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Chloride Concentrations, Loads, and Yields in Four 
Watersheds Along Interstate 95, Southeastern 
Connecticut, 2008–11—Factors That Affect Peak  
Chloride Concentrations During Winter Storms
By Craig J. Brown, John R. Mullaney, Jonathan Morrison, Joseph W. Martin, and Thomas J. Trombley

Abstract Estimated peak Cl- concentrations varied with the type 
of winter storm event and were highest during or after winter 

Chloride (Cl-) concentrations and loads and other water storms of frozen precipitation and rain, in which the rain or 
chemistry characteristics were assessed to evaluate potential meltwater effectively washed off the deicers. Estimated peak 
effects of road-deicer applications on streamwater qual- Cl- concentrations correlated positively with the duration of 
ity in four watersheds along Interstate 95 (I–95) in south- deicer application but generally not with streamflow. Esti-
eastern Connecticut from November 1, 2008, through mated peak Cl- concentrations during the winter season were 
September 30, 2011. Streamflow and water quality were stud- highest during low streamflow at most sites.
ied in the Four Mile River, Oil Mill Brook, Stony Brook, and Chloride concentrations varied considerably in shallow 
Jordan Brook watersheds, where developed land ranged from groundwater as a result of land-use differences. Cl- concen-
9 to 32 percent. Water-quality samples were collected and spe- trations were very high (as high as 800 mg/L) in shallow 
cific conductance was measured continuously at paired water- groundwater downstream from I–95 at the Four Mile River 
quality monitoring sites, upstream and downstream from I–95. site. Chloride/bromide mass concentration ratios and the 
Specific conductance values were related to Cl- concentrations proximity of a former landfill and sewage lagoon upstream 
to assist in determining the effects of road-deicing operations indicate a likely source of Cl- is landfill leachate and possibly 
on the levels of Cl- in the streams. Streamflow and water-qual- sewage leachate.
ity data were compared with weather data and with the timing, Cl- loads in streams generally were highest in the 
amount, and composition of deicers applied to State highways. winter and early spring. The estimated daily Cl- yield for the 
Grab samples were collected during winter stormwater-runoff four monitoring sites downstream from I–95 ranged from 
events, such as winter storms or periods of rain or warm 0.0004 ton per day per square mile for one of the least devel-
temperatures in which melting takes place. Grab samples were oped watersheds to 0.052 ton per day per square mile for the 
also collected periodically during the spring and summer and watershed with the highest percentage of urban development 
during base-flow conditions. and impervious area. The estimated median contribution of 

The estimated Cl- concentrations at the eight water- Cl- load from atmospheric deposition was small and ranged 
quality monitoring sites during winter storms peaked as high from 0.07 percent of Cl- load at the Jordan Brook watershed to 
as 270 milligrams per liter (mg/L) and were well below the 0.57 percent at the Oil Mill Brook watershed. The Cl- loads in 
U.S. Environmental Protection Agency (EPA) recommended streams (outputs) were compared with Cl- load inputs, which 
acute chloride toxicity criterion of 860 mg/L and the chronic include atmospheric deposition and deicer applications; Cl- 
4-day average toxicity criterion of 230 mg/L. Cl- concentra- load inputs were slightly larger than the Cl- load outputs at 
tions in streams, particularly at sites downstream from I–95, most of the sites during most years but do not account for the 
peaked during increased streamflow in the winter and early Cl- load in groundwater leaving the watersheds.
spring as a result of deicers applied to roads and washed off by A multiple linear regression model was developed to 
stormwater or meltwater. Cl- concentrations during most of the describe the variability of the natural log of peak specific con-
nonwinter seasons decreased during increases in streamflow ductance, as well as estimated Cl- concentrations. Five signifi-
because storm runoff was more dilute than base flow. How- cant variables best explained the variability in the natural log 
ever, peaks in specific conductance and estimated chloride of the peak specific conductance after deicing events: (1) snow 
concentrations at streams in more urbanized watersheds cor- on ground before deicing event; (2) winter precipitation with 
responded to peaks in streamflow well after winter snow or ice rain; (3) specific conductance in base flow; (4) State-operated 
events; these delayed peaks in Cl- concentration likely resulted road lane miles divided by watershed area; and (5) amount 
from deicer residue that remained in melting snow piles and of Cl- from deicers applied to State-operated roads per lane 
on roadsides and (or) that were flushed from soils and shallow mile. In this report, winter precipitation is defined as any type 
groundwater, then discharged downstream. of precipitation, including frozen precipitation and rain, that 
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occurs during the active deicing season, typically November 
through March. Frozen precipitation is defined here as snow, 
sleet, freezing rain, or any winter precipitation except rain.

The addition of a lane mile in both directions on I–95 
would result in an estimate of approximately 2 to 11 percent 
increase in Cl- input from deicers applied to I–95 and other 
roads maintained by Connecticut Department of Transporta-
tion. The largest estimated increase in Cl- load was in the 
watersheds with the greatest number miles of I–95 corridor 
relative to the total lane miles maintained by Connecticut 
Department of Transportation. On the basis of these estimates 
and the estimated peak Cl- concentrations during the study 
period, it is unlikely that the increased use of deicers on the 
additional lanes would lead to Cl- concentrations that exceed 
the aquatic habitat criteria.

Introduction
Urbanization and the associated construction or expan-

sion of roads, highways, and parking lots typically lead 
to an increased use of road deicers in the northern United 
States (Bubeck and others, 1971; Wulkowicz and Saleem, 
1974; Granato and others, 1995; Mullaney and others, 2009; 
Cassanelli and Robbins, 2013). A primary concern regard-
ing road deicing is the degradation of surface water and 
groundwater that may be used for aquatic habitat (Williams 
and others, 1999; Corsi and others, 2010; Trowbridge and 
others, 2010) or for drinking-water supply (Ostendorf and 
others, 2006; Heath and Belaval, 2013). The dominant road 
deicers include sodium chloride (NaCl), calcium chloride 
(CaCl2), and magnesium chloride (MgCl2) and dissolve 
to form ions including chloride (Cl-), sodium (Na+), and 
calcium (Ca2+). Widespread upward trends in Cl- concentra-
tions in streams have been reported nationwide and may be 
related to a variety of factors, including increased road area 
and consequent deicing, increased wastewater and septic-
system discharges, livestock waste and fertilizers, and leach-
ate from landfills and salt-storage areas (Smith and others, 
1987; Mullaney and others, 2009; Katz and others, 2011). 
Similar trends have been reported in Connecticut from the 
1970s to 1990s (Trench, 1996; Colombo and Trench, 2002). 
Elevated concentrations of Cl- and Na+ in glacial aquifers 
in Connecticut have been related to urban land use (Grady, 
1993; Grady and Mullaney, 1998). Concentrations of Cl- in 
Connecticut groundwater are spatially coincident with major 
roadways and exceed the regulatory maximum contami-
nant level of 250 milligrams per liter (mg/L) in some areas 
(Cassanelli and Robbins, 2013). Potential adverse effects of 
deicing products, which contain Cl-, on water resources are 
addressed in Ramakrishna and Viraraghavan (2005), Kaushal 
and others (2005), and Kelly and others (2010).

The U.S. Environmental Protection Agency (EPA) 
recommended chronic criterion for aquatic life is a 4-day 
average Cl- concentration of 230 mg/L, and the recom-
mended acute (1-hour average) criterion concentration for 

Cl- is 860 mg/L (U.S. Environmental Protection Agency, 
1988). These criteria relate to a recurrence of no more than 
once in 3 years. The Connecticut Department of Energy and 
Environmental Protection (CTDEEP) has recently adopted 
standards for aquatic-life criteria for Cl- that are identical 
to the EPA standards (Connecticut Department of Environ-
mental Protection, 2009). The EPA has established a nonen-
forceable secondary maximum contaminant level (SMCL) 
of 250 mg/L for Cl- (for potential cosmetic or aesthetic 
effects) and a nonregulatory drinking-water advisory con-
centration of 20 mg/L for sodium Na+, for individuals on a 
500-milligram-per-day Na-restricted diet (U.S. Environmen-
tal Protection Agency, 2011).

Effects of road deicers on water quality can be moni-
tored effectively through continuous records of specific 
conductance, together with periodic streamflow sampling and 
analysis and continuous estimates of streamflow (Gurnell and 
others, 1994; Granato and Smith, 1999; Brown and others, 
2011). Additional knowledge of the use of road salt (sodium 
chloride [NaCl] and other deicing agents), including the tim-
ing, amount, and composition of deicers applied to roadways, 
as well as the weather details, is beneficial in understand-
ing the effects of road-salt washoff on concentrations and 
loads of Cl- in streamflow (Brown and others, 2011; Granato, 
2013). Collection of data to determine the Cl- concentrations 
and streamflow, and how they affect specific conductance, 
is important to the development of a regression model to 
estimate Cl- concentrations.

The Federal Highway Administration (FHWA) and the 
Connecticut Department of Transportation (ConnDOT) are 
considering the possible expansion of a 15-mile (mi) stretch 
of Interstate 95 (I–95) between Old Lyme and New London, 
Connecticut. Concerns have been raised about the effects 
of highway expansion on the water quality and biologi-
cal resources associated with streams crossed by I–95. In 
2008, the U.S. Geological Survey (USGS), in cooperation 
with the FHWA and ConnDOT, began a 3-year study to 
assess the water quality of streams and the effects of deic-
ing of roads on streamwater quality. Data were collected 
from November 2008 through September 2011 to provide a 
better understanding of the water-quality implications of an 
I–95 expansion and to assist in development of low-impact 
design alternatives.

Purpose and Scope

This report describes the collection and analysis of 
geologic, hydrologic, and water-quality data to assess 
baseline water-quality conditions along the I–95 corridor 
during 2008–11. This report also describes the sampling 
sites in detail, the collection of water stage and streamflow 
data, water-quality monitoring and sampling, and esti-
mation of Cl- loads and yields. Concentrations of water-
quality constituents in samples collected from four streams 
and two piezometers are presented, and comparisons are 
made between the chemical quality of streamwater and 
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groundwater. Concentrations of Cl- and other chemical 
constituents and specific conductance are presented in tables 
and appendixes. Estimates of Cl- loads in streamflow and 
from atmospheric deposition are presented in figures, and 
loads from atmospheric deposition are presented in tables. 
All these data were used to assess how stream and shallow 
groundwater quality respond to winter storm deicing, deicing 
amounts, water-quality differences between upstream and 
downstream sites and between watersheds, and whether Cl- 
concentrations exceeded recommended water-quality criteria 
for protection of aquatic life in watersheds that are typical of 
those in many parts of Connecticut. The data and analysis in 
this report supersede those in the interim report (Brown and 
others, 2011).

Description of Study Area

The study area encompasses four watersheds in south-
eastern Connecticut crossed by I–95—Four Mile River, Oil 
Mill Brook, Stony Brook, and Jordan Brook (fig. 1). The 
watersheds encompass parts of the towns of Lyme, Old Lyme, 
East Lyme, Montville, and Waterford, Conn. Two sites in each 
watershed were selected for sample collection and water-
quality monitoring—one upstream and one downstream from 
I–95—in order to evaluate the effects of highway deicers on 
streamwater quality (fig. 1). Streamgages are located at the 
downstream sites.

Constituent concentrations in streamwater and ground-
water are affected by physical watershed characteristics, such 
as watershed area, groundwater discharge, and precipitation, 
as well as by chemical sources, such as atmospheric deposi-
tion, geology, and land use. Watersheds differ in their ability 
to collect and conduct water, depending on such factors as 
size and shape, climate, vegetation, topography, development, 
and impervious area (Langbein and others, 1947; Granato, 
2013). The four watersheds in this study range in size from 
1.0 to 5.98 square miles (mi2) and are predominantly forested 
and undeveloped; developed areas range from 9.4 percent at 
the Four Mile River upstream watershed to 31.5 percent at the 
Jordan Brook watershed (fig. 2; table 1). ConnDOT data on 
highway drainage were considered in the delineation of the 
watershed boundaries (James Spencer, Connecticut Depart-
ment of Energy and Environmental Protection, written com-
mun., 2012). Data on 2010 land-use and land-cover charac-
teristics (table 1) were determined from LANDSAT Thematic 
Mapper data, retrieved from the Center for Land Use Educa-
tion and Research (CLEAR) Web site (University of Con-
necticut, 2010). The impervious area was estimated by using 
the Impervious Surface Analysis Tool (ISAT) (Emily Wilson, 
written commun., University of Connecticut, May 2014, 
http://www.csc.noaa.gov/digitalcoast/tools/isat) together with 
the 2010 land-use and land-cover data (table 1).

The study area is underlain by surficial deposits, 
including Pleistocene glacial stratified deposits, glacial till, 
and Holocene alluvial deposits, which occur primarily in 
stream channels (table 2). These deposits are underlain by 

crystalline rock. Coarse-grained glacial stratified deposits 
account for 7.7 to 17.8 percent of surficial material in the four 
watersheds (table 2). Effective recharge to the glacial strati-
fied deposits and groundwater storage and flow within these 
deposits are much larger than for till deposits (Melvin and 
Bingham, 1991).

The spatially averaged annual total precipitation in Con-
necticut over the last 100 years shows a generally upward 
trend in precipitation with high year-to-year variability. The 
long-term mean annual precipitation is 44.8 inches per year 
and is distributed fairly evenly throughout the year (Miller 
and others, 2002). The average annual precipitation near the 
coast at the Groton-New London airport (KGON; fig. 1) is 
48.7 inches (in.) for a 39-year period of record. Snowfall 
and other frozen precipitation is a minor component of the 
total precipitation in Connecticut, particularly along the coast 
where it is moderated by the ocean. The average snowfall in 
Connecticut is about 20 to 30 in. along the coast, 40 to 60 in. 
inland, and more than 70 in. in the northwestern corner of the 
State (Miller and others, 2002). The average annual snowfall 
at Groton, Conn., is 24.6 in. with an average winter tempera-
ture of -1.8 degrees Celsius (°C) (National Oceanic and Atmo-
spheric Administration, National Climatic Data Center, n.d.).

Weather data, including daily maximum and minimum air 
temperature, precipitation amount (fig. 3A), estimated thick-
ness of snow, and estimated snowmelt (fig. 3B), were plotted 
for the study period to help assess the effects of weather on 
deicers and Cl- concentrations in the watersheds.

Sources of Chloride to Streams and 
Groundwater in the Study Area

Sources of Cl- include atmospheric deposition, road deicers, 
discharge from drinking-water and wastewater-treatment facilities 
or septic systems, leachate from landfills, and fertilizers. Storm-
water runoff from I–95, which is maintained by ConnDOT, was 
the primary focus of this study, but there are other contributions to 
streamflow in each watershed, including stormwater runoff from 
other roadways and impervious areas, interflow, and the ground-
water component (base flow). Sources of major ions in base flow 
include groundwater recharge, road deicers and deicer storage 
locations, septic-tank drainfields, landfills, fertilizers, and petro-
leum or chemical spills, as well as aquifer weathering. Potential 
point sources of Cl- in each watershed were determined from a 
1:50,000-scale data layer that includes point locations digitized 
from Leachate and Wastewater Discharge Source maps compiled 
by the CTDEEP and point locations digitized on-screen from 
CTDEEP sources (Connecticut Department of Environmental 
Protection, 1995). Other sources of salts to freshwater resources 
include seawater and the natural weathering of bedrock, surficial 
materials, and soils, or deposits containing halite or saline ground-
water (brines). None of the stream sites are tidally affected by 
seawater, and halite and brines are not present in geologic deposits 
in this area and, therefore, do not affect stream chemistry in this 
study. Atmospheric and deicer sources of Cl- are discussed in 
the following two sections.

http://www.csc.noaa.gov/digitalcoast/tools/isat
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Figure 1. Location of upstream and downstream water-quality monitoring sites and downstream streamgages on four selected 
streams along the Interstate 95 corridor study area, southeastern Connecticut, and (inset) location of the Groton-New London 
airport weather station, a snow observation site, and three National Atmospheric Deposition Program sites.
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Table 2. Classification of surficial materials for watersheds above each monitoring site in the study area, southeastern Connecticut.

[Data from Stone and others (1992). USGS, U.S. Geological Survey]

Watershed name
USGS site 

identification 
number

Surficial material, in percent of watershed area

Coarse grained Swamp or fines Till Thick till Water

Four Mile River upstream 01127819 16.4 1.6 73.7 7.5 0.9
Four Mile River downstream 01127821 16.2 1.4 73.4 8.1 0.9

Oil Mill Brook upstream 0112779135 13.3 1.6 71.6 4.7 8.8
Oil Mill Brook downstream 011277914 14.0 1.5 71.7 4.6 8.3

Stony Brook upstream 0112779155 7.7 13.9 78.4 0 0
Stony Brook downstream 011277916 17.8 7.7 74.5 0 0

Jordan Brook upstream 011277695 17.3 2.9 75.6 4.2 0
Jordan Brook downstream 011277696 17.8 2.7 75.5 4.0 0
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Figure 3. A, Daily 
maximum and minimum air 
temperature and continuous 
precipitation at the Groton-
New London airport weather 
station (KGON), and B, 
estimated hourly snow 
thickness and snowmelt 
at a snow observation 
station (MADIS AP760) in 
southeastern Connecticut, 
from November 2008 to 
September 2011.
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Atmospheric Deposition
Atmospheric deposition generally transmits salts from 

both anthropogenic and natural sources to watersheds and 
groundwater. Atmospheric deposition of major ions is more 
concentrated in coastal areas than in inland areas (Gay and 
Melching, 1995). Cl- load in precipitation can be a substan-
tial part of the total Cl- load in relatively undeveloped areas, 
particularly in coastal areas (Mullaney and others, 2009; 
National Atmospheric Deposition Program, 2012). National 
Atmospheric Deposition Program (NADP) wet deposition sta-
tions in southeastern New England provide concentration data 
that can be used to estimate atmospheric deposition yields and 
loads (fig. 1; table 3).

Road Deicing Chemicals and Their Application in 
the Study Area

Road-deicing chemicals are a primary source of Cl- and 
other constituents to water resources near highways or other 
impervious areas in the northern United States (Bubeck and 
others, 1971; Mullaney and others, 2009; Wulkowicz and 
Saleem, 1974). The use of NaCl in the United States increased 
from 42.9 million tons in 1975 to nearly 58.5 million tons 
in 2005 (Kostick and others, 2007). The application of NaCl 
to roads is now the largest use of salt in the United States 
(Kostick and others, 2007), and during 2009, 2010, and 2011, 
road application represented about 39 percent, 43 percent, and 
38 percent, respectively, of the end use of salt (U.S. Geologi-
cal Survey, 2015).

During the past decade (2000–2009), deicing of State 
roads throughout New England and other northern States has 
changed from simply plowing, salting, and sanding to pre-
treating by spraying liquids that prevent snow and ice from 
bonding with the road (anti-icing) and using less sand. Typical 
NaCl application rates for New England States ranged from 
240 to 300 pounds per lane mile (Massachusetts Department 
of Transportation, 2012); the State of Connecticut applied 
about 200 pounds per lane mile (Connecticut Department of 
Transportation, 2013). Under field conditions, NaCl lowers 
the freezing point of water to -9 °C; other salts, such as CaCl2, 
depress the freezing point further (to -29 °C), but these are 
more expensive (Connecticut Department of Transportation, 
2009). NaCl brine, therefore, is generally applied to State 
bridges, ramps, overpasses, and some roads before snow or 
ice events.

The primary road deicers used by the ConnDOT include 
NaCl (in both the liquid brine and solid halite forms) and 
CaCl2 liquid (Connecticut Department of Transportation, 
2009); deicers used by the towns include NaCl (halite) and a 
product that contains magnesium chloride (MgCl2) together 
with distillers condensed solubles.1 ConnDOT initiated a new 

1Fermentation byproducts, which include spent yeast cells and other 
nutrients that remain after corn grain has been fermented to produce ethanol; 
known in the food industry as “corn syrup.”

snow and ice removal program beginning in the 2006–7 winter 
season (Connecticut Department of Transportation, 2009). 
ConnDOT crews generally avoid using sand on roadways 
because it provides only temporary traction, fouls waterways 
and the air, clogs drains, and is costly to clean up (Connecticut 
Department of Transportation, 2009). The primary purpose of 
the new program is to reduce the use of sand and improve win-
ter driving conditions by (1) pretreating pavements with NaCl 
brine, thus preventing bonding of snow or ice, and (2) using 
liquid CaCl2 as a wetting agent for rock salt (halite), which is 
applied during snow or ice events to lower the freezing point 
of water, to reduce bounce and scatter, and to reduce the melt-
ing time.

For pretreatment, ConnDOT uses a 23-percent NaCl 
brine solution for anti-icing at a rate of about 30 gallons per 
lane mile. Larger rates (40 gallons per lane mile) of the NaCl 
brine solution are applied at pavement temperatures below 
-1 °C, but none is applied below -5.5 °C because it is ineffec-
tive at colder temperatures. The brine solution is applied to 
bridges and selected roadways by a tanker truck using spray 
bars with nozzles that are spaced about 10 in. apart. The brine 
solution is applied up to 5 days before an anticipated precipita-
tion event and leaves 2-in. strips that melt frozen precipitation 
on contact.

CaCl2 in liquid form (about 32 percent by weight) has 
been used as a wetting agent on Connecticut State roads since 
the winter of 2006–7. It is sprayed onto halite rock salt in the 
spreader chute on plows and other snow-removal equipment. 
The CaCl2 brine-halite combination melts snow or ice faster 
during application than halite without brine and sand. The typ-
ical mixing rate is 10 gallons of liquid CaCl2 per ton of rock 
salt, but the rates vary depending on temperature, humidity, 
type and timing of storms, and traffic conditions (Connecticut 
Department of Transportation, 2009). In some situations where 
ice has already formed, liquid ice-control chemicals (CaCl2 or 
NaCl brine) are applied directly to the pavement.

The types and lengths of State roads maintained by 
ConnDOT (table 4) and the times and duration of application 
for each winter storm or deicing activity were used together 
with the deicer type and rates of application to estimate the 
amounts of deicers applied within each watershed (table 5). 
Typical spreading rates from trucks with calibrated spreaders 
are about 200 pounds per lane mile, ±20 percent (Connecticut 
Department of Transportation, 2009). The total amount of 
deicers applied to the highways varied from storm to storm 
and year to year (table 5). The deicers applied to I–95 and 
other State roads for the 2008–11 winter season were catego-
rized by (1) storms, which refers to snow or ice storm events, 
and (2) activities, such as icy conditions or drifting snow, 
which generally require shorter periods of deicing (table 5; 
Connecticut Department of Transportation, 2009).
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Table 5. Description of the applications of deicing materials to 
State-operated roads during winter storms and deicing activities 
within the Four Mile River, Oil Mill Brook, Stony Brook, and Jordan 
Brook watersheds, southeastern Connecticut, for the 2008–11 
winter seasons.

[Available separately at http://dx.doi.org/10.3133/sir20155057]

The town road lengths and the annual deicer applica-
tion amounts were obtained from town public works depart-
ments (table 6). Deicers included NaCl (halite), a salt and 
sand mixture, and (or) Ice B’Gone®. Ice B’Gone® is a deicing 
product that contains MgCl2 together with distillers condensed 
solubles and was used in the towns of East Lyme, Waterford, 
and Montville. The mixture is described as having a synergistic 
melting effect that results in a melting temperature of -31 °C 
(Sears Ecological Applications Co., LLC, 2009). The lengths 
of town roads within each watershed and the proportions of 
annual deicer load were used to determine the annual deicer 
load applied to town roads for each watershed.

The towns of East Lyme and Old Lyme used halite, salt 
and sand mixture, and (or) Ice B’Gone® to treat snow and ice 
on town roads; during the 2008–11 winter seasons these towns 
applied 0.6 to 5.5 tons of Cl- per road mile within the Four 

Mile River watershed (table 6; M.A. Giannattasio, Town of 
East Lyme, oral commun., 2011; E.C. Adanti, Town of Old 
Lyme, oral commun., 2011). The Oil Mill Brook watershed 
includes the towns of Montville, which applied a combination 
of halite and Ice B’Gone® (D.W. Bordeau, Town of Mont-
ville, oral commun., 2011), and Waterford, which applied 
only Ice B’Gone®. Together, these towns applied road salt at 
rates of 59.3 to 119 tons of Cl- per road mile during the winter 
seasons of 2008–11. Roads in the Stony Brook and Jordan 
Brook watersheds, which are both in Waterford, were treated 
annually with 20.8 tons and 76.6 tons, respectively, during the 
2008–11 winter seasons (R.R. Cusano, Town of Waterford, 
oral commun., 2011).

Road-deicing chemicals applied to parking lots, side-
walks, and driveways also represent an important source of 
Cl- and other constituents to water. Attempts to obtain deicer 
application amounts applied to these impervious areas were 
unsuccessful, so an estimate of 30 percent of deicers applied 
to roads was used to represent deicers applied to parking 
lots, sidewalks, and driveways. Harte and Trowbridge (2010) 
estimated that parking lots made up about 50 percent of salt 
inputs in watersheds adjacent to Interstate 93 in southern 
New Hampshire.
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Table 6. Deicing materials applied to town roads during the 2008–11 winter seasons, southeastern Connecticut.

[Cl-, chloride; NaCl, sodium chloride; --, none reported]

Town/ 
Point of contact

Winter 
season

Total deicing product applied, in tons
Total Cl- amount applied to town roads, 

in tons Length 
of roads 
in town, 
in miles

Length of 
town roads in 

watershed,  
in miles

Cl- amount applied to town roads per 
watershed, in tons

Cl- rate applied 
to town roads in 

watershed,  
in tons 

per lane mile

Cl- amount applied to town 
roads in watershed, in tons

Sand 
and salt 
mixture

NaCl from 
salt and sand 

mixture

NaCl  
(halite)

ICE B’GONE 
blend1

Sand 
and salt 
mixture

NaCl 
(halite)

ICE 
B’GONE1 

blend
Total

Sand and  
salt mixture

NaCl  
(halite)

ICE B’Gone 
blend

Subtotal
Winter  
season

Total

Four Mile River Watershed

East Lyme/M.A. Giannattasio 2008–9 -- -- 700 300 -- 425 102 527 112 11.9 -- 45.1 10.84 56.0 2.35 2008–9 59.8
2009–10 -- -- -- 1,100 -- -- 374 374 -- -- 39.7 39.7 1.67
2010–11 -- -- -- 1,800 -- -- 612 612 -- -- 65.0 65.0 2.73 2009–10 41.3

Old Lyme/E.C. Adanti 2008–9 220 55 99 -- 33.4 60.1 -- 93 60 2.5 1.39 2.5 -- 3.9 0.778
2009–10 250 62.5 -- -- 37.9 -- -- 38 1.58 -- -- 1.6 0.316 2010–11 67.2
2010–11 350 87.5 -- -- 53.1 -- -- 53 2.21 -- -- 2.2 0.442

Oil Mill Brook Watershed

Waterford/R.R. Cusano 2008–9 -- -- -- 1,500 -- -- 510 510 120 9.6 -- -- 40.9 40.9 2.13 2008–9 119
2009–10 -- -- -- 1,500 -- -- 510 510 -- -- 40.9 40.9 2.13
2010–11 -- -- -- 1,500 -- -- 510 510 -- -- 40.9 40.9 2.13 2009–10 59.4

Montville/D.W. Bordeau 2008–9 -- -- 1,379 2,623 -- 1,591 892 2,483 119 3.8 -- 50.1 28.1 78.2 10.43
2009–10 -- -- -- 1,722 -- -- 586 586 -- -- 18.5 18.5 2.46 2010–11 59.3
2010–11 199.9 -- 158.79 1,712 -- -- 582 582 -- -- 18.3 18.3 2.45

Stony Brook Watershed

Waterford/R.R. Cusano 2008–9 -- -- -- 1,500 -- -- 510 510 120 4.9 -- -- 20.8 20.8 2.13 2008–9 20.8

2009–10 -- -- -- 1,500 -- -- 510 510 -- -- 20.8 20.8 2.13 2009–10 20.8

2010–11 -- -- -- 1,500 -- -- 510 510 -- -- 20.8 20.8 2.13 2010–11 20.8

Jordan Brook Watershed

Waterford/R.R. Cusano 2008–9 -- -- -- 1,500 -- -- 510 510 119 17.9 -- -- 76.6 76.6 2.1 2008–9 76.6

2009–10 -- -- -- 1,500 -- -- 510 510 -- -- 76.6 76.6 2.1 2009–10 76.6

2010–11 -- -- -- 1,500 -- -- 510 510 -- -- 76.6 76.6 2.1 2010–11 76.6
1Ice B’Gone blend consists of 14 percent magnesium chloride (MgCl2), 4.2 percent calcium chloride (CaCl2), 0.3 percent sodium chloride (NaCl), 0.1 percent  

potassium chloride (KCl), and 50 percent distillers condensed solubles (by weight) in 8 gallons of solution per ton of NaCl.
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Table 6. Deicing materials applied to town roads during the 2008–11 winter seasons, southeastern Connecticut.

[Cl-, chloride; NaCl, sodium chloride; --, none reported]

Town/ 
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Winter 
season

Total deicing product applied, in tons
Total Cl- amount applied to town roads, 

in tons Length 
of roads 
in town, 
in miles

Length of 
town roads in 

watershed,  
in miles

Cl- amount applied to town roads per 
watershed, in tons
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to town roads in 
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per lane mile
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roads in watershed, in tons

Sand 
and salt 
mixture

NaCl from 
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ICE B’GONE 
blend1

Sand 
and salt 
mixture

NaCl 
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ICE 
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NaCl  
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ICE B’Gone 
blend
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season

Total
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East Lyme/M.A. Giannattasio 2008–9 -- -- 700 300 -- 425 102 527 112 11.9 -- 45.1 10.84 56.0 2.35 2008–9 59.8
2009–10 -- -- -- 1,100 -- -- 374 374 -- -- 39.7 39.7 1.67
2010–11 -- -- -- 1,800 -- -- 612 612 -- -- 65.0 65.0 2.73 2009–10 41.3

Old Lyme/E.C. Adanti 2008–9 220 55 99 -- 33.4 60.1 -- 93 60 2.5 1.39 2.5 -- 3.9 0.778
2009–10 250 62.5 -- -- 37.9 -- -- 38 1.58 -- -- 1.6 0.316 2010–11 67.2
2010–11 350 87.5 -- -- 53.1 -- -- 53 2.21 -- -- 2.2 0.442

Oil Mill Brook Watershed

Waterford/R.R. Cusano 2008–9 -- -- -- 1,500 -- -- 510 510 120 9.6 -- -- 40.9 40.9 2.13 2008–9 119
2009–10 -- -- -- 1,500 -- -- 510 510 -- -- 40.9 40.9 2.13
2010–11 -- -- -- 1,500 -- -- 510 510 -- -- 40.9 40.9 2.13 2009–10 59.4

Montville/D.W. Bordeau 2008–9 -- -- 1,379 2,623 -- 1,591 892 2,483 119 3.8 -- 50.1 28.1 78.2 10.43
2009–10 -- -- -- 1,722 -- -- 586 586 -- -- 18.5 18.5 2.46 2010–11 59.3
2010–11 199.9 -- 158.79 1,712 -- -- 582 582 -- -- 18.3 18.3 2.45

Stony Brook Watershed

Waterford/R.R. Cusano 2008–9 -- -- -- 1,500 -- -- 510 510 120 4.9 -- -- 20.8 20.8 2.13 2008–9 20.8

2009–10 -- -- -- 1,500 -- -- 510 510 -- -- 20.8 20.8 2.13 2009–10 20.8

2010–11 -- -- -- 1,500 -- -- 510 510 -- -- 20.8 20.8 2.13 2010–11 20.8

Jordan Brook Watershed

Waterford/R.R. Cusano 2008–9 -- -- -- 1,500 -- -- 510 510 119 17.9 -- -- 76.6 76.6 2.1 2008–9 76.6

2009–10 -- -- -- 1,500 -- -- 510 510 -- -- 76.6 76.6 2.1 2009–10 76.6

2010–11 -- -- -- 1,500 -- -- 510 510 -- -- 76.6 76.6 2.1 2010–11 76.6
1Ice B’Gone blend consists of 14 percent magnesium chloride (MgCl2), 4.2 percent calcium chloride (CaCl2), 0.3 percent sodium chloride (NaCl), 0.1 percent  

potassium chloride (KCl), and 50 percent distillers condensed solubles (by weight) in 8 gallons of solution per ton of NaCl.
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Methods of Data Collection and 
Analysis

Streamflow and water-quality data were collected 
(November 1, 2008, to September 30, 2011) by using methods 
described below or discussed in Brown and others (2011) to 
assess weather information, water quality, stream stage, and 
streamflow for the four selected streams. All water-quality, 
stream-stage, and streamflow data collected in the study 
are stored in the USGS National Water Information System 
(NWIS) database.

Site Selection
Four streams between the Connecticut River and the 

Thames River—Four Mile River, Oil Mill Brook, Stony 
Brook, and Jordan Brook (fig. 1)—were selected for study on 
the basis of the percentage of land-use types, the percentage of 
impervious area, road types and density, the presence of coarse 
glacial stratified deposits, suitability for streamflow and water-
quality monitoring, site accessibility, representativeness and 
transferability, and the absence of estuarine or brackish waters.

Weather Data

Weather data were collected to assess factors such as 
temperature and amounts, types, and timing of precipitation, 
which affect melting and washing of deicers off road sur-
faces, and subsequent changes in Cl- concentration in streams. 
Hourly measurements of air temperature and precipitation for 
the study period were obtained from continuous temperature 
and daily precipitation data collected at (fig. 1) as part of the 
National Weather Service Meteorological Assimilation Data 
Ingest System (MADIS). The data were accessed through 
Weather Underground (http://www.wunderground.com/).

A branch of the National Weather Service, the National 
Operational Hydrologic Remote Sensing Center, assembles 
daily ground-based, airborne, and satellite snow observations 
for the conterminous United States (National Operational 
Hydrologic Remote Sensing Center, 2005). These data are 
used together with estimates of snowpack characteristics 
determined by a snow model to generate the operational, daily 
National Oceanic and Atmospheric Administration (NOAA) 
National Snow Analysis for the United States, for which snow 
depth, snow-water equivalent, and snowmelt are estimated. 
The snow observation station (MADIS AP750) nearest the 
study area is located in southeastern Connecticut at latitude 
41.36733°N, longitude 72.216°W, at an altitude of 72 feet (ft) 
above the NAVD 88 (fig. 1).

Streamflow

Stream stage and streamflow were measured in the four 
streams at sites downstream from I–95 (fig. 1) and used for 
computations of Cl- loads in highway stormwater runoff. 

Stream stage was recorded at 5-minute intervals with pressure 
transducers and data loggers, and streamflow measurements 
were made periodically at these sites. These data were used 
to develop a rating curve to convert stage measurements into 
streamflow. The periods of record for gage height and stream-
flow are shown in appendixes 2–5. Streamflow data at the 
downstream sites had breaks caused by problems with stage 
recorders. A high streamflow event in September 2010 caused 
flooding at Oil Mill Brook downstream site, which changed 
the channel control features and affected the stage-discharge 
relation. Stage was too low to determine streamflow at the 
Stony Brook downstream site during June 21–August 11, 
2010, and at the Jordan Brook downstream site during July 
28–August 17, 2010. Periods of missing record were estimated 
by using hydrograph comparisons among adjacent sites. All 
streamflow records were computed in accordance with stan-
dard USGS protocols for computation of streamflow records 
as described by Rantz and others (1982).

Water Quality

Water-quality data were collected at sites upstream and 
downstream from I–95 on the four streams to monitor Cl- con-
centrations and other major constituents and to evaluate the 
Cl- loads at downstream sites. Water samples were collected 
approximately monthly throughout the year and during winter 
storms as discrete grab samples collected manually or with 
automated samplers (appendix 1). Temperature and specific 
conductance were monitored at upstream and downstream 
sites with continuous water-quality monitors. Piezometers 
were installed downstream from I–95 at two of the water-
sheds—Four Mile River and Jordan Brook (fig. 1)—to 
determine Cl- concentrations in shallow groundwater samples 
and the extent of interaction between groundwater and surface 
water on the basis of specific conductance. Piezometers con-
sisted of 1-in. inside-diameter galvanized steel drive points 
with holes drilled in the bottom 0.2 ft. A threaded pound cap 
was placed at the top, and the piezometer was driven and 
pounded into the streambed near the river bank to a depth of 
about 3 ft.

Continuous Monitoring

Continuous monitoring of water quality at each sampling 
site was accomplished by using a water-quality monitor-
ing instrument for measurement of temperature and specific 
conductance at 10-minute intervals. All procedures relating 
to water-quality monitors (calibration, maintenance, record 
computation, storage, and archiving) are described by Wagner 
and others (2006). The data record for continuous temperature 
and specific conductance had some gaps caused by equipment 
malfunction at some sites (figs. 4–7; appendixes 2–5). At Oil 
Mill Brook, the specific conductance probe lost calibration 
on a few occasions, so data were removed; also, the water-
quality monitor at the Oil Mill Brook downstream site was 

http://www.wunderground.com/
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moved upstream about 40 ft on April 5, 2010. At the Stony 
Brook upstream site, specific conductance data are missing 
for May 20–29, 2009, September 17–28, 2009, June 21–
August 16, 2010, and September 3–15, 2010; the water-quality 
monitor was moved upstream 100 ft on September 15, 2010, 
to avoid inflows from a parking lot and other road drainage. 
At the Stony Brook downstream site, specific conductance 
data are missing for December 9–16, 2010, and for June 21–
August 11, 2010, and estimated Cl- concentration data (and 
streamflow data) are missing for June 21, 2010–August 11, 
2010. At the Jordan Brook upstream site, specific conductance 
data are missing for April 21–May 5, 2009.

Water-Quality Sampling and Laboratory Analysis

Water-quality grab samples were collected (1) approxi-
mately monthly during routine conditions, (2) during base-
flow conditions, and (3) during winter storm or runoff events, 
including warm periods during which snow or ice melted. 
Field characteristics, which include water temperature, pH, 
and specific conductance, were measured during sample col-
lection in accordance with USGS procedures described by 
Wilde (2004, 2005). Grab samples were analyzed for specific 
conductance and Cl- concentrations, and samples collected 
at other times, including during base-flow conditions and 
during some winter storms, were analyzed for major ions 
(appendix 1). Samples were collected at stream sites dur-
ing base-flow conditions on August 19, 2009, and again on 
September 15, 2010, to determine the background major-ion 
chemistry of groundwater (appendix 1). During base-flow 
(low-flow) conditions, most streamflow is derived from 
groundwater discharge along the stream course. Stiff diagrams 
were used to depict concentrations of major ions in samples 
collected at all eight stream sites during base flow on August 
19, 2009, and at the Oil Mill Brook and Stony Brook upstream 
sites during higher flows in February and March 2009 (fig. 8). 
Automated samplers were only used at the downstream sites 
to collect several sets of samples during winter storms. During 
periods in which air temperatures were below about -5 °C, 
the automated sampler intake lines were prone to problems 
with freezing before water could be pumped into the sample 
bottles. Trace elements and nutrients were analyzed in samples 
from Four Mile River and Jordan Brook for comparison with 
stream piezometer samples. All water samples collected were 
analyzed by the USGS National Water Quality Laboratory in 
Denver, Colorado, using the methodology described in Fish-
man and Friedman (1989).

Quality Assurance

Field sensors were regularly cleaned and calibrated with 
standard solutions and checked periodically with indepen-
dent field and laboratory sensors. Continuous stage data and 
water-quality data were checked and corrected or censored for 
interruptions or shifts caused by debris, ice, or low-flow condi-

tions. During conditions of high flow, several measurements 
typically were made to verify the consistency of temperature 
and specific conductance. Quality-control procedures for the 
collection of continuous specific-conductance data followed 
procedures described in Wagner and others (2006).

Field quality-control procedures included the collec-
tion and analysis of replicate and blank samples. Field-blank 
samples provided information on bias or possible contamina-
tion during sample collection, processing, or analysis. Analyti-
cal results from the field-blank samples showed that concen-
trations of constituents were less than the reporting level. 
Analysis of replicate samples provided information on the 
variability of analytical results caused by sample collection, 
processing, and analysis. Analytical methods used in the labo-
ratory for analysis of constituent concentrations were reported 
to be accurate within 3 to 12 percent for major ions, depend-
ing on the ionic concentration and the analytical method used 
(Fishman and Friedman, 1989).

Data Analysis

Data analysis included estimating Cl- yield and load 
from atmospheric deposition, graphical plotting of concentra-
tions of water-quality constituents, statistical tests to compare 
results among the sites, and statistical analyses of the relations 
between ancillary variables and Cl- concentrations and loads in 
surface water. Stiff diagrams, which are graphical representa-
tions of chemical analyses (Stiff, 1951), were used to display 
the major ion composition of water samples.

Estimation of Chloride Loads in Atmospheric 
Deposition

The Cl- yield and load from atmospheric deposition was 
estimated by using the monthly median concentrations at the 
three NADP stations (fig. 1; table 3) and the amount of rainfall 
at the National Weather Service weather station at the Groton-
New London airport (KGON; fig. 1), then calculating the 
Cl- mass per unit area. Constituent concentrations measured at 
these NADP wet deposition sites do not include dry deposi-
tion, which can be 20 to 60 percent of the total atmospheric 
deposition of constituents (National Atmospheric Deposition 
Program, 2012). The Cl- load estimated from wetfall deposi-
tion was multiplied by a factor of two (Prych, 1998) to repre-
sent the total atmospheric deposition.

Estimation of Chloride Concentrations and Loads 
in Streams

Continuous Cl- concentrations and daily Cl- loads were 
estimated by using LOADEST, a load estimator computer 
program (Runkel and others, 2004). Data analyzed for dis-
solved Cl- in this study contained no censored data. Given a 
set of discrete water-quality measurements at each station and 

http://pubs.usgs.gov/twri/twri5-a1/pdf/twri_5-A1_f.pdf
http://pubs.usgs.gov/twri/twri5-a1/pdf/twri_5-A1_f.pdf
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Figure 4. A, specific conductance in grab samples and continuous specific conductance at Four Mile River upstream 
and downstream sites, and continuous streamflow at the downstream site, and B, chloride concentrations measured 
in grab samples and estimated continuous chloride concentrations at Four Mile River upstream and downstream sites, 
southeastern Connecticut, from November 2008 to September 2011.
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Figure 5. A, specific conductance in grab samples and continuous specific conductance at Oil Mill Brook upstream 
and downstream sites, and continuous streamflow at the downstream site, and B, chloride concentrations measured 
in grab samples and estimated continuous chloride concentrations at Oil Mill Brook upstream and downstream sites, 
southeastern Connecticut, from November 2008 to September 2011.
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Figure 6. A, specific conductance in grab samples and continuous specific conductance at Stony Brook upstream and 
downstream sites, and continuous streamflow at the downstream site, and B, chloride concentrations measured in grab 
samples and estimated continuous chloride concentrations at Stony Brook upstream and downstream sites, southeastern 
Connecticut, from November 2008 to September 2011.

St
re

am
flo

w
, i

n 
cu

bi
c 

 fe
et

 p
er

 s
ec

on
d

Downstream (continuous)

EXPLANATION

Streamflow, downstream

Upstream (continuous)
Specific conductance—

Downstream (grab sample)

Upstream (grab sample)

11/1/2008 11/1/2009 11/1/2010 11/1/2011

Date

0

50

100

150

200

250

300

Downstream

EXPLANATION

Upstream
Chloride concentration—

Downstream (grab sample)

Upstream (grab sample)

Ch
lo

rid
e 

co
nc

en
tra

tio
n,

 in
 m

ill
ig

ra
m

s 
pe

r l
ite

r

Missing record

Missing record

Missing record

Missing record

Sp
ec

ifi
c 

co
nd

uc
ta

nc
e,

 in
 m

ic
ro

si
em

en
s 

pe
r c

en
tim

et
er

 a
t 2

5 
de

gr
ee

s 
Ce

ls
iu

s

0

500

1,000

0

500

1,000

1,500

B.  Chloride concentration

A.  Specific conductance and streamflow

Water-quality monitor at the upstream site
     was moved upstream 100 feet 

09/15/2010



Methods of Data Collection and Analysis  19

Figure 7. A, specific conductance in grab samples and continuous specific conductance at Jordan Brook upstream and 
downstream sites, and continuous streamflow at the downstream site, and B, chloride concentrations measured in grab 
samples and estimated continuous chloride concentrations at Jordan Brook upstream and downstream sites, southeastern 
Connecticut, from November 2008 to September 2011.
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sites at Four Mile River, Oil Mill Brook, Stony Brook, and Jordan Brook, southeastern 
Connecticut, and shallow groundwater samples from wells in forested land-use settings in 
Connecticut.
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Table 7. Parameter estimates and coefficients of determination for explanatory variables determined for chloride concentrations and 
loads, at monitoring sites upstream and downstream from Interstate 95, southeastern Connecticut.

[Shaded areas indicate variables not significant at less than or equal to 0.05. ID, identification number; ln, natural log; Q, streamflow (cubic feet per second); 
Decimal T, time in decimal format; Period.Q, streamflow during winter period; SC, specific conductance; R2, coefficient of determination]

Station name
Station  

ID
Regression 

intercept
ln 

 (Q)
Decimal  

T

Winter  
period 

indicator1

2Period.Q
ln  

(SC)
R2

Four Mile River upstream of I-95 01127819 -7.40097 1.07968 0.03132 -0.00376 0.05963 1.28928 99.37

Four Mile River downstream of I-95 01127821 -7.82024 1.08327 0.05589 -0.00833 0.07098 1.39698 99.51

Oil Mill Brook, upstream 0112779135 -6.94921 1.08785 0.01249 0.01522 -0.01703 1.23141 99.89

Oil Mill Brook, downstream 011277914 -7.01412 1.08983 -0.00297 -0.00247 -0.03065 1.28209 99.78

Stony Brook, upstream 0112779155 -8.37784 1.10608 -0.01307 0.05200 -0.07741 1.41911 99.52

Stony Brook, downstream 011277916 -8.04048 1.06418 -0.00240 0.04524 -0.03821 1.36749 99.84

Jordan Brook, upstream 011277695 -7.96556 1.01655 0.00658 -0.01324 0.03226 1.17312 99.95

Jordan Brook, downstream 011277696 -7.89011 1.10157 0.01069 -0.01325 0.02903 1.18044 99.96
1 The winter season indicator is a binary variable identifying samples or predictions for November to March.
2 The flow during the winter period is used because of the potential that winter sample concentrations have a different relation with flow. For example, at 

site 011277916, the regression equation used outside the winter period is ln(L) = -8.04048 + 1.06418 × ln(Q) - 0.00240 + 1.36749 × ln(SC), where L =load. 
During the winter period, the equation is ln(L) = (-8.04048 + 0.04524) + (1.06418 - 0.03821) × ln(Q) - 0.00240(T) + 1.36749 × ln(SC). Explanation of the 
seasonal variables is given in Runkel and others (2004, “4.2 Application 2: Analysis of an Uncensored Constituent using a Seasonal Model”).

corresponding streamflow data, LOADEST assists the user in 
developing regression models for the estimation of constituent 
concentration and load at each site. Explanatory variables in 
the regression model may include various functions of stream-
flow, time, seasonal terms, and additional user-specified data. 
The formulated regression models then are used to estimate 
constituent concentrations and loads over a user-specified time 
interval. Throughout this report, these estimated Cl- concentra-
tions are referred to as “estimated” continuous Cl- concentra-
tions, whereas “observed” refers to Cl- concentrations mea-
sured in grab samples.

The variables selected in the final LOADEST regressions 
include standard LOADEST regression variables including the 
natural log of streamflow (ln(Q)) and decimal T (sample date and 
time in decimal format). In addition, the following variables were 
added: a winter season indicator variable (for samples collected 
October–March) and the natural log of the specific conductance 
measurements (ln(SC)). Data on the LOADEST regression vari-
ables and coefficients are given in table 7.

Chloride load and concentration prediction estimates with 
time during the study were made in two ways using LOADEST. 
A calibration dataset was compiled for each site, including 

the laboratory concentrations for chloride from manual and 
automatic sample collection and other explanatory variables, 
including the sample date and time, specific conductance, and 
the streamflow associated with the sample. For sites upstream 
from I–95, streamflow at the downstream site was used in the 
LOADEST calibration data file. Load predictions were made 
only for the downstream site in each of the four watersheds, 
and estimates of concentrations were made for both upstream 
and downstream sites.

Two types of predictions or estimations were made by 
using LOADEST, including (1) estimates of daily chloride 
load and (2) instantaneous estimates of chloride concentra-
tions. The prediction file that was assembled for the daily 
mean load included the following variables: date, daily mean 
flow, and daily mean specific conductance for the downstream 
sites. Loads were not estimated for the upstream sites because 
the sites did not have streamgages. For estimates of instanta-
neous chloride concentrations for each site, a prediction file 
was assembled that contained data on date and time, instan-
taneous streamflow, and instantaneous specific conductance. 
This file was used with the LOADEST regression model to 
compute instantaneous chloride.
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Table 8. Results of the A, Kruskal-Wallis rank sum test, and B, Tukey’s honest significance difference test for peak specific conductance,                                chloride from road deicers, and winter storm and watershed characteristics in the Four Mile River, Oil Mill Brook, Stony Brook, and Jordan 
Brook watersheds in Connecticut.

[Shaded areas indicate the probability that the null hypothesis will be rejected at a level of significance of less than 0.05. R, river; Br, brook; SC, specific conductance;                                    µS/cm; microsiemens per centimeter at 25 degrees Celsius; ft3/s, cubic foot per second; ≠, significantly different; NA, not analyzed]

Parameter
Watershed (Four Mile R, 

Oil Mill Br, Stony Br, 
Jordan Br)

Winter season  
(2008–09, 2009–10, 

2010–11)

Precipitation type (1—frozen; 
2—frozen+rain; 3—rain; 4—melting 

only; 5—deicing then rain )

Minimum air  
temperature, 

in degrees Celsius

Baseflow SC, 
in µS/cm

Daily  
mean SC,  
in µS/cm

Streaflow,  
in ft3/s

Impervious 
cover,  

in percent

Pre-existing 
snow pack

Deicer chloride, 
in tons

Subfreezing 
time before 

storm, in hours

Precipitation 
duration,  
in hours

Precipitation 
amount,  

in inches

A. Kruskal-Wallis rank sum test

Peak SC, in µS/cm 0 0.0044 0 0.002 0 0.0364 0.2822 0 0.0011 0.2818 0.0017 0.002 0

Deicer chloride, in tons 0.2644 0 0.0009 0.4762 0.2644 0.4563 0.7838 0.2644 0.0007 NA 0 0 0

B. Tukey’s honest significance difference test

Peak SC, in µS/cm Not significant Not significant frozen ≠ frozen+rain frozen+rain ≠ rain 
frozen+rain ≠ melting

NA NA NA NA NA NA NA NA NA NA

Deicer chloride, in tons Not significant Not significant frozen ≠ melting frozen+rain ≠ rain frozen+rain ≠ 
melting frozen+rain ≠ deicing+rain

NA NA NA NA NA NA NA NA NA NA

Statistical Tests
Because of the non-normal distribution of data, nonpara-

metric statistical procedures (Conover and Iman, 1981; Iman 
and Conover, 1983; Helsel and Hirsch, 1995) were used for 
analysis. These procedures measure the degree of association 
between the distributions of element data when grouped by 
watershed and deicing event characteristics.

The Kruskal-Wallis rank sum test was used to determine 
significant differences in mean peak specific conductance 
among the winter storm and watershed characteristics factors 
(table 8A). The one-way Kruskal-Wallis rank sum test is a 
nonparametric equivalent to the ANOVA and was used to test 
which factors differed from others; in other words, it tested 
whether or not the mean peak specific conductance of streams 
varied significantly among the storm and watershed character-
istics (explanatory variable or factor).

Tukey’s honest significance difference (HSD) test (Sokal 
and Rohlf, 1969; Stoline, 1981; Helsel and Hirsch,1995), a 
multiple-comparison procedure, was used to discriminate 
which group or groups of data, based on watershed or win-
ter season, differed in peak specific conductance or deicing 
Cl- when the Kruskal-Wallis rank sum test rejected the null 
hypothesis at p-value <0.05 (table 8B). For all possible pair-
wise comparisons, the Tukey’s HSD test uses the within-group 
variance to calculate the minimum difference in mean rank 
that is necessary to consider groups significantly different. The 
factors with significant differences are indicated by the “≠” 
symbol (for example, frozen precipitation ≠ frozen precipita-
tion +rain) at p-value <0.05 (table 8B).

Multiple Linear Regression Modeling

Multiple linear regression models were developed to 
describe peak chloride concentrations for samples collected 

from stream sites and factors related to road deicing that could 
be used to estimate peak Cl- concentrations during winter 
storms. Explanatory variables that were evaluated for use in 
the models include land-use/land-cover characteristics (per-
centage of developed land); length of highway lanes; water-
shed area; the types, amounts, and rates for deicers; storm 
characteristics; streamflow; and percentage of coarse stratified 
drift deposits. Values were selected on the basis of plausibility, 
statistical significance, and the distribution of residuals.

Factors That Affect Chloride 
Concentrations, Loads, and Yields

Factors that affect Cl- concentrations, loads, and yields in 
the watersheds are discussed here, including the estimated Cl- 
load in atmospheric deposition. Specific conductance and esti-
mated Cl- concentrations varied temporally with streamflow 
and season, and spatially between upstream and downstream 
sites on each of the four streams. These specific conductance 
and estimated Cl- concentration responses also can be related 
to the type and amount of road deicers applied by ConnDOT 
to I–95 and associated roads across the four watersheds in 
response to (or preceding) ice or snow events (table 5). Precip-
itation and (or) stormwater-runoff events generally coincided 
with an increased response of stream stage and streamflow. 
Streamflow data were compared to precipitation events and 
streamwater chemistry to determine sources and timing of Cl- 
concentrations and loads.

Streamflow and Watershed Yield
Streamflow varied among sites from a mean of 4.8 cubic 

feet per second (ft3/s) at Stony Brook to a mean of 14 ft3/s at 
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Table 8. Results of the A, Kruskal-Wallis rank sum test, and B, Tukey’s honest significance difference test for peak specific conductance,                                chloride from road deicers, and winter storm and watershed characteristics in the Four Mile River, Oil Mill Brook, Stony Brook, and Jordan 
Brook watersheds in Connecticut.

[Shaded areas indicate the probability that the null hypothesis will be rejected at a level of significance of less than 0.05. R, river; Br, brook; SC, specific conductance;                                    µS/cm; microsiemens per centimeter at 25 degrees Celsius; ft3/s, cubic foot per second; ≠, significantly different; NA, not analyzed]

Parameter
Watershed (Four Mile R, 

Oil Mill Br, Stony Br, 
Jordan Br)

Winter season  
(2008–09, 2009–10, 

2010–11)

Precipitation type (1—frozen; 
2—frozen+rain; 3—rain; 4—melting 

only; 5—deicing then rain )

Minimum air  
temperature, 

in degrees Celsius

Baseflow SC, 
in µS/cm

Daily  
mean SC,  
in µS/cm

Streaflow,  
in ft3/s

Impervious 
cover,  

in percent

Pre-existing 
snow pack

Deicer chloride, 
in tons

Subfreezing 
time before 

storm, in hours

Precipitation 
duration,  
in hours

Precipitation 
amount,  

in inches

A. Kruskal-Wallis rank sum test

Peak SC, in µS/cm 0 0.0044 0 0.002 0 0.0364 0.2822 0 0.0011 0.2818 0.0017 0.002 0

Deicer chloride, in tons 0.2644 0 0.0009 0.4762 0.2644 0.4563 0.7838 0.2644 0.0007 NA 0 0 0

B. Tukey’s honest significance difference test

Peak SC, in µS/cm Not significant Not significant frozen ≠ frozen+rain frozen+rain ≠ rain 
frozen+rain ≠ melting

NA NA NA NA NA NA NA NA NA NA

Deicer chloride, in tons Not significant Not significant frozen ≠ melting frozen+rain ≠ rain frozen+rain ≠ 
melting frozen+rain ≠ deicing+rain

NA NA NA NA NA NA NA NA NA NA

Four Mile River. Streamflow at Four Mile River was as great 
as 1,500 ft3/s during a spring rain event in March 2010 and 
reflects the larger drainage basin area. The watershed yield 
(streamflow per unit of watershed area, expressed in cubic feet 
per second per square mile) is a measure of drainage intensity. 
The annual mean watershed yield was only 1.5 cubic feet 
per second per square mile ([ft3/s]/mi2) at the Oil Mill Brook 
downstream site but 2.3 to 2.6 (ft3/s)/mi2 at the three other 
downstream sites (fig. 9); the lower value of annual mean 
watershed yield at the Oil Mill Brook downstream site could 
result from less runoff and more groundwater recharge com-
pared to the other watersheds.

Conductance and Chloride in Four Streams 
Along Interstate 95

Median continuous specific conductance and estimated Cl- 
concentrations were lowest at the Four Mile River upstream site 
(87 microsiemens per centimeter at 25 °C [µS/cm] and 11 mg/L, 
respectively) and highest at the Jordan Brook upstream site 
(195 µS/cm and 42 mg/L, respectively) from November 1, 
2008, through September 30, 2011 (table 9). The primary 
natural source of Cl- in the watersheds is atmospheric precipi-
tation, so Cl- concentrations in wetfall precipitation at NADP 
sites were used to estimate Cl- loads in atmospheric deposition 
(fig. 1). Median Cl- concentrations ranged from 0.19 mg/L 
in wetfall precipitation at an inland site in Abington, Conn. 
(CT15), to 0.45 mg/L at a site in Lexington, Massachusetts 
(MA13), and represent a relatively small contribution of Cl- in 
the watersheds compared to that from road deicers. Estimated 
Cl- loads in atmospheric deposition ranged from 0.0004 ton 
per day per square mile (ton/d)/mi2 at inland site CT15 during 
October 2008–September 2011, to 0.052 (ton/d)/mi2 at MA13, 
during October 2008–September 2010 (fig. 10; table 3). The 
estimates of median Cl- load from atmospheric deposition vary 

from 0.0048 ton per day (ton/d) for the Stony Brook watershed 
to 0.028 ton/d for the Four Mile River watershed (table 3).

Estimated Cl- concentrations at the four stream sites were 
well below the acute aquatic habitat criteria for Cl- of 860 mg/L 
over a 1-hour period, as well as the chronic aquatic habitat criteria 
of 230 mg/L averaged over 4 days (figs. 4–7). Estimated Cl- con-
centrations at the Jordan Brook downstream site peaked at 270 
mg/L on February 2, 2011, but only exceeded the chronic aquatic 
criterion of 230 mg/L for less than 2 hours. Generally, the specific 
conductance and Cl- concentrations in grab samples and continu-
ous specific conductance and estimated Cl- concentrations at 
downstream monitoring sites were higher during winter months 
than at other times of the year; increases corresponded to precipita-
tion or melting events and increased streamflow, as discussed in 
the section “Storm Conductance and Chloride Concentrations.” 
During the spring and summer months, specific conductance and 
estimated Cl- concentrations generally decreased in response to 
precipitation events and peaks in streamflow that cause dilution.

Base-Flow Chemistry Upstream and 
Downstream of Interstate 95

The samples depicted in figure 8 show that Cl- and Na+ 
were the dominant ions in samples collected during base flow 
at all sites, and bicarbonate (HCO3

-) also was dominant at the 
Four Mile River site. Concentrations of Cl- and Na+ in samples 
collected at Four Mile River and Stony Brook during base 
flow were higher at the downstream sites than at the upstream 
sites and probably reflect the greater contributions of shallow 
groundwater that was affected by deicing chemicals down-
stream from I–95. The concentrations of HCO3

-, Ca2+, and, to 
a lesser extent, magnesium (Mg2+) at Four Mile River were 
comparable to concentrations of Cl- and Na+ and may indicate 
a leachate source from a former landfill and associated septage 
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Figure 9. Distributions of continuous streamflow at the downstream monitoring sites at Four Mile River, Oil Mill Brook, Stony Brook, 
and Jordan Brook, southeastern Connecticut, from November 2008 to September 2011.

Figure 10. Estimated monthly median chloride loads in atmospheric deposition based on data from three National 
Atmospheric Deposition Program stations, from November 2008 to September 2011. Data are from National Atmospheric 
Deposition Program (2012). Estimates are based on chloride concentrations in wet deposition, but yields and loads were 
multiplied by a factor of two to account for dry deposition. Locations of sites are shown in figure. 1.
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lagoon upstream from I–95 (fig. 2). The concentrations of major 
ions at Oil Mill Brook and Jordan Brook during base flow were 
similar for the upstream and downstream sites. At the Oil Mill 
Brook upstream site, concentrations of HCO3

-, Mg2+, and Ca2+ 
increased, and concentrations of Na+, Cl-, and sulfate (SO4

2-) 
decreased from February to August 2009, apparently as contri-
butions from road-deicing sources decreased and contributions 
from base flow increased throughout the spring and summer. 
Major ion concentrations in base flow at the Four Mile River 
sites are comparable to concentrations in shallow groundwater 
from undeveloped areas (Grady and Mullaney, 1998). Concen-
trations of major ions in groundwater samples from three shal-
low wells in forested areas in Connecticut (Grady and Mullaney, 
1998) indicate patterns of ions that are less dominated by Na+ 
and Cl- and more by Ca2+, Mg2+, and HCO3

-
 compared to pat-

terns of ions in streamwater samples (fig. 8).
Specific conductance values and Cl- concentrations in 

groundwater samples from the Four Mile River piezometer 
were much higher than those in surface-water samples and may 
reflect leachate from a landfill and septage lagoon, both inactive, 
and from highway deicers.

Stormflow Conductance and Chloride 
Concentrations

During winter months, specific conductance and estimated 
Cl- concentrations in streams generally increased along with 
streamflow in response to precipitation or melting events as road 
deicers were washed from road surfaces by stormwater runoff. 
Periods of increased continuous specific conductance were 
observed at downstream monitoring sites, along with estimated 
Cl- concentrations, (1) in direct response to a storm or other 
deicing activity or (2) during a period of rain or melting that 
occurred after a storm or activity (table 10; appendixes 2–5). 
Specific conductance peaks also were observed in the spring 
after deicing practices had ended, apparently resulting from salt 
remaining in the unsaturated zone or shallow groundwater that 
finally discharged to streams. Most of the increase in specific 
conductance between upstream and downstream sites probably 
resulted from deicing salts carried in stormwater washed from 
I–95 highway lanes, ramps, access roads (table 4); other State 
or town roads; parking lots; sidewalks; and driveways. Specific 
conductance at upstream monitoring sites generally showed 
less of an increase than at downstream monitoring sites during 
precipitation and melting events as a result of dilution. Some 
upstream monitoring sites, however, including Jordan Brook 
and Stony Brook, had increased specific conductance during 
these events because large parking lots and highway drain-
age, respectively, contributed to water upstream from the sites. 
However, the extent of impervious area, which was estimated 
by using the 2010 land cover (University of Connecticut, 2010) 
and the ISAT tool, corresponded to the specific conductance 
response (Brown and others, 2011). Some stormwater from 
parts of I–95 drains through culverts to the watershed of the 
upstream monitoring site, such as in the Stony Brook watershed.

Table 10. Storm characteristics, weather data, and peak 
chloride concentrations and loads related to deicing and melting 
events for upstream and downstream monitoring sites at Four Mile 
River, Oil Mill Brook, Stony Brook, and Jordan Brook, southeastern 
Connecticut, from November 2008 to September 2011.

[Available separately at http://dx.doi.org/10.3133/sir20155057]

During the spring and summer months, specific con-
ductance in continuous measurements and Cl- concentrations 
in samples generally decreased in response to precipitation 
events and subsequent increases in streamflow. Accord-
ing to ConnDOT records, no road deicers were applied to 
State roads after March 2, 2009, during the 2008–09 winter; 
after February 27, 2010, during the 2009–10 winter; and 
after April 1, 2011, during the 2010–11 winter (table 5). The 
continued increase in specific conductance and estimated Cl- 
concentrations with increased stormflow at some sites after 
these dates, when daily mean temperatures exceeded 0 °C and 
all snow had melted, indicates that high concentrations of Cl- 
and other deicing constituents were retained in soils and (or) 
shallow groundwater and continued to affect stream chemistry 
through the early part of the spring.

Four Mile River
The Four Mile River downstream site south of I–95 

represents drainage from this two-lane interstate highway and 
the entrance and exit ramps in a predominantly forested area 
with 9 to 11 percent developed land (fig. 11). The areas of the 
contributing drainage basins for the upstream and downstream 
sites are 5.75 and 5.98 mi2, respectively (table 1). The section 
of I–95 that crosses the watershed includes two interchanges 
with on and off ramps, and the cloverleaf for I–95 north 
to Four Mile Road acts as a low-lying area that can collect 
stormwater. Direct highway drainage inputs include one in the 
upstream watershed along southbound I–95 and one loca-
tion in the downstream watershed at the beginning of the exit 
ramp from I–95 (fig. 11). An inactive mixed-waste landfill 
and an inactive septic lagoon are located about 0.1 mi north 
of the upstream site and 0.36 mi north of the downstream site. 
The Old Lyme landfill has stopped accepting public waste 
but has not completed closure. The piezometer ELY 82 is 
located 0.1 mi south of I–95 and about 200 ft north of the 
downstream site.

Water-quality data for the Four Mile River upstream and 
downstream sites were recorded continuously from January 
12, 2009, through the end of the study period, September 30, 
2011. Median specific conductance and estimated Cl- concen-
trations were slightly higher at the downstream site than at the 
upstream site throughout the study period (fig. 4; table 9A). 
During winter months, specific conductance and estimated Cl- 
concentrations at the downstream site increased in response to 
several deicing events—most notably during winter storm S7 
on January 7, 2009, and winter storm S2 on December 9, 2009, 
when estimated Cl- concentrations exceeded 100 mg/L (fig. 4; 
table 10). Estimated Cl- concentrations did not reach 100 mg/L 

http://dx.doi.org/10.3133/sir20155057
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Figure 11. Watershed boundaries, drainage features, landfill and septic sources, water-quality monitoring 
sites, and the downstream streamgage at Four Mile River, southeastern Connecticut.
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during the 2010–11 winter season, although 5 peaks exceeded 
40 mg/L during storms S7 and S11 (January 11, 2010, and Feb-
ruary 1, 2011, respectively), activity A4 (February 7, 2011), and 
melting event M9 (January 11, 2011). The estimated amount of 
salt applied to I–95 and associated roads in the Four Mile River 
area indicates that, although the date and amount of deicers 
applied to State roads correspond to increases in specific con-
ductance in some cases (fig. 4; table 5), the response in stream 
chemistry better relates to the cumulative amount and period of 
deicer application, in addition to the occurrence of rain and (or) 
warm temperatures and subsequent melting that washes deicers 
into the stream. For example, storms S4 and S5, which repre-
sent the first winter storms during the recording of data at the 
Four Mile River downstream site in 2009, resulted in increased 
levels of specific conductance and estimated Cl- concentrations 
in the stream (fig. 4). However, deicers applied during storm 
S6 in December 31, 2008, which consisted of several inches 
of snow with cold temperatures (less than 8 °C) and no rain, 
and activities 2 and 3 did not lead to any observed response in 
specific conductance at the Four Mile River downstream site 
(fig. 4), most likely because of the subfreezing temperatures 
and absence of rain or melting and subsequent runoff. Storm S7 
consisted of snow followed by rain and resulted in the highest 
specific conductance (527 µS/cm) and estimated Cl- concentra-
tion (160 mg/L) during winter for this site (fig. 4; table 10). 
An estimated 17 tons of Cl- was applied to I–95 and associated 
State roadways (table 5) in the “frozen” period between the end 
of storm S5 on December 24, 2008, and the beginning of the 
increased levels of specific conductance on January 7, 2009, 
at 6:00 a.m., 14 hours into the deicer application. A similar 
cold period between storm S7 and storm S10 (January 27–29, 
2009) had no increases in specific conductance or estimated 
Cl- concentrations in response to applications for storms S8 and 
S9. Finally, the period between storm S10 and storm S12, and 
the deicer applications in between, had no major increases in 
specific conductance, except during a rain event on February 12, 
2009, when specific conductance reached 289 µS/cm.

Specific conductance measured in samples collected at the 
downstream site during three events with extended subfreezing 
temperatures (maximum daily temperature below zero °C) was 
higher than specific conductance measured by the continuous 
water-quality monitor (figs. 4A and B). These events include a 
deicing activity on January 17, 2010 (A4), and winter storms on 
February 16, 2010 (S10), and January 18, 2011 (S7). The likely 
reason for these discrepancies is that the continuous monitor 
was partly frozen in the ice and was not in contact with the 
flowing part of the stream. The grab samples were collected by 
the automated sampler, which was drawing water from below 
the ice, in the flowing part of the stream.

Oil Mill Brook
The Oil Mill Brook site downstream from I–95 represents 

drainage from this four-lane interstate highway in a predomi-
nantly forested area with about 13 percent developed land use 
(fig. 12). The contributing drainage basins for the upstream 
and downstream stations are 5.37 and 5.67 mi2, respectively. 

The upstream watershed includes drainage from I–395 as well 
as Route 85, which are maintained by ConnDOT (figs. 1 and 
12). The downstream watershed includes drainage from I–95 
and an associated off ramp and deceleration lane, and drainage 
from I–395 (fig. 12).

Water-quality data for the Oil Mill Brook upstream and 
downstream sites were recorded continuously beginning 
December 17, 2008, through the end of the study period on 
September 30, 2011. Specific conductance and estimated Cl- 
concentrations were higher at the downstream site for most of 
the study, except during base-flow conditions in the summer 
and early fall of each year when values at the upstream site 
became slightly higher (fig. 5; appendix 3).

Specific conductance and estimated Cl- concentrations 
increased at Oil Mill Brook upstream and downstream sites in 
response to several winter events and increased streamflow. 
Cl- concentrations were at or exceeded 100 mg/L during S7 
and S10 during 2008–9, S2 and A2 during 2009–10, and S7 
and S11 during 2010–11 (table 10; appendix 3). At the down-
stream site, stormwater runoff from a local road and bridge 
was observed to flow into the stream near the monitor and may 
have affected specific conductance and estimated Cl- concen-
trations during snowmelt.

Peaks in estimated Cl- concentrations also were observed 
during the spring and summer (fig. 5; appendix 3), likely 
in part from Cl- in deicers. For example, Cl- concentrations 
peaked in response to summer storms in 2010, apparently 
resulting from high concentrations in base flow. Cl- concentra-
tions at the downstream site reached 21 mg/L on August 23, 
2010, at 9:40 a.m. after a rain event in which streamflow had 
peaked 11 hours earlier in response to a 0.92-in. rain event. 
Cl- concentrations reached 18 mg/L on September 4, 2010, at 
9:20 a.m., 12 hours after streamflow had peaked at 39 ft3/s on 
September 3 in response to a 1.57-in. rain event. These lag 
periods could have been caused by Lake Konomoc, a reser-
voir retained by a dam with constant outflow, several miles 
upstream from I–95 (fig. 1).

Stony Brook
The Stony Brook site downstream from I–95 represents 

drainage from this two-lane interstate highway in an area with 
about 19 percent developed land use (fig. 13). Stony Brook is 
the smallest of the watersheds studied, and the contributing 
drainage basins for the upstream and downstream stations are 
1.00 and 1.90 mi2, respectively. A closed, bulky-waste landfill 
is located 0.4 mi northeast of the upstream site (fig. 13). The 
highway and crossroads are highly modified, and drainage is 
complex; for example, an area in the downstream watershed 
drains to the north into the upstream watershed (fig. 13). In the 
beginning of the study, drainage from southbound I–95, just to 
the west of Stony Brook, flowed through a culvert (drainage 2 
in fig. 13) to a location near the upstream site. The upstream 
site also received ephemeral drainage from a parking lot of 
an industrial complex to the east and a wooded area to the 
west; because of these poorly mixed sources, the upstream 
site was moved 100 ft upstream from its original location 
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on September 15, 2010 (fig. 13). The difference in specific 
conductance between the old and new water-quality monitor 
locations appears to be negligible (fig. 6).

Water-quality data for Stony Brook were recorded continu-
ously from January 6, 2009, at the downstream site and from 
February 2, 2009, at the upstream site to the end of the study 
period (fig. 6; appendix 4); however, specific conductance 
and estimated Cl- concentration data for the upstream site are 
missing for several periods because of equipment failure, as 
discussed in the “Methods of Data Collection and Analysis” 
section. Median specific conductance and estimated Cl- con-
centrations generally were slightly higher at the downstream 
site than at the upstream site through the study period (table 
9A; appendix 4). Specific conductance was elevated above 
the background of 150 µS/cm at the Stony Brook downstream 
site during discharge events associated with winter storms and 
other deicing activities. Specific conductance and estimated 
Cl- concentrations in the late winter/early spring months, 
however, generally decreased during discharge events because 
of dilution by runoff from precipitation, which contains lower 
concentrations of ions compared to base flow (fig. 6). Specific 
conductance and estimated Cl- concentrations generally were 
slightly higher at the Stony Brook downstream site than at the 
upstream site throughout the period of record, but there were 
exceptions. Specific conductance was higher at the upstream 
site during base-flow conditions in 2010 than at the downstream 
site. In addition, the upstream site showed increased specific 
conductance and estimated Cl- concentrations during two events 
because some highway drainage temporarily contributed to 
water upstream from the sites. Some stormwater from parts of 
I–95 drained through culverts to the watershed for the upstream 
monitoring site before it was moved in 2010, as explained 
previously in this section. During February 15–18, 2009, for 
example, elevated levels of specific conductance might have 
resulted from melting of remaining snow near I–95 or other 
upstream roads; as discussed previously, some drainage from 
I–95 flows to the north and likely affected the upstream site 
water-quality monitor before it was moved 50 ft upstream 
(fig. 13). The upstream and downstream sites are 0.84 mi apart, 
more than twice as far as any of the other site pairs (table 1); 
therefore, another possible cause for this discrepancy could be 
dilution from groundwater and (or) stormwater runoff between 
the upstream and downstream sites that acted to dampen the 
increase at the downstream site.

In the spring, Cl- concentrations at the downstream site 
above the background of about 29 mg/L were associated with 
rain events or warm air temperatures. These elevated concentra-
tions likely resulted from salts in melting snow piles and (or) 
deicing salts that were flushed from soils and shallow ground-
water, then discharged downstream. These peaks can be identi-
fied in table 10 by the “M,” followed by the sequential number 
in the “Deicing or melting event” column. Studies have reported 
that a substantial percentage (45 to 85 percent) of Cl- in deicers 
is not removed by overland flow but infiltrates into soils and 
(or) groundwater (Howard and Haynes; 1993; Church and Friez, 
1993; Toler and Pollock; 1974).

During spring or summer months, specific conductance 
was higher at the upstream site than at the downstream site on 
some occasions. The reason for the increase at the upstream site 
is not known, but the absence of an increase in specific con-
ductance at the downstream site could result from dilution by 
stormwater or groundwater discharge between the upstream and 
downstream sites.

Jordan Brook
The Jordan Brook site downstream from I–95 represents 

drainage from this two-lane interstate highway in an area with 
about 32 percent developed land use (figs. 2 and 14). The 
contributing drainage basins for the upstream and downstream 
sites are 2.76 and 2.89 mi2, respectively. Upstream and down-
stream sites receive drainage from several large retail stores and 
a shopping mall (figs. 1 and 14). The upstream site is 0.16 mi 
from a large parking lot and the site of a closed, mixed-waste 
landfill, and 0.43 miles southwest (downstream) of a large shop-
ping mall. The downstream site is 0.32 mi downstream from the 
upstream site and 0.25 mi south of I–95, so drainage from the 
upstream watershed undergoes some dilution before reaching 
the downstream site (fig. 14).

Water-quality data for Jordan Brook upstream and down-
stream sites were recorded continuously from February 5, 2009, 
through September 2011 (fig. 7; appendix 5). Specific con-
ductance and estimated Cl- concentrations generally increased 
concurrently at the Jordan Brook upstream and downstream 
sites during winter and early spring high-discharge events asso-
ciated with winter storms or deicing activities. The upstream 
and downstream watershed areas have similar percentages of 
impervious area. The highest measured specific conductance 
and estimated Cl- concentration were 841 µS/cm and 270 mg/L, 
respectively, on February 8, 2011; these values were associated 
with warm temperatures and melting of snow (figs. 3 and 7). 
Specific conductance and estimated Cl- concentrations often 
were highest at the upstream site and probably relate to the 
large percentage of adjacent impervious area, relative to the 
downstream site, to which deicing chemicals were applied. The 
application of deicing chemicals to several large parking lots to 
the west of the upstream site during snow or ice events resulted 
in high concentrations of Cl-, Na+, and other ions that were 
washed into Jordan Brook.

Increases in specific conductance and estimated Cl- con-
centrations at upstream and downstream sites during the late 
winter and early spring of each year probably resulted from 
delayed snowmelt. Increases in specific conductance at the 
upstream and downstream sites, typically in March and April, 
are associated with rain events and likely resulted from salts 
in melting snow piles and (or) Cl- and other ions in deicers 
that were flushed from soils and shallow groundwater, then 
discharged downstream (appendix 5). A similar effect was 
observed at the Stony Brook downstream site (appendix 4). 
After the winter deicing period ended, specific conductance and 
estimated Cl- concentrations in Jordan Brook decreased during 
precipitation and discharge events as a result of dilution (fig. 7; 
appendix 5).
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Figure 12. Watershed boundaries, drainage features, water-quality monitoring sites, and the downstream 
streamgage at Oil Mill Brook, southeastern Connecticut.
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Figure 13. Watershed boundaries, drainage features, landfill sources, water-quality monitoring sites, and 
the downstream streamgage at Stony Brook, southeastern Connecticut.



32  Chloride Concentrations, Loads, and Yields in Four Watersheds Along Interstate 95, Southeastern Connecticut
Jordan Brook
Watershed

Jordan Brook

Jordan Brook
upstream site

Parking lot

Shopping mall

Jordan Brook
downstream site

WT 64

I-95

72°8'45"72°9'

41°22'15"

41°22'

1

1

EXPLANATION
Upstream watershed
Downstream watershed

Artificial drainage
Drainage to Jordan Brook

Downstream monitoring site 
and streamgage

Upstream monitoring site

Landfill, inactive
Culvert

Stream piezometer and
identification number

1

WT 64

Base from Connecticut Department of Environmental
Protection, 1994, 1:24,000 
Projection: Connecticut State Plane Feet

Landfills from Connecticut Department of Environmental 
Protection, Bureau of Water Management, 1995

0 0.1 0.2 MILES

0 0.1 0.2 KILOMETERS

Figure 14. Watershed boundaries, drainage features, landfill sources, water-quality monitoring sites, and the 
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Specific conductance and estimated Cl- concentrations at 
both Jordan Brook sites were highest during the 2010–11 win-
ter season and may have resulted from the larger amount of 
deicers applied compared to the previous two winters (table 5). 
Cl- concentrations at the other three downstream sites were 
not as high during the 2010–11 winter relative to the 2008–9 
and 2009–10 winters; the difference might be explained by the 
large area of parking lots in the Jordan Brook watershed.

Groundwater/Surface-Water Interaction
The chemistry of groundwater samples from piezometers 

at Four Mile River and Jordan Brook sites was compared with 
the chemistry of streamwater samples at these sites to deter-
mine possible groundwater/surface-water interactions. At the 
Four Mile River piezometer site, concentrations of Cl- and 
other major ions were much higher (up to 800 mg/L Cl-) in 
the groundwater samples than streamwater samples (fig. 15A). 
The high concentrations in groundwater were observed 
throughout the year and could result from leachate contami-
nation from a former landfill and associated septage lagoon 
to the north (fig. 11). Concentrations of barium (Ba) and 
strontium (Sr) also were much higher in the Four Mile River 
piezometer ELY82 water than in the streamwater, or in what 
is typical of groundwater quality in Connecticut (appendix 1); 
Ba and Sr concentrations are commonly high in landfill leach-
ate (Mirecki and Parks, 1994) and septic leachate (Brown and 
others, 2009). Although there appeared to be little interaction 
with streamwater at the downstream site, the high concentra-
tions of Cl- in groundwater might be a concern for the quality 
of streamwater, and the possible exceedance of the aquatic 
criteria, farther downstream. At the Jordan Brook piezometer 
site, concentrations of Cl- and other major ions were lower 
in groundwater samples than in streamwater samples, prob-
ably reflecting the absence of contamination within the small 
contributing recharge area for this groundwater (fig. 15). The 
generalized cross section (fig. 15) shows the vertical difference 
in major ion chemistry between streamwater and groundwater.

Concentrations of chloride in relation to chloride/bromide 
mass concentration ratios were plotted to help determine the 
sources of Cl- to the streamwater samples and groundwater 
samples from the piezometers. Concentrations of Cl- and 
Br- are useful in distinguishing several sources because of 
their conservative nature in water and different abundances in 
natural fluids and most solids (Davis and others, 1998); also, 
natural halite deposits are nonexistent in the study area and 
adjacent bedrock. Plots of Cl- concentrations and Cl/Br ratios 
have been used to help determine the effects of road salt, sew-
age, and seawater or brines on groundwater quality (Davis and 
others, 1998; Vengosh and Pankratov, 1998; Panno and others, 
2006; Mullaney and others, 2009). Atmospheric deposition 
is the primary source of Cl- and Br- in pristine groundwater 
in the study area. Cl/Br ratios in precipitation typically range 
from 50 to 100; near the coast, ratios generally are about 290, 
similar to seawater, and decrease with distance from the ocean 
to a low of from 20 to 56 in the midwestern United States 

(Panno and others, 2006). Seawater has an average Cl- con-
centration of about 19,500 mg/L and an average Br concentra-
tion of about 290 mg/L (Davis and others, 1998). A plot of 
Cl- concentrations and Cl/Br mass ratios shows the distribution 
in streamwater and piezometer groundwater samples rela-
tive to previously published source values or ranges for road 
salt (halite), domestic sewage leachate, and landfill leachate 
(fig. 16). Mixing lines were calculated between assumed end 
points for dilute groundwater and halite, domestic sewage 
leachate, and landfill leachate. Halite is the primary source 
of deicer salts, but CaCl2, MgCl2, and distillers condensed 
solubles are used on driveways, parking lots, and town roads 
and have a range of Cl/Br mass ratios but overall are similar 
to halite (Mullaney and others, 2009; Panno and others, 2006).
The more conservative nature of Br- compared to Cl- also 
might affect the ratios in stormwater runoff or streams near 
State highways. A sample of highway runoff collected from 
a culvert at Stony Brook, for example, had a Cl/Br ratio that 
plotted below the mixing line of halite and sewage.

Cl- concentrations and Cl/Br ratios in the study area could 
be affected to some extent by four different sources or end 
members: dilute groundwater, halite, sewage (septic leach-
ate), and landfill leachate (fig. 16). Most of the stream samples 
fall along the dilute water-halite mixing line and probably 
are affected by road deicers. A Cl/Br ratio (5,000) that was 
representative of halite road salt in Massachusetts (Granato, 
1996) and a Cl- concentration of 10,000 mg/L were used for 
the end point of halite. Piezometer samples that appeared to be 
affected by road-salt applications and by septic-tank drain-
fields had the largest deviation from dilute groundwater in 
the Cl/Br plots. A median Cl- concentration of 69 mg/L and a 
Cl/Br ratio of 460, as determined for septic effluent from pri-
vate septic systems in the midwestern United States (Thomas, 
2000; Jagucki and Darner, 2001), were used to represent the 
end point for septic-system leachate (fig. 16). The landfill 
leachate end member is the median of 10 leachate samples 
from a study in Illinois (Panno and others, 2006). The location 
of samples on the plot between sewage and landfill leachate 
indicates that the source of Cl- and other ions could result from 
both sewage and landfill leachate.

Chloride Loads and Yields
Daily mean Cl- concentrations were estimated for the 

period of the study at each of the upstream and downstream 
sites. Daily mean load was estimated for each of the down-
stream sites (fig. 17A–D). The load is defined for this report as 
the Cl- mass per unit time, and the yield is defined as the Cl- 
mass per unit area. The estimated daily mean Cl- concentra-
tion at downstream sites and instantaneous Cl- concentrations 
increased with streamflow (and stormwater runoff of road 
deicers) during most winter storms but decreased during the 
warmer months after deicer application had ended. Estimated 
daily loads, however, generally increased with streamflow and 
reflect the greater overall Cl- amounts that were transported 
despite the dilution that occurred. Cl- loads in streams gener-
ally were highest in the winter and early spring. Cl- loads were 
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Figure 15. Concentrations of major ions in water from water-quality monitoring sites and 
stream piezometers in generalized cross section at A, Four Mile River and B, Jordan Brook, 
southeastern Connecticut, from September 2010 to February 2011.
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Figure 17. Estimated daily mean chloride load at the A, Four Mile River, B, Oil Mill Brook, C, Stony Brook, and D, Jordan 
Brook downstream sites, southeastern Connecticut, from November 2008 to September 2011.
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Figure 17. Estimated daily mean chloride load at the A, Four Mile River, B, Oil Mill Brook, C, Stony Brook, and D, Jordan Brook 
downstream sites, southeastern Connecticut, from November 2008 to September 2011.—Continued
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lower in the Four Mile River and Stony Brook watersheds in 
the third year (2010–11) than in the second year (2009–10), 
despite the higher amounts of deicers used by ConnDOT; this 
might result from lower rainfall during this third year and, 
therefore, less atmospheric Cl- sources and less water to carry 
away the deicing salts.

Estimated annual Cl- yields for the four monitoring 
sites downstream from I–95 during the period of stream-
flow record ranged from 16.5 tons per square mile (ton/mi2) 
(93.6 tons total) at the Oil Mill Brook downstream site to 
92.5 ton/mi2 (267 tons total) at the Jordan Brook down-
stream site (table 11). The estimated daily mean yield in the 
downstream sites ranged from 0.056 [(ton/d)/mi2)] for Oil 
Mill Brook, which had the highest percentage of forest and 
wetland area, to 0.27 [(ton/d)/mi2)] for Jordan Brook, which 
had the lowest percentage of forest and wetland area and the 
highest percentage of urban development (and impervious 
area). Previous analysis (Brown and others, 2011) indicated 
that Cl- yields for the sites were positively correlated with the 
percentage of impervious area, probably reflecting the applica-
tion of deicers to roadways, as well as sources and practices 
associated with greater impervious area, such as wastewater 
and septic-system discharges, and leachate from landfills and 
salt-storage areas.

The estimated Cl- load from atmospheric deposition 
was based on concentrations measured at the NADP sta-
tion at Abington, Conn. The contribution of Cl- load from 
atmospheric deposition to the total load in streamflow ranged 
from a 0.07-percent contribution (0.16 tons) for the Jordan 
Brook downstream watershed to a 0.57-percent contribution 
(0.78 tons) for the Oil Mill Brook downstream watershed 
(table 11B).

The Cl- loads in streams (outputs) were compared with Cl- 
load inputs, including atmospheric deposition and deicer appli-
cations by ConnDOT and towns (table 11B). The Cl- load inputs 
were slightly larger than the Cl- load leaving the watershed at 
most of the sites, at least during most years. The net losses in 
Cl- from the watershed were less than 1 percent of Cl- inputs 
and are indicated by negative values in table 11B. The load bal-
ances for Four Mile River, Stony Brook, and Jordan Brook were 
mixed, depending on the year (table 11B). The Cl- load bal-
ances for the Four Mile River watershed ranged from a loss of 
76 tons, or -0.42 percent, of the Cl- load leaving the watershed 
by the stream to a gain of 42 tons, or 0.25 percent (table 11B). 
The Cl- load inputs for the Oil Mill Brook watershed minus 
Cl- load leaving the watershed was 522 tons (3.8 percent). The 
percent contribution of Cl- input that is unaccounted for in the 
mass balance for the watershed areas could be related to the lag 
period between the application of deicers and Cl- concentra-
tions observed in streams or retention of Cl- in the unsaturated 
zone from year to year. Furthermore, this assessment of load 
balance is only semiquantitative and does not include the Cl- 
load in groundwater leaving the study areas. Estimates of direct 
recharge of Cl- to groundwater that originates from atmospheric 
deposition, deicer applications, septic-tank drainfields, and oth-
ers sources were not within the scope of this project.

Peak Chloride Concentrations During Winter 
Storms

The factors that affect peak Cl- concentrations during 
winter storms can be grouped into (1) watershed characteris-
tics and (2) characteristics related to road deicing, including 
winter storm characteristics (table 12). Watershed characteristics 
include size, shape, channel slope, drainage density, percentage 
of urban land use, impervious area, surficial geology, highway 
length, road or highway drains to streams, streamflow, and spe-
cific conductance or Cl- concentrations in base flow (table 12). 
Characteristics associated with deicing events include deicer 
type and the timing and duration of its application, and weather 
factors, such as existing snowpack, duration of antecedent 
subfreezing temperatures, air temperature, rainfall amount, and 
timing and duration of the winter storm (table 12). The duration 
of the specific conductance or Cl- concentration peak and the 
daily mean specific conductance and estimated Cl- concentra-
tion also are pertinent to deicing event characteristics and were 
used to help assess factors that affect Cl- concentrations in 
winter storms.

Peaks in specific conductance and estimated Cl- concentra-
tions during winter months were related to the type of deicing, 
storm, and (or) melting event; the modeled snow pack; the 
storm or weather characteristics; the lag time between the begin-
ning of the storm and the estimated peak Cl- concentration; and 
the daily mean streamflow (table 10). These factors were used 
to determine how Cl- concentrations might be predicted during 
future storms and in other watersheds. The storm or weather 
characteristics include the rainfall amount, the duration of the 
precipitation or melting event, the minimum and maximum air 
temperature, and the period of below-freezing temperatures 
preceding or following the event.

Based on the Kruskal-Wallis test, the peak specific con-
ductance during winter storms was found to be significantly 
related to the watershed, the winter season, the type, duration, 
and amount of precipitation, the minimum air temperature, the 
base flow or daily mean specific conductance, the impervious 
cover, pre-existing snow pack, and the time of subfreezing con-
ditions before a storm (table 8). The deicer Cl- for each deicing 
event also was found to be significantly related to the winter 
season, the type, duration, and amount of precipitation, and the 
time of subfreezing conditions before a storm.

Tukey’s HSD test was used to further assess which 
categorical factors had a significantly different effect on peak 
specific conductance and the amount of deicer Cl- during 
winter storms (table 8B). Neither the peak specific conductance 
nor the amount of deicer Cl- were significantly different among 
watersheds or among the different winter seasons, but they 
were significantly different among the precipitation types.

The periods of deicing provided by ConnDOT are shown 
in tables 5 and 10, together with the types of event—either 
winter storms, S, of snow or frozen precipitation, or activities, 
A, in response to slippery roads caused by non-storm-related 
ice or wind-blown snow. Other types include a melting event, 
during which no deicers were applied, either a rain- or warm 
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Table 11. A, Estimated mean chloride loads and yields at the four monitoring sites downstream from Interstate 95, and B, chloride loads in streams,                   atmospheric deposition, and deicers applied to town and State roads and parking lots in the study areas of Four Mile River, Oil Mill Brook, 
Stony Brook, and Jordan Brook watersheds, southeastern Connecticut, from November 2008 to September 2011. —Continued

[Cl-, chloride; ton/mi2, ton per square mile; ton/d, ton per day; CT, Connecticut; I–95, Interstate 95]

B. Chloride Loads

Study sites
Water  
year

Cl- load, in tons
Contribution of Cl- 

in atmospheric  
deposition

Contribution of Cl- in atmospheric  
deposition and deicers

Contribution of Cl- inputs (atmospheric deposition and deicers) 
minus outputs (streams)

Streams
Atmospheric 

deposition 
Abington, CT2

Deicers
Without addition of 

lane to I–95
With addition to 

lane to I–95
Without addition of lane to I–95 With addition of lane to I–95

State  
roads

State roads plus 
hypothetical 

added I–95 lane

Town  
roads

Parking  
lot/sidewalks  
(30 percent of 
road deicers)

Total road,  
parking lot,  

sidewalk deicers
Percent Tons Tons Tons Percent Tons Percent

Four Mile River downstream
2008–9 162 0.82 89.8 101 60 45 194 0.51 195 206 33 0.20 44 0.27
2009–10 180 0.33 38.2 42.9 41 24 103 0.18 104 108 -76 -0.42 -72 -0.40
2010–11 170 0.45 95.7 108 67 49 212 0.26 212 224 42 0.25 54 0.32

Oil Mill Brook downstream
2008–9 137 0.78 387 396 119 152 658 0.57 659 668 522 3.8 531 3.87
2009–10 116 0.31 165 168 59 67 292 0.27 292 295 176 1.5 179 1.54
2010–11 161 0.42 413 422 59 142 614 0.26 614 623 453 2.8 462 2.87

Stony Brook downstream
2008–9 118 0.26 173 195 21 58 252 0.22 252 274 135 1.1 157 1.33
2009–10 120 0.10 73.8 83.0 21 28 123 0.09 123 132 3.1 0.03 12 0.10
2010–11 111 0.14 185 208 21 62 268 0.13 268 291 156 1.4 179 1.61

Jordan Brook downstream
2008–9 210 0.40 242 256 77 96 414 0.19 415 429 205 0.98 219 1.04
2009–10 238 0.16 103 109 77 54 233 0.07 234 240 -4.3 -0.02 2 0.01
2010–11 281 0.22 258 273 77 100 435 0.08 435 450 154 0.55 169 0.60

1Missing record for this site.
2Estimate determined from monthly Cl- concentrations at National Atmospheric Deposition Program stations in Abington, Connecticut, and multiplied by a factor of 

two to represent total atmospheric deposition.
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Table 11. A, Estimated mean chloride loads and yields at the four monitoring sites downstream from Interstate 95, and B, chloride loads in streams,                   atmospheric deposition, and deicers applied to town and State roads and parking lots in the study areas of Four Mile River, Oil Mill Brook, 
Stony Brook, and Jordan Brook watersheds, southeastern Connecticut, from November 2008 to September 2011. —Continued

[Cl-, chloride; ton/mi2, ton per square mile; ton/d, ton per day; CT, Connecticut; I–95, Interstate 95]

B. Chloride Loads

Study sites
Water  
year

Cl- load, in tons
Contribution of Cl- 

in atmospheric  
deposition

Contribution of Cl- in atmospheric  
deposition and deicers

Contribution of Cl- inputs (atmospheric deposition and deicers) 
minus outputs (streams)

Streams
Atmospheric 

deposition 
Abington, CT2

Deicers
Without addition of 

lane to I–95
With addition to 

lane to I–95
Without addition of lane to I–95 With addition of lane to I–95

State  
roads

State roads plus 
hypothetical 

added I–95 lane

Town  
roads

Parking  
lot/sidewalks  
(30 percent of 
road deicers)

Total road,  
parking lot,  

sidewalk deicers
Percent Tons Tons Tons Percent Tons Percent

Four Mile River downstream
2008–9 162 0.82 89.8 101 60 45 194 0.51 195 206 33 0.20 44 0.27
2009–10 180 0.33 38.2 42.9 41 24 103 0.18 104 108 -76 -0.42 -72 -0.40
2010–11 170 0.45 95.7 108 67 49 212 0.26 212 224 42 0.25 54 0.32

Oil Mill Brook downstream
2008–9 137 0.78 387 396 119 152 658 0.57 659 668 522 3.8 531 3.87
2009–10 116 0.31 165 168 59 67 292 0.27 292 295 176 1.5 179 1.54
2010–11 161 0.42 413 422 59 142 614 0.26 614 623 453 2.8 462 2.87

Stony Brook downstream
2008–9 118 0.26 173 195 21 58 252 0.22 252 274 135 1.1 157 1.33
2009–10 120 0.10 73.8 83.0 21 28 123 0.09 123 132 3.1 0.03 12 0.10
2010–11 111 0.14 185 208 21 62 268 0.13 268 291 156 1.4 179 1.61

Jordan Brook downstream
2008–9 210 0.40 242 256 77 96 414 0.19 415 429 205 0.98 219 1.04
2009–10 238 0.16 103 109 77 54 233 0.07 234 240 -4.3 -0.02 2 0.01
2010–11 281 0.22 258 273 77 100 435 0.08 435 450 154 0.55 169 0.60

1Missing record for this site.
2Estimate determined from monthly Cl- concentrations at National Atmospheric Deposition Program stations in Abington, Connecticut, and multiplied by a factor of 

two to represent total atmospheric deposition.
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Table 12. Watershed and deicing event characteristics that 
affect specific conductance and chloride concentrations during 
winter deicing events.

[SC, specific conductance; Cl-, chloride concentration]

Watershed characteristics Deicing event characteristics

Watershed drainage area Timing and duration of deicing
Watershed shape Type of deicer
Drainage density Type and duration of storm
Impervious area Rainfall amount
Percent urban land use Duration of SC or estimated Cl- peak
Highway length in watershed Air temperature
Main channel slope Existing snowpack
Base-flow SC or Cl-  

concentration
Duration of antecedent subfreez-

ing temperatures
Surficial geology Daily mean SC or Cl-

Highway drains to stream
Streamflow

air temperatures-initiated melting of snow or ice, and postwin-
ter peaks, which are estimated peaks of specific conductance 
or estimated Cl- concentrations in streams during flushing of 
shallow sediments or groundwater during the spring months 
(table 10). On some occasions, deicers were applied in anticipa-
tion of a snow or other frozen precipitation event, but only rain 
fell. Other categories, including the timing and duration of the 
actual storm or melting event, are provided in table 10.

Peaks in specific conductance and estimated Cl- concentra-
tion varied with the type of winter storm or precipitation event 
and were highest during or after winter storms of the type “Fro-
zen precipitation and rain” (fig. 18), in which the rain effectively 
washes off the deicers that were applied to melt the snow or ice. 
Estimated Cl- concentration peaks also were high during or after 
precipitation type “Rain after deicing,” typically when NaCl 
brine was pre-applied to roads in anticipation of frozen precipi-
tation that never occurred; the brine was instead washed off by 
rain (fig. 18). Estimated peak Cl- concentrations were not as 
high during or after a winter storm consisting of snow, freezing 
rain, or sleet.

Peaks in specific conductance and estimated Cl- concentra-
tion correlated positively with the duration of deicer applica-
tion (fig. 19) but did not correlate with streamflow (fig. 20). 
Estimated Cl- concentration peaks correlated better with deicing 
time during “Frozen precipitation and rain” events and “Rain 
after deicing” events than during strictly “Frozen precipitation” 
events. The “Frozen precipitation and rain” events and “Rain 
after deicing” did correlate positively with the estimated Cl- 
concentration peak. Specific conductance and estimated Cl- con-
centration peaks were highest when streamflows were less than 
about 30 ft3/s, with the exception of the Stony Brook site (fig. 
20). The highest estimated Cl- concentration peaks at Jordan 
Brook were during events in which there was pre-existing snow 
on the ground (table 10) and possibly caused by the release of 

salt in snow piles associated with parking lots in the urbanized 
areas. Peaks in specific conductance and estimated Cl- concen-
tration peaks during high streamflow were low at the Four Mile 
River site and likely were caused by dilution from rain with few 
contributions of ions from the predominantly forested watershed 
(fig. 4).

Air temperature also had an important effect on the melting 
and release of deicing salts from highways, roads, and parking 
lots. Specific conductance and estimated Cl- concentration peaks 
generally were highest when the minimum air temperature was 
between -8 and 3 °C (table 10), temperatures at which deicers 
are applied and at which melting is possible. Several high spe-
cific conductance peaks were preceded by an extended period 
of below-freezing air temperatures; a period of below-freezing 
temperatures after a deicing event can result in a delayed release 
of salt to the stream. Most of these peak occurrences involved 
“Frozen precipitation and rain” events, when previously applied 
deicers are finally flushed by rain or warmer air temperatures, 
including events on January 28, 2009 (91 hours), January 18, 
2011 (32 hours), and February 1, 2011 (31 hours).

Watershed characteristics such as the percentage of 
impervious area had an important effect on specific conductance 
because deicers are applied to highways, roads, and parking 
lots. The watersheds with highest percentages of impervious 
area generally also had higher median and peak specific conduc-
tance and estimated Cl- concentrations (fig. 21; table 9).

Relation of Estimated Peak Chloride 
Concentration to Explanatory Variables

A multiple linear regression model was developed to 
describe the variability of the log of peak specific conductance 
or estimated peak Cl- concentrations. The dataset included 
characteristics of the watersheds (table 12), winter storms and 
timing of deicing events (table 10), and peaks of specific con-
ductance or estimated Cl- concentration. Specific conductance is 
the primary explanatory variable used to estimate Cl- concentra-
tion. Continuous estimated Cl- concentrations are not always 
available in other studies, however, and continuous specific 
conductance can be used as a surrogate. Continuous specific 
conductance, therefore, was used as the response variable in the 
multiple linear regression model (table 13). Regression analysis 
was performed on data associated with 194 peaks of specific 
conductance at the four downstream sites. Five variables best 
explained the variability in the natural log of the specific con-
ductance peak after deicing events: (1) snow on ground before 
deicing event (binary variable); (2) winter precipitation with 
rain (binary variable); (3) specific conductance in base flow; (4) 
interstate highway lane miles only divided by watershed area; 
and (5) amount of Cl- in deicers applied to State roads per lane 
mile. Model residuals were approximately normally distributed 
with a constant variance (fig. 22) and an adjusted R2 of 0.55. 
Several variables, including watershed and deicing event char-
acteristics (table 12) and estimated deicer amounts applied to 
town roads (table 11), did not improve the model.
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Figure 18. Estimated peak continuous chloride concentrations associated with different precipitation types at A, 
Four Mile River, B, Oil Mill Brook, C, Stony Brook, and D, Jordan Brook downstream sites, southeastern Connecticut, 
from November 2008 to September 2011. ppt, precipitation.
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Figure 19. Deicing time as a function of estimated peak continuous chloride concentrations at the A, 
Four Mile River, B, Oil Mill Brook, C, Stony Brook, and D, Jordan Brook downstream sites, southeastern 
Connecticut, from November 2008 to September 2011.
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Figure 20. Streamflow as a function of estimated peak continuous chloride concentrations at the A, 
Four Mile River, B, Oil Mill Brook, C, Stony Brook, and D, Jordan Brook downstream sites, southeastern 
Connecticut, from November 2008 to September 2011.
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Figure 21. Distributions of the estimated peak chloride concentrations as a function of the percentage of impervious area at the 
Four Mile River, Oil Mill Brook, Stony Brook, and Jordan Brook downstream sites, southeastern Connecticut, from November 2008 to 
September 2011.
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All of the explanatory variables were significant and, with the 
exception of specific conductance of base flow, had positive values 
indicating a positive correlation with peak specific conductance 
and estimated peak Cl- concentrations after deicing events. Winter 
precipitation with rain, which includes storms with precipitation 
consisting of rain mixed with frozen precipitation or rain after 
deicing, had the highest peak specific conductance, as discussed in 
the previous section. The model was not very sensitive to the dura-
tion of deicer application or the amount of Cl- in deicer applied, 
but the amount of Cl- applied to State roads per lane mile and 
the highway lane miles divided by watershed area were used as 
explanatory variables. The presence of snow on the ground before 
the deicing event is another explanatory variable that generally 
resulted in higher peak specific conductance and improved the 
model. The specific conductance of base flow also was found to 
improve the model. Specific conductance typically increased after 
deicing events but was actually lower during many of the smaller 
winter storm peaks than specific conductance observed during 
base-flow conditions. Mullaney (2009) observed that basins with 
high concentrations of Cl- in groundwater were more likely to 
exceed the recommended chronic criteria.

Chloride Concentrations and Aquatic Toxicity 
Criteria

No exceedances of the chronic and acute Cl- toxicity 
criteria for aquatic life were observed in the four watersheds, 
largely because of the predominance of forested land use 
in the area. The highest estimated peak Cl- concentration of 
270 mg/L at Jordan Brook was well below the acute toxic-
ity criteria of 860 mg/L. A deicing study of more urbanized 
watersheds found that exceedances are more likely to occur 
in streams with an annual average Cl- concentration of about 

102 mg/L (Trowbridge and others, 2010). Mean Cl- concen-
trations from continuous data for the four downstream sites 
ranged from 14 mg/L at Four Mile River to 42 mg/L at Jordan 
Brook (table 9A), well below the threshold value of 102 mg/L 
observed by Trowbridge and others (2010).

Chloride Load With the Addition of Two I–95 
Lanes

The relation between peak Cl- concentrations and the 
amount of Cl- in deicer applied to State-maintained roads 
yielded a least squares regression line that was used to 
estimate the increase in peak Cl- concentrations, given an 
estimated increase in deicer Cl- required to treat the added 
lanes (table 5). The addition of a lane to both northbound and 
southbound directions on I–95 between the Connecticut and 
Thames Rivers would result in an estimated increase of about 
2 to 11 percent in Cl- load from deicers applied to I–95 and 
other roads maintained by ConnDOT (tables 5 and 10). The 
largest estimated increase in Cl- load is for Four Mile River 
and Stony Brook (11 and 11.2 percent, respectively), the 
watersheds with the greatest miles of I–95 corridor relative to 
the total lane miles maintained by ConnDOT. Oil Mill Brook 
and Jordan Brook had relatively small increases in estimated 
Cl- load (2.2 and 5.5 percent, respectively) from the addition 
of a lane to I–95. The addition of a highway lane could cause 
increases in Cl- concentrations in streams but not likely above 
aquatic habitat criteria under existing land-use conditions. 
Furthermore, best management practices are available for 
minimizing environmental effects related to highway construc-
tion, including retention ponds, vegetative buffer strips, and 
catch basins (Ellebracht and Clark, 2013; Environmental Pro-
tection Agency, 2004), and may result in little or no increase in 
Cl- concentrations.

Table 13. Multiple linear regression estimates of model coefficients and standard errors, t-statistics, and p-values for the dependent 
variable natural log of peak specific conductance during winter storms for the Four Mile River, Oil Mill Brook, Stony Brook, and Jordan 
Brook watersheds, southeastern Connecticut, from November 2008 to September 2011.

[µS/cm; microsiemens per centimeter at 25 degrees Celsius; <, less than]

Variable
Parameter 
estimate

Standard 
error

t-statistic p-value

Intercept 3.8730 0.1465 26.4401 <0.0001
Snow on ground before deicing event (yes or no) 0.2050 0.0539 3.8066 0.0002
Precipitation type (includes rain or not) 0.4023 0.0498 8.0822 <0.0001
Specific conductance in base flow, mS/cm -0.0055 0.0007 -7.5597 <0.0001
Highway lane miles divided by watershed area, miles per square mile 0.0966 0.0091 10.6091 <0.0001
Deicer chloride, tons per lane mile 0.8259 0.1617 5.1073 <0.0001
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Natural log of predicted peak specific conductance, in microsiemens per centimeter, at 25 degrees Celsius
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Figure 22. Natural log of predicted peak specific conductance from multiple linear regression modeling, 
and natural log of observed peak specific conductance for winter storms at Four Mile River, Oil Mill Brook, 
Stony Brook, and Jordan Brook downstream sites, southeastern Connecticut, from November 2008 to 
September 2011.



Summary and Conclusions  49

Summary and Conclusions
The U.S. Geological Survey, the Federal Highway 

Administration, and the Connecticut Department of Transpor-
tation conducted a cooperative study to evaluate the potential 
effects of deicer application on the quality of streamwater in 
four watersheds crossed by Interstate 95 (I–95) in southeastern 
Connecticut.

Streamflow and water quality were studied at the four 
watersheds—Four Mile River, Oil Mill Brook, Stony Brook, 
and Jordan Brook. Streamgages were instrumented and main-
tained at sites downstream from the highway, and continu-
ous water-quality monitors were installed and maintained at 
upstream and downstream sites. Water quality was assessed by 
analyzing the dissolved ions in grab samples and by con-
tinuous recording of data on water temperature and specific 
conductance. Grab samples were collected (1) during winter 
stormwater-runoff events, such as winter storms or subse-
quent periods of rain or warm temperatures in which melting 
occurred, and (2) approximately monthly during routine condi-
tions and analyzed for chloride (Cl-) concentrations and spe-
cific conductance, and (3) during base-flow and moderate-flow 
conditions and analyzed for major ions and concentrations of 
dissolved iron, manganese, and bromide (Br-).

Estimated Cl- concentrations at the eight water-quality 
monitoring sites were well below the U.S. Environmental 
Protection Agency recommended chronic and acute chloride 
toxicity criteria for aquatic life. Specific conductance and 
estimated Cl- concentrations in streams, particularly at sites 
downstream from I–95, increased during discharge events in 
the winter and early spring as a result of deicers applied to 
roads and washed off by stormwater or meltwater. During win-
ter storms, deicing activities, or subsequent periods of melting, 
specific conductance peaked as high as 859 microsiemens per 
centimeter (270 milligrams per liter estimated Cl- concentra-
tion) at Jordan Brook.

Estimated Cl- concentration peaks varied with the type of 
winter storm or precipitation event and were highest during or 
after winter storms of frozen precipitation and rain, in which 
the rain effectively washed off the deicers that were applied to 
melt the snow or ice. Estimated Cl- concentration peaks also 
were high during or after rain that occurred after deicing. Cl- 
concentration peaks correlated positively with the duration of 
deicer application but generally not with streamflow. Cl- con-
centration peaks during the winter season were highest during 
low streamflow peaks, with the exception of Stony Brook. The 
Cl- concentration peaks at Jordan Brook were highest during 
events in which there was pre-existing snow, and streamwater 
was apparently affected by the release of salt leachate in snow 
piles associated with upstream parking lots in the urbanized 
areas.

Air temperature also had an important effect on the melt-
ing and release of deicing salts from highways, roads, and 
parking lots. Cl- concentration peaks generally were highest 
when the minimum air temperature was between -8 and 3 
degrees Celsius , temperatures at which melting is possible 

when deicers are applied. Several high Cl- concentration peaks 
were preceded by an extended period of below-freezing air 
temperatures; such conditions can result in a delayed release 
of salt to the stream. Most of these occurrences involved “Fro-
zen precipitation and rain” events.

Groundwater concentrations of Cl- were highest down-
stream from I–95 at the Four Mile River site. Although there 
appears to be little interaction with streamwater, there is con-
cern for the possible exceedance of the aquatic criteria farther 
downstream. A plot of Cl- concentration in relation to Cl-/
Br- mass concentration ratios, and the proximity of a former 
landfill and sewage lagoon upstream, indicate that a likely 
source of Cl- is landfill leachate.

Cl- loads in streams generally were highest in the winter 
and early spring. The estimated daily mean yield for the four 
monitoring sites downstream from I–95 ranged from 0.056 ton 
per day per square mile for the least developed watershed, Oil 
Mill Brook, to 0.27 ton per day per square mile for the water-
shed with the highest percentage of urban development and 
impervious area, Jordan Brook. The Cl- load from atmospheric 
deposition was estimated from the Cl- concentrations mea-
sured at National Atmospheric Deposition Program station in 
Abington, Connecticut. The estimated contribution of Cl- from 
atmospheric deposition ranged from 0.07 percent of Cl- load 
at the Jordan Brook watershed to 0.57 percent at the Oil Mill 
Brook watershed. A comparison of the estimated Cl- load 
inputs and outputs generally showed that Cl- load inputs were 
slightly larger than the Cl- load leaving the watershed at most 
of the sites during most years. The lag time between introduc-
tion of Cl- to the watershed and transport to the stream, as 
well as uncertainty in the load estimates, may be the cause 
of this small discrepancy. Estimates of direct infiltration of 
Cl- to groundwater that originates from septic-tank drainfields, 
fertilizers, or other anthropogenic sources were not within 
the scope of this project. The estimation of groundwater flow 
exiting the watersheds in the subsurface was also beyond the 
scope of the project.

The addition of a lane mile in both directions on I–95 
is estimated to increase the Cl- load from deicers applied to 
I–95 and other roads maintained by ConnDOT by about 2 to 
11 percent. This projected Cl- load increase was determined 
by using the same application rates of deicers presently used 
on State roads for the addition of a single lane in each direc-
tion of I–95 between the Connecticut and Thames Rivers. 
The largest estimated increases in Cl- load were at Four Mile 
River and Stony Brook (11 and 11.2 percent, respectively), the 
watersheds with the greatest number of miles of I–95 corridor 
relative to the total lane miles maintained by ConnDOT. Oil 
Mill Brook and Jordan Brook had relatively small increases in 
estimated Cl- load (2.2 and 5.5 percent, respectively) from the 
addition of two lanes to I–95.

A multiple linear regression model was developed to 
describe the variability of the log of peak Cl- concentrations. 
Five significant variables best explained the variability in 
the natural log of the peak Cl- concentration after deicing 
events: (1) snow on ground before deicing event, (2) winter 
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precipitation with rain, (3) specific conductance in base flow, 
(4) highway lane miles divided by watershed area, and (5) 
the amount of Cl- from deicers applied to State roads per lane 
mile. This study provides a useful conceptual framework 
for understanding Cl- concentration increases in stream-
flow associated with deicer application in the northeastern 
United States.
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Appendix 1. Specific Conductance and Chloride 
Concentrations at Four Mile River, Oil Mill Brook, Stony 
Brook, and Jordan Brook, Southeastern Connecticut, from 
November 2008 to September 2011

Table 1–1. Physical characteristics and chemical constituents in streamwater and groundwater 
samples from upstream and downstream monitoring sites at Four Mile River, Oil Mill Brook, Stony 
Brook, and Jordan Brook, southeastern Connecticut, from November 2008 to September 2011.

[Available for download separately from http://dx.doi.org/10.3133/sir20155057]

http://dx.doi.org/10.3133/sir20155057
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Appendix 2. Specific Conductance Measurements and Streamflow at Four 
Mile River, Southeastern Connecticut, from November 2008 to September 2011

Figure 2–1.   A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Four Mile River, southeastern Connecticut, from November 2008 to September 2009.
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Figure 2–2. A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Four Mile River, southeastern Connecticut, from October 2009 to September 2010.
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Figure 2–3.  A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Four Mile River, southeastern Connecticut, from October 2010 to September 2011.
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Appendix 3. Specific Conductance Measurements and Streamflow at Oil Mill 
Brook, Southeastern Connecticut, from November 2008 to September 2011 

Figure 3–1.  A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Oil Mill Brook, southeastern Connecticut, from November 2008 to September 2009.
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Figure 3–2. A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Oil Mill Brook, southeastern Connecticut, from October 2009 to September 2010.
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Figure 3–3. A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Oil Mill Brook, southeastern Connecticut, from October 2010 to September 2011.
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Appendix 4. Specific Conductance Measurements and Streamflow at Stony 
Brook, Southeastern Connecticut, from November 2008 to September 2011

Figure 4–1.  A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Stony Brook, southeastern Connecticut, from November 2008 to September 2009
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Figure 4–2.  A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Stony Brook, southeastern Connecticut, from October 2009 to September 2010.
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Figure 4–3.  A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Stony Brook, southeastern Connecticut, from October 2010 to September 2011.
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Appendix 5. Specific Conductance Measurements and Streamflow at Jordan 
Brook, Southeastern Connecticut, from November 2008 to September 2011

Figure 5–1.  A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Jordan Brook, southeastern Connecticut, from November 2008 to September 2009.
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Figure 5–2.  A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Jordan Brook, southeastern Connecticut, from October 2009 to September 2010.
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Figure 5–3.  A, Specific conductance at upstream and downstream sites, and periods of deicer application and 
melting or other event, B, change in specific conductance between the upstream and downstream sites, and C, 
streamflow at Jordan Brook, southeastern Connecticut, from October 2010 to September 2011. 
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