

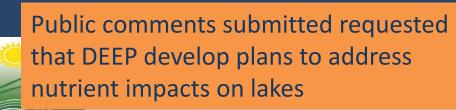
Water Quality-based Planning to Address Nutrient Impacts in CT Lakes

July 29, 2021 Public Meeting

Thank You

- Thank you to those who have:
 - funded water quality studies and monitoring for Bantam Lake
 - Worked to improve these lakes for the community
 - Offered assistance to us through this current project

Presentation Topics


- Overview of Nutrient Impacts on Water Quality in Lakes
- Setting Lake-Specific WQ Targets for Lakes
- Analyzing Sources and Nutrient Loading to Lakes
- Developing WQ Plans for Lakes
 - Statewide Lake TMDL Core Document
 - Bantam Lake Watershed TMDL
 - Watershed-Based Plan for Bantam Lake Watershed
- Review of Public Comment Opportunities
- Questions/Discussion

Why Focus on Nutrients & Lakes?

Integrated Water Resource Management

Recommendations for Phosphorus Strategy Pursuant to PA 12-155

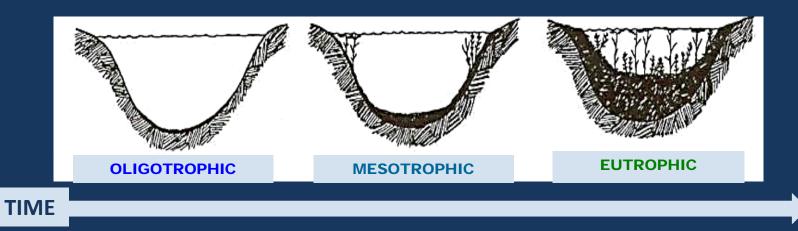
Coordinating Committee – Phosphorus Reduction Strategy

Included recommendation to address phosphorus impacts on lakes Tgy and Environmental Protection

Clean Water Act requires development of plans to restore water quality in water bodies where current WQ is impaired

Lake Project Overview

Program Development	 Develops an approach to evaluate and manage nutrient loads to CT Lakes and Impoundments Streamline plan development activities Facilitate community engagement and implementation
TMDL	 Evaluate watershed and water quality Set lake-specific water quality goals Provide technical support for implementation activities Reduce Harmful Algal Blooms where possible
Watershed Based Plan	 Identify specific problem areas for potential BMPs Provide education and information to communities Creates a flexible plan that will support achieving water quality goals for lake



Nutrient Impacts on Lakes

Trophic State in Lakes

Trophic state relates to the biological productivity in lakes

EUTROPHICATION: The natural process by which nutrients,

organic matter and sediments gradually accumulate within a water body, resulting in decreased depth and increased biological productivity.

Factors that influence trophic state

- Rate of nutrient supply
- Climate
- Shape of the lake
 - Depth
 - Volume/Surface Area
 - Watershed to Lake Area Ratio

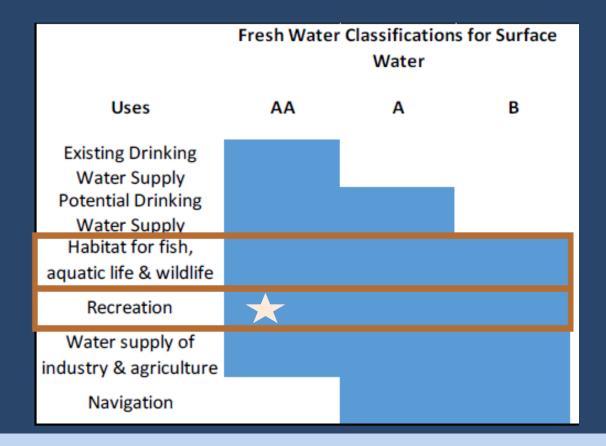
Lake Chemistry related to Trophic State

• Nutrients:

- Phosphorus & Nitrogen
- Associated with plant & algae growth
- Can be natural or from humanbased sources
- Can affect other water quality considerations such as oxygen level, chlorophyll a and clarity

- Chlorophyll A:
 - Pigment found in plants & algae
- Water Clarity
 - Water quality conditions such as algae or sediment suspended in the water column, Color or dissolved solid can impact clarity
 - Measured by secchi disk

These parameters are used to define the trophic state of lakes


CT Water Quality Standards

Applicable CT Narrative Criteria & Standards

- Narrative Nutrient Criteria (22a-426-9 Table 1)
- The loading of nutrients, principally phosphorus and nitrogen, to any surface water body shall not exceed that which supports maintenance or attainment of designated uses

Based on assessment data, Aquatic Life Uses and Recreation are most commonly affected uses in impaired lakes Bantam Lake is a Class AA water that is impaired for Recreational Uses due to chlorophyll A, excess algal growth & nutrient / eutrophication bioindicators

Applicable CT Narrative Criteria & Standards

Lakes (22a-426-6)

- Identifies nutrient levels associated with various trophic states
- Provides consideration to adjust trophic state evaluation based on macrophyte coverage
- Identifies the Natural Trophic State of the lake as the WQ Goal

Natural means the biological, chemical and physical conditions and communities that occur within the environment which are unaffected or minimally affected by human influences. (22a-426-1(47)

1	
22	\leq

Trophic State	Parameter	Range
	Total Phosphorus	0-10 μg/l
Olicetrenhie	Total Nitrogen	0-200 μg/l
Oligotrophic	Chlorophyll-a	0-2 μg/l
	Secchi Disk	6 + meters
	Total Phosphorus	10-30 μg/l
N/	Total Nitrogen	200-600 μg/l
Mesotrophic	Chlorophyll-a	2-15 μg/l
	Secchi Disk	2-6 meters
	Total Phosphorus	30-50 μg/l
Futuenhie	Total Nitrogen	600-1000 μg/l
Eutrophic	Chlorophyll-a	15-30- μg/l
	Secchi Disk	1-2 meters
Highly Eutrophic	Total Phosphorus	50 + μg/l
	Total Nitrogen	1000 + μg/l
	Chlorophyll-a	30 + μg/l
	Secchi Disk	0-1 meters

Weight of Evidence Approach

- Expected Range of Trophic Conditions
 - Existing Trophic Condition
 - Modeled Trophic Condition for Reference Conditions (no anthropogenic inputs)
 - This range provides the boundaries within which Natural Trophic Condition is expected
- Predictive Models for Trophic State
 - Models that relate Landscape Condition to Expected Trophic Status
 - Predicts trophic state based on information on lakes in New England that meet water quality goals
- Additional Lake-specific Studies

Weight of Evidence Evaluation: Bantam Lake

EPA Chl A Targets (ppb)	0-2	2-7	7-30	>30
CT ChI A Targets (ppb)	0-2	2-15	15-30	>30
CT Total Phosphorus (ppb)	0-10	10-30	30-50	>50
CT Total Nitrogen (ppb)	0-200	200-600	600-1000	>1000
CT Secchi Disk (m)	6+	2-6	1-2	0-1
Confidence	Oligotrophic	Mesotrophic	Eutrophic	Highly Eutrophic
High			7	
Medium		\star		
Medium		\star		
Medium	0.457	0.286	0.21	0.047
		\star		
		\star		
	CT Chl A Targets (ppb) CT Total Phosphorus (ppb) CT Total Nitrogen (ppb) CT Secchi Disk (m) Confidence High Medium Medium	CT Chl A Targets (ppb)0-2CT Total Phosphorus (ppb)0-10CT Total Nitrogen (ppb)0-200CT Secchi Disk (m)6+ConfidenceOligotrophicHighMediumMedium	CT Chl A Targets (ppb)0-22-15CT Total Phosphorus (ppb)0-1010-30CT Total Nitrogen (ppb)0-200200-600CT Secchi Disk (m)6+2-6ConfidenceOligotrophicMesotrophicHighMediumMediumMedium	CT Chl A Targets (ppb)0-22-1515-30CT Total Phosphorus (ppb)0-1010-3030-50CT Total Nitrogen (ppb)0-200200-600600-1000CT Secchi Disk (m)6+2-61-2ConfidenceOligotrophicMesotrophicEutrophicHigh✓Medium✓Medium

Recommended Water Quality Goal for Bantam Lake: Middle Mesotrophic

Total Phosphorus Goal = 20 ug/l

Total Nitrogen Goal = 400 ug/l

Analyzing Sources and Nutrient Loads to Lakes

CTDEEP Watershed Modeling Approach for Nutrients

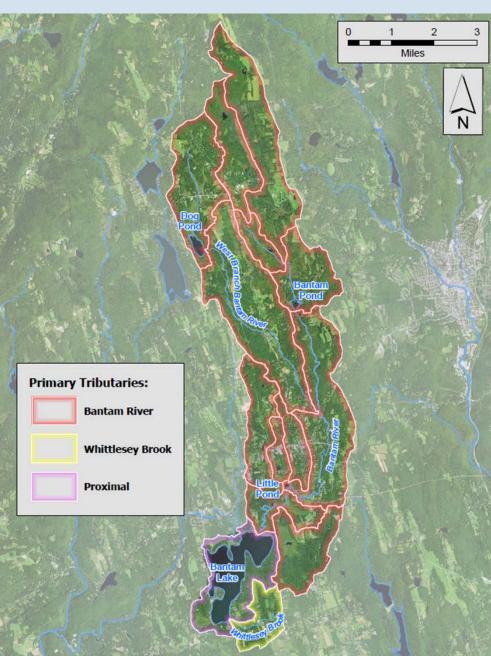
• Models

- Developed a watershed scale approach
- Focus on Nitrogen & Phosphorus
- Uses data on water quality and sources
- Models are calibrated & validated for existing conditions (2007-2018)
- Models then used to identify in-lake nutrient concentration under reference & target WQ conditions

Upland Watershed Model

Lake Loading Response Model

Downstream Waterbody Model


BathTub Model

Lake Loading Response Model

Watershed Analysis

- Predicts nutrient load that reaches the lake
- Sources Considered in Model
 - Land Use Contributions under Wet and Dry conditions
 - Point Sources: Woodridge Lake WPCF
 - Septic System Contributions near lake
 - Birds

BathTub Model

- Water quality-based model
- Uses information from LLRM as model input
- Includes additional sources
 - Atmospheric Deposition
 - Internal Loading
- Converts watershed loads into in Lake concentrations

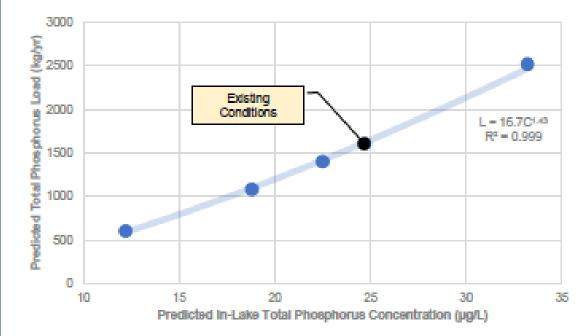
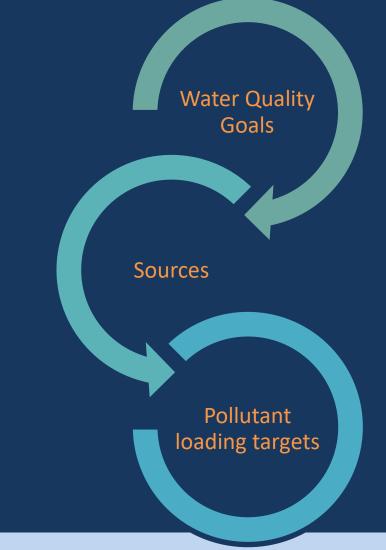


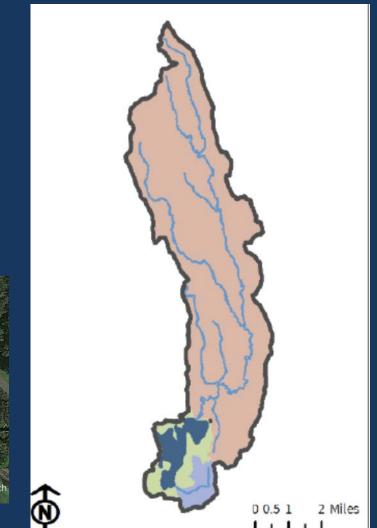
Figure 5-1: Predicted relationship between total phosphorus loading and resulting average in-lake total phosphorus concentration in the upper mixed layer (0-3 m) during the averaging period.



Water Quality Planning: Statewide Lake Nutrient TMDL Core Document Bantam Lake TMDL

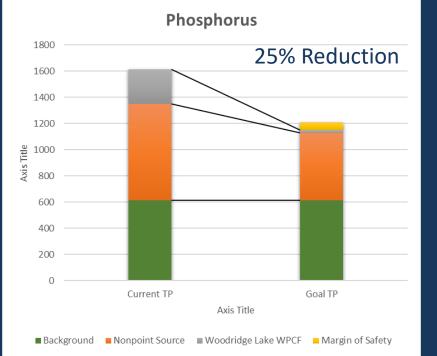
What is a Total Maximum Daily Load Analysis?

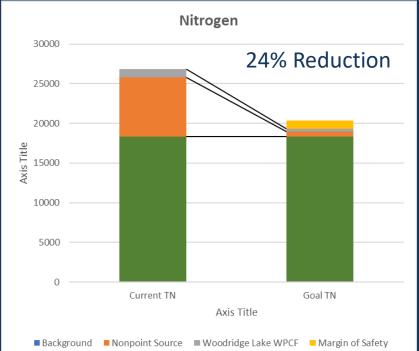
- A TMDL is a structured scientific evaluation of the water quality conditions within a water body
- It can be designed either to restore or protection water quality
- It links water quality goals to point & nonpoint sources that can affect water quality
- It identifies pollutant loadings needed to achieve goals


Bantam Lake

- CT's largest natural lake
- Important public resource for swimming, water skiing, fishing, boating, other recreation
- Affected by nuisance aquatic vegetation
- Summer algal blooms beginning in July or August
- Bottom phosphorus concentration increase as dissolved oxygen decreases

Photo from Bantam Lake Protective Association http://bantamlakect.com/aboutus.html





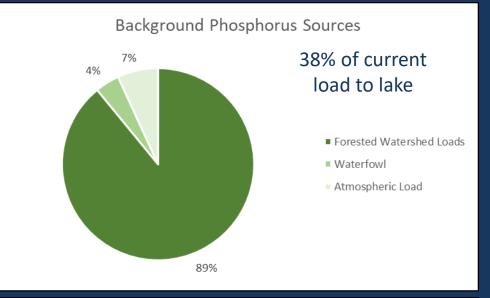
Bantam Lake TMDL Nutrient Analysis

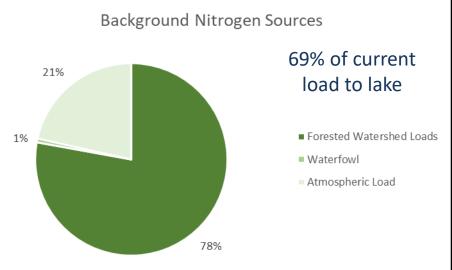
	Total Phosphorus		Total Nitrogen	
	Existing	Load Reduction	Existing	Load Reduction
	Conditions	(TMDL Target)	Conditions	(TMDL Target)
In-Lake Concentration (µg/L)	24.7	20.0	528.6	400.0
Total Loading (kg/yr)*	1,614.3	1,211.1	26,806.0	20,326

Bantam Lake
 Trophic Level Target
 = middle
 Mesotrophic Range

 In lake concentrations translated to loads using modeled relationships for Bantam Lake

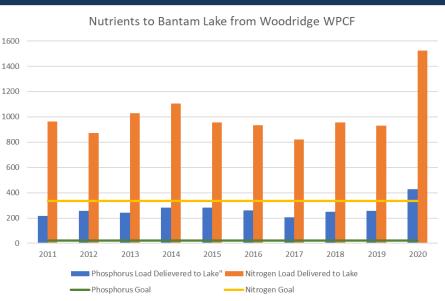
Sources Evaluated within TMDL


Background Regulated Pollution Sources


NonPoint Pollution Sources

Background Nutrient Sources

- Background Conditions
 - Estimates nutrient loading with minimal inputs from people
- Sources
 - Land Use assuming fully forested condition
 - Waterfowl
 - Atmospheric deposition
- Contribution assumed not to change in the future

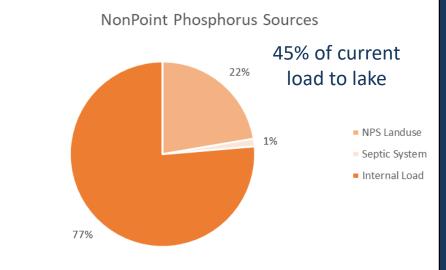


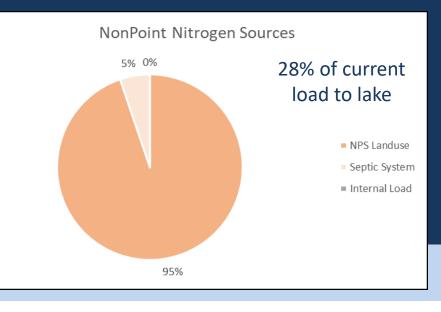
Point Sources

- CTDOT MS4 Stormwater
 Loads included in Land Use estimates
 - Not evaluated separately.
- Woodridge Lake Water Pollution Control Facility
 - Loadings based on treatment
 system upgrade to
 Membrane Bioreactor System
 technology or equivalent

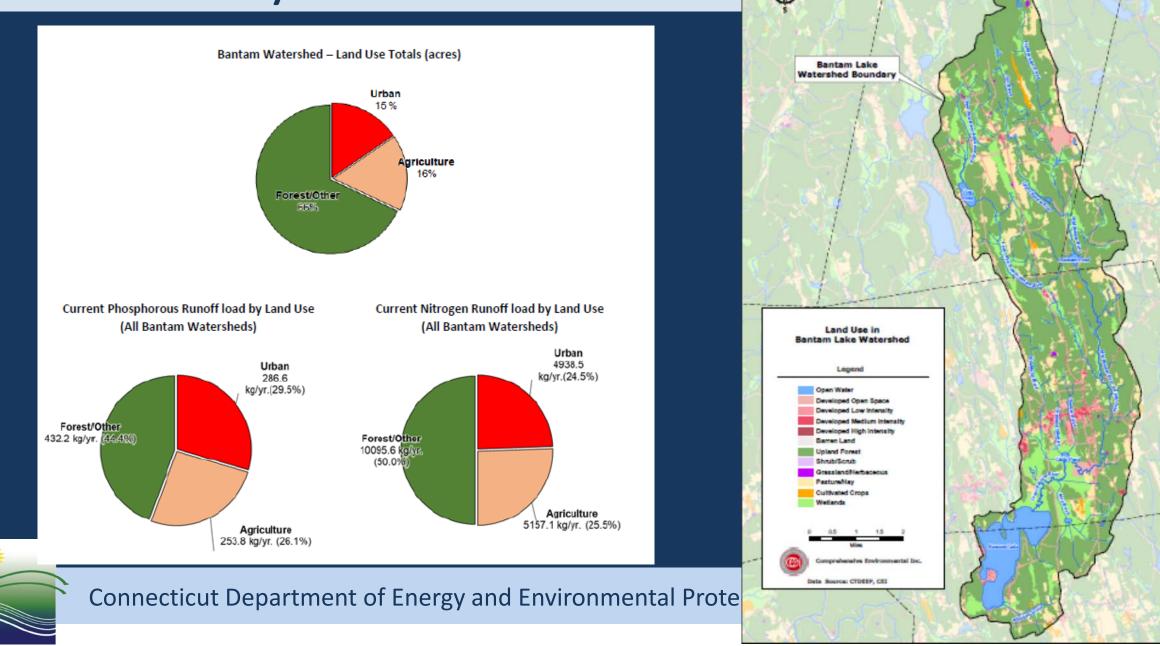
% of Current Load to Lake: 16.5% Phosphorus, 3.7% Nitrogen

Approximately 65% of nutrient discharged from Woodridge Lake WPCF reach Bantam Lake

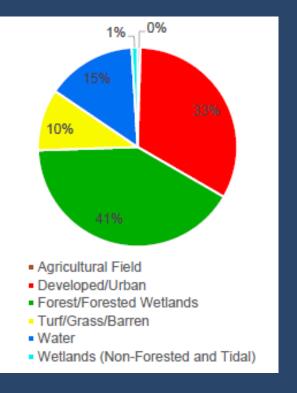


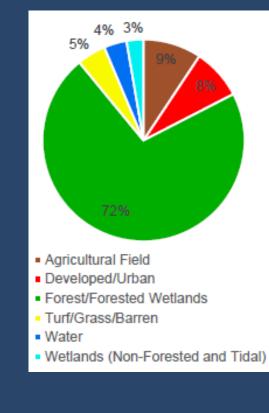


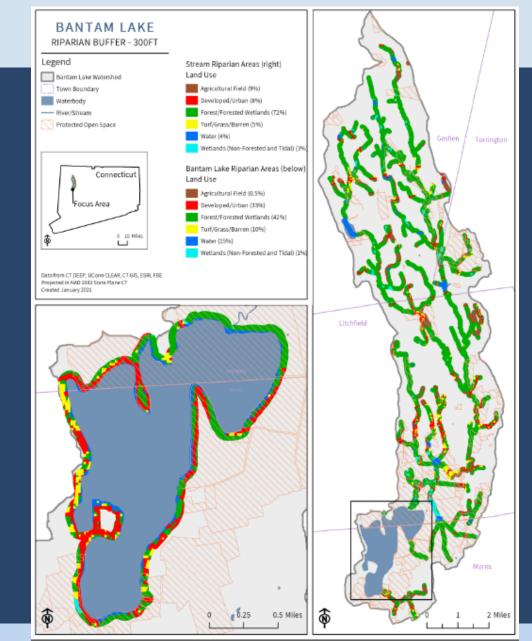
NonPoint Nutrient Sources


• NonPoint Sources

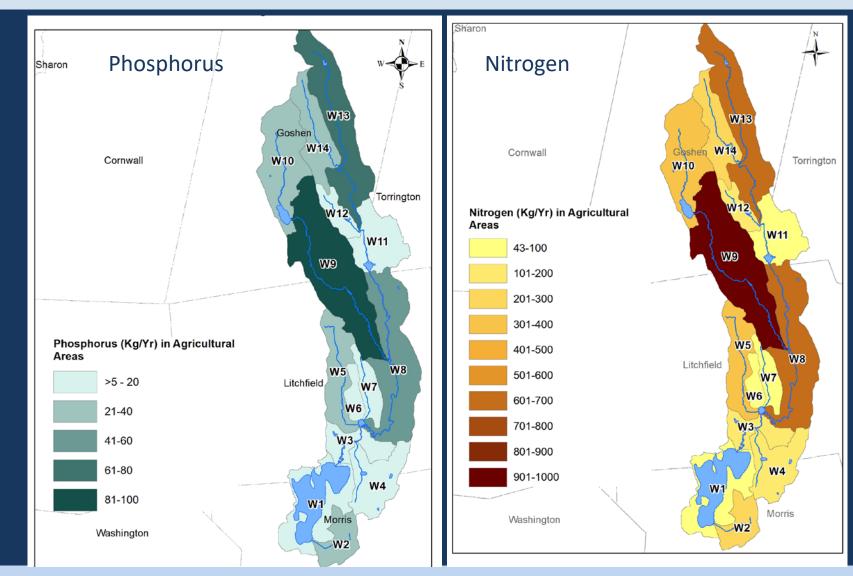
- Estimates nutrient loading from non-regulated human-based activities
- Sources
 - Current Land Use
 - Septic Systems near lake
 - Internal Nutrient Load from Lake
 - Non-regulated stormwater
- Reduction recommended, starting the land usebased sources
- Land use estimates for TN likely include internal
 Meaning within Lake



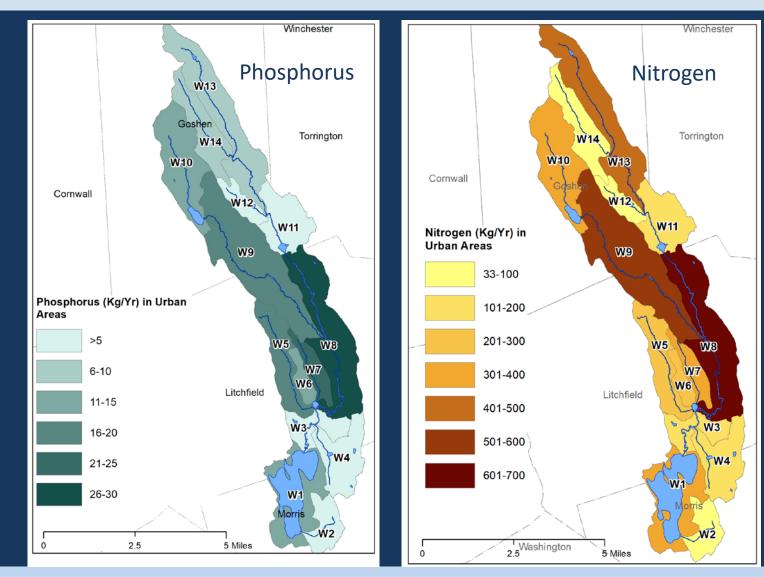

Land Use Analysis

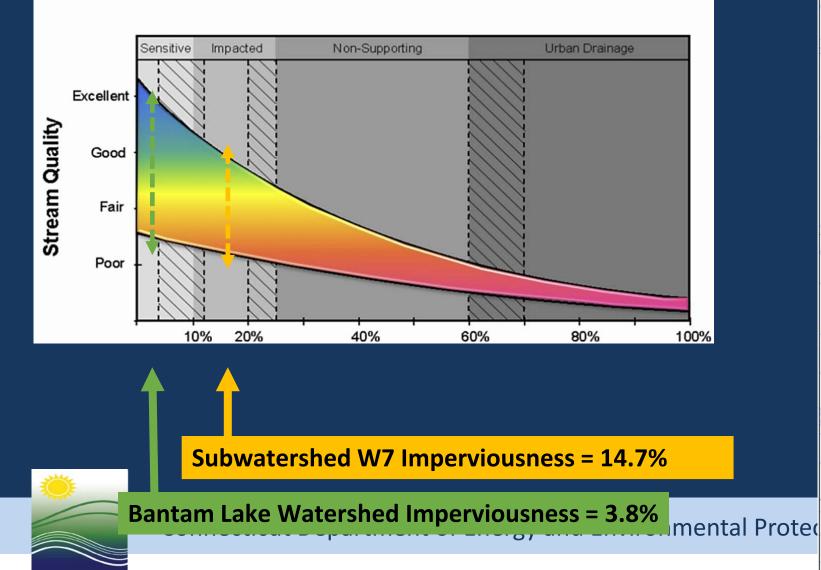

Land Use Near Waterbodies

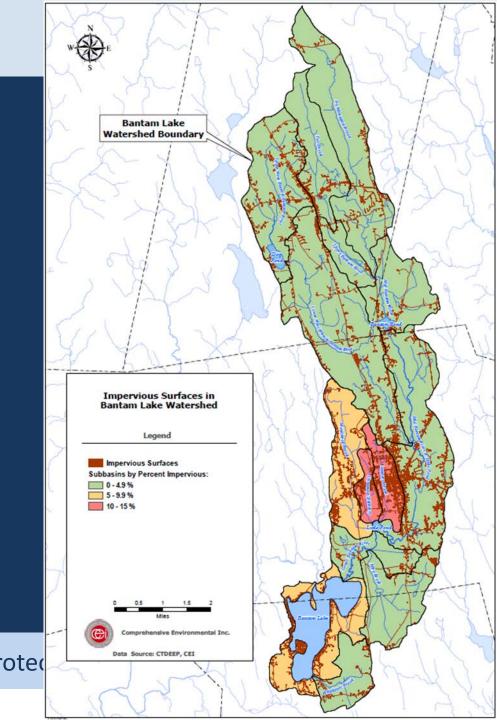
300 ft buffer around Bantam Lake


Waterbody buffers throughout watershed

Estimated Nutrient Contributions: Agricultural Land Use


Modeled nutrient contributions during wet weather


Estimated Nutrient Contributions: Developed Land Use


Modeled nutrient contributions during wet weather

Impervious Surfaces

Target Nutrient Load Analysis (kg/year)

		-
	Phosphorus	Nitrogen
Point Source	22.5	335.7
NonPoint Source	513.2	615.6
Background	614.9	18,358.1
Margin of Safety	60.6	1,016.3
Target Load for Mesotrophic Conditions	1,211.2	20,325.7

Next Step: Implementation Planning

- CT DOT MS4: Follow permit requirements
- Woodridge Lake WPCF: Treatment System Upgrade
- Septic Systems: Make sure functioning properly
- Nonpoint Source Control: Watershed Based Plan
- Internal Loading: Address after other sources have been controlled

Water Quality Planning: Watershed Based Plan for Bantam Lake: See separate slides

Public Notice Opportunity Questions/Discussion

Documents Available for Public Review

Core Document (applies Statewide)

- Contains general information on required elements for TMDLs and Watershed Based Plans
- Includes reference & resource materials to assist implementation

TMDL Appendix for Bantam Lake

Watershed Specific Appendices consistent with TMDL requirements

Watershed Plan Addendum for Bantam Lake

- Developing Watershed-Based Plan Addendum Template to streamline process
- Include EPA's 9-Element components not fully covered in Core document or TMDL Appendix
- Focus on Implementation Activities

Benefits to Communities

- Provides a holistic view of the watershed connecting the watershed and lake
- Improved water quality in watershed and lake
- Improve recreational opportunities for community
- State and federal support via funding and staff resources benefit community
- Provides a tool for community-based collaboration and action

Plan needed to address water quality issues in Bantam Lake

Public Comment Opportunity

- All three documents are available for public review and comment
- Comments due by August 19, 2021
- Comments should be submitted in writing, email preferred
- Documents available on CTDEEP Bantam Lake Watershed Project
 wobsite

Submit comments to: Sarah Hurley CT DEEP sarah.hurley@ct.gov

CTDEEP Bantam Lake Watershed Project Website

https://portal.ct.gov/DEEP/Water/ Watershed-Management/Bantam-Lake-Watershed-Projects

