Part A: Task Research Template

Name: Andrea Smith

Grade: 8		Task Title: Is it a function? Source: http://www.mathworksheets4kids.com/function.html
Domain \& Cluster	Content Standard(s)	Mathematical Practice(s)
Domain: Functions Cluster: 8.F.A. Define, evaluate, and compare functions.	8.F.A.1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.*	1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning

Shifts of the Common Core State Standards		
Focus Find your grade here.	Coherence Wiring Document Learning Trajectories http://www.corestandards.org/	Rigor Select all that apply
Major Supporting Additional	Builds from....6.EE. 9 Connects to...8.F.4, 8.F. 5 Builds up to....IF. 1	Conceptual Understanding - Key words to look for in standards: Understand, Interpret, Recognize, Describe, Explain Procedural Fluency - Key word to look for in the standards: Fluently Application - Key words to look for in standards: Solve real-world and mathematical problems, Apply

Part B: Task Analysis Template

Adapted from Bay-Williams, J.M. McGatha, M., Kobbet, B., \& Wray, J. (2014). Mathematics Coaching: Resources and Tools for Coaches and Leaders, $K-12$. Boston: Pearson.
$1=$ No evidence of the quality in the task, or it is not possible to address this quality with the task
$2=$ The quality is evident in minor ways, or incorporating it is possible.
3 = The quality is evident in the task
$4=$ The quality is central to the task and is important to the success of the lesson

Part C: Task Rewrite Template

Created by:	Andrea Smith
Task Title	"Is it a function?" / "America Car Sales"
Grade:	8
Standard:	8.F. 1
Original Task:	http://www.mathworksheets4kids.com/function.html Decide if each graph below represents a function. Explain why you think each graph does or does not represent a function. Function Not a Function Function Not a Function Function Not a Function

Rewritten or Revised Task

American Car Sales

The following table shows the number of cars (C) sold in America between 2002 and 2012 (t).

y (year)	C (cars in millions)
$\mathbf{2 0 0 2}$	17.2
$\mathbf{2 0 0 3}$	16.1
$\mathbf{2 0 0 4}$	15.3
$\mathbf{2 0 0 5}$	15.7
$\mathbf{2 0 0 6}$	16.1
$\mathbf{2 0 0 7}$	14.5
$\mathbf{2 0 0 8}$	13.2
$\mathbf{2 0 0 9}$	10.4
$\mathbf{2 0 1 0}$	11.5

2011	12.8
2012	14.5

Part 1

a. Explain how you know this table does or does not represent a function. In your answer make explicit reference to the definition of a function.

Part 2

Three classmates explain their thinking about the problem. Explain why they are right or wrong. If they are wrong, explain how you would help them understand.

1) Pete drew a graph from the information in the table (below). He drew a line and explained, "This cannot be a function because the line at 14.5 touches two points. That means there were two years where 14.5 million cars were sold."

2) Susan made her decision if the relation was a function from the table. She explains, "Because each year has only one number of cars sold, this is a function. Every input has exactly one output. Also, it wouldn't make sense to have two different number of cars sold in a year."
3) Jon decided to make ordered pairs from the table (below). He said, "Because the same number of cars was sold in 2007 and 2012, this cannot be a function. If you know how many cars are sold, you cannot predict the year."
(2002, 17.2)
(2003, 16.1)
(2004, 15.3)
(2005, 15.7)
(2006, 16.1)
(2007, 14.5)
(2008, 13.2)
(2009, 10.4)
(2010, 11.5)
(2011, 12.8)
(2012, 14.5)
