



# Connecticut Department of Energy and Environmental Protection



Connecticut Department of  
**ENERGY &  
ENVIRONMENTAL  
PROTECTION**

# Addressing Nutrients in CT Lakes: Bantam Lake Project

May 13, 2020  
CTDEEP Presentation  
Teleconference with Local Stakeholders



Connecticut Department of Energy and Environmental Protection

# Agenda

- Welcome and Introductions (All)
- Overview of Bantam Lake Coalition and local activities (Connie Trolle)
- Presentation of current Bantam Lake project work (Traci lott & Erik Bedan)
- Open Discussion (All)



# Presentation Objectives

- Provide an overview of the on-going project involving Bantam Lake
  - How did the project start?
  - Goals and Objectives?
  - New approach to addressing nutrients and lakes?
  - Why Bantam Lake?
  - Components of the Project?
  - What are the benefits to the communities?
  - What role do watershed partners play?
  - Provide update on projects and activities



# How did the project start?



Both efforts include a focus on nutrients and recommend that approaches be developed to address impacts on lakes



Connecticut Department of Energy and Environmental Protection

# Nutrient Impacts on Lakes

- Identified as a focus area
- State to develop a new approach that can be applied to lakes across CT
- **Bantam Lake selected as a demonstration project for this effort**



# Why Bantam Lake?

- CT's largest natural lake
- Important public resource for swimming, water skiing, fishing, boating, other recreation
- Affected by nuisance aquatic vegetation
- Summer algal blooms beginning in July or August
- Bottom phosphorus concentration increase as dissolved oxygen decreases



Photo from Bantam Lake Protective Association  
<http://bantamlakect.com/aboutus.html>



Connecticut Department of Energy and Environmental Protection

# Why Bantam Lake?

- Strong Partnerships within the Watershed
- Long Term Monitoring Program
- Previous limnologic studies of the lake and watershed
- Public Interest in understanding and improving water quality in the watershed and the lake
- Public comments asking for DEEP to consider Bantam Lake for development of a water quality restoration plan
- EPA Interest in supporting an approach to managing nutrient impacts on lakes



Morris  
CONNECTICUT



Town of  
LITCHFIELD  
CONNECTICUT



Connecticut Department of Energy and Environmental Protection

Strong Partnerships and Local Interest means a greater likelihood of implementing projects in the future that will improve water quality and support community goals

# Project Area

Bantam Lake  
and  
contributing  
watershed



Connecticut Department of Energy



# Project Overview

## Program Development

- Develops an approach to evaluate and manage nutrient loads to CT Lakes
- Improve collaboration between TMDL and Watershed Plan

## TMDL

- Evaluate watershed and water quality
- Set water quality goals
- Provide technical support for implementation activities

## Watershed Based Plan

- Identify specific problem areas for potential BMPs
- Provide education and information to communities
- Creates a flexible plan that will support achieving water quality goals for lake



# General Project Goals

- Identify Water Quality Goal for Lake based on Trophic Level (productivity)
- Reduce frequency of Harmful Algal Blooms
- Facilitate Implementation of actions to restore water quality

## TP, TN:

- causal variables
- spring/summer data

## Chl-a, Secchi disk:

- response variables
- mid-summer data

## CT Water Quality Standards

| Trophic State    | Parameter             | Range         |
|------------------|-----------------------|---------------|
| Oligotrophic     | Total Phosphorus      | 0-10 µg/l     |
|                  | Total Nitrogen        | 0-200 µg/l    |
|                  | Chlorophyll- <i>a</i> | 0-2 µg/l      |
|                  | Secchi Disk           | 6 + meters    |
| Mesotrophic      | Total Phosphorus      | 10-30 µg/l    |
|                  | Total Nitrogen        | 200-600 µg/l  |
|                  | Chlorophyll- <i>a</i> | 2-15 µg/l     |
|                  | Secchi Disk           | 2-6 meters    |
| Eutrophic        | Total Phosphorus      | 30-50 µg/l    |
|                  | Total Nitrogen        | 600-1000 µg/l |
|                  | Chlorophyll- <i>a</i> | 15-30- µg/l   |
|                  | Secchi Disk           | 1-2 meters    |
| Highly Eutrophic | Total Phosphorus      | 50 + µg/l     |
|                  | Total Nitrogen        | 1000 + µg/l   |
|                  | Chlorophyll- <i>a</i> | 30 + µg/l     |
|                  | Secchi Disk           | 0-1 meters    |



# Improve Efficiency

Previous  
Work Flow



- Look for ways to Improve collaboration and integration between TMDL and Watershed Based Plan
- Better link between analysis and implementation
- Standard approach across the state in support of watershed specific solutions
- Provide a resource to facilitate implementation



# New Work Flow

## Core Document

### Bantam Lake

- WBP Addendum

### Appendix 2

- WBP Addendum

Integrate Project  
Elements across all  
related documents

### Core Document

- Contains general information on required elements for TMDLs and Watershed Based Plans
- Includes reference & resource materials to assist implementation

### TMDL Appendices

- Watershed Specific Appendices consistent with TMDL requirements

### WBP Addendums

- Developing Watershed-Based Plan Addendum Template
- Include 9-element components not fully covered in Core document or TMDL Appendix
- Focus on Implementation Activities



# Project Status

| Program Development                                                                                                                                                                       | TMDL                                                                                                                                                                                                                | Watershed Plan                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"><li>• Identify approach to address issue</li><li>• Secure Resources to develop approach</li><li>• Identify how to set lake management targets</li></ul> | <ul style="list-style-type: none"><li>• Develop models</li><li>• Identify Bantam Lake WQ Targets</li><li>• Run model / Evaluate Scenario</li><li>• Draft TMDL</li><li>• Public Process</li><li>• Finalize</li></ul> | <ul style="list-style-type: none"><li>• Initial Public Outreach</li><li>• Evaluate Sources</li><li>• Identify Potential Implementation Opportunities</li><li>• Draft Plan</li><li>• Public Process</li><li>• Finalize</li></ul> |

Done   In Progress   Not Yet Started





# Development of Water Quality Models for Bantam Lake



Connecticut Department of Energy and Environmental Protection

# New Watershed Based Approach to Nutrients

- **Objective:**

- Develop a watershed scale approach
- Evaluating nutrient related environmental conditions and sources
- Nitrogen & Phosphorus
- Point and Nonpoint Sources
- Nutrient effects in
  - freshwater watersheds & associated embayments
  - Lakes
- Restoration and Protection

Upland Watershed Model

Downstream Waterbody Model



# Modeling Overview

## Lake Load Response Model

- Calculate Tributary Loading

## BATHTUB

- Calculate In-Lake WQ

## Load Reduction Analysis

- Determine reductions to meet WQ Targets



# Modeling Overview

## Lake Loading Response Model



## BathTub



Connecticut Department of Energy and Environmental Protection

# What will the model do?

- **Watershed Analysis: Current Conditions**
  - Land Use Contributions
  - Watershed & Tributary Contributions
  - Watershed, Internal & Atmospheric Loads
- **Scenario Analysis: Future Conditions**
  - Provide a tool to analyze various implementation scenarios to identify potential for meeting in lake water quality targets



# Watershed Evaluation



Connecticut Department of Energy and Environmental Protection

# Watershed Based Planning Process



Connecticut Department of Energy and Environmental Protection

# Watershed Evaluation

- Contractor is asking community for information to support watershed evaluation
- Focus on identifying potential sources of nutrients
- Contractor will conduct a field visit
- Will support Best Management Practice Recommendations for voluntary actions



# Community Involvement

- Any help that community could provide to identify potential sources of nutrients in watershed would be appreciated

Emily DiFranco  
Comprehensive Environmental Inc  
Senior Scientist  
Senior Scientist  
21 Depot Street, Merrimack, NH 03054  
(Office) 603-365-4300 Ext. 422  
(Mobile) 603-343-6311  
[edifranco@ceiengineers.com](mailto:edifranco@ceiengineers.com)



# Overview



Connecticut Department of Energy and Environmental Protection

# Benefits to Communities

- Provides a holistic view of the watershed connecting the watershed and lake
- Improved water quality in watershed and lake
- Improve recreational opportunities for community
- State and federal support via funding and staff resources benefit community
- Provides a tool for community-based action



# Benefits to Communities

- Incorporates work previously done by the community
- Provides a platform collaboration between towns, community groups, residents, etc.
- Supports future funding requests by community partners under other grant programs



# Project Overview



# Thank You

- Thank you to those who have:
  - funded water quality Bantam Lake studies and monitoring
  - Worked to improve Bantam Lake for the community
  - Offered assistance to us through this current project



Morris  
CONNECTICUT



Town of  
**LITCHFIELD**  
CONNECTICUT

## Other Watershed Partners



Connecticut Department of Energy and Environmental Protection

# Project Contacts

Traci lott

[Traci.iott@ct.gov](mailto:Traci.iott@ct.gov)

Susan Peterson

[Susan.Peterson@ct.gov](mailto:Susan.Peterson@ct.gov)



Connecticut Department of Energy and Environmental Protection