

TRC 21 Griffin Road North Windsor, CT 06035 Main 860.298.9692

Memorandum

To: Seng Phouthakoun, Rickey Bouffard, and Jacob Felton

(CTDEEP)

From: James Ryan

Project Engineer

Subject: AGT Cromwell VOC RACT Plan – Response to Connecticut Department of

Energy & Environmental Protection (CTDEEP) Requests

Date: February 22, 2023

CC: Barry Goodrich (Enbridge), Caitlin Shaw (Enbridge), Phillip Wiedenfeld

(Enbridge), Kate Brown (Enbridge), Albert Wilder (TRC),

Project No.: 505556

This memorandum provides responses to information requested by Seng Phouthakoun on January 9, 2023. The requested information regards the VOC RACT Compliance Plan submitted to CTDEEP on December 20, 2021, for the Algonquin Cromwell Compressor Station (the Facility). TRC provided a memorandum to CTDEEP on March 15, 2022, which provided additional information in response to a CTDEEP request.

Supporting Emissions Calculations

a) Supporting emissions calculations for "Tanks (not including lube oil) PTE determination (model inputs/outputs, prob from TANKS)."

A summary of the tank VOC PTE is provided in Table 1. The supporting calculations are provided in Attachment 1. All tank emissions include standing and working losses and the process vessels include flash emissions. Flash emissions are included as the potential for them to occur does exist, but most of the liquid in the vessel is condensed moisture from the pipeline gas due to the temperature drop caused by pressure drop during operation.

New Source Performance Standard OOOOa (NSPS OOOOa) defines storage vessels as tanks or other vessels that "contains an accumulation of crude oil, condensate, intermediate hydrocarbon liquids, or produced water, and that is constructed primarily of non-earthen materials (such as wood, concrete, steel, fiberglass, or plastic) which provide structural support" and excludes process vessels.

The only vessel that meets this definition at Cromwell is TK-V5. All other vessels either contain other fluids or are process vessels at the site. Algonquin proposed grouping all vessels together to compare to the 6 tpy limit for VOC. As noted below, the emissions are still far below the applicability threshold. Storage vessels are defined the same under NSPS OOOOa and NSPS OOOOc.

The following conservative assumptions regarding materials stored in the process vessels and storage tanks are provided below as well as in the supporting calculations in Attachment 1.

- Vessels and tanks storing pipeline liquids are assumed to be storing gasoline which
 is an extremely conservative assumption as these vessels store very minimal
 amounts of pipeline liquids on an annual basis.
- The oil storage tanks, and oily water storage tanks are all conservatively assumed to be storing distillate fuel oil No. 2.
- The coolant tanks were conservatively assumed to be storing propylene glycol.

Table 1 - Tank VOC PTE

1AA								
ID	Description			VOC PTE	Supporting Calculations	0000a		
CROM TK V1C1	Process Vessel	218	gal	0.0759		No		
CROM TK V1C2	Process Vessel	218	gal	0.0759	TABLE F-1AB and TABLE E- 1AB	No		
CROM TK V1C3	Process Vessel	218	gal	0.0759	TABLE F-1AC and TABLE E- 1AC	No		
CROM TK V2A Process Vessel		218	gal	0.0906	TABLE F-1BA and TABLE E- 1BA	No		
CROM TK V2B	Process Vessel	940	gal	0.3940	TABLE F-1BB and TABLE E- 1BB	No		
CROM TK V5	Storage Tank	2,940	gal	0.4395	TABLE F-1C	Yes		
CROM TK OIL1	Storage Tank	750	gal	0.0020	TABLE F-1D	No		
CROM TK OIL2	Storage Tank	1,000	gal	0.0026	TABLE F-1E	No		
CROM TK OW1	Storage Tank	1,000	gal	0.0038	TABLE F-1F	No		
CROM TK EC1	Storage Tank	2,790	gal	0.0009	TABLE F-1G	No		
CROM TK EC2	Storage Tank	350	gal	0.0001	TABLE F-1H	No		
			Total	1.2 tpy				

b) Supporting emissions calculations for "Intermittent-bleed valves- EF and # of such valves on site."

A summary of the emissions calculations for the intermittent bleed valves (pneumatic actuators) is provided in Table 2.

Table 2 - Pneumatic Actuator PTE

Actuator	Number of Actuators	Total Gas Vented (scf/yr)	Annual VOC PTE (tpy)
Shafer - 6.5 X 8	8	6,000	0.003
Shafer - 9 X 12	3	5,000	0.002
Shafer - 12.5 X 8	11	408,000	0.203
Shafer - 12.5 X 12	36	274,000	0.136
Shafer - 14.5 X 16	6	84,000	0.042
Shafer - 16.5 X 16	1	69,000	0.034
Becker	1	2,000	0.001
	Totals	848,000	0.5

Annual gas venting volume from pneumatic actuators is dependent upon two values, the volume of gas venting per actuation, and the number of actuations per year. The above table

represents an approximation of the upper limit on venting from all actuators at the station. As described in the March 15, 2022 memo, VOC emissions from gas venting are quantified by applying the VOC content of the gas, which can vary greatly based on the shippers' gas sources.

Thus, to calculate potential VOC emissions from gas venting, Algonquin assumes a VOC content of 2.2% by weight which is equivalent to the 90th percentile of analyzed samples collected across the entire Enbridge gas transportation system. To illustrate how conservative the represented emissions calculations are, the 2021 average measured VOC content of the gas in Algonquin's system was 0.12% by weight, as was reported in the March 15, 2022 memo.

c) Supporting emissions calculations for "Compressor seals - EF and # of seals before switch."

As stated in the December 20, 2021 VOC RACT plan there have been two compressor units upgraded from wet to dry seals:

"Wet seals result in higher natural gas leakage than dry seals. The **two (2)** oldest compressor units [EU-07, EU-08] at the Facility were installed with wet seals in 1985, but have since been upgraded to dry seal systems. The three (3) newest compressor units at the Facility [EU-09, EU-10, EU-11] were installed with dry seal systems. Dry seals are a compliance alternative to installing additional controls for wet seals (see NSPS OOOOa) and achieve a 95% reduction in VOC emissions compared to wet seals (USEPA, 2016). Properly operating dry seals represent RACT for these sources of VOC emissions. Therefore, no additional enhancements or work practice changes are proposed for these sources."

The last compressor upgrade was performed in conjunction with the NOx RACT program on EU-08 with two wet seals replaced with dry seals on EU-08. The emission estimates used to determine the VOC PTE reductions from replacing compressor seals provided in Table 3 utilize the same conservative assumption for gas VOC content as found in Section b) above.

Type of Compressor Seal	Number of Seals Per Compressor	Annual Gas Released Per Seal (scf/yr)	Annual Total Gas Released (scf/yr)	Annual VOC PTE (tpy)
Dry	2	1,577,000	3,154,000	1.6
Wet	2	19,209,600	38,419,200	19.1

Table 3 - Compressor Seal PTE

d) Supporting emissions calculations for "Fugitive components w/ LDAR - for each component type (e.g., flange, thread, valve...) EF before LDAR, EF after LDAR control efficiency applied, and component count."

A summary of the VOC PTE calculations for fugitive components is provided in Table 4.

The methodology implemented for calculating fugitive emissions uses an estimated number of fugitive components by type, a population average emission factor for each, and an estimate of the speciation of the fugitive emissions. Details of the calculations are provided in the supporting calculations provided in Attachment 2. No control efficiency was applied to the emissions from fugitive components in the VOC RACT plan. Table 4 provides the uncontrolled VOC emissions as well as abated emissions assuming the 80% control efficiency derived from NSPS OOOOa and proposed in the VOC RACT plan.

Speciation assumptions used for each component service type (natural gas, pipeline liquids, and oil service) are as follows:

- For piping components in natural gas service see pneumatic actuator section regarding natural gas VOC content assumptions.
- For piping components in pipeline liquids service see Table H-1Bb. Algonquin conservatively assumes the components are in liquid service 8,760 hours per year, when in reality only small quantities of pipeline liquids are received at the facility intermittently. The last time liquids were received at the Cromwell station was approximately spring of 2016.
- For piping components in oil service see Table H-1Bc. Components are assumed to be leaking 8,760 hours per year when actually there are no leaks detected at these sources.

Table 4 – Fugitive Components PTE

ID	FIN	Description	Material	Annual VOC PTE (tpy)	Supporting Calculations
00014	CROM PC NG	Piping Components	Natural Gas	1.3	TABLE H-1Ba
CROM PC	CROM PC PL	Piping Components	Pipeline Liquids	5.5	TABLE H-1Bb
10	CROM PC OIL	Piping Components	Oil	3.1	TABLE H-1Bc
			Total	9.9	
		Total with 80	% OOOOa Control	2.0	

e) Supporting emissions calculations for "Gas-powered starter - PTE assumptions.

A summary of the VOC PTE calculations for the gas-powered starter is provided in Table 5. The emission estimates used to determine the VOC PTE reductions from replacing the gas-powered started provided in Table 5 utilize the same conservative assumption for gas VOC content as found in Section b) above.

Table 5 - Gas Starter PTE

Permitted Starts Per Year	Gas Released Per Start (scf)	Annual Gas Released (scf/yr)	VOC PTE (tpy)
312	15,000	4,680,000	2.4

RACT Recommendations

The following table was provided by CTDEEP as a summary of recommended RACT measures. Sections f) through k) address each recommended RACT measure.

Emission Sources	Recommended RACT
Storage Vessel	Install an air pollution control if PTE VOC emissions are > 6 TPY and also, the cumulative VOC emissions of all storage vessels are > than 1.16 tons for each 12 consecutive months (2016 CTG O&NG Industry & proposed RACT Plan).
Pneumatic Controller (intermittent bleed)	Zero VOC emissions (proposed rule 40 CFR Part 60 Subpart OOOOc for methane -§60.541c(c)(1))
Blowdown (Station & Unit)	No RACT requirement (no state or federal rules).
Compressor *seal	*Dry Seals (2016 CTG O&NG) and restrict volumetric flow rate to equal to or less than 3 scfm (proposed Subpart OOOOc - §60.5410c(c)(1) through (4)).
*Starter	*Restrict to electric starter (proposed RACT Plan)
Fugitives piping components	Leak detection and repair (LDAR) program (Title V permit and Subpart OOOOa) and also, conduct monthly audio/visual/olfactory inspections (proposed Subpart OOOOc - §60.5397c(g)(iv)(A) and (B)).

f) Storage Vessels: Install an air pollution control if PTE VOC emissions are > 6 TPY and also, the cumulative VOC emissions of all storage vessels are > than 1.16 tons for each 12 consecutive months (2016 CTG O&NG Industry & proposed RACT Plan).

This Facility is compliant with this recommended RACT measure and has no comment.

g) Pneumatic Controller: (intermittent bleed): Zero VOC emissions (proposed rule 40 CFR Part 60 Subpart OOOOc for methane -§60.541c(c)(1)).

40 CFR Part 60 Subpart OOOOc is a proposed Federal New Source Performance Standard which has not been finalized and is currently undergoing public comment prior to EPA finalizing the standard. Following the finalization of the NSPS OOOOc emission guidelines, each state must create regulations that meet EPA's proposal. Following promulgation of the final NSPS OOOOc regulation, states are expected to take several years to develop and submit their plans. Following submittal, EPA will then review and potentially approve the plan.

As of February 19, 2023, over 800,000 comments on the proposed NSPS OOOOb/c rules had been received by the EPA. The Interstate Natural Gas Association of America submitted significant substantive comments on NSPS OOOOb/c which detail extensive revisions that need to be addressed prior to finalization of the regulation. Algonquin staff members contributed to the development of these comments, and it is evident that significant changes to the regulation are likely to occur before promulgation.

Memorandum Page 6 of 6

Due to the uncertainty of the final NSPS OOOOc requirements, as well as the expected timeline for implementation, requiring compliance with draft NSPS OOOOc requirements through the VOC RACT plan could potentially result in costly compliance issues when the final version of the regulation takes effect. Therefore, Algonquin respectfully requests that any NSPS OOOOc draft requirements be omitted from the RACT recommendation.

h) Blowdown (Station & Unit): No RACT requirement (no state or federal rules)

With the 2019 upgrades to the Cromwell Compressor Station, blowdown emissions are now the largest single source of VOC emissions from the facility. Algonquin has proposed significant reductions in the potential emissions from these sources in our VOC RACT plan.

i) Compressor Seals: Dry Seals (2016 CTG O&NG) and restrict volumetric flow rate to equal to or less than 3 scfm (proposed Subpart OOOOc - §60.5410c(c)(1) through (4)).

See response in Section g).

j) Compressor Starters: Restrict to electric starter (proposed RACT Plan)

This RACT measure was proposed in the submitted VOC RACT plan and there is no comment.

k) Fugitives piping components: Leak detection and repair (LDAR) program (Title V permit and Subpart OOOOa) and also, conduct monthly audio/visual/olfactory inspections (proposed Subpart OOOOc - §60.5397c(g)(iv)(A) and (B)).

See response in Section g).

ATTACHMENT 1: TANK PTE SUPPORTING CALCULATIONS

TABLE F-1AA Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source				CROM-SV-V01C1						
ervice					Pipeline Liquids					
Capacity		218	gal			218	gal			
emperature of Stored Liquid		58.05	°F			84.96	°F			
apor Pressure		5.0625	psia			8.2300	psia	•		
rumping Rate			gal/min	1			gal/min			
Throughput Throughput		0.20	turnover/yr	1			U			
			gal/yr			44	gal/hr	-		
tanding Losses			8)-			Jul		-		
anding Dosses				1	-		hrs/month	-		
				†		, , , ,	lbs/month	-		
		140.5300	lb/yr	†		0.0284		-		
Vorking Losses		7.96E-03				1.02E-02		-		
VOIKING LUSSES		0.3461		Average	Maximum	0.4450		Maximun		
	C4 1	0.5401	10/ y1			0.4430	10/111			
: d1 T :: d	Stand Work	250.040/	1 1. 4	0.0576 lb/hr	0.2521 tpy	250 040/	1	0.1021 1		
Total		338.84%	by weight	0.0001 lb/hr	0.0006 tpy	338.84%	by weight	1.5968 1		
		5300 350/		0.0577 lb/hr	0.2528 tpy	5200 250/		1.6989 1		
CO _{2-e}			by weight	0.8681 lb/hr	3.8024 tpy	5398.27%		26 1		
O ₂			by weight	0.0013 lb/hr	0.0055 tpy		by weight	0.0371 1		
OC (Total)			by weight	0.0564 lb/hr	0.2472 tpy		by weight	1.6618 1		
Methane			by weight	0.0347 lb/hr	0.1519 tpy		by weight	1.0208 1		
thane	35.39% by weight		0.0057 lb/hr	0.0249 tpy		by weight	0.1675 1			
OC (Total)		100.00%	by weight	0.0161 lb/hr	0.0704 tpy	100.00%	by weight	0.4734 1		
IAP (Total)	6.23% by weight		0.0010 lb/hr	0.0044 tpy	6.23%	by weight	0.0295 1			
Benzene		1.5063%	by weight	2.42E-04 lb/hr	1.06E-03 tpy	1.5063%	by weight	7.13E-03 1		
Ethylbenzene		0.0477%	by weight	7.67E-06 lb/hr	3.36E-05 tpy	0.0477%	by weight	2.26E-04 1		
Hexane (n-)		2.8866%	by weight	4.64E-04 lb/hr	2.03E-03 tpy		by weight	1.37E-02 I		
Methanol			, <u> </u>		1,7		, ,			
Naphthalene										
Toluene		1 3668%	by weight	2.20E-04 lb/hr	9.63E-04 tpy	1 3668%	by weight	6.47E-03 1		
Trimethylpentane (2,2,4-)			by weight	2.23E-06 lb/hr	9.78E-06 tpy		by weight	6.57E-05 1		
Xylenes			by weight	6.55E-05 lb/hr	2.87E-04 tpy		by weight	1.93E-03 I		
11,101100		01.107,270	ey weight	NOTES	2.072 0	0.107270	oj eigit	11,522 05 1		
. Tank Characteristics:				TANKS 4.09d						
Orientation		Vertical Fixed	d Doof Tonk	TANKS 4.070	Above Ground?	Ye	0			
Height/Length		12.00			Shell/Roof Color	Gray/M		or less solar		
Diameter Diameter						•				
		3.50			Shell Condition	Goo	absorptance			
Capacity (estimated)		864	-	Vacuum Setting -0.03 psig						
Capacity (nominal)		870	gal		Pressure Setting	0.03	psig			
. Stored Liquid Characteristics:										
Basis		USEPA TANK		MET Station:	Hartford, Connecticu					
Material		Gasoline (RVP			OC vapor pressure (s					
Liquid Molecular Weight			lb/lb-mol	Vapor Molecular We			lb/lb-mol			
Monthly Data	Days	Vapor P	ressure	Liquid Surfac	e Temperature	TANKS		TANKS		
		avg	max	avg	max	standing	working	Flow		
January	31	3.7300	4.2100		49.55	4.7900	5.1000			
February	28	3.9400	4.5700		53.58	5.6600	5.3900			
March	31	4.4600	5.3100		61.22	8.8300	6.0900	870		
April	30	5.0800	6.2700	58.99	70.04	12.5000	6.9500	870		
May	31	5.7200	7.2100		77.64	17.0600	7.8200			
June	30	6.2500	7.9300		82.89	19.4900	8.5400			
July	31	6.5100	8.2300		84.96	21.1600	8.9000			
2	31	6.2500	7.7500		81.62	18.0900	8.5500			
August	30	5.6500	6.8600		74.84	13.3700	7.7300			
August Sentember					66.24	9.6700	6.7700			
September		4 0500	5 9/00			9.0700	0.7700	0/0		
September October	31	4.9500	5.8400					970		
September October November	31 30	4.3600	4.9200	51.23	57.30	5.6200	5.9600			
September October	31			51.23 45.14				870		

TABLE F-1AB Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source					CROM-SV-V01C2				
Service					Pipeline Liquids				
Capacity		218	gal			218	gal		
Temperature of Stored Liquid		58.05	°F			84.96	°F		
Vapor Pressure		5.0625	psia			8.2300	psia		
Pumping Rate			gal/min	İ			gal/min	1	
Fhroughput			turnover/yr	İ			U	1	
			gal/yr			44	gal/hr	1	
Standing Losses			Ban Ji		-	Jul		1	
sumaning Desses					-		hrs/month	1	
							lbs/month	+	
		140.5300	1b/vr		-	0.0284		+	
Working Losses		7.96E-03				1.02E-02		+	
Working Losses		0.3461	-	Average	Maximum	0.4450	-	Maximu	ım
	C4 1	0.5401	10/ y1			0.4430	10/111		
01 d1 T 11 d	Stand	250 040/	1	0.0576 lb/hr	0.2521 tpy	250.040/	1	0.1021	
Residual Liquid	Work	338.84%	by weight	0.0001 lb/hr	0.0006 tpy	338.84%	by weight	1.5968	
30	Total	5200.250/	1 11.	0.0577 lb/hr	0.2528 tpy	5200.250/	1 11.	1.6989	
CO _{2-e}		5398.27%		0.8681 lb/hr	3.8024 tpy	5398.27%		-	lb/ł
CO ₂	7.83% by weight		0.0013 lb/hr	0.0055 tpy		by weight	0.0371		
TOC (Total)	351.00% by weight		0.0564 lb/hr	0.2472 tpy		by weight	1.6618		
Methane	215.62% by weight		0.0347 lb/hr	0.1519 tpy		by weight	1.0208		
Ethane	35.39% by weight		0.0057 lb/hr	0.0249 tpy		by weight	0.1675		
VOC (Total)	100.00% by weight		0.0161 lb/hr	0.0704 tpy		by weight	0.4734		
HAP (Total)	6.23% by weight		0.0010 lb/hr	0.0044 tpy		by weight	0.0295 lb/h		
Benzene	1.5063% by weight		2.42E-04 lb/hr	1.06E-03 tpy	1.5063% by weight		7.13E-03 lb/h		
Ethylbenzene		0.0477% by weight		7.67E-06 lb/hr	3.36E-05 tpy	0.0477% by weight		2.26E-04	
Hexane (n-)		2.8866%	by weight	4.64E-04 lb/hr	2.03E-03 tpy	2.8866%	by weight	1.37E-02	lb/ł
Methanol									
Naphthalene									
Toluene		1.3668%	by weight	2.20E-04 lb/hr	9.63E-04 tpy	1.3668%	by weight	6.47E-03	lb/l
Trimethylpentane (2,2,4-)		0.0139%	by weight	2.23E-06 lb/hr	9.78E-06 tpy	0.0139%	by weight	6.57E-05	lb/h
Xylenes		0.4073%	by weight	6.55E-05 lb/hr	2.87E-04 tpy	0.4073%	by weight	1.93E-03	lb/l
				NOTES					
. Tank Characteristics:				TANKS 4.09d					
Orientation		Vertical Fixed	l Roof Tank		Above Ground?	Ye	s		
Height/Length		12.00			Shell/Roof Color	Gray/M		or less solar	
Diameter		3.50			Shell Condition	Goo	absorptance		
Capacity (estimated)		864			Vacuum Setting	-0.03	1 1		
Capacity (nominal)		870	-		Pressure Setting	0.03			
2. Stored Liquid Characteristics:		070	5		ressure setting	0.05	Poig		
Basis		USEPA TANK	\$ 4.004	MET Station:	Hartford, Connecticu	t			
Material		Gasoline (RVP			OC vapor pressure (s				
Liquid Molecular Weight			lb/lb-mol	Vapor Molecular We	1 1		lb/lb-mol		
Monthly Data	Davia	Vapor P		Liquid Surfac	Ü			TANKS	1
Monthly Data	Days	*				TANKS		-	
T	21	avg	max	avg	max	standing	working	Flow	1
January	31	3.7300	4.2100		49.55	4.7900	5.1000		4
February	28	3.9400	4.5700		53.58	5.6600	5.3900		4
March	31	4.4600	5.3100		61.22	8.8300	6.0900		4
April	30	5.0800	6.2700		70.04	12.5000	6.9500		
May	31	5.7200	7.2100		77.64	17.0600	7.8200		
June	30	6.2500	7.9300		82.89	19.4900	8.5400		
July	31	6.5100	8.2300		84.96	21.1600	8.9000		
August	31	6.2500	7.7500		81.62	18.0900	8.5500		
September	30	5.6500	6.8600	64.49	74.84	13.3700	7.7300	870	j
October	31	4.9500	5.8400	57.64	66.24	9.6700	6.7700	870	
November	30	4.3600	4.9200		57.30	5.6200	5.9600		
December	31	3.8500	4.2800		50.33	4.2900	5.2600		4
December									4
ALL	365	5.0625	8.2300		84.96	140.5300	83.0600	10,440	

TABLE F-1AC Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source					CROM-SV-V01C3				
Service				Pipeline Liquids					
Capacity		218	gal			218	gal		
Temperature of Stored Liquid		58.05		İ		84.96	°F	-	
Vapor Pressure		5.0625	psia	İ		8.2300		-	
Pumping Rate			gal/min		-		gal/min	-	
Throughput			turnover/yr		-	133	gar min	-	
imoughput			gal/yr			44	gal/hr	-	
Standing Losses			gui/ yi			Jul		-	
Standing Losses							hrs/month	-	
					-	-	lbs/month	4	
		140 5200	11 _e /e.v			0.0284		-	
Working Losses		140.5300			-			4	
working Losses		7.96E-03		A	Manianan	1.02E-02		Maximu	
	la 1	0.3461	1b/yr	Average	Maximum	0.4450	lb/nr		
	Stand	250040/		0.0576 lb/hr	0.2521 tpy	250040/		0.1021	
Residual Liquid	Work	358.84%	by weight	0.0001 lb/hr	0.0006 tpy	358.84%	by weight	1.5968	
	Total			0.0577 lb/hr	0.2528 tpy			1.6989	
CO _{2-e}		5398.27%		0.8681 lb/hr	3.8024 tpy	5398.27%		26	
CO ₂			by weight	0.0013 lb/hr	0.0055 tpy		by weight	0.0371	
ΓOC (Total)			by weight	0.0564 lb/hr	0.2472 tpy		by weight	1.6618	
Methane			by weight	0.0347 lb/hr	0.1519 tpy		by weight	1.0208	
Ethane	35.39% by weight		0.0057 lb/hr	0.0249 tpy		by weight	0.1675		
VOC (Total)	100.00% by weight		0.0161 lb/hr	0.0704 tpy	100.00%	by weight	0.4734		
HAP (Total)		6.23%	by weight	0.0010 lb/hr	0.0044 tpy	6.23%	by weight	0.0295	
Benzene		1.5063%	by weight	2.42E-04 lb/hr	1.06E-03 tpy	1.5063%	by weight	7.13E-03	
Ethylbenzene		0.0477%	by weight	7.67E-06 lb/hr	3.36E-05 tpy	0.0477%	by weight	2.26E-04	
Hexane (n-)		2.8866%	by weight	4.64E-04 lb/hr	2.03E-03 tpy	2.8866%	by weight	1.37E-02	
Methanol			, ,		1.		, ,		
Naphthalene									
Toluene		1.3668%	by weight	2.20E-04 lb/hr	9.63E-04 tpy	1.3668%	by weight	6.47E-03	
Trimethylpentane (2,2,4-)			by weight	2.23E-06 lb/hr	9.78E-06 tpy		by weight	6.57E-05	
Xylenes			by weight	6.55E-05 lb/hr	2.87E-04 tpy		by weight	1.93E-03	
			, ,	NOTES	17		, , , , , , , , , , , , , , , , , , , 		
. Tank Characteristics:				TANKS 4.09d					
Orientation		Vertical Fixed	d Roof Tank	17111KS 4.07G	Above Ground?	Ye	·e		
Height/Length		12.00			Shell/Roof Color	Gray/M		or less solar	
Diameter Diameter		3.50			Shell Condition	Goo	absorptance		
					-0.03	absorptance			
Capacity (estimated)		864	-						
Capacity (nominal)		870	gai		Pressure Setting	0.03	psig		
2. Stored Liquid Characteristics:		LICEDA TANT	G 4 00 1	MET Co. C	H (C 1 C 2				
Basis		USEPA TANK		MET Station:	Hartford, Connecticu				
Material		Gasoline (RVP			OC vapor pressure (s				
Liquid Molecular Weight	_		lb/lb-mol	Vapor Molecular We			lb/lb-mol		
Monthly Data	Days	Vapor P	ressure	Liquid Surfac	e Temperature	TANKS		TANKS	
		avg	max	avg	max	standing	working	Flow	
January	31	3.7300	4.2100	43.60	49.55	4.7900	5.1000		
February	28	3.9400	4.5700		53.58	5.6600	5.3900		
March	31	4.4600	5.3100	52.34	61.22	8.8300	6.0900		
April	30	5.0800	6.2700	58.99	70.04	12.5000	6.9500	870	
May	31	5.7200	7.2100	65.11	77.64	17.0600	7.8200	870	
June	30	6.2500	7.9300		82.89	19.4900	8.5400		
July	31	6.5100	8.2300		84.96	21.1600	8.9000		
August	31	6.2500	7.7500		81.62	18.0900	8.5500		
September	30	5.6500	6.8600	64.49	74.84	13.3700	7.7300		
*	31	4.9500	5.8400		66.24	9.6700	6.7700		
	30	4.3600	4.9200		57.30	5.6200	5.9600		
October November		4.3000	4.7200	31.23	37.30				
November				15 1 1	50.22	4 2000	5 2600	070	
	31 365	3.8500 5.0625	4.2800 8.2300		50.33 84.96	4.2900 140.5300	5.2600 83.0600		

TABLE F-1BA Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source					CROM-SV-V02A				
Service					Pipeline Liquids				
Capacity		220	gal			220	gal		
Temperature of Stored Liquid		58.05	°F		-	84.96	°F		
Vapor Pressure		5.0625	psia			8.2300	psia	1	
Pumping Rate			gal/min				gal/min	1	
Throughput			turnover/yr				8	1	
rmoughput			gal/yr		-	220	gal/hr	1	
Standing Losses		220	gar yı		-	Jul		1	
Standing Losses					-		hrs/month	7	
					-		lbs/month	1	
		37.1300	11a/xze		-	0.0075		•	
Working Losses		7.94E-03			-	1.02E-02		+	
working Losses			_	Avionogo	Marrianyan	2.2500		Maximu	
	la 1	4.4290	lb/yr	Average	Maximum	2.2300	lb/nr		
	Stand	250.040/		0.0152 lb/hr	0.0666 tpy	250.040/		0.0271	
Residual Liquid	Work	358.84%	by weight	0.0018 lb/hr	0.0079 tpy	358.84%	by weight	8.0739	
	Total			0.0170 lb/hr	0.0746 tpy			8.1009	
CO _{2-e}		5398.27%		0.2561 lb/hr	1.1217 tpy	5398.27%		122	
CO_2			by weight	0.0004 lb/hr	0.0016 tpy		by weight	0.1768	
ΓΟC (Total)			by weight	0.0167 lb/hr	0.0729 tpy		by weight	7.9241	lb/l
Methane		215.62%	by weight	0.0102 lb/hr	0.0448 tpy	215.62%	by weight	4.8676	
Ethane		35.39%	by weight	0.0017 lb/hr	0.0074 tpy	35.39%	by weight	0.7989	lb/l
VOC (Total)		100.00%	by weight	0.0047 lb/hr	0.0208 tpy	100.00%	by weight	2.2575	lb/l
HAP (Total)		6.23%	by weight	0.0003 lb/hr	0.0013 tpy	6.23%	by weight	0.1406	lb/l
Benzene		1.5063%	by weight	7.15E-05 lb/hr	3.13E-04 tpy	1.5063%	by weight	3.40E-02	lb/l
Ethylbenzene			by weight	2.26E-06 lb/hr	9.91E-06 tpy		by weight	1.08E-03	1b/1
Hexane (n-)			by weight	1.37E-04 lb/hr	6.00E-04 tpy		by weight	6.52E-02	1b/1
Methanol			, ,		1,		, ,		
Naphthalene									
Toluene		1 3668%	by weight	6.48E-05 lb/hr	2.84E-04 tpy	1 3668%	by weight	3.09E-02	lh/l
Trimethylpentane (2,2,4-)			by weight	6.59E-07 lb/hr	2.89E-06 tpy		by weight	3.13E-04	
Xylenes			by weight	1.93E-05 lb/hr	8.46E-05 tpy		by weight	9.20E-03	
Trylenes		0.107570	by weight	NOTES	0.10E 03 tpj	0.107370	oy weight	7.20E 03	10/1
. Tank Characteristics:				TANKS 4.09d					
Orientation		Vertical Fixed	I Doof Touls	1ANKS 4.090	Above Ground?	Ye			
		11.17		11.17 ft	Shell/Roof Color	Gray/M		or less solar	
Height/Length Diameter						•			
		1.83		1.83 ft	Shell Condition	Goo		absorptance	
Capacity (estimated)		221	-		Vacuum Setting	-0.03			
Capacity (nominal)		220	gal		Pressure Setting	0.03	psig		
2. Stored Liquid Characteristics:									
Basis		USEPA TANK			Hartford, Connecticu				
Material		Gasoline (RVP			OC vapor pressure (se				
Liquid Molecular Weight			lb/lb-mol	Vapor Molecular We			lb/lb-mol		,
Monthly Data	Days	Vapor P	ressure	Liquid Surfac	e Temperature	TANKS		TANKS	
		avg	max	avg	max	standing	working	Flow	1
January	31	3.7300	4.2100		49.55	1.2500	1.2900		1
February	28	3.9400	4.5700		53.58	1.4800	1.3600]
March	31	4.4600	5.3100	52.34	61.22	2.3200	1.5400	220	j
April	30	5.0800	6.2700	58.99	70.04	3.3000	1.7500	220	ĺ
May	31	5.7200	7.2100		77.64	4.5100	1.9700		ĺ
June	30	6.2500	7.9300		82.89	5.1700	2.1600		ĺ
July	31	6.5100	8.2300		84.96	5.6100	2.2500		
August	31	6.2500	7.7500		81.62	4.8000	2.1600		
September	30	5.6500	6.8600		74.84	3.5400	1.9500		ĺ
October	31	4.9500	5.8400		66.24	2.5500	1.7100		ĺ
November	30	4.3600	4.9200		57.30	1.4800	1.5000		ĺ
December	31	3.8500	4.9200		50.33	1.1200	1.3300		ĺ
December									
ATT	265								
ALL 3. Emission Estimate Basis:	365	5.0625 USEPA TANK	8.2300		84.96 CEQ RG-166/01	37.1300	20.9700	2,040	

TABLE F-1BB Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source					CROM-SV-V02B			
Service					Pipeline Liquids			
Capacity		940	gal			940	gal	
Temperature of Stored Liquid		58.05	°F			84.96	°F	
Vapor Pressure		5.0625	psia			8.2300	psia	
Pumping Rate			gal/min	İ			gal/min	1
Fhroughput			turnover/yr	İ			U	1
			gal/yr			940	gal/hr	-
Standing Losses		_,	8)-			Jul		-
sumumg Zesses					-		hrs/month	-
						-	lbs/month	-
		172.2800	lb/yr			0.0351		4
Working Losses		7.96E-03			-	1.02E-02		<u>-</u> .
Working Losses		18.9558	U	Average	Maximum	9.6100		Maximu
	C41	10.9330	10/ y1			9.0100	10/111	
Davidson 1 T Count d	Stand	250 040/	1	0.0706 lb/hr	0.3091 tpy	250 040/	1	0.1260
Residual Liquid	Work	338.84%	by weight	0.0078 lb/hr	0.0340 tpy	338.84%	by weight	34.4844
Total		5200.250/	1 11.	0.0783 lb/hr	0.3431 tpy	5200.250/	1 11.	34.6103
CO _{2-e}		5398.27%		1.1785 lb/hr	5.1617 tpy	5398.27%		521
CO ₂	7.83% by weight		0.0017 lb/hr	0.0075 tpy		by weight	0.7556	
TOC (Total)	351.00% by weight		0.0766 lb/hr	0.3356 tpy		by weight	33.8548	
Methane	215.62% by weight		0.0471 lb/hr	0.2062 tpy		by weight	20.7965	
Ethane	35.39% by weight		0.0077 lb/hr	0.0338 tpy		by weight	3.4131	
VOC (Total)	100.00% by weight		0.0218 lb/hr	0.0956 tpy		by weight	9.6451	
HAP (Total)		6.23% by weight		0.0014 lb/hr	0.0060 tpy		by weight	0.6008
Benzene		1.5063% by weight		3.29E-04 lb/hr	1.44E-03 tpy	1.5063% by weight		1.45E-01
Ethylbenzene		0.0477% by weight		1.04E-05 lb/hr	4.56E-05 tpy	0.0477% by weight		4.60E-03
Hexane (n-)		2.8866% by weight		6.30E-04 lb/hr	2.76E-03 tpy	2.8866% by weight		2.78E-01
Methanol			-					
Naphthalene								
Toluene		1.3668%	by weight	2.98E-04 lb/hr	1.31E-03 tpy	1.3668%	by weight	1.32E-01
Trimethylpentane (2,2,4-)			by weight	3.03E-06 lb/hr	1.33E-05 tpy		by weight	1.34E-03
Xylenes			by weight	8.89E-05 lb/hr	3.89E-04 tpy		by weight	3.93E-02
·			, ,	NOTES	1,		, ,	
. Tank Characteristics:				TANKS 4.09d				
Orientation		Vertical Fixed	d Roof Tank	11111125 11074	Above Ground?	Ye	S	
Height/Length		10.00			Shell/Roof Color	Gray/M		or less solar
Diameter Diameter		4.00			Shell Condition	Gray/W	absorptance	
Capacity (estimated)		940			Vacuum Setting	-0.03	absorptance	
- · ·			-					
Capacity (nominal)		940	gai		Pressure Setting	0.03	psig	
2. Stored Liquid Characteristics:		LICEDA TANIZ	G 4 00 1	MET Co. C	H (C 1 C (
Basis		USEPA TANK		MET Station:	Hartford, Connecticu			
Material		Gasoline (RVP			OC vapor pressure (s			
Liquid Molecular Weight	_		lb/lb-mol	Vapor Molecular We			lb/lb-mol	
Monthly Data	Days	Vapor P		Liquid Surfac		TANKS		TANKS
		avg	max	avg	max	standing	working	Flow
January	31	3.7300	4.2100	43.60	49.55	5.7800	5.5100	
February	28	3.9400	4.5700		53.58	6.8500	5.8300	
March	31	4.4600	5.3100		61.22	10.7400	6.5800	
April	30	5.0800	6.2700		70.04	15.2800	7.5100	
May	31	5.7200	7.2100	65.11	77.64	20.9500	8.4500	940
June	30	6.2500	7.9300	69.82	82.89	24.0200	9.2300	940
July	31	6.5100			84.96	26.1200	9.6100	
August	31	6.2500	7.7500	69.86	81.62	22.3000	9.2400	
September	30	5.6500	6.8600	64.49	74.84	16.4100	8.3500	
October	31	4.9500				11.8100	7.3100	
VACUULUI.	30	4.3600	4.9200		57.30	6.8300	6.4400	
		4.3000	4.9200	31.23				
November		2 0500	4 2000	15 1 1	50.22	5 1000	5 (000	040
	31	3.8500 5.0625	4.2800 8.2300			5.1900 172.2800	5.6900 89.7500	

TABLE F-1C Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source					CROM-TK-V05				
Service					Pipeline Liquids				
Capacity		2,940	gal			2,940	gal		
Temperature of Stored Liquid		58.05	°F			84.96	°F		
Vapor Pressure		5.0662	psia			8.2305	psia		
Pumping Rate			gal/min	İ			gal/min	1	
Fhroughput			turnover/yr	İ			<u> </u>	1	
			gal/yr			2,940	gal/hr	1	
Standing Losses		_,,	8)-			Jul		1	
sumumg Zesses					-		hrs/month	1	
							lbs/month	+	
		855.4972	1b/yr		-	0.1781		+	
Working Losses		7.96E-03				1.02E-02		+	
WORKING LOSSES		23.4057	8	Average	Maximum	30.0829		Maximu	ım
	C4 1	23.4037	10/ y1			30.0629	10/111		
. '1 17' '1	Stand	250.040/	1 11	0.3504 lb/hr	1.5349 tpy	250.040/	1 11.	0.6389	
Residual Liquid	Work	358.84%	by weight	0.0096 lb/hr	0.0420 tpy	358.84%	by weight	107.9491	
70	Total	5200.250/	1 11.	0.3600 lb/hr	1.5769 tpy	5200.250/		108.5881	
CO _{2-e}		5398.27%		5.4162 lb/hr	23.7228 tpy	5398.27%		1,634	
CO ₂		7.83% by weight		0.0079 lb/hr	0.0344 tpy		by weight	2.3706	
TOC (Total)	351.00% by weight		0.3522 lb/hr	1.5425 tpy		by weight	106.2175		
Methane	215.62% by weight		0.2163 lb/hr	0.9475 tpy		by weight	65.2480		
Ethane	35.39% by weight		0.0355 lb/hr	0.1555 tpy		by weight	10.7085		
VOC (Total)	100.00% by weight		0.1003 lb/hr	0.4395 tpy		by weight	30.2610		
HAP (Total)		6.23% by weight		0.0062 lb/hr	0.0274 tpy		by weight	1.8848 lb/h	
Benzene		1.5063% by weight		1.51E-03 lb/hr	6.62E-03 tpy	1.5063% by weight		4.56E-01 lb/h	
Ethylbenzene		0.0477% by weight		4.78E-05 lb/hr	2.09E-04 tpy	0.0477% by weight		1.44E-02	lb/l
Hexane (n-)		2.8866%	by weight	2.90E-03 lb/hr	1.27E-02 tpy	2.8866%	by weight	8.74E-01	lb/l
Methanol									
Naphthalene									
Toluene		1.3668%	by weight	1.37E-03 lb/hr	6.01E-03 tpy	1.3668%	by weight	4.14E-01	lb/ł
Trimethylpentane (2,2,4-)		0.0139%	by weight	1.39E-05 lb/hr	6.10E-05 tpy		by weight	4.20E-03	lb/l
Xylenes			by weight	4.09E-04 lb/hr	1.79E-03 tpy	0.4073%	by weight	1.23E-01	lb/l
·				NOTES				•	
Tank Characteristics:				TANKS 4.09d					_
Orientation		Vertical Fixed	d Roof Tank		Above Ground?	Ye	s		
Height/Length		5.00			Shell/Roof Color	Gray/M		or less solar	
Diameter		10.00			Shell Condition	Goo	absorptance		
Capacity (estimated)		2,938			Vacuum Setting	-0.03	aosorptanee		
Capacity (nominal)		2,940	-		Pressure Setting	0.03			
2. Stored Liquid Characteristics:		2,740	gai		Tressure Setting	0.03	psig		
Basis		USEPA TANKS	\$ 4.004	MET Station:	Hartford, Connecticu	+			
Material		Gasoline (RVP			OC vapor pressure (s				
			-,		1 1				
Liquid Molecular Weight	Б		lb/lb-mol	Vapor Molecular We	Ü		lb/lb-mol	TANKE	1
Monthly Data	Days	Vapor P		Liquid Surfac		TANKS		TANKS	1
		avg	max	avg	max	standing	working	Flow	ł
January	31	3.7342	4.2173	43.60	49.56	27.3935	17.2522		ł
February	28	3.9492	4.5724		53.59	32.6450	18.2452		ļ
March	31	4.4602	5.3101	52.34	61.23	51.9904	20.6060		4
April	30	5.0850	6.2776		70.04	75.1820	23.4925		1
May	31	5.7214	7.2195	65.12	77.64	104.6037	26.4329		
June	30	6.2518	7.9349	69.82	82.90	121.2470	28.8832		
July	31	6.5115	8.2305	72.01	84.96	132.4745	30.0829	2,940	
August	31	6.2568	7.7570	69.87	81.63	112.5649	28.9065	2,940	
September	30	5.6543	6.8612	64.50	74.85	81.8359	26.1227		4
October	31	4.9531	5.8454		66.25	57.9169	22.8835		
November	30	4.3620	4.9202	51.23	57.30	32.9624	20.1525		ĺ
					50.33	24.6811	17.8083		1
	311	1 X 14h	4.7839	45 14					
December ALL	31 365	3.8546 5.0662	4.2839 8.2305	45.14 58.05	84.96	855.4972	280.8684		

TABLE F-1D Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source					CROM-TK-LO01			
Service					Oil			
Capacity	-+	750 §	oal .		OII	750	gal	
Temperature of Stored Liquid		49.29	_		-	59.74	U	+
Vapor Pressure		0.0046 p			-	0.0064		
*					-		gal/min	+
Pumping Rate			gal/min		-	150	gal/min	
Γhroughput			urnover/yr		-		1.0	
		273,750 g	gal/yr		_		gal/hr	
Standing Losses	L				_	Jul	,	
	L					744	hrs/month	
	L						lbs/month	
		0.0000 1	b/yr			0.00000	lb/hr	
Working Losses		1.43E-05 1	b/gal			2.00E-05	lb/gal	
		3.9010 1	lb/yr	Average	Maximum	0.0150	lb/hr	Maximun
	Stand		-	0.0000 lb/hr	0.0000 tpy			0.0000 1
Liquid	Work	100.00% t	ny weight	0.0004 lb/hr	0.0020 tpy	100.00%	by weight	0.0150 1
Biquid	Total	100.0070	by weight	0.0004 lb/hr	0.0020 tpy	100.0070	by weight	0.0150 1
ΓΟC (Total)	Total	100.000/ 1				100.000/	1	
\ /		100.00% t	by weight	0.0004 lb/hr	0.0020 tpy	100.00%	by weight	0.0150 1
Methane								
Ethane		100 0007 1		0.0004.11.7	0.0020	100.0007	1	0.0150 1
VOC (Total)		100.00% t	by weight	0.0004 lb/hr	0.0020 tpy	100.00%	by weight	0.0150 1
HAP (Total)								
Benzene								
Ethylbenzene								
Hexane (n-)								
Methanol								
Naphthalene								
Toluene								
Trimethylpentane (2,2,4-)								
Xylenes								
,				NOTES				
. Tank Characteristics:				TANKS 4.09d				
Orientation		Horizonta	l Tank	171111111111111111111111111111111111111	Above Ground?	No		
Height/Length		6.50 1			Shell/Roof Color	0	•	or less solar
Diameter Diameter		4.33 1		4.33 ft	Shell Condition	0		absorptance
								absorptance
		717						
Capacity (estimated)		717 §	_		Vacuum Setting	-0.03		
Capacity (estimated) Capacity (nominal)		717 g 750 g	_		Vacuum Setting Pressure Setting	0.03		
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics:		750 g	gal		Pressure Setting	0.03		
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis		750 g USEPA TANKS	gal 4.09d	MET Station:	Pressure Setting Hartford, Connecticus	0.03		
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material		750 g	gal 4.09d	MET Station: Selected purely for a	Pressure Setting Hartford, Connecticut worst-case scenario.	0.03 t	psig	
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis		750 g USEPA TANKS Distillate fuel oil	gal 4.09d	MET Station: Selected purely for a Vapor Molecular We	Pressure Setting Hartford, Connecticus worst-case scenario.	0.03 t	psig lb/lb-mol	
Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material		750 g USEPA TANKS Distillate fuel oil	4.09d no. 2 lb/lb-mol	MET Station: Selected purely for a	Pressure Setting Hartford, Connecticus worst-case scenario.	0.03 t	psig lb/lb-mol	TANKS
Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight	I	750 g USEPA TANKS Distillate fuel oil 188.00 1	4.09d no. 2 lb/lb-mol	MET Station: Selected purely for a Vapor Molecular We	Pressure Setting Hartford, Connecticus worst-case scenario.	0.03 t	psig lb/lb-mol	TANKS Flow
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight	I	750 g USEPA TANKS Distillate fuel oil 188.00 1 Vapor Pre	4.09d no. 2 b/lb-mol	MET Station: Selected purely for a Vapor Molecular We Liquid Surfac	Pressure Setting Hartford, Connecticut worst-case scenario. eight Temperature	0.03 t 130.00 TANKS	psig lb/lb-mol Output	Flow
Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January	Days 31	750 g USEPA TANKS Distillate fuel oil 188.00 1 Vapor Pro avg 0.0031	4.09d no. 2 lb/lb-mol essure max 0.0031	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13	0.03 t 130.00 TANKS standing 0.0000	lb/lb-mol Output working 0.0072	Flow 750
Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February	Days	750 g USEPA TANKS Distillate fuel oil 188.00 1 Vapor Pre avg 0.0031 0.0031	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0031	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45	Pressure Setting Hartford, Connecticut worst-case scenario. Sight to Temperature max 38.13 39.45	0.03 t 130.00 TANKS standing 0.0000 0.0000	lb/lb-mol Output working 0.0072 0.0072	Flow 750 750
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March	Days 31 28 31	750 g USEPA TANKS Distillate fuel oil 188.00 1 Vapor Pre avg 0.0031 0.0031	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0031	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13 39.45 43.83	0.03 t 130.00 TANKS standing 0.0000 0.0000	lb/lb-mol Output working 0.0072 0.0072 0.0084	Flow 750 750 750
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April	Days 31 28 31 30	750 g USEPA TANKS Distillate fuel oil 188.00 1 Vapor Pre avg 0.0031 0.0031 0.0036 0.0043	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0036 0.0043	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13 39.45 43.83 48.78	0.03 t 130.00 TANKS standing 0.0000 0.0000 0.0000	lb/lb-mol Output working 0.0072 0.0072 0.0084 0.0101	750 750 750 750 750
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May	Days 31 28 31 30 31	750 g USEPA TANKS Distillate fuel oil 188.00 1 Vapor Pre avg 0.0031 0.0031 0.0036 0.0043 0.0052	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0036 0.0043 0.0052	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13 39.45 43.83 48.78 53.58	0.03 t 130.00 TANKS standing 0.0000 0.0000 0.0000 0.0000	lb/lb-mol Output working 0.0072 0.0072 0.0084 0.0101 0.0121	750 750 750 750 750 750
Capacity (estimated) Capacity (nominal) Capacity (n	Days 31 28 31 30 31 30	750 g USEPA TANKS Distillate fuel oil 188.00 1 Vapor Pre avg 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0036 0.0043 0.0052 0.0060	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13 39.45 43.83 48.78 53.58 57.47	0.03 t 130.00 TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000	b/lb-mol Output working 0.0072 0.0072 0.0084 0.0101 0.0121 0.0139	750 750 750 750 750 750 750
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July	Days 31 28 31 30 31 30 31	750 g USEPA TANKS Distillate fuel oil 188.00 1 Vapor Pre avg 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0036 0.0043 0.0052 0.0060	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13 39.45 43.83 48.78 53.58 57.47 59.74	0.03 t 130.00 TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	b/lb-mol Output working 0.0072 0.0072 0.0084 0.0101 0.0121 0.0139	Flow 750 750 750 750 750 750 750 750 750
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August	Days 31 28 31 30 31 30 31 31	750 g USEPA TANKS Distillate fuel oil 188.00 1 Vapor Pre avg 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84	0.03 t 130.00 TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Description	Flow 750 750 750 750 750 750 750 750 750 750
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August September	Days 31 28 31 30 31 30 31 30 31 30 31 30	750 g USEPA TANKS Distillate fuel oil 188.00 l Vapor Pre avg 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0036 0.0043 0.0064 0.0063 0.0063 0.0063 0.0063	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21	0.03 t 130.00 TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Double	Flow 750 750 750 750 750 750 750 750 750 750
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August	Days 31 28 31 30 31 30 31 30 31 31 31 30 31	750 g USEPA TANKS Distillate fuel oil 188.00 1 Vapor Pre avg 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21 50.32	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84	0.03 t 130.00 TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Description	Flow 750 750 750 750 750 750 750 750 750 750
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August September	Days 31 28 31 30 31 30 31 30 31 30 31 30	750 g USEPA TANKS Distillate fuel oil 188.00 l Vapor Pre avg 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0036 0.0043 0.0064 0.0063 0.0063 0.0063 0.0063	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21	0.03 t 130.00 TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Double	Flow 750 750 750 750 750 750 750 750 750 750
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August September October	Days 31 28 31 30 31 30 31 30 31 31 31 30 31	750 g USEPA TANKS Distillate fuel oil 188.00 l Vapor Pre avg 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063 0.0055 0.0046	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0036 0.0043 0.0064 0.0063 0.0065 0.0065 0.0046	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21 50.32	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21 50.32	0.03 t 130.00 TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Documents Docu	Flow 750 750 750 750 750 750 750 750 750 750
Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August September October November	Days 31 28 31 30 31 30 31 30 31 30 31 30 31 30 31	750 g USEPA TANKS Distillate fuel oil 188.00 l Vapor Pre avg 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063 0.0055 0.0046 0.0039	4.09d no. 2 lb/lb-mol essure max 0.0031 0.0036 0.0043 0.0064 0.0063 0.0055 0.0046 0.0039	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21 50.32 45.79	Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21 50.32 45.79	0.03 t 130.00 TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Documents Docu	Flow 750 750 750 750 750 750 750 750 750 750

TABLE F-1E Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source					CROM-TK-LO02			
Service					Oil			
Capacity		1,000	gal			1,000	gal	
Temperature of Stored Liquid		49.29	°F			59.74	°F	
Vapor Pressure		0.0046	psia			0.0064	psia	
Pumping Rate		150	gal/min			150	gal/min	Ì
Fhroughput		365.00	turnover/yr					
		365,000	gal/yr			1,000	gal/hr	Ì
Standing Losses		· ·				Jul	v	Ì
8					_		hrs/month	İ
							lbs/month	Ì
		0.0000	lb/vr			0.00000	lb/hr	Ì
Working Losses	-	1.43E-05	•			2.00E-05		
Treating Besses	-	5.2013		Average	Maximum	0.0200		Maximur
	Stand	3.2013	10/ /1	0.0000 lb/hr	0.0000 tpy	0.0200	10/111	0.0000
Liquid	Work	100.00%	by weight	0.0006 lb/hr	0.0026 tpy	100.00%	by weight	0.0200
Liquid	Total	100.0076	by weight	0.0006 lb/hr		100.0076	by weight	0.0200
TOG (T 1)	Total	100.000/	1 11.		0.0026 tpy	100.000/		
TOC (Total)	\longrightarrow	100.00%	by weight	0.0006 lb/hr	0.0026 tpy	100.00%	by weight	0.0200
Methane								
Ethane	\longrightarrow	100 000/	1	0.0006.11.4	0.0027	100.0007	1	0.0200
VOC (Total)		100.00%	by weight	0.0006 lb/hr	0.0026 tpy	100.00%	by weight	0.0200
HAP (Total)								
Benzene								
Ethylbenzene								
Hexane (n-)								
Methanol								
Naphthalene								
Toluene								
Trimethylpentane (2,2,4-)								
Xylenes								
				NOTES				
Tank Characteristics:				TANKS 4.09d				
Orientation		Horizont	al Tank		Above Ground?	No	•	
Height/Length		12.00	ft		Shell/Roof Color	0		or less solar
Diameter		3.92	ft		Shell Condition	0		absorptance
Capacity (estimated)		1,083	gal		Vacuum Setting	-0.03	psig	
Capacity (nominal)		1,000	gal		Pressure Setting	0.03	psig	
2. Stored Liquid Characteristics:								
Basis	U	SEPA TANK	S 4.09d	MET Station:	Hartford, Connecticut	t		
		istillate fuel o	il no. 2	Selected purely for a	worst-case scenario.			
Material	D	isimate ruer o					lb/lb-mol	
Material Liquid Molecular Weight	E		lb/lb-mol	Vapor Molecular We		130.00		TANKS
	Days				eight	130.00 TANKS		IANKS
Liquid Molecular Weight		188.00		Vapor Molecular We	eight			Flow
Liquid Molecular Weight		188.00 Vapor P	ressure	Vapor Molecular We Liquid Surface	eight e Temperature	TANKS	Output	Flow
Liquid Molecular Weight Monthly Data January	Days	Vapor Pavg	max 0.0031	Vapor Molecular We Liquid Surface avg 38.13	e Temperature max 38.13	TANKS standing	Output working	Flow 1,000
Liquid Molecular Weight Monthly Data	Days	188.00 Vapor Pr avg 0.0031	ressure max	Vapor Molecular We Liquid Surface avg 38.13 39.45	eight e Temperature max	TANKS standing 0.0000	Output working 0.0096	Flow 1,000 1,000
Liquid Molecular Weight Monthly Data January February March	Days	188.00 Vapor Pravg 0.0031 0.0031	max 0.0031 0.0031	Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83	right e Temperature max 38.13 39.45 43.83	TANKS standing 0.0000 0.0000 0.0000	Output working 0.0096 0.0096 0.0113	Flow 1,000 1,000 1,000
Liquid Molecular Weight Monthly Data January February March April	Days 31 28 31 30	188.00 Vapor P. avg 0.0031 0.0031 0.0036 0.0043	max 0.0031 0.0031 0.0036 0.0043	Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78	right e Temperature max 38.13 39.45 43.83 48.78	TANKS standing 0.0000 0.0000 0.0000 0.0000	Output working 0.0096 0.0096 0.0113 0.0134	Flow 1,000 1,000 1,000 1,000
Liquid Molecular Weight Monthly Data January February March April May	Days	188.00 Vapor Pavg 0.0031 0.0036 0.0043 0.0052	0.0031 0.0036 0.0043 0.0052	Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58	right e Temperature max 38.13 39.45 43.83 48.78 53.58	TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000	Output working 0.0096 0.0096 0.0113 0.0134 0.0161	Flow 1,000 1,000 1,000 1,000 1,000
Liquid Molecular Weight Monthly Data January February March April May June	Days 31 28 31 30 31 30	188.00 Vapor P avg 0.0031 0.0036 0.0043 0.0052 0.0060	0.0031 0.0031 0.0036 0.0043 0.0052 0.0060	Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47	max 38.13 39.45 43.83 48.78 53.58 57.47	TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Output working 0.0096 0.0096 0.0113 0.0134 0.0161 0.0186	Flow 1,000 1,000 1,000 1,000 1,000 1,000
Liquid Molecular Weight Monthly Data January February March April May June July	Days 31 28 31 30 31 30 31	188.00 Vapor P avg 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064	max 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060	Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74	max 38.13 39.45 43.83 48.78 53.58 57.47 59.74	TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Output working 0.0096 0.0096 0.0113 0.0134 0.0161 0.0186 0.0200	Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Liquid Molecular Weight Monthly Data January February March April May June July August	Days 31 28 31 30 31 30 31 30 31	188.00 Vapor P avg 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063	max 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064	Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84	right e Temperature max 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84	TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Output working 0.0096 0.0096 0.0113 0.0134 0.0161 0.0186 0.0200 0.0194	Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Liquid Molecular Weight Monthly Data January February March April May June July August September	Days 31 28 31 30 31 30 31 30 31 30	188.00 Vapor P avg 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063 0.0055	max 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063	Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21	max 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21	TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Output working 0.0096 0.0096 0.0113 0.0134 0.0161 0.0186 0.0200 0.0194 0.0172	Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Liquid Molecular Weight Monthly Data January February March April May June July August September October	Days 31 28 31 30 31 30 31 30 31 31 31 31 31	188.00 Vapor P avg 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063 0.0055 0.0046	max 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063 0.0055	Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21 50.32	max 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21 50.32	TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Output working 0.0096 0.0096 0.0113 0.0134 0.0161 0.0186 0.0200 0.0194 0.0172	Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Liquid Molecular Weight Monthly Data January February March April May June July August September October November	Days 31 28 31 30 31 30 31 30 31 31 30 31 30 31 30	188.00 Vapor P avg 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063 0.0055 0.0046 0.0039	max 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063 0.0055 0.0046	Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21 50.32 45.79	right e Temperature max 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21 50.32 45.79	TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Output working 0.0096 0.0096 0.0113 0.0134 0.0161 0.0186 0.0200 0.0194 0.0172 0.0141 0.0121	Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Liquid Molecular Weight Monthly Data January February March April May June July August September October	Days 31 28 31 30 31 30 31 30 31 31 31 31 31	188.00 Vapor P avg 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063 0.0055 0.0046	max 0.0031 0.0031 0.0036 0.0043 0.0052 0.0060 0.0064 0.0063 0.0055	Vapor Molecular We Liquid Surface avg 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21 50.32	max 38.13 39.45 43.83 48.78 53.58 57.47 59.74 58.84 55.21 50.32	TANKS standing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Output working 0.0096 0.0096 0.0113 0.0134 0.0161 0.0186 0.0200 0.0194 0.0172	Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

TABLE F-1F Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source					CROM-TK-OW01			•
Service					Oily Water			
Capacity		1,000	gal		Í	1,000	gal	
Γemperature of Stored Liquid		58.05			-	84.96		1
Vapor Pressure		0.0064				0.0140		
Pumping Rate			gal/min	•			gal/min	1
Throughput			turnover/yr	•		150	gur IIIII	†
imoughput	-	365,000		•	-	1,000	gal/hr	†
Standing Losses		505,000	gan yi		-	Jul		†
Junding Losses	-				-		hrs/month	t
	-				-		lbs/month	t
	-	0.3740	lb/x/r		-	0.00008		1
Working Losses		1.97E-05			-	2.97E-05		1
WORKING LUSSES	-	7.1910		Average	Maximum	0.0297		Maximu
	C. 1	7.1910	10/ y1			0.0297	10/111	
114	Stand	100.000/	1	0.0000 lb/hr	0.0002 tpy	100.000/	1	0.0001
Liquid	Work	100.00%	by weight	0.0008 lb/hr	0.0036 tpy	100.00%	by weight	0.0297
70 G (T + 1)	Total	100.000/		0.0009 lb/hr	0.0038 tpy	100.000/		0.0298
FOC (Total)		100.00%	by weight	0.0009 lb/hr	0.0038 tpy	100.00%	by weight	0.0298
Methane								
Ethane								
VOC (Total)		100.00%	by weight	0.0009 lb/hr	0.0038 tpy	100.00%	by weight	0.0298
HAP (Total)								
Benzene								
Ethylbenzene								
Hexane (n-)								
Methanol								
Naphthalene								
Toluene								
Trimethylpentane (2,2,4-)								
Xylenes								
				NOTES				
. Tank Characteristics:				TANKS 4.09d				
Orientation		Horizont	al Tank		Above Ground?	Ye	S	
		12.00	ft		Shell/Roof Color	Gray/Mo	edium	or less solar
Height/Length		12.00	11				1	-1
Diameter		3.92	ft		Shell Condition	Goo	oa	absorptance
2 2			ft		Shell Condition Vacuum Setting	Goo -0.03		absorptance
Diameter		3.92	ft gal				psig	absorptance
Diameter Capacity (estimated)		3.92 1,083	ft gal		Vacuum Setting	-0.03	psig	absorptance
Diameter Capacity (estimated) Capacity (nominal)	Ţ	3.92 1,083	ft gal gal		Vacuum Setting	-0.03 0.03	psig	absorptance
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics:		3.92 1,083 1,000	ft gal gal S 4.09d il no. 2	MET Station: Selected purely for a	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario.	-0.03 0.03	psig	absorptance
Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis		3.92 1,083 1,000 JSEPA TANK Distillate fuel o	ft gal gal S 4.09d il no. 2	MET Station:	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario.	-0.03 0.03	psig	absorptance
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material		3.92 1,083 1,000 JSEPA TANK Distillate fuel o	ft gal gal S 4.09d il no. 2 lb/lb-mol	MET Station: Selected purely for a	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario.	-0.03 0.03	psig psig lb/lb-mol	TANKS
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight	I	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00	ft gal gal S 4.09d il no. 2 lb/lb-mol	MET Station: Selected purely for a Vapor Molecular We	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario.	-0.03 0.03	psig psig lb/lb-mol	
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight	I	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P	ft gal gal S 4.09d il no. 2 lb/lb-mol ressure	MET Station: Selected purely for a Vapor Molecular We Liquid Surfac	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature	-0.03 0.03 1 130.00 TANKS	psig psig Ib/lb-mol Output	TANKS Flow
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data	Days	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg	ft gal gal S 4.09d il no. 2 lb/lb-mol ressure max 0.0044	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. sight e Temperature max	-0.03 0.03 130.00 TANKS standing	psig psig Ib/Ib-mol Output working	TANKS Flow 1,000
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February	Days	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg 0.0036	ft gal gal S 4.09d il no. 2 lb/lb-mol ressure max 0.0044	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. sight e Temperature max 49.56	130.00 TANKS standing 0.0107 0.0132	psig psig lb/lb-mol Output working 0.0112 0.0123	TANKS Flow 1,000 1,000
Diameter Capacity (estimated) Capacity (nominal) Ca	Days	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg 0.0036 0.0040	ft gal gal state of the state o	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59	-0.03 0.03 130.00 TANKS standing 0.0107	psig psig lb/lb-mol Output working 0.0112	TANKS Flow 1,000 1,000 1,000
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April	Days	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg 0.0036 0.0040 0.0050 0.0063	ft gal gal gal S 4.09d il no. 2 lb/lb-mol ressure max 0.0044 0.0052 0.0068 0.0090	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04	-0.03 0.03 130.00 TANKS standing 0.0107 0.0132 0.0220	psig psig lb/lb-mol Output working 0.0112 0.0123 0.0154 0.0195	TANKS Flow 1,000 1,000 1,000 1,000
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May	Days 31 28 31 30 31	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg 0.0036 0.0040 0.0050 0.0063	ft gal gal gal S 4.09d il no. 2 lb/lb-mol ressure max 0.0044 0.0052 0.0068 0.0090 0.0113	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64	-0.03 0.03 130.00 TANKS standing 0.0107 0.0132 0.0220 0.0331 0.0471	psig psig Ib/Ib-mol Output working 0.0112 0.0123 0.0154 0.0195 0.0241	TANKS Flow 1,000 1,000 1,000 1,000 1,000
Diameter Capacity (estimated) Capacity (nominal) Ca	Days 31 28 31 30 31 30	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg 0.0036 0.0040 0.0050 0.0063 0.0078	ft gal gal gal S 4.09d il no. 2 lb/lb-mol ressure max 0.0044 0.0052 0.0068 0.0090 0.0113 0.0132	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90	-0.03 0.03 130.00 TANKS standing 0.0107 0.0132 0.0220 0.0331 0.0471 0.0539	psig psig Ib/Ib-mol Output working 0.0112 0.0154 0.0195 0.0241 0.0277	TANKS Flow 1,000 1,000 1,000 1,000 1,000 1,000
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July	Days 31 28 31 30 31 30 31	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg 0.0036 0.0040 0.0050 0.0063 0.0078 0.0090	ft gal gal gal S 4.09d il no. 2 lb/lb-mol ressure max 0.0044 0.0052 0.0068 0.0090 0.0113 0.0132 0.0140	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96	-0.03 0.03 130.00 TANKS standing 0.0107 0.0132 0.0220 0.0331 0.0471 0.0539 0.0587	psig psig lb/lb-mol Output working 0.0112 0.0154 0.0195 0.0241 0.0277 0.0297	TANKS Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Diameter Capacity (estimated) Capacity (nominal) Ca	Days 31 28 31 30 31 30 31 31	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg 0.0036 0.0040 0.0050 0.0063 0.0078 0.0090	ft gal gal gal S 4.09d il no. 2 lb/lb-mol ressure max 0.0044 0.0052 0.0068 0.0090 0.0113 0.0132 0.0140 0.0127	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63	-0.03 0.03 130.00 TANKS standing 0.0107 0.0132 0.0220 0.0331 0.0471 0.0539 0.0587 0.0499	psig psig Dutput working 0.0112 0.0154 0.0195 0.0241 0.0277 0.0297	TANKS Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Diameter Capacity (estimated) Capacity (nominal) Ca	Days 31 28 31 30 31 30 31 31 30	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg 0.0036 0.0040 0.0050 0.0063 0.0078 0.0090 0.0090	ft gal gal gal S 4.09d il no. 2 lb/lb-mol ressure max 0.0044 0.0052 0.0068 0.0090 0.0113 0.0132 0.0140 0.0127 0.0105	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85	-0.03 0.03 130.00 TANKS standing 0.0107 0.0132 0.0220 0.0331 0.0471 0.0539 0.0587 0.0499	psig psig psig lb/lb-mol Output working 0.0112 0.0154 0.0195 0.0241 0.0277 0.0297 0.0278 0.0236	TANKS Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Diameter Capacity (estimated) Capacity (nominal) Ca	Days 31 28 31 30 31 31 30 31 31 30 31	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg 0.0036 0.0040 0.0050 0.0063 0.0078 0.0090 0.0090 0.0090	ft gal gal gal state of the sta	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50 57.64	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85 66.25	-0.03 0.03 130.00 TANKS standing 0.0107 0.0132 0.0220 0.0331 0.0471 0.0539 0.0587 0.0499 0.0367 0.0253	psig psig psig Ib/lb-mol Output working 0.0112 0.0154 0.0195 0.0241 0.0277 0.0297 0.0278 0.0236 0.0187	TANKS Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Diameter Capacity (estimated) Capacity (nominal) Ca	Days 31 28 31 30 31 30 31 30 31 30 31 30 31 30 31	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg 0.0036 0.0040 0.0050 0.0063 0.0078 0.0090 0.0090 0.0096 0.0096	ft gal gal gal state of the sta	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50 57.64 51.23	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85 66.25 57.30	-0.03 0.03 130.00 TANKS standing 0.0107 0.0132 0.0220 0.0331 0.0471 0.0539 0.0587 0.0499 0.0367 0.0253 0.0136	psig psig psig lb/lb-mol Output working 0.0112 0.0154 0.0195 0.0241 0.0277 0.0297 0.0278 0.0236 0.0187 0.0147	TANKS Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Diameter Capacity (estimated) Capacity (nominal) Ca	Days 31 28 31 30 31 31 30 31 31 30 31	3.92 1,083 1,000 USEPA TANK Distillate fuel o 188.00 Vapor P avg 0.0036 0.0040 0.0050 0.0063 0.0078 0.0090 0.0090 0.0090	ft gal gal gal state of the sta	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50 57.64	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85 66.25	-0.03 0.03 130.00 TANKS standing 0.0107 0.0132 0.0220 0.0331 0.0471 0.0539 0.0587 0.0499 0.0367 0.0253	psig psig psig Ib/lb-mol Output working 0.0112 0.0154 0.0195 0.0241 0.0277 0.0297 0.0278 0.0236 0.0187	TANKS Flow 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

TABLE F-1G Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

ource	——-				CROM-TK-EC01			
Service					Coolant			
Capacity		2,790				2,790	gal	
Temperature of Stored Liquid		58.05	°F			84.96	°F	
Vapor Pressure		0.0010	psia			0.0035	psia	
Pumping Rate		150	gal/min			150	gal/min	
Γhroughput		365.00	turnover/yr					Ì
		1,018,350				2,790	gal/hr	İ
Standing Losses						Jul		İ
							hrs/month	
	-				-		lbs/month	Ì
	-	0.0721	1h/yr		-	0.00002		•
Working Lagge		1.75E-06			-	3.26E-06		•
Working Losses	⊢		0	A	Marriana	0.0091		Manimus
		1.7776	1b/yr	Average	Maximum	0.0091	1b/nr	Maximu
	Stand			0.0000 lb/hr	0.0000 tpy			0.0000
Liquid	Work	100.00%	by weight	0.0002 lb/hr	0.0009 tpy	100.00%	by weight	0.0091
	Total			0.0002 lb/hr	0.0009 tpy			0.0091
ГОС (Total)		100.00%	by weight	0.0002 lb/hr	0.0009 tpy	100.00%	by weight	0.0091
Methane								
Ethane			-				-	
VOC (Total)		100.00%	by weight	0.0002 lb/hr	0.0009 tpy	100.00%	by weight	0.0091
HAP (Total)			by weight	0.0002 lb/hr	0.0009 tpy		by weight	0.0091
Benzene			. 6		1.7		, 6	
Ethylbenzene								
Hexane (n-)	-							
Methanol								
Naphthalene								
1								
Toluene								
Trimethylpentane (2,2,4-)								
Xylenes								
m total				NOTES				
1. Tank Characteristics:				TANKS 4.09d				
Orientation		Vertical Fixed			Above Ground?	Ye		ı
Height/Length		19.00	ft		Shell/Roof Color	Gray/M		or less solar
8					01 11 0 11 1	_	1	absorptance
Diameter		5.00	ft		Shell Condition	Goo	od	
2 2		5.00 2,791			Vacuum Setting	-0.03		
Diameter			gal			-0.03	psig	
Diameter Capacity (estimated) Capacity (nominal)		2,791	gal		Vacuum Setting		psig	
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics:	Ī	2,791 2,790	gal gal		Vacuum Setting Pressure Setting	-0.03 0.03	psig	
Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis		2,791 2,790 JSEPA TANK	gal gal S 4.09d	MET Station:	Vacuum Setting Pressure Setting Hartford, Connecticut	-0.03 0.03	psig	
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material		2,791 2,790 USEPA TANKS	gal gal S 4.09d ıl	MET Station: Selected purely for a	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario.	-0.03 0.03	psig psig	
Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight	P	2,791 2,790 USEPA TANKS Propylene glyco 76.11	gal gal S 4.09d l lb/lb-mol	MET Station: Selected purely for a Vapor Molecular We	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario.	-0.03 0.03	psig psig lb/lb-mol	
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material		2,791 2,790 USEPA TANKS Propylene glyco 76.11 Vapor P	gal gal 5 4.09d l lb/lb-mol ressure	MET Station: Selected purely for a Vapor Molecular Wo Liquid Surfac	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature	-0.03 0.03 76.11 TANKS	psig psig Ib/lb-mol Output	TANKS
Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data	Days _	2,791 2,790 USEPA TANKS Propylene glyco 76.11 Vapor Pravg	gal gal 3 4.09d l lb/lb-mol essure max	MET Station: Selected purely for a Vapor Molecular We Liquid Surfac- avg	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max	-0.03 0.03 76.11 TANKS standing	psig psig lb/lb-mol Output working	TANKS Flow
Diameter Capacity (estimated) Capacity (nominal) Ca	Days	2,791 2,790 USEPA TANK: Propylene glycc 76.11 Vapor Payer avg 0.0004	gal gal 5 4.09d ol lb/lb-mol ressure max 0.0005	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56	-0.03 0.03 76.11 TANKS standing 0.0013	psig psig lb/lb-mol Output working 0.0018	TANKS Flow 2,790
Diameter Capacity (estimated) Capacity (nominal) Ca	Days	2,791 2,790 USEPA TANK: Propylene glycc 76.11 Vapor Pavg 0.0004 0.0004	gal gal 5 4.09d ol lb/lb-mol ressure max 0.0005 0.0007	MET Station: Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59	-0.03 0.03 76.11 TANKS standing 0.0013 0.0017	psig psig lb/lb-mol Output working 0.0018 0.0022	TANKS Flow 2,790 2,790
Diameter Capacity (estimated) Capacity (nominal) Ca	Days 31 28 31	2,791 2,790 USEPA TANKS Propylene glycc 76.11 Vapor Pavg 0.0004 0.0004	gal gal 5 4.09d ol lb/lb-mol ressure max 0.0005 0.0007	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23	76.11 TANKS standing 0.0013 0.0033	psig psig lb/lb-mol Output working 0.0018 0.0022 0.0031	TANKS Flow 2,790 2,790 2,790
Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April	Days 31 28 31 30	2,791 2,790 USEPA TANK: Propylene glycc 76.11 Vapor Pavg 0.0004 0.0004 0.0006 0.0009	gal gal S 4.09d ol lb/lb-mol ressure max 0.0005 0.0007 0.0010	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04	76.11 TANKS standing 0.0013 0.0033 0.0057	psig psig lb/lb-mol Output working 0.0018 0.0022 0.0031 0.0045	TANKS Flow 2,790 2,790 2,790 2,790
Diameter Capacity (estimated) Capacity (nominal) Ca	Days 31 28 31 30 31	2,791 2,790 USEPA TANKS Propylene glycc 76.11 Vapor Pavg 0.0004 0.0004 0.0006 0.0009	gal gal 8 4.09d ol lb/lb-mol ressure max 0.0005 0.0007 0.0010 0.0016	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64	76.11 TANKS standing 0.0013 0.0033 0.0057 0.0092	psig psig lb/lb-mol Output working 0.0018 0.0022 0.0031 0.0045 0.0063	TANKS Flow 2,790 2,790 2,790 2,790 2,790 2,790
Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April	Days 31 28 31 30 31 30	2,791 2,790 USEPA TANK: Propylene glycc 76.11 Vapor Pavg 0.0004 0.0004 0.0006 0.0009	gal gal S 4.09d ol lb/lb-mol ressure max 0.0005 0.0007 0.0010	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04	76.11 TANKS standing 0.0013 0.0033 0.0057	psig psig lb/lb-mol Output working 0.0018 0.0022 0.0031 0.0045	TANKS Flow 2,790 2,790 2,790 2,790 2,790 2,790 2,790
Diameter Capacity (estimated) Capacity (nominal) Ca	Days 31 28 31 30 31	2,791 2,790 USEPA TANKS Propylene glycc 76.11 Vapor Pavg 0.0004 0.0004 0.0006 0.0009	gal gal 8 4.09d ol lb/lb-mol ressure max 0.0005 0.0007 0.0010 0.0016	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64	76.11 TANKS standing 0.0013 0.0033 0.0057 0.0092	psig psig lb/lb-mol Output working 0.0018 0.0022 0.0031 0.0045 0.0063	TANKS Flow 2,790 2,790 2,790 2,790 2,790 2,790
Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June	Days 31 28 31 30 31 30 31	2,791 2,790 USEPA TANKS Propylene glycc 76.11 Vapor Pavg 0.0004 0.0004 0.0006 0.0009 0.0012	gal gal 8 4.09d ol lb/lb-mol ressure max 0.0005 0.0007 0.0010 0.0016 0.0024	MET Station: Selected purely for a Vapor Molecular Wo Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90	76.11 TANKS standing 0.0013 0.0033 0.0057 0.0092 0.0118	psig psig lb/lb-mol Output working 0.0018 0.0022 0.0031 0.0045 0.0063	TANKS Flow 2,790 2,790 2,790 2,790 2,790 2,790 2,790
Diameter Capacity (estimated) Capacity (nominal) Ca	Days 31 28 31 30 31 30 31 31	2,791 2,790 USEPA TANKS Propylene glycc 76.11 Vapor Pravg 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018	gal gal s 4.09d ol lb/lb-mol ressure max 0.0005 0.0007 0.0010 0.0016 0.0024 0.0031 0.0035	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63	76.11 TANKS standing 0.0013 0.0057 0.0092 0.0118 0.0134 0.0109	psig psig lb/lb-mol Output working 0.0018 0.0022 0.0031 0.0045 0.0063 0.0081 0.0091	TANKS Flow 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790
Diameter Capacity (estimated) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (Nominal) Ca	Days 31 28 31 30 31 30 31 30 31 30 31 30	2,791 2,790 USEPA TANKS Propylene glyco 76.11 Vapor Pravg 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018 0.0016	gal gal s 4.09d ol lb/lb-mol ressure max 0.0005 0.0007 0.0010 0.0016 0.0024 0.0031 0.0035 0.0029	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85	76.11 TANKS standing 0.0013 0.0057 0.0092 0.0118 0.0134 0.0109 0.0071	psig psig psig lb/lb-mol Output working 0.0018 0.0022 0.0031 0.0045 0.0063 0.0081 0.0091 0.0081	TANKS Flow 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790
Diameter Capacity (estimated) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (Nominal) Ca	Days 31 28 31 30 31 30 31 30 31 31 31 30 31	2,791 2,790 USEPA TANKS Propylene glyco 76.11 Vapor Pravg 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018 0.0016 0.0012	gal gal gal 8 4.09d ol lb/lb-mol ressure max 0.0005 0.0007 0.0010 0.0016 0.0024 0.0031 0.0029 0.0029	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50 57.64	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85 66.25	76.11 TANKS standing 0.0013 0.0057 0.0092 0.0118 0.0134 0.0109 0.0071 0.0042	psig psig psig lb/lb-mol Output working 0.0018 0.0022 0.0031 0.0045 0.0063 0.0081 0.0081 0.0061 0.0061	TANKS Flow 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790
Diameter Capacity (estimated) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (Nominal) Ca	Days 31 28 31 30 31 30 31 30 31 30 31 30 31 30	2,791 2,790 USEPA TANKS Propylene glyco 76.11 Vapor Pravg 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018 0.0016 0.0012 0.0008	gal gal gal 8 4.09d ol lb/lb-mol ressure max 0.0005 0.0007 0.0010 0.0024 0.0031 0.0035 0.0029 0.0021 0.0013	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50 57.64 51.23	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85 66.25 57.30	76.11 TANKS standing 0.0013 0.0057 0.0092 0.0118 0.0134 0.0109 0.0071 0.0042 0.0020	psig psig psig lb/lb-mol Output working 0.0018 0.0022 0.0031 0.0045 0.0063 0.0081 0.0081 0.0061 0.00642 0.0042	TANKS Flow 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790
Diameter Capacity (estimated) Capacity (nominal) Ca	Days 31 28 31 30 31 30 31 30 31 31 31 30 31	2,791 2,790 USEPA TANKS Propylene glyco 76.11 Vapor Pravg 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018 0.0016 0.0012	gal gal gal 8 4.09d ol lb/lb-mol ressure max 0.0005 0.0007 0.0010 0.0016 0.0024 0.0031 0.0029 0.0029	MET Station: Selected purely for a Vapor Molecular We Liquid Surface avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50 57.64	Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85 66.25	76.11 TANKS standing 0.0013 0.0057 0.0092 0.0118 0.0134 0.0109 0.0071 0.0042	psig psig psig lb/lb-mol Output working 0.0018 0.0022 0.0031 0.0045 0.0063 0.0081 0.0081 0.0061 0.0061	TANKS Flow 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790 2,790

TABLE F-1H Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source					CROM-TK-EC02			
Service					Coolant			
Capacity		350	gal			350	gal	
Temperature of Stored Liquid		58.05	°F			84.96	°F	
Vapor Pressure		0.0010	psia			0.0035	psia	
Pumping Rate		150	gal/min			150	gal/min	
Throughput			turnover/yr		-		<u> </u>	
8 1		127,750			_	350	gal/hr	
Standing Losses		. , ,	8 7		_	Jul		
Sumumg Besses	-				-		hrs/month	
					-		lbs/month	
		0.0090	lh/vr		-	0.00000		
Working Losses		1.75E-06	•		-	3.26E-06		
Working Losses	-	0.2230		Average	Maximum	0.0011		Maximu
	Stond	0.2230	10/ y1			0.0011	10/111	
i invid	Stand	100.000/	by weight	0.0000 lb/hr	0.0000 tpy	100.000/	her resident	0.0000
Liquid	Work Total	100.00%	by weight	0.0000 lb/hr 0.0000 lb/hr	0.0001 tpy 0.0001 tpy	100.00%	by weight	0.0011
TOG (T 1)	1 otai	100.000/	1 11.			100.000/	1 11.	0.0011
FOC (Total)		100.00%	by weight	0.0000 lb/hr	0.0001 tpy	100.00%	by weight	0.0011
Methane								
Ethane								
VOC (Total)			by weight	0.0000 lb/hr	0.0001 tpy		by weight	0.0011
HAP (Total)		100.00%	by weight	0.0000 lb/hr	0.0001 tpy	100.00%	by weight	0.0011
Benzene								
Ethylbenzene								
Hexane (n-)								
Methanol								
Naphthalene								
Toluene								
Trimethylpentane (2,2,4-)								
Xylenes								
				NOTES				
. Tank Characteristics:				TANKS 4.09d				
Orientation		Vertical Fixed	l Roof Tank		Above Ground?	Ye	c	
							3	
Height/Length		15.00			Shell/Roof Color	Gray/Mo		or less solar
		15.00 2.00	ft		Shell/Roof Color Shell Condition	Gray/Mo Goo	edium	
Height/Length Diameter		2.00	ft ft		Shell Condition	Goo	edium od	or less solar absorptance
Height/Length Diameter Capacity (estimated)		2.00 353	ft ft gal		Shell Condition Vacuum Setting	Goo -0.03	edium od psig	
Height/Length Diameter Capacity (estimated) Capacity (nominal)		2.00	ft ft gal		Shell Condition	Goo	edium od psig	
Height/Length Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics:	Ī	2.00 353 350	ft ft gal gal	MET Station:	Shell Condition Vacuum Setting Pressure Setting	God -0.03 0.03	edium od psig	
Height/Length Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis		2.00 353 350 USEPA TANKS	ft ft gal gal gal	MET Station: Selected nursely for a	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut	God -0.03 0.03	edium od psig	
Height/Length Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material		2.00 353 350 USEPA TANKS	ft ft gal gal S 4.09d ol	Selected purely for a	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario.	Goc -0.03 0.03	edium od psig psig	
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight	F	2.00 353 350 USEPA TANKS Propylene glyco 76.11	ft ft gal gal S 4.09d ol lb/lb-mol	Selected purely for a Vapor Molecular We	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario.	Goc -0.03 0.03 t	edium od psig psig	absorptance
Height/Length Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material		2.00 353 350 USEPA TANK Propylene glycc 76.11 Vapor P	ft ft gal gal S 4.09d ol lb/lb-mol ressure	Selected purely for a Vapor Molecular Wo Liquid Surfac	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature	Goc -0.03 0.03 t TANKS	edium od psig psig lb/lb-mol Output	absorptance TANKS
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data	Days	2.00 353 350 USEPA TANK: Propylene glycc 76.11 Vapor Prayer avg	ft ft gal gal S 4.09d ol lb/lb-mol ressure max	Selected purely for a Vapor Molecular Wo Liquid Surfac avg	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max	Goc -0.03 0.03 t TANKS standing	edium od psig psig lb/lb-mol Output working	absorptance TANKS Flow
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January	Days	2.00 353 350 USEPA TANK Propylene glycc 76.11 Vapor Pravg 0.0004	ft ft gal gal gal S 4.09d ol lb/lb-mol ressure max 0.0005	Selected purely for a Vapor Molecular We Liquid Surfac avg 43.60	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56	Goc -0.03 0.03 t TANKS standing 0.0002	edium od psig psig lb/lb-mol Output working 0.0002	TANKS Flow 350
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February	Days	2.00 353 350 USEPA TANK: Propylene glycc 76.11 Vapor Pavg 0.0004 0.0004	ft ft gal gal S 4.09d ol Ib/Ib-mol ressure max 0.0005 0.0007	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59	Goc -0.03 0.03 t TANKS standing 0.0002 0.0002	edium od psig psig lb/lb-mol Output working 0.0002 0.0003	TANKS Flow 350 350
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March	Days	2.00 353 350 USEPA TANK: Propylene glycc 76.11 Vapor Pavg 0.0004 0.0004	ft ft gal gal S 4.09d ol Ib/Ib-mol ressure max 0.0005 0.0007	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32 52.34	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23	76.11 TANKS standing 0.0002 0.0002 0.0004	edium od psig psig lb/lb-mol Output working 0.0002 0.0003 0.0004	TANKS Flow 350 350 350
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April	Days 31 28 31 30	2.00 353 350 USEPA TANK: Propylene glycc 76.11 Vapor Pavg 0.0004 0.0004 0.0006 0.0009	ft ft gal gal S 4.09d ol Ib/Ib-mol ressure max 0.0005 0.0007 0.0010	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32 52.34 58.99	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04	76.11 TANKS standing 0.0002 0.0002 0.0004 0.0007	edium od psig psig lb/lb-mol Output working 0.0002 0.0003 0.0004 0.0006	TANKS Flow 350 350 350 350
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May	Days 31 28 31 30 31	2.00 353 350 USEPA TANK: Propylene glycc 76.11 Vapor Pavg 0.0004 0.0004 0.0006 0.0009	ft ft gal gal S 4.09d ol Ib/Ib-mol ressure max 0.0005 0.0007 0.0010 0.0016	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32 52.34 58.99 65.12	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64	76.11 TANKS standing 0.0002 0.0004 0.0007 0.0011	edium od psig psig lb/lb-mol Output working 0.0002 0.0003 0.0004 0.0006 0.0008	TANKS Flow 350 350 350 350 350
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (Nominal) Capacit	Days 31 28 31 30 31 30	2.00 353 350 USEPA TANK: Propylene glycc 76.11 Vapor Pravg 0.0004 0.0004 0.0006 0.0009 0.0012	ft ft gal gal S 4.09d ol Ib/Ib-mol ressure max 0.0005 0.0007 0.0010 0.0016 0.0024	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32 52.34 58.99 65.12 69.82	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90	76.11 TANKS standing 0.0002 0.0004 0.0007 0.0011 0.0015	edium od psig psig lb/lb-mol Output working 0.0002 0.0003 0.0004 0.0006 0.0008 0.0010	TANKS Flow 350 350 350 350 350 350
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (Naracity) Capacity (N	Days 31 28 31 30 31 30 31	2.00 353 350 USEPA TANK: Propylene glycc 76.11 Vapor Pravg 0.0004 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018	ft ft gal gal gal s 4.09d ol lb/lb-mol ressure max 0.0005 0.0010 0.0016 0.0024 0.0031 0.0035	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96	76.11 TANKS standing 0.0002 0.0004 0.0007 0.0011 0.0015 0.0017	edium od psig psig lb/lb-mol Output working 0.0002 0.0003 0.0004 0.0006 0.0008 0.0010 0.0011	TANKS Flow 350 350 350 350 350 350 350
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacit	Days 31 28 31 30 31 30 31 31	2.00 353 350 USEPA TANKS Propylene glycc 76.11 Vapor Pravg 0.0004 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018	ft ft gal gal gal s 4.09d ol lb/lb-mol ressure max 0.0005 0.0010 0.0016 0.0024 0.0031 0.0035 0.0029	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63	76.11 TANKS standing 0.0002 0.0004 0.0007 0.0011 0.0015 0.0014	edium od psig psig lb/lb-mol Output working 0.0002 0.0004 0.0006 0.0008 0.0010 0.0011	TANKS Flow 350 350 350 350 350 350 350 350
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacit	Days 31 28 31 30 31 30 31 31 30	2.00 353 350 USEPA TANKS Propylene glycc 76.11 Vapor Pavg 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018 0.0016	ft ft gal gal gal s 4.09d ol lb/lb-mol ressure max 0.0005 0.0010 0.0016 0.0024 0.0031 0.0029 0.0021	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85	76.11 TANKS standing 0.0002 0.0004 0.0007 0.0011 0.0015 0.0014 0.0009	edium od psig psig lb/lb-mol Output working 0.0002 0.0003 0.0004 0.0006 0.0008 0.0010 0.0011 0.0010 0.0008	TANKS Flow 350 350 350 350 350 350 350 350 350 35
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (Naracteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August	Days 31 28 31 30 31 30 31 30 31 31 31 30 31	2.00 353 350 USEPA TANKS Propylene glycc 76.11 Vapor Pavg 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018 0.0016 0.0012 0.00012 0.00018	ft ft gal gal gal st. 4.09d ol lb/lb-mol ressure max 0.0005 0.0010 0.0016 0.0024 0.0031 0.0029 0.0021 0.0013	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50 57.64	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85 66.25	76.11 TANKS standing 0.0002 0.0004 0.0007 0.0011 0.0015 0.0014 0.0009 0.0005	edium od psig psig lb/lb-mol Output working 0.0002 0.0004 0.0006 0.0008 0.0010 0.0011 0.0010 0.0008 0.0008	TANKS Flow 350 350 350 350 350 350 350 350 350 35
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (Nominal) Capacit	Days 31 28 31 30 31 30 31 30 31 30 31 30 31 30 31 30	2.00 353 350 USEPA TANKS Propylene glycc 76.11 Vapor Pavg 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018 0.0016	ft ft gal gal gal s 4.09d ol lb/lb-mol ressure max 0.0005 0.0010 0.0016 0.0024 0.0031 0.0029 0.0021	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85	76.11 TANKS standing 0.0002 0.0004 0.0007 0.0011 0.0015 0.0014 0.0009	edium od psig psig lb/lb-mol Output working 0.0002 0.0003 0.0004 0.0006 0.0008 0.0010 0.0011 0.0010 0.0008	TANKS Flow 350 350 350 350 350 350 350 350 350 35
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (nominal) Capacity (Nominal) Capacit	Days 31 28 31 30 31 30 31 30 31 31 31 30 31	2.00 353 350 USEPA TANKS Propylene glycc 76.11 Vapor Pavg 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018 0.0016 0.0012 0.00012 0.00018	ft ft gal gal gal st. 4.09d ol lb/lb-mol ressure max 0.0005 0.0010 0.0016 0.0024 0.0031 0.0029 0.0021 0.0013	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50 57.64	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85 66.25	76.11 TANKS standing 0.0002 0.0004 0.0007 0.0011 0.0015 0.0014 0.0009 0.0005	edium od psig psig lb/lb-mol Output working 0.0002 0.0004 0.0006 0.0008 0.0010 0.0011 0.0010 0.0008 0.0008	TANKS Flow 350 350 350 350 350 350 350 350 350 35
Height/Length Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August September October November	Days 31 28 31 30 31 30 31 30 31 30 31 30 31 30 31 30	2.00 353 350 USEPA TANKS Propylene glyco 76.11 Vapor Pavg 0.0004 0.0006 0.0009 0.0012 0.0016 0.0018 0.0016 0.00012 0.0008	ft ft gal gal gal standard gal gal standard	Selected purely for a Vapor Molecular Wo Liquid Surfac avg 43.60 46.32 52.34 58.99 65.12 69.82 72.01 69.87 64.50 57.64 51.23 45.14	Shell Condition Vacuum Setting Pressure Setting Hartford, Connecticut worst-case scenario. eight e Temperature max 49.56 53.59 61.23 70.04 77.64 82.90 84.96 81.63 74.85 66.25 57.30	76.11 TANKS standing 0.0002 0.0004 0.0007 0.0011 0.0015 0.0014 0.0009 0.0005 0.0002	edium od psig psig Ib/Ib-mol Output working 0.0002 0.0004 0.0006 0.0011 0.0011 0.0010 0.0008 0.0005 0.0005 0.0004	TANKS Flow 350 350 350 350 350 350 350 350 350 35

TABLE E-0a(i) Flash Analysis Summary of Laboratory Analysis

	FEED		VAPOR	LIQUID
	Pressurized L	iguid	Flash Gas	Residual Liquid
Pressure	575.000 psig	2	0.034 psig	0.034 psig
	589.696 psia		14.730 psia	14.730 psia
Temperature	72 °F		60 °F	60 °F
API Gravity at 60°F	73.960 n.d.		788.526 n.d.	61.227 n.d.
Specific Gravity at 60°F	0.6887 n.d.	(water)	0.1538 n.d. (water)	0.7342 n.d. (water)
	3.3880 n.d.	(air)	0.9301 n.d. (air)	4.4320 n.d. (air)
Molecular Weight	98.125 lb/ll	b-mol	26.938 lb/lb-mol	128.362 lb/lb-mol
Density at 60°F and 14.730 psia	5.747 lb/g	gal	1.283 lb/gal	6.126 lb/gal
	0.2593 lb/fi	t ³	0.0712 lb/ft^3	0.3392 lb/ft ³
	22.1622 ft ³ /g	gal	18.0282 ft ³ /gal	18.0610 ft ³ /gal
	930.8120 ft ³ /b	obl	757.1853 ft ³ /bbl	758.5600 ft ³ /bbl
	378.4123 ft ³ /l	b-mol	378.4123 ft ³ /lb-mol	378.4123 ft ³ /lb-mol
	17.0747 gal/		20.9900 gal/lb-mol	20.9520 gal/lb-mol
	2.4598 lb-n	nol/bbl	2.0010 lb-mol/bbl	2.0046 lb-mol/bbl
Density at 68°F and 14.696 psia	947.3299 scf/		770.6220 scf/bbl	772.0211 scf/bbl
	385.1275 scf/	lb-mol	385.1275 scf/lb-mol	385.1275 scf/lb-mol
	2.4598 lb-n	nol/bbl	2.0010 lb-mol/bbl	2.0046 lb-mol/bbl
Vapor to Liquid Mole Ratio (V/L)			0.4249 n.d. (lb-moly	$_{ m VAPOR}/{ m lb ext{-}mol}_{ m LIQUID})$
Mole Balance	1.0000 bbl		0.3666 bbl	0.8612 bbl
	2.4598 lb-n	nol	0.7335 lb-mol	1.7263 lb-mol
	947.3299 scf		282.4903 scf	664.8396 scf
Flash Factor (FF)			$328.0318 \text{ scf}_{VAPOR}/bbl$	LIQUID
		NOTES		
1. Sample Data:	Location:	Atlanta,	TX	
	Date:	04/15/	09	
	Time:	Not Reco	orded	
2. Reference Conditions:		SPL		andard
	T =	60 °I	F 6	58 °F
	P =	14.730 ps	sia 14.69	6 psia
	Water	8.344 lb	o/gal 8.33	8 lb/gal
	Air	0.0765 lb	0.075	2 lb/ft ³
3. $V + L = F \Rightarrow F = (1 + V/L)L$ {Over	erall Mole Balance}.			

TABLE E-0a(ii) Flash Analysis Extrapolation of Specie Mole Percentages

Carbon Finoles 3									uid Dump Flash		
Number Oct Sept							Liquid		Calculated		
Name	Y	· · ·	GD.	- I	l m	11.15				=	
Name				Formula	Type	HAP	(mol _{i-F} /mol _F)		(mol _{i-F} /mol _F)	(mol _{i-V} /mol _V)	(mol _{i-L} /mol _L)
Methods	Nitrogen	1				0					0.000%
Elbert		3									0.038%
Section Color Co		2									
Rome (c)		5									0.838%
Ferring (s)	1	6									0.849%
Februaries Part Post Part Post P		,									1.391%
Direct D											2.543%
	()	,	Heyanes								0.227%
Cyclopennines	• \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										0.000%
Maily personne (2-)	• \ \ \ /				VOC	0	0.000%	0.000%	0.000%		0.000%
House (a)											1.586%
Disarchipsychates (2-2) 16 Repuises 097116 VOC 0 0.31196 0.3	• • •										1.187%
Marging (September 1) Inglanes 17 In		+									0.430%
Directhylepricatuse (2.4)											1.566%
Descriptoperation (3-3-)						0					0.177%
Dimethylepenane (3.3-)	•					-					0.000%
Cyclobroxime											2.366%
Methylex-learner (2.3-)	• • • • • • • • • • • • • • • • • • • •					·					1.528%
Dimethylepotenesis (1.3-) 24 Hydraus COPH16 VOC 0 0.00098 0.	·	23	Heptanes								3.166%
Methylecyclopentame (1,6-2)	• •	24	Heptanes								0.000%
Dimmbly/sychopentame (1.4-3) 27 Heptunes C07114 VOC 0 0.167% 0.167% 0.163% 0.017% 0.225% 0.025% 0.035% 0.045% 0.005%	, ,										0.833%
Damethykyclopename (1,6-2) 28 Heptanes C97114 VOC 0											3.286%
Ethylpentane (1,1-2)											0.223%
Trimethylepatine (2,2,4)	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										0.040%
Hispature (a) 32 Hispatures 0.77116 VOC 0 3.74276 3.74276 3.74276 0.38376 5.16 Methyleyclophorane (1.1.3) 34 Octames 0.08118 VOC 0 0.32076 0.22576 0.02576 0.00976 0.01876 0.00976						Ů					0.307%
Methyleycheksane	• • • • • • • • • • • • • • • • • • • •										0.029%
Timethyleyclopentume (1,1,3)	1 /										5.169% 4.646%
Dimsthylecame (2.2-) 35 Octames CORFITA VOC. 0 0.095% 0.095% 0.095% 0.095% 0.095% 0.095% 0.095% 0.005% 0.005% 0.005% 0.005% 0.005% 0.005% 0.005% 0.000%	, ,										0.317%
Dimethylbexane (2.5-) 37 Octanes COSH18 VOC 0 0.000%											0.134%
Dimethylbexane (2.4) 38 (Octanes C08H18 VOC 0 0.143% 0.143% 0.143% 0.000%											1.193%
Ethylescolpentane 39 Octunes C07H14 VOC 0 0.464% 0.464% 0.464% 0.019% 0.051 0.001% 0.051 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 0.000% 0.0	• • •										0.000%
Trimethylpentane (2,2.3-)											0.201%
Trimethykycyclopentame (1,1-2,e4-)											0.039%
Timethylpectopentame (1,1-2,c-3-)	Trimethylcyclopentane (1,t-2,c-4-)	41	Octanes			0		0.000%		0.000%	0.000%
Trimethylpentane (2,3-4)											0.000%
Dimethylhexane (2,3-)						_					0.000%
Tolucan	• • • • • • • • • • • • • • • • • • • •										0.000%
Dimethylhexane (3,4-)	/										6.255%
Methylheptane (2-)						0					0.522%
Methylheptane (4-)											4.933%
Dimethylhexane (3,4-)											0.000%
Methylfieptane (3-)	• • •										0.000%
Trimethyleyclopentane (1,e-2,t-4-)	/										0.585%
Dimethyleyclohexane (1,c-3-) 55 Octanes C08H16 VOC 0 0.170% 0.170% 0.170% 0.007% 0.23	Ethylhexane (3-)					0					0.156%
Trimethyleyclopentane (1,e-2,t-3-) 56 Octanes CO8H16 VOC 0 0.170% 0.170% 0.170% 0.007% 0.23											0.039%
Dimethyleyclohexane (1,t-4-)											0.239%
Trimethylhexane (2,2,5-)	, , , , , , , , , , , , , , , , , , ,										0.239%
Dimethylcyclohexane (1,1-)											0.000%
Ethylcyclopentane (1-methyl-c-3-) 61 Octanes C08H16 VOC 0 0.000% 0.000% 0.000% 0.000% Ethylcyclopentane (1-methyl-t-2-) 62 Octanes C08H16 VOC 0 0.000%	· · · · · · · · · · · · · · · · · · ·										0.000%
Ethylcyclopentane (1-methyl-t-2-) 62 Octanes C08H16 VOC 0 0.000% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000%</td>											0.000%
Trimethylhexane (2,2,4-)											0.000%
Ethylcyclopentane (1-methyl-t-1-) 64 Octanes C08H16 VOC 0 0.000% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000%</td>											0.000%
Octane (n-) 66 Octanes C08H18 VOC 0 4.372% 4.372% 4.372% 0.180% 6.15 Trimethylhexane (2,4,4-) 67 Nonanes C09H20 VOC 0 0.190% 0.190% 0.190% 0.003% 0.266 Tetramethylpentane (2,2,4,4-) 68 Nonanes C09H20 VOC 0 0.000% <td> /</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000%</td>	/										0.000%
Trimethylhexane (2,4,4-) 67 Nonanes C09H20 VOC 0 0.190% 0.190% 0.003% 0.26 Tetramethylpentane (2,2,4,4-) 68 Nonanes C09H20 VOC 0 0.000% 0.001% 0.07 0.07 0.000% 0.0053% 0.053% 0.053% 0.053% 0.053% 0.053% 0.053% 0.053% 0.001% 0.07	Cycloheptane	65	Octanes								0.000%
Tetramethylpentane (2,2,4,4-) 68 Nonanes C09H20 VOC 0 0.000% 0.00											6.153%
Dimethylcyclohexane (1,t-3-) 69 Nonanes C08H16 VOC 0 0.053% 0.053% 0.053% 0.001% 0.07	• • • • • • • • • • • • • • • • • • • •					·					0.269%
Dimethylcyclohexane (1,c-4-) 70 Nonanes C08H16 VOC 0 0.053% 0.053% 0.053% 0.001% 0.07.											0.000%
Trimethylcyclopentane (1,c-2,c-3-) 71 Nonanes C08H16 VOC 0 0.053% 0.053% 0.001% 0.07 Propylcyclopentane (i-) 72 Nonanes C08H16 VOC 0 0.348% 0.348% 0.348% 0.006% 0.006% 0.49 Trimethylhexane (2,3,5-) 73 Nonanes C09H20 VOC 0 0.006% 0.006% 0.006% 0.000%		70	Nonanes				0.053%				0.075%
Trimethylhexane (2,3,5-) 73 Nonanes C09H20 VOC 0 0.006% 0.006% 0.006% 0.000% 0.000% Dimethylheptane (2,2-) 74 Nonanes C09H20 VOC 0 0.000% 0.000% 0.000% 0.000% 0.000% Dimethylheptane (2,4-) 75 Nonanes C09H20 VOC 0 0.158% 0.158% 0.158% 0.003% 0.22 Methylcyclopentane (1-ethyl-c-2-) 76 Nonanes C08H16 VOC 0 0.181% 0.181% 0.181% 0.003% 0.25 Trimethylhexane (2,2,3-) 77 Nonanes C09H20 VOC 0 0.000% 0.00	Trimethylcyclopentane (1,c-2,c-3-)	71	Nonanes	C08H16	VOC		0.053%	0.053%	0.053%	0.001%	0.075%
Dimethylheptane (2,2-) 74 Nonanes C09H20 VOC 0 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.003% 0.224 Methylcyclopentane (1-ethyl-c-2-) 76 Nonanes C08H16 VOC 0 0.181% 0.181% 0.181% 0.003% 0.25 Trimethylhexane (2,2,3-) 77 Nonanes C09H20 VOC 0 0.000%											0.493%
Dimethylheptane (2,4-) 75 Nonanes C09H20 VOC 0 0.158% 0.158% 0.158% 0.003% 0.224 Methylcyclopentane (1-ethyl-c-2-) 76 Nonanes C08H16 VOC 0 0.181% 0.181% 0.181% 0.003% 0.25 Trimethylhexane (2,2,3-) 77 Nonanes C09H20 VOC 0 0.000%	/										0.009%
Methylcyclopentane (1-ethyl-c-2-) 76 Nonanes C08H16 VOC 0 0.181% 0.181% 0.181% 0.003% 0.25 Trimethylhexane (2,2,3-) 77 Nonanes C09H20 VOC 0 0.000% 0	• • ` ` /										0.000%
Trimethylhexane (2,2,3-) 77 Nonanes C09H20 VOC 0 0.000%	<u> </u>										0.257%
Dimethylcyclohexane (1,c-2-) 78 Nonanes C08H16 VOC 0 0.510% 0.510% 0.510% 0.009% 0.72 Dimethylheptane (2,6-) 79 Nonanes C09H20 VOC 0 0.112% 0.112% 0.112% 0.002% 0.159	Trimethylhexane (2,2,3-)	77	Nonanes	C09H20	VOC		0.000%	0.000%	0.000%	0.000%	0.000%
		78	Nonanes								0.723%
Propylcyclopentane (n-) 80 Nonanes C08H16 VOC 0 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%											0.159% 0.000%

TABLE E-0a(ii) Flash Analysis Extrapolation of Specie Mole Percentages

Liquid Dump Flash Data

								uid Dump Flash		
						Liquid	Input Scaled	Calculated	Out Vapor	put Liquid
	Component					Z _i	Scarca	Zi	y _i	X _i
Name (i)	GC Postition	SPL Class	Formula	Type	HAP	$(\text{mol}_{\text{i-F}}/\text{mol}_{\text{F}})$		$(\text{mol}_{i\text{-}F}/\text{mol}_F)$	$(\text{mol}_{i-V}/\text{mol}_{V})$	$(\text{mol}_{\text{i-L}}/\text{mol}_{\text{L}})$
Trimethylcyclohexane (1,c-3,c-5-)	81	Nonanes	C09H18	VOC	0	0.000%	0.000%	0.000%	0.000%	0.0009
Ethylcyclohexane		Nonanes	C08H16	VOC	0	1.365%	1.365%	1.365%	0.023%	1.935%
Dimethylheptane (2,5-)		Nonanes	C09H20	VOC	0	0.067%	0.067%	0.067%	0.001%	0.0959
Dimethylheptane (3,5-)		Nonanes	C09H20	VOC	0	0.067%	0.067%	0.067%	0.001%	0.0959
Trimethylcyclohexane (1,1,3-)		Nonanes	C09H18	VOC	0	0.077%	0.077%	0.077%	0.001%	0.109%
Trimethylhexane (2,3,3-)		Nonanes	C09H20	VOC	0	0.038%	0.038%	0.038%	0.001%	0.0549
Dimethylheptane (3,3-) Trimethylcyclohexane (1,1,4-)		Nonanes Nonanes	C09H20 C09H18	VOC	0	0.038% 0.000%	0.038% 0.000%	0.038%	0.001% 0.000%	0.054%
Tetramethylpentane (2,2,3,3-)		Nonanes	C09H18	VOC	0	0.261%	0.000%	0.261%	0.004%	0.0009
Ethylbenzene		Nonanes	C08H10	VOC	X	0.406%	0.406%	0.406%	0.007%	0.576%
Trimethylhexane (2,3,4-)	91	Nonanes	C09H20	VOC	0	0.007%	0.007%	0.007%	0.000%	0.0109
Trimethylcyclohexane (1,t-2,t-4-)	92	Nonanes	C09H18	VOC	0	0.000%	0.000%	0.000%	0.000%	0.000%
Dimethylheptane (2,3-)		Nonanes	C09H20	VOC	0	0.000%	0.000%	0.000%	0.000%	0.000%
Trimethylcyclohexane (1,c-3,t-5-)		Nonanes	C09H18	VOC	0	0.000%	0.000%	0.000%	0.000%	0.000%
Xylene (m-)		Nonanes	C08H10	VOC	X	2.462%	2.462%	2.462%	0.042%	3.490%
Xylene (p-)		Nonanes	C08H10	VOC	X	2.462%	2.462%	2.462%	0.042%	3.490%
Dimethylheptane (3,4-)		Nonanes	C09H20	VOC	0	0.092%	0.092%	0.092%	0.002%	0.130%
Methyloctane (2-) Methyloctane (4-)	98		C09H20 C09H20	VOC	0	0.782% 0.782%	0.782% 0.782%	0.782% 0.782%	0.013% 0.013%	1.109% 1.109%
Dimethylheptane (3,4-)		Nonanes Nonanes	C09H20 C09H20	VOC	0	0.782%	0.782%	0.782%	0.013%	0.000%
Methyloctane (3-)	100	Nonanes	C09H20	VOC	0	0.000%	0.000%	0.000%	0.000%	0.0007
Butylcyclopentane (i-)	101		C09H18	VOC	0	0.000%	0.000%	0.000%	0.000%	0.000%
Trimethylcyclohexane (1,t-2,c-3-)	103		C09H18	VOC	0	0.231%	0.231%	0.231%	0.004%	0.327%
Trimethylcyclohexane (1,t-2,c-4-)	104		C09H18	VOC	0	0.231%	0.231%	0.231%	0.004%	0.327%
Xylene (o-)	105	Nonanes	C08H10	VOC	X	0.547%	0.547%	0.547%	0.009%	0.775%
Trimethylcyclohexane (1,1,2-)	106	Nonanes	C09H18	VOC	0	0.000%	0.000%	0.000%	0.000%	0.000%
Trimethylcyclohexane (1,c-2,t-4-)	107		C09H18	VOC	0	0.200%	0.200%	0.200%	0.003%	0.284%
Trimethylcyclohexane (1,c-2,c-4-)	108		C09H18	VOC	0	0.000%	0.000%	0.000%	0.000%	0.000%
Nonane (n-)	109		C09H20	VOC	0	2.884%	2.884%	2.884%	0.050%	4.088%
Unknowns	110	Decanes+	C10+	VOC		10.753%	10.753%	10.753%	0.079%	15.2889
TOTAL TOC (Total)						100.001% 98.999%	100.000% 98.998%	99.984% 98.984%	100.001% 96.737%	99.976% 99.938%
VOC (Total)						74.686%	74.685%	74.673%	16.825%	99.9387
Hexanes						4.241%	4.240%	4.241%	1.227%	5.521%
Heptanes						14.330%	14.310%	14.330%	1.468%	19.795%
Octanes						21.587%	21.610%	21.587%	0.888%	30.382%
Nonanes						14.663%	14.660%	14.663%	0.252%	20.786%
Decanes+						10.753%	10.770%	10.753%	0.079%	15.288%
HAP (Total)						89.248%	89.248%	89.231%	99.922%	84.688%
Xylenes						1.209%	1.209%	1.209%	0.021%	1.714%
1. C1- D-4					NOTE			A 41	- TV	
1. Sample Data:						Location: Date:			ta, TX 5/09	
Dimethyloctane (2,3-)						Time:			ecorded	
2. $v_i + l_i = f_i$; $y_i = v_i/V$; $x_i = l_i/L$; $z_i = f_i/F$	$S => v \cdot V + v \cdot I$	$= \mathbf{z} \cdot \mathbf{F} => \mathbf{v} \cdot 0$	(V/I)I + x I	= 7.(1 +			$x \cdot 1/[1 + (V/L)] $ (N		corded	
3.	J1 * 1112	21 71	(T/L)L TAIL	21(1	V/L =		1]/[1 · (1/2)] (1/	1 + V/L =	1.4249	
4. z_i is refined to the same number if sign	gnificant digit	s as v; and x	using the co	mponen			tory results for V			
5. z _i is scale using the hydrocarbon (e.g	_	-	_	_			-			
6. [y _i ; x _i] mole percent for species of h				-		_	_	vdrocarbon.		
(assumes v_i/l_i is same for all hydrocard			Souled		(1) _{hexanes}	=	0.2219	,		
y_{hexanes}	• ′			(*/	-/nexanes	$x_{hexanes} =$	5.520%	$z_{\rm hexanes} =$	4.240%	
<i>y</i> hexanes	1.22//0			$y_i = z_i(y/y)$	7).	Ahexanes =	0.2894		7.27070	
				$z_i = z_i(y)$		=	1.3019			
			Λ			=	0.0740	z _i		
				(• /	l) _{heptanes}				14.310%	
***	- 1 4660/								14.51070	
$y_{heptanes}$	= 1.466%		**	- a (x/s	-)	$X_{\text{heptanes}} =$	19.767%	$Z_{heptanes} =$		
Yheptanes	= 1.466%			$z_i = z_i(y/z)$		=	0.1024	\mathbf{z}_{i}		
Yheptanes	= 1.466%			$z_i = z_i(x/z)$	z) _{heptanes}	=	0.1024 1.3814	\mathbf{z}_{i}		
				$z_i = z_i(x/z)$		= =	0.1024 1.3814 0.0292	\mathbf{z}_{i}		
Y _{octanes}			X	$\frac{1}{i} = z_i(x/z)$	z) _{heptanes} /l) _{octanes}	= = = = = = X _{octanes} =	0.1024 1.3814 0.0292 30.414%	$\mathbf{Z_{i}}$ $\mathbf{Z_{i}}$ $\mathbf{Z_{octanes}} =$		
			X	$y_i = z_i(x/z)$ (v_i) $y_i = z_i(y/z)$	$\frac{z}{heptanes}$ $\frac{z}{heptanes}$ $\frac{z}{heptanes}$ $\frac{z}{heptanes}$	= = = = = = = = = = = = = = = = = = =	0.1024 1.3814 0.0292 30.414% 0.0411	$\mathbf{Z_{i}}$ $\mathbf{Z_{i}}$ $\mathbf{Z_{octanes}} = \mathbf{Z_{i}}$		
			X	$y_{i} = z_{i}(x/z)$ (v) $y_{i} = z_{i}(y/z)$ $x_{i} = z_{i}(x/z)$	$(z)_{\text{heptanes}}$ $(z)_{\text{heptanes}}$ $(z)_{\text{octanes}}$ $(z)_{\text{octanes}}$	= = = = = = = = = = = = = = = = = = =	0.1024 1.3814 0.0292 30.414% 0.0411 1.4074	$\mathbf{Z_{i}}$ $\mathbf{Z_{i}}$ $\mathbf{Z_{octanes}} = \mathbf{Z_{i}}$		
	= 0.889%		X	$y_{i} = z_{i}(x/z)$ (v) $y_{i} = z_{i}(y/z)$ $x_{i} = z_{i}(x/z)$	$\frac{z}{heptanes}$ $\frac{z}{heptanes}$ $\frac{z}{heptanes}$ $\frac{z}{heptanes}$	= = = = = = = = = = = = = = = = = = =	0.1024 1.3814 0.0292 30.414% 0.0411 1.4074 0.0121	Z_{i} Z_{i} $Z_{octanes} = Z_{i}$ Z_{i}	21.610%	
	= 0.889%		X	$\frac{1}{i} = z_i(x/z)$ (v) $y_i = z_i(y/z)$ $x_i = z_i(x/z)$ (v/z)	z) _{heptanes} /l) _{octanes} /z) _{octanes} /z) _{octanes} /l) _{nonanes}	$=$ $=$ $X_{octanes} =$ $=$ $=$ $=$ $X_{nonanes} =$	0.1024 1.3814 0.0292 30.414% 0.0411 1.4074 0.0121 20.782%	Z_{i} Z_{i} $Z_{octanes} = Z_{i}$ Z_{i} $Z_{nonanes} = Z_{nonanes}$		
Yoctanes	= 0.889%		х 2 2	$\frac{1}{1} = z_i(x/z)$ (v) $y_i = z_i(y/z)$ (v) (v) $y_i = z_i(y/z)$	Z) _{heptanes} /I) _{octanes} /Z) _{octanes} /Z) _{octanes} /I) _{nonanes}	= = = = = = = = = = = = = = = = = = =	0.1024 1.3814 0.0292 30.414% 0.0411 1.4074 0.0121 20.782% 0.0172	$egin{aligned} \mathbf{Z_i} & & & & & \\ \mathbf{Z_i} & & & & & \\ & & & & & & \\ \mathbf{Z_i} & & & & & \\ \mathbf{Z_i} & & & & & \\ & & & & & & \\ \mathbf{Z_{nonanes}} & = & & \\ \mathbf{Z_i} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	21.610%	
Yoctanes	= 0.889%		х 2 2	$\frac{1}{i} = z_i(x/z)$ (v) $y_i = z_i(y/z)$ $x_i = z_i(x/z)$ (v/z)	Z) _{heptanes} /I) _{octanes} /Z) _{octanes} /Z) _{octanes} /I) _{nonanes}	$=$ $=$ $X_{octanes} =$ $=$ $=$ $=$ $X_{nonanes} =$	0.1024 1.3814 0.0292 30.414% 0.0411 1.4074 0.0121 20.782% 0.0172 1.4176	$egin{aligned} \mathbf{Z_i} & & & & & \\ \mathbf{Z_i} & & & & & \\ & & & & & & \\ \mathbf{Z_i} & & & & & \\ \mathbf{Z_i} & & & & & \\ & & & & & & \\ \mathbf{Z_{nonanes}} & = & & \\ \mathbf{Z_i} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	21.610%	
Yoctanes	= 0.889%		х 2 2	$\begin{aligned} \mathbf{i} &= \mathbf{z}_{i}(\mathbf{x}/\mathbf{z}) \\ &(\mathbf{v}) \\ \mathbf{y}_{i} &= \mathbf{z}_{i}(\mathbf{y}/\mathbf{z}) \\ \mathbf{v}_{i} &= \mathbf{z}_{i}(\mathbf{x}/\mathbf{z}) \\ &(\mathbf{v}/\mathbf{z}) \\ \mathbf{v}_{i} &= \mathbf{z}_{i}(\mathbf{y}/\mathbf{z}) \end{aligned}$	Z) _{heptanes} /I) _{octanes} /Z) _{octanes} /Z) _{octanes} /I) _{nonanes}	= = = = = = = = = = = = = = = = = = =	0.1024 1.3814 0.0292 30.414% 0.0411 1.4074 0.0121 20.782% 0.0172	$egin{aligned} \mathbf{Z_i} & & & & & \\ \mathbf{Z_i} & & & & & \\ & & & & & & \\ \mathbf{Z_i} & & & & & \\ \mathbf{Z_i} & & & & & \\ & & & & & & \\ \mathbf{Z_{nonanes}} & = & & \\ \mathbf{Z_i} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	21.610%	
Yoctanes	= 0.889%		х 2 2	$\begin{aligned} \mathbf{i} &= \mathbf{z}_{i}(\mathbf{x}/\mathbf{z}) \\ &(\mathbf{v}) \\ \mathbf{y}_{i} &= \mathbf{z}_{i}(\mathbf{y}/\mathbf{z}) \\ \mathbf{v}_{i} &= \mathbf{z}_{i}(\mathbf{x}/\mathbf{z}) \\ &(\mathbf{v}/\mathbf{z}) \\ \mathbf{v}_{i} &= \mathbf{z}_{i}(\mathbf{y}/\mathbf{z}) \end{aligned}$	z) _{heptanes} /I) _{octanes} /z) _{octanes} /z) _{octanes} /I) _{nonanes} z) _{nonanes}	= = = = = = = = = = = = = = = = = = =	0.1024 1.3814 0.0292 30.414% 0.0411 1.4074 0.0121 20.782% 0.0172 1.4176 0.0051 15.313%	$egin{aligned} & Z_i & & & & & & & & & & & & & & & & & & &$	21.610%	
Yoctanes	= 0.889%		y x	$\begin{aligned} \mathbf{i} &= \mathbf{z}_{i}(\mathbf{x}/\mathbf{z}) \\ &(\mathbf{v}) \\ \mathbf{y}_{i} &= \mathbf{z}_{i}(\mathbf{y}/\mathbf{z}) \\ \mathbf{v}_{i} &= \mathbf{z}_{i}(\mathbf{x}/\mathbf{z}) \\ &(\mathbf{v}/\mathbf{z}) \\ \mathbf{v}_{i} &= \mathbf{z}_{i}(\mathbf{y}/\mathbf{z}) \end{aligned}$	z) _{heptanes} /z) _{octanes} /z) _{octanes} /z) _{octanes} /z) _{octanes} z) _{nonanes} z) _{nonanes}	= = = = = = = = = = = = = = = = = = =	0.1024 1.3814 0.0292 30.414% 0.0411 1.4074 0.0121 20.782% 0.0172 1.4176 0.0051	$egin{aligned} & Z_i & & & & & & & & & & & & & & & & & & &$	21.610%	

TABLE E-0b(i) Flash Analysis Estimation of Specie Weight Percentages Pressurized Liquid

Component	I	11.45	Molecular	Density	Mole	Weight
Name	Type	HAP	Weight	(lb/scf) _i	Percent	Percent
(i)	0	0	(lb/mol) _i	0.0505	$(\text{mol}_i/\text{mol}_T)$	(lb_i/lb_T)
Nitrogen	0	0	28.013	0.0727	0.030%	0.0099
Carbon Dioxide Methane	GHG GHG	0	44.010 16.042	0.1143 0.0417	0.970% 20.924%	0.4359 3.4219
Ethane	0	0	30.069	0.0417	3.391%	1.0399
Propane	VOC	0	44.096	0.1145	2.181%	0.980
Butane (i-)	VOC	0	58.122	0.1509	1.230%	0.7299
Butane (n-)	VOC	0	58.122	0.1509	1.720%	1.0199
Pentane (i-)	VOC	0	72.149	0.1873	2.350%	1.7289
Pentane (n-) Dimethylbutane (2,2-)	VOC VOC	0	72.149 86.175	0.1873 0.2238	1.620% 0.174%	1.1919 0.1539
Dimethylbutane (2,3-)	VOC	0	86.175	0.2238	0.174%	0.133
Cyclopentane	VOC	0	70.133	0.1821	0.000%	0.000
Methylpentane (2-)	VOC	0	86.175	0.2238	1.218%	1.070
Methylpentane (3-)	VOC	0	86.175	0.2238	0.912%	0.8019
Hexane (n-)	VOC	X	86.175	0.2238	1.937%	1.7019
Dimethylpentane (2,2-)	VOC	0	100.202	0.2602	0.311%	0.318
Methylcyclopentane	VOC	0	84.159	0.2185	1.134%	0.9739
Dimethylpentane (2,4-) Trimethylbutane (2,2,3-)	VOC VOC	0	100.202 100.202	0.2602 0.2602	0.128% 0.000%	0.1319
Benzene	VOC	X	78.112	0.2028	1.713%	1.364
Dimethylpentane (3,3-)	VOC	0	100.202	0.2602	0.221%	0.226
Cyclohexane	VOC	0	84.159	0.2185	1.106%	0.949
Methylhexane (2-)	VOC	0	100.202	0.2602	2.292%	2.3419
Dimethylpentane (2,3-)	VOC	0	100.202	0.2602	0.000%	0.000
Dimethylcyclopentane (1,1-)	VOC	0	98.186	0.2549	0.603%	0.603
Methylhexane (3-)	VOC VOC	0	100.202	0.2602	2.379%	2.430
Dimethylcyclopentane (1,t-3-) Dimethylcyclopentane (1,c-3-)	VOC	0	98.186 98.186	0.2549 0.2549	0.163% 0.266%	0.163
Ethylpentane (3-)	VOC	0	100.202	0.2602	0.029%	0.030
Dimethylcyclopentane (1,t-2-)	VOC	0	98.186	0.2549	0.222%	0.222
Trimethylpentane (2,2,4-)	VOC	X	114.229	0.2966	0.021%	0.024
Heptane (n-)	VOC	0	100.202	0.2602	3.743%	3.822
Methylcyclohexane	VOC	0	98.186	0.2549	3.302%	3.304
Trimethylcyclopentane (1,1,3-)	VOC	0	112.213	0.2914	0.225%	0.257
Dimethylhexane (2,2-) Dimethylcyclopentane (1,c-2-)	VOC VOC	0	114.229	0.2966 0.2549	0.095% 0.848%	0.1119
Dimethylhexane (2,5-)	VOC	0	98.186 114.229	0.2349	0.848%	0.849
Dimethylhexane (2,4-)	VOC	0	114.229	0.2966	0.143%	0.166
Ethylcyclopentane	VOC	0	98.186	0.2549	0.464%	0.464
Trimethylpentane (2,2,3-)	VOC	0	114.229	0.2966	0.028%	0.033
Trimethylcyclopentane (1,t-2,c-4-)	VOC	0	112.213	0.2914	0.000%	0.000°
Dimethylhexane (3,3-)	VOC	0	114.229	0.2966	0.000%	0.000
Trimethylcyclopentane (1,t-2,c-3-)	VOC	0	112.213	0.2914	0.000%	0.000
Trimethylpentane (2,3,4-) Dimethylhexane (2,3-)	VOC VOC	0	114.229 114.229	0.2966 0.2966	0.000% 0.000%	0.000
Toluene	VOC	X	92.138	0.2392	4.445%	0.000° 4.174°
Trimethylcyclopentane (1,1,2-)	VOC	0	112.213	0.2914	0.371%	0.424
Dimethylhexane (3,4-)	VOC	0	114.229	0.2966	3.506%	4.0819
Methylheptane (2-)	VOC	0	114.229	0.2966	0.000%	0.000
Methylheptane (4-)	VOC	0	114.229	0.2966	2.896%	3.3729
Dimethylhexane (3,4-)	VOC	0	114.229	0.2966	0.000%	0.000
Methylheptane (3-)	VOC	0	114.229	0.2966	0.416%	0.484
Ethylhexane (3-)	VOC	0	114.229	0.2966	0.111%	0.129
Trimethylcyclopentane (1,c-2,t-4-) Dimethylcyclohexane (1,c-3-)	VOC VOC	0	112.213 112.213	0.2914 0.2914	0.028% 0.170%	0.0329
Trimethylcyclopentane (1,c-2,t-3-)	VOC	0	112.213	0.2914	0.170%	0.194
Dimethylcyclohexane (1,t-4-)	VOC	0	112.213	0.2914	0.000%	0.000
Trimethylhexane (2,2,5-)	VOC	0	128.255	0.3330	0.000%	0.000
Dimethylcyclohexane (1,1-)	VOC	0	112.213	0.2914	0.000%	0.000
Ethylcyclopentane (1-methyl-t-3-)	VOC	0	112.213	0.2914	0.000%	0.000
Ethylcyclopentane (1-methyl-c-3-)	VOC	0	112.213	0.2914	0.000%	0.000
Ethylcyclopentane (1-methyl-t-2-)	VOC	0	112.213	0.2914	0.000%	0.000
Trimethylhexane (2,2,4-)	VOC VOC	0	128.255 112.213	0.3330 0.2914	0.000% 0.000%	0.000
Ethylcyclopentane (1-methyl-t-1-) Cycloheptane	VOC	0	98.186	0.2549	0.000%	0.000
Octane (n-)	VOC	0	114.229	0.2349	4.373%	5.090
Γrimethylhexane (2,4,4-)	VOC	0	128.255	0.3330		0.248
Tetramethylpentane (2,2,4,4-)	VOC	0	128.255	0.3330	0.000%	0.000
Dimethylcyclohexane (1,t-3-)	VOC	0	112.213	0.2914	0.053%	0.061
Dimethylcyclohexane (1,c-4-)	VOC	0	112.213	0.2914	0.053%	0.061
Trimethylcyclopentane (1,c-2,c-3-)	VOC	0	112.213	0.2914	0.053%	0.061
Propylcyclopentane (i-)	VOC	0	112.213	0.2914	0.348%	0.398
Trimethylhexane (2,3,5-) Dimethylheptane (2,2-)	VOC VOC	0	128.255	0.3330	0.006% 0.000%	0.008
Dimethylheptane (2,2-) Dimethylheptane (2,4-)	VOC	0	128.255 128.255	0.3330 0.3330	0.000%	0.000
Methylcyclopentane (2,4-)	VOC	0	128.255	0.3330	0.158%	0.207
Trimethylhexane (2,2,3-)	VOC	0	128.255	0.2914	0.181%	0.207
Dimethylcyclohexane (1,c-2-)	VOC	0	112.213	0.2914	0.510%	0.583

TABLE E-0b(i) Flash Analysis Estimation of Specie Weight Percentages Pressurized Liquid

Component			Molecular	Density	Mole	Weight
Name	Type	HAP	Weight	$(lb/scf)_i$	Percent	Percent
(i)			(lb/mol) _i		(mol_i/mol_T)	(lb_i/lb_T)
Dimethylheptane (2,6-)	VOC	0	128.255	0.3330	0.112%	0.146%
Propylcyclopentane (n-)	VOC	0	112.213	0.2914	0.000%	0.000%
Trimethylcyclohexane (1,c-3,c-5-)	VOC	0	126.239	0.3278	0.000%	0.000%
Ethylcyclohexane	VOC	0	112.213	0.2914	1.365%	1.561%
Dimethylheptane (2,5-)	VOC	0	128.255	0.3330	0.067%	0.088%
Dimethylheptane (3,5-)	VOC	0	128.255	0.3330	0.067%	0.088%
Trimethylcyclohexane (1,1,3-)	VOC	0	126.239	0.3278	0.077%	0.099%
Trimethylhexane (2,3,3-)	VOC	0	128.255	0.3330	0.038%	0.050%
Dimethylheptane (3,3-)	VOC	0	128.255	0.3330	0.038%	0.050%
Trimethylcyclohexane (1,1,4-)	VOC	0	126.239	0.3278	0.000%	0.000%
Tetramethylpentane (2,2,3,3-)	VOC	0	128.255	0.3330	0.261%	0.341%
Ethylbenzene	VOC	X	106.165	0.2757	0.406%	0.439%
Trimethylhexane (2,3,4-)	VOC	0	128.255	0.3330	0.007%	0.009%
Trimethylcyclohexane (1,t-2,t-4-)	VOC	0	126.239	0.3278	0.000%	0.000%
Dimethylheptane (2,3-)	VOC	0	128.255	0.3330	0.000%	0.000%
Trimethylcyclohexane (1,c-3,t-5-)	VOC	0	126.239	0.3278	0.000%	0.000%
Xylene (m-)	VOC	X	106.165	0.2757	2.462%	2.664%
Xylene (p-)	VOC	X	106.165	0.2757	2.462%	2.664%
Dimethylheptane (3,4-)	VOC	0	128.255	0.3330	0.092%	0.120%
Methyloctane (2-)	VOC	0	128.255	0.3330	0.782%	1.022%
Methyloctane (4-)	VOC	0	128.255	0.3330	0.782%	1.022%
Dimethylheptane (3,4-)	VOC	0	128.255	0.3330	0.000%	0.000%
Methyloctane (3-)	VOC	0	128.255	0.3330	0.000%	0.000%
Butylcyclopentane (i-)	VOC	0	126.239	0.3278	0.000%	0.000%
Trimethylcyclohexane (1,t-2,c-3-)	VOC	0	126.239	0.3278	0.231%	0.297%
Trimethylcyclohexane (1,t-2,c-4-)	VOC	0	126.239	0.3278	0.231%	0.297%
Xylene (o-)	VOC	X	106.165	0.2757	0.547%	0.592%
Trimethylcyclohexane (1,1,2-)	VOC	0	126.239	0.3278	0.000%	0.000%
Trimethylcyclohexane (1,c-2,t-4-)	VOC	0	126.239	0.3278	0.200%	0.257%
Trimethylcyclohexane (1,c-2,c-4-)	VOC	0	126.239	0.3278	0.000%	0.000%
Nonane (n-)	VOC	0	128.255	0.3330	2.884%	3.770%
Unknowns	VOC		283.704	0.7366	10.755%	31.094%
Pressurized Liquid			98.125	0.2548	100.000%	100.000%
TOC (Total)			98.677	0.2562	99.000%	99.556%
VOC (Total)			124.943	0.3244	74.685%	95.096%
HAP (Total)			72.610	0.1885		58.502%
Xylenes			106.165	0.2757	5.472%	5.920%
		NOTES	S			
1 M 1'- 1 1 4 C TADI	TEE 0 ('') 4	1 4	4 1 100 0000/			

98.125 lb/lb-mol

^{1.} Normalized mole percentages from TABLE E-0a(ii) to make total 100.000%.

2. Determined molecular weight of unknowns via iteration to match TABLE E-0a(i).

MW =

TABLE E-0b(ii) Flash Analysis Estimation of Specie Weight Percentages Flash Gas

Component Name	Т	Плр	Molecular Weight	Density	Mole	Weight
	Type	HAP	Weight	(lb/scf) _i	Percent	Percent
(i)			(lb/mol) _i	0.0-0-	$(\text{mol}_i/\text{mol}_T)$	(lb_i/lb_T)
Nitrogen	CHC		28.013	0.0727	0.101%	0.105
Carbon Dioxide	GHG		44.010	0.1143	3.163%	5.167
Methane	GHG		16.042	0.0417	69.444%	41.356
Ethane Propaga	VOC		30.069 44.096	0.0781 0.1145	10.467% 5.339%	11.683 8.739
Propane Butane (i-)	VOC		58.122	0.1143	2.126%	4.587
Butane (n-)	VOC		58.122	0.1509	2.495%	5.383
Pentane (i-)	VOC		72.149	0.1303	1.895%	5.075
Pentane (n-)	VOC		72.149	0.1873	1.056%	2.828
Dimethylbutane (2,2-)	VOC		86.175	0.2238	0.050%	0.161
Dimethylbutane (2,3-)	VOC		86.175	0.2238	0.000%	0.000
Cyclopentane	VOC		70.133	0.1821	0.000%	0.000
Methylpentane (2-)	VOC		86.175	0.2238	0.352%	1.128
Methylpentane (3-)	VOC		86.175	0.2238	0.264%	0.844
Hexane (n-)	VOC	X	86.175	0.2238	0.561%	1.793
Dimethylpentane (2,2-)	VOC		100.202	0.2602	0.032%	0.119
Methylcyclopentane	VOC		84.159	0.2185	0.116%	0.363
Dimethylpentane (2,4-)	VOC		100.202	0.2602	0.013%	0.049
Trimethylbutane (2,2,3-)	VOC	37	100.202	0.2602	0.000%	0.000
Benzene	VOC	X	78.112	0.2028	0.175%	0.509
Dimethylpentane (3,3-)	VOC		100.202	0.2602	0.023%	0.084
Cyclohexane Methylhexane (2-)	VOC VOC		84.159 100.202	0.2185 0.2602	0.113% 0.235%	0.354 0.873
Dimethylpentane (2,3-)	VOC		100.202	0.2602	0.235%	0.873
Dimethylcyclopentane (1,1-)	VOC		98.186	0.2549	0.062%	0.000
Methylhexane (3-)	VOC		100.202	0.2349	0.062%	0.223
Dimethylcyclopentane (1,t-3-)	VOC		98.186	0.2549	0.24476	0.967
Dimethylcyclopentane (1,c-3-)	VOC		98.186	0.2549	0.027%	0.099
Ethylpentane (3-)	VOC		100.202	0.2602	0.003%	0.011
Dimethylcyclopentane (1,t-2-)	VOC		98.186	0.2549	0.023%	0.083
Trimethylpentane (2,2,4-)	VOC	X	114.229	0.2966	0.002%	0.009
Heptane (n-)	VOC		100.202	0.2602	0.383%	1.426
Methylcyclohexane	VOC		98.186	0.2549	0.136%	0.495
Trimethylcyclopentane (1,1,3-)	VOC		112.213	0.2914	0.009%	0.039
Dimethylhexane (2,2-)	VOC		114.229	0.2966	0.004%	0.017
Dimethylcyclopentane (1,c-2-)	VOC		98.186	0.2549	0.035%	0.127
Dimethylhexane (2,5-)	VOC		114.229	0.2966	0.000%	0.000
Dimethylhexane (2,4-)	VOC		114.229	0.2966	0.006%	0.025
Ethylcyclopentane	VOC		98.186	0.2549	0.019%	0.070
Trimethylpentane (2,2,3-)	VOC		114.229	0.2966	0.001%	0.005
Trimethylcyclopentane (1,t-2,c-4-)	VOC		112.213	0.2914	0.000%	0.000
Dimethylhexane (3,3-)	VOC		114.229	0.2966	0.000%	0.000
Trimethylcyclopentane (1,t-2,c-3-)	VOC		112.213	0.2914	0.000%	0.000
Trimethylpentane (2,3,4-)	VOC VOC		114.229	0.2966	0.000%	0.000
Dimethylhexane (2,3-) Toluene	VOC	X	114.229 92.138	0.2966 0.2392	0.000% 0.183%	0.000
Trimethylcyclopentane (1,1,2-)	VOC	A	112.213	0.2392	0.183%	0.023
Dimethylhexane (3,4-)	VOC		114.229	0.2914	0.013%	0.064
Methylheptane (2-)	VOC		114.229	0.2966	0.14476	0.000
Methylheptane (4-)	VOC		114.229	0.2966	0.119%	0.505
Dimethylhexane (3,4-)	VOC	 	114.229	0.2966	0.119%	0.000
Methylheptane (3-)	VOC	+ +	114.229	0.2966	0.000%	0.000
Ethylhexane (3-)	VOC	 	114.229	0.2966	0.01776	0.073
Trimethylcyclopentane (1,c-2,t-4-)	VOC	 	112.213	0.2914	0.00376	0.015
Dimethylcyclohexane (1,c-3-)	VOC		112.213	0.2914	0.007%	0.029
Trimethylcyclopentane (1,c-2,t-3-)	VOC		112.213	0.2914	0.007%	0.029
Dimethylcyclohexane (1,t-4-)	VOC		112.213	0.2914	0.000%	0.000
Trimethylhexane (2,2,5-)	VOC		128.255	0.3330	0.000%	0.000
Dimethylcyclohexane (1,1-)	VOC		112.213	0.2914	0.000%	0.000
Ethylcyclopentane (1-methyl-t-3-)	VOC		112.213	0.2914	0.000%	0.000
Ethylcyclopentane (1-methyl-c-3-)	VOC		112.213	0.2914	0.000%	0.000
Ethylcyclopentane (1-methyl-t-2-)	VOC		112.213	0.2914	0.000%	0.000
Trimethylhexane (2,2,4-)	VOC		128.255	0.3330	0.000%	0.000
Ethylcyclopentane (1-methyl-t-1-)	VOC	igsqcut	112.213	0.2914	0.000%	0.000
Cycloheptane	VOC	\vdash	98.186	0.2549	0.000%	0.000
Octane (n-)	VOC	\vdash	114.229	0.2966	0.180%	0.763
Trimethylhexane (2,4,4-)	VOC		128.255	0.3330		0.016
Tetramethylpentane (2,2,4,4-)	VOC		128.255	0.3330	0.000%	0.000
Dimethylcyclohexane (1,t-3-)	VOC	$\vdash \vdash$	112.213	0.2914	0.001%	0.004
Dimethylcyclohexane (1,c-4-)	VOC	\vdash	112.213	0.2914	0.001%	0.004
Trimethylcyclopentane (1,c-2,c-3-)	VOC	$\vdash \vdash$	112.213	0.2914	0.001%	0.004
Propylcyclopentane (i-)	VOC	\vdash	112.213	0.2914	0.006%	0.025
Trimethylhexane (2,3,5-)	VOC		128.255	0.3330	0.000%	0.000
Dimethylheptane (2,2-)	VOC		128.255	0.3330	0.000%	0.000
Dimethylheptane (2,4-)	VOC		128.255	0.3330	0.003%	0.013
Methylcyclopentane (1-ethyl-c-2-)	VOC VOC		112.213 128.255	0.2914	0.003% 0.000%	0.013
Trimethylhexane (2,2,3-)						$\alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha $

TABLE E-0b(ii) Flash Analysis Estimation of Specie Weight Percentages Flash Gas

Component			Molecular	Density	Mole	Weight
Name	Type	HAP	Weight	$(lb/scf)_i$	Percent	Percent
(i)			(lb/mol) _i		(mol_i/mol_T)	(lb_i/lb_T)
Dimethylheptane (2,6-)	VOC		128.255	0.3330	0.002%	0.009%
Propylcyclopentane (n-)	VOC		112.213	0.2914	0.000%	0.000%
Trimethylcyclohexane (1,c-3,c-5-)	VOC		126.239	0.3278	0.000%	0.000%
Ethylcyclohexane	VOC		112.213	0.2914	0.023%	0.098%
Dimethylheptane (2,5-)	VOC		128.255	0.3330	0.001%	0.005%
Dimethylheptane (3,5-)	VOC		128.255	0.3330	0.001%	0.005%
Trimethylcyclohexane (1,1,3-)	VOC		126.239	0.3278	0.001%	0.006%
Trimethylhexane (2,3,3-)	VOC		128.255	0.3330	0.001%	0.003%
Dimethylheptane (3,3-)	VOC		128.255	0.3330	0.001%	0.003%
Trimethylcyclohexane (1,1,4-)	VOC		126.239	0.3278	0.000%	0.000%
Tetramethylpentane (2,2,3,3-)	VOC		128.255	0.3330	0.004%	0.021%
Ethylbenzene	VOC	X	106.165	0.2757	0.007%	0.028%
Trimethylhexane (2,3,4-)	VOC		128.255	0.3330	0.000%	0.001%
Trimethylcyclohexane (1,t-2,t-4-)	VOC		126.239	0.3278	0.000%	0.000%
Dimethylheptane (2,3-)	VOC		128.255	0.3330	0.000%	0.000%
Trimethylcyclohexane (1,c-3,t-5-)	VOC		126.239	0.3278	0.000%	0.000%
Xylene (m-)	VOC	X	106.165	0.2757	0.042%	0.167%
Xylene (p-)	VOC	X	106.165	0.2757	0.042%	0.167%
Dimethylheptane (3,4-)	VOC		128.255	0.3330	0.002%	0.008%
Methyloctane (2-)	VOC		128.255	0.3330	0.013%	0.064%
Methyloctane (4-)	VOC		128.255	0.3330	0.013%	0.064%
Dimethylheptane (3,4-)	VOC		128.255	0.3330	0.000%	0.000%
Methyloctane (3-)	VOC		128.255	0.3330	0.000%	0.000%
Butylcyclopentane (i-)	VOC		126.239	0.3278	0.000%	0.000%
Trimethylcyclohexane (1,t-2,c-3-)	VOC		126.239	0.3278	0.004%	0.019%
Trimethylcyclohexane (1,t-2,c-4-)	VOC		126.239	0.3278	0.004%	0.019%
Xylene (o-)	VOC	X	106.165	0.2757	0.009%	0.037%
Trimethylcyclohexane (1,1,2-)	VOC		126.239	0.3278	0.000%	0.000%
Trimethylcyclohexane (1,c-2,t-4-)	VOC		126.239	0.3278	0.003%	0.016%
Trimethylcyclohexane (1,c-2,c-4-)	VOC		126.239	0.3278	0.000%	0.000%
Nonane (n-)	VOC		128.255	0.3330	0.050%	0.236%
Unknowns	VOC		473.700	1.2300	0.079%	1.387%
Flash Gas			26.938	0.0699	100.000%	100.000%
TOC (Total)			26.379	0.0685	96.736%	94.728%
VOC (Total)			66.745	0.1733	16.825%	41.688%
HAP (Total)			88.115	0.2288	0.762%	2.492%
Xylenes			106.165	0.2757	0.094%	0.371%

Normalized mole percentages from TABLE E-0a(ii) to make total 100.000%.
 Determined molecular weight of unknowns via iteration to match TABLE E-0a(i), unless value negative.
 MW = 26.938 lb/lb-mol

TABLE E-0b(iii) Flash Analysis Estimation of Specie Weight Percentages Residual Liquid

Component			Molecular	Density	Mole	Weight
Name	Туре	HAP	Weight	(lb/scf) _i	Percent	Percent
(i)			(lb/mol) _i		(mol_i/mol_T)	(lb_i/lb_T)
Nitrogen	0	0	28.013	0.0727	0.000%	0.000%
Carbon Dioxide	GHG	0	44.010	0.1143	0.038%	0.013%
Methane	GHG	0	16.042	0.0417	0.303%	0.038%
Ethane	0	0	30.069	0.0781	0.383%	0.090%
Propane	VOC	0	44.096	0.1145	0.838%	0.288%
Butane (i-)	VOC	0	58.122	0.1509	0.849%	0.385%
Butane (n-)	VOC	0	58.122	0.1509	1.391%	0.630%
Pentane (i-)	VOC	0	72.149	0.1873	2.544%	1.430%
Pentane (n-)	VOC	0	72.149	0.1873	1.859%	1.045%
Dimethylbutane (2,2-)	VOC	0	86.175	0.2238	0.227%	0.152%
Dimethylbutane (2,3-)	VOC	0	86.175	0.2238	0.000%	0.000%
Cyclopentane	VOC	0	70.133	0.1821	0.000%	0.000%
Methylpentane (2-)	VOC	0	86.175	0.2238	1.586%	1.065%
Methylpentane (3-)	VOC	0	86.175	0.2238	1.188%	0.797%
Hexane (n-)	VOC	X	86.175	0.2238	2.522%	1.693%
Dimethylpentane (2,2-)	VOC	0	100.202	0.2602	0.430%	0.335%
Methylcyclopentane	VOC	0	84.159	0.2185	1.567%	1.027%
Dimethylpentane (2,4-)	VOC	0	100.202	0.2602	0.177%	0.138%
Trimethylbutane (2,2,3-)	VOC	0	100.202	0.2602	0.000%	0.000%
Benzene	VOC	X	78.112	0.2028	2.367%	1.440%
Dimethylpentane (3,3-)	VOC	0	100.202	0.2602	0.305%	0.238%
Cyclohexane	VOC	0	84.159	0.2185	1.528%	1.002%
Methylhexane (2-)	VOC	0	100.202	0.2602	3.167%	2.472%
Dimethylpentane (2,3-)	VOC	0	100.202	0.2602	0.000%	0.000%
Dimethylcyclopentane (1,1-)	VOC	0	98.186	0.2549	0.833%	0.637%
Methylhexane (3-)	VOC	0	100.202	0.2602	3.287%	2.566%
Dimethylcyclopentane (1,t-3-)	VOC	0	98.186	0.2549	0.225%	0.172%
Dimethylcyclopentane (1,c-3-)	VOC	0	98.186	0.2549	0.368%	0.281%
Ethylpentane (3-)	VOC	0	100.202	0.2602	0.040%	0.031%
Dimethylcyclopentane (1,t-2-)	VOC	0	98.186	0.2549	0.307%	0.235%
Trimethylpentane (2,2,4-)	VOC	X	114.229	0.2966	0.029%	0.026%
Heptane (n-)	VOC	0	100.202	0.2602	5.170%	4.036%
Methylcyclohexane	VOC	0	98.186	0.2549	4.647%	3.555%
Trimethylcyclopentane (1,1,3-)	VOC	0	112.213	0.2914	0.317%	0.277%
Dimethylhexane (2,2-)	VOC	0	114.229	0.2966	0.134%	0.119%
Dimethylcyclopentane (1,c-2-)	VOC	0	98.186	0.2549	1.194%	0.913%
Dimethylhexane (2,5-)	VOC	0	114.229	0.2966	0.000%	0.000%
Dimethylhexane (2,4-)	VOC	0	114.229	0.2966	0.201%	0.179%
Ethylcyclopentane	VOC	0	98.186	0.2549	0.653%	0.500%
Trimethylpentane (2,2,3-)	VOC	0	114.229	0.2966	0.039%	0.035%
Trimethylcyclopentane (1,t-2,c-4-)	VOC	0	112.213	0.2914	0.000%	0.000%
Dimethylhexane (3,3-)	VOC	0	114.229	0.2966	0.000%	0.000%
Trimethylcyclopentane (1,t-2,c-3-)	VOC	0	112.213	0.2914	0.000%	0.000%
Trimethylpentane (2,3,4-)	VOC	0	114.229	0.2966	0.000%	0.000%
Dimethylhexane (2,3-)	VOC	0	114.229	0.2966	0.000%	0.000%
Toluene	VOC	X	92.138	0.2392	6.256%	4.491%
Trimethylcyclopentane (1,1,2-)	VOC	0	112.213	0.2914	0.522%	0.457%
Dimethylhexane (3,4-)	VOC	0	114.229	0.2966	4.934%	4.391%
Methylheptane (2-)	VOC	0	114.229	0.2966	0.000%	0.000%

TABLE E-0b(iii) Flash Analysis Estimation of Specie Weight Percentages Residual Liquid

Component			Molecular	Density	Mole	Weight
Name	Type	HAP	Weight	$(lb/scf)_i$	Percent	Percent
(i)			(lb/mol) _i		(mol_i/mol_T)	(lb_i/lb_T)
Methylheptane (4-)	VOC	0	114.229	0.2966	4.077%	3.628%
Dimethylhexane (3,4-)	VOC	0	114.229	0.2966	0.000%	0.000%
Methylheptane (3-)	VOC	0	114.229	0.2966	0.586%	0.521%
Ethylhexane (3-)	VOC	0	114.229	0.2966	0.156%	0.139%
Trimethylcyclopentane (1,c-2,t-4-)	VOC	0	112.213	0.2914	0.039%	0.034%
Dimethylcyclohexane (1,c-3-)	VOC	0	112.213	0.2914	0.239%	0.209%
Trimethylcyclopentane (1,c-2,t-3-)	VOC VOC	0	112.213 112.213	0.2914 0.2914	0.239% 0.000%	0.209%
Dimethylcyclohexane (1,t-4-) Trimethylhexane (2,2,5-)	VOC	0	128.255	0.2914	0.000%	0.000%
Dimethylcyclohexane (1,1-)	VOC	0	112.213	0.3330	0.000%	0.000%
Ethylcyclopentane (1,1-)	VOC	0	112.213	0.2914	0.000%	0.000%
Ethylcyclopentane (1-methyl-c-3-)	VOC	0	112.213	0.2914	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-2-)	VOC	0	112.213	0.2914	0.000%	0.000%
Trimethylhexane (2,2,4-)	VOC	0	128.255	0.3330	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-1-)	VOC	0	112.213	0.2914	0.000%	0.000%
Cycloheptane	VOC	0	98.186	0.2549	0.000%	0.000%
Octane (n-)	VOC	0	114.229	0.2966	6.155%	5.477%
Trimethylhexane (2,4,4-)	VOC	0	128.255	0.3330	0.269%	0.269%
Tetramethylpentane (2,2,4,4-)	VOC	0	128.255	0.3330	0.000%	0.000%
Dimethylcyclohexane (1,t-3-)	VOC	0	112.213	0.2914	0.075%	0.066%
Dimethylcyclohexane (1,c-4-)	VOC	0	112.213	0.2914	0.075%	0.066%
Trimethylcyclopentane (1,c-2,c-3-)	VOC	0	112.213	0.2914	0.075%	0.066%
Propylcyclopentane (i-)	VOC	0	112.213	0.2914	0.493%	0.431%
Trimethylhexane (2,3,5-)	VOC	0	128.255	0.3330	0.009%	0.009%
Dimethylheptane (2,2-)	VOC	0	128.255	0.3330	0.000%	0.000%
Dimethylheptane (2,4-)	VOC	0	128.255	0.3330	0.224%	0.224%
Methylcyclopentane (1-ethyl-c-2-)	VOC	0	112.213	0.2914	0.257%	0.224%
Trimethylhexane (2,2,3-)	VOC	0	128.255	0.3330	0.000%	0.000%
Dimethylcyclohexane (1,c-2-)	VOC VOC	0	112.213 128.255	0.2914	0.723%	0.632%
Dimethylheptane (2,6-) Propylcyclopentane (n-)	VOC	0	112.213	0.3330 0.2914	0.159% 0.000%	0.159% 0.000%
Trimethylcyclohexane (1,c-3,c-5-)	VOC	0	126.239	0.2914		0.000%
Ethylcyclohexane	VOC	0	112.213	0.3278	1.935%	1.692%
Dimethylheptane (2,5-)	VOC	0	128.255	0.3330		0.095%
Dimethylheptane (3,5-)	VOC	0	128.255	0.3330		0.095%
Trimethylcyclohexane (1,1,3-)	VOC	0	126.239	0.3278	0.109%	0.107%
Trimethylhexane (2,3,3-)	VOC	0	128.255	0.3330		0.054%
Dimethylheptane (3,3-)	VOC	0	128.255	0.3330	0.054%	0.054%
Trimethylcyclohexane (1,1,4-)	VOC	0	126.239	0.3278	0.000%	0.000%
Tetramethylpentane (2,2,3,3-)	VOC	0	128.255	0.3330	0.370%	0.370%
Ethylbenzene	VOC	X	106.165	0.2757	0.576%	0.476%
Trimethylhexane (2,3,4-)	VOC	0	128.255	0.3330	0.010%	0.010%
Trimethylcyclohexane (1,t-2,t-4-)	VOC	0	126.239	0.3278	0.000%	0.000%
Dimethylheptane (2,3-)	VOC	0	128.255	0.3330	0.000%	0.000%
Trimethylcyclohexane (1,c-3,t-5-)	VOC	0	126.239	0.3278	0.000%	0.000%
Xylene (m-)	VOC	X	106.165	0.2757	3.491%	2.887%
Xylene (p-)	VOC	X	106.165	0.2757	3.491%	2.887%
Dimethylheptane (3,4-)	VOC	0	128.255 128.255	0.3330		0.130%
Methyloctane (2-) Methyloctane (4-)	VOC VOC	0	128.255	0.3330		1.108% 1.108%
Dimethylheptane (3,4-)	VOC	0	128.255	0.3330		0.000%
Methyloctane (3-)	VOC	0	128.255	0.3330		0.000%
Butylcyclopentane (i-)	VOC	0	126.239	0.3330		0.000%
Trimethylcyclohexane (1,t-2,c-3-)	VOC	0	126.239	0.3278		0.322%
Trimethylcyclohexane (1,t-2,c-4-)	VOC	0	126.239	0.3278	0.328%	0.322%
Xylene (o-)	VOC	X	106.165	0.2757	0.776%	0.641%
Trimethylcyclohexane (1,1,2-)	VOC	0	126.239	0.3278	0.000%	0.000%
Trimethylcyclohexane (1,c-2,t-4-)	VOC	0	126.239	0.3278	0.284%	0.279%
Trimethylcyclohexane (1,c-2,c-4-)	VOC	0	126.239	0.3278	0.000%	0.000%
Nonane (n-)	VOC	0	128.255	0.3330	4.089%	4.086%
Unknowns	VOC		283.170	0.7353	15.292%	33.734%
Residual Liquid			128.362	0.3333		100.000%
TOC (Total)			128.394	0.3334	99.962%	99.987%
VOC (Total)			129.116	0.3353	99.276%	99.859%
HAP (Total)			99.384	0.2581	71.672%	55.491%
Xylenes			106.165	0.2757	7.757%	6.416%

NOTES Normalized mole percentages from TABLE E-0a(ii) to make total 100.000%.
 Determined molecular weight of unknowns via iteration to match TABLE E-0a(i).
 MW = 1

128.362 lb/lb-mol

TABLE E-1AA Flash Analysis **Maximum Hourly and Annual Emission Estimates**

a : TB								
Station ID	CROM-SV-V01C1							
Service	Pipeline Liquids							
Liquids Holding Capacity	218 gal			218 gal				
Liquids Input Rate	44 gal/yr			44 gal/hr				
Flash Gas Density	0.0769 lb/scf		Ţ	0.0769 lb/scf				
Flash Factor	328.03 scf/bbl		Ţ	328.03 scf/bbl				
Flash Gas Rate	340 scf/yr		Ţ	340 scfh				
Flash Losses	26 lb/yr	Average	Maximum	26 lb/hr	Maximum			
Flash Gas	100.00% by weight	0.0030 lb/hr	0.0131 tpy	100.00% by weight	26.1401 lb/hr			
CO _{2-e}	1039.07% by weight	0.0310 lb/hr	0.1358 tpy	1039.07% by weight	272 lb/hr			
CO_2	5.17% by weight	0.0002 lb/hr	0.0007 tpy	5.17% by weight	1.3508 lb/hr			
TOC (Total)	94.73% by weight	0.0028 lb/hr	0.0124 tpy	94.73% by weight	24.7619 lb/hr			
Methane	41.36% by weight	0.0012 lb/hr	0.0054 tpy	41.36% by weight	10.8105 lb/hr			
Ethane	11.68% by weight	0.0003 lb/hr	0.0015 tpy	11.68% by weight	3.0541 lb/hr			
VOC (Total)	41.69% by weight	0.0012 lb/hr	0.0054 tpy	41.69% by weight	10.8972 lb/hr			
HAP (Total)	2.49% by weight	0.0001 lb/hr	0.0003 tpy	2.49% by weight	0.6515 lb/hr			
Benzene	0.5089% by weight	0.0000 lb/hr	0.0001 tpy	0.5089% by weight	0.1330 lb/hr			
Ethylbenzene	0.0275% by weight	0.0000 lb/hr	0.0000 tpy	0.0275% by weight	0.0072 lb/hr			
Hexane (n-)	1.7932% by weight	0.0001 lb/hr	0.0002 tpy	1.7932% by weight	0.4687 lb/hr			
Methanol								
Naphthalene								
Toluene	0.6253% by weight	0.0000 lb/hr	0.0001 tpy	0.6253% by weight	0.1635 lb/hr			
Trimethylpentane (2,2,4-)	0.0091% by weight	0.0000 lb/hr	0.0000 tpy	0.0091% by weight	0.0024 lb/hr			
Xylenes	0.3706% by weight	0.0000 lb/hr	0.0000 tpy	0.3706% by weight	0.0969 lb/hr			

1. Separator Characteristics: Flash is only represented because the potential exists. The vast majority of liquids in this separator is moisture from ambient air due to temperature drop caused by pressure drop during a gas release.

NOTES

Orientation Vertical Fixed Roof Tank

Height/Length 12.00 ft 3.50 ft Diameter Capacity (physical) 864 gal

25% of physical capacity Capacity (liquid) 218 gal

2. Liquid input rates:

a. maximum hourly based on operator experience;

44 gal/hr 44 gal/yr

b. maximum annual based on operating experience and safety factor; and

c. average hourly is just the maximum annual divided by 8,760 hrs/yr.

3. Flash gas density is 110% of the value extracted from TABLE E-0b(ii).

0.0699 lb/scf Density (TABLE E-0b(ii)): Safety Factor: 110%

4. Flash factor extracted from TABLE E-0a(i).

TABLE E-1AB Flash Analysis Maximum Hourly and Annual Emission Estimates

Station ID	CROM-SV-V01C2						
Service	Pipeline Liquids						
Liquids Holding Capacity	218 gal			218 gal			
Liquids Input Rate	44 gal/yr			44 gal/hr			
Flash Gas Density	0.0769 lb/scf			0.0769 lb/scf			
Flash Factor	328.03 scf/bbl			328.03 scf/bbl			
Flash Gas Rate	340 scf/yr			340 scfh			
Flash Losses	26 lb/yr	Average	Maximum	26 lb/hr	Maximum		
Flash Gas	100.00% by weight	0.0030 lb/hr	0.0131 tpy	100.00% by weight	26.1401 lb/hr		
CO _{2-e}	1039.07% by weight	0.0310 lb/hr	0.1358 tpy	1039.07% by weight	272 lb/hr		
CO_2	5.17% by weight	0.0002 lb/hr	0.0007 tpy	5.17% by weight	1.3508 lb/hr		
TOC (Total)	94.73% by weight	0.0028 lb/hr	0.0124 tpy	94.73% by weight	24.7619 lb/hr		
Methane	41.36% by weight	0.0012 lb/hr	0.0054 tpy	41.36% by weight	10.8105 lb/hr		
Ethane	11.68% by weight	0.0003 lb/hr	0.0015 tpy	11.68% by weight	3.0541 lb/hr		
VOC (Total)	41.69% by weight	0.0012 lb/hr	0.0054 tpy	41.69% by weight	10.8972 lb/hr		
HAP (Total)	2.49% by weight	0.0001 lb/hr	0.0003 tpy	2.49% by weight	0.6515 lb/hr		
Benzene	0.5089% by weight	0.0000 lb/hr	0.0001 tpy	0.5089% by weight	0.1330 lb/hr		
Ethylbenzene	0.0275% by weight	0.0000 lb/hr	0.0000 tpy	0.0275% by weight	0.0072 lb/hr		
Hexane (n-)	1.7932% by weight	0.0001 lb/hr	0.0002 tpy	1.7932% by weight	0.4687 lb/hr		
Methanol							
Naphthalene							
Toluene	0.6253% by weight	0.0000 lb/hr	0.0001 tpy	0.6253% by weight	0.1635 lb/hr		
Trimethylpentane (2,2,4-)	0.0091% by weight	0.0000 lb/hr	0.0000 tpy	0.0091% by weight	0.0024 lb/hr		
Xylenes	0.3706% by weight	0.0000 lb/hr	0.0000 tpy	0.3706% by weight	0.0969 lb/hr		

1. Separator Characteristics: Flash is only represented because the potential exists. The vast majority of liquids in this separator is moisture from ambient air due to temperature drop caused by pressure drop during a gas release.

NOTES

Orientation Vertical Fixed Roof Tank

Height/Length 12.00 ft
Diameter 3.50 ft
Capacity (physical) 864 gal

Capacity (liquid) 218 gal 25% of physical capacity

2. Liquid input rates:

a. maximum hourly based on operator experience;

44 gal/hr 44 gal/yr

b. maximum annual based on operating experience and safety factor; and

c. average hourly is just the maximum annual divided by 8,760 hrs/yr.

3. Flash gas density is 110% of the value extracted from TABLE E-0b(ii).

Density (TABLE E-0b(ii)): 0.0699 lb/scf Safety Factor: 110%

4. Flash factor extracted from TABLE E-0a(i).

TABLE E-1AC Flash Analysis Maximum Hourly and Annual Emission Estimates

Station ID	CROM-SV-V01C3							
Service	Pipeline Liquids							
Liquids Holding Capacity	218 gal		r ipellile Liquius	218 gal				
Liquids Input Rate	44 gal/yr		<u>}</u>	44 gal/hr				
	0.0769 lb/scf		}	0.0769 lb/scf				
Flash Gas Density			-					
Flash Factor	328.03 scf/bbl		1	328.03 scf/bbl				
Flash Gas Rate	340 scf/yr			340 scfh				
Flash Losses	26 lb/yr	Average	Maximum	26 lb/hr	Maximum			
Flash Gas	100.00% by weight	0.0030 lb/hr	0.0131 tpy	100.00% by weight	26.1401 lb/hr			
CO_{2-e}	1039.07% by weight	0.0310 lb/hr	0.1358 tpy	1039.07% by weight	272 lb/hr			
CO_2	5.17% by weight	0.0002 lb/hr	0.0007 tpy	5.17% by weight	1.3508 lb/hr			
TOC (Total)	94.73% by weight	0.0028 lb/hr	0.0124 tpy	94.73% by weight	24.7619 lb/hr			
Methane	41.36% by weight	0.0012 lb/hr	0.0054 tpy	41.36% by weight	10.8105 lb/hr			
Ethane	11.68% by weight	0.0003 lb/hr	0.0015 tpy	11.68% by weight	3.0541 lb/hr			
VOC (Total)	41.69% by weight	0.0012 lb/hr	0.0054 tpy	41.69% by weight	10.8972 lb/hr			
HAP (Total)	2.49% by weight	0.0001 lb/hr	0.0003 tpy	2.49% by weight	0.6515 lb/hr			
Benzene	0.5089% by weight	0.0000 lb/hr	0.0001 tpy	0.5089% by weight	0.1330 lb/hr			
Ethylbenzene	0.0275% by weight	0.0000 lb/hr	0.0000 tpy	0.0275% by weight	0.0072 lb/hr			
Hexane (n-)	1.7932% by weight	0.0001 lb/hr	0.0002 tpy	1.7932% by weight	0.4687 lb/hr			
Methanol								
Naphthalene								
Toluene	0.6253% by weight	0.0000 lb/hr	0.0001 tpy	0.6253% by weight	0.1635 lb/hr			
Trimethylpentane (2,2,4-)	0.0091% by weight	0.0000 lb/hr	0.0000 tpy	0.0091% by weight	0.0024 lb/hr			
Xylenes	0.3706% by weight	0.0000 lb/hr	0.0000 tpy	0.3706% by weight	0.0969 lb/hr			

1. Separator Characteristics: Flash is only represented because the potential exists. The vast majority of liquids in this separator is moisture from ambient air due to temperature drop caused by pressure drop during a gas release.

NOTES

Orientation Vertical Fixed Roof Tank

Height/Length 12.00 ft
Diameter 3.50 ft
Capacity (physical) 864 gal

Capacity (liquid) 218 gal 25% of physical capacity

2. Liquid input rates:

a. maximum hourly based on operator experience;

44 gal/hr 44 gal/yr

b. maximum annual based on operating experience and safety factor; and

c. average hourly is just the maximum annual divided by 8,760 hrs/yr.

3. Flash gas density is 110% of the value extracted from TABLE E-0b(ii).

Density (TABLE E-0b(ii)): 0.0699 lb/scf Safety Factor: 110%

4. Flash factor extracted from TABLE E-0a(i).

TABLE E-1BA Flash Analysis **Maximum Hourly and Annual Emission Estimates**

Station ID	CROM-SV-V02A						
Service	Pipeline Liquids						
Liquids Holding Capacity	220 gal			220 gal			
Liquids Input Rate	558 gal/yr			220 gal/hr			
Flash Gas Density	0.0769 lb/scf			0.0769 lb/scf			
Flash Factor	328.03 scf/bbl			328.03 scf/bbl			
Flash Gas Rate	4,355 scf/yr			1,718 scfh			
Flash Losses	335 lb/yr	Average	Maximum	132 lb/hr	Maximum		
Flash Gas	100.00% by weight	0.0382 lb/hr	0.1675 tpy	100.00% by weight	132.2027 lb/hr		
CO _{2-e}	1039.07% by weight	0.3974 lb/hr	1.7408 tpy	1039.07% by weight	1,374 lb/hr		
CO_2	5.17% by weight	0.0020 lb/hr	0.0087 tpy	5.17% by weight	6.8315 lb/hr		
TOC (Total)	94.73% by weight	0.0362 lb/hr	0.1587 tpy	94.73% by weight	125.2324 lb/hr		
Methane	41.36% by weight	0.0158 lb/hr	0.0693 tpy	41.36% by weight	54.6740 lb/hr		
Ethane	11.68% by weight	0.0045 lb/hr	0.0196 tpy	11.68% by weight	15.4458 lb/hr		
VOC (Total)	41.69% by weight	0.0159 lb/hr	0.0698 tpy	41.69% by weight	55.1125 lb/hr		
HAP (Total)	2.49% by weight	0.0010 lb/hr	0.0042 tpy	2.49% by weight	3.2948 lb/hr		
Benzene	0.5089% by weight	0.0002 lb/hr	0.0009 tpy	0.5089% by weight	0.6727 lb/hr		
Ethylbenzene	0.0275% by weight	0.0000 lb/hr	0.0000 tpy	0.0275% by weight	0.0364 lb/hr		
Hexane (n-)	1.7932% by weight	0.0007 lb/hr	0.0030 tpy	1.7932% by weight	2.3707 lb/hr		
Methanol							
Naphthalene							
Toluene	0.6253% by weight	0.0002 lb/hr	0.0010 tpy	0.6253% by weight	0.8267 lb/hr		
Trimethylpentane (2,2,4-)	0.0091% by weight	0.0000 lb/hr	0.0000 tpy	0.0091% by weight	0.0121 lb/hr		
Xylenes	0.3706% by weight	0.0001 lb/hr	0.0006 tpy	0.3706% by weight	0.4900 lb/hr		

NOTES 1. Separator Characteristics: Entire flashable liquids throughput is distributed through V2 separators since V2 separators WILL receive vast majority of

flashable liquids.

Vertical Fixed Roof Tank

Orientation Height/Length 11.17 ft 1.83 ft Diameter Capacity (physical) $220 \, \mathrm{gal}$

Capacity (liquid) 220 gal 100% of physical capacity

2. Liquid input rates:

a. maximum hourly based on operator experience;

220 gal/hr 558 gal/yr

110%

Safety Factor:

b. maximum annual based on operating experience and safety factor; and c. average hourly is just the maximum annual divided by 8,760 hrs/yr.

3. Flash gas density is 110% of the value extracted from TABLE E-0b(ii).

0.0699 lb/scf

Density (TABLE E-0b(ii)):

4. Flash factor extracted from TABLE E-0a(i).

TABLE E-1BB Flash Analysis Maximum Hourly and Annual Emission Estimates

Station ID	CROM-SV-V02B							
Service	Pipeline Liquids							
Liquids Holding Capacity	940 gal			940 gal				
Liquids Input Rate	2,382 gal/yr			940 gal/hr				
Flash Gas Density	0.0769 lb/scf			0.0769 lb/scf				
Flash Factor	328.03 scf/bbl			328.03 scf/bbl				
Flash Gas Rate	18,607 scf/yr			7,342 scfh				
Flash Losses	1,432 lb/yr	Average	Maximum	565 lb/hr	Maximum			
Flash Gas	100.00% by weight	0.1634 lb/hr	0.7158 tpy	100.00% by weight	564.8660 lb/hr			
CO _{2-e}	1039.07% by weight	1.6982 lb/hr	7.4379 tpy	1039.07% by weight	5,869 lb/hr			
CO_2	5.17% by weight	0.0084 lb/hr	0.0370 tpy	5.17% by weight	29.1890 lb/hr			
TOC (Total)	94.73% by weight	0.1548 lb/hr	0.6781 tpy	94.73% by weight	535.0837 lb/hr			
Methane	41.36% by weight	0.0676 lb/hr	0.2960 tpy	41.36% by weight	233.6071 lb/hr			
Ethane	11.68% by weight	0.0191 lb/hr	0.0836 tpy	11.68% by weight	65.9957 lb/hr			
VOC (Total)	41.69% by weight	0.0681 lb/hr	0.2984 tpy	41.69% by weight	235.4808 lb/hr			
HAP (Total)	2.49% by weight	0.0041 lb/hr	0.0178 tpy	2.49% by weight	14.0776 lb/hr			
Benzene	0.5089% by weight	0.0008 lb/hr	0.0036 tpy	0.5089% by weight	2.8744 lb/hr			
Ethylbenzene	0.0275% by weight	0.0000 lb/hr	0.0002 tpy	0.0275% by weight	0.1554 lb/hr			
Hexane (n-)	1.7932% by weight	0.0029 lb/hr	0.0128 tpy	1.7932% by weight	10.1293 lb/hr			
Methanol								
Naphthalene								
Toluene	0.6253% by weight	0.0010 lb/hr	0.0045 tpy	0.6253% by weight	3.5321 lb/hr			
Trimethylpentane (2,2,4-)	0.0091% by weight	0.0000 lb/hr	0.0001 tpy	0.0091% by weight	0.0515 lb/hr			
Xylenes	0.3706% by weight	0.0006 lb/hr	0.0027 tpy	0.3706% by weight	2.0936 lb/hr			
		NOTES						

1. Separator Characteristics: Entire flashable liquids throughput is distributed through V2 separators since V2 separators WILL receive vast majority of flashable liquids.

Orientation Vertical Fixed Roof Tank

Height/Length 10.00 ft
Diameter 4.00 ft
Capacity (physical) 940 gal

Capacity (liquid) 940 gal 100% of physical capacity

2. Liquid input rates:

a. maximum hourly based on operator experience;

940 gal/hr 2,382 gal/yr

110%

b. maximum annual based on operating experience and safety factor; and c. average hourly is just the maximum annual divided by 8,760 hrs/yr.

3. Flash gas density is 110% of the value extracted from TABLE E-0b(ii).

Density (TABLE E-0b(ii)): 0.0699 lb/scf Safety Factor:

4. Flash factor extracted from TABLE E-0a(i).

ATTACHMENT 2: PIPING COMPONENTS FUGITIVE PTE SUPPORTING CALCULATIONS

TABLE H-1Ba Piping Components Hourly and Annual Emission Estimates

Source				CROM-PC-NG				
Service			Gas					
			Natural Gas					
Minimum hours when component purged with inert gas			0 hrs/yr					
Component	Valves	Count	870 components					
		Emission Factor	4.50E-03 kg/hr/component					
	Connectors	Count	4,854 components					
		Emission Factor	2.00E-04 kg/hr/component					
	Flanges	Count	580 components					
		Emission Factor	3.90E-04 kg/hr/component					
	Open-Ended Lines	Count	60 components					
		Emission Factor	2.00E-03 kg/hr/component					
	Pump Seals	Count	0 components					
		Emission Factor	2.40E-03 kg/hr/component					
	Other	Count	93 components		Emissions			
		Emission Factor	8.80E-03 kg/hr/component	Avg. Hourly	Max. Annual	Max. Hourly		
Speciation	CO _{2-e}		2384.96% by weight	318.1202 lb/hr	1,393.3665 tpy	322.9197 lb/hr		
	CO_2		3.41% by weight	0.4544 lb/hr	1.9903 tpy	0.6342 lb/hr		
	TOC (Total)		100.00% by weight	13.3386 lb/hr	58.4232 tpy	13.3386 lb/hr		
	Methane		95.262% by weight	12.7066 lb/hr	55.6550 tpy	12.8914 lb/hr		
	Ethane		12.751% by weight	1.7008 lb/hr	7.4495 tpy	2.6094 lb/hr		
	VOC (Total)		2.198% by weight	0.2932 lb/hr	1.2842 tpy	1.2668 lb/hr		
	VOC (non-HAP)		2.131% by weight	0.2842 lb/hr	1.2450 tpy	1.2370 lb/hr		
	HAP (Total)		0.067% by weight	0.0090 lb/hr	0.0392 tpy	0.0298 lb/hr		
	Benzene		0.018% by weight	2.45E-03 lb/hr	1.07E-02 tpy	1.06E-02 lb/hr		
	Ethylbenzene		0.008% by weight	1.10E-03 lb/hr	4.81E-03 tpy	1.64E-03 lb/hr		
	Hexane (n-)		0.039% by weight	5.20E-03 lb/hr	2.28E-02 tpy	2.98E-02 lb/hr		
	Methanol							
	Naphthalene							
	Toluene		0.021% by weight	2.76E-03 lb/hr	1.21E-02 tpy	9.24E-03 lb/hr		
			0.0070/1 11/	9.18E-04 lb/hr	4.02E-03 tpy	9.24E-04 lb/hr		
	Trimethylpentar	ne (2,2,4-)	0.007% by weight 0.025% by weight	3.34E-03 lb/hr	1.46E-02 tpy	1.39E-02 lb/hr		

^{1.} Emission factors obtained from Table 2-4 (Oil & Gas Production Operations) of Protocol for Equipment Leak Emission Estimates (EPA 453/R-95-017).

The average SOCMI w/o ethylene emission factor is used for pumps in heavy oil service (Table 2-1) since an emission factor isn't provided in Table 2-4.

^{2.} Piping component counts based on design drawings for a similar compressor station.

^{3.} The component type "Other" includes blowdown valves, relief valves, and compressor seals.

^{4.} Weight percents based on gas analysis used to estimate gas release annual emissions (TABLE G-1B). Maximum hourly emissions are based on the worst-case short-term weight percents even though the values are NOT presented.

TABLE H-1Bb Piping Components Hourly and Annual Emission Estimates

Source			CROM-PC-PL					
Service			Light Oil Pipeline Liquids					
		ŀ						
Minimum hours when	n component purged with inert g	gas	0 hrs/yr	T Ipomio Elquida	,			
Component	Valves	Count	123 components					
1		Emission Factor	2.50E-03 kg/hr/component					
	Connectors	Count	593 components	1				
		Emission Factor	2.10E-04 kg/hr/component	1				
	Flanges	Count	303 components					
	_	Emission Factor	1.10E-04 kg/hr/component					
	Open-Ended Lines	Count	60 components					
		Emission Factor	1.40E-03 kg/hr/component					
	Pump Seals	Count	1 components					
		Emission Factor	1.30E-02 kg/hr/component					
	Other	Count	1 components	Emissions				
		Emission Factor	7.50E-03 kg/hr/component	Avg. Hourly	Max. Annual	Max. Hourly		
Speciation	CO _{2-e}		0.96% by weight	0.0121 lb/hr	0.0528 tpy	0.0145 lb/hr		
	CO_2		0.01% by weight	0.0002 lb/hr	0.0007 tpy	0.0002 lb/hr		
	TOC (Total)		99.99% by weight	1.2561 lb/hr	5.5019 tpy	1.5074 lb/hr		
	Methane		0.04% by weight	0.0005 lb/hr	0.0021 tpy	0.0006 lb/hr		
	Ethane		0.09% by weight	0.0011 lb/hr	0.0049 tpy	0.0014 lb/hr		
	VOC (Total)		99.86% by weight	1.2545 lb/hr	5.4949 tpy	1.5054 lb/hr		
	VOC (non-HAP)		85.32% by weight	1.0718 lb/hr	4.6947 tpy	1.2862 lb/hr		
	HAP (Total)		14.54% by weight	0.1827 lb/hr	0.8002 tpy	0.2192 lb/hr		
	Benzene		1.44% by weight	1.81E-02 lb/hr	7.93E-02 tpy	2.17E-02 lb/hr		
	Ethylbenzene		0.48% by weight	5.98E-03 lb/hr	2.62E-02 tpy	7.18E-03 lb/hr		
	Hexane (n-)		1.69% by weight	2.13E-02 lb/hr	9.32E-02 tpy	2.55E-02 lb/hr		
	Methanol							
	Naphthalene							
	Toluene		4.49% by weight	5.64E-02 lb/hr	2.47E-01 tpy	6.77E-02 lb/hr		
	Trimethylpentar	ne (2,2,4-)	0.03% by weight	3.24E-04 lb/hr	1.42E-03 tpy	3.89E-04 lb/hr		
	Xylenes		6.42% by weight		3.53E-01 tpy	9.67E-02 lb/hr		

^{1.} Emission factors obtained from Table 2-4 (Oil & Gas Production Operations) of Protocol for Equipment Leak Emission Estimates (EPA 453/R-95-017).

The average SOCMI w/o ethylene emission factor is used for pumps in heavy oil service (Table 2-1) since an emission factor isn't provided in Table 2-4.

- 3. The component type "Other" includes blowdown valves, relief valves, and compressor seals.
- 4. Weight percents based on composition estimate (TABLE F-0).
- 5. Maximum hourly emissions are based on 120% of the hourly emissions estimated in an effort to be conservative.

^{2.} Piping component counts based on design drawings for a similar compressor station.

TABLE H-1Bc Piping Components Hourly and Annual Emission Estimates

Source			CROM-PC-OIL						
Service			Heavy Oil						
Scrvice				Oil					
Minimum hours wher	n component purged with inert	gas	0 hrs/yr	On I					
Component	Valves	Count	600 components	†					
component	,,	Emission Factor	8.40E-06 kg/hr/component	1					
	Connectors	Count	1,705 components	1					
		Emission Factor	7.50E-06 kg/hr/component						
	Flanges	Count	325 components						
		Emission Factor	3.90E-07 kg/hr/component						
	Open-Ended Lines	Count	0 components						
	'	Emission Factor	1.40E-04 kg/hr/component						
	Pump Seals	Count	35 components	1					
	•	Emission Factor	8.62E-03 kg/hr/component						
	Other	Count	6 components	Emissions					
		Emission Factor	3.20E-05 kg/hr/component	Avg. Hourly	Max. Annual	Max. Hourly			
Speciation	$\mathrm{CO}_{2 ext{-}\mathrm{e}}$								
	CO_2								
	TOC (Total)		100.00% by weight	0.7050 lb/hr	3.0879 tpy	0.8460 lb/hr			
	Methane		, ,		1,5				
	Ethane								
	VOC (Total)		100.00% by weight	0.7050 lb/hr	3.0879 tpy	0.8460 lb/hr			
	VOC (non-HAP)		100.00% by weight	0.7050 lb/hr	3.0879 tpy	0.8460 lb/hr			
	HAP (Total)								
	Benzene								
	Ethylbenzene								
	Hexane (n-)								
	Methanol								
	Naphthalene								
	Toluene								
	Trimethylpentar	ne (2,2,4-)							
	Xylenes								
	-		NOTES						

NOTES

1. Emission factors obtained from Table 2-4 (Oil & Gas Production Operations) of Protocol for Equipment Leak Emission Estimates (EPA 453/R-95-017). The emission factor for pumps in heavy oil service is obtained from Table 2-1.

- Piping component counts based on design drawings for a similar compressor station.
- 3. The component type "Other" includes blowdown valves, relief valves, and compressor seals.
- 4. Weight percents based listed on MSDS.
- 5. Maximum hourly emissions are based on 120% of the hourly emissions estimated in an effort to be conservative.