Stratford Point living shoreline: Benefits, Limits and Lessons Learned with Nature-based Installations

Jennifer H. Mattei, Ph. D. matteij@sacredheart.edu

Sacred Heart UNIVERSITY

DEPARTMENT OF BIOLOGY

List of Specific Goals

- 1) Erosion Control & Sediment Deposition
- ➤ Wave attenuation = Artificial Shellfish Reef--→ Natural Shellfish Reef
- Sediment deposition & retention = Marsh/Grassland, Coastal Shrub/Forest Restoration

2) Habitat Restoration & Ecosystem Services

Shellfish Reef, Low Marsh, High Marsh, Grasslands/Dunes

History of the Site

Remington Arms • Gun Club 1920's-1986 Lead deposition Wetland filled **Suburban development Remediation/Restoration** >320 tons removed Currently, land has a **Conservation** Easement, held by the State

Make a plan for restoration & management

Landscape planning: Unite Fragments

Problems:

- Highly disturbed
 Flat
- 3. Barren
- 4. Eroding

NOV

the offering

5. No soil structure

2000

3

Pilot Study of 64 reef balls installed May 2014 ~150 feet

2015, after planting and 6 inches of sediments accumulated.

ale.

Lessons learned so far: Wave Attenuation comes first!

MAR ANA

Plant grasses early- In April for maximum plant growth

Wave Attenuation

Significant Wave Height

Reduction in Significant Wave Height

Sensor Array

The larger the area of restoration, the higher the biodiversity and greater ecosystem services will be.

November 2016 Reef expansion ~300m 327 reef balls deployed

Education Important

~200 volunteers planting Spartina on Earth Day 2017.

VIN PICK P. TA

Oyster Counts over time

2018 2019 2020 2021

What about climate change?

- If sediments continue to accumulate marsh growth seaward; with SLR, marsh growth landward.
- Oyster survival/expansion with SLR

Real Time Kinematic (RTK) survey system (AECOM)

SITE BM#10 N 617207.081 E 902920.352 Z 20.329

SITE BM # 3 RTK FOUNDATION REBAR N 617152.553 E 902967.536 Z 18.991

L	E	G	E	Ν	D	

N

- ----- MINOR CONTOUR INTERVAL (0.5 FOOT) AUGUST 2022
- MAJOR CONTOUR INTERVAL (1.0 FOOT) AUGUST 2022
- GEOTUBES / ROPE TUBES
- MEAN HIGH WATER (MHW)
- MEAN LOW WATER (MLW)
- STATE RIP-RAP

Name	Cut Factor	Fill Factor	2d Area	Cut	F511	Net
2021 to 2022 Comparison 2017 to 2022 Comparison	1.000	1.000	212303.98 Sq. Pt. 156790.95 Sq. Pt.	400.07 Cu. Td. 1003.90 Cu. Yd.	1909.29 Cu. Td. 1066.52 Cu. Td.	1407.42 Cu. Yd. <pill> 17.30 Cu. Yd.<cut></cut></pill>

BENCHMARK TABLE						
Point #	Northing	Easting	Devation	Description		
1	617207.081	902920.352	20.329	C-IPF Site BM		
2	617349.308	901871.800	9.696	C-IPF Site BM		
3	617152.553	902867.536	18.991	RTK Foundation Rebar (North)		

CUT/FILL TABLE						
NUMBER	MINIMUM RANGE	MAXIMUM RANGE	COLOR			
1	-5.00	-1.00				
2	-1.00	-0.50				
3	-0.50	-0.25	-			
4	-0.25	0.25				
5	0.25	0.50				
E	0.60	1.00				

SUCCESS! SHELLFISH REEF & SALTMARSH

- 30-40% Wave Abatement (pilot reef)
- Spartina alternaflora doubling in size over one year and average density is greater than reference marsh on Milford Point.
- >30cm Sediment Deposited Behind The Reef In 2 Years in patches
- Lead Is No Longer Exposed Behind The Pilot Reef
- Rockweed, Oysters and blue mussel surviving On The Reef

To Date:

- 372 Reef Balls placed
 ~20,000 Marsh Grass (*Spartina*) plugs
- 35 species of trees and shrubs
- 800 individual woody plants
- 50 species of native wildflowers/grasses 1000's of seeds

Geotextiles have no role to play in Nature-based shoreline restoration; not biodegradable, breaks down when exposed to UV-light into strands and micro-plastics, smothers and entangles organisms.

NOT A LIVING SHORELINE

Before Restoration = flat & barren & vulnerable

After = Habitat Structure = Biodiversity = Resiliency

Coauthors

THANK YOU Undergraduates

Dr. Latina Steele,

- Associate Professor, Department of Biology, SHU
- Chris Hauser, MS
- Associate Director, Delaware Sea Grant College Program,
- Jo-Marie Kasinak, MS
- Instructor, Department Of Biology At SHU And Grad. Student, Department of Marine Sciences, University of Connecticut,

Adrian Nelson

(SHU) Funding from DuPont

- Sam Koeck (UDEL) CT & DE Sea Grant Intern
- Katherine Quinn (SHU) Funding from NOAA/UConn
- Clare Gagliano (SHU) USACE/Audubon ILF
- Jeff Young

(SHU) USACE/Audubon ILF

Stratford's living shoreline has become a national showcase for how to use nature-based solutions to problems of sea level rise, erosion and repair ecosystem function and services (See examples below):

- Long Island Sound Study: <u>https://longislandsoundstudy.net/2019/11/creating-living-shorelines/,https://longislandsoundstudy.net/2020/09/how-living-shorelines-make-the-coast-resilient/</u>
- Mattei, J. 2020. Environmental Protection Agency: Soak Up the Rain New England Webinar Series: Living Shorelines: Slowing Coastal Erosion and Saving Connecticut Habitats. April 9, 2020 10:30AM-12:00PM. Attended by 525 people (a record number of people for Environmental Protection Agency webinars), 200 from New England states and the rest from 37 other states and Canada. <u>https://www.epa.gov/soakuptherain/soak-rain-new-englandwebinar-archive#20200409</u>
- CT Dept. of Energy and Environmental Protection: <u>https://ctdeep.maps.arcgis.com/apps/MapJournal/index.html?appid=4f6604af81934bcb9126cb31597d0f5f</u>
- National Fish and Wildlife Foundation, Long Island Sound Futures Fund: <u>https://ctdeep.maps.arcgis.com/apps/MapJournal/index.html?appid=4f6604af81934bcb9126cb31597d0f5f</u> See page 16 of: <u>https://www.nfwf.org/sites/default/files/2020-12/long-island-sound-futures-fund-15-year-report.pdf</u>
- American Shore & Beach Preservation Association, Best Restored Shores of 2020:<u>https://asbpa.org/2020/09/14/best-restored-shore-award-spotlights-unique-coastal-projects/#:~:text=The%202020%20winners%20are%3A,Restoration%20of%20Cooks%20Beach%2C%20NJ</u>
- Audubon Connecticut: <u>https://ct.audubon.org/news/connecticuts-first-living-shoreline-thriving-stratford-point,https://ct.audubon.org/news/stratford-point-receives-best-restored-shore-award</u>
- Connecticut Institute for Resilience & Climate Adaptation (CIRCA) .<u>https://circa.uconn.edu/stratford-point-living-shoreline/</u>
- Coming soon: The Nature Conservancy web site featuring living shorelines from New England including Stratford Point.