

Connecticut
Computer Science
Implementation

Guidelines

2018

Connecticut State Department of Education

1

Contents

Connecticut Computer Science Standards Workgroup .. 2

Introduction .. 2

Background ... 3

What is Computer Science? .. 4

What is Computational Thinking? ... 4

Equity .. 5

Computer Science Practices .. 5

Organization of the Standards .. 7

Implementation Models ... 10

Resources .. 11

References .. 17

The Connecticut State Department of Education is committed to a policy of equal opportunity/ affirmative action for all

qualified persons. The Connecticut State Department of Education does not discriminate in any employment practice,

education program, or educational activity on the basis of race, color, religious creed, sex, age, national origin, ancestry, marital

status, sexual orientation, gender identity or expression, disability (including, but not limited to, intellectual disability, past or

present history of mental disorder, physical disability or learning disability), genetic information, or any other basis prohibited

by Connecticut state and/or federal nondiscrimination laws. The Connecticut State Department of Education does not

unlawfully discriminate in employment and licensing against qualified persons with a prior criminal conviction. Inquiries

regarding the Connecticut State Department of Education’s nondiscrimination policies should be directed to: Levy Gillespie,

Equal Employment Opportunity Director/Americans with Disabilities Act Coordinator, Connecticut State Department of

Education, 450 Columbus Blvd, Suite 607, Hartford, CT 06103, 860-807-2071, Levy.Gillespie@ct.gov.

mailto:Levy.Gillespie@ct.gov

2

Connecticut Computer Science Standards Workgroup
Jon Bishop, K-12 Stem Coordinator, Canton Public Schools

Jennifer Blalock, High School Mathematics and Computer Science Teacher, Ellington Public Schools

Jacqueline Corricelli, High School Computer Science Teacher, West Hartford Public Schools

Michael Cwirka, High School Teacher, Berlin Public Schools

Elizabeth W. Dillard, High School Computer Science Teacher, CREC

Dr. Melissa Hickey, Reading/Literacy Director, Connecticut State Department of Education

Christopher J Kerr, High School Computer Science Teacher, Newington Public Schools

Dana Kinel, IB Design Technology Teacher, East Hartford Public Schools

Eric Lozaw, High School Teacher, Watertown Public Schools

Jenny Lussier, Library Media Specialist, Regional School District 13

Lanna Mack, Career & Technical Education Teacher, New Haven Public Schools

Jennifer Michalek, Education Consultant, Connecticut State Department of Education

Dario Soto, Elementary Teacher, Hartford Public Schools

Heather Sutkowski, Elementary Computer Science Teacher, CREC

Dr. Chinma Uche, President, Connecticut Computer Science Teachers Association

James Veseskis, Project Coordinator, Exploring Computer Science CT

David Weinreb, Bilingual Teacher, New Haven Public Schools

Introduction

The Connecticut State Board of Education (CSBE) believes that computer science is a key to developing

and integrating 21st Century Skills (e.g., technology, communication, collaboration, critical thinking,

problem solving, innovation, creativity, persistence). The CSBE further believes that all Connecticut

public schools must provide for challenging and rigorous programs of study in computer science across

all grade levels. As such, Connecticut recommends fully adopting the Computer Science Teachers

Association K-12 Computer Science Standards as the Connecticut Computer Science Standards. This

implementation guidance document articulates the lens through which to view these standards and

provides guidance for implementation across the State of Connecticut.

3

Background

While advocating for CS education for all students, the Computer Science Teachers Association (CSTA)

saw the need to define CS and provide a guiding document for its members, administrators and policy

makers. Both within and outside the USA, this document provides information on how to implement CS

in the K-12 space. The first CSTA K-12 Standards were developed in 2011 and were adopted by the few

states in the USA that were teaching CS, and other locations abroad. As CS continued to influence

technology and our world, new teaching tools for CS education were developed. It then became

necessary to review the CSTA K-12 Standards and update them. A team of CS professionals (composed

of teachers, administrators, and members of industry) was constituted in September 2015 to review and

update the Standards for the 2015-2016 year. While the review was in progress, CSTA joined forces

with other CS organizations (Association for Computing Machinery, Code.org, Cyber Innovation Center,

and National Math + Science Initiative) to develop a K-12 CS Framework. This framework identified the

core areas of CS that these organizations agreed needed to be represented in a K-12 CS classroom. The

ideas included in the Framework were used as input into the revision of the CSTA standards. The CSTA

K–12 Computer Science Standards delineate a core set of learning objectives designed to provide the

foundation for a complete computer science curriculum, implemented at the K–12 level. To this end, the

CSTA Standards:

 Introduce the fundamental concepts of computer science to all students, beginning at the

elementary school level.

 Present computer science at the secondary school level in a way that can fulfill a computer

science, math, or science graduation credit.

 Encourage schools to offer additional secondary-level computer science courses that will allow

interested students to study facets of computer science in more depth, and prepare these

students for entry into the workforce or college.

 Increase the availability of rigorous computer science courses for all students, especially those

who are members of underrepresented groups.

Explanation of the process

The original 2011 CSTA K–12 CS Standards were categorized into five conceptual strands: Computational

Thinking; Collaboration; Computing Practice & Programming; Computer & Communication Devices; and

Community, Global & Ethical Impacts. The 2017 CSTA K–12 CS Standards are categorized into the five

concepts of the K–12 CS Framework (Computing Systems, Networks and the Internet, Algorithms and

Programming, Data and Analysis, and Impacts of Computing), and utilize the seven outlined

computational practices (Fostering an Inclusive Computing Culture, Collaborating Around Computing,

Recognizing and Defining Computational Problems, Developing and Using Abstractions, Creating

Computational Artifacts, Testing and Refining Computational Artifacts, and Communicating About

Computing). Both the Framework and the CSTA Standards underwent three public review periods, for

two to three weeks via online forms, for scrutiny and feedback from anyone with interest or experience

in K–12 computer science education. The feedback from each review period was read and addressed by

the development team, ensuring that the current CSTA K-12 standards is the best peer-reviewed

standard for K-12 CS education.

4

The Connecticut Department of Education (CSDE) convened a group of educators charged with putting

forward CS standards for State Board of Education (Board) approval. These educators were divided into

grade level teams, K-5, 6-8 and 9-12. Each team independently reviewed the CSTA K-12 standards. The

review by each team concluded that these standards aligned to the beliefs contained with the previously

adopted Position Statement on Computer Science Education for All Students K-12. It was recommended

by the teams that these standards be brought forth to the Board for adoption and that feedback from

stakeholders be elicited.

Stakeholder engagement

The CSTA K-12 Standards have been widely received by the computer science education and business

communities, as well as policy developers. The standards are currently being used to define CS in many

states across the USA. In Connecticut a survey about the standards was disseminated to a variety of

stakeholders. This survey provided stakeholders the opportunity to give their feedback in regards to the

standards. The survey was made publicly available and responses were collected over a six week period.

Respondents included teachers, administrators, parents, higher education and business and industry.

The results of the survey were favorable for adopting the standards for Connecticut.

What is Computer Science?

As the foundation for all computing, computer science is defined as “the study of computers and

algorithmic processes, including their principles, their hardware and software designs, their

[implementation], and their impact on society” (Tucker et. al, 2003, p. 6). Computer science is apart

from and builds on computer literacy, educational technology, digital citizenship, and information

technology.

These aspects of computing are distinguished from computer science because they are focused on the

use of computer technologies rather than understanding why they work and how to create those

technologies. Knowing why and how computers work (i.e., computer science), provides the basis for a

deep understanding of computer use and the relevant rights, responsibilities, and applications.

Computer science is the study of how computers and computational systems make representations of

the world around them and how to apply the rules, procedures, and processes to create solutions to

challenges.

What is Computational Thinking?

Also integrated throughout the Computer Science standards is the concept of computational thinking.

Computational Thinking is the thought processes involved in formulating problems and their solutions so

that the solutions are represented in a form that can be effectively carried out by an information-

processing agent [Cuny, Snyder & Wing, 2010]. It is an approach to solving problems in a way that can

be implemented with a computer. It involves the use of concepts, such as abstraction, recursion, and

iteration, to process and analyze data, and to create real and virtual artifacts [Computer Science

Teachers Association & Association for Computing Machinery]. Computational thinking practices such

as abstraction, modeling, and decomposition connect with computer science concepts such as

algorithms, automation, and data visualization. Beginning with the elementary school grades and

5

continuing through grade 12, students should develop a foundation of computer science knowledge and

learn new approaches to problem solving that captures the power of computational thinking to become

both users and creators of computing technology.

Equity

Equity is a fundamental component in the development of Computer Science Standards. The intent of
equity is to ensure that all students have the basic knowledge that will allow them to productively
participate in the world and make well informed decisions about their lives. Classrooms often include
students of different race, students of different genders, students of different socioeconomic status,
students whose first language is not English, students with disabilities, and students with differing ways
of learning. Regardless of these differences, all students have the right to high quality computer science
education.

Equity is not limited to whether classes are available, but also includes how classes are taught, how

students are recruited for classes or activities, and how the classroom culture supports diverse learners

and promotes the retention of students. The result of equity is achieving the ability to meet the needs

of diverse learners. Equity allows students set high expectations and feel capable of learning. It ensures

that all students have the basic knowledge that will allow them to compete in a diverse world.

Additional efforts at the state level, concerning educational policies paired with commitment at the local

level with curriculum, instruction, and classroom culture are also necessary for equity to play a role in

computer science education.

Computer Science Practices

The CSTA K-12 Computer Science Standards incorporate seven practices. By Grade

12, it is expected that every computationally literate student will engage with these practice

behaviors as they learn the standards and develop computational artifacts. The interrelated

practices are listed in the chart below in an order that simulates the developmental process

taken to produce computational artifacts.

Identifier Practice

P1 Fostering an Inclusive Computing Culture

P1.1 Include the unique perspectives of others and reflect on one’s own perspectives when
designing and developing computational products.

P1.2

Address the needs of diverse end users during the design process to produce artifacts
with broad accessibility and usability.

P1.3 Employ self- and peer-advocacy to address bias in interactions, product design, and
development methods.

P2 Collaborating Around Computing

6

P2.1 Cultivate working relationships with individuals possessing diverse perspectives, skills,
and personalities.

P2.2 Create team norms, expectations, and equitable workloads to increase efficiency and
effectiveness.

P2.3 Solicit and incorporate feedback from, and provide constructive feedback to, team
members and other stakeholders.

P2.4 Evaluate and select technological tools that can be used to collaborate on a project.

P3 Recognizing and Defining Computational Problems

P3.1 Identify complex, interdisciplinary, real-world problems that can be solved
computationally.

P3.2 Decompose complex real-world problems into manageable subproblems that could
integrate existing solutions or procedures.

P3.3 Evaluate whether it is appropriate and feasible to solve a problem computationally.

P4 Developing and Using Abstractions

P4.1 Extract common features from a set of interrelated processes or complex phenomena.

P4.2 Evaluate existing technological functionalities and incorporate them into new designs.

P4.3 Create modules and develop points of interaction that can apply to multiple situations and
reduce complexity.

P4.4 Model phenomena and processes and simulate systems to understand and evaluate
potential outcomes.

P5 Creating Computational Artifacts

P5.1 Plan the development of a computational artifact using an iterative process that includes
reflection on and modification of the plan, taking into account key features, time and
resource constraints, and user expectations.

P5.2

Create a computational artifact for practical intent, personal expression, or to address a
societal issue.

P5.3 Modify an existing artifact to improve or customize it.

P6 Testing and Refining Computational Artifacts

P6.1 Systematically test computational artifacts by considering all scenarios and using test
cases.

P6.2 Identify and fix errors using a systematic process.

7

P6.3 Evaluate and refine a computational artifact multiple times to enhance its performance,
reliability, usability, and accessibility.

P7 Communicating About Computing

P7.1 Select, organize, and interpret large data sets from multiple sources to support a claim.

P7.2 Describe, justify, and document computational processes and solutions using appropriate
terminology consistent with the intended audience and purpose.

P7.3 Articulate ideas responsibly by observing intellectual property rights and giving
appropriate attribution.

Organization of the Standards

Grade bands

Standards are organized into grade bands with the goal being that students will have met the

expectations by the end of grade 2 (Level 1A, ages 5-7), the end of grade 5 (Level 1B, ages 8-11), the end

of grade 8 (Level 2, ages 11-14) and the end of grade 10 (Level 3A, ages 14-16). Furthermore, for

students who wish to study computer science in high school beyond the level required for all students,

Level 3B is provided.

Strands

Standards are also organized into strands called Concepts and Subconcepts. There are five Concepts:

Algorithms & Programming, Computing Systems, Data & Analysis, Impacts of Computer, and Networks &

the Internet, which are further broken down into sixteen Subconcepts. The chart below provides a brief

overview of each sub concept for further clarification. In addition, there are five cross-cutting topics that

are interwoven within each core concept throughout the standards, but do not have stand-alone

descriptions, including Abstraction, System Relationships, Human- Computer Interaction, User Inspired

Software Design, Privacy and Security, and Communication and Coordination. The vertically aligned

standards are intended to reflect a comprehensive instructional program and document a progression of

expected achievement in each of the strands. This organization of standards also reflects the gradual

progression in the development of skills.

Concept Sub concept Overview

Algorithms and

Programming

Algorithms

People evaluate and select algorithms based on performance, reusability, and

ease of implementation. Knowledge of common algorithms improves how

people develop software, secure data, and store information.

Control

Programmers consider tradeoffs related to implementation, readability, and

program performance when selecting and combining control structures.

8

Algorithms and

Programming

Modularity

Complex programs are designed as systems of interacting modules, each with

a specific role, coordinating for a common overall purpose. These modules can

be procedures within a program; combinations of data and procedures or

independent, but interrelated, programs. Modules allow for better management

of complex tasks.

Program

Development

Diverse teams can develop programs with broad impact through careful review

and by drawing on the strengths of members in different roles. Design decisions

often involve tradeoffs. The development of complex programs is aided by

resources such as libraries and tools to edit and manage parts of the program.

Systematic analysis is critical for identifying the effects of lingering bugs.

Variables

Data structures are used to manage program complexity. Programmers choose

data structures based on functionality, storage, and performance tradeoffs.

Computing

Systems

Devices

Many everyday objects contain computational components that sense and act

on the world. In early grades, students learn features and applications of

common computing devices. As they progress, students learn about connected

systems and how interaction between humans and devices influences design

decisions.

Hardware and

Software

Computing systems use hardware and software to communicate and process

information in digital form. In early grades, students learn how systems use both

hardware and software to represent and process information. As they progress,

students gain a deeper understanding of the interaction between hardware and

software at multiple levels within computing systems.

Troubleshooting

When computing systems do not work as intended, troubleshooting strategies

help people solve the problem. In early grades, students learn that identifying

the problem is the first step to fixing it. As they progress, students learn

systematic problem-solving processes and how to develop their own

troubleshooting strategies based on a deeper understanding of how computing

systems work.

Data and
Analysis

Collection,

Visualization, and

Transformation

Data is collected with both computational and non-computational tools and

processes. In early grades, students learn how data about themselves and their

world is collected and used. As they progress, students learn the effects of

collecting data with computational and automated tools.

Data and

Analysis

Inference and

Models

Data science is one example where computer science serves many fields.

Computer science and science use data to make inferences, theories, or

predictions based upon data collected from users or simulations. In early

grades, students learn about the use of data to make simple predictions. As

they progress, students learn how models and simulations can be used to

examine theories and understand systems and how predictions and inferences

are affected by more complex and larger data sets.

Storage

Data can be composed of multiple data elements that relate to one another. For

example, population data may contain information about age, gender, and

height. People make choices about how data elements are organized and

 where data is stored. These choices affect cost, speed, reliability, accessibility,

privacy, and integrity.

Impacts of
Computing

Culture

The design and use of computing technologies and artifacts can improve,

worsen, or maintain inequitable access to information and opportunities.

9

Impacts of

Computing

Safety, Law and

Ethics

Laws govern many aspects of computing, such as privacy, data, property,

information, and identity. These laws can have beneficial and harmful effects,

such as expediting or delaying advancements in computing and protecting or

infringing upon people's rights. International differences in laws and ethics have

implications for computing.

Social

Interactions

Many aspects of society, especially careers, have been affected by the degree

of communication afforded by computing. The increased connectivity between

people in different cultures and in different career fields has changed the nature

and content of many careers.

Cybersecurity

Transmitting information securely across networks requires appropriate

protection. In early grades, students learn how to protect their personal

information. As they progress, students learn increasingly complex ways to

protect information sent across networks.

Networks and

the Internet

Network

Communication

and Organization

Computing devices communicate with each other across networks to share

information. In early grades, students learn that computers connect them to

other people, places, and things around the world. As they progress, students

gain a deeper understanding of how information is sent and received across

different types of networks.

10

Implementation Models

In the following examples, a computer science experience can range from a few hours a week to a

semester- or year-long course. Integrated or as a stand-alone based on student and district readiness

 Broad and Deep Exposure Moderate Exposure Basic Exposure

Elementary

School

………..

Middle

School

……..

High

School

Elementary and Middle School

Computer Science (CS) at the K-2, 3-5, and 6-8 grade bands can be embedded within the curriculum

and/or offered as a ‘standalone’ course, depending on the school’s program. This flexible

implementation allows schools the choice to determine their own timeline on how they will ensure that

all students will have the opportunity to learn CS. All certified staff members and subject areas are

encouraged to integrate computer science instruction into their classrooms.

SAMPLE K-12 COMPUTER SCIENCE PATHWAYS

Independent Special

(Similar to Music, Art,

etc.)

Integrated into the

general classroom

Integrated into the

general classroom

Integrated into math,

science, other subjects

+

Independent course at a

particular grade level

Independent course at a

particular grade level
Integrated into math,

science, other subjects

Introductory course

+

AP Computer Science

+

Specialized courses

Introductory course

+

Specialized courses

Introductory course

11

Below are various suggestions for implementation:

 Integrate CS into a particular subject area (i.e. math, science, technology) on a weekly or

biweekly basis within elementary classrooms.

 Plan districtwide and schoolwide participation in the annual “Hour of Code” for all grade levels.

 Offer CS in a particular grade level and then expand the program to additional grade levels in

subsequent years.

 Provide small group instruction.

 Provide a weekly “specials”/ “unified arts” course designed to specifically teach the CS

standards.

 Integrate CS instruction into existing Library/Media time.

 Incorporate CS in a similar fashion as Maker Spaces, Genius Hour etc.

High School

Implementation at the high school level is best achieved through course offerings specific to CS. All high

schools should offer at least one rigorous computer science course. Ideally high schools develop CS

pathways for students to explore based on need and interest.

Resources

A sampling of resources is provided to assist districts in making curriculum decisions related to the

implementation of CS. This is not an all-inclusive list of resources and they are not endorsed by CSDE.

They are presented to districts as guidance about quality CS curriculum. Implementing CS curriculum

requires many decisions.

 Schools may decide to teach a specific curriculum or combine multiple resources to deliver CS

instruction.

 Computer science instruction can be implemented with limited access to technology. Students

are encouraged to work together and can share devices.

 Computer science can be individualized and collaborative.

 “Unplugged” lessons are available and districts are encouraged to use a combination of

‘plugged” for an authentic CS experience.

 20 hours of Computer Science instruction per year will provide a rigorous and well-developed

experience for students at the elementary and middle school levels.

 One credit or its equivalent in computer science at the high school level will best prepare

students to be college and career ready.

12

Elementary School

Organization Curriculum

Apple

The lessons in the Get Started with Code Teacher Guides, which are part

of the Everyone Can Code Curriculum, are designed to help you bring

coding into the early primary classroom.

Bee-Bot

Bee-Bot Lessons contains 100 detailed lesson plans, with accompanying

images, for using Bee-Bot to teach across the curriculum. Problem-Solving

with Bee-Bot provides 150 sequential student challenges that use Bee-Bot

to develop problem-solving, critical-thinking, and decision-making skills.

codeSpark

Academy
Ignite interest in computer science and turn programming into play.

Code

Studio(Code.org)

Computer Science Fundamentals is comprised of 6 courses of about 15

lessons that may be implemented as one unit or over the course of a

semester.

Code Monkey

The Code Monkey game is accompanied by a curriculum guide which

includes 35 detailed lesson plans with both online and offline activities.

Computer Science

for All in SF

Creative Computing Curriculum for K – 2 and 3 – 5 introduces computer

science as a creative, collaborative, and engaging discipline across 15 – 20

lessons at each grade level.

Kodable
Courses for every grade K – 5 enabling students to learn foundational skills

in computer science preparing them for the next step in their learning.

https://www.apple.com/education/teaching-code/
https://www.bee-bot.us/bee-bot/beebot-curriculum.html
http://codespark.org/
http://codespark.org/
https://csedweek.org/educate/k5
https://csedweek.org/educate/k5
https://www.playcodemonkey.com/
https://www.csinsf.org/curriculum.html
https://www.csinsf.org/curriculum.html
https://www.kodable.com/schools-and-districts

13

Organization Curriculum

Project Lead The

Way

PLTW Launch modules engage students and build knowledge and skills in

the area of computer science.

ScratchEd

Activities are designed to support familiarity and increasing fluency with

computational creativity and computational thinking using Scratch. Units

can be used as a semester-long computing course or as part of other

curriculum areas.

Tynker Seven coding courses designed for students K – 5.

Middle School

Organization Curriculum

Apple

The lessons in the Learn to Code Teacher Guides, which are part of the

Everyone Can Code Curriculum, are designed to help students learn

fundamental coding concepts.

Bootstrap

Teach algebra through video-game programming, with a module to go

alongside or inside a math class.

CodeHS

CodeHS helps schools and districts build a comprehensive Middle School

computer science program starting with introductory level block-based

programming courses. There are courses available for all grades 6-8.

Code.org

Computer Science Discoveries is an introductory computer science

course recommended for grades 6 - 10 that empowers students to

https://www.pltw.org/our-programs/pltw-launch
https://www.pltw.org/our-programs/pltw-launch
http://scratched.gse.harvard.edu/guide
https://www.tynker.com/school/lesson-plan
https://www.apple.com/education/teaching-code/
http://www.bootstrapworld.org/
https://codehs.com/
https://csedweek.org/educate

14

Organization Curriculum

create authentic artifacts and engage with computer science as a

medium for creativity, communication, problem solving, and fun.

Code Monkey

The Code Monkey game is accompanied by a curriculum guide which

includes 35 detailed lesson plans with both online and offline activities.

Codesters

Range of courses where students use Python to build projects through

structured lessons, then modify their code to create custom projects.

Computer Science

for All in SF

MyCS intended for grade 6 and App Inventor for grade 7 highlight the

personal relevance of computer science to middle school students and

attempt to present CS as a fun, creative, and collaborative discipline.

Edhesive

Explorations in Coding course is specifically designed for middle school

classrooms, this blended online course covers foundational concepts and

skills of computer science.

Globaloria Standalone and core subject integration pathways.

GUTS
In partnership with Code.org, Middle School CS in Science includes four

modules each consisting of five or six lessons.

Project Lead The

Way

PLTW Gateway units include units that engage students in computer

science through robotics, hardware and software development, and

mobile app development.

Pythonroom

Pythonroom's curriculum is designed to teach students problem-solving

and algorithmic thinking while introducing computer science to young

students

https://www.playcodemonkey.com/
https://www.codesters.com/
https://www.csinsf.org/curriculum.html
https://www.csinsf.org/curriculum.html
https://edhesive.com/
http://globaloria.com/intro
https://code.org/curriculum/science
https://www.pltw.org/our-programs/pltw-gateway-curriculum
https://www.pltw.org/our-programs/pltw-gateway-curriculum
https://pythonroom.com/

15

Organization Curriculum

ScratchEd

Activities are designed to support familiarity and increasing fluency with

computational creativity and computational thinking using Scratch. Units

can be used as a semester-long computing course or as part of other

curriculum areas.

Tynker Seven coding courses designed for students 6 - 8.

UC Davis C-STEM

Multiple academic year-long courses on computing in math,

programming, robotics, and film production.

High School

Organization Curriculum

Apple

The Intro to App Development with Swift and App Development with Swift

curricula were designed to teach high school students with little or no

programming experience how to be app developers, capable of bringing their

own ideas to life.

Beauty and Joy

of Computing

Introductory computer science curriculum intended for high school juniors

and seniors that is aligned to the AP CS Principles course.

Bootstrap

Teach algebra through video-game programming, with a 20-hr module to go

alongside or inside a math class

CodeHS

4-year high school CS pathway. Intro CS JavaScript, Intro CS Python, AP CS

Principles, AP CS in Java, Computing Ideas, Web Design and more.

http://scratched.gse.harvard.edu/guide/
https://www.tynker.com/school/lesson-plan
http://c-stem.ucdavis.edu/
https://www.apple.com/education/teaching-code/
http://bjc.berkeley.edu/
http://bjc.berkeley.edu/
http://www.bootstrapworld.org/
https://codehs.com/

16

Organization Curriculum

Code.org

Two years of Computer Science courses for beginners. The first course,

Computer Science Discoveries, is appropriate for grades 6-10 and the second,

Computer Science Principles, can be implemented as an AP course or an

introductory course.

Edhesive Year-long AP Computer Science courses.

Exploring

Computer

Science

Year-long introductory high school course aimed at broadening participation

in CS.

Globaloria Standalone and core subject integration pathways.

Mobile CSP

Mobile CSP is a College Board-endorsed AP Computer Science Principles

curriculum

Project Lead The

Way

PLTW Computer Science engages students in true-to-life activities like

creating an online art portal or developing problem-solving apps.

ScratchEd

Activities are designed to support familiarity and increasing fluency with

computational creativity and computational thinking using Scratch. Units can

be used as a semester-long computing course or as part of other curriculum

areas.

TEALS

TEALS helps high schools build and grow sustainable computer science

programs by pairing experienced and trained software engineer

professionals with classroom teachers. TEALS has two standard high school

course offerings and offers support for additional courses.

https://csedweek.org/educate
https://edhesive.com/
http://www.exploringcs.org/
http://www.exploringcs.org/
http://www.exploringcs.org/
http://globaloria.com/intro
http://www.mobile-csp.org/
https://www.pltw.org/our-programs/pltw-computer-science/pltw-computer-science-curriculum
https://www.pltw.org/our-programs/pltw-computer-science/pltw-computer-science-curriculum
http://scratched.gse.harvard.edu/guide/
http://www.tealsk12.org/schools/

17

Organization Curriculum

UC Davis C-STEM

Multiple academic year-long courses on computing in math, programming,

and robotics.

UTeach CS

Principles

A classroom-ready curriculum that is fully aligned with the College Board’s

AP Computer Science Principles framework and endorsed by the College

Board.

Additional resources to support CS curriculum and instruction can be accessed on the Connecticut

Computer Science Teachers’ Association website.

References

Computer Science Teachers Association (2017). CSTA K-12 Computer Science Standards, Revised 2017.

Retrieved from CS Teachers.

“K–12 Computer Science Framework.” k12cs.Org, Computer Science Teachers Association, k12cs.org/.

Education, Virginia Department of. “Computer Science.” VDOE :: Computer Science Standards of

Learning Resources, Virginia Department of Education, Nov. 2017,

www.doe.virginia.gov/testing/sol/standards_docs/computer-science/index.shtml.

“Anybody Can Learn.” Code.org, Code.org, code.org/.

“CSTA.” CSTA, csteachers.org/.

 “Proposed Nevada K-12 Computer Science Standards.”

www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards_Instructional_Support/Nevada_Aca

demic_Standards/Comp_Tech_Standards/DRAFTNevadaK-12ComputerScienceStandards.pdf.

“3rd Party Educator Resources.” CSEd Week, csedweek.org/educate/curriculum/3rd-party.

“ISTE - International Society for Technology in Education - Home.” ISTE - International Society for

Technology in Education - Home, www.iste.org/.

http://c-stem.ucdavis.edu/
https://cs.uteach.utexas.edu/
https://cs.uteach.utexas.edu/
http://www.ctcsta.org/
http://www.ctcsta.org/
http://k12cs.org/
http://www.doe.virginia.gov/testing/sol/standards_docs/computer-science/index.shtml
http://code.org/
http://csteachers.org/
http://www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards_Instructional_Support/Nevada_Academic_Standards/Comp_Tech_Standards/DRAFTNevadaK-12ComputerScienceStandards.pdf
http://www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards_Instructional_Support/Nevada_Academic_Standards/Comp_Tech_Standards/DRAFTNevadaK-12ComputerScienceStandards.pdf
https://csedweek.org/educate/curriculum/3rd-party
www.iste.org/

