

Freight Movement and Air Quality

Ellen M. Pierce, Ph.D. SIPRAC August 9, 2012

Connecticut's Freight Movement Study

•Goal is to develop a strategy to reduce emissions associated with freight movement in Connecticut

- •de la Torre Klausmeier Consulting, Inc.
- •Collect information on vehicles and practices
- •Establish 2009 baseline of emissions from freight movement in the state
- •Project emissions for 2020 and 2040
- •Critically evaluate and identify options that could be implemented in CT
- •Project the cost and environmental benefits of identified options
- •Draft Report comments taken until September 6
- •Finalize strategy in September

Executive Summary

- •Freight movement is critical to the economy (3% of CT's jobs)
- •Emissions from freight movement are a significant air pollution concern •Current system is 92% truck based
 - -Congestion issues and road maintenance costs are big
- Business as usual will result in cleaner trucks, but problems and challenges remain
- •Short term win
 - -Idling reductions
- •Lower emissions from transportation needed:
 - -Well maintained trucks, rail and port equipment
 - -Idling reductions
 - -Value added freight shifted to lowest emitting freight movement mode
- •Regional coordination is essential and occurring

Freight Movement Impacts Air Quality

Connecticut's Freight-Related NOx Emissions are Significant*

2008 Total NOx: 91822 tons/year

Mobile - On-Road Gasoline Light Duty Vehicles MOBILE - ON-ROAD DIESEL HEAVY DUTY VEHICLES ■ Mobile - On-Road Diesel Light Duty Vehicles Mobile - Non-Road Equipment - Diesel **MOBILE - COMMERCIAL MARINE VESSELS** Fuel Comb - Residential - Oil Waste Disposal Mobile - Non-Road Equipment - Gasoline Mobile - Non-Road Equipment - Other Fuel Comb - Electric Generation - Coal Fuel Comb - Residential - Natural Gas MOBILE - LOCOMOTIVES Other

Source: EPA 2008 National Emissions Inventory (version 2; released April 10, 2012) * Most emissions from the heavy duty diesel truck, commercial marine and locomotive categories are freight-related.

Health Effects of Ozone and PM_{2.5}

- Ozone & PM_{2.5}: airway irritation; reduced lung capacity; asthma aggravation; permanent lung damage
- PM_{2.5}: irregular heartbeat; heart attacks; premature death in those with heart or lung disease
- Benefits of Attainment: EPA estimates \$2-17 billion for ozone and \$17-35 billion for PM_{2.5}

Health Risks-Cancer

Health Risks-Diesel Associated

Air Quality in CT and throughout the I-95

Corridor Fails to Meet Health-Based Ozone Standard (75 ppb)

Trade and Freight are Regional Issues

I-95 Corridor Coalition, 2008, A 2040 Vision for the I-95 Coalition Region Supporting Economic Growth in a Carbon-Constrained Environment

Freight Flows throughout the Northeast

Modes of Transported Freight in CT

de la Torre Klausmeier Consulting, Inc, "SUMMARY OF TRUCK FREIGHT MOVEMENT IN CONNECTICUT", April 2012

3.2 million VMT per day is attributed to freight movement in Connecticut (2009):

Projected Truck Volumes Nearly Double by 2035

Connecticut Freight VMT Growth

More Freight Will Come through Port of NY

Left of the black line = West Coast has the cost advantage

Right of the black line = East Coast has the cost advantage

(Source: Worley Parsons, Richard West)

Categories of Transported Freight in CT

de la Torre Klausmeier Consulting, Inc, "SUMMARY OF TRUCK FREIGHT MOVEMENT IN CONNECTICUT", April 2012

Predicted Freight Trends through 2040

de la Torre Klausmeier Consulting, Inc, "SUMMARY OF TRUCK FREIGHT MOVEMENT IN CONNECTICUT", April 2012

Congestion Will Get Worse

Figure 7: In this figure, the width of each line represents the volume of truck freight that moves along the indicated corridor: This means that the wider the line, the higher the volume of freight traveling along the corridor:

Reference: NYMTC, The Basics of Freight Transportation in the New York Region

Congestion Delay Costs \$ and Increases

Emissions

Rail Constraints

Capacity Constraints on the NEC

PA Actions Will Reduce Freight Emissions

EPA Initiatives - Highway

Regulation

- **2006:** Low Sulfur Diesel Fuel (< 15 ppm)
- **2007:** Heavy Duty Highway Engines and Vehicles
- **2010:** NO_x and Non-Methane Hydrocarbons
- 2011: Program to Reduce Greenhouse Gas Emissions and Improve Fuel Efficiency of Medium- and Heavy-Duty Vehicles

Voluntary

• 2003: SmartWay program

EPA Initiatives- Ships

- IMO North American Emission Control Area
 - Reduces emissions
 by fuel switching
 (2012-2016)
- EPA Marine Diesel Engine Standards
 - Varies with size
 - Phased in 2012 to
 2017

Regulatory: EPA Rules

- 2008 Locomotive and Marine Emission Standards
- 2008 Locomotive Idle Emissions Standards (new & rebuilt)
- Voluntary:
 - Low emission switch engines (Gen-set, battery)
 - Electric cranes
 - EPA best practices tool under development

Modal Average (g/ton-mile) CO₂ Emissions

Modal Average (g/ton-mile) PM₁₀ Emissions

0.08	0.078		2009							
			2020							
0.06			2040							
	0.04									
0.04										
0.022										
0.02	0.012	0.010								
	0.004 0.00	0.006	0.000 0.000							
0	Trucks	Rail	Commercial Marine Vessels*							
*Commercial M NOTE: Pro	larine Vehicles values are represe pjected emissions reductions wi with engines	ntative of National Average wh Il only occur if older truck, ra s meeting the newer standar	ile other modes are CT specific values. <i>il & marine engines are replaced</i> ds.							
	Reference: dKC de la	Torre Klausmeier Consultin	g, Draft 2012							

Modal Average (g/ton-mile) NO_x Emissions

Reference: dKC de la Torre Klausmeier Consulting, Draft 2012

Every ton-mile of Freight that Moves by Rail Instead of Truck Reduces GHG Emissions by Two-Thirds or More

- 3X more fuel efficient than trucks
- 35% more fuel efficient than marine
- Railroads reduce congestion: a single train can take 280 trucks off the highway

Schmid et al. *Freight Locomotive Emissions Overview*. Chicago Area Locomotive and Railyard Meeting. Midwest Clean Diesel Initiative. July 13, 2010.

Best Freight Practices- Trucks

Idle Reduction Technology

 APUs
 Auto Shut-Off
 Air Brake Maintenance

- Alternate Fuels (CNG,LNG) and Hybrids
- Aerodynamics
- Double Wide Tires
- Retrofits

Best Freight Practices-Ports

- Shore Power & Idle Reduction
- Dredging Using Best Available Technology
- Gate Management
- Infrastructure for CNG & LNG
- Fuel Leakage, Evaporation & Emissions Control
- Clean Freight Handling Equipment (e.g. cranes & forklifts)
- Extension of Rail Spurs
- Harbor Speed Reduction

Standards – The Carrier's Perspective"

Best Freight Practices- Rail

- Early fleet turnover -> use best technology
- Idle reduction
- Low emission switch engines (Gen-set, battery)
- Electric cranes
- EPA best practices tool under development

Strategic Wins

- Decreased Idling
- Clean Trucks
- Remote Inspection of Truck Emission Controls
- Clean Marine Impacts
- Value Added Freight

Control Measures for Freight Movement by Truck

Tons/Day Emission Reductions Benefit

dKC de la Torre Klausmeier Consulting, 2012 Draft

*Replacement is only cost effective with older trucks, the use of which is concentrated at ports.

Freight Movement Costs

Preliminary Conclusions

Cost of Handling

Costs (Time, Energy, Environmental Impact) Are Associated with Each Segment

	Truck Segment "Costs"										
	Road	Rail	road	Distance	Time	Operating Cost	Energy	CO ₂	NOx		
Road Node	Transportation H Road Spoke	ub (Facility) Rail Spoke	Rail Node								
ihip Inputs					🔽 Use	Ship Calculator —	Ship Outpu	uts			
3071 221 7 0.4	Engine HP TEU's per Ship Tons per TEU Engine Efficiency	0.86 128450 3167 13.5	Carbon Content Energy Dens btu/gal Mass Dens gm/gal MPH	5.4 0 0.15 0	gm/hp-hr Out NOx Control I gm/hp-hr Out PM10 Contro	NOx Efficiency PM10 I Efficiency	gm CO2 btu (in) / gm SOX gm NOx gm PM10	/ TEU Mile: TEU Mile: / TEU Mile / TEU Mile: / TEU Mile: / TEU Mile:	: 408 523 : 0.0 : 4.4 e: 0.1	57 04 47 24	
0.8	Load factor (Engine %)	0	Sulfur Content PPM				gm CO2 btu (in) / gm SOX gm NOX gm PM10	Ton Mile: / Ton Mile: / Ton Mile:) /Ton Mile:) /Ton Mile	748 0.0 0.6 e: 0.0	9 01 35 18	
Load Values	Save Values			Done	ancel	Reset to Defaults	NOTE: Pero zero. Examp	centage inp ble: 20.5% v	uts are ent vould be en	ered with a lea tered 0.205	

2009, Rochester Institute Of Technology

Multi-Modal System Requires Systems Analysis

Questions and Comments

Comments by September 6 to: Ellen.Pierce@ct.gov

