GHG Reduction Strategies for Connecticut

Gary Kleiman

Governor's Steering Committee on Climate Change Hartford, CT August 12, 2010

Process

- NESCAUM is supporting CT DEP through a process to focus, prioritize, and assess the many good candidate measures that have been identified to date
 - Several key measures have been quantified in terms of GHG emission reduction potential
- Stakeholder teedback and information will help to analyze these measures in an integrated assessment ramework to provide economic, environmental, and public health benefits, where feasible
- A list of recommended strategies to be published based on these results – by July 2011

This is the focus of the current effort

IRP Process

- IRP analysis is being conducted parallel to GWSA analysis
- Multi-stakeholder process focused on electric system cost, reliability, and environmental performance
- Products from this effort feed into the GWSA process

IRP Process

- 2008 IRP established an approach to planning process with near-term detail + longterm analysis
- 2010 IRP provides analysis of reliability, environmental and economic metrics
- Looks at objectives, drivers, and options
- Sound analytic basis for assessing power sector opportunities

Current work : Identify Measures

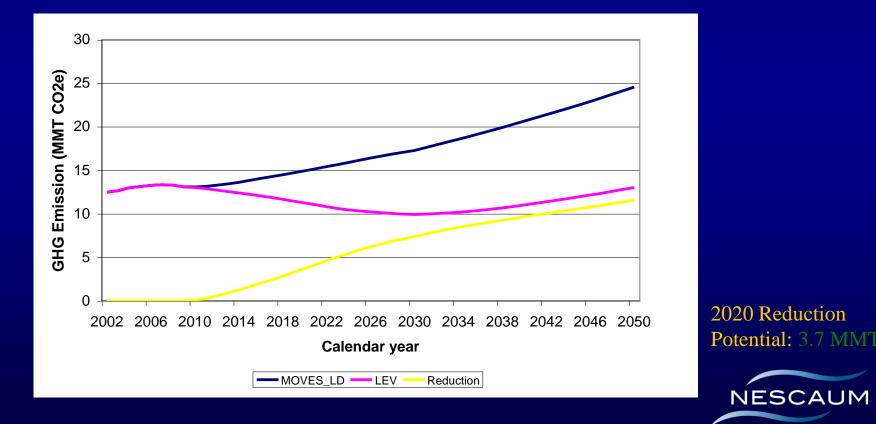
- Initial list of measures has been developed though CT Climate Action Plan, stakeholder dialogue and review of NJ, NY, CA plans.
- Very broad list including about 150 measures spanning all sectors
- Identified key strategies with significant reduction potential that lend themselves to quantification (21 measures in all spanning many sectors)

Scope of Analysis

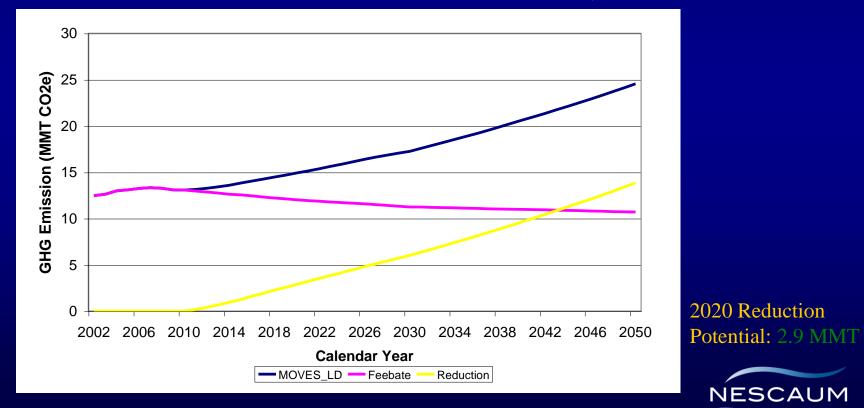
• Identify and quantify several potential reduction opportunities...

BUT!

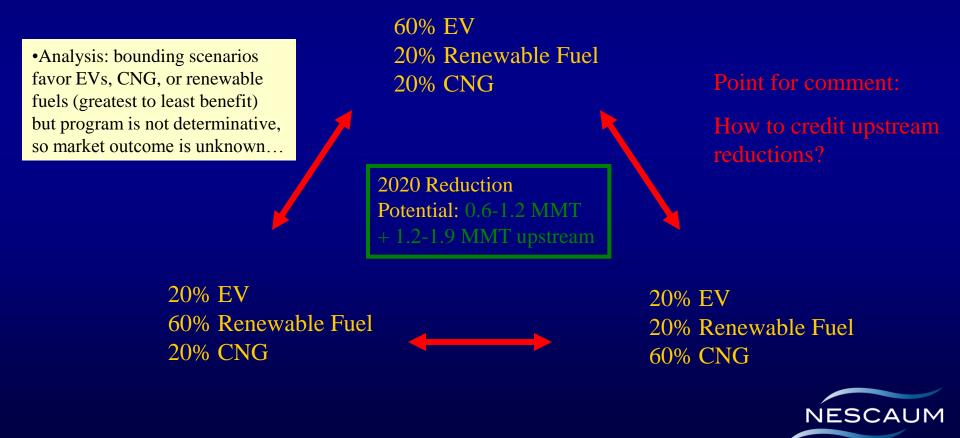
- Many of these identified opportunities overlap and therefore these measures are not necessarily additive
- Some represent sinks or reductions off future projected emissions and so reduction potential can be greater than current emissions



Transportation Measures


California Low Emission Vehicle Programs

- CA LEV II with LDV GHG Standard with extension
 - 27% reduction in fleetwide GHG emissions by 2016
 - Additional 4 percent/year reduction through 2022; then held fixed


California Low Emission Vehicle Programs

- LDV Feebate Program
 - Based on CARB (U. of CA) analysis using CA-footprint (fleet mix) for revenue-neutral \$20/g/mi feebate scenario for developing CTspecific reductions due to consumer response only

Low Carbon Fuels Standard

- Region-wide 10 percent reduction in carbon intensity of transportation fuels; no set compliance path!
- U.S. DOE GREET model provides emission factors

Smart Growth

• Growing Cooler

- National review of program opportunities and potential applied to CT
- Analyzed by type of measure and level of deployment

2020 Reduction Potential: 0.04-0.2 MMT

VMT Reduction/Public Transit

• Moving Cooler

- National review of program opportunities and potential applied to CT
- Analyzed by type of measure and level of deployment

2020 Reduction Potential: 0.04-0.12 MMT

Highway Speed Limit Reduction

- EPA analysis of emissions *increase* for speed limit increases in the 90s was applied to CT-specific highway VMT data by speed bin
 - 65 to 60 mph
 - 65 to 55 mph

2020 Reduction Potential: 0.45-0.9 MMT

Clean Diesels

- 60 Auxiliary Power Units on long-haul CT fleets
- Potential DPF retrofit/replacement program for 50% of CT nonroad IC engines

2020 Reduction APU Potential: 550 MT nonroad Potential: 0.1-0.3 MMT

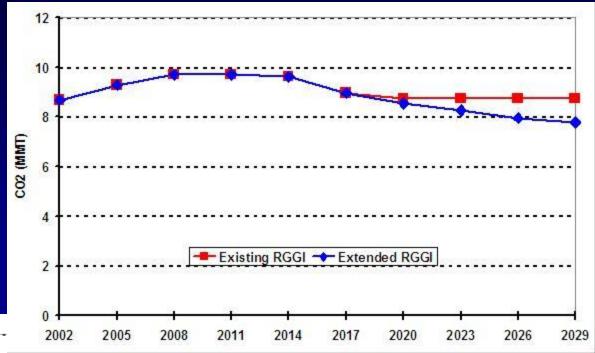
Electric Power Generation

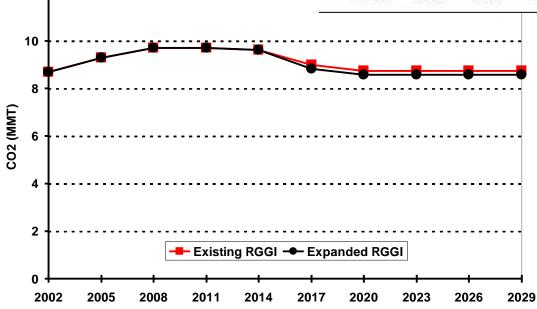
Renewable Portfolio Standard

- Current RPS calls for 27% of electric demand to be serviced by renewable generation by 2020
- Absolute generation and therefore CO2 emissions – are dependent on demand forecasts; relative reduction still valid
- Updated forecasts may change reduction estimate

2020 Reduction Potential: 2.6 MMT

RGGI


- Regional Greenhouse Gas Initiative calls for stabilization between 2009 and 2014; then 10% reduction in CO₂ cap by 2018
- Extend RGGI:
 - Additional 10% reduction of GHG cap by 2028
- Expand RGGI:
 - EGUs >15 MW (current limit is >25 MW)
 - ICI Boilers > 250,000 MMBtu/hr
 - 10% reduction in cumulative emissions between 2014 and 2023; implemented as single cap covering all sources



2020 Reduction Potential: 0.2 MMT (1 MMT in 2030)

12

Expanded RGGI

2020 Reduction Potential: 0.15 MMT

CO₂ Performance Standard

	Integrated Gasification Combined Cycle						Pulverized Coal Boiler				NGCC	
	GE	E	СоР		Shell		PC Subcritical		PC Supercritical		Advanced F Class	
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 9	Case 10	Case 11	Case 12	Case 13	Case 14
CO ₂ Capture	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
Gross Power Output (kW _e)	770,350	744,960	742,510	693,840	748,020	693,555	583,315	679,923	580,260	663,445	570,200	520,090
Auxiliary Power Requirement (kW _e)	130,100	189,285	119,140	175,600	112,170	176,420	32,870	130,310	30,110	117,450	9,840	38,200
Net Power Output (kW _e)	640,250	555,675	623,370	518,240	635,850	517,135	550,445	549,613	550,150	545,995	560,360	481,890
Coal Flowrate (lb/hr)	489,634	500,379	463,889	477,855	452,620	473,176	437,699	646,589	411,282	586,627	N/A	N/A
Natural Gas Flowrate (lb/hr)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	165,182	165,182
HHV Thermal Input (kW _{th})	1,674,044	1,710,780	1,586,023	1,633,771	1,547,493	1,617,772	1,496,479	2,210,668	1,406,161	2,005,660	1,103,363	
Net Plant HHV Efficiency (%)	38.2%	32.5%	39.3%	31.7%	41.1%	32.0%	36.8%	24.9%	39.1%	27.2%	50.8%	43.7%
Net Plant HHV Heat Rate (Btu/kW-hr)	8,922	10,505	8,681	10,757	8,304	10,674	9,276	13,724	8,721	12,534	6,719	7,813
Raw Water Usage, gpm	4,003	4,579	3,757	4,135	3,792	4,563	6,212	14,098	5,441	12,159	2,511	4,681
Total Plant Cost (\$ x 1,000)	1,160,919	1,328,209	1,080,166	1,259,883	1,256,810	1,379,524	852,612	1,591,277	866,391	1,567,073	310,710	564,628
Total Plant Cost (\$/kW) LCOE (mills/kWh) ¹	1,813 78.0	2,390 102.9	1,733 75.3	2,431	1,977 80.5	2,668	1,549	2,895	1,575	2,870	554 68.4	1,172 97.4
				105.7		110.4	64.0	118.8	63.3	114.8		
CO ₂ Emissions (lb/hr)	1,123,781	114,476	1,078,144	131,328	1,054,221	103,041	1,038,110	152,975	975,370	138,681	446,339	44,634
CO ₂ Emissions (tons/year) @ CF ¹	3,937,728	401,124	3,777,815	460,175	3,693,990	361,056	3,864,884	569,524	3,631,301	516,310	1,661,720	166,172
CO ₂ Emissions (tonnes/year) @ CF ¹	3,572,267	363,896	3,427,196	417,466	3,351,151	327,546	3,506,185	516,667	3,294,280	468,392	1,507,496	150,750
CO ₂ Emissions (lb/MMBtu)	197	19.6	199	23.6	200	18.7	203	20.3	203	20.3	119	11.9
CO ₂ Emissions (lb/MWh) ²	1,459	154	1,452	189	1,409	149	1,780	225	1,681	209	783	85.8
CO ₂ Emissions (lb/MWh)°	1,755	206	1,730	253	1,658	199	1,886	278	1,773	254	797	93
SO ₂ Emissions (Ib/hr)	73	56	68	48	66	58	433	Negligible	407	Negligible	Negligible	Negligible
SO ₂ Emissions (tons/year) @ CF ¹	254	196	237	167	230	204	1,613	Negligible	1,514	Negligible	Negligible	Negligible
SO ₂ Emissions (tonnes/year) @ CF ¹	231	178	215	151	209	185	1,463	Negligible	1,373	Negligible	Negligible	Negligible
SO ₂ Emissions (lb/MMBtu)	0.0127	0.0096	0.0125	0.0085	0.0124	0.0105	0.0848	Negligible	0.0847	Negligible	Negligible	Negligible
SO ₂ Emissions (lb/MWh) ²	0.0942	0.0751	0.0909	0.0686	0.0878	0.0837	0.7426	Negligible	0.7007	Negligible	Negligible	Negligible
NOx Emissions (lb/hr)	313	273	321	277	309	269	357	528	336	479	34	34
NOx Emissions (tons/year) @ CF ¹	1,096	955	1,126	972	1,082	944	1,331	1,966	1,250	1,784	127	127
NOx Emissions (tonnes/year) @ CF ¹	994	867	1,021	882	982	856	1,207	1,783	1,134	1,618	115	115
NOx Emissions (lb/MMBtu)	0.055	0.047	0.059	0.050	0.058	0.049	0.070	0.070	0.070	0.070	0.009	0.009
NOx Emissions (Ib/MWh) ²	0.406	0.366	0.433	0.400	0.413	0.388	0.613	0.777	0.579	0.722	0.060	0.066
PM Emissions (lb/hr)	41	41	38	40	37	39	66	98	62	89	Negligible	Negligible
PM Emissions (tons/year) @ CF ¹	142	145	135	139	131	137	247	365	232	331	00	Negligible
PM Emissions (tonnes/year) @ CF ¹	129	132	122	126	119	125	224	331	211	300		Negligible
PM Emissions (lb/MMBtu)	0.0071	0.0071	0.0071	0.0071	0.0071	0.0071	0.0130	0.0130	0.0130	0.0130	00	Negligible
PM Emissions (Ib/MWh) ²	0.053	0.056	0.052	0.057	0.050	0.057	0.114	0.144	0.107	0.134	Negligible	
Hg Emissions (lb/hr)	0.0033	0.0033	0.0031	0.0032	0.0030	0.0032	0.0058	0.0086	0.0055	0.0078	00	Negligible
Hg Emissions (tons/year) @ CF ¹	0.011	0.012	0.011	0.011	0.011	0.011	0.022	0.032	0.020	0.029	00	Negligible
Hg Emissions (tonnes/year) @ CF ¹	0.010	0.011	0.010	0.010	0.010	0.010	0.020	0.029	0.019	0.026		Negligible
Hg Emissions (lb/TBtu)	0.571	0.571	0.571	0.571	0.571	0.571	1.14	1.14	1.14	1.14	00	Negligible
Hg Emissions (lb/MWh) ²	4.24E-06	4.48E-06	4.16E-06	4.59E-06	4.03E-06	4.55E-06	1.00E-05	1.27E-05	9.45E-06	1.18E-05	Negligible	Negligible
¹ Capacity factor is 80% for IGCC cases												

Capacity factor is 80% for IGCC cases and 85% for PC and NGCC cases

² Value is based on gross output

³ Value is based on net output

DOE, NETL: "Cost and Performance Baseline for Fossil Energy Plants", August 2007

~1500 lb/MWh: Coal/Oil out, IGCC/Gas in...

NESCAUM

Residential, Commercial, Industrial Sector

Conservation Funds

- Fiscal Incentives for Energy Efficiency
 - CT Energy Efficiency Fund, Natural Gas Efficiency Fund, and Fuel Oil Conservation Board
 - Assess CO₂ reduction achieved from 2008 expenditures; assume equivalent reductions for equal funding moving forward
 - Agnostic on source of future funding

2020 Reduction Potential: CEEF: 1.0 MMT NGEF: 6,250 <u>MT</u> FOCF: 625 <u>MT</u>

Appliance Standards

- Appliance Standards
 - 50% of new appliances sold in CT must meet EnergyStar[™] or better efficiency ratings by 2014
 - All new appliances sold in CT must meet EnergyStar[™] or better efficiency ratings by 2029

2020 Reduction Potential: 3.0 MMT

Building Codes

- Architecture 2030 Challenge: All new buildings and major renovations meet a standard of 50% reduction in fossil fuel compared to regional average
 - -60% by 2010
 - -70% by 2015
 - 80% by2020
 - -90% by 2025

2020 Reduction Potential: ?? NEED INFORMATION RE: # Construction Permits

- Carbon-neutral buildings by 2030

"Top 20" from Study on CT Energy/Gas Efficiency Potential

- KEMA Consulting/Schlegel et al (2009): Energy Efficiency Potential: Results of Studies by ECMB
- "Top 20" technologies surveyed for residential, commercial, and industrial sector
- Likely overlap with mechanistic approaches already listed (i.e. CEEF)

2020 Reduction Potential: Residential: 1.8 MMT Commercial: 2.2 MMT Industrial: 4.5 MMT

Heat Pumps

- Heating and cooling consume 43% of residential and commercial energy
- Assume that 20% of residential and commercial heating and cooling demand satisfied by ground-source and air-source heat pumps by 2020

2020 Reduction Potential: 2.3 MMT

Weatherization

- Department of Energy eQUEST tool used to assess efficiency savings associated with upgrades to typical Hartford house
- Quantified GHG reductions associated with low-e double pane windows and improved insulation for 50,000 homes in the state

2020 Reduction Potential: Windows: 0.13 MMT Insulation: 1.16 MMT

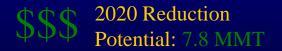
Smart Meters

- Northeast Utilities Pilot Program
 - 1000 smart meters deployed in 2009
 - Provides consumer information on usage
- National study used to assess potential benefits of 50% penetration

2020 Reduction Consumer Info: 0.34 MMT Smart Grid Diagnostics: 0.37 MMT Advanced Voltage Control: 0.17 MMT

High GWP Gas Measures

- Emissions are low now, but projected to grow as HFCs continue to be phased in
- Reductions relative to baseline through recycling and recovery programs in SIT model
- Assume that 50% of current emissions could be captured by 2020



2020 Reduction Potential: 1.5 MMT

District Heating

- Connecticut Academy of Science and Engineering has examined potential for district heating and cooling and CHP
- Identified 11 EGUs in high density locations suitable for district heat/AC
- Assume that half of the waste heat from these facilities could be utilized to offset current heat/AC demand

Waste and Land Use

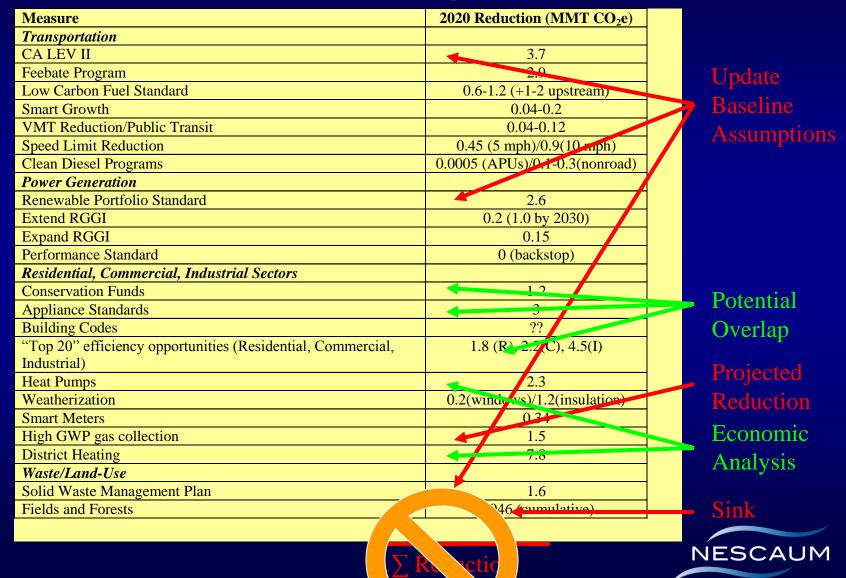
CT Solid Waste Management Plan

- Solid Waste Plan has 8 objectives and 75 strategies that result in diversion of up to 58 percent of solid waste by 2024
- Assess GHG reductions from four scenarios corresponding to different rates of solid waste diversion using EPA WAste Reduction Model (WARM)

2020 Reduction Potential: 1.6 MMT

Forest and Ag Land Preservation

Terrestrial Carbon Sequestration in the Northeast


- The Nature Conservancy, 2007

- Land-use sector in CT is currently an emitter
- Report reviews a number of land-use options (including afforestation of agricultural land and restocking forest lands)
- Stratifies opportunities by cost/ton

Cumulative (over lifetime of forest) Reduction @ <\$7/ton Restocking Forest Land: 0.046 MMT Cumulative (over lifetime of forest) Reduction @ <\$20/ton Agricultural Tillage: varies by county

Summary

Next Steps

- Identify emission targets (2009 GHG Inventory)
- Identify reduction strategies (This document)
- Analyze and recommend strategies (including economic analysis July 2011)
- Report to Assembly on reductions achieved, schedule for policies, and scientific assessment (January 2012)
- Schedule of regulatory actions (July 2012)

THANK YOU!

For Questions:

- Gary Kleiman, NESCAUM
 - gkleiman@nescaum.org (617-909-7092)
- Tracy Babbidge, CT DEP
 - tracy.babbidge@ct.gov (860-424-3382)

