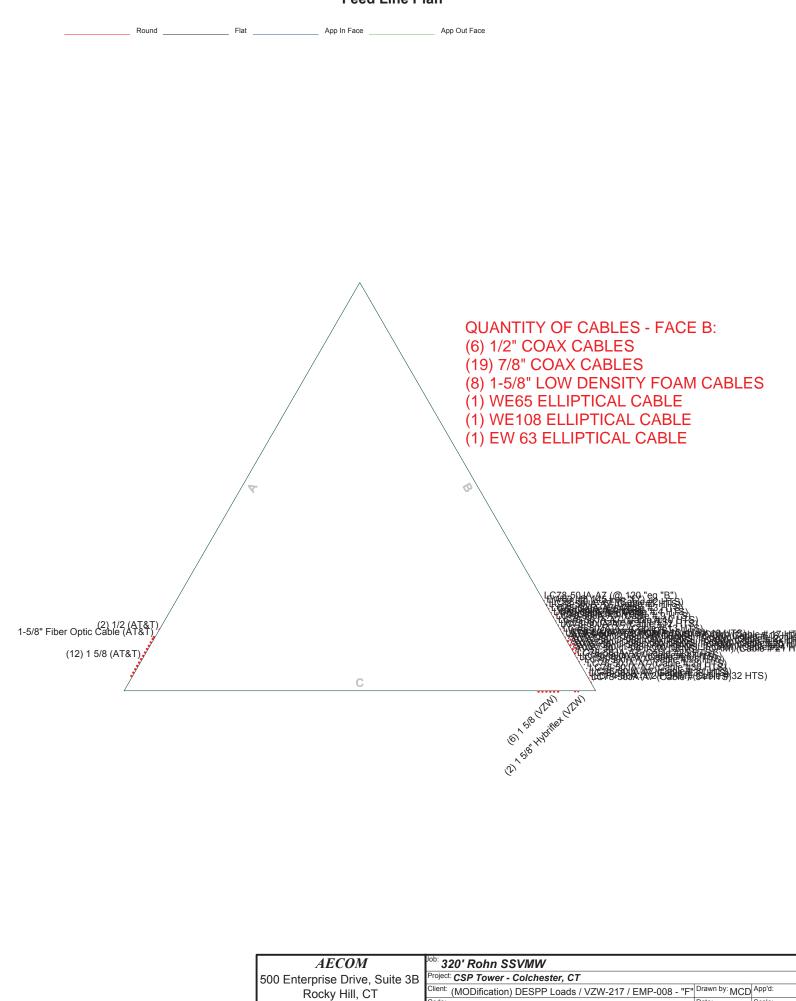

Feed Line Distribution Chart 0' - 320'

App In Face

- 320

App Out Face

Truss Leg


AECOM	^{Job:} 320' Rohn SSVMW		
500 Enterprise Drive, Suite 3B	Project: CSP Tower - Colchester, CT		
Rocky Hill, CT	Client: (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Drawn by: MCD	App'd:
Phone: 860-529-8882	^{Code:} TIA/EIA-222-F	Date: 02/22/19	Scale: NTS
FAX: 860-529-3991	Path: Physical Commission and Commission Commission Commission ALL DIPOSE VESSET MODER F20110211 V201404 MODIFIER AND ALL AND A		Dwg No. E-7

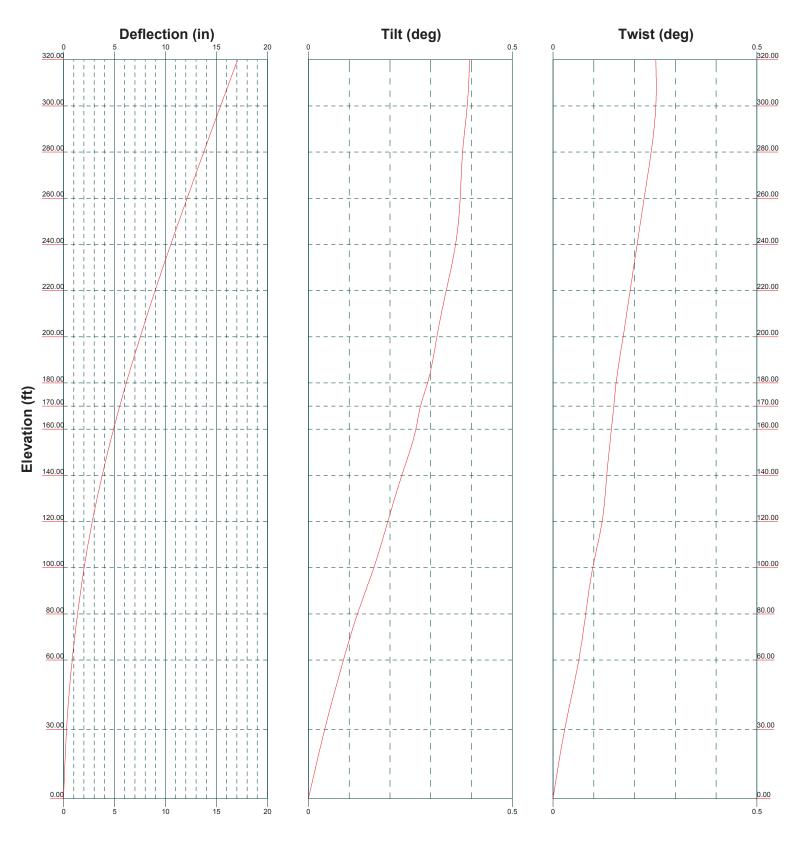
Elevation (ft)

Round

Flat

Feed Line Plan

Code: TIA/EIA-222-F


Path:

Phone: 860-529-8882

FAX: 860-529-3991

Date: 02/22/19 Scale: NTS

Dwg No. E-7

AECOM	^{Job:} 320' Rohn SSVMW		
500 Enterprise Drive, Suite 3B	Project: CSP Tower - Colchester, CT		
	Client: (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Drawn by: MCD	App'd:
Phone: 860-529-8882	Code: TIA/EIA-222-F	Date: 02/22/19	Scale: NTS
FAX: 860-529-3991	Path: Prinser/ferendeuteneter/control/content/Content		Dwg No. E-5

	Job	Page
tnxTower	320' Rohn SSVMW	1 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 320.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 6.81 ft at the top and 40.69 ft at the base.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Basic wind speed of 90 mph.

Nominal ice thickness of 0.5000 in.

Ice density of 56 pcf.

A wind speed of 90 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 90 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

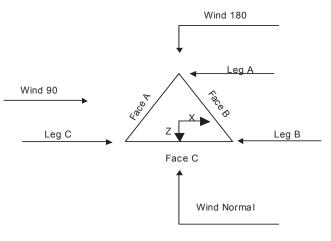
Stress ratio used in tower member design is 1.333.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile √ Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section $\sqrt{}$ Secondary Horizontal Braces Leg
- Use Diamond Inner Bracing (4 Sided) √ SR Members Have Cut Ends
- SR Members Are Concentric


Distribute Leg Loads As Uniform Assume Legs Pinned

- $\sqrt{\text{Assume Legs Plined}}$
- $\sqrt{}$ Assume Rigid index Plate
- ✓ Use Clear Spans For White A
 ✓ Use Clear Spans For KL/r
- Retension Guys To Initial Tension √ Bypass Mast Stability Checks
- ✓ Bypass Mast Stability Checks
 Use Azimuth Dish Coefficients
 ✓ Project Wind Area of Appurt.
 Autocalc Torque Arm Areas
- Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg, Angle Legs

- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- $\sqrt{\text{SR Leg Bolts Resist Compression}}$
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- $\sqrt{}$ Consider Feed Line Torque
 - Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

	Job	Page
tnxTower	320' Rohn SSVMW	2 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

<u>Triangular Tower</u>

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database	-	Width	of	Length
					Sections	-
	ft			ft		ft
T1	320.00-300.00			6.81	1	20.00
T2	300.00-280.00			6.81	1	20.00
T3	280.00-260.00			8.85	1	20.00
T4	260.00-240.00			11.04	1	20.00
T5	240.00-220.00			13.08	1	20.00
T6	220.00-200.00			15.09	1	20.00
Τ7	200.00-180.00			17.09	1	20.00
Т8	180.00-170.00			19.22	1	10.00
Т9	170.00-160.00			20.26	1	10.00
T10	160.00-140.00			21.30	1	20.00
T11	140.00-120.00			23.21	1	20.00
T12	120.00-100.00			25.39	1	20.00
T13	100.00-80.00			27.97	1	20.00
T14	80.00-60.00			30.47	1	20.00
T15	60.00-30.00			33.14	1	30.00
T16	30.00-0.00			36.80	1	30.00

tnxTower

Project

Page 320' Rohn SSVMW Date CSP Tower - Colchester, CT 10:42:37 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

3 of 75

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	320.00-300.00	4.00	X Brace	No	No	0.0000	0.0000
T2	300.00-280.00	5.00	X Brace	No	No	0.0000	0.0000
T3	280.00-260.00	6.67	X Brace	No	No	0.0000	0.0000
T4	260.00-240.00	6.67	X Brace	No	No	0.0000	0.0000
T5	240.00-220.00	6.67	X Brace	No	No	0.0000	0.0000
Т6	220.00-200.00	10.00	X Brace	No	No	0.0000	0.0000
Τ7	200.00-180.00	10.00	X Brace	No	No	0.0000	0.0000
Τ8	180.00-170.00	10.00	X Brace	No	No	0.0000	0.0000
Т9	170.00-160.00	10.00	X Brace	No	No	0.0000	0.0000
T10	160.00-140.00	10.00	X Brace	No	No	0.0000	0.0000
T11	140.00-120.00	10.00	X Brace	No	No	0.0000	0.0000
T12	120.00-100.00	20.00	K1 Down	No	Yes	0.0000	0.0000
T13	100.00-80.00	20.00	K1 Down	No	Yes	0.0000	0.0000
T14	80.00-60.00	20.00	K1 Down	No	Yes	0.0000	0.0000
T15	60.00-30.00	30.00	K2 Down	No	Yes	0.0000	0.0000
T16	30.00-0.00	30.00	K2 Down	No	Yes	0.0000	0.0000

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Туре	Size	Grade
Г1 320.00-300.00	Pipe	ROHN 5 EH	A572-50	Equal Angle	L1 3/4x1 3/4x3/16	A36
1 520.00 500.00	r ipe	Romet En	(50 ksi)	Equal 1 mgrv		(36 ksi)
2 300.00-280.00	Pipe	ROHN 6 EH	A572-50	Equal Angle	L2x2x1/4	A36
	- · P •		(50 ksi)			(36 ksi)
13 280.00-260.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	A572-50	Equal Angle	L2 1/2x2 1/2x1/4	A36
	J F -		(50 ksi)	1		(36 ksi)
4 260.00-240.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	A572-50	Equal Angle	L3x3x1/4	A572-50
	J F -		(50 ksi)	1		(50 ksi)
5 240.00-220.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	A572-50	Equal Angle	L4x4x5/16	A572-50
	J F -		(50 ksi)	1		(50 ksi)
6 220.00-200.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	A572-50	Equal Angle	L4x4x3/8	A572-50
	J F -		(50 ksi)	1		(50 ksi)
Г7 200.00-180.00	Arbitrary Shape	ROHN 10 EH w/ angle	À572-50	Equal Angle	L4x4x3/8	À572-50
	5 1	8x8x0.5	(50 ksi)	1 0		(50 ksi)
Г8 180.00-170.00	Arbitrary Shape	ROHN 10 EH w/ angle	À572-50	Double Equal	2L4x4x1/4	À572-50
	5 1	8x8x0.5	(50 ksi)	Angle		(50 ksi)
Г9 170.00-160.00	Arbitrary Shape	ROHN 10 EH w/ angle	À572-50	Double Equal	2L4x4x1/4	À572-50
	5 1	8x8x0.5	(50 ksi)	Angle		(50 ksi)
T10	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Equal Angle	L5x5x1/2	A572-50
160.00-140.00	5 1	8x8x0.5	(50 ksi)	1 0		(50 ksi)
T11	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Equal Angle	L5x5x1/2	A572-50
140.00-120.00	5 1	8x8x0.5	(50 ksi)	1 0		(50 ksi)
T12	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Pipe	ROHN 3 XXS	A572-50
120.00-100.00	J F -	8x8x0.5	(50 ksi)	I.		(50 ksi)
Г13 100.00-80.00	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Pipe	ROHN 3 XXS	A572-50
	5 1	8x8x0.5	(50 ksi)	1		(50 ksi)
T14 80.00-60.00	Arbitrary Shape	ROHN 12 EH w/ angle	A572-50	Pipe	ROHN 3.5 EH	A572-50
	5 1	8x8x0.5	(50 ksi)			(50 ksi)
T15 60.00-30.00	Arbitrary Shape	ROHN 12 EH w/ angle	A572-50	Pipe	ROHN 4 X-STR	A572-50
	5 1	8x8x0.5	(50 ksi)			(50 ksi)
T16 30.00-0.00	Arbitrary Shape	ROHN 12 EHS w Angle	A572-50	Pipe	ROHN 4 X-STR	A572-50
	5 1	8x8x0.625	(50 ksi)			(50 ksi)

tnxTower

AECOM

Rocky Hill, CT

Phone: 860-529-8882

FAX: 860-529-3991

Page Job 4 of 75 320' Rohn SSVMW Project Date CSP Tower - Colchester, CT 10:42:37 02/22/19 500 Enterprise Drive, Suite 3B Client Designed by (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" MCD

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 320.00-300.00	Equal Angle	L1 3/4x1 3/4x3/16	A36	Solid Round		A36
			(36 ksi)			(36 ksi)
T2 300.00-280.00	Equal Angle	L2x2x1/4	A36	Solid Round		A36
			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Туре	Size	Grade
	Mid				**		
ft	Girts						
T12	None	Flat Bar		A36	Pipe	ROHN 3 STD	A572-50
120.00-100.00				(36 ksi)			(50 ksi)
T13 100.00-80.00	None	Flat Bar		A36	Pipe	ROHN 3 X-STR	A572-50
				(36 ksi)	-		(50 ksi)
T14 80.00-60.00	None	Flat Bar		A36	Pipe	ROHN 3 XXS	A572-50
				(36 ksi)	-		(50 ksi)
T15 60.00-30.00	None	Flat Bar		A36	Pipe	ROHN 3.5 EH	A572-50
				(36 ksi)	-		(50 ksi)
T16 30.00-0.00	None	Flat Bar		A36	Pipe	ROHN 4 X-STR	A572-50
				(36 ksi)	*		(50 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft						
T12	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
120.00-100.00	*		(50 ksi)	*		(50 ksi)
T13 100.00-80.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
	*		(50 ksi)	*		(50 ksi)
T14 80.00-60.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
	*		(50 ksi)	*		(50 ksi)
T15 60.00-30.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
	*		(50 ksi)	*		(50 ksi)
T16 30.00-0.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
	-		(50 ksi)	-		(50 ksi)

tnxTower

Job Page 320' Rohn SSVMW 5 of 75 Project Date CSP Tower - Colchester, CT 10:42:37 02/22/19 Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Tower	Redundant		Redundant	Redundant	K Factor
Elevation	Bracing		Туре	Size	
	Grade				
ft					
T12	A572-50	Horizontal (1)	Pipe	ROHN 1.5 STD	1
120.00-100.00	(50 ksi)	Diagonal (1)	Pipe	ROHN 2 STD	1
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip Diagonal (1)	Pipe	ROHN 2.5 STD	1
T13	A572-50	Horizontal (1)	Pipe	P1.5x.145	1
100.00-80.00	(50 ksi)	Diagonal (1)	Pipe	ROHN 2 EH	1
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip Diagonal (1)	Pipe	ROHN 2.5 STD	1
T14	A572-50	Horizontal (1)	Pipe	ROHN 2 STD	1
80.00-60.00	(50 ksi)	Diagonal (1)	Pipe	ROHN 2 EH	1
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip Diagonal (1)	Pipe	ROHN 3 STD	1
T15	A572-50	Horizontal (1)	Pipe	ROHN 1.5 STD	1
60.00-30.00	(50 ksi)	Horizontal (2)		ROHN 2 XXS	
		Diagonal (1)	Pipe	ROHN 2 EH	1
		Diagonal (2)	-	ROHN 2.5 STD	
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip (2)	-	ROHN 2 STD	
		Hip Diagonal (1)	Pipe	ROHN 2 STD	1
		Hip Diagonal (2)	-	ROHN 2 STD	1
T16	A572-50	Horizontal (1)	Pipe	P1.5x.145	1
30.00-0.00	(50 ksi)	Horizontal (2)	-	ROHN 2.5 EH	
		Diagonal (1)	Pipe	ROHN 2.5 STD	1
		Diagonal (2)	-	ROHN 2.5 STD	
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip (2)	•	ROHN 2 STD	
		Hip Diagonal (1)	Pipe	ROHN 2.5 STD	1
		Hip Diagonal (2)	•	ROHN 2.5 STD	1

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
320.00-300.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
300.00-280.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
280.00-260.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
260.00-240.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
240.00-220.00			(36 ksi)						
T6	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
220.00-200.00			(36 ksi)						
Τ7	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
200.00-180.00			(36 ksi)						
T8	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
180.00-170.00			(36 ksi)						
Т9	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
170.00-160.00			(36 ksi)						
T10	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
160.00-140.00			(36 ksi)						
T11	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000

tnxTower

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT

Phone: 860-529-8882

FAX: 860-529-3991

JobPage320' Rohn SSVMW6 of 75ProjectDateCSP Tower - Colchester, CT10:42:37 02/22/19Client
(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"Designed by
MCD

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in					in	in	in
140.00-120.00			(36 ksi)						
T12	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T13	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T14	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
80.00-60.00			(36 ksi)						
T15	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
60.00-30.00			(36 ksi)						
T16 30.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fa	ctors ¹			
Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	Legs	X Brace Diags X	K Brace Diags X	Single Diags X	Girts X	Horiz. X	Sec. Horiz. X	Inner Brace X
ft	Angles	Kounus		X Y	X Y	X Y	X Y	X Y	X Y	A Y
<u></u>	Yes	No	1	1	1	1	1	1	1	1
320.00-300.00	100	110		1	1	1	1	1	1	1
T2	Yes	No	1	1	1	1	1	1	1	1
300.00-280.00				1	1	1	1	1	1	1
T3	Yes	No	1	1	1	1	1	1	1	1
280.00-260.00				1	1	1	1	1	1	1
T4	Yes	No	1	1	1	1	1	1	1	1
260.00-240.00				1	1	1	1	1	1	1
T5	Yes	No	1	1	1	1	1	1	1	1
240.00-220.00				1	1	1	1	1	1	1
T6	Yes	No	1	1	1	1	1	1	1	1
220.00-200.00				1	1	1	1	1	1	1
Τ7	Yes	No	1	1	1	1	1	1	1	1
200.00-180.00				1	1	1	1	1	1	1
Τ8	Yes	No	1	1	1	1	1	1	1	1
180.00-170.00				1	1	1	1	1	1	1
Т9	Yes	No	1	1	1	1	1	1	1	1
170.00-160.00				1	1	1	1	1	1	1
T10	Yes	No	1	1	1	1	1	1	1	1
160.00-140.00				1	1	1	1	1	1	1
T11	Yes	No	1	1	1	1	1	1	1	1
140.00-120.00	N	N	1	1	1	1	1	1	1	1
T12	No	No	1	1	1	1	1	1	1	1
120.00-100.00 T13	NI-	No	1	1	1	1	1	1	1	1
	No	INO	1	1	1	1	1	1	1	1
100.00-80.00 T14	No	No	1	1	1	1	1	1	1	1
80.00-60.00	INO	INO	1	1	1	1	1	1	1	1
T15	No	No	1	1	1	1	1	1	1	1
60.00-30.00	INU	INU	1	1	1	1	1	1	1	1
T16	No	No	1	1	1	1	1	1	1	1
30.00-0.00	110	110	1	1	1	1	1	1	1	1
50.00-0.00				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

tnxTower

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT

Phone: 860-529-8882

FAX: 860-529-3991

Job Page 320' Rohn SSVMW 7 of 75 Project CSP Tower - Colchester, CT 10:42:37 02/22/19 Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" MCD

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diago	nal	Top G	irt	Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
Je	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 320.00-300.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 300.00-280.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 280.00-260.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 260.00-240.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 240.00-220.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 220.00-200.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 200.00-180.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 180.00-170.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 170.00-160.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 160.00-140.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 140.00-120.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T12 120.00-100.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T13 100.00-80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T14 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
80.00-60.00 T15 60.00-30.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T16 30.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation	Leg Connection	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Flange	1.0000	6	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
320.00-300.00	-	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T2	Flange	1.0000	8	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
300.00-280.00	•	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
Т3	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
280.00-260.00	e	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T4	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
260.00-240.00	U	A325N		A325X		A325N		A325N		A325N		A325N		A325N	

	Job	Page
tnxTower	320' Rohn SSVMW	8 of 75
AECOM	Project	Date
500 Enterprise Drive, Suite 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hort	izontal
Elevation	Connection														
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T5	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
240.00-220.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T6	Flange	1.0000	12	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
220.00-200.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
Τ7	Flange	1.0000	12	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
200.00-180.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T8	Flange	1.0000	12	0.8750	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
180.00-170.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
Т9	Flange	1.0000	0	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
170.00-160.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T10	Flange	1.0000	12	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00		A325N		A490X		A325N		A325N		A325N		A325N		A325N	
T11	Flange	1.0000	12	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A490X		A325N		A325N		A325N		A325N		A325N	
T12	Flange	1.0000	12	0.7500	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
120.00-100.00		A325N		A325X		A325N		A325N		A325N		A325X		A325N	
T13	Flange	1.0000	16	0.7500	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
100.00-80.00		A325N		A325X		A325N		A325N		A325N		A325X		A325N	
T14	Flange	1.0000	16	0.7500	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
80.00-60.00		A325N		A325X		A325N		A325N		A325N		A325X		A325N	
T15	Flange	1.0000	16	0.8750	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
60.00-30.00	-	A325N		A325X		A325N		A325N		A325N		A325X		A325N	
T16 30.00-0.00	Flange	1.0000	24	0.8750	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
	-	A325N		A325X		A325N		A325N		A325N		A490X		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description		Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear		Perimeter	Weight
	or	Shield	From	Туре	C	Offset	Offset				Diameter		10
	Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
1.5/0		X 7	Calculation		200.00	0.0000	0.42	10	10	1.0000	1.0000		1.04
1 5/8	А	Yes	No	Ar (CfAe)	200.00 -	0.0000	-0.42	12	12	1.9800	1.9800		1.04
(AT&T)	G		N		5.00	0 0000	0.4	~	~	1 0000	1 0000		1.04
1 5/8	С	Yes	No	Ar (CfAe)	220.00 -	0.0000	-0.4	6	6	1.9800	1.9800		1.04
(VZW)	_				5.00								
1 5/8"	С	Yes	No	Ar (CfAe)	220.00 -	0.0000	-0.46	2	2	1.6000	1.6000		1.85
Hybriflex					5.00								
(VZW)	_												
LC78-50JA-A	В	Yes	No	Ar (CfAe)	174.00 -	0.0000	0.48	1	1	1.0900	1.0900		0.28
7					5.00								
(Cable # 34													
HTS)	_												
LC78-50JA-A	В	Yes	No	Ar (CfAe)	177.00 -	0.0000	0.47	1	1	1.0900	1.0900		0.28
7					5.00								
(Cable # 33													
HTS)													
LDF4-50A	В	Yes	No	Ar (CfAe)	174.00 -	3.0000	0.48	1	1	0.6300	0.6300		0.15
(1/2 FOAM)					5.00								
(Cable # 32													
HTS)													
LC78-50JA-A	В	Yes	No	Ar (CfAe)	176.00 -	3.0000	0.47	1	1	1.0900	1.0900		0.28
7					5.00								
(Cable # 31													
HTS)													

Job *tnxTower* 320' Rohn SSVMW Project AECOM CSP Tower - Colchester, CT 500 Enterprise Drive, Suite 3B Client

(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"

9 of 75 Date 10:42:37 02/22/19 Designed by MCD

Page

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Description	Face	Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear		Perimeter	Weight
	or Leg	Shield	From Torque Calculation	Туре	ft	Offset in	Offset (Frac FW)		Per Row	Spacing in	Diameter in	in	plf
LC78-50JA-A 7 (Cable #30	В	Yes	No	Ar (CfAe)	137.00 - 5.00	3.0000	0.46	1	1	1.0900	1.0900		0.28
HTS) LC78-50JA-A 7 (Cable # 29	В	Yes	No	Ar (CfAe)	134.00 - 5.00	3.0000	0.45	1	1	1.0900	1.0900		0.28
HTS) LC78-50JA-A 7	В	Yes	No	Ar (CfAe)	105.00 - 5.00	3.0000	0.44	1	1	1.0900	1.0900		0.28
(Cable # 28 HTS) LC78-50JA-A 7	В	Yes	No	Ar (CfAe)	103.30 - 5.00	3.0000	0.43	1	1	1.0900	1.0900		0.28
(Cable # 27 HTS) LC78-50JA-A 7	В	Yes	No	Ar (CfAe)	91.00 - 5.00	0.0000	0.43	1	1	1.0900	1.0900		0.28
(Cable #26 HTS) LC78-50JA-A	В	Yes	No	Ar (CfAe)	90.00 - 5.00	0.0000	0.42	1	1	1.0900	1.0900		0.28
7 (Cable #25 HTS) AVA7-50 (1-5/8 LOW DENSI.	В	Yes	No	Ar (CfAe)	283.00 - 5.00	3.0000	0.41	1	1	1.9800	1.9800		0.72
FOAM) (Cable #24 HTS) AVA7-50 (1-5/8 LOW DENSI.	В	Yes	No	Ar (CfAe)	284.00 - 5.00	0.0000	0.41	1	1	1.9800	1.9800		0.72
FOAM) (Cable # 21 HTS) AVA7-50 (1-5/8 LOW DENSI. FOAM) (C 111 # 20	В	Yes	No	Ar (CfAe)	261.00 - 5.00	0.0000	0.4	1	1	1.9800	1.9800		0.72
(Cable # 20 HTS) AVA7-50 (1-5/8 LOW DENSI. FOAM	В	Yes	No	Ar (CfAe)	285.00 - 5.00	3.0000	0.4	1	1	1.9800	1.9800		0.72
(Cable #23 HTS) AVA7-50 (1-5/8 LOW DENSI. FOAM)	В	Yes	No	Ar (CfAe)	248.00 - 5.00	0.0000	0.39	1	1	1.9800	1.9800		0.72
(Cable # 19 HTS) AVA7-50 (1-5/8 LOW DENSI. FOAM) (Cable # 22 HTS)	В	Yes	No	Ar (CfAe)	285.00 - 5.00	3.0000	0.39	1	1	1.9800	1.9800		0.72

	Job	Page
tnxTower	320' Rohn SSVMW	10 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
AVA7-50 (1-5/8 LOW	В	Yes	Calculation No	Ar (CfAe)	246.00 - 5.00	0.0000	0.38	1	1	1.9800	1.9800		0.72
DENSI. FOAM) (Cable # 16 HTS) AVA7-50 (1-5/8 LOW DENSI. FOAM) (Cable # 17	В	Yes	No	Ar (CfAe)	246.00 - 5.00	3.0000	0.38	1	1	1.9800	1.9800		0.72
HTS) LDF4-50A (1/2 FOAM) (Cable # 18	В	Yes	No	Ar (CfAe)	246.00 - 5.00	6.0000	0.38	1	1	0.6300	0.6300		0.15
HTS) LC78-50JA-A 7	В	Yes	No	Ar (CfAe)	235.00 - 5.00	0.0000	0.37	1	1	1.0900	1.0900		0.28
(Cable # 15 HTS) WE65 (Cable # 14	В	Yes	No	Af (CfAe)	106.00 - 5.00	3.0000	0.37	1	1	1.5836	1.5836	5.1284	0.53
HTS) LC78-50JA-A 7	В	Yes	No	Ar (CfAe)	244.00 - 5.00	0.0000	0.36	1	1	1.0900	1.0900		0.28
(Cable # 13 HTS) LC78-50JA-A 7 (Cable #12	В	Yes	No	Ar (CfAe)	262.00 - 5.00	0.0000	0.35	1	1	1.0900	1.0900		0.28
HTS) WE108 (Cable # 11	В	Yes	No	Af (CfAe)	113.00 - 5.00	3.0000	0.35	1	1	1.0149	1.0149	3.4851	0.35
HTS) LC78-50JA-A 7 (C-bl- # 10	В	Yes	No	Ar (CfAe)	297.00 - 5.00	0.0000	0.34	1	1	1.0900	1.0900		0.28
(Cable # 10 HTS) LC78-50JA-A 7 (Cable # 9	В	Yes	No	Ar (CfAe)	290.00 - 5.00	0.0000	0.33	1	1	1.0900	1.0900		0.28
(Cable # 9 HTS) 1/2 (Cable # 8	В	Yes	No	Ar (CfAe)	284.00 - 5.00	3.0000	0.33	1	1	0.5800	0.5800		0.25
HTS) 1/2 (Cable # 6	В	Yes	No	Ar (CfAe)	320.00 - 5.00	6.0000	0.33	1	1	0.5800	0.5800		0.25
HTS) LC78-50JA-A 7	В	Yes	No	Ar (CfAe)	320.00 - 5.00	0.0000	0.32	1	1	1.0900	1.0900		0.28
(Cable # 4 HTS) 1/2 (Cable # 7	В	Yes	No	Ar (CfAe)	284.00 - 5.00	3.0000	0.32	1	1	0.5800	0.5800		0.25
HTS) 1/2 (Cable # 5	В	Yes	No	Ar (CfAe)	164.00 - 5.00	6.0000	0.32	1	1	0.5800	0.5800		0.25
HTS) LC78-50JA-A 7	В	Yes	No	Ar (CfAe)	316.50 - 5.00	0.0000	0.31	1	1	1.0900	1.0900		0.28

	Job	Page
tnxTower	320' Rohn SSVMW	11 of 75
АЕСОМ	Project	Date
500 Enterprise Drive, Suite 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882		Designed by
FAX: 860-529-3991	(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
	0		Calculation		0		(1 5
(Cable #3 HTS)													
LC78-50JA-A 7 (Cable #1 HTS)	В	Yes	No	Ar (CfAe)	318.00 - 5.00	0.0000	0.3	1	1	1.0900	1.0900		0.28
LC78-50JA-A 7 (Cable #2	В	Yes	No	Ar (CfAe)	153.00 - 5.00	3.0000	0.3	1	1	1.0900	1.0900		0.28
HTS) * CSP													
Proposed Cables													
EW63 (@ 145 Leg "C")	В	Yes	No	Af (CfAe)	145.00 - 5.00	0.0000	0.29	1	1	1.5742	1.5742	5.0668	0.51
LC78-50JA-A 7 (@ 120 "eg "B")	В	Yes	No	Ar (CfAe)	120.00 - 5.00	0.0000	0.28	1	1	1.0900	1.0900		0.28
1-5/8" Fiber Optic Cable (AT&T)	А	Yes	No	Ar (CfAe)	200.00 - 5.00	0.0000	-0.37	1	1	1.9800	1.9800		1.30
1/2 (AT&T)	А	Yes	No	Ar (CfAe)	200.00 - 5.00	0.0000	-0.35	2	2	0.5800	0.5800		0.25

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
T1	320.00-300.00	А	0.000	0.000	0.000	0.000	0.00
		В	5.917	0.000	0.000	0.000	20.26
		С	0.000	0.000	0.000	0.000	0.00
T2	300.00-280.00	А	0.000	0.000	0.000	0.000	0.00
		В	12.061	0.000	0.000	0.000	43.60
		С	0.000	0.000	0.000	0.000	0.00
T3	280.00-260.00	А	0.000	0.000	0.000	0.000	0.00
		В	25.530	0.000	0.000	0.000	101.88
		С	0.000	0.000	0.000	0.000	0.00
T4	260.00-240.00	А	0.000	0.000	0.000	0.000	0.00
		В	34.278	0.000	0.000	0.000	137.02
		С	0.000	0.000	0.000	0.000	0.00
T5	240.00-220.00	А	0.000	0.000	0.000	0.000	0.00
		В	44.429	0.000	0.000	0.000	176.60
		С	0.000	0.000	0.000	0.000	0.00
T6	220.00-200.00	А	0.000	0.000	0.000	0.000	0.00
		В	44.883	0.000	0.000	0.000	178.00
		С	25.133	0.000	0.000	0.000	198.80
T7	200.00-180.00	А	44.833	0.000	0.000	0.000	285.60
		В	44.883	0.000	0.000	0.000	178.00
		С	25.133	0.000	0.000	0.000	198.80
T8	180.00-170.00	А	22.417	0.000	0.000	0.000	142.80
		В	24.196	0.000	0.000	0.000	94.36
		С	12.567	0.000	0.000	0.000	99.40
Т9	170.00-160.00	А	22.417	0.000	0.000	0.000	142.80

tuxToway	Job	Page
tnxTower	320' Rohn SSVMW	12 of 75
AECOM	Project	Date
500 Enterprise Drive, Suite 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
		В	25.885	0.000	0.000	0.000	99.90
		С	12.567	0.000	0.000	0.000	99.40
T10	160.00-140.00	А	44.833	0.000	0.000	0.000	285.60
		В	53.531	0.656	0.000	0.000	208.99
		С	25.133	0.000	0.000	0.000	198.80
T11	140.00-120.00	А	44.833	0.000	0.000	0.000	285.60
		В	56.983	2.624	0.000	0.000	227.28
		С	25.133	0.000	0.000	0.000	198.80
T12	120.00-100.00	А	44.833	0.000	0.000	0.000	285.60
		В	60.371	4.515	0.000	0.000	245.45
		С	25.133	0.000	0.000	0.000	198.80
T13	100.00-80.00	А	44.833	0.000	0.000	0.000	285.60
		В	65.157	6.954	0.000	0.000	270.08
		С	25.133	0.000	0.000	0.000	198.80
T14	80.00-60.00	А	44.833	0.000	0.000	0.000	285.60
		В	66.883	6.954	0.000	0.000	275.40
		С	25.133	0.000	0.000	0.000	198.80
T15	60.00-30.00	А	67.250	0.000	0.000	0.000	428.40
		В	100.325	10.432	0.000	0.000	413.10
		С	37.700	0.000	0.000	0.000	298.20
T16	30.00-0.00	A	56.042	0.000	0.000	0.000	357.00
		В	83.604	8.693	0.000	0.000	344.25
		С	31.417	0.000	0.000	0.000	248.50

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness		2	In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
T1	320.00-300.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		12.125	0.000	0.000	0.000	86.39
		С		0.000	0.000	0.000	0.000	0.00
T2	300.00-280.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		23.061	0.000	0.000	0.000	172.33
		С		0.000	0.000	0.000	0.000	0.00
T3	280.00-260.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		45.780	0.000	0.000	0.000	363.24
		С		0.000	0.000	0.000	0.000	0.00
T4	260.00-240.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		60.112	0.000	0.000	0.000	482.98
		С		0.000	0.000	0.000	0.000	0.00
T5	240.00-220.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		77.346	0.000	0.000	0.000	622.93
		С		0.000	0.000	0.000	0.000	0.00
T6	220.00-200.00	А	0.500	0.000	0.000	0.000	0.000	0.00
		В		78.217	0.000	0.000	0.000	629.19
		С		38.467	0.000	0.000	0.000	431.91
T7	200.00-180.00	А	0.500	67.200	1.933	0.000	0.000	704.88
		В		78.217	0.000	0.000	0.000	629.19
		С		38.467	0.000	0.000	0.000	431.91
T8	180.00-170.00	А	0.500	33.600	0.967	0.000	0.000	352.44
		В		42.612	0.000	0.000	0.000	339.23
		С		19.233	0.000	0.000	0.000	215.95
T9	170.00-160.00	А	0.500	33.600	0.967	0.000	0.000	352.44
		В		46.218	0.000	0.000	0.000	364.17
		С		19.233	0.000	0.000	0.000	215.95
T10	160.00-140.00	А	0.500	67.200	1.933	0.000	0.000	704.88
		В		96.281	0.934	0.000	0.000	764.84

tnxTower	Job 320' Rohn SSVMW	Page 13 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
		С		38.467	0.000	0.000	0.000	431.91
T11	140.00-120.00	А	0.500	67.200	1.933	0.000	0.000	704.88
		В		102.899	3.735	0.000	0.000	840.34
		С		38.467	0.000	0.000	0.000	431.91
T12	120.00-100.00	А	0.500	67.200	1.933	0.000	0.000	704.88
		В		109.396	6.682	0.000	0.000	916.53
		С		38.467	0.000	0.000	0.000	431.91
T13	100.00-80.00	А	0.500	67.200	1.933	0.000	0.000	704.88
		В		118.574	10.288	0.000	0.000	1018.77
		С		38.467	0.000	0.000	0.000	431.91
T14	80.00-60.00	А	0.500	67.200	1.933	0.000	0.000	704.88
		В		121.883	10.288	0.000	0.000	1042.55
		С		38.467	0.000	0.000	0.000	431.91
T15	60.00-30.00	А	0.500	100.800	2.900	0.000	0.000	1057.32
		В		182.825	15.432	0.000	0.000	1563.82
		С		57.700	0.000	0.000	0.000	647.86
T16	30.00-0.00	А	0.500	84.000	2.417	0.000	0.000	881.10
		В		152.354	12.860	0.000	0.000	1303.19
		С		48.083	0.000	0.000	0.000	539.88

Feed Line Shielding

Section	Elevation	Face	A_R	A_R	A_F	A_F
				Ice		Ice
	ft		ft^2	ft^2	ft^2	ft^2
T1	320.00-300.00	А	0.000	0.000	0.000	0.000
		В	0.000	0.636	0.544	1.114
		С	0.000	0.000	0.000	0.000
T2	300.00-280.00	А	0.000	0.000	0.000	0.000
		В	0.000	1.010	1.056	2.020
		С	0.000	0.000	0.000	0.000
T3	280.00-260.00	А	0.000	0.000	0.000	0.000
		В	0.000	1.380	1.924	3.450
		С	0.000	0.000	0.000	0.000
T4	260.00-240.00	А	0.000	0.000	0.000	0.000
		В	0.000	1.718	2.939	5.155
		С	0.000	0.000	0.000	0.000
T5	240.00-220.00	А	0.000	0.000	0.000	0.000
		В	0.000	2.140	4.917	8.560
		С	0.000	0.000	0.000	0.000
T6	220.00-200.00	А	0.000	0.000	0.000	0.000
		В	0.000	1.535	3.524	6.141
		С	0.000	0.755	1.973	3.020
Τ7	200.00-180.00	А	0.000	1.316	3.413	5.263
		В	0.000	1.489	3.417	5.955
		С	0.000	0.732	1.913	2.928
Т8	180.00-170.00	А	0.000	0.646	1.675	2.583
		В	0.000	0.796	1.808	3.184
		С	0.000	0.359	0.939	1.437
Т9	170.00-160.00	А	0.000	0.639	1.658	2.557
		В	0.000	0.855	1.915	3.419
		С	0.000	0.356	0.930	1.423
T10	160.00-140.00	А	0.000	1.263	4.096	6.317
		В	0.000	1.779	4.951	8.895
		С	0.000	0.703	2.296	3.515
T11	140.00-120.00	А	0.000	1.246	4.040	6.230

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

tnxTower	Job 320' Rohn SSVMW	Page 14 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Section	Elevation	Face	A_R	A_R	A_F	A_F
				Ice		Ice
	ft		ft^2	ft^2	ft^2	ft^2
		С	0.000	0.693	2.265	3.467
T12	120.00-100.00	А	3.043	6.351	0.000	0.000
		В	4.404	10.763	0.000	0.000
		С	1.706	3.534	0.000	0.000
T13	100.00-80.00	А	2.914	6.080	0.000	0.000
		В	4.687	11.479	0.000	0.000
		С	1.633	3.383	0.000	0.000
T14	80.00-60.00	А	3.046	6.229	0.000	0.000
		В	5.017	12.059	0.000	0.000
		С	1.708	3.466	0.000	0.000
T15	60.00-30.00	А	4.901	10.023	0.000	0.000
		В	8.072	19.404	0.000	0.000
		С	2.748	5.577	0.000	0.000
T16	30.00-0.00	А	4.210	8.454	0.000	0.000
		В	6.934	16.367	0.000	0.000
		С	2.360	4.704	0.000	0.000

Feed Line	Center	of Pressure	

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	320.00-300.00	3.1883	0.9662	5.2573	1.5377
T2	300.00-280.00	7.0465	2.4665	11.0297	3.7075
Т3	280.00-260.00	9.9455	4.1968	16.1046	6.5391
T4	260.00-240.00	14.1730	6.2584	22.4886	9.5878
T5	240.00-220.00	17.6789	7.9565	28.0497	12.2442
T6	220.00-200.00	29.6035	16.7114	43.9595	23.6735
Τ7	200.00-180.00	9.3246	27.1037	17.3347	37.586
T8	180.00-170.00	11.5231	29.5041	21.3023	41.304
Т9	170.00-160.00	13.5350	31.3485	25.1234	44.3142
T10	160.00-140.00	13.9624	30.4474	26.0879	43.549
T11	140.00-120.00	17.0559	32.9639	31.1485	47.343
T12	120.00-100.00	27.5792	46.2980	46.9614	63.431
T13	100.00-80.00	34.6984	52.0622	57.9839	71.5618
T14	80.00-60.00	34.4474	50.7864	58.3729	71.022
T15	60.00-30.00	36.5723	53.9330	61.8039	75.239
T16	30.00-0.00	32.4892	47.9976	55.1855	67.359

Discrete Tower Loads

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
1	or	Type	Horz	Adjustment			Front	Side	0
	Leg		Lateral	-					
			Vert						
			ft	0	ft		ft^2	ft^2	lb
			ft						
			ft						
*** EMP-005 AT&T									
Inventory									
PiROD 12' Lightweight	А	None		0.0000	200.00	No Ice	10.20	10.20	253.00
T-Frame						1/2" Ice	16.20	16.20	355.00

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
			Vert ft ft ft	o	ft		ft ²	ft ²	lb
(AT&T) PiROD 12' Lightweight T-Frame	В	None		0.0000	200.00	No Ice 1/2" Ice	10.20 16.20	10.20 16.20	253.00 355.00
(AT&T) PiROD 12' Lightweight T-Frame	С	None		0.0000	200.00	No Ice 1/2" Ice	10.20 16.20	10.20 16.20	253.00 355.00
(AT&T) 7770.00 (AT&T)	А	From Leg	3.00 -6.00 0.00	0.0000	200.00	No Ice 1/2" Ice	10.03 10.61	5.60 6.15	20.00 70.47
7770.00 (AT&T)	А	From Leg	3.00 -2.00 0.00	0.0000	200.00	No Ice 1/2" Ice	10.03 10.61	5.60 6.15	20.00 70.47
HPA-65R-BUU-H8 Panel (AT&T)	А	From Leg	3.00 6.00 0.00	0.0000	200.00	No Ice 1/2" Ice	12.99 13.69	7.48 8.06	68.00 140.41
(2) LGP21401 TMA Unit (AT&T)	А	From Leg	3.00 4.00 0.00	0.0000	200.00	No Ice 1/2" Ice	1.29 1.45	0.23 0.31	14.10 21.26
RRUS-32 (AT&T)	А	From Leg	3.00 6.00 1.50	0.0000	200.00	No Ice 1/2" Ice	3.20 3.46	1.85 2.08	60.00 81.11
RRUS-11 (AT&T)	А	From Leg	3.00 6.00 -1.50	0.0000	200.00	No Ice 1/2" Ice	2.99 3.23	1.25 1.41	50.00 69.57
7770.00 (AT&T)	В	From Leg	3.00 -6.00 0.00	0.0000	200.00	No Ice 1/2" Ice	10.03 10.61	5.60 6.15	20.00 70.47
7770.00 (AT&T)	В	From Leg	3.00 -6.00 0.00	0.0000	200.00	No Ice 1/2" Ice	10.03 10.61	5.60 6.15	20.00 70.47
HPA-65R-BUU-H8 Panel (AT&T)	В	From Leg	3.00 6.00 0.00	0.0000	200.00	No Ice 1/2" Ice	12.99 13.69	7.48 8.06	68.00 140.4
(2) LGP21401 TMA Unit (AT&T)	В	From Leg	3.00 4.00 0.00	0.0000	200.00	No Ice 1/2" Ice	1.29 1.45	0.23 0.31	14.10 21.26
RRUS-32 (AT&T)	В	From Leg	3.00 6.00 1.50	0.0000	200.00	No Ice 1/2" Ice	3.20 3.46	1.85 2.08	60.00 81.11
RRUS-11 (AT&T)	В	From Leg	3.00 6.00 -1.50	0.0000	200.00	No Ice 1/2" Ice	2.99 3.23	1.25 1.41	50.00 69.57
7770.00 (AT&T)	С	From Leg	3.00 -6.00 0.00	0.0000	200.00	No Ice 1/2" Ice	10.03 10.61	5.60 6.15	20.00 70.47
7770.00 (AT&T)	С	From Leg	3.00 -2.00 0.00	0.0000	200.00	No Ice 1/2" Ice	10.03 10.61	5.60 6.15	20.00 70.47
HPA-65R-BUU-H6 Panel (AT&T)	С	From Leg	3.00 6.00 0.00	0.0000	200.00	No Ice 1/2" Ice	10.12 10.69	5.49 5.94	48.00 105.33
(2) LGP21401 TMA Unit (AT&T)	В	From Leg	3.00 4.00 0.00	0.0000	200.00	No Ice 1/2" Ice	1.29 1.45	0.23 0.31	14.10 21.26
RRUS-32 (AT&T)	В	From Leg	3.00 6.00	0.0000	200.00	No Ice 1/2" Ice	3.20 3.46	1.85 2.08	60.00 81.11

tnxTower

Job Page 320' Rohn SSVMW 16 of 75 Project CSP Tower - Colchester, CT 10:42:37 02/22/19 Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Lug		Vert ft ft ft	o	ft		ft ²	ft ²	lb
RRUS-11 (AT&T)	В	From Leg	1.50 3.00 6.00 -1.50	0.0000	200.00	No Ice 1/2" Ice	2.99 3.23	1.25 1.41	50.00 69.57
DC6-48-60-0-8C Squid / Surge Arrestor (AT&T)	С	None	-1.50	0.0000	200.00	No Ice 1/2" Ice	1.79 2.02	1.79 2.02	27.00 47.39
STK-U Stiffener Side Arm Attachment	А	None		0.0000	200.00	No Ice 1/2" Ice	0.07 0.11	4.01 5.00	63.79 95.84
(AT&T) STK-U Stiffener Side Arm Attachment	В	None		0.0000	200.00	No Ice 1/2" Ice	0.07 0.11	4.01 5.00	63.79 95.84
(AT&T) STK-U Stiffener Side Arm Attachment (AT&T) *** EMP-005 AT&T	С	None		0.0000	200.00	No Ice 1/2" Ice	0.07 0.11	4.01 5.00	63.79 95.84
Inventory * CSP Antenna Inventory - via Hightower Solutions									
PD688S-4 (HTS-1)	С	From Leg	0.50 0.00 0.00	0.0000	91.00	No Ice 1/2" Ice	0.35 0.63	0.35 0.63	3.75 4.88
4'x4" Pipe Mount (HTS-1)	С	From Leg	0.00 0.00 0.00	0.0000	91.00	No Ice 1/2" Ice	1.32 1.58	1.32 1.58	44.00 56.99
PD688S-4 (HTS-2)	В	From Leg	3.00 0.00 0.00	0.0000	103.00	No Ice 1/2" Ice	0.35 0.63	0.35 0.63	3.75 4.88
Pirod 4' Side Mount Standoff (1) (UTS 2 & 2)	В	From Leg	0.00 0.00	0.0000	103.00	No Ice 1/2" Ice	2.72 4.91	2.72 4.91	50.00 89.00
(HTS-2 & 3) PD458 (HTS-3)	В	From Leg	0.00 3.00 0.00	0.0000	105.00	No Ice 1/2" Ice	2.88 4.34	2.88 4.34	20.00 46.22
5'3"x4" Pipe Mount (HTS-4)	А	From Leg	0.00 0.00 0.00 0.00	0.0000	106.00	No Ice 1/2" Ice	1.88 2.21	1.88 2.21	57.00 73.81
 * Ice Shield - Place Holder HTS-6 / Leg A / 118' * Ice Shield - Place Holder HTS-7 / Leg C / 118' 			0.00						
DB212-1 (HTS-8)	С	From Leg	6.00 0.00 0.00	0.0000	134.00	No Ice 1/2" Ice	4.40 8.42	4.40 8.42	31.00 70.21
6' Side Mount Standoff (HTS-8 & 9)	С	From Leg	0.00 0.00	0.0000	134.00	No Ice 1/2" Ice	6.50 8.50	6.50 8.50	100.00 170.00
PD156S (HTS-9)	С	From Leg	0.00 6.00 0.00	0.0000	137.00	No Ice 1/2" Ice	0.44 0.79	0.44 0.79	5.00 6.50
ANT450F6 (HTS-10)	А	From Leg	0.00 0.50 0.00	0.0000	153.00	No Ice 1/2" Ice	1.90 2.73	1.90 2.73	8.00 22.34
5'3"x4" Pipe Mount (HTS-10)	А	From Leg	0.00 0.00 0.00 0.00	0.0000	153.00	No Ice 1/2" Ice	1.88 2.21	1.88 2.21	57.00 73.81

tnxTower

Project

Bage 17 of 75 320' Rohn SSVMW 17 of 75 CSP Tower - Colchester, CT Date 10:42:37 02/22/19 Designed by

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"

esigned by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vert						
			ft	0	ft		ft^2	ft^2	lb
			ft ft						
L-810 Obstruction Lighting	А	From Leg	0.25	0.0000	164.00	No Ice	0.36	0.36	6.65
(1) (HTS-11a)			0.00 0.00			1/2" Ice	0.52	0.52	12.44
L-810 Obstruction Lighting	В	From Leg	0.25	0.0000	164.00	No Ice	0.36	0.36	6.65
(1) (HTS-11b)			0.00 0.00			1/2" Ice	0.52	0.52	12.44
L-810 Obstruction Lighting	С	From Leg	0.00	0.0000	164.00	No Ice	0.36	0.36	6.65
(1)		· ·	0.00			1/2" Ice	0.52	0.52	12.44
(HTS-11c) DB586-Y	С	From Leg	0.00 3.00	0.0000	176.00	No Ice	1.01	1.01	8.25
(HTS-12)			0.00			1/2" Ice	1.28	1.28	16.59
Pirod 4' Side Mount Standoff	С	From Leg	0.00 0.00	0.0000	176.00	No Ice	2.72	2.72	50.00
(1)	C	1 Ioiii Log	0.00	0.0000	170.00	1/2" Ice	4.91	4.91	89.00
(HTS-12)	р	Enous I an	0.00	0.0000	174.00	N. I.	1.01	1.01	0.25
DB586-Y (inverted) (HTS-13)	В	From Leg	4.00 0.00	0.0000	174.00	No Ice 1/2" Ice	1.01 1.28	1.01 1.28	8.25 16.59
D: 140:1 M (0) 1.00	P	F I	0.00	0.0000	174.00	NT T	2.72	0.70	50.00
Pirod 4' Side Mount Standoff (1)	В	From Leg	0.00 0.00	0.0000	174.00	No Ice 1/2" Ice	2.72 4.91	2.72 4.91	50.00 89.00
(HTS-13,14,TTA)			0.00						
430-94C-09168-M-11048 TTA	В	From Leg	2.00 0.00	0.0000	174.00	No Ice 1/2" Ice	1.63 1.81	0.95 1.09	30.00 37.44
(TMA/TTA Control Unit)			0.00			1/2 100	1.01	1.09	37.44
DB586-Y	В	From Leg	4.00	0.0000	174.00	No Ice	1.01	1.01	8.25
(HTS-14)			0.00 0.00			1/2" Ice	1.28	1.28	16.59
* HTS 15-18 Are									
VZw/AT&T Carrier Antennas									
531-70HD Exposed Dipole	А	From Leg	6.00	0.0000	235.00	No Ice	5.91	5.91	50.00
Antenna (HTS-19)			0.00 0.00			1/2" Ice	7.68	7.68	79.03
6' Side Mount Standoff	А	From Leg	0.00	0.0000	235.00	No Ice	6.50	6.50	100.00
(HTS-19)			0.00			1/2" Ice	8.50	8.50	170.00
PD1142-1	С	From Leg	0.00 6.00	0.0000	244.00	No Ice	1.32	1.32	10.00
(HTS-20)		e	0.00			1/2" Ice	3.21	3.21	23.85
6' Side Mount Standoff	С	From Leg	0.00 0.00	0.0000	244.00	No Ice	6.50	6.50	100.00
(HTS-20)	-		0.00			1/2" Ice	8.50	8.50	170.00
SC479-HF1LDF(D00I-E6085	В	From Leg	0.00 3.00	0.0000	246.00	No Ice	5.06	5.06	34.00
) (Inverted)	Б	1 Ioiii Log	0.00	0.0000	240.00	1/2" Ice	6.54	6.54	69.82
(HTS-21a)	р	Enous I an	0.00	0.0000	246.00	N. I.	5.00	5.00	24.00
SC479-HF1LDF(D00I-E6085) (Inverted)	В	From Leg	3.00 0.00	0.0000	246.00	No Ice 1/2" Ice	5.06 6.54	5.06 6.54	34.00 69.82
(HTS-21b)	-		0.00	0.0000					
Sabre T-Boom (1) (HTS-21 (a,b) - HTS 22)	В	From Leg	0.00 0.00	0.0000	246.00	No Ice 1/2" Ice	35.40 46.90	35.40 46.90	471.00 690.00
			0.00						
PD1142-1 (HTS 22)	В	From Leg	3.00	0.0000	248.00	No Ice	1.32 3.21	1.32 3.21	10.00 23.85
(HTS-22)			0.00 0.00			1/2" Ice	3.21	3.21	23.63
SC479-HF1LDF(D00-E6085)	В	From Leg	6.00	0.0000	261.00	No Ice	5.06	5.06	34.00
(HTS-23)			0.00 0.00			1/2" Ice	6.54	6.54	69.82

tnxTower

Project

Page320' Rohn SSVMW18 of 75CSP Tower - Colchester, CTDate
10:42:37 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
	Leg	21	Lateral	5					
			Vert	0	G		c.2	c2	11.
			ft ft		ft		ft^2	ft^2	lb
			ft						
6' Side Mount Standoff	В	From Leg	0.00	0.0000	261.00	No Ice	6.50	6.50	100.0
(HTS-23, 24)			0.00			1/2" Ice	8.50	8.50	170.0
PD440-2	В	From Leg	0.00 6.00	0.0000	261.50	No Ice	1.38	1.38	19.00
(HTS-24)	Б	Piolii Leg	0.00	0.0000	201.50	1/2" Ice	2.48	2.48	24.70
()			0.00						
SC479-HF1LDF	С	From Leg	6.00	0.0000	283.00	No Ice	5.06	5.06	34.00
(HTS-25)			0.00			1/2" Ice	6.54	6.54	69.82
6' Side Mount Standoff	С	From Leg	0.00 0.00	0.0000	284.00	No Ice	6.50	6.50	100.0
(HTS-25,26,TTA)	C	FIOIII Leg	0.00	0.0000	284.00	1/2" Ice	8.50	8.50	170.0
(1115 20,20,1111)			0.00			1/2 100	0.00	0.00	170.0
DB809T3E-XC	С	From Leg	6.00	0.0000	285.00	No Ice	4.25	4.25	39.00
(HTS-26)			0.00			1/2" Ice	5.70	5.70	69.70
TMA	С	From Leg	0.00 3.00	0.0000	284.00	No Ice	1.06	0.45	20.00
(TMA/TTA)	C	From Leg	0.00	0.0000	284.00	1/2" Ice	1.00	0.43	26.53
(1111)			0.00			1/2 100		0.07	20.00
SC479-HF1LDF	В	From Leg	6.00	0.0000	284.00	No Ice	5.06	5.06	34.00
(HTS-27)			0.00			1/2" Ice	6.54	6.54	69.82
6' Side Mount Standoff	В	None	0.00	0.0000	284.50	No Ice	6.50	6.50	100.0
(HTS-27,28,TTA)	Б	None		0.0000	264.30	1/2" Ice	8.50	8.50	170.0
TMA	В	None		0.0000	284.50	No Ice	1.06	0.45	20.00
(TMA/TTA)						1/2" Ice	1.21	0.57	26.53
OGT9-840	В	From Leg	3.00	0.0000	285.00	No Ice	2.27	2.27	18.50
(HTS-28)			0.00 0.00			1/2" Ice	3.44	3.44	36.09
PD340-1	В	From Leg	6.00	0.0000	290.00	No Ice	3.30	3.30	40.00
(HTS-29)	_		0.00		_,	1/2" Ice	5.94	5.94	52.00
	_		0.00						
6' Side Mount Standoff	В	From Leg	0.00	0.0000	290.00	No Ice	6.50	6.50	100.0
(HTS-29)			0.00 0.00			1/2" Ice	8.50	8.50	170.0
SC479-HF1LDF	С	From Leg	6.00	0.0000	297.00	No Ice	5.06	5.06	34.00
(HTS-30)		U	0.00			1/2" Ice	6.54	6.54	69.82
	a		0.00	0.0000	202.00	NY Y	6.50	6.50	100.0
6' Side Mount Standoff (HTS-30)	С	From Leg	0.00 0.00	0.0000	293.00	No Ice 1/2" Ice	6.50 8.50	6.50 8.50	100.0 170.0
(1113-30)			0.00			1/2 100	8.30	8.50	170.0
ANT450F6	В	From Leg	5.00	0.0000	316.50	No Ice	1.90	1.90	8.00
(HTS-31)			0.00			1/2" Ice	2.73	2.73	22.34
Alex All Dire a Manuat	р	Enour Las	0.00	0.0000	211.50	N. I.	1.22	1.22	44.00
4'x4" Pipe Mount (HTS-31)	В	From Leg	0.00 0.00	0.0000	311.50	No Ice 1/2" Ice	1.32 1.58	1.32 1.58	44.00 56.99
(1115 51)			0.00			1/2 100	1.50	1.50	50.75
BA1012-0	А	From Leg	6.00	0.0000	318.00	No Ice	0.47	0.47	2.20
(HTS-32)			0.00			1/2" Ice	0.96	0.96	6.61
(1 Side Mourt Stard - 00	*	Enore I	0.00	0.0000	215.00	No I	6 50	650	100.0
6' Side Mount Standoff (HTS-32)	Α	From Leg	0.00 0.00	0.0000	315.00	No Ice 1/2" Ice	6.50 8.50	6.50 8.50	100.0 170.0
(1110 52)			0.00			1/2 100	0.50	0.50	170.0
PD128-1	С	From Leg	6.00	0.0000	322.00	No Ice	1.00	1.00	13.00
(HTS-33)		2	0.00			1/2" Ice	1.80	1.80	16.90
(19:1-M + 9 + 1 m	~	Eng. I	0.00	0.0000	220.00	NL T	(50	6.50	100.0
6' Side Mount Standoff (HTS-33)	С	From Leg	0.00 0.00	0.0000	320.00	No Ice 1/2" Ice	6.50 8.50	6.50 8.50	100.0 170.0
(1110-00)			0.00			1/2 100	0.30	0.50	1/0.0

tnxTower

Page 19 of 75 320' Rohn SSVMW Project Date CSP Tower - Colchester, CT 10:42:37 02/22/19 Client Designed by

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"

MCD

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Vert						
			ft ft ft	0	ft		ft^2	ft^2	lb
D 1111			0.00	0.0000	225.00		4.00	4.00	250.00
Dual Lights (HTS-34)	А	None		0.0000	325.00	No Ice 1/2" Ice	4.00 4.80	4.00 4.80	250.00 400.00
Lightning Rod 5/8x4' (HTS-35)	С	None		0.0000	325.00	No Ice 1/2" Ice	0.25 0.66	0.25 0.66	31.00 33.82
* CSP Proposed 4'x4" Pipe Mount	С	None		0.0000	145.00	No Ice	1.32	1.32	44.00
(CSP Dish Mt. @ 145) 4'x4" Pipe Mount	В	None		0.0000	120.00	1/2" Ice No Ice	1.58 1.32	1.58 1.32	56.99 44.00
(CSP Dish Mt. @ 120) * VZW Proposed 12/07/2018	Б	None		0.0000	120.00	1/2" Ice	1.52	1.58	56.99
Valmont VFA-10-U V-Frame (Verizon)	А	None		0.0000	220.00	No Ice 1/2" Ice	7.95 8.33	4.45 4.74	285.00 343.57
Valmont VFA-10-U V-Frame (Verizon)	В	None		0.0000	220.00	No Ice 1/2" Ice	7.95 8.33	4.45 4.74	285.00 343.57
Valmont VFA-10-U V-Frame (Verizon)	С	None		0.0000	220.00	No Ice 1/2" Ice	7.95 8.33	4.45 4.74	285.00 343.57
JAHH-65B-R3B Panel	А	From Leg	5.00	0.0000	220.00	No Ice	9.66	5.98	126.30
Antenna (Verizon-AWS)			6.00 0.00			1/2" Ice	10.22	6.44	184.38
JAHH-65B-R3B Panel Antenna	А	From Leg	5.00 5.50	0.0000	220.00	No Ice 1/2" Ice	9.66 10.22	5.98 6.44	126.30 184.38
(Verizon-PCS) LNX-6512DS-VTM	А	From Leg	0.00 5.00	0.0000	220.00	No Ice	5.61	3.30	30.00
(Verizon-850)	Α	Profil Leg	-3.00 0.00	0.0000	220.00	1/2" Ice	6.01	3.66	63.32
BSAMNT-SBS-2-2 (JAHH	А	From Leg	5.00	0.0000	220.00	No Ice	3.78	3.56	116.83
Antenna Bracket (for 2)) (Verizon-PCS/AWS)			6.00 0.00			1/2" Ice	4.84	4.62	175.06
RFV01U-D1A RRH Unit	А	From Leg	5.00	0.0000	220.00	No Ice	2.19	1.46	97.50
(Verizon RRH)			$\begin{array}{c} 0.00\\ 0.00\end{array}$			1/2" Ice	2.39	1.62	115.84
RFV01U-D2A RRH Unit	А	From Leg	5.00 0.00	0.0000	220.00	No Ice 1/2" Ice	2.19 2.39	1.18 1.34	82.00 98.43
(Verizon RRH)			0.00			1/2" Ice	2.39	1.34	98.45
DB-B1-6C-12AB-0Z /	А	From Leg	5.00	0.0000	220.00	No Ice	4.42	2.90	32.00
DC-3315-PF-48 Dist. Box (Verizon)			$\begin{array}{c} 0.00\\ 0.00\end{array}$			1/2" Ice	4.72	3.16	63.48
JAHH-65B-R3B Panel	В	From Leg	5.00	0.0000	220.00	No Ice 1/2" Ice	9.66	5.98	126.30
Antenna (Verizon-AWS)			6.00 0.00			1/2 100	10.22	6.44	184.38
JAHH-65B-R3B Panel	В	From Leg	5.00	0.0000	220.00	No Ice 1/2" Ice	9.66	5.98	126.30
Antenna (Verizon-PCS)			5.50 0.00			1/2 100	10.22	6.44	184.38
LNX-6512DS-VTM (Verizon-850)	В	From Leg	5.00 -3.00	0.0000	220.00	No Ice 1/2" Ice	5.61 6.01	3.30 3.66	30.00 63.32
BSAMNT-SBS-2-2 (JAHH	В	From Leg	0.00 5.00	0.0000	220.00	No Ice	3.78	3.56	116.83
Antenna Bracket (for 2)) (Verizon-PCS/AWS)	ы	From Leg	6.00 0.00	0.0000	220.00	1/2" Ice	4.84	4.62	175.06
RFV01U-D1A RRH Unit	В	From Leg	5.00	0.0000	220.00	No Ice 1/2" Ice	2.19	1.46	97.50 115.84
(Verizon RRH)			$\begin{array}{c} 0.00\\ 0.00\end{array}$			1/2 ice	2.39	1.62	115.84
RFV01U-D2A RRH Unit (Verizon RRH)	В	From Leg	5.00 0.00	0.0000	220.00	No Ice 1/2" Ice	2.19 2.39	1.18 1.34	82.00 98.43
DB-B1-6C-12AB-0Z /	В	From Leg	0.00 5.00	0.0000	220.00	No Ice	4.42	2.90	32.00

tnxTower

Job Page 20 of 75 Project CSP Tower - Colchester, CT 10:42:37 02/22/19 Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft	0	ft		ft^2	ft^2	lb
			ft			1 /011 1	4 50	2.1.((2.10
DC-3315-PF-48 Dist. Box			0.00			1/2" Ice	4.72	3.16	63.48
(Verizon) JAHH-65B-R3B Panel	С	Enour Los	0.00	0.0000	220.00	No Ice	9.66	5 09	126.30
Antenna	C	From Leg	5.00 6.00	0.0000	220.00	1/2" Ice	9.66	5.98 6.44	126.30
			0.00			1/2 100	10.22	0.44	164.36
(Verizon-AWS) JAHH-65B-R3B Panel	С	Erom Log	5.00	0.0000	220.00	No Ice	9.66	5.98	126.30
Antenna	C	From Leg	5.50	0.0000	220.00	1/2" Ice	10.22	5.98 6.44	120.30
(Verizon-PCS)			0.00			1/2 100	10.22	0.44	164.36
LNX-6512DS-VTM	С	From Leg	5.00	0.0000	220.00	No Ice	5.61	3.30	30.00
(Verizon-850)	C	From Leg	-3.00	0.0000	220.00	1/2" Ice	6.01	3.66	63.32
(venzon-050)			0.00			1/2 100	0.01	5.00	05.52
BSAMNT-SBS-2-2 (JAHH	С	From Leg	5.00	0.0000	220.00	No Ice	3.78	3.56	116.83
Antenna Bracket (for 2))	C	110III Leg	6.00	0.0000	220.00	1/2" Ice	4.84	4.62	175.06
(Verizon-PCS/AWS)			0.00			1/2 100	4.04	4.02	175.00
RFV01U-D1A RRH Unit	С	From Leg	5.00	0.0000	220.00	No Ice	2.19	1.46	97.50
(Verizon RRH)	C	110III Leg	0.00	0.0000	220.00	1/2" Ice	2.39	1.62	115.84
(venzon http://			0.00			1/2 100	2.37	1.02	110.01
RFV01U-D2A RRH Unit	С	From Leg	5.00	0.0000	220.00	No Ice	2.19	1.18	82.00
(Verizon RRH)	-		0.00			1/2" Ice	2.39	1.34	98.43
			0.00						
CBC78T-DS-43-2X Diplexer	А	From Leg	5.00	0.0000	220.00	No Ice	0.43	0.60	22.00
(Verizon)			0.00			1/2" Ice	0.52	0.71	28.34
			0.00						
CBC78T-DS-43-2X Diplexer	В	From Leg	5.00	0.0000	220.00	No Ice	0.43	0.60	22.00
(Verizon)		0	0.00			1/2" Ice	0.52	0.71	28.34
× /			0.00						
CBC78T-DS-43-2X Diplexer	С	From Leg	5.00	0.0000	220.00	No Ice	0.43	0.60	22.00
(Verizon)		e	0.00			1/2" Ice	0.52	0.71	28.34
			0.00						
* VZW Proposed 12/07/2018									

	Dishes										
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	lb
* CSP Inventory from HighTower Solutions Climb											
PA8-65 (HTS-4)	А	Paraboloid w/Shroud (HP)	From Leg	0.50 0.00 0.00	Worst		106.00	8.00	No Ice 1/2" Ice	50.27 51.29	285.00 548.30
Andrew 2' w/Radome (HTS-5)	С	Paraboloid w/Radome	From Leg	0.50 0.00 0.00	Worst		113.00	2.00	No Ice 1/2" Ice	3.14 3.41	70.00 282.00
* CSP Proposed Commscope PAR6-59W-PXA/A (CSP Proposed)	С	Paraboloid w/Radome	From Leg	0.50 0.00 0.00	Worst		145.00	6.00	No Ice 1/2" Ice	28.27 29.07	310.00 460.00

trees Tools on	Job	Page
tnxTower	320' Rohn SSVMW	21 of 75
AECOM	Project	Date
500 Enterprise Drive, Suite 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	lb
HPD3-4.7	В	Paraboloid w/o	From	0.50	Worst		120.00	3.00	No Ice	7.07	105.00
(CSP Proposed)		Radome	Leg	0.00					1/2" Ice	7.47	143.35
				0.00							

Tower Pressures - No Ice

$G_H = 1.084$

Section	Ζ	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation			1 -	-	а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	310.00	1.897	39	145.472	А	11.659	18.543	18.543	61.40	0.000	0.000
320.00-300.00					В	11.116	24.460		52.12	0.000	0.000
					С	11.659	18.543		61.40	0.000	0.000
T2	290.00	1.861	39	167.656	А	12.596	22.122	22.122	63.72	0.000	0.000
300.00-280.00					В	11.540	34.182		48.38	0.000	0.000
					С	12.596	22.122		63.72	0.000	0.000
Т3	270.00	1.823	38	216.829	А	51.464	0.000	37.788	73.43	0.000	0.000
280.00-260.00					В	49.540	25.530		50.34	0.000	0.000
					С	51.464	0.000		73.43	0.000	0.000
T4	250.00	1.783	37	259.126	Α	56.868	0.000	37.778	66.43	0.000	0.000
260.00-240.00					В	53.929	34.278		42.83	0.000	0.000
mr.	220.00	1 7 4 1	26	200 (25	C	56.868	0.000	27 776	66.43	0.000	0.000
T5	230.00	1.741	36	299.625	A	66.901	0.000	37.776	56.46	0.000	0.000
240.00-220.00					B	61.984	44.429 0.000		35.50	0.000 0.000	$0.000 \\ 0.000$
тс	210.00	1.697	35	339.725	C	66.901		27 775	56.46		0.000
T6	210.00	1.097	33	339.725	A	61.588	0.000 44.883	37.775	61.34	0.000	0.000
220.00-200.00					B C	58.064 59.614	44.883 25.133		36.69 44.57	0.000 0.000	0.000
Т7	190.00	1.649	34	385.076	A	68.433	44.833	45.633	44.37	0.000	0.000
200.00-180.00	190.00	1.049	54	385.070	B	68.429	44.833	45.055	40.29	0.000	0.000
200.00-180.00					C	69.932	25.133		40.27	0.000	0.000
Т8	175.00	1.611	33	208.387	Ă	35.189	22.417	22.815	39.61	0.000	0.000
180.00-170.00	175.00	1.011	55	200.507	B	35.056	24.196	22.015	38.50	0.000	0.000
100.00 170.00					C	35.925	12.567		47.05	0.000	0.000
Т9	165.00	1.584	33	218.787	Ă	35.834	22.417	22.815	39.17	0.000	0.000
170.00-160.00	100.00	1.001	55	210.707	В	35.577	25.885	22.010	37.12	0.000	0.000
					С	36.563	12.567		46.44	0.000	0.000
T10	150.00	1.541	32	467.070	A	80.465	44.833	45.617	36.41	0.000	0.000
160.00-140.00					В	80.267	53.531		34.09	0.000	0.000
					С	82.265	25.133		42.47	0.000	0.000
T11	130.00	1.48	31	507.978	А	83.697	44.833	45.637	35.51	0.000	0.000
140.00-120.00					В	84.990	56.983		32.15	0.000	0.000
					С	85.473	25.133		41.26	0.000	0.000
T12	110.00	1.411	29	555.591	А	45.673	68.728	45.673	39.92	0.000	0.000
120.00-100.00					В	50.188	82.904		34.32	0.000	0.000
					С	45.673	50.365		47.56	0.000	0.000
T13	90.00	1.332	28	606.388	А	45.666	70.443	45.666	39.33	0.000	0.000
100.00-80.00					В	52.620	88.994		32.25	0.000	0.000
					С	45.666	52.023		46.75	0.000	0.000
T14	70.00	1.24	26	662.098	Α	53.708	74.478	53.708	41.90	0.000	0.000
80.00-60.00					В	60.663	94.557		34.60	0.000	0.000
	15.00	1 000		1000.00	С	53.708	56.116	00.500	48.90	0.000	0.000
T15	45.00	1.093	23	1088.08	А	80.523	114.950	80.523	41.19	0.000	0.000

Job	Page
320' Rohn SSVMW	22 of 75
Project	Date
CSP Tower - Colchester, CT	10:42:37 02/22/19
Client	Designed by
(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Section	Ζ	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
60.00-30.00				3	В	90.955	144.854		34.15	0.000	0.000
					С	80.523	87.554		47.91	0.000	0.000
T16 30.00-0.00	15.00	1	21	1202.12	Α	81.480	111.072	81.480	42.32	0.000	0.000
				2	В	90.173	135.911		36.04	0.000	0.000
					С	81.480	88.297		47.99	0.000	0.000

Tower Pressure - With Ice

$G_H = 1.084$

Section	Ζ	Kz	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation			-			а			0	%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	310.00	1.897	39	0.5000	147.138	А	11.659	28.539	21.877	54.42	0.000	0.000
320.00-300.00						В	10.545	40.028		43.26	0.000	0.000
						С	11.659	28.539		54.42	0.000	0.000
T2	290.00	1.861	39	0.5000	169.325	А	12.596	31.759	25.461	57.40	0.000	0.000
300.00-280.00						В	10.576	53.810		39.54	0.000	0.000
						С	12.596	31.759		57.40	0.000	0.000
T3	270.00	1.823	38	0.5000	218.499	А	53.691	5.471	40.014	67.64	0.000	0.000
280.00-260.00						В	50.241	49.871		39.97	0.000	0.000
						С	53.691	5.471		67.64	0.000	0.000
T4	250.00	1.783	37	0.5000	260.795	Α	59.094	6.363	40.004	61.11	0.000	0.000
260.00-240.00						В	53.939	64.757		33.70	0.000	0.000
						С	59.094	6.363		61.11	0.000	0.000
T5	230.00	1.741	36	0.5000	301.294	А	69.127	7.281	40.002	52.35	0.000	0.000
240.00-220.00						В	60.567	82.487		27.96	0.000	0.000
						С	69.127	7.281		52.35	0.000	0.000
T6	210.00	1.697	35	0.5000	341.394	Α	63.814	5.953	40.001	57.34	0.000	0.000
220.00-200.00						В	57.672	82.634		28.51	0.000	0.000
						С	60.793	43.665		38.29	0.000	0.000
Τ7	190.00	1.649	34	0.5000	386.745	А	70.743	72.437	47.860	33.43	0.000	0.000
200.00-180.00						В	68.118	83.281		31.61	0.000	0.000
						С	71.144	44.288		41.46	0.000	0.000
T8	175.00	1.611	33	0.5000	209.222	Α	36.360	36.466	23.928	32.86	0.000	0.000
180.00-170.00						В	34.792	45.329		29.86	0.000	0.000
						С	36.540	22.386		40.61	0.000	0.000
Т9	165.00	1.584	33	0.5000	219.622	Α	37.015	36.630	23.928	32.49	0.000	0.000
170.00-160.00						В	35.186	49.033		28.41	0.000	0.000
						С	37.183	22.547		40.06	0.000	0.000
T10	150.00	1.541	32	0.5000	468.739	Α	82.404	73.726	47.842	30.64	0.000	0.000
160.00-140.00						В	78.826	102.291		26.42	0.000	0.000
						С	83.273	45.553		37.14	0.000	0.000
T11	130.00	1.48	31	0.5000	509.647	А	85.667	74.374	47.864	29.91	0.000	0.000
140.00-120.00						В	84.039	109.387		24.75	0.000	0.000
						С	86.498	46.193		36.07	0.000	0.000
T12	110.00	1.411	29	0.5000	557.261	А	49.835	96.497	47.902	32.74	0.000	0.000
120.00-100.00						В	54.583	134.280		25.36	0.000	0.000
						С	47.902	70.581		40.43	0.000	0.000
T13	90.00	1.332	28	0.5000	608.058	А	49.827	98.876	47.894	32.21	0.000	0.000
100.00-80.00						В	58.182	144.851		23.59	0.000	0.000
						С	47.894	72.839		39.67	0.000	0.000
T14 80.00-60.00	70.00	1.24	26	0.5000	663.769	А	57.870	103.388	55.937	34.69	0.000	0.000
						В	66.225	152.242		25.60	0.000	0.000
						С	55.937	77.418		41.95	0.000	0.000

Job	Page
320' Rohn SSVMW	23 of 75
Project	Date
CSP Tower - Colchester, CT	10:42:37 02/22/19
	Designed by
(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-3891 Client (MC

Section	Ζ	Kz	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T15 60.00-30.00	45.00	1.093	23	0.5000	1090.588	А	86.765	158.280	83.865	34.22	0.000	0.000
						В	99.296	230.924		25.40	0.000	0.000
						С	83.865	119.626		41.21	0.000	0.000
T16 30.00-0.00	15.00	1	21	0.5000	1204.627	Α	87.239	150.697	84.823	35.65	0.000	0.000
						В	97.682	211.139		27.47	0.000	0.000
						С	84.823	118.531		41.71	0.000	0.000

Tower Pressure - Service

$G_H =$	1.084
---------	-------

Section	Ζ	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	310.00	1.897	39	145.472	Α	11.659	18.543	18.543	61.40	0.000	0.000
320.00-300.00					В	11.116	24.460		52.12	0.000	0.000
					С	11.659	18.543		61.40	0.000	0.000
T2	290.00	1.861	39	167.656	Α	12.596	22.122	22.122	63.72	0.000	0.000
300.00-280.00					В	11.540	34.182		48.38	0.000	0.000
					С	12.596	22.122		63.72	0.000	0.000
T3	270.00	1.823	38	216.829	Α	51.464	0.000	37.788	73.43	0.000	0.000
280.00-260.00					В	49.540	25.530		50.34	0.000	0.000
					С	51.464	0.000		73.43	0.000	0.000
T4	250.00	1.783	37	259.126	Α	56.868	0.000	37.778	66.43	0.000	0.000
260.00-240.00					В	53.929	34.278		42.83	0.000	0.000
					С	56.868	0.000		66.43	0.000	0.000
T5	230.00	1.741	36	299.625	Α	66.901	0.000	37.776	56.46	0.000	0.000
240.00-220.00					В	61.984	44.429		35.50	0.000	0.000
					С	66.901	0.000		56.46	0.000	0.000
T6	210.00	1.697	35	339.725	Α	61.588	0.000	37.775	61.34	0.000	0.000
220.00-200.00					В	58.064	44.883		36.69	0.000	0.000
					С	59.614	25.133		44.57	0.000	0.000
Τ7	190.00	1.649	34	385.076	Α	68.433	44.833	45.633	40.29	0.000	0.000
200.00-180.00					В	68.429	44.883		40.27	0.000	0.000
					С	69.932	25.133		48.00	0.000	0.000
Т8	175.00	1.611	33	208.387	Α	35.189	22.417	22.815	39.61	0.000	0.000
180.00-170.00					В	35.056	24.196		38.50	0.000	0.000
					С	35.925	12.567		47.05	0.000	0.000
Т9	165.00	1.584	33	218.787	Α	35.834	22.417	22.815	39.17	0.000	0.000
170.00-160.00					В	35.577	25.885		37.12	0.000	0.000
					С	36.563	12.567		46.44	0.000	0.000
T10	150.00	1.541	32	467.070	Α	80.465	44.833	45.617	36.41	0.000	0.000
160.00-140.00					В	80.267	53.531		34.09	0.000	0.000
					С	82.265	25.133		42.47	0.000	0.000
T11	130.00	1.48	31	507.978	Α	83.697	44.833	45.637	35.51	0.000	0.000
140.00-120.00					В	84.990	56.983		32.15	0.000	0.000
					С	85.473	25.133		41.26	0.000	0.000
T12	110.00	1.411	29	555.591	А	45.673	68.728	45.673	39.92	0.000	0.000
120.00-100.00					В	50.188	82.904		34.32	0.000	0.000
					С	45.673	50.365		47.56	0.000	0.000
T13	90.00	1.332	28	606.388	А	45.666	70.443	45.666	39.33	0.000	0.000
100.00-80.00					В	52.620	88.994		32.25	0.000	0.000
	-0.53				С	45.666	52.023		46.75	0.000	0.000
T14	70.00	1.24	26	662.098	Α	53.708	74.478	53.708	41.90	0.000	0.000

tnxTower	Job 320' Rohn SSVMW	Page 24 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Section	Ζ	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
80.00-60.00					В	60.663	94.557		34.60	0.000	0.000
					С	53.708	56.116		48.90	0.000	0.000
T15	45.00	1.093	23	1088.08	Α	80.523	114.950	80.523	41.19	0.000	0.000
60.00-30.00				3	В	90.955	144.854		34.15	0.000	0.000
					С	80.523	87.554		47.91	0.000	0.000
T16 30.00-0.00	15.00	1	21	1202.12	Α	81.480	111.072	81.480	42.32	0.000	0.000
				2	В	90.173	135.911		36.04	0.000	0.000
					С	81.480	88.297		47.99	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a	ĩ	<i>Cr</i>		27	21	***	•		Face
			c									
ft	lb	lb	e						ft^2	lb	plf	
T1	20.26	1791.79	A	0.208	2.571	0.592	1	1	22.637	2698.66	134.93	В
320.00-300.00	20.20	1// 1.//	В	0.245	2.454	0.601	1	1	25.804	20/0.00	10 1.90	2
			C	0.208	2.571	0.592	1	1	22.637			
T2	43.60	2496.34	Ă	0.207	2.573	0.592	1	1	25.689	3204.39	160.22	В
300.00-280.00			В	0.273	2.371	0.608	1	1	32.320			
			Ċ	0.207	2.573	0.592	1	1	25.689			
Т3	101.88	5067.66	A	0.237	2.476	0.599	1	1	51.464	5864.49	293.22	В
280.00-260.00			В	0.346	2.18	0.631	1	1	65.653			_
			С	0.237	2.476	0.599	1	1	51.464			
T4	137.02	5409.17	A	0.219	2.532	0.595	1	1	56.868	6638.40	331.92	В
260.00-240.00			В	0.34	2.194	0.629	1	1	75.493			
			С	0.219	2.532	0.595	1	1	56.868			
Т5	176.60	6484.36	А	0.223	2.52	0.595	1	1	66.901	7620.51	381.03	В
240.00-220.00			В	0.355	2.16	0.634	1	1	90.167			
			С	0.223	2.52	0.595	1	1	66.901			
Т6	376.80	6406.00	А	0.181	2.66	0.587	1	1	61.588	7480.83	374.04	В
220.00-200.00			В	0.303	2.288	0.617	1	1	85.749			
			С	0.249	2.439	0.602	1	1	74.738			
Τ7	662.40	7298.65	А	0.294	2.312	0.614	1	1	95.966	8221.84	411.09	В
200.00-180.00			В	0.294	2.311	0.614	1	1	95.994			
			С	0.247	2.447	0.601	1	1	85.040			
Т8	336.56	4191.71	А	0.276	2.361	0.609	1	1	48.840	4218.96	421.90	В
180.00-170.00			В	0.284	2.339	0.611	1	1	49.845			
			С	0.233	2.49	0.598	1	1	43.435			
Т9	342.10	4265.58	А	0.266	2.39	0.606	1	1	49.422	4293.20	429.32	В
170.00-160.00			В	0.281	2.348	0.61	1	1	51.374			
			С	0.225	2.516	0.596	1	1	44.049			
T10	693.39	9608.59	Α	0.268	2.384	0.607	1	1	107.666	9131.02	456.55	В
160.00-140.00			В	0.286	2.333	0.612	1	1	113.020			
			С	0.23	2.499	0.597	1	1	97.269			
T11	711.68	9975.29	А	0.253	2.428	0.603	1	1	110.716	9363.50	468.17	В
140.00-120.00			В	0.279	2.352	0.61	1	1	119.740			
			С	0.218	2.538	0.594	1	1	100.407			
T12	729.85	9144.95	А	0.206	2.576	0.592	1	1	86.335	7816.79	390.84	В
120.00-100.00			В	0.24	2.469	0.599	1	1	99.870			
			С	0.173	2.689	0.585	1	1	75.149			
T13	754.48	9675.54	А	0.191	2.625	0.589	1	1	87.135	7880.03	394.00	В
100.00-80.00			В	0.234	2.488	0.598	1	1	105.822			
			С	0.161	2.731	0.583	1	1	76.008			
T14	759.80	10501.98	Α	0.194	2.617	0.589	1	1	97.584	8114.19	405.71	В
80.00-60.00			В	0.234	2.485	0.598	1	1	117.211			
			С	0.166	2.714	0.584	1	1	86.482			

tnxTower

AECOM 500 Enterprise Drive, Suite 3B

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page			
320' Rohn SSVMW	25 of 75			
Project	Date			
CSP Tower - Colchester, CT	10:42:37 02/22/19			
Client	Designed by			
(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD			

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	lb	е						ft^2	lb	plf	
T15	1139.70	15115.36	А	0.18	2.665	0.586	1	1	147.937	11043.33	368.11	В
60.00-30.00			В	0.217	2.541	0.594	1	1	176.991			
			С	0.154	2.755	0.582	1	1	131.494			
T16	949.75	17941.94	А	0.16	2.734	0.583	1	1	146.244	10076.91	335.90	В
30.00-0.00			В	0.188	2.636	0.588	1	1	170.094			
			С	0.141	2.804	0.58	1	1	132.707			
Sum Weight:	7935.87	125374.92						OTM	16713.46	113667.06		
									kip-ft			

Tower Forces - No Ice - Wind 45 To Face												
g :	4.1.1	C - LC	F	-	C	n	D	D	4	F		Ctul
Section Elevation	Add Weight	Self Weight		е	C_F	R_R	D_F	D_R	A_E	Γ	W	Ctrl. Face
Elevation	weigni	weigni	a c									гисе
ft	lb	lb	e						ft^2	lb	plf	
	20.26	1791.79	A	0.208	2.571	0.592	0.825	1	20.596	2495.22	124.76	В
320.00-300.00	20.20	1/91./9	B	0.245	2.454	0.601	0.825	1	23.859	2493.22	124.70	D
520.00 500.00			C	0.208	2.571	0.592	0.825	1	20.596			
T2	43.60	2496.34	A	0.200	2.573	0.592	0.825	1	23.485	3004.17	150.21	В
300.00-280.00	.5.00	2190.01	В	0.273	2.371	0.608	0.825	1	30.301	500	100.21	2
			C	0.207	2.573	0.592	0.825	1	23.485			
Т3	101.88	5067.66	Ā	0.237	2.476	0.599	0.825	1	42.458	5090.08	254.50	В
280.00-260.00			В	0.346	2.18	0.631	0.825	1	56.984			_
*			C	0.237	2.476	0.599	0.825	1	42.458			
T4	137.02	5409.17	Ā	0.219	2.532	0.595	0.825	1	46.916	5808.52	290.43	В
260.00-240.00			В	0.34	2.194	0.629	0.825	1	66.055			
			С	0.219	2.532	0.595	0.825	1	46.916			
Т5	176.60	6484.36	Α	0.223	2.52	0.595	0.825	1	55.194	6703.75	335.19	В
240.00-220.00			В	0.355	2.16	0.634	0.825	1	79.320			
			С	0.223	2.52	0.595	0.825	1	55.194			
Т6	376.80	6406.00	Α	0.181	2.66	0.587	0.825	1	50.810	6594.36	329.72	В
220.00-200.00			В	0.303	2.288	0.617	0.825	1	75.588			
			С	0.249	2.439	0.602	0.825	1	64.306			
Τ7	662.40	7298.65	Α	0.294	2.312	0.614	0.825	1	83.990	7196.19	359.81	В
200.00-180.00			В	0.294	2.311	0.614	0.825	1	84.019			
			С	0.247	2.447	0.601	0.825	1	72.802			
Т8	336.56	4191.71	Α	0.276	2.361	0.609	0.825	1	42.682	3699.71	369.97	В
180.00-170.00			В	0.284	2.339	0.611	0.825	1	43.710			
			С	0.233	2.49	0.598	0.825	1	37.148			
Т9	342.10	4265.58	Α	0.266	2.39	0.606	0.825	1	43.151	3772.90	377.29	В
170.00-160.00			В	0.281	2.348	0.61	0.825	1	45.148			
			С	0.225	2.516	0.596	0.825	1	37.650			
T10	693.39	9608.59	Α	0.268	2.384	0.607	0.825	1	93.584	7996.17	399.81	В
160.00-140.00			В	0.286	2.333	0.612	0.825	1	98.973			
			С	0.23	2.499	0.597	0.825	1	82.873			
T11	711.68	9975.29	Α	0.253	2.428	0.603	0.825	1	96.069	8200.43	410.02	В
140.00-120.00			В	0.279	2.352	0.61	0.825	1	104.867			
			С	0.218	2.538	0.594	0.825	1	85.449			_
T12	729.85	9144.95	A	0.206	2.576	0.592	0.825	1	78.342	7129.35	356.47	В
120.00-100.00			В	0.24	2.469	0.599	0.825	1	91.087			
		0.000	C	0.173	2.689	0.585	0.825	1	67.156	7104 35		
T13	754.48	9675.54	A	0.191	2.625	0.589	0.825	1	79.144	7194.32	359.72	В
100.00-80.00			В	0.234	2.488	0.598	0.825	1	96.614			
		10501.00	С	0.161	2.731	0.583	0.825	1	68.016			
T14	759.80	10501.98	A	0.194	2.617	0.589	0.825	1	88.185	7379.27	368.96	В
80.00-60.00			В	0.234	2.485	0.598	0.825	1	106.595			l

tnxTower

Job	Page
320' Rohn SSVMW	26 of 75
Project	Date
CSP Tower - Colchester, CT	10:42:37 02/22/19
Client	Designed by
(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

Ctrl.

Face

В

В

Add D_F D_R Section Self F C_F R_R A_E Fе W Elevation Weight Weight а С ft^2 lb ft lb е lb plf 2.714 77.083 0.166 0.584 0.825 С 1 T15 1139.70 15115.36 А 0.18 2.665 0.586 0.825 1 133.845 10050.19 335.01 60.00-30.00 2.541 0.594 161.074 В 0.217 0.825 1 С 0.154 2.755 0.582 0.825 1 117.403 T16 949.75 17941.94 2.734 0.583 131.985 9142.03 304.73 0.825 А 0.16 1 30.00-0.00 В 0.188 2.636 0.588 0.825 1 154.313 С 0.141 2.804 0.58 0.825 118.448 1 7935.87 125374.92 101456.68 Sum Weight: OTM 14838.25 kip-ft

	Tower Forces - No Ice - Wind 60 To Face											
Section Elevation	Add Weight	Self Weight	F a	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl. Face
	_	-	с						ft^2	11.	n lf	1 400
ft T1	<i>lb</i> 20.26	<i>lb</i> 1791.79	e A	0.208	2.571	0.592	0.8	1	20.305	<i>lb</i> 2466.16	<i>plf</i> 123.31	В
320.00-300.00	20.26	1/91./9	A B	0.208	2.571 2.454	0.592	0.8	1 1	20.303	2400.10	123.31	В
320.00-300.00			C D	0.243	2.434	0.592	0.8	1	20.305			
T2	43.60	2496.34	A	0.207	2.573	0.592	0.8	1	23.170	2975.57	148.78	В
300.00-280.00	15.00	2190.91	B	0.273	2.371	0.608	0.8	1	30.012	2710.01	110.70	D
200.00 200.00			Č	0.207	2.573	0.592	0.8	1	23.170			
Т3	101.88	5067.66	Ă	0.237	2.476	0.599	0.8	1	41.171	4979.45	248.97	В
280.00-260.00			В	0.346	2.18	0.631	0.8	1	55.745			
			C	0.237	2.476	0.599	0.8	1	41.171			
Τ4	137.02	5409.17	А	0.219	2.532	0.595	0.8	1	45.494	5689.97	284.50	В
260.00-240.00			В	0.34	2.194	0.629	0.8	1	64.707			
			С	0.219	2.532	0.595	0.8	1	45.494			
T5	176.60	6484.36	Α	0.223	2.52	0.595	0.8	1	53.521	6572.79	328.64	В
240.00-220.00			В	0.355	2.16	0.634	0.8	1	77.770			
			С	0.223	2.52	0.595	0.8	1	53.521			
T6	376.80	6406.00	Α	0.181	2.66	0.587	0.8	1	49.270	6467.73	323.39	В
220.00-200.00			В	0.303	2.288	0.617	0.8	1	74.136			
			С	0.249	2.439	0.602	0.8	1	62.815			
Τ7	662.40	7298.65	А	0.294	2.312	0.614	0.8	1	82.279	7049.67	352.48	В
200.00-180.00			В	0.294	2.311	0.614	0.8	1	82.309			
			С	0.247	2.447	0.601	0.8	1	71.053			
Т8	336.56	4191.71	А	0.276	2.361	0.609	0.8	1	41.802	3625.53	362.55	В
180.00-170.00			B	0.284	2.339	0.611	0.8	1	42.834			
-			С	0.233	2.49	0.598	0.8	1	36.250			
T9	342.10	4265.58	A	0.266	2.39	0.606	0.8	1	42.255	3698.57	369.86	В
170.00-160.00			B	0.281	2.348	0.61	0.8	1	44.258			
T10	(02.20	0600 50	C	0.225	2.516	0.596	0.8	1	36.736	7024.05	201 70	D
T10 160.00-140.00	693.39	9608.59	A	0.268	2.384	0.607	0.8	1	91.573	7834.05	391.70	В
160.00-140.00			B C	0.286 0.23	2.333 2.499	0.612 0.597	0.8 0.8	1 1	96.966 80.816			
T11	711.68	9975.29	A	0.23	2.499	0.397	0.8	1	93.977	8034.28	401.71	В
140.00-120.00	/11.08	9973.29	B	0.233	2.428	0.603	0.8	1	102.742	8034.28	401./1	D
140.00-120.00			с С	0.279	2.532	0.594	0.8	1	83.312			
T12	729.85	9144.95	A	0.218	2.538	0.594	0.8	1	77.200	7031.14	351.56	В
120.00-100.00	129.03	7144.73	B	0.200	2.370	0.592	0.8	1	89.832	/051.14	551.50	Б
120.00-100.00			с С	0.24	2.409	0.585	0.8	1	66.014			
T13	754.48	9675.54	A	0.191	2.625	0.589	0.8	1	78.002	7096.36	354.82	В
100.00-80.00	, 5-1.40	2013.34	B	0.131	2.488	0.598	0.8	1	95.298	1020.50	554.02	Б
100.00 00.00			C	0.161	2.731	0.598	0.8	1	66.875			
T14	759.80	10501.98	-	0.194	2.617	0.589	0.8	1	86.843	7274.29	363.71	В

tnxTower

AECOM 500 Enterprise Drive, Suite 3B

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job	Page
320' Rohn SSVMW	27 of 75
Project	Date
CSP Tower - Colchester, CT	10:42:37 02/22/19
Client	Designed by
(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	lb	е						ft^2	lb	plf	
80.00-60.00			В	0.234	2.485	0.598	0.8	1	105.078			
			С	0.166	2.714	0.584	0.8	1	75.740			
T15	1139.70	15115.36	А	0.18	2.665	0.586	0.8	1	131.832	9908.31	330.28	В
60.00-30.00			В	0.217	2.541	0.594	0.8	1	158.801			
			С	0.154	2.755	0.582	0.8	1	115.390			
T16	949.75	17941.94	А	0.16	2.734	0.583	0.8	1	129.948	9008.48	300.28	В
30.00-0.00			В	0.188	2.636	0.588	0.8	1	152.059			
			С	0.141	2.804	0.58	0.8	1	116.411			
Sum Weight:	7935.87	125374.92						OTM	14570.36	99712.34		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face												
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a	c	C_F	n_{R}	D_F	D_R	T_{E}	1		Face
			с									
ft	lb	lb	е						ft^2	lb	plf	
T1	20.26	1791.79	А	0.208	2.571	0.592	0.85	1	20.888	2524.29	126.21	В
320.00-300.00			В	0.245	2.454	0.601	0.85	1	24.137			
			С	0.208	2.571	0.592	0.85	1	20.888			
T2	43.60	2496.34	Α	0.207	2.573	0.592	0.85	1	23.800	3032.77	151.64	В
300.00-280.00			В	0.273	2.371	0.608	0.85	1	30.589			
			С	0.207	2.573	0.592	0.85	1	23.800			
T3	101.88	5067.66	Α	0.237	2.476	0.599	0.85	1	43.745	5200.71	260.04	В
280.00-260.00			В	0.346	2.18	0.631	0.85	1	58.222			
			С	0.237	2.476	0.599	0.85	1	43.745			
T4	137.02	5409.17	Α	0.219	2.532	0.595	0.85	1	48.338	5927.08	296.35	В
260.00-240.00			В	0.34	2.194	0.629	0.85	1	67.404			
			С	0.219	2.532	0.595	0.85	1	48.338			
T5	176.60	6484.36	Α	0.223	2.52	0.595	0.85	1	56.866	6834.72	341.74	В
240.00-220.00			В	0.355	2.16	0.634	0.85	1	80.869			
			С	0.223	2.52	0.595	0.85	1	56.866			
Т6	376.80	6406.00	Α	0.181	2.66	0.587	0.85	1	52.350	6721.00	336.05	В
220.00-200.00			В	0.303	2.288	0.617	0.85	1	77.040			
			С	0.249	2.439	0.602	0.85	1	65.796			
Τ7	662.40	7298.65	Α	0.294	2.312	0.614	0.85	1	85.701	7342.71	367.14	В
200.00-180.00			В	0.294	2.311	0.614	0.85	1	85.730			
			С	0.247	2.447	0.601	0.85	1	74.550			
Т8	336.56	4191.71	Α	0.276	2.361	0.609	0.85	1	43.561	3773.89	377.39	В
180.00-170.00			В	0.284	2.339	0.611	0.85	1	44.586			
			С	0.233	2.49	0.598	0.85	1	38.046			
Т9	342.10	4265.58	Α	0.266	2.39	0.606	0.85	1	44.047	3847.23	384.72	В
170.00-160.00			В	0.281	2.348	0.61	0.85	1	46.037			
			С	0.225	2.516	0.596	0.85	1	38.564			
T10	693.39	9608.59	Α	0.268	2.384	0.607	0.85	1	95.596	8158.29	407.91	В
160.00-140.00			В	0.286	2.333	0.612	0.85	1	100.980			
			С	0.23	2.499	0.597	0.85	1	84.929			
T11	711.68	9975.29	Α	0.253	2.428	0.603	0.85	1	98.162	8366.59	418.33	В
140.00-120.00			В	0.279	2.352	0.61	0.85	1	106.991			
			С	0.218	2.538	0.594	0.85	1	87.586			
T12	729.85	9144.95	Α	0.206	2.576	0.592	0.85	1	79.483	7227.56	361.38	В
120.00-100.00			В	0.24	2.469	0.599	0.85	1	92.342			
			С	0.173	2.689	0.585	0.85	1	68.298			
T13	754.48	9675.54	Α	0.191	2.625	0.589	0.85	1	80.286	7292.28	364.61	В
100.00-80.00			В	0.234	2.488	0.598	0.85	1	97.929			
			С	0.161	2.731	0.583	0.85	1	69.158			

tnxTower

	Job	Page
	320' Rohn SSVMW	28 of 75
	Project	Date
В	CSP Tower - Colchester, CT	10:42:37 02/22/19
	Client	Designed by
	(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	lb	е						ft^2	lb	plf	
T14	759.80	10501.98	Α	0.194	2.617	0.589	0.85	1	89.528	7484.26	374.21	В
80.00-60.00			В	0.234	2.485	0.598	0.85	1	108.111			
			С	0.166	2.714	0.584	0.85	1	78.426			
T15	1139.70	15115.36	Α	0.18	2.665	0.586	0.85	1	135.858	10192.07	339.74	В
60.00-30.00			В	0.217	2.541	0.594	0.85	1	163.348			
			С	0.154	2.755	0.582	0.85	1	119.416			
T16	949.75	17941.94	Α	0.16	2.734	0.583	0.85	1	134.022	9275.59	309.19	В
30.00-0.00			В	0.188	2.636	0.588	0.85	1	156.568			
			С	0.141	2.804	0.58	0.85	1	120.485			
Sum Weight:	7935.87	125374.92						OTM	15106.14	103201.02		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face												
		101		1 0100			100				400	
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	lb	е						ft^2	lb	plf	
T1	86.39	2462.58	Α	0.273	2.37	0.608	1	1	29.013	3333.08	166.65	В
320.00-300.00			В	0.344	2.186	0.63	1	1	35.773			
			С	0.273	2.37	0.608	1	1	29.013			
T2	172.33	3229.77	Α	0.262	2.402	0.605	1	1	31.810	3978.70	198.94	В
300.00-280.00			В	0.38	2.104	0.644	1	1	45.215			
	262.24	6406.00	C	0.262	2.402	0.605	1	1	31.810		225.24	P
T3	363.24	6496.99	A	0.271	2.377	0.607	1	1	57.014	6746.74	337.34	В
280.00-260.00			B	0.458	1.96	0.677	1	1	84.007			
Τ.4	492.09	7010 22	C	0.271	2.377	0.607	1	1	57.014	7(04.21	204 71	D
T4 260.00-240.00	482.98	7010.32	A	0.251	2.435 1.965	0.602 0.676	1	1	62.926	7694.21	384.71	В
200.00-240.00			B C	0.455 0.251	2.435	0.676	1	-	97.692			
Т5	622.93	8391.73	A	0.251	2.435	0.602	1	1	62.926 73.517	8864.62	443.23	В
240.00-220.00	022.95	6391.75	B	0.234	1.935	0.603	1	1	117.068	0004.02	445.25	D
240.00-220.00			Б С	0.473	2.427	0.683	1	1	73.517			
Т6	1061.09	8127.65	A	0.204	2.582	0.003	1	1	67.334	8714.99	435.75	В
220.00-200.00	1001.09	6127.05	B	0.204	2.043	0.656	1	1	111.892	0/14.99	433.73	Б
220.00-200.00			C	0.306	2.043	0.618	1	1	87.767			
Т7	1765.97	9251.50	Ă	0.37	2.126	0.64	1	1	117.095	9415.79	470.79	В
200.00-180.00	1705.57	201.00	B	0.391	2.081	0.648	1	1	122.097	9110.79	170.75	Б
200.00 100.00			C	0.298	2.3	0.615	1	1	98.400			
Т8	907.62	5414.12	Ă	0.348	2.176	0.632	1	1	59.400	4863.21	486.32	В
180.00-170.00			В	0.383	2.099	0.645	1	1	64.020			
			С	0.282	2.346	0.61	1	1	50.205			
Т9	932.57	5516.65	А	0.335	2.206	0.627	1	1	59.995	4988.10	498.81	В
170.00-160.00			В	0.383	2.098	0.645	1	1	66.812			
			С	0.272	2.373	0.608	1	1	50.885			
T10	1901.63	11942.62	Α	0.333	2.212	0.627	1	1	128.599	10498.36	524.92	В
160.00-140.00			В	0.386	2.092	0.646	1	1	144.920			
			С	0.275	2.365	0.609	1	1	110.993			
T11	1977.13	12406.11	Α	0.314	2.259	0.62	1	1	131.801	10812.62	540.63	В
140.00-120.00			В	0.38	2.106	0.643	1	1	154.426			
			С	0.26	2.407	0.605	1	1	114.425			-
T12	2053.32	11165.81	A	0.263	2.4	0.605	1	1	108.232	9682.13	484.11	В
120.00-100.00			В	0.339	2.198	0.629	1	1	138.989			
		11850.05	С	0.213	2.554	0.593	1	1	89.760	0.050.000	100 (0)	P
T13	2155.56	11752.95	A	0.245	2.454	0.601	1	1	109.202	9853.90	492.69	В
100.00-80.00			В	0.334	2.21	0.627	1	1	148.983			

tnxTow

tran Toman	Job	Page
tnxTower	320' Rohn SSVMW	29 of 75
АЕСОМ	Project	Date
500 Enterprise Drive, Suite 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19
Rocky Hill, CT		Designed by
Phone: 860-529-8882 FAX: 860-529-3991	(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	lb	е						ft^2	lb	plf	
			С	0.199	2.601	0.59	1	1	90.877			
T14	2179.34	12848.65	Α	0.243	2.459	0.6	1	1	119.914	9988.86	499.44	В
80.00-60.00			В	0.329	2.221	0.625	1	1	161.414			
			С	0.201	2.593	0.591	1	1	101.659			
T15	3269.00	18692.57	Α	0.225	2.516	0.596	1	1	181.060	13583.41	452.78	В
60.00-30.00			В	0.303	2.289	0.617	1	1	241.720			
			С	0.187	2.641	0.588	1	1	154.176			
T16	2724.17	21738.94	Α	0.198	2.604	0.59	1	1	176.135	12234.51	407.82	В
30.00-0.00			В	0.256	2.419	0.604	1	1	225.108			
			С	0.169	2.703	0.585	1	1	154.108			
Sum Weight:	22655.26	156448.95						OTM	19690.63	135253.21		
_									kip-ft			

Tower Forces - With Ice - Wind 45 To Face												
Section Elevation	Add Weight	Self Weight	F a	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl. Face
ft	lb	lb	с е						ft^2	lb	plf	
T1	86.39	2462.58	A	0.273	2.37	0.608	0.825	1	26.972	<i>lb</i> 3161.14	158.06	В
320.00-300.00	00.57	2102.50	B	0.344	2.186	0.63	0.825	1	33.928	5101.11	120.00	D
20.00 500.00			C	0.273	2.100	0.608	0.825	1	26.972			
T2	172.33	3229.77	A	0.273	2.402	0.605	0.825	1	29.606	3815.84	190.79	В
300.00-280.00	172.55	5227.11	B	0.202	2.104	0.644	0.825	1	43.365	5015.04	170.77	Б
500.00-280.00			С С	0.38	2.104	0.605	0.825	1	29.606			
Т3	363.24	6496.99	A	0.202	2.402	0.607	0.825	1	47.618	6040.62	302.03	В
280.00-260.00	303.24	0490.99	B	0.271	1.96	0.677	0.825	1	75.215	0040.02	302.03	Б
280.00-200.00			с С	0.438	2.377	0.607	0.825	1	47.618			
T4	482.98	7010.32	A	0.271	2.377	0.607	0.825	1	52.584	6950.76	347.54	В
260.00-240.00	402.90	/010.52	A B	0.231	2.455 1.965	0.602	0.825	1	88.253	0930.70	547.54	D
200.00-240.00			ь С	0.433	2.435	0.602	0.825	1	88.233 52.584			
Τ.	622.93	8391.73	-					-		80(2.02	402.10	В
T5	022.93	8391.73	A B	0.254 0.475	2.427 1.935	0.603 0.685	0.825 0.825	1	61.419 106.469	8062.03	403.10	В
240.00-220.00			_					-				
TC	10(1.00	0107 (5	C	0.254	2.427	0.603	0.825	1	61.419	7020.00	206.45	D
T6	1061.09	8127.65	A	0.204	2.582	0.591	0.825	1	56.166	7928.90	396.45	В
220.00-200.00			B	0.411	2.043	0.656	0.825	1	101.800			
	15(5.05	0.0.51.50	С	0.306	2.28	0.618	0.825	1	77.128	0.40 6 50	12 1 02	
Τ7	1765.97	9251.50	Α	0.37	2.126	0.64	0.825	1	104.715	8496.50	424.83	В
200.00-180.00			B	0.391	2.081	0.648	0.825	1	110.176			
			С	0.298	2.3	0.615	0.825	1	85.950			
Т8	907.62	5414.12	Α	0.348	2.176	0.632	0.825	1	53.037	4400.69	440.07	В
180.00-170.00			В	0.383	2.099	0.645	0.825	1	57.931			
			С	0.282	2.346	0.61	0.825	1	43.811			
Т9	932.57	5516.65	А	0.335	2.206	0.627	0.825	1	53.517	4528.38	452.84	В
170.00-160.00			В	0.383	2.098	0.645	0.825	1	60.655			
			С	0.272	2.373	0.608	0.825	1	44.378			
T10	1901.63	11942.62	А	0.333	2.212	0.627	0.825	1	114.179	9499.06	474.95	В
160.00-140.00			В	0.386	2.092	0.646	0.825	1	131.126			
			С	0.275	2.365	0.609	0.825	1	96.420			
T11	1977.13	12406.11	А	0.314	2.259	0.62	0.825	1	116.809	9782.87	489.14	В
140.00-120.00			В	0.38	2.106	0.643	0.825	1	139.719			
			С	0.26	2.407	0.605	0.825	1	99.288			
T12	2053.32	11165.81	Α	0.263	2.4	0.605	0.825	1	99.511	9016.72	450.84	В
120.00-100.00			В	0.339	2.198	0.629	0.825	1	129.437			
			С	0.213	2.554	0.593	0.825	1	81.377			
T13	2155.56	11752.95	А	0.245		0.601	0.825	1	100.482	9180.46	459.02	В

tnxTower

Job	Page
320' Rohn SSVMW	30 of 75
Project	Date
CSP Tower - Colchester, CT	10:42:37 02/22/19
Client	Designed by
(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С						- 2			
ft	lb	lb	е						ft^2	lb	plf	
100.00-80.00			В	0.334	2.21	0.627	0.825	1	138.801			
			С	0.199	2.601	0.59	0.825	1	82.495			
T14	2179.34	12848.65	А	0.243	2.459	0.6	0.825	1	109.787	9271.67	463.58	В
80.00-60.00			В	0.329	2.221	0.625	0.825	1	149.824			
			С	0.201	2.593	0.591	0.825	1	91.870			
T15	3269.00	18692.57	А	0.225	2.516	0.596	0.825	1	165.876	12606.92	420.23	В
60.00-30.00			В	0.303	2.289	0.617	0.825	1	224.344			
			С	0.187	2.641	0.588	0.825	1	139.499			
T16	2724.17	21738.94	Α	0.198	2.604	0.59	0.825	1	160.868	11305.44	376.85	В
30.00-0.00			В	0.256	2.419	0.604	0.825	1	208.014			
			С	0.169	2.703	0.585	0.825	1	139.264			
Sum Weight:	22655.26	156448.95						OTM	18006.80	124048.00		
									kip-ft			

Tower Forces - With Ice - Wind 60 To Face												
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	a	č	C1	1 CA	21	20 K	112	-		Face
			с									
ft	lb	lb	е						ft^2	lb	plf	
T1	86.39	2462.58	А	0.273	2.37	0.608	0.8	1	26.681	3136.57	156.83	В
320.00-300.00			В	0.344	2.186	0.63	0.8	1	33.664			
			С	0.273	2.37	0.608	0.8	1	26.681			
T2	172.33	3229.77	А	0.262	2.402	0.605	0.8	1	29.291	3792.58	189.63	В
300.00-280.00			В	0.38	2.104	0.644	0.8	1	43.100			
			С	0.262	2.402	0.605	0.8	1	29.291			
Т3	363.24	6496.99	А	0.271	2.377	0.607	0.8	1	46.275	5939.75	296.99	В
280.00-260.00			В	0.458	1.96	0.677	0.8	1	73.959			
			С	0.271	2.377	0.607	0.8	1	46.275			
T4	482.98	7010.32	А	0.251	2.435	0.602	0.8	1	51.107	6844.56	342.23	В
260.00-240.00			В	0.455	1.965	0.676	0.8	1	86.904			
			С	0.251	2.435	0.602	0.8	1	51.107			
T5	622.93	8391.73	А	0.254	2.427	0.603	0.8	1	59.691	7947.37	397.37	В
240.00-220.00			В	0.475	1.935	0.685	0.8	1	104.955			
			С	0.254	2.427	0.603	0.8	1	59.691			
Т6	1061.09	8127.65	А	0.204	2.582	0.591	0.8	1	54.571	7816.60	390.83	В
220.00-200.00			В	0.411	2.043	0.656	0.8	1	100.358			
			С	0.306	2.28	0.618	0.8	1	75.608			
Τ7	1765.97	9251.50	A	0.37	2.126	0.64	0.8	1	102.947	8365.18	418.26	В
200.00-180.00			В	0.391	2.081	0.648	0.8	1	108.473			
			С	0.298	2.3	0.615	0.8	1	84.171			
Т8	907.62	5414.12	A	0.348	2.176	0.632	0.8	1	52.128	4334.61	433.46	В
180.00-170.00			В	0.383	2.099	0.645	0.8	1	57.061			
			С	0.282	2.346	0.61	0.8	1	42.897			
Т9	932.57	5516.65	A	0.335	2.206	0.627	0.8	1	52.592	4462.71	446.27	В
170.00-160.00			В	0.383	2.098	0.645	0.8	1	59.775			
			С	0.272	2.373	0.608	0.8	1	43.448			
T10	1901.63	11942.62	Ă	0.333	2.212	0.627	0.8	1	112.118	9356.30	467.81	В
160.00-140.00			В	0.386	2.092	0.646	0.8	1	129.155	,		_
			Č	0.275	2.365	0.609	0.8	1	94.338			
T11	1977.13	12406.11	A	0.314	2.259	0.62	0.8	1	114.667	9635.76	481.79	В
140.00-120.00	12,,,.15	12.00.11	B	0.38	2.106	0.643	0.8	1	137.618	,		
1.000 120.000			Č	0.26	2.407	0.605	0.8	1	97.125			
T12	2053.32	11165.81	A	0.263	2.407	0.605	0.8	1	98.265	8921.67	446.08	В
120.00-100.00	2000.02	11100.01	B	0.339	2.198	0.629	0.8	1	128.073	0/21.07	110.00	
0.00 100.00			C	0.213	2.554		0.8	1	80.180			

tnxTowe

	Job	Page
er	320' Rohn SSVMW	31 of 75
	Project	Date
Suite 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19
T	Client	Designed by
8882 1991	(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	lb	е						ft^2	lb	plf	
T13	2155.56	11752.95	Α	0.245	2.454	0.601	0.8	1	99.237	9084.25	454.21	В
100.00-80.00			В	0.334	2.21	0.627	0.8	1	137.346			
			С	0.199	2.601	0.59	0.8	1	81.298			
T14	2179.34	12848.65	Α	0.243	2.459	0.6	0.8	1	108.340	9169.21	458.46	В
80.00-60.00			В	0.329	2.221	0.625	0.8	1	148.169			
			С	0.201	2.593	0.591	0.8	1	90.472			
T15	3269.00	18692.57	Α	0.225	2.516	0.596	0.8	1	163.707	12467.42	415.58	В
60.00-30.00			В	0.303	2.289	0.617	0.8	1	221.861			
			С	0.187	2.641	0.588	0.8	1	137.403			
T16	2724.17	21738.94	Α	0.198	2.604	0.59	0.8	1	158.687	11172.71	372.42	В
30.00-0.00			В	0.256	2.419	0.604	0.8	1	205.572			
			С	0.169	2.703	0.585	0.8	1	137.143			
Sum Weight:	22655.26	156448.95						OTM	17766.26	122447.25		
Ũ									kip-ft			

	Tower Forces - With Ice - Wind 90 To Face												
Section Elevation	Add Weight	Self Weight	F a	е	C_F	R _R	D_F	D_R	A_E	F	W	Ctrl. Face	
ft	lb	lb	с е						ft^2	lb	plf		
T1	86.39	2462.58	А	0.273	2.37	0.608	0.85	1	27.264	3185.70	159.29	В	
320.00-300.00			В	0.344	2.186	0.63	0.85	1	34.191				
			С	0.273	2.37	0.608	0.85	1	27.264				
T2	172.33	3229.77	Α	0.262	2.402	0.605	0.85	1	29.920	3839.11	191.96	В	
300.00-280.00			В	0.38	2.104	0.644	0.85	1	43.629				
			С	0.262	2.402	0.605	0.85	1	29.920				
Т3	363.24	6496.99	Α	0.271	2.377	0.607	0.85	1	48.960	6141.49	307.07	В	
280.00-260.00			В	0.458	1.96	0.677	0.85	1	76.471				
			С	0.271	2.377	0.607	0.85	1	48.960				
T4	482.98	7010.32	Α	0.251	2.435	0.602	0.85	1	54.062	7056.97	352.85	В	
260.00-240.00			В	0.455	1.965	0.676	0.85	1	89.601				
			С	0.251	2.435	0.602	0.85	1	54.062				
T5	622.93	8391.73	Α	0.254	2.427	0.603	0.85	1	63.147	8176.68	408.83	В	
240.00-220.00			В	0.475	1.935	0.685	0.85	1	107.983				
			С	0.254	2.427	0.603	0.85	1	63.147				
Т6	1061.09	8127.65	Α	0.204	2.582	0.591	0.85	1	57.762	8041.20	402.06	В	
220.00-200.00			В	0.411	2.043	0.656	0.85	1	103.241				
			С	0.306	2.28	0.618	0.85	1	78.648				
Τ7	1765.97	9251.50	Α	0.37	2.126	0.64	0.85	1	106.484	8627.83	431.39	В	
200.00-180.00			В	0.391	2.081	0.648	0.85	1	111.879				
			С	0.298	2.3	0.615	0.85	1	87.728				
Т8	907.62	5414.12	Α	0.348	2.176	0.632	0.85	1	53.946	4466.76	446.68	В	
180.00-170.00			В	0.383	2.099	0.645	0.85	1	58.801				
			С	0.282	2.346	0.61	0.85	1	44.724				
Т9	932.57	5516.65	Α	0.335	2.206	0.627	0.85	1	54.442	4594.05	459.41	В	
170.00-160.00			В	0.383	2.098	0.645	0.85	1	61.534				
			С	0.272	2.373	0.608	0.85	1	45.308				
T10	1901.63	11942.62	Α	0.333	2.212	0.627	0.85	1	116.239	9641.81	482.09	В	
160.00-140.00			В	0.386	2.092	0.646	0.85	1	133.097				
			С	0.275	2.365	0.609	0.85	1	98.502				
T11	1977.13	12406.11	А	0.314	2.259	0.62	0.85	1	118.951	9929.98	496.50	В	
140.00-120.00			В	0.38	2.106	0.643	0.85	1	141.820				
			С	0.26	2.407	0.605	0.85	1	101.450				
T12	2053.32	11165.81	А	0.263	2.4	0.605	0.85	1	100.757	9111.78	455.59	В	
120.00-100.00			В	0.339	2.198	0.629	0.85	1	130.802				

tnxTower

Job	Page
320' Rohn SSVMW	32 of 75
Project	Date
CSP Tower - Colchester, CT	10:42:37 02/22/19
Client	Designed by
(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

Section Elevation	Add Weight	Self Weight	F a	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl. Face
ft	lb	lb	с е						ft^2	lb	plf	
T13 100.00-80.00	2155.56	11752.95	C A B	0.213 0.245 0.334	2.554 2.454 2.21	0.593 0.601 0.627	0.85 0.85 0.85	1 1 1	82.575 101.728 140.255	9276.67	463.83	В
T14 80.00-60.00	2179.34	12848.65	C A B	0.199 0.243 0.329	2.601 2.459 2.221	0.59 0.6 0.625	0.85 0.85 0.85	1 1 1	83.693 111.233 151.480	9374.12	468.71	В
T15 60.00-30.00	3269.00	18692.57	C A B	0.201 0.225 0.303	2.593 2.516 2.289	0.591 0.596 0.617	0.85 0.85 0.85	1 1 1	93.268 168.045 226.826	12746.42	424.88	В
T16 30.00-0.00	2724.17	21738.94	C A B	0.187 0.198 0.256	2.641 2.604 2.419	0.588 0.59 0.604	0.85 0.85 0.85	1 1 1	141.596 163.049 210.456	11438.16	381.27	В
Sum Weight:	22655.26	156448.95	С	0.169	2.703	0.585	0.85	1 OTM	141.384 18247.35 kip-ft	125648.74		

Tower Forces - Service - Wind Normal To Face												
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
	0	0	с									
ft	lb	lb	е						ft^2	lb	plf	
T1	20.26	1791.79	А	0.208	2.571	0.592	1	1	22.637	2698.66	134.93	В
320.00-300.00			В	0.245	2.454	0.601	1	1	25.804			
			С	0.208	2.571	0.592	1	1	22.637			
T2	43.60	2496.34	А	0.207	2.573	0.592	1	1	25.689	3204.39	160.22	В
300.00-280.00			В	0.273	2.371	0.608	1	1	32.320			
			С	0.207	2.573	0.592	1	1	25.689			
Т3	101.88	5067.66	А	0.237	2.476	0.599	1	1	51.464	5864.49	293.22	В
280.00-260.00			В	0.346	2.18	0.631	1	1	65.653			
			С	0.237	2.476	0.599	1	1	51.464			
Τ4	137.02	5409.17	А	0.219	2.532	0.595	1	1	56.868	6638.40	331.92	В
260.00-240.00			В	0.34	2.194	0.629	1	1	75.493			
			С	0.219	2.532	0.595	1	1	56.868			
Т5	176.60	6484.36	А	0.223	2.52	0.595	1	1	66.901	7620.51	381.03	В
240.00-220.00			В	0.355	2.16	0.634	1	1	90.167			
			С	0.223	2.52	0.595	1	1	66.901			
Т6	376.80	6406.00	А	0.181	2.66	0.587	1	1	61.588	7480.83	374.04	В
220.00-200.00			В	0.303	2.288	0.617	1	1	85.749			
			С	0.249	2.439	0.602	1	1	74.738			
Τ7	662.40	7298.65	А	0.294	2.312	0.614	1	1	95.966	8221.84	411.09	В
200.00-180.00			В	0.294	2.311	0.614	1	1	95.994			
			С	0.247	2.447	0.601	1	1	85.040			
Т8	336.56	4191.71	А	0.276	2.361	0.609	1	1	48.840	4218.96	421.90	В
180.00-170.00			В	0.284	2.339	0.611	1	1	49.845			
			С	0.233	2.49	0.598	1	1	43.435			
Т9	342.10	4265.58	А	0.266	2.39	0.606	1	1	49.422	4293.20	429.32	В
170.00-160.00			В	0.281	2.348	0.61	1	1	51.374			
			С	0.225	2.516	0.596	1	1	44.049			
T10	693.39	9608.59	A	0.268	2.384	0.607	1	1	107.666	9131.02	456.55	В
160.00-140.00			В	0.286	2.333	0.612	1	1	113.020			
			C	0.23	2.499	0.597	1	1	97.269			
T11	711.68	9975.29	Ā	0.253	2.428	0.603	1	1	110.716	9363.50	468.17	В
140.00-120.00			В	0.279	2.352	0.61	1	1	119.740			
120.00			Č	0.218	2.532	0.594	1	1	100.407			
T12	729.85	9144.95	-	0.206	2.576	0.592	1	1	86.335	7816.79	390.84	В

tnxTower

Job	Page
320' Rohn SSVMW	33 of 75
Project	Date
CSP Tower - Colchester, CT	10:42:37 02/22/19
Client	Designed by
(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	lb	е						ft^2	lb	plf	
120.00-100.00			В	0.24	2.469	0.599	1	1	99.870			
			С	0.173	2.689	0.585	1	1	75.149			
T13	754.48	9675.54	Α	0.191	2.625	0.589	1	1	87.135	7880.03	394.00	В
100.00-80.00			В	0.234	2.488	0.598	1	1	105.822			
			С	0.161	2.731	0.583	1	1	76.008			
T14	759.80	10501.98	А	0.194	2.617	0.589	1	1	97.584	8114.19	405.71	В
80.00-60.00			В	0.234	2.485	0.598	1	1	117.211			
			С	0.166	2.714	0.584	1	1	86.482			
T15	1139.70	15115.36	А	0.18	2.665	0.586	1	1	147.937	11043.33	368.11	В
60.00-30.00			В	0.217	2.541	0.594	1	1	176.991			
			С	0.154	2.755	0.582	1	1	131.494			
T16	949.75	17941.94	А	0.16	2.734	0.583	1	1	146.244	10076.91	335.90	В
30.00-0.00			В	0.188	2.636	0.588	1	1	170.094			
			С	0.141	2.804	0.58	1	1	132.707			
Sum Weight:	7935.87	125374.92						OTM	16713.46	113667.06		
e									kip-ft			

Tower Forces - Service - Wind 45 To Face												
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	lb	е						ft^2	lb	plf	
T1	20.26	1791.79	Α	0.208	2.571	0.592	0.825	1	20.596	2495.22	124.76	В
320.00-300.00			В	0.245	2.454	0.601	0.825	1	23.859			
			С	0.208	2.571	0.592	0.825	1	20.596			
T2	43.60	2496.34	Α	0.207	2.573	0.592	0.825	1	23.485	3004.17	150.21	В
300.00-280.00			В	0.273	2.371	0.608	0.825	1	30.301			
			С	0.207	2.573	0.592	0.825	1	23.485			
Т3	101.88	5067.66	А	0.237	2.476	0.599	0.825	1	42.458	5090.08	254.50	В
280.00-260.00			В	0.346	2.18	0.631	0.825	1	56.984			
			С	0.237	2.476	0.599	0.825	1	42.458			
T4	137.02	5409.17	А	0.219	2.532	0.595	0.825	1	46.916	5808.52	290.43	В
260.00-240.00			В	0.34	2.194	0.629	0.825	1	66.055			
			С	0.219	2.532	0.595	0.825	1	46.916			
T5	176.60	6484.36	А	0.223	2.52	0.595	0.825	1	55.194	6703.75	335.19	В
240.00-220.00			В	0.355	2.16	0.634	0.825	1	79.320			
			С	0.223	2.52	0.595	0.825	1	55.194			
T6	376.80	6406.00	А	0.181	2.66	0.587	0.825	1	50.810	6594.36	329.72	В
220.00-200.00			В	0.303	2.288	0.617	0.825	1	75.588			
			С	0.249	2.439	0.602	0.825	1	64.306			
Τ7	662.40	7298.65	A	0.294	2.312	0.614	0.825	1	83.990	7196.19	359.81	В
200.00-180.00			В	0.294	2.311	0.614	0.825	1	84.019			
			Ċ	0.247	2.447	0.601	0.825	1	72.802			
Т8	336.56	4191.71	A	0.276	2.361	0.609	0.825	1	42.682	3699.71	369.97	В
180.00-170.00			В	0.284	2.339	0.611	0.825	1	43.710			
			Ċ	0.233	2.49	0.598	0.825	1	37.148			
Т9	342.10	4265.58	Ă	0.266	2.39	0.606	0.825	1	43.151	3772.90	377.29	В
170.00-160.00	5.2.10	.200.00	В	0.281	2.348	0.61	0.825	1	45.148	5772.90	577.29	2
1,0.00 100.00			C	0.201	2.546	0.596	0.825	1	37.650			
T10	693.39	9608.59	A	0.268	2.384	0.607	0.825	1	93.584	7996.17	399.81	В
160.00-140.00	075.57	2000.32	B	0.286	2.333	0.612	0.825	1	98.973	, , , , 0.17	577.01	Ъ
100.00 110.00			C	0.23	2.499	0.597	0.825	1	82.873			
T11	711.68	9975.29	A	0.253	2.428	0.603	0.825	1	96.069	8200.43	410.02	В
140.00-120.00	/11.00	1113.49	B	0.233	2.428	0.003	0.825	1	104.867	0200.45	T10.02	Б
170.00-120.00			C	0.219		0.594	0.825	1	85.449			

tnxTower

	Job	Page
	320' Rohn SSVMW	34 of 75
	Project	Date
e 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19
	Client	Designed by
	(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD

MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	lb	е						ft^2	lb	plf	
T12	729.85	9144.95	Α	0.206	2.576	0.592	0.825	1	78.342	7129.35	356.47	В
120.00-100.00			В	0.24	2.469	0.599	0.825	1	91.087			
			С	0.173	2.689	0.585	0.825	1	67.156			
T13	754.48	9675.54	Α	0.191	2.625	0.589	0.825	1	79.144	7194.32	359.72	В
100.00-80.00			В	0.234	2.488	0.598	0.825	1	96.614			
			С	0.161	2.731	0.583	0.825	1	68.016			
T14	759.80	10501.98	А	0.194	2.617	0.589	0.825	1	88.185	7379.27	368.96	В
80.00-60.00			В	0.234	2.485	0.598	0.825	1	106.595			
			С	0.166	2.714	0.584	0.825	1	77.083			
T15	1139.70	15115.36	А	0.18	2.665	0.586	0.825	1	133.845	10050.19	335.01	В
60.00-30.00			В	0.217	2.541	0.594	0.825	1	161.074			
			С	0.154	2.755	0.582	0.825	1	117.403			
T16	949.75	17941.94	А	0.16	2.734	0.583	0.825	1	131.985	9142.03	304.73	В
30.00-0.00			В	0.188	2.636	0.588	0.825	1	154.313			
			С	0.141	2.804	0.58	0.825	1	118.448			
Sum Weight:	7935.87	125374.92						OTM	14838.25	101456.68		
									kip-ft			

Tower Forces - Service - Wind 60 To Face												
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
-			С						- 2			
ft	lb	lb	е						ft^2	lb	plf	
T1	20.26	1791.79	Α	0.208	2.571	0.592	0.8	1	20.305	2466.16	123.31	В
320.00-300.00			В	0.245	2.454	0.601	0.8	1	23.581			
			С	0.208	2.571	0.592	0.8	1	20.305			
T2	43.60	2496.34	Α	0.207	2.573	0.592	0.8	1	23.170	2975.57	148.78	В
300.00-280.00			В	0.273	2.371	0.608	0.8	1	30.012			
			С	0.207	2.573	0.592	0.8	1	23.170			
Т3	101.88	5067.66	Α	0.237	2.476	0.599	0.8	1	41.171	4979.45	248.97	В
280.00-260.00			В	0.346	2.18	0.631	0.8	1	55.745			
			С	0.237	2.476	0.599	0.8	1	41.171			
T4	137.02	5409.17	Α	0.219	2.532	0.595	0.8	1	45.494	5689.97	284.50	В
260.00-240.00			В	0.34	2.194	0.629	0.8	1	64.707			
			С	0.219	2.532	0.595	0.8	1	45.494			
T5	176.60	6484.36	Α	0.223	2.52	0.595	0.8	1	53.521	6572.79	328.64	В
240.00-220.00			В	0.355	2.16	0.634	0.8	1	77.770			
			С	0.223	2.52	0.595	0.8	1	53.521			
T6	376.80	6406.00	Α	0.181	2.66	0.587	0.8	1	49.270	6467.73	323.39	В
220.00-200.00			В	0.303	2.288	0.617	0.8	1	74.136			
			С	0.249	2.439	0.602	0.8	1	62.815			
Τ7	662.40	7298.65	А	0.294	2.312	0.614	0.8	1	82.279	7049.67	352.48	В
200.00-180.00			В	0.294	2.311	0.614	0.8	1	82.309			
			С	0.247	2.447	0.601	0.8	1	71.053			
Т8	336.56	4191.71	Ă	0.276	2.361	0.609	0.8	1	41.802	3625.53	362.55	В
180.00-170.00			В	0.284	2.339	0.611	0.8	1	42.834			
			Č	0.233	2.49	0.598	0.8	1	36.250			
Т9	342.10	4265.58	Ă	0.266	2.39	0.606	0.8	1	42.255	3698.57	369.86	В
170.00-160.00	5.2.10	.200.00	B	0.281	2.348	0.61	0.8	1	44.258	2020.01	202.00	
			C	0.225	2.516	0.596	0.8	1	36.736			
T10	693.39	9608.59	Ă	0.268	2.384	0.607	0.8	1	91.573	7834.05	391.70	В
160.00-140.00	0,0.07	2000.22	B	0.286	2.333	0.612	0.8	1	96.966	, 05 1.05	571.70	
100.00 140.00			C	0.23	2.333	0.597	0.8	1	80.816			
T11	711.68	9975.29	A	0.253	2.499	0.603	0.8	1	93.977	8034.28	401.71	В
140.00-120.00	/11.00	7713.29	B	0.233	2.428	0.603	0.8	1	102.742	0057.20	TU1./1	Б
140.00-120.00	I	I	Б	0.279	2.552	0.01	0.0	1	102.742	I		I

tnxTow

	Job	Page		
wer	320' Rohn SSVMW	35 of 75		
М	Project	Date		
ive, Suite 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19		
, CT	Client	Designed by		
29-8882 9-3991	(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	MCD		

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	lb	е						ft^2	lb	plf	
			С	0.218	2.538	0.594	0.8	1	83.312			
T12	729.85	9144.95	Α	0.206	2.576	0.592	0.8	1	77.200	7031.14	351.56	В
120.00-100.00			В	0.24	2.469	0.599	0.8	1	89.832			
			С	0.173	2.689	0.585	0.8	1	66.014			
T13	754.48	9675.54	Α	0.191	2.625	0.589	0.8	1	78.002	7096.36	354.82	В
100.00-80.00			В	0.234	2.488	0.598	0.8	1	95.298			
			С	0.161	2.731	0.583	0.8	1	66.875			
T14	759.80	10501.98	Α	0.194	2.617	0.589	0.8	1	86.843	7274.29	363.71	В
80.00-60.00			В	0.234	2.485	0.598	0.8	1	105.078			
			С	0.166	2.714	0.584	0.8	1	75.740			
T15	1139.70	15115.36	Α	0.18	2.665	0.586	0.8	1	131.832	9908.31	330.28	В
60.00-30.00			В	0.217	2.541	0.594	0.8	1	158.801			
			С	0.154	2.755	0.582	0.8	1	115.390			
T16	949.75	17941.94	Α	0.16	2.734	0.583	0.8	1	129.948	9008.48	300.28	В
30.00-0.00			В	0.188	2.636	0.588	0.8	1	152.059			
			С	0.141	2.804	0.58	0.8	1	116.411			
Sum Weight:	7935.87	125374.92						OTM	14570.36	99712.34		
Ũ									kip-ft			

		Т	ow	ver Fo	rces	- Se	rvice	e - W	ind 90 T	To Face)	
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С						a.2		10	
ft	lb	lb	е						ft^2	lb	plf	
T1	20.26	1791.79	Α	0.208	2.571	0.592	0.85	1	20.888	2524.29	126.21	В
320.00-300.00			В	0.245	2.454	0.601	0.85	1	24.137			
			С	0.208	2.571	0.592	0.85	1	20.888			
T2	43.60	2496.34	Α	0.207	2.573	0.592	0.85	1	23.800	3032.77	151.64	В
300.00-280.00			В	0.273	2.371	0.608	0.85	1	30.589			
			С	0.207	2.573	0.592	0.85	1	23.800			
Т3	101.88	5067.66	Α	0.237	2.476	0.599	0.85	1	43.745	5200.71	260.04	В
280.00-260.00			В	0.346	2.18	0.631	0.85	1	58.222			
			С	0.237	2.476	0.599	0.85	1	43.745			
T4	137.02	5409.17	Α	0.219	2.532	0.595	0.85	1	48.338	5927.08	296.35	В
260.00-240.00			В	0.34	2.194	0.629	0.85	1	67.404			
			С	0.219	2.532	0.595	0.85	1	48.338			
T5	176.60	6484.36	Α	0.223	2.52	0.595	0.85	1	56.866	6834.72	341.74	В
240.00-220.00			В	0.355	2.16	0.634	0.85	1	80.869			
			С	0.223	2.52	0.595	0.85	1	56.866			
Т6	376.80	6406.00	А	0.181	2.66	0.587	0.85	1	52.350	6721.00	336.05	В
220.00-200.00			В	0.303	2.288	0.617	0.85	1	77.040			
			С	0.249	2.439	0.602	0.85	1	65.796			
Τ7	662.40	7298.65	А	0.294	2.312	0.614	0.85	1	85.701	7342.71	367.14	В
200.00-180.00			В	0.294	2.311	0.614	0.85	1	85.730			
			С	0.247	2.447	0.601	0.85	1	74.550			
Т8	336.56	4191.71	A	0.276	2.361	0.609	0.85	1	43.561	3773.89	377.39	В
180.00-170.00			В	0.284	2.339	0.611	0.85	1	44.586			
			С	0.233	2.49	0.598	0.85	1	38.046			
Т9	342.10	4265.58	Ă	0.266	2.39	0.606	0.85	1	44.047	3847.23	384.72	В
170.00-160.00	2		B	0.281	2.348	0.61	0.85	1	46.037			2
			Č	0.225	2.516	0.596	0.85	1	38.564			
T10	693.39	9608.59	A	0.268	2.384	0.607	0.85	1	95.596	8158.29	407.91	В
160.00-140.00	070.07	2000.22	B	0.286	2.333	0.612	0.85	1	100.980	0100.27	107.91	D
100.00 140.00			C	0.230	2.333	0.597	0.85	1	84.929			
T11	711.68	9975.29	A	0.253	2.428	0.603	0.85	1	98.162	8366.59	418.33	В
111	/11.00	1113.49	п	0.233	2.720	0.005	0.05	1	70.102	0500.59	+10.33	Б

tnxT

tnxTower	Job 320' Rohn SSVMW	Page 36 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
c	77		С						c 2		10	
ft	lb	lb	е						ft^2	lb	plf	
140.00-120.00			В	0.279	2.352	0.61	0.85	1	106.991			
			С	0.218	2.538	0.594	0.85	1	87.586			
T12	729.85	9144.95	А	0.206	2.576	0.592	0.85	1	79.483	7227.56	361.38	В
120.00-100.00			В	0.24	2.469	0.599	0.85	1	92.342			
			С	0.173	2.689	0.585	0.85	1	68.298			
T13	754.48	9675.54	Α	0.191	2.625	0.589	0.85	1	80.286	7292.28	364.61	В
100.00-80.00			В	0.234	2.488	0.598	0.85	1	97.929			
			С	0.161	2.731	0.583	0.85	1	69.158			
T14	759.80	10501.98	А	0.194	2.617	0.589	0.85	1	89.528	7484.26	374.21	В
80.00-60.00			В	0.234	2.485	0.598	0.85	1	108.111			
			С	0.166	2.714	0.584	0.85	1	78.426			
T15	1139.70	15115.36	А	0.18	2.665	0.586	0.85	1	135.858	10192.07	339.74	В
60.00-30.00			В	0.217	2.541	0.594	0.85	1	163.348			
			С	0.154	2.755	0.582	0.85	1	119.416			
T16	949.75	17941.94	А	0.16	2.734	0.583	0.85	1	134.022	9275.59	309.19	В
30.00-0.00			В	0.188	2.636	0.588	0.85	1	156.568			
			С	0.141	2.804	0.58	0.85	1	120.485			
Sum Weight:	7935.87	125374.92						OTM	15106.14	103201.02		
Ũ									kip-ft			

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Ζ	Moments, M_x	Moments, M_z	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Leg Weight	73044.53					
Bracing Weight	52330.39					
Total Member Self-Weight	125374.92			51.74	-25.33	
Total Weight	141290.45			51.74	-25.33	
Wind 0 deg - No Ice		-208.88	-134217.56	-20966.58	15.73	
Wind 30 deg - No Ice		61684.46	-107067.52	-16738.15	-9693.27	307.98
Wind 45 deg - No Ice		86109.68	-86124.41	-13455.45	-13529.69	326.73
Wind 60 deg - No Ice		104028.21	-59950.53	-9350.31	-16347.75	322.73
Wind 90 deg - No Ice		123730.70	208.88	92.80	-19432.32	269.40
Wind 120 deg - No Ice		116322.22	67289.67	10596.46	-18244.79	146.77
Wind 135 deg - No Ice		86405.08	86419.80	13616.99	-13587.76	
Wind 150 deg - No Ice		62046.24	107276.40	16882.68	-9764.39	-38.59
Wind 180 deg - No Ice		208.88	120262.84	18926.96	-66.39	-193.98
Wind 210 deg - No Ice		-61684.46	107067.52	16841.62	9642.61	-307.98
Wind 225 deg - No Ice		-86109.68	86124.41	13558.92	13479.03	-326.73
Wind 240 deg - No Ice		-116113.35	66927.89	10525.34	18153.08	-365.22
Wind 270 deg - No Ice		-123730.70	-208.88	10.67	19381.67	-269.40
Wind 300 deg - No Ice		-104237.08	-60312.31	-9421.43	16338.16	-128.75
Wind 315 deg - No Ice		-86405.08	-86419.80	-13513.52	13537.10	-48.08
Wind 330 deg - No Ice		-62046.24	-107276.40	-16779.21	9713.73	38.59
Member Ice	31074.03					
Total Weight Ice	191606.33			135.81	-92.38	
Wind 0 deg - Ice		-217.95	-160218.16	-24864.26	-49.55	437.79
Wind 30 deg - Ice		75107.76	-130326.31	-20243.55	-11831.71	592.11
Wind 45 deg - Ice		105199.33	-105213.95	-16320.98	-16546.37	618.29
Wind 60 deg - Ice		127535.83	-73517.35	-11364.94	-20051.68	
Wind 90 deg - Ice		150593.02	217.95	178.64	-23645.22	
Wind 120 deg - Ice		138844.07	80297.83	12672.94	-21761.07	
Wind 135 deg - Ice		105507.56	105522.18	16653.17	-16606.95	47.14
Wind 150 deg - Ice		75485.26	130544.26	20558.00	-11905.90	-115.81

tnxTower

Project

320' Rohn SSVMW

Page 37 of 75

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

10:42:37 02/22/19

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	<i>v</i> 1
		Х	Ζ	Moments, M_x	Moments, M_z	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Wind 180 deg - Ice		217.95	147412.20	23211.50	-135.22	-399.02
Wind 210 deg - Ice		-75107.76	130326.31	20515.17	11646.94	-592.11
Wind 225 deg - Ice		-105199.33	105213.95	16592.59	16361.60	-618.29
Wind 240 deg - Ice		-138626.12	79920.33	12598.75	21533.47	-661.37
Wind 270 deg - Ice		-150593.02	-217.95	92.98	23460.45	-476.30
Wind 300 deg - Ice		-127753.78	-73894.85	-11439.13	19909.75	-202.98
Wind 315 deg - Ice		-105507.56	-105522.18	-16381.55	16422.18	-47.14
Wind 330 deg - Ice		-75485.26	-130544.26	-20286.39	11721.13	115.81
Total Weight	141290.45			51.74	-25.33	
Wind 0 deg - Service		-208.88	-134217.56	-21013.69	38.44	218.45
Wind 30 deg - Service		61684.46	-107067.52	-16785.26	-9670.56	307.98
Wind 45 deg - Service		86109.68	-86124.41	-13502.56	-13506.98	326.73
Wind 60 deg - Service		104028.21	-59950.53	-9397.42	-16325.05	322.73
Wind 90 deg - Service		123730.70	208.88	45.69	-19409.62	269.40
Wind 120 deg - Service		116322.22	67289.67	10549.35	-18222.09	146.77
Wind 135 deg - Service		86405.08	86419.80	13569.88	-13565.05	48.08
Wind 150 deg - Service		62046.24	107276.40	16835.57	-9741.68	-38.59
Wind 180 deg - Service		208.88	120262.84	18879.85	-43.69	-193.98
Wind 210 deg - Service		-61684.46	107067.52	16794.51	9665.31	-307.98
Wind 225 deg - Service		-86109.68	86124.41	13511.81	13501.73	-326.73
Wind 240 deg - Service		-116113.35	66927.89	10478.23	18175.78	-365.22
Wind 270 deg - Service		-123730.70	-208.88	-36.43	19404.37	-269.40
Wind 300 deg - Service		-104237.08	-60312.31	-9468.54	16360.86	-128.75
Wind 315 deg - Service		-86405.08	-86419.80	-13560.63	13559.80	-48.08
Wind 330 deg - Service		-62046.24	-107276.40	-16826.32	9736.43	38.59

Load Combinations

Comb.		Description
No.		-
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 45 deg - No Ice	
5	Dead+Wind 60 deg - No Ice	
6	Dead+Wind 90 deg - No Ice	
7	Dead+Wind 120 deg - No Ice	
8	Dead+Wind 135 deg - No Ice	
9	Dead+Wind 150 deg - No Ice	
10	Dead+Wind 180 deg - No Ice	
11	Dead+Wind 210 deg - No Ice	
12	Dead+Wind 225 deg - No Ice	
13	Dead+Wind 240 deg - No Ice	
14	Dead+Wind 270 deg - No Ice	
15	Dead+Wind 300 deg - No Ice	
16	Dead+Wind 315 deg - No Ice	
17	Dead+Wind 330 deg - No Ice	
18	Dead+Ice+Temp	
19	Dead+Wind 0 deg+Ice+Temp	
20	Dead+Wind 30 deg+Ice+Temp	
21	Dead+Wind 45 deg+Ice+Temp	
22	Dead+Wind 60 deg+Ice+Temp	
23	Dead+Wind 90 deg+Ice+Temp	
24	Dead+Wind 120 deg+Ice+Temp	
25	Dead+Wind 135 deg+Ice+Temp	
26	Dead+Wind 150 deg+Ice+Temp	

A a a a a a a a a a a	Job	Page
tnxTower	320' Rohn SSVMW	38 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Comb.	Description
No.	
27	Dead+Wind 180 deg+Ice+Temp
28	Dead+Wind 210 deg+Ice+Temp
29	Dead+Wind 225 deg+Ice+Temp
30	Dead+Wind 240 deg+Ice+Temp
31	Dead+Wind 270 deg+Ice+Temp
32	Dead+Wind 300 deg+Ice+Temp
33	Dead+Wind 315 deg+Ice+Temp
34	Dead+Wind 330 deg+Ice+Temp
35	Dead+Wind 0 deg - Service
36	Dead+Wind 30 deg - Service
37	Dead+Wind 45 deg - Service
38	Dead+Wind 60 deg - Service
39	Dead+Wind 90 deg - Service
40	Dead+Wind 120 deg - Service
41	Dead+Wind 135 deg - Service
42	Dead+Wind 150 deg - Service
43	Dead+Wind 180 deg - Service
44	Dead+Wind 210 deg - Service
45	Dead+Wind 225 deg - Service
46	Dead+Wind 240 deg - Service
47	Dead+Wind 270 deg - Service
48	Dead+Wind 300 deg - Service
49	Dead+Wind 315 deg - Service
50	Dead+Wind 330 deg - Service

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Force lb	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
T1	320 - 300	Leg	Max Tension	32	6943.25	-0.00	0.00
		e	Max. Compression	30	-9269.38	0.36	-0.03
			Max. Mx	22	6806.68	-0.37	-0.09
			Max. My	19	-9262.76	0.13	0.32
			Max. Vy	31	327.81	0.00	0.00
			Max. Vx	19	404.77	0.00	-0.00
		Diagonal	Max Tension	28	1583.87	0.00	0.00
		C	Max. Compression	28	-1613.17	0.00	0.00
			Max. Mx	30	1326.06	0.01	-0.00
			Max. My	26	218.91	0.01	-0.00
		Max. Vy	30	-8.51	0.01	-0.00	
			Max. Vx	33	-0.17	0.01	0.00
		Top Girt	Max Tension	24	96.36	0.00	0.00
		-	Max. Compression	22	-120.21	0.00	0.00
			Max. Mx	18	-13.16	-0.02	0.00
			Max. My	28	-9.46	0.00	0.00
			Max. Vy	18	-13.13	0.00	0.00
			Max. Vx	28	0.00	0.00	0.00
T2	300 - 280	Leg	Max Tension	27	21665.33	-0.13	0.03
			Max. Compression	30	-27469.70	0.56	0.14
			Max. Mx	24	-27255.74	0.57	-0.16
			Max. My	25	3286.12	-0.15	-0.62
			Max. Vy	22	-486.02	-0.12	0.03
			Max. Vx	25	-723.45	-0.04	-0.06
		Diagonal	Max Tension	23	3912.95	0.00	0.00
			Max. Compression	23	-3951.58	0.00	0.00
			Max. Mx	32	2233.14	0.02	0.00
			Max. My	31	-3884.37	0.01	0.01
			Max. Vy	32	14.58	0.02	0.00

Mawimum Mambar Faraaa

tnxTower

Project

320' Rohn SSVMW

Page 39 of 75

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi Moment
	J -	-) _F -		Comb.	lb	kip-ft	kip-ft
			Max. Vx	31	-1.43	0.00	0.00
		Top Girt	Max Tension	22	18.45	0.00	0.00
		- F	Max. Compression	30	-43.43	0.00	0.00
			Max. Mx	30	5.62	-0.03	0.00
			Max. My	28	10.00	0.00	0.00
			Max. Vy	30	17.46	0.00	0.00
			Max. Vx	28	-0.51	0.00	0.00
Т3	280 - 260	Leg	Max Tension	27	42857.31	-0.31	-0.03
		-0	Max. Compression	24	-54205.47	0.79	-0.08
			Max. Mx	27	42377.06	-0.80	-0.11
			Max. My	26	-4813.40	-0.01	-0.72
			Max. Vy	32	444.01	-0.79	0.07
			Max. Vx	20	755.41	-0.01	-0.52
		Diagonal	Max Tension	31	5657.57	0.00	0.00
		Diugonui	Max. Compression	31	-5697.94	0.00	0.00
			Max. Mx	26	2474.20	0.03	0.00
			Max. My	20	-4930.40	0.02	-0.01
			Max. Vy	32	22.41	0.02	0.01
			Max. Vx	22	2.34	0.00	0.01
T4	260 - 240	Lag	Max Tension	27	69857.95	-0.19	-0.49
14	200 - 240	Leg	Max. Compression	27	-89457.16	2.48	-0.49
			Max. Mx	30		2.48	-0.12
				28	-88013.98	0.04	2.76
			Max. My		-9251.04		
			Max. Vy	32	-690.13	-0.17	-0.00
		Discourd	Max. Vx	28	1293.38	-0.03	-0.57
		Diagonal	Max Tension	31	8749.91	0.00	0.00
			Max. Compression	30	-9259.72	0.00	0.00
			Max. Mx	26	3066.61	0.05	0.01
			Max. My	21	-7124.87	0.04	-0.02
			Max. Vy	27	31.90	0.05	0.01
T .5	a. (a) a a a	Ŧ	Max. Vx	21	4.21	0.00	0.00
T5	240 - 220	Leg	Max Tension	27	104557.32	-0.53	-0.03
			Max. Compression	24	-133439.03	1.88	-0.03
			Max. Mx	30	-101313.41	2.49	0.81
			Max. My	28	-9590.28	0.03	2.76
			Max. Vy	30	507.20	2.49	0.81
		D' 1	Max. Vx	20	-612.29	0.04	-2.76
		Diagonal	Max Tension	30	11089.62	0.00	0.00
			Max. Compression	30	-11725.45	0.00	0.00
			Max. Mx	30	5817.79	0.11	0.03
			Max. My	21	-8661.87	0.07	-0.04
			Max. Vy	27	57.12	0.11	0.03
		_	Max. Vx	21	7.00	0.00	0.00
T6	220 - 200	Leg	Max Tension	22	142484.42	-0.71	-0.30
			Max. Compression	24	-182955.73	1.92	-0.08
			Max. Mx	24	-182955.73	1.92	-0.08
			Max. My	20	-15494.02	-0.15	-2.89
			Max. Vy	32	-2013.41	-1.70	0.04
			Max. Vx	28	1923.89	0.04	0.71
		Diagonal	Max Tension	19	15801.63	0.00	0.00
			Max. Compression	19	-16731.46	0.00	0.00
			Max. Mx	30	8389.14	0.18	0.04
			Max. My	21	-11988.30	0.12	-0.06
			Max. Vy	21	74.02	0.17	-0.04
			Max. Vx	21	8.37	0.00	0.00
T7	200 - 180	Leg	Max Tension	27	190247.01	-1.57	0.02
		-	Max. Compression	24	-243785.19	4.29	-0.25
			Max. Mx	24	-243785.19	4.29	-0.25
			Max. My	28	-22516.97	0.11	3.53
			Max. Vy	32	-2485.55	-1.59	0.09
			Max. Vx	20	-2396.37	0.11	0.23

tnxTower

Project

320' Rohn SSVMW

Page 40 of 75

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Ax Moment
	v			Comb.	lb	kip-ft	kip-ft
		Diagonal	Max Tension	30	19198.72	0.00	0.00
		C	Max. Compression	30	-19639.42	0.00	0.00
			Max. Mx	27	10076.51	0.21	0.04
			Max. My	21	-14745.87	0.15	-0.07
			Max. Vy	27	82.62	0.21	0.04
			Max. Vx	21	9.17	0.00	0.00
T8	180 - 170	Leg	Max Tension	27	214707.50	-3.85	0.58
10	100 170	LUB	Max. Compression	24	-274397.74	1.91	-0.16
			Max. Mx	24	-273006.07	4.29	-0.25
			Max. My	28	-23483.53	0.11	3.53
			Max. Vy	19	547.09	4.28	-0.63
			Max. Vx	30	764.70	-2.00	3.37
		Diagonal					
		Diagonal	Max Tension	31	20692.79	0.00	0.00
			Max. Compression	30	-21568.99	0.00	0.00
			Max. Mx	27	10972.75	-0.31	-0.07
			Max. My	21	-16798.73	-0.24	0.10
			Max. Vy	27	-120.42	-0.31	-0.07
			Max. Vx	21	-12.55	0.00	0.00
Т9	170 - 160	Leg	Max Tension	27	239374.95	-2.11	0.02
			Max. Compression	24	-305606.28	3.80	-0.19
			Max. Mx	24	-305606.28	3.80	-0.19
			Max. My	28	-27225.12	0.17	3.04
			Max. Vy	2	-415.11	3.27	-0.26
			Max. Vx	30	-621.90	-1.67	2.86
		Diagonal	Max Tension	30	21555.81	0.00	0.00
			Max. Compression	30	-22148.95	0.00	0.00
			Max. Mx	27	11244.96	-0.34	-0.07
			Max. My	21	-17433.92	-0.27	0.11
			Max. Vy	27	-126.41	-0.34	-0.07
			Max. Vy Max. Vx	21	-12.75	0.00	0.00
T10	160 140	Lag					
T10	160 - 140	Leg	Max Tension	27	289436.19	-2.44	-0.04
			Max. Compression	24	-369374.77	4.99	-0.41
			Max. Mx	24	-369374.77	4.99	-0.41
			Max. My	26	-24662.31	-0.35	-3.42
			Max. Vy	19	-672.23	4.95	0.06
			Max. Vx	30	852.89	-1.43	3.14
		Diagonal	Max Tension	31	24673.06	0.00	0.00
			Max. Compression	30	-26117.70	0.00	0.00
			Max. Mx	30	12367.62	0.48	0.07
			Max. My	21	-19107.59	0.31	-0.11
			Max. Vy	27	155.50	0.47	0.07
			Max. Vx	21	12.41	0.00	0.00
T11	140 - 120	Leg	Max Tension	27	338572.14	-2.82	0.02
		e	Max. Compression	24	-433129.26	-3.53	-0.01
			Max. Mx	24	-401206.23	4.99	-0.41
			Max. My	28	-37388.54	-1.14	5.64
			Max. Vy	19	795.17	2.52	-0.01
			Max. Vx	30	-958.30	-1.59	4.44
		Diagonal	Max Tension	31	26235.61	0.00	0.00
		Diagonai	Max. Compression	30	-27492.52	0.00	0.00
			Max. Mx	30	12424.95	0.56	0.00
			Max. My	30	-24814.52	0.30	0.09
					-24814.32 168.74	0.20	0.14
			Max. Vy May Vy	28			
T10	120 100	T	Max. Vx	22	15.13	0.00	0.00
T12	120 - 100	Leg	Max Tension	27	345994.12	0.60	0.45
			Max. Compression	24	-447089.01	-15.94	-0.85
			Max. Mx	24	-446056.90	20.91	0.80
			Max. My	28	-40815.76	-2.96	12.81
			Max. Vy	24	4289.45	20.91	0.80
			Max. Vx	28	-2614.94	-2.96	12.81
		Diagonal	Max Tension	31			-0.06

tnxTower

)M

Job

Project

CSP Tower - Colchester, CT

320' Rohn SSVMW

Page 41 of 75

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Ax Moment
				Comb.	lb	kip-ft	kip-ft
			Max. Compression	30	-45218.14	0.00	0.00
			Max. Mx	31	10943.39	-0.36	0.01
			Max. My	31	-43135.25	-0.14	-0.18
			Max. Vy	31	103.25	-0.36	0.01
			Max. Vx	30	-15.09	-0.10	-0.18
		Horizontal	Max Tension	30	23405.24	-0.24	-0.02
		Homzontur	Max. Compression	30	-24198.63	-0.25	-0.02
			Max. Mx	27	-4538.37	-0.27	-0.04
			Max. My	19	4930.99	-0.15	0.05
			2	27	85.23	-0.13	-0.04
			Max. Vy Max. Vx	19	-3.94	-0.15	0.04
		Deduced Here 1					
		Redund Horz 1 Bracing	Max Tension	24	7759.88	0.00	0.00
			Max. Compression	24	-7759.88	0.00	0.00
			Max. Mx	18	681.41	0.02	0.00
			Max. My	20	6351.32	0.00	-0.00
			Max. Vy	18	13.29	0.00	0.00
			Max. Vx	20	-0.00	0.00	0.00
		Redund Diag 1	Max Tension	24	7040.24	0.00	0.00
		Bracing	Max Compression	24	-7040.24	0.00	0.00
			Max. Compression	24 23		0.00	0.00
			Max. Mx		5880.40		
			Max. My	30	3018.99	0.00	0.00
			Max. Vy	23	-15.58	0.00	0.00
			Max. Vx	30	-0.15	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	1	0.00	0.00	0.00
		-	Max. Compression	23	-97.02	0.00	0.00
			Max. Mx	18	-14.16	0.02	0.00
			Max. My	30	-11.52	0.00	0.00
			Max. Vy	18	-13.29	0.00	0.00
			Max. Vx	30	-0.00	0.00	0.00
		Redund Hip Diagonal 1 Bracing	Max Tension	23	153.03	0.00	0.00
		Diagonal I Blacing	May Compression	30	-109.21	0.00	0.00
			Max. Compression				
			Max. Mx	24	120.91	0.17	0.00
			Max. My	30	66.26	0.00	0.00
			Max. Vy	24	-44.88	0.00	0.00
			Max. Vx	30	-0.20	0.00	0.00
		Inner Bracing	Max Tension	22	10.04	0.00	0.00
			Max. Compression	23	-41.59	0.00	0.00
			Max. Mx	18	-12.03	0.20	0.00
			Max. My	30	-3.85	0.00	0.00
			Max. Vy	18	-63.64	0.00	0.00
			Max. Vx	30	-0.27	0.00	0.00
T13	100 - 80	Leg	Max Tension	27	385526.82	8.45	2.32
		-	Max. Compression	24	-500110.04	-18.96	-1.25
			Max. Mx	24	-499341.90	23.68	0.97
			Max. My	28	-42967.26	-2.98	12.80
			Max. Vy	24	4401.47	23.68	0.97
			Max. Vx	28	2436.87	-2.98	12.80
		Diagonal	Max Tension	31	43666.16	-0.29	-0.06
			Max. Compression	30	-48150.47	0.00	0.00
			Max. Mx	31	12425.89	-0.39	0.02
			Max. My	30	-47939.68	-0.12	-0.18
			Max. Vy	31	111.68	-0.39	0.02
			Max. Vy Max. Vx	30	14.40	-0.12	-0.18
			Max Tension	30	25729.29	-0.12	0.00
		Horizontal					
		Horizontal					
		Horizontal	Max. Compression Max. Mx	30 27	-27843.64 4333.42	-0.32 -0.36 -0.39	-0.02 -0.04

tnxTower

AECOM

Job

Project

Client

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991 CSP Tower - Colchester, CT

320' Rohn SSVMW

ent (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"

Designed by MCD

42 of 75

10:42:37 02/22/19

Page

Date

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Ax Moment
	-			Comb.	lb	kip-ft	kip-ft
			Max. Vy	27	-117.00	-0.39	-0.04
			Max. Vx	19	-3.85	-0.25	0.05
		Redund Horz 1	Max Tension	24	8679.04	0.00	0.00
		Bracing					
		8	Max. Compression	24	-8679.04	0.00	0.00
			Max. Mx	18	762.20	0.03	0.00
			Max. My	20	7099.28	0.00	-0.00
			Max. Vy	18	14.64	0.00	0.00
			Max. Vx	20	0.00	0.00	0.00
		Dedund Diag 1	Max Tension	20 24	7360.68	0.00	0.00
		Redund Diag 1 Bracing					
			Max. Compression	24	-7360.68	0.00	0.00
			Max. Mx	23	6140.87	0.06	0.00
			Max. My	30	3692.59	0.00	0.00
			Max. Vy	23	-21.80	0.00	0.00
			Max. Vx	30	0.16	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	1	0.00	0.00	0.00
		2.menub	Max. Compression	23	-98.47	0.00	0.00
			Max. Mx	18	-14.69	0.03	0.00
			Max. My	30	-13.37	0.00	0.00
			Max. Vy	18	-14.64	0.00	0.00
			Max. Vx	30	-0.00	0.00	0.00
		Dedund Him					
		Redund Hip Diagonal 1 Bracing	Max Tension	23	147.14	0.00	0.00
			Max. Compression	30	-105.39	0.00	0.00
			Max. Mx	24	114.39	0.20	0.00
			Max. My	30	73.53	0.00	0.00
			Max. Vy	24	-49.19	0.00	0.00
			Max. Vx	30	-0.17	0.00	0.00
		Inner Bracing	Max Tension	22	8.33	0.00	0.00
			Max. Compression	19	-42.41	0.00	0.00
			Max. Mx	18	-13.35	0.25	0.00
			Max. My	30	-7.11	0.00	0.00
			Max. Vy	18	-70.11	0.00	0.00
			Max. Vx	30	-0.24	0.00	0.00
T14	80 - 60	Leg	Max Tension	27	428205.25	10.87	2.18
	00 00	208	Max. Compression	24	-556237.12	-17.11	-2.28
			Max. Mx	24	-554791.04	25.61	1.71
			Max. My	28	-50617.69	-4.65	22.75
			Max. Vy	28	-4604.27	25.61	1.72
			Max. Vy Max. Vx	28	-3796.39	-4.65	22.75
		Diagonal	Max Tension	28 30	42127.65	0.00	0.00
		Diagonal	Max. Compression	30	-46418.58	0.00	0.00
					7055.65	-0.32	-0.01
			Max. Mx	31			
			Max. My	31	-43409.38	-0.14	-0.22
			Max. Vy	31	88.16	-0.32	-0.01
			Max. Vx	31	16.59	-0.14	-0.22
		TT · · ·		31	26190.63	-0.62	0.00
		Horizontal	Max Tension				
		Horizontal	Max. Compression	30	-28447.30	-0.67	-0.02
		Horizontal	Max. Compression Max. Mx	30 27	-28447.30 4823.80	-0.71	-0.03
		Horizontal	Max. Compression Max. Mx Max. My	30 27 19	-28447.30	-0.71 -0.53	-0.03 0.04
		Horizontal	Max. Compression Max. Mx	30 27	-28447.30 4823.80	-0.71	-0.03
		Horizontal	Max. Compression Max. Mx Max. My	30 27 19	-28447.30 4823.80 7481.08	-0.71 -0.53	-0.03 0.04
		Redund Horz 1	Max. Compression Max. Mx Max. My Max. Vy	30 27 19 27	-28447.30 4823.80 7481.08 -206.84	-0.71 -0.53 -0.71	-0.03 0.04 -0.03
			Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension	30 27 19 27 19 24	-28447.30 4823.80 7481.08 -206.84 -3.04 9655.72	-0.71 -0.53 -0.71 -0.53 0.00	-0.03 0.04 -0.03 0.04 0.00
		Redund Horz 1	Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression	30 27 19 27 19 24 24	-28447.30 4823.80 7481.08 -206.84 -3.04 9655.72 -9655.72	-0.71 -0.53 -0.71 -0.53 0.00	-0.03 0.04 -0.03 0.04 0.00 0.00
		Redund Horz 1	Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx	30 27 19 27 19 24 24 24	-28447.30 4823.80 7481.08 -206.84 -3.04 9655.72 -9655.72 852.16	-0.71 -0.53 -0.71 -0.53 0.00 0.00 0.04	-0.03 0.04 -0.03 0.04 0.00 0.00 0.00
		Redund Horz 1	Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression	30 27 19 27 19 24 24	-28447.30 4823.80 7481.08 -206.84 -3.04 9655.72 -9655.72	-0.71 -0.53 -0.71 -0.53 0.00	-0.03 0.04 -0.03 0.04 0.00 0.00

tnxTower

Project

320' Rohn SSVMW

Page 43 of 75

Date

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991 CSP Tower - Colchester, CT

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Ax Moment
	-			Comb.	lb	kip-ft	kip-ft
		Redund Diag 1 Bracing	Max Tension	24	7722.07	0.00	0.00
		e e	Max. Compression	24	-7722.07	0.00	0.00
			Max. Mx	23	6438.45	0.07	0.00
			Max. My	30	4783.30	0.00	0.00
			Max. Vy	23	-23.76	0.00	0.00
			Max. Vx	30	-0.13	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	1	0.00	0.00	0.00
			Max. Compression	23	-111.64	0.00	0.00
			Max. Mx	18	-12.90	0.03	0.00
			Max. My	30	-6.71	0.00	0.00
			Max. Vy	18	15.95	0.00	0.00
			Max. Vx	30	0.00	0.00	0.00
		Redund Hip Diagonal 1 Bracing	Max Tension	23	186.20	0.00	0.00
		0 0	Max. Compression	30	-140.05	0.00	0.00
			Max. Mx	24	146.38	0.29	0.00
			Max. My	30	82.21	0.00	0.00
			Max. Vy	24	-68.26	0.00	0.00
			Max. Vx	30	-0.17	0.00	0.00
		Inner Bracing	Max Tension	22	5.76	0.00	0.00
		č	Max. Compression	23	-52.01	0.00	0.00
			Max. Mx	18	-17.31	0.29	0.00
			Max. My	30	-13.37	0.00	0.00
			Max. Vy	18	-76.38	0.00	0.00
			Max. Vx	30	-0.21	0.00	0.00
Г15	60 - 30	Leg	Max Tension	27	467883.96	6.70	3.81
		0	Max. Compression	24	-610763.65	5.01	1.48
			Max. Mx	24	-604154.31	34.94	2.03
			Max. My	20	-56468.59	-2.13	-32.73
			Max. Vy	24	6065.14	34.94	2.03
			Max. Vx	20	4846.99	-2.13	-32.73
		Diagonal	Max Tension	30	59796.67	0.00	0.00
		_	Max. Compression	30	-65668.46	0.00	0.00
			Max. Mx	27	35122.23	-0.45	0.25
			Max. My	30	-61840.83	0.29	-0.66
			Max. Vy	30	-106.81	-0.32	0.32
			Max. Vx	30	84.38	0.29	-0.66
		Horizontal	Max Tension	30	30864.88	-0.61	-0.03
			Max. Compression	30	-31987.32	-0.62	-0.03
			Max. Mx	27	-6224.33	-0.67	-0.05
			Max. My	19	6963.77	-0.41	0.06
			Max. Vy	27	167.08	-0.67	-0.05
			Max. Vx	19	-3.89	-0.41	0.06
		Redund Horz 1 Bracing	Max Tension	24	10598.38	0.00	0.00
			Max. Compression	24	-10598.38	0.00	0.00
			Max. Mx	18	974.39	0.02	0.00
			Max. My	30	-900.07	0.00	-0.00
			Max. Vy	18	-11.56	0.00	0.00
			Max. Vx	30	0.00	0.00	0.00
		Redund Horz 2 Bracing	Max Tension	24	10598.38	0.00	0.00
		-	Max. Compression	24	-10598.38	0.00	0.00
			Max. Mx	18	974.39	0.16	0.00
			Max. My	30	10498.14	0.00	0.00
			Max. Vy	18	-59.62	0.00	0.00
			Max. Vx	30	-0.00	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	24	10695.04	0.00	0.00

tnxTower

Project

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991 CSP Tower - Colchester, CT

320' Rohn SSVMW

Page 44 of 75

Date 10:42:37 02/22/19

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Ax Moment
				Comb.	lb	kip-ft	kip-ft
			Max. Compression	24	-10695.04	0.00	0.00
			Max. Mx	23	8910.75	0.05	0.00
			Max. My	30	5682.81	0.00	0.00
			Max. Vy	23	-16.82	0.00	0.00
			Max. Vx	30	0.09	0.00	0.00
		Redund Diag 2 Bracing	Max Tension	24	6935.87	0.00	0.00
		Diacing	Max. Compression	24	-6935.87	0.00	0.00
			Max. Mx	30	6870.27	0.15	0.00
			Max. My	30	6870.27	0.00	0.00
			Max. Vy	30	-41.14	0.00	0.00
			Max. Vx	30	-0.11	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	19	43.23	0.00	0.00
		-	Max. Compression	23	-289.49	0.00	0.00
			Max. Mx	18	-6.18	0.02	0.00
			Max. My	23	8.82	0.00	-0.00
			Max. Vy	18	-11.56	0.00	0.00
			Max. Vx	23	-0.00	0.00	0.00
		Redund Hip 2 Bracing	Max Tension	31	47.74	0.00	0.00
		Didenig	Max. Compression	27	-95.63	0.00	0.00
			Max. Mx	18	-16.76	0.08	0.00
			Max. My	28	10.26	0.00	0.00
			Max. Vy	18	29.90	0.00	0.00
			Max. Vy Max. Vx	28	0.00	0.00	0.00
		Redund Hip	Max Tension	28	509.76	0.00	0.00
		Diagonal 1 Bracing					
			Max. Compression	30	-240.55	0.00	0.00
			Max. Mx	19	433.43	0.09	0.00
			Max. My	30	-28.05	0.00	0.00
			Max. Vy	19	-26.93	0.00	0.00
			Max. Vx	30	-0.07	0.00	0.00
		Redund Hip Diagonal 2 Bracing	Max Tension	31	191.42	0.00	0.00
			Max. Compression	31	-166.16	0.00	0.00
			Max. Mx	30	142.41	0.18	0.00
			Max. My	20	0.93	0.00	-0.00
			Max. Vy	30	40.24	0.00	0.00
			Max. Vx	20	0.07	0.00	0.00
		Inner Bracing	Max Tension	30	45.67	0.00	0.00
		··· 0	Max. Compression	30	-80.09	0.00	0.00
			Max. Mx	18	-13.28	0.34	0.00
			Max. My	30	45.66	0.00	0.00
			Max. Vy	18	83.07	0.00	0.00
			Max. Vx	30	0.17	0.00	0.00
T16	30 - 0	Leg	Max Tension	27	528521.20	17.22	6.57
-		-0	Max. Compression	24	-693189.26	5.07	1.59
			Max. Mx	24	-690083.84	32.18	2.66
			Max. My	20	-60405.49	-2.13	-32.72
			Max. Vy	20	3335.86	32.18	2.66
			Max. Vx	20	-4554.70	-2.13	-32.72
		Diagonal	Max Tension	30	58443.62	0.00	0.00
		Diagonai	Max. Compression	30	-63188.57	0.00	0.00
			Max. Mx	27	30329.01	-0.43	0.00
			Max. My	30	-60401.75	0.18	-0.59
			Max. Vy	30	-103.44	-0.33	0.28
			Max. Vx	30	71.96	-0.33	-0.59
		Horizontal	Max Tension	22	31537.37	0.18	0.00
		HUHZUIIIAI	IVIAN I CHSIOH	<u> </u>	1001.01	0.00	0.00
			Max. Compression	30	-35870.49	-0.80	-0.04

tnxTower

AECOM

Job

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

320' Rohn SSVMW Project Date CSP Tower - Colchester, CT 10:42:37 02/22/19 Client

Designed by (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"

MCD

45 of 75

Page

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi Moment
110.	Ji	Type		Comb.	lb	kip-ft	kip-ft
			Max. My	19	10842.02	-0.57	0.08
			Max. Vy	27	-213.11	-0.87	-0.07
			Max. Vx	19	-4.66	-0.57	0.08
		Redund Horz 1	Max Tension	24	12031.56	0.00	0.00
		Bracing	With Tension	24	12051.50	0.00	0.00
		Diacing	Max. Compression	24	-12031.56	0.00	0.00
			Max. Mx	20	9854.94	0.02	0.00
			Max. Vy	20	-12.84	0.00	0.00
			Max. Vx	28	-0.00	0.00	0.00
		Redund Horz 2	Max Tension	23	12031.56	0.00	0.00
		Bracing	Iviax Tension	24	12051.50	0.00	0.00
		Diacing	Max. Compression	24	-12031.56	0.00	0.00
			Max. Mx	32	6057.79	0.18	0.00
			Max. My	22	-808.07	0.18	0.00
			Max. Vy	32	-59.68	0.00	0.00
		Deduced Direct	Max. Vx	22	-0.00	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	24	11192.91	0.00	0.00
		Diacing	Max. Compression	24	-11192.91	0.00	0.00
			Max. Mx	30	11088.50	0.06	0.00
			Max. My	30	2553.42	0.00	0.00
			Max. Vy	30	-21.66	0.00	0.00
			Max. Vx	30	-0.06	0.00	0.00
		Redund Diag 2	Max Tension	24	7519.96	0.00	0.00
		Bracing	With Tellsloff	24	7517.70	0.00	0.00
		0	Max. Compression	24	-7519.96	0.00	0.00
			Max. Mx	30	7449.81	0.18	0.00
			Max. My	30	7449.81	0.00	0.00
			Max. Vy	30	-45.74	0.00	0.00
			Max. Vx	30	-0.06	0.00	0.00
		Redund Hip 1	Max Tension	19	35.80	0.00	0.00
		Bracing	Max. Compression	23	-256.40	0.00	0.00
			Max. Max	18	-230.40	0.00	0.00
			Max. Vy	18	-12.84	0.00	0.00
			Max. Vx	23	-0.00	0.00	0.00
		Redund Hip 2 Bracing	Max Tension	31	37.95	0.00	0.00
		8	Max. Compression	22	-82.50	0.00	0.00
			Max. Mx	18	-18.01	0.10	0.00
			Max. My	20	-75.42	0.00	0.00
			Max. Vy	18	-33.20	0.00	0.00
			Max. Vx	20	-0.00	0.00	0.00
		Redund Hip	Max Tension	23	440.66	0.00	0.00
		Diagonal 1 Bracing	THUR TOUSION	25	110.00	0.00	0.00
		0	Max. Compression	30	-231.02	0.00	0.00
			Max. Mx	19	377.67	0.16	0.00
			Max. My	21	351.16	0.00	-0.00
			Max. Vy	19	-43.33	0.00	0.00
			Max. Vx	21	0.05	0.00	0.00
		Redund Hip	Max Tension	31	172.30	0.00	0.00
		Diagonal 2 Bracing					
		- ingenin 2 Diaonig	Max. Compression	31	-158.91	0.00	0.00
			Max. Mx	30	131.26	0.31	0.00
			Max. My	28	125.47	0.00	0.00
			Max. Vy	30	-64.81	0.00	0.00
			Max. Vx	28	0.04	0.00	0.00
		I D .	Max Tension	28 22	35.09	0.00	0.00
		Inner Bracing					
		Inner Bracing	Max. Compression Max. Mx	30 18	-81.65 -16.87	0.00 0.00 0.42	0.00

tnxTower	Job	Page 46 of 75
	320' Rohn SSVMW	
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Section E No.	levation Comp ft Ty	onent Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
	5.		Comb.	lb	kip-ft	kip-ft
		Max. Vy	18	-92.24	0.00	0.00
		Max. Vx	30	-0.11	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	lb	lb	lb
		Comb.			
Leg C	Max. Vert	30	759400.64	88532.48	-40576.65
	Max. H _x	30	759400.64	88532.48	-40576.65
	Max. Hz	21	-563246.66	-69989.39	34229.31
	Min. Vert	22	-578809.38	-73533.41	32347.35
	Min. H _x	22	-578809.38	-73533.41	32347.35
	Min. H _z	30	759400.64	88532.48	-40576.65
Leg B	Max. Vert	24	766053.91	-85785.40	-45966.97
-	Max. H _x	32	-576358.85	70747.85	37459.83
	Max. Hz	34	-501942.07	56340.16	42687.99
	Min. Vert	32	-576358.85	70747.85	37459.83
	Min. H _x	24	766053.91	-85785.40	-45966.97
	Min. Hz	26	638079.95	-65535.21	-47227.25
Leg A	Max. Vert	19	757018.34	6040.22	97020.62
•	Max. H _x	33	520590.80	8663.26	65945.56
	Max. Hz	19	757018.34	6040.22	97020.62
	Min. Vert	27	-583461.57	-5819.35	-80039.51
	Min. H _x	24	-289549.00	-9610.30	-40854.08
	Min. Hz	27	-583461.57	-5819.35	-80039.51

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
Combination	lb	lb	lb	kip-ft	kip-ft	kip-ft
Dead Only	141290.45	-0.00	-0.00	51.66	-25.29	0.00
Dead+Wind 0 deg - No Ice	141290.29	-209.67	-134197.32	-20649.64	15.66	218.52
Dead+Wind 30 deg - No Ice	141290.33	61675.53	-107052.30	-16485.02	-9547.70	308.12
Dead+Wind 45 deg - No Ice	141290.34	86097.60	-86112.94	-13251.74	-13326.59	326.87
Dead+Wind 60 deg - No Ice	141290.34	104013.63	-59943.43	-9208.40	-16102.40	322.87
Dead+Wind 90 deg - No Ice	141290.33	123712.96	206.90	92.67	-19140.50	269.51
Dead+Wind 120 deg - No Ice	141290.29	116304.80	67279.03	10438.21	-17970.51	146.84
Dead+Wind 135 deg - No Ice	141290.32	86391.75	86407.28	13413.63	-13384.03	48.12
Dead+Wind 150 deg - No Ice	141290.33	62036.28	107261.59	16630.18	-9618.25	-38.58
Dead+Wind 180 deg - No Ice	141290.34	208.11	120246.60	18643.65	-66.54	-194.04
Dead+Wind 210 deg - No Ice	141290.32	-61675.71	107052.14	16589.13	9496.20	-308.11
Dead+Wind 225 deg - No Ice	141290.32	-86097.08	86111.34	13355.56	13275.05	-326.86
Dead+Wind 240 deg - No Ice	141290.29	-116096.30	66916.66	10367.07	17878.57	-365.37
Dead+Wind 270 deg - No Ice	141290.33	-123712.93	-210.82	10.43	19089.71	-269.51
Dead+Wind 300 deg - No Ice	141290.34	-104222.85	-60304.65	-9279.68	16092.70	-128.82
Dead+Wind 315 deg - No Ice	141290.34	-86393.70	-86407.67	-13309.96	13333.90	-48.12
Dead+Wind 330 deg - No Ice	141290.33	-62038.46	-107260.59	-16526.20	9568.05	38.59
Dead+Ice+Temp	191606.33	-0.01	-0.01	135.74	-92.33	-0.00
Dead+Wind 0 deg+Ice+Temp	191606.02	-219.77	-160185.46	-24425.61	-50.03	437.94
Dead+Wind 30 deg+Ice+Temp	191606.08	75092.14	-130301.39	-19887.54	-11627.40	592.35
Dead+Wind 45 deg+Ice+Temp	191606.10	105178.23	-105195.25	-16033.67	-16260.28	618.56

tmxTower320' Rohn SSVMW47 of 75AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991Date 10:42:37 02/22/19Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"Designed by MCD	two	Job	Page
AECOMCSP Tower - Colchester, CT10:42:37 02/22/19500 Enterprise Drive, Suite 3BRocky Hill, CT10:42:37 02/22/19Phone: 860-529-8882ClientDesigned by(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"MCD	inx i ower	320' Rohn SSVMW	47 of 75
Store Entry is a Drive, state 3D Client Rocky Hill, CT Client Phone: 860-529-8882 (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"			
Phone: 860-529-8882 (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"			
	Phone: 860-529-8882		0,

Load	Vertical	<i>Shear</i> _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Dead+Wind 60 deg+Ice+Temp	191606.11	127510.60	-73505.86	-11164.23	-19704.90	602.28
Dead+Wind 90 deg+Ice+Temp	191606.08	150563.15	214.55	178.38	-23235.04	476.52
Dead+Wind 120 deg+Ice+Temp	191606.01	138815.73	80280.54	12453.93	-21381.63	223.68
Dead+Wind 135 deg+Ice+Temp	191606.06	105485.32	105501.18	16366.45	-16319.67	47.20
Dead+Wind 150 deg+Ice+Temp	191606.07	75468.59	130519.41	20203.08	-11700.40	-115.81
Dead+Wind 180 deg+Ice+Temp	191606.11	216.13	147384.51	22811.00	-135.39	-399.17
Dead+Wind 210 deg+Ice+Temp	191606.08	-75093.78	130300.23	20160.41	11441.07	-592.35
Dead+Wind 225 deg+Ice+Temp	191606.07	-105178.76	105191.56	16306.08	16073.90	-618.55
Dead+Wind 240 deg+Ice+Temp	191606.02	-138598.64	79901.61	12380.03	21153.58	-661.64
Dead+Wind 270 deg+Ice+Temp	191606.08	-150563.29	-221.43	92.88	23049.79	-476.52
Dead+Wind 300 deg+Ice+Temp	191606.11	-127729.67	-73882.08	-11238.38	19562.38	-203.11
Dead+Wind 315 deg+Ice+Temp	191606.10	-105488.40	-105501.93	-16094.24	16135.40	-47.20
Dead+Wind 330 deg+Ice+Temp	191606.08	-75472.34	-130517.97	-19930.39	11516.02	115.81
Dead+Wind 0 deg - Service	141290.29	-209.67	-134197.32	-20649.64	15.66	218.52
Dead+Wind 30 deg - Service	141290.33	61675.53	-107052.30	-16485.02	-9547.70	308.12
Dead+Wind 45 deg - Service	141290.34	86097.60	-86112.94	-13251.74	-13326.59	326.87
Dead+Wind 60 deg - Service	141290.34	104013.63	-59943.43	-9208.40	-16102.40	322.87
Dead+Wind 90 deg - Service	141290.33	123712.96	206.90	92.67	-19140.50	269.51
Dead+Wind 120 deg - Service	141290.29	116304.80	67279.03	10438.21	-17970.51	146.84
Dead+Wind 135 deg - Service	141290.32	86391.75	86407.28	13413.63	-13384.03	48.12
Dead+Wind 150 deg - Service	141290.33	62036.28	107261.59	16630.18	-9618.25	-38.58
Dead+Wind 180 deg - Service	141290.34	208.11	120246.60	18643.65	-66.54	-194.04
Dead+Wind 210 deg - Service	141290.32	-61675.71	107052.14	16589.13	9496.20	-308.11
Dead+Wind 225 deg - Service	141290.32	-86097.08	86111.34	13355.56	13275.05	-326.86
Dead+Wind 240 deg - Service	141290.29	-116096.30	66916.66	10367.07	17878.57	-365.37
Dead+Wind 270 deg - Service	141290.33	-123712.93	-210.82	10.43	19089.71	-269.51
Dead+Wind 300 deg - Service	141290.34	-104222.85	-60304.65	-9279.68	16092.70	-128.82
Dead+Wind 315 deg - Service	141290.34	-86393.70	-86407.67	-13309.96	13333.90	-48.12
Dead+Wind 330 deg - Service	141290.33	-62038.46	-107260.59	-16526.20	9568.05	38.59

Solution Summary

	Sui	n of Applied Force.	s		Sum of Reaction	lS	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	-0.00	-141290.45	-0.00	0.00	141290.45	0.00	0.000%
2	-208.88	-141290.45	-134217.56	209.67	141290.29	134197.32	0.010%
3	61684.46	-141290.45	-107067.52	-61675.53	141290.33	107052.30	0.009%
4	86109.68	-141290.45	-86124.41	-86097.60	141290.34	86112.94	0.009%
5	104028.21	-141290.45	-59950.53	-104013.63	141290.34	59943.43	0.009%
6	123730.70	-141290.45	208.88	-123712.96	141290.33	-206.90	0.010%
7	116322.22	-141290.45	67289.67	-116304.80	141290.29	-67279.03	0.010%
8	86405.08	-141290.45	86419.80	-86391.75	141290.32	-86407.28	0.010%
9	62046.24	-141290.45	107276.40	-62036.28	141290.33	-107261.59	0.009%
10	208.88	-141290.45	120262.84	-208.11	141290.34	-120246.60	0.009%
11	-61684.46	-141290.45	107067.52	61675.71	141290.32	-107052.14	0.009%
12	-86109.68	-141290.45	86124.41	86097.08	141290.32	-86111.34	0.010%
13	-116113.35	-141290.45	66927.89	116096.30	141290.29	-66916.66	0.010%
14	-123730.70	-141290.45	-208.88	123712.93	141290.33	210.82	0.010%
15	-104237.08	-141290.45	-60312.31	104222.85	141290.34	60304.65	0.009%
16	-86405.08	-141290.45	-86419.80	86393.70	141290.34	86407.67	0.009%
17	-62046.24	-141290.45	-107276.40	62038.46	141290.33	107260.59	0.009%
18	-0.00	-191606.33	0.00	0.01	191606.33	0.01	0.000%
19	-217.95	-191606.33	-160218.16	219.77	191606.02	160185.46	0.013%
20	75107.76	-191606.33	-130326.31	-75092.14	191606.08	130301.39	0.012%
21	105199.33	-191606.33	-105213.95	-105178.23	191606.10	105195.25	0.012%
22	127535.83	-191606.33	-73517.35	-127510.60	191606.11	73505.86	0.011%
23	150593.02	-191606.33	217.95	-150563.15	191606.08	-214.55	0.012%

	Job	Page
tnxTower	320' Rohn SSVMW	48 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

	Sui	n of Applied Force:	5		Sum of Reaction	15	
Load	PX	PY	PZ	PX	Ρ̈́Υ	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
24	138844.07	-191606.33	80297.83	-138815.73	191606.01	-80280.54	0.013%
25	105507.56	-191606.33	105522.18	-105485.32	191606.06	-105501.18	0.013%
26	75485.26	-191606.33	130544.26	-75468.59	191606.07	-130519.41	0.012%
27	217.95	-191606.33	147412.20	-216.13	191606.11	-147384.51	0.011%
28	-75107.76	-191606.33	130326.31	75093.78	191606.08	-130300.23	0.012%
29	-105199.33	-191606.33	105213.95	105178.76	191606.07	-105191.56	0.013%
30	-138626.12	-191606.33	79920.33	138598.64	191606.02	-79901.61	0.013%
31	-150593.02	-191606.33	-217.95	150563.29	191606.08	221.43	0.012%
32	-127753.79	-191606.33	-73894.85	127729.67	191606.11	73882.08	0.011%
33	-105507.56	-191606.33	-105522.18	105488.40	191606.10	105501.93	0.011%
34	-75485.26	-191606.33	-130544.26	75472.34	191606.08	130517.97	0.012%
35	-208.88	-141290.45	-134217.56	209.67	141290.29	134197.32	0.010%
36	61684.46	-141290.45	-107067.52	-61675.53	141290.33	107052.30	0.009%
37	86109.68	-141290.45	-86124.41	-86097.60	141290.34	86112.94	0.009%
38	104028.21	-141290.45	-59950.53	-104013.63	141290.34	59943.43	0.009%
39	123730.70	-141290.45	208.88	-123712.96	141290.33	-206.90	0.010%
40	116322.22	-141290.45	67289.67	-116304.80	141290.29	-67279.03	0.010%
41	86405.08	-141290.45	86419.80	-86391.75	141290.32	-86407.28	0.010%
42	62046.24	-141290.45	107276.40	-62036.28	141290.33	-107261.59	0.009%
43	208.88	-141290.45	120262.84	-208.11	141290.34	-120246.60	0.009%
44	-61684.46	-141290.45	107067.52	61675.71	141290.32	-107052.14	0.009%
45	-86109.68	-141290.45	86124.41	86097.08	141290.32	-86111.34	0.010%
46	-116113.35	-141290.45	66927.89	116096.30	141290.29	-66916.66	0.010%
47	-123730.70	-141290.45	-208.88	123712.93	141290.33	210.82	0.010%
48	-104237.08	-141290.45	-60312.31	104222.85	141290.34	60304.65	0.009%
49	-86405.08	-141290.45	-86419.80	86393.70	141290.34	86407.67	0.009%
50	-62046.24	-141290.45	-107276.40	62038.46	141290.33	107260.59	0.009%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00021166	0.00043039
3	Yes	4	0.00019707	0.00040082
4	Yes	4	0.00018733	0.00038098
5	Yes	4	0.00018408	0.00037436
6	Yes	4	0.00019847	0.00040359
7	Yes	4	0.00021181	0.00043074
8	Yes	4	0.00020656	0.00042005
9	Yes	4	0.00019768	0.00040202
10	Yes	4	0.00018367	0.00037353
11	Yes	4	0.00019688	0.00040036
12	Yes	4	0.00020648	0.00041974
13	Yes	4	0.00021302	0.00043304
14	Yes	4	0.00019939	0.00040537
15	Yes	4	0.00018347	0.00037309
16	Yes	4	0.00018683	0.00037995
17	Yes	4	0.00019668	0.00039996
18	Yes	4	0.0000001	0.00000001
19	Yes	4	0.00028792	0.00058668
20	Yes	4	0.00026989	0.00055007
21	Yes	4	0.00025866	0.00052722
22	Yes	4	0.00025519	0.00052014
23	Yes	4	0.00027302	0.00055640
24	Yes	4	0.00028793	0.00058670

4.24	Toman	Job			Page			
ln.	xTower		49 of 75					
	AECOM		Project					
500 Ente	AECOM prprise Drive, Suite 3B		10:42:37 02/22/19					
Phor	Rocky Hill, CT ne: 860-529-8882 X: 860-529-3991	Client (MODif	Designed by MCD					
25	Yes	4	0.00028157	0.00057394				
26	Yes	4	0.00027069	0.00055174				
27	Yes	4	0.00025374	0.00051714				
28	Yes	4	0.00027014	0.00055029				
29	Yes	4	0.00028298	0.00057638				
30	Yes	4	0.00029143	0.00059337				
31	Yes	4	0.00027431	0.00055896				
32	Yes	4	0.00025252	0.00051497				
33	Yes	4	0.00025646	0.00052302				
34	Yes	4	0.00026901	0.00054853				
35	Yes	4	0.00021166	0.00043039				
36	Yes	4	0.00019707	0.00040082				
37	Yes	4	0.00018733	0.00038098				
38	Yes	4	0.00018408	0.00037436				
39	Yes	4	0.00019847	0.00040359				
40	Yes	4	0.00021181	0.00043074				
41	Yes	4	0.00020656	0.00042005				
42	Yes	4	0.00019768	0.00040202				
43	Yes	4	0.00018367	0.00037353				
44	Yes	4	0.00019688	0.00040036				
45	Yes	4	0.00020648	0.00041974				
46	Yes	4	0.00021302	0.00043304				
47	Yes	4	0.00019939	0.00040537				
48	Yes	4	0.00018347	0.00037309				
49	Yes	4	0.00018683	0.00037995				
50	Yes	4	0.00019668	0.00039996				

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	320 - 300	17.080	40	0.3960	0.2502
T2	300 - 280	15.402	40	0.3912	0.2505
T3	280 - 260	13.748	40	0.3793	0.2417
T4	260 - 240	12.120	40	0.3715	0.2259
T5	240 - 220	10.515	40	0.3590	0.2041
T6	220 - 200	8.979	40	0.3406	0.1867
Τ7	200 - 180	7.526	40	0.3165	0.1728
T8	180 - 170	6.151	40	0.2919	0.1566
Т9	170 - 160	5.513	40	0.2777	0.1500
T10	160 - 140	4.903	40	0.2626	0.1433
T11	140 - 120	3.790	40	0.2293	0.1315
T12	120 - 100	2.815	40	0.1932	0.1189
T13	100 - 80	2.017	40	0.1576	0.0990
T14	80 - 60	1.372	40	0.1209	0.0824
T15	60 - 30	0.844	40	0.0883	0.0632
T16	30 - 0	0.287	35	0.0400	0.0305

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
325.00	Dual Lights	40	17.080	0.3960	0.2502	637440
322.00	PD128-1	40	17.080	0.3960	0.2502	637440

tnxTower

Project

320' Rohn SSVMW

Page 50 of 75

Date

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991 CSP Tower - Colchester, CT

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

10:42:37 02/22/19

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
320.00	6' Side Mount Standoff	40	17.080	0.3960	0.2502	637440
318.00	BA1012-0	40	16.912	0.3957	0.2504	637440
316.50	ANT450F6	40	16.786	0.3955	0.2506	637440
315.00	6' Side Mount Standoff	40	16.660	0.3953	0.2507	637440
311.50	4'x4" Pipe Mount	40	16.365	0.3947	0.2510	374967
297.00	SC479-HF1LDF	40	15.152	0.3896	0.2498	159938
293.00	6' Side Mount Standoff	40	14.820	0.3873	0.2484	159707
290.00	PD340-1	40	14.571	0.3853	0.2472	159855
285.00	DB809T3E-XC	40	14.159	0.3821	0.2446	160104
284.50	6' Side Mount Standoff	40	14.117	0.3818	0.2444	160134
284.00	6' Side Mount Standoff	40	14.076	0.3815	0.2441	160195
283.00	SC479-HF1LDF	40	13.994	0.3809	0.2435	160535
261.50	PD440-2	40	12.241	0.3721	0.2274	400070
261.00	SC479-HF1LDF(D00-E6085)	40	12.201	0.3719	0.2269	397311
248.00	PD1142-1	40	11.151	0.3648	0.2129	95064
246.00	SC479-HF1LDF(D00I-E6085)	40	10.991	0.3634	0.2107	83087
	(Inverted)					
244.00	PD1142-1	40	10.832	0.3620	0.2084	73812
235.00	531-70HD Exposed Dipole Antenna	40	10.123	0.3550	0.1991	58117
220.00	Valmont VFA-10-U V-Frame	40	8.979	0.3406	0.1867	53679
200.00	PiROD 12' Lightweight T-Frame	40	7.526	0.3165	0.1728	80912
176.00	DB586-Y	40	5.892	0.2864	0.1539	35709
174.00	DB586-Y (inverted)	40	5.765	0.2836	0.1526	40337
164.00	L-810 Obstruction Lighting (1)	40	5.143	0.2687	0.1460	36985
153.00	ANT450F6	40	4.497	0.2514	0.1389	33255
145.00	Commscope PAR6-59W-PXA/A	40	4.055	0.2380	0.1343	37274
137.00	PD156S	40	3.634	0.2240	0.1299	36586
134.00	DB212-1	40	3.481	0.2186	0.1283	33633
120.00	HPD3-4.7	40	2.815	0.1932	0.1189	24896
113.00	Andrew 2' w/Radome	40	2.515	0.1808	0.1123	26317
106.00	PA8-65	40	2.238	0.1684	0.1050	28769
105.00	PD458	40	2.200	0.1666	0.1040	29158
103.00	PD688S-4	40	2.126	0.1631	0.1019	29969
91.00	PD688S-4	40	1.711	0.1409	0.0912	36476

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	320 - 300	20.524	24	0.4804	0.4306
T2	300 - 280	18.487	24	0.4742	0.4303
T3	280 - 260	16.482	24	0.4589	0.4150
T4	260 - 240	14.512	24	0.4489	0.3891
T5	240 - 220	12.574	24	0.4331	0.3542
T6	220 - 200	10.722	24	0.4102	0.3261
Τ7	200 - 180	8.977	24	0.3805	0.3031
T8	180 - 170	7.328	24	0.3504	0.2766
Т9	170 - 160	6.564	24	0.3331	0.2659
T10	160 - 140	5.834	24	0.3148	0.2548
T11	140 - 120	4.502	24	0.2746	0.2352
T12	120 - 100	3.338	24	0.2312	0.2139
T13	100 - 80	2.391	24	0.1884	0.1796
T14	80 - 60	1.625	24	0.1443	0.1494
T15	60 - 30	0.998	19	0.1054	0.1146
T16	30 - 0	0.340	19	0.0477	0.0553

tnxTower	Job	Page
that ower	320' Rohn SSVMW	51 of 75
AECOM	Project	Date
500 Enterprise Drive, Suite 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
325.00	Dual Lights	24	20.524	0.4804	0.4306	494559
322.00	PD128-1	24	20.524	0.4804	0.4306	494559
320.00	6' Side Mount Standoff	24	20.524	0.4804	0.4306	494559
318.00	BA1012-0	24	20.319	0.4801	0.4309	494559
316.50	ANT450F6	24	20.166	0.4798	0.4312	494559
315.00	6' Side Mount Standoff	24	20.013	0.4795	0.4314	494559
311.50	4'x4" Pipe Mount	24	19.656	0.4787	0.4317	290917
297.00	SC479-HF1LDF	24	18.184	0.4722	0.4290	123405
293.00	6' Side Mount Standoff	24	17.781	0.4691	0.4266	122359
290.00	PD340-1	24	17.479	0.4667	0.4244	121819
285.00	DB809T3E-XC	24	16.979	0.4626	0.4200	120929
284.50	6' Side Mount Standoff	24	16.930	0.4622	0.4195	120844
284.00	6' Side Mount Standoff	24	16.880	0.4618	0.4190	120782
283.00	SC479-HF1LDF	24	16.780	0.4610	0.4180	120622
261.50	PD440-2	24	14.659	0.4498	0.3915	261787
261.00	SC479-HF1LDF(D00-E6085)	24	14.610	0.4495	0.3907	260511
248.00	PD1142-1	24	13.342	0.4404	0.3682	74945
246.00	SC479-HF1LDF(D00I-E6085)	24	13.149	0.4387	0.3646	66126
	(Inverted)					
244.00	PD1142-1	24	12.956	0.4369	0.3611	59180
235.00	531-70HD Exposed Dipole Antenna	24	12.101	0.4281	0.3462	46642
220.00	Valmont VFA-10-U V-Frame	24	10.722	0.4102	0.3261	42063
200.00	PiROD 12' Lightweight T-Frame	24	8.977	0.3805	0.3031	64767
176.00	DB586-Y	24	7.018	0.3437	0.2722	29453
174.00	DB586-Y (inverted)	24	6.865	0.3402	0.2701	33216
164.00	L-810 Obstruction Lighting (1)	24	6.121	0.3222	0.2592	30471
153.00	ANT450F6	24	5.349	0.3012	0.2474	27550
145.00	Commscope PAR6-59W-PXA/A	24	4.820	0.2851	0.2397	31028
137.00	PD156S	24	4.316	0.2682	0.2325	30339
134.00	DB212-1	24	4.133	0.2617	0.2297	27724
120.00	HPD3-4.7	24	3.338	0.2312	0.2139	20195
113.00	Andrew 2' w/Radome	24	2.982	0.2163	0.2026	21621
106.00	PA8-65	24	2.653	0.2014	0.1901	24076
105.00	PD458	24	2.608	0.1992	0.1883	24473
103.00	PD688S-4	24	2.520	0.1949	0.1847	25303
91.00	PD688S-4	24	2.028	0.1683	0.1656	30940

	Bolt Design Data									
Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt lb	Allowable Load per Bolt lb	Ratio Load Allowable	Allowable Ratio	Criteria
T1	320	Leg	A325N	1.0000	6	1157.21	34557.50	0.033 🖌	1.333	Bolt Tension
		Diagonal	A325X	0.6250	1	1583.87	3874.22	0.409 🖌	1.333	Member Block Shear

tnxTower

Project

Client

320' Rohn SSVMW

CSP Tower - Colchester, CT

Page 52 of 75

Date 10:42:37 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"

Designed by MCD

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft	-) / -		in	Bolts	per Bolt lb	per Bolt lb	Allowable		
T2	300	Leg	A325N	1.0000	8	2713.77	34557.40	0.079 🖌	1.333	Bolt Tension
		Diagonal	A325X	0.6250	1	3912.95	6071.88	0.644 🗸	1.333	Member Block Shear
Т3	280	Leg	A325N	1.0000	8	5357.16	34557.20	0.155 🖌	1.333	Bolt Tension
		Diagonal	A325X	0.7500	1	5657.57	7975.00	0.709 🗸	1.333	Member Block Shear
T4	260	Leg	A325N	1.0000	8	8732.24	34556.90	0.253 🖌	1.333	Bolt Tension
		Diagonal	A325X	0.7500	1	8749.91	9140.63	0.957 🖌	1.333	Member Bearin
T5	240	Leg	A325N	1.0000	8	13069.70	34557.40	0.378 🖌	1.333	Bolt Tension
		Diagonal	A325X	0.7500	1	11089.60	11425.80	0.971 🖌	1.333	Member Bearin
Т6	220	Leg	A325N	1.0000	12	11873.70	34557.50	0.344 🖌	1.333	Bolt Tension
		Diagonal	A325X	0.7500	1	16731.50	13253.60	1.262 🖌	1.333	Bolt Shear
Τ7	200	Leg	A325N	1.0000	12	15853.90	34557.40	0.459 🖌	1.333	Bolt Tension
		Diagonal	A325X	0.8750	1	19198.70	15996.10	1.200	1.333	Member Bearin
Т8	180	Leg	A325N	1.0000	12	17892.30	34557.40	0.518	1.333	Bolt Tension
		Diagonal	A325X	0.8750	1	20692.80	21328.10	0.970	1.333	Member Bearin
Т9	170	Diagonal	A325X	0.8750	1	21555.80	21328.10	1.011	1.333	Member Bearin
T10	160	Leg	A325N	1.0000	12	24119.70	34557.40	0.698	1.333	Bolt Tension
		Diagonal	A490X	0.8750	1	24673.10	21328.10	1.157	1.333	Member Bearin
T11	140	Leg	A325N	1.0000	12	28214.30	34557.40	0.816	1.333	Bolt Tension
		Diagonal	A490X	0.8750	1	26235.60	21328.10	1.230	1.333	Member Bearin
T12	120	Leg	A325N	1.0000	12	28741.30	34553.50	0.832	1.333	Bolt Tension
		Diagonal	A325X	0.7500	3	15072.70	13253.60		1.333	Bolt Shear
		Horizontal	A325X	0.7500	2	12099.30	13253.60	1.137 V 0.913 V	1.333	Bolt Shear
T13	100	Leg	A325N	1.0000	16	24023.50	34555.40	0.695	1.333	Bolt Tension
		Diagonal	A325X	0.7500	3	16050.20	13253.60		1.333	Bolt Shear
		Horizontal	A325X	0.7500	2	13921.80	13253.60	1.211	1.333	Bolt Shear
T14	80	Leg	A325N	1.0000	16	26681.00	34555.70	1.050	1.333	Bolt Tension
		Diagonal	A325X	0.7500	3	15472.90	13253.60	0.772	1.333	Bolt Shear
		Horizontal	A325X	0.7500	2	14223.70	13253.60	1.167 V 1.073 V	1.333	Bolt Shear
T15	60	Leg	A325N	1.0000	16	28604.30	34552.80	0.828	1.333	Bolt Tension
		Diagonal	A325X	0.8750	3	21889.50	18039.60	0.020	1.333	Bolt Shear
		Horizontal	A325X	0.7500	2	15993.70	13253.60		1.333	Bolt Shear
T16	30	Leg	A325N	1.0000	24	21696.00	34556.90	1.207	1.333	Bolt Tension
		Diagonal	A325X	0.8750	3	21062.90	18039.60	0.020	1.333	Bolt Shear
		Horizontal	A490X	0.7500	2	17935.20	17671.50	1.168 V 1.015 V	1.333	Bolt Shear

Compression Checks

tnx

500 Enter Ro Phone FAX:

xTower	Job 320' Rohn SSVMW	Page 53 of 75	
AECOM erprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19	
Rocky Hill, CT ne: 860-529-8882 X: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD	

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	lb	lb	P_a
T1	320 - 300	ROHN 5 EH	20.00	4.00	26.1 K=1.00	27.622	6.1120	-9269.38	168822.00	0.055
T2	300 - 280	ROHN 6 EH	20.03	5.01	27.4 K=1.00	27.470	8.4049	-27469.70	230886.00	0.119
Т3	280 - 260	ROHN 8 EH w/ angle 8x8x0.5	20.04	6.68	27.0 K=1.00	27.519	20.5036	-54205.50	564236.00	0.096
T4	260 - 240	ROHN 8 EH w/ angle 8x8x0.5	20.03	6.68	27.0 K=1.00	27.520	20.5036	-89457.20	564253.00	0.159
T5	240 - 220	ROHN 8 EH w/ angle 8x8x0.5	20.03	6.68	27.0 K=1.00	27.520	20.5036	-133439.00	564256.00	0.236
T6	220 - 200	ROHN 8 EH w/ angle 8x8x0.5	20.03	10.02	40.4 K=1.00	25.769	20.5036	-182956.00	528360.00	0.346
Т7	200 - 180	ROHN 10 EH w/ angle 8x8x0.5	20.04	10.02	34.6 K=1.00	26.561	23.8453	-243785.00	633353.00	0.385
Т8	180 - 170	ROHN 10 EH w/ angle 8x8x0.5	10.02	10.02	34.6 K=1.00	26.561	23.8453	-274398.00	633363.00	0.433
Т9	170 - 160	ROHN 10 EH w/ angle 8x8x0.5	10.02	10.02	34.6 K=1.00	26.561	23.8453	-305606.00	633363.00	0.483
T10	160 - 140	ROHN 10 EH w/ angle 8x8x0.5	20.03	10.02	34.6 K=1.00	26.563	23.8453	-369375.00	633393.00	0.583
T11	140 - 120	ROHN 10 EH w/ angle 8x8x0.5	20.04	10.02	34.6 K=1.00	26.561	23.8453	-433129.00	633344.00	0.684
T12	120 - 100	ROHN 10 EH w/ angle 8x8x0.5	20.06	10.03	34.7 K=1.00	26.557	23.8453	-447089.00	633258.00	0.706
T13	100 - 80	ROHN 10 EH w/ angle 8x8x0.5	20.05	10.03	34.7 K=1.00	26.558	23.8453	-500110.00	633276.00	0.790
T14	80 - 60	ROHN 12 EH w/ angle 8x8x0.5	20.06	10.03	29.9 K=1.00	27.163	26.9670	-556237.00	732498.00	0.759
T15	60 - 30	ROHN 12 EH w/ angle 8x8x0.5	30.07	10.02	29.9 K=1.00	27.165	26.9670	-610764.00	732546.00	0.834
T16	30 - 0	ROHN 12 EHS w Angle 8x8x0.625	30.08	10.03	30.2 K=1.00	27.128	33.3120	-693189.00	903675.00	0.767

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	Α	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T1	320 - 300	L1 3/4x1 3/4x3/16	7.90	3.56	124.4 K=1.00	9.644	0.6211	-1613.17	5989.57	0.269
T2	300 - 280	L2x2x1/4	9.94	4.68	143.7 K=1.00	7.236	0.9380	-3951.58	6787.70	0.582
Т3	280 - 260	L2 1/2x2 1/2x1/4	12.59	5.83	142.4 K=1.00	7.359	1.1900	-5697.94	8757.44	0.651
T4	260 - 240	L3x3x1/4	14.38	6.72	136.3 K=1.00	8.036	1.4400	-9259.72	11572.50	0.800

Anna Tonn on	Job	Page		
tnxTower	320' Rohn SSVMW	54 of 75		
AECOM	Project	Date		
500 Enterprise Drive, Suite 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19		
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD		

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	Α	Actual P	Allow. P _a	Ratio P
1101	ft		ft	ft		ksi	in^2	lb	lb	P_a
Т5	240 - 220	L4x4x5/16	16.19	7.64	116.9 K=1.01	10.928	2.4000	-11725.40	26227.20	0.447
Т6	220 - 200	L4x4x3/8	19.37	9.30	141.7 K=1.00	7.440	2.8600	-16731.50	21278.20	0.786
T7	200 - 180	L4x4x3/8	21.20	10.21	155.6 K=1.00	6.171	2.8600	-19639.40	17649.80	1.113
T8	180 - 170	2L4x4x1/4	22.13	10.68	102.5 K=1.00	13.501	3.8800	-21569.00	52381.80	0.412
Т9	170 - 160	2L4x4x1/4	23.06	11.15	107.0 K=1.00	12.723	3.8800	-22149.00	49366.20	0.449
T10	160 - 140	L5x5x1/2	24.84	12.01	146.6 K=1.00	6.944	4.7500	-26117.70	32982.90	0.792
T11	140 - 120	L5x5x1/2	26.78	13.03	159.0 K=1.00	5.905	4.7500	-27492.50	28050.10	0.980
T12	120 - 100	ROHN 3 XXS	24.42	12.21	139.9 K=1.00	7.628	5.4664	-45218.10	41697.80	1.084
T13	100 - 80	ROHN 3 XXS	25.15	12.58	144.1 K=1.00	7.188	5.4664	-48150.50	39292.60	1.225
T14	80 - 60	ROHN 3.5 EH	25.98	12.99	119.3 K=1.00	10.489	3.6784	-46418.60	38584.10	1.203
T15	60 - 30	ROHN 4 X-STR	35.21	11.74	95.4 K=1.00	15.759	4.4074	-65668.50	69454.90	0.945
T16	30 - 0	ROHN 4 X-STR	36.27	12.09	98.2 K=1.00	15.112	4.4074	-63188.60	66603.40	0.949

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T12	120 - 100	ROHN 3 STD	25.39	12.22	126.1 K=1.00	9.397	2.2285	-24198.60	20940.60	1.156
T13	100 - 80	ROHN 3 X-STR	27.97	13.51	142.7 K=1.00	7.333	3.0159	-27843.60	22114.60	1.259
T14	80 - 60	ROHN 3 XXS	30.47	14.76	169.2 K=1.00	5.216	5.4664	-28447.30	28511.00	0.998
T15	60 - 30	ROHN 3.5 EH	33.14	16.04	147.3 K=1.00	6.883	3.6784	-31987.30	25317.10	1.263
T16	30 - 0	ROHN 4 X-STR	36.80	17.87	145.2 K=1.00	7.082	4.4074	-35870.50	31213.80	1.149

		Top Gi	rt Des	ign D	ata (C	ompre	ession)		
Section	Elevation	Size	L	Lu	Kl/r	Fa	A	Actual	Allow.	Ratio
No.	ft		ft	ft		ksi	in ²	Р lb	P_a lb	$\frac{P}{P_a}$
T1	320 - 300	L1 3/4x1 3/4x3/16	6.81	6.35	182.6	4.480	0.6211	-120.21	2782.55	0.043

tran Tana an	Job	Page
tnxTower	320' Rohn SSVMW	55 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	F _a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
					K=0.82					~
T2	300 - 280	L2x2x1/4	6.81	6.35	166.0 K=0.85	5.420	0.9380	-43.43	5084.03	0.009

Redundant Horizontal (1) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	Α	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T12	120 - 100	ROHN 1.5 STD	6.35	5.88	113.3 K=1.00	11.642	0.7995	-7759.88	9307.32	0.834
T13	100 - 80	P1.5x.145	6.99	6.52	125.7 K=1.00	9.453	0.7995	-8679.04	7557.21	1.148
T14	80 - 60	ROHN 2 STD	7.62	7.09	108.0 K=1.00	12.795	1.0745	-9655.72	13748.80	0.702
T15	60 - 30	ROHN 1.5 STD	5.52	4.99	96.2 K=1.00	15.570	0.7995	-10598.40	12447.10	0.851
T16	30 - 0	P1.5x.145	6.13	5.60	108.0 K=1.00	12.809	0.7995	-12031.60	10240.10	1.175

Redundant Horizontal (2) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F _a	А	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T15	60 - 30	ROHN 2 XXS	11.05	10.52	179.6 K=1.00	4.630	2.6559	-10598.40	12298.10	0.862
T16	30 - 0	ROHN 2.5 EH	12.27	11.74	152.4 K=1.00	6.430	2.2535	-12031.60	14489.40	0.830

Redundant Diagonal (1) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	Α	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T12	120 - 100	ROHN 2 STD	11.52	10.57	161.1 K=1.00	5.753	1.0745	-7040.24	6182.24	1.139
T13	100 - 80	ROHN 2 EH	11.86	10.98	171.6 K=1.00	5.073	1.4807	-7360.68	7511.82	0.980
T14	80 - 60	ROHN 2 EH	12.18	11.36	177.4 K=1.00	4.744	1.4807	-7722.07	7024.14	1.099
T15	60 - 30	ROHN 2 EH	11.15	9.95	155.3 K=1.00	6.188	1.4807	-10695.00	9163.02	1.167
T16	30 - 0	ROHN 2.5 STD	11.41	10.31	130.6	8.759	1.7040	-11192.90	14925.40	0.750

tnxTower	Job	Page
<i>inx i ower</i>	320' Rohn SSVMW	56 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	F _a	Α	Actual P	Allow. P-	Ratio P
110.	ft		ft	ft		ksi	in ²	lb	lb	P_a
					K=1.00					~

Redundant Diagonal (2) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	Α	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T15	60 - 30	ROHN 2.5 STD	14.46	13.72	173.8 K=1.00	4.943	1.7040	-6935.87	8422.85	0.823
T16	30 - 0	ROHN 2.5 STD	15.33	14.63	185.3 K=1.00	4.347	1.7040	-7519.96	7407.72	1.015

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	Α	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T12	120 - 100	ROHN 1.5 STD	6.35	6.35	122.3 K=1.00	9.977	0.7995	-97.02	7976.22	0.012
T13	100 - 80	ROHN 1.5 STD	6.99	6.99	134.8 K=1.00	8.221	0.7995	-98.47	6572.60	0.015
T14	80 - 60	ROHN 1.5 STD	7.62	7.62	146.8 K=1.00	6.928	0.7995	-111.64	5538.31	0.020
T15	60 - 30	ROHN 1.5 STD	5.52	5.52	106.5 K=1.00	13.175	0.7995	-289.49	10533.10	0.027
T16	30 - 0	ROHN 1.5 STD	6.13	6.13	118.2 K=1.00	10.686	0.7995	-256.40	8542.98	0.030

Redundant Hip (2) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	Α	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T15	60 - 30	ROHN 2 STD	11.05	11.05	168.4 K=1.00	5.265	1.0745	-95.63	5657.64	0.017
T16	30 - 0	ROHN 2 STD	12.27	12.27	187.0 K=1.00	4.270	1.0745	-82.50	4588.23	0.018

Redundant Hip Diagonal (1) Design Data (Compression)

to a start of the	Job	Page
tnxTower	320' Rohn SSVMW	57 of 75
AECOM	Project	Date
500 Enterprise Drive, Suite 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T12	120 - 100	ROHN 2.5 STD	15.15	15.15	191.9 K=1.00	4.054	1.7040	-109.21	6908.01	0.016
T13	100 - 80	ROHN 2.5 STD	16.00	16.00	202.6 K=1.00	3.637	1.7040	-105.39	6197.32	0.017
T14	80 - 60	ROHN 3 STD	16.88	16.88	174.1 K=1.00	4.929	2.2285	-140.05	10984.50	0.013
T15	60 - 30	ROHN 2 STD	14.10	14.10	214.9 K=1.00	3.233	1.0745	-240.55	3473.58	0.069
T16	30 - 0	ROHN 2.5 STD	14.88	14.88	188.4 K=1.00	4.205	1.7040	-231.02	7165.41	0.032

Redundant Hip Diagonal (2) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	А	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T15	60 - 30	ROHN 2 STD	17.91	17.91	273.1 K=1.00	2.003	1.0745	-166.16	2152.21	0.077
		KL/R > 250 (C) - 354								-
T16	30 - 0	ROHN 2.5 STD	19.28	19.28	244.2 K=1.00	2.503	1.7040	-158.91	4265.79	0.037

Inner Bracing Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	Α	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T12	120 - 100	ROHN 3 STD	12.69	12.69	130.9 K=1.00	8.712	2.2285	-41.59	19414.30	0.002
T13	100 - 80	ROHN 3 STD	13.99	13.99	144.2 K=1.00	7.179	2.2285	-42.41	15997.80	0.003
T14	80 - 60	ROHN 3 STD	15.24	15.24	157.1 K=1.00	6.049	2.2285	-52.01	13480.40	0.004
T15	60 - 30	ROHN 3 STD	16.57	16.57	170.9 K=1.00	5.114	2.2285	-80.09	11395.70	0.007
T16	30 - 0	ROHN 3 STD	18.40	18.40	189.8 K=1.00	4.147	2.2285	-81.65	9241.68	0.009

Tension Checks

Leg Design Data (Tension)

	tnxTow	ver	Job		320'	Rohn S	SVMW			Page 58	3 of 75
500	ft 320 - 300 R 300 - 280 R 2 300 - 280 R 3 280 - 260 ROHN 4 260 - 240 ROHN 5 240 - 220 ROHN 5 220 - 200 ROHN 7 200 - 180 ROHN		Project	C	CSP Tow	ver - Col	chester, (СТ		Date 10:42:3	37 02/22/19
	Phone: 860-529-	-8882	Client (MODi	fication)	DESPP	Loads /	VZW-217	/ EMP-0	08 - "F"	Designed	a by MCD
Section No.		Siz	ze	L	L_u	Kl/r	F_a	A	Actual P	Allow. P _a	Ratio P
	-			ft	ft		ksi	in ²	lb	lb	P_a
T1	320 - 300	ROHN	5 EH	20.00	4.00	26.1	30.000	6.1120	6943.25	183359.00	0.038
T2	300 - 280	ROHN	6 EH	20.03	5.01	27.4	30.000	8.4049	21710.10	252148.00	0.086
Т3	280 - 260	ROHN 8 E 8x8x		20.04	6.68	27.0	30.000	20.5036	42857.30	615108.00	0.070
T4	260 - 240	ROHN 8 EI 8x8x		20.03	6.68	27.0	30.000	20.5036	69858.00	615108.00	0.114
T5	240 - 220	ROHN 8 EI 8x8x		20.03	6.68	27.0	30.000	20.5036	104557.00	615108.00	0.170
Т6	220 - 200	ROHN 8 EI 8x8x		20.03	10.02	40.4	30.000	20.5036	142484.00	615108.00	0.232
Τ7	200 - 180	ROHN 10 E 8x8x		20.04	10.02	34.6	30.000	23.8453	190247.00	715359.00	0.266
Т8	180 - 170	ROHN 10 E 8x8x		10.02	10.02	34.6	30.000	23.8453	214708.00	715359.00	0.300
Т9	170 - 160	ROHN 10 E 8x8x		10.02	10.02	34.6	30.000	23.8453	239375.00	715359.00	0.335
T10	160 - 140	ROHN 10 E 8x8x	0	20.03	10.02	34.6	30.000	23.8453	289436.00	715359.00	0.405
T11	140 - 120	ROHN 10 E		20.04	10.02	34.6	30.000	23.8453	338572.00	715359.00	0.473

Diagonal Design Data (Tension)

T12

T13

T14

T15

T16

120 - 100

100 - 80

80 - 60

60 - 30

30 - 0

8x8x0.5

ROHN 10 EH w/ angle

8x8x0.5 ROHN 10 EH w/ angle

8x8x0.5

ROHN 12 EH w/ angle

8x8x0.5

ROHN 12 EH w/ angle

8x8x0.5

ROHN 12 EHS w Angle

8x8x0.625

20.06

20.05

20.06

30.07

30.08

10.03

10.03

10.03

10.02

10.03

34.7

34.7

29.9

29.9

30.2

30.000

30.000

30.000

30.000

30.000

23.8453

23.8453

26.9670

26.9670

385527.00 715359.00

715359.00

809010.00

809010.00

345995.00

428205.00

467884.00

33.3120 528521.00 999360.00

~

0.484 1

0.539 1

0.529

~

0.578 1

0.529 1

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T1	320 - 300	L1 3/4x1 3/4x3/16	7.90	3.56	82.2	29.000	0.3604	1583.87	10450.20	0.152
T2	300 - 280	L2x2x1/4	9.94	4.68	94.6	29.000	0.5629	3912.95	16323.40	0.240
T3	280 - 260	L2 1/2x2 1/2x1/4	12.59	5.83	93.1	29.000	0.7284	5657.57	21124.70	0.268
T4	260 - 240	L3x3x1/4	14.38	6.72	88.5	32.500	0.9159	8749.91	29768.00	0.294
Т5	240 - 220	L4x4x5/16	16.19	7.64	75.2	32.500	1.5949	11089.60	51835.00	0.214
T6	220 - 200	L4x4x3/8	19.37	9.30	92.1	32.500	1.8989	15801.60	61714.50	0.256

tnxTower	Job 320' Rohn SSVMW	Page 59 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
100.	ft		ft	ft		ksi	in ²	lb	lb	P_a
T7	200 - 180	L4x4x3/8	21.20	10.21	101.1	32.500	1.8637	19198.70	60571.90	0.317
Т8	180 - 170	2L4x4x1/4	22.13	10.68	104.0	32.500	2.5350	20692.80	82387.50	0.251
Т9	170 - 160	2L4x4x1/4	23.06	11.15	108.4	32.500	2.5350	21555.80	82387.50	0.262
T10	160 - 140	L5x5x1/2	24.84	12.01	94.8	32.500	3.1875	24673.10	103594.00	0.238
T11	140 - 120	L5x5x1/2	26.78	13.03	102.7	32.500	3.1875	26235.60	103594.00	0.253
T12	120 - 100	ROHN 3 XXS	24.42	12.21	139.9	30.000	5.4664	41568.40	163991.00	0.253
T13	100 - 80	ROHN 3 XXS	25.15	12.58	144.1	30.000	5.4664	43666.20	163991.00	0.266
T14	80 - 60	ROHN 3.5 EH	25.98	12.99	119.3	30.000	3.6784	42127.60	110352.00	0.382
T15	60 - 30	ROHN 4 X-STR	35.21	11.74	95.4	30.000	4.4074	59796.70	132223.00	0.452
T16	30 - 0	ROHN 4 X-STR	36.27	12.09	98.2	30.000	4.4074	58443.60	132223.00	0.442

Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	F_{a}	Α	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_{a}
T12	120 - 100	ROHN 3 STD	25.39	12.22	126.1	30.000	2.2285	23405.20	66854.10	0.350
T13	100 - 80	ROHN 3 X-STR	27.97	13.51	142.7	30.000	3.0159	25729.30	90477.90	0.284
T14	80 - 60	ROHN 3 XXS	30.47	14.76	169.2	30.000	5.4664	26190.60	163991.00	0.160
T15	60 - 30	ROHN 3.5 EH	33.14	16.04	147.3	30.000	3.6784	30864.90	110352.00	0.280
T16	30 - 0	ROHN 4 X-STR	36.80	17.87	145.2	30.000	4.4074	31537.40	132223.00	0.239

	Top Girt Design Data (Tension)											
Section No.	Elevation	Size	L	L _u	Kl/r	F _a	A	Actual P	Allow. P_a	Ratio P		
	ft		ft	ft		ksi	in^2	lb	lb	P_a		
T1	320 - 300	L1 3/4x1 3/4x3/16	6.81	6.35	141.8	21.600	0.6211	96.36	13415.60	0.007		
T2	300 - 280	L2x2x1/4	6.81	6.35	125.1	21.600	0.9380	18.45	20260.80	0.001		

tnxTower

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT

Phone: 860-529-8882

FAX: 860-529-3991

JobPage320' Rohn SSVMW60 of 75ProjectDateCSP Tower - Colchester, CT10:42:37 02/22/19Client
(MODification) DESPP Loads / VZW-217 / EMP-008 - "F"Designed by
MCD

Redundant Horizontal (1) Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T12	120 - 100	ROHN 1.5 STD	6.35	5.88	113.3	30.000	0.7995	7759.88	23983.70	0.324
T13	100 - 80	P1.5x.145	6.99	6.52	125.7	30.000	0.7995	8679.04	23983.70	0.362
T14	80 - 60	ROHN 2 STD	7.62	7.09	108.0	30.000	1.0745	9655.72	32235.90	0.300
T15	60 - 30	ROHN 1.5 STD	5.52	4.99	96.2	30.000	0.7995	10598.40	23983.70	0.442
T16	30 - 0	P1.5x.145	6.13	5.60	108.0	30.000	0.7995	12031.60	23983.70	0.502

	Redundant Horizontal (2) Design Data (Tension)											
Section No.	Elevation	Size	L	Lu	Kl/r	Fa	A	Actual P	Allow. P _a	Ratio P		
	ft		ft	ft		ksi	in^2	lb	lb	P_a		
T15	60 - 30	ROHN 2 XXS	11.05	10.52	179.6	30.000	2.6559	10598.40	79677.50	0.133		
T16	30 - 0	ROHN 2.5 EH	12.27	11.74	152.4	30.000	2.2535	12031.60	67606.20	0.178		

Redundant Diagonal (1) Design Data (Tension)

Section No.	Elevation ft	Size	L ft	L_u ft	Kl/r	F _a ksi	A in ²	Actual P lb	Allow. P _a lb	$\frac{Ratio}{P}$ $\frac{P_a}{P_a}$
T13	100 - 80	ROHN 2 EH	11.86	10.98	171.6	30.000	1.4807	7360.68	44420.50	0.166
T14	80 - 60	ROHN 2 EH	12.18	11.36	177.4	30.000	1.4807	7722.07	44420.50	0.174
T15	60 - 30	ROHN 2 EH	11.15	9.95	155.3	30.000	1.4807	10695.00	44420.50	0.241
T16	30 - 0	ROHN 2.5 STD	11.41	10.31	130.6	30.000	1.7040	11192.90	51121.50	0.219

Redundant Diagonal (2) Design Data (Tension)

Anna Tanu an	Job	Page
tnxTower	320' Rohn SSVMW	61 of 75
AECOM	Project	Date
500 Enterprise Drive, Suite 3B	CSP Tower - Colchester, CT	10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	Α	Actual P	Allow. P _a	Ratio P
110.	ft		ft	ft		ksi	in ²	lb	lb	P_a
T15	60 - 30	ROHN 2.5 STD	14.46	13.72	173.8	30.000	1.7040	6935.87	51121.50	0.136
T16	30 - 0	ROHN 2.5 STD	15.33	14.62	185.3	30.000	1.7040	7519.96	51121.50	0.147
110	30 - 0	KOHN 2.3 STD	15.55	14.63	163.5	30.000	1.7040	/319.90	51121.50	0.147

Redundant Hip (1) Design Data (Tension)										
Section No.	Elevation	Size	L	L _u	Kl/r	F _a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T15	60 - 30	ROHN 1.5 STD	5.52	5.52	106.5	30.000	0.7995	43.23	23983.70	0.002
T16	30 - 0	ROHN 1.5 STD	6.13	6.13	118.2	30.000	0.7995	35.80	23983.70	0.001

		Redunda	ant Hip	(2) D	esign	Data (Tensi	on)		
Section No.	Elevation	Size	L	Lu	Kl/r	Fa	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T15	60 - 30	ROHN 2 STD	11.05	11.05	168.4	30.000	1.0745	47.74	32235.90	0.001
T16	30 - 0	ROHN 2 STD	12.27	12.27	187.0	30.000	1.0745	37.95	32235.90	0.001

	Redundant Hip E	Diagonal (1)	Design Data	(Tension)
--	-----------------	--------------	-------------	-----------

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow.	Ratio P
INO.	ft		ft	ft		ksi	in^2	lb	P_a lb	$\frac{r}{P_a}$
T12	120 - 100	ROHN 2.5 STD	15.15	15.15	191.9	30.000	1.7040	153.03	51121.50	0.003
										~
T13	100 - 80	ROHN 2.5 STD	16.00	16.00	202.6	30.000	1.7040	147.14	51121.50	0.003
T14	80 - 60	ROHN 3 STD	16.88	16.88	174.1	30,000	2.2285	186.20	66854.10	0.003
114	80 - 80	KORIN 3 STD	10.00	10.00	1/4.1	30.000	2.2283	180.20	00854.10	0.003
T15	60 - 30	ROHN 2 STD	14.10	14.10	214.9	30.000	1.0745	509.76	32235.90	0.016
										~
T16	30 - 0	ROHN 2.5 STD	14.88	14.88	188.4	30.000	1.7040	440.66	51121.50	0.009
										~

<i>tnxTower</i>

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT

Phone: 860-529-8882

FAX: 860-529-3991

Job 320' Rohn SSVMW Project CSP Tower - Colchester, CT Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"

Redundant Hip Diagonal (2) Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	F_a	А	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T15	60 - 30	ROHN 2 STD	17.91	17.91	273.1	30.000	1.0745	191.42	32235.90	0.006
T16	30 - 0	ROHN 2.5 STD	19.28	19.28	244.2	30.000	1.7040	172.30	51121.50	0.003

Inner Bracing Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
T12	120 - 100	ROHN 3 STD	12.69	12.69	130.9	30.000	2.2285	10.04	66854.10	0.000
T13	100 - 80	ROHN 3 STD	13.99	13.99	144.2	30.000	2.2285	8.33	66854.10	0.000
T14	80 - 60	ROHN 3 STD	15.24	15.24	157.1	30.000	2.2285	5.76	66854.10	0.000
T15	60 - 30	ROHN 3 STD	16.57	16.57	170.9	30.000	2.2285	45.67	66854.10	0.001
T16	30 - 0	ROHN 3 STD	18.40	18.40	189.8	30.000	2.2285	35.09	66854.10	0.001

Section Capacity Table

Section	Elevation	Component	Size	Critical Element	P lb	SF*P _{allow} lb	% Canacity	Pass Fail
No.	ft	Туре		Element			Capacity	
T1	320 - 300	Leg	ROHN 5 EH	1	-9269.38	225039.72	4.1	Pass
		Leg	ROHN 5 EH	2	-9238.83	225039.72	4.1	Pass
		Leg	ROHN 5 EH	3	-9262.76	225039.72	4.1	Pass
T2	300 - 280	Leg	ROHN 6 EH	37	-27469.70	307771.03	8.9	Pass
		Leg	ROHN 6 EH	38	-27255.70	307771.03	8.9	Pass
		Leg	ROHN 6 EH	39	-26689.90	307771.03	8.7	Pass
Т3	280 - 260	Leg	ROHN 8 EH w/ angle 8x8x0.5	67	-53764.80	752126.56	7.1	Pass
			-				11.5 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	68	-54205.50	752126.56	7.2	Pass
		e	e				11.5 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	69	-53151.00	752126.56	7.1	Pass
		e	e				11.6 (b)	
T4	260 - 240	Leg	ROHN 8 EH w/ angle 8x8x0.5	88	-88014.00	752149.22	11.7	Pass
		8	8				18.9 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	89	-89457.20	752149.22	11.9	Pass
		8	8				18.7 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	90	-87325.80	752149.22	11.6	Pass
		8	8				19.0 (b)	
T5	240 - 220	Leg	ROHN 8 EH w/ angle 8x8x0.5	109	-131688.00	752153.22	17.5	Pass
		-0					28.3 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	110	-133439.00	752153.22	17.7	Pass
		208					27.9 (b)	- 400

tnxTower

Project

320' Rohn SSVMW

Page 63 of 75

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
110.	<i>J</i>	Leg	ROHN 8 EH w/ angle 8x8x0.5	111	-131435.00	752153.22	17.5	Pass
							28.4 (b)	
T6	220 - 200	Leg	ROHN 8 EH w/ angle 8x8x0.5	130	-180406.00	704303.85	25.6	Pass
		T		121	102056.00	704202.05	25.8 (b)	D
		Leg	ROHN 8 EH w/ angle 8x8x0.5	131	-182956.00	704303.85	26.0	Pass
		Leg	ROHN 8 EH w/ angle 8x8x0.5	132	-180341.00	704303.85	25.6 25.8 (b)	Pass
Τ7	200 - 180	Leg	ROHN 10 EH w/ angle 8x8x0.5	145	-240374.00	844259.51	23.8 (0)	Pass
1 /	200 100	Les	Konit to En w/ angle 0x0x0.5	145	240574.00	044259.51	34.4 (b)	1 455
		Leg	ROHN 10 EH w/ angle 8x8x0.5	146	-243785.00	844259.51	28.9	Pass
		-0					33.9 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	147	-240126.00	844259.51	28.4	Pass
		e	6				34.4 (b)	
T8	180 - 170	Leg	ROHN 10 EH w/ angle 8x8x0.5	160	-270734.00	844272.84	32.1	Pass
							38.7 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	161	-274398.00	844272.84	32.5	Pass
							38.3 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	162	-270245.00	844272.84	32.0	Pass
							38.8 (b)	
Т9	170 - 160	Leg	ROHN 10 EH w/ angle 8x8x0.5	169	-301731.00	844272.84	35.7	Pass
		Leg	ROHN 10 EH w/ angle 8x8x0.5	170	-305606.00	844272.84	36.2	Pass
T10	1.60 1.40	Leg	ROHN 10 EH w/ angle 8x8x0.5	171	-301117.00	844272.84	35.7	Pass
T10	160 - 140	Leg	ROHN 10 EH w/ angle 8x8x0.5	178	-365534.00	844312.83	43.3	Pass
		Lag	POIN 10 EU w/ angle 9x9x0.5	170	260275.00	044212 02	52.1 (b)	Deca
		Leg	ROHN 10 EH w/ angle 8x8x0.5	179	-369375.00	844312.83	43.7 51.7 (b)	Pass
		Leg	ROHN 10 EH w/ angle 8x8x0.5	180	-364296.00	844312.83	43.1	Pass
		Leg	KOTIN TO EIT W/ angle 6x6x0.5	160	-304290.00	844512.85	52.4 (b)	1 455
T11	140 - 120	Leg	ROHN 10 EH w/ angle 8x8x0.5	193	-429080.00	844247.52	50.8	Pass
111	140 120	Les	Konit to En w/ angle 0x0x0.5	175	429000.00	044247.52	60.7 (b)	1 455
		Leg	ROHN 10 EH w/ angle 8x8x0.5	194	-433129.00	844247.52	51.3	Pass
		8					60.5 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	195	-427367.00	844247.52	50.6	Pass
		e	6				61.2 (b)	
T12	120 - 100	Leg	ROHN 10 EH w/ angle 8x8x0.5	208	-442554.00	844132.88	52.4	Pass
							61.8 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	209	-447089.00	844132.88	53.0	Pass
							61.5 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	210	-440799.00	844132.88	52.2	Pass
							62.4 (b)	
T13	100 - 80	Leg	ROHN 10 EH w/ angle 8x8x0.5	241	-495097.00	844156.87	58.6	Pass
		Leg	ROHN 10 EH w/ angle 8x8x0.5	242	-500110.00	844156.87	59.2	Pass
TT1 4	00 (0	Leg	ROHN 10 EH w/ angle 8x8x0.5	243	-493124.00	844156.87	58.4	Pass
T14	80 - 60	Leg	ROHN 12 EH w/ angle 8x8x0.5	274	-550704.00	976419.79	56.4	Pass
		Lag	ROHN 12 EH w/ angle 8x8x0.5	275	-556237.00	076410 70	57.4 (b)	Deca
		Leg	KOHN 12 EH W/ aligle 8x8x0.3	213	-330237.00	9/0419./9	57.0 57.2 (b)	Pass
		Leg	ROHN 12 EH w/ angle 8x8x0.5	276	-548553.00	976419.79	56.2	Pass
		Leg	KOTIN 12 EII w/ aligie 6x6x0.5	270	-548555.00	970419.79	57.9 (b)	1 455
T15	60 - 30	Leg	ROHN 12 EH w/ angle 8x8x0.5	307	-604987.00	976483.78	62.0	Pass
	00 00	Leg	ROHN 12 EH w/ angle 8x8x0.5	308	-610764.00	976483.78	62.5	Pass
		Leg	ROHN 12 EH w/ angle 8x8x0.5	309	-602869.00	976483.78	61.7	Pass
		0					62.1 (b)	
T16	30 - 0	Leg	ROHN 12 EHS w Angle	358	-686723.00	1204598.73	57.0	Pass
		U	8x8x0.625					
		Leg	ROHN 12 EHS w Angle	359	-693189.00	1204598.73	57.5	Pass
		č	8x8x0.625					
		Leg	ROHN 12 EHS w Angle	360	-684323.00	1204598.73	56.8	Pass
		-	8x8x0.625					
T1	320 - 300	Diagonal	L1 3/4x1 3/4x3/16	7	-1574.01	7984.10	19.7	Pass
							30.2 (b)	

tnxTower

Project

320' Rohn SSVMW

Page 64 of 75

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
		Diagonal	L1 3/4x1 3/4x3/16	8	-1573.44	7984.10	19.7 30.2 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	9	-1605.88	7984.10	20.1 30.6 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	10	-1605.30	7984.10	20.1 30.7 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	11	-1613.00	7984.10	20.2 30.7 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	12	-1613.17	7984.10	20.2	Pass
		Diagonal	L1 3/4x1 3/4x3/16	13	-1398.34	7984.10	30.7 (b) 17.5	Pass
		Diagonal	L1 3/4x1 3/4x3/16	14	-1397.36	7984.10	27.6 (b) 17.5	Pass
		Diagonal	L1 3/4x1 3/4x3/16	15	-1386.63	7984.10	27.5 (b) 17.4	Pass
		Diagonal	L1 3/4x1 3/4x3/16	16	-1386.46	7984.10	27.1 (b) 17.4	Pass
		Diagonal	L1 3/4x1 3/4x3/16	17	-1350.14	7984.10	27.1 (b) 16.9	Pass
		Diagonal	L1 3/4x1 3/4x3/16	18	-1349.58	7984.10	26.1 (b) 16.9	Pass
		Diagonal	L1 3/4x1 3/4x3/16	19	-1139.07	7984.10	26.1 (b) 14.3	Pass
		Diagonal	L1 3/4x1 3/4x3/16	20	-1139.33	7984.10	21.8 (b) 14.3	Pass
		Diagonal	L1 3/4x1 3/4x3/16	21	-1117.09	7984.10	21.9 (b) 14.0	Pass
		Diagonal	L1 3/4x1 3/4x3/16	22	-1117.35	7984.10	21.5 (b) 14.0	Pass
		Diagonal	L1 3/4x1 3/4x3/16	23	-1134.57	7984.10	21.5 (b) 14.2	Pass
		Diagonal	L1 3/4x1 3/4x3/16	24	-1134.82	7984.10	22.0 (b) 14.2	Pass
		Diagonal	L1 3/4x1 3/4x3/16	25	-846.85	7984.10	22.0 (b) 10.6	Pass
		Diagonal	L1 3/4x1 3/4x3/16	26	-846.06	7984.10	16.5 (b) 10.6	Pass
		Diagonal	L1 3/4x1 3/4x3/16	27	-755.28	7984.10	16.5 (b) 9.5	Pass
		Diagonal	L1 3/4x1 3/4x3/16	28	-751.88	7984.10	14.7 (b) 9.4	Pass
		Diagonal	L1 3/4x1 3/4x3/16	29	-856.18	7984.10	14.6 (b) 10.7	Pass
		Diagonal	L1 3/4x1 3/4x3/16	30	-857.33	7984.10	16.7 (b) 10.7	Pass
		Diagonal	L1 3/4x1 3/4x3/16	31	-523.94	7984.10	16.7 (b) 6.6	Pass
		Diagonal	L1 3/4x1 3/4x3/16	32	-597.96	7984.10	10.0 (b) 7.5	Pass
		Diagonal	L1 3/4x1 3/4x3/16	33	-262.23	7984.10	11.3 (b) 3.3	Pass
		Diagonal	L1 3/4x1 3/4x3/16	34	-268.70	7984.10	4.8 (b) 3.4	Pass
		Diagonal	L1 3/4x1 3/4x3/16	35	-590.53	7984.10	4.9 (b) 7.4	Pass
		Diagonal	L1 3/4x1 3/4x3/16	36	-509.89	7984.10	11.1 (b) 6.4	Pass
T2	300 - 280	Diagonal	L2x2x1/4	43	-3945.92	9048.00	9.8 (b) 43.6	Pass
12	500 200	Diagonal	L2x2x1/4	43	-3951.58	9048.00	48.3 (b) 43.7	Pass
		Diagonal	L2X2X1/4	44	-3731.38	9046.00	43./	г а55

tnxTower

Project

320' Rohn SSVMW

CSP Tower - Colchester, CT

Page 65 of 75

Date 10:42:37 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section	Elevation	Component	Size	Critical	Р	SF*Pallow	%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
		Diagonal	L2x2x1/4	45	-2924.66	9048.00	48.3 (b) 32.3 36.0 (b)	Pass
		Diagonal	L2x2x1/4	46	-3134.93	9048.00	34.6 36.9 (b)	Pass
		Diagonal	L2x2x1/4	47	-2879.43	9048.00	31.8 33.7 (b)	Pass
		Diagonal	L2x2x1/4	48	-2710.61	9048.00	30.0 33.4 (b)	Pass
		Diagonal	L2x2x1/4 L2x2x1/4	49 50	-3022.16 -3019.61	9945.78 9945.78	30.4 37.0 (b) 30.4	Pass
		Diagonal Diagonal	L2x2x1/4 L2x2x1/4	50	-2499.85	9945.78 9945.78	37.0 (b) 25.1	Pass Pass
		Diagonal	L2x2x1/4	52	-2595.52	9945.78	30.8 (b) 26.1	Pass
		Diagonal	L2x2x1/4	53	-2211.39	9945.78	30.7 (b) 22.2	Pass
		Diagonal	L2x2x1/4	54	-2178.36	9945.78	26.8 (b) 21.9 27.0 (b)	Pass
		Diagonal	L2x2x1/4	55	-2322.60	10962.20	21.2 28.9 (b)	Pass
		Diagonal	L2x2x1/4	56	-2331.53	10962.20	21.3 28.7 (b)	Pass
		Diagonal	L2x2x1/4	57	-1861.26	10962.20	17.0 23.0 (b)	Pass
		Diagonal Diagonal	L2x2x1/4 L2x2x1/4	58 59	-1863.47 -2074.72	10962.20 10962.20	17.0 23.0 (b) 18.9	Pass Pass
		Diagonal	L2x2x1/4	60	-2056.89	10962.20	25.2 (b) 18.8	Pass
		Diagonal	L2x2x1/4	61	-1850.63	12102.43	25.3 (b) 15.3	Pass
		Diagonal	L2x2x1/4	62	-1854.15	12102.43	22.3 (b) 15.3 22.3 (b)	Pass
		Diagonal	L2x2x1/4	63	-1703.71	12102.43	14.1 20.5 (b)	Pass
		Diagonal	L2x2x1/4	64	-1705.07	12102.43	14.1 20.5 (b)	Pass
		Diagonal Diagonal	L2x2x1/4 L2x2x1/4	65 66	-1612.32 -1608.93	12102.43 12102.43	13.3 19.3 (b) 13.3	Pass Pass
Т3	280 - 260	Diagonal	L2 1/2x2 1/2x1/4	70	-5697.94	11673.67	19.3 (b) 48.8	Pass
		Diagonal	L2 1/2x2 1/2x1/4	71	-5690.71	11673.67	53.2 (b) 48.7	Pass
		Diagonal	L2 1/2x2 1/2x1/4	72	-4760.98	11673.67	53.2 (b) 40.8	Pass
		Diagonal	L2 1/2x2 1/2x1/4	73	-5110.58	11673.67	45.0 (b) 43.8 44.4 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	74	-3884.47	11673.67	33.3 35.2 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	75	-3779.97	11673.67	32.4 35.4 (b)	Pass
		Diagonal	L2 $1/2x^2 1/2x^{1/4}$	76 77	-5273.35	12983.73	40.6 49.2 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	77	-5274.59	12983.73	40.6 49.2 (b)	Pass

tnxTower

Project

320' Rohn SSVMW

Page 66 of 75

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
		Diagonal	L2 1/2x2 1/2x1/4	78	-4179.34	12983.73	32.2 39.1 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	79	-4454.90	12983.73	34.3 38.9 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	80	-3708.60	12983.73	28.6 33.3 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	81	-3585.59	12983.73	27.6 33.6 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	82	-4965.25	14483.44	34.3 46.4 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	83	-4972.35	14483.44	34.3 46.3 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	84	-3648.53	14483.44	25.2 34.2 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	85	-3911.24	14483.44	27.0 34.5 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	86	-3517.05	14483.44	24.3 31.1 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	87	-3330.27	14483.44	23.0 31.3 (b)	Pass
T4	260 - 240	Diagonal	L3x3x1/4	91	-9259.72	15426.14	60.0 71.4 (b)	Pass
		Diagonal	L3x3x1/4	92	-8782.91	15426.14	56.9 71.8 (b)	Pass
		Diagonal	L3x3x1/4	93	-8012.53	15426.14	51.9 67.8 (b)	Pass
		Diagonal	L3x3x1/4	94	-8846.85	15426.14	57.3 66.5 (b)	Pass
	Diagonal	L3x3x1/4	95	-4992.84	15426.14	32.4 39.4 (b)	Pass	
		Diagonal	L3x3x1/4	96	-4869.30	15426.14	31.6 39.6 (b)	Pass
		Diagonal	L3x3x1/4	97	-7655.46	16884.71	45.3 60.5 (b)	Pass
		Diagonal	L3x3x1/4	98	-7412.83	16884.71	43.9 60.7 (b)	Pass
		Diagonal	L3x3x1/4	99	-6693.77	16884.71	39.6 56.3 (b)	Pass
		Diagonal	L3x3x1/4	100	-7268.54	16884.71	43.0 54.6 (b)	Pass
		Diagonal	L3x3x1/4	101	-4565.25	16884.71	27.0 36.7 (b)	Pass
		Diagonal	L3x3x1/4	102	-4509.51	16884.71	26.7 36.9 (b)	Pass
		Diagonal	L3x3x1/4	103	-6900.17	18534.30	37.2 55.6 (b)	Pass
		Diagonal	L3x3x1/4	104	-6809.19	18534.30	36.7 55.8 (b)	Pass
		Diagonal	L3x3x1/4	105	-5960.01	18534.30	32.2 50.0 (b)	Pass
		Diagonal	L3x3x1/4	106	-6438.01	18534.30	34.7 48.6 (b)	Pass
		Diagonal	L3x3x1/4	107	-4332.18	18534.30	23.4 34.6 (b)	Pass
		Diagonal	L3x3x1/4	108	-4261.19	18534.30	23.0 34.8 (b)	Pass
T5	240 - 220	Diagonal	L4x4x5/16	112	-11725.40	34960.86	33.5 72.0 (b)	Pass
		Diagonal	L4x4x5/16	113	-11012.00	34960.86	31.5 72.8 (b)	Pass
		Diagonal	L4x4x5/16	114	-10839.60	34960.86	31.0	Pass

tnxTower

Project

320' Rohn SSVMW

CSP Tower - Colchester, CT

Page 67 of 75

Date 10:42:37 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
							72.4 (b)	
		Diagonal	L4x4x5/16	115	-11658.70	34960.86	33.3	Pass
		Diagonal	L4x4x5/16	116	-6713.25	34960.86	71.0 (b) 19.2	Pass
		Diagonai	L4X4X3/10	110	-0/13.23	34900.80	43.9 (b)	г а55
		Diagonal	L4x4x5/16	117	-6701.86	34960.86	19.2	Pass
		D' 1	TA A 5/16	110	11005 20	27114 45	43.9 (b)	D
		Diagonal	L4x4x5/16	118	-11005.30	37114.45	29.7 68.6 (b)	Pass
		Diagonal	L4x4x5/16	119	-10512.50	37114.45	28.3	Pass
		D' 1	TA A 5/14	120	10271.00	27114 45	70.5 (b)	D
		Diagonal	L4x4x5/16	120	-10271.80	37114.45	27.7 69.8 (b)	Pass
		Diagonal	L4x4x5/16	121	-10894.30	37114.45	29.4	Pass
		D' 1	TA A 5/16	122	(204.00	27114 45	67.0 (b)	D
		Diagonal	L4x4x5/16	122	-6284.08	37114.45	16.9 40.7 (b)	Pass
		Diagonal	L4x4x5/16	123	-6279.29	37114.45	16.9	Pass
		Diseasel	I. A A 5/1 (124	11000 50	20440.97	40.8 (b)	D
		Diagonal	L4x4x5/16	124	-11008.50	39449.87	27.9 68.0 (b)	Pass
		Diagonal	L4x4x5/16	125	-10443.20	39449.87	26.5	Pass
		Diseasel	I. A A 5/1 (12(0690.14	20440.97	68.7 (b)	D
		Diagonal	L4x4x5/16	126	-9689.14	39449.87	24.6 66.1 (b)	Pass
		Diagonal	L4x4x5/16	127	-10609.50	39449.87	26.9	Pass
		Diseasel	I. A A 5/1 (129	5774 90	20440.97	63.8 (b)	D
		Diagonal	L4x4x5/16	128	-5774.80	39449.87	14.6 37.1 (b)	Pass
		Diagonal	L4x4x5/16	129	-5747.33	39449.87	14.6	Pass
Т6	220 - 200	Diagonal	L4x4x3/8	133	-16655.20	28363.84	37.3 (b) 58.7	Pass
10	220 - 200	Diagonal	L4X4X3/0	155	-10035.20	20303.04	94.3 (b)	F 855
		Diagonal	L4x4x3/8	134	-15657.50	28363.84	55.2	Pass
		Diagonal	L4x4x3/8	135	-15705.70	28363.84	89.0 (b) 55.4	Pass
		Diagonal	LANAX5/0	155	-15705.70	20505.04	89.4 (b)	1 455
		Diagonal	L4x4x3/8	136	-16731.50	28363.84	59.0	Pass
		Diagonal	L4x4x3/8	137	-9756.46	28363.84	94.7 (b) 34.4	Pass
		Diagonal	LAXAX5/0	157	7750.40	20505.04	55.2 (b)	1 455
		Diagonal	L4x4x3/8	138	-9742.86	28363.84	34.3	Pass
		Diagonal	L4x4x3/8	139	-15599.20	31105.55	55.1 (b) 50.1	Pass
		-					88.3 (b)	
		Diagonal	L4x4x3/8	140	-14760.60	31105.55	47.5	Pass
		Diagonal	L4x4x3/8	141	-14746.90	31105.55	83.5 (b) 47.4	Pass
		-					83.5 (b)	
		Diagonal	L4x4x3/8	142	-15631.70	31105.55	50.3 88.5 (b)	Pass
		Diagonal	L4x4x3/8	143	-9419.75	31105.55	30.3	Pass
			X 4 4 0/0		0.401.40		53.3 (b)	D
		Diagonal	L4x4x3/8	144	-9421.48	31105.55	30.3 53.3 (b)	Pass
Τ7	200 - 180	Diagonal	L4x4x3/8	148	-19639.40	23527.18	83.5	Pass
		Diana	L 4- 4 2/9	1.40	10046.10	00507 10	88.7 (b)	р
		Diagonal	L4x4x3/8	149	-19046.10	23527.18	81.0 90.0 (b)	Pass
		Diagonal	L4x4x3/8	150	-18466.60	23527.18	78.5	Pass
							88.7 (b)	

tnxTower

Project

320' Rohn SSVMW CSP Tower - Colchester, CT

Page 68 of 75

Date 10:42:37 02/22/19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
		Diagonal	L4x4x3/8	151	-19344.60	23527.18	82.2 85.9 (b)	Pass
		Diagonal	L4x4x3/8	152	-12033.30	23527.18	51.1 55.6 (b)	Pass
		Diagonal	L4x4x3/8	153	-12027.60	23527.18	51.1	Pass
		Diagonal	L4x4x3/8	154	-19395.20	25809.95	55.6 (b) 75.1	Pass
		Diagonal	L4x4x3/8	155	-18338.20	25809.95	85.0 (b) 71.1	Pass
		Diagonal	L4x4x3/8	156	-18246.20	25809.95	85.7 (b) 70.7	Pass
		Diagonal	L4x4x3/8	157	-19411.70	25809.95	85.3 (b) 75.2	Pass
		Diagonal	L4x4x3/8	158	-11547.70	25809.95	84.6 (b) 44.7	Pass
		Diagonal	L4x4x3/8	159	-11531.30	25809.95	53.3 (b) 44.7	Pass
Т8	180 - 170	Diagonal	2L4x4x1/4	163	-21569.00	69824.94	53.2 (b) 30.9	Pass
		Diagonal	2L4x4x1/4	164	-20827.80	69824.94	72.3 (b) 29.8	Pass
		Diagonal	2L4x4x1/4	165	-19638.80	69824.94	72.8 (b) 28.1	Pass
		Diagonal	2L4x4x1/4	166	-20904.50	69824.94	70.4 (b) 29.9	Pass
		Diagonal	2L4x4x1/4	167	-12988.80	69824.94	68.2 (b) 18.6	Pass
		Diagonal	2L4x4x1/4	168	-12965.60	69824.94	44.8 (b) 18.6	Pass
Т9	170 - 160	Diagonal	2L4x4x1/4	172	-22149.00	65805.14	44.8 (b) 33.7	Pass
		Diagonal	2L4x4x1/4	173	-21554.50	65805.14	75.1 (b) 32.8	Pass
		Diagonal	2L4x4x1/4	174	-19879.20	65805.14	75.8 (b) 30.2	Pass
		Diagonal	2L4x4x1/4	175	-21186.50	65805.14	72.4 (b) 32.2	Pass
		Diagonal	2L4x4x1/4	176	-13302.40	65805.14	69.3 (b) 20.2	Pass
		Diagonal	2L4x4x1/4	170	-13270.00	65805.14	46.0 (b) 20.2	Pass
T10	160 - 140	-	L5x5x1/2	181		43966.20	46.1 (b) 59.4	Pass
110	100 - 140	Diagonal	L5x5x1/2 L5x5x1/2		-26117.70		86.4 (b)	
		Diagonal		182	-25102.80	43966.20	57.1 86.8 (b)	Pass
		Diagonal	L5x5x1/2	183	-22511.80	43966.20	51.2 79.4 (b)	Pass
		Diagonal	L5x5x1/2	184	-24590.70	43966.20	55.9 77.4 (b)	Pass
		Diagonal	L5x5x1/2	185	-16184.00	43966.20	36.8 53.6 (b)	Pass
		Diagonal	L5x5x1/2	186	-15739.10	43966.20	35.8 53.7 (b)	Pass
		Diagonal	L5x5x1/2	187	-23964.00	47320.70	50.6 82.7 (b)	Pass
		Diagonal	L5x5x1/2	188	-23533.80	47320.70	49.7 83.8 (b)	Pass
		Diagonal	L5x5x1/2	189	-21504.30	47320.70	45.4 79.6 (b)	Pass
		Diagonal	L5x5x1/2	190	-22774.10	47320.70	48.1	Pass

tnxTower

Project

Client

320' Rohn SSVMW

Page 69 of 75

Date

CSP Tower - Colchester, CT

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

ent (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
10.	J -						75.5 (b)	
		Diagonal	L5x5x1/2	191	-14621.40	47320.70	30.9	Pass
							51.1 (b)	
		Diagonal	L5x5x1/2	192	-14586.20	47320.70	30.8	Pass
	1.40 1.00	D : 1	X 5 5 1/0	107	0.5400.50	25200 50	51.2 (b)	n
T11	140 - 120	Diagonal	L5x5x1/2	196	-27492.50	37390.78	73.5 91.9 (b)	Pass
		Diagonal	L5x5x1/2	197	-26537.50	37390.78	71.0	Pass
		Diagonar	L5X5X1/2	177	20007.00	51590.10	92.3 (b)	1 455
		Diagonal	L5x5x1/2	198	-22620.10	37390.78	60.5	Pass
							81.8 (b)	_
		Diagonal	L5x5x1/2	199	-25183.50	37390.78	67.4	Pass
		Diagonal	L5x5x1/2	200	-17044.10	37390.78	79.1 (b) 45.6	Pass
		Diagonal	L5X5X1/2	200	1/044.10	51590.10	55.2 (b)	1 455
		Diagonal	L5x5x1/2	201	-16137.20	37390.78	43.2	Pass
							55.5 (b)	_
		Diagonal	L5x5x1/2	202	-24920.00	40448.42	61.6	Pass
		Diagonal	L5x5x1/2	203	-24776.80	40448.42	87.0 (b) 61.3	Pass
		Diugonui	LONGKI	205	21770.00	10110.12	88.2 (b)	1 455
		Diagonal	L5x5x1/2	204	-21379.90	40448.42	52.9	Pass
							81.2 (b)	
		Diagonal	L5x5x1/2	205	-22926.70	40448.42	56.7	Pass
		Diagonal	L5x5x1/2	206	-14908.10	40448.42	75.0 (b) 36.9	Pass
		Diagonal	LJAJA1/2	200	-14900.10	40440.42	51.9 (b)	1 455
		Diagonal	L5x5x1/2	207	-14827.20	40448.42	36.7	Pass
		-					52.3 (b)	
T12	120 - 100	Diagonal	ROHN 3 XXS	212	-45218.10	55583.17	81.4	Pass
		Diagonal	ROHN 3 XXS	215	-43189.00	55583.17	85.3 (b) 77.7	Pass
		Diagonal	KOIIIN 5 AAS	215	-43169.00	55565.17	81.5 (b)	г а85
		Diagonal	ROHN 3 XXS	219	-36945.20	55583.17	66.5	Pass
		-					70.2 (b)	
		Diagonal	ROHN 3 XXS	222	-41516.20	55583.17	74.7	Pass
		Diagonal	ROHN 3 XXS	228	26572 60	55583.17	78.3 (b) 47.8	Daga
		Diagonal	KURIN 3 AAS	228	-26572.60	33383.17	47.8 50.1 (b)	Pass
		Diagonal	ROHN 3 XXS	231	-25071.40	55583.17	45.1	Pass
		-					47.3 (b)	
T13	100 - 80	Diagonal	ROHN 3 XXS	245	-48150.50	52377.04	91.9	Pass
		Diagonal	ROHN 3 XXS	248	-45658.10	52377.04	87.2	Pass
		Diagonal	ROHN 3 XXS	252	-39651.40	52377.04	75.7	Pass
		Diagonal	ROHN 3 XXS	255	-44546.70	52377.04	85.1	Pass
		Diagonal	ROHN 3 XXS	261	-28612.20	52377.04	54.6	Pass
T14	80 - 60	Diagonal	ROHN 3 XXS	264 278	-26950.40	52377.04	51.5	Pass
T14	80 - 00	Diagonal	ROHN 3.5 EH		-46418.60 -43390.60	51432.61	90.3	Pass
		Diagonal	ROHN 3.5 EH	281	-43390.60	51432.61 51432.61	84.4	Pass
		Diagonal	ROHN 3.5 EH	285 288	-42772.10	51432.61	72.5 83.2	Pass
		Diagonal	ROHN 3.5 EH	288 294	-42772.10	51432.61	83.2 52.8	Pass
		Diagonal Diagonal	ROHN 3.5 EH	294 297	-27139.00	51432.61	52.8 48.4	Pass Pass
T15	60 - 30	Diagonal	ROHN 3.5 EH ROHN 4 X-STR	311	-24902.90 -65668.50	92583.38	48.4 70.9	Pass Pass
113	00 - 30	Diagonal	NOIIIN 4 A-31K	511	-05000.50	74303.30	70.9 91.0 (b)	гass
		Diagonal	ROHN 4 X-STR	316	-61322.10	92583.38	66.2	Pass
		Diagonai		510	01022.10	,	85.0 (b)	1 400
		Diagonal	ROHN 4 X-STR	322	-52964.00	92583.38	57.2	Pass
		-					75.4 (b)	
		Diagonal	ROHN 4 X-STR	327	-60734.10	92583.38	65.6	Pass
							84.2 (b)	

tnxTower

Project

320' Rohn SSVMW

Page 70 of 75

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
		Diagonal	ROHN 4 X-STR	337	-39817.10	92583.38	43.0 55.2 (b)	Pass
		Diagonal	ROHN 4 X-STR	342	-36533.10	92583.38	39.5 50.6 (b)	Pass
T16	30 - 0	Diagonal	ROHN 4 X-STR	362	-63188.60	88782.33	71.2 87.6 (b)	Pass
		Diagonal	ROHN 4 X-STR	367	-59726.20	88782.33	67.3 82.8 (b)	Pass
		Diagonal	ROHN 4 X-STR	373	-50212.90	88782.33	56.6 73.0 (b)	Pass
		Diagonal	ROHN 4 X-STR	378	-57541.80	88782.33	64.8 79.8 (b)	Pass
		Diagonal	ROHN 4 X-STR	388	-34078.40	88782.33	38.4 47.2 (b)	Pass
		Diagonal	ROHN 4 X-STR	393	-31930.40	88782.33	36.0 44.3 (b)	Pass
T12	120 - 100	Horizontal	ROHN 3 STD	211	-24198.60	27913.82	86.7	Pass
		Horizontal	ROHN 3 STD	218	-21907.90	27913.82	78.5	Pass
		Horizontal	ROHN 3 STD	227	-13240.70	27913.82	47.4	Pass
T13	100 - 80	Horizontal	ROHN 3 X-STR	244	-27843.60	29478.76	94.5	Pass
115	100 - 80		ROHN 3 X-STR					
		Horizontal		251	-25616.20	29478.76	86.9	Pass
		Horizontal	ROHN 3 X-STR	260	-15606.80	29478.76	52.9	Pass
T14	80 - 60	Horizontal	ROHN 3 XXS	277	-28447.30	38005.16	74.9 80.5 (b)	Pass
		Horizontal	ROHN 3 XXS	284	-25904.20	38005.16	68.2 73.3 (b)	Pass
T15	60 - 30	Horizontal Horizontal	ROHN 3 XXS	293 310	-15093.70	38005.16	39.7 42.7 (b) 94.8	Pass
115	00 - 30		ROHN 3.5 EH		-31987.30	33747.69		Pass
		Horizontal	ROHN 3.5 EH	321	-29135.00	33747.69	86.3	Pass
		Horizontal	ROHN 3.5 EH	336	-17163.10	33747.69	50.9	Pass
T16	30 - 0	Horizontal	ROHN 4 X-STR	361	-35870.50	41607.99	86.2	Pass
		Horizontal	ROHN 4 X-STR	372	-32576.80	41607.99	78.3	Pass
		Horizontal	ROHN 4 X-STR	387	-18941.10	41607.99	45.5	Pass
T1	320 - 300	Top Girt	L1 3/4x1 3/4x3/16	4	-119.79	3709.14	3.2	Pass
		Top Girt	L1 3/4x1 3/4x3/16	5	-120.21	3709.14	3.2	Pass
		Top Girt	L1 3/4x1 3/4x3/16	6	-119.36	3709.14	3.2	Pass
T2	300 - 280	Top Girt	L2x2x1/4	40	-43.43	6777.01	0.6	Pass
12	500 - 280	Top Girt	L2x2x1/4 L2x2x1/4	40	-33.92	6777.01	0.5	Pass
T10	100 100	Top Girt	L2x2x1/4	42	-20.77	6777.01	0.3	Pass
T12	120 - 100	Redund Horz 1 Bracing	ROHN 1.5 STD	213	-7681.16	12406.66	61.9	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	216	-7759.88	12406.66	62.5	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	220	-7759.88	12406.66	62.5	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	223	-7650.71	12406.66	61.7	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	229	-7650.71	12406.66	61.7	Pass
T13	100 - 80	Redund Horz 1 Bracing Redund Horz 1	ROHN 1.5 STD P1.5x.145	232 246	-7681.16 -8592.05	12406.66 10073.76	61.9 85.3	Pass Pass
115	100 - 00	Bracing Redund Horz 1	P1.5x.145	240	-8679.04	10073.76	86.2	Pass
		Bracing Redund Horz 1	P1.5x.145	253	-8679.04	10073.76	86.2	Pass
		Bracing Redund Horz 1	P1.5x.145	256	-8557.80	10073.76	85.0	Pass
		Bracing Redund Horz 1		262		10073.76	85.0	Pass

tnxTower

Project

320' Rohn SSVMW

Page 71 of 75

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF^*P_{allow} lb	% Capacity	Pass Fail
		Bracing Redund Horz 1	P1.5x.145	265	-8592.05	10073.76	85.3	Pass
T14	80 - 60	Bracing Redund Horz 1 Bracing	ROHN 2 STD	279	-9559.66	18327.15	52.2	Pass
		Redund Horz 1 Bracing	ROHN 2 STD	282	-9655.72	18327.15	52.7	Pass
		Redund Horz 1 Bracing	ROHN 2 STD	286	-9655.72	18327.15	52.7	Pass
		Redund Horz 1 Bracing	ROHN 2 STD	289	-9522.33	18327.15	52.0	Pass
		Redund Horz 1 Bracing	ROHN 2 STD	295	-9522.33	18327.15	52.0	Pass
		Redund Horz 1 Bracing	ROHN 2 STD	298	-9559.66	18327.15	52.2	Pass
T15	60 - 30	Redund Horz 1 Bracing	ROHN 1.5 STD	312	-10498.10	16591.98	63.3	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	317	-10598.40	16591.98	63.9	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	323	-10598.40	16591.98	63.9	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	328	-10461.40	16591.98	63.1	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	338	-10461.40	16591.98	63.1	Pass
T 1 (20 0		Redund Horz 1 Bracing	ROHN 1.5 STD	343	-10498.10	16591.98	63.3	Pass
T16 30 - 0	30 - 0	Redund Horz 1 Bracing	P1.5x.145	363	-11919.30	13650.05	87.3	Pass
		Redund Horz 1 Bracing	P1.5x.145	368	-12031.60	13650.05	88.1	Pass
		Redund Horz 1 Bracing	P1.5x.145	374	-12031.60	13650.05	88.1	Pass
		Redund Horz 1 Bracing	P1.5x.145	379	-11877.70	13650.05	87.0	Pass
		Redund Horz 1 Bracing	P1.5x.145	389	-11877.70	13650.05	87.0	Pas
		Redund Horz 1 Bracing	P1.5x.145	394	-11919.30	13650.05	87.3	Pass
Г15	60 - 30	Redund Horz 2 Bracing	ROHN 2 XXS	313	-10498.10	16393.37	64.0	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	318	-10598.40	16393.37	64.7	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	324	-10598.40	16393.37	64.7	Pas
		Redund Horz 2 Bracing	ROHN 2 XXS	329	-10461.40	16393.37	63.8	Pas
		Redund Horz 2 Bracing	ROHN 2 XXS	339	-10461.40	16393.37	63.8	Pas
		Redund Horz 2 Bracing	ROHN 2 XXS	344	-10498.10	16393.37	64.0	Pas
Г16	30 - 0	Redund Horz 2 Bracing	ROHN 2.5 EH	364	-11919.30	19314.37	61.7	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	369	-12031.60	19314.37	62.3	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	375	-12031.60	19314.37	62.3	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	380	-11877.70	19314.37	61.5	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	390	-11877.70	19314.37	61.5	Pass

Page Job *tnxTower* 72 of 75 320' Rohn SSVMW Project Date AECOM CSP Tower - Colchester, CT 10:42:37 02/22/19 500 Enterprise Drive, Suite 3B Rocky Hill, CT Client Designed by Phone: 860-529-8882 FAX: 860-529-3991 (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
110.	5	Redund Horz 2	ROHN 2.5 EH	395	-11919.30	19314.37	61.7	Pass
T12	120 - 100	Bracing Redund Diag 1	ROHN 2 STD	214	-6968.83	8240.93	84.6	Pass
		Bracing Redund Diag 1	ROHN 2 STD	217	-7040.24	8240.93	85.4	Pass
		Bracing Redund Diag 1 Bracing	ROHN 2 STD	221	-7040.24	8240.93	85.4	Pass
		Redund Diag 1 Bracing	ROHN 2 STD	224	-6941.19	8240.93	84.2	Pass
		Redund Diag 1 Bracing	ROHN 2 STD	230	-6941.19	8240.93	84.2	Pass
		Redund Diag 1 Bracing	ROHN 2 STD	233	-6968.83	8240.93	84.6	Pass
T13	100 - 80	Redund Diag 1 Bracing	ROHN 2 EH	247	-7286.90	10013.26	72.8	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	250	-7360.68	10013.26	73.5	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	254	-7360.68	10013.26	73.5	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	257	-7257.86	10013.26	72.5	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	263	-7257.86	10013.26	72.5	Pass
		Redund Diag 1	ROHN 2 EH	266	-7286.90	10013.26	72.8	Pass
T14	80 - 60	Bracing Redund Diag 1	ROHN 2 EH	280	-7645.25	9363.18	81.7	Pass
		Bracing Redund Diag 1	ROHN 2 EH	283	-7722.07	9363.18	82.5	Pass
		Bracing Redund Diag 1	ROHN 2 EH	287	-7722.07	9363.18	82.5	Pass
		Bracing Redund Diag 1	ROHN 2 EH	290	-7615.40	9363.18	81.3	Pass
		Bracing Redund Diag 1 Bracing	ROHN 2 EH	296	-7615.40	9363.18	81.3	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	299	-7645.25	9363.18	81.7	Pass
T15	60 - 30	Redund Diag 1 Bracing	ROHN 2 EH	314	-10593.90	12214.30	86.7	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	319	-10695.00	12214.30	87.6	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	325	-10695.00	12214.30	87.6	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	330	-10556.80	12214.30	86.4	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	340	-10556.80	12214.30	86.4	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	345	-10593.90	12214.30	86.7	Pass
T16	30 - 0	Redund Diag 1 Bracing	ROHN 2.5 STD	365	-11088.50	19895.56	55.7	Pass
		Redund Diag 1	ROHN 2.5 STD	370	-11192.90	19895.56	56.3	Pass
		Bracing Redund Diag 1 Bracing	ROHN 2.5 STD	376	-11192.90	19895.56	56.3	Pass
		Redund Diag 1	ROHN 2.5 STD	381	-11049.80	19895.56	55.5	Pass
		Bracing Redund Diag 1 Pracing	ROHN 2.5 STD	391	-11049.80	19895.56	55.5	Pass
		Bracing Redund Diag 1	ROHN 2.5 STD	396	-11088.50	19895.56	55.7	Pass

tnxTower

Project

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CSP Tower - Colchester, CT

320' Rohn SSVMW

Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" Designed by MCD

Date

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
T15	60 - 30	Bracing Redund Diag 2	ROHN 2.5 STD	315	-6870.27	11227.66	61.2	Pass
		Bracing Redund Diag 2	ROHN 2.5 STD	320	-6935.87	11227.66	61.8	Pass
		Bracing Redund Diag 2	ROHN 2.5 STD	326	-6935.87	11227.66	61.8	Pass
		Bracing Redund Diag 2	ROHN 2.5 STD	331	-6846.22	11227.66	61.0	Pass
		Bracing Redund Diag 2 Bracing	ROHN 2.5 STD	341	-6846.22	11227.66	61.0	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	346	-6870.27	11227.66	61.2	Pass
T16	30 - 0	Redund Diag 2 Bracing	ROHN 2.5 STD	366	-7449.81	9874.49	75.4	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	371	-7519.96	9874.49	76.2	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	377	-7519.96	9874.49	76.2	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	382	-7423.78	9874.49	75.2	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	392	-7423.78	9874.49	75.2	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	397	-7449.81	9874.49	75.4	Pass
T12	120 - 100	Redund Hip 1 Bracing	ROHN 1.5 STD	225	-85.66	10632.30	0.8	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	234	-45.58	10632.30	0.4	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	236	-97.02	10632.30	0.9	Pass
T13	100 - 80	Redund Hip 1 Bracing	ROHN 1.5 STD	258	-88.05	8761.28	1.0	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	267	-47.19	8761.28	0.5	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	269	-98.47	8761.28	1.1	Pass
T14	80 - 60	Redund Hip 1 Bracing	ROHN 1.5 STD	291	-106.06	7382.57	1.4	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	300	-40.24	7382.57	0.5	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	302	-111.64	7382.57	1.5	Pass
T15	60 - 30	Redund Hip 1 Bracing	ROHN 1.5 STD	332	-253.98	14040.62	1.8	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	347	-126.39	14040.62	0.9	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	351	-289.49	14040.62	2.1	Pass
T16	30 - 0	Redund Hip 1 Bracing	ROHN 1.5 STD	383	-228.15	11387.79	2.0	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	398	-102.74	11387.79	0.9	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	402	-256.40	11387.79	2.3	Pass
T15	60 - 30	Redund Hip 2 Bracing	ROHN 2 STD	333	-95.50	7541.63	1.3	Pass
		Redund Hip 2 Bracing	ROHN 2 STD	348	-95.63	7541.63	1.3	Pass
		Redund Hip 2 Bracing	ROHN 2 STD	352	-95.51	7541.63	1.3	Pass

Page 73 of 75

Page Job *tnxTower* 74 of 75 320' Rohn SSVMW Project Date AECOM CSP Tower - Colchester, CT 10:42:37 02/22/19 500 Enterprise Drive, Suite 3B Rocky Hill, CT Client Designed by Phone: 860-529-8882 FAX: 860-529-3991 (MODification) DESPP Loads / VZW-217 / EMP-008 - "F" MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
	30 - 0	Redund Hip 2	ROHN 2 STD	384	-81.39	6116.11	1.3	Pass
		Bracing Redund Hip 2	ROHN 2 STD	399	-81.12	6116.11	1.3	Pass
		Bracing Redund Hip 2	ROHN 2 STD	403	-82.50	6116.11	1.3	Pass
T12	120 - 100	Bracing Redund Hip Diagonal	ROHN 2.5 STD	226	-109.21	9208.38	1.2	Pass
		1 Bracing Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	235	-42.71	6908.01	0.6	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	237	-65.45	9208.38	0.7	Pass
T13	100 - 80	Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	259	-105.39	8261.03	1.3	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	268	-42.65	6197.32	0.7	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	270	-61.75	8261.03	0.7	Pass
T14	80 - 60	Redund Hip Diagonal 1 Bracing	ROHN 3 STD	292	-140.05	14642.34	1.0	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 3 STD	301	-54.88	10984.50	0.5	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 3 STD	303	-83.67	14642.34	0.6	Pass
T15	60 - 30	Redund Hip Diagonal 1 Bracing	ROHN 2 STD	334	-240.55	4630.28	5.2	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2 STD	349	-156.01	4630.28	3.4	Pass
TT1 (20 0	Redund Hip Diagonal 1 Bracing	ROHN 2 STD	353	-151.62	4630.28	3.3	Pass
T16	30 - 0	Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	385	-231.02	9551.49	2.4	Pass
		Redund Hip Diagonal 1 Bracing Redund Hin Diagonal	ROHN 2.5 STD ROHN 2.5 STD	400 404	-146.45 -142.33	9551.49	1.5	Pass Pass
T15	60 - 30	Redund Hip Diagonal 1 Bracing Redund Hip Diagonal	ROHN 2.5 STD	335	-142.55	9551.49 2868.90	1.5 4.6	Pass
115	00 - 30	2 Bracing Redund Hip Diagonal	ROHN 2 STD	350	-67.88	2868.90	2.4	Pass
		2 Bracing Redund Hip Diagonal	ROHN 2 STD	354	-166.16	2868.90	5.8	Pass
T16	30 - 0	2 Bracing Redund Hip Diagonal	ROHN 2.5 STD	334	-128.49	5686.30	2.3	Pass
110	50-0	2 Bracing Redund Hip Diagonal	ROHN 2.5 STD	401	-72.89	5686.30	1.3	Pass
		2 Bracing Redund Hip Diagonal	ROHN 2.5 STD	401	-158.91	5686.30	2.8	Pass
T12	120 - 100	2 Bracing Inner Bracing	ROHN 3 STD	238	-41.10	25879.26	0.3	Pass
112	120 100	Inner Bracing	ROHN 3 STD	239	-18.24	25879.26	0.3	Pass
		Inner Bracing	ROHN 3 STD	240	-41.59	25879.26	0.3	Pass
T13	100 - 80	Inner Bracing	ROHN 3 STD	271	-42.41	21325.07	0.3	Pass
		Inner Bracing	ROHN 3 STD	272	-17.95	21325.07	0.3	Pass
T14	00 (0	Inner Bracing	ROHN 3 STD	273	-41.38	21325.07	0.3	Pass
T14	80 - 60	Inner Bracing	ROHN 3 STD	304	-50.59	17969.37	0.3	Pass
		Inner Bracing Inner Bracing	ROHN 3 STD ROHN 3 STD	305 306	-23.87 -52.01	17969.37 17969.37	0.4 0.3	Pass Pass
T15	60 - 30	Inner Bracing	ROHN 3 STD	355	-80.09	15190.47	0.5	Pass
	00 00	Inner Bracing	ROHN 3 STD	356	-64.00	15190.47	0.4	Pass
		Inner Bracing	ROHN 3 STD	357	-46.76	15190.47	0.3	Pass
T16	30 - 0	Inner Bracing	ROHN 3 STD	406	-81.65	12319.16	0.7	Pass

	Job	Page
tnxTower	320' Rohn SSVMW	75 of 75
AECOM 500 Enterprise Drive, Suite 3B	Project CSP Tower - Colchester, CT	Date 10:42:37 02/22/19
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client (MODification) DESPP Loads / VZW-217 / EMP-008 - "F"	Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
110.		Inner Bracing	ROHN 3 STD	407	-66.60	12319.16	0.5	Pass
		Inner Bracing	ROHN 3 STD	408	-52.82	12319.16	0.4	Pass
		U					Summary	
						Leg (T15)	62.5	Pass
						Diagonal	94.7	Pass
						(T6)		
						Horizontal	94.8	Pass
						(T15)		
						Top Girt	3.2	Pass
						(T1)		
						Redund	88.1	Pass
						Horz 1		
						Bracing		
						(T16)		
						Redund	64.7	Pass
						Horz 2		
						Bracing		
						(T15)		
						Redund	87.6	Pass
						Diag 1		
						Bracing		
						(T15)		P
						Redund	76.2	Pass
						Diag 2		
						Bracing		
						(T16)	• •	D
						Redund Hip	2.3	Pass
						1 Bracing		
						(T16) Deduced Him	1.2	D
						Redund Hip	1.3	Pass
						2 Bracing (T16)		
						Redund Hip	5.2	Pass
						Diagonal 1	5.4	r a85
						Bracing		
						(T15)		
						Redund Hip	5.8	Pass
						Diagonal 2	5.0	1 433
						Bracing		
						(T15)		
						Inner	0.7	Pass
						Bracing	0.7	1 433
						(T16)		
						Bolt Checks	94.7	Pass
						RATING =	94.8	Pass

Program Version 8.0.5.0 - 11/28/2018 File:P:/Projects/Telcom/StructuralsByLocation/Connecticut/ColchesterCSP#50/12_AT&T_EMP-005_VZ5-217_MOD/ERI_F/20181221_VZW-EMP-MODification.eri

AEC	OM				Page of	
Job	320' Rohn SSVMW - Colc	hester, CT	Project No. E	MP-008 / VZW-217	_	3
Descriptior	n Anchor Bolt Analysis		Computed by		Date 02/22/	19
	TIA-222-F / DESPP Loadii	ng Requirements	Checked by		Date	
	ANG	CHOR BOLT	ANALY	SIS		
Input Da	ata					
<u>Max Pi</u>	ier Reactions:					
Up	lift:	Uplift := 583.462kips	user input			
Sh	iear:	Shear := 97.325 kips	user input			
Со	ompression:	Compression := 766.054ki	ps user input			
<u>Ancho</u>	or Bolt Data:					
Us	e ASTM A354 Grade BC					
Nu	mber of Anchor Bolts = N	<u>N:= 24</u>	user input			
Во	It Ultimate Strength:	$F_u := 125 \text{ ksi}$	user input			
Во	It Yield Strength:	Fy := 109 ksi	user input			
Во	lt Modulus:	E := 29000 ksi	user input			
Thi	ickness of Anchor Bolts	D := lin	user input			
Th	reads per Inch:	n := 8	user input			
Со	efficient of Friction:	μ := 0.55	user input	(for baseplate with	grout ASCE 1	0-97)

AECO	M			Page	of
Job	320' Rohn SSVMW - Colchester, CT	Project No.	EMP-008 / VZW-217	Sheet	2 of 3
Description	Anchor Bolt Analysis	Computed by	MCD	Date	02/22/19
	TIA-222-F / DESPP Loading Requirements	Checked by		Date	

Anchor Bolt Area:

Gross Area of Bolt:

$$A_g := \frac{\pi}{4} \cdot D^2 \qquad \qquad A_g = 0.785 \cdot in^2$$

Net Area of Bolt:

$$A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^2 \qquad A_n = 0.606 \cdot in^2$$

Check Tensile Forces:

Maximum Tensile Force (Gross Area):

 $\label{eq:allowableTension} AllowableTension := 1.33 \cdot \left(0.33 \cdot A_g \cdot F_u \right) \qquad \qquad AllowableTension = 43.1 \cdot kips$

Note: 1.33 increase allowed per TIA/EIA

Maximum Tensile Force (Net Area):

 $F_{net.area} := 1.33 \cdot (0.60 \cdot A_n \cdot Fy)$

 $F_{net.area} = 52.7 \cdot kips$

Note: 1.33 increase allowed per TIA/EIA

Applied Tension:

MaxTension := $\frac{\text{Uplift}}{N}$

MaxTension = $24.3 \cdot \text{kips}$

Check Stresses:

$$\frac{\text{MaxTension}}{\text{F}_{\text{net.area}}} = 0.46$$

Condition1 := if $\left(\frac{\text{MaxTension}}{\text{F}_{\text{net.area}}} \le 1.00, \text{"OK"}, \text{"Overstressed"}\right)$
Condition1 = "OK"

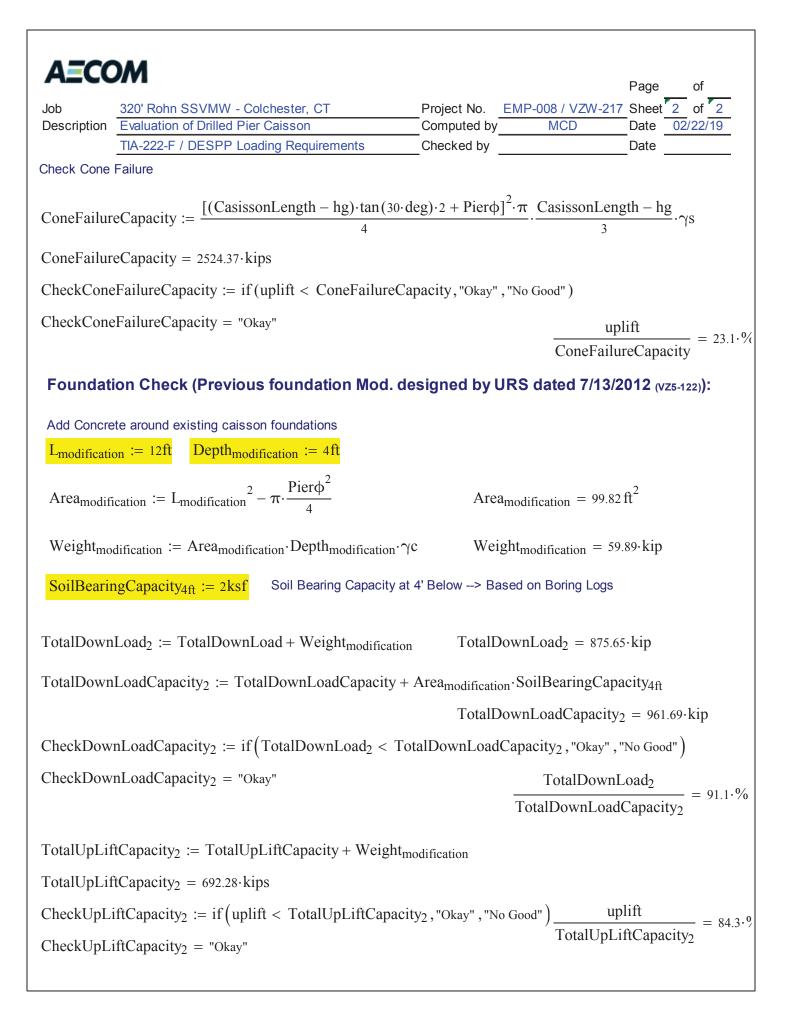
AECO	M			Page	of
Job	320' Rohn SSVMW - Colchester, CT	Project No.	EMP-008 / VZW-217	Sheet	3 of 3
Description	Anchor Bolt Analysis	Computed by	MCD	Date 🚪	02/22/19
	TIA-222-F / DESPP Loading Requirements	Checked by		Date	

Check Anchor Bolt Area:

Based on the ASCE 10-97 Design of Latticed Steel Transmission Structures

Required Area:

$$\begin{split} A_{s1} &\coloneqq \frac{\text{Uplift}}{\text{Fy}} + \frac{\text{Shear}}{\mu \cdot 0.85 \cdot \text{Fy}} \qquad A_{s1} = 7.3 \cdot \text{in}^2 \\ A_{s2} &\coloneqq \left| \frac{\text{Shear} - (0.3 \cdot \text{Compression})}{\mu \cdot 0.85 \cdot \text{Fy}} \right| \qquad A_{s2} = 2.6 \cdot \text{in}^2 \end{split}$$


Provided Area:

$$A_{sprovided} := A_n \cdot N$$
 $A_{sprovided} = 14.5 \cdot in^2$

Condition2 := if
$$\left(\frac{A_{s1}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$
 $\frac{A_{s1}}{A_{sprovided}} = 0.50$
Condition2 = "OK"

Condition 3 := if
$$\left(\frac{A_{s2}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$
 $\frac{A_{s2}}{A_{sprovided}} = 0.18$
Condition 3 = "OK"

Job Description		VMW - Colchester, CT Drilled Pier Caisson	Project No. EMI Computed by		Sheet 1 of 2 Date 02/22/19
·	-	ESPP Loading Requirements	Checked by		Date
3 SIDED	SELF SUPPORT	ING TOWER FOUNDATION DRILL	.ed Pier		
Compressi	on:	DownLoad := 766.054 kips	$\gamma c := 150 pcf$	Concrete uni	it weight
Uplift:		uplift:= 583.462kips	$\gamma w := 62.4 pcf$	Water unit w	eight
Depth Negl Skin Frictic	ected for on at the top	Depthunbond:= 4.ft	$\gamma s := 120 pcf$	Soil unit weig	ght
Drill Caisso	on length	CasissonLength:= 35.5 ft	$Pier\phi := 7.5 \text{ ft}$	Pier diamete	r
Water Tabl	e Below grade:	Wd := 10 ft	$hg := 0.5 \cdot ft$	Height of Pie	er Above grade
Ave allowa at Depth of Ave allowa at Depth of	4' to 10' ble Shear		SoilBearingCapa Allowable Bearing F	2	n 35'
Loading	:				
TotalDow	vnLoad= 815.7	wnLoad + $\pi \cdot \frac{\text{Pier}\phi^2}{4} \cdot [\text{hg} \cdot \gamma c + [6]$ 75 kips $\cdot [(Wd + hg) \cdot \gamma c + (\text{CasissonLe})]$			
Pierweigh	$n = \pi \cdot \frac{4}{4}$	$\cdot [(Wd + hg) \cdot \gamma c + (CasissonLe)]$	$ngth - Wd - hg) \cdot (\gamma q)$	$(z - \gamma w)$]	
	nt = 166.33 kips		ngth– Wd – hg)∙(γα	e – γw)]	
Pierweigł	nt= 166.33 kips				
Pierweigh Soilshear	nt= 166.33 kips				
Pierweigh Soilshear Soilshear	$t = 166.33 \text{ kips}$ $:= \pi \cdot \text{Pier} \Phi[f]$	$1 \cdot (Wd - Depthunbond) + f2 \cdot (C$			
Pierweigh Soilshear Soilshear Compre s	t = 166.33 kips $= \pi \cdot \text{Pier} \Phi [f]$ = 466.06 kips ssion Capac	l·(Wd – Depthunbond) + f2·(C city:	asissonLength– Wd		
Pierweigh Soilshear Soilshear Compre e otalDowr	nt = 166.33 kips $:= \pi \cdot \text{Pier} \Phi [f]$ = 466.06 kips ssion Capac nLoadCapacity	$1 \cdot (Wd - Depthunbond) + f2 \cdot (C$	asissonLength– Wd		
Pierweigh Soilshear Soilshear Compre s ^C otalDowr	nt = 166.33 kips $:= \pi \cdot \text{Pier} \Phi [f]$ = 466.06 kips ssion Capac nLoadCapacity	1·(Wd – Depthunbond) + f2·(C ≿ity: y := Soilshear + SoilBearingCa	asissonLength– Wd		
Pierweigh Soilshear Soilshear Compre TotalDowr TotalDowr	nt = 166.33 kips $:= \pi \cdot \text{Pier} \phi [f.]$ = 466.06 kips ssion Capac nLoadCapacity nLoadCapacity Capacity:	1·(Wd – Depthunbond) + f2·(C ≿ity: y := Soilshear + SoilBearingCa	asissonLength– Wd		

EXHIBIT 4

Centered on Solutions[™]

Structural Analysis Report

Antenna Mount Analysis

AT&T Mobility - LTE 2C

AT&T Site Ref: CT2284 Colchester Munn Road State Police

> 268 Windham Avenue Colchester, CT

Centek Project No. 17004.46

Date: September 20, 2017 Rev 1: October 11, 2017 Rev 2: October 11, 2017 Rev 3: May 1, 2019

Prepared for:

AT&T Mobility 500 Enterprise Drive, Suite 3A Rocky Hill, CT 06067 CENTEK Engineering, Inc. Structural Analysis – Mount Analysis AT&T Site Ref. ~ CT2284 Colchester, CT Rev 3 ~ May 1, 2019

Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 – CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

SECTION 3 - MOUNT MODIFICATION DRAWINGS

SK1 – MOUNT MODIFICATION DETAILS

SECTION 4 – REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)

• AT&T RF DATA SHEET, DATED 5/12/2017

May 1, 2019

Ms. David Cooper Site Acquisition Manager Empire Telecom USA, LLC 16 Esquire Road Billerica, MA 08162

Re: Structural Letter ~ Antenna Mount AT&T – Site Ref: CT2284 – Colchester Munn Road State Police 268 Windham Ave Colchester, CT 06415

Centek Project No. 17004.46 ~ Rev. 3

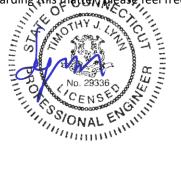
Dear Mr. Cooper,

Centek Engineering, Inc. has reviewed the AT&T Mobility antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the existing mount, consisting of three (3) SitePro Lightweight T-Frames to support the equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G *Structural Standards for Steel Antenna Towers and Supporting Structures*.

The AT&T Mobility loads considered in this analysis consist of the following:

AT&T Mobility:

<u>T-Frames:</u> Six (6) Powerwave 7770 panel antennas, two (2) CCI HPA-65R-BUU-H8 panel antennas, one (1) CCI HPA-65R-BUU-H6 panel antenna, six (6) Powerwave LGP21401 TMAs, six (6) Powerwave LGP13519 diplexers, three (3) Ericsson RRUS-11 remote radio heads, three (3) Ericsson RRUS-32 B2 remote radio heads and one (1) Raycap DC6-48-60-18-8F surge arrestor mounted on three (3) lightweight T-Frames with a RAD center elevation of 200-ft +/- AGL.


The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 101 mph for Colchester as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.

Based on our review of the installation, it is our opinion that the <u>subject antenna mount with the</u> <u>modifications detailed within this report has sufficient capacity</u> to support the aforementioned antenna configuration. Modification to the existing mount will be required prior to the equipment upgrade. If there are any questions regarding this mattern please feel free to call.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

CENTEK Engineering, Inc.

Structural Analysis – Mount Analysis AT&T Site Ref. ~ CT2284 Colchester, CT Rev 3 ~ May 1, 2019

Section 2 - Calculations

	Subject:			TIA-222-G Loads	
Centered on Solutions [®] www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Colchester, CT	
	Rev. 3: 5/1/19			Prepared by: T.J.L. Job No. 17004.46	Checked by: C.F.C.
Development of Design Heights, Exposure Coef and Velocity Piessures Per 1					
<u></u>	Wind Speeds				
Pari	c Wind Speed	V 404		(Lloor loop to 2018 CSPC Ar	an andix NI)
Basic Wind Sp	•	V := 101 V _i := 50	mph mph	(User Input - 2018 CSBC Ap (User Input per Annex B of TI	
	Input	.1			,
St	ructure Type =	Structure_Type :=	Lattice	(User Input)	
Structur	e Category =	SC := II		(User Input)	
Exposu	e Category =	Exp := C		(User Input)	
Stru	cture Height =	h:= 320	ft	(User Input)	
Height to Center of	Antennas=	^Z AT&T ^{:=} 200	ft	(User Input)	
Radial Ico	e Thickness =	t _i := 0.75	in	(User Input per Ann ex B of	TIA-222-G)
Radia	lce Density=	Id := 56.00	pcf	(User Input)	
Тород	apic Factor =	K _{zt} ≔ 1.0		(User Input)	
		K _a := 1.0		(User Input)	
Gust Resp	onse Factor =	G _H ≔ 0.85		(User Input)	
	Output				
Wind Direction Probabil	ty Factor =	K _d := 0.95 if S 0.85 if S		Type = Pole = 0.85 Type = Lattice	(Per Table 2-2 of TIA-222-G)
Importa	nce Factors =	I _{Wind} := 0.87 i 1.00 i 1.15 i	if SC = 1 if SC = 2 if SC = 3	= 1	(Per Table 2-3 of TIA-222-G)
		^I Wind_w_Ice ^{:=}	0 if SC 1.00 if 1.00 if	= 1 = 1 SC = 2 SC = 3	
		I _{ice} := 0 if SC 1.00 if 1.25 if	= 1 SC = 2 SC = 3	= 1	
$K_{iZ} \coloneqq \left(\frac{z_{AT \&T}}{33}\right)$) 0.1 = 1.197	$t_{iz} \coloneqq 2.0 \cdot t_i \cdot I_{ice} \cdot K_i$			
$K_{iz} := \left(\frac{z_{AT\&T}}{33}\right)$ Velocity Pressure CoefficientAu	/	$t_{iz} \coloneqq 2.0 \cdot t_i \cdot l_{ice} \cdot K_i$ $Kz_{AT&T} \coloneqq 2.01 \bigg($			
	∕ nemas=	Kz _{AT&T} := 2.01	$\left(\left(\frac{z_{AT&T}}{zg}\right)\right)$		

CENTEK engineering Subject:			TIA-222-G Loads		
Centered on Solutions www.centekena.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587			Colchester, CT		
Rev. 3: 5/	1/19		Prepared by: T.J.L. C Job No. 17004.46	hecked by: C.F.C.	
Development of Wind & Ice Load on Antennas	I				
Antenna Data:					
Antenna Model =	Powerwave 7770				
Antenna Shape =	Flat		(User Input)		
Anterna Height =	L _{ant} ≔ 55	in	(User Input)		
Antenna Width =	W _{ant} ≔ 11	in	(User Input)		
Antenna Thickness =	T _{ant} := 5	in	(User Input)		
Antenna Weight =	WT _{ant} := 35	lbs	(User Input)		
Number of Antennas =	N _{ant} := 1		(User Input)		
AntennaAspectRato =	Ar _{ant} := ^L ant W _{ant} =	= 5.0			
Antenna Force Coefficient =	Ca _{ant} = 1.31				
Wind Load (without ice)					
SurfaceArea for One Antenna =	SA _{ant} F := ^L ant	$\frac{W_{ant}}{44} = 4.2$	2	sf	
Total Antenna Wind Force=	F _{ant} ≔ qz _{AT&T}	·G _H ·Ca _{ant}	K _a ·SA _{antF} = 152	lbs	
	SA _{antS} ≔ L _{ant}	T _{ant}		.e	
SurfaceArea for One Antenna =				sf	
Total Anten na Wind Force =	F _{ant} ≔ qzAT&T	·G _H ·Ca _{ant}	K _a ·SA _{antS} = 69	lbs	
Wind Load (with ice)	I				
SurfaceAr æ for One Antenna w/ Ice =	SA _{ICEant} F ≔	L _{ant} + 2·t _{iz}	$\frac{\left(W_{ant}+2\cdot t_{iz}\right)}{144}=5.9$	sf	
Total Antenna Wind Forcew/Ice =	Fi _{ant} := qz _{ice.A} -	_{T&T} ∙G _H ∙Ca	a _{ant} K _a SA _{ICEantF} = 53	lbs	
SurfaceAr ea for One Antenna w/ Ice =	SA _{ICEantS} ≔	Lant + 2 t _{iz}	$\frac{2}{144} \cdot \left(T_{ant} + 2 \cdot t_{iz} \right) = 3.5$	sf	
Total Antenna Wind Forcew/Ice =	Fi _{ant} ∶= qz _{ice.A} -	_{T&T} ∙G _H ∙Ca	a _{ant} ·Ka ^{·SA} ICEantS = 31	lbs	
Gravity Load (without ice)	I				
Weight of All Antenna s=	WT _{ant} ·N _{ant} = 3	5		lbs	
Gravity Loads (ice only)					
Volume of Each Antenna =	V _{ant} ≔ L _{ant} .W _a	$nt^{T}ant = 3$	025	cuin	
Volume of Ice on EachAntenna =	$V_{ice} := (L_{ant})(W)$	/ant ^{+ 2.t} iz	$\left(T_{ant} + 2 \cdot t_{iz} \right) - V_{ant} = 3871$	cuin	
Weight of Ice on Each Antenna =	W _{ICEant} ∺= V _{ic} 172	$\frac{2e}{28} \cdot Id = 128$	5	lbs	
Weight of Ice on All Antennas =	WICEant ^{-N} ant ⁼	= 125		lbs	

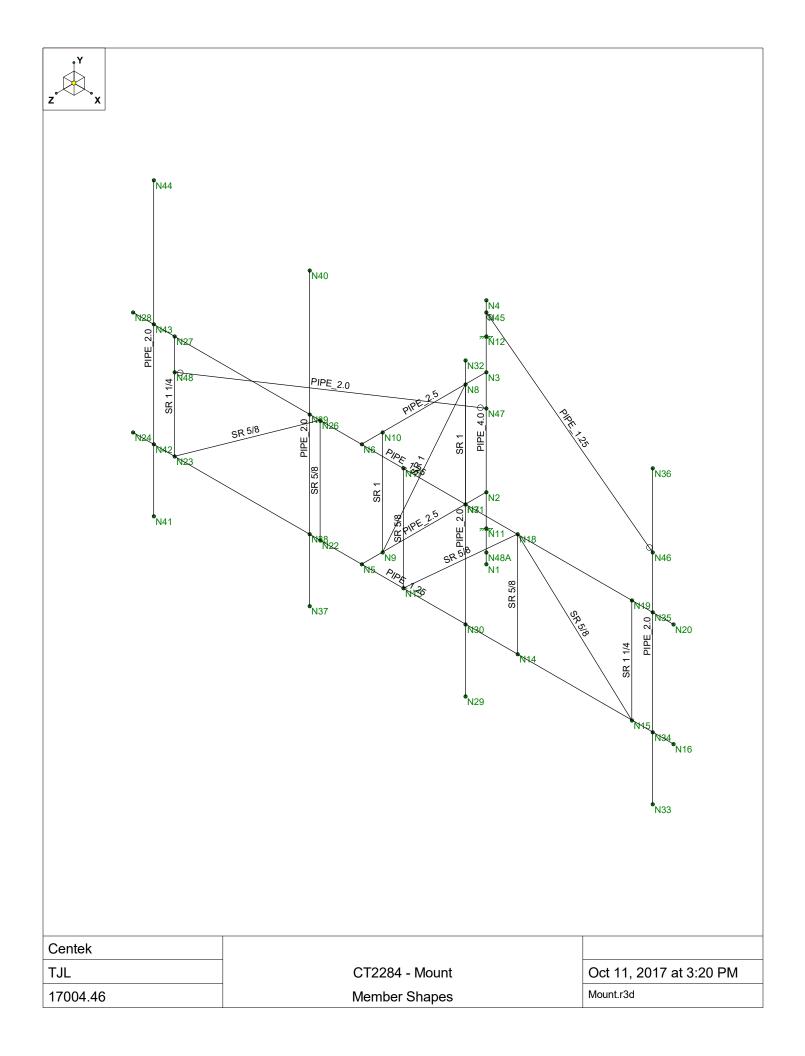
TIA RevG Load Calculations.xmcd.xmcd

	lineering	Subject:			TIA-222-G Loads	
	11ekeng.com 103) 488-0580 103) 488-8587	Location:			Colchester, CT	
ipanioro, c. rosios	uu 460-6367	Rev. 3: 5/1/19			Prepared by: T.J.L. Checke Job No. 17004.46	ed by: C.F.C.
Development of Wi	nd & Ice Load on Ar	ntennas				
		ntenna Data:				
	Anter	nna Model =	CCI HPA-65R-BUU	-H6		
	Anten	na Shape =	Flat		(User Input)	
	Anten	na Height=	L _{ant} := 72	in	(User Input)	
	Ante	nna Width =	W _{ant} ≔ 14.8	in	(User Input)	
	Antenna	Thickness =	T _{ant} := 9.0	in	(User Input)	
	Anten	na Weight =	WT _{ant} := 51	lbs	(User Input)	
	Number of	Antennas =	N _{ant} := 1		(User Input)	
	AntennaAsp	ectRa t o =	$Ar_{ant} \coloneqq \frac{L_{ant}}{W_{ant}} = 4$	4.9		
	Antenna Force Co	pefficient =	Ca _{ant} = 1.31			
	Wind Load (without ice)				
S	urfaceArea for One A	Antenna =	SA _{antF} := $\frac{L_{ant}W}{144}$	$\frac{1}{4}$ ant $= 7$	7.4	sf
	Total Anten na Wir	nd Force=	F _{ant} := qz _{AT&T} .G	H ^{.Ca} ar	nt ^{-K} a ⁻ SA _{antF} = 267	lbs
s	urfaceArea for One A	Antenna =	$SA_{antS} := \frac{L_{ant} T_{ant}}{144}$	$\frac{ant}{d} = 4.$	5	sf
	TotalAntennaWir	nd Force=	F _{ant} ≔ qz _{AT&T} .G	H ^{.Ca} ar	$h^{K_a}SA_{antS} = 162$	lbs
	Wind Lo	ad (with ice)				
SurfaceA	rea for One Antenna	w/lce=	$SA_{ICEantF} := \frac{L_a}{L_a}$	ant ⁺ 2·t	$\frac{iz}{144} \cdot \left(W_{ant} + 2 \cdot t_{iz} \right) = 9.7$	sf
Tota	Antenna Wind Forc	ew/lce=	Fi _{ant} := qz _{ice.AT8}	at GH.(Ca _{ant} ·Ka ^{·SA} ICEantF = 85	lbs
SurfaceA	rea for One Antenna	w/ Ice =	$SA_{ICEantS} \coloneqq \frac{L_a}{L_a}$	ant ⁺ 2·t	$\frac{\text{Tiz}(T_{\text{ant}} + 2 \cdot t_{\text{iz}})}{144} = 6.6$	sf
Tota	Antenna Wind Forc	ew/lce=	Fiant := qzice.AT8	T.GH.	Ca _{ant} ·K _a ·SA _{ICEantS} = 58	lbs
	Gravity Load (w	vithout ice)				
	Weight of All A		WT _{ant} ·N _{ant} = 51			lbs
	Gravity Load		ant ant st			
	Volume of Each		V _{ant} ≔ L _{ant} .W _{ant}	T _{ant} =	9590	cuin
Volu	meoflœonEachA	ntenna =			$t_{nt} + 2 \cdot t_{iz} \cdot (T_{ant} + 2 \cdot t_{iz}) - V_{ant} = 7917$	cuin
We	eight of Ice on EachA	ntenna =	W _{ICEant} ≔ V _{ice}	· Id = 2	57	lbs
V	Veight of Ice on All Ar	tennas =	W _{ICEant} N _{ant} = 2	257		lbs
			unt unt			
TIA RevG Load Calculations.xmc	d xmcd		Page 3			

TIA RevG Load Calculations.xmcd.xmcd

C=NT=K engineering Subject:	TIA-222-G Loads	
Centered on Solutions ⁻ www.centekena.com 63-2 North Branford Road P: (203) 488-0580 Location:	Colchester, CT	
Branford, CT 06405 F: (203) 488-8587 Rev. 3: 5/1/19	Prepared by: T.J.L. Checl Job No. 17004.46	ked by: C.F.C.
Development of Wind & Ice Load on Antennas		
<u>Antenna Data:</u>		
Antenna Model =	CCI HPA-65R-BUU-H8	
Antenna Shape =	Flat (User Input)	
Anterna Height =	L _{ant} := 92.4 in <mark>(User Input)</mark>	
Antenna Width =	W _{ant} := 14.8 in (User Input)	
Antenna Thickness =	T _{ant} := 7.4 in (User Input)	
Antenna Weight =	WT _{ant} := 68 lbs (User Input)	
Number of Antennas =	N _{ant} := 1 (User Input)	
Antenna Aspec tRatio =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 6.2$	
Antenna Force Coefficient =	Ca _{ant} = 1.37	
Wind Load (without ice)		
SurfaceArea for One Antenna =	$SA_{antF} := \frac{L_{ant} W_{ant}}{144} = 9.5$	sf
TotalAnten na Wind Force=	F _{ant} ≔ qz _{AT&T} ·G _H ·Ca _{ant} ·K _a ·SA _{antF} = 359	lbs
SurfaceArea for One Antenna =	$SA_{antS} := \frac{L_{ant} T_{ant}}{144} = 4.7$	sf
Total Antenna Wind Force=	$F_{ant} := qz_{AT&T} \cdot G_{H} \cdot Ca_{ant} \cdot K_a \cdot SA_{antS} = 179$	lbs
Wind Load (with ice)		
SurfaceAr ea for One Antenna w/ Ice =	$SA_{ICEantF} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 12.3$	sf
TotalAntenna Wind Forcew/Ice =	Fi _{ant} := qz _{ice AT&T} ·G _H ·Ca _{ant} ·K _a ·SA _{ICEantE} = 113	lbs
SurfaceAr ea for One Antenna w/ Ice =	$SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 7.3$	sf
TotalAntenna Wind Forcew/Ice =	Fi _{ant} := qz _{ice.AT&T} ·G _H ·Ca _{ant} ·K _a ·SA _{ICEantS} = 68	lbs
	Tant - 42 ce. AT&T OH Ogant Ta Of ICEantS - 00	
Gravity Load (without ice)		
Weight of All Antenna s=	$WT_{ant} N_{ant} = 68$	lbs
Gravity Loads (ice only)	4	
Volume of Each Antenna =	$V_{ant} \coloneqq L_{ant} W_{ant} T_{ant} = 1 \times 10^4$	cuin
Volume of Ice on EachAntenna =	$V_{ice} \coloneqq (L_{ant} + 2 \cdot t_{iz})(W_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz}) - V_{ant} = 928$	7 cu in
Weight of Ice on Each Antenna =	$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 301$	lbs
Weight of Ice on All Antennas =	W _{ICEant} ·N _{ant} = 301	lbs
TIA RevG Load Calculations.xmcd.xmcd	Page 4	

	Subject:		TIA-222-G Loads	
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:		Colchester, CT	
sprantord, c.) voeus	Rev. 3: 5/1/19		Prepared by: T.J.L. Checke Job No. 17004.46	d by: C.F.C.
Development of Wind & Ice Loa	ad on TMA's			
	TMA Data:			
	TMAModel =	Powerwave LGP21401TMA	A	
	TMAShape =	Flat	(User Input)	
	TMAH eight =	L _{TMA} ≔ 14.4 in	(User Input)	
	TMAWidth =		(User Input)	
т	MAThickness =	T _{TMA} := 2.6 in	(User Input)	
	TMAW eight =	WT _{TMA} ≔ 14 lbs	(User Input)	
Nur	nber of TMA's =	N _{TMA} := 2	(User Input)	
TMA	Aspect Ratio =	$Ar_{TMA} \coloneqq \frac{L_{TMA}}{W_{TMA}} = 1.6$		
TMAForc	e Coefficient =	Ca _{TMA} = 1.2		
Wind Loa	ad (without ice)			
Surface Area for	or One TMA=	$SA_{TMAF} := \frac{L_{TMA} \cdot W_{TN}}{144}$	<u>1A</u> = 0.9	sf
Total TMA	Wind Force =	F _{TMA} := qz _{AT&T} ·G _H ·Ca	a _{TMA} ·K _a ·SA _{TMAF} = 31	lbs
Surface Area fo	or One TMA=	$SA_{TMAS} := \frac{L_{TMA} \cdot T_{TMA}}{144}$	A = 0.3	sf
Total TMA	Wind Force =	F _{TMA} ≔ qz _{AT&T} ·G _H ·Ca	a _{TMA} ·K _a ·SA _{TMAS} = 9	lbs
Wind	Lood (with ice)			
Wind	Load (with ice)	(1	$+ 2 \cdot t_{i-} \cdot (W_{TMA} + 2 \cdot t_{i-})$	
Surface Area for One T	MA w/ Ice =	SA _{ICETMAF} := (-TMA	$\frac{+2 \cdot t_{iz} \cdot \left(W_{TMA} + 2 \cdot t_{iz} \right)}{144} = 1.6$	sf
Total TMAWind F	Force w/ Ice =	Fi _{TMA} := qz _{ice.AT&T} .G	H ^{·Ca} TMA·Ka·SA _{ICETMAF} = 13	lbs
Surface Ar ea for One T	"MA w/ Ice =	SA _{ICETMAS} := (L _{TMA} -	$\frac{+2 \cdot t_{iz} \cdot \left(T_{TMA} + 2 \cdot t_{iz} \right)}{144} = 0.8$	sf
Total TMAWind F	Force w/ Ice =	Fi _{TMA} := qz _{ice.AT&T} .G	H ^{.Ca} TMA ^{.K} a ^{.SA} ICETMAS = 6	lbs
Gravity Load	l (without ice)			
Weigt	nt of All TMAs =	WT _{TMA} ·N _{TMA} = 28		lbs
Gravity Lo	oads (ice only)			
Volume	of Each TMA=	V _{TMA} ≔ L _{TMA} ·W _{TMA} · [™]	T _{TMA} = 344	cuin
Volume of Ice on	FachTMA=			- 1081 cuin
Volume of the off			$V_{TMA} + 2 \cdot t_{iz} \cdot (T_{TMA} + 2 \cdot t_{iz}) - V_{TMA} =$	
Weight of Ice on	EachTMA =	$W_{ICETMA} := \frac{V_{ice}}{1728} \cdot Id =$	35	lbs
Weight of Ice of	on All TMAs=	W _{ICETMA} ·N _{TMA} = 70		lbs
TIA PovG Lood Colculations ymed ymed		Paga 5		


TIA RevG Load Calculations.xmcd.xmcd

Page 5

CENTEK engineering Subject:	TIA-222-G Loads	
Centered on Solutions [®] www.centekena.com 63-2 North Branford Road P: (203) 488-0580 Location:	Colchester, CT	
Branford, CT 06405 F: (203) 488-8587 Rev. 3: 5/1/19	Prepared by: T.J.L. Checked Job No. 17004.46	d by: C.F.C.
Development of Wind & Ice Load on Diplexer's		
Diplexer Data:	Deveryone I CD 12510 Dislaves	
Diplexer Model = Diplexer Shape =	Powerwave LGP-13519 Diplexer Flat (User Input)	
Diplexer Grape -		
Diplexer Width =	Брі	
Diplexer Thickness =	W _{Dpl} := 4.4 in (User Input) T _{Dpl} := 3 in (User Input)	
Diplexer Weight =	$WT_{Dpl} := 5 \qquad lbs (User Input)$	
Number of Diplexer's =	$N_{\text{Dpl}} \coloneqq 2$ (User Input)	
Diplexer Aspec tRa to =	$Ar_{Dpl} := \frac{L_{Dpl}}{W_{Dpl}} = 1.4$	
Diplexer Force Coefficient =	- P.	
Wind Load (without ice)	Ca _{Dpl} = 1.2	
SurfaceArea for One Diplexer =	$SA_{DPIF} := \frac{L_{DPI} \cdot W_{DPI}}{144} = 0.2$	sf
Total Diplexer Wind Force =	F _{Dpl} := qz _{AT&T} ·G _H ·Ca _{Dpl} ·K _a ·SA _{DplF} = 6	lbs
SurfaceArea for One Diplexer =		sf
Total Diplexer Wind Force =	F _{Dpl} := qz _{AT&T} ·G _H ·Ca _{Dpl} ·K _a ·SA _{DplS} = 4	lbs
Wind Load (with ice)		
SurfaceAr ca for One Diple xer w/ lc e=	$SA_{ICEDpIF} \coloneqq \frac{\left(L_{DpI} + 2 \cdot t_{iz}\right) \cdot \left(W_{DpI} + 2 \cdot t_{iz}\right)}{144} = 0.5$	sf
Total Diplexer Wind Force w/ Ice =	Fi _{Dpl} := qz _{ice.AT&T} ·G _H ·Ca _{Dpl} ·K _a ·SA _{ICEDplF} = 4	lbs
SurfaceArea for One Diplexer w/ Ic e=	$(L_{DDI} + 2 \cdot t_{iz}) \cdot (T_{DDI} + 2 \cdot t_{iz})$	sf
Total Diplexer Wind Force w/ Ice =	Fi _{Dpl} := qz _{ice.AT&T} ·G _H ·Ca _{Dpl} ·K _a ·SA _{ICEDplS} = 4	lbs
Gravity Load (without ice)		
Weight of All Diplexers =	WT _{Dpl} ·N _{Dpl} = 10	lbs
Gravity Loads (ice only)		
Volume of Each Diplexer =	$V_{Dpl} := L_{Dpl} \cdot W_{Dpl} \cdot T_{Dpl} = 83$	cuin
Volume of I ce on EachDiplexer =	$V_{ice} \coloneqq \left(L_{Dpl} + 2 \cdot t_{iz}\right) \left(W_{Dpl} + 2 \cdot t_{iz}\right) \cdot \left(T_{Dpl} + 2 \cdot t_{iz}\right) - V_{Dpl} = 438$	cuin
Weight of Ice on Each Diplexer =	$W_{ICEDpl} := \frac{V_{ice}}{1728} \cdot Id = 14$	lbs
Weight of Ice on All Diplexers =	W _{ICEDpl} N _{Dpl} = 28	lbs
TIA RevG Load Calculations.xmcd.xmcd	Page 6	

	Subject:		TIA-222-G Loads	
Centered on Solutions" 63-2 North Branford Road Branford, CT 06405 F: (203) 488-05 Branford, CT 06405 F: (203) 488-05	BO LOCATION.		Colchester, CT	
prantora, c.) 66963	Rev. 3: 5/1/19		Prepared by: T.J.L. Chec Job No. 17004.46	ked by: C.F.C.
Development of Wind & Ic	e Load on RRUS's			
	RRUS Data:			
	RRUS Model =	RRUS-11		
	RRUS Shape =	Flat	(User Input)	
	RRUS Height =	L _{RRUS} := 17.8 in ((User Input)	
	RRUS Width =	W _{RRUS} ≔ 17.3 in ((User Input)	
	RRUS Thickness =	T _{RRUS} := 7.2 in	(User Input)	
	RRUS Weight=	WT _{RRUS} := 50 lbs	(User Input)	
	Number of RRUS's =	RRU3	(User Input)	
	RRUSAspect Ratio =	Ar _{RRUS} := $\frac{L_{RRUS}}{W_{RRUS}}$ = 1		
RRI	JS Force Coefficient =	Ca _{RRUS} = 1.2		
W	ind Load (without ice)			
Surface/	Area for One R RUS =	$SA_{RRUSF} := \frac{L_{RRUS} W_{F}}{144}$	RRUS = 2.1	sf
Tota	IRRUS Wind Force =	F _{RRUS} := qz _{AT&T} .G _H .C	aRRUS ^{·K} a ^{·SA} RRUSF = 71	lbs
Surface <i>i</i>	Area for One R RUS =	SA _{RRUSS} := $\frac{L_{RRUS} \cdot T_{R}}{144}$	RRUS = 0.9	sf
Tota	IRRUS Wind Force =	F _{RRUS} := qz _{AT&T} .G _H .C	arrus ^{.K} a ^{.SA} rruss = 30	lbs
	Wind Load (with ice)			
Surface Area for	One RRUS w/ Ice =	SA _{ICERRUSF} := (L _{RRUS}	$\frac{S + 2 \cdot t_{iz} \cdot \left(W_{RRUS} + 2 \cdot t_{iz} \right)}{144} = 3.1$	sf
Total RRUS	Wind Force w/ Ice =	Fi _{RRUS} := qz _{ice.AT&T} .G	H ^{.Ca} RRUS ^{.K} a ^{.SA} ICERRUSF ^{= 25}	lbs
Surface Area for	One RRUS w/ Ice =	SA _{ICERRUSS} := (L _{RRUS}	$\frac{s + 2 \cdot t_{iz} \cdot \left(T_{RRUS} + 2 \cdot t_{iz} \right)}{144} = 1.6$	sf
Total RRUS	Wind Force w/ Ice =	Firrus := qzice.AT&T	H ^{.Ca} RRUS ^{.K} a ^{.SA} ICERRUSS ^{= 13}	lbs
Gravi	ty Load (without ice)			
	Weight of All RRUSs =	WT _{RRUS} ·N _{RRUS} = 50		lbs
Gra	avity Loads (ice only)			
Vol	ume of Each RRUS =	V _{RRUS} := L _{RRUS} ·W _{RRI}	US ^{·T} RRUS ^{= 2217}	cuin
Volume of I	ceon EachRRUS =	$V_{ice} := (L_{RRUS} + 2 \cdot t_{iz})(V_{ice})$	$N_{RRUS} + 2 \cdot t_{iz} \cdot (T_{RRUS} + 2 \cdot t_{iz}) -$	V _{RRUS} = 280節
Weight of	lce on Each RRUS =	$W_{\text{ICERRUS}} \coloneqq \frac{V_{\text{ice}}}{1728} \cdot \text{Id} =$	= 84	lbs
Weight	of Ice on All RRUSs =	WICERRUS ^{-N} RRUS = 84	4	lbs

CENTEK engineering Subject:	TIA-222-G Loads
Centered on Solutions www.centekens.com Location 63-2 North Branford Road P: (203) 488-0580 Location Branford, CT 06405 F: (203) 488-8587 Location	: Colchester, CT
Rev. 3: 5	5/1/19 Prepared by: T.J.L. Checked by: C.F.C. Job No. 17004.46
Development of Wind & Ice Load on RRUS's	
RRUS Data	<u>r.</u>
RRUS Model =	RRUS-32
RRUS Shape =	Flat (User Input)
RRUS Height=	L _{RRUS} := 26.7 in (User Input)
RRUS Width =	W _{RRUS} := 12.1 in (User Input)
RRUS Thickness =	T _{RRUS} ≔ 6.7 in (User Input)
RRUS Weight=	WT _{RRUS} := 60 lbs (User Input)
Number of RRUS's =	N _{RRUS} := 1 (User Input)
RRUSAspect Ratio =	$Ar_{RRUS} \coloneqq \frac{L_{RRUS}}{W_{RRUS}} = 2.2$
RRUS Force Coefficient =	Ca _{RRUS} = 1.2
Wind Load (without ice)	
Surface Area for One R RUS =	$SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 2.2$ sf
Total RRUS Wind Force =	[−] F _{RRUS} := qz _{AT&T} ·G _H ·Ca _{RRUS} ·K _a ·SA _{RRUSF} = 74
Surface Area for One R RUS =	$SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.2$ sf
Total RRUS Wind Force =	F _{RRUS} := qz _{AT&T} ·G _H ·Ca _{RRUS} ·K _a ·SA _{RRUSS} = 41 lbs
Wind Load (with ice)	
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSF} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 3.3 \qquad \text{sf}$
Total RRUS Wind Force w/ Ice =	Fi _{RRUS} := qz _{ice.AT&T} ·G _H ·Ca _{RRUS} ·K _a ·SA _{ICERRUSF} = 27 lbs
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSS} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2.2 \qquad \text{sf}$
Total RRUS Wind Force w/ Ice =	Firrus := qz _{ice.AT&T} ·GH·Ca _{RRUS} ·Ka·SA _{ICERRUSS} = 18 lbs
Gravity Load (without ice)	
Weight of All RRUSs=	WT _{RRUS} ·N _{RRUS} = 60 lbs
Gravity Loads (ice only)	
Volume of Each RRUS =	V _{RRUS} := L _{RRUS} ·W _{RRUS} ·T _{RRUS} = 2165 cu in
Volume of Ice on EachRRUS =	$V_{ice} := (L_{RRUS} + 2 \cdot t_{iz}) (W_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz}) - V_{RRUS} = 2723$
Weight of Ice on Each RRUS =	$W_{\text{ICERRUS}} := \frac{V_{\text{ice}}}{1728} \cdot \text{Id} = 88$ lbs
Weight of Ice on All RRUSs =	W _{ICERRUS} ·N _{RRUS} = 88 lbs

Oct 11, 2017 3:19 PM Checked By:__

(Global) Model Settings

5
97
Yes
Yes
Yes
Yes
144
.12
0.50%
Yes
Yes
3
32.2
12
4
Y
XZ
Sparse Accelerated
Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Oct 11, 2017 3:19 PM Checked By:__

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	150.001
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	2
Footing Bottom Bar	
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design R	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Pipe 4" Std	PIPE_4.0	Beam	Pipe	A53 Grade B	Typical	2.96	6.82	6.82	13.6
2	Pipe 1.25" Std	PIPE 1.25	Beam	Pipe	A53 Grade B	Typical	.625	.184	.184	.368
3	Pipe 2.0" Std.	PIPE_2.0	Beam	Pipe	A53 Grade B	Typical	1.02	.627	.627	1.25
4	Pipe 2.5" Std	PIPE 2.5	Beam	Pipe	A53 Grade B	Typical	1.61	1.45	1.45	2.89
5	SR1-1/4	SR 1 1/4	Beam	Pipe	A36 Gr.36	Typical	1.227	.12	.12	.24
6	SR1	SR 1	Beam	Pipe	A36 Gr.36	Typical	.785	.049	.049	.098
7	SR5/8	SR 5/8	Beam	Pipe	A36 Gr.36	Typical	.307	.007	.007	.015

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu	. Kyy	Kzz	Cb	Function
1	M1	Pipe 4" Std	5.5			Lbyy						Lateral
2	M2	Pipe 2.5" Std	3			Lbyy						Lateral
3	M3	Pipe 2.5" Std	3			Lbyy						Lateral
4	M4	Pipe 1.25"	13	2.75	2.75	2.75	2.75	2.75				Lateral
5	M5	Pipe 1.25"	13	2.75	2.75	2.75	2.75	2.75				Lateral
6	M6	SR1	2.5			Lbyy						Lateral
7	M7	SR1	3.202			Lbyy						Lateral
8	M8	SR1	2.5			Lbyy						Lateral
9	M9	SR1-1/4	2.5			Lbyy						Lateral
10	M10	SR1-1/4	2.5			Lbyy						Lateral
11	M11	SR5/8	4.301			Lbyy						Lateral
12	M14	SR5/8	2.5			Lbyy						Lateral
13	M15	SR5/8	3.717			Lbyy						Lateral
14	M16	SR5/8	3.717			Lbyy						Lateral
15	M17	SR5/8	2.5			Lbyy						Lateral
16	M18	SR5/8	2.5			Lbyy						Lateral
17	M19	Pipe 2.0" Std.	7			Lbyy						Lateral
18	M20	Pipe 2.0" Std.	7			Lbyy						Lateral
19	M21	Pipe 2.0" Std.	7			Lbyy						Lateral
20	M22	Pipe 2.0" Std.	7			Lbyy						Lateral
21	M23	Pipe 1.25"	7.616			Lbyy						Lateral
22	M23A	Pipe 2.0" Std.	5.408			Lbyy						Lateral

Member Primary Data

	Label	l Joint	J Joint	K Joint	Rotate(d	Section/Shape	Туре	Design List	Material	Design Rul
1	M1	N1	N4			Pipe 4" Std	Beam	Pipe	A53 Gra	Typical
2	M2	N6	N3			Pipe 2.5" Std	Beam	Pipe	A53 Gra	Typical
3	M3	N5	N2			Pipe 2.5" Std	Beam	Pipe	A53 Gra	Typical
4	M4	N28	N20			Pipe 1.25" Std	Beam	Pipe	A53 Gra	Typical
5	M5	N24	N16			Pipe 1.25" Std	Beam	Pipe	A53 Gra	Typical
6	M6	N8	N7			SR1	Beam	Pipe	A36 Gr.36	Typical
7	M7	N8	N9			SR1	Beam	Pipe	A36 Gr.36	Typical
8	M8	N9	N10			SR1	Beam	Pipe	A36 Gr.36	Typical
9	M9	N23	N27			SR1-1/4	Beam	Pipe	A36 Gr.36	Typical
10	M10	N15	N19			SR1-1/4	Beam	Pipe	A36 Gr.36	Typical
11	M11	N23	N26			SR5/8	Beam	Pipe	A36 Gr.36	Typical
12	M14	N22	N26			SR5/8	Beam	Pipe	A36 Gr.36	Typical
13	M15	N15	N18			SR5/8	Beam	Pipe	A36 Gr.36	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(d	Section/Shape	Туре	Design List	Material	Design Rul
14	M16	N18	N13			SR5/8	Beam	Pipe	A36 Gr.36	Typical
15	M17	N13	N17			SR5/8	Beam	Pipe	A36 Gr.36	Typical
16	M18	N14	N18			SR5/8	Beam	Pipe	A36 Gr.36	Typical
17	M19	N29	N32			Pipe 2.0" Std.	Beam	Pipe	A53 Gra	Typical
18	M20	N33	N36			Pipe 2.0" Std.	Beam	Pipe	A53 Gra	Typical
19	M21	N37	N40			Pipe 2.0" Std.	Beam	Pipe	A53 Gra	Typical
20	M22	N41	N44			Pipe 2.0" Std.	Beam	Pipe	A53 Gra	Typical
21	M23	N46	N45			Pipe 1.25" Std	Beam	Pipe	A53 Gra	Typical
22	M23A	N47	N48			Pipe 2.0" Std.	Beam	Pipe	A53 Gra	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	0	0	0	0	
2	N2	0	1.5	0	0	
3	N3	0	4	0	0	
4	N4	0	5.5	0	0	
5	N5	0	1.5	3	0	
6	N6	0	4	3	0	
7	N7	0	1.5	.5	0	
8	N8	0	4	.5	0	
9	N9	0	1.5	2.5	0	
10	N10	0	4	2.5	0	
11	N11	0	.75	0	0	
12	N12	0	4.75	0	0	
13	N13	1	1.5	3	0	
14	N14	3.75	1.5	3	0	
15	N15	6.5	1.5	3	0	
16	N16	7.5	1.5	3	0	
17	N17	1	4	3	0	
18	N18	3.75	4	3	0	
19	N19	6.5	4	3	0	
20	N20	7.5	4	3	0	
21	N22	-1	1.5	3	0	
22	N23	-4.5	1.5	3	0	
23	N24	-5.5	1.5	3	0	
24	N26	-1	4	3	0	
25	N27	-4.5	4	3	0	
26	N28	-5.5	4	3	0	
27	N29	2.5	0	3	0	
28	N30	2.5	1.5	3	0	
29	N31	2.5	4	3	0	
30	N32	2.5	7	3	0	
31	N33	7	0	3	0	
32	N34	7	1.5	3	0	
33	N35	7	4	3	0	
34	N36	7	7	3	0	
35	N37	-1.25	0	3	0	
36	N38	-1.25	1.5	3	0	
37	N39	-1.25	4	3	0	
38	N40	-1.25	7	3	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
39	N41	-5	0	3	0	
40	N42	-5	1.5	3	0	
41	N43	-5	4	3	0	
42	N44	-5	7	3	0	
43	N45	0	5.25	0	0	
44	N46	7	5.25	3	0	
45	N48A	0	.25	0	0	
46	N47	0	3.25	0	0	
47	N48	-4.5	3.25	3	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N12	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N11	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Point Loads (BLC 2 : Dead Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M19	Y	018	2
2	M20	Y	018	2
3	M19	Y	018	5.5
4	M20	Y	018	5.5
5	M22	Y	034	.5
6	M22	Y	034	6.5
7	M10	Y	028	%50
8	M19	Y	01	5
9	M22	Y	05	2.5
10	M22	Y	06	4.5

Member Point Loads (BLC 3 : Ice Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M19	Y	063	2
2	M20	Y	063	2
3	M19	Y	063	5.5
4	M20	Y	063	5.5
5	M22	Y	151	.5
6	M22	Y	151	6.5
7	M10	Y	07	%50
8	M19	Y	028	5
9	M22	Y	084	2.5
10	M22	Y	088	4.5

Member Point Loads (BLC 4 : Wind with Ice X)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M19	Х	.016	2
2	M20	Х	.016	2
3	M19	Х	.016	5.5
4	M20	Х	.016	5.5
5	M22	X	.034	.5

Member Point Loads (BLC 4 : Wind with Ice X) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
6	M22	Х	.034	6.5
7	M10	Х	.006	%50
8	M19	Х	.004	5
9	M22	Х	.013	2.5
10	M22	Х	.018	4.5

Member Point Loads (BLC 5 : Wind X)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M19	Х	.035	2
2	M20	Х	.035	2
3	M19	Х	.035	5.5
4	M20	Х	.035	5.5
5	M22	Х	.09	.5
6	M22	Х	.09	6.5
7	M10	Х	.009	%50
8	M19	Х	.004	5
9	M22	Х	.03	2.5
10	M22	Х	.041	4.5

Member Point Loads (BLC 6 : Wind with Ice Z)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M19	Z	.027	2
2	M20	Z	.027	2
3	M19	Z	.027	5.5
4	M20	Z	.027	5.5
5	M22	Z	.057	.5
6	M22	Z	.057	6.5
7	M10	Z	.013	%50

Member Point Loads (BLC 7 : Wind Z)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M19	Z	.076	2
2	M20	Z	.076	2
3	M19	Z	.076	5.5
4	M20	Z	.076	5.5
5	M22	Z	.18	.5
6	M22	Z	.18	6.5
7	M10	Z	.031	%50

Member Distributed Loads (BLC 4 : Wind with Ice X)

	Member Label	Direction	_Start Magnitude[k/ft,	. End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M22	Х	.002	.002	0	0
2	M21	Х	.002	.002	0	0
3	M19	Х	.002	.002	0	0
4	M20	Х	.002	.002	0	0
5	M2	Х	.002	.002	0	0
6	M3	Х	.002	.002	0	0
7	M8	Х	.002	.002	0	0
8	M7	Х	.002	.002	0	0

Member Distributed Loads (BLC 4 : Wind with Ice X) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
9	M6	Х	.002	.002	0	0
10	M1	Х	.002	.002	0	0
11	M23	Х	.002	.002	0	0

Member Distributed Loads (BLC 5 : Wind X)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M22	Х	.005	.005	0	0
2	M21	Х	.005	.005	0	0
3	M19	Х	.005	.005	0	0
4	M20	Х	.005	.005	0	0
5	M2	Х	.005	.005	0	0
6	M3	Х	.005	.005	0	0
7	M8	Х	.005	.005	0	0
8	M7	Х	.005	.005	0	0
9	M6	Х	.005	.005	0	0
10	M1	Х	.005	.005	0	0
11	M23	Х	.005	.005	0	0

Member Distributed Loads (BLC 6 : Wind with Ice Z)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M23	Z	.002	.002	0	0
2	M4	Z	.002	.002	0	0
3	M5	Z	.002	.002	0	0
4	M9	Z	.002	.002	0	0
5	M11	Z	.002	.002	0	0
6	M14	Z	.002	.002	0	0
7	M17	Z	.002	.002	0	0
8	M16	Z	.002	.002	0	0
9	M18	Z	.002	.002	0	0
10	M15	Z	.002	.002	0	0
11	M10	Z	.002	.002	0	0
12	M1	Z	.002	.002	0	0

Member Distributed Loads (BLC 7 : Wind Z)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M23	Z	.005	.005	0	0
2	M4	Z	.005	.005	0	0
3	M5	Z	.005	.005	0	0
4	M9	Z	.005	.005	0	0
5	M11	Z	.005	.005	0	0
6	M14	Z	.005	.005	0	0
7	M17	Z	.005	.005	0	0
8	M16	Z	.005	.005	0	0
9	M18	Z	.005	.005	0	0
10	M15	Z	.005	.005	0	0
11	M10	Z	.005	.005	0	0
12	M1	Z	.005	.005	0	0

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	.Surface(
1	Self Weight	DL		-1						
2	Dead Load	None					10			
3	Ice Load	None					10			
4	Wind with Ice X	None					10	11		
5	Wind X	None					10	11		
6	Wind with Ice Z	None					7	12		
7	Wind Z	None					7	12		

Load Combinations

	Description	So	P	S	BLC	Fac	.BLC	Fac	.BLC	Fac	BLC	Fac												
1	1.2D + 1.6W (X-dire	Yes	Υ		1	1.2	2	1.2	5	1.6														
2	0.9D + 1.6W (X-dire	Yes	Υ		1	.9	2	.9	5	1.6														
3	1.2D + 1.0Di + 1.0	Yes	Υ		1	1.2	2	1.2	3	1	4	1												
4	1.2D + 1.6W (Z-dire	Yes	Υ		1	1.2	2	1.2	7	1.6														
5	0.9D + 1.6W (Z-dire	Yes	Υ		1	.9	2	.9	7	1.6														
6	1.2D + 1.0Di + 1.0	Yes	Υ		1	1.2	2	1.2	3	1	6	1												

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N12	max	.299	4	.951	6	44	2	.523	6	.881	4	1.175	4
2		min	751	2	.328	2	-1.64	4	.159	2	-1.672	2	329	2
3	N11	max	281	5	.651	3	1.346	3	.549	3	385	6	.267	1
4		min	35	1	.113	5	119	5	2	5	-1.213	1	178	5
5	Totals:	max	0	4	1.576	3	0	1						
6		min	-1.089	1	.564	5	-1.619	5						

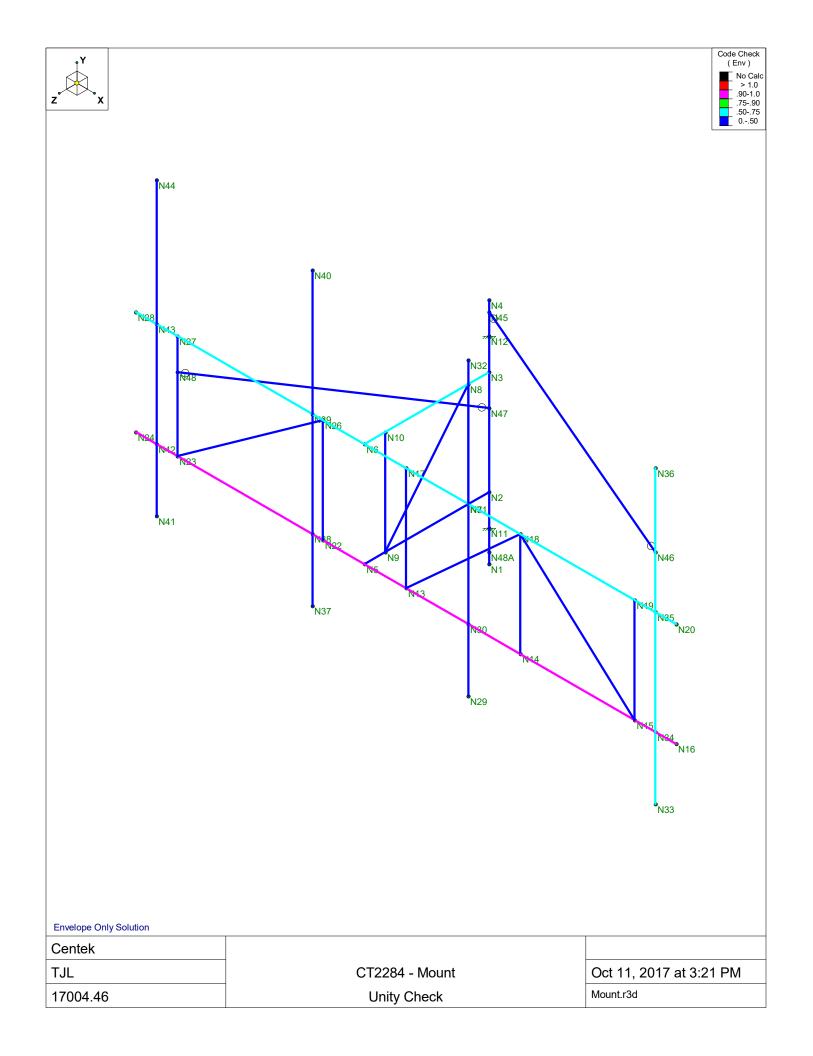
Envelope Joint Displacements

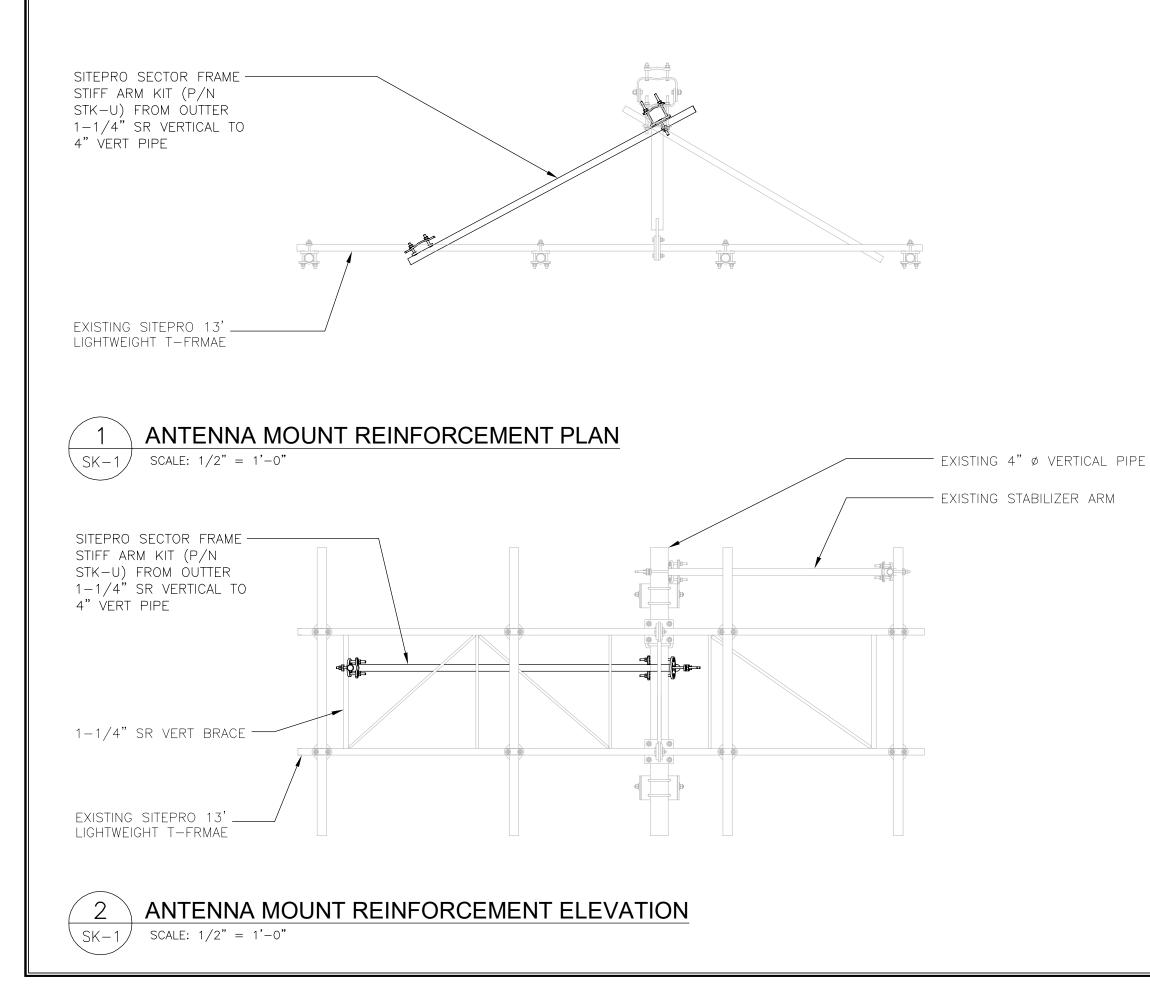
	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [. LC	Y Rotation [. LC	Z Rotation [. LC
1	N1	max	0	2	0	5	0	5	0	2	0	1	5.119e-07	2
2		min	0	6	0	3	0	2	-5.119e-07	5	0	6	0	6
3	N2	max	0	1	0	5	0	5	1.101e-04	5	8.633e-04	1	1.932e-04	5
4		min	0	5	0	3	001	3	-3.025e-05	3	2.744e-04	6	-9.69e-05	2
5	N3	max	0	2	0	2	.002	4	2.392e-05	3	1.19e-03	2	6.548e-05	1
6		min	002	4	0	6	0	2	-1.381e-04	5	-6.271e-04	4	-1.781e-04	4
7	N4	max	.001	5	0	5	0	4	2.067e-05	4	0	2	4.059e-06	3
8		min	0	3	0	1	0	2	-4.391e-06	2	0	4	-1.138e-04	5
9	N5	max	.2	1	005	5	0	5	1.487e-03	3	7.96e-03	1	4.081e-03	5
10		min	.073	5	021	З	003	3	1.76e-04	5	4.074e-05	5	-1.593e-03	2
11	N6	max	.311	2	006	5	.002	4	1.513e-03	3	1.176e-02	2	4.05e-03	5
12		min	237	4	022	S	0	2	2.56e-04	5	-9.797e-03	4	-1.48e-03	2
13	N7	max	.013	1	0	2	0	5	1.779e-04	6	2.979e-03	1	8.678e-04	5
14		min	.006	6	001	6	002	3	6.077e-05	2	1.526e-03	6	-3.644e-04	2
15	N8	max	.019	2	0	5	.002	4	3.189e-04	6	4.708e-03	2	5.94e-04	5
16		min	014	4	002	S	0	2	1.076e-04	2	-3.179e-03	4	-1.862e-04	2
17	N9	max	.153	1	003	5	0	5	1.193e-03	3	7.675e-03	1	3.589e-03	5
18		min	.067	5	012	3	003	3	2.074e-04	5	1.575e-03	5	-1.41e-03	2

Envelope Joint Displacements (Continued)

=

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [LC	Y Rotation [7 Rotation [LC
19	N10	max	.24	2	004	5	.002	4	1.206e-03	3	1.171e-02	2	3.505e-03	
20		min	179	4	013	3	0	2	2.574e-04		-9.333e-03	4	-1.27e-03	
21	N11	max	0	1	0	5	0	5	0	5	0	1	0	5
22		min	0	5	0	3	0	3	0	3	0	6	0	1
23	N12	max	0	2	0	2	0	4	0	2	0	2	0	2
24		min	0	4	0	6	0	2	0	6	0	4	0	4
25	N13	max	.2	1	.055	5	.132	5	1.855e-03	3	9.321e-03	1	6.663e-03	
26		min	.073	5	065	3	105	1	-4.69e-04	5	-2.018e-02	4	-6.067e-03	3
27	N14	max	.2	1	.379	5	1.16	4	2.647e-03	3	1.054e-02	2	1.062e-02	
28		min	.074	5	173	2	439	2	-8.873e-03	5	-3.781e-02	4	-3.836e-03	2
29	N15	max	.199	1	.71	5	2.375	4	3.048e-03	3	1.075e-02	2	1.242e-02	
30		min	.075	5	302	2	792	2	-2.372e-02	5	-3.149e-02	4	-4.168e-03	2
31	N16	max	.199	1	.836	5	2.731	4	3.095e-03	3	1.075e-02	2	1.067e-02	
32		min	.075	5	351	2	921	2	-2.574e-02	5	-2.907e-02	4	-3.967e-03	2
33	N17	max	.312	2	.056	5	.174	4	1.874e-03	3	1.075e-02	2	6.744e-03	
34		min	238	4	065	3	134	2	-4.384e-04	5	-1.838e-02	4	-5.93e-03	
35	N18	max	.313	2	.38	5	.934	4	2.653e-03	3	1.049e-02	2	1.082e-02	
36		min	24	4	173	2	478	2	-9.686e-03	4	-2.124e-02	4	-3.707e-03	2
37	N19	max	.313	2	.709	5	1.597	4	3.038e-03	3	1.072e-02	2	1.139e-02	
38		min	243	4	302	2	828	2	-2.649e-02	5	-2.289e-02	4	-4.031e-03	2
39	N20	max	.314	2	.866	5	1.889	4	3.077e-03	3	1.073e-02	2	1.547e-02	
40	1120	min	244	4	354	2	957	2	-2.88e-02	5	-2.496e-02	4	-4.466e-03	2
41	N22	max	.201	1	.014	2	.096	1	8.391e-04	1	8.208e-03	2	9.697e-03	
42		min	.073	5	095	6	019	5	-1.799e-03	4	-2.818e-03	4	-2.598e-03	2
43	N23	max	.203	1	.166	2	.418	2	2.268e-04	1	7.021e-03		1.075e-02	
44	1120	min	.075	5	554	4	079	6	-5.007e-03	4	-1.001e-03	6	-4.119e-03	2
45	N24	max	.203	1	.207	2	.502	2	1.107e-04	1	6.898e-03	2	1.139e-02	
46		min	.075	5	692	4	086	6	-4.341e-03	4	-4.836e-04	6	-3.017e-03	2
47	N26	max	.311	2	.014	2	.124	2	8.508e-04	1	8.991e-03	2	9.555e-03	
48		min	237	4	096	6	08	4	-1.093e-03	4	-4.415e-03	4	-2.739e-03	2
49	N27	max	.312	2	.166	2	.422	2	8.94e-03	4	7.023e-03	5	1.343e-02	
50		min	235	4	553	4	078	6	1.788e-06	3	1.153e-04		-3.475e-03	2
51	N28	max	.312	2	.222	2	.503	2	8.761e-03	4	7.728e-03		1.086e-02	
52		min	235	4	689	4	077	6	-8.765e-06	3	1.006e-04		-5.36e-03	
53	N29	max	.258	4	.216	5	.671	4	2.455e-03	3	1.03e-02	2	1.02e-02	5
54		min	.128	2	138	3	264	1	-2.478e-03	5	-3.158e-02	4	-3.796e-03	2
55	N30	max	.2	1	.216	5	.631	4	2.455e-03	3	1.03e-02	2	1.02e-02	5
56		min	.073	5	138	3	283	1	-2.478e-03	5	-3.158e-02	4	-3.841e-03	2
57	N31	max	.313	2	.216	5	.582	4	2.463e-03	3	1.032e-02	2	1.017e-02	5
58		min	239	4	138	3	322	2	-1.512e-03	5	-2.591e-02	4	-4.315e-03	
59	N32	max	.498	2	.216	5	.576	4	2.579e-03	6	1.032e-02	2	1.018e-02	
60		min	591	5	138	3	366	2	-1.223e-03	2	-2.591e-02	4	-5.331e-03	2
61	N33	max	.278	4	.778	5	3.017	4	3.094e-03	3	1.075e-02	2	1.067e-02	4
62		min	.126	2	327	2	834	2	-2.574e-02	5	-2.906e-02	4	-3.921e-03	2
63	N34	max	.199	1	.778	5	2.557	4	3.095e-03	3	1.075e-02	2	1.067e-02	4
64		min	.075	5	327	2	856	2	-2.574e-02	5	-2.906e-02	4	-3.966e-03	2
65	N35	max	.314	2	.779	5	1.739	4	3.077e-03	3	1.073e-02	2	1.547e-02	4
66		min	244	4	327	2	893	2	-2.88e-02	5	-2.496e-02	4	-4.464e-03	2
67	N36	max	.506	2	.779	5	.681	4	2.985e-03	3	1.073e-02	2	2.266e-02	4
68		min	-1.025	4	327	2	932	2	-2.952e-02	5	-2.496e-02	4	-5.541e-03	2
69	N37	max	.275	4	.023	2	.105	1	9.04e-04	2	8.22e-03	2	1.053e-02	4
70		min	.138	2	123	4	.012	5	-2.347e-03	4	-3.153e-03	4	-3.286e-03	2


RISA-3D Version 15.0.2 [J:\...\...\Mount Analysis\Prep\Rev (2) - Reinforced\Calcs\Mount.r3d] Page 9


Envelope Joint Displacements (Continued)

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [. LC	Y Rotation [LC	Z Rotation [. LC
71	N38	max	.201	1	.023	2	.121	1	9.04e-04	2	8.22e-03	2	1.053e-02	4
72		min	.073	5	123	4	028	5	-2.348e-03	4	-3.153e-03	4	-3.331e-03	2
73	N39	max	.311	2	.023	2	.15	2	9.115e-04	2	8.476e-03	2	1.026e-02	4
74		min	237	4	123	4	092	4	-1.352e-03	4	-3.592e-03	4	-3.585e-03	2
75	N40	max	.45	2	.023	2	.183	2	9.117e-04	2	8.476e-03	2	1.026e-02	4
76		min	606	4	123	4	141	4	-1.352e-03	4	-3.592e-03	4	-3.942e-03	2
77	N41	max	.293	4	.189	2	.458	2	1.107e-04	1	6.898e-03	2	1.139e-02	4
78		min	.155	2	624	4	06	6	-5.765e-03	4	-4.85e-04	6	-2.26e-03	2
79	N42	max	.203	1	.189	2	.46	2	1.107e-04	1	6.898e-03	2	1.139e-02	4
80		min	.075	5	624	4	083	6	-4.341e-03	4	-4.85e-04	6	-3.018e-03	2
81	N43	max	.312	2	.19	2	.462	2	8.761e-03	4	7.722e-03	5	1.086e-02	4
82		min	235	4	624	4	077	6	-8.765e-06	3	9.921e-05	6	-5.361e-03	2
83	N44	max	.635	2	.19	2	.555	5	1.771e-02	4	7.722e-03	5	1.089e-02	4
84		min	626	4	624	4	.031	6	-8.837e-06	3	9.921e-05	6	-1.027e-02	2
85	N45	max	0	5	0	5	0	4	2.065e-05	4	0	2	4.064e-06	3
86		min	0	3	0	1	0	2	-4.391e-06	2	0	4	-1.138e-04	5
87	N46	max	.39	2	.779	5	1.298	4	2.982e-03	3	1.073e-02	2	2.266e-02	4
88		min	549	4	327	2	91	2	-2.955e-02	5	-2.496e-02	4	-5.452e-03	2
89	N48A	max	0	2	0	5	0	5	0	2	0	1	4.93e-07	2
90		min	0	6	0	3	0	2	-4.93e-07	5	0	6	0	6
91	N47	max	.001	1	0	2	.003	4	9.618e-05	3	1.089e-03	2	2.429e-05	3
92		min	004	4	0	6	0	2	-5.203e-05	5	-3.343e-04	4	-7.283e-05	5
93	N48	max	.282	2	.166	2	.421	2	5.698e-03	4	6.731e-03	2	1.374e-02	4
94		min	094	4	553	4	126	4	-9.951e-05	2	-2.196e-04	6	-3.378e-03	2

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc	LC	SheaLoc	. L	phi*Pn	phi*Pn	phi*Mn		Eqn
1	M1	PIPE_4.0	.085	4.698	4	.206 4.698	1	84.641	93.24	10.631	10.631	2H1-1b
2	M2	PIPE_2.5	.510	3	2	.150 3	5	47.114	50.715	3.596	3.596	2 <mark>.H1-1</mark> b
3	M3	PIPE_2.5	.308	3	1	.141 .5	5	47.114	50.715	3.596	3.596	2H1-1b
4	M4	PIPE_1.25	.614	12	5	.333 12	5	16.292	19.688	.801	.801	1 H1-1b
5	M5	PIPE_1.25	.952	5.552	4	.297 12	5	16.292	19.688	.801	.801	1 H1-1b
6	M6	SR 1	.057	2.5	3	.049 0	4	11.923	25.447	.424	.424	2H1-1b*
7	M7	SR 1	.106	0	6	.026 0	3	7.513	25.447	.424	.424	2H1-1b
8	M8	SR 1	.255	2.5	4	.116 0	4	11.923	25.447	.424	.424	2H1-1b
9	M9	SR 1 1/4	.499	1.745	4	.090 1.771	4	24.476	39.761	.828	.828	1H1-1b
10	M10	SR 1 1/4	.103	0	4	.107 2.5	4	24.476	39.761	.828	.828	2H1-1b
11	M11	SR 5/8	.133	4.301	6	.010 0	5	.635	9.94	.104	.104	3H1-1b*
12	M14	SR 5/8	.000	0	1	.012 2.5	4	1.88	9.94	.104	.104	2H1-1a
13	M15	SR 5/8	.066	3.717	3	.019 3.717	5	.851	9.94	.104	.104	1H1-1b*
14	M16	SR 5/8	.000	0	1	.033 3.717	5	.851	9.94	.104	.104	1 <mark>.</mark> H1-1a
15	M17	SR 5/8	.014	2.5	5	.021 0	3	1.88	9.94	.104	.104	2H1-1b*
16	M18	SR 5/8	.015	2.5	5	.102 0	4	1.88	9.94	.104	.104	2H1-1b*
17	M19	PIPE_2.0	.278	1.531	6	.159 1.531	4	17.855	32.13	1.872	1.872	1 <mark>.H1-1</mark> b
18	M20	PIPE_2.0	.617	4.01	5	.137 1.531	4	17.855	32.13	1.872	1.872	2H1-1b
19	M21	PIPE_2.0	.078	3.938	4	.020 1.531	4	17.855	32.13	1.872	1.872	1H1-1b
20	M22	PIPE_2.0	.401	3.938	4	.063 1.531	4	17.855	32.13	1.872	1.872	1 <mark>.H1-1</mark> b
21	M23	PIPE_1.25	.095	3.808	4	.104 7.616	5	4.977	19.688	.801	.801	1 <mark>.H1-1</mark> b
22	M23A	PIPE_2.0	.029	2.704	4	.036 0	6	22.626	32.13	1.872	1.872	1 <mark>.H1-1</mark> b

EXHIBIT 5

Radio Frequency Emissions Analysis Report

AT&T Existing Facility

Site ID: CT2284 FA#: 10113319

Colchester Munn Road State Police 268 Windham Avenue Colchester, CT 06415

April 30, 2018

Centerline Communications Project Number: 950006-117

Site Compliance Summary						
Compliance Status:	COMPLIANT					
Site total MPE% of FCC general population allowable limit:	2.19 %					

April 30, 2018

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT2284 – Colchester Munn Road State Police

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility located at **268 Windham Avenue, Colchester, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT&T Wireless antenna facility located at **268 Windham Avenue, Colchester, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
UMTS	1900 MHz (PCS)	2	30
LTE	700 MHz	2	40
LTE	1900 MHz (PCS)	4	40

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz, 850 MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

	Antenna		Antenna Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	Powerwave 7770	200
А	2	CCI HPA-65R-BUU-H8	200
В	1	Powerwave 7770	200
В	2	CCI HPA-65R-BUU-H8	200
С	1	Powerwave 7770	200
С	2	CCI HPA-65R-BUU-H6	200

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna	Antenna Make /		Antenna Gain	Channel	Total TX			
ID	Model	Frequency Bands	(dBd)	Count	Power (W)	ERP (W)	MPE %	
Antenna		850 MHz /						
A1	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.26	
Antenna	CCI	700 MHz /						
A2	HPA-65R-BUU-H8	1900 MHz (PCS)	13.15 / 14.95	6	240	6,654.03	0.82	
					Sector A Con	nposite MPE%	1.08	
Antenna		850 MHz /						
B1	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.26	
Antenna	CCI	700 MHz /						
B2	HPA-65R-BUU-H8	1900 MHz (PCS)	13.15 / 14.95	6	240	6,654.03	0.82	
					Sector B Con	nposite MPE%	1.08	
Antenna		850 MHz /						
C1	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.26	
Antenna	CCI	700 MHz /						
C2	HPA-65R-BUU-H6	1900 MHz (PCS)	11.95 / 14.75	6	240	6,030.01	0.71	
	Sector C Composite MPE%							

Table 3: AT&T Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, the sectors with the largest calculated MPE% are Sectors A & B. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

Site Composite MPE%						
Carrier	MPE%					
AT&T – Sectors A & B	1.08 %					
Antenna no. 2 (CSP/FBI)	0.01 %					
Antenna no. 3 (CSP)	0.00 %					
Antenna no. 4 (SHP)	0.01 %					
Antenna no. 5 (DEP)	0.01 %					
Antenna no. 6	0.00 %					
Antenna no. 7 (OEM)	0.01 %					
Antenna no. 8 (CSP)	0.02 %					
Antenna no. 9 (DEP)	0.02 %					
Antenna no. 10 (CSP)	0.00 %					
Antenna no. 11 (CSP)	0.00 %					
Antenna no. 12 (CSP)	0.00 %					
Antenna no. 13 (CSP)	0.00 %					
Antenna no. 14	0.01 %					
Antenna no. 15	0.01 %					
Antenna no. 18 (FBI)	0.08 %					
Antenna no. 31 (CTT)	0.00 %					
Verizon Wireless	0.93 %					
Site Total MPE %:	2.19 %					

Table 4: All Carrier MPE Contributions

AT&T Sector A Total:	1.08 %
AT&T Sector B Total:	1.08 %
AT&T Sector C Total:	0.98 %
Site Total:	2.19 %

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, the sectors with the largest calculated MPE% are Sectors A & B.

AT&T _ Frequency Band / Technology Max Power Values (Sectors A & B)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
AT&T 850 MHz UMTS	2	414.12	200	0.79	850 MHz	567	0.14%
AT&T 1900 MHz (PCS) UMTS	2	656.33	200	1.25	1900 MHz (PCS)	1000	0.13%
AT&T 700 MHz LTE	2	826.15	200	1.58	700 MHz	467	0.34%
AT&T 1900 MHz (PCS) LTE	4	1,250.43	200	4.78	1900 MHz (PCS)	1000	0.48%
						Total:	1.08%

Table 6: AT&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	1.08 %
Sector B:	1.08 %
Sector C:	0.98 %
AT&T Maximum Total (per sector):	1.08 %
Site Total:	2.19 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **2.19 %** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767

#1

TO MUNICIPAL OFFICIAL: Art Shilosky, First Selectman Town of Colchester 127 Norwich Avenue Colchester, CT 06415

#2

TO OWNER: DESPP / State of CT Brian Benito Connecticut Department of Emergency Services and Public Protection; Division of Statewide Emergency Telecommunications -CTS Unit 1111 Country Club Road Middletown, CT 06457

05/01/2019

Description

CHEST

46 Delivery

,05/03/2019)

\$0.00

\$8.30

Day (Domestic)

Hoected

Frackt 5100 1967

(Up to \$50.00 included)

1 day

(9505

ance

(9505 5100 1967 4013) 1967 9121 2305 25)

.00

16:00

Day

*pected

Nup to \$50.00 included)

Insurance

Day (Domestic)

(COLCHESTER

repaid Main \$50.00 included)

 $\begin{array}{c} {}^{\text{SDalo}}_{\text{(Mel Mal)}} \\ (Mel ght: 0 \\ (Destination: SHELION \\ (Acceptance Date: 05/01_{2019} \\ equal by (Acceptance 0) \\ equal by (Ac$

:42) 95775,¹ #:4200648494055036993004941

16:00

 $\stackrel{\text{SDaid}}{(\text{Weight:}0)} \stackrel{\text{Mail}}{(\text{Destination:}SHELTO} \stackrel{\text{I}}{(\text{Destination:}SHELTO} \stackrel{\text{I}}{(\text{Southance})} \stackrel{\text{I}}{(\text{Substance})} \stackrel{\text{SHELTOW}}{(\text{Substance})} \stackrel{\text{Substance}}{(\text{Substance})} \stackrel{\text{SHELTOW}}{(\text{Substance})} \stackrel{\text{Substance}}{(\text{Substance})} \stackrel{\text{SHELTOW}}{(\text{Substance})} \stackrel{\text{Substance}}{(\text{Substance})} \stackrel{\text{Substance}}{$

#: 9200648494055036993004941

Instrance

95175) epaid Mail

 $\stackrel{\text{iDalo}}{(Welght:0)}_{(Aclestination:Wollghvelow)} \stackrel{\text{iDalo}}{(Destination:Mosilied S)} \stackrel{\text{id}}{(Destination:Woslingvelow)} \stackrel{\text{id}}{(Destination:Woslingvelow)} \stackrel{\text{id}}{(Destination:Woslingvelow)} \stackrel{\text{id}}{(Destination:Woslingvelow)} \stackrel{\text{id}}{(Destination:Woslingvelow)} \stackrel{\text{id}}{(Destination)} \stackrel{\text{id}}{(Desti$

57, ^{abe1} 199, #: 4200180194055036993004941

\$24.90

95182) epaid Mail 16:00

(Domestic)

#

UV, UX, GUXU 2222222222222221 1000

95

(800)275.

Sale

Qry

\$0.00

\$8.30

CT 11.30 06915)

⁹¹²¹ 2305 18)

Day

NORTH BILLERICA

STE

9:01 PM

......

Final

7_{C0}

#3 #3 - MUNICIPAL ZONING OFFICIAL:

Total

redit

Approval

(AL:AMERICAN (AL:AMERICAN (PIN:Not Required) (PIN:Not Required)

Includes up to \$50 insurance

Text (2USPS) standard to get the number USPS J. You Message and latest to 2877 ISPS J. You mass and Datest to 28777 racking or 150 Datest to 28777 call visit rates 1-800-202-1812. 22-1812.

Save this insurance. Foceipt an insurance for int as evidence https://www.uc_aim.go thotop of of the save of the sevidence of

⁾1997

Card Remitd Card Name: AMEX

 $(A_{C}^{C}O_{U})_{T_{1}}^{Name:A_{M}} \times (A_{C}^{C}O_{U})_{T_{1}}^{Name:A_{M}} \times (A_{N}^{N})_{N_{2}}^{N} \times (A_{N}^{N}) \times (A_{N}^{N})_{N_{2}}^{N} \times (A_{N}^{N})_{N_{2}}^{N} \times (A_{N}^{N})_{N_{2}}^{N} \times$

Randall Benson, Planning & Zoning Department Town of Colchester 127 Norwich Avenue Colchester, CT 06415

USPS Tracking[®]

Track Another Package +

Tracking Number: 9505510019679121230518

Remove X

Feedback

On Time

Expected Delivery on

FRIDAY

3 MAY 2019 (i) by **8:00pm** (i)

1
TO MUNICIPAL OFFICIAL: Art Shilosky, First Selectman
Town of Colchester
127 Norwich Avenue
Colchester, CT 06415

⊘ Delivered

May 3, 2019 at 11:03 am Delivered, Front Desk/Reception/Mail Room COLCHESTER, CT 06415

Get Updates 🗸

Text & Email Updates

Tracking History

May 3, 2019, 11:03 am Delivered, Front Desk/Reception/Mail Room COLCHESTER, CT 06415 Your item was delivered to the front desk, reception area, or mail room at 11:03 am on May 3, 2019 in COLCHESTER, CT 06415.

May 3, 2019, 8:28 am Out for Delivery COLCHESTER, CT 06415

May 3, 2019, 8:18 am Sorting Complete May 3, 2019, 7:39 am Arrived at Post Office COLCHESTER, CT 06415

May 3, 2019, 3:43 am Arrived at USPS Facility COLCHESTER, CT 06415

May 3, 2019, 2:28 am Departed USPS Regional Facility SOUTHERN CT DISTRIBUTION CENTER

May 2, 2019, 11:38 pm Arrived at USPS Regional Facility SOUTHERN CT DISTRIBUTION CENTER

May 2, 2019, 7:21 pm Departed USPS Regional Facility SPRINGFIELD MA NETWORK DISTRIBUTION CENTER

May 2, 2019, 7:21 am Arrived at USPS Regional Facility SPRINGFIELD MA NETWORK DISTRIBUTION CENTER

May 2, 2019, 4:46 am Departed USPS Regional Facility NASHUA NH DISTRIBUTION CENTER

May 1, 2019, 9:19 pm Arrived at USPS Regional Origin Facility NASHUA NH DISTRIBUTION CENTER

May 1, 2019, 5:02 pm Departed Post Office NORTH BILLERICA, MA 01862

May 1, 2019, 3:59 pm USPS in possession of item NORTH BILLERICA, MA 01862 See Less 🔨

Can't find what you're looking for?

Go to our FAQs section to find answers to your tracking questions.

FAQs (https://www.usps.com/faqs/uspstracking-faqs.htm)

The easiest tracking number is the one you don't have to know.

With Informed Delivery[®], you never have to type in another tracking number. Sign up to:

- See images* of incoming mail.
- Automatically track the packages you're expecting.
- Set up email and text alerts so you don't need to enter tracking numbers.
- Enter USPS Delivery Instructions[™] for your mail carrier.

USPS Tracking[®]

Track Another Package +

Tracking Number: 9505510019679121230525

Remove X

On Time

Expected Delivery on

FRIDAY

3 MAY 2019 (2) by **8:00pm** (2)

⊘ Delivered

May 3, 2019 at 10:03 am Delivered, Front Desk/Reception/Mail Room MIDDLETOWN, CT 06457

Get Updates 🗸

#2

TO OWNER: DESPP / State of CT Brian Benito Connecticut Department of Emergency Services and Public Protection; Division of Statewide Emergency Telecommunications - CTS Unit 1111 Country Club Road Middletown, CT 06457

Text & Email Updates

Tracking History

May 3, 2019, 10:03 am Delivered, Front Desk/Reception/Mail Room MIDDLETOWN, CT 06457 Your item was delivered to the front desk, reception area, or mail room at 10:03 am on May 3, 2019 in MIDDLETOWN, CT 06457.

May 3, 2019, 7:30 am Out for Delivery MIDDLETOWN, CT 06457

May 3, 2019, 7:20 am Sorting Complete May 3, 2019, 4:00 am Arrived at Post Office MIDDLETOWN, CT 06457

May 2, 2019, 6:30 pm Arrived at USPS Facility MIDDLETOWN, CT 06457

May 2, 2019, 3:58 pm Departed USPS Regional Facility SOUTHERN CT DISTRIBUTION CENTER

May 2, 2019, 2:03 pm Arrived at USPS Regional Facility SOUTHERN CT DISTRIBUTION CENTER

May 2, 2019, 12:40 pm Departed USPS Regional Facility SPRINGFIELD MA NETWORK DISTRIBUTION CENTER

May 2, 2019, 7:21 am Arrived at USPS Regional Facility SPRINGFIELD MA NETWORK DISTRIBUTION CENTER

May 2, 2019, 4:46 am Departed USPS Regional Facility NASHUA NH DISTRIBUTION CENTER

May 1, 2019, 9:19 pm Arrived at USPS Regional Origin Facility NASHUA NH DISTRIBUTION CENTER

May 1, 2019, 5:02 pm Departed Post Office NORTH BILLERICA, MA 01862

May 1, 2019, 3:59 pm USPS in possession of item NORTH BILLERICA, MA 01862 See Less 🔨

Can't find what you're looking for?

Go to our FAQs section to find answers to your tracking questions.

FAQs (https://www.usps.com/faqs/uspstracking-faqs.htm)

The easiest tracking number is the one you don't have to know.

With Informed Delivery[®], you never have to type in another tracking number. Sign up to:

- See images* of incoming mail.
- Automatically track the packages you're expecting.
- Set up email and text alerts so you don't need to enter tracking numbers.
- Enter USPS Delivery Instructions[™] for your mail carrier.

USPS Tracking[®]

Track Another Package +

Tracking Number: 9505510019679121230525

Remove X

Feedback

On Time

Expected Delivery on

FRIDAY

3 MAY 2019 (i) by **8:00pm** (i)

⊘ Delivered

May 3, 2019 at 10:03 am Delivered, Front Desk/Reception/Mail Room MIDDLETOWN, CT 06457

Get Updates 🗸

#3

TO MUNICIPAL ZONING OFFICIAL: Randall Benson, Planning & Zoning Department Town of Colchester 127 Norwich Avenue Colchester, CT 06415

Text & Email Updates

Tracking History

May 3, 2019, 10:03 am Delivered, Front Desk/Reception/Mail Room MIDDLETOWN, CT 06457 Your item was delivered to the front desk, reception area, or mail room at 10:03 am on May 3, 2019 in MIDDLETOWN, CT 06457.

May 3, 2019, 7:30 am Out for Delivery MIDDLETOWN, CT 06457

May 3, 2019, 7:20 am Sorting Complete May 3, 2019, 4:00 am Arrived at Post Office MIDDLETOWN, CT 06457

May 2, 2019, 6:30 pm Arrived at USPS Facility MIDDLETOWN, CT 06457

May 2, 2019, 3:58 pm Departed USPS Regional Facility SOUTHERN CT DISTRIBUTION CENTER

May 2, 2019, 2:03 pm Arrived at USPS Regional Facility SOUTHERN CT DISTRIBUTION CENTER

May 2, 2019, 12:40 pm Departed USPS Regional Facility SPRINGFIELD MA NETWORK DISTRIBUTION CENTER

May 2, 2019, 7:21 am Arrived at USPS Regional Facility SPRINGFIELD MA NETWORK DISTRIBUTION CENTER

May 2, 2019, 4:46 am Departed USPS Regional Facility NASHUA NH DISTRIBUTION CENTER

May 1, 2019, 9:19 pm Arrived at USPS Regional Origin Facility NASHUA NH DISTRIBUTION CENTER

May 1, 2019, 5:02 pm Departed Post Office NORTH BILLERICA, MA 01862

May 1, 2019, 3:59 pm USPS in possession of item NORTH BILLERICA, MA 01862 See Less 🔨

Can't find what you're looking for?

Go to our FAQs section to find answers to your tracking questions.

FAQs (https://www.usps.com/faqs/uspstracking-faqs.htm)

The easiest tracking number is the one you don't have to know.

With Informed Delivery[®], you never have to type in another tracking number. Sign up to:

- See images* of incoming mail.
- Automatically track the packages you're expecting.
- Set up email and text alerts so you don't need to enter tracking numbers.
- Enter USPS Delivery Instructions[™] for your mail carrier.