Connecticut 2020 Ambient Air Monitoring 5-Year Network Assessment

Table of Contents

Background	
Introduction	5
Network Overview	5
Air Quality Summary/Air Quality Index	7
Network Design Analysis	
Population	
Population Distribution and Susceptible and Vulnerable Communities	
Connecticut Major Emission Sources	
State Topography and Potential Air Quality Issues	
Monitoring Objectives and Spatial Scales	
Value Assignment to Sites and Monitors	
Ozone Network	
PM _{2.5} Network	
PM ₁₀ /PM _{10-2.5} Network	
PAMS Network	
NOx / NOy Network	
SO ₂ Network	
CO Network	
Lead Network	49
Detailed Site Information	50
Pomfret – Abington	50
Bridgeport – Roosevelt School	
Cornwall – Mohawk Mountain	
Danbury – Western Connecticut State University	
East Hartford – McAuliffe Park	
Greenwich – Point Park	
Groton – Fort Griswold	
Hartford – Huntley Place	
Madison – Hammonasset State Park	
Middletown – Central Valley Hospital	
New Haven – Criscuolo Park	
Stafford – Shenipsit State Forest	
Stratford – Lighthouse	
Waterbury – Meadow & Bank Street	
Westport – Sherwood Island State Park	
Appendix A Valley ID Tool Graphical Output	
Appendix B Ozone Adjacent Site Correlation Plots	B-1
Table 1: DEEP Ambient Air Monitoring Network Summary (as of July, 2020)	7
Table 2: CT AQI Exceedances in 2019	
Table 3: National Ambient Air Quality Standards	10
Table 4: Population of Connecticut Core-based Statistical Areas	12
Table 5: List of Connecticut Distressed Municipalities	
Table 6: Minimum Required NCore Monitoring Parameters	
Table 7: Additional Parameters Monitored at NCore Sites	
Table 8: SLAMS Minimum Ozone Monitoring Requirements	
Table 9: Summary of Ozone Network Minimum Monitoring Requirements	
Table 10: Ozone Network Measurement Scales, Monitoring Objectives and Value Assignments	
Table 11: Summary of Ozone Near-Sites Correlations	
Table 12: Current PM _{2.5} Network Configuration	
Table 13: Connecticut 2019 PM _{2.5} Design Values (µg/m3)	
Table 14: EPA General Requirements for PM _{2.5} Monitoring	
Table 15: Specific PM _{2.5} Network Minimum Monitoring Requirements	
Table 16: PM _{2.5} Network Measurement Scales, Monitoring Objectives and Value Assignments	
Table 17: PM _{2.5} Speciation Network Measurement Scales, Monitoring Objectives and Value Assignme	
Table 18: Current PM ₁₀ /PM _{10-2.5} Network Configuration	
Table 19: EPA PM ₁₀ Minimum Monitoring Requirements	
Table 20: Connecticut PM ₁₀ Minimum Monitoring Compliance	
Table 21: PM ₁₀ Network Measurement Scales, Monitoring Objectives and Value Assignments	35
Table 22: NO ₂ 2019 NAAQS Design Values	39
Table 23: NO_2 Network Measurement Scales, Monitoring Objectives and Value Assignments	

Table 24: NO/NO _Y Network Measurement Scales, Monitoring Objectives, and Value Assignments	41
Table 25: 2019 SO ₂ Design Values	42
Table 26: PWEI CBSA Monitoring Requirements	44
Table 27: Population Weighted Emissions Index (PWEI) Values for Connecticut CBSAs	44
Table 28: SO ₂ Network Monitoring Objectives, Spatial Scales and Value Assignments	45
Table 29: Connecticut 2019 CO Design Values	46
Table 30: CO Network Measurement Scales, Monitoring Objectives and Value Assignments	48
Figure 1: DEEP Ambient Air Monitoring Stations	
Figure 2: Connecticut Ozone and PM _{2.5} Exceedance Trends	
Figure 3: Connecticut CBSA Boundaries	
Figure 4: Population Density by Census Tract and Air Quality Monitors	13
Figure 5: Susceptible Population Density by Census Tract and Air Quality Monitors	
Figure 6: Connecticut Environmental Justice Areas and Air Quality Monitors	
Figure 7: Connecticut NOx Point Source Emissions (tons/year)	
Figure 8: Connecticut PM2.5 Point Source Emissions (tons/year)	
Figure 9: Connecticut SO2 Point Source Emissions (tons/year)	
Figure 10: Connecticut VOC Point Source Emissions (tons/year)	18
Figure 11: Connecticut 2019 Ozone Design Values	
Figure 12: Connecticut 2019 PM _{2.5} Design Values (µg/m3)	
Figure 13: PM ₁₀ Daily First High Value Trends in Connecticut MSAs	
Figure 14: Connecticut 1-Hour† NO2 Trends	39
Figure 15: Connecticut Annual Average NO2 Trends	40
Figure 17: Connecticut Annual 99th Percentile Daily Maximum 1-hour SO ₂ Values, 2004-2019	43
Figure 18: 1-Hour CO Design Value Trends, 2005-2019	46
Figure 19: 8-Hour CO Design Value Trends, 2005-2019	47
Figure 20: Pb-PM10 Monitored Levels, Jan 2010 – Jun 2016	49

Acronyms and Abbreviations

AQI – Air Quality Index

CAA - Clean Air Act

CASTNet - Clean Air Status and Trends Network

CBSA - core-based statistical area

CFR - Code of Federal Regulations

CO - carbon monoxide

CSA - combined statistical area

CSN - Chemical Speciation Network

DEEP - Connecticut Department of Energy and Environmental Protection

DV - design value

ED-XRF – energy dispersive x-ray fluorescence

EPA – Environmental Protection Agency

FEM - Federal Equivalent Method

FRM - Federal Reference Method

GC – gas chromatography

HAP – hazardous air pollutant

IMPROVE – Interagency Monitoring of Protected Visual Environments

LC – local conditions of temperature and pressure (air volumes)

LMP - limited maintenance plan

μg/m³ – micrograms per cubic meter

mm Hg - millimeters of mercury (unit of pressure)

MPA - monitoring planning area

MSA - metropolitan statistical area

NAAQS - National Ambient Air Quality Standards

NCore - National Core Monitoring Station

NEI - National Emission Inventory

NO - nitrogen oxide

NO₂ – nitrogen dioxide

NOx – oxides of nitrogen

NOy – total reactive oxides of nitrogen

PAMS – Photochemical Assessment Monitoring Stations

 $PM_{2.5}$ – fine particulate matter (<2.5 microns)

 PM_{10} – respirable particulate matter (<10 microns)

PM_{10-2.5} – coarse particulate matter (between 2.5 and 10 microns)

PMSA – primary metropolitan statistical area

ppm - parts per million

ppb - parts per billion

PWEI – population-weighted emission index

r² - Pearson correlation coefficient

RH - relative humidity

SIP - State Implementation Plan

SLAMS – state and local monitoring stations

SO₂ - sulfur dioxide

SPM – special purpose monitoring station

STN – Speciation Trends Network

STP – standard conditions of temperature and pressure (air volumes at 25°C, 760 mm Hg)

tpy - tons per year

TSP - total suspended particulate

UA – urban area

VOC - volatile organic compound

XRF - X-ray fluorescence

Background

Introduction

The Connecticut Department of Energy and Environmental Protection (DEEP) performs monitoring of pollution in the ambient air to support efforts to improve air quality and protect public health and the environment. Monitoring data is crucial to determining compliance with the primary and secondary National Ambient Air Quality Standards (NAAQS) adopted by the U.S. Environmental Protection Agency (EPA) and gauging the efficacy of regulatory programs. Monitoring data is also used to inform EPA's air quality reporting index (Air Quality Index or AQI) and issuing air quality forecasts, long-term health assessments, and tracking long-term air quality both to gauge effectiveness of emission reduction strategies and to improve the accuracy of air quality and photochemical grid models.

The Connecticut 2020 Ambient Air Monitoring Five Year Network Assessment is developed in accordance with the requirements of 40 CFR §58.10(d), which states:

"The State, or where applicable local, agency shall perform and submit to the EPA Regional Administrator an assessment of the air quality surveillance system every 5 years to determine, at a minimum, if the network meets the monitoring objectives defined in appendix D to this part, whether new sites are needed, whether existing sites are no longer needed and can be terminated, and where new technologies are appropriate for incorporation in the ambient air monitoring network. The network assessment must consider the ability of existing and proposed sites to support air quality characterization for areas with relatively high populations of susceptible individuals (e.g., children with asthma), and, for any sites that are being proposed for discontinuance, the effect on data users other than the agency itself, such as nearby States and Tribes or health effects studies. For PM_{2.5}, the assessment also must identify needed changes to population-oriented sites. The State, or where applicable local, agency must submit a copy of this 5-year assessment, along with a revised annual network plan to the Regional Administrator. The first assessment is due July 1, 2010."

The primary purpose of this assessment is to determine the extent to which the current air monitoring network in Connecticut meets federal requirements cited above. This assessment does not propose any changes to the air monitoring network, but rather determines whether each parameter at each site is of critical, credible or marginal value in meeting the regulatory objectives. Any changes to the network indicated by the assessment will be proposed in a future Annual Air Monitoring Network Plan after careful consideration of EPA's monitoring requirements, Connecticut's air quality data needs, and available resources. Each year by July 1, the Annual Network Plan is made available to the public review and comment and then subsequently submitted to EPA Region I for review and approval.

Network Overview

DEEP operates 14 pollutant monitoring stations. Figure 1 below shows the EPA-approved DEEP ambient air monitoring site network map as of 2020. A current and projected listing of the parameters monitored at each site is given in Table 1.

In October 2006, EPA established a network of core multi-pollutant monitoring sites. These sites are known collectively as the National Core (NCore) network, the primary purpose of which is to consolidate monitoring of multiple pollutants at fewer sites for efficiency and cost savings. In addition, the NCore sites provide a comprehensive suite of high-resolution pollutant data for NAAQS compliance assessment, research studies and long-term trends analysis. There are two sites located in Connecticut designated and approved by EPA as part of the national NCore network: Criscuolo Park in New Haven, and Mohawk Mountain in Cornwall.

Figure 1: DEEP Ambient Air Monitoring Stations

Table 1: DEEP Ambient Air Monitoring Network Summary (as of July, 2020)

Town	Site	PM2.5 (FRM)	PM2.5 (FRM, collocated)	PM2.5 (continuous FEM)	PM2.5 (continuous FEM, secondary)	PM10/PM10-2.5 (FRM)	PM10/PM10-2.5 (FRM, collocated)	PM10/PM-10.2.5 (continuous FEM)	PM10/PM10-2.5 (cont. FEM, secondary)	PM Speciation (CSN)	PM Speciation (IMPROVE)	PM2.5 Carbon (BC/UVC, continuous)	Ozone	S02	00	NO ₂	NO/NOy	HCHO (continuous)	Total Column NO ₂ /HCHO	Traffic Count	Wind Speed	Wind Direction	Temperature	Dew Point / Rel. Humidity	Barometric Pressure	Solar Radiation	Mixing Height
Bridgeport	Roosevelt School		1/6	Х				Х						X									Х				
Bridgeport LIS Ferry	Park City Vessel												Р														
Cornwall	Mohawk Mountain	1/3		Х				Х			1/3	Х	Х	Х	Х		Х				Х	Х	Х	Х	Х	Х	
Danbury	Western Connecticut State University	1/6		Х				Х				Х	Х								Х	Х	Х		Х		
East Hartford	McAuliffe Park			Х				Х				Х	X			X					X	X	Х	Х	Х		
Greenwich	Point Park												Х								X	X	Х				
Groton	Fort Griswold			Х				Х					Х										Х				
Hartford	Huntley Place	1/6		Х				Х				Х			Х	Х				Х	Х	X	Х		Х		
Madison	Hammonasset State Park												X						Х		X	X	X				
Middletown	Connecticut Valley Hospital												Х								X	X	Х		Х		
New Haven	Criscuolo Park	1/3	1/6	Х	Х	1/3	1/6	Х	Χ	1/3		Х	Χ	Х	Χ	Х	Х		х		Х	Х	Х	Х	Х	Х	Х
Stafford	Shenipsit State Forest												Х								X	X	Х				
Stratford	Stratford Lighthouse												Х										Х				
Waterbury	Meadow & Bank Street			Х				Х													Х	Х	Х				
Westport	Sherwood Island State Park												Х			Х		Р	Х		Х	Х	Х		Х		Р
X=Exis	ting P = Plar	nned	l in 2	020	/202	1	Т	= T	erm	inate	ed in	202	0/20	021													

Air Quality Summary/Air Quality Index

DEEP provides near real-time hourly pollutant and meteorological data and daily air quality index (AQI) forecasts to EPA for the state of Connecticut. Ambient data is available to agencies through the AirNow Tech website, and forecasts are accessible on the AirNow and DEEP websites, DEEP call-in telephone lines (800-249-1234 or 860-424-4167) and daily email reports. In addition, interested persons may sign up for daily email Connecticut AQI forecasts on the DEEP air quality list server (https://portal.ct.gov/DEEP/Air/Forecasting/AQI/Air-Quality-

<u>Information-Listservs</u>) or for email air quality alerts through AirNow Enviroflash (http://www.enviroflash.info/).

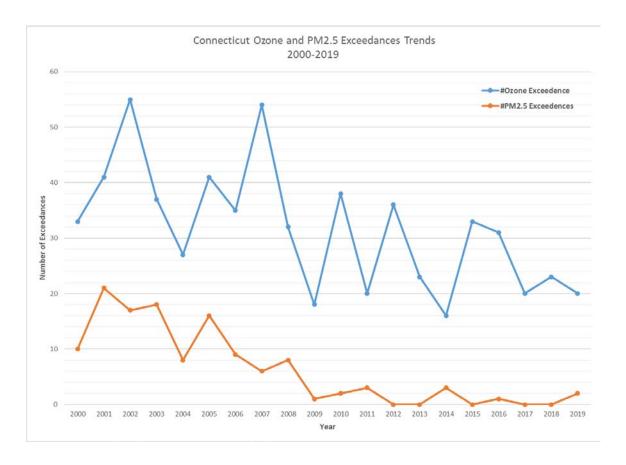

The AQI indicates air quality levels on a scale with six defined categories (Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very Unhealthy and Hazardous). An AQI greater than 100, which is a category of Unhealthy for Sensitive Groups (USG) or worse, is equivalent to ambient air concentrations that exceed the NAAQS. Table 2 below displays the number of days in 2019 in which air quality exceeded 100 on the AQI (e.g., the number of NAAQS exceedances by site). Compliance with the 2015 ozone NAAQS of 70 ppb is determined by the 3-year average of the annual fourth highest daily maximum 8-hour average The annual average NAAQS for $PM_{2.5}$ is currently 12 $\mu g/m^3$ (micrograms per cubic meter) and the 24-hour average NAAQS is 35 $\mu g/m^3$. Compliance with the annual fine particulate matter NAAQS is determined by the 3 year average of the annual mean and compliance with the 24-hour standard is determined by the 3 year average of the 98^{th} high percentile value.

Table 2: CT AQI Exceedances in 2019

Pollutant	Location of monitors exceeding the applicable NAAQS	Days above 100 on the AQI in 2019
Ozone	Cornwall, Danbury, East Hartford, Greenwich, Groton, Madison, Middletown, New Haven, Stafford, Stratford, Westport	20
PM _{2.5}	Bridgeport	2
PM ₁₀	None	0
SO ₂	None	0
СО	None	0
NO ₂	None	0

While overall trends of ozone and $PM_{2.5}$ exceedances are downward since 2000, as shown in the Figure 2, data from the last five years do not indicate a clear trend. All ozone exceedances are based on the 2015 8-hour standard of 0.070 ppm, and the $PM_{2.5}$ exceedances are based on the 2012 daily standard of 35 $\mu g/m3$.

Figure 2: Connecticut Ozone and PM_{2.5} Exceedance Trends

National Ambient Air Quality Standards (NAAQS)

The EPA's Office of Air Quality Planning and Standards (OAQPS) has set NAAQS for six principal pollutants, known as the criteria pollutants. Table 3 summarizes the current NAAQS compliance requirements for the criteria pollutants.

Table 3: National Ambient Air Quality Standards

Pollutant [links to histor tables of NAAO reviews]		Primary/ Secondary	Averaging Time	Level	Form
Carbon Monoxide (C	<u>O)</u>	primary	8 hours	9 ppm	Not to be exceeded more than once
			1 hour	35 ppm	per year
Lead (Pb)	primary and secondary		Rolling 3 month average	0.15 μg/m ^{3 (a)}	Not to be exceeded
Nitrogen Dioxide (NC	Nitrogen Dioxide (NO ₂)		1 hour	100 ppb	98th percentile of 1-hour daily maximum concentrations, averaged over 3 years
			1 year	53 ppb ^(b)	Annual Mean
Ozone (O ₃)		primary and secondary	8 hours	0.070 ppm ^(c)	Annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years
Particle Pollution	PM _{2.5}	primary	1 year	12.0 μg/m ³	annual mean, averaged over 3 years
<u>(PM)</u>		secondary	1 year	15.0 μg/m ³	annual mean, averaged over 3 years
		primary	24 hours	35 μg/m ³	98th percentile, averaged over 3
		and secondary		1 3,	years
	PM ₁₀	primary and secondary	24 hours	150 μg/m³	Not to be exceeded more than once per year on average over 3 years
Sulfur Dioxide (SO ₂)		primary	1 hour	75 ppb ^(d)	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years
		secondary	3 hours	0.5 ppm	Not to be exceeded more than once per year

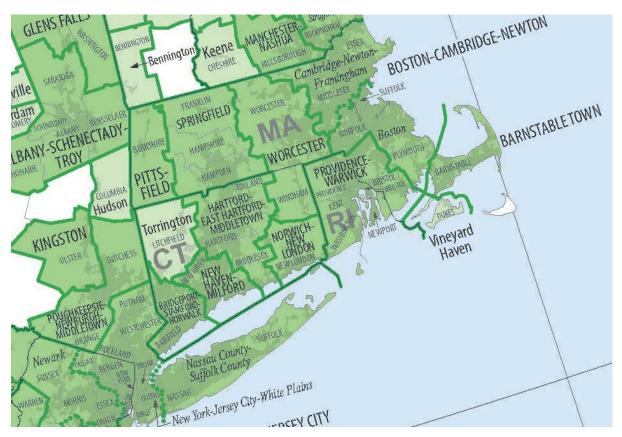
Notes for Table 3:

 $^{^{}a}$ In areas designated nonattainment for the Pb standards prior to the promulgation of the current (2008) standards, and for which implementation plans to attain or maintain the current (2008) standards have not been submitted and approved, the previous standards (1.5 μ g/m3 as a calendar quarter average) also remain in effect.

^b The level of the annual NO₂ standard is 0.053 ppm. It is shown here in terms of ppb for the purposes of clearer comparison to the 1-hour standard level.

^c Final rule signed October 1, 2015, and effective December 28, 2015. The previous (2008) O3 standards additionally remain in effect in some areas. Revocation of the previous (2008) O3 standards and transitioning to the current (2015) standards will be addressed in the implementation rule for the current standards.

^d The previous SO_2 standards (0.14 ppm 24-hour and 0.03 ppm annual) will additionally remain in effect in certain areas: (1) any area for which it is not yet 1 year since the effective date of designation under the current (2010) standards, and (2) any area for which implementation plans providing for attainment of the current (2010) standard have not been submitted and approved and which is designated nonattainment under the previous SO_2 standards or is not meeting the requirements of a SIP call under the previous SO_2 standards (40 CFR 50.4(3)), A SIP call is an EPA action requiring a state to resubmit all or part of its State Implementation Plan to demonstrate attainment of the required NAAQS.


Network Design Analysis

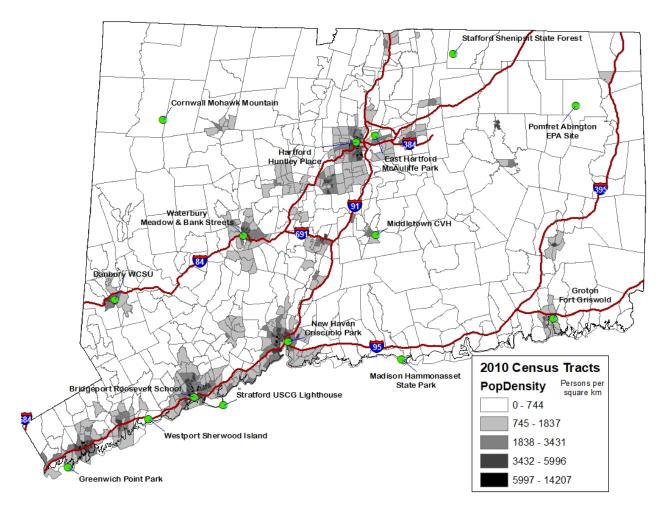
The design of Connecticut's ambient air monitoring network is based on EPA regulatory requirements for National Core (NCore) sites, pollutant-specific state and local air monitoring stations (SLAMS), and Photochemical Assessment Monitoring Station (PAMS) and enhanced ozone monitoring. This section includes an assessment of the network relative to these requirements.

Population

Several of EPA's monitoring requirements are based on definitions of metropolitan areas developed by the US Office of Management and Budget and the US Census Bureau; these are: metropolitan statistical areas (MSA), micropolitan statistical areas, core-based statistical areas (CBSA), and combined statistical areas (CSA). Both MSAs and micropolitan statistical areas are CBSAs, defined as having an urbanized cluster with a population of at least 50,000 or 10,000, respectively. A CSA consists of two or more adjacent CBSAs, which, although highly integrated, may cross state or other political boundaries. A map showing CBSA delineations is given in Figure 3. Table 4 lists the Connecticut MSAs and 2019 U.S. Census Bureau population estimates.

Figure 3: Connecticut CBSA Boundaries

Table 4: Population of Connecticut Core-based Statistical Areas


CBSA Code	CBSA Name	Counties included in CBSA	Population (2019 estimates)
14860	Bridgeport-Stamford-Norwalk	Fairfield	943,332
		Hartford, Middlesex,	
25540	Hartford- East Hartford-Middletown	Tolland	1,204,877
35300	New Haven-Milford	New Haven	854,757
35980	Norwich-New London	New London	265,206
		Worcester, MA;	
49340	Worcester	Windham, CT	947,404
45860	Torrington (micropolitan statistical area)	Litchfield	180,333

Population Distribution and Susceptible and Vulnerable Communities

The majority of the monitors in the network are sited to assess the potential exposure of populations to maximum levels of air pollution. In locating these monitors, the spatial distributions of population density, susceptible and vulnerable populations, and low-income communities should be considered to ensure that air pollution mitigation strategies fairly address exposures of these groups. Siting monitors within areas with the highest densities of such populations helps to best characterize the impacts of ambient air pollution on human health. While it is reasonable that monitoring in densely populated areas would be more protective than in a sparsely populated areas, it is also critical to take into account areas where there might be higher impacts on susceptible populations, such as children and the elderly, as well as on and low-income citizens, who either may be more sensitive to the health effects of air pollution or may have inherent barriers in their access to health care.

Generally, higher density population areas in Connecticut are clustered along busy interstate transportation corridors, which are sources of transportation related emissions, such as fine and coarse particulates, carbon monoxide and oxides of nitrogen. Additionally, more densely populated areas are more likely to be in proximity of industrial sources of air pollution. Figure 4, which shows state population density by census block area, indicates that most of Connecticut's monitoring sites are located within the highest density blocks.

Figure 4: Population Density by Census Tract and Air Quality Monitors

People who are particularly susceptible to air pollution are more likely to suffer adverse effects at lower concentrations. Examples of susceptible groups include children, the elderly and individuals with compromised physiological or medical conditions, such as asthma or other pulmonary disorders and heart disease. Figure 5 shows the distribution of the population below 18 and above 65 years of age for 2010 census tracts, which generally follows the overall population profile.

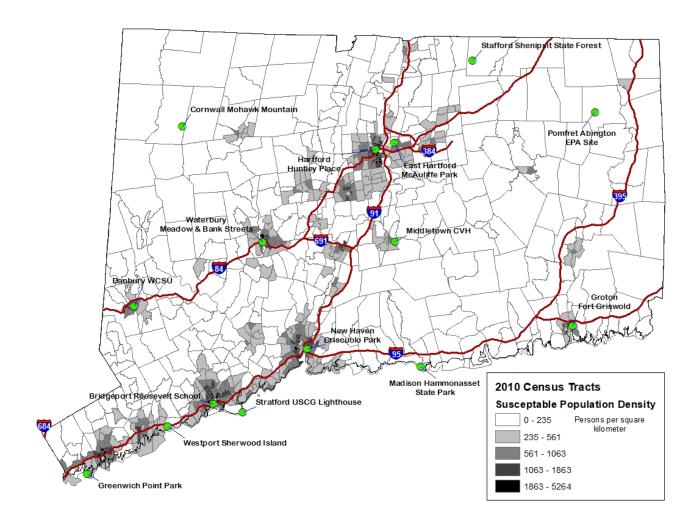


Figure 5: Susceptible Population Density by Census Tract and Air Quality Monitors

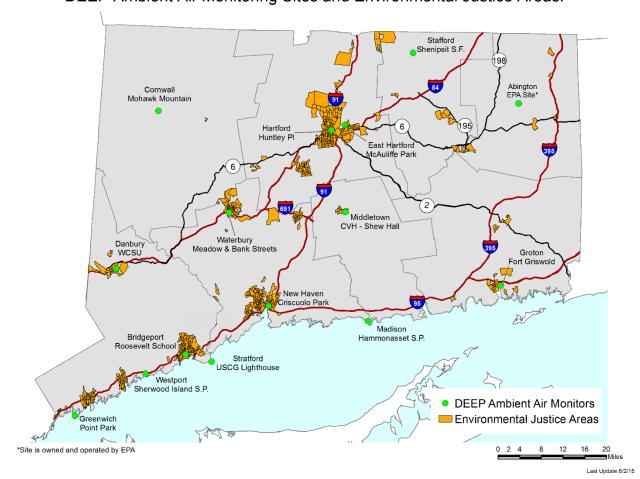
In accordance with EPA's Environmental Justice Agenda 2020¹ and DEEP's incorporation of environmental justice principles at all levels of decision making (see Equity & Environmental Justice Draft Report², DEEP recognizes the importance of collaboration and teamwork in addressing issues of environmental quality in overburdened communities. Two such areas served by air monitoring stations are New Haven and Hartford, which ranked #11 and #13, respectively, among the 100 largest U.S. cities were it is most challenging to live with asthma, according to a recent study³.

Environmental justice communities in Connecticut are defined as census tract areas in which 30% or greater of the population have an income below 200% of the federal poverty level or areas of distressed municipalities as defined by Connecticut Department of Economic and Community Development. The 2020 list of distressed municipalities with rankings is given in Table 5.

Figure 6 below displays the areas that fall under the definition of environmental justice communities along with DEEP's ambient air monitoring stations. Most of the environmental

¹ EPA's Environmental Justice Agenda 2020

² Equity & Environmental Justice (DEEP) September 21, 2020


³ Asthma Capitals 2019

justice areas located in areas with higher emissions, such as industrial/commercial zones or high motor vehicle traffic areas, are served by ambient air monitors.

Table 5: List of Connecticut Distressed Municipalities

Town	Rank	Town	Rank	Town	Rank
Ansonia	1	Torrington	10	Meriden	19
Waterbury	2	Sprague	11	New Haven	20
New London	3	Norwich	12	Putnam	21
New Britain	4	East Hartford	13	Preston	22
Derby	5	Montville	14	West Haven	23
Hartford	6	Griswold	15	Stratford	24
Bridgeport	7	Voluntown	16	Chaplin	25
Bristol	8	East Haven	17		
Windham	9	Winchester	18		

Figure 6: Connecticut Environmental Justice Areas and Air Quality Monitors

DEEP Ambient Air Monitoring Sites and Environmental Justice Areas.

Connecticut Major Emission Sources

Data from process emission point sources, and other sources where applicable, are presented in previous sections where needed to identify minimum monitoring requirements, such as for SO_2 Population Weighted Emissions Index (PWEI). In this section, major process emission source locations for selected pollutant groups are presented as a reference for consideration of the siting of monitors within the network. Figures 7 - 10 shows process emission source 2017 National Emission Inventory⁴ (NEI) levels and locations for SO_2 , NO_X , $PM_{2.5}$ and VOCs in Connecticut.

⁴ EPA, 2017 National Emissions Inventory

Figure 7: Connecticut NOx Point Source Emissions (tons/year)

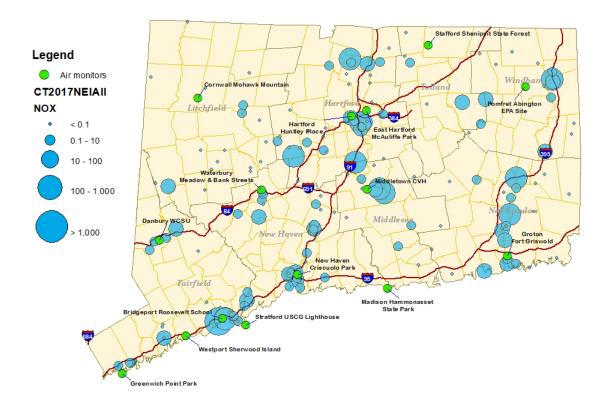


Figure 8: Connecticut PM2.5 Point Source Emissions (tons/year)

Figure 9: Connecticut SO2 Point Source Emissions (tons/year)

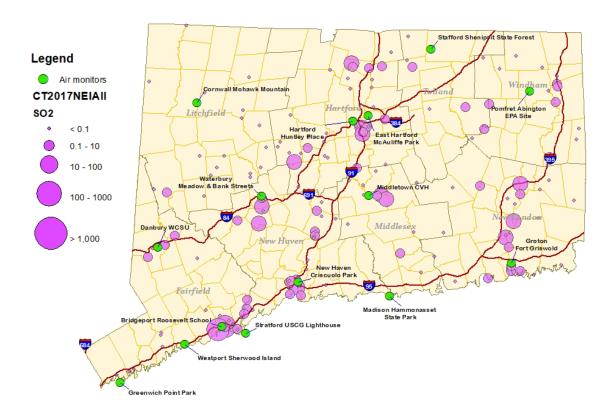
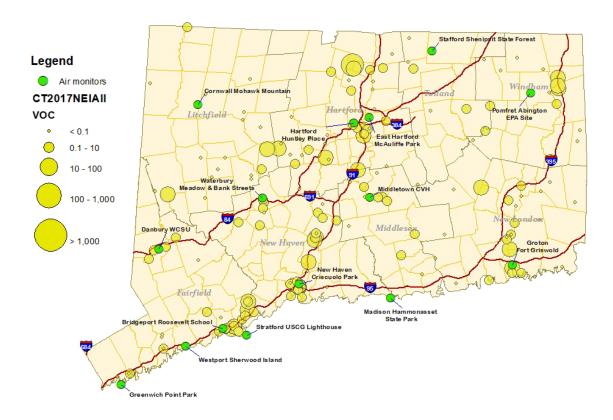



Figure 10: Connecticut VOC Point Source Emissions (tons/year)

State Topography and Potential Air Quality Issues

Connecticut's topography includes mountainous areas in the northwest, coastal plains to the south, numerous river valleys, including the broad Connecticut River valley, and hilly terrain throughout the state. While most of these features have the potential to impact local air quality, narrow, steep-sided valleys have a higher tendency for more severe impacts under certain conditions. These conditions include cooler ambient temperatures and significant overnight radiative cooling enhanced by clear skies, such as are more typically found in late fall, winter and early spring. These conditions can set up local inversions that can trap pollutants generated from local sources, causing elevated concentrations, typically of combustion by-products such as nitrogen oxides and fine particulate matter.

EPA Region 1 developed a topographic tool (Valley ID Tool) for identifying areas that may be most impacted by these conditions. The Valley ID Tool, which at this time is only applicable to the New England region, is available at:

https://www.arcgis.com/apps/webappviewer/index.html?id=646ebe715800410d9e5c02aa3653546d

DEEP investigated the valley areas in Connecticut that were identified by the tool. The tool creates elevation cross sections of transects selected by the user. Areas with potential valley air quality issues identified in Connecticut include: West Cornwall, Gaylordsville, Torrington and New Milford. Valley ID Tool output graphics for these locations are presented in Appendix A. DEEP will consider screening air quality in some or all of these identified areas through use of mobile or community based monitoring efforts. For example, data from the Western Connecticut Clean Air Action network of community based monitors, some of which are located in identified valleys, will be reviewed for valley inversion impacts. Additionally, DEEP will have the capacity for localized mobile monitoring in the near future using its Geospatial Measurement of Air Pollution (GMAP) vehicle.

Monitoring Objectives and Spatial Scales

The objectives of an ambient air monitoring network operated in accordance with SLAMS requirements⁵ are to: (a) provide air pollution data to the public in a timely manner, (b) support compliance with ambient air quality standards and pollution control strategies and (c) support air pollution research studies.

To support Connecticut's and EPA's air monitoring objectives, the monitoring network includes a variety of sites that provide information on peak air pollution levels, typical air pollution levels, air pollution transport and air pollution levels near significant sources. EPA has identified the following six general site types:

- Sites located to determine the highest concentrations expected to occur in the area covered by the network.
- Sites located to measure typical concentrations in areas of high population density.
- Sites located to determine the impact of significant sources or source categories.
- Sites located to determine general background levels.
- Sites located to determine the extent of regional pollutant transport among populated areas
- Sites located to measure air pollution impacts on visibility, vegetation or other welfarebased impacts.

^{5 40} CFR 58

Monitoring sites are spatially positioned relative to pollutant sources and receptors to characterize air quality impacts, taking into account aspects of the sources and pollutants, as well as the local terrain, meteorology, population, and public welfare-related receptors. For example, although ozone typically has concentrations that are similar over areas with dimensions of 10 or more kilometers, an ozone monitor located near high NOx sources would likely represent lower levels over a smaller area due to chemical reactions between these pollutants. A spatial scale of representativeness, defined as a dimension indicating the extent of an area impacted with similar concentrations throughout by a source or type of source, is identified for each monitor. The scales of representativeness of most interest for the above monitoring site types are as follows:

- Microscale—Defines concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
- Middle scale—Defines concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometer.
- Neighborhood scale—Defines concentrations within some extended area of the city that
 has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range. The
 neighborhood and urban scales listed below have the potential to overlap in applications
 that concern secondarily formed or homogeneously distributed air pollutants.
- Urban scale—Defines concentrations within an area of city-like dimensions, on the order of 4 to 50 kilometers. Within a city, the geographic placement of sources may result in there being no single site that can be said to represent air quality on an urban scale.
- Regional scale—Defines usually a rural area of reasonably homogeneous geography without large sources, and extends from tens to hundreds of kilometers.
- National and global scales—Represent concentrations characterizing the nation and the globe as a whole.

Value Assignment to Sites and Monitors

To assist in the network planning process, qualitative values of *critical*, *credible* or *marginal* are assigned to the monitors to assess their relative importance to monitoring objectives. Criteria used to apply these value assignments are:

<u>Critical Sites and Monitors</u> – These sites are of high value and should be retained.

- Design value site for an area at or above 85 percent of the NAAQS.
- Long-term multi-pollutant site(s) used by multiple data users for trends and model evaluation (i.e., SIP development and tracking). Note: often these are the design value or other important sites that perform additional complimentary measurements.
- Monitor required to satisfy minimum monitoring requirements for specific parameters (i.e. NCore, near-road), as identified in the individual parameter network sections below.
- Dedicated site for health or atmospheric study, or to inform policy options for State or local agency (often collocated with above; however, if not, a sunset date should be associated with the site).

<u>Credible Sites and Monitors</u> – These sites are the locations that are expected to continue, but may not be the design value location at or above the NAAQS. Sites in this category are generally retained, but occasionally may move to provide the optimum spatial coverage in a network. Examples include:

- Sites that are used to comply with EPA minimum network monitoring requirements.
- Sites that provide the spatial richness of a network to identify exposures and support AQI forecasting and reporting.
- Sites that, while not the design value location, are occasionally the highest across the metropolitan area due to seasonal meteorology or unique winds (e.g., winds are normally from the Southwest, but occasionally come from the East which puts the area downwind of a much larger metropolitan area).

- Sites that are design value locations, but with levels relatively low compared to the NAAQS. These might include source oriented monitors that are required, but are below the NAAQS.
- Sites that may be useful for NAAQS now in review.

<u>Marginal Sites and Monitors</u> – These sites and monitors are candidates for removal or movement. This category includes:

- Sites that have outlived their intended purpose.
- Sites that have measurements that are of low value relative to the NAAQS and are not counted towards minimum network monitoring requirements.
- Sites that are not candidates for continued investment due to problems with siting criteria which cannot be resolved.
- Special Purpose Monitors (SPMs) If a monitor remains at a site for more than two
 years it is strongly encouraged that the site become a SLAMS and would fit into the
 critical or credible category, otherwise it is assumed that the SPM has fulfilled its
 objective and can be moved to another location to characterize the measurement of
 interest.
- Sites that correlate well (i.e., are not unique) with a nearby site(s), but which measure low levels than the nearby site.


<u>New Sites and Monitors</u> – These sites represent potential areas of investment pending movement of monitoring resources from other locations or new resources introduced to our program. Generally, these are:

- Locations that may result in a change to the design value location of a pollutant.
- Newly required locations from recent NAAQS reviews.
- Additional measurements at critical and credible locations that would provide additional insight to data users.

The specific objectives and spatial scales for each of the monitors in the DEEP network are described in the Pollutant Network and Monitor and Site Summary sections below.

NCore Network Requirements

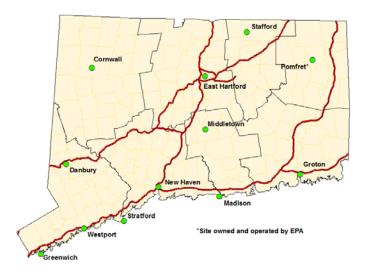
Nationally, NCore monitoring stations include a range of pollutant monitors and are sited primarily to characterize urban area-wide pollutant levels, although a smaller number of NCore stations are in rural locations. As such, they should be sited away from direct emission sources. Each state is required to have a minimum of one NCore site. located in an MSA (states with multiple large air sheds may be required to have two or three NCore sites). Connecticut has two NCore sites, one urban and one rural, located in New Haven (Criscuolo

Park) and Cornwall (Mohawk Mountain), respectively. Both of DEEP's NCore sites meet and exceed EPA's NCore monitoring requirements shown in Table 6. Monitors at NCore sites may also be utilized to satisfy non-NCore requirements as discussed in the subsections below.

Table 6: Minimum Required NCore Monitoring Parameters

Required Parameter	Description
PM _{2.5} speciation	organic and elemental carbon, major ions and trace metals (24 hour average; every 3rd day); IMPROVE or CSN
PM _{2.5} FRM mass	24 hr. average at least every 3rd day
continuous PM _{2.5} mass	1 hour reporting interval; FEM or pre-FEM monitors
PM _(10-2.5) mass	Filter-based or continuous
ozone (O ₃)	all gases through continuous monitors
carbon monoxide (CO)	capable of trace levels (low ppm and below) where needed
sulfur dioxide (SO ₂)	capable of trace levels (low ppb and below) where needed
nitrogen oxide (NO)	capable of trace levels (low ppb and below) where needed
total reactive nitrogen (NO _Y)	capable of trace levels (low ppb and below) where needed
surface meteorology	wind speed and direction (reported as "resultant"), temperature, relative humidity

In addition to the minimum requirements in Table 6, the two NCore sites monitor several additional parameters as shown in Table 7.

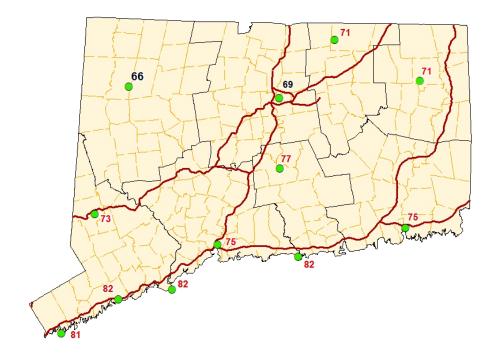

Table 7: Additional Parameters Monitored at NCore Sites

NCore Site	Additional Parameters Monitored Beyond Minimum NCore Requirements
Cornwall-Mohawk	Continuous PM _{2.5} , continuous PM _{2.5} black carbon/organic carbon, barometric
Mountain	pressure, dew point, solar radiation.
New Haven-	Collocated FRM PM _{2.5} , collocated FRM PM ₁₀ , collocated FRM PM _{10-2.5} , continuous
Criscuolo Park	PM _{2.5} , Continuous PM ₁₀ /PM _{10-2.5} , collocated continuous PM _{2.5} /PM ₁ 0/PM _{10-2.5} , NO ₂ ,
	total column NO ₂ /HCHO, continuous PM _{2.5} black carbon/organic carbon, mixing
	height, barometric pressure, dew point, solar radiation.

Ozone Network

Ozone Monitoring Overview

The DEEP ozone network consists of eleven sites distributed over seven of Connecticut's eight counties, as shown in the map to the right. In addition, EPA operates an ozone monitor in Abington village in the town of Pomfret, as part of EPA's Clean Air Status and Trends Network (CASTNET) program. The Greenwich, Westport, Stratford and Madison sites, situated on the state's southern coast, are upwind background/regional transport sites for ozone, as the prevailing wind direction during higher ozone episodes is generally


southwesterly. The principal monitoring objective for all interior sites, with the exception of Cornwall, is population exposure. Due to its location at high elevation in the rural northwestern hills of the state, the Cornwall ozone monitor objective is General/Background. All ozone sites operate from March 1 through September 30, per 40 CFR Part 58 App D, except for the New Haven and Cornwall NCore sites, and the East Hartford McAuliffe Park site, which operate year-round.

Ozone NAAQS Attainment

The 2019 ozone 8-hour design values for the 2015 NAAQS are given in the figure below. Ozone design values are derived by averaging three consecutive annual fourth highest daily maximum 8-hour ozone values. Based on the October 2015 revised ozone standard of 0.070 ppm (70 ppb), 10 out of 12 sites indicate nonattainment, shown in red font below.

Figure 11: Connecticut 2019 Ozone Design Values

	Design Value (ppb)
Abington	71
Cornwall	66
Danbury	73
East Hartford	69
Greenwich	81
Groton	75
Madison	82
Middletown	77
New Haven	75
Stafford	71
Stratford	82
Westport	82
NAAQS	70

Ozone Network Design

The ozone monitoring network design requirements are primarily based on MSA population and ozone design value levels. Table 8 gives the minimum number of ozone sites per area in accordance with EPA requirements⁶.

The 2019 8-hr ozone design values are above eighty-five percent of the 2015 ozone NAAQS at all DEEP monitoring sites. As such, these locations are considered to have monitoring value assessments of "critical" in the network."

Table 8: SLAMS Minimum Ozone Monitoring Requirements

MSA Population	DV≥85% NAAQS	DV<85% NAAQS
>10 million	4	2
4 - 10 million	3	1
350,000 - <4 million	2	1
50,000 - <350,000	1	0

Table 8 below is a summary of the ozone network design criteria for each Core-Based Statistical Area (CBSA) that is located partially or totally within Connecticut. These consist of five Metropolitan Statistical Areas (MSAs), with populations greater than or equal to 250,000, and one Micropolitan Statistical Area, with a population of less than 250,000. The CBSA population values are from the 2019 U.S. Census Bureau population estimates using the 2010 census as the base year.

As indicated in Table 9, the number of ozone monitors in the network exceeds EPA's minimum number by 2 in the Bridgeport-Stamford-Norwalk MSA and by 1 in the Hartford-East Hartford-Middletown MSA. As shown in the Network Assessment Analysis section below, these additional monitors provide the spatial coverage necessary to characterize ozone concentrations during exceedance events, during which there may be significant differences in peak concentrations over distances of 20 to 40 kilometers. While the Worcester MSA has 3 ozone monitors, one more than required, CT DEEP does not operate any of these monitors, and most of the area lies outside of Connecticut.

Table 10 provides the measurement scales, monitoring objectives and value assignments for the ozone network. In each non-attainment area, one site is designated for monitoring the maximum concentrations for the area, per network design requirements. However, other sites within these areas may record the highest levels during particular ozone events.

-

⁶ 40 CFR 58 Appendix D Table D-2

Table 9: Summary of Ozone Network Minimum Monitoring Requirements

Core-Based Statistical Area	Estimated 2019 Population	Design Values > 85% Ozone NAAQS?	No. Monitors	Minimum No. Monitors Required
Bridgeport-Stamford-Norwalk	943,332	Υ	4	2
Hartford-East Hartford- Middletown	1,204,877	Υ	3	2
New Haven-Milford	854,757	Υ	2	2
Norwich-New London	265,206	Υ	1	1
Worcester (includes Windham County)	947,404	Υ	3	2
Torrington (non-MSA)	180,333	Υ	1	NA ¹

¹ Not applicable per MSA requirements, but one monitor is required at the Cornwall NCore site located within the Torrington micropolitan statistical area.

Table 10: Ozone Network Measurement Scales, Monitoring Objectives and Value Assignments

Town	Site	Measurement Scale	Monitoring Objective	Value Assignment	Monitor Type
Pomfret	Abington	Regional	Regional Transport, Welfare-related Impacts	N/A ¹	CASTNET
Cornwall	Mohawk Mountain	Regional	Regional Transport	Critical	NCORE
Danbury	Western Connecticut State University	Urban	Population Exposure	Critical	SLAMS
East Hartford	McAuliffe Park	Urban	Population Exposure	Critical	PAMS
Greenwich	Point Park	Regional	Regional Transport, Population Exposure	Critical	SLAMS
Groton	Fort Griswold	Urban	Population exposure	Critical	SLAMS
Madison	Hammonasset State Park	Regional	Population exposure, Maximum Ozone Concentration	Critical	SLAMS
Middletown	Connecticut Valley Hospital	Urban	Population Exposure	Critical	SLAMS
New Haven	Criscuolo Park	Neighborhood	Population Exposure	Critical	NCORE
Stafford	Shenipsit State Forest	Regional	Population Exposure, General Background	Critical	SLAMS
Stratford	Stratford Lighthouse	Regional	Population Exposure, Highest Conc.	Critical	SLAMS
Westport	Sherwood Island State Park	Regional	Maximum Ozone Conc., Population Exposure, Regional Transport	Critical	SLAMS

¹ Not a SLAMS monitor, operated by EPA CASTNET

Network Assessment Analysis

DEEP's analysis of the correlations between pairs of adjacent ozone sites indicates that the existing monitors provide unique critical data in assessing ozone population exposure and fate and transport patterns. DEEP compared 8-hour daily maximum values, greater than 60 parts per billion (ppb), to focus on the most critical concentrations for exposure assessment and NAAQS compliance. The results of this analysis are summarized in Table 11 below. Plots of the correlations are given in Appendix B. There is reasonable correlation between nearby coastal sites ($r^2 > 0.65$), with the exception of New Haven, which is the most heavily urban-influenced, where ozone would more likely be scavenged by higher NOx concentrations. However, the variability in the values in the exceedance range has the potential to alter the occurrence of ozone violation days. The data suggests that the higher-concentration portions of ozone and precursor plumes approaching the Connecticut coast from the southwest are often localized to the extent that adjacent monitors may have significantly different maximum concentrations. Marine inversions mitigating the diffusion effect of ozone and precursor plumes could contribute to such localized events. Given the ozone plume coverage afforded by the current network configuration, DEEP supports the continued operation of the existing ozone network.

Table 11: Summary of Ozone Near-Sites Correlations

Site comparison	Dis- tance (km)	Correl- ation r ²	Linear reg. slope	Linear reg. int.	Count	Avg diff. (ppb)	Stnd. Dev. (ppb)
Danbury vs.							
Greenwich	45.5	0.488	1.032	0	74	0	9.59
Greenwich vs.							
Westport	24.1	0.7378	0.8481	11.341	59	-2	9.74
Westport vs. Stratford	19.8	0.7446	0.8381	11.759	73	0	9.30
Stratford vs. New Haven	23.3	0.4855	0.8465	2.0531	71	8	10.38
New Haven vs. Madison	29.9	0.2005	0.3909	45.614	82	-8	10.71
Madison vs. Groton	40.7	0.3672	0.8531	3.0622	75	7	11.09
Middletown vs. East Hartford	26.4	0.3661	0.5673	23.431	65	6	8.35
Middletown vs. New Haven	35.2	0.2594	0.6363	21.079	72	3	9.94
Cornwall vs. Stafford	77.4	.0627	0.3366	41.972	52	0	7.70
Stafford vs. Abington	34.8	0.144	0.4099	37.62	44	1	8.04

PM_{2.5} Network

PM_{2.5} Monitoring Overview

The DEEP PM_{2.5} network consists of Thermo Partisol®-Plus 2025i sequential FRM air samplers with BGI VSCC (RFPS-0498-118/EQPM-020-145) and Teledyne API T640X continuous air samplers (EQPM-0516-238) for NAAQS compliance at eight air monitoring stations. The distribution of PM_{2.5} monitors in the network and their applicability to NAAQS attainment are shown in Table 12. All valid data from designated primary monitors is used in the derivation of NAAQS design values. Additionally, valid data from collocated and supplemental monitors. respectively, are used to fill in

any missing or invalidated scheduled or nonscheduled days for the primary monitor data used for computing the design values

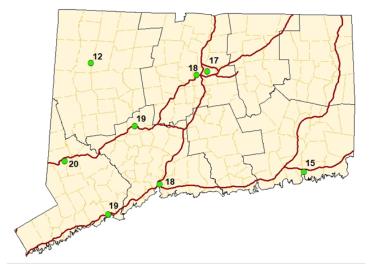
The $PM_{2.5}$ Teledyne API T640X continuous air samplers (EQPM-0516-238) data is also used for air quality index (AQI) forecasting, regardless of FEM/non-FEM status.

Table 12: Current PM_{2.5} Network Configuration

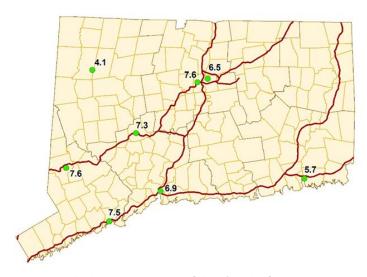
Site	Primary	Collocated	Supplemental
Bridgeport-Roosevelt Sch.	Continuous FEM	1-in-6 FRM	
Cornwall-Mohawk Mt.	1-in-3 FRM		Continuous FEM
Danbury-WCSU	1-in-6 FRM		Continuous FEM
East Hartford-McAuliffe Pk.	Continuous FEM		
Groton-Ft. Griswold	Continuous FEM		
Hartford-Huntley Pl.	Continuous FEM		1-in-6 FRM
New Haven-Criscuolo Pk.	1-in-3 FRM	1-in-6 FRM	2 Continuous FEMs
Waterbury-Bank St.	Continuous FEM		

PM_{2.5} Design Values

The $PM_{2.5}$ design values for 2017 through 2019 are listed in Table 13, and the spatial distribution of the 2019 design values are shown in Figure 12 below. Each $PM_{2.5}$ design value is defined as the average of the yearly metrics from three successive years, where the *annual* metric is annual weighted mean and the *24-hour* metric is the 98th percentile value. All Connecticut sites have attained the annual and the 24-hour $PM_{2.5}$ NAAQS. No sites exceed the 85 percent of NAAQS threshold, which would necessitate more intensive monitoring per 40 CFR Part 58 App D Table D-5.


Table 13: Connecticut 2019 PM_{2.5} Design Values (µg/m3)

		2015-2017		2016-2018		2017-2019	
Town	Site Description	Annual	24- Hour	Annual	24- Hour	Annual	24- Hour
Bridgeport	Roosevelt School	8.6	21	8.1	20	7.5	19
Cornwall	Mohawk Mt	4.6	13	4.2	13	4.1	12
Danbury	WCSU	8.1	22	7.7	21	7.6	20
East Hartford	McAuliffe Park	6.7	18	6.5	18	6.5	17
Groton	Fort Griswold	5.5	15	5.4	15	5.7*	15*
Hartford	Huntley Place	8.2	20	7.5	18	7.6	18
New Haven	Criscuolo Park	7.0	20	6.8	19	6.9	18
Waterbury	Meadow & Bank St	7.4	20	7.2	20	7.3	19


^{*}Incomplete data

The annual PM $_{2.5}$ NAAQS is 12 $\mu g/m3$ The 24-hour PM $_{2.5}$ NAAQS is 35 $\mu g/m3$

Figure 12: Connecticut 2019 PM_{2.5} Design Values (μg/m3)

PM_{2.5} 2019 Daily Design Values

PM_{2.5} 2019 Annual Design Values

PM_{2.5} Monitoring Network Design

<u>General PM_{2.5} network requirements:</u> The minimum PM_{2.5} monitoring requirements for each MSA, which is based on populations and design values, are in Table 14:

Table 14: EPA General Requirements for PM_{2.5} Monitoring

MSA population ¹²	Most recent 3-year design value ≥85% of any PM₂₅ NAAQS³	Most recent 3-year design value <85% of any PM _{2.5} NAAQS ^{3 4}
>1,000,000	3	2
500,000- 1,000,000	2	1
50,000- <500,000 ⁵	1	0

¹Minimum monitoring requirements apply to the Metropolitan statistical area (MSA).

Connecticut currently meets the minimum PM_{2.5} monitoring requirements based on MSA population and observed concentrations relative to the NAAQS as shown in Table 15 below. The maximum 2019 design values in each MSA and in the Torrington micropolitan statistical area are well below 85 percent of the daily and annual NAAQS levels. The minimum monitoring requirement for the Worcester-Connecticut MSA is satisfied by the two monitors located in Worcester County, Massachusetts, as there are no PM_{2.5} monitors within the Connecticut portion of the MSA.

Table 15: Specific PM_{2.5} Network Minimum Monitoring Requirements

Core-Based Statistical Area	Estimated 2019 Population	Design Values ¹ > 85% PM _{2.5} NAAQS?	No. Monitors	Minimum No. Monitors Required
Bridgeport-Stamford-Norwalk	943,332	N	3	1
Hartford- East Hartford- Middletown	1,204,877	N	2	2
New Haven-Milford	854,757	N	2	1
Norwich-New London	265,206	N	1	0
Worcester-Connecticut	947,404	N	22	1
Torrington (non-MSA)	180,333	N	1	0

^{1*2019} design value, based on 2017-2019 data

<u>Specific PM_{2.5} network requirements:</u> In addition to the minimum required number of monitors in each MSA discussed above, the PM_{2.5} network must fulfill the following specific design requirements:

Monitors implemented under the minimum monitoring requirements must be sited to represent area-wide concentrations. Under EPA guidance, monitors representing area-wide

²Population based on latest available census figures.

³The PM_{2.5} National Ambient Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50.

⁴These minimum monitoring requirements apply in the absence of a design value.

⁵Metropolitan statistical areas (MSA) must contain an urbanized area of 50,000 or more population.

²Monitors located in Worcester County, Massachusetts

concentrations are typically at neighborhood or urban spatial scales. All of DEEP's $PM_{2.5}$ monitors, except the Cornwall NCore monitor, are sited to represent neighborhood or urban spatial scales.

For CBSAs with populations of at least 1,000,000, a PM_{2.5} monitor must be co-located at the NO₂ near road station. While this requirement is effective January 1, 2017, DEEP has been operating a PM_{2.5} monitor at the Hartford Huntley Place near road station since March 2014. At least one monitor must be sited at neighborhood or larger scale in an area of expected maximum concentrations. The Bridgeport Roosevelt School monitor meets this criterion. For areas with additional required monitors, a monitoring station is to be sited in an area of "poor air quality." The DEEP network has several monitors located in areas where high air pollutant concentrations are expected, (i.e.: in close proximity to highways with high motor vehicle traffic and in areas having high densities of industrial emission sources). These include Bridgeport Roosevelt School, New Haven Criscuolo Park, Hartford Huntley Place and Waterbury Meadow Street.

Requirement for continuous $PM_{2.5}$ monitoring: Continuous $PM_{2.5}$ monitors must be located at a minimum of $\frac{1}{2}$ of the sites required to have $PM_{2.5}$ monitoring under the general requirements described and summarized in Table 13 above. DEEP has exceeded this requirement by locating continuous $PM_{2.5}$ FEMs at all $PM_{2.5}$ FRM sites.

Requirement for background and transport PM_{2.5} sites: Each state must have at least one site to monitor for regional background and one site to monitor for regional transport. The Cornwall Mohawk Mountain NCore site is appropriate for monitoring long-range transport from southwestern trajectories. Speciated particulate data collected at Cornwall is used to identify contributing source types. The East Hartford McAuliffe Park PM_{2.5} monitor is representative of general/background levels, being located in a suburban neighborhood away from large industrial sources and high traffic roadways.

Requirement for $PM_{2.5}$ chemical speciation: Each state must have a $PM_{2.5}$ chemical speciation monitor as part of the Chemical Speciation Network (CSN). DEEP operates a CSN sampler at the New Haven NCore site. In addition, there is speciation monitoring at the Cornwall NCore site, and continuous black carbon/ultraviolet carbon (BC/UVC) (aethalometer) monitoring at Cornwall, Danbury, East Hartford, Hartford and New Haven. Further information is provided in the PM speciation section below.

PM_{2.5} network spatial scales, monitoring objectives and value assignments: PM_{2.5} network site characteristics are summarized in Table 16. Most of the sites are in locations that represent neighborhood spatial scale concentrations, while the Cornwall and Westport sites have regional scales. Cornwall, located in a remote rural area, is a general/background site. The Bridgeport Roosevelt School and Hartford Huntley Place sites monitoring objectives are representative of the highest concentrations in their respective CBSAs, due to their close proximity to major interstate highways with high traffic counts and patterns of traffic congestion.

Connecticut currently meets and exceeds the minimum number of required monitors for each CBSA as required in 40 CFR Part 58 Appendix D. None of the monitors has design values within 85 percent of the NAAQS nor exceeds the NAAQS. Monitors are also included in the network for the two NCore sites, located in New Haven and Cornwall. Although there are no monitors in Windham County, which is the Connecticut part of the Worcester, MA-CT CBSA, the low population density (no urban areas with population greater than 50,000) and the absence of high vehicle traffic areas indicates a low probability of exceeding the PM_{2.5} NAAQS.

Town	Site	Measurement Scale	Monitoring Objective	Value Assignment	Site Type
			Highest		
Bridgeport	Roosevelt School	Neighborhood	concentration	Credible	SLAMS
			Regional transport;		
Cornwall	Mohawk Mountain	Regional	general/background	Critical	NCORE
Danbury	Western Connecticut State University	Neighborhood	Population exposure	Credible	SLAMS
East Hartford	McAuliffe Park	Neighborhood	Population exposure; general/background	Credible	SLAMS
Groton	Fort Griswold	Urban	Population exposure	Credible	SLAMS
Hartford	Huntley Place	Neighborhood	Highest concentration	Critical	SLAMS, Near- road
New Haven	Criscuolo Park	Neighborhood	Population exposure	Critical	NCORE
Waterbury	Bank Street	Neighborhood	Population exposure; highest concentration	Credible	SLAMS

PM Speciation Monitoring Overview

PM_{2.5} chemical speciation measurements are being obtained at five sites in the DEEP air monitoring network. The IMPROVE (Interagency Monitoring of Protected Visual Environments) site is located at the Cornwall site and the EPA CSN (Chemical Speciation Network) site is at the New Haven Criscuolo Park site. Both sites are operated on the EPA designated 1-in-3 day PM sample schedule and provide 24-hour integrated filter-base measurements. Aethalometers, which are used to

provide continuous measurements of black carbon and ultra-violet channel carbon (BC/UVC) $PM_{2.5}$, are in operation at the New Haven, Cornwall, Danbury and East Hartford sites. A summary of $PM_{2.5}$ speciation monitoring siting characteristics is provided in Table 17.

Table 17: PM _{2.5} Speciation Network Measurement Scales, Monitoring Objectives and Value	е
Assignments	

Town	Site	Measurement Scale	Monitoring Objective	Value Assignment	Site Type
Cornwall	Mohawk Mountain	Regional Scale	General/Background	Credible	NCore/IMPROVE
East Hartford	McAuliffe Park	Neighborhood	Population Exposure	Credible	SPM
Danbury	WCSU	Neighborhood	Population Exposure	Credible	SPM
Hartford	Huntley Pl	Neighborhood	Population Exposure	Credible	SLAMS/Near Road
New Haven	Criscuolo Park	Neighborhood	Population Exposure	Credible	NCore/CSN

PM₁₀/PM_{10-2.5} Network

PM₁₀/PM_{10-2.5} Network Overview

DEEP operates one PM₁₀/PM_{10-2.5} FRM site in the air-monitoring network using Thermo Partisol-Plus 2025i sequential air samplers (RFPS-1298-127). The New Haven NCore PM₁₀ primary monitor operates on a 1-in-3 day sample schedule. The New Haven site has a collocated PM₁₀ FRM sampler operating on a 1-in-6 day sample schedule. The New Haven primary and collocated PM₁₀ FRM samplers are paired with primary and collocated PM_{2.5} FRM samplers for primary and collocated coarse PM (PM_{10-2.5}). The New Haven collocated PM_{10-2.5} FRM monitors were requested by EPA as part of a national network of PM_{10-2.5} collocated sites for pooled data quality assessment.

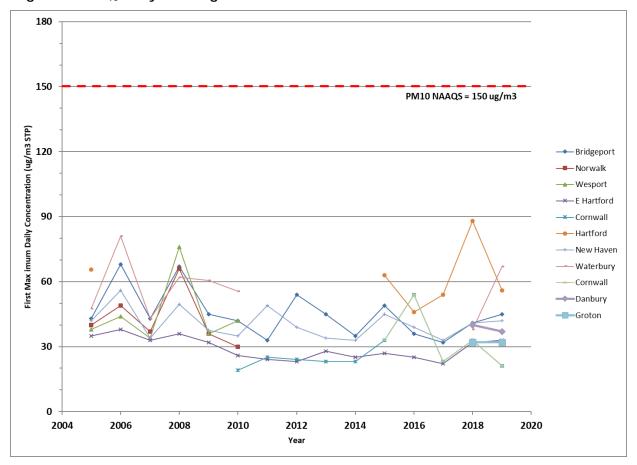

In addition to the FRM PM $_{10}$ monitors, 8 sites have FEM Teledyne API T640X continuous PM mass monitors for FEM PM $_{10}$ (EQPM-0516-239) and FEM PM $_{10-2.5}$ (EQPM-0516-240). The current PM $_{10}$ network configuration is shown in Table 18. The T640X analyzers produce 1-minute and 60-minute average PM $_{2.5}$, PM $_{10}$ (at local (LC) and standard (STP) conditions of temperature and pressure) and PM $_{10-2.5}$ (coarse PM). Coarse PM is defined as thoracic PM having particle aerodynamic diameters between 2.5 and 10 microns, operationally defined as the difference PM $_{10}$ minus PM $_{2.5}$.

Table 18: Current PM₁₀/PM_{10-2.5} Network Configuration

Site	Primary	Collocated	Supplemental
Bridgeport-Roosevelt Sch.	Continuous FEM		
Cornwall-Mohawk Mt.	Continuous FEM		
Danbury-WCSU	Continuous FEM		
East Hartford-McAuliffe Pk.	Continuous FEM		
Groton-Ft. Griswold	Continuous FEM		
Hartford-Huntley Pl.	Continuous FEM		
New Haven-Criscuolo Pk.	1-in-3 FRM	1-in-6 FRM	2 Continuous FEMs
Waterbury-Bank St.	Continuous FEM		

Monitoring data indicate that PM_{10} levels in Connecticut are well below the 24-hour NAAQS of 150 μ g/m3, where the standard is based on a 3 year average of the annual number of expected exceedances that is less than or equal to 1. Figure 13 shows annual maximum 24-hour PM_{10} trends in Connecticut from 2005-2019.

Figure 13: PM₁₀ Daily First High Value Trends in Connecticut MSAs

PM₁₀ Monitoring Network Requirements

<u>Population-based PM₁₀ monitoring requirements:</u> The requirements for PM₁₀ monitoring stations are based on MSA populations and ambient PM₁₀ levels, as shown in Table 19. All of Connecticut's stations have PM₁₀ levels less than 80 percent of NAAQS, which put them in the "low concentration" category of the table. Table 20 shows compliance of the PM₁₀ monitoring network with EPA requirements for the CBSAs that are within or intersecting Connecticut. Al

primary monitors indicated are FRMs, except for the Hartford Huntley monitor in the Hartford-West Hartford-East Hartford CBSA, which is a continuous FEM monitor.

<u>Coarse PM monitoring requirements:</u> Coarse PM, designated $PM_{10-2.5}$ or PM_C , is defined as the mass of particles with aerodynamic diameters between 2.5 and 10 microns, which can be derived by taking the difference in concentrations between paired, co-located $PM_{2.5}$ and $PM_{10-2.5}$ is that monitors be located at all NCore stations. DEEP has both paired FRMs and paired FEMs for discreet and continuous PM_C measurements at the New Haven NCore site, while the Cornwall NCore site has continuous FEM coarse PM monitoring.

PM₁₀/PM_C Measurement Scales, Monitoring Objectives and Value Assignments: The PM₁₀ network measurements scales, monitoring objectives and value assignments are given in Table 21. All sites have value assignments of "credible," as they are counted towards minimum monitoring requirements but do not indicate potential for violation of the NAAQS.

Table 19: EPA PM₁₀ Minimum Monitoring Requirements

Population category	High concentration ²	Medium concentration ³	Low concentration ^{4 5}
>1,000,000	6-10	4-8	2-4
500,000- 1,000,000	4-8	2-4	1-2
250,000- 500,000	3-4	1-2	0-1
100,000- 250,000	1-2	0-1	0

¹Selection of urban areas and actual numbers of stations per area will be jointly determined by EPA and the State agency.

Table 20: Connecticut PM₁₀ Minimum Monitoring Compliance

Core-Based Statistical Area	Estimated 2019 Population	PM ₁₀ Concentration levels ¹	No. Monitors	Minimum No. Monitors Required ¹
Bridgeport-Stamford-Norwalk	943,332	Low	1	1-2
Hartford- East Hartford- Middletown	1,204,877	Low	2	2-4
New Haven-Milford	854,757	Low	2	1-2
Norwich-New London	265,206	Low	1	0-1
Worcester	947,404	Low	1	1-2
Torrington (non-MSA)	180,333	Low	1	0

¹ Per Table D-4 of 40 CFR 58 Appendix D

 $^{^2}$ High concentration areas are those for which ambient PM₁₀ data show ambient concentrations exceeding the PM₁₀ NAAQS by 20 percent or more.

 $^{^{3}}$ Medium concentration areas are those for which ambient PM₁₀ data show ambient concentrations exceeding 80 percent of the PM₁₀ NAAQS.

 $^{^4}$ Low concentration areas are those for which ambient PM $_{10}$ data show ambient concentrations less than 80 percent of the PM $_{10}$ NAAQS.

⁵These minimum monitoring requirements apply in the absence of a design value.

Town	Site	Measurement Scale	Monitoring Objective	Value Assignment	Site Type
Bridgeport	Roosevelt	Neighborhood	Highest concentration	Credible	SLAMS
Cornwall	Mohawk Mountain	Regional	General background	Credible	NCORE
East Hartford	McAuliffe Park	Neighborhood	Population exposure	Credible	SLAMS
Hartford	Huntley Place	Middle	Highest concentration	Credible	SLAMS
New Haven	Criscuolo Park	Neighborhood	Population exposure	Credible	NCORE

PAMS Network

DEEP formerly operated two Photochemical Assessment Monitoring Stations (PAMS) sites in the air monitoring network in 2015, at the New Haven Criscuolo Park and East Hartford McAuliffe Park sites. However, the 2015 ozone NAAQS rule⁷ requires PAMS measurements at NCore sites that are located in CBSAs with populations of 1,000,000 or more. Since Connecticut's NCore sites are located in CBSAs with populations less than one million, this requirement does not apply. Therefore, Connecticut ended PAMS monitoring in January 2016. However, the rule requires that states located within the Ozone Transport Region (OTR) and/or states with O₃ nonattainment areas classified moderate and above develop and implement Enhanced Monitoring Plans (EMPs) proposing additional O₃, O₃ precursor and/or meteorological monitoring activities. Connecticut's EMP is addressed in the following section.

Ozone Enhanced Monitoring Plan

This section consists of the Enhanced Monitoring Plan (EMP) for Connecticut pursuant to 40 CFR sections 58.10 (a) (11) and 58 App D 5(h). These federal regulations, revised under the 2015 National Ambient Air Quality Standards (NAAQS) for ozone⁸, require that any state with any area designated moderate nonattainment or above, or any state within the Ozone Transport Region (OTR), submit an Enhanced Monitoring Plan for ozone (EMP) to the regional office of the Environmental Protection Agency (EPA) no later than October 1, 2019.

Background

Recent ozone (O₃) levels in Connecticut are generally the highest in the eastern U.S., placing all regions of the state in nonattainment for the 2015 ozone National Ambient Air Quality Standards (NAAQS). The southwestern three counties of the state (Connecticut portion of the New York-N. New Jersey-Long Island, NY-NJ-CT non-attainment area) have been designated moderate for the 2015 ozone NAAQS, while the remainder of the state is designated marginal under the 2015 NAAQS. These levels largely result from transport of ozone precursors into Connecticut from the south-west direction along the northeast urban corridor. Modeling and other analyses have shown significant contributions to ozone levels in Connecticut from sources both inside and outside of the greater New York and greater Connecticut nonattainment areas⁹.

DEEP has documented through numerous submissions and communications with EPA¹⁰ that purposeful implementation of the interstate transport provisions (i.e., "good neighbor"

⁷ 80 FR 65292; October 26, 2015

⁸ FR 80 65292, October 26, 2015

⁹ FR 82 1733, January 6, 2017

¹⁰ Greater CT Ozone Attainment Demonstration for the 2008 NAAQS

provisions) of the Clean Air Act is needed before Connecticut can reasonably expect to attain either the 2008 or 2015 ozone NAAQS. Nonetheless, EPA continues to fail to adopt sufficiently stringent national measures to control ozone precursor emissions or enforce the tools EPA claims the states possess (CAA section 176A or 126 petitions). As such, DEEP is proposing monitoring activities under this EMP to increase the scientific knowledge and understanding of the fate and transport mechanisms of ozone and related ozone precursor pollutants in this region, with specific attention to impacts of the water-land boundary. DEEP expects the data from these enhanced monitoring activities will further clarify the critical role that interstate air pollution transport plays in the Northern New Jersey-New York-Connecticut and Greater Connecticut nonattainment areas and further inform the development and implementation of meaningful national programs that will protect public health and the environment.

Previously, Connecticut operated PAMS volatile organic compounds (VOC) monitors at three sites: East Hartford McAuliffe Park, New Haven Criscuolo Park and Westport Sherwood Island State Park. The revised rule now requires VOC monitoring at all National Core (NCore) monitoring sites in Core-Based Statistical Areas (CBSAs) having populations greater than 1 million. In addition, areas with moderate or higher levels of O₃ nonattainment, as well as all areas within the Ozone Transport Region (OTR), are required to develop Enhanced Monitoring Plans (EMPs). EMPs are required to provide for any additional monitoring beyond the minimum requirements for State and Local Air Monitoring Stations (SLAMS) that would be beneficial in identifying pollutant levels, sources, transport and progress towards attainment. The EMP mandate is intended to provide state and local environmental agencies an opportunity to implement additional monitoring beyond SLAMS that addresses the particular needs of nonattainment areas not explicitly covered under the revised PAMS network.

Strategic Approach and Objectives

State and local environmental agencies have conducted considerable surface monitoring of O3, O3 precursors [e.g.: nitrogen oxides (NO, NO2, NOX, NOY), volatile organic compounds (VOCs)] and meteorological parameters for many years as part SLAMS and PAMS networks. Current strategies for analyzing O3 production and transport are typically based on computer modeling with source emissions and meteorological inputs, where high resolution speciated VOC data have limited usefulness in model development or validation.

PAMS monitoring programs also include, in addition to VOCs, three carbonyls that are more typically abundant: formaldehyde, acetaldehyde and acetone. The most significant of these, formaldehyde (HCHO), has been used extensively as a proxy for VOC free radical formation in research and analyses on tropospheric ozone11. Given the understanding that O3 formation may be sensitive to changes in either VOCs (VOC limited regime) or NOX (NOX limited regime), as demonstrated with photochemical numeric computer models, the ratio of HCHO to NO2 from ambient air monitoring during high O3 events can be key in the validation of computer modeling approaches.

In addition to monitoring strategies aimed at understanding aspects of the regional O3 chemistry, collecting data that clearly show the spatial variability of surface O3 concentrations is critical to developing approaches to effectively address non-attainment in Connecticut. DEEP maintains an extensive network of O3 monitoring sites, particularly along its prevailing upwind (south-southwestern) border to effectively track ozone plumes transported into the state, and these sites consistently show the highest ozone concentrations in Connecticut.

Proposed Enhanced Monitoring Activities

¹¹ Jin, X et. al, 2017, Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends, J. of Geophysical Research, 122 (19) 10,439-10,461

DEEP is proposing the following activities and resource commitments to meet the objectives for enhanced monitoring under this EMP. DEEP believes these proposed actions meet the requirements of the EMP and will assist DEEP's ongoing efforts toward assessing and understanding ozone nonattainment issues in Connecticut:

- Continued operation of two additional O₃ monitors beyond those minimally required for the State and Local Air Monitoring Station (SLAMS) in the Bridgeport-Stamford-Norwalk Core-Based Statistical Area (CBSA).
- Continued operation of one additional ozone monitor beyond those minimally required in the Hartford-West Hartford-East Hartford CBSA.
- Continued operation of one additional NO₂ monitor, located at the Westport Sherwood Island State Park site.
- Possible installation and operation of a compact O₃ monitor on one of the Bridgeport, CT

 Port Jefferson, NY ferry crossing the Long Island Sound during the 2021 ozone season.
- Installation of one HCHO continuous monitor, located at the Westport site.
- Installation and operation of two ceilometers, at Westport and New Haven, for atmospheric mixing height (boundary layer depth).
- Provision of on-site technical support for EPA's Pandora spectrophotometers, which
 continuously monitor total column NO₂ and HCHO, at three coastal monitoring sites
 (Westport Sherwood Island, New Haven Criscuolo Park and Madison Hammonasset
 State Park.
- Provision of technical and/or financial support for select scientific or engineering research projects that have the potential to further develop understanding of the mechanisms of ozone production and transport impacting Connecticut. For example, DEEP participated in the multi-faceted LISTOS (Long Island Sound Tropospheric Ozone Study) project in 2017 2018. In particular, DEEP hosted enhanced surface and upper air monitoring at multiple coastal sites. In addition, DEEP (1) contracted with Stony Brook University for a study to characterize the meteorology of the Long Island Sound region; (2) contributed funding and planning support for air quality and meteorological monitoring from a light aircraft during multiple high ozone episodes; and (3) contributed funding for continuous VOC monitoring on the north shore of Long Island, which was conducted by Stony Brook University.

DEEP has participated as a joint effort with multiple state and federal agencies, academic researchers, non-governmental organizations and private businesses in the development, planning and implementation of these activities.

NOx / NOy Network

DEEP monitors nitrogen dioxide (NO₂) at four sites in the monitoring network using Teledyne-API Model T500U (EQNA-0514-212), which are capable of directly measuring NO₂ using cavity attenuated phase shift (CAPS) spectroscopy. The NO₂ monitors are maintained at Hartford Huntley Place, East Hartford McAuliffe Park, New Haven Criscuolo Park and Westport Sherwood Island State Park.

DEEP also operates two nitrogen oxide/total reactive oxides of nitrogen (NO/NO_Y) TAPI model T200U/501 monitors, at Cornwall

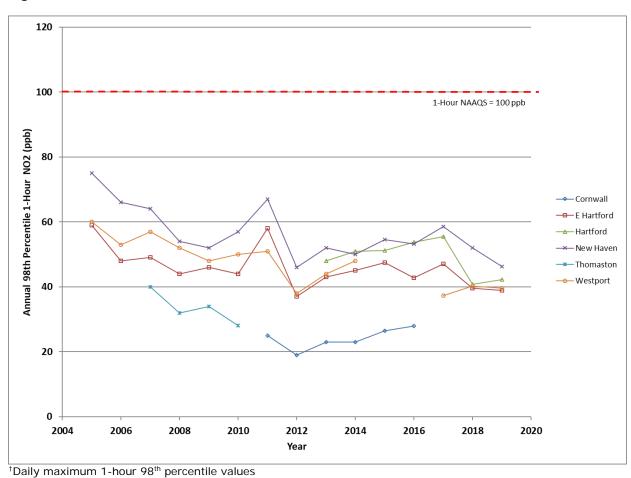
NO₂ and NO/NO_Y Monitoring

Mohawk Mountain and New Haven Criscuolo Park, to comply with NCore requirements. NOY is defined as NO+NO2+NOZ, where NOZ represents higher oxides of nitrogen. The major components of NOZ include nitrous acids [nitric acid (HNO3), and nitrous acid (HONO)], organic nitrates [peroxyl acetyl nitrate (PAN), methyl peroxyl acetyl nitrate (MPAN), and peroxyl propionyl nitrate, (PPN)], and particulate nitrates.

The NO2 and NO/NOY networks fulfill requirements for NCore and SLAMS monitoring of these parameters. These requirements include: near road and area wide NO2 monitoring in a corebased statistical area (CBSA) with a population greater than 1,000,000 (Hartford and East Hartford sites, respectively); nationwide NO2 monitoring for susceptible and vulnerable populations at site selected by EPA (New Haven) and NCore NO/NOY monitoring (Cornwall and New Haven). The Westport NO2 monitor is operated as part of Connecticut's enhanced monitoring plan to provide data for analysis and research of regional ozone fate and transport.

On January 22, 2010, EPA finalized a revision to the 1-Hour NO2 NAAQS12 at 100 ppb, retaining the annual average NO2 standard at a level of 53 ppb. The 1-hour NO2 NAAQS is an annual 3-year average of the 98th percentile of the highest daily maximum concentration in each year. The 98th percentiles of Connecticut's daily highs are approximately 50% of the standard, as shown in Table 22 for 2019.

¹² 75 FR 6474-6537, January 22, 2010


Table 22: NO₂ 2019 NAAQS Design Values

Site	1-Hr Design Value (ppb)	Annual Design Value (ppb)
East Hartford	42	8
Hartford	46	13
New Haven	52	12
Westport*	39*	8
NAAQS	100	53

^{*}Incomplete data (2018-2019)

The annual 1-hour 98^{th} percentile daily maximum and annual average NO_2 values are shown in comparison to NAAQS levels in Figures 14 and 15 below. There has been a slight decreasing NO_2 trend since 2005.

Figure 14: Connecticut 1-Hour† NO2 Trends

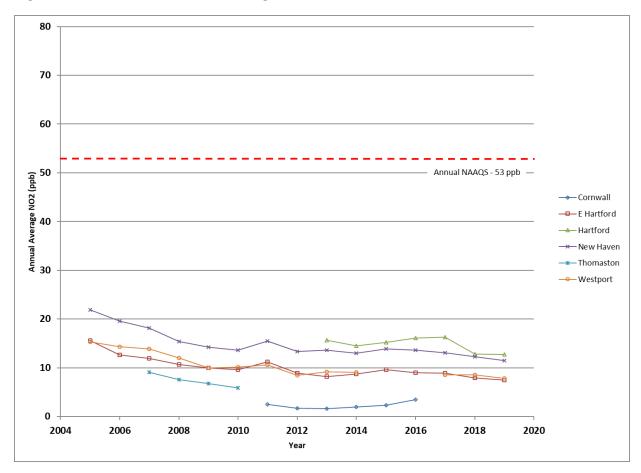


Figure 15: Connecticut Annual Average NO2 Trends

NO₂ Network Design

NO₂ network design requirements include those for near road, area-wide, Regional Administrator. These specific requirements are discussed below.

<u>Near Road Monitoring Requirements:</u> In accordance with the 2010 NO₂ NAAQS rule, DEEP must site and operate a microscale near road monitor in each CBSA having a population greater than 500,000. This monitor must be located along a road segment with expected maximum hourly NO₂ concentrations as determined by analysis of annual average daily traffic (AADT) counts, traffic patterns, topography, roadway and other structures and meteorological considerations. Specific near road requirements are given in 40 CFR 58 Appendix D 4.3.2.

Subsequent NO_2 monitoring rules¹³, ¹⁴ revised the implementation requirements for near road monitors to require monitors in areas with 1,000,000 or more persons, with a second monitor required in areas with populations of at least 2,500,000. As Connecticut has one CBSA with a population greater than 1,000,000 and no areas greater than 2,500,000, one near road monitor is required. Connecticut has operated its near road monitor in Hartford since April 2013.

<u>Area-wide Monitoring Requirements:</u> For CBSAs with populations of at least 1,000,000, there must be an NO₂ monitor in a location of expected highest concentrations representing

¹³ 78 FR 16184-16188, March 14, 2013

¹⁴ 81 FR 96381-96388, December 30, 2016

neighborhood or larger spatial scales. Within the Hartford-East Hartford –Middletown CBSA, the East Hartford McAuliffe Park NO₂ monitor is designated as the area-wide monitor.

Regional Administrator Monitoring Requirements: The 2010 NO₂ rule requires a minimum of 40 additional NO₂ monitors nationwide above the minimum monitoring requirements. These additional monitors should be sited in locations that may be approaching or exceeding the NAAQS but are not covered by minimum monitoring requirements, or in areas where area-wide required monitors are not sufficient to meet monitoring objectives. The NO₂ monitor at New Haven Criscuolo Park has been identified as part of this additional monitoring requirement. Table 23 presents a summary of the NO₂ network scales, objectives and value assignments.

Table 23: NO₂ Network Measurement Scales, Monitoring Objectives and Value Assignments

Town	Site	Measurement Scale	Monitoring Objective	Value Assignment	Site Type
East Hartford	McAuliffe Park	Neighborhood	Population Exposure	Critical	SLAMS/Area- Wide
Hartford	Huntley Place	Middle	Highest Concentration, Population Exposure	Critical	SLAMS/Near Road
New Haven	Criscuolo Park	Neighborhood	Population Exposure	Critical	Regional Administrator
Westport	Sherwood Island State Park-	Regional	Population Exposure	Credible	SLAMS/EMP

NO_Y Network Design

 NO/NO_Y monitoring is required at all NCore sites, as well as in the PAMS program. Table 24 is a summary of the DEEP NO/NO_Y network design.

Table 24: NO/NO_Y Network Measurement Scales, Monitoring Objectives, and Value Assignments

Town	Site	Measurement Scale	Monitoring Objective	Value Assignment	Site Type
Cornwall	Mohawk Mountain	Regional Scale	General/Background, Regional Transport	Critical	NCORE
New Haven	Criscuolo Park	Neighborhood	Population Exposure	Critical	NCORE

SO₂ Network

SO₂ Monitoring Overview

The DEEP operates three sulfur dioxide (SO₂) sites in the air monitoring network. All SO₂ samplers are operated year-round. SO₂ monitoring is conducted at the Cornwall Mohawk Mountain, New Haven Criscuolo Park, and Bridgeport Roosevelt School.

Current SO₂ monitoring indicates that concentrations are well below the primary (1-hour) and secondary (3-hour) standards of 75 ppb and 50 ppb, respectively. Figure 17 shows recent downward trends in the annual 99th percentile metrics, which are used to compute the 3-year design values. Table 25 shows the 2019 SO₂ design values for Connecticut.

Table 25: 2019 SO₂ Design Values

Site	1-Hr Design Value (ppb)
Bridgeport	4
Cornwall	2
New Haven	2
NAAQS	75

1-hour SO2 Values 80 1-hr NAAQS (75 ppb) 70 Edison School New Haven-Criscuolo Park Newhaven-State St 60 Ehartford-High ---Thomaston Waterbury Annual 99th Percentile (ppb) Stamford Cromwell --- Fhartford Bridgepor Greenwich Danbury 20 10 0 -2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Year

Figure 16: Connecticut Annual 99th Percentile Daily Maximum 1-hour SO₂ Values, 2004-2019

SO₂ Network Design

EPA requirements for SO₂ network monitors include those for NCore sites, population weighted emission index (PWEI) sites and any additional monitors that may be required by the Regional Administrator.

 $\underline{\text{NCore monitoring:}}$ trace-level SO₂ measurements are included within the NCore multi-pollutant site requirements. These are used to characterize trends and assist in understanding transport. SO₂ monitors at NCore sites within CBSAs with minimum monitoring based on the PWEI may count toward meeting those requirements. DEEP operates SO₂ monitors at the two NCore stations in Connecticut, New Haven Criscuolo Park and Cornwall Mohawk Mountain.

<u>Population Weighted Emission Index (PWEI) monitoring:</u> PWEI values are defined in the regulations for a CBSA as product of the population (millions of people) and the total SO₂ emissions (tons). Table 26 below gives the minimum number of monitors required based on PWEI values.

Table 26: PWEI CBSA Monitoring Requirements

PWEI value (M-person-t)	Minimum number of monitors per CBSA
≥ 1,000,000	3
≥100,000 and <1,000,000	2
≥5,000 and < 100,000	1
<5,000	0

Table 27 shows the PWEI values for CBSAs that are within or intersecting Connecticut, based on the 2017 National Emissions Inventory and US Census Bureau 2019 county population estimates. The SO_2 NAAQS monitoring requirements based on PWEI values state that a monitor is required in areas having PWEI values greater than or equal to 5,000 MMpersontons/yr. Therefore, no PWEI SO_2 monitors are currently required in the state. In addition, the EPA has not indicated any additional SO_2 monitors in areas having the potential to violate the NAAQS, areas where vulnerable or sensitive populations may be impacted, or near large sources not conducive to modeling. We also note that the SO_2 primary design values, as provided in an earlier section of this Network Plan, range from 2 to 4 ppb, and are well below the 1-hour NAAQS of 75 ppb.

Although not covered by PWEI requirements, DEEP intends to continue SO₂ monitoring at Bridgeport Roosevelt School at this time, given that it is located in an area of higher concentrations, vulnerable and sensitive populations and a large emission source. The source, Bridgeport Harbor Unit 3, is scheduled for a complete shutdown and decommissioning in 2021.

Table 27: Population Weighted Emissions Index (PWEI) Values for Connecticut CBSAs

Core-Based Statistical Area (CBSA)	SO ₂ (tons/yr)	Population (2019 estim.)	PWEI (MMperson- tons/yr)	No. of PWEI Required Monitors
Bridgeport-Stamford-Norwalk	359	943332	339	0
Hartford-East Hartford-Middletown	284	1204877	342	0
Torrington	1	180333	0	0
New Haven-Milford	90	854757	77	0
Norwich-New London	109	265206	29	0
Worcester	273	947404	259	0

Regional Administrator required monitoring: The Regional Administrator may require additional SO2 monitors beyond the minimum network described above in areas where there is a potential to violate or contribute to a violation of the NAAQS, there are impacts from sources not conducive to modeling, or there are impacts to susceptible or vulnerable populations. At this time, the Regional Administrator has not requested any additional SO2 monitoring in Connecticut.

SO2 monitoring objectives, spatial scales and value assignments: Both the New Haven and Bridgeport monitors represent neighborhood scale areas that are principally impacted by nearby sources. The New Haven Criscuolo Park is within close proximity to marine shipping terminals in New Haven harbor, while the Bridgeport Roosevelt School site is located within one kilometer of the state's largest SO2 point source, the Bridgeport at a distance of 3.2 kilometers to the northeast. The East Hartford site, which is apparently not impacted

significantly by large local sources, represents an urban scale that consists of the greater Hartford urban area and local suburbs. Cornwall is remotely located away from urban and industrial sources, and thus represents a regional measurement scale for general, background and long range transport objectives. Table 28 summarizes objectives, scales and value assignments.

Cornwall and New Haven have SO2 values assignments of "credible," as they are required to satisfy minimum NCore monitoring requirements as indicated in Table 26. The Bridgeport site has a value assignment of credible/marginal, as it is not used to meet a current specific requirement, and while source oriented, will not be relevant as such when the source, the Bridgeport Harbor Station coal-fired energy facility, operates minimally and will be decommissioned in 2022.

Town	Site	Measurement Scale	Monitoring Objective	Value Assignment	Site Type
Bridgeport	Roosevelt School	Neighborhood	Source impact, highest concentration, population exposure	Credible/ Marginal	SLAMS
Cornwall	Mohawk Mountain	Regional	General background, regional transport	Credible	NCORE
New Haven	Criscuolo Park	Neighborhood	Population exposure	Credible	NCORE

Table 28: SO₂ Network Monitoring Objectives, Spatial Scales and Value Assignments

CO Network

CO Monitoring Overview

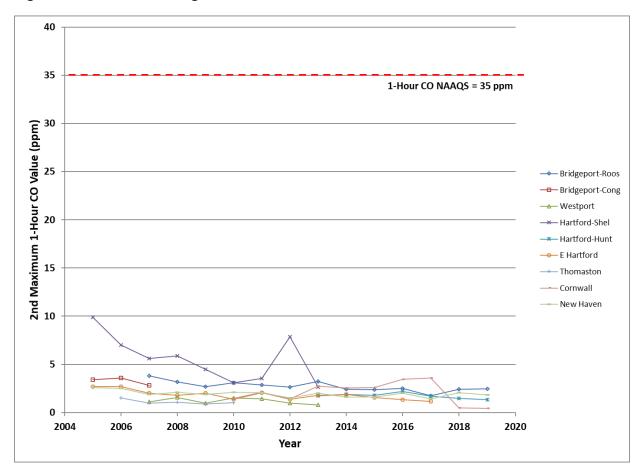
DEEP operates three carbon monoxide (CO) sites in the air monitoring network, as shown on the map at right. All CO samplers are operated year-round and employ TEI 48i- TLE analyzers (RFCA-0981-054), which DEEP is transitioning to TEI 48iQ analyzers (RFCA-0981-054). Of the 3 sites, New Haven and Cornwall satisfy the requirement for CO monitoring at NCore sites and Hartford fulfills requirements for co-location with an NO₂ near road monitor in a CBSA having a population greater than 1

New Haven

million. ¹⁵ The EPA Regional Administrator has not indicated any locations in the state for additional CO monitoring aimed at susceptible and vulnerable populations

Table 29 shows the CO NAAQS design values for the 2 forms of the standard, 1-hour and 8-hour, where the standards are not to be exceeded more than once per year. As such, the design values are the 2nd maximum 1-hour and 8-hour values, respectively.

_


¹⁵ 76 FR 54294; August 31, 2011

Figures 18 and 19 show trends in CO design values since 2005, indicating CO levels are generally only about 25 percent of the NAAQS values.

Table 29: Connecticut 2019 CO Design Values

Site	1-Hr Design Value (ppm)	8-Hr Design Value (ppm)
Bridgeport	2.5	1.7
Cornwall	0.5	0.3
Hartford	1.5	1.0
New Haven	2.1	1.2
NAAQS	35	9

Figure 17: 1-Hour CO Design Value Trends, 2005-2019

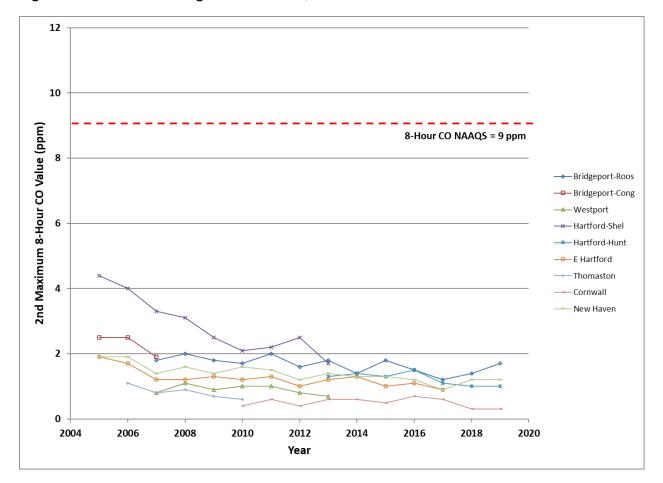


Figure 18: 8-Hour CO Design Value Trends, 2005-2019

CO Network Design

The current CO network is designed to meet general, NCORE and Regional Administrator network requirements, as well as satisfy the state's limited maintenance plans. CO is monitored at NCORE sites as a useful co-pollutant that can aide in source determination.

General requirements: Effective January 1, 2017, in any CBSA having a population of at least 1,000,000, a CO monitor must be co-located with the area's required near-road monitor, unless another location where the highest CO levels are expected within the area is approved by the Regional Administrator. The Hartford area near road CO monitor at the Huntley Place site has been in operation since January 1, 2013.

NCore requirements: CO measurements are included within the NCore multi-pollutant site requirements. DEEP operates CO monitors at the 2 NCore stations in Connecticut, New Haven Criscuolo Park and Cornwall Mohawk Mountain.

Regional Administrator required monitoring: The Regional Administrator may require additional CO monitors beyond the minimum network described above in areas where there is a potential to violate or contribute to a violation of the NAAQS, there are potentially significant impacts from stationary sources, in downtown areas or street canyons or in areas subject to high ground levels due to or enhanced by topographical or meteorological characteristics. At this time, the Regional Administrator has not requested any additional CO monitoring.

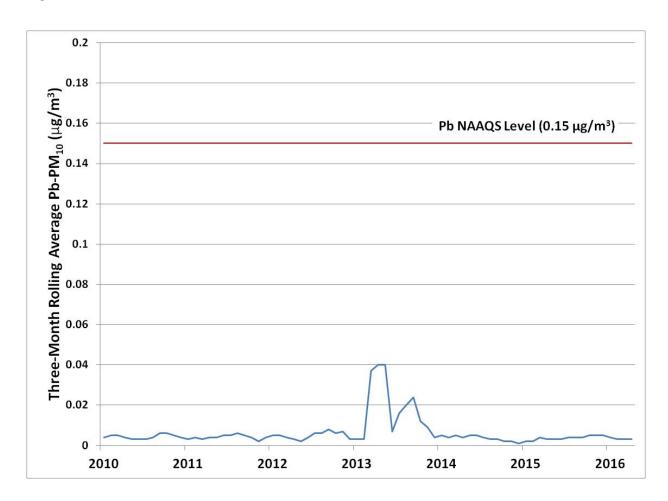
Limited Maintenance Plan requirements: CO monitors must be located and operated in accordance with Connecticut's limited maintenance plan (LMP). This monitoring allows for the measurement and tracking of CO concentrations in areas that were previously non-attainment.

If appropriate, and with Regional Administrator approval, LMP-required monitors by may also be counted towards compliance with other minimum monitoring requirements noted above. Connecticut's CO LMP covers the greater Hartford, greater New Haven and the Connecticut portion of the greater New York maintenance areas. Currently, LMP area CO monitoring is required at least through the end of each area's second ten-year maintenance period. The CO monitor operating in compliance with the LMP is at the New Haven Criscuolo Park.

Table 30 lists the measurement scales, monitoring objectives and value assignments for the DEEP CO network. All sites have value assignments of "credible" as they each fulfill explicit monitoring requirements but do not indicate a potential for air quality violations.

Table 30: CO Network Measurement Scales, Monitoring Objectives and Value Assignments

Town	Site	Measurement Scale	Monitoring Objective	Value Assignment	Site Type
Cornwall	Mohawk Mountain	Regional	Regional transport	Credible	NCORE
Hartford	Huntley Place	Neighborhood	Highest concentration, population exposure	Credible	SLAMS/ Near road
New Haven	Criscuolo Park	Neighborhood	Population exposure	Credible	NCORE


Lead Network

Lead (Pb) Monitoring

The DEEP lead (Pb) monitoring network, which consisted of primary 1-in-6 day and collocated 1-in-12 day sampling at the New Haven Criscuolo Park urban NCore site, was discontinued on June 30, 2016 under provisions of EPA's March 2016 Monitoring Rule, ¹⁶ which removed the requirement for urban NCore Pb monitoring (existing monitors with three years of data could be removed with EPA concurrance). No additional Pb monitors are required in Connecticut for stationary source or airport monitoring as required by the 2010 Pb NAAQS rule. ¹⁷

Lead measurements were obtained from Energy Dispersive X-Ray Fluorescence (XRF) analysis of the 47 mm Teflon filter samples collected using a low-volume (lo-vol) FRM R&P Partisol Plus 2025 PM₁₀ Sequential Air Samplers. Although the Pb NAAQS is defined as 0.15 μ g/m³ lead in total suspended particulates (TSP), Pb monitoring regulations allow surrogate monitoring of Pb in PM₁₀ (Pb-PM₁₀), providing that design values are below two-thirds of the NAAQS, or below 0.10 μ g/m³. New Haven Pb-PM₁₀ values remained well below this threshold, with a 2015 design value of 0.04 μ g/m³, while most monthly averages are in the range of 0.00-0.01 μ g/m³ (Figure 20).

¹⁶ 81 FR 17248; March 28, 2016

¹⁷ 75 FR 81126; December 27, 2010

Detailed Site Information

The following section presents detailed information for each monitoring site, including: identification code, location, history, monitored parameters, monitoring objectives, history and descriptive information.

Town – Site: Pomfret – Abington

 County:
 Windham
 Latitude:
 41.84046°

 Address:
 80 Ayers Road
 Longitude:
 -72.010368°

 AQS Site ID:
 09-015-9991
 Elevation:
 209 m (686 ft)

Spatial Scale: Regional Year Established: 1993

Statistical Area: CBSA Willimantic, CT

	PM2.5 (FRM)
	PM2.5 (FRM, Collocated)
	PM2.5 (Continuous - FEM)
	PM2.5 (Continuous – non- FEM)
	PM10/PM-Coarse (FRM)
	PM10/PM-Coarse (FRM, Collocated)
	Ţ
	Lead-PM10
	Lead-PM10 (Collocated)
	PM Speciation (CSN)
	PM Speciation (IMPROVE)
	PM2.5 Carbon (BC/UVC, Continuous)
<u>X</u>	Ozone
	802
	00
	NO ₂
	NO/NOy
	ОНОН
	Traffic Count
	Wind Speed
	Wind Direction
	Temperature
	Dew Point / Rel. Humidity
	Barometric Pressure
	Solar Radiation
l	

X=Existing, P = Proposed, = Planned to terminate

*Note: Site operated by EPA contractor under CASTNET program; scale and objective from 2020

Parameter	Measurement	Monitoring	Assigned Value from	Plan for Network
	Scale*	Objective ¹	Assessment	Optimization
O ₃	Regional	Welfare- related impacts; regional transport		

CASTNET Annual Network Plan, June 30, 2020

Town – Site: Bridgeport – Roosevelt School

Latitude: 41.17086° County: **Fairfield** Address: Park Avenue Longitude: -73.19476° AQS Site ID: 09-001-0010 Elevation: 7 m (23 ft) Spatial Scale: Neighborhood Year Established: 1982

Statistical Area: CSA (New York-Newark-Bridgeport)

1/6 X X

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
PM _{2.5} FRM	Neighborhood	Highest concentration	Credible	Keep
PM _{2.5} Continuous	Neighborhood	Highest concentration	Credible	Keep
PM ₁₀ FRM/ PM-Coarse	Neighborhood	Highest concentration	Credible	Keep
SO2	Neighborhood	Population exposure	Credible/Marginal	Кеер
Temperature			Credible	Кеер

Town – Site: Cornwall – Mohawk Mountain

County: Litchfield Latitude: 41.82140°
Address: Mohawk Mountain Longitude: -73.29733°
AQS Site ID: 09-005-0005 Elevation: 505 m (1656 ft)

Spatial Scale: Regional Year Established: 1988

Statistical Area: CSA (New York-Newark-Bridgeport)

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
PM _{2.5} FRM	Regional	Population Exposure, Regional Transport	Credible	Keep
PM _{2.5} Continuous	Regional	Population Exposure, regional transport	Credible	Keep
PM ₁₀ /PM ₁₀ - _{2.5} Continuou s	Regional	General background	Credible	Кеер
IMPROVE	Regional	Regional Transport	Credible	Keep

BC/UVC	Regional	Regional Transport	Credible	Кеер
Ozone	Regional	Regional Transport	Critical	Кеер
SO ₂	Regional	Regional Transport	Credible	Кеер
со	Regional	Regional Transport	Credible	Keep
NO/NOy	Regional	General background, Regional Transport	Credible	Keep
Wind Speed			Credible	
Wind Direction			Credible	
Temperature			Credible	
Dew Point/ Rel. Humidity			Credible	
Barometric Pressure			Credible	
Solar Radiation			Credible	

Town – Site: Danbury – Western Connecticut State
University

County: Fairfield Latitude: 41.398692°
Address: White Street Longitude: -73.443148°
AQS Site ID: 09-001-1123 Elevation: 116 m (380 ft)

Spatial Scale: **Neighborhood** Year Established: **1974**

Statistical Area: CSA (New York-Newark-Bridgeport)

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
PM _{2.5} FRM	Neighborhood	Population exposure	Credible	Keep
PM _{2.5} Continuous	Neighborhood	Population exposure	Credible	Keep
Ozone	Urban	Population exposure	Critical	Keep
BC/ UVC	Neighborhood	Population exposure	Credible	Keep
Wind Speed			Credible	
Wind Direction			Credible	
Temperature			Credible	

Town – Site: East Hartford – McAuliffe Park

County: Hartford Latitude: 41.78471°
Address: McAuliffe Park Longitude: -72.63158°
AQS Site ID: 09-003-1003 Elevation: 15 m (50 ft)

Spatial Scale: Neighborhood Year Established: 1981
Statistical Area: CSA (Hartford-West Hartford-Willimantic)

	PM2.5 (FRM) (FRM, Colloca
Χ	PM2.5 (Continuous - FEM) PM2.5 (Continuous - non-FEM)
	PM10/PM-Coarse (FRM)
	PM10/PM-Coarse (FRM, Collocated)
Х	PM10/PM-Coarse (Continuous)
	Lead-PM10
	Lead-PM10 (Collocated)
	PM Speciation (CSN)
	PM Speciation (IMPROVE)
Χ	PM2.5 Carbon (BC/UVC, Continuous)
Χ	Ozone
	\$02
	00
X	NO ₂
	NO/NOy
	нсно
	Traffic Count
Χ	Wind Speed
Χ	Wind Direction
Χ	Temperature
Χ	Dew Point / Rel. Humidity
Χ	Barometric Pressure
	Solar Radiation

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
PM _{2.5} Continuous FEM	Neighborhood	Population exposure	Credible	Кеер
PM ₁₀ /PM _{10-2.5} Continuous FEM	Neighborhood	Population exposure	Credible	Keep
BC/UVC	Neighborhood	Population exposure	Credible	Кеер
Ozone	Urban	Population exposure	Critical	Кеер
NO ₂	Neighborhood	Population exposure	Credible	Кеер
Wind Speed			Credible	

Wind Direction		Credible	
Temperature		Credible	
Dew Point/ Rel. Humidity		Credible	

Town – Site: **Greenwich – Point Park**

County: Fairfield Latitude: 41.005047° Point Park Address: Longitude: -73.58382° AQS Site ID: 09-001-0017 Elevation: 3 m (10 ft) 1978 Spatial Scale: Urban Year Established:

Statistical Area: **CSA (New York-Newark-Bridgeport)**

	PM2.5 (FRM) PM2.5 (FRM, Collocated) PM2.5 (Continuous - FEM) PM2.5 (Continuous - non-FEM) PM10/PM-Coarse (FRM, Collocated) PM10/PM-Coarse (FRM, Collocated) PM10/PM-Coarse (Continuous) Lead-PM10 (Collocated) PM Speciation (CSN) PM Speciation (IMPROVE) PM Speciation (IMPROVE) PM Speciation (IMPROVE) Ozone SO2 CO NO2 NO7NOy HCHO
×	Wind Speed
х х	
X	Temperatu
	Dew Point / Rel. Humidity Barometric Pressure
	Solar Radiation

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
Ozone	Regional	Population exposure, regional transport	Critical	Кеер
Wind Speed			Credible	
Wind Direction			Credible	
Temperature			Credible	
Rain Fall			Credible	

Town – Site: Groton – Fort Griswold

County: New London Latitude: 41.35362°
Address: 141 Smith Street Longitude: -72.07882°
AQS Site ID: 09-011-0124 Elevation: 37 m (120 ft)

Spatial Scale: **Neighborhood** Year Established: **2007**

Statistical Area: MSA (Norwich-New London)

	PM2.5 (FRM)
	PM2.5 (FRM, Collocated)
Χ	PM2.5 (Continuous - FEM)
	PM2.5 (Continuous – non-FEM)
	PM10/PM-Coarse (FRM)
	PM10/PM-Coarse (FRM, Collocated)
Х	PM10/PM-Coarse (Continuous)
	Lead-PM10
	Lead-PM10 (Collocated)
	PM Speciation (CSN)
	PM Speciation (IMPROVE)
	PM2.5 Carbon (BC/UVC, Continuous)
Χ	Ozone
	S02
	co
	NO ₂
	NO/NOy
	нсно
	Traffic Count
	Wind Speed
	Wind Direction
Χ	Temperature
	Dew Point / Rel. Humidity
	Barometric Pressure
	Solar Radiation
ì	

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
PM _{2.5} Continuous	Urban	Population exposure	Credible	Кеер
Ozone	Urban	Population exposure	Critical	Кеер
Temperature			Credible	

Town - Site: Hartford - Huntley Place

 County:
 Hartford
 Latitude:
 41.771444°

 Address:
 10 Huntley Place
 Longitude:
 -72.679923°

 AQS Site ID:
 09-003-0025
 Elevation:
 57.2 m (187.7 ft)

Spatial Scale: Near Road Year Established: 2013
Statistical Area: CSA (Hartford-West Hartford-Willimantic)

PM2.5 (FRM)	PM2.5 (FRM, Collocated)	× PM2.5 (Continuous - FEM)	PM2.5 (Continuous – non-FEM)	PM10/PM-Coarse (FRM)	PM10/PM-Coarse (FRM, Collocated)	× PM10/PM-Coarse (Continuous)	Lead-PM10	Lead-PM10 (Collocated)	PM Speciation (CSN)	PM Speciation (IMPROVE)	× PM2.5 Carbon (BC/UVC, Continuous)	Ozone	SO2	o	NO ₂	NO/NOy	НСНО	X Traffic Count	X Wind Speed	X Wind Direction	X	Dew Point / Rel. Humidity	× Barometric Pressure	Solar Badiation	
-------------	-------------------------	----------------------------	------------------------------	----------------------	----------------------------------	-------------------------------	-----------	------------------------	---------------------	-------------------------	-------------------------------------	-------	-----	----------	-----------------	--------	------	-----------------	--------------	------------------	---	---------------------------	-----------------------	-----------------	--

X=Existing, P =Pro	oposed, = Planned	I to terminate		
Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
PM _{2.5} FRM	Neighborhood	Population exposure, source- oriented, highest concentration	Credible	Кеер
PM _{2.5} Continuous	Neighborhood	Population exposure, source- oriented, highest concentration	Credible	Кеер
PM ₁₀ Continuous	Middle	Population exposure, highest concentration	Credible	Keep

NO ₂	Middle	Population exposure, highest concentration	Credible	Keep
со	Middle	Highest concentration, population exposure	Credible	Keep
BC/ UVC	Neighborhood	Population exposure	Credible	Кеер
Wind Speed			Credible	
Wind Direction			Credible	
Temperature			Credible	
Traffic Count			Credible	

Town – Site: Madison – Hammonasset State Park

County: New Haven Latitude: 41.25984° Address: Hammonasset SP Longitude: -72.55018° AQS Site ID: 09-009-9002 Elevation: 3 m (10 ft) Spatial Scale: Regional Year Established: 1981

Spatial Scale. **Regional** real Established.

Statistical Area: CSA (New York-Newark-Bridgeport)

X Wind Speed X Wind Direction X Temperature
Dew Point / Rel. Humidity
Barometric Pressure
Solar Radiation

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
Ozone	Regional	Population exposure, maximum ozone concentration	Critical	Keep
Wind Speed			Credible	
Wind Direction			Credible	
Temperature			Credible	

Town - Site: Middletown - Central Valley Hospital

County: Middlesex Latitude: 41.55224°
Address: Shew Hall Longitude: -72.63004°
AQS Site ID: 09-007-0007 Elevation: 58 m (190 ft)

Spatial Scale: Neighborhood Year Established: 1980 Statistical Area: CSA (Hartford-West Hartford-Willimantic)

	PM2.5 (FRM)
	PM2.5 (FRM, Collocated)
	PM2.5 (Continuous - FEM)
	PM2.5 (Continuous – non-FEM)
	PM10/PM-Coarse (FRM)
	PM10/PM-Coarse (FRM, Collocated)
	PM10/PM-Coarse (Continuous)
	Lead-PM10
	Lead-PM10 (Collocated)
	PM Speciation (CSN)
	PM Speciation (IMPROVE)
	PM2.5 Carbon (BC/UVC, Continuous)
Х	Ozone
	SO2
	00
	NO ₂
	NO/NOy
	VOCs (PAMS)
	Traffic Count
Χ	Wind Speed
Χ	Wind Direction
Χ	Temperature
	Dew Point / Rel. Humidity
Χ	Barometric Pressure
	Solar Radiation

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
Ozone	Urban	Population exposure	Critical	Keep
Wind Speed			Credible	
Wind Direction			Credible	
Temperature			Credible	
Rain Fall			Credible	
Barometric Pressure			Credible	

Town – Site: **New Haven – Criscuolo Park**

County: New Haven Latitude: 41.30117° 1 James Street Longitude: -72.90288° Address: AQS Site ID: Elevation: 09-009-0027 3 m (10 ft) 2004 Spatial Scale: Neighborhood Year Established:

Statistical Area: CSA (New York-Newark-Bridgeport)

PM2.5 (9/ PM2.5 (FRM, Collocated)	× PM2.5 (Continuous - FEM)	PM2.5 (Continuous – non-FEM)	DM10/PM-Coarse (FRM)	PM10/PM-Coarse (FRM, Collocated)	× PM10/PM-Coarse (Continuous)	PM10/PM-Coarse (FRM,	PM10/PM-Coarse (FRM,	PM10/PM-Coarse (FRM,		PM10/PM-Coarse	1	(Continuous –		PM2.5 (Continuous -		PM2.5 (FRM,	C:7111	PM2.5 (FRM, Colloo PM2.5 (Continuous – PM2.5 (Continuous –	PM10/PM-Coarse		PM10/PM-Coarse (FRM,	PM10/PM-Coarse (FRM,	PM10/PM-Coarse	Lead-PM10	Lead-DM10 (Collocated)	read-rivi 10	PM Speciation (CSN)	PM Speciation (IMPROVE)	× PM2.5 Carbon (BC/UVC, Continuous)	Ozone	X SO2		00	NO ₂	× NO/NOy	НСНО	× Total Column NO2/HCHO	X Wind Speed	X Wind Direction		× Temperature	× Dew Point / Rel. Humidity	× Barometric Pressure	X Solar Radiation	Missian Color		,						
---------	----------------------------	----------------------------	------------------------------	----------------------	----------------------------------	-------------------------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------------	----------------------	----------------------	--	----------------	---	---------------	--	---------------------	--	-------------	--------	--	----------------	--	----------------------	----------------------	----------------	-----------	------------------------	--------------	---------------------	-------------------------	-------------------------------------	-------	-------	--	----	-----------------	----------	------	-------------------------	--------------	------------------	--	---------------	-----------------------------	-----------------------	-------------------	---------------	--	---

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
PM _{2.5} FRM	Neighborhood	Population exposure	Credible	Keep
PM _{2.5} Continuous FEM	Neighborhood	Population exposure	Credible	Keep
PM ₁₀ Continuous FEM	Neighborhood	Population exposure	Credible	Keep
PM ₁₀ FRM	Neighborhood	Population exposure	Credible	Keep
PM-Coarse Continuous FEM	Neighborhood	Population exposure	Credible	Keep
CSN	Neighborhood	Population exposure	Credible	Keep

BC/UVC	Neighborhood	Population exposure	Credible	Кеер
Ozone	Urban	Population exposure	Critical	Keep – required year-round operation.
SO ₂	Neighborhood	Highest Concentration, population exposure	Credible	Кеер
со	Neighborhood	Population exposure	Credible	Keep
NO ₂	Neighborhood	Population exposure	Credible	Кеер
NOy	Neighborhood	Population exposure	Credible	Keep
нсно	Neighborhood	General background	Credible	Add
Wind Speed			Credible	
Wind Direction			Credible	
Temperature			Credible	
Dew Point/ Rel. Humidity			Credible	
Barometric Pressure			Credible	
Solar Radiation			Credible	

Town – Site: Stafford – Shenipsit State Forest

 County:
 Tolland
 Latitude:
 41.97568°

 Address:
 Route 190
 Longitude:
 -72.38674°

 AQS Site ID:
 09-013-1001
 Elevation:
 265 m (869 ft)

Spatial Scale: Regional Year Established: 1980 Statistical Area: CBSA (Hartford-West Hartford-Willimantic)

|--|

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
Ozone	Regional	Population exposure/ general background	Critical	Keep
Wind Speed			Credible	
Wind Direction			Credible	
Temperature			Credible	

Stratford - Lighthouse Town – Site:

County: **Fairfield** Latitude: 41.15181° Address: **Prospect Drive** Longitude: -73.10334° 09-001-3007 AQS Site ID: Elevation: 3 m (10 ft) 1980 Spatial Scale: Regional Year Established:

Statistical Area: **CSA (New York-Newark-Bridgeport)**

	PM2.5 (FRM)
	PM2.5 (FRM, Collocated)
	PM2.5 (Continuous - FEM)
	PM2.5 (Continuous – non-FEM)
	PM10/PM-Coarse (FRM)
	PM10/PM-Coarse (FRM, Collocated)
	PM10/PM-Coarse (Continuous)
	Lead-PM10
	Lead-PM10 (Collocated)
	PM Speciation (CSN)
	PM Speciation (IMPROVE)
	PM2.5 Carbon (BC/UVC, Continuous)
Χ	Ozone
	SO2
	00
	NO ₂
	NO/NOy
	нсно
	Traffic Count
	Wind Speed
	Wind Direction
Х	Temperature
	Dew Point / Rel. Humidity
	Barometric Pressure
	Solar Radiation

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
Ozone	Regional	Regional transport, highest concentration, population exposure	Critical	Кеер
Temperature			Credible	

Town – Site: Waterbury – Meadow & Bank Street

County: New Haven Latitude: 41.55046°
Address: Meadow & Bank Longitude: -73.04365°
AQS Site ID: 09-009-2123 Elevation: 80 m (269 ft)

Spatial Scale: **Neighborhood** Year Established: **1975**

Statistical Area: CSA (New York-Newark-Bridgeport)

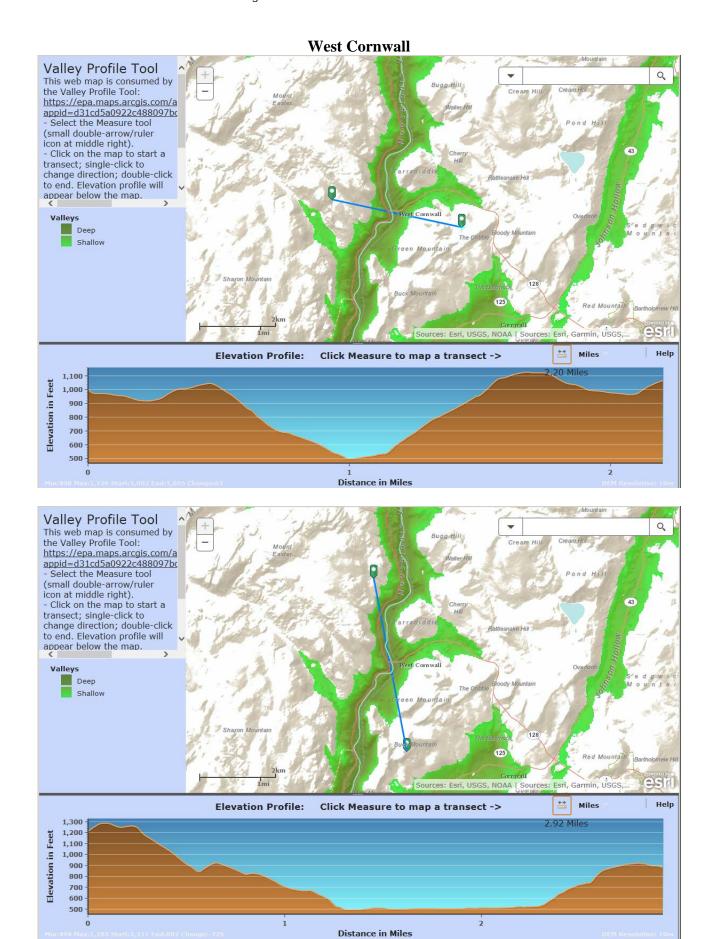
|--|

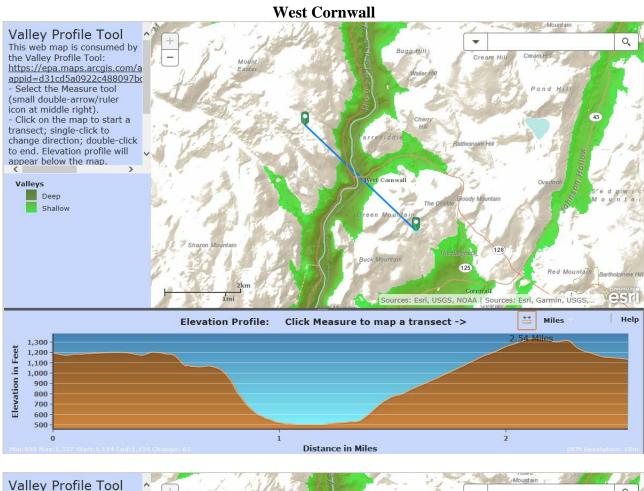
Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
PM _{2.5} Continuous FEM	Neighborhood	Population exposure	Credible	Кеер
PM ₁₀ /PM _{10-2.5} Continuous FEM	Neighborhood	Population exposure	Credible	Keep
Wind Speed	Neighborhood	Population exposure	Credible	
Wind Direction	Neighborhood	Population exposure	Credible	
Temperature	Neighborhood	Population exposure	Credible	

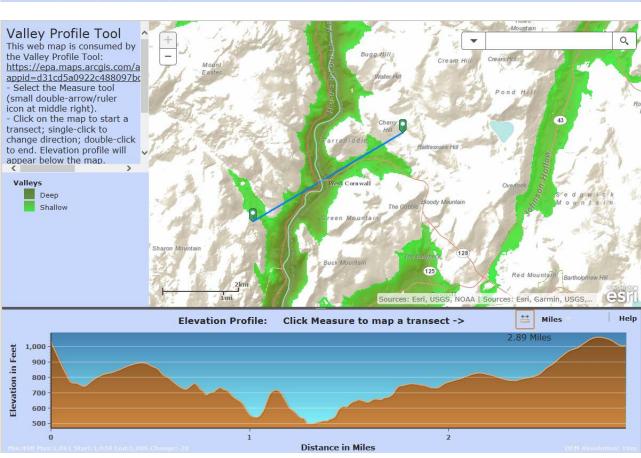
Town – Site: Westport – Sherwood Island State Park

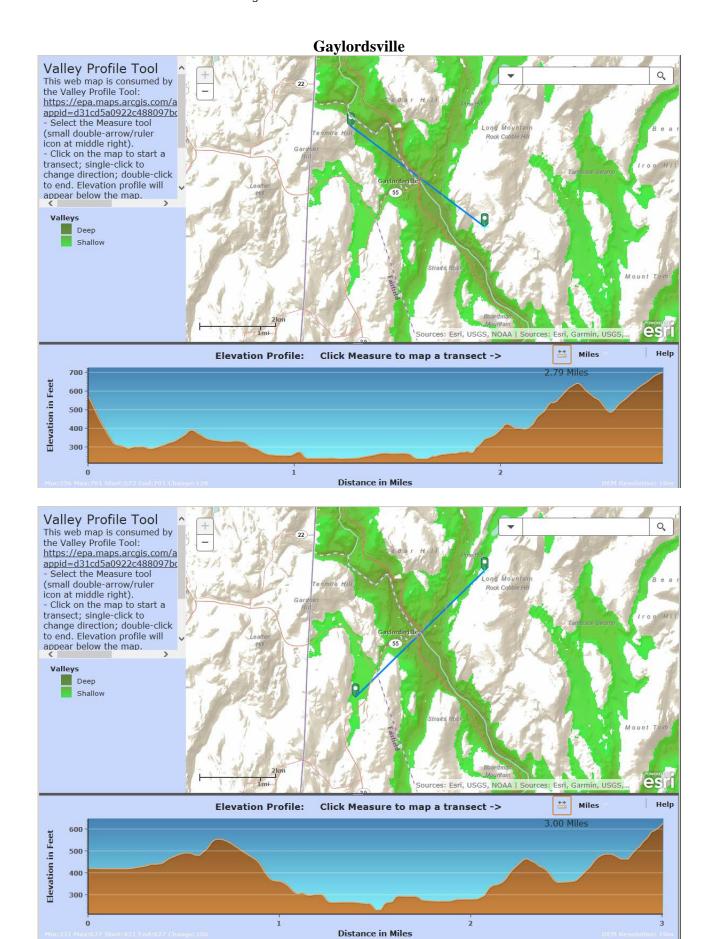
County: **Fairfield** Latitude: 41.11822° Address: **Sherwood Island SP** Longitude: -73.33681° 09-001-9003 AQS Site ID: Elevation: 4 m (13 ft) 1996 Spatial Scale: Regional Year Established:

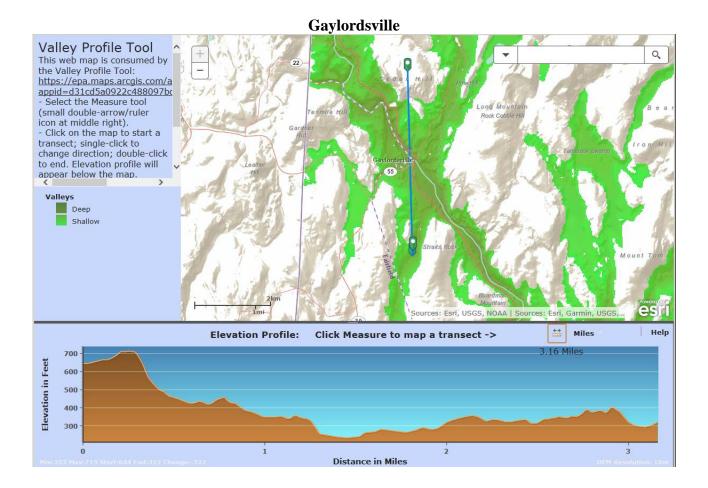
Statistical Area: CSA (New York-Newark-Bridgeport)

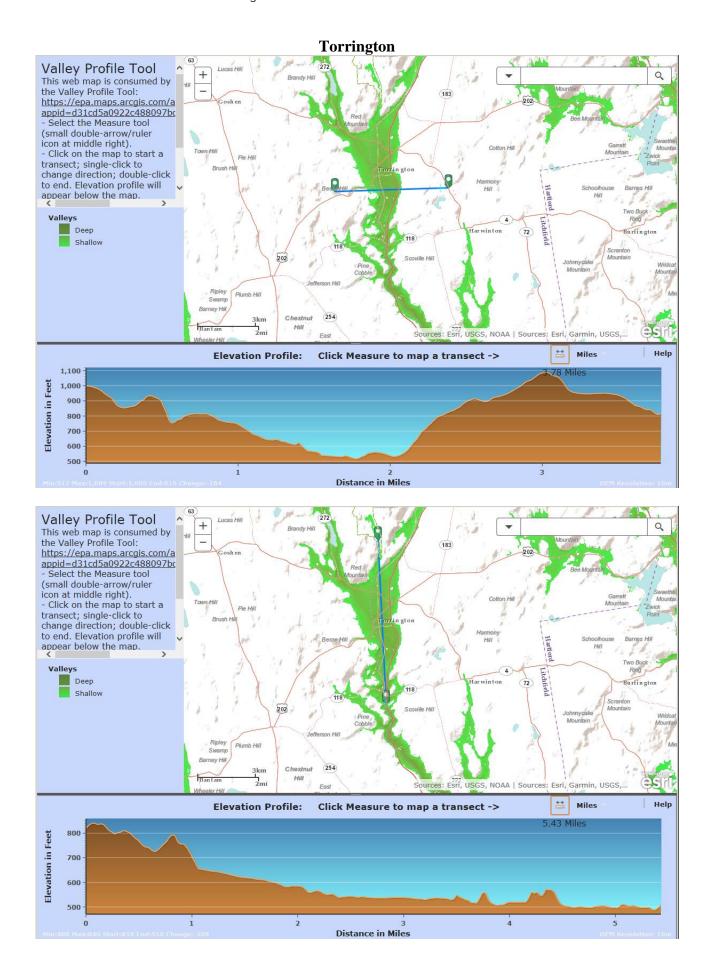


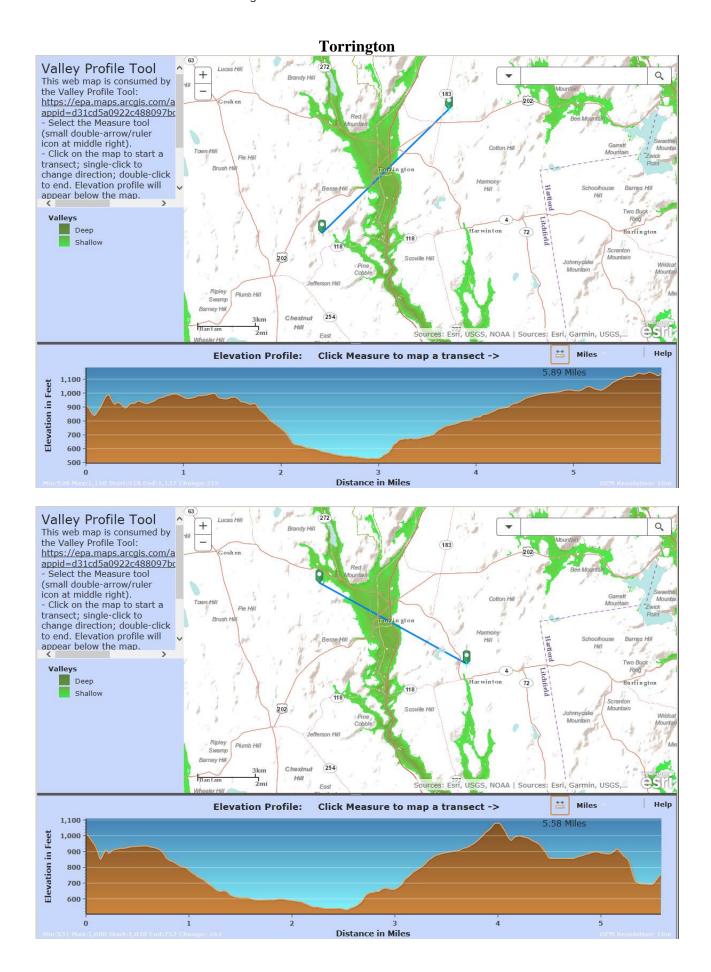


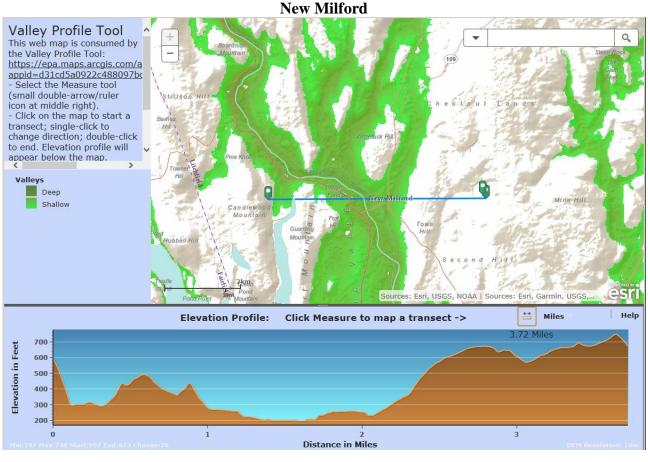

PM2.5 (FRM)	PM2.5 (FRM, Collocated)	PM2.5 (Continuous - FEM)	PM2.5 (Continuous – non-FEM)	PM10/PM-Coarse (FRM)	PM10/PM-Coarse (FRM, Collocated)	PM10/PM-Coarse (Continuous)	Lead-PM10	Lead-PM10 (Collocated)	PM Speciation (CSN)	PM Speciation (IMPROVE)	PM2.5 Carbon (BC/UVC, Continuous)	Ozone	SO2	ОО	NO ₂	NO/NO _y	ОНОН	× Total Column NO ₂ /HCOC	× Wind Speed	× Wind Direction	×	Dew Point / Rel. Humidity	Barometric Pressure		Solar Radiation	PM2.5 (FRM, Colloum PM2.5 (FRM, Colloum PM2.5 (Continuous – PM2.5 (Continuous – PM10/PM-Coarse (Colloom PM10/PM-Coarse (Colloom PM10/PM-Coarse (Colloom PM10/PM-Coarse (Colloom PM10/PM-Coarse (Colloom PM10/PM-Coarse (Colloom PM2.5 Carbon (BC/UVC, Colloom PM2.5 Carbon (BC/UVC, Colloom NO2/PM2.5 Carbon (BC/UVC, Co	ed) n-FEM) Nuous) nuous) ntinuous) ntinuous) ddity e
-------------	-------------------------	--------------------------	------------------------------	----------------------	----------------------------------	-----------------------------	-----------	------------------------	---------------------	-------------------------	-----------------------------------	-------	-----	----	-----------------	--------------------	------	--------------------------------------	--------------	------------------	---	---------------------------	---------------------	--	-----------------	--	--

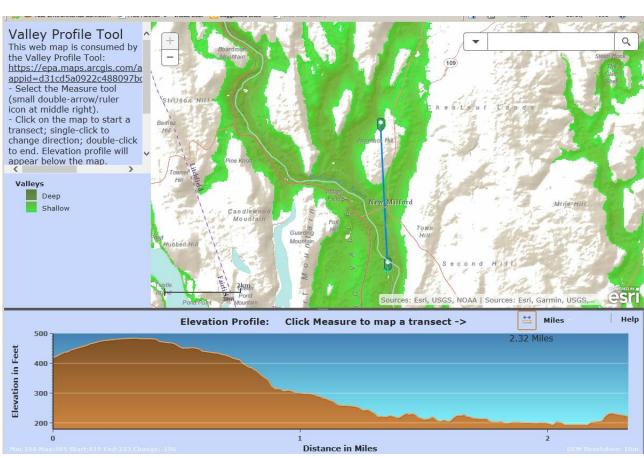

Parameter	Measurement Scale	Monitoring Objective	Assigned Value from Assessment	Plan for Network Optimization
Ozone	Regional	Maximum concentration, regional transport, population exposure	Critical	Кеер
NO ₂	Urban		Credible	Кеер
нсно	Urban		Credible	Add
Wind speed			Credible	Кеер
Wind direction			Credible	Keep
Temperature			Credible	Кеер
Mixing Height			Credible	Add

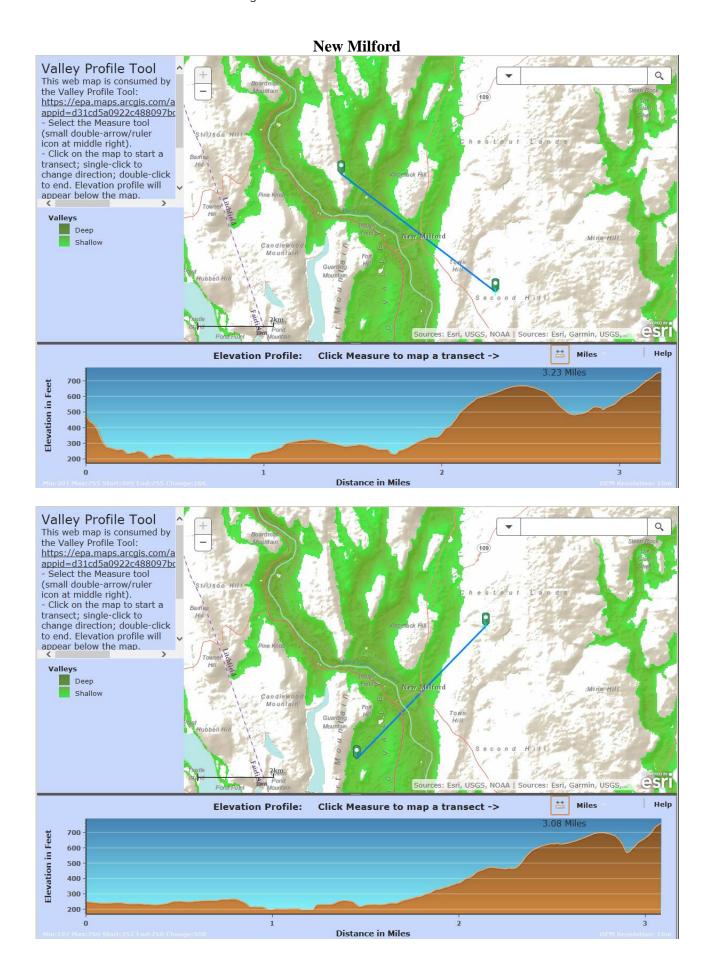

Appendix A Valley ID Tool Graphical Output

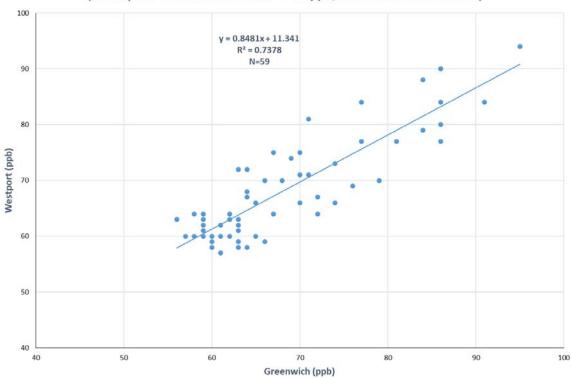


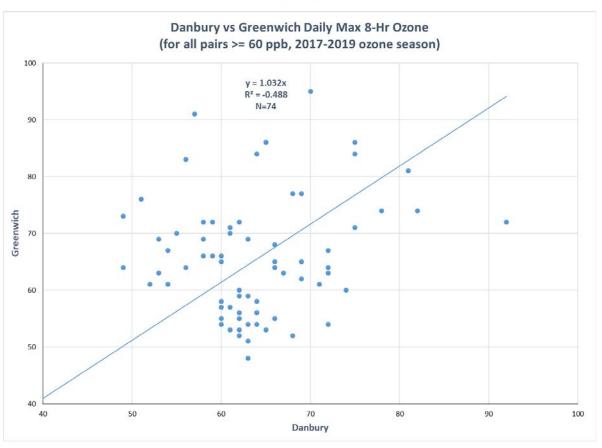


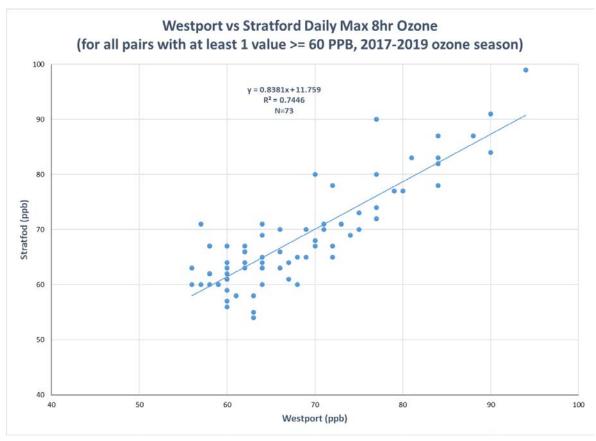


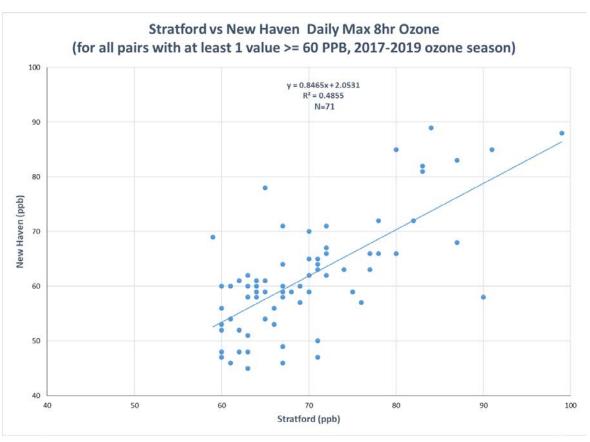


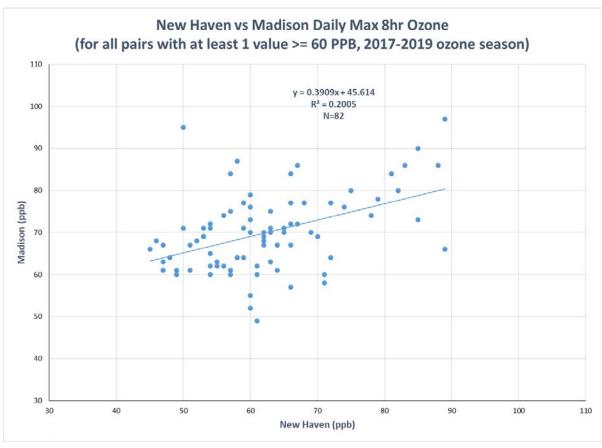









Appendix B Ozone Adjacent Site Correlation Plots


Greenwich vs Westport Daily Max 8hr Ozone (for all pairs with at least 1 value >= 60 ppb, 2017-2019 ozone season)

