

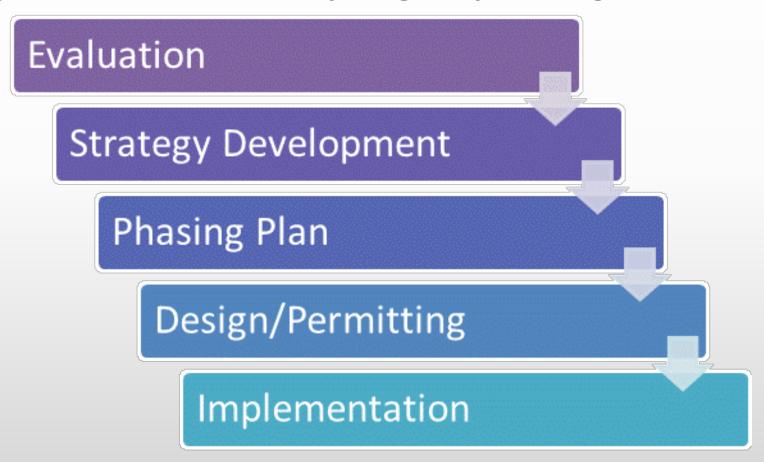
Practical Wastewater Recycling Project Implementation

Presented to the Public Forum of the Connecticut Department of Energy and Environmental Protection's Hazardous Waste Advisory Committee

November 29, 2018

Agenda

- Define Objectives
- Strategy Development and Planning
- Successful Implementation
- Installation Examples

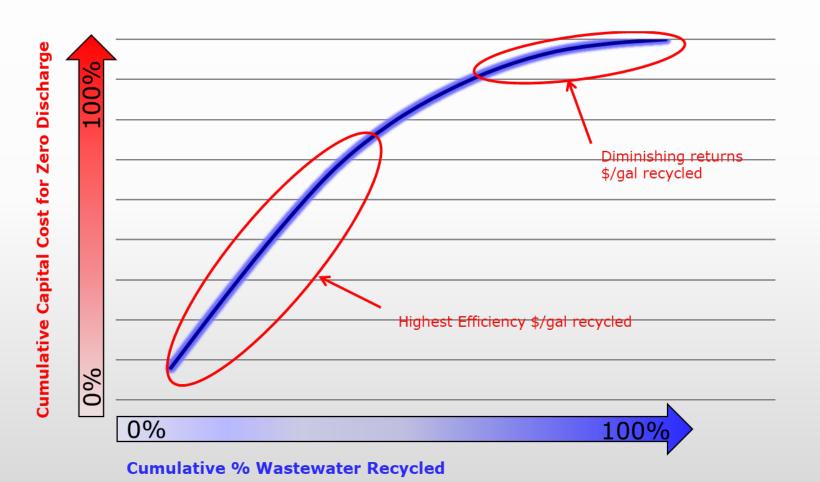


Define Objectives

- What are your goals?
 - Water conservation?
 - Cost
 - Corporate sustainability goal
- Waste minimization?
 - Cost
 - RCRA generator status category
 - Corporate reduction initiative
- Compliance assurance?
 - Recycle more concentrated wastewaters
 - Complete zero discharge

Typical Wastewater Recycling Project Stages

- Comprehensive engineering evaluation is a critical first step
 - Confirmation of sources / flow rates
 - Laboratory analysis of chemicals of concern
- Development of feasible recycling alternatives
 - Centralized vs. modular systems
 - Technology
 - Estimated capital and O&M costs for all feasible alternatives
 - Level of expertise required for O&M



- Consider water reduction initiatives as part of the strategy development
 - Installation of water flow meters critical
 - Understanding of required water quality
 - Many industrial clients use much more water than is necessary, which lead to more expensive treatment / recycling systems
- Understand level of operational knowledge / skill required

- Zero discharge is an admirable goal, but need to understand long-term costs
 - Best option for compliance assurance, but...
 - Potentially increased waste generation
 - Potentially higher energy consumption
 - Need to account / plan for potential downtime for maintenance typically cannot afford to stop operations
 - Law of diminishing returns apply to wastewater recycling for complex facilities

Successful Implementation

• Design

- Treatability studies will the technology work?
- Onsite pilot studies proof of concept
- Design of layout / infrastructure
- Controls Automation cannot compensate for skilled operators

Permitting

- Discharge permit modifications
- Air permit modifications
- Building permits
- Potential impact of RCRA

Successful Implementation

- Installation
 - Interim wastewater management
 - Coordination with production
 - Start-Up / Commissioning
 - Training / Support

Customer Zero Discharge Wastewater Recycling System – Plating Operations

Customer Zero Discharge Wastewater Recycling System - Etching, Cooling Tower/ Boiler Blowdown

Customer Zero Discharge Wastewater Recycling System - Etching, Cooling Tower/ Boiler Blowdown

Customer Batch WWTS – Use of spent acids / FeCl3 in treatment chemistry

Questions?

David Fiereck
Senior Vice President
Loureiro Engineering Associates
860-410-3028
dfiereck@loureiro.com

Bill Morris
Technical Director
Loureiro Engineering Associates
860-410-3068
wcmorris@loureiro.com