

Jack Andrews
Zoning Manager, Empire Telecom
o/b/o AT&T Wireless
10130 Donleigh Drive
Columbia, MD 21046
443-286-4007
jandrews@empiretelecomm.com

April 18, 2018

Melanie Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

NOTICE OF EXEMPT MODIFICATION

324 Montevideo Road, Avon, CT 06001

Lat: 41-48-42.45 (41.81179167) Long. 72-47-55.45 (-72.79873611)

Dear Ms. Bachman:

AT&T Wireless currently maintains nine (9) antennas at the 70-foot level of an existing 60-foot lattice tower located at 324 Montevideo Road, in Avon, CT. The tower is owned by the Talcott Mountain Science Center for Student Involvement, Inc. The property is owned by the Talcott Mountain Science Center for Student Involvement, Inc. AT&T Wireless now seeks to install three (3) additional antennas, install six (6) new Remote Radio Units ("RRU"), repurpose three (3) existing UMTS RRUS-11 850 to LTE 850, install a new surge suppression dome, upgrade the DUS, add one (1) XMU, and install six (6) new DC cables. The proposed antennas, suppression dome, and RRUs will be mounted at the 70-foot level and completely enclosed within the existing Doppler Radar Dome, located atop the existing tower.

The tower is located within the Town of Bloomfield, CT. AT&T's prior building permit was issued by the Town of Bloomfield. The Bloomfield Building Department advised that they now use "0 Talcott Mountain Science Center Road" as the address of the tower.

AT&T recently filed a Notice of Exempt Modification for this site, which was denied by the CSC on March 12, 2018, because the proposed modifications would load the tower over its maximum capacity. Accordingly, the enclosed drawings and structural report propose modifications to this tower consisting of

installing secondary horizontal members, which will render the structural integrity of the tower adequate for the proposed load.

The facility was approved by the Connecticut Siting Council in EM-AT&T-004-160128 on March 14, 2016. Six (6) conditions were enumerated in the Council's decision: 1) Any deviation from the proposed modification as specified in this notice and supporting materials with the Council shall render this acknowledgement invalid; 2) Any material changes to the modification as proposed shall require the filing of a new notice with the Council; 3) Within 45 days after the completion of construction the Council shall be notified in writing that the construction has been completed; 4) Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by AT&T Mobility, LLC shall be removed within 60 days of the date the antenna ceased to function; 5) the validity of the action shall expire one year from the date of the letter; 6) The applicant may file a request an extension of time beyond the one year deadline provided that such a request is submitted to the Council not less than 60 days prior to the expiration.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies section 16-50j-73 for construction that constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2). In accordance with RCSA section 16-50j-73, a copy of this letter and attachments is being sent to the Honorable Suzette DeBeatham-Brown, Mayor of Bloomfield; Jose Giner, the Director of the Bloomfield Planning & Zoning Department, as well as the Talcott Mountain Science Center for Student Involvement, Inc., the property owner and the tower owner.

The planned modifications to the facility fall squarely within those activities expressly provided for in RCSA section 50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in height of the existing structure.
- 2. The proposed modifications will not require an extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that will exceed state and local limits.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT&T Wireless respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under RCSA section 16-50j-72(b)(2).

Respectfully submitted,

Jack Andrews

Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-286-4007 jandrews@empiretelecomm.com

Enclosures

cc: Honorable Suzette DeBeatham-Brown, Mayor of Bloomfield
Jose Giner, the Director of the Bloomfield Planning & Zoning Department
Talcott Mountain Science Center for Student Involvement, Inc., property owner and tower owner.

April 18, 2018

Jose Giner, Director Planning & Zoning Department Town Hall 800 Bloomfield Avenue Bloomfield, CT 06002-0337

RE:

AT&T Wireless Modifications to Telecommunication Facility – 324 Montevideo Road, Avon, CT 06001

Dear Mr. Giner:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains nine (9) antennas at the 70-foot level of an existing 60-foot lattice tower located at 324 Montevideo Road, in Avon, CT. The tower is owned by the Talcott Mountain Science Center for Student Involvement, Inc. The property is owned by the Talcott Mountain Science Center for Student Involvement, Inc.

The tower is located within the Town of Bloomfield, CT. AT&T's prior building permit was issued by the Town of Bloomfield. AT&T recently filed a Notice of Exempt Modification for this site, which was denied by the CSC on March 12, 2018, because the proposed modifications would load the tower over its maximum capacity. Accordingly, the enclosed drawings and structural report propose modifications to this tower consisting of installing secondary horizontal members, which will render the structural integrity of the tower adequate for the proposed load.

AT&T Wireless now seeks to install three (3) additional antennas, install six (6) new Remote Radio Units ("RRU"), repurpose three (3) existing UMTS RRUS-11 850 to LTE 850, install a new surge suppression dome, upgrade the DUS, add one (1) XMU, and install six (6) new DC cables. The proposed antennas, suppression dome, and RRUs will be mounted at the 70-foot level and completely enclosed within the existing Doppler Radar Dome, located atop the existing tower.

This letter is intended to serve as the required notice to the municipality's Planning and Community Development Department. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification

under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter and documents to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews

Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144

jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

April 18, 2018

The Honorable Suzette DeBeatham-Brown Town Hall 800 Bloomfield Avenue Bloomfield, CT 06002-0337

RE: AT&T Wireless Modifications to Telecommunication Facility –

324 Montevideo Road, Avon, CT 06001

Dear Mayor DeBeatham-Brown:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains nine (9) antennas at the 70-foot level of an existing 60-foot lattice tower located at 324 Montevideo Road, in Avon, CT. The tower is owned by the Talcott Mountain Science Center for Student Involvement, Inc. The property is owned by the Talcott Mountain Science Center for Student Involvement, Inc.

The tower is located within the Town of Bloomfield, CT. AT&T's prior building permit was issued by the Town of Bloomfield. AT&T recently filed a Notice of Exempt Modification for this site, which was denied by the CSC on March 12, 2018, because the proposed modifications would load the tower over its maximum capacity. Accordingly, the enclosed drawings and structural report propose modifications to this tower consisting of installing secondary horizontal members, which will render the structural integrity of the tower adequate for the proposed load.

AT&T Wireless now seeks to install three (3) additional antennas, install six (6) new Remote Radio Units ("RRU"), repurpose three (3) existing UMTS RRUS-11 850 to LTE 850, install a new surge suppression dome, upgrade the DUS, add one (1) XMU, and install six (6) new DC cables. The proposed antennas, suppression dome, and RRUs will be mounted at the 70-foot level and completely enclosed within the existing Doppler Radar Dome, located atop the existing tower.

This letter is intended to serve as the required notice to the municipality. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter and documents to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews

Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144

jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

April 18, 2018

The Talcott Mountain Science Center for Student Involvement Inc. 324 Montevideo Road Avon, CT 06001 ATTN: Jonathan Craig

RE:

AT&T Wireless Modifications to Telecommunication Facility -

324 Montevideo Road, Avon, CT 06001

Dear Mr. Craig:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains nine (9) antennas at the 70-foot level of an existing 60-foot lattice tower located at 324 Montevideo Road, in Avon, CT. The tower is owned by the Talcott Mountain Science Center for Student Involvement, Inc. The property is owned by the Talcott Mountain Science Center for Student Involvement, Inc.

The tower is located within the Town of Bloomfield, CT. AT&T's prior building permit was issued by the Town of Bloomfield. AT&T recently filed a Notice of Exempt Modification for this site, which was denied by the CSC on March 12, 2018, because the proposed modifications would load the tower over its maximum capacity. Accordingly, the enclosed drawings and structural report propose modifications to this tower consisting of installing secondary horizontal members, which will render the structural integrity of the tower adequate for the proposed load.

AT&T Wireless now seeks to install three (3) additional antennas, install six (6) new Remote Radio Units ("RRU"), repurpose three (3) existing UMTS RRUS-11 850 to LTE 850, install a new surge suppression dome, upgrade the DUS, add one (1) XMU, and install six (6) new DC cables. The proposed antennas, suppression dome, and RRUs will be mounted at the 70-foot level and completely enclosed within the existing Doppler Radar Dome, located atop the existing tower.

This letter is intended to serve as the required notice to the property owner and to the tower owner. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter and documents to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews

Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144

jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

Radio Frequency Emissions Analysis Report

AT&T Existing Facility

Site ID: CT1330 FA: 10141394

Avon - Montevideo Road 324 Montevideo Road Avon, CT 06001

February 1, 2018

Centerline Communications Project Number: 950006-091

Site Complian	ce Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	52.10 %

February 1, 2018

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT1330 – Avon - Montevideo Road

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility located at **324 Montevideo Road**, **Avon**, **CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT&T Wireless antenna facility located at **324 Montevideo Road, Avon, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS – Antenna 1	850 MHz	1	30
UMTS – Antenna 1	1900 MHz (PCS)	1	30
LTE – Antenna 2	850 MHz	2	30
LTE - Antenna 2	2300 MHz (WCS)	4	30
LTE – Antenna 3	700 MHz (Band 14)	4	30
LTE – Antenna 3	2100 MHz (AWS)	4	30
LTE – Antenna 4	700 MHz	2	30
LTE – Antenna 4	1900 MHz (PCS)	4	30

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz, 850 MHz, 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

	Antenna		Antenna Centerline
Sector	Number	Antenna Make / Model	(ft)
A	1	Commscope SBNH-1D6565C	70
A	2	CCI OPA-65R-LCUU-H8	70
A	3	Kathrein 800-10966	70
A	4	CCI TPA-65R-LCUUUU-H8	70
В	1	Commscope SBNH-1D6565C	70
В	2	CCI OPA-65R-LCUU-H8	70
В	3	Kathrein 800-10966	70
В	4	CCI TPA-65R-LCUUUU-H8	70
C	1	Commscope SBNH-1D6565C	70
С	2	CCI OPA-65R-LCUU-H8	70
С	3	Kathrein 800-10966	70
C	4	CCI TPA-65R-LCUUUU-H8	70

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna			Antenna	Channel	Total TX		
ID	Antenna Make / Model	Frequency Bands	Gain (dBd)	Count	Power (W)	ERP (W)	MPE %
Antenna Commscope		850 MHz /	14.45 /				
A1	SBNH-1D6565C	1900 MHz (PCS)	15.85	2	60	1,989.61	2.31
Antenna	CCI	850 MHz /	13.35 /				
A2	OPA-65R-LCUU-H8	2300 MHz (WCS)	14.95	6	180	5,048.93	5.30
Antenna	Kathrein	700 MHz /	13.55 /				
A3	800-10966	2100 MHz (AWS)	16.15	8	240	7,662.74	9.45
Antenna	CCI	700 MHz /	12.95 /				
A4	TPA-65R-LCUUUU-H8	1900 MHz (PCS)	13.75	6	180	4,029.10	4.72
				S	Sector A Comp	osite MPE%	21.78
Antenna	Commscope	850 MHz /	14.45 /				
B1	SBNH-1D6565C	1900 MHz (PCS)	15.85	2	60	1,989.61	2.31
Antenna	CCI	850 MHz /	13.35 /				
B2	OPA-65R-LCUU-H8	A-65R-LCUU-H8 2300 MHz (WCS) 14.95 6 1		180	5,048.93	5.30	
Antenna	Kathrein	700 MHz /	13.55 /				
В3	800-10966	2100 MHz (AWS)	16.15	8	240	7,662.74	9.45
Antenna	CCI	700 MHz /	12.95 /				
B4	TPA-65R-LCUUUU-H8	1900 MHz (PCS)	13.75	6	180	4,029.10	4.72
				,	Sector B Comp	osite MPE%	21.78
Antenna	Commscope	850 MHz /	14.45 /				
C1	SBNH-1D6565C	1900 MHz (PCS)	15.85	2	60	1,989.61	2.31
Antenna	CCI	850 MHz /	13.35 /				
C2	OPA-65R-LCUU-H8	2300 MHz (WCS)	14.95	6	180	5,048.93	5.30
Antenna	Kathrein	700 MHz /	13.55 /				
C3	800-10966	2100 MHz (AWS)	16.15	8	240	7,662.74	9.45
Antenna	CCI	700 MHz /	12.95 /				
C4	TPA-65R-LCUUUU-H8	1900 MHz (PCS)	13.75	6	180	4,029.10	4.72
					Sector C Comp	osite MPE%	21.78

Table 3: AT&T Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

Site Composite MPE%							
Carrier MPE%							
AT&T – Max Sector Value	21.78 %						
Verizon Wireless	30.32 %						
Site Total MPE %:	52.10 %						

Table 4: All Carrier MPE Contributions

AT&T Sector A Total:	21.78 %
AT&T Sector B Total:	21.78 %
AT&T Sector C Total:	21.78 %
Site Total:	52.10 %

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table* 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

AT&T _ Frequency Band / Technology (All Sectors)	# Chann els	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
AT&T 850 MHz UMTS	1	835.84	70	7.34	850 MHz	567	1.29%
AT&T 1900 MHz (PCS) UMTS	1	1,153.78	70	10.13	1900 MHz (PCS)	1000	1.01%
AT&T 850 MHz LTE	2	648.82	70	11.39	850 MHz	567	2.01%
AT&T 2300 MHz (WCS) LTE	4	937.82	70	32.93	2300 MHz (WCS)	1000	3.29%
AT&T 700 MHz LTE	4	679.39	70	23.85	700 MHz	467	5.11%
AT&T 2100 MHz (AWS) LTE	4	1,236.29	70	43.40	2100 MHz (AWS)	1000	4.34%
AT&T 700 MHz LTE	2	591.73	70	10.39	700 MHz	467	2.22%
AT&T 1900 MHz (PCS) LTE	4	711.41	70	24.98	1900 MHz (PCS)	1000	2.50%
						Total:	21.78%

Table 6: AT&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	21.78 %
Sector B:	21.78 %
Sector C:	21.78 %
AT&T Maximum Total	21.78 %
(per sector):	21.78 %
Site Total:	52.10 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **52.10** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

Centerline Communications, LLC

95 Ryan Drive, Suite 1 Raynham, MA 02767

PROJECT TEAM

CLIENT REPRESENTATIVE

SMARTLINK, LLC 85 RANGEWAY ROAD, BUILDING 3, SUITE 102 ADDRESS: CITY, STATE, ZIP: CONTACT:

NORTH BILLERICA, MA 02862-2105 TODD OLIVER

(774) 369-3618 TODD.OLIVER@SMARTLINKLLC.COM

SITE ACQUISITION

COMPANY:

85 RANGEWAY ROAD, BUILDING 3, SUITE 102 NORTH BILLERICA, MA 02862-2105 TODD OLIVER

ADDRESS: CITY, STATE, ZIP: CONTACT:

TODD.OLIVER@SMARTLINKLLC.COM

ENGINEER

CONTACT

COMPANY: ADDRESS: MASER CONSULTING CONNECTICUT 331 NEWMAN SPRINGS RD. SUITE 203

CITY, STATE, ZIP: CONTACT: PHONE: E-MAIL: FRANK PAZDEN (973) 398-3110 x4505 FPAZDEN@MASERCONSULTING.COM

RF ENGINEER

COMPANY: NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE RD. CITY, STATE, ZIP: FRAMINGHAM, MA 01701

CAMERON SYME

CONSTRUCTION MANAGER

SMARTLINK, LLC. 85 RANGEWAY ROAD, BUILDING 3, SUITE 102 NORTH BILLERICA, MA 02862-2105 MARK DONNELLY COMPANY:

CONTACT: PHONE:

APPLICANT/LESSEE at&t

USE GROUP:

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE RD. FRAMINGHAM, MA 01701

MARK.DONNELLY@SMARTLINKLLC.COM

SITE NAME: AVON - MONTEVIDEO ROAD FA NUMBER: 10141394 SITE NUMBER: CTL01330 **MULTI-CARRIER - MRCTB017054** RETROFIT - MRCTB019405 324 MONTEVIDEO ROAD **AVON, CT 06001** HARTFORD COUNTY

PROIECT LOCATION

VICINITY MAP

CODE COMPLIANCE

ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOLLOWING CODES.

- 2014 CONNECTICUT STATE BUILDING
- 2016 CONNECTICUT STATE BUILDING
 CODE, INCORPORATING THE 2012 IBC
 2014 NATIONAL ELECTRICAL
 CODE-NFPA 70
 2015 NFPA 1
 LIGHTNING PROTECTION CODE 201

- AMERICAN CONCRETE INSTITUTE 318
 AMERICAN INSTITUTE OF STEEL CONSTRICTION 360-10
- FIA/TIA-222 REVISIONI G
- TIA 607 FOR GROUNDING
 INSTITUTE FOR ELECTRICAL AND
 ELECTROPICS ENGINEERS 81
- 11. TELCORDIA GR-1275 12. ANSI T1.311

GENERAL CONTRACTOR NOTES

CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE; NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROOSED.

SHEET	DESCRIPTION
T-I	TITLE SHEET
GN-I	GENERAL NOTES
A-I	COMPOUND PLAN AND EQUIPMENT PLAN
A-2	ELEVATION VIEW AND ANTENNA SCHEDULE
A-3	ANTENNA LAYOUTS
A-4	DETAILS
A-5	RF PLUMBING DIAGRAMS
G-I	GROUNDING DETAILS
S-I	TOWER MODIFICATION DESIGN DETAILS
S-2	STRUCTURAL DETAILS

PROJECT DESCRIPTION/SCOPE OF WORK

THIS PROJECT WILL BE COMPRISED OF

- (3) PROPOSED ANTENNAS TO REPLACE (3) EXISTING ANTENNAS. (1) PER SECTOR
- (3) PROPOSED RRUS TO REPLACE (3) EXISTING RRUS, (1) PER SECTOR ADD DUS AND IDL2 TO LTE CABINET

PROPOSED PROJECT SCOPE BASED OFF RFDS ID# 1017786, VERSION 5.0, LAST UPDATED 10/31/16

MASER CONSULTING -CONNECTICUT-

NEW CINGULAR WIRELESS PCS. LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

AS SHOWN

•				
2	03/29/18	REVISED W/ TOWER MODS	AJC	RA
-	12/27/16	FOR CONSTRUCTION	RA	FEP
0	12/14/16	ISSUED FOR REVIEW	AJC	FEP
REV	DATE	DESCRIPTION OF THE PARTY OF THE	DRAWN BY	CHECKED BY

SLE LICENSED PROFFESIONI ALTER THIS DOCUMEN

AVON - MONTEVIDEO ROAD FA# 10141394 SITE # CTL01330

324 MONTEVIDEO ROAD AVON, CT 06001 HARTFORD COUNTY

TITLE SHEET

T-I

PROPERTY/TOWER OWNER THE TALCOTT MOUNTAIN SCIENCE CENTER FOR STUDENT INVOLVEMENT, INC. 324 MONTEVIDEO ROAD ADDRESS: CITY, STATE, ZIP: LATITUDE: 41.811797° N 72.798767° W LONGITUDE: LAT /LONG TYPE NAD 83 AREA OF CONSTRUCTION: EXISTING EQUIPMENT SHELTER AND LATTICE TOWER WITH DOPPLER RADAR DOME ZONING/IURISDICTION: TOWN OF AVON CURRENT LISE/PROPOSED LISE: LINMANNED TELECOMMUNICATIONS FACILITY HANDICAP REQUIREMENTS: FACILITY IS LINMANNED AND NOT FOR HUMAN HABITATION. HANDICAPPED ACCESS NOT REQUIRED. CONSTRUCTION TYPE:

SITE INFORMATION

GENERAL NOTES:

- I. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE | 100 AND 81) FOR GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 50 HMS OR LESS.
- 4. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 6. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR, STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS FOLLIPMENT
- EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE EQUIPMENT GROUND RING WITH GREEN INSULATED SUPPLEMENTAL
 EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK TO BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE #2 AWG SOLID TINNED
 COPPER UNLESS OTHERWISE INDICATED.
- 10. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 11. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED. ALL BENDS SHALL BE MADE WITH 12" RADIUS OR LARGER.
- 12. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 13. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS EXCEPT FOR GROUND BAR CONNECTION FROM MGB TO OUTSIDE EXTERIOR GROUND SHALL ALL BE CADWELD CONNECTIONS.
- 14. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 15. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED TO THE TOWER GROUND BAR.
- 16. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS
- 17. ALL EXTERIOR AND INTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 18. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN
- 19. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF MAIN GROUND WIRES WITH 1.#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR.
- 20. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G. NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT
- 21. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/4" IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50.
- 22. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR - SMARTLINK
SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)
OWNER - AT&T (NEW CINGULAR WIRELESS PCS, LLC)

- 23. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 24. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 25. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.

- 26. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 27. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 28. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS
 LINE SSS SPECIFICALLY STATED OTHERWISE
- 29. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- 30. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 31. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION
- 32. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE RESPONSIBLE ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.
- 33. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND SUBJECT TO THE APPROVAL OF THE OWNER AND/OR LOCAL UTILITIES.
- 34. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION.
- 35. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 36. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN
- 37 THE SUBGRADE SHALL BE COMPACTED AND BROLIGHT TO A SMOOTH LINIFORM GRADE PRIOR TO FINISHED SUBFACE APPLICATION
- 38. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- 39. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 40. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 41. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 42. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF THE CONTRACTOR.
- 43. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND TI CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 44. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301
- 45. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS.
- 46. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- 47. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES."
- 48. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 49. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 50. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN ALERT OF DANGEROUS EXPOSURE LEVELS.

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers
Planners Surveyors

Copyright © 2018. Maser Consulting Connecticut All Rights Reserved. This drawing and all the information contained herein is authorized for use only by the parry for whom the services were contracted or to whom it is certified. This drawing may not be copied, reused, disclosed distributed or relied upon for any other purpose without the express written consent of Mase.

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

Call before you dig.

FOR STATE SPECIFIC DIRECT PHONE NUMBERS VI

2 03/29/18 REVISED W// TOWER MODS A/C RA
1 12/27/16 FOR CONSTRUCTION RA FEP
0 12/14/16 ISSUED FOR REVIEW A/C FEP
REV DATE DEMANUS CHECKET

IT IS . JOLATION OF LAW NOW ANY PERSON, L.L.
THEY / PE ACTING UNDER THE DIRE THOM IN THE
RESPONSING LICENSED PROTESSION ALEM INVERT.

AND TER THIS DOCUMENT

SITE NAME:

AVON - MONTEVIDEO ROAD FA# 10141394 SITE # CTL01330

> 324 MONTEVIDEO ROAD AVON, CT 06001 HARTFORD COUNTY

RED BANK OFFICE

331 Newman Springs Road
Suite 203

email: solutions@

GENERAL NOTES

1BER :

GN-I

W E

COMPOUND PLAN GRAPHIC SCALE 10 0 5 10 20 (IN FEET) SCALE: 1" = 10' FOR 24"X36" DRAWINGS

(DO NOT SCALE 11"X17" DRAWINGS)

NOT

- THE CONDUIT ROUTING IS DIAGRAMMATICALLY SHOWN ON THE PLANS AND ARE ONLY APPROXIMATIONS. THE EXACT LOCATION AND ROUTING SHALL BE FIELD VERIFIED.
- 2. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED LAMICOID NAMEPLATES, INDICATING THE CIRCUITS ORIGINATION AND ALL EQUIPMENT TERMINATIONS.
- 3. SUBCONTRACTOR SHALL PROVIDE ALL CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETED SYSTEM AND SHALL BE IN COMPLIANCE WITH THE MANUFACTURER'S SPECIFICATIONS.
- 4. ALL NEW CABLING TO BE ROUTED ON EXISTING CABLE RACKS.
- 5. ALL INSTALLED GROUND LUGS MUST BE INSPECTION HOLE LUGS.
- 6. INSTALLED GROUND LEADS MUST TERMINATE AT MGB, NOT HALO.
- 7. NO OVERLAPPING GROUND HARDWARE.

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers ■ Planners ■ Surveyors
Landscape Architects ■ Environmental Scientist

pyright © 2018. Maser Consulting Connecticut All Rights Reserved. This drawing and all emation contained herein is subborited for use only by the party for whom the services teracted or to whom it is certified. This drawing may not be copied, reused, discloribused or relied upon for any other purpose without the express written consent of Mi-

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

Call before you dig.

FOR STATE SPECIFIC DIRECT PHONE NUMBERS VISIT:

WWW.CALLBI I.COM

L	\vdash	ΜN	7963018A		
		-			
		-			
		-			
2	03/29/18	REVISED W/ TO	OWER MODS	AJC	RA
-	12/27/16	FOR CONSTRU	ICTION	RA	FEP
0	12/14/16	ISSUED FOR RE	VIEW	AJC	FEP
REV	DATE	REMINING	MIHIMINI PARTICIONI PARTICIONI PARTICIONI PARTICIONI PARTICIONI PARTICIONI PARTICIONI PARTICIONI PARTICIONI PA	DRAWN BY	CHECKED BY

IT IS JOLATON OF LAW NOW ANY PERSON, SILESS THEY OF ACTING UNDER THE DREATION OF THE RESPONSING LICENSED PROPRIED AS EN WEER, TO AN TER THIS DOCUMENT

SITE NAME:

AVON - MONTEVIDEO ROAD FA# 10141394 SITE # CTL01330

> 324 MONTEVIDEO ROAD AVON, CT 06001 HARTFORD COUNTY

RED BANK OFFICE 331 Newman Springs Road Suite 203

Suite 203 Red Bank, NJ 07701-5699 Phone: 732.383.1950 Fax: 732.383.1984

LE:

COMPOUND PLAN AND EQUIPMENT PLAN

IBER:

A-I

				PRC	POSED ANT	ENNA AND R	RUS CONFIG	URATION					
SE	CTOR	EXISTING ANTENNA CONFIGURATION	PROPOSED ANTENNA CONFIGURATION	TECHNOLOGY	ANTENNA STATUS	HEIGHT (in)	WIDTH (in)	DEPTH (in)	WEIGHT (lbs)	ANTENNA AZIMUTH	ANT. CL. ELEV (ft.)	RRUS CONFIGURATION	STATUS
	A1	Andrew SBNH-1D6565C	Andrew SBNH-1D6565C	UMTS	REMAIN	96.40	11.90	7.10	60.80	90°	70'	(2) RRUS-11	REMAIN
ALPHA	A2	CCI OPA-65R-LCUU-H8	CCI OPA-65R-LCUU-H8	LTE WCS	REMAIN	92.70	14.40	7.00	88.00	90°	70'	(1) RRUS-32	REMAIN
ALP	А3	VACANT MAST	VACANT MAST	-	-	-	-	-	-	-	-	-	-
	A4	Andrew SBNH-1D6565C	TPA-65R-LCUUUU-H8	LTE 700/1900	NEW	96.00	14.40	8.60	75.00	90°	70'	(1) RRUS-11 (1) RRUS-32 B2	REMAIN NEW
	В1	Andrew SBNH-1D6565C	Andrew SBNH-1D6565C	UMTS	REMAIN	96.40	11.90	7.10	60.80	210°	70'	(2) RRUS-11	REMAIN
BETA	B2	CCI OPA-65R-LCUU-H8	CCI OPA-65R-LCUU-H8	LTE WCS	REMAIN	92.70	14.40	7.00	88.00	210°	70'	(1) RRUS-32	REMAIN
BE	В3	VACANT MAST	VACANT MAST	-	-	-	-	-	-	-	1	-	-
	В4	Andrew SBNH-1D6565C	TPA-65R-LCUUUU-H8	LTE 700/1900	NEW	96.00	14.40	8.60	75.00	210°	70'	(1) RRUS-11 (1) RRUS-32 B2	REMAIN NEW
	C1	Andrew SBNH-1D6565C	Andrew SBNH-1D6565C	UMTS	REMAIN	96.40	11.90	7.10	60.80	330°	70'	(2) RRUS-11	REMAIN
GAMMA	C2	CCI OPA-65R-LCUU-H8	CCI OPA-65R-LCUU-H8	LTE WCS	REMAIN	92.70	14.40	7.00	88.00	330°	70'	(1) RRUS-32	REMAIN
GAR	СЗ	VACANT MAST	VACANT MAST	-	-	-	-	-	-	-	-	-	-
	C4	Andrew SBNH-1D6565C	TPA-65R-LCUUUU-H8	LTE 700/1900	NEW	96.00	14.40	8.60	75.00	330°	70'	(1) RRUS-11 (1) RRUS-32 B2	REMAIN NEW

ANTENNA SCHEDULE

STRUCTURAL NOTES:

- NO CONSTRUCTION OF THE PROPOSED LOADING SHOWN SHALL PROCEED UNTIL ADEQUACY OF THE EXISTING STRUCTURE AND FOUNDATION, INCLUDING THE PROPOSED AT&T ANTENNA MOUNTING CONFIGURATION SHOWN HEREIN, HAS BEEN COMPLETED.
- THE STRUCTURE ELEVATION IS SHOWN FOR INFORMATIONAL PURPOSES ONLY AND MAY NOT REFLECT AS-BUILT FIELD CONDITIONS FOR ALL EXISTING INVENTORY LOADING/ANTENNAS/APPURTANENCES ON STRUCTURE. REFER TO THE LATEST STRUCTURAL ANALYSIS FOR EXISTING STRUCTURE LOADING AND THE PROPOSED METHOD OF ATTACHMENT OF THE PROPOSED ANTENNAS/CABLES.
- 3. THE CONTRACTOR IS RESPONSIBLE TO CONFIRM THAT ANY IMPROVEMENTS AND REINFORCEMENTS REQUIRED BY THE STRUCTURAL ANALYSIS CERTIFICATION ARE PROPERLY INSTALLED PRIOR TO THE ADDITION OF ANTENNAS, CABLES, SUPPORTS AND APPURTENANCES PROPOSED ON THESE DRAWINGS OR OTHERWISE NOTED IN THE STRUCTURAL ANALYSIS.

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

PROTECT YOURSEL

ALL STATES REQUIRE NOTHECA
EXCAVATORS, DISSORMES, OR AN
PREPARAN NO DISTURBITHE!
SURFACE ANYWHERE IN ANY

Call before you dig.

FOR STATE SPECIFIC DIRECT PHONE NUMBERS VI

WWW.CALLBII.COM

	AS SHO\	I	7963018	<u> </u>	
		-			
2	03/29/18	REVISED W/ TO	OWER MODS	AJC	RA
1	12/27/16	FOR CONSTRU	JCTION	RA	FEP
0	12/14/16	ISSUED FOR RE	VIEW	AJC	FEP
REV	DATE	REMINIU	muun	DRAWN BY	CHECKED BY

IT IS / IOLATION OF WAY IN PERSON, IN LESS THEY / FACTING UNDER THE DIRECTION OF THE RESPONSING LICENSED FROM FISIONAL EN INVEER, TO MITTER THIS DOCUMENT

SITE NAME:

AVON - MONTEVIDEO ROAD FA# 10141394 SITE # CTL01330

324 MONTEVIDEO ROAD AVON, CT 0600 I HARTFORD COUNTY

RED BANK OFFICE

331 Newman Springs Road
Suite 203

Red Bank, NJ 07701-5699
Phone: 732.383.1950
Fax: 732.383.1984

Fax: 732.383.1984
ail: solutions@maserconsulting.com

ELEVATION VIEW AND ANTENNA SCHEDULE

A-2

NOTE:

THESE PLANS WERE DESIGNED WITH THE ASSUMPTION THAT THE PREVIOUS PLANS PREPARED BY MASER CONSULTING CONNECTICUT DATED 02/15/16 WILL BE COMPLETED PRIOR TO THE CURRENT SCOPE OF WORK BEING INSTALLED. ANY CHANGES IN PREVIOUS DESIGN SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IMMEDIATELY.

TO THE CURRENT SCOPE OF WORK BEING INSTALLED. ANY CHANGES IN PREVIOUS DESIGN SHALL BE BROUGHT TO THE

ATTENTION OF THE ENGINEER IMMEDIATELY.

BASED ON PHOTOS BY OTHERS, AS-BUILT DRAWINGS BY EASTERN COMMUNICATIONS DATED 4/2/14, AS-BUILT DRAWINGS BY BERKSHIRE WIRELESS DATED 8/7/15, AND

REDLINED RFDS REV. 2 BY EASTERN COMMUNICATIONS DATED 4/2/14. THE BASIS FOR

EACH AS-BUILT DRAWING WAS A CONSTRUCTION DRAWING SET PREPARED BY CENTEK

ENGINEERING DATED 01/24/14.

MASER CONSULTING
—CONNECTICUT—

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers Planners Surveyors
Landscape Architects Environmental Scientis

Copyright © 2018. Maser Consulting Connecticut All Rights Reserved. This drawing and information contained herein is authorized for use only by the party for whom the service contracted or to whom it is certified. This drawing may not be copied, reused, distributed or relied upon for any other purpose without the express written consent of

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

PRO
ALL STATES
EXCAVATORS,
PREPARING
SURFACE A

EXCAVATORS, DESIGNERS, OR ANY PERS PREPARING TO DISTURB THE EARTH'S SURFACE ANYWHERE IN ANY STATE

∡**all** before you dig. FOR STATE SPECIFIC DIRECT PHONE NU

TIS / IOCATION OF MAY I DIVANY PERSON, 'SLES THEY / E ACTING UNDER THE DIRE TYON IN THE ESPONSILIE LICENSEOPER OF FISIONAL EN INCER, TO THE THIS DOCUMENT.

SITE NAME:

AVON - MONTEVIDEO ROAD FA# 10141394 SITE # CTL01330

324 MONTEVIDEO ROAD AVON, CT 06001 HARTFORD COUNTY

331 Newman Springs Road Suite 203 Red Bank, NJ 07701-5699

Red Bank, NJ 07701-569 Phone: 732.383.1950 Fax: 732.383.1984

TITLE:

ANTENNA LAYOUTS

SHEET NUMBER

A-3

CCI TPA-65R-LCUUUU-H8

ANTENNA AND RRUS MOUNTING DETAILS

RRUS-32 B2 DIMENSIONS (H X W X D): 27.2" X 12.1" X 7.0" (INCLUDES SUNSHIELD) WEIGHT: 53 LBS

RRUS-32 B2 DETAIL

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

	AS SHOWN			JOB NUMBER :	OB NUMBER : 17963018A		
ľ	$\overline{\Box}$						
-1							
-1							
-1			-				
-1							
П	2	03/29/18	REVISED W/ TO	OWER MODS	AJC	RA	
- 1	1	12/27/16	FOR CONSTRU	JCTION	RA	FEP	
- 1	0	12/14/16	ISSUED FOR RE	VIEW	AJC	FEP	
	REV	DATE	REMINIU	MMUHAAA	DRAWN BY	CHECKED BY	
	=	1111		MAL	400		

IT IS A JOLATION OF LAW! DR ANY PERSON THEY IS ACTING UNDER THE DIRECTION RESPONSING LICENSED PROFISSION ALEN IN ITER THIS DOCUMENT

SITE NAME:

AVON - MONTEVIDEO ROAD FA# 10141394 SITE # CTL01330

> 324 MONTEVIDEO ROAD AVON, CT 06001 HARTFORD COUNTY

DETAILS

A-4

ALPHA SECTOR BETA SECTOR

GAMMA SECTOR

BASED ON RF ENGINEERING DESIGN ENTITLED "NEW-ENGLAND_CONNECTICUT_CTL01330_2016-LTE-Extended-Carrier_RRH-Add_om636a_2051A048Z7_10141394_139386_01-11-2016_Final-Approved_v5.00"

RF PLUMBING DIAGRAMS

CADWELD DETAILS

RRH GROUNDING

ANTENNA GROUNDING

LEGEND

- I- TINNED COPPER GROUND BAR, I/4"x4"x20", NEWTON INSTRUMENT CO. CAT. NO. B-6142 OR EQUAL. HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION.
- 2- INSULATORS, NEWTON INSTRUMENT CAT, NO. 3061-4
- 3- 5/8" LOCKWASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8
- WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-5056
- 5- 5/8-11 X I" HHCS BOLTS, NEWTON INSTRUMENT CO. CAT NO. 3012-1
- 6- EACH GROUND CONDUCTOR TERMINATING ON ANY GROUND BAR HAVE AN IDENTIFICATION TAG ATTACHED AT EACH END THAT WILL IDENTIFY ITS ORIGIN AND DESTINATION.

SECTION "P" - SURGE PRODUCERS

CABLE ENTRY PORTS (HATCH PLATES) (#2)
GENERATOR FRAMEWORK (IF AVAILABLE) (#2)
TELCO GROUND BAR
COMMERCIAL POWER COMMON NEUTRAL/GROUND BOND (#2)
+244 POWER SUPPLY RETURN BAR (#2)
-48V POWER SUPPLY RETURN BAR (#2)
RECTIFIER FRAMES.

SECTION "A" - SURGE ABSORBERS

INTERIOR GROUND RING (#2) EXTERNAL EARTH GROUND FIELD (BURIED GROUND RING) (#2) METALLIC COLD WATER PIPE (IF AVAILABLE) (#2) BUILDING STEEL (IF AVAILABLE) (#2)

MASTER GROUND BAR

SCHEMATIC DIAGRAM GROUNDING SYSTEM

TYPICAL GROUND BAR CONNECTION DETAIL NOT TO SCALE

NOTE

- DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO ANTENNA GROUND BAR.
- 2. WEATHER PROOFING SHALL BE TWO-PART TAPE KIT, COLD SHRINK SHALL NOT BE USED.

TYPICAL GROUND WIRE
TO GROUNDING BAR
NOT TO SCALE

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

IT IS / JOLATION OF LAW! I OF A MY PERSON, INLESS THEY / PE ACTING UNDER THE DIRE TYON IF THE RESPONSING LICENSE PROPERTY OF THIS DOCUMENT

SITE NAME:

AVON - MONTEVIDEO ROAD FA# 10141394 SITE # CTL01330

> 324 MONTEVIDEO ROAD AVON, CT 06001 HARTFORD COUNTY

331 Newman Springs Road Suite 203 Red Bank, NJ 07701-5699 Phone: 732.383.1950

Fax: 732.38 email: solutions@maserconsulting.

GROUNDING DETAILS

BER:

G-I

NOTES:

- I. YIELD STRENGTH OF EXISTING TOWER MEMBERS IS ASSUMED.
- EXISTING TOWER MEMBERS WERE DETERMINED FROM A STRUCTURAL ANALYSIS REPORT PREPARED BY MASER CONSULTING P.A., PROJECT NO. 16946029, DATED MAY 2ND, 2017.
- 3. CONTRACTOR IS TO REMOVE AND REPLACE EXISTING APPURTENANCES, MOUNTS AND TOWER HARDWARE AS REQUIRED TO INSTALL THE PROPOSED REINFORCEMENTS.
- 4. CONTRACTOR SHALL PERFORM A TOWER INSPECTION PRIOR TO PURCHASE AND/OR FABRICATION
- 5. THE MEANS AND METHODS OF INSTALLATION ARE THE RESPONSIBILITIES OF THE CONTRACTOR.
- 7. CONTRACTOR SHALL NOT REUSE EXISTING BOLTS AND ASSOCIATED HARDWARE.
- THE OVERALL TOWER USAGE HAS BEEN DETERMINED TO BE 87.2% FOR THE EXISTING AND PROPOSED LOADING, ONCE THE TOWER MODIFICATIONS HAVE BEEN COMPLETED. MAXIMUM USAGE OCCURS AT THE TOWER LEGS AT 13.1'-14.5' FEET ABOVE GROUND LEVEL.

TYPE	ELEVATION	TYPE	ELEVATION
SBNH-1D6565C (att)	70	RRUS 32 B66 (att)	70
SBNH-1D6565C (att)	70	RRUS 32 B66 (att)	70
SBNH-1D6565C (att)	70	80010966 w/ 8' pipe (att)	70
TPA-66R-LCUUUU-H8 (att)	70	80010966 w/ 8' pipe (att)	70
TPA-65R-LCUUUU-H6 (att)	70	80010966 w/ 8' pipe (att)	70
TPA-65R-LCUUUU-H8 (att)	70	18-ft doppler	68.5
CCI OPA-65R-LCUU-H8 (att)	70	Andrew 10' Platform	68
CCI OPA-65R-LCUU-H8 (att)	70	SBNHH-1D65B (verizon)	55
CCI OPA-65R-LCUU-H8 (att)	70	(3) RRH 2x60 (verizon)	55
(2) RRUS-11 (att)	70	(3) RRH 2x60 (verizon)	55
(2) RRUS-11 (att)	70	LPA-80063-6CF-EDIN-5 (verizon)	55
(2) RRUS-11 (att)	70	SBNHH-1D65B (verizon)	55
RRUS 32 (att)	70	SBNHH-1D65B (verizon)	55
RRUS 32 (att)	70	SBNHH-1D65B (verizon)	55
RRUS 32 (att)	70	APX75-866514 (vertzon)	55
RRUS 32 B2 (att)	70	BXA-70063-6CF-EDIN-X (verizon)	55
RRUS 32 B2 (att)	70	LPA-80063-6CF-EDIN-5 (verizon)	55
RRUS 32 B2 (att)	70	Verizon Sector Frame (verizon)	55
(3) DC6-48-06-18-8F (att)	70	Verizon Sector Frame (verizon)	55
RRUS 4478 (att)	70	LPA-80063-6CF-EDIN-5 (vertzon)	55
RRUS 4478 (att)	70	LPA-80063-6CF-EDIN-5 (vertzon)	55
RRUS 4478 (att)	70	RHSDC-3315-PF-48 (verizon)	51
RRUS 32 B66 (att)	70	RHSDC-3315-PF-48 (verizon)	51

TOWER MODIFICATION TABLE								
ELEVATION (FT)	MEMBER TYPE	EXISTING MEMBER SIZE	QTY	PROPOSED MEMBER SIZE	QTY	LENGTH *	END BOLT	QTY
9'-9"	HORIZONTAL	-	-	L3×3×3/8	3	± 9'-8"	U-BOLT	6

* LENGTH IS THEORETICAL. CONTRACTOR TO FIELD VERIFY THE LENGTH OF THE EXISTING MEMBERS IN THE FIELD PRIOR TO FABRICATION OF THE PROPOSED BRACING MEMBER * EXISTING BOLTED CONNECTIONS ARE TO BE REMOVED AND WELDED

TOWER FOUNDATION REACTIONS			
REACTION TYPE	FORCE		
COMPRESSION (MAX KIP PER LEG)	164		
UPLIFT (MAX KIP PER LEG)	150		
OVERTURNING MOMENT (KIP-FT)	1331		
SHEAR (KIP)	30		

BOLT DETAIL NOT TO SCALE

Customer Loyalty through Client Satisfaction
www.maserconsulting.com
Engineers Planners Surveyors
andscape Architects Environmental Scientist

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

AS SHOWN 17963018A REV DATE D

IT IS / JOCATION OF CAMPION AND PERSON SES THEY / EACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSEDIRED IN SOCIAL EN INGER, TO INTER THIS DOCUMENT

SITE NAME:

AVON - MONTEVIDEO ROAD FA# 10141394 SITE # CTL01330

> 324 MONTEVIDEO ROAD AVON, CT 06001 HARTFORD COUNTY

RED BANK OFFICE

331 Newman Springs Road
Suite 203

Red Bank, NJ 07701-5699
Phone: 732.383.1950
Fax: 732.383.1984

TOWER MODIFICATION DESIGN DETAILS

S-I

0'-0" AGL

59'-6" AGL

TOWER ELEVATION 2.5 5 (IN FEET) SCALE: 1" = 5' FOR 24"X36" DRAWINGS

(DO NOT SCALE 11"X17" DRAWINGS)

9'-8 1/2"

PLAN VIEW NOT TO SCALE

TOWER HORIZONTAL REINFORCEMENT DETAILS

NOT TO SCALE

NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701

AS SHOWN 17963018A

IT IS A OLATION OF MAN DE ANN PERSON. SELESS
THEY OF ACTING UNDER THE DIRE THOM, A THE
RESPONSING LICENSED FROM THIS DOCUMENT.
THE THIS DOCUMENT.

SITE NAME:

AVON - MONTEVIDEO ROAD FA# 10141394 SITE # CTL01330

324 MONTEVIDEO ROAD AVON, CT 06001 HARTFORD COUNTY

STRUCTURAL DETAILS

S-2

gin

 \Box

Self-Support Tower Modification Analysis

FOR

CT1330 – Avon Montevideo Road

FA Number: 10141394 324 Montevideo Road Avon, CT 06001 Hartford County

LTE 4C - MRCTB022434 / LTE 5C - MRCTB024053 / LTE 6C - MTCTB026596

Tower and Foundation Utilizations: 87.2 & 93.3%

April 3, 2018

Prepared For

AT&T

550 Cochituate Road Framingham, MA 01701

Prepared By

Maser Consulting Connecticut

331 Newman Springs Road, Suite 203

Red Rombin NJ 07701

Pétros E. Tsubkalas ...E. Geographic Discipline Leader Connecticut License No. 32557

MC Project No. 17963018A

Objective:

The objective of this report is to determine the capacity of the existing 59.5' self-support tower structure with the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

Introduction:

Maser Consulting Connecticut has performed limited field observations on April 16, 2016 to verify the existing condition of the structure and to locate and quantify the existing wireless appurtenances from the ground. This structural analysis is only valid for the appurtenances on the existing self-support tower at the time of the site visit. Additionally, Maser Consulting Connecticut has reviewed the following documents in completing this report:

- Previous Structural Analysis Tower Modification Report prepared by Maser Consulting Connecticut, dated May 2, 2017
- Previous Construction Drawings prepared by Maser Consulting Connecticut, dated April 10, 2017
- RFDS 1765191 provided by Empire, dated October 5, 2017

Maser Consulting Connecticut has included all **non-AT&T** loading in the previous referenced structural analysis report. No tower and appurtenance mapping has been conducted to confirm the loading presented in the previous structural analysis report. Also, the results of this analysis are only valid for the appurtenances installed on the tower at the time of the site visit by Maser Consulting Connecticut. This report is based upon this information, as well as the information obtained in the field.

Discrete and Linear Appurtenances:

Maser Consulting Connecticut understands the existing and proposed **AT&T** loading on the tower to be as follows:

Quantity	Manufacturer	Antenna/ Appurtenance	Status	Sector
3	Commscope	SBNH-1D6565C	Existing	Alpha, Beta, & Gamma
3	CCI	OPA-65R-LCUU-H8	Existing	Alpha, Beta, & Gamma
3	Kathrein	80010966	Proposed	Alpha, Beta, & Gamma
3	CCI	TPA-65R-LCUUUU-H8	Existing	Alpha, Beta, & Gamma
6	Ericsson	RRUS 11	Existing	Alpha, Beta, & Gamma
3	Ericsson	RRUS 32	Existing	Alpha, Beta, & Gamma
3	Ericsson	RRUS 4478 B14	Proposed	Alpha, Beta, & Gamma
3	Ericsson	RRUS 32 B66	Proposed	Alpha, Beta, & Gamma
3	Ericsson	RRUS 32 B2	Existing	Alpha, Beta, & Gamma
3	Raycap	DC6-48-60-18-8F	Existing	Alpha, Beta, & Gamma

Note: The overall antenna loading is found in the appendix A of this report.

Codes, Standards and Loading:

Maser Consulting Connecticut utilized the following codes and standards:

- 2016 CT State Building Code and All Subsequent Amendments, Incorporating IBC 2012
- Structural Standards for Antenna Supporting Structures and Antennas ANSI/TIA-EIA-222-G
 - Basic Wind Speed 98 mph (3 Second Gust)
 - Service Wind Speed 60 mph
 - o Ice Wind Speed 40 mph (1" Ice)
 - Topographic Category 4
 - o Crest Height 742'
 - Exposure Category B

Analysis Approach & Assumptions:

The analysis approach used in this structural analysis is based on the premise that if the existing self-support tower with the proposed modifications is structurally adequate to support the existing and proposed equipment per the aforementioned codes and standards, or if the increase in the forces in the structure are deemed to be negligible or acceptable, then the proposed equipment can be installed as intended. TNX, a 3D finite element modeling and analysis program, was used to determine the capacity and usage of the existing antenna support frame.

All the existing and proposed **AT&T** equipment is shielded from wind loading to the RF transparent dome on top of the tower. Only the dead load of the **AT&T** equipment was considered in this analysis.

The following assumptions were utilized in this report:

- Structural Steel Pipes are constructed of A53 Grade B Steel.
- The existing tower is constructed to plumb and is properly maintained with no structural deficiencies and deteriorations.
- It is assumed that the telecommunication equipment supports, antenna supports, and existing structure have been designed by a registered licensed professional engineer for the existing loads acting on the structure, as required by all applicable codes, prior to the proposed modifications listed within this report.
- It is assumed that information provided by the client regarding the structure itself, the antenna models, feed lines, and other relevant information is current and correct.
- It is assumed all other existing appurtenances, antennas, cables, etc. belonging to others have been installed and supported per code and per specifications so as not to damage any existing structural support members, and that any contributing loads from adjacent equipment has been taken into consideration for their design.
- The tower and foundation modifications have been installed as intended as shown in the referenced construction drawings

Calculations:

The Tower Analysis calculations are found in **Appendix A** of this report.

Modifications:

The modification for this tower consists of installing secondary horizontal members at elevation 9'-9" AGL. The members should be L3x3x3/8 steel angles and shall be installed on all three sides of the tower.

Please see final construction drawings prepared by Maser Consulting Connecticut for more details.

Conclusion:

Maser Consulting Connecticut has determined that the existing 59.5' tall structural steel galvanized self-support tower with the proposed modifications is structurally **ADEQUATE** capacity to support the existing and proposed loading per the aforementioned codes and standards. It has been calculated that the maximum stress ratio is **87.2%**, which occurs in the tower legs, between elevations 13.1-19.5" above grade. Therefore, the proposed **AT&T** equipment **CAN** be installed on the existing self-support tower as intended once the proposed modifications are installed.

Additionally, the existing modified foundation has been determined to be structurally **ADEQUATE** to support the existing and proposed loading. The foundation has been determined to be stressed to a maximum of **93.3%** of its structural capacity.

Maser Consulting Connecticut reserves the right to amend this report if additional information about the self-support tower and foundation is provided. The conclusions reached by Maser Consulting Connecticut in this report are only valid for the discrete and linear appurtenances listed in this report. Any change to the installation will require a revision to this structural analysis.

We appreciate the opportunity to be of service on this project. If you should have any questions or require any additional information, please do not hesitate to call our office.

Sincerely,

Maser Consulting Connecticut

Petros E Tsoukalas P.E. Geographic Discipline Leader Lauren Luzier Engineer

APPENDIX A

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
SBNH-1D6565C (att)	70	RRUS 32 B66 (att)	70
SBNH-1D6565C (att)	70	RRUS 32 B66 (att)	70
SBNH-1D6565C (att)	70	80010966 w/ 8' pipe (att)	70
TPA-65R-LCUUUU-H8 (att)	70	80010966 w/ 8' pipe (att)	70
TPA-65R-LCUUUU-H8 (att)	70	80010966 w/ 8' pipe (att)	70
TPA-65R-LCUUUU-H8 (att)	70	18-ft doppler	68.5
CCI OPA-65R-LCUU-H8 (att)	70	Andrew 10' Platform	68
CCI OPA-65R-LCUU-H8 (att)	70	SBNHH-1D65B (verizon)	55
CCI OPA-65R-LCUU-H8 (att)	70	(3) RRH 2x60 (verizon)	55
(2) RRUS-11 (att)	70	(3) RRH 2x60 (verizon)	55
(2) RRUS-11 (att)	70	LPA-80063-6CF-EDIN-5 (verizon)	55
(2) RRUS-11 (att)	70	SBNHH-1D65B (verizon)	55
RRUS 32 (att)	70	SBNHH-1D65B (verizon)	55
RRUS 32 (att)	70	SBNHH-1D65B (verizon)	55
RRUS 32 (att)	70	APX75-866514 (verizon)	55
RRUS 32 B2 (att)	70	BXA-70063-6CF-EDIN-X (verizon)	55
RRUS 32 B2 (att)	70	LPA-80063-6CF-EDIN-5 (verizon)	55
RRUS 32 B2 (att)	70	Verizon Sector Frame (verizon)	55
(3) DC6-48-06-18-8F (att)	70	Verizon Sector Frame (verizon)	55
RRUS 4478 (att)	70	LPA-80063-6CF-EDIN-5 (verizon)	55
RRUS 4478 (att)	70	LPA-80063-6CF-EDIN-5 (verizon)	55
RRUS 4478 (att)	70	RHSDC-3315-PF-48 (verizon)	51
RRUS 32 B66 (att)	70	RHSDC-3315-PF-48 (verizon)	51

MATERIAL STRENGTH

/	GRADE	Fy	Fu	GRADE	Fy	Fu
	A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi
	Δ53_R_35	35 kei	63 kei		•	•

TOWER DESIGN NOTES

- 1. Tower designed for Exposure B to the TIA-222-G Standard.
- 2. Tower designed for a 98 mph basic wind in accordance with the TIA-222-G Standard.
- Tower is also designed for a 40 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 60 mph wind.
- 5. Tower Structure Class II.
- Topographic Category 4 with Crest Height of 742.00 ft
- Weld together tower sections have flange connections.
- Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications.
- Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- 10. Welds are fabricated with ER-70S-6 electrodes.11. TOWER RATING: 87.2%

TORQUE 10 kip-ft REACTIONS - 98 mph WIND

Maser Consulting
2000 Midlantic Drive, Suite 100
Mt. Laurel, NJ
Phone: 856 797-0412

FAX: 856 722-1120

^{ob:} CTL01330 Avon - Montevideo Road				
Project: 16946029A				
Client: AT&T	Drawn by:	App'd:		
Code: TIA-222-G	Date: 04/03/18	Scale: NTS		
Path:		Dwg No. F_		

Maser Consulting	^{Job:} CTL01330 Avon ·	-
2000 Midlantic Drive, Suite 100	Project: 16946029A	
Mt. Laurel, NJ	Client: AT&T	[
Phone: 856 797-0412	Code: TIA-222-G	
FAX: 856 722-1120	Path: \maserconsulting.com/luj/Projects/2017/17963000A/179	16

[™] CTL01330 Avon - Montevideo Road				
Project: 16946029A				
AIXI	_ ·	App'd:		
Code: TIA-222-G	Date: 04/03/18	Scale: NTS		
Path: //maserconsulting.com/luj/Projects/2017/17963000A/17	963018A\Structural\Tower Analysis\Rev 1\TNX\Self Suppo	Dwg No. E-5		

		_		
Maser Consulting		lob: CTL01330 Avon - Montevideo Road		
2000 Midla	antic Drive, Suite 100	Project: 16946029A		
	It. Laurel, NJ	Client: AT&T	Drawn by:	App'd:
	ne: 856 797-0412	Code: TIA-222-G	Date: 04/03/18	Scale: NTS
FΔ	Y: 856 722-1120	Path:	•	Dwg No. ⊏_

Date: 3/27/2018 1:15 PM Foundation Check.xmcd Maser Project No. 17963018A

Structural analysis of existing tower foundation for supporting the existing and proposed AT&T discrete and linear appurenances, together with existing loading.

Standards:

- 2016 CT State Building Code and All Subsequent Amendments, Incorporating IBC 2012
- ANSI/TIA-222-G Code

Design Parameters:

Axial Load on Base Footing: $P_{app} := 18 \cdot kip$

Shear Load on Base Footing: $V_{app} := 30 \text{kip}$

Moment Load on Base Footing: $M_{app} := 1335 \text{kip} \cdot \text{ft}$

Depth to Top of Footing: $D_f := 0 \cdot ft$

Width of Pier: $W_{pier} := 0 \cdot ft$ No Piers

Area of Mat: $A_{mat} := 310 \text{ ft}^2$ Obtained from previous structural report

Area of Proposed Mat: $A_{\text{mat,1}} := 215.9 \text{ft}^2$

Thickness of Proposed Mat: $D_1 := 2 \cdot ft$

Width of Mat: W_{mat} := $17.6 \cdot \text{ft}$ Width of a square mat of equivalent area

Depth of Mat: Depth of a square mat of equivalent area Depth of a square mat of equivalent area

Thickness of Exisiting Mat: $D_2 := 3.5 \cdot ft$ Obtained from previous structural report

Height of Pier Above Grade: $D_{up} := 0.0 \cdot ft$

Concrete Volumes:

Square Pier Volume:
$$V_{pier} := \frac{W_{pier}^2 \cdot \pi}{4} \cdot \left(D_f + D_{up}\right) \qquad \qquad V_{pier} = 0 \cdot \text{ft}^3$$

$$V_{mat} := \left(A_{mat} \cdot D_2\right) + \left(A_{mat.1} \cdot D_1\right) \qquad \qquad V_{mat} = 1516.8 \cdot ft^3$$

Total Volume:
$$V_{conc} := 3 \cdot V_{pier} + V_{mat}$$
 $V_{conc} = 1516.8 \cdot ft^3$

Soil Volume:

Usage:

Total Volume of Soil
$$V_{soil} := A_{mat} \cdot D_f - 3 \cdot V_{pier}$$
 $V_{soil} = 0 \cdot ft^3$

Concrete and Soil Weights:

Unit Weight of Soil:
$$\gamma_{\text{soil}} := 125 \text{pcf}$$

Unit Weight of Concrete:
$$\gamma_{conc} := 150 pcf$$
 Assume Normal weight concrete

Total Concrete Weight:
$$W_{conc} := V_{conc} \cdot \gamma_{conc}$$
 $W_{conc} = 227.5 \cdot kip$

Total Soil Weight:
$$W_{soil} := V_{soil} \cdot \gamma_{soil}$$
 $W_{soil} = 0 \cdot kip$

Overturning Moment Check:

Total Applied Moment:
$$M_a := M_{app} + V_{app} \cdot (D_f + D_2)$$
 $M_a = 1440 \cdot \text{kip} \cdot \text{ft}$

Strength Reduction Factor:
$$\phi := 0.75$$

Resisting Moment:
$$M_R := (8.38 \text{ft}) \cdot (P_{app} + W_{conc} + W_{soil})$$
 $M_R = 2057.5 \cdot \text{kip} \cdot \text{ft}$

Usage := $\frac{M_a}{(\phi \cdot M_R)}$ Usage = 93.3·%

$$\frac{11 \text{ M}_{a} \leq \phi \cdot \text{MR}}{\text{Test} = \text{"GOOD"}}$$

8.38 ft. :- Distance of centroid of the mat foundation to the edge of the foundation

Bearing Capacity Check:

Total Applied Moment:	$P_a := P_{ann} + W_{conc} + W_{soil}$	$P_a = 245.5 \cdot kip$
-----------------------	--	-------------------------

Bearing Area:
$$A_b := A_{mat}$$
 $A_b = 310 \cdot ft^2$

Moment of Inertia:
$$I_{mat} := 8110 ft^4$$

Section Modulus:
$$S_{mat} := \frac{\left(I_{mat}\right)}{11.25 ft} \qquad \qquad S_{mat} = 720.9 \cdot ft^3$$

Bearing Pressure:
$$\sigma_1 := \frac{P_a}{A_b} + \frac{M_a}{S_{mat}} \qquad \qquad \sigma_1 = 2.79 \cdot ksf$$

$$\sigma_2 := \frac{P_a}{A_b} - \frac{M_a}{S_{mat}}$$

$$\sigma_2 = -1.206 \cdot ksf$$

Ultimate Bearing Pressure:
$$\sigma_{\text{ult}} := 79.05 \cdot \text{ksf}$$
 (Per Geotechnical Investigation Report)

Allowable Bearing Pressure:
$$\sigma_a := \frac{\sigma_{ult}}{FOS} = 26.35 \cdot ksf$$
 (Per Geotechnical Investigation Report)

Bearing Check: Test :=
$$|"GOOD"|$$
 if $max(\sigma_1, \sigma_2) \le \sigma_a$ Test = $"GOOD"$ $|"No Good"|$ otherwise

Usage:
$$\text{Usage} := \frac{\max(\sigma_1, \sigma_2)}{\sigma_a} \quad \text{Usage} = 10.6 \cdot \%$$

Maser Consulting

2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	1 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 59.50 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 7.58 ft at the top and 9.71 ft at the base.

There is a 3 sided latticed pole with a face width of 7.58 ft.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 98 mph.

Structure Class II.

Exposure Category B.

Topographic Category 4.

Crest Height 742.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 40 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Weld together tower sections have flange connections..

Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications..

Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards...

Welds are fabricated with ER-70S-6 electrodes..

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in latticed pole member design is 1.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric
- Distribute Leg Loads As Uniform Assume Legs Pinned
- Assume Rigid Index Plate
- Use Clear Spans For Wind Area
- Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Maser Consulting

2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	2 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Triangular Tower

	3 Sided Latticed Pole Section Geometry							
Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length		
	ft			ft		ft		
L1	59.50-39.50			7.58	1	20.00		
L2	39.50-19.50			7.58	1	20.00		

	3 Sided Latticed Pole Section Geometry (cont'd)						
Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace End	Horizontals	Offset	Offset
	ft	ft		Panels		in	in
L1	59.50-39.50	6.67	K Brace Left	No	Yes	0.0000	0.0000
L2	39.50-19.50	6.67	K Brace Left	No	Yes	0.0000	0.0000

	3 Sided Latticed Pole Section Geometry (cont'd)									
Tower Elevation	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade				
<u>ft</u> L1 59.50-39.50	Pipe	Rohn 3.5 STD	A572-50	Pipe	P2.5x.203	A53-B-35				

Maser Consulting

2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	3 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
L2 39.50-19.50	Arbitrary Shape	3.5 STD with 4.5x0.237 HSS Half Pipe	(50 ksi) A572-50 (50 ksi)	Pipe	P2.5x.203	(35 ksi) A53-B-35 (35 ksi)

3 Sided Latticed Pole Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
L1 59.50-39.50	Single Angle	L3x5x1/4	A36	Flat Bar		A36
			(36 ksi)			(36 ksi)

3 Sided Latticed Pole Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
L1 59.50-39.50	None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x1/4	A36
				(36 ksi)			(36 ksi)
L2 39.50-19.50	None	Flat Bar		A36	Equal Angle	L3x3x3/8	A36
				(36 ksi)			(36 ksi)

3 Sided Latticed Pole Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor	-	Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft ²	in					in	in	in
L1 59.50-39.50	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
L2 39.50-19.50	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

3 Sided Latticed Pole Section Geometry (cont'd)

		_				K Fac	ctors ¹			
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y

Maser Consulting

2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	4 of 32
Pro	ject [Date
	16946029A	10:27:13 04/03/18
Clie	AT&T	Designed by

	K Factors ¹											
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner		
Elevation	K Single	K Solid		Brace Diags	Brace Diags	Diags			Horiz.	Brace		
	Angles	Rounds		X	X	X	X	X	X	X		
ft				Y	Y	Y	Y	Y	Y	Y		
L1	Yes	Yes	1	1	1	1	1	1	1	1		
59.50-39.50				1	1	1	1	1	1	1		
L2	Yes	Yes	1	1	1	1	1	1	1	1		
39.50-19.50				1	1	1	1	1	1	1		

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

3 Sided Latticed Pole Section Geometry (cont'd)

Tower	Leg		Diago	nal	Top G	irt	Botton	Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
Elevation														
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
L1 59.50-39.50	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
L2 39.50-19.50	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

3 Sided Latticed Pole Section Geometry (cont'd)

Tower	Leg	Leg		Diagon	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
L1 59.50-39.50	Flange	0.8750	4	0.7500	0	0.6250	2	0.6250	0	0.6250	0	0.5000	1	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
L2 39.50-19.50	Flange	0.8750	4	0.5000	0	0.6250	0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of	Section Length
					Sections	
	ft			ft		ft
T1	19.50-13.10			7.58	1	6.40
T2	13.10-6.30			8.28	1	6.80
Т3	6.30-0.00			9.02	1	6.30

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	5 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

	Tower Section Geometry (cont'd)										
Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset				
T1	ft	ft	V Decas Diaht	Panels	Vac	0.0000	in 0.0000				
T2	19.50-13.10 13.10-6.30	6.40 6.80	K Brace Right K Brace Left	No No	Yes Yes	0.0000	0.0000				
T3	6.30-0.00	6.30	K1 Down	No	Yes	0.0000	0.0000				

	Tower Section Geometry (cont'd)										
Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal					
Elevation ft	Туре	Size	Grade	Type	Size	Grade					
T1 19.50-13.10	Arbitrary Shape	3.5 STD with 4.5x0.237 HSS Half Pipe	A572-50 (50 ksi)	Pipe	ROHN 2.5 STD	A53-B-35 (35 ksi)					
T2 13.10-6.30	Arbitrary Shape	3.5 STD with 4.5x0.237 HSS Half Pipe	A572-50 (50 ksi)	Pipe	ROHN 2.5 STD	A53-B-35 (35 ksi)					
T3 6.30-0.00	Arbitrary Shape	3.5 STD with 4.5x0.237 HSS Half Pipe	A572-50 (50 ksi)	Equal Angle	L3x3x3/16	A36 (36 ksi)					

	Tower Section Geometry (cont'd)											
Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal					
Elevation	of Mid	Туре	Size	Grade	Туре	Size	Grade					
ft	Girts											
T1 19.50-13.10	None	Flat Bar		A36	Equal Angle	L3x3x1/4	A572-50					
				(36 ksi)			(50 ksi)					
T2 13.10-6.30	None	Flat Bar		A36	Equal Angle	L3x3x1/4	A572-50					
				(36 ksi)			(50 ksi)					
T3 6.30-0.00	None	Flat Bar		A36	Double Equal	2L2x2x3/16	A572-50					
				(36 ksi)	Angle		(50 ksi)					

Tower Section Geometry (cont'd)										
Tower Elevation	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor					
ft T3 6.30-0.00	A36 (36 ksi)	Horizontal (1) Diagonal (1)	Equal Angle Equal Angle	L2x2x3/16 L2x2x3/16	1					

Tower Section Geometry (cont'd)

Maser Consulting

2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	6 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	$Adjust. \ Factor \ A_r$	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in					in	in	in
T1 19.50-13.10	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T2 13.10-6.30	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T3 6.30-0.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000

Tower Section Geometry (cont'd)

						K Fac	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1	Yes	Yes	1	1	1	1	1	1	1	1
19.50-13.10				1	1	1	1	1	1	1
T2 13.10-6.30	Yes	Yes	0.5	1	1	1	1	1	1	1
				1	1	1	1	1	1	1
T3 6.30-0.00	Yes	Yes	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg				Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U		
	Deduct		Deduct		Deduct		Width		Width		Width		Width			
	in		in		in		Deduct		Deduct		Deduct		Deduct			
							in		in		in		in			
T1 19.50-13.10	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T2 13.10-6.30	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T3 6.30-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75		

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg		ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Horizontal		Short Hori	zontal
Elevation ft	Connection Type														
J	2)//0	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1 19.50-13.10	Flange	0.7500	0	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.5000	1	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Maser Consulting

2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	7 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Tower Elevation	Leg Connection	Leg		Diagon	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T2 13.10-6.30	Flange	0.7500	0	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.5000	1	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 6.30-0.00	Flange	0.7500	0	0.7500	0	0.6250	0	0.6250	0	0.6250	0	0.5000	1	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
LDF7-50A (1-5/8 FOAM) (verizon)	C	No	Ar (CaAa)	50.00 - 5.00	1.0000	-0.38	12	6	1.0000 1.9800	1.9800		0.82
2" Rigid Conduit (at&t)	A	No	Ar (CaAa)	59.50 - 5.00	0.0000	-0.41	4	4	1.0000 2.0000	2.0000		2.80
HB114-1-08U 4-M5J (verizon)	С	No	Ar (CaAa)	50.00 - 5.00	1.0000	-0.41	1	1	1.9800	2.0000		1.61
HB114-1-08U 4-M5J (verizon)	С	No	Ar (CaAa)	50.00 - 5.00	3.0000	-0.24	1	1	1.9800	2.0000		1.61

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		• •	ft			ft²/ft	plf
L3x3 mod	A	No	CaAa (Out Of	13.16 - 6.30	1	No Ice	0.50	30.00
			Face)			1/2" Ice	0.61	38.66
						1" Ice	0.72	47.67
L3x3 mod	В	No	CaAa (Out Of	13.16 - 6.30	1	No Ice	0.50	30.00
			Face)			1/2" Ice	0.61	38.66
						1" Ice	0.72	47.67
L3x3 mod	C	No	CaAa (Out Of	13.16 - 6.30	1	No Ice	0.50	30.00
			Face)			1/2" Ice	0.61	38.66
						1" Ice	0.72	47.67

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft ²	ft ²	ft ²	K
L1	59.50-39.50	A	0.000	0.000	16.000	0.000	0.22
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	29.148	0.000	0.14
L2	39.50-19.50	A	0.000	0.000	16.000	0.000	0.22

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412

FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	8 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft ²	ft ²	K
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	55.520	0.000	0.26
T1	19.50-13.10	Α	0.000	0.000	5.120	0.030	0.07
		В	0.000	0.000	0.000	0.030	0.00
		C	0.000	0.000	17.766	0.030	0.09
T2	13.10-6.30	A	0.000	0.000	5.440	3.400	0.28
		В	0.000	0.000	0.000	3.400	0.20
		C	0.000	0.000	18.877	3.400	0.29
T3	6.30-0.00	Α	0.000	0.000	1.040	0.000	0.01
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	3.609	0.000	0.02

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness	_	_	In Face	Out Face	
	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	59.50-39.50	A	2.877	0.000	0.000	46.152	0.000	1.04
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	49.720	0.000	1.37
L2	39.50-19.50	A	2.761	0.000	0.000	45.383	0.000	1.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	92.995	0.000	2.52
T1	19.50-13.10	A	2.620	0.000	0.000	14.225	0.065	0.31
		В		0.000	0.000	0.000	0.065	0.00
		C		0.000	0.000	29.097	0.065	0.77
T2	13.10-6.30	A	2.497	0.000	0.000	14.838	7.173	0.84
		В		0.000	0.000	0.000	7.173	0.53
		C		0.000	0.000	30.298	7.173	1.31
T3	6.30-0.00	A	2.239	0.000	0.000	2.727	0.000	0.05
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	5.546	0.000	0.14

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	59.50-39.50	0.7978	3.7366	0.3278	2.1488
L2	39.50-19.50	2.6176	4.5457	1.5341	2.9756
T1	19.50-13.10	2.7067	4.6767	1.5765	3.0831
T2	13.10-6.30	1.9894	3.4058	1.1260	2.2090
T3	6.30-0.00	1.0834	1.8456	0.4949	0.9919

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	9 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
L1	1	LDF7-50A (1-5/8 FOAM)	39.50 - 50.00	0.6000	0.5915
L1	2	2" Rigid Conduit	39.50 - 59.50	0.6000	0.5915
L1	3	HB114-1-08U4-M5J	39.50 - 50.00	0.6000	0.5915
L1	4	HB114-1-08U4-M5J	39.50 - 50.00	0.6000	0.5915
L2	1	LDF7-50A (1-5/8 FOAM)	19.50 - 39.50	0.6000	0.6000
L2	2	2" Rigid Conduit	19.50 - 39.50	0.6000	0.6000
L2	3	HB114-1-08U4-M5J	19.50 - 39.50	0.6000	0.6000
L2	4	HB114-1-08U4-M5J	19.50 - 39.50	0.6000	0.6000
T1	1	LDF7-50A (1-5/8 FOAM)	13.10 - 19.50	0.6000	0.6000
T1	2	2" Rigid Conduit	13.10 - 19.50	0.6000	0.6000
T1	3	HB114-1-08U4-M5J	13.10 - 19.50	0.6000	0.6000
T1	4	HB114-1-08U4-M5J	13.10 - 19.50	0.6000	0.6000
T2	1	LDF7-50A (1-5/8 FOAM)	6.30 - 13.10	0.6000	0.6000
T2	2	2" Rigid Conduit	6.30 - 13.10	0.6000	0.6000
T2	3	HB114-1-08U4-M5J	6.30 - 13.10	0.6000	0.6000
T2	4	HB114-1-08U4-M5J	6.30 - 13.10	0.6000	0.6000
T3	1	LDF7-50A (1-5/8 FOAM)	5.00 - 6.30	0.6000	0.5593
T3	2	2" Rigid Conduit	5.00 - 6.30	0.6000	0.5593
T3	3	HB114-1-08U4-M5J	5.00 - 6.30	0.6000	0.5593
T3	4	HB114-1-08U4-M5J	5.00 - 6.30	0.6000	0.5593

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weight
			Vert ft ft	٥	ft		ft²	ft ²	K
			ft						
Verizon Sector Frame	В	From Face	0.50	0.0000	55.00	No Ice	6.20	3.80	0.15
(verizon)			0.00			1/2" Ice	8.80	5.40	0.30
			0.00			1" Ice	11.40	7.00	0.45
Verizon Sector Frame	A	From Face	0.50	0.0000	55.00	No Ice	6.20	3.80	0.15
(verizon)			0.00			1/2" Ice	8.80	5.40	0.30
			0.00			1" Ice	11.40	7.00	0.45
LPA-80063-6CF-EDIN-5	В	From Face	0.50	0.0000	55.00	No Ice	9.57	8.55	0.03
(verizon)			6.00			1/2" Ice	10.03	9.01	0.10
			0.00			1" Ice	10.50	9.47	0.18
LPA-80063-6CF-EDIN-5	В	From Face	0.50	0.0000	55.00	No Ice	9.57	8.55	0.03
(verizon)			-6.00			1/2" Ice	10.03	9.01	0.10
			0.00			1" Ice	10.50	9.47	0.18
LPA-80063-6CF-EDIN-5	A	From Face	0.50	0.0000	55.00	No Ice	9.57	8.55	0.03
(verizon)			-8.75			1/2" Ice	10.03	9.01	0.10
			0.00			1" Ice	10.50	9.47	0.18
SBNHH-1D65B	В	From Face	0.50	0.0000	55.00	No Ice	8.20	6.89	0.07
(verizon)			4.00			1/2" Ice	8.70	7.95	0.14
			0.00			1" Ice	9.19	8.81	0.22
SBNHH-1D65B	В	From Face	0.50	0.0000	55.00	No Ice	8.20	6.89	0.07
(verizon)			-4.00			1/2" Ice	8.70	7.95	0.14
			0.00			1" Ice	9.19	8.81	0.22
SBNHH-1D65B	A	From Face	0.50	0.0000	55.00	No Ice	8.20	6.89	0.07
(verizon)			-6.75			1/2" Ice	8.70	7.95	0.14
			0.00			1" Ice	9.19	8.81	0.22
SBNHH-1D65B	Α	From Face	0.50	0.0000	55.00	No Ice	8.20	6.89	0.07

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	10 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigh
	Leg		Laterai Vert						
			ft	٥	ft		ft^2	ft^2	K
			ft ft						
(verizon)			1.25			1/2" Ice	8.70	7.95	0.14
			0.00			1" Ice	9.19	8.81	0.22
APX75-866514	Α	From Face	0.50	0.0000	55.00	No Ice	9.67	4.71	0.04
(verizon)			0.00			1/2" Ice	10.18	5.21	0.09
BXA-70063-6CF-EDIN-X	A	From Face	0.00 0.50	0.0000	55.00	1" Ice No Ice	10.70 14.41	5.71 5.72	0.15 0.04
(verizon)	А	rioiii race	-2.75	0.0000	33.00	1/2" Ice	14.41	6.17	0.04
(VCIIZOII)			0.00			1" Ice	15.44	6.63	0.12
LPA-80063-6CF-EDIN-5	В	From Face	0.50	0.0000	55.00	No Ice	9.57	8.55	0.03
(verizon)			3.25			1/2" Ice	10.03	9.01	0.10
			0.00			1" Ice	10.50	9.47	0.18
SBNH-1D6565C	Α	From Face	4.00	0.0000	70.00	No Ice	11.45	7.70	0.07
(at&t)			0.00			1/2" Ice	12.06	8.29	0.13
CDNII 1DCECEC	D	E E	0.00	0.0000	70.00	1" Ice	12.69	8.89	0.21
SBNH-1D6565C (at&t)	В	From Face	4.00 0.00	0.0000	70.00	No Ice 1/2" Ice	11.45 12.06	7.70 8.29	0.07 0.13
(at&t)			0.00			1" Ice	12.69	8.89	0.13
SBNH-1D6565C	C	From Face	4.00	0.0000	70.00	No Ice	11.45	7.70	0.21
(at&t)		110111111100	0.00	0.0000	70.00	1/2" Ice	12.06	8.29	0.13
, ,			0.00			1" Ice	12.69	8.89	0.21
TPA-65R-LCUUUU-H8	A	From Face	4.00	0.0000	70.00	No Ice	12.75	7.25	0.11
(at&t)			0.00			1/2" Ice	13.33	7.82	0.18
			0.00			1" Ice	13.92	8.40	0.26
TPA-65R-LCUUUU-H8	В	From Face	4.00	0.0000	70.00	No Ice	12.75	7.25	0.11
(at&t)			0.00			1/2" Ice	13.33	7.82	0.18
TPA-65R-LCUUUU-H8	С	From Face	0.00 4.00	0.0000	70.00	1" Ice No Ice	13.92 12.75	8.40 7.25	0.26 0.11
(at&t)	C	rioiii race	0.00	0.0000	70.00	1/2" Ice	13.33	7.23	0.11
(dicci)			0.00			1" Ice	13.92	8.40	0.26
CCI OPA-65R-LCUU-H8	Α	From Face	4.00	0.0000	70.00	No Ice	12.76	7.48	0.06
(at&t)			0.00			1/2" Ice	13.34	8.06	0.14
			0.00			1" Ice	13.93	8.64	0.22
CCI OPA-65R-LCUU-H8	В	From Face	4.00	0.0000	70.00	No Ice	12.76	7.48	0.06
(at&t)			0.00			1/2" Ice	13.34	8.06	0.14
CCLODA CED L'CLULUO		Б Б	0.00	0.0000	70.00	1" Ice	13.93	8.64	0.22
CCI OPA-65R-LCUU-H8	С	From Face	4.00	0.0000	70.00	No Ice	12.76	7.48	0.06
(at&t)			0.00 0.00			1/2" Ice 1" Ice	13.34 13.93	8.06 8.64	0.14 0.22
(2) RRUS-11	Α	From Face	4.00	0.0000	70.00	No Ice	2.52	1.02	0.22
(at&t)	71	1 Tom 1 acc	0.00	0.0000	70.00	1/2" Ice	2.72	1.16	0.00
()			0.00			1" Ice	2.92	1.30	0.10
(2) RRUS-11	В	From Face	4.00	0.0000	70.00	No Ice	2.52	1.02	0.06
(at&t)			0.00			1/2" Ice	2.72	1.16	0.07
			0.00			1" Ice	2.92	1.30	0.10
(2) RRUS-11	C	From Face	4.00	0.0000	70.00	No Ice	2.52	1.02	0.06
(at&t)			0.00			1/2" Ice	2.72	1.16	0.07
RRUS 32	Λ.	Erom Food	0.00	0.0000	70.00	1" Ice No Ice	2.92 3.31	1.30	0.10
(at&t)	A	From Face	4.00 0.00	0.0000	70.00	1/2" Ice	3.56	2.42 2.64	0.09 0.12
(uicet)			0.00			1" Ice	3.81	2.86	0.12
RRUS 32	В	From Face	4.00	0.0000	70.00	No Ice	3.31	2.42	0.09
(at&t)			0.00			1/2" Ice	3.56	2.64	0.12
			0.00			1" Ice	3.81	2.86	0.15
RRUS 32	C	From Face	4.00	0.0000	70.00	No Ice	3.31	2.42	0.09
(at&t)			0.00			1/2" Ice	3.56	2.64	0.12
DDIIG 22 D2		г г	0.00	0.0000	70.00	1" Ice	3.81	2.86	0.15
RRUS 32 B2	Α	From Face	4.00	0.0000	70.00	No Ice	3.31	2.42	0.07

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	11 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigl
	Leg		Lateral Vert						
			ft ft	0	ft		ft ²	ft ²	K
			ft						
(at&t)			0.00			1/2" Ice	3.56	2.64	0.10
			0.00			1" Ice	3.81	2.86	0.13
RRUS 32 B2	В	From Face	4.00	0.0000	70.00	No Ice	3.31	2.42	0.07
(at&t)			0.00			1/2" Ice	3.56	2.64	0.10
DD11G 22 D2		Б Б	0.00	0.0000	70.00	1" Ice	3.81	2.86	0.13
RRUS 32 B2	C	From Face	4.00	0.0000	70.00	No Ice	3.31	2.42	0.07
(at&t)			0.00			1/2" Ice	3.56	2.64	0.10
(2) DCC 49 0C 19 9E		F F	0.00	0.0000	70.00	1" Ice	3.81	2.86	0.13
(3) DC6-48-06-18-8F	A	From Face	4.00	0.0000	70.00	No Ice	1.20	1.20	0.03
(at&t)			0.00 0.00			1/2" Ice 1" Ice	1.88 2.09	1.88 2.09	0.05
(3) RRH 2x60	A	From Face	1.00	0.0000	55.00	No Ice	0.90	1.42	0.06
(yerizon)	A	110III Face	-4.00	0.0000	33.00	1/2" Ice	0.95	1.58	0.00
(VEHZOH)			0.00			1" Ice	1.05	1.74	0.00
(3) RRH 2x60	C	From Face	1.00	0.0000	55.00	No Ice	0.90	1.42	0.10
(verizon)	C	1 Iom I acc	-4.00	0.0000	33.00	1/2" Ice	0.95	1.58	0.08
(VCIIZOII)			0.00			1" Ice	1.05	1.74	0.10
RHSDC-3315-PF-48	Α	From Face	0.00	0.0000	51.00	No Ice	4.33	2.56	0.03
(verizon)	71	i ioni i acc	0.00	0.0000	31.00	1/2" Ice	4.61	2.79	0.06
(VCIIZOII)			0.00			1" Ice	4.89	3.02	0.09
RHSDC-3315-PF-48	C	From Face	0.00	0.0000	51.00	No Ice	4.33	2.56	0.03
(verizon)	C	r rom r ucc	0.00	0.0000	31.00	1/2" Ice	4.61	2.79	0.06
(verizon)			0.00			1" Ice	4.89	3.02	0.09
18-ft doppler	С	None	0.00	0.0000	68.50	No Ice	127.00	127.00	2.00
To it doppier		110110		0.0000	00.50	1/2" Ice	127.80	127.80	4.00
						1" Ice	128.40	128.40	6.00
Andrew 10' Platform	C	None		0.0000	68.00	No Ice	54.00	54.00	2.20
						1/2" Ice	72.00	72.00	3.30
						1" Ice	90.00	90.00	4.40
RRUS 4478	A	From Face	4.00	0.0000	70.00	No Ice	2.02	1.25	0.06
(at&t)			0.00			1/2" Ice	2.20	1.40	0.08
			0.00			1" Ice	2.39	1.55	0.10
RRUS 4478	В	From Face	4.00	0.0000	70.00	No Ice	2.02	1.25	0.06
(at&t)			0.00			1/2" Ice	2.20	1.40	0.08
			0.00			1" Ice	2.39	1.55	0.10
RRUS 4478	C	From Face	4.00	0.0000	70.00	No Ice	2.02	1.25	0.06
(at&t)			0.00			1/2" Ice	2.20	1.40	0.08
			0.00			1" Ice	2.39	1.55	0.10
RRUS 32 B66	A	From Face	4.00	0.0000	70.00	No Ice	3.01	2.18	0.07
(at&t)			0.00			1/2" Ice	3.24	2.38	0.09
			0.00			1" Ice	3.48	2.59	0.12
RRUS 32 B66	В	From Face	4.00	0.0000	70.00	No Ice	3.01	2.18	0.07
(at&t)			0.00			1/2" Ice	3.24	2.38	0.09
	_		0.00			1" Ice	3.48	2.59	0.12
RRUS 32 B66	C	From Face	4.00	0.0000	70.00	No Ice	3.01	2.18	0.07
(at&t)			0.00			1/2" Ice	3.24	2.38	0.09
00010066 /01 :		F 5	0.00	0.0000	70.00	1" Ice	3.48	2.59	0.12
80010966 w/ 8' pipe	A	From Face	4.00	0.0000	70.00	No Ice	17.36	9.40	0.16
(at&t)			0.00			1/2" Ice	17.99	10.82	0.27
90010066 / 91 !	D	Enom E	0.00	0.0000	70.00	1" Ice	18.63	12.09	0.40
80010966 w/ 8' pipe	В	From Face	4.00	0.0000	70.00	No Ice	17.36	9.40	0.16
(at&t)			0.00			1/2" Ice	17.99	10.82	0.27
90010066 m/ 91 mins	C	Erom Foos	0.00	0.0000	70.00	1" Ice	18.63	12.09	0.40
80010966 w/ 8' pipe	С	From Face	4.00	0.0000	70.00	No Ice	17.36	9.40	0.16
(at&t)			0.00 0.00			1/2" Ice 1" Ice	17.99 18.63	10.82 12.09	0.27 0.40

Maser Consulting
2000 Midlantic Drive, Suite 100

Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	12 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Tower Pressures - No Ice

 $G_H = 0.850$ (base tower), 0.850 (upper structure)

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	C_AA_A
Elevation					a				%	In	Out
					c					Face	Face
ft	ft		psf	ft^2	e	ft^2	ft^2	ft ²		ft^2	ft^2
L1 59.50-39.50	49.50	0.808	43	158.333	Α	4.833	20.272	13.333	53.11	16.000	0.000
					В	4.833	20.272		53.11	0.000	0.000
					C	4.833	20.272		53.11	29.148	0.000
L2 39.50-19.50	29.50	0.7	38	158.750	A	20.417	6.905	15.000	54.90	16.000	0.000
					В	20.417	6.905		54.90	0.000	0.000
					C	20.417	6.905		54.90	55.520	0.000
T1 19.50-13.10	16.30	0.7	39	53.035	Α	6.612	2.327	4.809	53.81	5.120	0.030
					В	6.612	2.327		53.81	0.000	0.030
					C	6.612	2.327		53.81	17.766	0.030
T2 13.10-6.30	9.70	0.7	39	61.241	Α	7.087	2.523	5.110	53.18	5.440	3.400
					В	7.087	2.523		53.18	0.000	3.400
					C	7.087	2.523		53.18	18.877	3.400
T3 6.30-0.00	3.15	0.7	40	61.234	A	11.835	0.000	4.734	40.00	1.040	0.000
					В	11.835	0.000		40.00	0.000	0.000
					C	11.835	0.000		40.00	3.609	0.000

Tower Pressure - With Ice

 $G_H = 0.850$ (base tower), 0.850 (upper structure)

Section	z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						a				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft ²	ft ²	ft^2		ft^2	ft^2
L1 59.50-39.50	49.50	0.808	7	2.8768	167.923	Α	4.833	63.764	32.512	47.40	46.152	0.000
						В	4.833	63.764		47.40	0.000	0.000
						C	4.833	63.764		47.40	49.720	0.000
L2 39.50-19.50	29.50	0.7	6	2.7608	167.953	Α	32.687	30.136	27.270	43.41	45.383	0.000
						В	32.687	30.136		43.41	0.000	0.000
						C	32.687	30.136		43.41	92.995	0.000
T1 19.50-13.10	16.30	0.7	6	2.6204	55.834	A	10.346	9.717	8.544	42.59	14.225	0.065
						В	10.346	9.717		42.59	0.000	0.065
						C	10.346	9.717		42.59	29.097	0.065
T2 13.10-6.30	9.70	0.7	7	2.4969	64.075	Α	10.867	10.194	8.891	42.21	14.838	7.173
						В	10.867	10.194		42.21	0.000	7.173
						C	10.867	10.194		42.21	30.298	7.173
T3 6.30-0.00	3.15	0.7	7	2.2393	63.589	Α	14.977	13.047	7.876	28.10	2.727	0.000
						В	14.977	13.047		28.10	0.000	0.000
						C	14.977	13.047		28.10	5.546	0.000

Tower Pressure - Service

Maser Consulting

2000 Midlantic Drive, Suite 100

Mt. Laurel, NJ

Phone: 856 797-0412

FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	13 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

$G_H = 0.850$ (base tower), 0.850 (upper structure)

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	e	ft^2	ft^2	ft^2		ft^2	ft^2
L1 59.50-39.50	49.50	0.808	16	158.333	Α	4.833	20.272	13.333	53.11	16.000	0.000
					В	4.833	20.272		53.11	0.000	0.000
					C	4.833	20.272		53.11	29.148	0.000
L2 39.50-19.50	29.50	0.7	14	158.750	Α	20.417	6.905	15.000	54.90	16.000	0.000
					В	20.417	6.905		54.90	0.000	0.000
					C	20.417	6.905		54.90	55.520	0.000
T1 19.50-13.10	16.30	0.7	15	53.035	Α	6.612	2.327	4.809	53.81	5.120	0.030
					В	6.612	2.327		53.81	0.000	0.030
					C	6.612	2.327		53.81	17.766	0.030
T2 13.10-6.30	9.70	0.7	15	61.241	Α	7.087	2.523	5.110	53.18	5.440	3.400
					В	7.087	2.523		53.18	0.000	3.400
					C	7.087	2.523		53.18	18.877	3.400
T3 6.30-0.00	3.15	0.7	15	61.234	Α	11.835	0.000	4.734	40.00	1.040	0.000
					В	11.835	0.000		40.00	0.000	0.000
					C	11.835	0.000		40.00	3.609	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	e						ft ²	K	plf	
L1	0.36	1.41	Α	0.159	2.74	43	1	1	15.427	2.51	125.31	C
59.50-39.50			В	0.159	2.74		1	1	15.427			
			C	0.159	2.74		1	1	15.427			
L2	0.49	1.90	Α	0.172	2.692	38	1	1	24.354	3.50	174.91	C
39.50-19.50			В	0.172	2.692		1	1	24.354			
			C	0.172	2.692		1	1	24.354			
T1	0.16	0.57	Α	0.169	2.704	39	1	1	7.937	1.16	181.49	C
19.50-13.10			В	0.169	2.704		1	1	7.937			
			C	0.169	2.704		1	1	7.937			
T2 13.10-6.30	0.78	0.62	Α	0.157	2.746	39	1	1	8.519	1.60	235.66	C
			В	0.157	2.746		1	1	8.519			
			C	0.157	2.746		1	1	8.519			
T3 6.30-0.00	0.03	0.68	Α	0.193	2.619	40	1	1	11.835	1.14	180.18	C
			В	0.193	2.619		1	1	11.835			
			C	0.193	2.619		1	1	11.835			
Sum Weight:	1.82	5.18						OTM	265.31	9.90		
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	e						ft^2	K	plf	
L1	0.36	1.41	Α	0.159	2.74	43	0.8	1	14.460	2.41	120.53	C
59.50-39.50			В	0.159	2.74		0.8	1	14.460			

Maser Consulting 2000 Midlantic Drive, Suite 100

Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	14 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	K	K	e						ft^2	K	plf	
			C	0.159	2.74		0.8	1	14.460			
L2	0.49	1.90	Α	0.172	2.692	38	0.8	1	20.270	3.14	157.18	C
39.50-19.50			В	0.172	2.692		0.8	1	20.270			
			C	0.172	2.692		0.8	1	20.270			
T1	0.16	0.57	Α	0.169	2.704	39	0.8	1	6.615	1.04	163.09	C
19.50-13.10			В	0.169	2.704		0.8	1	6.615			
			C	0.169	2.704		0.8	1	6.615			
T2 13.10-6.30	0.78	0.62	Α	0.157	2.746	39	0.8	1	7.101	1.47	216.62	C
			В	0.157	2.746		0.8	1	7.101			
			C	0.157	2.746		0.8	1	7.101			
T3 6.30-0.00	0.03	0.68	Α	0.193	2.619	40	0.8	1	9.468	0.93	147.12	C
			В	0.193	2.619		0.8	1	9.468			
			C	0.193	2.619		0.8	1	9.468			
Sum Weight:	1.82	5.18						OTM	246.28	9.00		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e						ft^2	K	plf	
L1	0.36	1.41	Α	0.159	2.74	43	0.85	1	14.702	2.43	121.72	C
59.50-39.50			В	0.159	2.74		0.85	1	14.702			
			C	0.159	2.74		0.85	1	14.702			
L2	0.49	1.90	Α	0.172	2.692	38	0.85	1	21.291	3.23	161.62	C
39.50-19.50			В	0.172	2.692		0.85	1	21.291			
			C	0.172	2.692		0.85	1	21.291			
T1	0.16	0.57	Α	0.169	2.704	39	0.85	1	6.945	1.07	167.69	C
19.50-13.10			В	0.169	2.704		0.85	1	6.945			
			C	0.169	2.704		0.85	1	6.945			
T2 13.10-6.30	0.78	0.62	Α	0.157	2.746	39	0.85	1	7.456	1.51	221.38	C
			В	0.157	2.746		0.85	1	7.456			
			C	0.157	2.746		0.85	1	7.456			
T3 6.30-0.00	0.03	0.68	Α	0.193	2.619	40	0.85	1	10.060	0.98	155.38	C
			В	0.193	2.619		0.85	1	10.060			
			C	0.193	2.619		0.85	1	10.060			
Sum Weight:	1.82	5.18						OTM	251.04	9.22		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face

I	Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
	Elevation	Weight	Weight	а									Face
				С			psf						
	ft	K	K	e						ft^2	K	plf	
	L1	2.41	6.42	Α	0.409	2.047	7	1	1	45.640	0.90	45.19	C
	59.50-39.50			В	0.409	2.047		1	1	45.640			
				C	0.409	2.047		1	1	45.640			

Maser Consulting 2000 Midlantic Drive, Suite 100

Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	15 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	e						ft ²	K	plf	
L2	3.52	6.85	Α	0.374	2.118	6	1	1	51.534	1.03	51.62	C
39.50-19.50			В	0.374	2.118		1	1	51.534			
			C	0.374	2.118		1	1	51.534			
T1	1.09	2.10	Α	0.359	2.15	6	1	1	16.366	0.34	52.59	C
19.50-13.10			В	0.359	2.15		1	1	16.366			
			C	0.359	2.15		1	1	16.366			
T2 13.10-6.30	2.67	2.16	Α	0.329	2.222	7	1	1	17.069	0.48	70.51	C
			В	0.329	2.222		1	1	17.069			
			C	0.329	2.222		1	1	17.069			
T3 6.30-0.00	0.19	2.90	Α	0.441	1.989	7	1	1	23.519	0.29	45.68	C
			В	0.441	1.989		1	1	23.519			
			C	0.441	1.989		1	1	23.519			
Sum Weight:	9.88	20.44						OTM	86.24	3.04		
									kip-ft			

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	e						ft ²	K	plf	
L1	2.41	6.42	Α	0.409	2.047	7	0.8	1	44.673	0.89	44.60	C
59.50-39.50			В	0.409	2.047		0.8	1	44.673			
			C	0.409	2.047		0.8	1	44.673			
L2	3.52	6.85	Α	0.374	2.118	6	0.8	1	44.996	0.96	47.90	C
39.50-19.50			В	0.374	2.118		0.8	1	44.996			
			C	0.374	2.118		0.8	1	44.996			
T1	1.09	2.10	Α	0.359	2.15	6	0.8	1	14.297	0.31	48.78	C
19.50-13.10			В	0.359	2.15		0.8	1	14.297			
			C	0.359	2.15		0.8	1	14.297			
T2 13.10-6.30	2.67	2.16	Α	0.329	2.222	7	0.8	1	14.895	0.45	66.57	C
			В	0.329	2.222		0.8	1	14.895			
			C	0.329	2.222		0.8	1	14.895			
T3 6.30-0.00	0.19	2.90	Α	0.441	1.989	7	0.8	1	20.524	0.25	40.39	C
			В	0.441	1.989		0.8	1	20.524			
			C	0.441	1.989		0.8	1	20.524			
Sum Weight:	9.88	20.44						OTM	82.69	2.87		
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e						ft^2	K	plf	
L1	2.41	6.42	Α	0.409	2.047	7	0.85	1	44.915	0.89	44.75	С
59.50-39.50			В	0.409	2.047		0.85	1	44.915			
			C	0.409	2.047		0.85	1	44.915			
L2	3.52	6.85	Α	0.374	2.118	6	0.85	1	46.631	0.98	48.83	C

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412

FAX: 856 722-1120

	Job		Page
		CTL01330 Avon - Montevideo Road	16 of 32
	Project		Date
		16946029A	10:27:13 04/03/18
•	Client	AT&T	Designed by

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
_			С			psf			- 2			
ft	K	K	e						ft^2	K	plf	
39.50-19.50			В	0.374	2.118		0.85	1	46.631			
			C	0.374	2.118		0.85	1	46.631			
T1	1.09	2.10	Α	0.359	2.15	6	0.85	1	14.814	0.32	49.73	C
19.50-13.10			В	0.359	2.15		0.85	1	14.814			
			C	0.359	2.15		0.85	1	14.814			
T2 13.10-6.30	2.67	2.16	Α	0.329	2.222	7	0.85	1	15.439	0.46	67.56	C
			В	0.329	2.222		0.85	1	15.439			
			C	0.329	2.222		0.85	1	15.439			
T3 6.30-0.00	0.19	2.90	Α	0.441	1.989	7	0.85	1	21.273	0.26	41.71	C
			В	0.441	1.989		0.85	1	21.273			
			C	0.441	1.989		0.85	1	21.273			
Sum Weight:	9.88	20.44						OTM	83.58	2.91		
									kip-ft			

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	K	K	e						ft ²	K	plf	
L1	0.36	1.41	Α	0.159	2.74	16	1	1	15.427	0.94	46.97	C
59.50-39.50			В	0.159	2.74		1	1	15.427			
			C	0.159	2.74		1	1	15.427			
L2	0.49	1.90	Α	0.172	2.692	14	1	1	24.354	1.31	65.56	C
39.50-19.50			В	0.172	2.692		1	1	24.354			
			C	0.172	2.692		1	1	24.354			
T1	0.16	0.57	Α	0.169	2.704	15	1	1	7.937	0.44	68.03	C
19.50-13.10			В	0.169	2.704		1	1	7.937			
			C	0.169	2.704		1	1	7.937			
T2 13.10-6.30	0.78	0.62	Α	0.157	2.746	15	1	1	8.519	0.60	88.33	C
			В	0.157	2.746		1	1	8.519			
			C	0.157	2.746		1	1	8.519			
T3 6.30-0.00	0.03	0.68	Α	0.193	2.619	15	1	1	11.835	0.43	67.54	C
			В	0.193	2.619		1	1	11.835			
			C	0.193	2.619		1	1	11.835			
Sum Weight:	1.82	5.18						OTM	99.45	3.71		
									kip-ft			

Tower Forces - Service - Wind 60 To Face

	Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
1	Elevation	Weight	Weight	а									Face
				c			psf						
	ft	K	K	e						ft ²	K	plf	
	L1	0.36	1.41	Α	0.159	2.74	16	8.0	1	14.460	0.90	45.18	C
4	59.50-39.50			В	0.159	2.74		0.8	1	14.460			
				C	0.159	2.74		0.8	1	14.460			
	L2	0.49	1.90	Α	0.172	2.692	14	0.8	1	20.270	1.18	58.92	C
3	39.50-19.50			В	0.172	2.692		0.8	1	20.270			

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	17 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e						ft^2	K	plf	
			C	0.172	2.692		0.8	1	20.270			
T1	0.16	0.57	Α	0.169	2.704	15	0.8	1	6.615	0.39	61.13	C
19.50-13.10			В	0.169	2.704		0.8	1	6.615			
			C	0.169	2.704		0.8	1	6.615			
T2 13.10-6.30	0.78	0.62	Α	0.157	2.746	15	0.8	1	7.101	0.55	81.20	C
			В	0.157	2.746		0.8	1	7.101			
			C	0.157	2.746		0.8	1	7.101			
T3 6.30-0.00	0.03	0.68	Α	0.193	2.619	15	0.8	1	9.468	0.35	55.15	C
			В	0.193	2.619		0.8	1	9.468			
			C	0.193	2.619		0.8	1	9.468			
Sum Weight:	1.82	5.18						OTM	92.32	3.37		
									kip-ft			

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	K	K	e						ft^2	K	plf	
L1	0.36	1.41	Α	0.159	2.74	16	0.85	1	14.702	0.91	45.63	C
59.50-39.50			В	0.159	2.74		0.85	1	14.702			
			C	0.159	2.74		0.85	1	14.702			
L2	0.49	1.90	Α	0.172	2.692	14	0.85	1	21.291	1.21	60.58	C
39.50-19.50			В	0.172	2.692		0.85	1	21.291			
			C	0.172	2.692		0.85	1	21.291			
T1	0.16	0.57	Α	0.169	2.704	15	0.85	1	6.945	0.40	62.86	C
19.50-13.10			В	0.169	2.704		0.85	1	6.945			
			C	0.169	2.704		0.85	1	6.945			
T2 13.10-6.30	0.78	0.62	Α	0.157	2.746	15	0.85	1	7.456	0.56	82.98	C
			В	0.157	2.746		0.85	1	7.456			
			C	0.157	2.746		0.85	1	7.456			
T3 6.30-0.00	0.03	0.68	Α	0.193	2.619	15	0.85	1	10.060	0.37	58.24	C
			В	0.193	2.619		0.85	1	10.060			
			C	0.193	2.619		0.85	1	10.060			
Sum Weight:	1.82	5.18						OTM	94.10	3.46		
									kip-ft			

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Leg Weight	2.30					
Bracing Weight	2.88					
Total Member Self-Weight	5.18			2.85	1.57	
Total Weight	14.91			2.85	1.57	
Wind 0 deg - No Ice		-0.19	-18.51	-800.94	11.85	-0.81
Wind 30 deg - No Ice		9.01	-15.35	-675.75	-398.34	2.25

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	18 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Wind 60 deg - No Ice		15.59	-8.64	-380.63	-697.26	4.74
Wind 90 deg - No Ice		18.34	0.19	13.12	-816.06	6.10
Wind 120 deg - No Ice		16.57	9.42	413.64	-724.01	5.87
Wind 150 deg - No Ice		9.33	15.54	691.72	-416.14	3.85
Wind 180 deg - No Ice		0.19	17.61	787.60	-8.70	0.96
Wind 210 deg - No Ice		-9.01	15.35	681.45	401.49	-2.25
Wind 240 deg - No Ice		-16.38	9.09	395.84	716.88	-5.05
Wind 270 deg - No Ice		-18.34	-0.19	-7.43	819.21	-6.10
Wind 300 deg - No Ice		-15.78	-8.97	-398.43	710.68	-5.70
Wind 330 deg - No Ice		-9.33	-15.54	-686.03	419.29	-3.85
Member Ice	15.26					
Total Weight Ice	76.60			19.83	2.16	
Wind 0 deg - Ice		-0.03	-5.03	-189.24	3.74	-0.31
Wind 30 deg - Ice		2.46	-4.23	-158.13	-101.30	0.56
Wind 60 deg - Ice		4.26	-2.41	-81.55	-177.85	1.29
Wind 90 deg - Ice		4.97	0.03	21.42	-207.50	1.69
Wind 120 deg - Ice		4.43	2.54	125.74	-182.51	1.64
Wind 150 deg - Ice		2.51	4.26	199.38	-104.05	1.13
Wind 180 deg - Ice		0.03	4.86	225.35	0.57	0.33
Wind 210 deg - Ice		-2.46	4.23	197.79	105.61	-0.56
Wind 240 deg - Ice		-4.40	2.49	122.99	185.23	-1.33
Wind 270 deg - Ice		-4.97	-0.03	18.24	211.81	-1.69
Wind 300 deg - Ice		-4.28	-2.46	-84.31	183.75	-1.62
Wind 330 deg - Ice		-2.51	-4.26	-159.72	108.36	-1.13
Total Weight	14.91			2.85	1.57	
Wind 0 deg - Service		-0.07	-6.94	-300.94	4.91	-0.30
Wind 30 deg - Service		3.38	-5.75	-254.01	-148.85	0.84
Wind 60 deg - Service		5.85	-3.24	-143.39	-260.90	1.78
Wind 90 deg - Service		6.88	0.07	4.21	-305.43	2.28
Wind 120 deg - Service		6.21	3.53	154.34	-270.93	2.20
Wind 150 deg - Service		3.50	5.82	258.58	-155.53	1.44
Wind 180 deg - Service		0.07	6.60	294.52	-2.80	0.36
Wind 210 deg - Service		-3.38	5.75	254.73	150.96	-0.84
Wind 240 deg - Service		-6.14	3.41	147.67	269.18	-1.89
Wind 270 deg - Service		-6.88	-0.07	-3.50	307.54	-2.28
Wind 300 deg - Service		-5.92	-3.36	-150.06	266.86	-2.14
Wind 330 deg - Service		-3.50	-5.82	-257.87	157.63	-1.44

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	19 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Comb.	Description
No.	· · · · · · · · · · · · · · · · · · ·
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39 40	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service Dead+Wind 90 deg - Service
42	Dead+Wind 120 deg - Service Dead+Wind 120 deg - Service
43	Dead+Wind 150 deg - Service Dead+Wind 150 deg - Service
44	Dead+Wind 180 deg - Service Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 300 deg - Service Dead+Wind 330 deg - Service
	Detail wind 550 deg Dervice

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	v	2.1		Comb.	K	kip-ft	kip-ft
L1	59.5 - 39.5	Latticed Pole Leg	Max Tension	23	45.63	-0.24	0.09
		•	Max. Compression	10	-52.16	-0.39	-0.03
			Max. Mx	20	12.15	-2.39	-0.19
			Max. My	2	6.90	0.22	-2.15
			Max. Vy	20	3.30	-0.00	-0.00
			Max. Vx	2	3.20	0.00	-0.00
		Latticed Pole Diagonal	Max Tension	8	16.94	0.00	0.00
		· ·	Max. Compression	20	-16.91	0.00	0.00
			Max. Mx	34	1.20	0.26	0.00
			Max. My	10	0.31	0.00	-0.00
			Max. Vy	34	-0.10	0.00	0.00
			Max. Vx	10	0.00	0.00	0.00
		Latticed Pole Horizontal	Max Tension	6	2.88	0.00	0.00
			Max. Compression	19	-2.87	0.00	0.00
			Max. Mx	35	0.13	-0.20	0.00

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	20 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
		~ 1		Comb.	K	kip-ft	kip-ft
			Max. My	8	2.81	0.00	-0.00
			Max. Vy	35	0.10	0.00	0.00
			Max. Vx	8	0.00	0.00	0.00
		Latticed Pole Top Girt	Max Tension	22	4.00	0.00	0.00
		Oiit	Max. Compression	10	-3.88	0.00	0.00
			Max. Mx	35	0.34	-0.28	0.00
			Max. My	8	-3.34	0.00	-0.00
			Max. Vy	35	0.15	0.00	0.00
			Max. Vx	8	-0.00	0.00	0.00
L2	39.5 - 19.5	Latticed Pole Leg	Max Tension	23	106.53	-0.27	-0.40
			Max. Compression	10	-115.98	0.65	-0.79
			Max. Mx	8	84.01	-0.80	0.04
			Max. My	8	-104.11	0.32	-1.04
			Max. Vy	10	0.20	-0.77	-0.42
			Max. Vx	8	0.28	0.32	-1.04
		Latticed Pole Diagonal	Max Tension	8	21.75	0.00	0.00
			Max. Compression	20	-21.76	0.00	0.00
			Max. Mx	34	2.74	0.25	0.00
			Max. My	10	1.44	0.00	-0.00
			Max. Vy	34	-0.10	0.00	0.00
			Max. Vx	10	0.00	0.00	0.00
		Latticed Pole Horizontal	Max Tension	20	13.26	0.00	0.00
		Horizontar	Max. Compression	8	-13.31	0.00	0.00
			Max. Mx	26	0.12	-0.23	0.00
			Max. My	8	-13.31	0.00	-0.00
			Max. Vy	26	0.12	0.00	0.00
			Max. Vx	8	0.00	0.00	0.00
T1	19.5 - 13.1	Leg	Max Tension	23	121.71	-0.63	0.58
		_	Max. Compression	10	-132.33	0.48	0.81
			Max. Mx	8	106.25	-0.80	0.04
			Max. My	8	-112.74	0.32	-1.03
			Max. Vy	10	-0.20	-0.77	-0.42
			Max. Vx	8	-0.32	0.32	-1.03
		Diagonal	Max Tension	21	12.58	0.00	0.00
			Max. Compression	8	-12.60	0.00	0.00
			Max. Mx	32	1.37	0.25	0.00
			Max. My	18	1.46	0.00	0.00
			Max. Vy	32	-0.10	0.00	0.00
		**	Max. Vx	18	-0.00	0.00	0.00
		Horizontal	Max Tension	7	3.29	0.00	0.00
			Max. Compression	18	-4.03	0.00	0.00
			Max. Mx	26	-0.53	-0.20	0.00
			Max. My	35	-1.26	0.00	0.01
			Max. Vy	26	0.11	0.00	0.00
T2	13.1 - 6.3	Lag	Max. Vx	35 23	-0.00	0.00	0.00
12	13.1 - 0.3	Leg	Max Tension Max. Compression	10	135.24	-0.44	-0.59
			1		-147.47	-0.18	-0.69
			Max. Mx Max. My	11 6	67.85 -79.48	-0.65 -0.38	-0.07 -1.41
			Max. My Max. Vy	24	0.22	-0.38 0.64	0.56
			Max. Vy Max. Vx	6	0.22	-0.38	-1.41
		Diagonal	Max Tension	9	13.01	0.00	0.00
		Diagonai	Max. Compression	20	-12.90	0.00	0.00
			Max. Mx	34	1.56	0.28	0.00
			Max. My	10	1.79	0.00	-0.00
			Max. Vy	34	-0.10	0.00	0.00
			•	10	0.00	0.00	0.00
			Max. Vx	10	0.00	0.00	().()()

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	21 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
				Comb.	K	kip-ft	kip-ft
			Max. Compression	9	-1.03	0.00	0.00
			Max. Mx	35	0.15	-0.23	0.00
			Max. My	32	0.28	0.00	0.01
			Max. Vy	35	0.11	0.00	0.00
			Max. Vx	32	-0.00	0.00	0.00
T3	6.3 - 0	Leg	Max Tension	23	138.62	0.07	0.53
			Max. Compression	10	-152.27	-0.00	0.00
			Max. Mx	10	-152.20	2.31	0.18
			Max. My	6	-78.59	-0.38	-1.41
			Max. Vy	10	-0.84	2.31	0.18
			Max. Vx	6	-0.67	-0.38	-1.41
		Diagonal	Max Tension	9	9.54	0.12	0.00
		· ·	Max. Compression	20	-9.51	0.00	0.00
			Max. Mx	18	-6.37	-0.20	-0.00
			Max. My	36	-1.69	-0.03	0.01
			Max. Vy	18	-0.06	0.00	0.00
			Max. Vx	36	0.00	0.00	0.00
		Horizontal	Max Tension	21	9.96	-0.01	-0.01
			Max. Compression	8	-10.56	-0.02	-0.01
			Max. Mx	22	0.67	-0.07	-0.01
			Max. My	30	-1.92	-0.06	-0.02
			Max. Vy	33	-0.07	-0.07	-0.02
			Max. Vx	30	0.01	0.00	0.00
		Redund Horz 1 Bracing	Max Tension	8	1.22	0.00	0.00
		C	Max. Compression	21	-1.45	0.00	0.00
			Max. Mx	28	0.33	-0.01	0.00
			Max. My	35	0.43	0.00	0.00
			Max. Vy	36	0.02	0.00	0.00
			Max. Vx	35	-0.00	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	21	1.33	0.00	0.00
		Č	Max. Compression	8	-1.09	0.00	0.00
			Max. Mx	35	-0.26	-0.02	0.00
			Max. My	31	0.18	0.00	0.00
			Max. Vy	35	-0.02	0.00	0.00
			Max. Vx	31	0.00	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Leg C	Max. Vert	18	161.70	15.59	-8.37
•	Max. H _x	18	161.70	15.59	-8.37
	Max. H _z	5	-125.69	-11.71	7.91
	Min. Vert	7	-146.89	-14.43	7.71
	Min. H _x	7	-146.89	-14.43	7.71
	Min. H _z	18	161.70	15.59	-8.37
Leg B	Max. Vert	10	164.71	-15.84	-8.55
-	Max. H _x	23	-150.58	14.70	7.90
	Max. H _z	25	-129.90	12.10	8.05
	Min. Vert	23	-150.58	14.70	7.90
	Min. H _x	10	164.71	-15.84	-8.55
	Min. Hz	10	164.71	-15.84	-8.55
Leg A	Max. Vert	2	158.57	-0.11	17.46
•	Max. H _x	21	6.14	1.91	0.47

Maser Consulting 2000 Midlantic Drive, Suite 100

Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	22 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
	Max. H _z	2	158.57	-0.11	17.46
	Min. Vert	15	-145.17	0.12	-16.15
	Min. H _x	9	2.22	-1.93	0.20
	Min. H _z	15	-145.17	0.12	-16.15

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M_z	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	14.91	0.00	-0.00	2.85	1.58	0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	17.90	-0.30	-29.62	-1283.02	18.39	-1.32
0.9 Dead+1.6 Wind 0 deg - No Ice	13.42	-0.30	-29.62	-1282.86	17.90	-1.32
1.2 Dead+1.6 Wind 30 deg - No Ice	17.90	14.41	-24.56	-1083.05	-638.39	3.57
0.9 Dead+1.6 Wind 30 deg - No Ice	13.42	14.41	-24.56	-1083.04	-638.36	3.57
1.2 Dead+1.6 Wind 60 deg - No Ice	17.90	24.95	-13.82	-610.66	-1117.14	7.57
0.9 Dead+1.6 Wind 60 deg - No	13.42	24.95	-13.82	-611.03	-1116.73	7.56
Ice 1.2 Dead+1.6 Wind 90 deg - No	17.90	29.34	0.30	19.80	-1307.28	9.75
Ice 0.9 Dead+1.6 Wind 90 deg - No	13.42	29.34	0.30	18.93	-1306.72	9.75
Ice 1.2 Dead+1.6 Wind 120 deg -	17.90	26.50	15.07	660.84	-1159.59	9.40
No Ice 0.9 Dead+1.6 Wind 120 deg -	13.42	26.50	15.07	659.47	-1159.14	9.39
No Ice 1.2 Dead+1.6 Wind 150 deg -	17.90	14.93	24.86	1106.34	-667.07	6.18
No Ice 0.9 Dead+1.6 Wind 150 deg -	13.42	14.93	24.86	1104.61	-667.01	6.17
No Ice 1.2 Dead+1.6 Wind 180 deg -	17.90	0.30	28.17	1260.03	-14.68	1.55
No Ice 0.9 Dead+1.6 Wind 180 deg -	13.42	0.30	28.17	1258.17	-15.14	1.55
No Ice 1.2 Dead+1.6 Wind 210 deg -	17.90	-14.41	24.56	1089.89	642.17	-3.60
No Ice 0.9 Dead+1.6 Wind 210 deg -	13.42	-14.41	24.56	1088.17	641.19	-3.60
No Ice 1.2 Dead+1.6 Wind 240 deg -	17.90	-26.20	14.55	632.34	1146.85	-8.12
No Ice 0.9 Dead+1.6 Wind 240 deg -	13.42	-26.20	14.55	630.98	1145.47	-8.12
No Ice 1.2 Dead+1.6 Wind 270 deg -	17.90	-29.34	-0.30	-13.13	1311.10	-9.79
No Ice 0.9 Dead+1.6 Wind 270 deg -	13.42	-29.34	-0.30	-13.98	1309.58	-9.79
No Ice 1.2 Dead+1.6 Wind 300 deg -	17.90	-25.25	-14.34	-639.20	1137.47	-9.15
No Ice 0.9 Dead+1.6 Wind 300 deg -	13.42	-25.25	-14.35	-639.55	1136.08	-9.14
No Ice 1.2 Dead+1.6 Wind 330 deg - No Ice	17.90	-14.93	-24.86	-1099.53	670.77	-6.18

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	23 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, Mz	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead+1.6 Wind 330 deg -	13.42	-14.93	-24.86	-1099.51	669.75	-6.17
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	79.59	0.00	-0.00	20.73	2.59	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	79.59	-0.03	-5.03	-190.72	4.21	-0.32
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	79.59	2.46	-4.23	-159.32	-102.06	0.57
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	79.59	4.25	-2.41	-81.86	-179.54	1.30
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	79.59	4.97	0.03	22.33	-209.53	1.70
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	79.59	4.43	2.54	127.84	-184.20	1.66
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	79.59	2.51	4.26	202.37	-104.88	1.14
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	79.59	0.03	4.86	228.67	0.97	0.33
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	79.59	-2.46	4.23	200.77	107.24	-0.57
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	79.59	-4.40	2.49	125.06	187.76	-1.34
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	79.59	-4.97	-0.03	19.12	214.71	-1.70
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	79.59	-4.28	-2.46	-84.64	186.35	-1.64
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	79.59	-2.51	-4.26	-160.92	110.06	-1.14
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	14.91	-0.07	-6.94	-298.38	5.44	-0.31
Dead+Wind 30 deg - Service	14.91	3.38	-5.75	-251.55	-148.35	0.84
Dead+Wind 60 deg - Service	14.91	5.84	-3.24	-140.93	-260.46	1.78
Dead+Wind 90 deg - Service	14.91	6.87	0.07	6.71	-304.98	2.29
Dead+Wind 120 deg - Service	14.91	6.21	3.53	156.81	-270.39	2.20
Dead+Wind 150 deg - Service	14.91	3.50	5.82	261.12	-155.05	1.45
Dead+Wind 180 deg - Service	14.91	0.07	6.60	297.09	-2.29	0.36
Dead+Wind 210 deg - Service	14.91	-3.38	5.75	257.26	151.51	-0.84
Dead+Wind 240 deg - Service	14.91	-6.14	3.41	150.13	269.68	-1.90
Dead+Wind 270 deg - Service	14.91	-6.87	-0.07	-1.01	308.14	-2.29
Dead+Wind 300 deg - Service	14.91	-5.92	-3.36	-147.61	267.48	-2.14
Dead+Wind 330 deg - Service	14.91	-3.50	-5.82	-255.41	158.21	-1.45

Solution Summary

	Su	m of Applied Force.	s		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-14.91	0.00	-0.00	14.91	0.00	0.000%
2	-0.30	-17.90	-29.62	0.30	17.90	29.62	0.010%
3	-0.30	-13.42	-29.62	0.30	13.42	29.62	0.008%
4	14.41	-17.90	-24.56	-14.41	17.90	24.56	0.009%
5	14.41	-13.42	-24.56	-14.41	13.42	24.56	0.007%
6	24.95	-17.90	-13.82	-24.95	17.90	13.82	0.009%
7	24.95	-13.42	-13.82	-24.95	13.42	13.82	0.007%
8	29.35	-17.90	0.30	-29.34	17.90	-0.30	0.010%
9	29.35	-13.42	0.30	-29.34	13.42	-0.30	0.008%
10	26.51	-17.90	15.07	-26.50	17.90	-15.07	0.010%
11	26.51	-13.42	15.07	-26.50	13.42	-15.07	0.008%
12	14.93	-17.90	24.86	-14.93	17.90	-24.86	0.009%
13	14.93	-13.42	24.86	-14.93	13.42	-24.86	0.008%

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	24 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

	Sur	n of Applied Force	S		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
14	0.30	-17.90	28.17	-0.30	17.90	-28.17	0.009%
15	0.30	-13.42	28.17	-0.30	13.42	-28.17	0.007%
16	-14.41	-17.90	24.56	14.41	17.90	-24.56	0.010%
17	-14.41	-13.42	24.56	14.41	13.42	-24.56	0.008%
18	-26.20	-17.90	14.55	26.20	17.90	-14.55	0.010%
19	-26.20	-13.42	14.55	26.20	13.42	-14.55	0.008%
20	-29.35	-17.90	-0.30	29.34	17.90	0.30	0.009%
21	-29.35	-13.42	-0.30	29.34	13.42	0.30	0.007%
22	-25.25	-17.90	-14.35	25.25	17.90	14.34	0.009%
23	-25.25	-13.42	-14.35	25.25	13.42	14.35	0.007%
24	-14.93	-17.90	-24.86	14.93	17.90	24.86	0.010%
25	-14.93	-13.42	-24.86	14.93	13.42	24.86	0.008%
26	0.00	-79.59	0.00	-0.00	79.59	0.00	0.000%
27	-0.03	-79.59	-5.03	0.03	79.59	5.03	0.003%
28	2.46	-79.59	-4.23	-2.46	79.59	4.23	0.003%
29	4.26	-79.59	-2.41	-4.25	79.59	2.41	0.003%
30	4.97	-79.59	0.03	-4.97	79.59	-0.03	0.003%
31	4.43	-79.59	2.54	-4.43	79.59	-2.54	0.003%
32	2.51	-79.59	4.26	-2.51	79.59	-4.26	0.004%
33	0.03	-79.59	4.86	-0.03	79.59	-4.86	0.004%
34	-2.46	-79.59	4.23	2.46	79.59	-4.23	0.004%
35	-4.40	-79.59	2.49	4.40	79.59	-2.49	0.004%
36	-4.97	-79.59	-0.03	4.97	79.59	0.03	0.004%
37	-4.28	-79.59	-2.46	4.28	79.59	2.46	0.003%
38	-2.51	-79.59	-4.26	2.51	79.59	4.26	0.003%
39	-0.07	-14.91	-6.94	0.07	14.91	6.94	0.004%
40	3.38	-14.91	-5.75	-3.38	14.91	5.75	0.004%
41	5.85	-14.91	-3.24	-5.84	14.91	3.24	0.004%
42	6.88	-14.91	0.07	-6.87	14.91	-0.07	0.004%
43	6.21	-14.91	3.53	-6.21	14.91	-3.53	0.004%
44	3.50	-14.91	5.82	-3.50	14.91	-5.82	0.004%
45	0.07	-14.91	6.60	-0.07	14.91	-6.60	0.004%
46	-3.38	-14.91	5.75	3.38	14.91	-5.75	0.004%
47	-6.14	-14.91	3.41	6.14	14.91	-3.41	0.004%
48	-6.88	-14.91	-0.07	6.87	14.91	0.07	0.004%
49	-5.92	-14.91	-3.36	5.92	14.91	3.36	0.004%
50	-3.50	-14.91	-5.82	3.50	14.91	5.82	0.004%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00029075
3	Yes	4	0.00000001	0.00022339
4	Yes	4	0.00000001	0.00025825
5	Yes	4	0.00000001	0.00019155
6	Yes	4	0.00000001	0.00024493
7	Yes	4	0.00000001	0.00017802
8	Yes	4	0.00000001	0.00028055
9	Yes	4	0.00000001	0.00021329
10	Yes	4	0.00000001	0.00029473
11	Yes	4	0.00000001	0.00022741
12	Yes	4	0.00000001	0.00026218
13	Yes	4	0.00000001	0.00019567
14	Yes	4	0.00000001	0.00024350

Maser Consulting

2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	25 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

15	Yes	4	0.00000001	0.00017662
16	Yes	4	0.00000001	0.00027793
17	Yes	4	0.0000001	0.00021099
18	Yes	4	0.00000001	0.00028964
19	Yes	4	0.00000001	0.00022221
20	Yes	4	0.00000001	0.00025567
21	Yes	4	0.00000001	0.00018857
22	Yes	4	0.00000001	0.00024145
23	Yes	4	0.00000001	0.00017472
24	Yes	4	0.0000001	0.00027574
25	Yes	4	0.00000001	0.00020906
26	Yes	4	0.0000001	0.00008857
27	Yes	4	0.00000001	0.00058485
28	Yes	4	0.00000001	0.00057110
29	Yes	4	0.00000001	0.00058883
30	Yes	4	0.00000001	0.00062759
31	Yes	4	0.00000001	0.00066408
32	Yes	4	0.00000001	0.00067969
33	Yes	4	0.00000001	0.00068871
34	Yes	4	0.00000001	0.00069511
35	Yes	4	0.00000001	0.00069365
36	Yes	4	0.00000001	0.00067111
37	Yes	4	0.00000001	0.00064011
38	Yes	4	0.00000001	0.00060877
39	Yes	4	0.00000001	0.00022094
40	Yes	4	0.0000001	0.00021345
41	Yes	4	0.0000001	0.00021104
42	Yes	4	0.0000001	0.00021934
43	Yes	4	0.00000001	0.00022227
44	Yes	4	0.00000001	0.00021467
45	Yes	4	0.0000001	0.00021081
46	Yes	4	0.00000001	0.00021841
47	Yes	4	0.00000001	0.00022131
48	Yes	4	0.00000001	0.00021408
49	Yes	4	0.00000001	0.00021082
50	Yes	4	0.00000001	0.00021787

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
L1	59.5 - 39.5	1.032	43	0.1242	0.0337
L2	39.5 - 19.5	0.518	43	0.0994	0.0218
T1	19.5 - 13.1	0.133	43	0.0568	0.0081
T2	13.1 - 6.3	0.063	43	0.0381	0.0095
T3	6.3 - 0	0.012	43	0.0182	0.0025

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	٥	٥	ft
70.00	SBNH-1D6565C	43	1.032	0.1242	0.0337	159905
68.50	18-ft doppler	43	1.032	0.1242	0.0337	159905
68.00	Andrew 10' Platform	43	1.032	0.1242	0.0337	159905

Maser Consulting

2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	26 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	۰	ft
55.00	Verizon Sector Frame	43	0.912	0.1193	0.0317	159905
51.00	RHSDC-3315-PF-48	43	0.807	0.1147	0.0298	94062

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	59.5 - 39.5	4.413	10	0.5294	0.1147
L2	39.5 - 19.5	2.214	10	0.4254	0.0795
T1	19.5 - 13.1	0.570	10	0.2427	0.0349
T2	13.1 - 6.3	0.268	10	0.1629	0.0288
T3	6.3 - 0	0.050	11	0.0780	0.0107

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	۰	۰	ft
70.00	SBNH-1D6565C	10	4.413	0.5294	0.1147	38070
68.50	18-ft doppler	10	4.413	0.5294	0.1147	38070
68.00	Andrew 10' Platform	10	4.413	0.5294	0.1147	38070
55.00	Verizon Sector Frame	10	3.901	0.5091	0.1082	38070
51.00	RHSDC-3315-PF-48	10	3.450	0.4903	0.1021	22394

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
770.	ft	1,700	Grade	in	Bolts	Bolt K	K	Allowable	·	
L1	59.5	Latticed Pole Leg	A325N	0.8750	4	11.41	40.59	0.281	1	Bolt Tension
		Latticed Pole Horizontal	A325N	0.5000	1	2.88	7.95	0.362	1	Bolt Shear
		Latticed Pole Top Girt	A325N	0.6250	2	2.00	12.43	0.161	1	Bolt Shear
L2	39.5	Latticed Pole Leg	A325N	0.8750	4	26.63	40.59	0.656	1	Bolt Tension
		Latticed Pole Horizontal	A325N	0.7500	1	13.31	17.89	0.744	1	Bolt Shear
T1	19.5	Diagonal	A325N	0.7500	1	12.60	17.89	0.704	1	Bolt Shear
		Horizontal	A325N	0.5000	1	4.03	7.95	0.507	1	Bolt Shear
T2	13.1	Diagonal	A325N	0.7500	1	13.01	17.89	0.727	1	Bolt Shear
		Horizontal	A325N	0.5000	1	1.03	7.95	0.130	1	Bolt Shear
Т3	6.3	Horizontal	A325N	0.5000	1	9.96	13.89	0.717	1	Member Bearing

Maser Consulting
2000 Midlantic Drive, Suite 100

Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	27 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

ft in Bolts Bolt K Allowable	Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
K		ft			in	Bolts	Bolt K		Allowable	-	

Compression Checks

Leg Des	ign Data	(Compression)	

Section No.	Elevation	Size	L	L_u	Kl/r	A	Mast Stability	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	Index	K	K	ϕP_n
L1	59.5 - 39.5	Rohn 3.5 STD	20.00	6.67	59.8 K=1.00	2.6795	1.00	-52.16	92.80	0.562 1
L2	39.5 - 19.5	3.5 STD with 4.5x0.237 HSS Half Pipe	20.00	6.67	61.4 K=1.00	4.3485	1.00	-115.97	148.60	0.780 1
T1	19.5 - 13.1	3.5 STD with 4.5x0.237 HSS Half Pipe	6.41	6.41	59.0 K=1.00	4.3485	1.00	-132.33	151.69	0.872 1
T2	13.1 - 6.3	3.5 STD with 4.5x0.237 HSS Half Pipe	6.81	6.81	31.4 K=0.50	4.3485	1.00	-147.47	182.11	0.810 1
Т3	6.3 - 0	3.5 STD with 4.5x0.237 HSS Half Pipe	6.31	3.16	29.0 K=1.00	4.3485	1.00	-152.27	183.98	0.828 1

¹ P_u / ϕP_n controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
L1	59.5 - 39.5	P2.5x.203	10.10	9.65	122.3 K=1.00	1.7040	-16.91	24.97	0.677 1
L2	39.5 - 19.5	P2.5x.203	10.10	9.60	121.6 K=1.00	1.7040	-21.76	25.19	0.864 1
T1	19.5 - 13.1	ROHN 2.5 STD	10.19	9.71	123.0 K=1.00	1.7040	-12.60	24.74	0.509 1
T2	13.1 - 6.3	ROHN 2.5 STD	11.01	10.53	133.4 K=1.00	1.7040	-12.90	21.60	0.597 1
Т3	6.3 - 0	L3x3x3/16	7.96	7.65	108.9 K=1.11	1.0900	-9.51	18.67	0.509 1

¹ P_u / ϕP_n controls

Maser Consulting
2000 Midlantic Drive, Suite 100

Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	28 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

		Horizoı	ntal De	sign	Data (Comp	ressior	1)	
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
L1	59.5 - 39.5	L2 1/2x2 1/2x1/4	7.58	7.04	172.1 K=1.00	1.1900	-2.87	9.08	0.316 1
L2	39.5 - 19.5	L3x3x3/8	7.58	6.98	142.7 K=1.00	2.1100	-13.31	23.42	0.568 1
T1	19.5 - 13.1	L3x3x1/4	7.58	7.00	141.9 K=1.00	1.4400	-4.03	16.16	0.250 1
T2	13.1 - 6.3	L3x3x1/4	8.28	7.70	156.0 K=1.00	1.4400	-1.03	13.36	0.077 1
Т3	6.3 - 0	2L2x2x3/16	9.02	6.38	91.2 K=1.00	1.4300	-10.56	35.05	0.301 1

¹ P_u / ϕP_n controls

	Top Girt Design Data (Compression)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in^2	K	K	ϕP_n	
L1	59.5 - 39.5	L3x5x1/4	7.58	6.85	122.5 K=0.99	1.9400	-3.88	26.25	0.148 1	

¹ P_u / ϕP_n controls

Redundant Horizontal (1) Design Data (Compression)											
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u		
	ft		ft	ft		in^2	K	K	${\phi P_n}$		
T3	6.3 - 0	L2x2x3/16	2.26	2.07	91.5 K=1.45	0.7150	-1.45	14.91	0.098 1		

¹ P_u / ϕP_n controls

	Redundant Diagonal (1) Design Data (Compression)											
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio			
NO.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$			
Т3	6.3 - 0	L2x2x3/16	3.78	3.44	112.4 K=1.07	0.7150	-1.09	11.92	0.091 1			

Maser Consulting

2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job	CTI 04220 Aven Mentevides Book	Page 29 of 32
	CTL01330 Avon - Montevideo Road	25 01 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in^2	K	K	ϕP_n

¹ P_u / ϕP_n controls

Tension Checks

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
110.	ft		ft	ft		in^2	K	K	$\frac{1}{\phi P_n}$
L1	59.5 - 39.5	Rohn 3.5 STD	20.00	6.67	59.8	2.6795	45.63	120.58	0.378 1
L2	39.5 - 19.5	3.5 STD with 4.5x0.237 HSS Half Pipe	20.00	6.67	61.4	4.3485	106.53	195.68	0.544 1
T1	19.5 - 13.1	3.5 STD with 4.5x0.237 HSS Half Pipe	6.41	6.41	59.0	4.3485	121.71	195.68	0.622 1
T2	13.1 - 6.3	3.5 STD with 4.5x0.237 HSS Half Pipe	6.81	6.81	62.7	4.3485	135.24	195.68	0.691 1
Т3	6.3 - 0	3.5 STD with 4.5x0.237 HSS Half Pipe	6.31	3.16	29.0	4.3485	138.62	195.68	0.708 1

¹ P_u / ϕP_n controls

		Dia	gonal [Desig	n Data	a (Ten	sion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
L1	59.5 - 39.5	P2.5x.203	10.10	9.65	122.3	1.7040	16.94	53.68	0.316 1
L2	39.5 - 19.5	P2.5x.203	10.10	9.60	121.6	1.7040	21.75	53.68	0.405 1
T1	19.5 - 13.1	ROHN 2.5 STD	10.19	9.71	123.0	1.7040	12.58	53.68	0.234 1
T2	13.1 - 6.3	ROHN 2.5 STD	11.01	10.53	133.4	1.7040	13.01	53.68	0.242 1
Т3	6.3 - 0	L3x3x3/16	7.96	7.65	97.7	1.0900	9.54	35.32	0.270 1

¹ P_u / ϕP_n controls

Horizontal Design Data (Tension)

Maser Consulting 2000 Midlantic Drive, Suite 100

000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	30 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
L1	59.5 - 39.5	L2 1/2x2 1/2x1/4	7.58	7.04	113.1	0.7753	2.88	33.73	0.085 1
L2	39.5 - 19.5	L3x3x3/8	7.58	6.98	95.3	1.3364	13.26	58.13	0.228 1
T1	19.5 - 13.1	L3x3x1/4	7.58	7.00	93.0	0.9628	3.29	46.94	0.070 1
T2	13.1 - 6.3	L3x3x1/4	8.28	7.70	102.0	0.9628	0.69	46.94	0.015 1
T3	6.3 - 0	2L2x2x3/16	9.02	6.38	92.6	0.8967	9.96	43.72	0.228 1

¹ P_u / ϕP_n controls

	Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in^2	K	K	${\phi P_n}$	
L1	59.5 - 39.5	L3x5x1/4	7.58	6.85	101.0	1.3144	4.00	57.18	0.070 1	

¹ P_u / ϕP_n controls

	Redundant Horizontal (1) Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in^2	K	K	ϕP_n	
Т3	6.3 - 0	L2x2x3/16	2.26	2.07	40.2	0.7150	1.22	23.17	0.053 1	

¹ P_u / ϕP_n controls

	Redundant Diagonal (1) Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in^2	K	K	ϕP_n	
Т3	6.3 - 0	L2x2x3/16	3.78	3.44	66.9	0.7150	1.33	23.17	0.057 1	

Maser Consulting 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	31 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
L1	59.5 - 39.5	Latticed Pole Leg	Rohn 3.5 STD	2	-52.16	92.80	56.2	Pass
L2	39.5 - 19.5	Latticed Pole Leg	3.5 STD with 4.5x0.237 HSS Half Pipe	23	-115.97	148.60	78.0	Pass
L1	59.5 - 39.5	Latticed Pole Diagonal	P2.5x.203	7	-16.91	24.97	67.7	Pass
L2	39.5 - 19.5	Latticed Pole Diagonal	P2.5x.203	28	-21.76	25.19	86.4	Pass
L1	59.5 - 39.5	Latticed Pole Horizontal	L2 1/2x2 1/2x1/4	16	-2.87	9.08	31.6	Pass
L2	39.5 - 19.5	Latticed Pole Horizontal	L3x3x3/8	25	-13.31	23.42	56.8	Pass
L1	59.5 - 39.5	Latticed Pole Top Girt	L3x5x1/4	4	-3.88	26.25	14.8	Pass
T1	19.5 - 13.1	Leg	3.5 STD with 4.5x0.237 HSS Half Pipe	44	-132.33	151.69	87.2	Pass
T2	13.1 - 6.3	Leg	3.5 STD with 4.5x0.237 HSS Half Pipe	53	-147.47	182.11	81.0	Pass
T3	6.3 - 0	Leg	3.5 STD with 4.5x0.237 HSS Half Pipe	62	-152.27	183.98	82.8	Pass
T1	19.5 - 13.1	Diagonal	ROHN 2.5 STD	49	-12.60	24.74	50.9	Pass
T2	13.1 - 6.3	Diagonal	ROHN 2.5 STD	58	-12.90	21.60	59.7	Pass
T3	6.3 - 0	Diagonal	L3x3x3/16	65	-9.51	18.67	50.9	Pass
T1	19.5 - 13.1	Horizontal	L3x3x1/4	48	-4.03	16.16	25.0	Pass
T2	13.1 - 6.3	Horizontal	L3x3x1/4	55	-1.03	13.36	7.7	Pass
T3	6.3 - 0	Horizontal	2L2x2x3/16	64	-10.56	35.05	30.1	Pass
T3	6.3 - 0	Redund Horz 1 Bracing	L2x2x3/16	73	-1.45	14.91	9.8	Pass
T3	6.3 - 0	Redund Diag 1 Bracing	L2x2x3/16	74	-1.09	11.92	9.1	Pass

	Summary	
Latticed	78.0	Pass
Pole Leg		
(L2)		
Latticed	86.4	Pass
Pole		
Diagonal		
(L2)		
Latticed	56.8	Pass
Pole		
Horizontal		
(L2)		
Latticed	14.8	Pass
Pole Top		
Girt (L1)		
Leg (T1)	87.2	Pass
Diagonal	59.7	Pass
(T2)		
Horizontal	30.1	Pass
(T3)		
Redund	9.8	Pass
Horz 1		
Bracing (T3)		
Redund	9.1	Pass
Diag 1		
Bracing (T3)		
/		

¹ P_u / ϕP_n controls

Maser Consulting

2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ Phone: 856 797-0412 FAX: 856 722-1120

Job		Page
	CTL01330 Avon - Montevideo Road	32 of 32
Project		Date
	16946029A	10:27:13 04/03/18
Client	AT&T	Designed by

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
						Bolt Checks	74.4	Pass
						RATING =	87.2	Pass

 $Program\ Version\ 7.0.5.1\ -\ 2/1/2016\ File://maserconsulting.com/luj/Projects/2017/17963000A/17963018A/Structural/Tower\ Analysis/Rev\ 1/TNX/Self\ Support.eri$

324 Montevideo Rd., Avon

2/7/2018 12:21:10 PM

Scale: 1"=1000'

Scale is approximate

The information depicted on this map is for planning purposes only. It is not adequate for legal boundary definition, regulatory interpretation, or parcel-level analyses.

Copy and paste the following string into an email to link to the current man view:

1 () () () () () () () ()

Copy and paste the following string into an email to link to the current map view:

