SAMPLING PLAN

Natchaug River and Quinebaug River PFAS Contamination Study: Fish Tissue Collection & Analysis Plan

October 2019

CT DEEP WATER PROTECTION & LAND REUSE BUREAU Water Planning and Management Division 79 Elm Street

Hartford, CT 06106

Meghan Lally, CT DEEP Project Lead

Christopher J. Bellucci, CT DEEP Project Supervisor – Water Monitoring Unit

Brian Eltz, CT DEEP Field Crew Supervisor

Mike Beauchene, CT DEEP Project Supervisor – Fisheries Division

1

TABLE OF CONTENTS

1.0	INTR	NTRODUCTION			
2.0	PROJ	ECT OV	ERVIEW	3	
	2.1	Study C	Dbjectives	3	
	2.2		ng Locations		
		2.2.1	Natchaug River Site History	4	
			Quinebaug River Site History		
	2.3	Target	Species and Numbers	5	
3.0	PROJ	ECT OR	GANIZATION	5	
4.0	FIELI	O SAMP	LING METHODS	6	
	4.1	Standar	d Cross-Contamination Precautions	7	
		4.1.1	Personal Care Products (PCPs)	7	
		4.1.2	Field Clothing and Personal Protective Equipment (PPE)	7	
			Food and Beverage Consumption		
		4.1.4	Standard Electrofishing Sampling Equipment	8	
			Standard Precautions Documentation		
	4.2	Fish Co	ollection & Documentation	8	
		4.2.1	Special Fish Handling Requirements	8	
		4.2.2	Fish Dispatch	9	
		4.2.3	Labelling and Documentation	9	
		4.2.4	Field Measurements	9	
		4.2.5	Sample Transport	10	
5.0	FIELI	O SAFET	Ύ	10	
6.0	SAM	PLE PRC	CESSING, PRESERVATION & SHIPMENT	10	
	6.1	Sampli	ng Preservation & Holding	10	
	6.2	Sample	Shipment	10	
7.0	SAM	PLE PRC	CESSING & ANALYSIS	11	
	7.1	Sample	Summary	11	
	7.2	Sample	Processing	11	
	7.3	Laborat	tory Analytical Methods	11	
	7.4	Quality	Control and Quality Assurance Samples	11	
	7.5		eview and Reporting		
8.0	REFE	RENCES	5	12	

APPENDICES

Appendix A: Monitoring Location Maps

Appendix B: PFAS Sampling Quick Reference Field Guide

Appendix C: Tissue Collection Field Chain of Custody

Appendix D: Summarized SGS Axys Sample Preparation Procedures

Appendix E: SGS Axys Analysis Method MLA-110 Details and Analyte List

Appendix F: SGS Axys Shipping Chain of Custody

1.0 INTRODUCTION

Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that have been manufactured and used in the United States since the 1950s. Several thousand PFAS are known, however perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are the most extensively studied.

PFAS are characterized by strong fluorine-carbon bonds, which give them unique physical and chemical properties including extreme thermal and chemical stability, and oil, grease, and water repellency. Their use is widespread in American consumer products, including non-stick cookware, water-proof clothing, and stain-resistant carpets and upholstery. PFAS have also been widely used in industrial processes including wire manufacturing, metal plating, and the manufacturing of many industrial surfactants, resins, molds and plastics.

The downside to these unique physical and chemical properties is that PFAS are "forever chemicals"; they are resistant to degradation and are therefore persist in the environment long after they are released. PFAS are also highly mobile; they can travel long distances, move through soil, seep into groundwater, and/or be carried through air. Given their extensive use in products and industrial processes, both landfill leachate and wastewater treatment plant discharges are potential sources of PFAS release to the environment. There is also growing concern regarding the application of biosolids to agricultural lands and the use of aqueous film-forming foams (AFFF) in firefighting processes, both of which can lead to direct contamination to the soil as well as PFAS-contaminated stormwater runoff entering nearby waterbodies.

Unfortunately, there is also a growing body of evidence that suggests exposure to PFAS can lead to adverse human health effects. Because PFAS have the ability to bioaccumulate and to biomagnify, consumption of fish has been identified as a human exposure pathway of particular concern. The Connecticut Department of Energy and Environmental Protection (CT DEEP), in partnership with the Connecticut Department of Public Health (CT DPH), therefore seeks to characterize levels of PFAS in fish tissue collected from Connecticut waterbodies in order to inform fish consumption advisories.

2.0 **PROJECT OVERVIEW**

The sampling and analysis described in this plan will be conducted by the Connecticut Department of Energy and Environmental Protection (CT DEEP) Water Monitoring Unit in cooperation with the CT DEEP Fisheries Division and the Connecticut Department of Public Health (DPH) Environmental Health Section. The scope of this document includes the collection, handling, and shipment of the fish tissue specimens.

2.1 Study Objectives

The objective of this sampling program is to collect representative fish tissue samples from two locations in Connecticut. The samples collected will be delivered to an independent analytical laboratory for analysis of polyfluoroalkyl substance (PFAS) levels. The results of this analysis will be used to inform local fish consumption advisories.

2.2 Sampling Locations

Fish tissue samples will be collected from the Natchaug River and the Quinebaug River at the following two locations:

- 1. Natchaug River (Windham, CT) upstream of the confluence with the Willimantic River, in the vicinity of the former Eastern CT fire training facility.
- 2. Quinebaug River (Putnam, CT) between the Little River confluence and Route 44

	Station				Potential
Waterbody	ID	Municipality	Latitude	Longitude	Source
Natchaug	14313	Windham,	41.7155	-72.1941	AFFF
River		CT			firefighting
					foam
Quinebaug	17298	Putnam, CT	41.9129	-71.9121	Industrial
River					discharges
					_

Table 1. Sampling Locations

These two waterbodies were selected for study as a result of their site history, which indicates a high potential for PFAS contamination. Both sites are located in urbanized areas. Detailed site maps are included as Figures 1-4 in Appendix A.

2.2.1 Natchaug River Site History

The selected Natchaug River study site is located in an urbanized area of Windham, CT in the vicinity of the former Willimantic Regional Fire School. The school was constructed on leased property immediately upstream of the river's confluence with the Willimantic River in 1954 and served for decades as the primary training grounds for municipal departments in Tolland, Windham and New London Counties (49 towns). The use of aqueous film-forming foam (AFFF), a known source of PFAS, was used on the property throughout this period to support training activities. Consequently, testing was conducted in late 2018 to address concerns regarding the possibility of PFAS contamination to two public water systems and a residential well in the vicinity of the school. Testing results indicated contamination in the latter, prompting the discontinuation of its use. Testing has not been conducted to evaluate potential PFAS levels in fish tissue, despite the river being a well-used recreational fishery.

2.2.2 Quinebaug River Site History

The Quinebaug River study site is located upstream of the confluence with the Little River, in an urbanized area of Putnam, CT. Several industrial dischargers, with potential for PFAS contamination in their releases, currently and historically operated in the vicinity of this location. No known studies have been conducted to-

date to assess levels of potential PFAS contamination in the area. The river is a well-known recreational fishery as well.

2.3 Target Species, Size and Numbers

Fish consumption advisories in Connecticut have traditionally been based on analysis of the contaminant of concern within a bottom-dwelling species and a predator-species following U.S. EPA guidelines (USEPA 2000). For the latter, when possible, a gamefish species such as trout or black bass is targeted. This same strategy will be employed for this study.

White sucker (*Catostomus commersonii*) and smallmouth bass (*Micropterus dolomieu*) will be targeted for collection. In the event that these species cannot be obtained in sufficient numbers or size, largemouth bass (*Micropterus salmoides*) or yellow perch (*Perca flavescens*) may be substituted for the predator species. Fallfish (*Semotilus corporalis*) may be substituted for the bottom dwelling species.

Because the analysis will be used to support fish consumption advisories, fish of legal harvest length and comparable size will be targeted, with a minimum total length of 150 mm required to retain a fish for analysis. Maximum total length for each species should not exceed the following values if possible:

Species		Length hes)	Total Length (mm)		
species	Minimum	Maximum	Minimum	Maximum	
Smallmouth Bass	6	20	150	500	
Largemouth Bass	6	18	150	450	
Yellow Perch	6	15	150	375	
White Sucker	6	20	150	500	
Fallfish	6	15	150	375	

Table 2. Target Species and Total Length Ranges

Field staff will be given the target of 10 fish per species at each location, to achieve an overall study goal of 40 fish. If field crews are unsuccessful at obtaining 10 fish of a single species within the ranges noted above, the project lead will determine which fish to retain, if any, for analysis.

Fish with abnormal deformities or other obvious health issues should not be included in the study.

3.0 PROJECT ORGANIZATION

Table 1 lists key personnel involved in project organization, field sampling, chemical analyses, and data quality assurance. This list also represents the project

distribution list.

Table 3.	Kev	Project	Personnel
I unic of	ALC.	I I U JUUU	I CISOINTCI

Name	Title	Organization	Contact Information		
Meghan Lally	Environmental Analyst	CT DEEP	860-424-3061		
*Project Lead		Water Monitoring Unit	Meghan.lally@ct.gov		
Chris Bellucci	Supervising	CT DEEP	860-424-3735		
*QA Officer	Environmental Analyst	Water Monitoring Unit	Christopher.bellucci@ct.gov		
Traci Iott	Supervising	CT DEEP	860-424-3082		
	Environmental Analyst	Water Quality Unit	Traci.iott@ct.gov		
Philip Trowbridge	Assistant Division	CT DEEP	860-424-3718		
	Director	Water Planning & Management Division	Philip.trowbridge@ct.gov		
Brian Eltz	Fisheries Biologist	CT DEEP	860-424-3406		
		Fisheries Division	Brian.eltz@ct.gov		
Mike Beauchene	Supervising Fisheries	CT DEEP	860-424-4185		
	Biologist	Fisheries Division	Mike.beauchene@ct.gov		
Pete Aarrestad	Division Director	CT DEEP	860-424-4171		
		Fisheries Division	Peter.Aarrestad@ct.gov		
C1 D 1		OT DDU	960 500 7592		
Sharee Rusnak	Epidemiologist	CT DPH Environmental Health	860-509-7583		
		Section	Sharee.Rusnak@ct.gov		
Brian Toal	Interim Chief,	CT DPH	860-509-7741		
	Supervising	Public Health Section,	Brian.toal@ct.gov		
	Epidemiologist	Environmental Health Section			
Nick Corso	Project Manager	SGS Axys	250-655-5800		
		Analytical Services	nicholas.corso@sgs.com		

It is the responsibility of the Quality Assurance (QA) Officer to oversee the implementation of the Sampling and Analysis Plan, including whether specified quality control (QC) procedures are being followed as described. The QA officer will discuss QA issues with the Project Lead and Project Supervisor. If necessary, the Project Manager will coordinate with CT DEEP Fisheries staff and/or CT DPH Staff to address any outstanding issues related to field sampling, sample handling, or sample preservation.

4.0 FIELD SAMPLING METHODS

CT DEEP staff will perform the collection of fish specimens. The date of collection will be dependent on the availability of field staff and suitable field conditions. Samples will be collected using backpack or barge-mounted electrofishing units. In the event that this is unsuccessful, alternative collection methods may be employed.

Standard agency electrofishing methods are described in the CT DEEP Water Monitoring Unit's standard operating procedures for electrofishing. Additional methods described herein will be employed to minimize the likelihood of PFAS contamination during collection and handling.

4.1 Standard Cross-Contamination Precautions

Among a long list of other products, PFAS is frequently used in personal care products, clothing manufactured for outdoor use, and food packaging. Therefore, the potential for PFAS cross-contamination during a routine field day of sampling is high if special precautions are not taken. As there is little to no published research documenting the use of various materials and their effect on sample results, the practices for avoiding cross-contamination are still evolving.

The following sections provide a synthesis of standard recommendations available among published PFAS studies and sampling plans. In addition, the Michigan Department of Environmental Quality has developed a useful 2-page quick reference guide summarizing these precautions (Appendix B).

IMPORTANT NOTE: These recommendations are for the collection of tissue specimens, the results of which are typically measured in parts per billion. More stringent, precautions will likely be needed if the sampling plan expands to include surface water samples, where PFAS analysis occurs at the level of parts per trillion.

4.1.1 Personal Care Products (PCPs)

The use of personal care products should be limited to the extent practical. In particular, cosmetics, moisturizers, hand creams and similar products should be avoided on the day of sampling as many of these products have been reported to contain PFAS.

Cross-contamination precautions must balance staff health and safety risks. Therefore, if bug spray and/or sunscreen are needed, staff should select products that do not contain ingredients with "fluor-" in the name. Products should be applied away from the sampling area, prior to donning waders, and hands should be washed after application.

4.1.2 Field Clothing and Personal Protective Equipment (PPE)

Staff should wear synthetic and natural fibers (e.g. cotton) when possible. Outdoor field clothing is commonly waterproof, water repellant, and/or stain resistant – properties that are often achieved through the addition of PFAS to the materials. Staff should avoid wearing clothing made from these materials if possible. Clothing materials that should be avoided include those containing Teflon or Gore-Tex, and those advertised as having been chemically treated to repel insects and provide UV protection. Staff should avoid laundering clothing in fabric softener if possible, as well as avoiding new clothing (i.e. clothing that has not been well laundered several times.)

Ideally, all clothing and PPE worn on the day of the sampling event will be PFASfree. **However, the safety of the staff should not be compromised**. Staff are expected to wear waterproof, nonbreathable waders and rubber electrofishing gloves, to ensure proper field safety. Additionally, life jackets may be needed depending on water depth and flow velocity. If PFAS-free versions of these items are not available, then the available PPE is to be worn, and a note documenting any such limitations to cross-contamination precautions shall be recorded on the field sheet.

If possible, the outside of gloves and waders are to be rinsed with streamwater, downstream of the sampling area, prior to sample collection.

4.1.3 Food and Beverage Consumption

PFAS are commonly found in food packaging materials, including pre-wrapped food or snacks and take out or fast food bags and containers. Staff should consume food and beverages away from the sampling area, and remove waders and gloves prior to handling any such materials. After eating, if possible, hands should be washed and gloves redonned. Water and sports beverages are safe for consumption without risk of PFAS contamination.

4.1.4 Standard Electrofishing Sampling Equipment

Standard electrofishing equipment and nets will be used to collect tissue samples. New equipment is to be avoided if possible. Equipment should be rinsed with stream water, downstream of the sampling area, prior to commencement of collection.

Field measuring boards will be limited to wooden boards. The measuring board will be rinsed with stream water in between measurements.

Field clipboards will be limited to Masonite or aluminum clipboards. Field datasheets/COCs will be printed on standard office paper (i.e. no Rite in the Rain paper). Only pencils and Ultra-Fine Point Sharpie markers are allowed as writing utensils. Refer to Appendix B for additional details.

4.1.5 Standard Precautions Documentation

All standard precautions taken to avoid cross-contamination, as well as any observed potential for cross-contamination, will be documented on the field data sheet by the project lead. If the project lead is not present during sampling, the field crew leader will be responsible for such documentation.

4.2 Fish Collection & Documentation

The general fish collection and documentation procedures outlined in the DEEP WPLR Fish Community Monitoring SOP will be followed. Expansions upon these procedures are necessary when sampling to evaluate PFAS levels; these expansions are described in the following subsections.

4.2.1 Special Fish Handling Requirements

Fish will be placed in a live car immediately upon netting. The live car is handconstructed unit that allows ambient water continuously flows through the holding pens. The live car will be towed alongside the stream shocker during the sample collection.

Specific staff will be assigned to handling the fish (i.e. measurement, labeling, and packaging). Staff assigned to handling the fish will wear powderless nitrile gloves, which will be changed frequently. Gloves are to be changed whenever there is potential for cross-contamination, including but not limited to, the following

activities (MDEQ 2019):

- Each time sampling equipment is handled.
- Prior to sample collection.
- After handling any sample, including QA/QC samples.
- After handling of any non-dedicated sampling equipment, contact with nondecontaminated surfaces, or when judged necessary by field personnel.
- During and after decontamination of non-dedicated sampling equipment.

Staff involved in the netting of fish will be instructed to minimize contact with the fish upon collection. Staff assigned to handling the fish will assist with removing fish from the nets and placing them into the holding wells. Care will be taken to minimize contact between the fish and other surfaces prior to being placed in a sample storage bag.

4.2.2 Fish Dispatch

Fish are to be dispatched quickly via non-chemical methods and in a manner that minimizes contact with potential PFAS containing surfaces or substances. The field crew supervisor and project lead will determine the most appropriate method at the time of field sampling. Tissue damage, in particular punctures and lacerations, during dispatch should be avoided.

4.2.3 Labelling and Documentation

Fish will be removed from the live car one at a time for labelling and documentation. Fish will be removed by an assigned handler (wearing clean nitrile gloves) and placed directly into a PFAS-free sample storage bag. Air will be removed from the bag and the bag sealed. Once sealed this bag is not to be reopened. The outside of the bag will be labelled using a Sharpie Ultra-Fine marker with the field accession number of the sample.

The sealed bag containing the fish will then be placed into a second PFAS-free sample storage bag.

A label will be generated using standard white office paper and pencil (or Ultra-Fine Point Sharpie marker) and will contain the following information:

- Site ID (AWQ Station ID)
- Waterbody name
- Date of collection
- Fish species
- Fish total length in mm (see section 4.2.4)
- Field accession number

Once complete, the label will be placed inside the second bag, but outside of the first bag so as to avoid making contact with the sample. The second bag will then be sealed securely and placed on ice.

The field accession number, species, and total length will be recorded on the field datasheet/COC.

4.2.4 Field Measurements

To avoid cross-contamination, total length will be measured after the fish has been placed into the first sample bag. The fish will be placed on a measuring board and total length will be measured to the nearest millimeter and recorded on the field datasheet/COC (Appendix C). Total length is measured from the tip of the snout to the tip of the longer lobe of the caudal fins; when measuring, the caudal fin lobes are compressed along the mid-line. The project lead will supervise all total length measurements to ensure consistency and accuracy in measurements.

4.2.5 Sample Transport

Labelled and securely sealed samples will be stored on wet ice in a closed cooler.

Samples will be separated by study location, with fish collected from the Natchaug River placed in a separate cooler than those collected from the Quinebaug River. Multiple coolers may be utilized, but each cooler should contain specimens from only one study location.

The chain of custody for each sampling event is to remain with the sample(s) at all times during transport.

5.0 FIELD SAFETY

Staff are expected to follow all standard Agency field safety protocols. The field crew lead is responsible for ensuring field staff adhere to these protocols and to make any necessary corrections as needed.

Unsafe field conditions, including but not limited to very high flows, heavy rain, thunder and/or lightning will cancel sampling.

6.0 SAMPLE PROCESSING, PRESERVATION & SHIPMENT

6.1 Sample Preservation & Holding

Whole fish will be brought to the DEEP Windsor Lab (9 Windsor Avenue, Windsor, CT) at the conclusion of the collection event. Samples will be checked to ensure they are properly labelled and contained, then logged into the laboratory fish tissue log, and placed in the fish tissue freezer for freezing and short-term storage.

The freezer will be checked at least once daily during business days by the lab manager for evidence of improper operation and possible sample compromise. And such evidence will be reported to the project lead, who will determine the appropriate course of action from there.

The chain of custody is to remain with the fish samples at all times.

6.2 Sample Shipment

Samples will be frozen as whole specimens and shipped as soon as possible, but no later than 14 days after collection. Samples will be shipped overnight in coolers on dry ice or wet ice. (Chemical ice packs are to be avoided.)

The original field chain of custody (COC) is to be shipped with the fish samples; a copy of the original will be made and retained by the project lead and filed at the DEEP Windsor Lab with the field data sheets.

In addition, the SGS Axys COC (Appendix F) will be completed. A copy of the original will be made by the project lead and filed at the DEEP Windsor Lab. The original SGS Axys COC will be shipped with the samples.

The receiving laboratory will be notified of the shipment within 24 hours. Upon receipt the lab will complete the field and shipping COC and send updated copies to the project lead for electronic filing and hard copy filing at the DEEP Windsor Lab.

7.0 SAMPLE PROCESSING & ANALYSIS

7.1 Sample Summary

Samples will include a total of forty (40) fish fillet tissue samples to be analyzed for PFAS.

Ten (10) predator or game fish species and ten (10) bottom dwelling species will be collected from each location to achieve a total of twenty (20) samples per study location. No field duplicates will be collected.

7.2 Sample Processing

No field processing will occur. To minimize the potential for cross-contamination, all tissue processing will be done trained staff at the analyzing laboratory (SGS AXYS Analytical Services Ltd.)

Upon receipt of the samples, the analytical laboratory will prepare descaled, skin-on fillets for chemical analysis in accordance with USEPA guidance (USEPA, 2000) and the laboratory procedures (Appendix D).

Samples are to be analyzed as individual fish, not composite samples. The left side fillet will be used for analysis. Fillets will be homogenized using PFAS-free equipment.

The right side fillet will be archived according to SGS Axys protocols. If budget allows, the remaining carcass of the fish will also be archived for future whole fish PFAS level determination.

7.3 Laboratory Analytical Methods

Fish tissue samples will be analyzed for PFAS by SGS AXYS Analytical Services Ltd. using an in-house laboratory method (SGS AXYS MLA-110; Appendix E).

Surrogates will be added to all samples prior to QC sampling and prior to analysis.

See Appendix E for details on the analytical methods to be used and the 33 analytes to be reported by the laboratory.

7.4 Quality Control and Quality Assurance Samples

In addition, the laboratory shall prepare and analyze the following QA/QC samples for each study location:

- method blank
- laboratory control sample
- matrix spike
- matrix spike duplicate

In the event that a left-side fillet sample has a detect, and additional DPH funding is available, the right-side fillet from that fish sample will be run for comparison analysis.

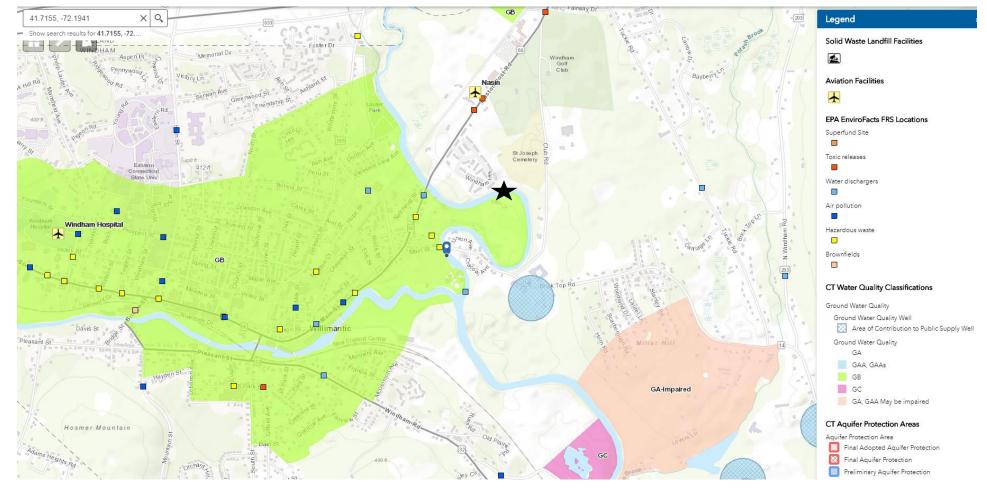
7.5 Data Review and Reporting

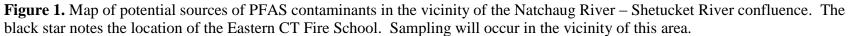
Data produced during the laboratory analyses described in this plan will be presented by SGS AXYS in a Level 4 data package that will be delivered to the CT Department of Public Health (CT DPH).

Following an initial review by CT DPH, data from this sampling program will be submitted to CT DEEP. CT DEEP will provide internal review and guidance to assist with interpretation of the data. The study results will be used to assess potential human health risk via fish consumption. If warranted, public reporting of the data will be coordinated by CT DPH.

8.0 **REFERENCES**

Connecticut Department of Energy and Environmental Protection (CT DEEP) 2013. Standard Operating Procedures for the Collection of Fish Community Data from Wadeable Streams for Aquatic Life Assessment. Bureau of Water Protection and Land Reuse, Planning and Standards Division, Hartford, CT. <u>https://www.ct.gov/deep/lib/deep/water/water_quality_management/monitoringpub</u> s/fishcommunitysop.pdf


Michigan Department of Environmental Quality (MDEQ). Revised 1/2019. MDEQ Fish Tissue PFAS Sampling Guidance. https://www.michigan.gov/documents/pfasresponse/Fish_Tissue_PFAS_Sampling_ Guidance_644911_7.pdf


United States Environmental Protection Association (U.S. EPA) 2000. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories: Vol 1, Fish Sampling and Analysis: 3rd edition. EPA 823-B-00-007. Office of Water, Washington D.C.

 $\label{eq:https://www.epa.gov/sites/production/files/2018-11/documents/guidance-assess-chemical-contaminant-vol1-third-edition.pdf$

APPENDIX A Monitoring Location Maps This page intentionally left blank.

		Location Description				Potential
Waterbody	Station ID		Municipality	Latitude	Longitude	Source
Natchaug River	14313	Between the confluence with the Willimantic River	Windham, CT	41.7155	-72.1941	AFFF Releases
		and Route 66				

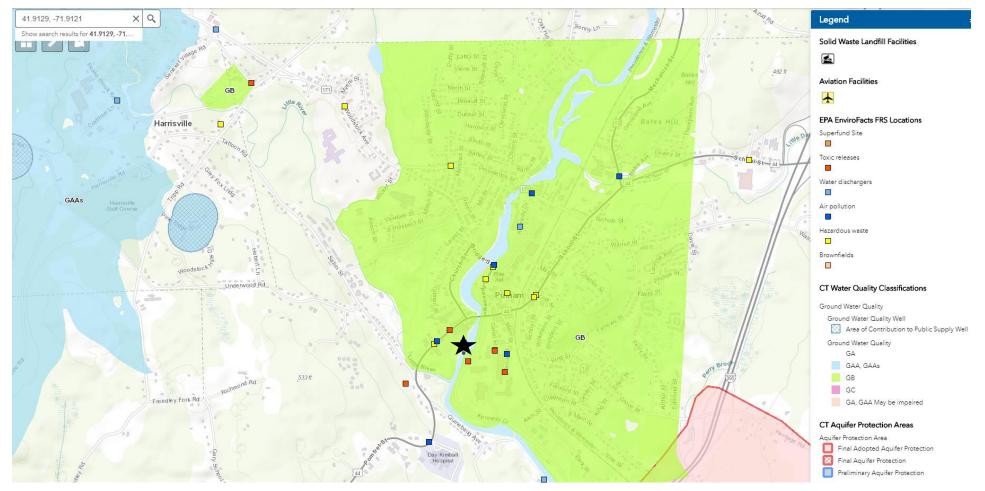


Figure 2. Aerial photos of the lower Natchaug River at the confluence with the Shetucket River confluence. The black star notes the location of the Eastern CT Fire School. Sampling will occur in the vicinity of this area.

	Station	Location Description				Potential Source
Waterbody	ID		Municipality	Latitude	Longitude	
Quinebaug	17298	Between the Little River confluence and Route	Putnam, CT	41.9129	-71.9121	Industrial Dicharges
River		44 bridge				

Figure 3. Map of potential sources of PFAS contaminants in the vicinity of the Quinebaug River in Putnam, CT. The black star notes the approximate location where sampling will occur.

Figure 4. Aerial photos of the Quinebaug River at Putnam, CT. Sampling will occur in the reach upstream of the confluence with the Little River and downstream of Route 44, at the approximate location of the black star.

APPENDIX B PFAS Sampling Quick Reference Field Guide

This page intentionally left blank.

MDEQ PFAS SAMPLING QUICK REFERENCE FIELD GUIDE¹

All Items Used During Sampling Event

Prohibited

- Items or materials that contain fluoropolymers such as
 - o Polytetrafluoroethylene (PTFE), that includes the trademarks Teflon® and Hostaflon®
 - o Polyvinylidene fluoride (PVDF), that includes the trademark Kynar®
 - \circ Polycholotrifluoroethylene (PCTFE), that includes the trademark Neoflon \circledast
 - $_{\odot}$ Ethylene-tetrafluoro-ethylene (ETFE), that includes the trademark Tefzel®
 - o Fluorinated ethylene propylene (FEP), that includes the trademarks Teflon® FEP and Hostaflon® FEP
- Items or materials that contain any other fluoropolymer

Pumps, Tubing, and Sampling Equipment

Prohibited	Allowable	▲ Needs Screening ²
 Items or materials containing any fluoropolymer (potential items include tubing, valves, or pipe thread seal tape) 	 High-density polyethylene (HDPE) Low-density polyethylene (LDPE) tubing Polypropylene Silicone Stainless-steel Any items used to secure sampling bottles made from: Natural rubber Nylon (cable ties) Uncoated metal springs Polyethylene 	 Any items or materials that will come into direct contact with the sample that have not been verified to be PFAS-free Do not assume that any sampling items or materials are PFAS-free based on composition alone

Sample Storage and Preservation

Prohibited	Allowable	▲ Needs Screening ²
Polytetrafluoroethylene (PTFE): Teflon® lined bottles or caps	 Glass jars⁴ Laboratory-provided PFAS-Free bottles: HDPE or polypropylene Regular wet ice Thin HDPE sheeting LDPE resealable storage bags (i.e. Ziploc®) that will not contact the sample media⁶ 	 Aluminium foil⁴ Chemical or blue ice⁵ Plastic storage bags other than those listed as Allowable Low-density polyethylene (LDPE) bottles

Field Documentation

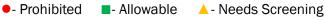
Prohibited	Allowable	▲ Needs Screening ²
 Clipboards coated with PFAS Notebooks made with PFAS treated paper PFAS treated loose paper PFAS treated adhesive paper products 	 Loose paper (non-waterproof, non-recycled) Rite in the Rain® notebooks Aluminium, polypropylene, or Masonite field clipboards Ballpoint pens, pencils, and Fine or Ultra-Fine Point Sharpie® markers 	 Plastic clipboards, binders, or spiral hard cover notebooks All markers not listed as Allowable Post-It® Notes or other adhesive paper products Waterproof field books

Decontamination

Prohibited	Allowable	▲ Needs Screening ²
• Decon 90®	 Alconox[®], Liquinox[®], or Citranox[®] 	 Municipal water
 PFAS treated paper towel 	 Triple rinse with PFAS-free deionized water 	 Recycled paper towels or
	 Cotton cloth or untreated paper towel 	chemically treated paper towels

othing Poots Dain Coar and DDE

Clothing, Boots, R	ain Gear, and PPE				
	Prohibited		Allowable		Needs Screening ²
• New or unwashed	I clothing	Powderle	ess nitrile gloves	• Late	ex gloves
• Anything made of	or with: or other water-resistant	Well-laundered synthetic or 100% cotton clothing, with most recent Water and/or dirt resis leather gloves			
synthetics	of other water-resistant	launderin	igs not using fabric		special gloves required
 Anything applied v Fabric softer 	with or recently washed with:	softeners Made of 		-	HASP
	ctors, including UV protection		yurethane		ek® suits, clothing that ains Tyvek®, or coated
 Insect resist 			yvinyl chloride (PVC)	Tyve	
o Water, dirt, a	and/or stain resistant chemicals		ix coated fabrics bber / Neoprene		
			coated Tyvek®		
Food and Beverag	Jes				
	Prohibited			lowable	2
	e consumed in the staging or san	npling	Brought and consumed or	nly outsi	de the vicinity of the
	re-packaged food or snacks.		sampling area:		
	ing food on-site becomes necess ging area and remove PPE. After		 Bottled water Hydration drinks (i.e 	Gatora	de® Powerade®)
	ds thoroughly and put on new PP			. Oatore	
Personal Care Pro	ducts (PCPs) - for day of sa	ample colle	ction ⁶		
Prohibited		Allowat	ble		▲ Needs Screening ²
 Any PCPs⁶, sunscreen, and insect repellent 	PCPs ⁶ , sunscreens, and insec from sampling bottles and equ PCPs⁶:				 Products other than those listed as Allowable
applied in the sampling area.	• Cosmetics, deodorants/antipersp Sunscreens:	pirants, moistu	rizers, hand creams, and other F	PCPs ⁶	
	Banana Boat® for Men Triple D	efense Contir	uous Spray Sunscreen SPF 30		
	Banana Boat® Sport Performan		•		
	Banana Boat® Sport Performan		•	0	
	Banana Boat® Sport Performant				
	Coppertone Sunscreen Lotion				
	Coppertone® Sport High Perfor		pray Sunscreen SPF 30		
	Coppertone® Sunscreen Stick				
	L'Oréal® Silky Sheer Face Lotio				
	Meijer Clear Zinc Sunscreen L				
	Meijer Sunscreen Continuous		•		
	Meijer Clear Zinc Sunscreen L			_	
	Meijer® Wet Skin Kids Sunscree)	
	Neutrogena® Beach Defense W				
	Neutrogena® Beach Defense Wa)	
	Neutrogena® Pure & Free Baby Neutrogena® Ultra Shear Dry To		·		
	 Neutrogena® UltraSheer Dry-Touch Sunscreen Broad Spectrum SPF 30 Insect Repellents: 				
	OFF® Deep Woods				
	Sawyer® Permethrin				
products should be contacted	to be a complete listing of prohibited or allowal d in order to determine if PFAS was used in the ould be taken to verify these products are PEA	e production of any	/ particular product.	auring sam	npling. The manutacturers of various


² Equipment blank samples should be taken to verify these products are PFAS-free prior to use during sampling.

³ For surface water foam samples: LDPE storage bags may be used in the sampling of foam on surface waters. In this instance, it is allowable for the LDPE bag to come into direct contact with the sample media.

⁴ For fish and other wildlife samples: Depending on the project objectives, glass jars and aluminum foil might be used for PFAS sampling. PFAS has been found to bind to glass and if the sample is stored in a glass jar, a rinse of the jar is required during the sample analysis. PFAS are sometimes used as a protective layer for some aluminum foils. An equipment blank sample should be collected prior to any aluminum foil use.

⁵ Regular ice is recommended as there are concerns that chemical and blue ice may not cool and maintain the sample at or below 42.8°F (6°C) (as determined by EPA 40 CFR 136 – NPDES) during collection and through transit to the laboratory.

⁶ Based on evidence, avoidance of PCPs is considered to be precautionary because none have been documented as having cross-contaminated samples due to their use. However, if used, application of PCPs must be done at the staging area and away from sampling bottles and equipment, and hands must be thoroughly washed after the use of any PCPs prior to sampling.

APPENDIX C PFAS Tissue Collection Field Datasheet/COC Form

This page intentionally left blank.

Connecticut Department of ENERGY &	FISH TISSUE FIELD CH.	FISH TISSUE FIELD CHAIN OF CUSTODY For questions regarding this sample contact:	
ENVIRONMENTAL PROTECTION		CHRIS BELLUCCI 860-424-3735	
Waterbody:	AWQ ID#:		
Location:	Basin ID:		
	Latitude:		
Town:	Longitude:		
Sample Date:			
Collector(s):	PLEASE KEEP	ALL FISH ON ICE IMMEDIATELY AFTER	
Gear:		COLLECTION	
Trip ID:			

Specimen ID	Fish #	Species	Total length	Weight	Receiving Lab ID
19-F-	1				
19-F-	2				
19-F-	3				
19-F-	4				
19-F-	5				
19-F-	6				
19-F-	7				
19-F-	8				
19-F-	9				
19-F-	10				
19-F-	11				
19-F-	12				
19-F-	13				
19-F-	14				
19-F-	15				
19-F-	16				
19-F-	17				
19-F-	18				
19-F-	19				
19-F-	20				

Comments:			
Relinquished By:	(Print)	Received by:	(Print)
(Collector)	(Sign)	(DEEP Lab)	(Sign)
Da	nte/Time	Da	ate/Time
Relinquished By:	(Print)	Received by:	(Print)
		-	
(DEEP Lab)	(Sign)	(Receiving Lab)	(Sign)
Da	ate/Time	Da	ate/Time

This page intentionally left blank.

APPENDIX D Summarized SGS Axys Sample Preparation Procedures

This page intentionally left blank.

SGS AXYS Analytical Services Ltd.

SUMMARY OF SGS AXYS METHOD MLA-110 REV. 02 VER. 04

Analytical Procedure for the Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Samples, Solids, Tissues, AFFF Products and Solvent Extracts by LC-MS/MS

This method describes the analysis of per- and polyfluoroalkyl substances (PFAS) in aqueous, solid, biosolid, tissue and AFFF product samples and solvent extracts, determined as the total of linear and branched isomers. After spiking with isotopically labeled surrogate standards samples are extracted and cleaned up by Solid Phase Extraction (SPE). The extracts are then analyzed by liquid chromatography/mass spectrometry (LC-MS/MS). Final sample concentrations are determined by isotope dilution/internal standard quantification.

Analyte groups	Aqueous	Extract 1	Solid ²	Biosolid ³	Tissues ⁴	AFFF
	sample			Biocolia	1100000	Products ⁵
Typical sample size	0.5 L	0.75	5 g	2.5 g	2.0 g	0.02 g
	0.0 2	mL	0 9	2.0 9	2.0 g	
Units	ng/L	ng/mL	ng/g	ng/g	ng/g	ng/g
Perfluoroalkyl carboxylates	0.8-3.2	530-2100	0.08-0.32	0.16-0.64	0.2-0.8	10-40
Perfluoroalkyl sulfonates	0.8	530	0.08	0.16	0.2	10
Fluorotelomer sulfonates	3.2	2100	0.32	0.64	0.8	40
Perfluorooctane sulfonamides	0.8	530	0.08	0.16	0.2	10
Perfluorooctane sulfonamidoacetic acids	0.8	530	0.08	0.16	0.2	10
Perfluorooctane sulfonamide ethanols	8	5300	0.8	1.6	2.0	100
Per- and polyfluoroether carboxylates	3.2	2100	0.32	0.64	0.8	N/A
Ether sulfonates	3.2	2100	0.32	0.64	0.8	N/A

Typical reporting limits are shown below, for the method default sample sizes:

¹ Detection limits for extract samples depend on the samples size processed. The reporting limits provided here are based on the typical extract sample size listed above.

- ² A maximum of 10 g wet, or 5 g dry, solid may be analyzed.
- ³ A maximum of 5 g wet, or 0.5 g dry, biosolid may be analyzed.
- ⁴ A maximum of 2 g of tissue may be analyzed.
- ⁵ A maximum of 0.02 g of AFFF Product is analyzed. Reporting limits are based on the calibration A point. The method is not currently validated for ether carboxylates/sulfonates in AFFF samples. Only Class B aqueous film forming foams (AFFF) or alcohol-resistant AFFF (AR-AFFF) samples are part of this scope. Other AFFF products such as fluoroprotein foams maybe be analyzed using this method, but need special handling. Consult product Safety Data Sheets (SDS) and other information before confirming. All samples will be logged in under an "AQIP" (Aqueous Industrial Product) matrix code in LIMS.

This document is the Intellectual Property of SGS AXYS Analytical Services Ltd. and contains Proprietary and Confidential Business Information. It may not be reproduced or distributed without written permission of the owner. © SGS AXYS Analytical Services Ltd, 2019. SGS AXYS Analytical Services Ltd, 2045 Mills Road W., Sidney, BC, Canada, V8L 5X2. Tel. (250) 655-5800, fax (250) 655-5811. This is not a controlled document; it is subject to change without notification.

SGS AXYS Analytical Services Ltd.

Refer to Appendix B for sample storage conditions.

PFAS Target Analytes

Perfluoroalkyl carboxylates

Perfluorobutanoic acid (PFBA, Perfluorobutanoate) Perfluoropentanoic acid (PFPeA, Perfluoropentanoate) Perfluorohexanoic acid (PFHxA, Perfluorohexanoate) Perfluoroheptanoic acid (PFHpA, Perfluoroheptanoate) Perfluorooctanoic acid (PFOA, Perfluorooctanoate) Perfluorononanoic acid (PFNA, Perfluorononanoate) Perfluorodecanoic acid (PFDA, Perfluorodecanoate) Perfluoroundecanoic acid (PFDA, Perfluorodecanoate) Perfluorodecanoic acid (PFDA, Perfluorodecanoate) Perfluorododecanoic acid (PFDoA, Perfluorododecanoate) Perfluorotridecanoic acid (PFTrDA, Perfluorotridecanoate) Perfluorotetradecanoic acid (PFTeDA, Perfluorotetradecanoate)

Perfluoroalkyl sulfonates

Perfluorobutanesulfonic acid (PFBS, Perfluorobutanesulfonate) Perfluoropentanesulfonic acid (PFPeS, Perfluoropentanesulfonate) Perfluorohexanesulfonic acid (PFHxS, Perfluorohexanesulfonate) Perfluoroheptanesulfonic acid (PFHpS, Perfluoroheptanesulfonate) Perfluorooctanesulfonic acid (PFOS, Perfluorooctanesulfonate) Perfluorononanesulfonic acid (PFNS, Perfluorononanesulfonate) Perfluorodecanesulfonic acid (PFDS, Perfluorodecanesulfonate) Perfluorodecanesulfonic acid (PFDS, Perfluorodecanesulfonate)

Fluorotelomer sulfonates

1H, 1H, 2H, 2H-perfluorohexane sulfonic acid (4:2 FTS, 1H, 1H, 2H, 2H-perfluorohexane sulfonate)
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS, 1H, 1H, 2H, 2H-perfluorooctane sulfonate)
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS, 1H, 1H, 2H, 2H-perfluorodecane sulfonate)

Perfluorooctane sulfonamides

Perfluorooctanesulfonamide (PFOSA) ¹ N-Methylperfluorooctanesulfonamide (N-MeFOSA) N-Ethylperfluorooctanesulfonamide (N-EtFOSA)

Perfluorooctane sulfonamidoacetic acids

N-Methylperfluoro-1-octanesulfonamidoacetic acid (N-MeFOSAA, N-Methylperfluoro-1octanesulfonamidoacetate) N-Ethylperfluoro-1-octanesulfonamidoacetic acid (N-EtFOSAA, N-Ethylperfluoro-1octanesulfonamidoacetate) This document is the Intellectual Property of SGS AXYS Analytical Services Ltd. and contains Proprietary and Confidential Business Information. It may not be reproduced or distributed without written permission of the owner. © SGS AXYS Analytical Services Ltd, 2019. SGS AXYS Analytical Services Ltd, 2045 Mills Road W., Sidney, BC, Canada, V8L 5X2. Tel. (250) 655-5800, fax (250) 655-5811. This is not a controlled document; it is subject to change without notification.

SGS AXYS Analytical Services Ltd.

Perfluorooctane sulfonamidoethanols

N-Methylperfluoro-1-octanesulfonamidoethanol (N-MeFOSE)

N-Ethylperfluoro-1-octanesulfonamidoethanol (N-EtFOSE)

Ether carboxylates

2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy) propionic acid (HFPO-DA, 2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy) propionoate) $^{\rm 2}$

Decafluoro-3H-4,8-dioxanonoate (ADONA, DONA, Decafluoro-3H-4,8-dioxanonoic acid)

Ether sulfonates

9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS, 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate) ³

11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS, 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate) $^{\rm 4}$

- ¹ PFOSA also called FOSA
- ² GenX major component, not offered for AFFF products
- ³ F53-B main component, not offered for AFFF products
- ⁴ F53-B minor component, not offered for AFFF products

The carboxylic and sulfonic acid analyte concentrations can be reported as either the acid or the anion forms. The anion and corresponding acid forms and their CAS Registry Numbers are shown in Appendix A of this summary.

1.0 EXTRACTION AND CLEANUP PROCEDURES

Aqueous samples size may be up to 1000 mL for aqueous samples analyzed by this method, and up to 0.75 mL for extracts/solvents. Samples are stored in HDPE (high density polyethylene) containers. All samples are spiked with surrogate standards. Aqueous samples are extracted by solid phase extraction (SPE) using weak anion exchange cartridges; wash and elution procedures are chosen to meet various analysis requirements. Sample extracts may also be treated with carbon powder. The extracts are spiked with recovery standards and analyzed by LC-MS/MS.

Extract/solvent samples don't undergo solid phase extraction. The samples are spiked with surrogate and recovery standards, and analyzed by LC-MS/MS.

Solid and biosolid sample size may be up to 5 g dry weight for solid samples or up to 5 g wet weight (max. 0.5 g dry weight) for biosolid samples. After addition of isotopically labelled surrogate standards the sample is extracted by shaking three times with methanolic ammonium hydroxide solution, each time collecting the supernatants. The supernatants are combined and treated with ultra pure carbon powder. The resulting solution is diluted with water and cleaned up by solid phase extraction (SPE) using disposable cartridges containing a weak anion exchange sorbent. The eluate is spiked with recovery standards and analyzed by LC-MS/MS.

Tissue sample size may be up to 2 g. After addition of isotopically labelled surrogate standards the sample is extracted with methanolic potassium hydroxide solution, with acetonitrile, and finally with methanolic potassium hydroxide solution, each time collecting the supernatants. The supernatants are combined, diluted with water and cleaned up by solid phase extraction (SPE)

SGS AXYS Analytical Services Ltd.

on a weak anion exchange sorbent. Sample extracts may also be treated with carbon powder. The eluate is spiked with recovery standards and analyzed by LC-MS/MS.

All AFFF samples are pre-screened before analysis to determine the appropriate amount of sample to analyze. A suitable subsample is dissolved in water, spiked with surrogate standards and extracted by solid phase extraction (SPE). Sample extracts may optionally be treated with carbon powder. The extracts are spiked with recovery standards and analyzed by LC-MS/MS

2.0 INSTRUMENTATION

Analysis of the sample extract is performed on a UPLC (ultrahigh performance liquid chromatography) reversed phase C18 column using a solvent gradient. The column is coupled to a triple quadrupole mass spectrometer run at unit mass resolution in the Multiple Reaction Monitoring (MRM) in negative electrospray ionization mode.

3.0 CALIBRATION

Initial calibration of the LC-MS/MS instrument is performed by the analysis of five or more calibration solutions. A mid-level calibration standard is analyzed to verify the initial calibration and injected after:

- at least every 12 hours.
- For DoD accredited work after every 10 client samples or every 12 hours, whichever occurs first, and at the end of the instrumental run sequence.

Surrogate Standards	Recovery Standards
¹³ C ₄ -PFBA	¹³ C ₃ -PFBA
¹³ C₅-PFPeA	¹³ C ₂ -PFHxA
¹³ C ₅ -PFHxA	¹³ C ₄ -PFOA
¹³ C₄-PFHpA	¹³ C ₅ -PFNA
¹³ C ₈ -PFOA	¹³ C ₂ -PFDA
¹³ C ₉ -PFNA	¹⁸ O ₂ -PFHxS
¹³ C ₆ -PFDA	¹³ C ₄ -PFOS
¹³ C7-PFUnA	
¹³ C ₂ -PFDoA	
¹³ C ₂ -PFTeDA	
^{I3} C₃-PFBS	
³ C ₃ -PFHxS	
³ C ₈ -PFOS	
³ C ₂ -4:2 FTS	
³ C ₂ -6:2 FTS	

List of Surrogate and Recovery Standards

This document is the Intellectual Property of SGS AXYS Analytical Services Ltd. and contains Proprietary and Confidential Business Information. It may not be reproduced or distributed without written permission of the owner. © SGS AXYS Analytical Services Ltd, 2019. SGS AXYS Analytical Services Ltd, 2045 Mills Road W., Sidney, BC, Canada, V8L 5X2. Tel. (250) 655-5800, fax (250) 655-5811. This is not a controlled document; it is subject to change without notification.

SGS AXYS Analytical Services Ltd.

¹³ C ₂ -8:2 FTS	
¹³ C ₈ -PFOSA	
D ₃ -N-MeFOSA	
D₅-N-EtFOSA	
D₃-N-MeFOSAA	
D₅-N-EtFOSAA	
D ₃ N Ell OOM	
D ₇ -N-MeFOSE	
D ₉ -N-EtFOSE	
¹³ C ₃ -HFPO-DA	

SGS AXYS Analytical Services Ltd.

4.0 QUANTIFICATION PROCEDURES

Calculations

Target compounds are quantified using the isotope dilution/internal standard method, comparing the area of the quantification ion to that of the ¹³C-labelled or deuterium labeled standard and correcting for response factors. Linear quantification equations are determined from a multi-point calibration series with 1/X weighting fit and expressed as below:

 $Y = slope \times X + intercept$

where: Y = response ratio = $\left(\frac{\text{area of Target}}{\text{area of Surr}} \times \text{weight of Surr (ng)}\right)$, and X = weight of target (ng)

The slope and intercept are used to convert raw peak areas in sample chromatograms to final concentrations as follows:

Sample Conc. =
$$\left(\frac{\text{area of Target}}{\text{area of Surr}} \times \text{weight of Surr (ng) - intercept (ng)}\right) \times \left(\frac{1}{\text{slope}}\right) \times \left(\frac{1}{\text{sample size (L or g)}}\right)$$

where Surr is the surrogate standard

The recovery of the surrogate standard is calculated (by internal standard quantification against the recovery standard using an average RRF) and monitored as an indication of overall data quality. Final target concentrations are recovery corrected by this method of quantification.

4.1 Reporting Limits

Sample Specific Detection Limits (SDL) are determined by converting the area equivalent to 3.0 times the estimated chromatographic noise height to a concentration in the same manner that target peak responses are converted to final concentrations. The SDL accounts for any effect of matrix on the detection system and for recovery achieved through the analytical work-up.

Results are reported to the greater of the SDL or the concentration equivalent to the lowest calibration standard analyzed.

This document is the Intellectual Property of SGS AXYS Analytical Services Ltd. and contains Proprietary and Confidential Business Information. It may not be reproduced or distributed without written permission of the owner. © SGS AXYS Analytical Services Ltd, 2019. SGS AXYS Analytical Services Ltd, 2045 Mills Road W., Sidney, BC, Canada, V8L 5X2. Tel. (250) 655-5800, fax (250) 655-5811. This is not a controlled document; it is subject to change without notification.

SGS AXYS Analytical Services Ltd.

Analytes and Quantification References

Target analytes	Quantified using	
PFBA	¹³ C ₄ -PFBA	
PFPeA	¹³ C₅-PFPeA	
PFHxA	¹³ C₅-PFHxA	
PFHpA	¹³ C₄-PFHpA	
PFOA	¹³ C ₈ -PFOA	
PFNA	¹³ C ₉ -PFNA	
PFDA	¹³ C ₆ -PFDA	
PFUnA	¹³ C ₇ -PFUnA	
PFDoA	¹³ C ₂ -PFDoA	
PFTrDA	¹³ C ₂ -PFTeDA	
PFTeDA	¹³ C ₂ -PFTeDA	
PFBS	¹³ C ₃ -PFBS	
PFPeS	¹³ C ₃ -PFHxS	
PFHxS	¹³ C ₃ -PFHxS	
PFHpS	¹³ C ₈ -PFOS	
PFOS	¹³ C ₈ -PFOS	
PFNS	¹³ C ₈ -PFOS	
PFDS	¹³ C ₈ -PFOS	
PFDoS	¹³ C ₈ -PFOS	
4:2 FTS	¹³ C ₂ -4:2 FTS	
6:2 FTS	¹³ C ₂ -6:2 FTS	
8:2 FTS	¹³ C ₂ -8:2 FTS	
PFOSA	¹³ C ₈ -PFOSA	
N-MeFOSA	D ₃ -N-MeFOSA	
N-EtFOSA	D₅-N-EtFOSA	
N-MeFOSAA	D ₃ -N-MeFOSAA	
N-EtFOSAA	D₅-N-EtFOSAA	
N-MeFOSE	D7-N-MeFOSE	
N-EtFOSE	D ₉ -N-EtFOSE	
HFPO-DA	¹³ C- ₃ -HFPO-DA	
ADONA	¹³ C- ₃ -HFPO-DA	
9CI-PF3ONS	¹³ C- ₃ -HFPO-DA	
11CI-PF3OUdS	¹³ C- ₃ -HFPO-DA	

This document is the Intellectual Property of SGS AXYS Analytical Services Ltd. and contains Proprietary and Confidential Business Information. It may not be reproduced or distributed without written permission of the owner. © SGS AXYS Analytical Services Ltd, 2019. SGS AXYS Analytical Services Ltd, 2045 Mills Road W., Sidney, BC, Canada, V8L 5X2. Tel. (250) 655-5800, fax (250) 655-5811. This is not a controlled document; it is subject to change without notification.

SGS AXYS Analytical Services Ltd.

Surrogate standards	Quantified using	
¹³ C ₄ -PFBA	¹³ C ₃ -PFBA	
¹³ C ₅ -PFPeA	¹³ C ₂ -PFHxA	
¹³ C ₅ -PFHxA	¹³ C ₂ -PFHxA	
¹³ C ₄ -PFHpA	¹³ C ₄ -PFOA	
¹³ C ₈ -PFOA		
¹³ C ₉ -PFNA	(¹³ C ₂ -PFHxA for AFFF products) ¹³ C ₅ -PFNA	
¹³ C ₆ -PFDA		
	¹³ C ₂ -PFDA	
¹³ C ₇ -PFUnA	¹³ C ₂ -PFDA	
¹³ C ₂ -PFDoA	¹³ C ₂ -PFDA	
¹³ C ₂ -PFTeDA	¹³ C ₂ -PFDA	
¹³ C ₃ -PFBS	¹⁸ O ₂ -PFHxS	
¹³ C ₃ -PFHxS	¹⁸ O ₂ -PFHxS	
¹³ C ₈ -PFOS	¹³ C ₄ -PFOS	
¹³ C ₂ -4:2 FTS	¹⁸ O ₂ -PFHxS	
¹³ C ₂ -6:2 FTS	¹⁸ O ₂ -PFHxS	
¹³ C ₂ -8:2 FTS	¹⁸ O ₂ -PFHxS	
¹³ C ₈ -PFOSA	¹³ C₄-PFOS	
D ₃ -N-MeFOSA	¹³ C ₄ -PFOS	
D₅-N-EtFOSA	¹³ C ₄ -PFOS	
D ₃ -N-MeFOSAA	¹³ C ₄ -PFOS	
D₅-N-EtFOSAA	¹³ C ₄ -PFOS	
D7-N-MeFOSE	¹³ C ₄ -PFOS	
D ₉ -N-EtFOSE	¹³ C ₄ -PFOS	
¹³ C ₃ -HFPO-DA	¹³ C ₂ -PFHxA	
Recovery standards	Quantified using	
¹³ C ₃ -PFBA	External	
¹³ C ₂ -PFHxA	External	
¹³ C ₄ -PFOA	External	
¹³ C ₅ -PFNA	External	
¹³ C ₂ -PFDA	External	
¹⁸ O ₂ -PFHxS	External	
¹³ C ₄ -PFOS	External	
¹³ C ₃ -PFBA	External	

SGS AXYS Analytical Services Ltd.

5.0 QUALITY ACCEPTANCE CRITERIA

Samples are analyzed in batches consisting of a maximum of twenty samples, one procedural blank and one spiked matrix (OPR) sample. A duplicate is analyzed, provided there is sufficient sample, with batches containing 7-20 samples. Matrix spike/matrix spike duplicate (MS/MSD) pairs may be analyzed on an individual contract basis. The batch is carried through the complete analytical process as a unit. For sample data to be reportable, the batch QC data must meet the established acceptance criteria presented on the analysis reports.

SGS AXYS Analytical Services Ltd.

QC Specifications for Aqueous, Solid, AFFF and Tissue Samples: Procedural Blank Levels and OPR Recovery Ranges

Compound	Procedural Blank Level (ng/sample)	OPR Recovery Range ¹ for Aqueous, Solid and AFFF Samples (%)	OPR Recovery Range ¹ for Tissue Samples (%)		
PFBA	≤ 1.6	70-130	70-130		
PFPeA	≤ 0.8	70-130	70-130		
PFHxA	≤ 0.4	70-130	70-130		
PFHpA	≤ 0.4	70-130	70-130		
PFOA	≤ 0.4	70-130	70-130		
PFNA	≤ 0.4	70-130	70-130		
PFDA	≤ 0.4	70-130	60-130		
PFUnA	≤ 0.4	70-130	70-140		
PFDoA	≤ 0.4	70-130	70-130		
PFTrDA	≤ 0.4	70-130	70-130		
PFTeDA	≤ 0.4	70-130	70-130		
PFBS	≤ 0.4	70-130	60-130		
PFPeS	≤ 0.4	70-130	70-130		
PFHxS	≤ 0.4	70-130	70-130		
PFHpS	≤ 0.4	70-130	70-130		
PFOS	≤ 0.4	70-130	70-140		
PFNS	≤ 0.4	70-130	60-150		
PFDS	≤ 0.4	70-130	40-150		
PFDoS	≤ 0.4	60-130	70-140		
4:2 FTS	≤ 1.6	70-130	40-150		
6:2 FTS	≤ 5	70-130	70-130		
8:2 FTS	≤ 1.6	70-130	70-170		
PFOSA	≤ 0.4	70-130	70-130		
N-MeFOSA	≤ 0.4	70-130	50-140		
N-EtFOSA	≤ 0.4	70-130	70-130		
N-MeFOSAA	≤ 0.4	70-130	60-140		
N-EtFOSAA	≤ 0.4	70-130	60-140		
N-MeFOSE	≤ 4	70-130	70-150		
N-EtFOSE	≤ 4	70-130	70-130		
HFPO-DA	≤ 1.6	70-130	70-130		
ADONA	≤ 1.6	70-130	70-130		
9CI-PF3ONS	≤1.6	70-130	70-130		
11CI-PF3OUdS	≤ 1.6	70-130	60-130		

¹ Marginal exceedance allowance – results for one compound may fall outside of these limits by a maximum of 10% of the value. Note that for AFFF products, these are interim specifications and data outside the specifications may be acceptable based on application and professional judgment.

SGS AXYS Analytical Services Ltd.

DoD QSM Rev. 5.3 Recovery Acceptance Limits for OPRs

Compound	OPR Recovery Range for Aqueous Samples (%)	OPR Recovery Range for Solid Samples (%)
PFBA	73-129	71-135
PFPeA	72-129	69-132
PFHxA	72-129	70-132
PFHpA	72-130	71-131
PFOA	71-133	69-133
PFNA	69-130	72-129
PFDA	71-129	69-133
PFUnA	69-133	64-136
PFDoA	72-134	69-135
PFTrDA	65-144	66-139
PFTeDA	71-132	69-133
PFBS	72-130	72-128
PFPeS	71-127	73-123
PFHxS	68-131	67-130
PFHpS	69-134	70-132
PFOS	65-140	68-136
PFNS	69-127	69-125
PFDS	53-142	59-134
4:2 FTS	63-143	62-145
6:2 FTS	64-140	64-140
8:2 FTS	67-138	65-137
PFOSA	67-137	67-137
N-MeFOSA	68-141	n.a.
N-MeFOSAA	65-136	63-144
N-EtFOSAA	61-135	61-139

SGS AXYS Analytical Services Ltd.

QC Specifications for Aqueous, Solid, AFFF and Tissue Samples: Surrogate Standard Recoveries, OPR and Samples

Surrogate Standard	OPR and Sample Recovery Range ¹ for Aqueous, Solid And AFFF Samples (%)	OPR and Sample Recovery Range ¹ for Tissue Samples (%)
¹³ C ₄ -PFBA	50-150	50-150
¹³ C ₅ -PFPeA	50-150	50-150
¹³ C ₅ -PFHxA	50-150	50-150
¹³ C ₄ -PFHpA	50-150	50-150
¹³ C ₈ -PFOA	50-150	50-150
¹³ C ₉ -PFNA	50-150	50-150
¹³ C ₆ -PFDA	50-150	50-180
¹³ C7-PFUnA	50-150	50-150
¹³ C ₂ -PFDoA	50-150	50-150
¹³ C ₂ -PFTeDA	50-150	50-150
¹³ C ₃ -PFBS	50-150	50-150
¹³ C ₃ -PFHxS	50-150	50-150
¹³ C ₈ -PFOS	50-150	50-150
¹³ C ₂ -4:2 FTS	50-150	50-220
¹³ C ₂ -6:2 FTS	50-150	50-180
¹³ C ₂ -8:2 FTS	50-150	50-300
¹³ C ₈ -PFOSA	50-150	50-150
D ₃ -N-MeFOSA	30-150	2
D₅-N-EtFOSA	20-150	2
D₃-N-MeFOSAA	50-150	2
D₅-N-EtFOSAA	50-150	2
D ₇ -N-MeFOSE	30-150	2
D ₉ -N-EtFOSE	30-150	2
¹³ C ₃ -HFPO-DA	50-150	50-150

¹ Lower surrogate recoveries may be accepted based on application and professional judgment. Note that for AFFF products, these are interim specifications and data outside the specifications may be acceptable based on application and professional judgment.

² These surrogates used only to quantify the analogous native compounds. Formal surrogate recovery limits are under review.

SGS AXYS Analytical Services Ltd.

QC Specification Table: Other Parameters

QC Parameter	Specification
MS Acquisition Rate	Minimum acquisition rate for every native analyte and labeled compound peak: At least 10 data points per peak.
Instrument Sensitivity	Daily, S:N \ge 10:1 for the primary transition product ion for all analytes for the lowest calibration standard (CAL B) and S:N \ge 3:1 for the secondary ion. Additional requirement for DoD QSM 5.1.1/5.3: Instrument sensitivity checks with analyte concentrations at the LOQ levels (refer to VER-004 "DL, LOD and LOQ Plan for DoD Work") shall be performed prior to analysis and then at least once every 12 hours. The found analyte concentrations must be within ±30% of the true values.
Mass Calibration	Instrument must have a valid mass calibration following the manufacturer specified procedure prior to any sample analysis. The mass calibration is updated on an as-needed basis (e.g. QC failures, ion masses fall outside of the ± 0.5 amu of the true value, major instrument maintenance, or if the instrument is moved.) Refer to SIN-033. The entire range shall be mass calibrated. The maximal allowed residual error is ≤ 0.1 Da for each mode with no more than two calibration points missed.
Mass Calibration Verification	Mass calibration must be verified to be ± 0.5 amu of true value by acquiring a full scan continuum mass spectrum of a PFAS stock standard. Mass calibration is verified after each mass calibration, prior to initial ICAL.
Initial Calibration (I-CAL)	Run initially, and as required to maintain calibration verification and instrument sensitivity. CAL B is the default lowest calibration standard. (1/x) weighted linear fit, do not force through origin. Calculated conc. 75-125 % of actual (lowest cal may be 70-130%). $R^2 \ge 0.990$. <i>Alternate specification for DOD QSM 5.1.1 / 5.3: Calculated conc. 70-130%</i> . $R^2 \ge 0.990$. Surrogate recoveries must fall within 50-150%. Peak Asymmetry: 0.8-1.5 for PFBA and PFPeA measured in Cal E (mid cal point) at 10% of the peak height. If this is not achieved, perform instrument maintenance and re-run I-CAL.
Initial Calibration Verification (ICV):	Prior to sample analysis; analyze a second source standard (similar concentration to the CAL E); quantify against I-Cal, results must meet Cal/Ver accuracy specifications. <i>Alternate specification for DOD QSM 5.1.1 / 5.3: Calculated conc. 70-130%.</i>
Calibration Verification (Cal/Ver or CCV)	Continuing Calibration Verification using CAL E Run every 12 hours, quantify against I-CAL.

SGS AXYS confidential, not to be distributed without written permission

SGS AXYS Analytical Services Ltd.

QC Parameter	Specification
	Calculated conc. 80 -120 % of actual allowing 70-130% of actual for a maximum of three compounds. <i>Alternate requirement for DoD QSM 5.1.1/5.3: Every 10 client samples or</i> <i>every 12 hours whichever occurs first, and at the end of the analytical</i> <i>sequence; quantify against I-CAL. Calculated conc. 70- 130 % of actual.</i> Surrogate recoveries must fall within 50-150%. For internal purposes monitor Peak Asymmetry for every Cal/Ver
Instrumental Carryover and Instrument Background	Every Initial Calibration, Cal/Ver, or OPR: ≤ 0.3 % carryover. Additional requirement for DoD QSM 5.1.1/5.3: Instrument blanks shall be run immediately following the highest standard analyzed and daily prior to sample analysis. The concentration of each analyte must be $\leq \frac{1}{2}$ of the LOQ (C CAL, refer to VER-004 "DL, LOD and LOQ Plan for DoD Work") which is equivalent to < LMCL (B CAL).
Duplicate Samples	If conc. \geq 5 times R.L., RPD \leq 40% If conc. < 5 times R.L., guideline RPD \leq 100%
MS/MSD	Optional test, client must request If conc. \geq 5 times R.L., RPD \leq 40% If conc. $<$ 5 times R.L., guideline RPD \leq 100% Alternate requirement for DoD QSM 5.1.1 For aqueous and solid/biosolid samples under DoD accreditation one Matrix Spike and one Matrix Spike Duplicate shall be included with every analysis batch. MS/MSD recoveries are evaluated against project acceptance limits if prescribed by the client, otherwise MS/MSD recoveries are evaluated against limits of 70-130%. RPDs are evaluated against project limits if prescribed by the client, otherwise RPDs are evaluated against the DoD specific limit of <30%. Alternate requirement for DoD QSM 5.3: For aqueous and solid/biosolid samples under DoD accreditation one Matrix Spike and one Matrix Spike Duplicate shall be included with every analysis batch. MS/MSD recoveries are evaluated against project limits if prescribed by the client, otherwise RPDs are evaluated against the DoD specific limit of <30%. Alternate requirement for DoD QSM 5.3: For aqueous and solid/biosolid samples under DoD accreditation one Matrix Spike and one Matrix Spike Duplicate shall be included with every analysis batch. MS/MSD recoveries are evaluated against project limits if prescribed by the client, otherwise MS/MSD recoveries are evaluated against the DOD specific acceptance ranges listed in Table 6b of this document, or against the MLA-110 OPR method recovery limits for analytes not listed in Table 6b. RPDs are evaluated against project limits if prescribed by the client, otherwise RPDs are evaluated against the DoD specific limit of <30%.

SGS AXYS Analytical Services Ltd.

Appendix A: Naming Convention and CAS Numbers

Abbreviation	<u>Name - Anion Form</u>	<u>CAS#</u>
PFBA	Perfluorobutanoate	45048-62-2
PFPeA	Perfluoropentanoate	45167-47-3
PFHxA	Perfluorohexanoate	92612-52-7
PFHpA	Perfluoroheptanoate	120885-29-2
PFOA	Perfluorooctanoate	45285-51-6
PFNA	Perfluorononanoate	72007-68-2
PFDA	Perfluorodecanoate	73829-36-4
PFUnA	Perfluoroundecanoate	196859-54-8
PFDoA	Perfluorododecanoate	171978-95-3
PFTrDA	Perfluorotridecanoate	862374-87-6
PFTeDA	Perfluorotetradecanoate	365971-87-5
PFBS	Perfluorobutanesulfonate	45187-15-3
PFPeS	Perfluoropentanesulfonate	175905-36-9
PFHxS	Perfluorohexanesulfonate	108427-53-8
PFHpS	Perfluoroheptanesulfonate	146689-46-5
PFOS	Perfluorooctanesulfonate	45298-90-6
PFNS	Perfluorononanesulfonate	474511-07-4
PFDS	Perfluorodecanesulfonate	126105-34-8
PFDoS	Perfluorododecanesulfonate	343629-43-6
4:2 FTS	4:2 fluorotelomersulfonate	414911-30-1
6:2 FTS	6:2 fluorotelomersulfonate	425670-75-3
8:2 FTS	8:2 fluorotelomersulfonate	481071-78-7
N-MeFOSAA	N-Methylperfluorooctanesulfonamidoacetate	n.a.
N-EtFOSAA	N-Ethylperfluorooctanesulfonamidoacetate	n.a.
HFPO-DA	2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-	122499-17-6
	heptafluoropropoxy)propanoate	
ADONA	Dodecafluoro-3H-4,8-dioxanonanoate	2127366-90-
9CI-PF3ONS	9-chlorohexadecafluoro-3-oxanonane-1-sulfonate	1621485-21-
	11-chloroeicosafluoro-3-oxaundecane-1-	

SGS AXYS confidential, not to be distributed without written permission

SGS AXYS Analytical Services Ltd.

Abbreviation	<u>Name - Acid Form</u>	CAS#
PFBA	Perfluorobutyric acid	375-22-4
PFPeA	Perfluoropentanoic acid	2706-90-3
PFHxA	Perfluorohexanoic acid	307-24-4
PFHpA	Perfluoroheptanoic acid	375-85-9
PFOA	Perfluorooctanoic acid	335-67-1
PFNA	Perfluorononanoic acid	375-95-1
PFDA	Perfluorodecanoic acid	335-76-2
PFUnA	Perfluoroundecanoic acid	2058-94-8
PFDoA	Perfluorododecanoic acid	307-55-1
PFTrDA	Perfluorotridecanoic acid	72629-94-8
PFTeDA	Perfluorotetradecanoic acid	376-06-7
PFBS	Perfluorobutanesulfonic acid	375-73-5
PFPeS	Perfluoropentanesulfonic acid	2706-91-4
PFHxS	Perfluorohexanesulfonic acid	355-46-4
PFHpS	Perfluoroheptanesulfonic acid	375-92-8
PFOS	Perfluorooctanesulfonic acid	1763-23-1
PFNS	Perfluorononanesulfonic acid	68259-12-1
PFDS	Perfluorodecanesulfonic acid	335-77-3
PFDoS	Perfluorododecanesulfonic acid	79780-39-5
4:2 FTS	4:2 fluorotelomersulfonic acid	757124-72-4
6:2 FTS	6:2 fluorotelomersulfonic acid	27619-97-2
8:2 FTS	8:2 fluorotelomersulfonic acid	39108-34-4
N-MeFOSAA	N-Methylperfluorooctanesulfonamidoacetic acid	2355-31-9
N-EtFOSAA	N-Ethylperfluorooctanesulfonamidoacetic acid	2991-50-6
HFPO-DA	2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-	13252-13-6
	heptafluoropropoxy)propanoic acid	
ADONA	Dodecafluoro-3H-4,8-dioxanonanoic acid	919005-14-4
9CI-PF3ONS	9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	756426-58-1
11CI-PF3OUdS	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	763051-92-9

SGS AXYS Analytical Services Ltd.

PFAS: Naming Convention and CAS Numbers							
Name - Sulfonamide	CAS#						
Perfluorooctanesulfonamide	754-91-6						
N-Methylperfluorooctanesulfonamide	31506-32-8						
N-Ethylperfluorooctanesulfonamide	4151-50-2						
Name - Sulfonamidoethanol	<u>CAS#</u>						
N-Methylperfluorooctanesulfonamidoethanol	24448-09-7						
N-Ethylperfluorooctanesulfonamidoethanol	1691-99-2						
	<u>Name - Sulfonamide</u> Perfluorooctanesulfonamide N-Methylperfluorooctanesulfonamide N-Ethylperfluorooctanesulfonamide <u>Name - Sulfonamidoethanol</u> N-Methylperfluorooctanesulfonamidoethanol						

SGS AXYS Analytical Services Ltd.

Appendix B: Sample Storage Conditions

Sample Storage Requirements

Matrix	Sample Size (per analysis)	Sample Container ¹	Sample Condition Upon Receipt	Storage Condition ²	Sample Hold Time ³	Extract Hold Time ⁴	Preservation
Aqueous	Up to 1000 mL, but typically 500 mL or less (max. 50 mg solids)	High density polyethylene (HDPE)	0-4°C, dark	≤ -20°C, dark	90 days	30 days	None Required
Solvent extracts	Typically 0.75 mL			60 days	30 days	None Required	
Solid	Up to 5 g dry but not more than 10 g wet.	High density polyethylene (HDPE)	0-4°C, dark	≤ -20°C, dark	1 Year	30 days	None required
Biosolid	Up to 0.5 g dry but not more than 5 g wet.	High density polyethylene (HDPE)	0-4°C, dark	≤ -20°C, dark	1 Year	30 days	None required
Tissue	Up to 2 g (wet)	High density polyethylene (HDPE) or amber glass jar	0-4°C, dark	≤ -20°C, dark	1 Year	30 days	None Required
AFFF	Up to 0.02 mL	High density polyethylene (HDPE)	Room temperature.	0-4°C, dark	90 days	30 days	None Required

¹ HDPE containers are preferred; amber glass containers are also acceptable. All containers should be organically clean; i.e. solvent-rinsed or purchased 'certified' clean. All containers should be tightly sealed with screw cap lids.

- ² Storage temperatures quoted are nominal temperatures.
- ³ Hold times are from time of sampling. Client negotiated requests for specific holding times or other method-specific holding times are adhered to. This 90 day holding time on freezing of aqueous samples is based on SGS AXYS storage stability studies. For aqueous samples under DoD accreditation, the sample hold time is ≤14 days.
- ⁴ Hold times for sample extracts are from time of extraction with storage at 4°C. This 30-day holding time is a guideline, longer hold times may be accepted based on professional judgement. For samples under DoD accreditation the extract hold time is ≤28 days with storage at room temperature.

SGS AXYS Analytical Services Ltd.

Stability of PFAS in Aqueous Samples

SGS AXYS has completed an extended-time storage study for the 29 PFAS listed in the table below. The study was conducted in reagent water, surface water and two wastewater treatment plant (WWTP) effluents. PFAS concentrations were measured at 0, 7, 14, 30, 90, and 180-day timepoints with data analysis of a 180-day timepoint in progress. Data analysis up to the 90-day timepoint shows that precursors present in samples containing matrix and biological activity can transform under room temperature and cold storage conditions within 7 days. At this time, only freezing of aqueous samples was demonstrated to stabilize the analytes over a period of up to 90 days. We are recommending freezing non-potable aqueous samples as soon as practicable if not analyzed within 3-4 days.

	Stabili	ty (days)	Remarks
Analyte	4°C	-20°C	
C ₄ -C ₁₄ Perfluorinated carboxylates including PFOA	90	90	
C ₄ -C ₁₀ perfluorinated sulfonates including PFOS	90	90	
PFDoS	90	90	
4:2 FTS	90	90	
6:2 FTS	90	90	
8:2 FTS	14	90	Decreasing trend seen from day 7 at 4°C
PFOSA	14	90	Increasing trend seen day 14 onwards at 4°C
N-MeFOSA	7	90	Decreasing trend seen at first stability point 4°C
N-EtFOSA	7	90	Decreasing trend seen at first stability point 4°C
N-MeFOSAA	<7	90	Increase from transformation of MeFOSE
N-EtFOSAA	7	90	Increase from transformation of EtFOSE
N-MeFOSE	<7	90	Loss seen at first stability point 4°C
N-EtFOSE	<7	90	Loss seen at first stability point 4°C

Summary of Analyte Stability in Aqueous Samples by Storage Condition

APPENDIX E

SGS Axys Analysis Method MLA-110 Details and Analyte List

This page intentionally left blank.

SGS AXYS Analytical Services Ltd.

METHOD DETECTION LIMITS AND REPORTING LIMITS

SGS AXYS Method: Instrument Type: MDL Protocol: MLA-110 UPLC-MS/MS Federal Register 40 CFR Part 136, Appendix B Rev.1 (or * = MDLs determined according to Rev. 2, [2017]) Linear regression with 1/x weighting

Quantification:

Matrix	TISSUE					
Units/Sample Size		ng/g based o	n 2 g sample			
Default Extract Volume		400	0 uL			
Analyte	MDL *	US DoD LOD/LOQ	NELAP LOQ	RL based on Low Cal.		
Perfluorobutanoate (PFBA)	0.551	1.6	1.6	0.8		
Perfluoropentanoate (PFPeA)	0.192	0.8	0.8	0.4		
Perfluorohexanoate (PFHxA)	0.203	0.4	0.4	0.2		
Perfluoroheptanoate (PFHpA)	0.170	0.4	0.4	0.2		
Perfluorooctanoate (PFOA)	0.162	0.4	0.4	0.2		
Perfluorononanoate (PFNA)	0.129	0.4	0.4	0.2		
Perfluorodecanoate (PFDA)	0.116	0.4	0.4	0.2		
Perfluoroundecanoate (PFUnA)	0.151	0.4	0.4	0.2		
Perfluorododecanoate (PFDoA)	0.156	0.4	0.4	0.2		
Perfluorotridecanoate (PFTrDA)	0.398	0.4	0.4	0.2		
Perfluorotetradecanoate (PFTeDA)	0.309	0.4	0.4	0.2		
Perfluorobutanesulfonate (PFBS)	0.097	0.4	0.4	0.2		
Perfluoropentanesulfonate (PFPeS)	0.129	0.4	0.4	0.2		
Perfluorohexanesulfonate (PFHxS)	0.153	0.4	0.4	0.2		
Perfluoroheptanesulfonate (PFHpS)	0.154	0.4	0.4	0.2		
Perfluorooctanesulfonate (PFOS)	0.354	0.4	0.4	0.2		
Perfluorononanesulfonate (PFNS)	0.155	0.4	0.4	0.2		
Perfluorodecanesulfonate (PFDS)	0.207	0.4	0.4	0.2		
Perfluorododecanesulfonate (PFDoS)	0.291	0.4	0.4	0.2		
4:2 fluorotelomersulfonate (4:2 FTS)	0.234	1.6	1.6	0.8		
6:2 fluorotelomersulfonate (6:2 FTS)	0.404	1.4	1.4	0.8		
8:2 fluorotelomersulfonate (8:2 FTS)	0.670	1.6	1.6	0.8		
N-Methylperfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	0.304	0.4	0.4	0.2		
N-Methylperfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	0.143	0.4	0.4	0.2		
Perfluorooctanesulfonamide (PFOSA), a.k.a FOSA	0.152	0.4	0.4	0.2		
N-Methylperfluorooctanesulfonamide (N-MeFOSA)	0.288	0.5	0.5	0.2		
N-Ethylperfluorooctanesulfonamide (N-EtFOSA)	0.248	1.0	1.0	0.2		
N-Methylperfluorooctanesulfonamidoethanol (N-MeFOSE)	3.357	4.1	4.1	2.0		
N-Ethylperfluorooctanesulfonamidoethanol (N-EtFOSE)	1.447	3.1	3.1	2.0		
Perfluoro-2-propoxypropanoate (HFPO-DA)	0.460	1.6	1.6	0.8		
4-dioxa-3H-perfluorononanoate (ADONA)	0.884	1.6	1.6	0.8		
9-chlorohexadecafluoro-3-oxanonane-1-sulfonate (9CI-PF3ONS)	0.708	1.6	1.6	0.8		
11-chloroeicosafluoro-3-oxaundecane-1-sulfonate (11CI-PF3OUdS)	0.889	1.6	1.6	0.8		

This page intentionally left blank.

APPENDIX F: SGS Axys Shipping Chain of Custody

This page intentionally left blank

CHAIN OF CUSTODY

2045 Mills Road West TEL: (250) 655-5800

Sidney, British Columbia, Canada V8L 5X2 FAX: (250) 655-5811

AXYS CLIENT #:

REPORT TO:					0:			ANAL	YSIS REQ	UESTED	
Company				Compar	ny		-				
Address				Address							
					. <u> </u>						
Contact				Conta	.ct						
Phone				Phor							
FAX				FA							
E-mail				E-ma							
Project Name/Number:				Sampler's Na							
				Signature:							
			Sampling	Sampling	Container	AXYS Lab Sample ID	(Lab use only)				
Client Sample Identification	L	Matrix	Date	Time	Type/No.		(Euo use only)				
		Matrix	Dute	Time	1 ype/110.						
Relinquished by (Signature)	Date	e Time		Received by	(Signature)		Courier		Wayb	ill No.	
				Date		Time					
Relinquished by (Signature)	Dat	e Time	e	Received by	(Signature)						
				Date		Time		Sample I	Receipt		
Remarks										Cooler	
							Temp °C				
							Custody Seal #				
							Seal IntactY /				
							Sample T ags	Y / N			