Field Studies of Concrete Containing Salts of an Alkenyl-Substituted Succinic Acid Phase I

Dr. Scott A. Civjan, PI Benjamin Crellin, M.S. Research Assistant

Prepared for The New England Transportation Consortium August 31, 2007

NETCR69

Project No. 03-2

This report, prepared in cooperation with the New England Transportation Consortium, does not constitute a standard, specification, or regulation. The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the views of the New England Transportation Consortium or the Federal Highway Administration

ACKNOWLEDGEMENTS

The following are the members of the Technical Committee that developed the scope of work for the project and provided technical oversight throughout the course of the research:

Paul D'Attilio, Connecticut Department of Transportation, Chairperson James Amrol, New Hampshire Department of Transportation Haytham Awad, Rhode Island Department of Transportation Clement Fung, Massachusetts Highway Department David Graves, New York State Department of Transportation David Hall, Federal Highway Administration, New Hampshire Division Michael Redmond, Maine Department of Transportation James Wild, Vermont Agency of Transportation

TECHNICAL REPORT

DOCUMENTATION PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Cata	llog No.
A Title and Subside	N/A	5 Demant Data	N/A
4. The and Sublue NETC 02. 2. Field Studies of Concrete Containing		5. Report Date $08/21/07$	
Salts of an Alkonyl Substituted Succinic Acid		08/31/07	
Saits of an Aikenyi-Substituted Succinic Acid.		6. Performing Orga	anization Code
7. Author(s)		8. Performing Org	anization Report No.
Civjan, S. A., Crellin, B. J.		NETCRO	59
9. Performing Organization Name and Address		10 Work Unit No.	(TRAIS)
Department of Civil and Environmental Engineering			
University of Massachusetts			
224 Marston Hall		N/A	
130 Natural Resources Road			
Amherst, MA 01003-9293			
		11. Contract or Gra	ant No.
		N/A	
		13. Type of Report	t and Period Covered
12. Sponsoring Agency Name and Address		Phase 1, Final	
New England Transportation Consortium		09/01/04 through	08/31/07
C/O Advanced Technology &			
Manufacturing Center			
University of Massachusetts Dartmouth			
151 Martine Street			
Fall River, MA 02723			
		14. Sponsoring Ag	ency Code
		NETC 03-2 A stud	ly conducted in
		cooperation with the	ne U.S. DOT
15 Supplementary Notes			
N/A			
16. Abstract The effects of the corrosion inhibitor Hycrete DSS on the phy literature review, methods for using Hycrete DSS in standard presented. The experimental study included 6 large-scale pou of 10 Hycrete DSS mixes and 5 representative control mixes	vsical characteristics of concrete, at full pro- concrete mix designs, and results from star irs at 3 ready-mixed concrete plants in New were tested. It was found that in a concrete	duction scale, were ev adardized testing of co England and 1 precas mixture Hycrete DSS	aluated. An extensive ncrete mixes are t concrete facility. A total has no detriment to
workability and entrained air at desired levels could be obtain	ned consistently. The absorption of hardened	d concrete containing	Hydrete DSS was less than
half of values obtained in the control mixes. If no alterations	were made to a mix design, Hycrete DSS w	as found to reduce the	compressive strength of a
concrete mix in comparison to the control, with related impact	ct on freeze-thaw durability and bond streng	th. However the requi	red design parameters for
each mix were met or exceeded. These results indicate that the field placements. Field implementation projects are ongoing a	e Hycrete DSS concrete mixes presented in and will be reported in a supplemental report	this report show great rt (Phase II).	t potential for future use in
17. Key Words	18. Distribution Statement		
corrosion, concrete, reinforcing steel, field	No restrictions. This document is avail	lable to the public th	hrough the
implementation, DSS, Hycrete, corrosion inhibitor	National Technical Information Servic	e, Springfield, Virg	inia 22161.
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	21. Price
Unclassified	Unclassified	113	N/A
Form DOT F 1700.7 (8-72)	Reproduction of completed page authorized	d	

CONVERSION FACTORS	
(MODERN METRIC)	
SI*	

É Ć

APPRO.	XIMATE CONVEI	RSIONS 7	ro si units		APPROY	KIMATE CONVERSI	INU IS OL SNO	TS	
Symbol	When You Know	Multiply I	3y To Find	Symbol	Symbol	When You Know	Multiply By	To Find	Symbol
		TENG	HI				LENGTH		
.E -	inches	25.4	millimetres	шш	mm	millimetres	0.039	inches	'n
=	feet	0.305	metrcs	u	ш	metres	3.28	feet	Ū.
by im	yards miles	0.914 1.61	metres kilometres	n Fm	e a	metres Filometres	1.09	yards milee	b, i
		1	-						I
		AKE	V				AREA		
in² 1,2	square inches	645.2 0 003	millimetres squared	mm² 2	mm² 2	millimetres squared	0.0016	square inches	197
yd ²	square yards	0.836	metres squared	= ² E	ha	hickes squared hectares	2.47	square reer acres	ac
ac mi ²	acres square miles	0.405 2.59	hectares kilometres souared	ha km²	km²	kilometres squared	0.386	square miles	mi ²
-	-						VOLUME		
		VULUI	ME						
t		:			mL	millilitres	0.034	fluid ounces	zo li
11 oz	fluid ounces	29.57	mililitres	mL.		litres	0.264	gallons	gal
gal 6.1	gallons	3.785	Litres		ΈÎ	metres cubed	35.315	cubic feet	
yd'	cubic yards	0.765	metres cubed	e e	E	metres cubed	1.208	cubic yards	уч
							MASS		
NOTE: Vc	dumes greater than 100	0 L shall be	shown in m'						
			c		-02	grams	0.035	ounces	0Z
		<u>VINI</u>	2		л Ц	cilibiduia	C07.7	connod	⊧ ≘
20	onnees	28.35	rams	c	BIM	megagrams	1.1018 201.1	(ni nnnz) siini	-
व	spunod	0.454	kilograms	kg		TEMP	ERATURE (exac	ct)	
т	short tons (2000 lb)	0.907	megagrams	Mg					
					°C	Celcius	1.8C+32	Fahrenheit	J,
	TEM	PERATUI	<u>RE (exact)</u>			temperature		temperature	
ە ^ل	Fahrenheit	5(F-32)/9	Celcius	°C				de la	
	temperature		temperature			°F 32	98.6	212	
						40 0 40 80	120 180	200	
* SI is the	symbol for the Intern	ational Sys	stem of Measurement				37 14	2°.	

ABSTRACT

The effects of the corrosion inhibitor Hycrete DSS on the physical characteristics of concrete, at full production scale, were evaluated. An extensive literature review, methods for using Hycrete DSS in standard concrete mix designs, and results from standardized testing of concrete mixes are presented. The experimental study included 6 large-scale pours at 3 ready-mixed concrete plants in New England and 1 precast concrete facility. A total of 10 Hycrete DSS mixes and 5 representative control mixes were tested. It was found that in a concrete mixture Hycrete DSS has no detriment to workability and entrained air at desired levels could be obtained consistently. The absorption of hardened concrete containing Hycrete DSS was less than half of values obtained in the control mixes. If no alterations were made to a mix design, Hycrete DSS was found to reduce the compressive strength of a concrete mix in comparison to the control, with related impact on freeze-thaw durability and bond strength. However the required design parameters for each mix were met or exceeded. These results indicate that the Hycrete DSS concrete mixes presented in this report show great potential for future use in field placements. Field implementation projects are ongoing and will be reported in a supplemental report (Phase II).

TABLE OF CONTENTS

ABSTRACT	V
LIST OF TABLES	viii
LIST OF FIGURES	X
1.0 INTRODUCTION	1
1.1 Problem Statement	1
1.2 Organization of Document	2
2.0 CORROSION OF REINFORCED CONCRETE AND TEST METHODS	3
2.1 Corrosion Effects	3
2.2 Corrosion Process of Reinforced Concrete	4
2.3 Service Life Model and Corrosion Mitigation Solutions	6
2.4 Hycrete DSS Concrete Admixture	7
2.5 Nondestructive Evaluation Techniques for Determining Corrosion in	
the Field	. 10
3.0 LITERATURE REVIEW	. 14
3.1 Summary of Available Studies	. 14
3.1.1 University Publications and Research	.14
3.1.1.1 University of Connecticut	.15
3.1.1.2 University of Massachusetts Amherst	. 16
3.1.1.3 University of Kansas	.18
3.1.2 Research from Transportation Organizations	. 20
3.1.2.1 Connecticut DOT	. 20
3 1 2 2 Kansas State DOT	21
3.1.2.3 Others	21
3 1 3 Private Research	21
3 1 3 1 Broadview/Hycrete Technologies	22
3.2 Summary of Findings	22
3.2 Summary of Findings	23
3 2 1 1 Hycrete DSS Dosage	23
3.2.1.2 W/CM and Cementitious Materials Content	24
3.2.1.2 Wein and Compensations Content in a compensation of the content in the content of the content in the content of the co	25
3.2.2.3.9 Chemical Frankfules and Follotome Waterhals	25
3.2.2 Butching and Mixing	26
3.2.4 Curing	30
3 2 5 Hardened Concrete Properties	30
3 2 5 1 Strength	30
3 2 5 2 Permeability	31
3 2 5 3 Durability	32
5.2.5.5 Duraomity	

3.2.5.4 Air Void Analysis	
3.2.5.5 Corrosion Testing	
3.2.6 Field Applications	
	10
4.0 FIELD STUDY APPROACH AND METHODS	
4.1 Project Background	
4.2 Development of Mix Designs	
4.3 Large Scale Mixing	
4.3.1 Test Sites and Material Properties	
4.3.2 Mix Proportion and Design Procedure	
4.3.3 Batching and Mixing	
4.3.4 Evaluation of Freshly Mixed and Hardened Concrete	
Characteristics	
5.0 RESULTS AND DISCUSSION	64
5.1 Freshly Mixed Concrete	
5.2 Hardened Concrete	71
5.2 1 Compressive Strength	71
5.2.2 Tongile Strength	,
5.2.2 Tensne Strength	80,
5.2.5 Chloride Ion Televitation and Absorption	00
5.2.3.1 Chloride Ion Penetration Data from Provides	80
5.2.5.2 Chiofide fon Penetration Data from Previous	02
	83
5.2.4 Freeze-Thaw Durability	83
5.2.5 Bond Development	
6.0 CONCLUSIONS AND RECOMMENDATIONS	
6.1 Conclusions	
6.2 Recommendations	
6.3 Future Research	
	07
ВІВLІОӨКАРН І	9/

LIST OF TABLES

Table	Page
2.1	Corrosion Monitoring Equipment13
3.1	UConn Corrosion Study Test Specimens16
3.2	UMass Corrosion Study Test Specimens17
3.3	KU Rapid Corrosion Study Test Specimens
3.4	KU Corrosion Study Test Specimens
3.5	Summary of Hycrete Studies
3.6	Trial Air Content Test Mixes
3.7	Freeze-thaw Durability of Hycrete DSS Specimens (UConn)
3.8	Results from Hycrete DSS Air Void Analyses (UConn, KSDOT)
3.9	Hycrete DSS Project List
4.1	Classes of HPC Mixes Used in New England Region (english units)
4.2	Classes of HPC Mixes Used in New England Region (metric units)
4.3	Large Scale Pour Dates
4.4	Concrete Materials List
4.5	SSD Mix Designs (1 yd3) (english units)
4.6	SSD Mix Designs (1 m ³) (metric units)
4.7	Test Matrix
4.8	AASHTO/ASTM Test Designations
5.1	Mix Matrix
5.2	Freshly Mixed Concrete Properties (english units)
5.3	Freshly Mixed Concrete Properties (metric units)

5.4	28 Day Compressive Strengths of Concrete Mixes (english units)72
5.5	28 Day Compressive Strengths of Concrete Mixes (metric units)72
5.6	Compressive Strengths of Concrete Mixes (english units)75
5.7	Compressive Strengths of Concrete Mixes (metric units)76
5.8	Splitting Tensile Strength of Concrete Mixes (english units)79
5.9	Splitting Tensile Strength of Concrete Mixes (metric units)80
5.10	Results from Rapid Chloride Permeability and Absorption Testing
5.11	Results from Freeze Thaw Testing
5.12	Ultimate Bond Strength (english units)
5.13	Ultimate Bond Strength (metric units)90
6.1	Planned Implementation Projects

LIST OF FIGURES

Figure	Page
2.1	Corrosion of Solid Iron (www.corrosion-club.com)
2.2	Copper-Copper Sulfate Half Cell Circuitry (ASTM 1999) 11
2.3	Galvapulse (www.germann.org)
3.1	Total Air Content vs. Mix Time
3.2	F-shaped Barriers used in UConn Study (CTDOT)
3.3	Kansas State DOT Hycrete DSS Project (Courtesy of Hycrete Technologies)
4.1	Locations of Concrete Plants
4.2	Central Batching and Mixing Plant Feeding Truck Mounted Concrete Mixers
4.3	Rear Discharge Concrete Truck
4.4	Front Discharge Concrete Truck
4.5	Mold for Vertical Bars (Left to Right - ASTM Schematic/As-Used)
4.6	Mold for Horizontal Bars (Left to Right - ASTM Schematic/As- Used)
4.7	Measuring Apparatus
4.8	Testing Apparatus
4.9	Rebar Grips
5.1	Hardened Concrete Defect Related to Hot Weather
5.2	Compressive Strengths Over Time77
5.3	Chloride Levels Versus Depth (VTrans Results)
5.4	Chloride Levels Versus Depth (Grace Results)

5.5	Percent Mass Loss of Specimens in Freeze Thaw Test Protocol	3
5.6	Bond Strengths of Hycrete DSS Specimens	2

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Snow and ice have a major impact on the safety and operation of New England roads. The use of solid chemicals and chemical solutions as deicers and anti-icing treatments is at the core of winter maintenance programs practiced by state transportation agencies. Chloride salt is traditionally used as the principal deicer. Problematically, corrosion of bridge decks and other reinforced concrete transportation infrastructure is accelerated due to the use of these deicing salts. Alternatives to deicing salts have been investigated but in general have not been found to be cost competitive, readily available, safe, and/or effective. Therefore the use of chloride salts is not expected to decrease and it is important for transportation agencies to explore state of the art methods to mitigate the adverse effects of deicing salts.

For this reason, transportation agencies in New England and in other parts of the country have recently become interested in a new proprietary chemical admixture for concrete, Hycrete DSS. This chemical was investigated in two laboratory studies conducted by regional transportation research organizations in New England. When compared to other common defensive strategies against chloride attack, Hycrete DSS was found to provide excellent damp proofing and corrosion resisting characteristics in reinforced concrete specimens. Based upon the apparent potential benefits of the admixture the New England Transportation Consortium (NETC) has invested in the

reported study to verify full-scale mixture properties and aid implementation of the new admixture.

By developing design and control procedures for standard Hycrete concrete mixes, New England transportation organizations will be able to implement Hycrete DSS in full-scale transportation infrastructure applications. Expected results will include increased service lives, longer intervals between repairs and remediation, and increased structural integrity of transportation infrastructure elements.

1.2 Organization of Document

Chapter 2 summarizes background information relevant to the study: corrosion mechanisms, corrosion costs, corrosion mitigation solutions, life cycle analyses, supplemental information on the chemical Hycrete DSS, and corrosion field evaluation techniques. Chapter 3 contains a literature review specific to the topic of Hycrete DSS concrete. Chapter 4 outlines the approach and methods for conducting a field study for an experimental concrete mix with applicable test specifications and evaluation techniques. The results and appropriate discussions are presented in Chapter 5. In the final section of the document, Chapter 6, overall conclusions are developed for the field study along with recommendations for future research. Previously unreported data from the University of Massachusetts (UMass) relating to the project, but not part of this research project, is reported in Section 5.2.3.2. Implementation results of the project will be reported in a supplemental (Phase II) report.

CHAPTER 2

CORROSION OF REINFORCED CONCRETE AND TEST METHODS

2.1 Corrosion Effects

One of the clearest measures of the impact of corrosion is cost. A recent study of corrosion costs was published in 2001, and was carried out in fulfillment of an amendment for the cost of corrosion that was included in the Transportation Equity Act for the 21st Century (TEA-21). This report, <u>Corrosion Cost and Preventive Strategies in the United States</u> (Koch 2001), estimated the total cost of metallic corrosion in the United States to be \$276 billion per year, which was 3.1 percent of the U.S. gross domestic product in 1998. Regarding transportation infrastructure, corrosion of highway bridges accounted for \$8.3 billion, which includes \$3.8 billion to replace structurally deficient bridges over the next 10 years, \$2.0 billion for maintenance and cost of capital for concrete bridge decks, and \$2.0 billion for maintenance and cost of capital for concrete substructures (minus decks).

Another reference, <u>National Cost of Damage to Infrastructure from Highway</u> <u>Deicing</u> (Menzies 1992), reported in 1992 the findings from a National Research Council committee about the specific costs associated to highway deicing. The annual cost to infrastructure from deicing was estimated to be between 400 and 900 million dollars per year. Menzies states, "Bridge decks are the principal recipient of salt's adverse effects" (p. 31). Based upon 2005 data from the National Bridge Inventory (NBI) there are 11,608 concrete bridges in New England and New York State alone, comprising 33% of the bridges, by material type, in this region (http://www.fhwa.dot.gov/bridge/nbi.htm).

2.2 Corrosion Process of Reinforced Concrete

Iron (Fe), the main ingredient of structural steel is commonly found naturally in the form, iron oxide (Fe₂O₃). When pure metallic iron (Fe) in steel is exposed to the air (O₂) and water (H₂O), it will return to the more common form, iron oxide. This is the principal mechanism for the aqueous corrosion of steel (see Figure 2.1). This simple explanation is the starting point for understanding the more specific process of corrosion in reinforced concrete.

Figure 2.1: Corrosion of Solid Iron (www.corrosion-club.com)

In reinforced concrete structural steel bars are the most common material used for reinforcement. Standard reinforcing bars (rebar) are referred to as black steel bars. This black rebar will corrode, as illustrated in Figure 2.1, in the presence of oxygen and water. These elements can migrate through concrete through a pore structure of entrained air and micro-cracks. Corrosion of reinforcement in concrete is an electrochemical process with an anodic dissolution of iron reaction and a balancing cathodic oxygen reduction reaction. These electrochemical cells can be localized over one piece of reinforcement or between layers of reinforcement connected by ties or stirrups. The severity of corrosion is often measured by the corrosion rate. When rebar is embedded in concrete and is in the absence of chlorides, it will exhibit strongly passive behavior. The corrosion rate of the rebar is retarded due to the highly alkaline environment of the concrete and the formation of iron-oxide compounds (byproducts of the initial corrosion process), which create an insoluble passivating layer on the surface of the rebar.

Of specific importance to reinforced transportation structures in the Northeast United States is the affect of deicing salts on the corrosion process. The presence of chlorides (e.g. calcium chloride (CaCl₂) and sodium chloride (NaCl)) from deicing salts in sufficient concentration at the rebar level dramatically increases the corrosion rate. Chlorides can migrate though the concrete pore structure in the form of brine (a combination of road salts and melted snow or ice). The increase in corrosion rate is due to the weakening of the passivating layer (described previously) by the following means. When chlorides are present, the chloride ions (Cl⁻) will compete with the hydroxide ions (OH⁻) from the water and oxygen molecules to combine with the ferrous

 (Fe^{2+}) cations from the pure iron in the steel. The passivating layer created from this reaction is thought to be unstable and soluble. When chloride content reaches a critical chloride threshold limit the passivating layer can break down. The anodic reaction is no longer inhibited and the corrosion process can continue. The uninhibited dissolution of iron cations is the loss of structural steel.

Another effect of corrosion of reinforced concrete is delamination and spalling of concrete. Delamination and spalling of concrete results from significant internal stresses caused by the byproducts of the corrosion, which occupy two to eight times the amount of space as the reinforcing steel. Spalling and cracking allow the direct access of chlorides, water, and air to the reinforcement, greatly accelerating the reactions previously described. Iron loss and concrete damage can lead to high repair costs and decreased service lives of transportation structures (Berke et. al.1992).

2.3 Service Life Model and Corrosion Mitigation Solutions

The corrosion process of reinforced concrete can be separated into two phases: the initiation phase and the propagation phase. In the initiation phase the chlorides on the surface of the concrete diffuse through the concrete and accumulate on the reinforcing bar. When the concentration of chlorides reaches a critical threshold level the passivity layer on the reinforcing bar becomes ineffective and the corrosion process initiates. The initiation phase ends and the propagation phase begins with the onset of corrosion. In the propagation phase the reinforcing bars will corrode at a certain rate until the corrosion reaches an unacceptable level. At this point the reinforced concrete structure has reached its service life and repair is necessary (Bentz and Thomas 2001).

Mishra (2000) argues that, "the primary aim of design must be to prevent permeation of corrodents onto the rebar." In other words the initiation phase is the most critical in corrosion mitigation. One method of preventing corrodents from reaching the concrete reinforcement is to set the reinforcing steel apart from the corrosive environment. Some specific methods include: increase concrete cover, minimize cracking, create dense and homogenous concrete, and provide barrier to the intrusion of salt, water and oxygen. The latter is often in the form of a coating, penetrating sealer or membrane. Alternative methods can be used when the rebar cannot be set apart from the corrosive environment. These alternative methods include the use of epoxy coated rebar, corrosion resistant reinforcement, corrosion inhibiting chemicals, and cathodic protection.

Normally transportation agencies take a multi-method approach in protecting transportation infrastructure. For example in a bridge deck, concrete cover may be increased, epoxy coated rebar could be used, and a concrete mixture design with low permeability could be used at the same time. This project focuses on one specific corrosion inhibiting chemical admixture, Hycrete DSS.

2.4 Hycrete DSS Concrete Admixture

Hycrete DSS is technically referred to as disodium tetrapropenyl succinate (DSS), which is a salt of an alkenyl-substituted succinic acid. Hycrete DSS was developed by Broadview Technologies and now produced and distributed by Hycrete Technologies LLC. According to representatives from Hycrete Technologies LLC and the company website, the chemical was developed from an oil soluble rust inhibitor that

was used in the motor oil and lube industries (hycrete.com 2005). The chemical was originally evaluated as a concrete additive by University of Connecticut Department of Civil Engineering Professors Greg Franz and Jack Stephens.

Hycrete DSS in appearance is a clear to slightly hazy light yellow liquid. According to manufacturer specifications, Hycrete DSS is a water-soluble chemical that is volatile organic compound (VOC) free and environmental friendly. Hycrete DSS was recognized by McDonough Braungart Design Chemistry (MBDC) with a "Cradle to CradleTM Environmental Certification". This recognition certifies that Hycrete DSS has met stringent environmental and human health standards in product design.

Hycrete DSS is delivered as a solution containing 80% water and 20% Hycrete solids, with a density of approximately 66 lb/ft³ (1055 kg/m³), slightly higher than that of water. The manufacturer's recommended dosage for Hycrete DSS in a concrete mix is $1-2 \text{ gal/yd}^3$ (5-10 L/m³) of concrete, depending on the amount of corrosion resisting performance required. This recommendation is roughly equivalent to 0.25 lb to 0.50 lb (0.11 kg to 0.23 kg) Hycrete DSS solids per 100 lb (45 kg) of cementitious materials, for a standard concrete mix with a cementitious materials content of 700 lb/yd³(413 kg/m³).

Hycrete DSS is a multi-purpose additive serving primarily as a corrosion inhibitor but also as an air entrainer. This report uses the same working definition of a corrosion inhibitor as stated by Pierre Roberge in the *Handbook of Corrosion Engineering*, "a chemical substance that, when added in small concentration to an environment, effectively decreases the corrosion rate" (Roberge 1997). As a corrosion inhibitor for the reinforcement, Hycrete DSS is reported to act as an anodic inhibitor, a precipitation inhibitor, and as a concrete waterproofer. According to a slide presentation given by the President of Broadview Technologies (Rhodes 2004) the effectiveness of Hycrete DSS is based upon the following mechanisms:

- Anodic Inhibitor During the half-cell reaction the anode becomes positively charged and attracts the electronegative end of the Hycrete DSS, creating a hydrophobic layer of protection around the anode.
- Precipitation Inhibitor Hycrete DSS will remain in solution in fresh concrete. However when the freewater is used up in the hydration process of fresh concrete Hycrete DSS precipitates as a solid protective waxy coating on the rebar.
- 3. *Waterproofer* Hycrete DSS reacts with metals in concrete to form insoluble or slightly soluble waxy precipitates that fill voids in the concrete microstructure.

While these specific modes have not been independently verified, laboratory testing by three independent agencies (University of Connecticut, University of Massachusetts, University of Kansas) have indicated excellent performance as an overall corrosion inhibitor. Details of these tests are provided in the literature review section (Chapter 3) of this report.

As an air entrainer Hycrete DSS has been found to reliably introduce uniform and stable micro-air voids in two studies conducted by independent state transportation agencies (additional information and references are provided in Chapter 3).

2.5 Nondestructive Evaluation Techniques for Determining Corrosion in the Field

An important aspect of this study is to monitor Hycrete DSS concrete field placements. This is integral to the project as a means of evaluating the performance of Hycrete DSS as a corrosion inhibitor and also as a tool to estimate the service life of reinforced concrete structures. In this section a selection of reusable nondestructive corrosion monitoring devices that were considered for use on this project are summarized.

Nondestructive evaluation techniques that can quantify corrosion of reinforced concrete typically use electrochemical techniques. Half-cell potentials, as described in ASTM C 876 (ASTM 1999), is the most common electrochemical corrosion monitoring technique cited in engineering literature for transportation infrastructure. Half-cell devices, as depicted in Figure 2.2, measure half-cell potentials and these measurements indicate the presence or absence of corrosion of steel embedded in concrete. This method can be used to measure the potential of a single piece of embedded rebar or to create Equipotential Contour Maps in applications where rebar is laid out in a grid (creating a continuous electrical circuit).

Figure 2.2: Copper-Copper Sulfate Half Cell Circuitry (ASTM 1999)

In terms of service life modeling, half-cell measurements can only indicate the extent of the initiation phase. To quantify the propagation phase and determine the extent of damage to the reinforcement from corrosion, corrosion rate measurements are necessary. Corrosion rate has been traditionally measured through the linear polarization technique, as described in the standard test method ASTM G 59 (ASTM 2003). In the linear polarization technique a potential is applied to a corroding surface and the current response is measured. The ratio of the applied potential and the current response is the polarization resistance. The polarization resistance is inversely proportional to the corrosion rate. When this technique is used for reinforced concrete a guard ring is used to confine the application of current at the concrete surface, thus, yielding a well defined rebar area (Tullmin et. al. 1996). Using data collected over discrete time intervals the corrosion rate readings can be used to estimate the amount of iron loss at a specific location.

Another corrosion rate measuring technique is the galvanostatic pulse technique. Devices using this technique impose an anodic current pulse onto the rebar for a short period of time, using a counter electrode positioned on the surface of the concrete. The resultant rebar potential change is recorded with reference to time. When the slope of the potential versus time curve is relatively high the reinforcement is in a passive state and when the slope is very small there is localized corrosion of the reinforcement. Figure 2.3 shows the GalvaPulse, an instrument which utilizes the galvanostatic pulse technique. The GalvaPulse is manufactured by Germann Instruments.

Confined area

Figure 2.3: Galvapulse (www.germann.org)

A selection of commercially available hand held nondestructive equipment that are capable of measuring corrosion rate of reinforcement in concrete are shown in Table 2.1.

Equipment	Manufacturer
GalvaPulse	Germann Instruments
Gecor 6	James Instruments Inc.
(Gecor 8)	
PR 45000	CC Technologies

 Table 2.1: Corrosion Monitoring Equipment

CHAPTER 3

LITERATURE REVIEW

3.1 Summary of Available Studies

This chapter evaluates all available data regarding Hycrete DSS concrete testing except for data obtained as part of the current project. Results of this data are presented in Chapter 5. There are three major academic studies in which Hycrete DSS was investigated. At least two transportation organizations have studied Hycrete DSS as a complement to these full academic studies. Product specifications, data from independent laboratory tests, and summaries of completed projects are available from the manufacturer of Hycrete DSS. Several laboratory investigations and field studies have been performed by both private and public entities, although the information from these studies is either confidential or has not been published in a complete form. Brief summaries of the studies considered in the literature review are presented in Section 3.1. A summary and discussion of the overall results from all of the literature review citations is presented in Section 3.2.

Previously unpublished chloride ingress data from the University of Massachusetts (UMass) is presented in this report (Section 5.2.3.2). Unpublished field data of Hycrete concrete and control concrete barriers from the Connecticut Department of Transportation (CTDOT) will be published in Phase II.

3.1.1 University Publications and Research

Three major academic studies were published on Hycrete DSS. The first project was performed by the University of Connecticut (UConn), the second by the University of Massachusetts Amherst (UMass), and the most recent study by the University of Kansas (KU).

3.1.1.1 University of Connecticut

The earliest reference including Hycrete DSS reported research conducted at the Concrete Materials Laboratory of the University of Connecticut. This study, <u>Protection</u> <u>of Reinforcement with Corrosion Inhibitors</u>, was led by Professor Frantz and was funded by the Joint Highway Research Advisory Council (JHRAC) of the University of Connecticut and the Connecticut Department of Transportation. Two reports and two papers were published based upon the findings from this study (Allyn et al 1998, Allyn and Frantz 2001a, Allyn and Frantz 2001b, Goodwyn et al 2000). The goal of the project was to investigate two prototype concrete corrosion inhibiting chemical admixtures and compare their performance to standard air entrained concrete and two existing commercial concrete corrosion inhibitors. The prototype inhibitors were D.A.S. and D.S.S. (Hycrete DSS); both products were developed by Broadview Technologies. The commercial admixtures were a calcium nitrate based chemical and an organic chemical consisting of amines and esters.

The corrosion study included investigations of lollipop specimens and slab style specimens (ASTM G-109-92). The lollipop specimens were lengths of No. 4 plain Grade 60 rebar encased cylindrically in 2 inches or 3 inches of concrete. Some 3 inch diameter lollipop specimens were saw cut to simulate cracked concrete. All corrosion specimens were subjected to cyclic chloride loading cycle, as described in Table 3.1

and corrosion activity was assessed using the linear polarization method and visual examination techniques.

Specimen	Туре	Chloride Loa	ading	Cycle	Total Duration
		Wet	dry	(wk)	(wk)
	0" 0" areakad	4 days	ed 3 days air ¹ 1		
Lollipop	saw cut	5" immersed 15% NaCl		1	100²
Slab	ASTM G-109	4 days 2" pond 15% NaCl	3 days air	1	100

 Table 3.1: UConn Corrosion Study Test Specimens

*Notes:

1 - Some specimens were oven dried at 100°F

2 - Cracked lollipop specimens were cycled for 35 cycles

Chloride penetration, absorption, freeze-thaw, strength, and plastic concrete tests were also conducted using standard methods.

3.1.1.2 University of Massachusetts Amherst

The second study was conducted at the Structural Engineering Laboratory at the University of Massachusetts Amherst. An initial study, <u>Performance Evaluation and</u> <u>Economic Analysis of Combinations of Durability Enhancing Admixtures (Mineral and Chemical) in Structural Concrete in the Northeast U.S.A.</u> (funded by the New England Transportation Consortium (NETC 97-2)), and follow up investigations have been completed. One report, two papers, and a conference proceeding were published based upon the findings from this study (Civjan et al 2002, Civjan et al 2005a, Civjan et al 2005b, Civjan et al 2005c). The goal of this study was to gauge the performance of concrete admixtures and pozzolonic cement replacements in single, double, and triple combinations under accelerated corrosion conditions in reinforced concrete. The admixtures and cement replacement materials studied were calcium nitrite, silica fume, fly ash, ground granulated blast furnace slag, and Hycrete DSS. These admixtures were added to standard mix designs and the specimens were designed to model accelerated corrosion in bridge decks in both pre-cracked and non-cracked conditions. All tests used black, uncoated reinforcement.

The test specimens were similar to ASTM G-109 specimens but were modified based upon the Federal Highway Administration report, "Work Plan for In-Concrete Testing" (WJE 1995). Cracked concrete, in selected specimens, was simulated by casting metal shims into the specimens, longitudinally over the top rebar, and removing them after initial set. All specimens were subjected to a cyclic chloride loading cycle (Table 3.2). Corrosion performance of the individual specimens was monitored using half-cell, macro cell, and visual inspection techniques.

Specimen	Туре	Chloride L	oading	Cycles		Total Cycle	Total Duratio n
				wet/dr			
		wet	dry	у	constant dry	(wk)	(wk)
Slab	WJE 95'	4 days	3 days	12 wks	12 wks	24	108 ¹
		1" pond	100°F		1" pond		
		15% NaCl			15% NaCl		

Table 3.2: UMass Corrosion Study Test Specimens

Note 1 - Follow up to 204 weeks for many specimens completed and reported (Civjan et al 2005a)

In addition to the main research described, there have also been follow-up experiments conducted at the University of Massachusetts Amherst Structural Engineering Laboratory. The corrosion study was extended past what was originally reported (Civjan et al 2002, Civjan et al 2005b) through 204 weeks for many of the specimens (Civjan et al 2005a) along with data from compression testing of Hycrete DSS specimens with varying dosages of Hycrete DSS.

Previously unpublished chloride ingress data from these corrosion specimens has been compiled and is included in Section 5.2.3.2 of this report. Data from other trial investigations, including investigations of bond development of concrete with Hycrete DSS (Bonczar unpublished laboratory experiments 2003), are unpublished.

3.1.1.3 University of Kansas

The third and most recent study was conducted at the Structural Engineering and Materials Laboratory of the Infrastructure Research Group at the University of Kansas. This study, Evaluation of Multiple Corrosion Protection Systems and Stainless Steel Clad Reinforcement for Reinforced Concrete, was funded by the United States Department of Transportation Federal Highway Administration (FHWA), Kansas Department of Transportation (KDOT), South Dakota Department of Transportation (SDDOT), and National Science Foundation (NSF) (Gong 2006). The goal of the project was to evaluate and compare the corrosion performance of multiple corrosion protection systems and stainless steel clad reinforcement. Conventional steel and conventional epoxy-coated steel served as the control systems. The experimental corrosion inhibiting systems consisted of stainless steel clad reinforcement, conventional epoxy-coated reinforcement cast in concrete containing corrosion inhibitors, epoxy-coated steel with the epoxy applied over a primer coat that contains microencapsulated calcium nitrite, epoxy-coated steel with the epoxy applied after pretreatment of the steel with zinc chromate to improve adhesion between the epoxy

and the steel, epoxy-coated steel using improved adhesion epoxies, and multiple coated steel with a zinc layer underlying the epoxy layer. The corrosion inhibitors were Hycrete DSS, a calcium nitrate based chemical admixture, and an organic chemical consisting of amines and esters.

The performance of the systems was evaluated based upon results from a corrosion study consisting of rapid and bench scale (slab) corrosion tests. The rapid tests were rapid macrocell tests. The bench scale (slab) tests included Southern Exposure (SE) specimens (similar to the UMass study), cracked beam specimens (half the size of SE specimens), and ASTM G 109 (similar to the UConn study). Cracked specimens had cracks above and parallel to the reinforcement. The specimens from the rapid test were immersed in a static chloride solution, per Table 3.3, while the bench scale specimens were subject to a cyclic chloride cycle as described in Table 3.4. For all epoxy-coated, some multiple coated, and some stainless steel clad bars, the coating or cladding was drilled with four or ten holes of 1/8 in (3.2 mm) diameter to simulate coating defects. The rapid corrosion tests were evaluated with macrocell corrosion rate and corrosion potential techniques. Bench scale tests were evaluated using macrocell corrosion rate, corrosion potential, mat-to-mat resistance, and polarization resistance techniques. Microstructure analyses of corrosion products along with mechanical testing of reinforcement systems were also completed.

Specimen	Туре	Chloride Loading wet		
Rapid	bare,	15 wks		
	wrapped,	3" immersed		
	w/holes	4.47%/15%		

 Table 3.3: KU Rapid Corrosion Study Test Specimens

Specimen	Туре	Chloride Loading		Cycles wet/dr		Total Cycle	Total Duration
		Wet	dry	У	constant	(wk)	(wk)
Slab	SE, CB	4 days	3 days	12 wks	12 wks	24	96
		3/4" pond 15% NaCl	100°F		1" pond 15% NaCl		
	ASTM G-109	2 wks	2wks	All	-	4	96
		1.5" pond	air				
		3% NaCl					

Table 3.4: KU Corrosion Study Test Specimens

3.1.2 Research from Transportation Organizations

The Connecticut DOT, Kansas DOT, and New Jersey Turnpike Authority have performed some field and/or laboratory studies. The New York/New Jersey Port Authority has performed some field testing. According to Broadview Technologies correspondence, studies are also pending in Florida, Kansas and Texas. Preliminary data from a CT DOT field study and a preliminary report from the Kansas DOT were made available and reported in this Literature Review.

3.1.2.1 Connecticut DOT

Based on the findings from the University of Connecticut study, Paul D'Attilio, An engineer from the Connecticut DOT carried out a study of Hycrete DSS concrete. The plastic and hardened concrete properties of 21 trial Hycrete DSS concrete mix designs were evaluated. The mix designs with optimal characteristics were used to create a set of one sided F-shape highway barriers that were deployed on I-84 in Southington, CT. Monitoring of the corrosion activity of the barriers is to be evaluated utilizing embedded ERE Probes from Germann Instruments to monitor reinforcement potentials and Germann Instruments' "handheld" operated GalvaPulse connected to the barriers by a ground clamp to measure corrosion rate, half-cell potentials, and electrical resistance.

3.1.2.2 Kansas State DOT

In a draft report, "The Effects of DSS Corrosion Inhibitor on the Physical Characteristics of Concrete" (Distlehorst et al 2003), by the Kansas Department of Transportation the effect of Hycrete DSS on the physical characteristics of concrete was investigated. Both concrete with pure Hycrete DSS and Hycrete DSS with a defoamer were compared to a control mix and a control mix with an air entraining chemical. Tests were conducted to determine the freshly mixed concrete properties along with hardened concrete properties of strength and permeability.

3.1.2.3 Others

Other Transportation agencies have implemented Hycrete DSS into a construction project, and likely performed some limited testing of Hycrete DSS concretes, but data has not been published. Specific projects are noted in Section 3.2.6.

3.1.3 Private Research

Significant laboratory and field work has been performed by the developer/manufacturer of Hycrete DSS along with other admixture companies that

have considered marketing the admixture, including W.R. Grace and Master Builders. The majority of these results are not published (Civjan 2003). Independent laboratory reports from Construction Technology Laboratories (CTL) and Nelson Testing laboratories (NTL) have been funded by Hycrete Technologies and Broadview Technologies. These reports include results on testing of physical properties of Hycrete DSS mixes. Descriptions and data from completed and pending construction projects utilizing Hycrete DSS were made available by Hycrete Technologies and were included in this Literature Review. Hycrete DSS has compiled some of this information on their web page (www.Hycrete.com).

3.1.3.1 Broadview/Hycrete Technologies

Mix design development and physical testing of Hycrete DSS concrete has been completed by independent laboratories solicited by the manufacturers of Hycrete DSS. Characteristics investigated include: workability and cohesion, slump retention, air content, setting time, compressive strength, drying shrinkage, hydrostatic pressure resistance, and absorption testing.

3.2 Summary of Findings

Based upon studies by the organizations referenced there have been over 80 unique Hycrete DSS concrete mixes evaluated. Details from these mixes and results from testing are organized in the following sections according to the topics of mixture design, batching, mixing, curing, freshly mixed concrete properties, hardened concrete properties, durability, corrosion, and field applications. A summary of the Hycrete DSS studies with associated references is presented in Table 3.5. In the subsequent sections

of Chapter 3 references will be made to the research organization and not the multiple citations based upon the original research project from each organization.

Organization	Citations		
University of Connecticut (UConn)	Allyn et al 1998, Goodwyn et al 2000,		
	Allyn and Frantz 2001a, Allyn and		
	Frantz 2001b		
University of Massachusetts (UMass)	Civjan et al 2002, Civjan et al 2005a,		
	Civjan et al 2005b, Civjan et al 2005c,		
	Data in this report		
University of Kansas (KU)	Gong 2006		
Connecticut DOT (Conn DOT)	D'Attilio unpublished field study		
	Data in this report		
Kansas State DOT (KSDOT)	Distlehorst et al 2003		
Hycrete Technologies LLC (Hycrete)	www.Hycrete .com		

Table 3.5: Summary of Hycrete Studies

3.2.1 Mixture Design

In the majority of the studies presented, Hycrete DSS concrete was tested and compared to a control mix. References may be made to these control mixes for comparative observations, but the overall focus is on the Hycrete DSS concrete.

3.2.1.1 Hycrete DSS Dosage

In the studies reported, one evaluated dosage ranges of Hycrete DSS (UConn). All other studies used a concentration of Hycrete DSS of approximately 1/2% Hycrete DSS solids per weight of cementitious materials. This concentration is roughly equivalent to 2 gallons of Hycrete DSS per cubic yard of concrete, for a mixture with a cementitious materials content of 700 lbs/yd³ (413 kg/m³). It was found that an increase in the concentration of Hycrete DSS improved corrosion inhibiting performance, but at the same time reduced the strength of the concrete.

Hycrete DSS in concrete has been recommended at dosages of 1/4% to 1/2% weight of Hycrete DSS solids per weight of cementitious materials as a balance between corrosion resistance, strength reduction, and economy (UConn). This concentration corresponds to the current recommended dosage of Hycrete DSS of 1-2 gallons (3.8-7.6 liters) of Hycrete DSS solution (specific gravity (SG) = 1.04 - 1.07) per one cubic yard of concrete (0.76 m^3). Hycrete DSS solids are approximately 1.7 lbs/gal (0.2 kg/l). A 1/2% concentration of Hycrete DSS corresponds to a 2 gal/yd³ (10 l/m^3) dosage with a total cementitious materials content of 700 lbs/ yd³ (413 kg/m^3).

3.2.1.2 W/CM and Cementitious Materials Content

The water to cementitious material ratios (w/cm) of the Hycrete DSS concretes used in reported studies were in the range of 0.35 to 0.48 with the exception of one mix with a w/cm of 0.25. Lower water to cementitious materials ratios, for comparable mixes, generally resulted in improved concrete compressive strengths, as would be expected.

The maximum and minimum cementitious materials per cubic yard of concrete were 752 lbs/yd³ (444 kg/m³) and 564 lbs/yd³ (333 kg/m³), respectively (UConn, UMass, KU, ConnDOT, KSDOT, Hycrete). Higher cementitious materials content generally resulted in stronger Hycrete DSS concretes.

3.2.1.3 Chemical Admixtures and Pozzolonic Materials

A variety of common chemical and mineral admixtures were utilized in Hycrete DSS studies. Hycrete DSS was used in combinations with fly ash (Hycrete), slag (UConn, UMass, Hycrete), silica fume (Hycrete), air entrainer (UMass, KU, Hycrete), water reducers (UMass, KU, ConnDOT, Hycrete), and a calcium-nitrate based corrosion inhibitor (UMass). Also utilized was a defoamer additive (UConn, KU, ConnDOT, KSDOT, Hycrete). The defoaming chemical was found to reduce the total air content of Hycrete DSS mixes and greatly increase strength performance of Hycrete DSS concrete and subsequently is now premixed in the delivered Hycrete DSS solution. No other detrimental interactions between Hycrete DSS and the chemical and mineral admixtures used in the studies have been reported. Air entrainment emerged in at least two publications as an important parameter when considering the use of Hycrete DSS.

3.2.2 Batching and Mixing

Of the literature available which reported batching and mixing procedures none were batched at full-scale. ConnDOT and Hycrete test mixes were batched at full-scale but batching and mixing procedures were not reported. Although several field installations have been completed, full reports on these large-scale applications have not been made available. All fully reported mixes were batched and mixed in small drum style mixers in batch sizes between 1.0 ft³ (0.028 m³) and 2.8 ft³ (0.079 m³). All mixes were batched in accordance with normal concrete practices. The exception was the addition of Hycrete DSS. It was found that it is optimal to add Hycrete DSS at the end of the batch process. Hycrete DSS concretes exhibited reduced strength from a
comparable normal concrete mix. Although the exact mechanism is not known, it is thought that Hycrete DSS may interact with the hydration process. The working hypothesis includes the position that delaying the addition of Hycrete DSS lessens this interaction. A preliminary laboratory test performed by the manufacturer of Hycrete DSS showed that a delay of 5 min to 30 min to the addition of Hycrete DSS, after the other ingredients have been mixed, increases the early age strength 4% to 14% compared to a Hycrete DSS mix in which the chemical was added immediately following the addition of other batch materials (Hycrete Tech. unpublished laboratory report 2005).

3.2.3 Freshly Mixed Concrete Properties

In all of the studies, freshly mixed concrete properties of slump and air content were reported. Two studies reported temperatures of the Hycrete DSS mixes (ConnDOT, Hycrete). Two studies recorded set times for a Hycrete DSS mix (UConn, Hycrete).

Overall slumps of 1.0 to 8.0 in (2.5 to 20.2 cm) were reported. Water reducing admixtures were used in 4 projects to improve workability; however these were dosed identically to the control mixes (UMass, KU, ConnDOT, Hycrete). None of the studies noted any significant differences in workability between Hycrete DSS and the control mixes.

Air contents of 1.25% to 15.0% were reported with variations corresponding to the research program methods of controlling air content and whether air content was a controlled parameter of the study. Hycrete DSS has been found to entrain air in concrete

mixes and this characteristic was utilized in 4 out of 6 studies (UConn, ConnDOT, KSDOT, Hycrete). In these studies an additional air-entraining admixture was not used in the mixes and Hycrete DSS, along with a defoaming chemical were utilized to entrain air to the desired percentage. Target air content was achieved in these studies. Independent laboratory results released by Hycrete DSS Technologies noted that an overdose of defoamer was difficult to correct. In this case, the laboratory added a large dose of air entrainer to correct the defoamer overdose. The mixes prepared for the UMass and the KU corrosion studies used a conventional air entrainer in the Hycrete DSS mixes to maintain consistent admixture additions with control concretes.

As a supplement to the field study presented in this report a small set of trial mixes were tested at the UMass Structural Engineering Laboratory in order to determine the effect of Hycrete DSS, with varying dosages of defoamer additive, on the air content of concrete over time while continuously mixing. The testing was conducted using a bagged, pre-proportioned dry concrete mix, exceeding ASTM C 387. Water was added to the dry mix according to the manufacturer's specifications. The batch size of the mixes was between 1.2 ft³ (0.034 m³) and 2.4 ft³ (0.068 m³) depending on the number of air content tests planned to be taken for each mix. A single speed 5.0 ft³ (0.14 m³) capacity mixer was used. Total air content versus mixing time data was recorded from the tests. The first time interval was started at 0 minutes when the mix was determined to be homogenously blended, by visual inspection. Air contents were taken at discrete times with the mixer continuously mixing. Air contents were measured following ASTM C 231-97. The dosages of air entrainer, Hycrete DSS, and Hycrete

DSS defoamer are shown in Table 3.6, for three test mixes. Figure 3.1 shows air contents versus mix time.

Mix	Air Entrainer		Hycrete		Defoamer		Batch Size	
	oz/yd ³	mL/m ³	gal/yd ³	L/m ³	oz/ yd ³	g/m ³	yd ³	m ³
Control	NA	NA	NA	NA	NA	NA	0.044	0.034
Air Entrained	2.66	103	NA	NA	NA	NA	0.089	0.068
Hycrete DSS (w/defoamer)	NA	NA	2	10	10.1	39.6	0.067	0.051

 Table 3.6: Trial Air Content Test Mixes

Figure 3.1: Total Air Content vs. Mix Time

A baseline air content of about 3.8% was established for the control mix without additional chemical additives. A total air content range of 5%-8% was established as a performance criterion for the mixes with air entraining admixtures. This was achieved with an addition of an air entrainer at a dosage of 2.66 oz/yd^3 (103 mL/m³) of concrete

for the "Air Entrained" mix. The performance criterion was also met with the Hycrete DSS mix. This mix had a Hycrete DSS dosage of 2 gal/yd³ (10 L/m³) of concrete with a defoamer dosage of 10 oz/yd³ (39.6 mL/m³) of concrete. As shown in Figure 3.1, the air content of the Hycrete DSS was initially 9% at 5 minutes of mixing. This value dropped nearly 2% after a total of 10 minutes of mixing to remain at a steady measurement of 6.5%-7.0%, comparable to the performance of the conventionally air entrained mix. The data obtained from these trial mixes was used to determine the concentration of defoamer used in the large scale mixes. These results indicate that Hycrete DSS concretes exhibit a stability of air content over time similar to control concretes.

Concrete temperature was not a key subject in any of the reports. One study used refrigerated mix water to retard concrete set in order to make specimens (UConn). Laboratories that recorded set times had conflicting results for Hycrete DSS mixes. An independent laboratory found that the addition of Hycrete DSS delayed the set by 20 minutes when compared to the control, while the UConn study found that Hycrete DSS acted as an accelerator. According to the UConn study at a Hycrete DSS dosage of 1/2%, the set time the concrete mix was 15% faster than when compared to a control. However, the study also noted that decreasing the concentration of Hycrete DSS below the 1/2% concentration also decreased the set time. At a Hycrete DSS concentration of 1/8% the set time was 34% faster than the control. Overall it appears that set time was relatively unchanged and differences are likely due to variability in the concrete mixtures.

When the reports presented criteria for freshly mixed properties, these criteria were acceptable in Hycrete DSS concrete mixes. Based on the available data, the

addition of Hycrete DSS was found to have no detrimental effect on the slump or set of concrete. Hycrete DSS adds air to a concrete mix. An additional air entrainer was not needed to achieve typical required total air content. A defoaming chemical could be added to the Hycrete DSS to reduce the total air content of the mix. However current batches of delivered Hycrete DSS contain a defoaming agent pre-mixed into the solution.

3.2.4 Curing

In all cases, the curing methods used in each study were the same for Hycrete DSS and control specimens. In all reports the published minimum curing time was 14days or the date of testing if tested in less than 7 days. Traditional curing methods appear to be adequate for Hycrete DSS specimens.

3.2.5 Hardened Concrete Properties

The hardened concrete properties investigated in the studies were strength, freeze-thaw durability, air void analysis, permeability, and corrosion resistance.

3.2.5.1 Strength

Hycrete DSS concrete strength was evaluated by the percent strength reduction based on a control mix from the same study with similar properties at 28-days. Strengths were not corrected for differences between air contents of the Hycrete DSS and control mixes. An observation made from the UConn study was that an increase in Hycrete DSS dosage led to a decrease in Hycrete DSS compressive strength. This

observation has subsequently been verified by laboratory testing conducted by UMass and an independent testing laboratory.

Due to the findings from the original UConn study, a recommended dosage of 1/2% Hycrete DSS solids per weight of cementitious materials was made as a balance between corrosion resistance, strength, and economy. The following observations are therefore for concrete with a Hycrete DSS dosage of 1/2%. When a control specimen was available for comparison, it was found that Hycrete DSS specimens without defoamer experienced strength reductions between 9-31% at 28-days. Hycrete DSS specimens with defoamer experienced strength reductions between 0-19% at 28-days. In terms of early age testing, of Hycrete DSS mixes have achieved strengths of 3350 psi (23 MPa), 5970 psi (41 MPa), and 6404 psi (44 MPa) for 1, 3, and 7 days respectively, based on a nominal design strength (f'c) of 5000 psi (34.5 MPa) (Hycrete).

3.2.5.2 Permeability

Three different methods were used to evaluate permeability/absorption of Hycrete DSS specimens. These three methods were absorption, evapo-transpiration, and rapid chloride permeability testing.

Absorption testing (ASTM C 642-90) conducted by UConn found that Hycrete DSS concretes with and without a defoamer were at least 50% less permeable than control specimens. Testing by Hycrete Technologies using the British standard, BSI 1881 : Part 122: 1983, found that corrected absorption values ranged from 0.15% to 0.30% for Hycrete DSS concretes.

Two reports tested the permeability of Hycrete DSS using the Rapid Chloride Permeability method (KSDOT, Hycrete). The two studies had conflicting results. One study found that the Hycrete DSS concrete was 15% less permeable than the concrete as compared to the control (Hycrete). The other study reported that the Hycrete DSS specimens were 26% more permeable (as measured by coloumbs passed), when compared to the control (KSDOT). Further study performed an evapo-transpiration test on the same concretes, which indicated that the Hycrete DSS specimen was 68.4% less permeable than the control. Due to the ionic nature of Hycrete DSS, the standard rapid chloride permeability tests may not adequately measure the performance of Hycrete DSS concrete when compared to a control mix.

It appears that absorption and permeability are reduced by at least 50% due to the addition of Hycrete DSS. Rapid chloride permeability test results are not valid for Hycrete DSS concretes.

3.2.5.3 Durability

Freeze-thaw durability was investigated in the UConn study (see Table 3.7). The Hycrete DSS specimens were generally less durable, but all had a dynamic modulus (Pc) value above 90%, which was considered acceptable performance for high performance concretes.

Specimen	Pc (%) (300 Cycles)	Wt. Loss (%) (300 Cycles)
Control	99	0.78
Inhibitor A	99	0.21
Inhibitor B	97	0.91
2.0% DSS	91	0.74
0.5% DSS	95	1.11
0.5% DSS-R	93	1.65
2.0% DAS	95	1.21
0.5% DAS-R	94	1.57

Table 3.7: Freeze-thaw Durability of Hycrete DSS Specimens (UConn)

3.2.5.4 Air Void Analysis

Results from air void analyses (ASTM C457-90) were presented in two reports (UConn, KSDOT). A total of 3 Hycrete DSS mixes were evaluated. No air entrainer was added to any of the Hycrete DSS mixes and only one out of the three mixes included a defoaming agent. Both gave values of total air content, entrained air content, and spacing factor. The spacing factor is the generic measurement of the spacing between entrained air voids and gives an indication of the air entrainment quality and expected freeze thaw performance. In both reports the Hycrete DSS mixes had air bubble systems similar to that of the control with air entrainer and superior to that of the control without air entrainer as shown in Table 3.8.

Researcher	Mix Name	Total Air Content	Entrained Air Content	Specific Surface Area	Spacing Factor	Spacing Factor
		%	%	in²/in²	in	ст
UConn	Control w/AEA	7	4.9	799	0.006	0.015
UConn	DSS	7.6	6.3	1065	0.004	0.010
KSDOT	Control	3.75	2.2	NA	0.030	0.076
KSDOT	Control w/AEA	8.75	6.2	NA	0.006	0.015
KSDOT	DSS	13.75	5.8	NA	0.007	0.018
KSDOT	De-foamed DSS	6.4	4.5	NA	0.008	0.020

Table 3.8: Results from Hycrete DSS Air Void Analyses (UConn, KSDOT)

3.2.5.5 Corrosion Testing

UConn, UMass, and KU have conducted extensive testing on the corrosion resisting performance of Hycrete DSS concrete. ConnDOT is also monitoring field implementations for corrosion, however, only preliminary readings have been taken. Overall observations based on the three completed studies showed that uncracked specimens containing Hycrete DSS showed significant corrosion performance improvements over the control specimens and matched or outperformed the best conventional HPC mixture proportions. Reports concerning cracked concrete were appear conflicting, but are actually consistent. The UConn and UMass studies both reported that Hycrete DSS significantly reduced corrosion even in the presence of cracking. These tests included either very thin "cracks" formed by metal shims, or saw cut "cracks" that stopped short of the reinforcement. The KU study showed similar performance, but in an additional test where a 1/8 inch (3mm) hole was drilled through the reinforcement coating, Hycrete DSS was reported to show no significant ability to inhibit corrosion in the reinforcing steel. This is consistent with general findings which inhibit corrosion in the reinforcing steel. This is consistent with general findings which have indicated that Hycrete DSS is not effective in an environment where wetting cycles can wash away the material, due to Hycrete DSS being water soluble. Therefore, the admixture would be effective in cracked concrete of moderate crack sizes, but not effective in the situation of exposed reinforcement.

According to the UConn study, for uncracked lollipop and slab specimens, with a Hycrete DSS concentration of 1/2%, after about 100 weeks of testing, no corrosion activity was detected. The primary mechanism of protection in these specimens was through Hycrete DSS effectively reducing the permeability of the concrete. Based upon analysis of concrete samples taken at depth, no chlorides had reached the rebar level at the conclusion of testing. The saw cut lollipop specimens, had no corrosion except for minor areas at air bubbles after 30 weeks of testing. Where chlorides did penetrate and corrosion began, evidence of corrosion activity was localized to the exposed area.

In the UMass study, through 208 weeks of testing, the Hycrete DSS concrete specimens at a 1/2% concentration exhibited greater corrosion protection than any of the corrosion resisting systems tested, except for one mixture with a triple combination of admixtures that performed comparably. The Hycrete DSS concretes far surpassed all other mix designs in specimens where cracking was simulated through placing metal shims to the level of reinforcement during casting, and removing these shims after first set of the concrete. It was found that traditional corrosion inhibiting admixture (calcium nitrite) was not effective in this situation.

The KU study found that when reinforcing bars were encased in concrete containing Hycrete DSS at a concentration of 1/2%, no significant corrosion was

detected at the end of the test protocol and the corrosion rate was essentially 0 µm/ year. This observation was made for the four specimen types used in the test protocol, even when the concrete was cracked. However an additional criterion was used to evaluate the corrosion resisting systems based upon localized activity. Holes of 1/8 in diameter were drilled to the reinforcement level (through epoxy), as a method of simulating defects in epoxy coated reinforcement. For specimens with holes the amount of corrosion was based upon the exposed area of steel. Hycrete DSS specimens had measurable corrosion at these exposed areas.

Based upon finding from the three studies, Hycrete DSS at a standard concentration of 1/2% can reduce or effectively inhibit corrosion in reinforcing steel when there is adequate concrete cover, even for a cracked condition. Hycrete DSS provides significant corrosion protection when compared to a concrete mix containing conventional corrosion inhibiting admixtures. Hycrete DSS does not act as a corrosion inhibitor for exposed steel, as it is water soluble and will not adhere to exposed steel.

3.2.6 Field Applications

CT DOT performed trial mixes and chose a CT DOT Class "F" mix to construct highway barriers at a pre-cast concrete plant. These barriers have been placed in the field on a Connecticut state highway where they are subjected to the splash from road salt brine. They are currently in initial phases of being monitored for corrosion. These F-shaped barriers are shown in Figure 3.2. Preliminary results from this study have not been published, but will be included in the Phase II report of this project.

Figure 3.2: F-shaped Barriers used in UConn Study (CTDOT)

Several other field applications have been completed. A list of completed and pending projects utilizing Hycrete DSS was provided by Hycrete technologies and is provided in Table 3.9. The majority of projects are from private industry and residential applications. This is due to these applications, as compared to DOT applications, requiring less product verification prior to use, fewer issues with contracting and/or less risk involved in the project. Of the DOT related projects, there have been three bridge decks. An example is shown in Figure 3.3, a Kansas State DOT bridge construction project utilizing Hycrete DSS.

The research team has contacted representatives from the NJ Turnpike Authority, New Jersey DOT, Ohio DOT, Connecticut DOT, and Kansas DOT to inquire about the performance of these structures to date and any construction issues. Contact was in the form of short phone calls and/or email. Contact was not always with representatives who were involved with the original construction, but they were asked to verify responses with those who were. From this informal survey it was found that Hycrete-DSS concrete structures were performing satisfactorily. Comments included the need for trial mix designs, which in some cases were extensive. The only negative comment was in regard to one of the Kansas DOT bridges, where some early cracking was noted in the slab. Further inquiries indicated that cracking was in the negative moment regions and was likely caused by heavy form equipment that was placed on the Hycrete DSS concrete deck, but not on the control structure. However, no official documents were obtained to verify this.

	Table 3.9: Hycrete DSS Project List							
Co	mpleted Projects	Pending Projects						
Pu	blic Projects	Commercial Projects						
٠	Deck for Highway Bridge Overpass – Kansas	• 4 below grade basement/foundation						
	DOT	• 2 parking structures						
٠	Deck for Highway Bridge Overpass – NJ	• 1 slab on grade						
	Turnpike Authority	• 1 sewer tank						
٠	Precast Barriers – Connecticut DOT	• 2 podium decks						
٠	Noise Barrier - Ohio DOT	• 1 nuclear waste storage containment						
٠	Bridge Overpass - New Jersey DOT							
Co • • •	 mmercial Projects 4 elevator pits 3 below grade basement/foundation 1 footings for structure 1 shotcrete basement waterproofing 1 elevated slab 1 elevated walkway 1 water tank 							
•	1 sewer tank							

Table 3.9: Hycrete DSS Project List

Figure 3.3: Kansas State DOT Hycrete DSS Project (Courtesy of Hycrete Technologies)

CHAPTER 4

FIELD STUDY APPROACH AND METHODS

4.1 Project Background

The goal of this research is to conduct field studies on Hycrete DSS concrete, and monitor those characteristics that would be important to ready-mixed concrete suppliers and transportation agencies. The following subsections outline the approach and methods used in the Hycrete DSS concrete field study. A total of 15 different mixture designs (10 Hycrete DSS concretes, 5 control) were evaluated at 4 sites on 6 different testing dates.

4.2 Development of Mix Designs

Information on mix designs was collected from each state agency involved in the project to develop a set of mixes to be used in a test matrix that would typically be used in reinforced concrete structures important to transportation agencies. The mix designs reported are generic specifications for classes of concrete based upon minimum 28-day compressive strength, minimum total cementitious materials content, maximum water-cementitious materials ratio, maximum aggregate size, and the expected ranges for slump and total air content. The standard mix designs considered for this project are presented in Table 4.1 and Table 4.2. These mixes represent a range of high performance concretes typically used throughout New England that would most likely utilize a corrosion inhibitor. Actual mix designs provided by ready-mixed concrete suppliers to meet these criteria are provided in Section 4.3.2.

			Min	w/c	Max		Air
D.O.T.	Class	Strength	T.C.M.	m	Agg. Size	Slump	Content
		(psi)	(lbs/yd³)		(in)	(in)	(%)
СТ	С	3000	658	0.53	0.75	2.5+/-0.5	5+/-1
	F	4000	658	0.44	0.75	2.5+/-0.5	5+/-1
MA	HP-3/4in	5000	710	NA	0.75	3+/-1	6+/-1
	HP-3/8in	5000	760	NA	0.375	4+/-1	6+/-1
ME	А	4350	658*	0.4*	0.75	7.5+/-2.5*	7+/-1.5
	LP	5075	658*	0.4*	0.75	7.5+/-2.5*	7+/-1.5
NH	AA	4000	NA	0.44	0.75	3+/-1	7+/-2
	AAA	5000	NA	0.4	0.75	8**	7+/-2
NY	F	4000***	718	0.38	1	3.5+/-0.5	6.5+/-1.5
	HP	NA	685	0.4	1	6+/-1	6.5+/-1.5
RI	XX	4000	658	0.42	0.75	2+/-1	6.5+/-1.5
	HP	5000	705	0.4	0.75	5.5+/-2.5	6.5+/-1.5
VT	HPC B	3500	611	0.49	0.75	7**	5+/-1.5
	HPC A	4000	660	0.44	0.75	7**	6+/-1.5

 Table 4.1: Classes of HPC Mixes Used in New England Region (english units)

* precast structural concrete

** maximum when water reducing admixture used

*** pavement applications

D.O.T.	Class	Strengt h	Min T.C.M.	w/c m	Max Aqq. Size	Slump	Air Content
		(MPa)	(kg/m ³)		(mm)	(mm)	(%)
СТ	С	21	390	0.53	19	66+/-12	5+/-1
	F	28	390	0.44	19	66+/-12	5+/-1
MA	HP-20mm	35	420	NA	19	75+/-25	6+/-1
	HP-10mm	35	450	NA	9.5	100+/-25	6+/-1
ME	А	30	400*	0.4*	19	190+/-65*	7+/-1.5
	LP	35	400*	0.4*	19	190+/-65*	7+/-1.5
NH	AA	30	NA	0.44	19	62.5+/-12.5	7+/-2
	AAA	35	NA	0.4	19	150+/-25	7+/-2
NY	F	28***	425	0.38	25	62.5+/-12.5	6.5+/-1.5
	HP	NA	405	0.4	25	100+/-25	6.5+/-1.5
RI	XX	30	390	0.42	19	50+/-25	6.5+/-1.5
	HP	35	417	0.4	19	140+/-60	6.5+/-1.5
VT	HPC B	25	362	0.49	19	180*	5+/-1.5
	HPC A	30	391	0.44	19	180*	6+/-1.5

 Table 4.2: Classes of HPC Mixes Used in New England Region (metric units)

* precast structural concrete

** maximum when water reducing admixture used

*** pavement applications

4.3 Large Scale Mixing

Information from each state agency was used to organize large scale truck batched mixes at DOT concrete suppliers. It was the intent that the data obtained from these large scale concrete mixes would be used to develop Hycrete DSS concrete specifications for future field applications. All of the ready-mixed concrete plants used in the project were pre-qualified by the states they serviced. Therefore, it was assumed that all applicable ready-mixed concrete specifications, even those not specifically addressed, were acceptable to the state agencies and typical of normal practice.

4.3.1 Test Sites and Material Properties

Concrete is a heterogeneous material made up of aggregate, Portland cement, and water. In addition to these ingredients high performance concrete mixes typically contain supplemental admixtures to improve specific properties of the basic mix. The properties of a concrete mixture depend on the interaction and properties of its components. It is impossible to predict the performance of all concrete mixes based on one test mix because there is such a large range of cement suppliers, aggregate sources, and admixture types and manufacturers in the concrete industry. In an effort to include a representative range of these materials, the transportation agencies and regional readymixed concrete companies were contacted to determine aggregate types and sources and cement and concrete admixture types and manufacturers that are typically used in New England. Based upon this information three ready-mixed concrete companies from New England, along with one precast structural building components plant, were chosen as test sites. Each plant had unique cement suppliers, aggregate sources, and concrete

mixes containing a variety of admixtures types from different manufacturers. The concrete plants used were Aggregate Industries (Swampscott, Massachusetts), Carroll Concrete (West Lebanon, New Hampshire), Oldcastle Precast Building Systems Division (South Bethlehem, New York), and Tilcon-CT (New Britain, Connecticut). A total of six concrete pours were conducted. The dates of the pours are listed in Table 4.3 and the locations of the ready-mixed concrete companies are shown in Figure 4.1. Manufacturer specifications were obtained and evaluated for the other admixtures and cementitious materials used in the mix designs from the four concrete plants. Table 4.4 contains a full list of the concrete materials used in the project.

Plant	Pour Date
Aggregate Industries	08/16/05
Carroll Concrete	03/09/05
	11/07/05
Oldcastle Precast	06/20/06
Tilcon-CT	08/03/05
	02/16/06

 Table 4.3: Large Scale Pour Dates

h Elba Vis Charles Visitifield
rondack Park Mineville 7 Warren Barre Lisbon Hourt Barren Lisbon Hourt Barriett Harrison 117 Greene East-Pitston
ESSE Motian Rindury East Corinto Woodsville 202 Bridgton ANDROSCOCON MobileOro
lewcomb Chelsea Bradford Lincoln 112 Fryeburg Nables A N F
ORANGE Carrol Concrete
Schroon 74 Ticonderoga NPlaintiela Rd Brownfield Windsard Windsard Windsard
sdville Brandoh I tanki we Ori west Lebanon, Nr US704 addel ninani East
reek Silver Bay Sharon Hollow Sharon Hollow
AN Sound We R M O N T Hartford East Holderness Osspee Westword Portland
Waterfail West Butland Lebargin Enfield Bristol Waterfail Scarborough
Pr Thurle Botton Wahrhealt Kutland South BELKNAP
ant Landing Wallingford Woodstock and HEW HAMPSHIRE Alton Shapeing Out Biddeford
Lake George RUTLAND North Sunapee Tilton Belmont
Hadley, WASHINGTON Danby Springfield, SULLIVAN, Newbury 28 Famington South Samo
ARATOGA 187 Hudson Londonderry WINDSOR Unity STRAFFORD North Berwick
rais Dover Vork Beach
Sarings Manchester Center Westminster River. Hillsboro Metridina Ck
29 Greenwich West Wappile North Weare Stincook Epping
WYORK UNITEDSTATES 14 ROCKINGHAM
50 Oldesette Deces
Understie Precast Arene Longonderry Delly Newton Angregate Industries
Selkirk, NY 12158 Parameter in Laboration Salem 1225 30 Darvers Rd
Latra VMADHAM UMass Structural Ing. Lab X Wethur Swampscott, MA 01907
Genmont North Adams Northful Amherst, MA 01003
LBANY RENSET AFR Charlemont FRANKL Urg Darders
New Letterne Center Dation Convey, New Sal Gardner Hatyard MDDLESEX Seabody
New Milden Psaining
ist with me Lenox Massachusetts Bay
Austeritz Lee Hotherstone Gibertville WORCESTE Matherough Boston
COLUMBIA BERKSPICE TO Maniputor
Cormantown Extended France and Barrier and Autourn Swaresace NOFFICER Weymouth
ies Westfield Westfield Milford Franklin Brockton Provincetown
Lake Katrine Antrandale
Kingston Pine Blans J Black Rock Ave Smithfield 9 24 March Wellfleet
Port Ewen New Britain, CT 06052 RHODE ISLAND Taunton Cape Cod Bay
Hyde Park 44 Torrington West Johnston Providence Lastnam
Providence Harward Hartford TOLLAND Danielson PROVIDENCE PRISTOL Wareham Breach Orleans
BARNSTABLE Chatham
alls Kept Warwick: Beaning Harvich Port
Newburgh Lake Waterbury Middletown Norwich Exeter North Kingstown Nantucket
Carnel Wallingford Meriden
PITNANS Danbury, NEW HAVEN MIDDLESEX. UL Preston WASHINGTON DUZZANO BY

Figure 4.1: Locations of Concrete Plants

Portland, Biended And Other Hydraulic Cements Blended Hydraulic Cement (Type I (PM)) Tercem 3000 Lafarge Corporation M 240 C 595, C Blended Hydraulic Cement (Type I (PM)) SF Cement Lafarge Corporation M 240 C 595, C Portland Cement (Type I) St. Lawrence Type I St. Lawrence Cement M 85 C 150 Portland Cement (Type I-II) Lafarge Type I-II Lafarge Corporation M 85 C 150 Portland Cement (Type I-II) St. Lawrence Type I/II St. Lawrence Cement M 85 C 150 Portland Cement (Type I-III) St. Lawrence Type I/II St. Lawrence Cement M 302 C 989 Ground Granulated Furmace Slag (GGBFS) Grade 120 NewCem Lafarge Corporation M 302 C 989 Aggregates for Concrete J4" Ledge Lebanon Crushed Stone M 80 C 33 Coarse Aggregate J4" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate J4" Stone Swampscott M 80 C 33 Coarse Aggregate Sand Oddgnee Aggregates M 6 C 33	Category	Name	Name Manufacture		ASTM
Blended Hydraulic Cement (Type I (PM)) C 5 995, C 595, C 595, C 595 Blended Hydraulic Carment (Type I) SF Cement Lafarge Corporation M 240 1157 Blended Hydraulic Carment (Type I) St. Lawrence Type I St. Lawrence Cement M 85 C 150 Portland Cement (Type I-II) Lafarge Type I-II Lafarge Corporation M 85 C 150 Portland Cement (Type I-II) St. Lawrence Type I/II St. Lawrence Cement M 85 C 150 Portland Carment (Type I-II) St. Lawrence Type I/II St. Lawrence Cement M 85 C 150 Fly Ash, Class F) ProAsh STI M 295 C 618 Ground Granulated Furnace Slag Grancem (Mtrl 377) St. Lawrence Cement M 302 C 989 Ground Granulated Furnace Slag NewCem Lafarge Corporation M 302 C 989 Goarse Aggregate 3/8' Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4' Stone Tilcon New Britain M 80 C 33 Coarse Aggregate Sand Dddipee Aggregates M 6 C 33 <	Portland, Blended and Other Hydraulic Cements				
Blended Hydraulic Cement (Type I) SF Cement Lafarge Corporation M 240 C 595 Portland Cement (Type I) St. Lawrence Type I St. Lawrence Cement M 85 C 150 Portland Cement (Type II) Lafarge Type II Lafarge Corporation M 85 C 150 Portland Cement (Type III) St. Lawrence Type III St. Lawrence Cement M 85 C 150 Portland Cement (Type III) St. Lawrence Type III St. Lawrence Cement M 85 C 150 Fly Ash (Class F) ProAsh STI M 295 C 618 Ground Granulated Furnace Slag (GGBFS) Grade 100 Grancem (Mtrl 377) St. Lawrence Cement M 302 C 989 Aggregate for Concrete Aggregate Industries M 80 C 33 Coarse Aggregate 3/4* Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4* Stone Swampscott M 80 C 33 Coarse Aggregate Sand Lebanon Crushed Stone M 6 C 33 Fine Aggregate Sand Tilcon New Britain M 80 C 33	Blended Hydraulic Cement (Type I (PM))	Tercem 3000	Lafarge Corporation	M 240	C 595, C 1157
Portland Cement (Type I) St. Lawrence Type I St. Lawrence Cement M 85 C 150 Portland Cement (Type I-II) Lafarge Type I-II Lafarge Corporation M 85 C 150 Portland Cement (Type I-II) St. Lawrence Type I/II St. Lawrence Cement M 85 C 150 Fly Ash, Class F) ProAsh STI M 295 C 618 Ground Granulated Furnace Slag Grancem (Mtrl 377) St. Lawrence Cement M 302 C 989 Aggregates for Concrete M 302 C 989 Aggregate Industries M 302 C 989 Coarse Aggregate 3/8' Stone Titcon New Britain M 80 C 33 Coarse Aggregate 3/4' Ledge Lebanon Crushed Stone M 80 C 33 Coarse Aggregate 3/4' Stone Aggregate Industries Aggregate Industries C 33 Coarse Aggregate 3/4' Stone Aggregate Industries C 33 G 33 Coarse Aggregate 3/4' Stone Aggregate Industries C 33 G 33 Coarse Aggregate 3/4' Stone G 700 M 80 C 33	Blended Hydraulic Cement (Type I (PM))	SF Cement	Lafarge Corporation	M 240	C 595
Portland Cement (Type I-II) Lafarge Type I-II Lafarge Corporation M 85 C 150 Portland Cement (Type I-II) St. Lawrence Type I/II St. Lawrence Cement M 85 C 150 Fly Ash, Sing, Silica Furne, and Natural Pozzolans FlyAsh (Class F) ProAsh STI M 295 C 618 Ground Granulated Furnace Slag (GGBFS) Grade 120 Grancem (Mtrl 377) St. Lawrence Cement M 302 C 989 Aggregates for Concrete Lafarge Corporation M 302 C 989 Coarse Aggregate 3/8" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4" Ledge Lebanon Crushed Stone M 80 C 33 Coarse Aggregate 3/4" Stone Swampscott M 80 C 33 Coarse Aggregate 3/4" Stone Swampscott M 80 C 33 Coarse Aggregate 3/4" Stone Swampscott M 6 C 33 Goarse Aggregate Sand Oddipee Aggregate Industries M 6 C 33 Fine Aggregate Sand Tilcon Southington M 6 C 33	Portland Cement (Type I)	St. Lawrence Type I	St. Lawrence Cement	M 85	C 150
Portland Cement (Type I-II) St. Lawrence Type I/II St. Lawrence Cement M 85 C 150 FlyAsh, Slag, Slica Fume, and Natural Pozzodans Natural Pozzodans Natural Pozzodans Natural Pozzodans FlyAsh (Class F) ProAsh STI M 295 C 618 Ground Granulated Furnace Slag (GGBFS) Grade 100 Grancem (Mtrl 377) St. Lawrence Cement M 302 C 989 Aggregate Industries Coarse Aggregate 120 NewCem Lafarge Corporation M 302 C 989 Aggregate Industries Coarse Aggregate 3/6" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4" Ledge Lebanon Crushed Stone M 80 C 33 Coarse Aggregate 3/4" Stone Stilcon New Britain M 80 C 33 Coarse Aggregate 3/4" Stone Stilcon New Initain M 80 C 33 Coarse Aggregate 3/4" Stone Stilcon New Initain M 80 C 33 Grase Aggregate Sand Lebanon Crushed Stone M 6 C 33 Fine Aggregate Sand Oddipee Aggregates M 6	Portland Cement (Type I-II)	Lafarge Type I-II	Lafarge Corporation	M 85	C 150
Fly Ash, Sleg, Silica Fume, and Natural Pozzolans Fly Ash, (Class F) ProAsh STI M 295 C 618 Ground Granulated Fumace Slag (GGBFS) Grade 100 Grancem (Mtrl 377) St. Lawrence Cement M 302 C 989 Ground Granulated Furnace Slag (GGBFS) Grade 120 NewCem Lafarge Corporation M 302 C 989 Aggregates for Concrete Aggregate Industries M 80 C 33 Coarse Aggregate 3/8° Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/8° Stone Stone Swampscott M 80 C 33 Coarse Aggregate 3/4° Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4° Stone Swampscott M 80 C 33 Coarse Aggregate 3/4° Stone Swampscott M 80 C 33 Fine Aggregate Sand Lebanon Crushed Stone M 6 C 33 Fine Aggregate Sand Tilcon Southington M 6 C 33 Fine Aggregate Sand Tilcon Southington M 6 C 33 Admixtures for Concrete Grace Construction M 6 C 33	Portland Cement (Type I-II)	St. Lawrence Type I/II	St. Lawrence Cement	M 85	C 150
FlyAsh (Class F) ProAsh STI M 295 C 618 Ground Granulated Furnace Slag (GGBFS) Grade 120 Grancem (Mtrl 377) St. Lawrence Cement M 302 C 989 Aggregates for Concrete Coarse Aggregate 3/8" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/8" Stone Swampscott M 80 C 33 Coarse Aggregate 3/4" Ledge Lebanon Crushed Stone M 80 C 33 Coarse Aggregate 3/4" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4" Stone Aggregate Industries M 80 C 33 Coarse Aggregate 3/4" Stone Swampscott M 80 C 33 Fine Aggregate Sand Lebanon Crushed Stone M 6 C 33 Fine Aggregate Sand Tilcon Southington M 6 C 33 Admixtures for Concrete Grace Construction M 54 C 260 Air Entrainer Darex II AEA Products <td< td=""><td>Fly Ash, Slag, Silica Fume, and Natural Pozzolans</td><td>,</td><td></td><td></td><td></td></td<>	Fly Ash, Slag, Silica Fume, and Natural Pozzolans	,			
Ground Granulated Furnace Slag Ground Granulated Furnace Slag (GGBFS) Grade 100 Grancem (Mtrl 377) St. Lawrence Cement M 302 C 989 Aggregates for Concrete NewCem Lafarge Corporation M 302 C 989 Coarse Aggregate 3/8" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/8" Stone Swampscott M 80 C 33 Coarse Aggregate 3/4" Ledge Lebanon Crushed Stone M 80 C 33 Coarse Aggregate 3/4" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4" Stone Swampscott M 80 C 33 Coarse Aggregate 3/4" Stone Swampscott M 80 C 33 Fine Aggregate Sand Lebanon Crushed Stone M 6 C 33 Fine Aggregate Sand Oddipee Aggregates M 6 C 33 Admixtures for Concrete Grace Construction M 6 C 33 Admixtures for Concrete Grace Construction NA NA Action Inhibitor DCI-S Products NA NA Defoamer BYK 25 BYK-Chemie <t< td=""><td>FlyAsh (Class F)</td><td>ProAsh</td><td>STI</td><td>M 295</td><td>C 618</td></t<>	FlyAsh (Class F)	ProAsh	STI	M 295	C 618
Ground Granulated Furnace Slag (GGBFS) Grade 120 NewCem Lafarge Corporation M 302 C 989 Aggregates for Concrete	Ground Granulated Furnace Slag (GGBFS) Grade 100	Grancem (Mtrl 377)	St. Lawrence Cement	M 302	C 989
Aggregates for Concrete Coarse Aggregate 3/8" Stone Tilcon New Britain M 80 C.33 Coarse Aggregate 3/8" Stone Aggregate Industries M 80 C.33 Coarse Aggregate 3/4" Ledge Lebanon Crushed Stone M 80 C.33 Coarse Aggregate 3/4" Stone Tilcon New Britain M 80 C.33 Coarse Aggregate 3/4" Stone Aggregate Industries M 80 C.33 Coarse Aggregate 3/4" Stone Swampscott M 80 C.33 Coarse Aggregate Sand Lebanon Crushed Stone M 6 C.33 Fine Aggregate Sand Oddipee Aggregates M 6 C.33 Admixtures for Concrete Sand Tilcon Southington M 6 C.33 Admixtures for Concrete Grace Construction M 154 C 260 Corrosion Inhibitor DCI-S Products NA NA Defoamer BYK 25 BYK-Chemie NA NA Defoamer Geo FM A-7 Grace Construction C 494, MA	Ground Granulated Furnace Slag (GGBFS) Grade 120	NewCem	Lafarge Corporation	M 302	C 989
Coarse Aggregate 3/8" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/8" Stone Swampscott M 80 C 33 Coarse Aggregate 3/4" Ledge Lebanon Crushed Stone M 80 C 33 Coarse Aggregate 3/4" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4" Stone Swampscott M 80 C 33 Fine Aggregate Sand Lebanon Crushed Stone M 6 C 33 Fine Aggregate Sand Oddipee Aggregates M 6 C 33 Admixtures for Concrete Grace Construction M 6 C 33 Admixtures for Concrete Grace Construction M 154 C 260 Corrosion Inhibitor DcI-S Products M 154 C 260 Corrosion Inhibitor BYK 25 BYK-Chemie NA NA Defoamer	Aggregates for Concrete				
Aggregate Industries Aggregate Industries Coarse Aggregate 3/8" Stone Swampscott M 80 C 33 Coarse Aggregate 3/4" Ledge Lebanon Crushed Stone M 80 C 33 Coarse Aggregate 3/4" Stone Tilicon New Britain M 80 C 33 Coarse Aggregate 3/4" Stone Swampscott M 80 C 33 Fine Aggregate Sand Lebanon Crushed Stone M 6 C 33 Fine Aggregate Sand Lebanon Crushed Stone M 6 C 33 Fine Aggregate Sand Tilcon Southington M 6 C 33 Admixtures for Concrete Grace Construction M 154 C 260 Corrosion Inhibitor DcI-S Products M 154 C 260 Corrosion Inhibitor Hycrete DSS Hycrete Technologies NA NA Defoamer BYK 25 BYK-Chemie NA NA Defoamer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer Geo FM A-7 Chemicals	Coarse Aggregate	3/8" Stone	Tilcon New Britain	M 80	C 33
Coarse Aggregate 3/4* Ledge Lebanon Crushed Stone M 80 C 33 Coarse Aggregate 3/4* Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4* Stone Swampscott M 80 C 33 Fine Aggregate Sand Lebanon Crushed Stone M 6 C 33 Fine Aggregate Sand Oddipee Aggregates M 6 C 33 Fine Aggregate Sand Oddipee Aggregates M 6 C 33 Admixtures for Concrete Grace Construction M 6 C 33 Admixtures for Concrete Grace Construction M 154 C 260 Corrosion Inhibitor DCI-S Products NA NA Corrosion Inhibitor Hycrete DSS Hycrete Technologies NA NA Defoamer BYK 25 BYK-Chemie NA NA Defoamer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer ADVA 100 <t< td=""><td>Coarse Aggregate</td><td>3/8" Stone</td><td>Aggregate Industries Swampscott</td><td>M 80</td><td>C 33</td></t<>	Coarse Aggregate	3/8" Stone	Aggregate Industries Swampscott	M 80	C 33
Coarse Aggregate 3/4" Stone Tilcon New Britain M 80 C 33 Coarse Aggregate 3/4" Stone Aggregate Industries Swampscott M 80 C 33 Fine Aggregate Sand Lebanon Crushed Stone M 6 C 33 Fine Aggregate Sand Oddipee Aggregates M 6 C 33 Fine Aggregate Sand Oddipee Aggregates M 6 C 33 Admixtures for Concrete Sand Tilcon Southington M 6 C 33 Admixtures for Concrete Grace Construction M 154 C 260 Corrosion Inhibitor DcI-S Products M 154 C 260 Corrosion Inhibitor DcI-S Products NA NA Defoamer BYK 25 BYK-Chemie NA NA Defoamer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer ADVA 100 Grace Construction C 494, C 494, (M.R.W.R.)	Coarse Aggregate	3/4" Ledge	Lebanon Crushed Stone	M 80	C 33
Coarse Aggregate 3/4" Stone Aggregate Industries Swampscott M.80 C.33 Fine Aggregate Sand Lebanon Crushed Stone M.6 C.33 Fine Aggregate Sand Oddipee Aggregates M.6 C.33 Fine Aggregate Sand Oddipee Aggregates M.6 C.33 Fine Aggregate Sand Tilcon Southington M.6 C.33 Admixtures for Concrete Grace Construction M.6 C.33 Corrosion Inhibitor Dcl-S Products M.4 NA Defoamer BYK 25 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Mid Range Water Reducer Geo FM A-7 Geo Specialty C.494, (M.R.W.R) C.494, Mid Range Water Reducer Admixtures <td< td=""><td>Coarse Aggregate</td><td>3/4" Stone</td><td>Tilcon New Britain</td><td>M 80</td><td>C 33</td></td<>	Coarse Aggregate	3/4" Stone	Tilcon New Britain	M 80	C 33
Fine AggregateSandLebanon Crushed StoneM 6C 33Fine AggregateSandOddipee AggregatesM 6C 33Fine AggregateSandTilcon SouthingtonM 6C 33Admixtures for ConcreteGrace ConstructionM 154C 260Air EntrainerDarex II AEAProductsM 154C 260Corrosion InhibitorDCI-SProductsNANACorrosion InhibitorHycrete DSSHycrete TechnologiesNANADefoamerBYK 25BYK-ChemieNANADefoamerBYK 94BYK-ChemieNANADefoamerGeo FM A-7ChemicalsNANAMid Range Water ReducerGeo FM A-7ChemicalsM 194Type A,FMid Range Water ReducerADVA 100Grace ConstructionC 494,C 494,(M.R.W.R.)Polyheed 997AdmixturesM 194Type A,FHigh Range Water ReducerADVA 100Grace ConstructionC 494,(H.R.W.R.)SuperplasticizerM 204M 194Type A,FHigh Range Water ReducerAdvaflowProductsM 194Type A,FHigh Range Water Reducer<	Coarse Aggregate	3/4" Stone	Aggregate Industries Swampscott	M 80	C 33
Fine Aggregate Sand Oddipee Aggregates M 6 C 33 Fine Aggregate Sand Tilcon Southington M 6 C 33 Admixtures for Concrete Grace Construction M 6 C 33 Air Entrainer Darex II AEA Products M 154 C 260 Corrosion Inhibitor DCI-S Products NA NA Corrosion Inhibitor Hycrete DSS Hycrete Technologies NA NA Defoamer BYK 25 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer Geo FM A-7 Chemicals NA NA Defoamer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer ADVA 100 Grace Construction C 494, C 494, (M.R.W.R.) C 494, Na High Range Water Reducer Admixtures M 194 Type A,F High Range Water Reducer ADVA 100 Grace Construction C 494, C 494,	Fine Aggregate	Sand	Lebanon Crushed Stone	M 6	C 33
But of the stand Fine Aggregate Sand Tilcon Southington M 6 C 33 Admixtures for Concrete Grace Construction M 154 C 260 Air Entrainer Darex II AEA Products M 154 C 260 Corrosion Inhibitor DCI-S Products NA NA Corrosion Inhibitor Hycrete DSS Hycrete Technologies NA NA Defoamer BYK 25 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer Grace Construction C 494, (M.R.W.R) C 494, Mid Range Water Reducer Advatinxures M 194 Type A,F High Range Water Reducer Advatiow Products M 194 Type A,F High Range Water Reducer Advatiow Grace Construction C 494, C 494, (H.R.W.R.) Advatiow Products M 194 Type A,F	Fine Aggregate	Sand	Oddipee Aggreagates	M 6	C 33
Admixtures for Concrete Gana Instruction Instruction Air Entrainer Darex II AEA Grace Construction M 154 C 260 Corrosion Inhibitor DCI-S Products M 154 C 260 Corrosion Inhibitor DCI-S Products NA NA Defoamer BYK 25 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer Geo FM A-7 Chemicals M 194 Type A,F Mid Range Water Reducer Master Builders/Degussa C 494, C 494, (M.R.W.R.) Polyheed 997 Admixtures M 194 Type A,F High Range Water Reducer Advaflow Products M 194 Type A,F High Range Water Reducer Advaflow Products M 194 Type A,F High Range Water Reducer Advaflow Products </td <td>Eine Aggregate</td> <td>Sand</td> <td>Tilcon Southington</td> <td>M 6</td> <td>C 33</td>	Eine Aggregate	Sand	Tilcon Southington	M 6	C 33
Air Entrainer Darex II AEA Grace Construction Products M 154 C 260 Corrosion Inhibitor DCI-S Grace Construction Products NA NA Corrosion Inhibitor Hycrete DSS Hycrete Technologies NA NA Defoamer BYK 25 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer Master Builders/Degussa C 494, C 494, (M.R.W.R.) C 494, Products M 194 Type A,F High Range Water Reducer ADVA 100 Grace Construction C 494, C 494, (H.R.W.R.) C 494, Superplasticizer Products M 194 Type A,F High Range Water Reducer Advaflow Products M 194 Type A,F High Range Wat	Admixtures for Concrete		i noon ooddinigton		0.00
Air Entrane Datex in AEA Froducts M 134 C 200 Corrosion Inhibitor DCI-S Grace Construction NA NA Corrosion Inhibitor Hycrete DSS Hycrete Technologies NA NA Defoamer BYK 25 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer BYK 94 BYK-Chemie NA NA Defoamer Beckage (TBP) NA NA NA Defoamer Geo FM A-7 Chemicals NA NA Mid Range Water Reducer Grace Construction C 494, Type A,F Mid Range Water Reducer Advister Builders/Degussa C 494, C 494, (M.R.W.R.) Polyheed 997 Admixtures M 194 Type A,F High Range Water Reducer ADVA 100 Grace Construction C 494, (H.R.W.R.) Superplasticizer Products M 194 Type A,F <td>Air Entrainar</td> <td></td> <td>Grace Construction</td> <td>M 154</td> <td>C 260</td>	Air Entrainar		Grace Construction	M 154	C 260
Corrosion InhibitorDCI-SProductsNANACorrosion InhibitorHycrete DSSHycrete TechnologiesNANADefoamerBYK 25BYK-ChemieNANADefoamerBYK 94BYK-ChemieNANADefoamerTributyl Phosphate Package (TBP)NANANADefoamerGeo FM A-7ChemicalsNANAMid Range Water Reducer (M.R.W.R)Daracem 55ProductsM 194Type A,FMid Range Water Reducer (H.R.W.R.)Polyheed 997AdmixturesM 194Type A,FHigh Range Water Reducer (H.R.W.R.)ADVA 100Grace Construction Grace ConstructionC 494, C 494, C 494, C 494, Grace ConstructionC 494, C 494, C 494, C 494, C 494, C 494, C 494, C 494, C 494, C 494, (H.R.W.R.)M 194Type A,FHigh Range Water Reducer (H.R.W.R.)AdvaflowProductsM 194Type A,FHigh Range Water Reducer (H.R.W.R.)AdvaflowProductsM 194Type A,GPolycarboxylate SuperplasticizerADVA Cast 530ProductsM 194Type FRetarderDaratard 17Grace Construction ProductsC 494, M 194Type R 0,4RetarderDaratard 17ProductsM 194Type R 0,4			Grace Construction	101 1.54	0 200
Corrosion InhibitorHycrete DSSHycrete TechnologiesNANADefoamerBYK 25BYK-ChemieNANADefoamerBYK 94BYK-ChemieNANADefoamerTributyl Phosphate Package (TBP)NANANADefoamerGeo FM A-7ChemicalsNANAMid Range Water Reducer (M.R.W.R)Geo FM A-7Grace Construction ProductsC 494, M 194Type A,FMid Range Water Reducer (M.R.W.R)Daracem 55ProductsM 194Type A,FMid Range Water Reducer (M.R.W.R.)Polyheed 997AdmixturesM 194Type A,FHigh Range Water Reducer (H.R.W.R.)ADVA 100Grace Construction Grace ConstructionC 494, C 494, C 494,High Range Water Reducer (H.R.W.R.)AdvaflowProductsM 194Type A,FHigh Range Water Reducer (H.R.W.R.)AdvaflowProductsM 194Type A,FPolycarboxylate SuperplasticizerAdvaflowProductsM 194Type FPolycarboxylate SuperplasticizerADVA Cast 530ProductsM 1941017RetarderDaratard 17ProductsM 194Type R D	Corrosion Inhibitor	DCI-S	Products	NA	NA
DefoamerBYK 25BYK-ChemieNANADefoamerBYK 94BYK-ChemieNANADefoamerTributyl Phosphate Package (TBP)NANANADefoamerGeo FM A-7GEO Specialty ChemicalsNANAMid Range Water Reducer (M.R.W.R)Geo FM A-7Grace Construction ProductsC 494, M 194C 494, Type A,FMid Range Water Reducer (M.R.W.R.)Polyheed 997Master Builders/Degussa AdmixturesC 494, M 194C 494, Type A,FHigh Range Water Reducer (H.R.W.R.)ADVA 100 SuperplasticizerGrace Construction ProductsC 494, M 194C 494, Type A,FHigh Range Water Reducer (H.R.W.R.)AdvaflowProductsM 194Type A,FHigh Range Water Reducer (H.R.W.R.)AdvaflowProductsM 194Type F,FPolycarboxylate SuperplasticizerADVA Cast 530ProductsM 194Type FPolycarboxylate SuperplasticizerADVA Cast 530ProductsM 194Type F,CRetarderDaratard 17BradurtsM 194Type R,D	Corrosion Inhibitor	Hycrete DSS	Hycrete Technologies	NA	NA
DefoamerBYK 94BYK-ChemieNANADefoamerTributyl Phosphate Package (TBP)NANANADefoamerGeo FM A-7ChemicalsNANAMid Range Water Reducer (M.R.W.R)Grace ConstructionC 494, Type A,FMid Range Water Reducer (M.R.W.R)Daracem 55ProductsM 194Type A,FMid Range Water Reducer (M.R.W.R.)Polyheed 997AdmixturesM 194Type A,FMid Range Water Reducer (M.R.W.R.)Polyheed 997AdmixturesM 194Type A,FHigh Range Water Reducer (H.R.W.R.)ADVA 100Grace Construction ProductsC 494, C 494, Type A,FHigh Range Water Reducer (H.R.W.R.)AdvaflowProductsM 194Type A,FHigh Range Water Reducer (H.R.W.R.)AdvaflowProductsM 194Type F,FPolycarboxylate SuperplasticizerADVA Cast 530ProductsM 194Type F, CPolycarboxylate SuperplasticizerADVA Cast 530ProductsM 194Type F, CRetarderDaratard 17BreduretsM 194Type R, D	Defoamer	BYK 25	BYK-Chemie	NA	NA
DefoamerTributyl Phosphate Package (TBP)NANANADefoamerGeo FM A-7GEO Specialty ChemicalsNANAMid Range Water Reducer (M.R.W.R)Daracem 55ProductsM 194Type A,FMid Range Water Reducer (M.R.W.R)Daracem 55ProductsM 194Type A,FMid Range Water Reducer (M.R.W.R.)Polyheed 997AdmixturesM 194Type A,FHigh Range Water Reducer (H.R.W.R.)ADVA 100Grace Construction ProductsC 494, C 494, Type A,FHigh Range Water Reducer (H.R.W.R.)ADVA 100Grace Construction ProductsC 494, C 494, C 494, C 494, C 494, C 494, C 494, C 494, C 494, C 100M 194Type A,FHigh Range Water Reducer (H.R.W.R.)AdvaflowGrace Construction ProductsC 494, C 494, C 494, C 494, C 494, C 494, C 494, C 404 C 494, C 404M 194Type FPolycarboxylate SuperplasticizerADVA Cast 530ProductsM 194Type FRetarderDaratard 17ProductsM 194Type R D	Defoamer	BYK 94	BYK-Chemie	NA	NA
DefoamerGeo FM A-7GEO Specialty ChemicalsNANAMid Range Water Reducer (M.R.W.R)Daracem 55Grace ConstructionC 494, Type A,FMid Range Water Reducer (M.R.W.R.)Daracem 55ProductsM 194Type A,FMid Range Water Reducer (M.R.W.R.)Polyheed 997AdmixturesM 194Type A,High Range Water Reducer (H.R.W.R.)ADVA 100Grace ConstructionC 494, C 494, C 494, Grace ConstructionC 494, C 494, C 494, C 494, C 494, C ProductsM 194Type F, C 494, C C 494,	Defoamer	Tributyl Phosphate Package (TBP)	NA	NA	NA
Mid Range Water Reducer (M.R.W.R)Grace ConstructionC 494, Type A,FMid Range Water Reducer (M.R.W.R.)Daracem 55ProductsM 194Type A,FMid Range Water Reducer 	Defoamer	Geo FM A-7	GEO Specialty Chemicals	NA	NA
(M.R.W.R) Daracem 55 Products M 194 Type A,F Mid Range Water Reducer Master Builders/Degussa C 494, (M.R.W.R.) Polyheed 997 Admixtures M 194 Type A,F High Range Water Reducer ADVA 100 Grace Construction C 494, (H.R.W.R.) Superplasticizer Products M 194 Type A,F High Range Water Reducer Advaflow Grace Construction C 494, (H.R.W.R.) Advaflow Products M 194 Type A,F High Range Water Reducer Grace Construction C 494, (H.R.W.R.) Advaflow Products M 194 Type F Polycarboxylate Superplasticizer ADVA Cast 530 Products M 194 1017 Retarder Daratard 17 Breducts M 194 Type B, D	Mid Range Water Reducer	D	Grace Construction	14.404	C 494,
Middler Polyheed 997 Admixtures M 194 Type A Might Range Water Reducer (H.R.W.R.) ADVA 100 Grace Construction C 494, High Range Water Reducer (H.R.W.R.) Superplasticizer Products M 194 Type A,F High Range Water Reducer (H.R.W.R.) Advaflow Products M 194 Type F,F Polyheed 997 Advaflow Products M 194 Type A,F High Range Water Reducer (H.R.W.R.) Advaflow Products M 194 Type F,F Polycarboxylate Superplasticizer ADVA Cast 530 Products M 194 1017 Retarder Daratard 17 Products M 194 Type R D	(M.R.W.R) Mid Range Water Reducer	Daracem 55	Products Master Builders/Degussa	M 194	
High Range Water Reducer (H.R.W.R.) ADVA 100 Superplasticizer Grace Construction C 494, Products High Range Water Reducer (H.R.W.R.) Advaflow Products M 194 Type A,F Products Grace Construction C 494, Type F C 494, C 494, Polycarboxylate Superplasticizer Advaflow Products M 194 Type F Polycarboxylate Superplasticizer ADVA Cast 530 Products M 194 C 494, C 494, C Retarder Daratard 17 Broducts M 194 Type B D	(M.R.W.R.)	Polyheed 997	Admixtures	M 194	Type A
(H.R.W.R.) Superplasticizer Products M 194 Type A,F High Range Water Reducer (H.R.W.R.) Advaflow Grace Construction C 494, Products M 194 Type F Grace Construction C 494, Polycarboxylate Superplasticizer ADVA Cast 530 Products M 194 1017 Grace Construction C 494, Grace Construction C 494, Products M 194 1017 Retarder Daratard 17 Products M 194	High Range Water Reducer	ADVA 100	Grace Construction		C 494,
High Range water Reducer (H.R.W.R.) Grace Construction C 494, Products Advaflow Products M 194 Type F Polycarboxylate Superplasticizer ADVA Cast 530 Products M 194 C 494, C Grace Construction C 494, C Grace Construction C 494, C Polycarboxylate Superplasticizer ADVA Cast 530 Products M 194 1017 Grace Construction C 494, C Grace Construction C 494, C	(H.R.W.R.)	Superplasticizer	Products	M 194	Type A,F
Polycarboxylate Superplasticizer ADVA Cast 530 Grace Construction C 494, C Betarder Daratard 17 Broducts M 194 Type 1	High Kange Water Reducer (H.R.W.R.)	Advaflow	Products	M 194	C 494, Type F
Polycarboxylate Superplasticizer ADVA Cast 530 Products M 194 1017 Grace Construction Grace Construction C 494, Retarder Daratard 17 Products M 194 Type B D		, availow	Grace Construction		C 494, C
Grace Construction C 494, Retarder Daratard 17 Products M 194 Type B D	Polycarboxylate Superplasticizer	ADVA Cast 530	Products	M 194	1017
	Retarder	Daratard 17	Grace Construction Products	M 194	C 494, Type B D

Table 4.4: Concrete Materials List

4.3.2 Mix Proportion and Design Procedure

Hycrete DSS concrete mix designs were proportioned using standard New England DOT mix designs as the basis. For each pour location, a list of the available DOT mixes was obtained, consisting of mixes given in Table 4.5 and Table 4.6. Note that total water in the mix includes the added water (in Tables) as well as water added in Hycrete DSS solution (13.3 lb/yd³ (7.9 kg/m³)) and DCI solution (21 lb/yd³ (12.5 kg/m^3). From the list, classes of concrete mixes were organized based upon minimum strength requirements, cementitious materials content, water to cementitious materials ratio (w/cm), and typical application usage. Mixes were selected for testing based on priorities determined through discussions with members of the project technical committee. Specific attention was paid to select a range of mixes that would help evaluate the effect of concrete variables such as cement type, water reducers, and superplasticizers on a Hycrete DSS concrete mix. Hycrete DSS was added to each of the mix designs at a standard dosage of 2 gal/yd^3 (10 L/m^3) concrete and an estimate was made to the defoamer dosage based upon cementitious material content, previous experience (as reported in Chapter 3), and discussions with representatives from Hycrete Technologies. The final mix design selection was made with the approval of the technical committee and is given in Tables 4.5 and 4.6. The final proportions, astested, are presented in these tables, including any adjustments made to the mixes in the field. These adjustments are noted in Tables 4.5 and 4.6 and could include adding additional air entraining or defoaming admixtures to adjust measured air content and adding additional water and/or water reducing chemicals to the mixes to improve workability. Additional water and/or chemical admixtures were added directly to

concrete trucks and mixed for an appropriate amount of time to obtain homogenous distribution. The defoaming chemical is most effective when mechanically mixed with the Hycrete DSS and less effective when added straight to a mix rather than to the Hycrete DSS solution (thus a higher concentration is required). It is noted that adjustments were less likely in subsequent mix designs, and were a result of working with new mixture proportions rather than any variability in response for a given mixture design. Mixes are designated using the following convention:

	Durain at ID	0707001	NA7440			,	VT0470 ³
	Project ID	C1673C	MA744C	NH657C	NY6790	,	V1617C
	Date	08/02/05	08/16/05	03/09/05	06/20/06		03/09/05
	DOT ID	CT State Class F	MHD HP	NH AA HRWR	Oldcastle S	SCC	VT HPCB
SD)	Location	Tilcon-CT	Aggregate Ind.	Carroll Concrete	Oldcast	le	Carroll Concrete
ŝ	Cementitious (lbs)	673	744	657	679		617
'n	Coarse - 3/4" max (lbs)	1813	1858	1733	1400		1733
10	Fines (lbs)	1260	1029	1328	1323		1451
eq	Water Reducer (oz)	39.3	32.7	33.3	28.0	89.0	31.3
est	Туре	Pollyheed 997	ADVAFlow	ADVA 100	DARECEM 55	AD 530	ADVA 100
s T	Air Entrainer (oz)	4.7 (3.4+1.3)	4.0	2.0 (0.9+1.1)	2.0		3.0
IS a	Туре	Darex II	Darex II	Darex II	DARAVAIR		Darex II
tior	Retarder (oz)	0.0	0.0	14.0	0.0		12.7
por	Туре	NA	NA	Daratard 17	NA		Daretard 17
lo	Water (lbs)	275	249	225	315		234 (231+3)
gn F	% Cement	100	69	50	68		73
esiç	% Slag	0	25	50	0		22
ŏ	% SF	0	6	0	0		5
Miy	% FA	0	0	0	32		0
	Corrosion Inhibitor(gal)	0	3	0	0		0
	Туре	NA	DCI	NA	NA		NA
	Defoamer (oz)	0.0	0.0	0.0	0.0		0.0

Table 4.5: SSD Mix Designs (1 yd3) (english units)

Notes:

1. 1.3 oz of air entrainer was added to the mix as originally batched

2. 1.1 oz of air entrainer was added to the mix as originally batched

3. 2.8 lb of water was added to the mix as originally batched

	Project ID	CT687H ⁴	CT663HR1	CT653HR2	MA746H	NH653H ⁵
	Date	08/02/05	02/16/06	02/16/06	08/16/05	03/09/05
	DOT ID	CT State Class F	CT State Class F	CT State Class F w/FA	MHD HP	NH AA HRWR
) D	Location	Tilcon-CT	Tilcon-CT	Tilcon-CT	Aggregate Ind.	Carroll Concrete
ų Si	Cementitious (lbs)	687	663	653	746	653
'n	Coarse - 3/4" max (lbs)	1807	1807	1773	1850	1719
<u>ح</u>	Fines (lbs)	1286	1272	1285	1029	1344
ed	Water Reducer (oz)	39.7	39.7	39.7	32.7	33.7
est	Туре	Pollyheed 998	Pollyheed 998	Pollyheed 998	ADVAFlow	ADVA 100
S T	Air Entrainer (oz)	0.0	0.0	0.0	0.0	4.0
IS a	Туре	NA	NA	NA	NA	Darex II
tior	Retarder (oz)	0.0	0.0	0.0	0.0	13.7
por	Туре	NA	NA	NA	NA	Daretard 17
lo	Water (lbs)	261	255	260	257	217 (209+8)
gn F	% Cement	100	100	85	69	50
esiç	% Slag	0	0	0	25	50
ŏ	% SF	0	0	0	6	0
Ш	% FA	0	0	15	0	0
	Corrosion Inhibitor(gal)	2	2	2	2	2
	Туре	Hycrete DSS	Hycrete DSS	Hycrete DSS	Hycrete DSS	Hycrete DSS
	Defoamer (oz)	12.1(3.1+8.0)	5.3	4.0	4.4	7.9

Table 4.5: SSD Mix Designs (1 yd3) (english units)

Notes:

4. 8 oz of defoamer was added to the mix after originally batched – post addition requires higher dosage
5. 8 lb of water and 4.0 oz of air entrainer was added to the mix as

originally batched

	Project ID	NH653HR1 ⁶	NH607HR2 ^{7,8}	NY679H	ł	VT617H ⁹	VT610HR1 ^{10,11,12}
	Date	11/07/05	11/07/05	06/20/06		03/09/05	11/07/05
	DOT ID	NH AA HRWR	NH AA HRWR	Oldcastle S	SCC	VT HPCB	VT HPCB 7%
SD)	Location	Carroll Concrete	Carroll Concrete	Oldcastl	e	Carroll Concrete	Carroll Concrete
ŝ	Cementitious (lbs)	653	607	798		617	610
'n	Coarse - 3/4" max (lbs)	1655	1761	1400		1713	1721
10	Fines (lbs)	1356	1379	1323		1436	1434
ed	Water Reducer (oz)	46.3	43.0	28.0	89.0	31.0	43.0 (31+12)
est	Туре	ADVA 100	ADVA 100	DARECEM 55	AD 530	ADVA 100	ADVA 100
IS T	Air Entrainer (oz)	0.0	2.0	0.0		0.0	0.0
IS a	Туре	NA	Darex II	NA		NA	NA
tior	Retarder (oz)	26.3	26.3	0.0		12.7	12.3
por	Туре	Daratard 17	Daratard 17	NA		Daretard 17	Daretard 17
lo	Water (lbs)	246 (227+19)	231	303		223 (206+17)	248 (235+13)
gn F	% Cement	70	70	68		73	73
esi	% Slag	30	30	0		22	22
Ď	% SF	0	0	0		5	5
ΜÜ	% FA	0	0	32		0	0
	Corrosion Inhibitor(gal)	2	2	2		2	2
	Туре	Hycrete DSS	Hycrete DSS	Hycrete D	SS	Hycrete DSS	Hycrete DSS
	Defoamer (oz)	5.0	5.0	4.0		7.9	5.0

Table 4.5: SSD Mix Designs (1 yd3) (english units)

Notes:

6. 19 lb of water was added to the mix as originally batched

7. Reduced cement content from original mix design

8. 2.0 oz of air entrainer added to the mix as originally batched

9. 17 lb of water was added to the mix as originally batched

10. Increased design air content from original mix design

11. 13 lb of water added to the mix as originally batched 12. 12 oz of water reducer added to the mix as originally batched

	Project ID	CT673C ¹	MA744C	NH657C ²	NY679C		VT617C ³
	Date	08/02/05	08/16/05	03/09/05	06/20/0	6	03/09/05
	DOT ID	CT State Class F	MHD HP	NH AA HRWR	Oldcastle S	SCC	VT HPCB Carroll
_	Location	Tilcon-CT	Aggregate Ind.	Carroll Concrete	Oldcastle		Concrete
SD	Cementitious (kg)	397	439	387	473		364
°,	Coarse - 19 mm max (kg)	1070	1096	1022	826		1022
Mix Design Proportions as Tested (1 m ³ SSD)	Fines (kg)	747	607	783	781		856
) pə	Water Reducer (mL)	1521.4	1263.5	1289.3	1083.0	3442.5	1212.0
: Test	Туре	Pollyheed 997	ADVAFlow	ADVA 100	DARECEM 55	AD 530	ADVA 100
sign Proportions as	Air Entrainer (mL)	183.1 (132.8+50.3)	154.7	77.4 (34.9+42.5)	77.4		116.0
	Туре	Darex II	Darex II	Darex II	NA		Darex II
	Retarder (mL)	0.0	0.0	541.5	0.0		489.9
	Туре	NA	NA	Daratard 17	NA		Daretard 17
	Water (kg)	163	147	133	186		138 (136+2)
De	% Cement	100	69	50	68		73
Mix	% Slag	0	25	50	0		22
	% SF	0	6	0	0		5
	%FA	0	0	0	32		0
	Corrosion Inhibitor(L)	0	15	0	0		0
	Туре	NA	DCI	NA	NA		NA
	Defoamer (ml)	0.0	0.0	0.0	0.0		0.0

Table 4.6: SSD Mix Designs (1 m3) (metric units)

Notes:

1. 50.3 ml of air entrainer was added to the mix as originally batched

2. 42.5 ml of air entrainer was added to the mix as originally batched3. 1.7 kg of water was added to the mix as originally batched

	Project ID					
		0100711		C105511K2		10100011
	Date	08/02/05	02/16/06	02/16/06	08/16/05	03/09/05
	DOT ID	CT State Class F	CT State Class F	CT State Class F w/FA	MHD HP	NH AA HRWR
						Carroll
â	Location	Tilcon-CT	Tilcon-CT	Tilcon-CT	Aggregate Ind.	Concrete
SS	Cementitious (kg)	405	391	385	440	385
а	Coarse - 19 mm max (kg)	1066	1066	1046	1092	1014
1	Fines (kg)	759	751	758	607	793
ited	Water Reducer (mL)	1534.3	1534.3	1534.3	1263.5	1302.2
Tes	Туре	Pollyheed 998	Pollyheed 998	Pollyheed 998	ADVAFlow	ADVA 100
as	Air Entrainer (mL)	0.0	0.0	0.0	0.0	154.7
su	Туре	NA	NA	NA	NA	Darex II
rtio	Retarder (mL)	0.0	0.0	0.0	0.0	528.6
odo	Туре	NA	NA	NA	NA	Daretard 17
Pro	Water (kg)	154	151	154	152	129 (124+5)
ign	% Cement	100	100	85	69	50
)es	% Slag	0	0	0	25	50
ΪX	% SF	0	0	0	6	0
Σ	%FA	0	0	15	0	0
	Corrosion Inhibitor(L)	10	10	10	10	10
	Туре	Hycrete DSS	Hycrete DSS	Hycrete DSS	Hycrete DSS	Hycrete DSS
	Defermer (ml)	468.0	206.2	4547	170.0	206.2
	Deroamer (mi)	(158.6+309.4)	206.3	154.7	170.2	306.3

Table 4.6: SSD Mix Designs (1 m3) (metric units)

Notes:

4. 309.4 ml of defoamer was added to the mix after originally batched – post addition requires higher dosage
5. 4.9 kg water and 154.7 ml of air entrainer was added to the mix as

originally batched

	Project ID	NH653HR1 ⁶	NH607HR2 ^{7,8}	NY679	H	VT617H ⁹	VT610HR1 ^{10,11,12}
	Date	11/07/05	11/07/05	06/20/0	6	03/09/05	11/07/05
				Oldoootlo	0 000		
		ΝΠΑΑΠΚΝΙΚ	ΝΠΑΑΠΚ₩Κ	Olucastie	300	VI HPCB	VI HPCB 7%
â	Location	Carroll Concrete	Carroll Concrete	Oldcastle		Concrete	Carroll Concrete
SS	Cementitious (kg)	385	358	473		364	360
ຶຍ	Course - 19 mm max (kg)	976	1039	826		1011	1016
d (1	Fines (kg)	800	813	781		847	846
ste	Water Reducer (mL)	1792.2	1663.2	1083.0	3442.5	1199.1	1663.2 (1199+464)
Te	Туре	ADVA 100	ADVA 100	DARECEM 55	AD 530	ADVA 100	ADVA 100
ons as	Air Entrainer (mL)	0.0	77.4	0.0		0.0	0.0
	Туре	NA	Darex II	NA		NA	NA
ortio	Retarder (mL)	1018.6	1017.3	0.0		489.9	477.1
odo	Туре	Daratard 17	Daratard 17	NA		Daretard 17	Daretard 17
P	Water (kg)	146 (135+11)	136	179		132 (122+10)	147 (139+8)
sigr	% Cement	70	70	68		73	73
Des	% Slag	30	30	0		22	22
lix	% SF	0	0	0	0		5
≥	%FA	0	0	32		0	0
	Corrosion Inhibitor(L)	10	10	10		10	10
	Туре	Hycrete DSS	Hycrete DSS	Hycrete DSS		Hycrete DSS	Hycrete DSS
	Defoamer (ml)	191.5	191.5	154.7		306.3	191.5

Table 4.6: SSD Mix Designs (1 m3) (metric units)

Notes:

6. 11 kg of water was added to the mix as originally batched

7. Reduced cement content from original mix design

8. 77.4 ml of air entrainer added to the mix as originally batched

9. 10 kg of water was added to the mix as originally batched

10. Increased design air content from original mix design

11. 7.7 kg of water added to the mix as originally batched

12. 464.2 ml of water reducer added to the mix as originally batched

4.3.3 Batching and Mixing

A mix size of three cubic yards was determined to be an appropriate mix scale, qualifying as a "large scale mix". The batching process was determined in consultation with the ready-mixed concrete plants involved in the large scale mixes. Batching of aggregate, cementitious materials, and water was done by mass and batching of liquid admixtures was measured by volume. Saturated surface dry (SSD) mix designs were adjusted to account for the moisture content of the aggregates and the additional free water added by the Hycrete DSS solution.

All plants used in the project had central batching and mixing plants feeding truck mounted mixers as shown in Figure 4.2. Hycrete DSS was added to the batching process based upon the researchers' advice. In all cases Hycrete DSS was added as the last ingredient in the batching process. In the case of the of the March 2005 Carroll Concrete pour , the February 2006 Tilcon-CT pour, and the June 2006 Oldcastle pour Hycrete DSS was added from the central mixer directly and in the case of the remaining pours the Hycrete DSS solution was added directly to the truck mixers. In all cases the addition of the Hycrete DSS was made no greater than five minutes after the other ingredients were batched. The batching process was monitored by the researchers and present technical committee members.

Figure 4.2: Central Batching and Mixing Plant Feeding Truck Mounted Concrete Mixers

All batches were central mixed. The mixes in which Hycrete DSS was added directly to the truck were truck mixed in standard 9 to 11 cubic yard capacity front or rear discharge concrete trucks (as shown in Figure 4.3 and Figure 4.4) for an additional 5 to 10 minutes following the addition of Hycrete DSS, followed by approximately 15 minutes at slow rotation of the drum to simulate travel to a site (except for Tilcon-CT mixes of February 2006 which traveled 12 miles to the test site). When an additional defoaming chemical was to be added to the mix it was premixed with the Hycrete DSS using a high speed drill and paint mixer attachment. All mixes were tested on-site at the ready-mixed plant for freshly mixed properties except for the mixes batched at Tilcon-CT on February 2006. These were hauled 12 miles to the CT DOT Materials Research Laboratory, with a transit time for each of theses mixes of less than 15 minutes. The mixing process was monitored by the researchers and present technical committee members.

Figure 4.3: Rear Discharge Concrete Truck

Figure 4.4: Front Discharge Concrete Truck

4.3.4 Evaluation of Freshly Mixed and Hardened Concrete Characteristics

The evaluation of each mix was conducted using standard state DOT test sampling and testing procedures conforming to ASTM and AASHTO specifications (Table 4.8). These tests were carried out directly by or under the supervision of researchers and present technical committee members. A list of mixes and the tests performed on them is shown in Table 4.7, with designations of specific tests provided in Table 4.8.

Mix ID				Cor	np¹			Split ¹	Rapid Perm ¹	Absor ¹	Freeze ¹	Bond ¹
	1	3	5	7	14	28	84					
CT673C	х	х	-	х	х	х	х	х	х	х	х	х
MA744C	х	х	-	х	х	х	х	х	х	х	х	-
NH657C	-	-	х	х	х	х	х	х	х	-	Х	-
NY679C	х	х	-	х	х	х	x ²	х	-	х	-	-
VT617C	-	-	х	х	х	х	х	х	х	-	х	-
CT687H	х	х	-	х	х	х	х	х	х	х	Х	-
CT663HR1	х	х	-	х	х	х	х	х	-	х	х	-
CT653HR2	х	х	-	х	х	х	х	х	-	х	Х	-
MA746H	х	х	-	х	х	х	х	х	х	х	Х	-
NH653H	-	х	х	х	х	х	х	х	х	-	Х	-
NH653HR1	х	х	-	х	х	х	х	х	х	х	Х	х
NH607HR2	х	х	-	х	х	х	х	х	х	х	Х	-
NY679H	х	Х	-	Х	х	х	x ²	х	-	х	-	-
VT617H	-	х	х	х	х	х	х	х	х	-	х	-
VT610HR1	х	х	-	х	х	х	х	х	х	х	х	х

Table 4 7. Test Matrix

x: Data Obtained as Part of Report Note 1: Test Designation in Table 4.8 Note 2: Long term test completed at 215 days

Hardened concrete properties were tested at Gunness Structural Engineering Laboratory at the University of Massachusetts, Amherst (UMass), and/or State DOT testing laboratory facilities. Strength testing occurred at both UMass and at least one State DOT laboratory testing facility for each mix. Typically this was the state corresponding to the mix design. All freeze thaw testing was conducted by VTrans, and all rapid chloride permeability testing by VTrans or NHDOT. The American Association of State Highway and Transportation Officials (AASHTO) and American Society for Testing and Materials (ASTM) designation for each test specification described for the large scale field mixes are given in Table 4.8.

Some tests were modified slightly from the applicable standards in an effort to tailor the tests to the goals of this specific project. The modifications include using 4x8 cylinders for compressive strength tests and using a 15% saline solution in the freeze-thaw testing protocol. The use of 4x8 cylinders is permitted according to AASHTO T 23-02 when the maximum aggregate size does not exceed 1 in (2.54 cm). A 15% saline solution was used to better simulate the harsh environment that roads are subjected to in the Northeast United States and is typical of testing performed by the Vermont Agency of Transportation.

Table 4.8: AASHTO/ASTM Test Designations

Specification Description	Designat		
	AASHTO	ASTM	Project
Ready-mixed Concrete	M 157-97 (2001)	C 94-97	NA
Concrete Made by Volumetric Batching and Continuous Mixing	M 241-97 (2001)	C 685-95a	NA

Test Description	Designat		
	AASHTO	ASTM	
Compressive Strength of Cylindrical Concrete Specimens	T 22-97	C 39-86	COMP
Practice for Making and Curing Test Specimens in the Field	T 23-02	C 31 C 31M-96	NA
Slump of Hydraulic Cement Concrete	T 119-99	C 143 C143M-97	SLUMP
Mass per Cubic Meter (Cubic Foot), Yield, and Air Content (Gravimetric)	T 121-97 (2001)	C 138-92	DENSITY
Sampling Freshly Mixed Concrete	T 141-01	C 172-97	NA
Air Content of Freshly Mixed Concrete by Pressure Method	T 152-01	C 231-97	AIR CONTENT
Comparing Concrete on the Basis of the Bond Developed with Reinforcing Steel- <i>Discontinued</i>	T 159-88 (2000)	C 234-87	BOND
Resistance of Concrete to Rapid Freezing and Thawing	T 161-00 ¹	C 666-97 ¹	FREEZE
Time of Setting of Concrete Mixtures by Penetration Resistance	T 197-00	C 403 C 403M-97	SET
Splitting Tensile Strength of Cylindrical Concrete Specimens	T 198-02	C 496-96	SPLIT
Air Content of Freshly Mixed Concrete by the Chase Indicator	T 199-00	NA	AIR
Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration	T 277-96 (2000)	C 1202-94	RAPID PERM
Temperature of Freshly Mixed Portland Cement Concrete	T 309-1	C 1064-86 (1993)	TEMP
Water Content of Freshly Mixed Concrete Using Microwave Oven Drying	T318-1	NA	MEASURED W/CM
Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete	NA	C 457-90	AIR VOID

Other Tests

Method for Determination of Water		
Absorption	BSI 1881 : Part 122: 1983	ABSORP

Note 1: Variation used per VTrans standard test procedure

In addition to the test protocol summarized in Table 4.8, selected mixes were used to study how Hycrete DSS effects the bond strength of concrete. The test protocol was carried out using ASTM C 234-91a, "Standard Test Method for Comparing Concretes on the Basis of the Bond Development with Reinforcing Steel" and associated referenced documents in the standard. While this standard has been withdrawn, (ASTM A 944-05 is currently used for bond strengths) it was felt to be a valid test for comparing relative bond strengths between concrete mix designs with minimum of additional test apparatus. Both types of molds for bond test specimens, as described in the Standard C 234 were used. The mold for vertical bars was formed from a Modulus of Rupture (MOR) beam mold conforming to ASTM C 78 with three dividers inserted to create a triple cube prism Figure 4.5 (right) rather than the single cube test specimen described in the standard as shown in Figure 4.6.

Figure 4.5: Mold for Vertical Bars (Left to Right - ASTM Schematic/As-Used)

Figure 4.6: Mold for Horizontal Bars (Left to Right - ASTM Schematic/As-Used)

The measuring apparatus was simplified from the measuring apparatus illustrated in Standard C 234. Instead of measuring the displacement of a lower yoke
connected to the reinforcing bar in relation to an upper yoke connected to the concrete block, the direct slip of the reinforcing bar was measured at the head of the bar with a string potentiometer linear motion transducer affixed to a bent connected to the top of the concrete block. The apparatus as-used is shown in Figure 4.7.

Figure 4.7: Measuring Apparatus

The testing apparatus followed the Standard C 234. The setup consisted of the bearing surface of the concrete supported by a bearing plate and then followed by a slotted block supported by a spherically seated bearing block. Also shown in Figure 4.8 is a ring style load cell supported on a supplementary bearing plate. The rebar was held in place with the steel grips from the Universal Testing System (UTS) shown in Figure 4.9.

Figure 4.8: Testing Apparatus

Figure 4.9: Rebar Grips

The concrete used in the testing was obtained from the field study. For each mix four bond strength specimens were prepared. Mixes CT673C, CT687H, NH653HR1, and VT610HR1 were tested as proportioned according to Table 4.5 and Table 4.6.

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Freshly Mixed Concrete

A total of 15 mixes were batched, mixed, and tested for this project. A total of 5 control mixes were tested and a total of 10 Hycrete DSS mixes were tested. A matrix of all test mixes is presented in Table 5.1.

Mix ID	Location	DOT ID								
	Control Mixes									
CT673C	Tilcon-CT	CT State Class F								
MA744C	Aggregate Industries	MHD HP								
NH657C	Carroll Concrete	NH AA HRWR								
NY679C	OldCastle	NA								
VT617C	Carroll Concrete	VT HPCB								
Hycrete Mixes										
CT687H	Tilcon-CT	CT State Class F								
CT663HR1	Tilcon-CT	CT State Class F								
CT653HR2	Tilcon-CT	CT State Class F w/FA								
MA746H	Aggregate Industries	MHD HP								
NH653H	Carroll Concrete	NH AA HRWR								
NH653HR1	Carroll Concrete	NH AA HRWR								
NH607HR2	Carroll Concrete	NH AA HRWR								
NY679H	OldCastle	NA								
VT617H	Carroll Concrete	VT HPCB								
VT610HR1	Carroll Concrete	VT HPCB								

Table 5.1: Mix Matrix

As stated in Chapter 4 the evaluation of each mix was conducted using standard state DOT test sampling and testing procedures conforming to ASTM and AASHTO specifications (see Table 4.8). For convenience all mixes are designated by the Project ID. The results of testing completed on freshly mixed concrete are presented in Tables 5.2 and 5.3.

Mix I.D.	w/cm	w/cm	Temperature	Unit Weight	Air Content	Slump	Final Set
							Time
	(calc.)	(measured)	(°F)	(lb/ft ³)	(%)	(in)	(hrs)
		Co	ontrol Mixes				
CT673C	0.41	0.46	87	156.7	4.40	2.00	NA
MA744C	0.37	NA	81	150.0	6.00	7.50 ³	NA
NH657C	0.34	0.38	56.8	149.9	6.40	4.75	13.75
NY679C	0.40	NA	74	148.2	4.50 ³	Note 1	NA
VT617C	0.38	0.42	52.8	148.5	6.90	6.50	9.68
		Ну	crete Mixes				
CT687H	0.40	0.51	93	148.2	6.00	2.00	NA
CT663HR1	0.40	NA	86	149.0	5.50	2.00	NA
CT653HR2	0.42	NA	84	150.1	5.00	2.00	NA
MA746H	0.36	NA	81	148.4	7.00	2.25 ³	NA
NH653H	0.35	0.42	57	150.5	5.20	5.50	16.73
NH653HR1	0.40	0.42	70	148.5	7.00	3.00	NA
NH607HR2	0.40	0.45	66	150.7	4.90	4.50	NA
NY679H	0.40	NA	80	140.9	7.00	Note 2 ³	NA
VT617H	0.38	0.43	51	149.7	5.20	4.25	10.70
VT610HR1	0.43	0.45	72	146.1	7.90 ³	4.00	NA

Table 5.2: Freshly Mixed Concrete Properties (english units)

Note 1: Spread 24 in, time 3 sec

Note 2: Spread 17 in, time 5 sec

Note 3: Slightly out of spec - deemed OK per those present at site

Mix I.D.	w/cm	w/cm	Temperature	Unit Weight	Air Content	Slump	Final Set
	(calc.)	(measured)	(°C)	(ka/m ³)	(%)	(cm)	(hrs)
	(call)	Co	ntrol Mixes	((//)	(0)	(
CT673C	0.41	0.46	31	92.7	4.40	5.08	NA
MA744C	0.37	NA	27	88.8	6.00	19.05 ³	NA
NH657C	0.34	0.38	14	88.7	6.40	12.07	13.75
NY679C	0.40	NA	23	87.7	4.50 ³	Note 1	NA
VT617C	0.38	0.42	12	87.9	6.90	16.51	9.68
		Ну	crete Mixes				
CT687H	0.40	0.51	34	87.7	6.00	5.08	NA
CT663HR1	0.40	NA	30	88.2	5.50	5.08	NA
CT653HR2	0.42	NA	29	88.8	5.00	5.08	NA
MA746H	0.36	NA	27	87.8	7.00	5.72 ³	NA
NH653H	0.35	0.42	14	89.1	5.20	13.97	16.73
NH653HR1	0.40	0.42	21	87.9	7.00	7.62	NA
NH607HR2	0.40	0.45	19	89.2	4.90	11.43	NA
NY679H	0.40	NA	27	83.4	7.00	Note 2 ³	NA
VT617H	0.38	0.43	11	88.6	5.20	10.80	10.70
VT610HR1	0.43	0.45	22	86.4	7.90 ³	10.16	NA

Table 5.3: Freshly Mixed Concrete Properties (metric units)

Note 1: Spread 61 cm, time 3 sec

Note 2: Spread 43 cm, time 5 sec

Note 3: Slightly out of spec - deemed OK per those present at site

Tested mixes had calculated w/cm ratios of 0.34 to 0.43. These water content values were checked for 9 out of the 15 mixes presented using the microwave oven drying method (AASHTO T318-1). In all cases the w/cm ratio determined from the microwave oven method provided a value greater than that calculated from the plant batch tickets. Microwave test values from the control mixes were between 10% and 15% greater, while the values from the Hycrete DSS mixes were as high as 27% greater. It has been reported by the Wisconsin Department of Transportation that microwave oven testing in the field tends to lead to moisture recoveries of over 100 percent of the moisture reported in batch sheets (Dowell 2002). The microwave oven method requires that the moisture content obtained from a concrete sample be compared to the amount of concrete material reported on the batch sheet to determine the w/cm ratio. The discrepancy may partly result from the variability of plant-stored aggregate moisture contents and batch mixing and sampling size variation. Based on 2 of 3 readings, it appears that Hycrete DSS concretes may result in higher actual w/cm ratios than control concrete. Perhaps this is due to the admixture repelling surface water from the aggregate materials into the cement paste. However, any reported increase in w/cm ratio is not sufficient to solely account for any observed strength changes.

Ambient temperatures of 15 °F to 89 °F (-9.4 °C to 31 °C) were recorded during the large scale pours. Fresh concrete temperatures of 51 °F to 93 °F (10 °C to 34 °C) were measured. The coldest large scale pour occurred at Carroll Concrete in West Lebanon, NH on March 9, 2005 with an ambient temperature of about 15 °F (-9.4 °C). This pour resulted in the coldest freshly mixed concrete temperature of 50.5 °F (10 °C) for the Hycrete DSS mix, VT617H. The corresponding control mixture, VT617C, had a

freshly mixed concrete temperature of 52.8 °F (12 °C). The specimens from this pour were cast and poured in a heated enclosure with an ambient temperature of 51.6 °F (11 $^{\circ}$ C) and stored overnight before being transported to the testing laboratory. Based upon the workability of the mix and the resulting hardened concrete properties, it is assumed that the cooler ambient temperatures had no detrimental effects on the tested mixes. The hottest large scale pour occurred on August 3, 2005 at Tilcon-CT in New Britain, CT with an average ambient temperature of 89 °F (32 °C) during testing. This pour resulted in the hottest freshly mixed concrete temperature of 93 °F (34 °C) for the Hycrete DSS mix, CT687H. The corresponding control mixture, CT673C, had a freshly mixed concrete temperature of 87 °F (31 °C). The specimens from this pour were cast and poured outdoors and then stored overnight under wet burlap and polyethylene sheeting to prevent moisture loss before being transported to the testing laboratory. Based upon the appearance of the resulting hardened concrete specimens it was determined that environmental effects reduced the workability of the mixes (slump was 2 in. (50mm) for all mixes) and led to poor consolidation under standard rodding of cylinders. Figure 5.1 pitting of a concrete cylinder. Results of specimens from mix CT687H are therefore not representative of batched concrete as they would have been rejected. Consequently CT663HR1 should be evaluated as an acceptable CT DOT comparison to CT673C.

Figure 5.1: Hardened Concrete Defect Related to Hot Weather (Specimen CT687H)

The unit weights of the concretes tested were as expected for normal weight concrete. The unit weights of the mixes were between 146 lbs/ft^3 and 157 lb/ft^3 (83 kg/m³ and 93 kg/m³) and varied based upon the air content and mix proportions.

Air contents obtained by the pressure method ranged between 4.4% and 7.9%. One control and one Hycrete DSS concrete fell slightly outside of the specifications (See Tables 5.2 and 5.3), but were deemed acceptable by those present at the site as deliverable concrete. Hycrete DSS added air to a concrete mix and therefore additional air entrainer was not needed to achieve the required total air content, though some additional defoaming admixture was required for some batches.

The workability of each mix was evaluated on the basis of the standard slump test. Values of slump ranged between 2.0 in and 7.5 in (51 mm and 190 mm). The only significant variation from control concrete values occurred with the Massachusetts mix design, where the control exceeded the allowable slump and the Hycrete DSS concrete did not reach an acceptable slump. This was the only mix design to use the AdvaFlow high range water reducer. Adva100 from the same company was used in other mixes with no significant variation in slump between control and Hycrete DSS mixes. The addition of Hycrete DSS was found to have no significant effect on the slump of the other 9 Hycrete DSS concrete mixes, though measured slumps tended to be slightly less than the comparable control mixes. The workability of the self consolidating concrete (SCC) mix, NY679H, was tested using the "spread test" by the precast plant's quality control technician, in accordance with applicable SCC test standards. It did not meet the requirement for SCC concrete. However, it is felt that an increase to the high range water reducer and SCC admixture would easily correct this. Plant personnel felt that the mix could still be cast normally, so a second batch was not tested. A similar mix design will be varied slightly for an implementation project.

Set times were recorded only on mixes from the Carroll Concrete large scale pour completed on November 7, 2005. These mixes included NH657C, VT617C, and Hycrete DSS mixes NH653H and VT617H. Mixes VT617C and VT617H had the shortest set times with final sets of 9.7 hr and 10.7 hr respectively. The quicker set was most likely due to the fact that these mixes had a smaller percentage of slag, which is known to retard a set, and 5% silica fume replacement which has been found to increase the early age strength of a mix. On average the Hycrete DSS mixes had a 16 % greater final set time than their control mix equivalents. These variations in set time were felt to be minor issues and would not affect a typical concrete placement.

5.2 Hardened Concrete

The evaluation of each mix was conducted using standard state DOT test sampling and testing procedures conforming to ASTM and AASHTO specifications (see Table 4.8).

5.2.1 Compressive Strength

All concrete mixtures tested had average 28-day compressive strengths which exceeded the specified minimum required strength for each mix as reported in Tables 5.4 and 5.5. With the exception of mix CT687H all mixes, including Hycrete DSS mixes had average 28-day compressive strengths 25% greater than required by nominal requirements. Three Hycrete DSS mixtures had 28-day compressive strengths 50% or higher than the nominal requirement. This is typical of high performance concretes used in DOT projects, where a focus on reducing concrete permeability results in compressive strengths that are often much higher than specified minimum values. Therefore, for typical applications, any strength reduction in Hycrete DSS concrete is of minor consequence, provided that early age strengths are not reduced significantly.

Mix ID	Required Measured f ²⁸		Difference							
	(psi)	(psi)	%							
	Control									
CT673C	4000	5109	28%							
MA744C	5000	8784	76%							
NH657C	4000	7665	92%							
NY679C	NA	7785	-							
VT617C	3500	7535	115%							
	Hycrete									
CT687H	4000	4123	3%							
CT663HR1	4000	5769	44%							
CT653HR2	4000	5256	31%							
MA746H	5000	6428	29%							
NH653H	4000	6542	64%							
NH653HR1	4000	5891	47%							
NH607HR2	3500	5800	66%							
NY679H	NA	5536	-							
VT617H	3500	6204	77%							
VT610HR1	3500	5042	44%							

 Table 5.4: 28 Day Compressive Strengths of Concrete Mixes (english units)

 Table 5.5: 28 Day Compressive Strengths of Concrete Mixes (metric units)

Mix ID	Required	Measured f ²⁸	Difference
	(Mpa)	(Mpa)	%
	С	ontrol	
CT673C	28	35.2	28%
MA744C	34	60.6	76%
NH657C	28	52.9	92%
NY679C	NA	53.7	-
VT617C	24	52.0	115%
	H	ycrete	
CT687H	28	28.4	3%
CT663HR1	28	39.8	44%
CT653HR2	28	36.2	31%
MA746H	34	44.3	29%
NH653H	28	45.1	64%
NH653HR1	28	40.6	47%
NH607HR2	24	40.0	66%
NY679H	NA	38.2	-
VT617H	24	42.8	77%
VT610HR1	24	34.8	44%

The mix with the highest 28-day compressive strength was the MA744C mix, while the lowest strength mix was CT687H. The MA744C mix achieved the highest strength because it was the control mix with the highest cement content of all mixes. As noted previously CT687H mix was not acceptable due to the high ambient temperatures during the pour and resulting poor quality concrete. A subsequent report of this mixture, designated CT663HR1 verifies that when ambient temperatures were lower the mix performed much better with 28-day compressive strengths exceeding 5500 psi (38 MPa), higher than the control specimens (which had some hot-weather problems as well). The highest 28 day strength Hycrete DSS mix was NH653H with a 28-day compressive strength of 6542 psi (45MPa).

An evaluation of concrete strengths with age are shown in Table 5.6, which includes average results of test cylinders from all testing laboratories. Only UMass test results are shown in Figure 5.2, which indicate the compressive strength gain over time. Aside from strength reductions, trends in strength gains are similar between Hycrete and control concretes. The Hycrete DSS mixes with highest early age strength were MA746H, NY679H and NH607HR2 with 7-day compressive strengths of 5265 psi (36.3 MPa), 4717 psi (32.5 MPa) and 4613 psi (31.8 MPa) and respectively. Half of these strengths were reached between 1 and 2 days.

When Hycrete DSS mixtures were batched with a directly corresponding control mixture, strengths of the Hycrete DSS specimens were reduced from the control. While the following comparison does not account for variations in air content and w/cm which also impact strength, Hycrete DSS concretes had strength reductions from -12%

(strength increase) to 33% from the control. On average, Hycrete DSS concretes had a 28-day compressive strength reduction of approximately 20% from the control. These reductions were typical at all concrete ages as can be seen in Figure 5.2.

	Strength at Age (Days)									
Mix ID	1	3	5	7	14	28	84	215	Testing Agency	
	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)		
Control										
CT672C		3773		4172	4818	4978	5999		UMASS	
C1073C		2393	3313		3943	4850	5240		CTDOT ³	
							5714 ¹		NHDOT ¹	
MA744C	3389	5916		7181	7830	8784	9763		UMASS	
					7000		9070		MassHighway	
				4732		7665	8354		UMASS	
NH057C			4190		6885	7500			VTrans	
						8759			NHDOT	
NY679C	5240	5990		6611		7785		9032	UMASS	
				5164		7535	8440		UMASS	
VT617C				4005	6050	6495			VTrans	
						8058			NHDOT	
				ŀ	lycrete					
CTC07U		3216		3662	3923	4242	4631		UMASS	
C100/H		2313	2727		3187	3637	4003		CTDOT ³	
OTCOTUDA	2310	3216		4198	4658	5769	6805		UMASS	
C100/HK1		1634		3670	4147	4653	5333		CTDOT ³	
	1536	2731		3312	4140	5256	7033		UMASS	
CT653HR2		1202		3283	3617	4663	5437		CTDOT ³	
							4353 ¹		NHDOT ¹	
	3060	4550		5265	5890	6428	6979		UMASS	
WA740H					4985		6270		MassHighway	
		1941		3722	5548	6542	7235		UMASS	
NH653H			3590		5825	6955			VTrans	
						7570			NHDOT	
	1440	3312		4534	5343	5891	6625		UMASS	
NH653HR1				5230 ²	5185	6375			VTRANS ²	
						6000			NHDOT	
	1702	3419		4613	5341	5800	6180		UMASS	
NH607HR2				5015 ²	5365	6410			VTRANS ²	
						6080			NHDOT	
NY679H	3923	4355		4717		5536		6224	UMASS	
		3096		4122	5018	6204	7142		UMASS	
VT617H				3760	5235	5755			VTrans	
						6684			NHDOT	
	1944	2896		3741	4455	5042	5665		UMASS	
VT610HR1				4115 ²	5280	5440			VTRANS ²	
						5372			NHDOT	

 Table 5.6: Compressive Strengths of Concrete Mixes (english units)

Note 1: 2 NHDOT records at 56 days rather than 84 days

Note 2: 3 VTrans tested at 8 days rather than 7 days

Note 3: CTDOT tested larger cylinder sizes

			Str	ength at	Age (Day	ys)			
Mix ID	1	3	5	7	14	28	84	215	Testing Agency
	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	
Control									
070700		26.0		28.8	33.2	34.3	41.4		UMASS
616736		16.5	22.8		27.2	33.4	36.1		CTDOT ³
							39.4 ¹		NHDOT ¹
MA744C	23.4	40.8		49.5	54.0	60.6	67.3		UMASS
					48.3		62.5		MassHighway
NU10570				32.6		52.9	57.6		UMASS
NH657C			28.9		47.5	51.7			VTrans
						60.4			NHDOT
NY679C	36.1	41.3		45.6		53.7		62.3	UMASS
				35.6		52.0	58.2		UMASS
VT617C				27.6	41.7	44.8			VTrans
						55.6			NHDOT
		•		H	vcrete		•		•
OTCO7U		22.2		25.2	27.0	29.2	31.9		UMASS
C108/H		15.9	18.8		22.0	25.1	27.6		CTDOT ³
OTCOZUD4	15.9	22.2		28.9	32.1	39.8	46.9		UMASS
C108/HR1		11.3		25.3	28.6	32.1	36.8		CTDOT ³
	10.6	18.8		22.8	28.5	36.2	48.5		UMASS
CT653HR2		8.3		22.6	24.9	32.2	37.5		CTDOT ³
							30.0 ¹		NHDOT ¹
	21.1	31.4		36.3	40.6	44.3	48.1		UMASS
INA/401					34.4		43.2		MassHighway
		13.4		25.7	38.3	45.1	49.9		UMASS
NH653H			24.8		40.2	48.0			VTrans
						52.2			NHDOT
	9.9	22.8		31.3	36.8	40.6	45.7		UMASS
NH653HR1				36.1 ²	35.8	44.0			VTRANS ²
						41.4			NHDOT
	11.7	23.6		31.8	36.8	40.0	42.6		UMASS
NH607HR2				34.6 ²	37.0	44.2			VTRANS ²
						41.9			NHDOT
NY679H	27.0	30.0		32.5		38.2		42.9	UMASS
		21.3		28.4	34.6	42.8	49.2		UMASS
VT617H				25.9	36.1	39.7			VTrans
						46.1			NHDOT
	13.4	20.0		25.8	30.7	34.8	39.1		UMASS
VT610HR1				28.4 ²	36.4	37.5			VTRANS ²
						37.0			NHDOT

 Table 5.7: Compressive Strengths of Concrete Mixes (metric units)

Note 1: 2 NHDOT records at 56 days rather than 84 days

Note 2: 3 VTrans tested at 8 days rather than 7 days

Note 3: CTDOT tested larger cylinder sizes

a) 0 to 84 Day Strengths

b) 0 to 28 Day Strengths Figure 5.2: Compressive Strengths Over Time

5.2.2 Tensile Strength

Typically splitting tensile strength is about 8% to 14% of the compressive strength or is derived using the relationship:

5.0 to 7.5
$$\sqrt{f'c}$$

For calculations the lower limit in this equation is used. At higher compressive strengths, this relationship exhibits greater scatter. The mixture with the highest splitting tensile strength was NH657C and the mixture with the lowest splitting tensile strength was CT687H. The splitting tensile strengths for all of the mixes in the test protocol is presented in Tables 5.6 and 5.7.

Test data showed considerable scatter from calculated values, as is typical in tensile strength calculations. Similar scatter is seen in both control and Hycrete DSS concrete results. All specimens exceeded tensile capacities based on nominal strengths, and none were below 90% of tensile capacities based on actual strengths.

Mix ID	Calculated*	Calculated* f _{ct}	Measured f	Difference	Difference
		actual f ₂₈	-61	Calculated (Nominal)	Calculated (Actual)
	(psi)		(psi)	%	%
		Control			
CT673C	316	357	401	27%	12%
MA744C	354	469	654	85%	39%
NH657C	316	438	656	108%	50%
NY679C	-	441	573	-	30%
VT617C	296	434	395	33%	-9%
		Hycrete			
CT687H	316	321	321	2%	0%
CT663HR1	316	380	383	21%	0%
CT653HR2	316	362	412	30%	14%
MA746H	354	401	396	12%	-1%
NH653H	316	404	622	97%	54%
NH653HR1	316	384	486	54%	27%
NH607HR2	296	381	478	61%	25%
NY679H	-	372	491	-	32%
VT617H	296	394	377	27%	-4%
VT610HR1	296	355	422	43%	19%

 Table 5.8: Splitting Tensile Strength of Concrete Mixes (english units)

*5(sqrt(f'₂₈))

Mix ID	Calculated* Nominal f _{ct}	Calculated* f _{ct} based on	Measured f _{ct}	Difference from	Difference from
		actual f ₂₈		Calculated (Nominal)	Calculated (Actual)
	(MPa)	(MPa)	(MPa)	%	%
	· · · ·	Control		•	
CT673C	2.18	2.46	2.76	27%	12%
MA744C	2.44	3.23	4.51	85%	39%
NH657C	2.18	3.02	4.52	108%	50%
NY679C	-	3.04	3.95	-	30%
VT617C	2.04	2.99	2.72	33%	-9%
		Hycrete			
CT687H	2.18	2.21	2.21	2%	0%
CT663HR1	2.18	2.62	2.64	21%	0%
CT653HR2	2.18	2.50	2.84	30%	14%
MA746H	2.44	2.76	2.73	12%	-1%
NH653H	2.18	2.79	4.29	97%	54%
NH653HR1	2.18	2.65	3.35	54%	27%
NH607HR2	2.04	2.63	3.30	61%	25%
NY679H	-	2.56	3.39	-	32%
VT617H	2.04	2.72	2.60	27%	-4%
VT610HR1	2.04	2.45	2.91	43%	19%

 Table 5.9: Splitting Tensile Strength of Concrete Mixes (metric units)

5.2.3 Chloride Ion Penetration and Absorption

The following section relates to results from Absorption Testing and Rapid Chloride Penetration Test results for specimens obtained in this study. In addition, specimen samples that had been saved from NETC 98-2 (Civjan et al 2002, Civjan et al 2005c) were tested for chloride penetration. These results are presented in section 5.2.3.2.

5.2.3.1 Chloride Ion Penetration and Absorption

Simple absorption tests were conducted at 28 days and 90 days for selected specimens. Rapid chloride permeability tests were conducted by three different

agencies, including the New Hampshire Department of Transportation (NHDOT), the Vermont Agency Of Transportation (VTrans), and the Massachusetts Highway Department (MHD), and results are presented in Table 5.10. As noted in Chapter 3, previous literature has noted that rapid chloride permeability data does not correspond to actual absorption properties for Hycrete DSS concretes. Results of this study corroborate previous results. The VTrans test were conducted at 69 days, while the other departments conducted tests at 56 days.

The absorption test measured the capacity of a hardened concrete mix to absorb water while rapid chloride permeability tests give an indication of a hardened concrete mix's ability to repel ion penetration. Both tests are often used as a means of evaluating the relative ability of a hardened concrete mix to protect steel reinforcement from chemical attack. A decision to evaluate absorption was made after the 1st concrete pour, so data comparisons are not available for all control concretes.

Absorption values for control specimens were approximately 2%, while Hycrete specimens were typically below 1%. Absorption tests at 90 days indicated that the average absorption capacity of Hycrete DSS mixes were reduced 70% to 80% from the corresponding control mixes.

Evaluation of results from the rapid chloride permeability test were based on Table 1 from the AASHTO T 277 test standard for Electrical Indication of Concrete's Ability to Resists Chloride Ion Penetration. Both control and Hycrete DSS concretes were found to have "very low" (100 to 1000 coulombs passed), "low" (1000 to 2000 coulombs passed) and "high" (greater than 4000 coulombs passed) chloride ion penetrability results for different mix designs. The performance of the CT673C and

CT687H mixes is likely due to poor concrete quality as noted previously. In general it was found that the rapid chloride permeability test indicated minimal differences in permeability between control and Hycrete DSS concretes, which is a very different conclusion than shown by absorption testing. As reported in Section 3.2.5.2 of the Literature Review, due to the ionic nature of Hycrete DSS, the standard chloride permeability test may not adequately measure the performance of Hycrete DSS concrete when compared to a control mixture. Therefore permeability criteria of Hycrete DSS concrete DSS additions with respect to reduced concrete permeability is apparent under these test regimens, which are directly related to actual conditions.

Mix I.D.	NHDOT	VTAOT	MHĎ	28	90
	(56days)	(69days)	(56days)		
	perm	Perm	perm	abs	abs
	со	ulombs pass	sed	0	6
		Control	-		
CT673C	7022	>6000	NA	NA	2.779
MA744C	NA	NA	652	NA	1.794
NH657C	1305	1177	NA	NA	NA
NY679C	NA	NA	NA	1.89 ²	NA
VT617C	753	652	NA	NA	NA
	H	ycrete DSS			
CT687H	>9000	>9000	NA	NA	0.882
CT663HR1	NA	NA	NA	0.691	0.577
CT653HR2	NA	NA	NA	1.101	0.639
MA746H	NA	NA	301	NA	0.316
NH653H	1395	1195	NA	NA	NA
NH653HR1	1931	2200	NA	0.346	0.305
NH607HR2	1971	2405	NA	0.405	0.284
NY679H	NA	NA	NA	0.307 ²	NA
VT617H	809	695	NA	NA	NA
VT610HR1	756	646	NA	0.308	0.331

Table 5.10: Results from Rapid Chloride Permeability and Absorption Testing

Note 1: Test data not yet available

Note 2: Test at 45 days

5.2.3.2 Chloride Ion Penetration Data from Previous Specimens

At the conclusion of NETC project 98-02 (Civjan et al 2002), specimens which were not autopsied were tested under the same regimen through a period of 208 weeks. Corrosion results for these specimens were reported in Civjan et. al. 2005c. Samples were obtained at the conclusion of these tests for chloride testing, but these tests were not completed as part of previous projects. Powdered samples were obtained at 0 to $\frac{1}{2}$ in, $\frac{1}{2}$ to 1 in, 1 to 1 $\frac{1}{2}$ in, 1 $\frac{1}{2}$ to 2 in, and 2 to 2 $\frac{1}{2}$ in (0 to 12.5 mm, 12.5 to 25.5 mm, 25.5 to 38.0 mm, 38.0 to 51.0 mm, and 51.0 to 63.5 mm). Testing of these samples was performed by the VTrans in accordance with AASHTO T-260 (Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials), with results in parts per million of acid soluble chloride per sample. Results of this testing are shown in Figure 5.3.

In addition, after 136 weeks of testing, 4 samples were sent to Grace Chemical Company for Chloride analysis. These included 2 samples from the control specimen (Mix 1 of that project) and 2 samples from the Hycrete DSS specimen (Mix 6 of that project). Specimen numbers were not provided to Grace until after results were reported. Analysis reported from Grace noted that the diffusion coefficient of the Hycrete DSS samples were approximately "1/40 to 1/50" of the control. Results of Chloride content at depth is shown in Figure 5.4.

Figure 5.3: Chloride Level Versus Depth (VTrans Results)

Figure 5.4: Chloride Level Versus Depth (Grace Results)

Results are similar in both cases. Surface chlorides (in the first ½ in (12.5 mm) were greatly reduced and little if any penetration occurred in Hycrete DSS samples. This performance was significantly better than that of any other combination of admixtures and pozzolonic additions, representative of current high performance concretes. The specimen which has an increased concentration with depth was shown in the previous study to have problems with microcracking. Those with a WC designation in the chart have higher w/cm ratios and would be expected to have greater chloride penetration than their counterparts.

5.2.4 Freeze-Thaw Durability

All mixes from the mix matrix were tested for freeze-thaw durability by VTrans, with results shown in Table 5.11. In almost all cases the control specimens performed better than the corresponding Hycrete DSS specimens, as would be expected due to higher concrete strengths in control concretes. Differences in mass loss for all tested samples is shown in Figure 5.5. VTrans has no specific acceptance criteria for freeze-thaw durability testing, but uses the test data for comparative purposes between mixes.

Freeze-thaw performance is generally affected by a variety of factors including strength, air entrainment, w/cm, and curing. The pair of mixes from the Aggregate Industries Pour on August 16, 2006 had the best performance of all of the mixes resulting in the lowest mass losses, highest durability factors, and visual ratings. These mixes also exhibited highest strengths, had entrained air contents around 7%, and relatively low w/cm's. With the exception of the CT687H and CT683HR1 mixes, which had poor concrete quality, and evidence of honeycombing, all mixes had adequate

freeze-thaw protection based upon FHWA guidelines for high performance concrete (HPC) with durability factors in excess of 80% (VT617H is a borderline not acceptable case) (Goodspeed 2003).

It is clearly shown that for any design criteria, such as 90% mass retained and durability factor greater than 90%, there were acceptable mixes both in control and Hycrete DSS concretes. In addition, several Hycrete DSS concretes performed as well as control concretes typically used in DOT projects.

Mix ID	Cycles	% Mass Loss	Durability Factor %	Visual
	1		Control	
CT673C	328	7.2	104.9 (100) ¹	Some mortar loss on side and bottom. Small loss of #4 and 3/4' aggregate
MA744C	328	0.4	102.9 (100) ¹	Excellent performance
NH657C	318	2.6	92.2	Hardly any mortar
NY679C	-	-	-	-
VT617C	318	8.8	94.2	Some mortar loss and small aggregate
			Hycrete DSS	
CT687H	328	25.3	97.5 (80.3) ¹	Heavy mortar and coarse aggregate loss
CT663HR1	313	34.7	Not Readable	Heavy loss of aggregate and mortar
CT653HR2	313	13.2	103.2 (98.3) ¹	Mortar loss and up to 3/4 " aggregate loss
MA746H	328	2.0	98.5	Light mortar loss and light scaling
NH653H	318	8.1	90.6	Mortar loss and some small aggregate
NH653HR1	321	6.8	90.4	Some scaling and mortar loss. Loss of some 3/8" aggregate.
NH607HR2	321	9.5	90.4	Some 3/8" aggregate loss
NY679H	-	-	-	-
VT617H	318	15.6	78.1	Heavy mortar loss on all sides and loose coarse aggregate
VT610HR1	321	5.0	89.2	Mortar loss and up to 3/4" aggregate loss

Table 5.11: Results from Freeze Thaw Testing

Note 1: At least one durability factor result > 100%. Number in parenthesis is result if value is assumed to have a maximum of 100%.

Figure 5.5: Percent Mass Loss of Specimens in Freeze Thaw Test Protocol

5.2.5 Bond Development

Though not required by the project, a small sampling of bond development tests were conducted. Mixes CT673C, CT687H, NH653HR1, and VT610HR1 were selectively tested for bond strength. The results of the mix CT687H are not presented because the mix was not found to be acceptable, as noted previously. The nominal average bond stress is equal to the measured load on the rebar at any stage of the test divided by the embedded surface area of the rebar. For No.6 deformed bars having an embedment length of 6 in (15 cm) the surface area is calculated to be 14.14 in² (230

cm²). The slip of the bars during the tests was taken as the direct measurement of the linear potentiometer. The concrete mix, the type of specimen (horizontal (H) or vertical (V)), the ultimate bond strength, controlling limit state, and concrete compressive strength at date of testing are given for each specimen in Table 5.12 and Table 5.13. The ultimate strength was based on the last recorded value of load before the occurrence of the controlling limit state (enclosing concrete splitting controlled all specimens, though reinforcing bar yielding or excessive slip of reinforcing bar could also control). The concrete strength for each set of specimens was obtained from an average of three companion 4x8 concrete cylinders tested in compression on the same date of the bond test.

Mix	Bond Strength	Mold Type	Limit State	f'c
	(psi)			(psi)
	1599	Н	split	6555
CT673C	1622	Н	split	6555
010/30	2009	Н	split	6555
	1569	Н	split	6555
	1077	Н	split	5891
	1756	Н	split	5891
111102211171	1214	V	split	5891
	1200	V	split	5891
	1312	Н	split	5042
	1198	Н	split	5042
VIUINI	1766	Н	split	5042
	1941	Н	split	5042

 Table 5.12: Ultimate Bond Strength (english units)

H - horizontal bar mold specimen

V - vertical bar mold specimen

Mix	Bond Strength	Mold Type	Limit State	f'c
	(MPa)			(MPa)
CT673C	11.03	Н	split	45
	11.18	Н	split	45
	13.85	Н	split	45
	10.82	Н	split	45
NH653HR1	7.42	Н	split	41
	12.11	Н	split	41
	8.37	V	split	41
	8.27	V	split	41
VT610HR1	9.05	Н	split	35
	8.26	Н	split	35
	12.18	Н	split	35
	13.38	Н	split	35

 Table 5.13: Ultimate Bond Strength (metric units)

H - horizontal bar mold specimen

V - vertical bar mold specimen

As noted in Table 5.12 and Table 5.13 the limit state (LS) for all specimens was concrete splitting. The test results were evaluated by comparing the test data from Hycrete mixes to the control mix and to two empirical models. The first model is Equation 12-1 from ACI 318-02:

$$l_{d} = \left(\frac{3}{40} \frac{f_{y}}{\sqrt{f'_{c}}} \frac{\alpha \beta \gamma \lambda}{\left(\frac{c+K_{tr}}{d_{b}}\right)}\right) d_{b}$$
 Equation 1

This expression estimates the embedded length (l_d) of reinforcement in concrete needed to develop the full stress of the reinforcement. In Equation 1 *c* is a factor that represents the smallest side of cover over the bar (measured to center of bar). K_{tr} is a factor that represents the contribution of confining reinforcement (for this case $K_{tr}=0$). α is the reinforcement location factor (in this case $\alpha = 1$). β is the reinforcement coating factor β is taken as 1.0. for uncoated bars. γ is the reinforcement size factor, taken as 0.8 for No. 6 bars and smaller. λ is the lightweight aggregate concrete factor and is taken as 1.0 for normal weight concrete. The compressive strength of concrete (f'_c) and specified yield strength of reinforcement (f_y) are determined by Standard C 39 and Standard A 615. Figure 5.5 shows the comparison of the bond strengths of the tested specimens to the expected bond strengths from Equation 1 versus the square root of the compressive strength of the concrete.

The second model was presented by Esfani and Rangan (1998) for estimating the local splitting bond resistance for normal strength concrete (f'_c less than 50MPa):

$$u_{\text{max}} = 4.9 \frac{c/d_b + 0.5}{c/d_b + 3.6} f_{ct}$$
 Equation 2

where the tensile strength (f_{ct}) of concrete (MPa) is taken as equal to $0.55\sqrt{f'_c}$. The expected ultimate bond strength from a splitting type failure from the empirical equation developed by Esfani and Rangan to the actual ultimate bond strength measured for each test specimen is shown in Figure 5.6 versus the square root of the compressive strength of the concrete.

Figure 5.6: Bond Strengths of Hycrete DSS Specimens

Bond capacities exceed the ACI design values and appear to be reasonably approximated by Esfani and Rangan (1998). While results appear to be acceptable, only a small sample was evaluated. It is also noted that more scatter in bond strength was exhibited by Hycrete DSS concretes. Therefore additional testing would be required to provide a conclusive statement on the acceptability of Hycrete DSS concrete's bond performance, though these very preliminary results do not indicate any problems.

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The use of road salts in New England leads to corrosion of reinforced concrete structures, most notably bridge decks. Corrosion reduces the effective service lives of reinforced concrete structures. The cost associated with deterioration due to corrosion has been the impetus to research and develop high performance concrete mixtures, corrosion resistant reinforcement, and other corrosion mitigating technologies. Hycrete DSS, a concrete admixture, has shown promise as a corrosion inhibitor for high performance concrete. Previous laboratory testing indicates that Hycrete DSS provides excellent protection of reinforcement embedded in non-cracked or pre-cracked concrete, when compared to normal concrete and concrete with other commercially available admixtures. Laboratory results also showed that Hycrete DSS may reduce concrete strengths and increase air contents of concrete mixtures compared to control mixtures. The testing protocol outlined in this report was undertaken to determine the field applicability of Hycrete DSS, and provide data needed for implementation projects using the admixture. This report presents evidence that specifications for high performance concrete mixtures typically used by DOT's throughout New England can be achieved in Hycrete DSS concretes.

Freshly mixed properties of concretes were not significantly affected by the addition of Hycrete DSS. Also there were no noticeable interactions between Hycrete DSS and the other concrete admixtures used in this project, with the possible exception

of the AdvaFlow high range water reducer which did not appear to be effective in a Hycrete DSS concrete. Use of this particular admixture combination should be evaluated in trial mixtures or replaced with an alternate product. All Hycrete DSS concretes used in this project exceeded nominal 28-day design strength requirements , though they had average strength reductions of 16% when compared to control mixtures at 28 days. The freeze-thaw durability performance of Hycrete DSS concrete mixtures was somewhat reduced from control mixes, likely attributable to reduced strength, but most mix designs were found to be adequate for high performance concretes. Concrete absorption was greatly reduced, up to 80%, when Hycrete DSS was included, though the rapid chloride permeability test method did not give accurate indications of this benefit for Hycrete DSS concretes. Therefore, standard absorption or permeability tests should be used rather than the rapid test method.

6.2 Recommendations

Concrete mixtures proportions including Hycrete DSS were acceptable for the typical range of DOT concrete mixtures investigated in this report. There was no measurable difference between adding Hycrete DSS to a central mixer or truck mounted mixer. Changes to standard mixture proportioning include addition of Hycrete DSS with defoaming agent (typically delivered pre-mixed in adequate quantity with Hycrete DSS), correction for water included in the Hycrete DSS admixture solution, and exclusion of any air entraining admixture. Standard ready-mixed concrete practices should be followed along with specific methods for batching Hycrete DSS solution and defoaming chemical. Some additional defoaming admixture may be required based

upon manufacturer recommendations and/or trial batching. All defoaming additives should be premixed with the Hycrete DSS solution prior to batching. The addition of Hycrete DSS should be made at the end of the ready-mixed concrete batch process. Self consolidating concrete which includes Hycrete DSS is also possible.

If required, any resulting strength reductions can be compensated for by increasing the cementitious materials content of a mixture or by reducing the water to cementitious materials ratio.

Hycrete DSS is a very promising corrosion inhibiting admixture. The results of this study show that full scale batched Hycrete DSS concretes can have similar properties to typical high performance concretes currently used by New England DOT's. Advantages include reduced permeability and excellent corrosion prevention in laboratory testing.

6.3 Future Research

Implementation projects are ongoing in Maine, Massachusetts, New York and Vermont. Results will be reported in a Phase II report of this project. Projects are scheduled to provide Hycrete DSS concretes in "severe" environments (freeze-thaw, deicing salt, marine environment) with a wide range of applications. At each placement control elements should be placed along with Hycrete DSS elements for comparative evaluation. The mix designs for these placements will be based upon the mix designs presented in this report. Each project will provide simple means for long term corrosion monitoring for comparison data between Hycrete DSS and control concretes.

Projects are in different states of progress, and some are tentative. Currently the projects listed in Table 6.1 are expected. Modifications to typical placement designs are being provided to facilitate long-term monitoring. A single connection to the embedded reinforcement, required for most corrosion monitoring instruments, will be accomplished through the use of a lead wire connected to the reinforcement and terminating the wire outside of the concrete, or a sacrificial piece of black reinforcement bar. Monitoring plans include measurement of half cell potentials to determine the initiation and measurements using the Galvapulse instrument.

In addition to material selection data, specification modifications will include waiving of some contractor incentives/penalties for high early strength and other tests, and deletion of any rapid chloride permeability test result requirements.

Data on the bond characteristics of Hycrete DSS concretes are incomplete, and may be worth studying further.

State	Project	Scope	Status
ME	Large Scale Ferry	Dolphins and Columns alternating	Under
	Terminal	Hycrete DSS and Control Concretes.	Construction. Trial
		Sacrificial Black Steel Reinforcement	Mixes Complete.
MA	Patching Repairs of	Patches of Hycrete DSS and Control	Project Being
	Columns and Bents in	Concretes. Standard MA half-cell wiring	Contracted
	Deteriorating Structures	details.	
NY	Large scale Precast	Alternating sections of Hycrete DSS and	Test Project Being
	Concrete Culvert	Control Concrete. Pre-Wired at Precast	Sought by DOT and
		Facility	Precaster.
VT	Bridge Curb	90 Foot Bridge Curb at Approach Span	Construction
		With Alternating Hycrete DSS and Control	Complete. Initial
		Concrete. Plus Test Slabs of Varying	Readings Pending.
		Concrete Cover. All Include Wiring to	
		Reinforcement.	

TABLE 6.1 Planned Implementation Projects

BIBLIOGRAPHY

- Allyn, M.A., Frantz, G.C., and Stephens, J.E. (1998, November). <u>Protection of</u> <u>reinforcement with corrosion inhibitors, Phase I, Research Report JHR 98-266.</u> Univ. of Connecticut, Storrs: Connecticut Transportation Institute.
- Allyn, M. and. Frantz, G.C., (2001a). Strength and durability of concrete containing salts of an alkenyl succinic acid, <u>ACI Materials Journal, 98(1)</u>, 52-58.
- Allyn, M. and. Frantz, G.C., (2001b). Corrosion tests with concrete containing salts of an alkenyl succinic acid, <u>ACI Materials Journal, 98(3)</u>, 224-232.
- American Association of State Highway and Transportation Officials. (2002). <u>Standard</u> <u>specifications for transportation materials and methods of sampling and testing</u> (22nd ed., Part 1A, 1B, 2B). Washington, DC: Author.
- American Concrete Institute. (2002). Building code requirements for structural concrete (318-02) and commentary (318 R-02). Farmington Hills, Michigan: Author.
- American Society for Testing and Materials. (1991). ASTM C 234-91a Standard test method for comparing concretes on the basis of the bond developed with reinforcing steel. In <u>Annual book of ASTM standards</u> (pp. 148-152).
 Philidelphia, PA: Author.
American Society for Testing and Materials. (1998) <u>ASTM and Other Standards</u> <u>Related to Ready-Mixed Concrete</u>. West Conshocken, PA: Author.

American Society for Testing and Materials. (2003a). ASTM C 876-99 Standard test method for half-cell potentials of uncoated reinforcing steel in concrete. In <u>Annual book of ASTM standards (Vol. 3.02)</u>. Philidelphia, PA: Author.

American Society for Testing and Materials. (2003b). ASTM G 59-97 Standard test
 method for conducting potentiodynamic polarization resistance measurements.
 In <u>Annual book of ASTM standards</u> (Vol. 3.02). Philadelphia, PA: Author.

American Society for Testing and Materials. (2003c). ASTM G 109-99 Standard test method for determining the effects of chemical admixtures on the corrosion of embedded steel reinforcement in concrete exposed to chloride environments. In <u>Annual book of ASTM standards</u>, (Vol. 3.02). Philidelphia, PA.: Author.

Bentz, E.C. and Thomas, M.D.A. (2001). Life-365 service life prediction model:Computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides.

Berke, Neal S. and Weil, Thomas G. (1992). World wide review of corrosion inhibitors in concrete. <u>Advances in concrete technology, energy, mines and resources</u> <u>Ottawa, Canada MSL, 92</u>(6R), 899-924.

- Civjan, S. A., Lafave, J. M., Lovett, D., Sund, D. J., and Trybulski, J. (2002, August)
 <u>Performance Evaluation and Economic Analysis of Combinations of Durability</u>
 <u>Enhancing Admixtures (Mineral and Chemical) in Structural Concrete for the</u>
 <u>Northeast U.S.A.</u>, Summary Final Report prepared for the New England
 Transportation Consortium (NETC 97-2). (http://docs.trb.org/00960060.pdf)
- Civjan, S. A., Bonczar, C. and Crellin, B. (2005a, February). A new admixture to minimize corrosion: Hycrete DSS. <u>Structure Magazine</u>, pp. 2-4.
- Civjan, S. A., LaFave, J. M, , Trybulski, J. E., Lovett, D., Lima, J., and Pfieffer, D.
 (2005b, July). Effectiveness of corrosion inhibiting admixture combinations in structural concrete. <u>Cement and Concrete Composites 27(6)</u>, 688-703.
- Civjan, S.A. (2005c, August). New corrosion inhibitor for concrete construction. Paper presented at the Third International Conference: Construction Materials
 Performance, Innovation, and Structural Implications, Vancouver.
- Dowell, A. and Kramer, S. (2002, June). Field measurement of water-cement ratio, Research Brief No. 0092-45-16. Madison: Wis DOT RD&T, Wisconsin Department of Transportation.

- Esfahani, R and Rangan, V. (1998). Bond between normal strength and high-strength concrete (HSC) and reinforcing bars in splices in beams." <u>ACI Struct. J. 95(3)</u>, 272-280.
- Goodspeed, C., Vanikar, S., and Cook, R. (2003). High-performance concrete (HPC) defined for highway structures. U.S. Department of Transportation Federal Highway Administration. Retrieved June 7, 2005 from the World Wide Web: http://www.fhwa.dot.gov/bridge/hpcdef.htm
- Goodwin, P., Frantz, G.C., and Stephens, J.E. (2000, December). <u>Protection of</u> <u>reinforcement with corrosion inhibitors, Phase II, Research Report JHR 00-287,</u> <u>Project 96-2, Phase II.</u> Univ. of Connecticut, Storrs: Connecticut Transportation Institute.
- Gong, Lien et al. (2006). <u>Evaluation of multiple corrosion protection systems and</u> <u>stainless steel clad reinforcement for reinforced concrete.</u> Dissertation, The University of Kansas Center for Research, Inc., Lawrence, Kansas
- Hycrete technologies, LLC: The solution for concrete protection. (2005). Hycrete Technologies LLC. http://www.hycrete.com.
- Kahhaleh, Khaled Zuhair. (1994). <u>Corrosion performance of epoxy-coated</u> <u>reinforcement.</u> Ph.D. dissertation, University of Texas at Austin.

Koch, Gerhardus H., et al. (2001). <u>Corrosion costs and preventive strategies in the</u> <u>United States, FHWA-RD-01-156.</u> Federal Highway Administration.

Kotz, John C. and Paul Treichel. (1999). <u>Chemistry and chemical reactivity</u> (pp. 946-1002). New York: Saunders College Publishing.

McDonald, D.B., Pfeifer, D.W., and Sherman, M.R. (1998, December). <u>Corrosion</u> <u>evaluation of epoxy-coated, metallic-clad, and solid metallic reinforcing bars in</u> <u>concrete (FHWA-RD-98-153).</u> Washington, D.C.: Federal Highway Administration.

Menzies, T. R. (1992). National cost of damage to infrastructure from highway deicing.
 In V. Chaker (Ed.), <u>Corrosion forms and control for infrastructure, ASTM STP</u>
 <u>1137</u> (pp. 30-45). Philadelphia: American Society for Testing of Materials,

Mishra, Mukund Beahri and Shomendra Mann. (2000). Corrosion mitigation measures in the design of reinforced concrete. <u>The Indian Concrete Journal, 74</u>(4), 177-184.

- Okelo, R., and Yuan, R., (2005). Bond strength of fiber reinforced polymer rebars in normal strength concrete. <u>ASCE Journal of Composites for Construction</u>, 203-213.
- Ralls, Kenneth M et al. (1976). <u>Introduction to materials science and engineering (pp.</u> 287-311). New York: John Wiley & Sons.
- Rhodes, P. (2005). <u>What is it and how does it work.</u> Slide presentation, Hycrete Tech./ Broadview Tech. Transportation Research Board Annual Meeting Washington D.C.
- Roberge, Pierre R. (1997). <u>Handbook of Corrosion Engineering.</u> New York: McGraw-Hill Professional.
- Tullmin, M.A.A., Hansson, C.M., and Roberge, P.R. (1996). Electrochemical techniques for measuring reinforcing steel corrosion. <u>Inter Corr/96.</u> Houston, Texas: InterCor.
- Wang, Chu-Kia and Salmon, Charles G. (2002). <u>Reinforced Concrete Design</u> (6th ed.) (Chapter 6). New York: Wiley.
- Wiss, Janney, Elstner Associates, Inc. (1995, July). Work plan for in-concrete testing. FHWA-DTFH61-93-C-00027.