Document ID: 4385

Revision: 9

Effective Date: 6/14/2023

Status: Published Page 1 of 23

Approved by Director: Dr. Guy Vallaro

DNA SOP-32 Using STRmix[™] Software

32.1 Purpose:

STRmixTM is used to deconvolute an evidentiary profile to obtain probabilistic weights of genotype combinations for all contributors to either a single source or mixture samples with, or without conditioning known profiles. Those weights are used to calculate likelihood ratios which will be reported out on all appropriate samples deconvoluted through STRmixTM. The association may be, based on the likelihood ratio, included, cannot be eliminated, inconclusive, or an elimination. STRmixTM may also be used as a tool to determine possible CODIS entries, though this is not currently validated for casework. For further guidance on running STRmixTM software, please refer to the current STRmixTM Operations Manual.

32.2 Responsibility:

DNA Unit personnel

32.3 Set-up of STRmixTM

32.3.1 STRmixTM Default Settings

32.3.1.1 Default settings can be edited by clicking on "Administration" in the STRmix™ main menu, then clicking on "STRmix Defaults". See below for how your "Default Settings" should appear.

- 32.3.1.2 The number of MCMC chains, burn-in accepts, and post-burn-in accepts can be adjusted when scientifically valid (such as for a high Gelman-Rubin score or an expected genotype not being modeled) with TL approval.
- 32.3.2 Kits
- 32.3.2.1 Kits can be edited by clicking on "Administration" in the STRmixTM main menu, then clicking on "Profiling Kits".

32.3.2.2 Located in server desktop's local

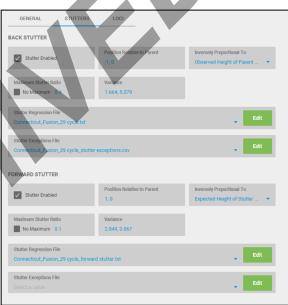
disk ProgramData/STRmix/Kits folder will be 3 different kit files for Fusion 6C, for a maximum, standard, and low injection, 2 different kit files for Identifiler Plus (to be used for

State of Connecticut Department of Emergency Services and Public Protection Division of Scientific Services

Document ID: 4385

Revision: 9

Effective Date: 6/14/2023


Status: Published Page 2 of 23

Approved by Director: Dr. Guy Vallaro

Identifiler as well), for a maximum (15 seconds or more) and standard (less than 15 seconds) injection, and one kit file for GlobalFiler.

32.3.2.3 These are the settings for the F6C – Standard Injection kit, with the loci listed in order being AMEL (gender), D3S1358, D1S1656, D2S441, D10S1248, D13S317, Penta E, D16S539, D18S51, D2S1338, CSF1PO, Penta D, TH01, vWA, D21S11, D7S820, D5S818, TPOX, D8S1179, D12S391, D19S433, SE33, D22S1045, DYS391 (ignore), FGA, DYS576 (ignore), and DYS570 (ignore). Repeat length is 4 for all loci except D22S1045 (3), Penta E (5), and Penta D (5), with a detection threshold of 50 rfu for all loci, and back and forward stutter being modeled for all loci:

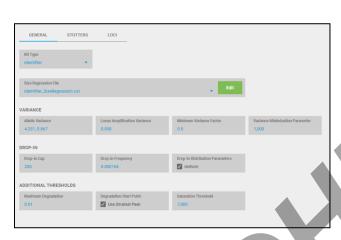
32.3.2.4 The F6C - Maximum Injection kit will have the same standard settings as the F6C - Standard Injection kit with the following exceptions:

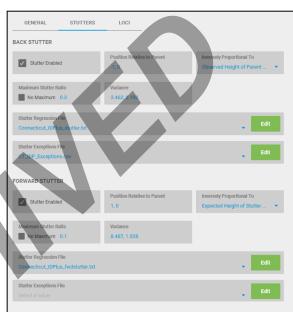
Allelic Variance: 6.725, 1.786 Stutter Variance: 2.666, 5.052 Locus Amp Variance: 0.026

32.3.2.5 The F6C – Low Injection kit will have the same standard settings as the F6C – Standard Injection kit with the following exceptions:

Allelic Variance: 4.129, 1.017 Stutter Variance: 1.75, 3.655 Locus Amp Variance: 0.019

Approved by Director: Dr. Guy Vallaro


Document ID: 4385


Revision: 9

Effective Date: 6/14/2023

Status: Published Page **3** of **23**

32.3.2.6 These are the settings for the IDP – Standard Injection kit with the loci listed in order being D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, AMEL (gender), D5S818, and FGA. Repeat length is 4 for all loci, with a detection threshold of 50 rfu for all loci, and back and forward stutter being modeled for all loci:

32.3.2.7 The IDP – Max Injection kit will have the same settings as the IDP – Standard Injection with the following exceptions:

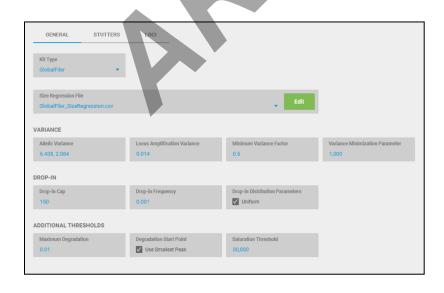
Allelic Variance: 6.262, 1.196 Stutter Variance: 4.218, 2.221 Locus Amp Variance: 0.01

32.3.2.8 These are the settings for the GlobalFiler injection kit (X is being modeled):

	Detection Threshold	Back Stutter	Forward Stutter	Half-Back Stutter	Double Back Stutter	Half- Forward Stutter
D3S1358	40	X	X	X	X	
vWA	40	X	X	X	X	
D16S539	40	X	X	X	X	
CSF1PO	40	X	X		X	
TPOX	40	X	X			
Yindel (Ignore)	55					

Document ID: 4385

Revision: 9


Effective Date: 6/14/2023

Status: Published Page 4 of 23

Approved by Director: Dr. Guy Vallaro

	Detection Threshold	Back Stutter	Forward Stutter	Half-Back Stutter	Double Back Stutter	Half- Forward Stutter
AMEL (Gender)						
D8S1179	55	X	X	X	X	
D21S11	55	X	X	X	X	
D18S51	55	X	X		X	
DYS391 (Ignore)	55					
D2S441	35	X	X	X	X	
D19S433	35	X	X	X	X	X
TH01	35	X	X	X		
FGA	35	X	X	X	X	X
D22S1045*	50	X	X		X	
D5S818	50	X	X		X	
D13S317	50	X	X		X	
D7S820	50	X	X		X	
SE33	50	X	X	X	X	X
D10S1248	55	X	X		X	
D1S1656	55	X	X	X	X	
D12S391	55	X	X		X	
D2S1338	55	X	X		X	

*Only 3 repeat locus. All others 4.

Approved by Director: Dr. Guy Vallaro

Document ID: 4385

Revision: 9

Effective Date: 6/14/2023

Status: Published Page 5 of 23

GENERAL STUTTERS LOCI BACK STUTTER Shutter Enabled HALF-BACK STUTTER Stutter Enabled DOUBLE BACK STUTTER HALF-FWD STUTTER

32.3.2.9 Certain situations (such as tri-alleles, discrepant results at one locus as compared to the rest of the profile, or the possibility for stutter exceeding a stutter max threshold) might warrant changing the "Ignore?" setting for autosomal loci during a deconvolution, with TL approval.

32.3.2.10 Please see the Appendix for screen shots of the stutter text files, and charts for the stutter exception files.

Document ID: 4385

Revision: 9

Effective Date: 6/14/2023

Status: Published Page 6 of 23

Approved by Director: Dr. Guy Vallaro

32.3.3 Populations/Allele Frequencies

32.3.3.1 Populations can be edited by clicking on "Administration" in the STRmix™ main menu, then clicking on "Populations" (see figure to right)

- 32.3.3.2 Each population file could only be
 - assigned to one kit in STRmixTM v2.4, therefore, for backward compatibility with previous deconvolutions each F6C population file is in triplicate in the ProgramData/STRmix/Populations folder, and named to reflect the kit that it is assigned to.

Population files for STRmixTM v2.5 and v2.6 are not kit-specific. Each file has an allele frequency file linked to it.

- 32.3.3.2.1 The allele frequency file that the African American population is linked to is FBI_extended_AfAmBahJam.csv
- 32.3.3.2.2 The allele frequency file that the Caucasian population is linked to is FBI_extended_Cauc.csf
- 32.3.3.2.3 The allele frequency file that the Hispanic population is linked to is FBI extended SE Hisp.csv
- 32.3.3.3 Allele frequencies are from the FBI's allele frequencies in PopStats.
- The allele frequencies listed in the CSV files do not have the posterior means equation applied to them.
- 32.3.3.5 Besides "Default FST" and the allele frequency file, most settings in "Populations" do not currently apply to State of Connecticut SOPs.

32.4 Initial Setup of Reports

- 32.4.1 Report Default Settings: From the Main Menu click "Administration", then "Report Defaults".
- Only "Summary Report" should be clicked from the list on the left and set to contain the following options: Post Burn-In Summary, Contributor Summary, LR Summary, Component Information, Locus Efficiencies, Variance Charts, Settings, Interpretation Details, Probability of N Given the Profile, Evidence Files, and Reference Files. (The order of items in the "Include?" list can be changed by dragging.)

DNA SOP-32 STRmix	Document ID: 4385
	Revision: 9
	Effective Date: 6/14/2023
Approved by Director: Dr. Guy Vallaro	Status: Published

32.4.3 If viewing additional components for a run is necessary, reports can be re-created retroactively with different options selected. To do this click "Reports" from the main menu, and supply the appropriate run folder by browsing or drag-and-drop. Select the desired options, change the "Output File" name at the bottom of the window (as to not overwrite original report) and click "Run". This will not change the default report settings. Please note that the Genotype Probability Distribution is not included in the default report, so if there is a need to look at individual locus/contributor weights, a new report will need to be created. A report including all components shall be created for discovery/FOIA purposes, regardless if electronic data was requested.

Page 7 of 23

With the settings above, the Interpretation Report is generated automatically for every deconvolution and LR from Previous run.

32.5 Using STRmixTM to deconvolute a profile

After analysis of a DNA profile, a determination of the most reasonable number of contributors is chosen and documented on DNA QR-302. Analysts manually compare all knowns associated with a case to all questioned samples associated with that case. If a positive association or inconclusive conclusion (except in cases of insufficient data or complexity of a mixture, where STRmix cannot be run) is made to a questioned DNA profile that questioned sample shall be deconvoluted using STRmixTM. Identical profiles (regardless of injection time) compared to the same known, as such will give identical conclusions, need only be run once through STRmix. This will be properly documented in the DNA Report.

- 32.5.1 Launch STRmixTM software via remote desktop server: Whenever prompted, usernames, passwords, and settings can be stored.
- 32.5.1.1 Open the following website using your web browser: (Can be saved to favorites)

 https://l0.51.107.36/RDWeb/Pages/en-US/login.aspx. This initially may come up as an unsecure website, but continue to the website when prompted by your browser. This link will bring up your remote application and desktop. If prompted to log in, Domain\username shall be entered as; dps\employee#. Password shall be the same password used to log onto your DPS desktop.
- 32.5.1.2 Click on "explorer". This will bring up the server desktop, or a prompt to save/open an application. Click "ok", "continue" or "confirm" whenever prompted. Two drives will be accessed through this desktop:
- 32.5.1.2.1 The F-drive is the STRmix™ server. It is the results folder on this drive to which your results will be automatically saved. Located in F:\results are individual analyst folders. Any deconvolutions an analyst performs are to be saved temporarily in these individual analyst folders. If these are not automatically mapped to save in that location, the analyst shall move

Document ID: 4385

Revision: 9

Effective Date: 6/14/2023

Status: Published Page 8 of 23

Approved by Director: Dr. Guy Vallaro

their results folders into their folder. Analysts further will create case specific folders in their results folders. This can be done by right-clicking in their folder \rightarrow new \rightarrow folder. The folder names will be DSS-YY-XXXXXX, for consistency and ease in archiving. Do not create any further sub-folders, as file name sizes are restricted. Upon issuance of a DNA report, this folder shall be moved to the F:\Results\ Completed folder. A record of this move shall be recorded on QR-4, and confirmed by your technical reviewer. There shall be no sub-folders in "Completed" to assist with archiving data.

- 32.5.1.2.2The U: Drive that you see on the server desktop is the U: Drive that your GeneMarker/
 GeneMapper text files have been previously exported and saved to. You will not be saving anything to the U: Drive while using STRmixTM. However, you must access those files from the server desktop, or you will not be allowed by STRmixTM to drag and drop those text files.
- 32.5.1.3 Click on "STRmix". This will launch the STRmix™ software or a prompt to save/open an application. Click "ok", "continue" or "confirm" whenever prompted. Only 12 analysts can concurrently run the STRmix™ software.
- 32.5.2 Click "Interpretation" from the start menu.
- 32.5.3 Enter the following information:

Case number: Lab ID# (ex. DSS-XX-XXXX)

Sample ID: Item #(s) (ex. 1-1 LR to 2)

Case Notes: Add any information that would be important to your technical reviewer. This can include, but not be limited to description of the item, knowns, conditioning information, reason (if applicable) deconvolution is being repeated, etc.

Number of contributors: This should have been pre-determined, and recorded on QR-302 during analysis. ("Contributor Range" should never be selected, as this feature is not currently validated CT DSS.)

- 32.5.3.1 A click on "Run Settings" will bring up the window to the right, Nothing in here need be changed in routine casework.
- 32.5.3.2 After everything has been properly added, click "Next". (Note: At any time you can return to earlier steps using the "Back" button. All entries will be saved.)

Document ID: 4385

Revision: 9

Effective Date: 6/14/2023

Status: Published Page 9 of 23

Approved by Director: Dr. Guy Vallaro

32.5.4 In window shown below, first select the kit appropriate to the amplification system and injection time for the evidentiary sample from the "Profiling Kit" pull-down menu. The "CT GlobalFiler" kit will be there as a default.

- 32.5.4.1 Drag text file with evidentiary file results (the text file exported from GeneMarker/ GeneMapper) to be deconvoluted into "Evidence Profile Data" box (or conversely select green plus sign and browse to file). If necessary, browse through the list of samples in that file, select the one you are deconvoluting by checking the box to the left of it, and click "Confirm". The evidentiary input file HAS stutter peaks (these stutter peaks HAVE NOT been filtered out).
- 32.5.4.2 Add reference profiles to the "Reference Profile Data" box in the same way as above. The known input file does NOT have stutter peaks (all stutter peaks have been filtered out).
- 32.5.4.3 For any .csv input files that were generated for STRmix v2.4, STRmix v2.6 will prompt you for the kit used to type the sample being added. Providing any STRmix kit name that uses sample's amplification system will suffice for this; there is no need to look up the injection time used. This step is needed because these input files indicate marker only by reference numbers based on the order of loci in the kit, rather than containing locus names. The kit selected in step 32.5.4 will still be the kit used for the deconvolution.
- 32.5.4.4 If you are conditioning (a) known(s) to H_d , click on the H_d box that corresponds to that known. See workflow at the end of SOP.

DNA SOP-32 STRmix

Document ID: 4385

Revision: 9

Effective Date: 6/14/2023

Approved by Director: Dr. Guy Vallaro

Status: Published
Page 10 of 23

32.5.5 Ignoring Loci (with TL approval)

32.5.5.1 Click the "Kit Settings" button next to the profiling kit pull-down menu, then click on "Loci", to show the window to the left.

KIT SETTINGS (CT Globalfiler) 40 \checkmark \checkmark VWA 4 40 V V V \checkmark \checkmark \checkmark 1 40 \checkmark **V** 40 Yindel 4 🗸 55 D8S1179 4 55 V V V -55 V V D21S11 55 V D18S51 \checkmark 35 🗸 V . 35 V V TH01 4 35 🗸 🗸 . 35 1 3 50 🗸 ~ V D13S317 4 50 V \checkmark

- 32.5.5.2 Check the box under "Ignore" for the locus you wish to ignore. Click "Apply" to change for this run only. Default settings will not be changed.
- 32.5.5.3 The stutter max thresholds are expected to be conservative for all loci in all kits.
- 32.5.6 To see the defaulted populations, click on "LR settings". The window below will appear. When compared knowns are applied to any hypothesis, 3 populations are added to "Population Settings": African American, Caucasian, and Hispanic. This setting is completed and saved the first time STRmixTM is run, and need not be completed on subsequent deconvolutions. Click "Start", making sure that "Perform Database Search" is not checked off.
- 32.5.7 The report PDF file for the deconvolution opens automatically when the run completes. Print page 1 for a deconvolution-only run, and print pages 1-3 for a run with a likelihood ratio calculation, for the case jacket.
- 32.5.8 The qualitative comparisons for various kits are as follows:

Profiling Kit	Exclusion	Inconclusive	<u>Association</u>
Identifiler/Identifiler Plus	<1	≥ 1 <1,000	≥1,000
Fusion 6C	<1	≥ 1 <10,000	≥10,000
GlobalFiler	<1	≥ 1 <1,000	≥1,000

DNA SOP-32 STRmix	Document ID: 4385
-------------------	-------------------

Revision: 9

Effective Date: 6/14/2023

Approved by Director: Dr. Guy Vallaro

Status: Published
Page 11 of 23

32.6 Using STRmix[™] to Create a Likelihood Ratio to a Reference Sample from previously deconvoluted sample

- 32.6.1 After launching STRmixTM, click on "Investigation" then "LR from Previous". Into the "Choose Previous Interpretation for LR" box, you can either drag and drop the outer run file folder of the deconvolution that was previously completed, or browse to select the "config" xml file within that folder, then click "select".
- 32.6.2 Next the sample ID may be edited to reflect the current calculation. (i.e. 1-1 LR 2 changes to 1-1 LR 3). This can be further described in the case notes. Since this is to a previous deconvolution, the MCMC settings are unable to be changed. Click "Next".
- 32.6.3 You will be unable to add or remove evidence profiles, or change kits in analysis. Add reference profiles to the bottom half of the "add profile data" window, as in 32.5.4.2. The known can only be added to H_p. Knowns cannot be added to or removed from H_d for conditioning purposes in "LR from previous analysis" settings, since conditioning a known affects the deconvolution, and not just the likelihood ratio from previously obtained weights.
- 32.6.3.1 If rework on this sample is being completed because a victim, consensual partner, or other known has been submitted that is to be conditioned to the profile, the deconvolution itself must be repeated with the conditioned known.
- 32.6.4 Print pages 1-3 of each report for the case jacket.

32.7 Running samples in Batch Mode

- 32.7.1 On the STRmixTM startup window, click "Batch Mode".
- 32.7.2 Click the "Add to Batch" pull-down menu, and select either "Add Interpretation" or "Add LR From Previous", depending on the desired calculation, and add samples as you would in 32.5 or 32.6. After a sample has been added to the batch, you will not be able to see your settings. Pay close attention to your settings. Entering something incorrectly could stop the batch from running.
- 32.7.3 If a sample needs to be run in low memory mode (a complex mixture, for example), please adjust in "Run Settings" for that particular sample.
- 32.7.4 If all samples have been added, but you do not wish to start the batch at this time, you can click the back arrow next to "Batch Mode" to return to the main menu. The samples that have been added will be there when you return to "Batch Mode".
- 32.7.5 If you wish to start the batch, click "Start".

DNA SOP-32 STRmix	Document ID: 4385
	Revision: 9
	Effective Date: 6/14/2023
Approved by Director: Dr. Guy Vallaro	Status: Published
	Page 12 of 23

- 32.7.6 If you wish to end the batch, click "Stop". All samples that have yet to be deconvoluted will remain in the queue, until removed.
- 32.7.7 To remove a sample from the queue, highlight the sample in the "Calculations In Batch" window, then click "Remove".
- Review of Run Diagnostics: In STRmixTM, there are a number of diagnostics that may indicate that MCMC analysis did not perform as expected. These are found in the Post Burn-In Summary section of the Report.

For every deconvolution performed in STRmix, DNA-QR-303 must be completed to allow for an overall assessment of how the deconvolution was performed in STRmix. The ideal ranges for the quality parameters based on the internal validation are documented on this QR. No single diagnostic can determine whether a STRmix deconvolution was or was not successful. However, multiple values outside of their ideal ranges, or values falling far from their ideal ranges, are potential indicators of a problem with a deconvolution, and may warrant manual scrutiny of the genotypic weights assigned and possibly a re-run with TL approval.

In the event that any of the secondary diagnostic values are out of range, the analyst will document a brief justification in the "Comments" section of QR-303 for why the deconvolution is (or is not) valid.

32.8.1 Total iterations

The value indicates the total number of post burn-in iterations that the MCMC ran for during its analysis. This value, along with the number of accepts chosen for the analysis informs the analyst as to how often a new proposed set of parameters was accepted. This is referred to as the acceptance rate. For example, the analysis that lead to the above results was carried out with 100,000 burn-in accepts and 500,000 total accepts. This leaves 400,000 post burn-in accepts spread across 800,000 total iterations giving an acceptance rate of 1 in 2.

A very low acceptance rate (e.g. 1 in hundreds or thousands) may, in combination with the other diagnostics, indicate that the analysis needs to be run for additional iterations. On its own, a low acceptance rate is not an indication that reanalysis is required.

As a note, if a deconvolution auto-continues past the standard number of post burn-in accepts (due to an above-threshold Gelman-Rubin diagnostic score), STRmix v2.5.11 factors the total number of post burn-in iterations but only the standard number of accepts into the acceptance rate on the STRmix Report. The macro in QR-303 uses the total post burn-in counts for both iterations and accepts when calculating acceptance rate. The value appearing on the worksheet is the appropriate one to compare to the threshold range. This has been corrected in STRmix v 2.6.2.

DNA SOP-32 STRmix Document ID: 4385

Revision: 9

Effective Date: 6/14/2023

Approved by Director: Dr. Guy Vallaro

Status: Published
Page 13 of 23

32.8.2 Effective Sample Size

Effective sample size (ESS) is the number of independent genotypic/mass parameter combinations that the MCMC has evaluated. A low ESS in relation to the total number of iterations suggests that the MCMC has not moved very far with each step or has had a low acceptance rate. A low ESS (e.g. 10s or 100s) value means that there is potential for a large difference in weights if the analysis was run again. A low ESS on its own is not an indication that reanalysis is required. In general, an ESS of less than 750 warrants additional scrutiny.

32.8.3 Average (log₁₀) likelihood

This value is the average (log₁₀) likelihood for the entire post burn-in MCMC. It is the log of the average likelihood (or probability) value created at each of the post burn-in MCMC iterations. The larger this value, the better STRmixTM has been able to describe the observed data. A negative value suggests that STRmixTM has not been able to describe the data very well given the information it has been provided. Some possible reasons for this value being low or negative are:

- a) The profile is simply very low level and there is very little data making up the likelihood.
- b) The number of contributors is wrong which can cause STRmixTM to consider incorrect genotypic combinations (e.g. large heterozygote peak imbalances or variation in mixture proportions across the profile).
- c) Data has been removed that was real, particularly stutter peaks, and must now be described in STRmixTM by dropout.
 - d) Artifact peaks were not removed and must now be accounted for in STRmix™ by drop-in.

A low or negative value for the average (\log_{10}) likelihood may indicate that the analysis requires additional scrutiny.

Good quality (adequate template, high molecular weight) mixed DNA profiles often give higher average (log_{10}) likelihood values than comparable single source profiles. So low average (log_{10}) likelihood values alone are not necessarily an indicator of an issue especially if the profile is single source.

32.8.4 Gelman-Rubin convergence diagnostic

This diagnostic informs the analyst whether the MCMC analysis has likely converged. STRmix™ uses 8 chains to carry out the MCMC analysis and ideally each chain will be sampling in the same space after burn-in. If the chains spend their time in different spaces then it is likely that the analysis has not run for long enough. Whether or not the chains have spent time in the same space can be gauged by the within-chain and between-chain variances. This is known as the Gelman-Rubin convergence diagnostic (GR). If the chains fully converge, the GR is 1.

DNA SOP-32 STRmix

Document ID: 4385
Revision: 9
Effective Date: 6/14/2023

Approved by Director: Dr. Guy Vallaro

Status: Published
Page 14 of 23

If the GR is above 1.2 (or 1.35 for 4 or 5 person mixtures), then there exists the possibility that the analysis hasn't converged. If the GR value is above 1.2 (or above 1.35 for 4 or 5 person mixtures), the results of the analysis should be scrutinised. Running the analysis for a larger number of iterations may reduce the GR in these instances. With the default settings a run will continue automatically for an additional 50,000 accepts per chain if the GR score is above 1.2 after the standard accept count; this does not preclude analysts from increasing the iteration count further if appropriate.

32.8.5 Allele Variance and Stutter Variance constants

Both of these values are the average value for variance and stutter variance constants across the entire post burn-in MCMC analysis. These values can be used as a guide as to the level of stochastic variation in peak heights that is present in the profile. A visual representation of how these values compare with the data seen in the laboratory's model maker data can be seen in "Variance Charts" section in the STRmix Report. The dot on the curve represents the value in the current run.

If variance is significantly above the mode value, additional scrutiny is warranted. It may indicate that the DNA profile is sub-optimal or that the number of contributors is incorrect. A higher than average Stutter Variance constant may be indicative of stutter peaks not being called in the STRmix GeneMarker project. A further look into the STRmix GeneMarker project may be necessary to see if all stutter peaks have been properly called. Pay close attention to those peaks adjacent to another peak with only a 1 base pair difference, since those are the more likely to be unresolved than those with greater than a 1 base pair difference.

Used in conjunction with the average (log₁₀) likelihood, a large allele variance or stutter variance may indicate that the PCR did not perform as expected.

If the sample is simply low level, this often results in a low average (\log_{10}) likelihood and an average variance constant.

If some data has been omitted or mistakenly left in the STRmixTM input file, this often results in a low average (log₁₀) likelihood and high variances.

32.9 Using STRmix to perform a staff search

To search the staff index in STRmix, set up the run the same way as for an interpretation (see 32.5) but check the box "Perform Database Search" before clicking start. If the interpretation has already be done, choose "Database Search" from the "Investigation" menu and drag the run folder into the "Previous Interpretation" window. The staff search database settings will auto-populate by default. The database search report will return any matches to the staff index with a $LR \ge 1000$ (without HPD).

DNA SOP-32 STRmix Document ID: 4385

Revision: 9

Effective Date: 6/14/2023

Status: Published Page **15** of **23**

Approved by Director: Dr. Guy Vallaro

Glossary of Terms

Accept: An iteration that is accepted. Default settings in STRmixTM require 500,000 accepts in the MCMC process. The burn-in, the first 100,000 accepts, allows the MCMC chains to proceed into spaces where "good" genotypes are proposed. The Metropolis-Hastings algorithm determines if a new genotype combination will be accepted or rejected.

Allele Variance: A secondary diagnostic tool, that when compared to the kit's mode, can determine how variable peak heights are in a particular sample, as well as to those samples most commonly seen in the laboratory's model maker.

Average (log) likelihood: A secondary diagnostic tool that calculates the average of the common logarithm of all likelihoods obtained for the post burn-in MCMC process.

Effective Sample Size (ESS) – A secondary diagnostic tool that evaluates the total number of independent genotypic/mass parameter combinations that the MCMC has evaluated.

Gelman-Rubin convergence diagnostic: A secondary diagnostic tool that compares variances within and between MCMC chains, to determine if they have or haven't converged.

Iteration: a proposed genotype combination.

Likelihood Ratio: A statistical test for comparing two competing hypotheses.

Markov chain Monte Carlo (MCMC): An algorithm based on standard mathematical principles that assigns a likelihood for each random genotype combination, in order to provide the best explanation for an observed data set.

Mass Parameters: 4 variable parameters used in the MCMC process to generate expected peak heights given a proposed genotype combination. These are: contributor specific **D**egradation rate, locus specific **A**mplification efficiencies, PCR **R**eplicate (not utilized by CT DSS SOPs), and contributor specific **T**emplate amount. A mnemonic phase to easily remember these parameters is **DART**.

Model Maker: A tool within the software that uses laboratory specific empirical data to create kit specific STRmixTM parameters.

Probabilistic Genotyping: A tool that combines the use of biological modeling, statistical theory, computer algorithms, and probability distributions to calculate likelihood ratios for DNA typing results of forensic samples, providing statistical weighting to different genotype combinations

STRmixTM: Forensic analysis software that utilizes a fully continuous (taking peak heights into account) approach to probabilistic genotyping to deconvolute DNA profiles into their most probable components,

DNA SOP-32 STRmix Document ID: 4385 Revision: 9

Approved by Director: Dr. Guy Vallaro

Effective Date: 6/14/2023

Status: Published Page **16** of **23**

then compare reference samples to that deconvolution, calculating a likelihood ratio to give that comparison a statistical weight.

Stutter Variance: A secondary diagnostic tool, that when compared to the kit's mode, can determine how variable stutter peak heights are in a particular sample, as well as to those samples most commonly seen in the laboratory's model maker.

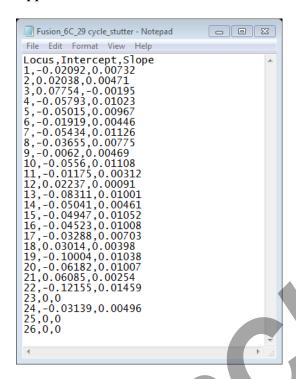
Total Iterations: A secondary diagnostic tool that tells how many genotype combinations were proposed during the post burn-in MCMC process. Directly related to the acceptance rate, which divides the total number of post burn-in accepts (defaulted to 400,000) by the total number of iterations. Therefore, if the total iterations were 7 million, the acceptance rate would be 1 in 17.5.

Weight: A probability given to a particular genotype combination that correlates to how well that combination explains the observed profile.

Note: In creating the above glossary, the following references were utilized: STRmix Training Workshop handouts, NYC OCME STRmixTM Glossary, the STRmix Support Website, the STRmix Operations Manual, and the STRmixTM User's Manual.

Approved by Director: Dr. Guy Vallaro

Document ID: 4385


Revision: 9

Effective Date: 6/14/2023

Status: Published Page 17 of 23

Appendices

Appendix 1: F6C Stutter File

Appendix 2: F6C Forward Stutter File

DNA SOP-32 STRmix Document ID: 4385

Revision: 9

Effective Date: 6/14/2023

Status: Published Page 18 of 23

Appendix 3: F6C Stutter Exceptions File:

Approved by Director: Dr. Guy Vallaro

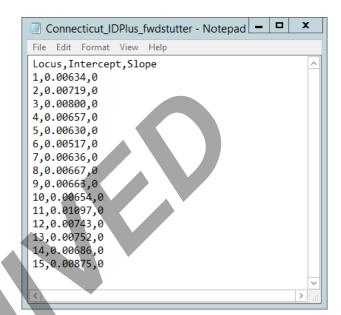
What is shown in this appendix is a truncated version of the stutter exceptions file, listing only all of the stutter exceptions. The full version of this file lists all loci and all repeats in those loci.

Repeat	D3S1358	Repeat	D2S1338	Repeat	TH01	Repeat	D8\$1179	Repeat	SE33
13	0.06355	16	0.07082	6	0.02126	9	0.05481	13	0.07679
14	0.07844	17	0.07211	7	0.03261	10	0.06995	14	0.08063
15	0.09291	18	0.07885	8	0.03284	11	0.08066	15	0.08763
16	0.0933	19	0.08786	9	0.03904	12	0.08394	16	0.10257
17	0.10154	20	0.09115	9.3	0.01725	13	0.07828	17	0.10101
18	0.11101	21	0.0908			14	0.08691	18	0.11568
19	0.1177	22	0.08697	<u>Repeat</u>	D21511	15	0.0869	19	0.12278
		23	0.09679	27	0.06409	16	0.09698	20	0.12455
Repeat	D1S1656	24	0.10597	28	0.077798			21	0.1356
11	0.06336	25	0.12193	29	0.083498	Repeat	D19S433	21.2	0.08847
12	0.0734	26	0.11848	30	0.094359	11	0.04463	22	0.13586
13	0.08337			30.2	0.082745	12	0.0616	22.2	0.09782
14	0.09366	<u>Repeat</u>	CSF1PO	31	0.10219	13	0.06884	23.2	0.10263
15	0.10519	7	0.02889	31.2	0.086892	13.2	0.07345	24.2	0.1108
15.3	0.06924	8	0.0446	32	0.110109	14	0.07851	25.2	0.10887
16	0.11508	9	0.03888	32.2	0.096907	14.2	0.09034	26.2	0.12206
16.3	0.07731	10	0.05278	33.2	0.10599	15	0.08811	27.2	0.12681
17	0.12828	11	0.06379	35	0.088913	15.2	0.09411	28.2	0.13212
17.3	0.08733	12	0.08068			16	0.09051	29.2	0.13372
18.3	0.0956	13	0.09312			16.2	0.10265	30.2	0.14036
19.3	0.11022							31.2	0.15647
		Repeat	Penta D					32.2	0.15267
Repeat	D2S441	9	0.02391						
10	0.04354	10	0.02139					<u>Repeat</u>	<u>FGA</u>
11	0.06581	11	0.02226					19	0.05522
11.3	0.0307	12	0.023					20	0.0641
12	0.07349	13	0.02947					21	0.0703
14	0.04604	14	0.03312					22	0.08002
15	0.05485	15	0.03318					23	0.08644
								24	0.09284
								25	0.09859
								26	0.10413
								27	0.09188

Document ID: 4385

Revision: 9

Effective Date: 6/14/2023


Status: Published Page 19 of 23

Appendix 4: ID/IDP Stutter File

Approved by Director: Dr. Guy Vallaro

_ D X Connecticut_IDPlus_stutter - Notepad File Edit Format View Help Locus, Intercept, Slope 1,0.02010,0.00305 2,-0.03483,0.00332 3,-0.06216,0.01060 4,-0.04084,0.00825 5,-0.05428,0.00822 6,0.00009,0.00247 7,-0.05479,0.00917 8,-0.05219,0.00958 9,-0.00690,0.00382 10,-0.06576,0.00964 11,-0.10389,0.01032 12,-0.02896,0.00643 13,-0.03485,0.00680 14,-0.03630,0.00830 15,-0.02467,0.00427

Appendix 5: ID/IDP Forward Stutter File

Document ID: 4385

Revision: 9

Effective Date: 6/14/2023

Approved by Director: Dr. Guy Vallaro

Status: Published Page 20 of 23

Appendix 6: ID/IDP Stutter Exceptions File

What is shown in this appendix is a truncated version of the stutter exceptions file, listing only all of the stutter exceptions. The full version of this file lists all loci and all repeats in those loci.

Allele	D21S11
27	0.047908
28	0.054311
29	0.062966
30	0.070931
30.2	0.052559
31	0.077371
31.2	0.062083
32	0.08521
32.2	0.071276
33.2	0.080434
35	0.045518

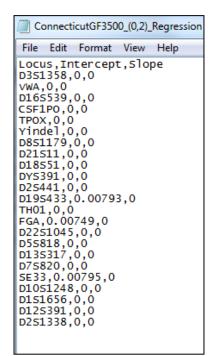
Allele	TH01
4	0.00245
5	0.00759
6	0.01273
7	0.01787
8	0.02301
8.3	0.00759
9	0.02815
9.3	0.01273
10	0.03329
10.3	0.01273
11	0.03843
12	0.04357
13.3	0.02301

Allele	D2S1338
16	0.049954
17	0.057781
18	0.065838
19	0.06834
20	0.07168
21	0.074861
22	0.070758
23	0.074588
24	0.085853
25	0.091494
26	0.09872

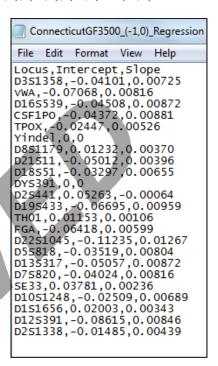
Allele	D19S433
6.2	0.00402
8	0.01308
9	0.01308
10	0.0312
11	0.04026
11.1	0.0312
11.2	0.04932
12	0.04932
12.1	0.00402
12.2	0.05838
13	0.05838
13.2	0.06744
14	0.06744
14.2	0.0765
15	0.0765
15.2	0.08556
16	0.08556
16.2	0.09462
17	0.09462
17.2	0.09915
18	0.10368
18.2	0.11274
19.2	0.1218

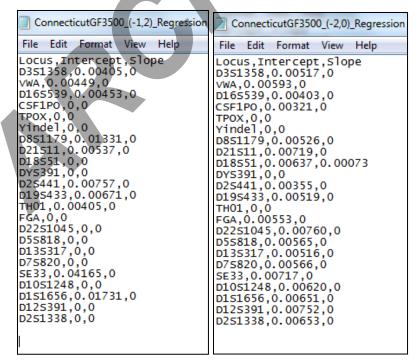
Allele	FGA
18.2	0.050704
19	0.046956
20	0.052723
21	0.06027
22	0.074733
23	0.077721
24	0.082077
25	0.09072
26	0.090288
27	0.079836

Document ID: 4385


Revision: 9

Effective Date: 6/14/2023


Status: Published Page 21 of 23


Approved by Director: Dr. Guy Vallaro

Appendix 7: GlobalFiler Stutter Regression Files (0,2), (1,0), (-1,0), (-1,2) & (-2,0)

Co	onnect	icutGF350	0_(1,0)_	Regression	on
File	Edit	Format	View	Help	
Locu	ıs,In	tercep	t,Slo	pe	
		0.0077	7,0		
		621,0	7 0		
		0.0080			
		.00787 0425,0	,0		
	le1,0				
		0.0082	9.0		
		.00984			
		.00870			
	91,0				
		.00799			
		0.0070	3,0		4
		0341,0			
		839,0	20 0	00661	
		,-0.05		.00051	V
		0.0087			N
		.00677			
		1102.0	, •		6
		,0.007	35,0		
		ó.0099			
		0.0091			
D251	.338,	0.0098	7,0		

Document ID: 4385

Revision: 9

Effective Date: 6/14/2023

Approved by Director: Dr. Guy Vallaro

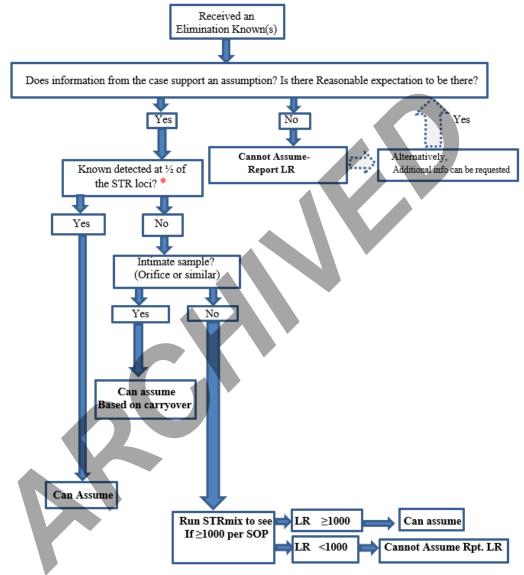
Status: Published Page 22 of 23

Appendix 8: GlobalFiler Stutter Exceptions File

What is shown in this appendix is a truncated version of the stutter exceptions file, listing only all of the stutter exceptions. The full version of this file lists all loci and all repeats in those loci.

<u>Allel e</u>	D3S1358	Allele	D851179	<u>Al lele</u>	D195433	<u>All ele</u>	TH01	<u>All ele</u>	D13 53 17	Allele	<u>SE33</u>	<u>Allele</u>	D125391
14	0.057157213	8	0.030275779	6.2	0.00497	4	0.00356	8	0.018639181	12	0.051066981	15	0.039509506
15	0.070214002	9	0.041166635	8	0.0136	5	0.00903	9	0.027536656	13	0.057925719	16	0.051744278
16	0.075747885	10	0.048186229	9	0.0136	6	0.0145	10	0.036289016	14	0.060510302	17	0.058346473
17	0.083579096	11	0.05877945	10	0.03086	7	0.01997	11	0.046703807	15	0.069474101	17.3	0.052592996
18	0.086703111	12	0.056821559	11	0.03949	8	0.02544	12	0.053198383	16	0.074128367	18	0.068585161
19	0.09515721	13	0.060381419	11.1	0.03086	8.3	0.00903	13	0.054382035	17	0.081578331	18.3	0.060679173
		14	0.064776565	11.2	0.04812	9	0.03091	14	0.068873716	18	0.089001609	19	0.07982839
<u>Allel e</u>	<u>vWA</u>	15	0.066719985	12	0.04812	9.3	0.0145			19	0.089724768	20	0.082668327
11	0.021647446	16	0.068078219	12.1	0.00497	10	0.03638	Allele	D1S1656	19.2	0.057838049	21	0.088835583
14	0.039794758	17	0.076700175	12.2	0.05675	10,3	0.0145	10	0.038091039	20	0.099225077	22	0.098274453
15	0.05419452			13	0.05675	11	0.04185	11	0.052122684	20.2	0.065143047	23	0.108756947
16	0.061073697	Allele	D21511	13.2	0.06538	12	0.04732	12	0.058509489	21	0.112380789	24	0.119927917
17	0.067741678	26	0.045255334	14	0.06538	13.3	0.02544	13	0.066715776	21.2	0.060111285	25	0.130966451
18	0.076002233	27	0.050348048	14.2	0.07401			14	0.076017969	22	0.113095663		
19	0.084110913	28	0.058834134	15	0.07401	Allele	FGA	14.3	0.044753523	22.2	0.0695048	Allele	D2S1338
20	0.094287847	29	0.066059096	15.2	0.08264	18	0.047377555	15	0.079769254	23.2	0.074836329	16	0.050174213
		30	0.075774293	16	0.08264	19	0.045966818	15.3	0.055455096	24.2	0.081108059	17	0.058245042
<u>Allel e</u>	D16S539	30.2	0.059425255	16.2	0.09127	20	0.052071688	16	0.096188462	25.2	0.085765998	18	0.063006326
8	0.027102144	31	0.079463683	17	0.09127	21	0.0627042	16.3	0.061246782	26.2	0.089076674	19	0.072160424
9	0.033088544	31.2	0.069985026	17.2	0.095585	21.2	0.065717445	17	0.105950187	27.2	0.099475408	20	0.080432849
10	0.043033654	32	0.090087629	18	0.0999	22	0.067640009	17.3	0.068641764	28.2	0.103651021	21	0.075459958
11	0.04957558	32.2	0.077065249	18.2	0.10853	23	0.07592171	18.3	0.07755221	29.2	0.111906187	22	0.07820601
12	0.060711435	33.2	0.083942629	19.2	0.11716	24	0.08225654	19.3	0.084337418	30.2	0.114894038	23	0.078338562
13	0.068121727	35	0.067970436			25	0.087313067	20.3	0.097746847	31.2	0.121249021	24	0.090973177
14	0.075502413			<u>Allele</u>	D55818	26	0.092385336			32	0.100129656	25	0.093499216
		<u>Allele</u>	D2 S4 41	8	0.02678807	27	0.073225804	<u>All ele</u>	D10S1248	32.2	0.12989792	26	0.108471302
		10	0.035079765	9	0.035359618			11	0.045478762	33	0.090853457	27	0.110911362
		11	0.054400091	10	0.047376719			12	0.057250355	33.2	0.131442883		
		11.3	0.024948462	11	0.053247853			13	0.065590485	34	0.096257412		
		12	0.059030209	12	0.061253483			14	0.070354463				
		13	0.035869284	13	0.067554112			15	0.082042273				
		14	0.041421602	14	0.079974379			16	0.081661818				
		15	0.04730129	-				17	0.096379288				

DNA SOP-32 STRmix Document ID: 4385


Approved by Director: Dr. Guy Vallaro

Revision: 9

Effective Date: 6/14/2023

Status: Published Page 23 of 23

Workflow for Elimination Knowns vs. Assuming/Conditioning.

^{*}If you have a 4-5-person mixture: needs to be more loci and definitive due to coincidental matches. Use caution. See TL for any questions.