

Market Potential Assessment for Alternative Fuels in Connecticut

Findings and next steps for the Connecticut Green Bank

> Nick Nigro, Atlas Public Policy October 6, 2016

About Atlas Public Policy

- DC-based policy tech firm started in 2015
- Mission: equip businesses and policymakers to make strategic, informed decisions through the greater use of technology that interprets publicly available information

Atlas Key Focus Areas

- Access: Collect and disseminate publicly available information for free.
- *Interpret*: Develop open-source apps to spur insights and conduct analyses.
- **Empower**: Strengthen policymakers, businesses, and non-profits' ability to meet emerging challenges and identify and seize opportunities.

- Available free at <u>www.ctgreenbank.com/about-</u> <u>us/studies-and-reports</u>
- Comprehensive data collection effort
- Summary of transportation sector in Connecticut
 - State energy and climate goals
 - State of play for conventional and alternative fuel vehicles
- Market potential assessment of alternative fuels
 - Near-term market feasibility
 - Environmental performance
 - Cost effectiveness
 - Local economic impact
- Conclusions and next steps

- Electric vehicles are best option for state to meet its goals
 - Automaker investments will introduce variety of EVs in near term
 - Current policy framework in CT supports EV adoption
 - EVs can achieve net cost savings over gasoline vehicles & provide local economic boost

Stable fuel prices, technological advances, and zero emissions combine to cost-effectively decarbonize transportation

Relational Database for Connecticut

- Compare multiple datasets at once
 - Create compelling visualizations with Microsoft Power BI and Excel
 - Time series (monthly, yearly) & geolocation (ZIP code)
- Current datasets available
 - Monthly EV sales
 - Alternative fuel/charging stations^{1,2}
 - Monthly gasoline & annual electricity prices^{1,2}
 - Annual vehicle miles traveled¹
 - Policies & programs (e.g., CHEAPR)
 - U.S. Census Bureau demographics^{1,2}
 - Solar installations^{1,2}
- ¹ Publicly available dataset accessed through web API
- ² Multi-state data available

EV and Charging Terminology

- Plug-in electric vehicle (EV)
 - Battery Electric Vehicle (BEV): all-electric car only powered by batteries
 - Plug-in Hybrid Electric Vehicle (PHEV) or Extended Range Electric Vehicle (EREV): vehicle that can be powered by either batteries, a gasoline engine, or both
- Charging Levels

LOW – AC 120 V "AC" LEVEL 1	Medium – AC 240 V "AC" LEVEL 2	High – DC Fast Charge "DC" LEVEL 2
 Uses standard outlet Power requirements similar to a toaster 	 Requires high-voltage circuit Power requirements similar to an electric clothes dryer 	 Power requirements are up to max power for 15 homes Up to 90 kilowatts
 Up to 1.4 kilowatts Can use existing power outlets resulting in no cost installation Charging rate: 3-5 miles per hour 	 Up to 19.2 kilowatts Equipment & installation costs vary widely (~\$6,500 in public and ~\$2,000 at home) Charging rate: 12-75 miles per hour 	 Currently, three systems used (CHAdeMO, SAE Combo, Tesla) Can have very high equipment & installation costs (up to \$90,000) Charging rate: 100-300 miles

- Transportation is largest source of emissions in CT (40%)
 - Current federal policy and state programs help, but not enough
 - State expected to have 3x more transportation emissions in 2050 than its long-term climate goal
- Light-duty vehicles dominate CT market
 - 95% of vehicle stock, 70% of energy use
- 10 alternative fuel options for vehicles
 - Plug-in electric vehicles most widely available alternative fuel vehicle

Near-Term Market Feasibility

Vehicle Type	Alternative Fuel	Key Factors	
Passenger Vehicle	Electricity	• ZEV Program participation	
		Vehicle incentives	
		 Available charging 	
		infrastructure	
Medium- and Heavy-duty Vehicles Renewable Diesel	Renewable	• Drop-in fuel	
	• Cost effective compared to		
		diesel	
		 Limited supply 	

- EV sales resilient in period of low gas prices
- Vehicles concentrated in southwest of state but deployment throughout
- DC fast charging infrastructure not widespread

7

CHEAPR Rebates by County

CHEAPR Rebates by Vehicle

EV Sales in Connecticut

- Program began issuing rebates in May of 2015
- Provided about \$2m towards EV purchases so far
- 568 PHEVs and 284 BEVs
- 15 vehicles, mostly small and mid-size vehicles

- 42 DC fast charging locations
- Many areas inaccessible for BEV drivers relying on DC fast charging

Charging Locations

Expected Near-Term Availability in CT

Vehicle Class	Vehicle Type	Biogas or Landfill Gas to RNG	Biodiesel (B100) or E85	Renewable Diesel	Electricity	Propane	CNG	LNG	Hydrogen (Gaseous)
Ligh Dut	Passenger Cars								
∶Y ∶Y	Light Trucks								
Medi Duty	Beverage, Dump, Tow, Utility, Refrigerated Van								
um-	Box Van, School Bus, Step Van								
& Н	Concrete Mixer, Trash								
eavy	Tractor Trailer								
7	Transit Bus								

Green = widely available. Orange = limited availability/demonstrations only. Red = no availability.

Environmental Performance

Vehicle Type	Alternative Fuel	Key Factors
Passenger Vehicle	Electricity, Hydrogen	 Greatest emission reduction potential Requires low-carbon feedstocks
Medium- and Heavy-duty Vehicles	RNG from landfills and dairy farms	 Greatest emission reduction potential Displaces emissions

Cost Effectiveness

Vehicle Type	Alternative Fuel	Key Factors
Passenger Vehicle	Electricity	 All-electric vehicles have lower abatement costs than social cost of carbon without vehicle incentives and with solar incentives Residential solar is least cost option with incentives
Delivery Trucks, Tractor-Trailers	Electricity (delivery trucks), Biodiesel (delivery trucks, tractor trailers)	 Electric delivery trucks cost less than diesel trucks Biodiesel trucks have lower abatement costs than social cost of carbon

Discounted Lifetime Cost of Passenger Vehicles

Passenger Vehicle Discounted Lifetime Cost and Abatement Cost

Local Economic Impact

Vehicle Type	Alternative Fuel	Key Factors
Passenger Vehicle	Electricity	 Sizable power generation capacity keep transportation spending in state's economy Federal funds exist to support plug-in electric vehicles and charging infrastructure Electric vehicles can achieve a net costs savings over gasoline vehicles
Medium- and Heavy-duty Vehicles	Biodiesel trucks	 Existing capacity to produce biodiesel and federal tax credit make it best option CNG could be attractive if oil prices recover to levels seen before summer of 2014 Large portion of commercially-generated waste cooking oil is currently being used for transportation fuel (biodiesel) or heating oil. Potential to use residentially-generated waste cooking oil for biodiesel.

Expected Effects from Increased Discretionary Funds

Vehicle	Alternative Fuel	State Economic Impact from Cost Savings		
Passenger Car	Electricity	Positive		
Medium-Duty Delivery Truck	Electricity	Positive		
Medium-Duty Delivery Truck	Biodiesel (B100)	Neutral		
Heavy-Duty Tractor Trailer	Biodiesel (B100)	Neutral		
Passenger Car	E85	Negative		
Passenger Car	Hydrogen	Negative		
Medium-Duty Delivery Truck	CNG	Negative		
Heavy-Duty Tractor Trailer	Electricity	Negative		
Heavy-Duty Tractor Trailer	CNG	Negative		

- Electric vehicles are best option for state to meet its goals
 - Automaker investments will introduce variety of EVs in near term
 - Current policy framework in CT supports EV adoption
 - EVs can achieve net cost savings over gasoline vehicles & provide local economic boost

Stable fuel prices, technological advances, and zero emissions combine to cost-effectively decarbonize transportation

- Attempt to mirror success of other programs
 - Significant growth in cleantech deployment leading to decreased public investment
- Identified four promising concepts
 - The pairing of electric vehicles and residential solar photovoltaic systems
 - Electric shared-use mobility solutions
 - Advanced publicly available EV charging infrastructure
 - Electrification of the transit fleet

Transportation Electrification Toolkit

Concept Summaries Objective, Target Locations, Deployment Barriers, Resource Library

Key Enabling Technologies and Business Models

Barriers addressed

Role of the CTGB, other public agencies, and the private sector

Metrics for program evaluation

Case Studies from Outside Connecticut

Summary
Target market
Strategy to address barriers
Role of government & private capital
Expected or actual results

Connecticut Community Spotlight

Monthly blog-style short stories

Highlight transportation electrification opportunities in Connecticut communities

Use data dashboards to educate audience

Nick Nigro

nick.nigro@atlaspolicy.com