

Field Tour of Bristol Water Treatment Plant and MDC's Nepaug Reservoir

July 1, 2014

Prepared by Melissa Czarnowski

CT DPH Drinking Water Section Intern

Participating Agencies

- American Water Works Association, CT Section
- Bristol Water Department
- CT Association of Directors of Health
- CT Conservation Districts
- CT Department of Agriculture
- CT Department of Energy and Environmental Protection
- CT Department of Public Health
- CT Farm Bureau Association
- CT Fund for the Environment
- CT Office of Policy and Management
- CT Water Works Association
- Metropolitan District Commission (MDC)
- Rivers Alliance of CT
- South Central CT Regional Water Authority
- US Environmental Protection Agency

A special thanks to Superintendent of Bristol Water Department, Robert Longo, and Natural Resources Administrator of MDC, Carol Youell, for hosting.

Field Tour Overview

Tour of Bristol Water Treatment Plant

8:30-9:00 Meet and Greet

9:00-11:00 Tour of the Plant

Tour of MDC Watershed

12:30-3:00 MDC-guided tour of forest management areas within the Nepaug Reservoir public water supply watershed.

Bristol Water Treatment Plant

Rapid Mix Chambers

The plant influent flows to two-stage rapid mix basins

Flocculation Basins

Water then flows through three-stage flocculation basins where mixers provide gentle agitation necessary for floc formation. The mixers have speeds from slow to slower.

Flocculation: a process to enhance agglomeration or collection of smaller floc particles into larger, more easily settleable particles through gentle stirring by hydraulic or mechanical means

Close-up of floc accumulation.

Sedimentation Basins

The sedimentation basins allow floc particles to settle to the bottom. Sludge is directed to the sludge lagoons.

Representation of Filters

High Rate Multi-Media Filters

The effluent from the sedimentation basins flows through the multimedia filters to a filter wetwell and on to the treated water reservoirs.

Underneath the Flocculation Basins

Drinking Water Section

MDC's Nepaug Reservoir

Tree Removal Project 2014

Removal of the Hemlock trees was necessary as a result of the infestation of the insect called the *Hemlock Woolly Adelgid*.

120 Norway Spruce trees and 650 White Pine and Norway Spruce seedlings were planted in areas that had been cleared.

Drinking Water Section

The Nepaug Dam

Standing about 156 feet tall and 650 feet long, the Nepaug Dam is the only arched concrete gravity dam in CT

Regrowth from previous hemlock tree removal in 2004

Deer Management

- The deer population at MDC's Nepaug Reservoir is preventing tree seedlings & other native plants from growing.
- In 2006, a CT DEEP survey showed 95% of the seedlings sampled were heavily browsed by deer.

Deer Exclosure:

A small fenced area was built in 2006 to keep deer out and demonstrate their impact on the forest.

High Deer Populations...

Price by Sent France Concept page to the Conce

- Prevent the growth of tree seedlings
- Destroy native plant communities
- Eliminate forest understory which holds the soil
- ➤ Increase the risk of soil erosion and runoff, causing water quality degradation
- Reduce biodiversity and affects long-term forest health

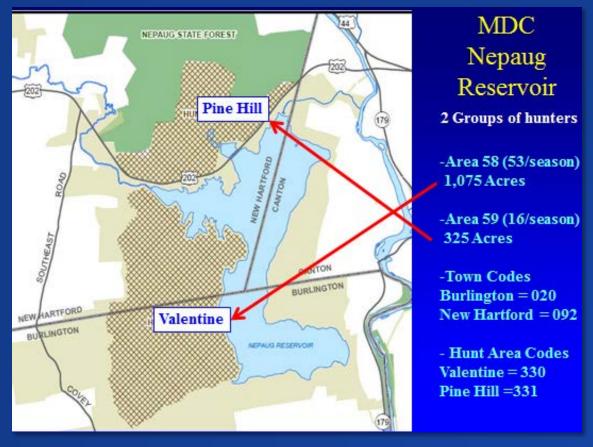
Program Goals

Reduce the deer population

Implement a long-term program to restore the balance between deer populations & sustainable forests that protect water quality

Increase water
quality
protection

Deer Management



Tree growth results from fenced deer exclosure

Deer Management

- Controlled Hunt Lottery Began in 2009
- Administered by CT DEEP in accordance with CT hunting laws & regulations

Forest Management

2010 Harvest:

Remove mature pines, encourage white pine regeneration, encourage natural age class diversity in the forest

2011-2012 Harvest:

Release advanced white pine and sugar maple regeneration, salvage dying white ash trees, increase age class diversity, retain the healthiest trees for the future growing stock

Watershed Management Concepts

- How we use the land directly affects the quantity and quality of water reaching our reservoirs.
- Our best line of defense is to protect the water at its source through good land management practices.
- > Forests are the most desirable land use for protecting supplies:
 - > Act as a natural buffer; filter, trap and recycle pollutants
 - > Intercept runoff, moderate stream flows, stabilize soils
 - Reduce the amount of water treatment needed
- Healthy watershed forests are achieved through active management which promotes a diversity of tree species, sizes and ages, and a continuous cycle of tree cover over time.