GHG Reduction Strategies for Connecticut

Gary Kleiman

Senior Scientist

gkleiman@nescaum.org

Connecticut SIPRAC Meeting Hartford, CT September 9, 2010

Process

- NESCAUM is supporting CT DEP through a process to focus, prioritize, and assess the many good candidate measures that have been identified to date.
- Several key measures have been quantified in terms of GHG emission reduction potential
 - This is the focus of the current effort
- Stakeholder feedback and information will help to analyze these measures in an integrated assessment framework to provide economic, environmental, and public health benefits, where feasible
 - This is what we want from you!
- A list of recommended strategies to be published based on these results – by July 2011 to achieve target of 6-7 Million Metric Tons (MMT) CO2e by 2020

IRP Process

- IRP analysis is being conducted parallel to GWSA analysis
- Multi-stakeholder process focused on electric system cost, reliability, and environmental performance
- Products from this effort feed into the GWSA process

IRP Process

- 2008 IRP established an approach to planning process with near-term detail + longterm analysis
- 2010 IRP provides analysis of reliability, environmental and economic metrics
- 2010 IRP looks at objectives, drivers, and options
- 2010 IRP provides sound analytic basis for assessing power sector opportunities

Current work : Identify Measures

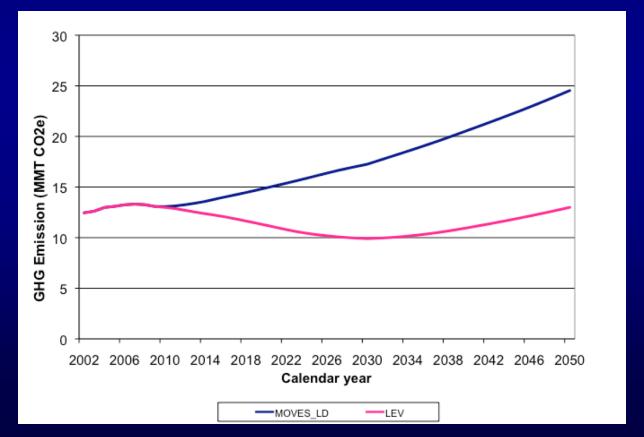
- Initial list of measures has been developed though CT Climate Action Plan, stakeholder dialogue and review of NJ, NY, CA plans.
- Very broad list including about 150 measures spanning all sectors
- Identified key strategies with significant reduction potential that lend themselves to quantification (21 measures in all spanning many sectors)

Scope of Analysis

• Identify and quantify several potential reduction opportunities...

BUT!

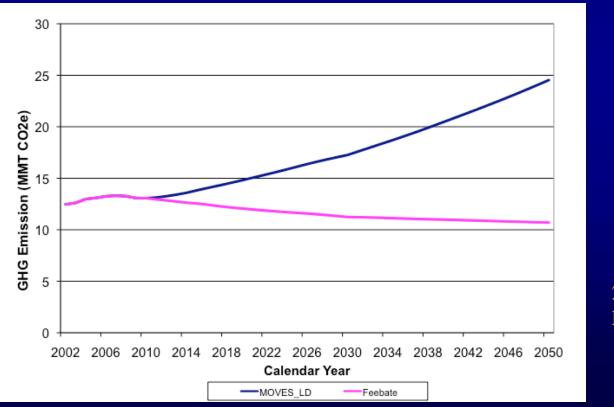
- Many of these identified opportunities overlap and therefore these measures are not necessarily additive
- Some represent sinks or reductions off future projected emissions and so reduction potential can be greater than current emissions



Transportation Measures

California Low Emission Vehicle Program

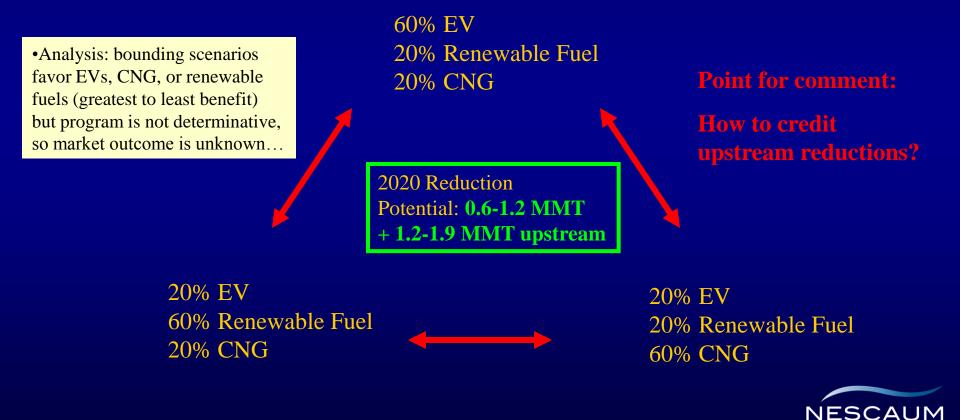
- CA LEV II with LDV GHG Standard with extension
 - 27% reduction in fleetwide GHG emissions by 2016
 - Additional 4 percent/year reduction through 2022; then held fixed



2020 Reduction Potential: **3.7 MMT**

California LDV Feebate Program

 Based on CARB (U. of CA) analysis using CA-footprint (fleet mix) for revenue-neutral \$20/g/mi feebate scenario for developing CT-specific reductions due to consumer response only



2020 Reduction Potential: **2.9 MMT**

Low Carbon Fuels Standard

- Region-wide 10 percent reduction in carbon intensity of transportation fuels; no set compliance path!
- U.S. DOE GREET model provides emission factors

Smart Growth

• Growing Cooler

- National review of program opportunities and potential applied to CT
- Analyzed by type of measure and level of deployment

2020 Reduction Potential: **0.04-0.2 MMT**

VMT Reduction/Public Transit

Moving Cooler

- National review of program opportunities and potential applied to CT
- Analyzed by type of measure and level of deployment

2020 Reduction Potential: **0.04-0.12 MMT**

Highway Speed Limit Reduction

- EPA analysis of emissions *increase* for speed limit increases in the 90s was applied to CT-specific highway VMT data by speed bin
 - 65 to 60 mph
 - 65 to 55 mph

2020 Reduction Potential: **0.45-0.9 MMT**

Clean Diesels

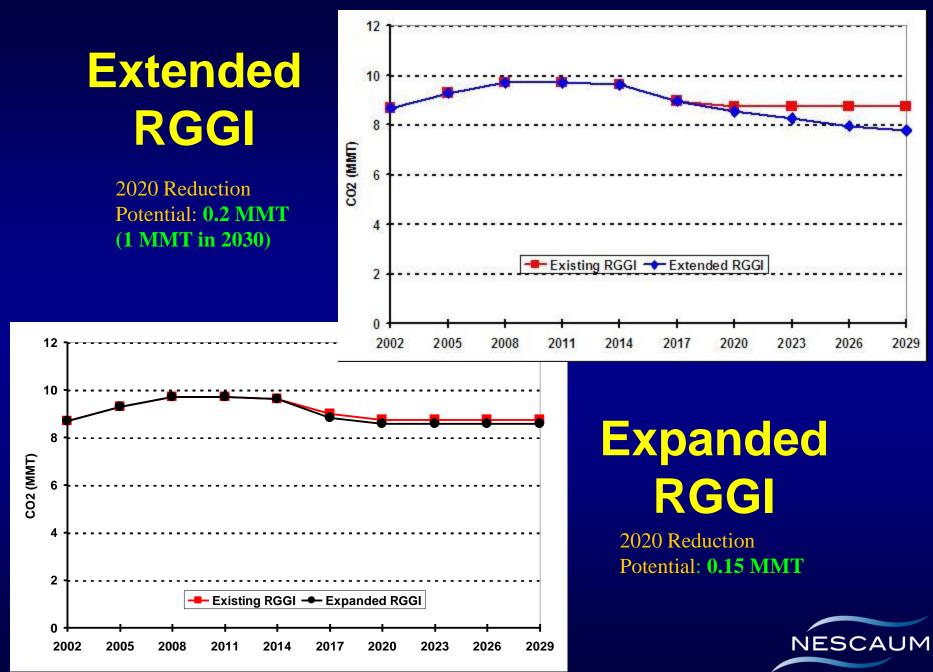
- 60 Auxiliary Power Units on long-haul CT fleets
- Potential DPF retrofit/replacement program for 50% of CT nonroad IC engines

2020 Reduction APU Potential: **550 MT** nonroad Potential: **0.1-0.3 MMT**

Electric Power Generation

Renewable Portfolio Standard

- Current RPS calls for 27% of electric demand to be serviced by renewable generation by 2020
- Absolute generation and therefore CO2 emissions – are dependent on demand forecasts; relative reduction still valid
- Updated forecasts may change reduction estimate


2020 Reduction Potential: **2.6 MMT**

RGGI

- Regional Greenhouse Gas Initiative calls for stabilization between 2009 and 2014; then 10% reduction in CO₂ cap by 2018
- Extend RGGI:
 - Additional 10% reduction of GHG cap by 2028
- Expand RGGI:
 - EGUs >15 MW (current limit is >25 MW)
 - ICI Boilers > 250 MMBtu/hr
 - 10% reduction in cumulative emissions between 2014 and 2023; implemented as single cap covering all sources

CO₂ Performance Standard

- Establishing an output-based CO2 standard for power generation is consistent with EPA approach to stationary source permitting
- DOE, NETL: "Cost and Performance Baseline for Fossil Energy Plants", August 2007 identifies CO2 emission levels for new clean technologies
- ~1500 lb/MWh (gross output) would prevent new coal/oil, but allow IGCC and cleaner

2020 Reduction Potential: **No net reductions**

NESCAUM

Residential, Commercial, Industrial Sector

Conservation Funds

- Fiscal Incentives for Energy Efficiency
 - CT Energy Efficiency Fund, Natural Gas Efficiency Fund, and Fuel Oil Conservation Board
 - Assess CO₂ reduction achieved from 2008 expenditures; assume equivalent reductions for equal funding moving forward
 - Agnostic on source of future funding

2020 Reduction Potential: CEEF: **1.0 MMT** NGEF: **6,250 <u>MT</u>** FOCF: **625 <u>MT</u>**

Appliance Standards

- Appliance Standards
 - 50% of new appliances sold in CT must meet EnergyStar[™] or better efficiency ratings by 2014
 - All new appliances sold in CT must meet EnergyStar[™] or better efficiency ratings by 2029

2020 Reduction Potential: **3.0 MMT**

Building Codes

- Architecture 2030 Challenge: All new buildings and major renovations meet a standard of 50% reduction in fossil fuel compared to regional average
 - 60% by 2010
 - 70% by 2015
 - 80% by2020
 - 90% by 2025

2020 Reduction Potential: ?? NEED INFORMATION RE: # Construction Permits

- Carbon-neutral buildings by 2030

"Top 20" from Study on CT Energy/Gas Efficiency Potential

- KEMA Consulting/Schlegel et al (2009): Energy Efficiency Potential: Results of Studies by ECMB
- "Top 20" technologies surveyed for residential, commercial, and industrial sector
- Likely overlap with mechanistic approaches already listed (i.e. CEEF)

2020 Reduction Potential: Residential: **1.8 MMT** Commercial: **2.2 MMT** Industrial: **4.5 MMT**

Heat Pumps

- Heating and cooling consume 43% of residential and commercial energy
- Assume that 20% of residential and commercial heating and cooling demand satisfied by ground-source and air-source heat pumps by 2020

2020 Reduction Potential: **2.3 MMT**

Weatherization

- Department of Energy eQUEST tool used to assess efficiency savings associated with upgrades to typical Hartford house
- Quantified GHG reductions associated with low-e double pane windows and improved insulation for 50,000 homes in the state

2020 Reduction Potential: Windows: **0.13 MMT** Insulation: **1.16 MMT**

Smart Meters

- Northeast Utilities Pilot Program
 - 1000 smart meters deployed in 2009
 - Provides consumer information on usage
- National study used to assess potential benefits of 50% penetration

2020 Reduction Consumer Info: **0.34 MMT** Smart Grid Diagnostics: **0.37 MMT** Advanced Voltage Control: **0.17 MMT**

High GWP Gas Measures

- Emissions are low now, but projected to grow as HFCs continue to be phased in
- Reductions relative to baseline through recycling and recovery programs in SIT model
- Assume that 50% of current emissions could be captured by 2020

2020 Reduction Potential: **1.5 MMT**

District Heating

- Connecticut Academy of Science and Engineering has examined potential for district heating and cooling and CHP
- Identified 11 EGUs in high density locations suitable for district heat/AC
- Assume that half of the waste heat from these facilities could be utilized to offset current heat/AC demand

Waste and Land Use

CT Solid Waste Management Plan

- Solid Waste Plan has 8 objectives and 75 strategies that result in diversion of up to 58 percent of solid waste by 2024
- Assess GHG reductions from four scenarios corresponding to different rates of solid waste diversion using EPA WAste Reduction Model (WARM)

2020 Reduction Potential: **1.6 MMT**

Forest and Ag Land Preservation

Terrestrial Carbon Sequestration in the Northeast

- The Nature Conservancy, 2007
- Land-use sector in CT is currently an emitter
- Report reviews a number of land-use options (including afforestation of agricultural land and restocking forest lands)
- Stratifies opportunities by cost/ton

Cumulative (over lifetime of forest) Reduction @ <\$7/ton Restocking Forest Land: **0.046 MMT** Cumulative (over lifetime of forest) Reduction @ <\$20/ton Agricultural Tillage: **varies by county**

Measure	2020 Reduction (MMT CO ₂ e)	
Transportation		
CA LEV II	3.7	
Feebate Program	2.9	Update
Low Carbon Fuel Standard	0.6-1.2 (+1-2 upstream)	—
Smart Growth	0.04-0.2	Baseline
VMT Reduction/Public Transit	0.04-0.12	Assumptions
Speed Limit Reduction	0.45 (5 mph)/0.9(10 mph)	Assumptions
Clean Diesel Programs	0.0005 (APUs)/0.1-0.3(nonroad)	
Power Generation		
Renewable Portfolio Standard	2.6	
Extend RGGI	0.2 (1.0 by 2030)	
Expand RGGI	0.15	
Performance Standard	0 (backstop)	
Residential, Commercial, Industrial Sectors		
Conservation Funds	1-2 (electric); 0.006-0.012 (gas);	
	0.001-0.002 (oil)	- Potential
Appliance Standards	3	
Building Codes	?7	Overlap
"Top 20" efficiency opportunities (Residential, Commercial,	1.8 (R), 2.2(C), 4.5(I)	Projected
Industrial)		
Heat Pumps	2.3	Reduction
Weatherization	0.2(windows)/1.2(insulation)	
Smart Meters	0.34	Economic
High GWP gas collection	1.5	
District Heating	8.1	Analysis
Waste/Land-Use		
Solid Waste Management Plan		Sink
Fields and Forests	9.046 cun uve)	- Sink
		NESCAUM

Next Steps

- Identify emission targets (2009 GHG Inventory)
- Identify reduction strategies (This document)
- Analyze and recommend strategies (including economic analysis and analysis of <u>federal</u> <u>measures</u> that contribute to goal – July 2011)
- Report to Assembly on reductions achieved, schedule for policies, and scientific assessment (January 2012)
- Schedule of regulatory actions (July 2012)

NESCAUM

THANK YOU!

Comments Due: Tuesday, October 12: c4info@ctclimatechange.com

For Questions:

- Gary Kleiman, NESCAUM
 - gkleiman@nescaum.org (617-909-7092)
- Tracy Babbidge, CT DEP
 - tracy.babbidge@ct.gov (860-424-3382)

