Division of Fish and Wildlife
Hale Creek Field Station
182 Steele Ave Extension
Gloversville, NY 12078-5710
P: (518) 773-7318
www.dec.ny.gov

Mercury, PCBs, Organochlorine Pesticides, and PFAS Analyses of Fish Collected in 2019 from the Long Island Sound

Report number: ASU 21-12
Report date: 3/16/2021
Number of pages: 17
Analytical Services staff*
David Bryk, Shabbir Alam, Chloe Armato, Brian Buanno, John Finn, Tanya Jasewicz, Nicholas Sanges, Kyle Stevens, and Katryn Williams

Abstract

The Analytical Services Unit (ASU) at Hale Creek Field Station (HCFS) conducted chemical analyses on a total of 8 fish samples collected from the Long Island Sound. All 8 samples were analyzed for total mercury, total PCBs, selected organochlorine pesticides, and selected per- and polyfluoroalkyl substances (PFAS). Maximum contaminant levels found in the samples were $0.441 \mu \mathrm{~g} / \mathrm{g}$ for total mercury, $0.746 \mu \mathrm{~g} / \mathrm{g}$ for total PCBs, $0.0741 \mu \mathrm{~g} / \mathrm{g}$ for total DDT, $0.0272 \mu \mathrm{~g} / \mathrm{g}$ for total chlordanes, $1.00 \mathrm{ng} / \mathrm{g}$ for perfluoroundecanoic acid (PFUnA), and $2.44 \mathrm{ng} / \mathrm{g}$ for perfluorooctane sulfonamide (PFOSA). Levels were below detection limits for 2,4'DDE, 2,4'-DDT, heptachlor, heptachlor epoxide, oxychlordane, trans-chlordane, aldrin, photomirex, mirex, hexachlorocyclohexanes, hexachlorobenzene, perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonic acid (PFBS), perfluorohexane sulfonate (PFHxS) and perfluorooctanesulfonic acid (PFOS).

[^0]

SAMPLE INFORMATION

This report consists of results of analyses of 8 fish samples collected in 2019 from the Long Island Sound for the Toxic Substance Monitoring Program. The fish collected were 8 Striped Bass (STB). The fish were collected by Kurt Gottschall, David Ellis, and Deb Pacileo from Connecticut Department of Energy and Environmental Protection. Collection records for all samples are attached at the end of this report.

LABORATORY METHODS

The ASU analyzed all 8 samples for total mercury, total PCBs, selected organochlorine pesticides, and selected PFAS. The ASU Lab Numbers assigned to the samples were 19-1045-H through 19-1052-H. The ASU program name assigned to the samples was LISound-2019.

Sample preparation. Samples were transported to HCFS where they were stored at $-20^{\circ} \mathrm{C}$ or colder. The samples were prepared for analysis in accordance with HCFS Standard Operating Procedure (SOP) PrepLab4. All samples were dissected, ground, and homogenized at HCFS.

Mercury analysis. Samples were analyzed for total mercury in fish tissue by thermal decomposition, amalgamation and atomic absorption spectrophotometry using a Milestone Tri-Cell Direct Mercury Analyzer, DMA-80 [HCFS SOP HC-405 (Total Mercury)]. The method is based on EPA method 7473 Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation and Atomic Absorption Spectrophotometry (2007).

PCB/pesticides analysis. Samples were analyzed for PCBs and selected organochlorine pesticides by capillary GC-ECD [HCFS SOP OC1.108 (Organochlorine Residues)]. At least ten percent of the samples were qualitatively confirmed by capillary GC-MS. Prior to analysis, each sample was freeze-dried and soxhlet-extracted with hexane/acetone (1:1), followed by a florisil cleanup step. All samples were analyzed for three PCB Aroclors (Aroclors 1242 and sum of Aroclors 1254/1260) and 19 organochlorine pesticides and metabolites (4,4'-DDE; 4,4'-DDD; 4,4'-DDT; 2,4'-DDE; 2,4'-DDT; heptachlor; heptachlor epoxide; transchlordane; cis-chlordane; trans-nonachlor; cis-nonachlor; oxychlordane; aldrin; photomirex; mirex; HCB; alpha-HCH; beta-HCH; and gamma-HCH). The method is based on FDA Pesticide Analytical Manual Vol. 1, $3^{r d}$ edition, Sections 202, 203 and 304.

PFAS analysis. Samples were analyzed for selected PFAS by LC/MS/MS using isotopic dilution [HCFS SOP HC-511 (PFAS)]. Prior to analysis, each sample was extracted with 0.05 N KOH in methanol followed by ENVI-Carb and SPE cleanup steps. All samples were analyzed quantitatively for 11 PFAS (7 carboxylic acids: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, and PFDoA; 3 sulfonic acids: PFBS, PFHxS, and PFOS; 1 sulfonamide: PFOSA). Samples were also qualitatively monitored for an additional 11 PFAS (PFTrA, PFTeA, PFPeS, PFHpS, PFNS, PFDS, N-MeFOSAA, N-EtFOSAA, 4:2 FTS, 6:2 FTS, and 8:2 FTS). The method was developed using guidance from the Department of Defense and Department of Energy consolidated Quality Systems Manual for Environmental Laboratories Version 5.3 and EPA method 533: Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid-Chromatography/Tandem Mass Spectrometry.

LABORATORY RESULTS

Results are contained in the following tables:

- Table 1: Sample collection, preparation information, and concentration of Mercury in $\mu \mathrm{g} / \mathrm{g}$ wet weight;
- Table 2: Percent moisture, percent lipid, and concentrations of PCBs and DDT in $\mu \mathrm{g} / \mathrm{g}$ wet weight;
- Table 3: Concentrations of Chlordane in $\mu \mathrm{g} / \mathrm{g}$ wet weight;
- Table 4: Concentrations of PFAS in ng / g wet weight.

In each table, the rows are ordered by lab number.
Concentrations were below the detection limit for 2,4'-DDE, 2,4'-DDT, heptachlor, heptachlor epoxide, oxychlordane, trans-chlordane, aldrin, photomirex, mirex, hexachlorocyclohexanes, hexachlorobenzene, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFDoA, PFBS, PFHxS, and PFOS.

All sample information and results are also contained in file "REP 21-12 (LISound-2019).xlsx", formatted in Excel. General information and a data dictionary for the tables and the Excel file are shown in Appendix A. The quality control procedures and quality control results for these analyses are described in Appendix B. The method detection limit (MDL) for each analyte is listed in Table B1 (Appendix B).

Table 1: Sample Collection, Preparation Information, and Concentration of Mercury in $\mu \mathrm{g} / \mathbf{g}$ in Fish Collected from the Long Island Sound in 2019

LABNO	TAGNO	SPP	SDATE	LOCATION	PREP	LENMM	WGTG	PROGRAM	Hg
19-1045-H	0997375	STB	20191016	Long Island Sound	SF	931	6770	LISound-2019	0.343
19-1046-H	FA2019044-1	STB	20191008	Long Island Sound	SF	782	3835	LISound-2019	0.224
19-1047-H	FA2019044-2	STB	20191008	Long Island Sound	SF	751	3505	LISound-2019	0.155
19-1048-H	FA2019044-3	STB	20191008	Long Island Sound	SF	856	5860	LISound-2019	0.441
19-1049-H	FA2019044-4	STB	20191008	Long Island Sound	SF	834	4730	LISound-2019	0.401
19-1050-H	FA2019044-5	STB	20191008	Long Island Sound	SF	972	8115	LISound-2019	0.164
$19-1051-\mathrm{H}$	FA2019044-6	STB	20191008	Long Island Sound	SF	900	6490	LISound-2019	0.364
19-1052-H	0997393	STB	20191016	Long Island Sound	SF	1034	12130	LISound-2019	0.353

Note: See Appendix A for general information and a data dictionary for this table.

Table 2: Percent Moisture, Percent Lipid, and Concentrations of PCBs and DDT in $\mu \mathrm{g} / \mathrm{g}$ in Fish Collected the Long Island Sound in 2019

LABNO	TAGNO	SPP	PCTMOIST	PCTLPD	PCB Aroclors			DDT and metabolites					
					AR1242	AR125460	TPCB	PPDDE	PPDDD	PPDDT	OPDDE	OPDDT	TDDT
19-1045-H	0997375	STB	79.58	0.83	0.0158	0.131	0.147	0.0107	-0.002	-0.002	-0.005	-0.005	0.0107
19-1046-H	FA2019044-1	STB	78.23	1.09	0.0156	0.213	0.229	0.0107	-0.002	-0.002	-0.005	-0.005	0.0107
19-1047-H	FA2019044-2	STB	77.93	1.80	0.0199	0.115	0.135	0.00743	-0.002	-0.002	-0.005	-0.005	0.00743
19-1048-H	FA2019044-3	STB	79.82	0.46	0.0336	0.138	0.172	0.0134	-0.002	-0.002	-0.005	-0.005	0.0134
19-1049-H	FA2019044-4	STB	79.18	0.99	0.0832	0.406	0.489	0.0197	0.00439	0.00314	-0.005	-0.005	0.0272
19-1050-H	FA2019044-5	STB	76.35	4.78	0.0854	0.307	0.392	0.0266	0.00853	0.00284	-0.005	-0.005	0.0380
19-1051-H	FA2019044-6	STB	74.75	6.37	0.0798	0.629	0.709	0.0475	0.0104	0.00512	-0.005	-0.005	0.0630
19-1052-H	0997393	STB	70.12	10.49	0.111	0.635	0.746	0.0560	0.0129	0.00518	-0.005	-0.005	0.0741

Note: See Appendix A for general information and a data dictionary for this table.

Table 3: Concentrations of Chlordane in $\mu \mathrm{g} / \mathrm{q}$ in Fish Collected from the Long Island Sound in 2019

LABNO	TAGNO	SPP	Chlordanes					
			OXYCHLOR	TRANSCHL	CISCHL	TRANSNON	CISNON	TCHL
$19-1045-H$	0997375	STB	-0.005	-0.005	-0.005	-0.005	-0.005	0.00000
$19-1046-H$	FA2019044-1	STB	-0.005	-0.005	-0.005	-0.005	-0.005	0.00000
$19-1047-H$	FA2019044-2	STB	-0.005	-0.005	-0.005	-0.005	-0.005	0.00000
$19-1048-H$	FA2019044-3	STB	-0.005	-0.005	-0.005	-0.005	-0.005	0.00000
$19-1049-H$	FA2019044-4	STB	-0.005	-0.005	-0.005	-0.005	-0.005	0.00000
$19-1050-H$	FA2019044-5	STB	-0.005	-0.005	-0.005	-0.005	-0.005	0.00000
$19-1051-H$	FA2019044-6	STB	-0.005	-0.005	0.00697	0.00866	0.00546	0.0211
$19-1052-H$	0997393	STB	-0.005	-0.005	0.00912	0.0116	0.00649	0.0272

Note: See Appendix A for general information and a data dictionary for this table.

Table 4: Concentration of PFAS in ng/g in Fish Collected from the Long Island Sound in 2019

LABNO	TAGNO	SPP	PFAS										
			PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFBS	PFHxS	PFOS	PFOSA
19-1045-H	0997375	STB	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-2.00	-2.00	-2.00	-2.00
19-1046-H	FA2019044-1	STB	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-2.00	-2.00	-2.00	-2.00
19-1047-H	FA2019044-2	STB	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-2.00	-2.00	-2.00	-2.00
19-1048-H	FA2019044-3	STB	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	-1.00	-2.00	-2.00	-2.00	-2.00
19-1049-H	FA2019044-4	STB	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-2.00	-2.00	-2.00	2.44
19-1050-H	FA2019044-5	STB	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-2.00	-2.00	-2.00	-2.00
19-1051-H	FA2019044-6	STB	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-2.00	-2.00	-2.00	-2.00
19-1052-H	0997393	STB	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-2.00	-2.00	-2.00	-2.00

Note: See Appendix A for general information and a data dictionary for this table.

APPENDIX A

General information for using tables and electronic file: "REP 21-12 (LISound-2019).xlsx"

1. Chemical concentrations are reported in $\mu \mathrm{g} / \mathrm{g}(\mathrm{ppm})$ and $\mathrm{ng} / \mathrm{g}(\mathrm{ppb})$ wet weight.
2. The results are reported to no more than three significant figures.
3. A negative concentration indicates the concentration was below the MDL. The number following the negative sign is the MDL.

Data dictionary for tables and electronic file: "REP 21-12 (LISound-2019).xlsx"

1. LABNO - unique sample lab number assigned at Hale Creek Field Station (character)
2. TAGNO - sample identifier assigned at time of collection and contained in collection records (character)
3. SPP - species code; STB=Striped Bass (character)
4. SDATE - date sample was collected; format is YYYYMMDD (numeric)
5. LOCATION - location where sample was collected (character)
6. AGE - age of fish in years, if determined (numeric)
7. SEX - sex of fish, if determined; $M=$ male; $F=$ female (character)
8. PREP - preparation method; $\mathrm{SF}=$ standard fillet, $\mathrm{W}=$ whole fish; $\mathrm{W}-\mathrm{HV}=$ whole fish minus the head and viscera (character)
9. LENMM - fish length in mm ; mean length in mm if sample is composite (numeric)
10. WGTG - fish weight in g ; total weight in g if sample is composite (numeric)
11. PROGRAM - program name assigned by Hale Creek Field Station (character)
12. MAXLEN - maximum fish length in mm if sample is composite (numeric)
13. MINLEN - minimum fish length in mm if sample is composite (numeric)
14. SDLEN - standard deviation of fish length in mm if sample is composite (numeric)
15. MAXWGT - maximum fish weight in g if sample is composite (numeric)
16. MINWGT - minimum fish weight in g if sample is composite (numeric)
17. SDWGT - standard deviation of fish weight in g if sample is composite (numeric)
18. NOANLY - number of individuals in sample; if NOANLY is greater than 1 , then sample is composite (numeric)
19. PCTMOIST - percent moisture in sample (numeric)
20. PCTLPD - percent lipid in sample (numeric)
21. Hg - mercury (numeric)
22. AR1242 - Aroclor 1242 (numeric)
23. AR125460 - sum of Aroclors 1254 and 1260 (numeric)
24. TPCB - total PCBs; sum of AR1242 and AR125460 (numeric)
25. PPDDE - 4,4'-DDE (numeric)
26. PPDDD - 4,4'-DDD (numeric)
27. PPDDT - 4,4'-DDT (numeric)
28. OPDDE -2,4'-DDE (numeric)
29. OPDDT-2,4'-DDT (numeric)
30. TDDT - total DDT; sum of PPDDE, PPDDD, PPDDT, OPDDE and OPDDT (numeric)
31. HEPT - heptachlor (numeric)
32. HEPTEPOX - heptachlor epoxide (numeric)
33. THEPT - total heptachlor; sum of HEPT and HEPTEPOX (numeric)
34. OXYCHLOR - oxychlordane (numeric)
35. TRANSCHL - trans-chlordane (numeric)
36. CISCHL - cis-chlordane (numeric)
37. TRANSNON - trans-nonachlor (numeric)
38. CISNON - cis-nonachlor (numeric)
39. TCHL - total chlordanes; sum of OXYCHLOR, TRANSCHL, CISCHL, TRANSNON and CISNON (numeric)
40. ALDRIN - aldrin (numeric)
41. MIREX - mirex (numeric)
42. PHOMIREX - photomirex (numeric)
43. TMIREX - total mirex; sum of MIREX and PHOMIREX (numeric)
44. AHCH- α-hexachlorocyclohexane; α-BHC; α-benzene hexachloride (numeric)
45. $\quad \mathrm{BHCH}-\beta$-hexachlorocyclohexane; β-BHC; β-benzene hexachloride (numeric)
46. GHCH - y-hexachlorocyclohexane; y-BHC; y-benzene hexachloride; lindane (numeric)
47. THCH - total HCH; sum of AHCH, BHCH and GHCH (numeric)
48. HCB - hexachlorobenzene (numeric)
49. PFHxA - Perfluorohexanoic acid (numeric)
50. PFHpA - Perfluoroheptanoic acid (numeric)
51. PFOA - Perfluorooctanoic acid (numeric)
52. PFNA - Perfluorononanoic acid (numeric)
53. PFDA - Perfluorodecanoic acid (numeric)
54. PFUnA - Perfluoroundecanoic acid (numeric)
55. PFDoA - Perfluorododecanoic acid (numeric)
56. PFBS - Perfluorobutanesulfonic acid (numeric)
57. PFHxS - Perfluorohexanesulfonic acid (numeric)
58. PFOS - Perfluorooctanesulfonic acid (numeric)
59. PFOSA - Perfluorooctane sulfonamide (numeric)

APPENDIX B

Quality control for mercury

To determine mercury concentration, each sample was analyzed twice (two separate aliquots of the same homogenate) and the average was reported.

The quality control for mercury included analyses of, at minimum, one reference material sample, one laboratory duplicate, and one method blank for every 20 samples. For the reported analyses, there was one method blank, four reference material samples, and one duplicate sample. The reference materials were one SRM 2976, two SRM 1947, and two DORM-4 Dogfish Muscle from NRC, Canada. For each laboratory duplicate analysis, four aliquots of the same homogenate were analyzed; the first and second aliquots were averaged and the third and fourth aliquots were averaged, and the absolute value of the relative percent difference (|RPD|) of the two averages was determined. The reference material sample and laboratory duplicate results were used to determine accuracy and precision, respectively, of the fish tissue sample results. The procedure blank (laboratory water used during the analysis procedure) was analyzed to determine potential contamination of fish tissue samples.

Criteria for control limits for mercury were based on recommended control limits in Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1, $3^{r d}$ edition (USEPA Office of Water, November 2000) with more stringent modifications as recommended by the instrument manufacturer. Control limits for accuracy were percent recovery $=$ 90-110 percent. The control limit for precision was the relative percent difference (RPD) of laboratory duplicate analyses ≤ 20 percent. The MDL was used to assess potential contamination. The statistically derived MDL was $0.004 \mu \mathrm{~g} / \mathrm{g} \mathrm{Hg}$ wet weight.

Total mercury in the method blank was below the MDL. The percent recovery of total mercury from the reference material was 100 percent for DORM-4; 100 percent for SRM 2976, and 98.8 percent for SRM 1947. The RPD for the laboratory duplicate was 10.5 percent.

Quality control for PCBs/organochlorine pesticides

To better assess the overall accuracy and precision of the large number of organic analytes that are measured, a quality control summary is presented for the analysis dates of August 06, 2020 through October 14, 2020 includes the analyses of fish from the Long Island Sound in 2019. The quality control for this period included analyses of seven matrix spikes, six reference materials (six HRM), seven laboratory duplicates, and six method blanks. One matrix spike, reference material, laboratory duplicate, and method blank were analyzed for every 20 samples. The matrix spikes, reference material samples, and laboratory duplicates were used to determine accuracy and precision of the fish tissue sample results. The method blanks (solvent carried through the entire extraction, clean-up and analysis procedure) were used to determine potential contamination of the fish tissue samples.

Criteria for control limits were based on recommended control limits in Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1, 3rd edition (USEPA Office of Water, November 2000). Control limits for accuracy were percent recovery $=50-150$ percent. The control limit for precision was relative standard deviation (RSD) ≤ 50 percent. The MDL was used to assess potential contamination.

The control limit for accuracy was determined to be exceeded for an analyte in the study if the mean percent recovery from the matrix spikes or reference material was outside 50-150 percent (see Table B1).

The control limit for precision was determined to be exceeded for an analyte in the study if the RSD of any of the following measures was greater than 50 percent (see Table B1):

- RSD of replicate analyses of matrix spikes or
- RSD of replicate analyses of the reference material or
- mean RSD of laboratory duplicate.

All analytes in the method blanks were below the MDL. The MDLs for the analytes are listed in Table B1.

Quality control for PFAS

The quality control for PFAS included analyses of, at minimum, one reference material sample, one laboratory control sample, one laboratory duplicate, and one method blank for every extraction batch of up to 20 samples. For the reported analyses, there were one method blank, one reference material sample, one laboratory control sample and one duplicate sample. The reference material was one SRM 1947. The reference material samples, laboratory control samples, and laboratory duplicate results were used to determine accuracy and precision of the fish tissue sample results. The method blanks (laboratory water used during the analysis procedure) were analyzed to determine potential contamination of fish tissue samples. Criteria for control limits for PFAS were based on recommended control limits in EPA method 533: Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid-Chromatography/Tandem Mass

Spectrometry. Control limits for accuracy were percent recovery $=70-130$ percent. The control limit for precision was the relative percent difference (RPD) of laboratory duplicate analyses ≤ 30 percent. The MDL was used to assess potential contamination.

The control limit for accuracy was determined to be exceeded for an analyte in the study if the percent recovery from the laboratory control sample or reference material was outside 70-130 percent (see Table B2).

The control limit for precision was determined to be exceeded for an analyte in the study if the RSD of any of the following measures was greater than 30 percent (see Table B2).

All analytes in the method blanks were below the MDL. The MDLs for the analytes are listed in Table B2.

Summary of quality control

All quality assurance was within control limits for accuracy, precision, and potential contamination in ASU Report 21-12.

Table B1: Percent Recovery, Precision, and MDLs of PCB Aroclors and Organochlorine Pesticides in Seven Matrix Spikes, Six Reference Material Samples, and Seven Pairs of Laboratory Duplicates Analyzed at Hale Creek Field Station (August 06, 2020 through October 14, 2020).

ANALYTE	MATRIX SPIKE		REFERENCE MATERIAL *		LABORATORY DUPLICATES **		$\begin{aligned} & \text { MDL } \\ & (\mathrm{ng} / \mathrm{g}) \end{aligned}$
	$\begin{gathered} \text { MEAN } \\ \text { \%R } \end{gathered}$	RSD (\%)	$\begin{gathered} \text { MEAN } \\ \text { \%R } \end{gathered}$	RSD (\%)	$\begin{aligned} & \text { \# of } \\ & \text { PAIRS } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { RSD \% } \end{aligned}$	
Aroclor 1242	106	4.72	-	-	6	6.05	10
Aroclor 1254/1260	108	2.78	-	-	6	7.51	30
SUM Aroclor			114	5.02			-
4,4'-DDE	111	3.98	-	-	7	7.18	2
4,4'-DDD	111	5.42	-	-	6	9.44	2
4,4'-DDT	109	6.29	-	-	6	11.5	2
2,4'-DDE	116	3.84	-	-	-	-	5
2,4'-DDT	111	5.58	-	-	-	-	5
Heptachlor	104	9.38	-	-	-	-	5
Heptachlor epoxide	104	3.36	-	-	-	-	5
trans-Chlordane	103	5.64	-	-	-	-	5
cis-Chlordane	107	4.20	-	-	-	-	5
trans-Nonachlor	107	5.53	-	-	1	7.63	5
cis-Nonachlor	96.6	4.25	-	-	-	-	5
Oxychlorodane	105	3.69	-	-	-	-	5
Aldrin	84.5	9.22	-	-	-	-	5
Photomirex	105	4.04	-	-	-	-	5
Mirex	101	4.36	-	-	-	-	2
alpha- HCH	87.1	19.1	-	-	-	-	5
beta- HCH	97.5	16.10	-	-	-	-	5
gamma-HCH	91.3	10.37	-	-	-	-	5
HCB	79.2	11.2	-	-	1	9.20	2

*Reference material for SUM Aroclor was HRM ($\mathrm{N}=6$).
**Laboratory duplicate RSDs were only used to calculate a mean RSD when the result for each sample in the pair was greater than the MDL.

Table B2: Percent Recovery, Precision, and MDLs of Per- and Polyfluoroalkyl Substances in One Laboratory Control Spike, One Reference Material Sample, and One Pairs of Laboratory Duplicate Analyzed at Hale Creek Field Station for Fish Collected from the Long Island Sound in 2019.

ANALYTE	LABORATORY CONTROL SAMPLE		REFERENCE MATERIAL		LABORATORY DUPLICATES **		$\begin{aligned} & \text { MDL } \\ & (\mathrm{ng} / \mathrm{g}) \end{aligned}$
	$\begin{gathered} \text { MEAN } \\ \text { \%R } \end{gathered}$	RSD (\%)	$\begin{gathered} \text { MEAN } \\ \text { \%R } \end{gathered}$	RSD (\%)	$\begin{gathered} \text { \# of } \\ \text { PAIRS } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { RSD \% } \end{aligned}$	
PFHxA	122\%	-	-	-	-	-	1
PFHpA	121\%	-	-	-	-	-	1
PFOA	119\%	-	-	-	-	-	1
PFNA	123\%	-	-	-	-	-	1
PFDA	126\%	-	-	-	-	-	1
PFUnA	125\%	-	-	-	-	-	1
PFDoA	124\%	-	-	-	-	-	1
PFBS	111\%	-	-	-	-	-	2
PFHxS	80.1\%	-	-	-	-	-	2
PFOS	102\%	-	89.2\%	-	-	-	2
PFOSA	102\%	-	-	-	-	-	2

*Reference material for PFOS was SRM 1947 ($\mathrm{N}=1$).
**Laboratory duplicate RSDs were only used to calculate a mean RSD when the result for each sample in the pair was greater than the MDL.

APPENDIX C: Chain of Custody and Collection Records

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

 CHAIN OF CUSTODY

Said sample (s) were in my possession and handled according to standard procedures provided to me prior to collection. The samples) were placed in the custody of a representative of the New York State Department of Environmental Conservation o

Cutin Crab
 , received the above mentioned samples) on the date specified and assigned identification numbers) \qquad
\qquad to the sample (s). I have recorded pertinent data for the samples) on the attached collection records. The samples) remained in my custody until subsequently transferred, prepared or shipped at times and on dates as attested to below.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF FISH AND WECORD
FISH COLLECTION RECO

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
 CHAIN OF CUSTODY

I, Cutin Cu<compat>...
 .received the above mentioned samples) on the date specified and assigned identification numbers) FA $2019044-1 \rightarrow 6$ \qquad to the samples). I have recorded pertinent data for the samples) on the attached collection records. The samples) remained in my custody until subsequently transferred, prepared or shipped at times and on dates as attested to below.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF FISH AND WILDLIFE
FISH COLLECTION RECORD

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION CHAIN OF CUSTODY

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF FISH AND WILDLIFE
FISH COLLECTION RECORD

[^0]: * For more information, please contact David Bryk at David.Bryk@dec.ny.gov or phone (518) 773-7318.

