Module 1 Participant Guide

Focus on Practice Standards

Section 1

Connecticut Core Standards for Mathematics

Grades K-5

Systems of Professional Learning

Connecticut Core Standards Systems of Professional Learning

The material in this guide was developed by Public Consulting Group in collaboration with staff from the Connecticut State Department of Education and the RESC Alliance. The development team would like to specifically thank Ellen Cohn, Charlene Tate Nichols, and Jennifer Webb from the Connecticut State Department of Education; Leslie Abbatiello from ACES; and Robb Geier, Elizabeth O'Toole, and Cheryl Liebling from Public Consulting Group.

The Systems of Professional Learning project includes a series of professional learning experiences for Connecticut Core Standards District Coaches in English Language Arts, Mathematics, Humanities, Science, Technology, Engineering, Mathematics (STEM), and Student/Educator Support Staff (SESS).

Participants will have continued support for the implementation of the new standards through virtual networking opportunities and online resources to support the training of educators throughout the state of Connecticut.

Instrumental in the design and development of the Systems of Professional Learning materials from PCG were: Sharon DeCarlo, Debra Berlin, Jennifer McGregor, Michelle Wade, Nora Kelley, Diane Stump, and Melissa Pierce.

Published 2014. Available online at http://ctcorestandards.org/

Section 1

Section 1: Understanding the Foundations of the Connecticut Core Standards

What Do We Know?

As you talk with your group, use the space below to take notes on what is currently known about the CCS-Math.

What do we know about the CCS-Math?		

Coherence

2nd Grade

Use Place value understanding and properties of operations to add and subtract.

- 5. Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.
- Add up to four two-digit numbers using strategies based on place value and properties of operations.
- 7. Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.

1st Grade

Use Place value understanding and properties of operations to add and subtract.

4. Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models of drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.

3rd Grade

Use place value understanding and properties of operations to perform multi-digit arithmetic.

- 1. Use place value understanding to round whole numbers to the nearest 10 or 100.
- 2. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

The Impact of the Shifts

As we discuss the impact of the shifts, use the space below to record your own notes.

Notes on the Impact of the Shifts
9

The Personal Journey of the CCS

Take a moment to think about the questions that you have about implementing the CCS-Math and record those questions in the Questions column below.

As your questions are answered throughout the session, record the answers in the Answers column.

Questions	Answers

You will now watch a video from Phil Daro, one of the major figures involved in writing the Common Core Standards and a professor at Stanford University. He discusses what mathematics instruction should look like in the era of the Common Core and the need for change in mathematics teaching and learning.

(Phil Daro at CMC-North Ignite: http://www.youtube.com/watch?v=B6UQcwzyE1U)