TRANSFER, PROCESSING AND/OR DISPOSAL SERVICES FOR RESIDUAL MUNICIPAL SOLID WASTE FROM THE CONNECTICUT DEPARTMENT OF ENERGY & ENVIRONMENTAL PROTECTION

February 24, 2020

Presented By:

Mr. Joe Anderson

President | Trilogy Financial Group

Mr. Ron Sleight, PE

President | Evergreen Energy

INTEGRATED WASTE-TO-ENERGY (WTE) PLANT - WHY US?

- One of the most knowledgeable and experienced teams with expertise ranging from:
 - Financing
 - Design
 - Procurement
 - Construction
 - Power Generation
 - Operation
- More than 20 years experience will insure a successful project through all phases; feasibility, testing, design, construction, commissioning, and operations
- Commercial scale plants in place and operating
- Proprietary, patented processes

Liquid Waste

Integrated Waste Management Plant

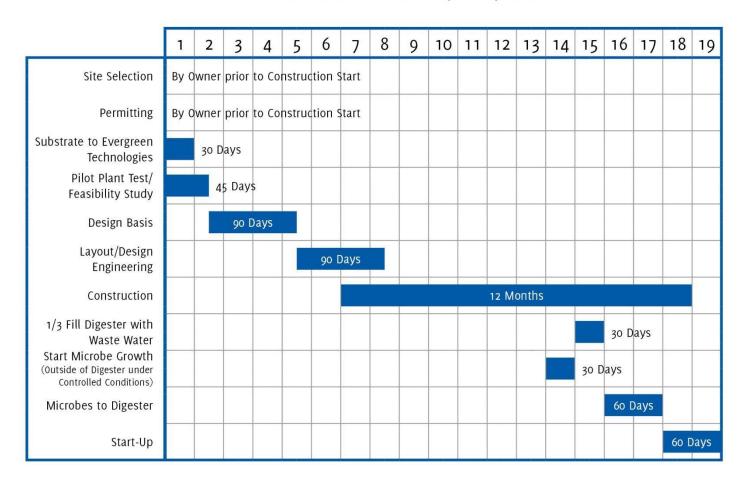
- Anaerobic Digestion
- Water Recovery
- Pyrolysis

Solid Waste

Intangibles

WTE PLANT PROCESS DETAIL

- 50% higher carbon to biogas conversion.
- 30-50% higher biogas energy content than other commercially available digesters.
- Sequestering nitrogen, sulfur and phosphorous in the biosolids.
- Ability to process both liquid (municipal wastewater) and solid waste (MSW), thus increasing the future capacity and life of a wastewater treatment plants (WWTP) and landfills.
- Tires, plastics, and carpets converted into fuel oil.
- Turning the operation costs of WWTPs and landfill management into income from energy, fertilizer, recoverables (metals, glass, etc.) and water sales



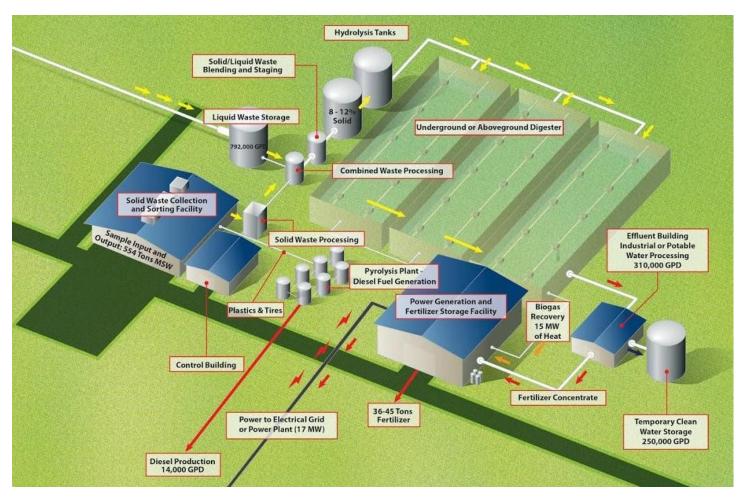
SAMPLE PROJECT SCHEDULE

GANTT CHART SCHEDULE: TOTAL PROJECT 19 MONTHS

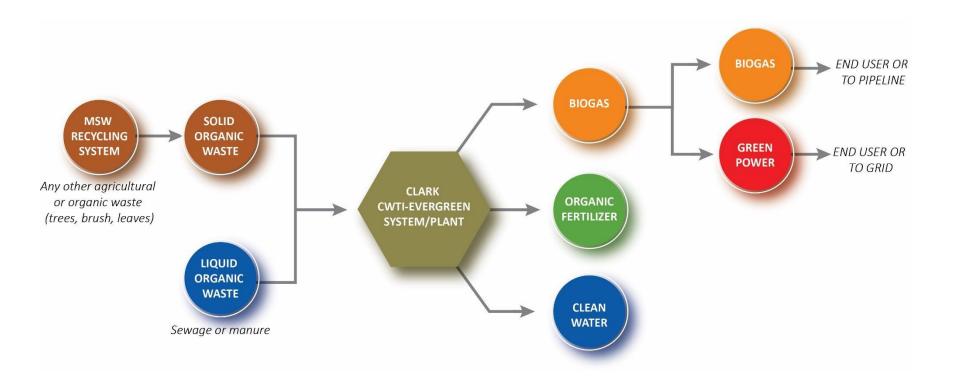
WTE PLANT – WASTE CHARACTERIZATION

Major Waste	Weight Percentage
Group	
Paper	22.6%
Green Waste	4.3%
Organics	21.9%
Wood	6.8%
Mixed residue (50% organic)	7.0%
Total Organic Material	62.6%
Plastics	15.6%
Fine plastic (In-organic fraction)	4.2%
Total Plastics	19.8%
Metal	3.7%
Glass	1.8%
Inorganic Fraction	4.1%
Mixed residue	7.0%
Special waste	0.8%
Bulky waste	0.1%
Problem material	0.1%
Total Non-Recyclable	12.1%
Grand Total	100.0%

- Goal recycle larger portion of mixed residue
- Overall, target 95%
 recovered waste, 5%
 non-recoverable waste to
 landfill



WTE PLANT OVERVIEW



CLARK-EVERGREEN INTEGRATED SYSTEM OUTPUT

THE BENEFITS

Organic Process

- Carbon neutral organic processSubstitutes for and displaces fossil fuel sources

Green

- Carbon neutral organic process Substitutes for and displaces fossil fuel sources

Single Process

- One Process handles all organic waste types
- Recovers irrigation-quality clean water without additional steps

Scalable

- Integrated digestion allows for cost effective modularization Each facility can be scaled to an appropriate size, based on feedstock using 90% common, not cust components

Energy

- More renewable green electricity per pound of source material
- Clark-Evergreen biogas is a direct replacement for natural gas in gas-fired electric turbines o

gensets ctive

- Use virtually any organic source material (wet or dry)
 Eliminate costly treatment steps associated with other processes
- Offset operating costs with revenue generation

RECENT WTE PLANT PROJECTS

Facility Name	Feedstock	Input Quantity	Output	Value(\$)
Biogas Leeuwarde n, WTE Plant The Netherlands	Manure/Green Waste	36,000 tons/year	1.4 MWe	15M
Westkern BV, WTE Plant, The Netherlands	MSW Organics/ Manure	75,000 t/yr	10 million m^3 of Pipeline Grade Quality Gas/yr or 5 MW of Electricity	22M
Stadskana al, WTE Plant Netherlands	MSW	60,000 t/yr	3.0 MWe	16.2M
Atlanta Airport WTE Plant, USA	MSW Organics, Human Waste, Waste Tires	100,000 t/yr	14.3 million m^3 of Pipeline Grade Quality Gas or 7 MW of Electricity 14,000m3/yr diesel	45M
Astarta – WTE Power Plant Globino, Ukraine	Beet Pulp, Maize Silage, MSW organics	185,000 t/yr	15 MWe equivalent/ production of 7,000m3 biogas/hour	75M

GLACIAL LAKES ENERGY – WATERTOWN, SD

PLATTE WEST WATER TREATMENT

FACILITY - OMAHA, NE

LOUIS DREYFUS CANADA – YORKTON, SASKATCHEWAN

WASTE-TO-ENERGY AD PLANT OFFTAKE PRODUCTS

1,500 TPDMSW converts to:

940 TPD organics

Organics convert to:

32 MW Electricity – Jenbacher Genset

300 TPD Organic Fertilizer (30% DM) & Organic fertilizer (±30% DM) & Liquid fertilizer

0.5 MGD Clean water

WTE PLANT MARKETING, DISTRIBUTION, AND REUSE OF PRODUCTS

Methane Gas

 Converted into electricity and off-take agreement with the city of Detroit Department of Water and Power.

Carbon Dioxide

• Converted into food grade CO₂ and sold to greenhouses, carbonated beverages and/or industrial uses.

Organic Fertilizer (nitrogen, phosphorus, and potassium) NPK

Class A fertilizer used in a variety of agricultural applications.

Clean Water

Generated by onsite wastewater treatment plant.

WTE PLANT MARKETING, DISTRIBUTION, AND REUSE OF PRODUCTS

Plastics/Tires

- Liquid fuel rated as fuel oil or bunker fuel, widely used in the transportation and shipping industries.
- Recyclable steel banding, recovered primarily from the pyrolysis of tires.
- Synthetic gas that will be used internally for operating the pyrolysis plant.

Metals

Ferrous and non-ferrous metals to be sold in the existing recycling market.

Glass

Convert into various products and sell into the glass recycling market or convert into specialty items including sand blasting glass beads.

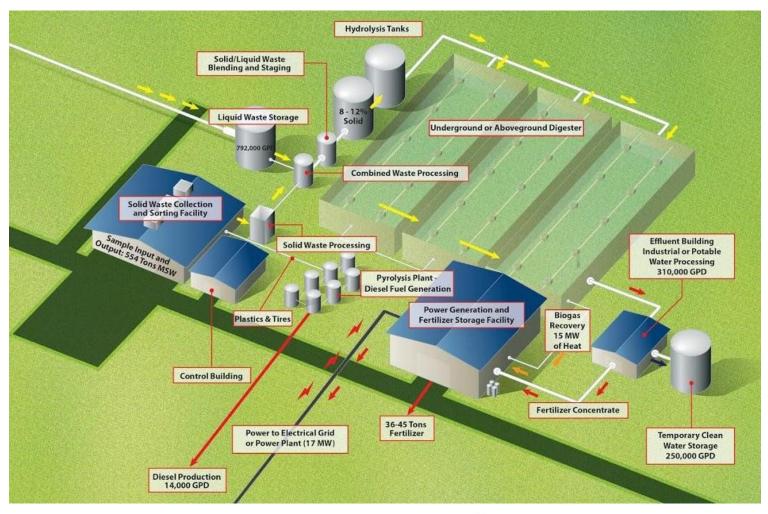
Create 2 job per 10 tons of MSW per day processed. For a 1,500 TPD WTE Plant, approx. 300 jobs created. Indirect labor created willexceed 1,000 jobs.

WTE PLANT AND ECOPONEX

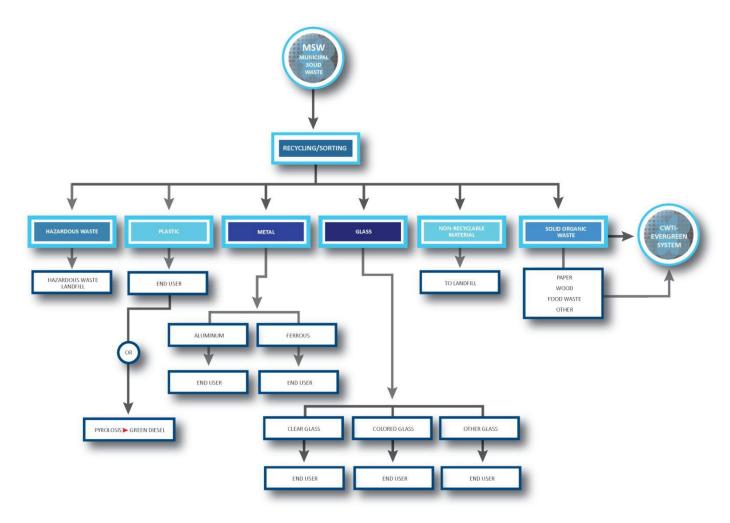
Video <u>Here</u>

WTE PLANT DEVELOPMENT – NEXT STEPS

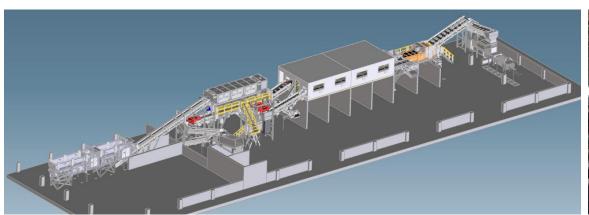
- 1. Assignment of project and TPDfeedstock
- 2. Permitting
- 3. Financing
- 4. Finalize design
- 5. Output contracts

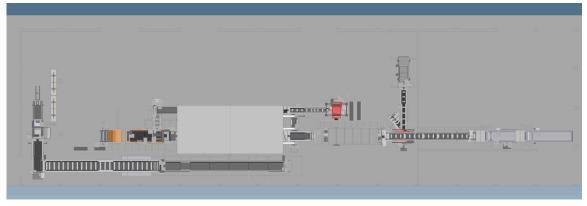


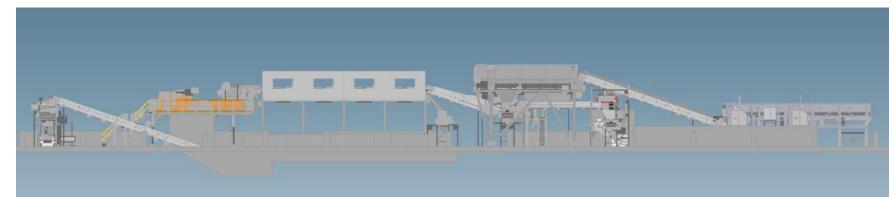
WTE PLANT OVERVIEW - TECHNICAL

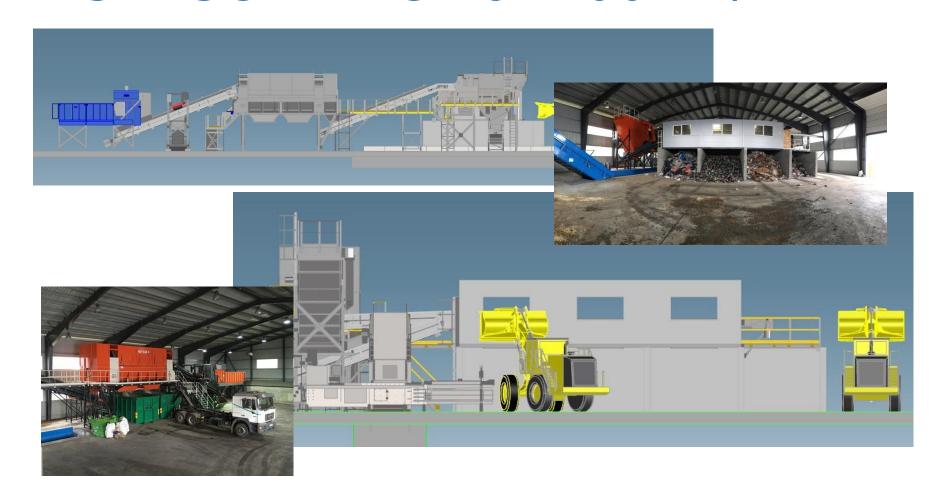


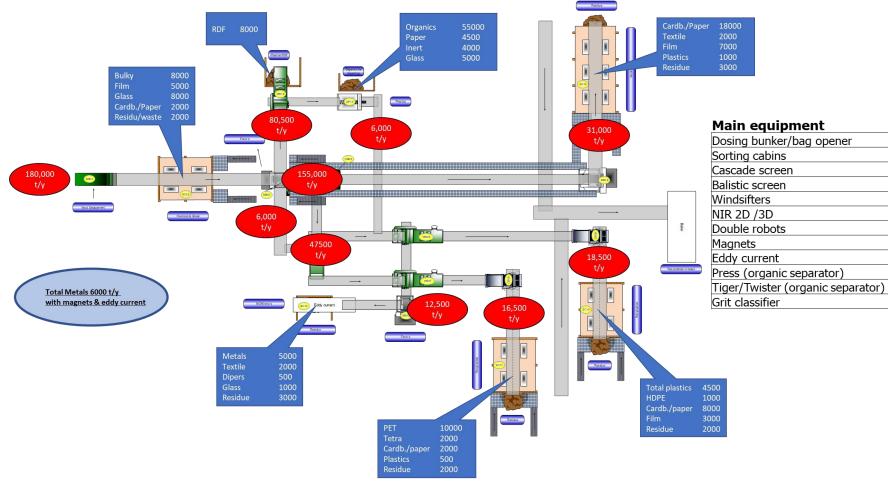
INTEGRATED WASTE MANAGEMENT SORTING

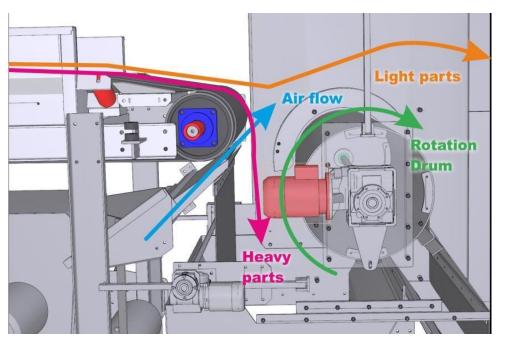












Wind Sifter

Input

Output

Tetrapack

Paper/card

Wood

Foil - PET - Cardboard - PE/PP

And more separated fractions!!

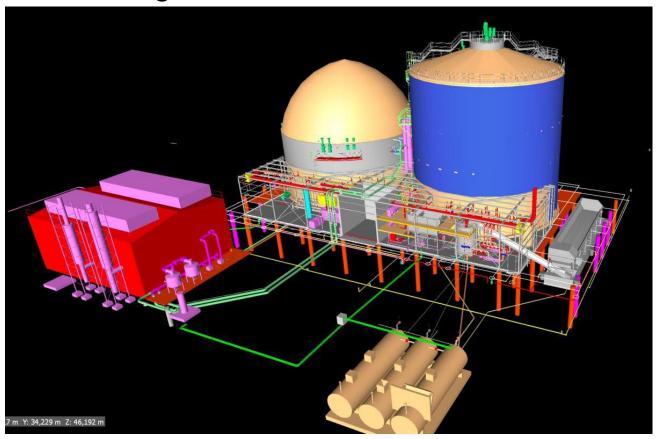
Hard plastics

Organics

MSW AND OTHER SORTING PROJECTS

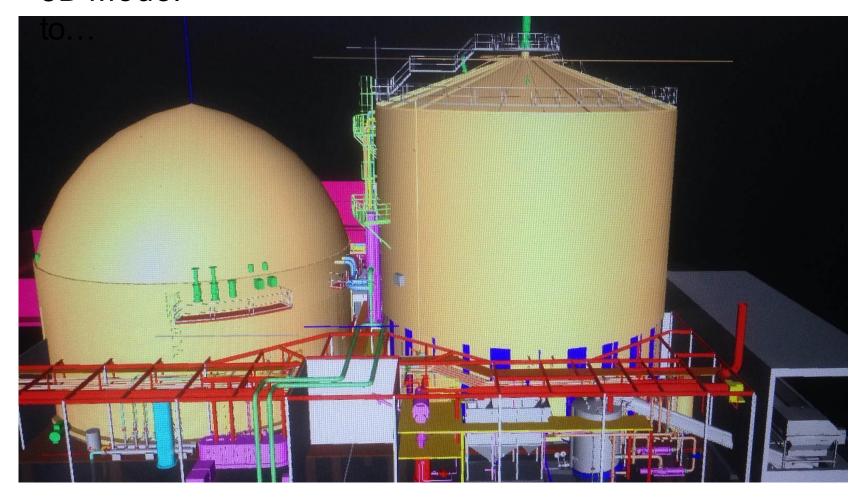
Project and Location	Waste type	Completed	Capacity Tons/hou r
Smiles Sunderland, UK	MSW, C&I and C&D	2008	40
Transwaste Hull, UK	MSW and C&I	2009	60
Inashco	Inc. Ash	2012	100
Umicore Be	WEEE	2013	8
Weser Metal	Car batteries	2013	10
DSAlytus, Lithuania	MSW	2014	25
MSW sorting, Middle East	MSW and C&I	2014	10
MSW Panevezys, Lithuania	MSW	2015	30
Telsiai, Lithuania	MSW	2015	25
Daugavpils, Latvia	MSW	2015	20
Van Happen	C&I	2015	25
Utena	MSW	2015	20
Marijampole	MSW	2016	25
Turkey (Bitlis)	MSW	2016	35
EBMUD (US)	SSO	2017	50
Honduras	MSW	2017	40
Mallorca	MSW	2018	40
Leamington CA	Sludge	2018	35
Nexen CA	Oil sands	2019	40
Kootstertille, The Netherlands	MSW	2019	30

WTE PLANT - AD TECHNICAL



EPC – Integrated Plant Design

EPC – 3D Design and Clash Detection



3D Model

...to Actual

BIOGAS LEEUWARDEN WTE PLANT - THE **NETHERLANDS**

https://www.youtube.com/watch?v=bAcJtF7SKSg

BIOGAS LEEUWARDEN WTE PLANT - THE

BIOGAS LEEUWARDEN WTE PLANT – THE

WTE PLANT – PYROLYSIS TECHNICAL

PYROLYSIS PLANT

CONVERT TIRES, PLASTICS, AND CARPETS TO FUEL OIL

OPERATING PYROLYSIS PLANTS

<u>Location</u>	<u>Capacity</u>	Products Produced	
Saudi Arabia	240 tons	Fuel Oil, Carbon Black, Steel	
Mexico	100 tons	Diesel Fuel, Carbon Black, Steel	
China	80 tons	Fuel Oil, Carbon Black, Steel	
Mexico	60 tons	Fuel Oil, Carbon Black, Steel	
China	60 tons	Fuel Oil, Carbon Black, Steel	
Turkey	50 tons	Fuel Oil, Carbon Black	
Canada	40 tons	Fuel Oil. Carbon Black, Steel	
Dominican Republic	30 tons	Fuel Oil. Carbon Black, Steel	
Poland	30 tons	Fuel Oil, Carbon Black, Steel	
Austria	30 tons	Fuel Oil, Carbon Black, Steel	
Israel	30 tons	Fuel Oil, Carbon Black	
Spain	30 tons	Fuel Oil, Carbon Black, Steel	
Brazil	20 tons	Diesel Fuel, Carbon Black, Steel	
Albania	20 tons	Fuel Oil, Carbon Black, Steel	
Canada	20 tons	Fuel Oil, Activated Carbon, Steel	

PYROLYSIS FEEDSTOCK TYPES

BS EFTOVERS OF PAPER OUSE GARBAGE LASTIC CABLE LASTIC BAG	90% 90% 40% WET 15-20% 35-50% 80%
BS EFTOVERS OF PAPER OUSE GARBAGE LASTIC CABLE	40% WET 15-20% 35-50%
FTOVERS OF PAPER OUSE GARBAGE LASTIC CABLE	WET 15-20% 35-50%
OUSE GARBAGE LASTIC CABLE	35-50%
ASTIC CABLE	
	80%
ACTIC DAC	
-ASTIC DAG	50%
JBMARINE CABLE	75%
JBBER CABLE	35%
DLE	30%
G TIRES	45-50%
MALL TIRES	35-40%
/C	NOT SUITABLE
ΕT	NOT SUITABLE
	BBER CABLE LE 5 TIRES IALL TIRES C

The pyrolysis units produce a No. 6 fuel oil, carbon black, syn gas, and allow for recovery and recycling of steel banding in tires.

OFFTAKE PRODUCTS

Waste Tires		Waste Plastics and Carpets	
PRODUCT	%BY WEIGHT	PRODUCT	%BY WEIGHT
Fuel Oil	43%-50%	Fuel Oil	75%
Carbon Black (not BioChar)	30%	Carbon Black (not BioChar)	10%
Recyclable Steel	15%		
Waste Syngas	5%-10%	Waste Syngas	5%-10%
Waste Materials	0%-5%	Waste Materials	0%-5%

PYROLYSIS EQUIPMENT

PYROLYSIS EQUIPMENT

PYROLYSIS EQUIPMENT

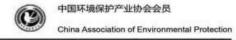
PYROLYSIS - CONVERSION TO FUEL OIL

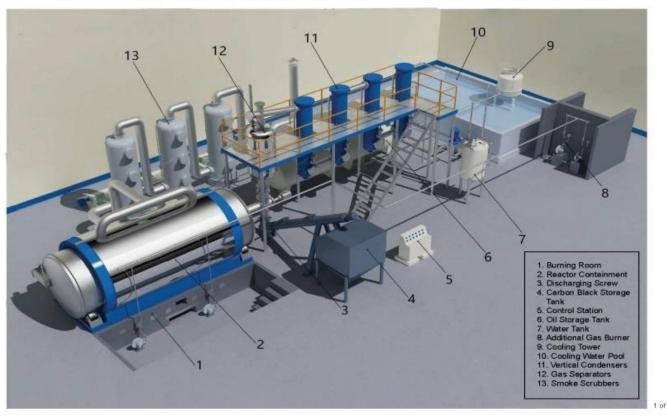
The oil can be further refined into higher grades including diesel fuel and gasoline. We propose to make

MODULAR PLANT SIZE

The pyrolysis units are modular in design and work best in pairs. The pyrolysis plant's output and operation, in operating tons per day and total fuel output, can grow to fit the physical site space available. The photographs above are of pyrolysis plants that are constructed and successfully operating in two different countries.

- Plant Sizing Options 20 tons/day to 500 tons/day++
- Fuel Oil Production 2,700 gal/day to 66,800 gal/day++
- Largest Operating Tire Pyrolysis Plant (Saudi Arabia) 240 tons/day

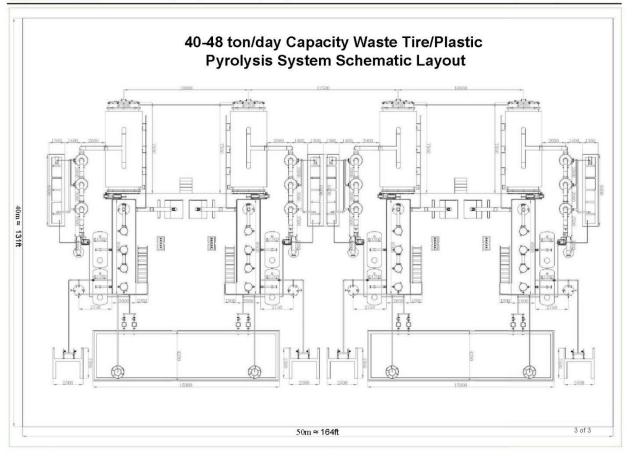



PYROLYSIS PLANT LAYOUT

Pyrolysis Company Partner

10-12 Ton/Day Capacity Waste Tire/Plastic Pyrolysis System Layout

PYROLYSIS PLANT 40 TPD LAYOUT



Pyrolysis Company Partner

中国环境保护产业协会会员

China Association of Environmental Protection

The site requirements for a 40 TPD pyrolysis plant is approximately 2.5 acres. This provides room for a building to house the pyrolysis plant, external storage tanks, bunkers, and meters, tire staging area, and truck loadout area.

WTE PLANT – WWTP TECHNICAL

WASTEWATER AND LANDFILL LEACHATE TREATMENT PLANT

WASTEWATER AND LANDFILL LEACHATE TREATMENT PLANT

