Attachment G

STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

Gina McCarthy Commissioner

Bureau of Air Management

2002 PERIODIC OZONE AND CARBON MONOXIDE EMISSIONS INVENTORY

DECEMBER, 2005

79 Elm Street Hartford, CT 06106

STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

Gina McCarthy Commissioner

Bureau of Air Management

2002 PERIODIC OZONE AND CARBON MONOXIDE EMISSIONS INVENTORY

Narrative

DECEMBER, 2005

79 Elm Street Hartford, CT 06106

The Department of Environmental Protection is an affirmative action/equal opportunity employer. In conformance with the Americans with Disabilities Act of 1990 individuals with disabilities who need information in an alternative format, to allow them to benefit and/or participate in the agency's programs and services, should call TDD (860) 424-3000 and make their request to the receptionist. Requests for accommodations to attend meetings and/or educational programs, sponsored by the DEP, must be made at least two weeks prior to the program date. These requests may be made directly to Marcia Z. Bonitto, ADA Coordinator, via e-mail: Marcia.Bonitto@po.state.ct.us.

TABLE OF CONTENTS2002 PERIODIC INVENTORY

SECTION 1 - BACKGROUND AND EMISSION SUMMARY	
1.1 INTRODUCTION	
1.1.1 Type of Inventory, Pollutants, and Source Categories	
1.1.2 Geographic Areas	
1.1.3 Agencies/Contacts Responsible for Inventory	
1.1.4 Basic Assumptions/Issues	
1.2 TYPICAL DAY TEMPERATURE DETERMINATION	
1.2.1 Ozone	
1.2.2 Carbon Monoxide	
1.3 EMISSIONS SUMMARY	

SECTION 2 - STATIONARY POINT SOURCES

2.1 INTRODUCTION	
2.2 IDENTIFICATION OF 2002 POINT SOURCES	
2.3 DOCUMENTING THE EMISSION ESTIMATION PROCEDURES	
2.4 EMISSION SUMMARY TABLES	
2.5 QUALITY CONTROL PROCEDURES	
2.6 REFERENCES FOR SECTION 2	2 - 19

SECTION 3 - MOBILE SOURCES

3.1 INTRODUCTION	
3.2 Highway Vehicles	
3.2.1 Traffic Data	
3.2.2 MOBILE6	
3.3 NONROAD MOBILE SOURCES	
3.4 AIRCRAFT	
3.5 COMMERCIAL MARINE VESSELS	
3.6 LOCOMOTIVES	
3.7 REFERENCES	

SECTION 4 - AREA SOURCES	
4.1 INTRODUCTION	
4.2 GASOLINE DISTRIBUTION LOSSES	
4.2.1 Tank Truck Unloading	
4.2.2 Vehicle Fueling and Underground Tank Breathing	
4.2.3 Gasoline Trucks in Transit	
4.2.4 Barge loading/Unloading	
4.2.5 Aircraft Refueling	

4.3 STATIONARY SOURCE SOLVENT EVAPORATION	
4.3.1 Dry Cleaning	
4.3.2 Surface Cleaning	
4.3.3 Surface Coating	
4.3.3.1 Architectural Coating	
4.3.3.2 Automobile Refinishing	
4.3.3.3 Traffic Markings	
4.3.3.4 Industrial Surface Coating	
4.3.4 Graphic Arts	
4.3.5 Asphalt Paving	
4.3.6 Asphalt Roofing Kettles and Tankers	
4.3.7 Agricultural Pesticide Application	
4.3.8 Commercial/Consumer Solvent Use	
4.4 WASTE MANAGEMENT PRACTICES	
4.4.1 Publicly Owned Treatment Works (POTWs)	
4.4.2 Package Plants (Wastewater Treatment)	
4.4.3 Industrial Wastewater Treatment and Hazardous Waste Treatment	
Storage and Disposal Facilities (TSDF)	
4.4.4 Municipal Solid Waste Landfills	
4.4.5 Solid Waste Incineration	
4.4.5.1 On-Site Incineration	
4.4.5.2 Open Burning	
4.5 SMALL STATIONARY SOURCE FUEL USE	
4.5.1 Residential Fuel Use	
4.5.2 Commercial/Institutional Fuel Use	
4.5.3 Industrial Fuel Use	
4.5.4 Other Fuel Consumption	
4.6 OTHER AREA SOURCES	
4.6.1 Forest Fires	
4.6.2 Slash Burning and Prescribed Burning	
4.6.3 Agricultural Burning	
4.6.4 Structure Fires	
4.6.5 Orchard Heaters	
4.6.6 Leaking Underground Storage Tanks	
4.6.7 Spills	
4.6.8 Breweries	
4.6.9 Wineries	
4.6.10 Distilleries	
4.6.11 Bakeries	
4.6.12 Synthetic Organic Chemical Storage Tanks	
4.6.13 Barge, Tank Truck, Rail Car, and Drum Cleaning	
4.7 REFERENCES FOR SECTION 4	

SECTION 5 - BIOGENIC SOURCES	5	-	1	
5.2 REFERENCES FOR SECTION 5	. 5	- '	3	

6.1 INTRODUCTION 6-1 6.2 PURPOSE AND INTENTION OF THE QA/QC PLAN 6-1 6.3 ORGANIZATION OF EMISSIONS INVENTORY AND QA/QC PROGRAM6 - 2 6.4 6.4 TECHNICAL PROCEDURES 6-5 6.4.1 Task Planning 6-5 6.4.2 Data Collection and Analysis 6-6 6.4.3 Data Handling 6-6 6.4.4 Data Reporting 6-6 6.4.4 Data Reporting 6-6 6.5 QA/QC PROCEDURES 6-6 6.6 POINT SOURCE QA/QC AUDIT 6-7 6.6.1 Introduction 6-7 6.6.2 Manual VOC Calculations 6-7 6.6.3 Manual NOx Calculations 6-9 6.6.4 Manual CO Calculations 6-9 6.6.5 Level II Quality Review Checklist 6-9 6.6.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories 6-12 6.7 AREA SOURCE QA/QC AUDIT 6-13 6.7.1 Introduction 6-13 6.7.2 Manual Calculations 6-14 6.7.3 Level II Quality Review Checklist 6-14 6.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories 6-14 6.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories 6-16 6.8.1 Introduction <t< th=""><th>SECTION 6 - OUALITY ASSURANCE</th><th>6-1</th></t<>	SECTION 6 - OUALITY ASSURANCE	6-1
62 PURPOSE AND INTENTION OF THE QA/QC PLAN 6 - 1 63 ORGANIZATION OF EMISSIONS INVENTORY AND QA/QC PROGRAM 6 - 2 64 TECHNICAL PROCEDURES 6 - 5 64.1 Task Planning 6 - 5 64.2 Data Collection and Analysis 6 - 6 64.3 Data Handling 6 - 6 64.4 Data Reporting 6 - 6 65.4 Data Handling 6 - 6 6.5 QA/QC PROCEDURES 6 - 6 6.5 QA/QC PROCEDURES 6 - 6 6.6 POINT SOURCE QA/QC AUDIT 6 - 7 6.6.1 Introduction 6 - 7 6.6.2 Manual VOC Calculations 6 - 8 6.6.4 Manual VOC Calculations 6 - 8 6.6.4 Manual NOX calculations 6 - 12 6.5 Level II Quality Review Checklist 6 - 12 6.7 AREA SOURCE QA/QC AUDIT 6 - 13 6.7.1 Introduction 6 - 13 6.7.2 Manual Calculations 6 - 14 6.7.3 Level II Quality Review Checklist 6 - 14 6.7.4 Comparison to MANE-VU	6 1 INTRODUCTION	6 - 1
6.3 ORGANIZATION OF EMISSIONS INVENTORY AND QA/QC PROGRAM6 - 2 6.4 TECHNICAL PROCEDURES	6.2 PURPOSE AND INTENTION OF THE OA/OC PLAN	6-1
6.4 TECHNICAL PROCEDURES6 - 56.4.1 Task Planning6 - 56.4.2 Data Collection and Analysis6 - 66.4.3 Data Handling6 - 66.4.4 Data Reporting6 - 66.4.4 Data Reporting6 - 66.5 QA/QC PROCEDURES6 - 66.6 POINT SOURCE QA/QC AUDIT6 - 76.6.1 Introduction6 - 76.6.2 Manual VOC Calculations6 - 76.6.3 Manual NOX Calculations6 - 86.6.4 Manual CO Calculations6 - 96.6.5 Level II Quality Review Checklist6 - 96.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.9 REFERENCES FOR SECTION 66 - 20	6 3 ORGANIZATION OF EMISSIONS INVENTORY AND OA/OC PRO	GRAM 6-2
6.4.1 Task Planning6 - 56.4.2 Data Collection and Analysis6 - 66.4.3 Data Handling6 - 66.4.4 Data Reporting6 - 66.4.4 Data Reporting6 - 66.5 QA/QC PROCEDURES6 - 66.5 QA/QC PROCEDURES6 - 66.6 POINT SOURCE QA/QC AUDIT6 - 76.6.1 Introduction6 - 76.6.2 Manual VOC Calculations6 - 76.6.3 Manual NOx Calculations6 - 76.6.4 Manual CO Calculations6 - 96.6.5 Level II Quality Review Checklist6 - 96.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 126.7 AREA SOURCE QA/QC AUDIT6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 166.8.3 Aircraft Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.9.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 186.9.8 Commercial Manual Calculations6 - 176.8 Level II Quality Review Checklist6 - 186.9 REFERENCES FOR SECTION 66 - 20	64 TECHNICAL PROCEDURES	6-5
6.4.2 Data Collection and Analysis6 - 66.4.3 Data Handling6 - 66.4.4 Data Reporting6 - 66.4.4 Data Reporting6 - 66.5 QA/QC PROCEDURES6 - 66.6 POINT SOURCE QA/QC AUDIT6 - 76.6.1 Introduction6 - 76.6.2 Manual VOC Calculations6 - 76.6.3 Manual NOX Calculations6 - 86.6.4 Manual CO Calculations6 - 96.6.5 Level II Quality Review Checklist6 - 96.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 126.7.3 Level II Quality Review Checklist6 - 136.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.8.4 MOBILE SOURCE QA/QC AUDIT6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.4.1 Task Planning	6-5
6.4.3 Data Handling6 - 66.4.4 Data Reporting6 - 66.5 QA/QC PROCEDURES6 - 66.5 QA/QC PROCEDURES6 - 76.6.1 Introduction6 - 76.6.2 Manual VOC Calculations6 - 76.6.3 Manual NOX Calculations6 - 76.6.4 Manual CO Calculations6 - 86.6.5 Level II Quality Review Checklist6 - 96.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 126.7 AREA SOURCE QA/QC AUDIT6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.4.2 Data Collection and Analysis	б-б
6.4.9 Data Hamming6 - 66.4.4 Data Reporting6 - 66.5 QA/QC PROCEDURES6 - 66.6 POINT SOURCE QA/QC AUDIT6 - 76.6.1 Introduction6 - 76.6.2 Manual VOC Calculations6 - 76.6.3 Manual NOx Calculations6 - 76.6.4 Manual CO Calculations6 - 96.6.5 Level II Quality Review Checklist6 - 96.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 126.7 AREA SOURCE QA/QC AUDIT6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.5 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.9 REFERENCES FOR SECTION 66 - 20	6 4 3 Data Handling	6-6
6.7.4 Data Reporting6 - 06.5 QA/QC PROCEDURES6 - 66.6 POINT SOURCE QA/QC AUDIT6 - 76.6.1 Introduction6 - 76.6.2 Manual VOC Calculations6 - 76.6.3 Manual NOX Calculations6 - 86.6.4 Manual CO Calculations6 - 96.6.5 Level II Quality Review Checklist6 - 96.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 126.7 AREA SOURCE QA/QC AUDIT6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.1.4 Data Reporting	
6.5 QAQC TROCED OALS6 – 76.6 POINT SOURCE QA/QC AUDIT6 – 76.6.1 Introduction6 – 76.6.2 Manual VOC Calculations6 – 76.6.3 Manual NOX Calculations6 – 86.6.4 Manual CO Calculations6 – 96.6.5 Level II Quality Review Checklist6 – 96.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 – 126.7 AREA SOURCE QA/QC AUDIT6 – 136.7.1 Introduction6 – 136.7.2 Manual Calculations6 – 146.7.3 Level II Quality Review Checklist6 – 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 – 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 – 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 – 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 – 166.8.1 Introduction6 – 166.8.2 Highway Vehicles Manual Calculations6 – 176.8.4 Commercial Manual Calculations6 – 176.8.5 Locomotive Manual Calculations6 – 176.8.6 Level II Quality Review Checklist6 – 186.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 – 186.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 – 186.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 – 186.9 REFERENCES FOR SECTION 66 – 20	$6.5 \cap A / OC PROCEDURES$	
6.6.1 Introduction6 - 76.6.2 Manual VOC Calculations6 - 76.6.3 Manual NOX Calculations6 - 86.6.4 Manual CO Calculations6 - 96.6.5 Level II Quality Review Checklist6 - 96.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 126.7 AREA SOURCE QA/QC AUDIT6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 166.8.3 Aircraft Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.7 6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.6 POINT SOURCE OA/OC AUDIT	
6.6.1 Introduction6 - 76.6.2 Manual VOC Calculations6 - 76.6.3 Manual NOx Calculations6 - 96.6.4 Manual CO Calculations6 - 96.6.5 Level II Quality Review Checklist6 - 96.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 126.7 AREA SOURCE QA/QC AUDIT6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 166.8.3 Aircraft Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.7 6.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 186.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.6.1 Introduction	
6.0.2 Manual VOC Calculations6 - 76.6.3 Manual NOX Calculations6 - 86.6.4 Manual CO Calculations6 - 96.6.5 Level II Quality Review Checklist6 - 96.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 126.7 AREA SOURCE QA/QC AUDIT6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.6.2 Manual VOC Calculations	
6.6.5 Manual CO Calculations6 - 96.6.4 Manual CO Calculations6 - 96.6.5 Level II Quality Review Checklist6 - 96.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 126.7 AREA SOURCE QA/QC AUDIT6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.6.3 Manual NOv Calculations	
6.6.5 Level II Quality Review Checklist	6.6.4 Manual CO Calculations	6 – 9
6.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 126.7 AREA SOURCE QA/QC AUDIT6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.8 MOBILE SOURCE QA/QC AUDIT6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 166.8.3 Aircraft Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.6.5 Level II Quality Review Checklist	6 – 9
6.0.0 Comparison to MARE-VO 2002 & CT 1999 NEI Inventories6 - 126.7 AREA SOURCE QA/QC AUDIT6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.8 MOBILE SOURCE QA/QC AUDIT6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 176.8.3 Aircraft Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.6.6 Comparison to MANE-VIJ 2002 & CT 1999 NEI Inventories	6 - 12
6.7 I Introduction6 - 136.7.1 Introduction6 - 136.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.8 MOBILE SOURCE QA/QC AUDIT6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 166.8.3 Aircraft Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.7 AREA SOURCE OA/OC AUDIT	6 - 13
6.7.2 Manual Calculations	671 Introduction	6 – 13
6.7.2 Manual Calculations6 - 146.7.3 Level II Quality Review Checklist6 - 146.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 146.8 MOBILE SOURCE QA/QC AUDIT6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 166.8.3 Aircraft Manual Calculations6 - 176.8.4 Commercial Manual Calculations6 - 176.8.5 Locomotive Manual Calculations6 - 176.8.6 Level II Quality Review Checklist6 - 186.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.7.2 Manual Calculations	6 - 14
6.7.5 Level II Quality Review Checklist6.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6.8 MOBILE SOURCE QA/QC AUDIT6.8 MOBILE SOURCE QA/QC AUDIT6.8.1 Introduction6.8.2 Highway Vehicles Manual Calculations6.8.3 Aircraft Manual Calculations6.8.4 Commercial Manual Calculations6.8.5 Locomotive Manual Calculations6.8.6 Level II Quality Review Checklist6.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6.9 REFERENCES FOR SECTION 6	6.7.3 Level II Quality Review Checklist	6 - 14
6.8 MOBILE SOURCE QA/QC AUDIT6 - 166.8.1 Introduction6 - 166.8.2 Highway Vehicles Manual Calculations6 - 166.8.3 Aircraft Manual Calculations6 - 176.8.4 Commercial Manual Calculations.6 - 176.8.5 Locomotive Manual Calculations.6 - 176.8.6 Level II Quality Review Checklist.6 - 186.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories.6 - 186.9 REFERENCES FOR SECTION 66 - 20	6.7.4 Comparison to MANE-VIJ 2002 & CT 1999 NEI Inventories	6 - 14
6.8.1 Introduction	6.8 MOBILE SOURCE OA/OC AUDIT	6 – 16
6.8.1 Hidoduction66.8.2 Highway Vehicles Manual Calculations66.8.3 Aircraft Manual Calculations66.8.4 Commercial Manual Calculations66.8.5 Locomotive Manual Calculations66.8.6 Level II Quality Review Checklist66.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories66.9 REFERENCES FOR SECTION 66	6.8.1 Introduction	6 – 16
6.8.3 Aircraft Manual Calculations	6.8.2 Highway Vehicles Manual Calculations	6 – 16
6.8.4 Commercial Manual Calculations6.8.4 Commercial Manual Calculations6.8.5 Locomotive Manual Calculations6.8.6 Level II Quality Review Checklist6.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories6.9 REFERENCES FOR SECTION 6	6.8.3 Aircraft Manual Calculations	6 - 17
6.8.5 Locomotive Manual Calculations	6.8.4 Commercial Manual Calculations	6 – 17
6.8.6 Level II Quality Review Checklist	6.8.5 Locomotive Manual Calculations	6 – 17
6.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories	6.8.6 Level II Quality Review Checklist	6 - 18
6.9 REFERENCES FOR SECTION 6	6.8.7 Comparison to MΔNE_VU 2002 & CT 1999 NEU Inventories	6 - 18
0.7 KLI EKENCES FOR SECTION $00 - 20$	6 9 REFERENCES FOR SECTION 6	

APPENDIX A	POINT SOURCE TABLES	A - 1
APPENDIX B	MOBILE SOURCE TABLES	B - 1
APPENDIX C	AREA SOURCE TABLES	C – 1

APPENDIX D	OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLISTD –	1
ATTACHMENT A1	ASPHALT PAVING SURVEY A1 -	1
ATTACHMENT B1	CONNECTICUT VMT BY HOURB1 -	1
ATTACHMENT C1	COUNTY LEVEL SPEED DISTRIBUTION OF VMTC1 -	1
ATTACHMENT D1	CONNECTICUT VEHICLE AGE DISTRIBUTION D1 -	1

SECTION 1 BACKGROUND AND EMISSION SUMMARY

1.1 INTRODUCTION

1.1.1 Type of Inventory, Pollutants, and Source Categories

This document presents the 2002 periodic Ozone and Carbon Monoxide State Implementation Plan (SIP) emission inventories for all non-attainment areas within the state of Connecticut. The inventories address reactive volatile organic compounds (VOC), oxides of nitrogen (NOx), and carbon monoxide (CO) emissions from stationary point, stationary area, off-highway mobile, and highway mobile emission sources. Emissions of VOC from biogenic sources are also quantified. Ozone SIP precursor emissions (i.e., VOC, NOx, and CO) are presented for a typical high ozone summer day in units of pounds per day (P/Ds) or tons/day (TPD) and also on an annual basis in units of tons per year (TPY). CO SIP emissions are presented for a typical winter day in units of pounds per winter day (P/Dw) or tons/day (TPD) and, on an annual basis, in units of tons per year (TPY).

1.1.2 Geographic Areas

The emission inventories encompass all areas that were designated by EPA as non-attainment for the new 8-hour ozone standard in the April 30, 2004, Federal Register notice (Vol. 69, FR 23858). In November 1991, EPA had designated Connecticut as non-attainment for the 1-hour ozone standard. The 1-hour ozone standard will be phased out as of June 15, 2005, leaving only the 8-hour standard for ozone. The new 8-hour non-attainment areas will replace the 1-hour non-attainment areas used in previous periodic inventories. Since EPA's national emission inventory only tracks emissions at the county level emissions for the 2002 periodic inventory are provided for each county. County boundaries are presented in Figure 1.1.2-1. To estimate emissions for non-attainment areas Fairfield, New Haven and Middlesex county emissions were used to estimate the Connecticut portion of the NY-NJ-CT Consolidated Statistical Area (CSA) Ozone non-attainment area. The emissions from the remaining counties were aggregated to estimate the Greater Connecticut Ozone non-attainment area. The ozone non-attainment status areas are presented in Figure 1.1.2-2.

In November 1991, EPA designated the Hartford Metropolitan Statistical Area (MSA) and the Connecticut portion of the NY-NJ-CT CSA as CO moderate non-attainment. EPA redesignated the Hartford MSA CO non-attainment area to attainment in 1996, the New Haven-Meriden-Waterbury CO non-attainment area to attainment in 1998, and the Connecticut portion of the NY-NJ-CT CSA CO non-attainment area to attainment in 1999, making the entire state attainment for CO. The Carbon Monoxide attainment areas are presented in Figure 1.1.2-3.

1-2

TABLE 1.1.2 - 1

2002 CARBON MONOXIDE STATUS AREAS

DESCRIPTION OF DESIGNATION/ CO STATUS AREA CLASSIFICATION CT. PORTION OF NY-NJ-CT CSA Attainment/ Fairfield County Maintenance All cities and towns except Shelton Litchfield County Bridgewater and New Milford only HARTFORD MSA Attainment/ Hartford County Maintenance All cities and towns except Hartland Litchfield County Plymouth only Middlesex County Cromwell, Durham, East Hampton, Haddam, Middlefield, Middletown, Portland, East Haddam **Tolland County** Andover, Bolton, Ellington, Hebron, Somers, Tolland, Vernon NEW HAVEN MSA AREA Attainment/ Fairfield County Maintenance Shelton only Litchfield County Bethlehem, Thomaston, Watertown, Woodbury only New Haven County EASTERN ATTAINMENT AREA Attainment/ Middlesex County Unclassifiable All portions except cities and towns in Hartford MSA New London County **Tolland County** All portions except cities and towns in Hartford MSA Windham County NORTHWEST ATTAINMENT AREA Attainment/ Hartford County Unclassifiable Hartland only Litchfield County All portions except cities and towns in Hartford MSA, New Haven MSA, and Ct. Portion of NY-NJ-CT CSA

TABLE 1.1.2 - 2

2002 8-HOUR OZONE STATUS AREAS

DESCRIPTION OF OZONE STATUS AREA

CT. PORTION OF NY-NJ-CT AREA Fairfield County New Haven County Middlesex County

GREATER CONNECTICUT AREA Hartford County Litchfield County New London County Tolland County

Windham County

DESIGNATION/ CLASSIFICATION

Nonattainment/ Moderate

Nonattainment/ Moderate

Figure 1.1.2-2 2002 Connecticut Ozone Attainment Status

Table 1.2.2-32002 Connecticut CO Attainment Status

1.1.3 Agencies/Contacts Responsible for Inventory

The lead agency responsible for the preparation and submittal of the Ozone and CO emission inventories is the Connecticut Department of Environmental Protection (DEP), Bureau of Air Management (the Bureau). The Bureau was directly responsible for the collection of source level activity data, emission factor determination, emission calculations, documentation, and quality assurance. Other DEP Bureaus and State Agencies contributed information necessary for the preparation of emission estimates. The DEP Bureaus of Waste Management, Water Management, and Parks and Forests provided activity level data for the stationary area source inventory. The Connecticut Department of Transportation (CT DOT) provided Vehicle Miles of Travel (VMT) data, daily and seasonal adjustment factor data, and documentation of CT DOT's methodology for VMT estimation for the highway mobile source inventory. The state Department of Motor Vehicles provided vehicle registry data used to determine the age distribution of the vehicle fleet in Connecticut. The Department of Revenue Services provided the amount of gasoline sold monthly in Connecticut. The state Department of Labor (DOL) provided employment data by Standard Industrial Code (SIC) code for determining source activity levels for the stationary area source and off-highway mobile source emission inventories.

The stationary point source inventory was updated to represent calendar year 2002 data. The Bureau utilized its emissions statement program to ascertain fuel use data, process data, and daily and seasonal operating characteristics in order to update emissions from all facilities with actual emissions greater than or equal to 10 tons per year. Connecticut requires permits for all sources with potential emissions greater than or equal to fifteen (15) tons per year.

The contact people for the CT DOT and other major contributors to the inventories are listed in Table 1.1.3 - 1. The data provided by each of these groups, as well as their roles in the development of the base year inventories, are explained in detail in the appropriate source type documentation section.

1.1.4 Basic Assumptions/Issues

EPA procedures have been followed in developing the emission inventories for the SIP. The documents, Procedures for the Preparation of Emission Inventories for Carbon Monoxide and Precursors of Ozone, Volume I: General Guidance for Stationary Sources (EPA-450/4-91-016), known as the procedures document, Emission Inventory Requirements for Ozone Implementation Plans (EPA-450/4-91-010) and Emission Inventory Requirements for Carbon Monoxide State Implementation Plans (EPA-450/4-91-011), known collectively as the Requirements Documents were used to document emission inventory estimates. The Emission Inventory Improvement Program Volume III Area Sources Preferred and Alternative Methods (EPA-454/R-97-004c) and The Emission Inventory Improvement Program Volume V Biogenic Sources Preferred and Alternative Methods (EPA-454/R-97-004c) were also used to document emission inventory estimates. The document Example Documentation Report for 1990 Base Year Ozone and Carbon Monoxide State Implementation Plan Emission Inventories (EPA-450/4-92-007) was used as guidance for the format of the SIP Inventory Document.

Unless otherwise noted in the source type documentation sections, <u>Compilation of Air Pollutant</u> <u>Emissions Factors, Fifth Edition, Volume I</u> (AP-42) emission factors were used to calculate emissions for the stationary point, stationary area, and off-highway mobile source emission inventories. Emission factors generated by the MOBILE6.2 model were used in conjunction with VMT data to generate the highway mobile source inventory.

All point sources are identified by a Source Classification Code (SCC). Sources having SCCs that relate to a particular non-reactive organic compound are deleted from the final point source file by program. All emission factors have been adjusted to exclude methane and ethane and include formaldehyde. These adjustments were made in accordance with EPA guidance issued in a December 19,1991 memorandum from J. David Mobley, Chief of the Emission Inventory Branch of OAQPS titled "Correcting VOC Emission Rates for Ethane and Formaldehyde". The following more commonly known non-reactive compounds have been excluded from the VOC emission inventories:

Acetone Methane Ethane 1,1,1-Trichloroethane (Methyl Chloroform) Methylene Chloride Trichlorofluoromethane (CFC 11) Dichlorodifluoromethane (CFC 12) Chlorodifluoromethane (CFC 22) Trifluoromethane (CFC 23) Trichlorotrifluoroethane (CFC 113) Dichlorotetrafluoroethane (CFC 114) Chloropentafluoroethane (CFC 115) 2,2-Dichloro-1,1,1-trifluoroethane (HCFC 123) 2-Chloro-1,1,1,2-tetrafluoroethane (HCFC 124) Pentafluoroethane (HFC 125) 1,1,2,2-Tetrafluoroethane (HFC 134) 1,1,1,2-Tetrafluoroethane (HFC 134a) 1,1-Dichloro-1-fluoroethane (HCFC 141b) 1-Chloro-1,1-difluoroethane (HCFC 142b) 1,1,1-Trifluoroethane (HFC 143a) 1,1-Difluoroethane (HFC 152a) Perchloroethylene

A complete listing of non-reactive compounds is identified in the CT Regulations for the Abatement of Air Pollution Section 22a-174-1 (97) which have also been excluded from the VOC emission inventory.

A Reid Vapor Pressure (RVP) of 6.9 pounds per square inch (psi) was used for all calculations involving evaporative emissions from the use, sale, or storage of gasoline during the summer months. This value was determined based upon an analysis of EPA's sampling program for the control of RVP. A summary of the EPA's sampling program is presented in Tables 1.1.4 - 1, 1.1.4-2 and 1.1.4-3. There were no wintertime RVP data, therefore, like the 1999 periodic inventory a RVP of 13.8 psi was used for all winter months' emission estimates.

TABLE 1.1.3 - 1LIST OF CONTACT PEOPLE FOR THE OZONE AND CO INVENTORIES

AGENCY	RESPONSIBILITY	CONTACT/PHONE NO.
Department of Environmental Protection Bureau of Air Management	Overall Inventory Planning & Development	William Simpson (860) 424- 3027
79 Elm Street		
Hartford, CT 06106	Mobile Emissions Data and Activity Levels	Steve Potter (860) 424-3027
	Point Emissions Data A and Activity Levels	ndrew Pollak (860) 424-3027
	Area Emissions Data and Activity Levels	Christopher Mulcahy (860) 424-3027
Department of Transportation 2800 Berlin Turnpike Newington, CT 06111	VMT Generation and Other Highway Vehicle Data	Paul Buckley (860) 594-2026

Table 1.1.4-1 RVP Averages for Hartford, CT http://www.epa.gov/otaq/regs/fuels/rfg/properf/hart-ct.htm

Summer	Years & Standards: Simple Model			Phase I Complex		Phase II Complex			
Data	1995	1996	1997	1998	1999	2000	2001	2002	2003
Number of surveys	8	5	5	6	7	6	7	6	6
Average of rvp (psi)	7.88	7.85	7.90	7.91	7.93	6.88	6.77	6.88	6.83

Table 1.1.4-2 RVP Averages for CT - remainder http://www.epa.gov/otaq/regs/fuels/rfg/properf/ct-remain.htm

Summer	Years & Standards: Simple Model			Phase I Complex		Phase II Complex			
Data	1995	1996	1997	1998	1999	2000	2001	2002	2003
Number of surveys		3		2				2	2
Average of rvp (psi)		7.90		7.88				6.91	6.77

Table 1.1.4-3

RVP Averages for CT portion of the NY-NJ-CT CSA

http://www.epa.gov/otaq/regs/fuels/rfg/properf/ny-nj-ct.htm

Summer	Year: Si	s & Stand mple Mod	ards: Iel	Pha Com	ise I iplex		Pha Com	se II plex	
Data	1995	1996	1997	1998	1999	2000	2001	2002	2003
Number of surveys	8	6	5	7	7	8	7	7	7
Average of rvp (psi)	7.91	7.93	7.94	7.98	7.96	6.80	6.78	6.83	6.82

The statewide average summertime RVP for 2002 is as follows:

1.2 TYPICAL DAY TEMPERATURE DETERMINATION

1.2.1 Ozone

EPA guidance specifies the methodology to determine the ambient temperature for the typical high ozone summer day in each non-attainment area. The time periods for the temperature determination were the consecutive three-month periods with the highest frequency of National Ambient Air Quality Standard (NAAQS) exceedance days (June - August) from 2000 through 2002. The ten highest 8-hour ozone concentrations that occurred in the State on unique dates were identified from the <u>Aerometric Information Retrieval System (AIRS) AMP440/Maximum Values Report</u>. Table 1.2.1-1 lists the ten highest 8-hour ozone concentrations on unique days in descending order for Connecticut. The 8-hour ozone values for the entire state were reviewed. Since the 10th and 11th highest ozone days had the same 8-hour ozone concentration, 11 days were used instead of 10.

TABLE 1.2.1-1

STATE OF CONNECTICUT TEN HIGHEST OZONE CONCENTRATIONS ON UNIQUE DAYS 2000 – 2002

_		8-Hour Ozone
Date	Site	Concentration (ppm)
7/2/2002	Madison	0.134
8/7/2001	Madison & Westport	0.133
8/9/2001	Madison	0.126
7/18/2002	Madison	0.126
8/13/2002	East Hartford	0.126
6/10/2000	Groton & Stratford	0.124
6/20/2001	Stafford	0.122
8/14/2002	Danbury	0.120
6/19/2001	Stafford	0.118
7/25/2001	Westport	0.114
8/12/2002	Westport	0.114

Note that 7/9/2002 was a high 8-Hour ozone concentration day, but 7/9/2002 was excluded from design consideration due to the impact of Canadian Wildfires.

The maximum and minimum temperatures, which occurred on the days listed in Table 1.2.1-1, are presented in Table 1.2.1-2. The temperatures for the Greater Connecticut Moderate Non-attainment Area were determined from <u>National Weather Service Local Climatological Data Monthly Summary</u> reports from Bradley International Airport, Windsor Locks Connecticut. The temperatures for the CT portion of NY-NJ-CT CSA were determined from National Virtual Data System Unedited Local Climatological Data from Danbury Municipal Airport, Danbury Connecticut.

TABLE 1.2.1-2 GREATER CONNECTICUT AND CT. PORTION OF NY-NJ-CT CSA HIGH AND LOW DAILY TEMPERATURES FOR THE TEN HIGHEST OZONE CONCENTRATIONS ON UNIQUE DAYS 2000 – 2002

	GREATER CONNECTICUT		CT. POR NY-NJ-	TION OF CT CSA
	Bradley	' Airport	Danbur	y Airport
	Max Temp	Min Temp	Max Temp	Min Temp
Date	(°F)	(°F)	(°F)	(°F)
6/10/2000	92	63	88	58
6/19/2001	88	59	85	57
6/20/2001	91	64	86	67
7/25/2001	98	75	93	75
8/7/2001	98	73	96	72
8/9/2001	102	71	99	68
7/2/2002	97	70	91	72
7/18/2002	94	69	91	67
8/12/2002	94	67	92	62
8/13/2002	98	66	94	66
8/14/2002	99	68	93	67
Avg.	95.5	67.7	91.6	66.5

The calculated average maximum and average minimum temperatures for the eleven dates are 95.5°F and 67.7°F, respectively for the Greater Connecticut Moderate Non-attainment area. The calculated average maximum and average minimum temperatures for the eleven dates are 91.6°F and 66.5°F, respectively for the CT. portion of NY-NJ-CT CSA. The ambient ozone summer day temperature is calculated according to the formula:

Amb Temp =($(2/3)x(avg \max temp - avg \min temp)$) + avg min temp

Amb Temp =
$$((2/3)x(95.5^{\circ}F - 67.7^{\circ}F)) + 67.7F = 86.2^{\circ}F$$

Thus, the typical high ozone summer day temperature, which will be used for calculations throughout

Amb Temp =
$$((2/3)x(91.6^{\circ}F - 66.5^{\circ}F)) + 66.5^{\circ}F = 83.2^{\circ}F$$

this document is 86°F for the Greater Connecticut Moderate Non-attainment Area and 83°F for the CT portion of the NY-NJ-CT CSA.

1.2.2 Carbon Monoxide

EPA guidance specifies the methodology to determine the ambient temperature for the typical Carbon Monoxide (CO) winter day. The time periods for the temperature determination were the consecutive three-month periods with the highest frequency of NAAQS exceedance days (December - February) from 1987 through 1990. The ten highest CO concentrations that occurred in the State on unique dates were identified from the <u>AIRS AMP440/Maximum Values Report</u>. The maximum and minimum temperatures which occurred on those days were determined from <u>National Weather</u> <u>Service Local Climatological Data Monthly Summary</u> reports from Bradley International Airport, Windsor Locks, Connecticut. Table 1.2.2-1 lists the ten highest CO concentrations on unique days in descending order for the Greater Connecticut Moderate Non-attainment Area.

TABLE 1.2.2-1

CO Conc Min Temp Max Temp Date Site (ppm) (^{o}F) (^{o}F) Hartford 45 33 01/18/88 13.1 01/12/88 Hartford 31 0 10.2 01/11/88 Hartford 10.1 27 -14 12/06/89 Hartford 42 9.6 16 12/31/87 Hartford 9.3 35 0 02/07/90 50 29 Hartford 9.3 02/02/88 Stamford 8.6 52 31 30 01/24/90 Hartford 8.6 47 52 28 01/16/90 New Haven 7.2 01/17/90 New Haven 7.1 58 30 18.3 Avg. 43.9

GREATER CONNECTICUT MODERATE NON-ATTAINMENT AREA TEN HIGHEST CARBON MONOXIDE CONCENTRATIONS ON UNIQUE DAYS 1987 - 1990

The calculated average maximum and average minimum temperatures for the ten dates are 43.9°F and 18.3°F, respectively. The ambient CO winter day temperature is calculated according to the formula:

Amb Temp =($(2/3)x(avg \max temp - avg \min temp)$) + avg min temp

Amb Temp = $((2/3)x(43.9^{\circ}F - 18.3^{\circ}F)) + 18.3^{\circ}F = 35.4^{\circ}F$

Thus, the typical high CO winter day temperature which will be used for calculations throughout this document is 35°F for the Greater Connecticut CSA.

1 - 13

For the CT portion of the NY-NJ-CT CSA, New York Department of Environmental Conservation (NYDEC) staff were contacted for their average winter temperatures. We were unable to obtain a listing of the 10 highest CO concentration days from 1988 through 1990, however NYDEC stated that the design value for ambient CO winter temperature they were using for the NY-NJ-CT CSA was 45°F. For the MOBILE6.2 analyses, the typical winter minimum and maximum temperatures were determined to be 33°F and 49°F which results in a MOBILE6.2 calculated ambient temperature of 45°F.

1.3 EMISSIONS SUMMARY

This section presents emissions summaries for all Ozone and CO non-attainment areas within the state of Connecticut. County level emissions data for all pollutants are also presented.

Ozone precursor emissions for a typical summer day and for the year 2002 from Connecticut's <u>moderate</u> non-attainment area, known as the Connecticut portion of the NY-NJ-CT CSA are as follows:

CO emissions = 1	1,292.76 tons per day	CO emissions =	410,018.53 tons per year
VOC emissions =	318.93 tons per day	VOC emissions =	92,522.53 tons per year
NO_x emissions =	197.51 tons per day	NO_x emissions =	60,876.94 tons per year

Ozone precursor emissions for a typical summer day and for the year 2002 from Connecticut's <u>moderate</u> non-attainment area, known as the Greater Connecticut area are as follows:

CO	emissions =	1,119.24	tons per day	CO emissions =	373,562.92	tons per year
VOC	emissions =	425.28	tons per day	VOC emissions =	106,872.08	tons per year
NO_x	emissions =	149.23	tons per day	NO_x emissions =	49,932.11	tons per year

Figures 1.3-1 and 1.3-2 graphically illustrate the relative magnitude of these emissions. Countywide ozone precursor emissions are presented in Table 1.3 - 1.

Ozone precursor emissions are presented by source category for each non-attainment area in Tables 1.3 - 2 and 1.3 - 3. Figures 1.3-1 and 1.3-2 are bar charts showing typical summer day and annual emissions by non-attainment area. Figures 1.3 - 3, 1.3 - 4, and 1.3 - 5 show the relative contributions by source category.

CO emissions for a typical winter day from Connecticut's counties, are as follows:

Fairfield County	CO emissions = 639.84 tons per day
Hartford County	CO emissions = 700.62 tons per day
Litchfield County	CO emissions = 189.47 tons per day
Middlesex County	CO emissions = 173.59 tons per day
New Haven County	CO emissions = 618.31 tons per day
New London County	CO emissions = 289.11 tons per day
Tolland County	CO emissions = 149.39 tons per day
Windham County	CO emissions = 116.40 tons per day

CO emissions are presented by source category for each county in Table 1.3 - 4.

Tables 1.3 - 6, 1.3 - 7, and 1.3 - 8 present CO, VOC, and NOx daily emissions by point and area source categories for the counties, status areas and statewide.

		Emissions	
		(Tons/Year)	
County	СО	VOC	NOX
Fairfield	199,551.02	38,148.67	29,153.53
Hartford	187,886.86	35,539.14	26,184.28
Litchfield	49,371.55	21,691.43	4,296.21
Middlesex	46,718.06	14,755.99	6,955.55
New Haven	163,749.44	39,617.80	24,767.86
New London	72,320.53	23,468.07	11,552.22
Tolland	35,492.45	12,405.54	4,384.53
Windham	28,538.81	13,769.98	3,515.88
State Total	783,628.73	199,396.60	110,810.06

Table 1.3-12002 Ozone Precursor Emissions By CountyIn Tons Per Year

2002 Ozone Precursor Emissions By County In Tons Per Day

County	Typical Summer Day Emissions (Tons/Day)			
	CO	VOC	NOX	
Fairfield	654.36	129.74	90.05	
Hartford	601.91	128.87	77.09	
Litchfield	138.52	92.07	12.39	
Middlesex	138.91	58.69	29.94	
New Haven	499.49	130.50	77.52	
New London	202.43	86.21	36.19	
Tolland	97.85	52.71	13.03	
Windham	78.53	65.42	10.53	
State Total	2,412.00	744.21	346.74	

Table 1.3-2

Source	CO	VOC	NOX	
Stationary point sources	1,535.20	3,857.98	7,729.33	
Stationary area sources	25,807.33	36,911.75	6,434.96	
Off-Highway mobile	162,800.99	17,885.30	12,863.66	
Highway mobile sources	217,441.31	15,751.30	33,699.68	
Biogenic sources	2,433.70	18,116.20	149.30	
Total	410,018.53	92,522.53	60,876.94	

2002 Ozone Precursor Emissions By Source Type In The CT Portion Of The CT-NY-NJ CSA (Fairfield, New Haven, Middlesex Counties)

2002 Daily Emissions CT Portion of The CT-NY-NJ CSA (Fairfield, New Haven, Middlesex Counties)

Source	Typical Summer Day Emissions (Tons/Day)			
	СО	VOC	NOX	
Stationary point sources	10.78	11.29	37.75	
Stationary area sources	7.07	77.07	7.15	
Off-Highway mobile	610.95	57.67	51.64	
Highway mobile sources	648.97	47.28	100.31	
Biogenic sources	14.98	125.63	0.66	
Total	1,292.76	318.93	197.51	

Table 1.3-3

		Emissions (Tons/Year)	
Source	СО	VOC	NOX
Stationary point sources	2,507.63	1,021.14	5,191.90
Stationary area sources	40,251.93	41,692.28	5,856.72
Off-Highway mobile	117,442.25	11,134.78	8,280.36
Highway mobile sources	208,929.41	15,159.78	30,327.92
Biogenic sources	4,431.70	37,864.10	275.20
Total	373,562.92	106,872.08	49,932.11

2002 Ozone Precursor Emissions By Source Type In The Greater Connecticut Area (Hartford, Litchfield, New London, Tolland & Windham Counties)

2002 Daily Emissions Greater CT (Hartford, Litchfield, New London, Tolland & Windham Counties)

Source	Typical Summer Day Emissions (Tons/Day)			
	CO	VOC	NOX	
Stationary point sources	8.91	4.55	19.05	
Stationary area sources	9.44	69.09	6.35	
Off-Highway mobile	446.51	37.21	31.90	
Highway mobile sources	626.44	45.83	90.68	
Biogenic sources	27.94	268.60	1.25	
Total	1,119.24	425.28	149.23	

Greater Connecticut Area (Hartford, Litchfield, New London, Tolland & Windham Counties)

Tons Per Summer Day

Thousands of Tons Per Year

Greater Connecticut Area (Hartford, Litchfield, New London, Tolland & Windham Counties)

Thousands of Tons Per Year

Figure 1.3-3 2002 Ozone Non-Attainment Carbon Monoxide

2002 Ozone Non-Attainment Carbon Monoxide Greater CT Area: 1,119.24 tons/day <u>Highway mobile sources</u> 56.0%

sources <u>39.9%</u> Non-Automotive Transportation; Commercial/ Industrial/Residential Equipment

<u>Stationary area sources</u> <u>0.8%</u> Small Commercial &

Industrial Firms

56.0% Gasoline & Diesel Autos, Trucks & Motorcycles

Biogenic sources 2.5%

Corri; Grasses; Deciduous Trees; Coniferous Trees

Stationary point sources 0.8% Utilities; Industrial & Large Commercial Buildings

Figure 1.3-4 2002 Ozone Non-Attainment Oxides of Nitrogen CT portion of the CT-NY-NJ Area: 197.51 tons/day

2002 Ozone Non-Attainment

Oxides of Nitrogen Greater CT Area: 149.23 tons/day

Figure 1.3-5 2002 Ozone Non-Attainment Volatile Organic Compounds

2002 Ozone Non-Attainment

Volatile Organic Compounds Greater CT Area: 425.28 tons/day

Highway mobile sources <u>10.8%</u> Gasoline & Diesel Autos, Tiucks & Motorcycles

Off-Highway mobile

<u>sources</u> <u>8.7%</u> Non-Automotive Transportation; Commercial/ Industrial/Residential Equipment

<u>Stationary area sources</u> <u>16.2%</u> Small Commercial & Industrial Firms; Residential Paints, Solvents & Fuels <u>Biogenic sources</u> <u>63.2%</u> Com; Grasses; Deciduous Trees; Coniferous Trees

Stationary point sources

<u>1.1%</u> Utilities; Industrial & Large Commercial Buildings

TABLE 1.3 - 4

2002 DAILY WINTER CO EMISSIONS BY COUNTY IN TONS PER DAY

Emissions (Tons/Day)

Source	Fairfield	Hartford	Litchfield	Middlesex
Stationary Point Source	1.64	3.04	0.22	1.72
Stationary Area Source	51.48	57.27	58.56	33.64
Off-Highway Mobile Source	140.58	110.00	27.91	20.56
Highway Mobile Source	446.14	530.31	102.78	117.67
Total	639.84	700.62	189.47	173.59

2002 DAILY WINTER CO EMISSIONS BY COUNTY IN TONS PER DAY

Emissions (Tons/Day)

Source	New Haven	New London	Tolland	Windham
Stationary Point Source	2.00	2.79	0.15	1.12
Stationary Area Source	67.54	54.30	33.30	30.89
Off-Highway Mobile Source	88.68	23.94	8.95	9.79
Highway Mobile Source	460.09	208.08	106.99	74.60
Total	618.31	289.11	149.39	116.4

	VO	С	NOx		СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
STORAGE, TRANSPORTATION AND MARKETING OF VOC								
Gasoline and Crude Oil Storage								
All (except floating roof)	3.35							
Floating Roof	264.33							
Volatile Organic Liquid Storage								
VOL Transfer								
Barge and Tanker Cleaning								
Bulk Gasoline Terminals	1,256.19							
Gasoline Bulk Plants								
Tank Truck Unloading		533.10						
Vehicle Fueling		1,647.54						
Underground Tank Breathing		552.77						
Aircraft Refueling		37.95						
Gasoline Trucks in Transit		75.80						
Leaking Underground Storage Tanks		98.00						
Spills		99.88						
INDUSTRIAL PROCESSES								
Organic Chemical Manufacture	667.16		2.70		0.57		0.58	
SOCMI								
Fugitive		01.55						
SOC Storage Tanks		91.55						
Inorganic Chemical Manufacture		0.51						
Permentation Processes		0.51						
Pharmaceutical Manufacture	1 109 22		4.10		0.96		0.01	
Public Floducts Manufacture	1,108.52		4.10		0.80		0.91	
SBD Pubber Manufacture								
Taxtile Polymers and Pasin Mfg								
Synthetic Fiber Manufacture								
Iron and Steel Manufacture	0.08		1.40		0.29		0.20	
Other	0.08		1.40		0.29		0.27	
ouici	0.54							
INDUSTRIAL SURFACE COATING	696.93	4,420.04	5.30		1.11		0.57	

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Fairfield County

1 - 25

Summary Table Of	2002 VOC, NOx	and CO Emissions	(Lbs/Day with R	RE) For Fairfield	l County			
	VO	C	NOx		СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
NON-INDUSTRIAL SURFACE COATING								
Architectural Coatings		10,658.40						
Auto Refinishing		1,114.50						
Traffic Markings		411.20						
OTHER SOLVENT USE								
Degreasing	63.56	15,667.71						
Dry Cleaning								
Petroleum		59.62						
Graphic Arts		4,481.01						
Adhesives								
Cutback Asphalt Paving		460.40						
Emulsified Asphalt Paving		572.14						
Solvent Extraction Processes	4.00							
Consumer/Commercial Solvent Use		20,601.98						
Other	283.47							
WASTE DISPOSAL								
Municipal Waste								
Combustion	223.61		8,124.84		425.98		416.66	
Landfills		269.59						
TSDFs		508.92						
POTWs		1,906.44						
ITWs								

1 - 26

Table 1.3-6

Table 1.3-6	
Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Fairfield Coun	ity

	VOC		NOx		СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
OTHER STATIONARY SOURCES								
Fuel Combustion								
Utility	280.39		13,126.31		1,860.57		1,799.24	
Industrial	53.20	58.20	1,249.26	1,409.62	594.36	284.34	251.24	284.34
Commercial	8.39	129.79	205.07	3,011.04	94.49	639.88	197.09	1,811.88
Residential		110.92		2,404.24		758.01		5,544.53
Wood Stoves		1,613.18		31.62		2,487.00		94,450.00
Forest Fires		0.00		0.00		0.00		0.00
Structural Fires		135.60		17.26		739.65		641.34
Open Burning		18.68		0.91		227.81		227.81
Slash Burning								
Agricultural Burning								
Orchard Heaters								
Pesticide Applications		3,145.57						
Asphalt Roofing								
Internal Combustion Engines	156.98		2,485.37		616.48		607.11	
COMMERCIAL PROCESSES								
Bakeries	664.26	456.00	52.40		11.32		11.77	
Breweries		0.51						

 Stationary Source
 Total:
 5,734.54
 69,937.46
 25,256.75
 6,874.69
 3,606.04
 5,136.69
 3,285.45

102,959.90

1 - 27

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Fairfield County

-	VC)C	N	Ox	-	CO	Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
MOBILE SOURCES								
Highway Vehicles								
Light Duty Gasoline Vehicle		23,740.29		24,138.88		291,581.66		433,634.24
Light Duty Gasoline Truck 1		12,783.90		16,616.34		201,253.33		316,766.61
Light Duty Gasoline Truck 2		5,879.05		6,837.32		83,005.71		118,709.85
Heavy Duty Gasoline Vehicle		1,201.15		4,501.50		16,660.75		15,629.55
Light Duty Diesel Vehicle		17.95		43.05		47.66		43.66
Light Duty Diesel Truck		48.84		121.74		90.20		82.24
Heavy Duty Diesel Vehicle		1,160.57		39,835.49		6,345.70		5,816.32
Motorcycles		438.52		105.31		1,808.89		1,604.67
Non-Highway Vehicles								
Airport Equipment								
Commercial Equipment		4,053.42		3,296.86		105,677.68		100,959.76
Construction Equipment		5,465.37		30,680.29		43,628.23		16,926.04
Farm Equipment		7.66		54.95		61.50		9.14
Industrial Equipment		2,576.84		10,619.84		41,425.35		41,577.82
Lawn & Garden		28,202.31		5,337.38		449,153.22		114,812.19
Logging Equipment								
Recreational Equipment		688.40		29.79		3,532.66		997.25
Recreational Vessels		17,060.54		1,873.96		39,228.64		1,453.03
Rail		126.74		2,732.17		455.42		450.34
Aircraft		361.10		188.03		5,762.37		3,756.15
Commercial Vessels		100.19		542.01		220.04		220.04
Mobile Source Total:		103,912.83		147,554.89		1,289,938.98		1,173,448.90
DIO GENICO		7 0,000,0 0		120 50		10.000 54		
BIOGENICS		79,899.82		420.59		10,039.56		0.00
Fairfield Total:	5,734.54	253,750.11	25,256.75	154,850.17	3,606.04	1,305,115.23	3,285.45	1,276,408.79

	VO	С	NC)x	C)	Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
STORAGE, TRANSPORTATION AND MARKETING OF VOC								
Gasoline and Crude Oil Storage								
All (except floating roof)	101 40							
Floating Roof	131.48							
Volatile Organic Liquid Storage								
VOL Iransfer								
Barge and Tanker Cleaning	701 74		1474		27.00		10.16	
Bulk Gasoline Terminals	/91./4		14.74		37.29		40.16	
Gasoline Bulk Plants		506 71						
Vahiala Fualing		390.71						
Underground Tank Breathing		618 73						
Aircraft Refueling		101.75						
Gasoline Trucks in Transit		78.52						
Leaking Underground Storage Tanks		113.08						
Spills		339.51						
INDUSTRIAL PROCESSES								
Organic Chemical Manufacture	36.16							
SOCMI Fugitive	20110							
SOC Storage Tanks		350.49						
Inorganic Chemical Manufacture		220113						
Fermentation Processes		1.29						
Pharmaceutical Manufacture								
Plastic Products Manufacture								
Rubber Tire Manufacture								
SBR Rubber Manufacture								
Textile Polymers and Resin Mfg								
Synthetic Fiber Manufacture								
Iron and Steel Manufacture								
Other	0.06		4.30		0.90		0.89	
INDUSTRIAL SURFACE COATING	952.31	6,063.15						

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Hartford County

1 - 29
v	VO	C	NC NC)x	СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
NON-INDUSTRIAL SURFACE COATING								
Architectural Coatings		10,315.06						
Auto Refinishing		1,078.59						
Traffic Markings		397.95						
OTHER SOLVENT USE								
Degreasing	0.52	20,972.17						
Dry Cleaning								
Petroleum		49.94						
Graphic Arts	86.18	4,250.48	21.94		8.18		35.03	
Adhesives	39.60	,						
Cutback Asphalt Paving		109.64						
Emulsified Asphalt Paving		574.70						
Solvent Extraction Processes								
Consumer/Commercial Solvent Use		13,620.89						
Other	2.00	,						
WASTE DISPOSAL								
Municipal Waste								
Combustion	353.74		7,114.02		3,250.02		2,911.58	
Landfills		1,069.36						
TSDFs		319.23						
POTWs		2,298.10						
ITWs		,						

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Hartford County

•	VO	С	NC NC	NOx		0	Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
OTHER STATIONARY SOURCES								
Fuel Combustion								
Utility								
Industrial	47.78	63.52	1,642.53	1,538.47	699.24	310.33	756.43	310.33
Commercial	8.40	154.02	90.00	3,573.24	35.44	759.36	120.57	2,150.18
Residential		121.34		2,550.27		831.10		5,982.71
Wood Stoves		1,501.56		32.97		2,506.20		105,452.00
Forest Fires		6.43		2.93		136.72		61.73
Structural Fires		116.72		14.86		636.66		266.84
Open Burning		26.54		1.29		323.77		323.77
Slash Burning								
Agricultural Burning								
Orchard Heaters								
Pesticide Applications		2,354.42						
Asphalt Roofing								
Internal Combustion Engines	1,134.16		6,546.12		4,089.88		2,207.79	
COMMERCIAL PROCESSES								
Bakeries		1,084.17						
Breweries		1.29						

Table 1.3-6 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Hartford County

Stationary Source Total:

1 - 31

3,584.14

70,752.96

15,433.67

7,714.02

8,120.95 5,504.15 6,072.45 114,547.56

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Hartford County

-	VOC	N	Ox	-	CO	Win	ter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
MOBILE SOURCES								
Highway Vehicles								
Light Duty Gasoline Vehicle		24,798.08		24,993.23		313,926.63		519,041.18
Light Duty Gasoline Truck 1		13,292.75		17,197.82		214,769.30		377,681.45
Light Duty Gasoline Truck 2		6,119.92		7,057.97		88,600.68		139,728.79
Heavy Duty Gasoline Vehicle		1,226.18		4,649.82		17,699.08		16,480.64
Light Duty Diesel Vehicle		18.12		45.74		48.31		44.37
Light Duty Diesel Truck		49.04		129.41		91.03		83.20
Heavy Duty Diesel Vehicle		1,134.23		41,931.96		6,333.58		5,816.10
Motorcycles		463.56		108.62		1,937.41		1,742.42
Non-Highway Vehicles								
Airport Equipment		19.42		176.00		200.15		194.72
Commercial Equipment		3,294.22		2,625.45		85,633.63		79,772.27
Construction Equipment		2,090.67		11,716.25		16,764.85		6,414.84
Farm Equipment		68.87		493.13		555.05		81.48
Industrial Equipment		2,313.32		9,539.25		37,132.45		37,017.54
Lawn & Garden		23,055.68		4,212.68		369,336.45		86,504.66
Logging Equipment								
Recreational Equipment		169.00		61.37		11,309.44		3,062.54
Recreational Vessels		1,473.31		120.63		3,017.58		111.72
Rail		80.66		1,620.58		344.78		336.38
Aircraft		1,416.14		3,691.21		11,005.00		6,462.53
Commercial Vessels		25.47		142.63		50.94		50.94
Mobile Source Total:		81,108.64		130,513.75		1,178,756.35		1,280,627.78
BIOGENICS		102,294.97		511.58		11,430.77		0.00
Hartford Total:	3,584.14	254,156.57	15,433.67	138,739.36	8,120.95	1,195,691.26	6,072.45	1,395,175.34

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Litchfield County

•	VO	С	NO	Dx	Ċ	0	Winte	r CO
	Point	Area	Point	Area	Point	Area	Point	Area
STORAGE, TRANSPORTATION AND MARKETING OF VOC								
Gasoline and Crude Oil Storage All (except floating roof) Floating Roof Volatile Organic Liquid Storage VOL Transfer Barge and Tanker Cleaning Bulk Gasoline Terminals Gasoline Bulk Plants Tank Truck Unloading		213 75						
Vehicle Fueling		685.72						
Underground Tank Breathing		221.63						
Aircraft Refueling		0.03						
Leaking Underground Storage Tanks		22.62						
Spills		58.31						
INDUSTRIAL PROCESSES								
Organic Chemical Manufacture SOCMI Fugitive								
SOC Storage Tanks		14.22						
Fermentation Processes Pharmaceutical Manufacture Plastic Products Manufacture Rubber Tire Manufacture SBR Rubber Manufacture Textile Polymers and Resin Mfg Synthetic Fiber Manufacture Iron and Steel Manufacture		0.25						
Other	192.18		154.50		39.59		40.26	
INDUSTRIAL SURFACE COATING	887.99	847.03	30.44		6.39		7.38	

Summary Table Of	f 2002 VOC, NOx a	and CO Emissions	(Lbs/Day with l	RE) For Litchfiel	d County			
	VO	С	N	Ox	C	0	Winter	СО
	Point	Area	Point	Area	Point	Area	Point	Area
NON-INDUSTRIAL SURFACE COATING								
Architectural Coatings		2,218.20						
Auto Refinishing		231.95						
Traffic Markings		85.58						
OTHER SOLVENT USE								
Degreasing	120.67	3,790.32						
Dry Cleaning								
Petroleum		8.94						
Graphic Arts		932.58						
Adhesives								
Cutback Asphalt Paving		2,209.49						
Emulsified Asphalt Paving		1,253.23						
Solvent Extraction Processes								
Consumer/Commercial Solvent Use		2,550.41						
Other	0.20							
WASTE DISPOSAL								
Municipal Waste								
Combustion	49.47		14.95		34.32		99.01	
Landfills		489.02						
TSDFs		56.43						
POTWs		75.46						
ITWs								

Table 1.3-6

	VO	С	NO	x	C	0	Wint	er CO
	Point	Area	Point	Area	Point	Area	Point	Area
OTHER STATIONARY SOURCES								
Fuel Combustion								
Utility								
Industrial	6.59	12.54	155.23	303.61	92.63	61.24	144.16	61.24
Commercial		18.49		428.97		91.16		258.13
Residential		21.68		515.10		143.92		1,187.75
Wood Stoves		2,435.60		51.75		4,071.40		115,364.00
Forest Fires		2.92		1.33		62.09		22.71
Structural Fires		20.60		2.62		112.35		131.08
Open Burning		8.18		0.40		99.73		99.73
Slash Burning								
Agricultural Burning								
Orchard Heaters		60 L 0 C						
Pesticide Applications		604.26						
Asphalt Roofing			1 45 0 2		1 40 25		140.04	
Internal Combustion Engines	11.44		145.93		140.27		149.04	
COMMERCIAL PROCESSES								
Bakeries		233.14						
Breweries		0.25						

Table 1.3-6 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Litchfield County

Stationary Source Total: 1,268.53

19,338.40

501.04

1,303.79 313.19 4,641.91

117,124.65

439.84

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Litchfield County

-	VO	C	N	Ox	C	20	Wint	er CO
	Point	Area	Point	Area	Point	Area	Point	Area
MOBILE SOURCES								
Highway Vehicles								
Light Duty Gasoline Vehicle		5,225.98		5,038.38		60,230.35		101,170.09
Light Duty Gasoline Truck 1		2,807.02		3,451.33		41,757.47		73,669.41
Light Duty Gasoline Truck 2		1,291.88		1,422.03		17,436.83		27,287.00
Heavy Duty Gasoline Vehicle		183.44		591.27		2,356.62		2,156.67
Light Duty Diesel Vehicle		3.87		8.54		10.10		9.04
Light Duty Diesel Truck		10.55		24.09		19.06		16.97
Heavy Duty Diesel Vehicle		169.72		4,624.78		891.58		804.28
Motorcycles		129.23		30.44		508.83		449.52
Non-Highway Vehicles								
Airport Equipment								
Commercial Equipment		572.56		456.32		14,883.82		13,865.07
Construction Equipment		389.08		2,180.43		3,120.00		1,193.82
Farm Equipment		89.86		643.43		724.22		106.32
Industrial Equipment		555.94		2,285.59		8,945.13		8,917.35
Lawn & Garden		5,453.41		981.23		87,557.19		19,931.64
Logging Equipment		5.03		8.24		30.29		29.20
Recreational Equipment		3,633.74		122.37		12,820.64		11,376.24
Recreational Vessels		2,379.97		194.86		4,874.56		180.47
Rail		13.98		281.10		68.07		66.23
Aircraft		14.56		2.56		441.83		160.73
Commercial Vessels								
Mobile Source Total:		22 929 83		22 346 99		256 676 58		261 390 04
Nobile Source Total.		22,727.05		22,340.77		250,070.50		201,570.04
BIOGENICS		140,606.97		622.48		15,417.58		0.00
Litchfield Total:	1.268.53	182.875.20	501.04	24.273.26	313.19	276.736.07	439.84	378,514.69

Table 1.3-6 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Middlesex County

	VOC			NC	NOx	NOx C	NOx CO	NOx CO Winte
	Point	Area	Poir	nt	nt Area	nt Area Point	nt Area Point Area	nt Area Point Area Point
TORAGE, TRANSPORTATION AND IARKETING OF VOC								
Gasoline and Crude Oil Storage All (except floating roof)								
Volatile Organic Liquid Storage VOL Transfer								
Barge and Tanker Cleaning Bulk Gasoline Terminals Gasoline Bulk Plants								
Tank Truck Unloading Vehicle Fueling		165.40 511.17						
Underground Tank Breathing Aircraft Refueling Gasoline Trucks in Transit		171.50 0.79 17.70						
Leaking Underground Storage Tanks Spills		22.62 25.92						
INDUSTRIAL PROCESSES								
Organic Chemical Manufacture SOCMI								
SOC Storage Tanks Inorganic Chemical Manufacture		22.11						
Fermentation Processes Pharmaceutical Manufacture Plastic Products Manufacture		0.00						
Rubber Tire Manufacture SBR Rubber Manufacture Textile Polymers and Recin Mfg								
Synthetic Fiber Manufacture Iron and Steel Manufacture Other								
INDUSTRIAL SURFACE COATING	852.62	839.99						

Table 1.3-6	
Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Middlesex County	

	VO	С	NOx		C	0	Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
NON-INDUSTRIAL SURFACE COATING								
Architectural Coatings Auto Refinishing Traffic Markings		1,899.04 198.57 73.26						
OTHER SOLVENT USE								
Degreasing Dry Cleaning		3,444.87						
Petroleum		7.45						
Graphic Arts		798.40					5.82	
Adhesives		0.00						
Cutback Asphalt Paving		0.00						
Solvent Extraction Processes		570.80						
Consumer/Commercial Solvent Use		3 091 63						
Other	29.40	5,071.05						
WASTE DISPOSAL								
Municipal Waste								
		25.51						
		23.31						
POTWs		33.88						
ITWs		55.88						
Municipal Waste Combustion Landfills TSDFs POTWs ITWs		25.51 61.69 33.88						

•	VOC		NC NC)x	СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
OTHER STATIONARY SOURCES								
Fuel Combustion								
Utility	571.23		22,005.64		4,872.59		971.67	
Industrial	6.51	11.12	492.09	269.24	80.96	54.31	140.77	54.31
Commercial		20.32		471.42		100.18		283.68
Residential		18.46		444.68		120.82		972.38
Wood Stoves		1,210.72		24.28		1,966.24		65,764.00
Forest Fires		0.11		0.05		2.28		0.00
Structural Fires		19.74		2.51		107.67		121.71
Open Burning		7.09		0.35		86.50		86.50
Slash Burning								
Agricultural Burning								
Orchard Heaters								
Pesticide Applications		416.35						
Asphalt Roofing								
Internal Combustion Engines	273.48		5,475.95		1,194.89		2,330.70	
COMMERCIAL PROCESSES								
Bakeries		199.60						
Breweries		0.00						

Table 1.3-6 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Middlesex County

Stationary Source Total:

1 - 39

1,733.24

13,885.82

27,973.67

1,212.54

6,148.44 2,438.00 3,448.96 67,282.59

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Middlesex County

-	VOC		N	NOx (CO Winter		er CO
	Point	Area	Point	Area	Point	Area	Point	Area
MOBILE SOURCES								
Highway Vehicles								
Light Duty Gasoline Vehicle		5,203.51		5,538.33		70,964.02		115,063.64
Light Duty Gasoline Truck 1		2,794.09		3,860.09		49,303.95		83,787.62
Light Duty Gasoline Truck 2		1,290.95		1,584.86		20,104.34		30,978.21
Heavy Duty Gasoline Vehicle		260.76		1,153.67		4,021.01		3,822.23
Light Duty Diesel Vehicle		3.89		10.80		10.53		9.37
Light Duty Diesel Truck		10.42		30.59		19.70		17.45
Heavy Duty Diesel Vehicle		255.14		10,599.45		1,464.42		1,312.11
Motorcycles		93.04		24.42		368.18		343.23
Non-Highway Vehicles								
Airport Equipment								
Commercial Equipment		539.28		438.62		14,059.68		13,239.21
Construction Equipment		426.42		2,393.72		3,403.94		1,310.34
Farm Equipment		18.25		130.99		146.60		21.64
Industrial Equipment		438.35		1,809.44		7,037.86		7,037.07
Lawn & Garden		4,059.98		746.09		65,038.64		15,545.30
Logging Equipment								
Recreational Equipment		2,065.20		89.37		10,597.97		2,955.78
Recreational Vessels		5,688.44		613.38		12,994.98		479.42
Rail		63.97		895.31		254.35		253.10
Aircraft		16.60		2.22		407.07		161.55
Commercial Vessels		57.73		323.28		115.46		115.46
Mobile Source Total:		23,286.00		30,244.62		260,312.69		276,452.74
BIOGENICS		78,481.21		453.30		8,916.48		0.00
Middleson Total	1 722 04	115 652 02	27 072 67	21 010 46	6 140 44	771 667 17	2 449 06	242 725 22
whomesex 10tal:	1,/33.24	115,055.05	21,913.01	31,910.40	0,148.44	2/1,00/.1/	3,448.90	343,/33.33

·	VO	VOC NOx		CO)	Winter	· CO	
	Point	Area	Point	Area	Point	Area	Point	Area
STORAGE, TRANSPORTATION AND MARKETING OF VOC								
Gasoline and Crude Oil Storage	45.15							
All (except floating roof)	45.17							
Floating Roof	563.18							
Volatile Organic Liquid Storage								
VOL Transfer								
Barge and Tanker Cleaning	4 001 50							
Bulk Gasoline Terminals	4,921.56							
Gasoline Bulk Plants		624.99						
Vahiala Evaling		034.88						
Venicle Fuening		658 21						
Aircraft Defueling		48.41						
Casalina Trucks in Transit		40.41						
Lasking Underground Storage Tenks		08.40 27.60						
Spille		108 53						
Spins		198.55						
INDUSTRIAL PROCESSES								
Organic Chemical Manufacture	4,275.80		7.10		1.22		1.95	
SOCMI								
Fugitive								
SOC Storage Tanks		150.00						
Inorganic Chemical Manufacture								
Fermentation Processes		0.51						
Pharmaceutical Manufacture								
Plastic Products Manufacture	99.46							
Rubber Tire Manufacture								
SBR Rubber Manufacture	414.33							
Textile Polymers and Resin Mfg								
Synthetic Fiber Manufacture					0 = 1		0.44	
Iron and Steel Manufacture	1.29		207.92		8.74		8.41	
Other	948.22		26.11		5.38		3.28	
INDUSTRIAL SURFACE COATING	1,053.38	5,252.84	29.34		6.26		10.05	

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For New Haven County

	VOC		NOx		CO)	Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
NON-INDUSTRIAL SURFACE COATING								
Architectural Coatings		9,938.35						
Auto Refinishing		1,039.20						
Traffic Markings		383.42						
OTHER SOLVENT USE								
Degreasing	35.19	13,562.58						
Dry Cleaning								
Petroleum		46.46						
Graphic Arts	1,463.99	2,714.30	42.32		8.89		8.98	
Adhesives	25.92							
Cutback Asphalt Paving		352.90						
Emulsified Asphalt Paving		364.77						
Solvent Extraction Processes								
Consumer/Commercial Solvent Use		23,903.29						
Other	385.29	,						
WASTE DISPOSAL								
Municipal Waste								
Combustion	134.62		1,458.37		483.16		1,161.01	
Landfills		234.29						
TSDFs		573.13						
POTWs		1,741.89						
ITWs								

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For New Haven County

·	VO	VOC		NOx		0	Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
OTHER STATIONARY SOURCES								
Fuel Combustion								
Utility	356.86		7,755.55		1,621.76		1,946.35	
Industrial	26.31	47.85	1,077.92	1,159.05	358.53	233.80	354.31	233.80
Commercial	54.45	114.15	925.13	2,648.28	452.21	562.79	211.73	1,593.59
Residential		108.13		2,337.76		739.74		5,445.50
Wood Stoves		2,568.20		50.31		3,977.20		126,766.00
Forest Fires		1.07		0.49		22.79		34.94
Structural Fires		128.74		16.38		702.20		678.79
Open Burning		27.50		1.34		335.39		335.39
Slash Burning								
Agricultural Burning								
Orchard Heaters								
Pesticide Applications		2,406.27						
Asphalt Roofing								
Internal Combustion Engines	302.76		10,736.63		8,867.54		286.65	
COMMERCIAL PROCESSES								
Bakeries		1,044.57						
Breweries		0.51						

Table 1.3-6 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For New Haven County

15,107.76

70,313.30

22,266.39

6,213.61

6,573.91

11,813.68

135,088.02

3,992.71

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For New Haven County

-	VO)C	N	Ox		СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area	
MOBILE SOURCES									
Highway Vehicles									
Light Duty Gasoline Vehicle		20,648.48		21,494.60		267,376.96		450,005.61	
Light Duty Gasoline Truck 1		11,101.80		14,889.97		185,010.36		327,477.21	
Light Duty Gasoline Truck 2		5,117.82		6,121.53		75,856.82		121,123.93	
Heavy Duty Gasoline Vehicle		1,052.80		4,282.30		15,319.17		14,822.69	
Light Duty Diesel Vehicle		15.55		39.92		41.54		37.99	
Light Duty Diesel Truck		41.97		112.97		78.13		71.10	
Heavy Duty Diesel Vehicle		1,025.71		38,590.96		5,716.81		5,227.21	
Motorcycles		369.15		92.83		1,486.02		1,420.45	
Non-Highway Vehicles									
Airport Equipment		4.70		42.69		48.24		47.21	
Commercial Equipment		3,070.95		2,497.76		80,063.50		75,391.30	
Construction Equipment		3,428.67		19,247.14		27,369.97		10,536.03	
Farm Equipment		30.39		218.13		244.12		36.03	
Industrial Equipment		2,112.26		8,748.83		33,821.34		33,817.97	
Lawn & Garden		12,652.11		2,234.47		204,187.12		47,414.37	
Logging Equipment									
Recreational Equipment		1,053.31		90.72		13,763.05		3,792.88	
Recreational Vessels		20,387.70		2,291.44		47,264.67		1,741.67	
Rail		214.64		4,996.52		669.49		662.85	
Aircraft		351.76		40.79		11,244.92		3,881.39	
Commercial Vessels		14.16		78.16		30.52		30.52	
Mobile Source Total:		82,693.92		126,111.73		969,592.75		1,097,538.40	
BIOGENICS		92 880 48		441 21		10 995 60		0.00	
BIOGENICS		72,000.40		441.21		10,775.00		0.00	
New Haven Total:	15,107.76	245,887.70	22,266.39	132,766.55	11,813.68	987,162.26	3,992.71	1,232,626.41	

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For New London County

	VO	С	NOx		СО		Winter	· CO
	Point	Area	Point	Area	Point	Area	Point	Area
STORAGE, TRANSPORTATION AND MARKETING OF VOC								
Gasoline and Crude Oil Storage All (except floating roof) Floating Roof Volatile Organic Liquid Storage VOL Transfer Barge and Tanker Cleaning Bulk Gasoline Terminals Gasoline Bulk Plants Tank Truck Unloading Vehicle Fueling Underground Tank Breathing Aircraft Refueling Gasoline Trucks in Transit Leaking Underground Storage Tanks Spills		250.64 804.09 259.89 85.13 31.23 7.54 63.45						
INDUSTRIAL PROCESSES								
Organic Chemical Manufacture SOCMI Fugitive	215.27	5.50	6.40		1.34		0.76	
SOC Storage Tanks		5.58						
Fermentation Processes Pharmaceutical Manufacture Plastic Products Manufacture Rubber Tire Manufacture SBR Rubber Manufacture Textile Polymers and Resin Mfg	107.40	0.25	4.69					
Synthetic Fiber Manufacture	4.22		251.09		60.28		47.20	
Other	4.52		231.08		00.38		5.85	
INDUSTRIAL SURFACE COATING	323.83	1,159.08	36.30		6.51		4.91	

Table 1.3-6	
Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For New London Cour	ntv

	VO	С	NC	NOx		СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area	
NON-INDUSTRIAL SURFACE COATING									
Architectural Coatings		3,124.12							
Auto Refinishing		326.67							
Traffic Markings		120.53							
OTHER SOLVENT USE									
Degreasing		4,329.25							
Dry Cleaning									
Petroleum		9.19							
Graphic Arts	40.00	1,273.45							
Adhesives									
Cutback Asphalt Paving		0.00							
Emulsified Asphalt Paving		516.79							
Solvent Extraction Processes									
Consumer/Commercial Solvent Use		12,711.45							
Other	140.00								
WASTE DISPOSAL									
Municipal Waste									
Combustion	157.32		5,037.27		625.83		589.04		
Landfills		112.58							
TSDFs		92.49							
POTWs		314.18							
ITWs									

•	VO	С	NC)x	Ċ	0	Wint	er CO
	Point	Area	Point	Area	Point	Area	Point	Area
OTHER STATIONARY SOURCES								
Fuel Combustion								
Utility	446.66		6,743.56		3,682.38		3,135.35	
Industrial	111.40	17.59	3,574.10	425.93	1,738.64	85.92	1,307.81	85.92
Commercial	7.59	39.66	148.27	920.01	11.08	195.51	44.47	553.61
Residential		30.58		735.31		199.58		1,665.84
Wood Stoves		1,696.52		34.74		2,794.20		106,016.00
Forest Fires		0.01		0.00		0.11		11.65
Structural Fires		20.60		2.62		112.35		135.76
Open Burning		10.45		0.51		127.52		127.52
Slash Burning								
Agricultural Burning								
Orchard Heaters								
Pesticide Applications		784.17						
Asphalt Roofing								
Internal Combustion Engines	157.06		2,115.93		890.82		448.41	
COMMERCIAL PROCESSES								
Bakeries		328.36						
Breweries		0.25						

Table 1.3-6 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For New London County

1,868.69

28,525.77

17,917.60

2,119.13

3,515.19

7,016.98

108,596.30

5,583.81

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For New London County

-	VC	C	N	Ox	C	СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area	
MOBILE SOURCES									
Highway Vehicles									
Light Duty Gasoline Vehicle		9,766.58		9,933.94		125,679.18		203,758.31	
Light Duty Gasoline Truck 1		5,230.95		6,851.90		86,212.85		148,340.64	
Light Duty Gasoline Truck 2		2,411.72		2,811.88		35,519.62		54,886.84	
Heavy Duty Gasoline Vehicle		467.37		1,828.40		6,802.34		6,257.26	
Light Duty Diesel Vehicle		7.11		18.24		18.94		17.07	
Light Duty Diesel Truck		19.15		51.60		35.55		31.88	
Heavy Duty Diesel Vehicle		433.18		16,429.67		2,423.52		2,194.59	
Motorcycles		184.55		44.52		750.44		664.87	
Non-Highway Vehicles									
Airport Equipment		1.12		10.14		11.53		11.22	
Commercial Equipment		508.94		405.62		13,230.06		12,324.50	
Construction Equipment		1,214.68		6,807.17		9,740.42		3,727.04	
Farm Equipment		53.26		381.38		429.27		63.02	
Industrial Equipment		700.83		2,891.17		11,245.82		11,211.03	
Lawn & Garden		3,571.16		588.55		57,997.90		14,777.80	
Logging Equipment									
Recreational Equipment		2,942.51		106.27		11,678.99		3,248.61	
Recreational Vessels		8,936.23		925.42		19,743.73		725.71	
Rail		57.97		1,378.24		192.19		189.61	
Aircraft		309.15		107.35		2,287.22		1,472.86	
Commercial Vessels		57.34		313.94		122.06		122.06	
Mobile Source Total:		36,873.80		51,885.41		384,121.62		464,024.92	
BIOGENICS		105,161.36		458.81		10,204.40		0.00	
New London Total:	1,868.69	170.560.93	17.917.60	54.463.35	7.016.98	397.841.21	5,583.81	572.621.22	

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Tolland County

·	VOC NOx			C	С	Winter CO		
	Point	Area	Point	Area	Point	Area	Point	Area
STORAGE, TRANSPORTATION AND MARKETING OF VOC								
Gasoline and Crude Oil Storage All (except floating roof) Floating Roof Volatile Organic Liquid Storage VOL Transfer Barge and Tanker Cleaning Bulk Gasoline Terminals Gasoline Bulk Plants Tank Truck Unloading Vehicle Fueling Underground Tank Breathing Aircraft Refueling Gasoline Trucks in Transit Leaking Underground Storage Tanks Spills		$100.51 \\ 322.45 \\ 104.22 \\ 0.01 \\ 16.26 \\ 7.54 \\ 22.35$						
INDUSTRIAL PROCESSES								
Organic Chemical Manufacture SOCMI Fugitive SOC Storage Tanks Inorganic Chemical Manufacture Fermentation Processes Pharmaceutical Manufacture Plastic Products Manufacture Rubber Tire Manufacture SBR Rubber Manufacture Textile Polymers and Resin Mfg Synthetic Fiber Manufacture Iron and Steel Manufacture Other		0.60 0.00						
INDUSTRIAL SURFACE COATING	1,150.38	630.48	42.72		8.97		4.24	

Table 1.3-6
Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Tolland Count

·	VC	C	N)x	· co)	Winte	r CO
	Point	Area	Point	Area	Point	Area	Point	Area
NON-INDUSTRIAL SURFACE COATING								
Architectural Coatings		1,677.95						
Auto Refinishing		175.46						
Traffic Markings		64.73						
OTHER SOLVENT USE								
Degreasing		1,152.75						
Dry Cleaning								
Petroleum		5.96						
Graphic Arts		705.45						
Adhesives								
Cutback Asphalt Paving		119.40						
Emulsified Asphalt Paving		468.13						
Solvent Extraction Processes								
Consumer/Commercial Solvent Use		2,100.59						
Other								
WASTE DISPOSAL								
Municipal Waste								
Combustion								
Landfills		35.29						
TSDFs		35.02						
POTWs		179.03						
ITWs								

	VOC		NC	NOx		СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area	
OTHER STATIONARY SOURCES									
Fuel Combustion									
Utility									
Industrial	3.43	3.25	47.25	78.72	12.75	15.88	15.56	15.88	
Commercial	13.49	12.47	450.04	289.36	187.87	61.49	264.01	174.12	
Residential		15.10		368.26		98.86		842.79	
Wood Stoves		1,306.52		28.74		2,235.60		65,308.00	
Forest Fires		1.61		0.73		34.18		99.00	
Structural Fires		12.02		1.53		65.54		98.31	
Open Burning		5.44		0.26		66.37		66.37	
Slash Burning									
Agricultural Burning									
Orchard Heaters									
Pesticide Applications		453.29							
Asphalt Roofing									
Internal Combustion Engines	38.22		402.04		86.16		20.45		
COMMERCIAL PROCESSES									
Bakeries		176.36							
Breweries		0.00							

Table 1.3-6
Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Tolland County

Stationary Source Total: 1,205.53 9,910.24 942.04 767.61

1 - 51

304.26

295.75

2,577.92

66,604.47

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Tolland County

	VO	C	NOx		СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
MOBILE SOURCES								
Highway Vehicles								
Light Duty Gasoline Vehicle		4,993.48		5,123.18		65,682.61		104,829.25
Light Duty Gasoline Truck 1		2,672.17		3,549.49		45,332.65		76,362.82
Light Duty Gasoline Truck 2		1,234.71		1,456.71		18,641.98		28,247.77
Heavy Duty Gasoline Vehicle		229.62		934.08		3,418.57		3,100.47
Light Duty Diesel Vehicle		3.64		9.64		9.73		8.62
Light Duty Diesel Truck		9.77		27.29		18.20		16.04
Heavy Duty Diesel Vehicle		213.97		8,399.46		1,207.23		1,076.97
Motorcycles		98.38		24.45		387.79		340.55
Non-Highway Vehicles								
Airport Equipment								
Commercial Equipment		226.64		180.63		5,891.51		5,488.26
Construction Equipment		472.96		2,650.50		3,792.62		1,451.19
Farm Equipment		38.09		272.77		307.02		45.07
Industrial Equipment		138.47		603.74		2,121.24		2,115.17
Lawn & Garden		1,725.74		287.03		27,998.37		6,571.12
Logging Equipment								
Recreational Equipment		740.33		46.78		6,796.38		1,860.27
Recreational Vessels		679.99		55.68		1,392.73		51.56
Rail		12.28		258.93		54.73		53.39
Aircraft		24.63		4.18		773.96		270.63
Commercial Vessels								
Mobile Source Total:		13 514 87		23 884 53		183 827 30		231 889 15
Mobile Source Total.		15,514.07		25,004.55		105,027.50		251,007.15
BIOGENICS		80,783.34		460.86		9,006.59		0.00
Tolland Total:	1.205.53	104.208.45	942.04	25.113.00	295.75	195.411.81	304.26	298.493.62

Table 1.3-6 Summary Table Of 2002 VOC. NOx and CO Emissions (Lbs/Day with RE) For Windham County

	VO	С	N	Ox	С	0	Winte	er CO
	Point	Area	Point	Area	Point	Area	Point	
STORAGE. TRANSPORTATION AND								
MARKETING OF VOC								
Gasoline and Crude Oil Storage								
All (except floating roof)								
Floating Roof								
Volatile Organic Liquid Storage								
VOL Transfer								
Barge and Tanker Cleaning								
Bulk Gasoline Terminals								
Gasoline Bulk Plants								
Tank Truck Unloading		109.42						
Vehicle Fueling		351.02						
Underground Tank Breathing		113.46						
Aircraft Refueling		7.77						
Gasoline Trucks in Transit		11.42						
Leaking Underground Storage Tanks		0.00						
Spills		13.57						
INDUSTRIAL PROCESSES								
Organia Chamical Manufactura								
Fugitive								
SOC Storage Tanks		28.07						
Inorganic Chemical Manufacture		20.77						
Fermentation Processes		0.22						
Pharmaceutical Manufacture		0.22						
Plastic Products Manufacture	488.00							
Rubber Tire Manufacture	+00.00							
SBR Rubber Manufacture	32.60							
Textile Polymers and Resin Mfg	52.00							
Synthetic Fiber Manufacture								
Iron and Steel Manufacture								
Other	14.16							
INDUSTRIAL SURFACE COATING	65.72	342.22						

Table 1.3-6							
Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Windham County							
VOC NO-	CO						

VOC		NOx		СО		Winter CO	
Point	Area	Point	Area	Point	Area	Point	Area
	1,324.15 138.46 51.09						
6.00 2.00	1,328.45 2.98 556.70 664.70 835.13 1,556.50						
399.13	69.75 23.95 165.10	805.08		657.52		659.23	
	VOC Point 6.00 2.00 399.13	VOC Point Area 1,324.15 138.46 138.46 51.09 6.00 1,328.45 2.98 556.70 2.00 664.70 835.13 1,556.50 399.13 69.75 23.95 165.10	VOCNCPointAreaPoint $1,324.15$ 138.46 51.09 6.00 $1,328.45$ 2.98 556.70 2.00 664.70 835.13 $1,556.50$ 399.13 805.08 69.75 23.95 165.10	VOCNOxPointAreaPointArea $1,324.15$ 138.46 51.09 $1,328.45$ 2.98 556.70 2.00 2.98 556.70 300 2.00 664.70 835.13 $1,556.50$ 399.13 805.08 399.13 69.75 23.95 165.10	VOCNOxCCPointAreaPointAreaPoint $1,324.15$ 138.46 51.09 $1.328.45$ 2.98 556.70 2.00 2.98 556.70 2.00 664.70 835.13 $1,556.50$ 399.13 69.75 	VOCNOxCOPointAreaPointArea $1,324.15$ 138.46 51.09 6.00 $1,328.45$ 2.98 556.70 2.00 664.70 835.13 $1,556.50$ 399.13 805.08 657.52	VOC NOx CO Winter Point Area Point Area Point Area Point 1,324.15 138.46 51.09

·	VOC		NO)x	со		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
OTHER STATIONARY SOURCES								
Fuel Combustion								
Utility								
Industrial	19.03	7.69	329.08	186.21	377.91	37.56	237.73	37.56
Commercial		11.11		257.65		54.75		155.04
Residential		13.20		320.18		84.96		698.23
Wood Stoves		1,362.56		29.00		2,271.80		60,714.00
Forest Fires		2.68		1.22		56.97		52.41
Structural Fires		10.30		1.31		56.18		56.18
Open Burning		6.14		0.30		74.89		74.89
Slash Burning								
Agricultural Burning								
Orchard Heaters		407.80						
Asphalt Desfing		407.80						
Aspirat Rooming Internal Combustion Engines	140.18		2 153 23		1 037 10		1 330 58	
Internal Combustion Engines	149.10		2,135.25		1,037.10		1,559.56	
COMMERCIAL PROCESSES								
Bakarias	0.58	138 50	10.20		2.14		6 7 2	
Breweries	0.58	0.22	10.20		2.14		0.72	
breweries		0.22						

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Windham County

 Stationary Source
 Total:
 1,176.40
 9,655.29
 3,297.59
 795.87
 2,074.67
 2,637.11
 2,243.25
 61,788.31

 Table 1.3-6

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For Windham County

	V	OC	NOx		СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
MOBILE SOURCES								
Highway Vehicles								
Light Duty Gasoline Vehicle		3,588.89		3,643.50		46,127.10		73,325.10
Light Duty Gasoline Truck 1		1,921.79		2,520.16		31,804.96		53,387.63
Light Duty Gasoline Truck 2		887.62		1,035.64		13,111.74		19,741.90
Heavy Duty Gasoline Vehicle		144.69		560.45		2,032.92		1,826.52
Light Duty Diesel Vehicle		2.61		6.49		6.88		6.02
Light Duty Diesel Truck		7.01		18.34		12.82		11.16
Heavy Duty Diesel Vehicle		135.11		4,747.19		735.26		649.83
Motorcycles		77.01		19.47		290.16		254.52
Non-Highway Vehicles								
Airport Equipment								
Commercial Equipment		212.72		169.54		5,529.75		5,151.26
Construction Equipment		263.53		1,476.85		2,113.23		808.60
Farm Equipment		60.71		434.68		489.27		/1.83
Industrial Equipment		264.57		1,095.31		4,233.44		4,220.41
Lawn & Garden		1,518.41		253.58		24,621.14		6,059.86
Logging Equipment		35.22		57.65		212.00		204.37
Recreational Equipment		1,606.71		65.32		7,780.04		2,153.11
Recreational Vessels		831.10		68.05		1,702.23		63.02
Rail		14.81		334.91		56.44		55.37
Aircraft		79.21		12.81		1,662.76		796.14
Commercial Vessels								
Mobile Source Total:		11,651.75		16,519.93		142,522.12		168,786.64
DIO CENHOS		100.050.00		454.50		0.004.10		, A AA
BIOGENICS		108,350.66		454.70		9,824.18		0.00
Windham Total:	1,176.40	129,657.70	3,297.59	17,770.50	2,074.67	154,983.41	2,243.25	230,574.95
State Total:	31,678.82	1,456,749.68	113,588.75	579,886.66	39,389.70	4,784,608.43	25,370.73	5,728,150.36

Table 1.3-7Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) ForCT Portion CT-NY-NJ CMSA

	VO	С	NC)x	СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
STORAGE, TRANSPORTATION AND MARKETING OF VOC								
Gasoline and Crude Oil Storage	10.50							
All (except floating roof)	48.52							
Floating Kool Volatile Organic Liquid Storage	827.51							
VOL Transfer								
Barge and Tanker Cleaning								
Bulk Gasoline Terminals	6,177.75							
Gasoline Bulk Plants	,							
Tank Truck Unloading		1,333.37						
Vehicle Fueling		4,120.81						
Underground Tank Breathing		1,382.58						
Aircraft Refueling		87.15						
Gasoline Trucks in Transit		161.96						
Leaking Underground Storage Tanks		158.31						
Spins		524.55						
INDUSTRIAL PROCESSES								
Organic Chemical Manufacture	4,942.96		9.80		1.79		2.52	
SOCMI								
Fugitive								
SOC Storage Tanks		263.66						
Inorganic Chemical Manufacture		1.01						
Pharmaceutical Manufacture		1.01						
Plastic Products Manufacture	1.207.77		4.10		0.86		0.91	
Rubber Tire Manufacture	1,20,11,7				0.00		0171	
SBR Rubber Manufacture	414.33							
Textile Polymers and Resin Mfg								
Synthetic Fiber Manufacture								
Iron and Steel Manufacture	1.37		209.32		9.03		8.70	
Other	948.56		26.11		5.38		3.28	
INDUSTRIAL SURFACE COATING	2,602.92	10,512.87	34.64		7.37		10.62	

Table 1.3-7Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) ForCT Portion CT-NY-NJ CMSA

	VO	VOC		NOx		СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area	
NON-INDUSTRIAL SURFACE COATING									
Architectural Coatings		22,495.79							
Auto Refinishing		2,352.27							
Traffic Markings		867.88							
OTHER SOLVENT USE									
Degreasing	98.75	32,675.15							
Dry Cleaning									
Petroleum		113.53							
Graphic Arts	1,463.99	7,993.70	42.32		8.89		14.80		
Adhesives	25.92								
Cutback Asphalt Paving		813.30							
Emulsified Asphalt Paving		1,507.72							
Solvent Extraction Processes	4.00								
Consumer/Commercial Solvent Use		47,596.89							
Other	698.16								
WASTE DISPOSAL									
Municipal Waste									
Combustion	358.24		9,583.21		909.14		1,577.67		
Landfills		529.38							
TSDFs		1,143.73							
POTWs		3,682.21							
ITWs		,							

Table 1.3-7	
Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For	CT Portion CT-NY-NJ CMSA

	VO	2	NO	x	CC)	Wint	ter CO	
	Point	Area	Point	Area	Point	Area	Point	Area	
OTHER STATIONARY SOURCES									
Fuel Combustion									
Utility	1,208.48		42,887.50		8,354.92		4,717.25		
Industrial	86.02	117.17	2,819.26	2,837.91	1,033.86	572.45	746.32	572.45	
Commercial	62.83	264.27	1,130.20	6,130.74	546.70	1,302.86	408.82	3,689.15	
Residential		237.51		5,186.68		1,618.57		11,962.41	
Wood Stoves		5,392.10		106.21		8,430.44		286,980.00	
Forest Fires		1.18		0.54		25.07		34.94	
Open Burning		204.00		2 59		649.52		649.70	
Slash Burning		55.27		2.57		049.70		049.70	
Agricultural Burning									
Orchard Heaters									
Pesticide Applications		5,968.20							
Asphalt Roofing									
Internal Combustion Engines	733.22		18,697.95		10,678.92		3,224.46		
COMMERCIAL PROCESSES									
Bakeries	664.26	1,700.17	52.40		11.32		11.77		
Breweries		1.01							

Stationary Source Total: 22,575.54

154,136.58

75,496.80

14,300.84 21,568.16 14,148.60 10,727.12 305,330.50

Table 1.3-7Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) ForCT Portion CT-NY-NJ CMSA

	VOC		Ν	NOx		CO	Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area
MOBILE SOURCES								
Highway Vehicles								
Light Duty Gasoline Vehicle		49,592.28		51,171.80		629,922.64		998,703.49
Light Duty Gasoline Truck 1		26,679.79		35,366.40		435,567.64		728,031.43
Light Duty Gasoline Truck 2		12,287.82		14,543.71		178,966.87		270,811.98
Heavy Duty Gasoline Vehicle		2,514.71		9,937.48		36,000.93		34,274.47
Light Duty Diesel Vehicle		37.39		93.78		99.73		91.02
Light Duty Diesel Truck		101.22		265.29		188.03		170.79
Heavy Duty Diesel Vehicle		2,441.42		89,025.91		13,526.93		12,355.64
Motorcycles		900.72		222.56		3,663.08		3,368.35
Non-Highway Vehicles								
Airport Equipment		4.70		42.69		48.24		47.21
Commercial Equipment		7,663.66		6,233.25		199,800.85		189,590.27
Construction Equipment		9,320.45		52,321.15		74,402.14		28,772.41
Farm Equipment		56.30		404.06		452.22		66.81
Industrial Equipment		5,127.45		21,178.11		82,284.54		82,432.87
Lawn & Garden		44,914.40		8,317.94		718,378.98		177,771.86
Logging Equipment								
Recreational Equipment		3,806.91		209.88		27,893.68		7,745.92
Recreational Vessels		43,136.67		4,778.78		99,488.29		3,674.12
Rail		405.34		8,624.00		1,379.25		1,366.29
Aircraft		729.46		231.04		17,414.36		7,799.10
Commercial Vessels		172.07		943.45		366.01		366.01
Mobile Source Total:		209 892 75		303 911 25		2 519 844 42		2 547 440 04
PIOCENICS		251 261 51		1 215 10		2,517,044.42		2,377,770.04
DIUGENICS		201,201.01		1,515.10		29,951.04		0.00
CT Portion CT-NY-NJ CMSA Total:	22,575.54	615,290.84	75,496.80	319,527.19	21,568.16	2,563,944.66	10,727.12	2,852,770.54

 Table 1.3-7

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For
 Greater Connecticut Area

	VO	С	NC	X	CC)	Winter	СО
	Point	Area	Point	Area	Point	Area	Point	Area
STORAGE, TRANSPORTATION AND MARKETING OF VOC								
Gasoline and Crude Oil Storage All (except floating roof) Floating Roof Volatile Organic Liquid Storage VOL Transfer	131.48							
Barge and Tanker Cleaning Bulk Gasoline Terminals Gasoline Bulk Plants Tank Truck Unloading Vehicle Fueling Underground Tank Breathing Aircraft Refueling Gasoline Trucks in Transit Leaking Underground Storage Tanks Spills	791.74	1,271.03 4,077.58 1,317.94 284.00 153.00 150.77 497.20	14.74		37.29		40.16	
INDUSTRIAL PROCESSES								
Organic Chemical Manufacture SOCMI Eugitive	251.43		6.40		1.34		0.76	
SOC Storage Tanks Inorganic Chemical Manufacture Fermentation Processes		399.85 2.01						
Pharmaceutical Manufacture Plastic Products Manufacture Rubber Tire Manufacture	107.40 488.00		4.69					
SBR Rubber Manufacture Textile Polymers and Resin Mfg Synthetic Fiber Manufacture	32.60							
Iron and Steel Manufacture	4.32		251.08		60.38		47.20	
Other	364.26		158.80		40.49		47.00	
INDUSTRIAL SURFACE COATING	3,380.23	9,041.96	109.46		21.87		16.53	

Table 1.3-7Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) ForGreater Connecticut Area

	VO	C	NC)x	CO)	Winter	· CO
	Point	Area	Point	Area	Point	Area	Point	Area
NON-INDUSTRIAL SURFACE COATING								
Architectural Coatings		18,659.48						
Auto Refinishing		1,951.13						
Traffic Markings		719.88						
OTHER SOLVENT USE								
Degreasing	127.19	31,572.93						
Dry Cleaning								
Petroleum		77.01						
Graphic Arts	126.18	7,718.64	21.94		8.18		35.03	
Adhesives	41.60							
Cutback Asphalt Paving		3,103.22						
Emulsified Asphalt Paving		3,647.98						
Solvent Extraction Processes								
Consumer/Commercial Solvent Use		32,539.84						
Other	142.20							
WASTE DISPOSAL								
Municipal Waste								
Combustion	959.66		12,971.32		4,567.69		4,258.85	
Landfills		1,776.01						
TSDFs		527.12						
POTWs		3,031.86						
ITWs								

Table 1.3-7	
Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For	Greater Connecticut Area

	VO	С	NC)x	C	0	Wint	er CO
	Point	Area	Point	Area	Point	Area	Point	Area
OTHER STATIONARY SOURCES								
Fuel Combustion								
Utility	446.66		6,743.56		3,682.38		3,135.35	
Industrial	188.21	104.58	5,748.19	2,532.95	2,921.17	510.94	2,461.69	510.94
Commercial	29.49	235.75	688.31	5,469.24	234.40	1,162.28	429.06	3,291.09
Residential		201.90		4,489.10		1,358.43		10,377.33
Wood Stoves		8,302.76		1/7.21		13,879.20		452,854.00
Forest Fires		13.05		6.22		290.08		247.49
Structural Fires		180.23		22.94		985.08		602.28
Slash Burning		50.70		2.70		092.28		092.28
Agricultural Burning								
Orchard Heaters								
Pesticide Applications		4.603.95						
Asphalt Roofing		1,005.25						
Internal Combustion Engines	1,490.06		11,363.26		6,244.22		4,165.25	
C C	,							
COMMERCIAL PROCESSES								
Bakeries	0.58	1.960.63	10.20		2.14		6.72	
Breweries		2.01						

Stationary Source Total:

1 - 63

9,103.28

138,182.66

38,091.94

12,700.42

17,821.55

18,876.28

14,643.61

468,661.29

Table 1.3-7Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) ForGreater Connecticut Area

	V	VOC		NOx		СО		Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area	
MOBILE SOURCES									
Highway Vehicles									
Light Duty Gasoline Vehicle		48,373.00		48,732.24		611,645.86		1,002,123.92	
Light Duty Gasoline Truck 1		25,924.69		33,570.71		419,877.23		729,441.95	
Light Duty Gasoline Truck 2		11,945.85		13,784.23		173,310.84		269,892.30	
Heavy Duty Gasoline Vehicle		2,251.30		8,564.02		32,309.52		29,821.57	
Light Duty Diesel Vehicle		35.36		88.66		93.96		85.13	
Light Duty Diesel Truck		95.52		250.74		176.65		159.25	
Heavy Duty Diesel Vehicle		2,086.21		76,133.06		11,591.17		10,541.78	
Motorcycles		952.72		227.50		3,874.63		3,451.88	
Non-Highway Vehicles									
Airport Equipment		20.54		186.13		211.68		205.93	
Commercial Equipment		4,815.09		3,837.55		125,168.77		116,601.36	
Construction Equipment		4,430.92		24,831.20		35,531.11		13,595.49	
Farm Equipment		310.80		2,225.39		2,504.82		367.71	
Industrial Equipment		3,973.13		16,415.06		63,678.09		63,481.50	
Lawn & Garden		35,324.39		6,323.05		567,511.04		133,845.09	
Logging Equipment		40.26		65.88		242.29		233.56	
Recreational Equipment		9,092.29		402.11		50,385.50		21,700.78	
Recreational Vessels		14,300.59		1,364.64		30,730.82		1,132.49	
Rail		179.71		3,873.76		716.21		700.97	
Aircraft		1,843.69		3,818.11		16,170.76		9,162.88	
Commercial Vessels		82.81		456.57		173.00		173.00	
Mahila Source Totaly		166 079 99		245 150 62		2 145 002 06		2 406 719 54	
Mobile Source Total.		100,078.88		245,150.02		2,145,905.90		2,400,718.34	
BIOGENICS		537,197.30		2,508.43		55,883.52		0.00	
Greater Connecticut Area Total:	9,103.28	841,458.84	38,091.94	260,359.47	17,821.55	2,220,663.76	14,643.61	2,875,379.82	
State Total	31,678.82	1,456,749.68	113,588.75	579,886.66	39,389.70	4,784,608.43	25,370.73	5,728,150.36	

 Table 1.3-8

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For The State Of Connecticut

	VO	С	NC	X	CC)	Winter	СО
	Point	Area	Point	Area	Point	Area	Point	Area
STORAGE, TRANSPORTATION AND MARKETING OF VOC								
Gasoline and Crude Oil Storage	49.50							
Floating Roof	48. <i>32</i> 958.99							
Volatile Organic Liquid Storage	,50.,,,							
VOL Transfer								
Barge and Tanker Cleaning								
Bulk Gasoline Terminals	6,969.48		14.74		37.29		40.16	
Gasoline Bulk Plants								
Tank Truck Unloading		2,604.41						
Vehicle Fueling		8,198.38						
Underground Tank Breathing		2,700.51						
Aircraft Refueling		3/1.15						
Leaking Underground Storage Tanks		309.08						
Spills		821.53						
Spino		021100						
INDUSTRIAL PROCESSES								
Organic Chemical Manufacture	5,194.39		16.20		3.13		3.29	
SOCMI								
Fugitive		((2.51						
SOU Storage Tanks		003.51						
Fermentation Processes		3.03						
Pharmaceutical Manufacture	107.40	5.05	4.69					
Plastic Products Manufacture	1,695.77		4.10		0.86		0.91	
Rubber Tire Manufacture								
SBR Rubber Manufacture	446.93							
Textile Polymers and Resin Mfg								
Synthetic Fiber Manufacture								
Iron and Steel Manufacture	5.69		460.39		69.41		55.90	
Other	1,312.82		184.91		45.86		50.28	
INDUSTRIAL SURFACE COATING	5,983.16	19,554.82	144.10		29.23		27.15	
Table 1.3-8

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For The State Of Connecticut

	VO	C	NC)x	CO)	Winter	CO
	Point	Area	Point	Area	Point	Area	Point	Area
NON-INDUSTRIAL SURFACE COATING								
Architectural Coatings		41,155.27						
Auto Refinishing		4,303.40						
Traffic Markings		1,587.76						
OTHER SOLVENT USE								
Degreasing	225.94	64,248.09						
Dry Cleaning								
Petroleum		190.55						
Graphic Arts	1,590.17	15,712.34	64.26		17.07		49.83	
Adhesives	67.52							
Cutback Asphalt Paving		3,916.53						
Emulsified Asphalt Paving		5,155.70						
Solvent Extraction Processes	4.00							
Consumer/Commercial Solvent Use		80,136.73						
Other	840.36							
WASTE DISPOSAL								
Municipal Waste								
Combustion	1,317.90		22,554.53		5,476.83		5,836.52	
Landfills		2,305.39						
TSDFs		1,670.85						
POTWs		6,714.07						
ITWs								

Table 1.3-8 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For The State Of Connecticut

	VO	С	NC)x	C	С	Winte	er CO
	Point	Area	Point	Area	Point	Area	Point	Area
OTHER STATIONARY SOURCES								
Fuel Combustion								
Utility	1,655.14		49,631.06		12,037.29		7,852.61	
Industrial	274.23	221.75	8,567.45	5,370.86	3,955.03	1,083.39	3,208.01	1,083.39
Commercial	92.32	500.02	1,818.51	11,599.98	781.10	2,465.14	837.87	6,980.24
Residential		439.41		9,675.78		2,976.99		22,339.75
Wood Stoves		13,694.86		283.42		22,309.64		/39,834.00
Forest Fires		14.83		6.76		315.14		282.43
Structural Files		404.31		59.09		2,532.59		2,130.00
Slash Burning		110.02		5.50		1,341.96		1,341.96
Agricultural Burning								
Orchard Heaters								
Pesticide Applications		10,572.14						
Asphalt Roofing		,						
Internal Combustion Engines	2,223.28		30,061.21		16,923.14		7,389.72	
COMMERCIAL PROCESSES								
Bakeries	664.84	3.660.79	62.60		13.46		18.49	
Breweries		3.03						

Stationary Source Total: 31,678.82

292,319.23

113,588.75

27,001.26

39,389.70 33,024.88

25,370.73

773,991.79

 Table 1.3-8

 Summary Table Of 2002 VOC, NOx and CO Emissions (Lbs/Day with RE) For The State Of Connecticut

	V	VOC		Ox		со	Win	Winter CO	
	Point	Area	Point	Area	Point	Area	Point	Area	
MOBILE SOURCES									
Highway Vehicles									
Light Duty Gasoline Vehicle		97,965.28		99,904.04		1,241,568.50		2,000,827.41	
Light Duty Gasoline Truck 1		52,604.47		68,937.10		855,444.87		1,457,473.39	
Light Duty Gasoline Truck 2		24,233.67		28,327.94		352,277.71		540,704.28	
Heavy Duty Gasoline Vehicle		4,766.01		18,501.49		68,310.45		64,096.03	
Light Duty Diesel Vehicle		72.75		182.43		193.69		176.15	
Light Duty Diesel Truck		196.74		516.03		364.68		330.04	
Heavy Duty Diesel Vehicle		4,527.64		165,158.97		25,118.10		22,897.42	
Motorcycles		1,853.44		450.06		7,537.72		6,820.22	
Non-Highway Vehicles									
Airport Equipment		25.24		228.82		259.92		253.14	
Commercial Equipment		12,478.75		10,070.80		324,969.62		306,191.63	
Construction Equipment		13,751.37		77,152.35		109,933.25		42,367.90	
Farm Equipment		367.09		2,629.45		2,957.04		434.53	
Industrial Equipment		9,100.58		37,593.17		145,962.63		145,914.37	
Lawn & Garden		80,238.79		14,640.99		1,285,890.02		311,616.95	
Logging Equipment		40.26		65.88		242.29		233.56	
Recreational Equipment		12,899.19		611.99		78,279.17		29,446.70	
Recreational Vessels		57,437.27		6,143.42		130,219.12		4,806.60	
Rail		585.05		12,497.76		2,095.46		2,067.27	
Aircraft		2,573.15		4,049.15		33,585.12		16,961.97	
Commercial Vessels		254.88		1,400.03		539.01		539.01	
Mobile Source Total:		375 971 63		549.061.87		1 665 748 39		4 954 158 57	
Mobile Source Total.		575,971.05		549,001.07		4,005,748.55		4,954,156.57	
BIOGENICS		788,458.81		3,823.53		85,835.16		0.00	
State Total:	31,678.82	1,456,749.68	113,588.75	579,886.66	39,389.70	4,784,608.43	25,370.73	5,728,150.36	

SECTION 2 STATIONARY POINT SOURCES

2.1 INTRODUCTION

This section documents the identification of stationary air pollution sources active in Connecticut during 2002. It serves to characterize the point source component of the emissions inventory by describing data collection, verification, and emission estimation techniques. For the purpose of this emissions inventory, point sources are defined as stationary commercial or stationary industrial operations or plants that are major sources, or that actually emitted 10 tons per year (TPY) or more of VOC or NOx, or 25 TPY or more of CO into the atmosphere during calendar year 2002.

The CT DEP Bureau of Air Management is responsible for compiling the point source inventory. It is responsible for identifying plants meeting the cutoff criteria, documenting the method used to calculate emissions from the equipment at each plant, and summarizing and presenting its findings.

2.2 IDENTIFICATION OF 2002 POINT SOURCES

This section describes the development of the initial point source list from which point source emissions for the 2002 Connecticut Periodic Inventory were estimated. This section is included in order to demonstrate that the source list is as complete as possible.

Shortly after the Connecticut DEP was formed in 1972 regulations were written which specified that certain equipment must be either registered or permitted. Subject equipment operating prior to June 1, 1972 were required to register, while equipment installed after that date needed permits to construct and operate. Companies were required to submit detailed information about their equipment on forms supplied by the department. All taxable employers were notified of the registration and permit requirements. All municipalities, school systems and state agencies were separately notified in a second mailing. In a third mailing, Federal facilities were notified of their requirement to comply with Connecticut regulations.

The deadline for submission of the registration forms was October 1, 1972. The Engineering section processed the registration forms. Engineers reviewed the registration forms for completeness; assigned identification numbers (i.e., Town #, Premises #, Registration #, and Stack #); assigned special codes (i.e., National Emissions Data System (NEDS) County #, NEDS town #, Standard Industrial Class (SIC) #, Source Classification Code (SCC) #, and control equipment #); and determined stack coordinates. The data from the forms were coded onto special computer forms, keypunched onto IBM cards and entered into the database. Over 13,000 registrations were processed in this manner. The initial phase was completed by the end of 1973.

The next phase was to ensure that all plants had submitted their applications for equipment requiring

registrations and permits. The Enforcement section systematically contacted plants, which were listed in industrial directories. Screening letters, which requested basic information on the equipment and materials used at a facility, were mailed to those potential sources. Plants that responded positively to the questions in the screening letter were then sent a Pre-Inspection Questionnaire (PIQ), which requested detailed information on the processes and materials used in the plant. Equipment requiring registration were identified and the plant was issued a notice of violation, which would be closed out only upon receipt of a completed registration form. Over 500 equipment registrations were added to the inventory through the inspection program. In succeeding years, new plants have been identified through the Connecticut Department of Labor listing of new manufacturing firms and from articles in local newspapers.

The primary method by which new equipment is added to the point source inventory is through the permit program. Approximately 100 new permits are issued each year. There is high awareness of permit requirements among the regulated community through the State Implementation Plan Revision Advisory Committee (SIPRAC) of the Connecticut Business & Industry Association (CBIA). Members of CBIA are informed about changes in the Air Regulations.

Prior to 1990, the point source inventory was kept current through timely updates of all emission sources. In general, plants that had an EPA class of A1 were updated annually; plants with an EPA class of A2 were updated every second year; and plants with an EPA class of B were updated every three to five years. Since 1979, updates of the point source inventory have been incorporated into the Enforcement compliance inspection process. Along with each PIQ mailed to the plant, the Enforcement Division includes update forms for the registered and permitted equipment. The plant is required to provide current data on annual fuel usage, process weight rates, solvent usage, operating hours, and seasonal rates for summer, fall, winter and spring. During the compliance inspection, Enforcement personnel review the completed update forms with the plant personnel to ensure the accuracy and completeness of the data. The inventory group further reviews the forms for completeness, and revisions are compared with previous data. If there are apparent discrepancies, the update forms are returned to Enforcement personnel for clarification.

For plants that are inspected, Enforcement personnel calculate the total plant usage for each volatile organic compound (VOC) as listed in section 7 of the PIQ. Plant usage is then adjusted for other media disposal. The total VOC from registered and permitted sources is subtracted from the adjusted total plant VOC. The balance is the actual unregistered VOC emission. These estimates of unregistered VOC emissions are entered into a separate file, which contains basic company data, specific SCC code, and emissions in terms of tons per year.

For the 1990 base year ozone and carbon monoxide inventory development effort in 1992, update forms identical to those described and used by the Enforcement Division above were mailed to all facilities known to be active during 1990. This was done to verify which facilities in the inventory were active during 1990 and to update all data contained in the inventory that were two years old or older. For more detailed information about the 1990 inventory, please refer to the <u>1990 Base Year</u> Ozone And Carbon Monoxide Emissions Inventory.¹

To meet the emission statement reporting requirements outlined in Title I, Section 182(a)(3)(b) of the 1990 Clean Air Act (CAA), the state developed and implemented the following reporting schedule. The Emission Statement reporting package is similar in design to the original PIQ

Inventory Update Forms. See Figures 2.2-1 through 2.2-5 for copies of the five basic forms that make up the reporting package. Connecticut's emission statement program was submitted to and approved by EPA as a formal amendment to the SIP. The Department phased in the implementation of the emission statement program beginning with the first reporting year (1993). Companies were required to file an emission statement, if the actual calendar year 1992 emissions from all sources at a plant site totaled 25 tons per year or more of VOC, NOx or CO. This first mailing involved 156 companies. For the reporting year (2003), the reporting threshold was set to any facility that is a major source, or emitted 10 tons per year or more of actual 2002 VOC or NOx, or 25 tons per year or more of actual 2002 VOC or NOx, or 25 tons per year or more of actual 2002 CO emissions. There were 181 companies involved in this mailing.

The 2002 periodic stationary source inventory relied heavily on the emission statements, which reported the source's actual 2002 emissions signed by a corporate officer who attested to the accuracy of their calculations. Compliance with the emission statement program was 93 percent from all of the companies selected this year.

The above data verification techniques ensured a complete data set for each point source in the inventory. Appendix A, Table 1 shows the final point source list and includes the name, city, SIC, and actual annual emissions (adjusted for rule effectiveness) for VOC, NOx, and CO. Table 1 identifies only the plants that Connecticut considers significant for developing the final ozone season and winter CO season emission estimates outlined below.

2.3 DOCUMENTING THE EMISSION ESTIMATION PROCEDURES

VOC emission estimates for each point source on the final list were primarily derived using material balance approaches. NOx and CO emission estimates were primarily derived from EPA recommended emission factors.

EPA recommended emission factors, as published in the <u>FIRE Version 6.24 Source Classification</u> <u>Codes and Emission Factor Listing for Criteria Pollutants</u>² and *AP*-42³, were used to calculate emissions for most fuel burning equipment, incinerators, and process equipment (e.g., asphalt batch plants). The VOC emission factors were corrected to remove ethane and to add formaldehyde, as described by the December 19, 1991 memorandum from J. David Mobley of the Office of Air Quality Planning and Standards (OAQPS), EPA. These ethane/formaldehyde adjustment factors were entered into our computer file of emission factors by SCC code. The VOC emission factor is multiplied by the corresponding adjustment factor to arrive at an adjusted VOC emission factor. The emission factors by SCC that were used to calculate emissions are listed in Appendix A, Table 2.

Emissions from gasoline storage tanks were determined using the TANKS model to calculate evaporative losses. Inputs to the model consist of local, real-time meteorological data and site-specific RVP data. Emissions from gasoline loading facilities were determined using the formula in AP-42, Section 5.2 and the same typical ozone summer day temperatures. VOC emissions from dry cleaning and degreasing) were determined using material balance approaches. Rule effectiveness and seasonal adjustments were included in the emission estimates for applicable source categories. The operating schedule for the plant, the seasonal rate of operation for the summer, and the days per

week were used to determine daily emissions.

In the past, EPA recommended that rule effectiveness of 80% be applied to all points in the inventory that are subject to Connecticut Air Regulations, with the following exceptions:

- sources that are completely uncontrolled
- sources controlled by an irreversible process change
- sources for which emissions are calculated by means of direct determination.

For the 2002 periodic inventory, generally rule effectiveness of 80% was applied to points that were controlled using add-on control equipment.

Double counting was avoided in the Area Source Inventory. Although the method varies for different categories, generally, emissions accounted for in the point source inventory must be subtracted from the total emissions estimated for area sources. See the specific category in Section 4 for further details.

The following general equation was used to account for rule effectiveness and seasonal adjustments:

$$Es = \frac{Ea \ x \ Ts \ x (1 - (EFF \ x \ RE))}{Ds \ x \ Ws}$$

Where:

Es	=	seasonally adjusted emissions in pounds per day
Ea	=	annual uncontrolled emissions of VOC, NOx, or CO in pounds per year
Ts	=	throughput for Ozone or CO season as a fraction of total throughput
Ds	=	days of operation per week
Ws	=	weeks of ozone or CO season in weeks per year
EFF	=	control efficiency
RE	=	rule effectiveness

Emissions are calculated using SAS application programs. Several basic emission calculations are illustrated in examples 1 to 5. Example 1 illustrates the use of AP-42 emission factors to calculate emissions for many sources, typically boilers and incinerators, that do not have controls for VOC, CO, or NOx. Example 2 illustrates the calculation of VOC emissions for gasoline loading facilities using the formula from Section 5.2 of AP-42. This example is typical of all process sources that use emission factors to calculate emissions. Since this source has emission controls, rule effectiveness is also illustrated. Example 3 illustrates points in which annual emissions were determined by material balance. Rule effectiveness is illustrated again. Example 4 illustrates the calculation of miscellaneous VOC losses from a waste solvent reclamation unit. Example 5 illustrates how VOC losses from a dry cleaning unit are calculated. The five examples show how emission estimates were obtained for the point sources on the final list.

80	REAU OF AIR MANAGEMENT	TEL: (203)	424-3027
	EMISSION S	TATEMENT	
			PAGE 1 OF
OR OFFICE USE ON	LY:	<u>_</u>	
CLIENT:	SEQUENCE:	TOWN:	PREMISE:
			,
NERAL INFORMATIO	<u>N</u> :		
COMPANY NAME:			
MAIL ADDRESS:			
SITE ADDRESS:	· · · · · · · · · · · · · · · · · · ·		
COMPANY CUNTACT:	· · · · · · · · · · · · · · · · · · ·	IIILE: _	
) EXT:	FAX: .	()
PLANI UIM COORDI	NATES: X: k	:m Y:	km ZONE:
SIC CODE:			
CORPORATE NAME:			
CORPORATE ADDRES	S:		
CALENDAR YEAR OF	DATA:		
I HAVE PERSONALL SUBMITTED IN THI BASED ON REASONA INDIVIDUALS RESP INFORMATION IS T AND BELIEF, AND DOCUMENT OR ITS	Y EXAMINED AND AM FA S DOCUMENT AND ALL A BLE INVESTIGATION, I ONSIBLE FOR OBTAININ RUE, ACCURATE AND CO I UNDERSTAND THAT AN ATTACHMENTS MAY BE P	MILIAR WITH TH TTACHMENTS AND NCLUDING MY IN G THE INFORMA MPLETE TO THE Y FALSE STATEN VUNISHABLE AS A	HE INFORMATION D CERTIFY THAT NQUIRY OF THOSE TION, THE SUBMITTED BEST OF MY KNOWLEDGE MENT MADE IN THIS A CRIMINAL OFFENSE.
SIGNED		DATE.	

		DEP CODE:		-
		PAG	E OF	-
EMISSION STAT	EMENT - FUEL	BURNING UPDATE:		
URCE DESCRIPTION:		DEP REG: DEP STK:		
INITIAL STARTUP DATE: S	SHUTDOWN DATE:			
EL BURNING DATA:	CI(C) #1	E11E1 #2	CIICI #2	
TYPE OF FUEL		FUEL #2		_
MAX BURNER RATING (INCLUDE UNITS)			_	
ANNUAL USAGE (INCLUDE UNITS)	<u> </u>			-
SULFUR CONTENT (PERCENT BY WEIGHT)				-
ACTUAL HOURS PER YEAR FUEL USE				-
				-
PROCESS START TIME OF DAY: SEASONAL USE: DEC - FEB : _ %	PROCESS END TIME MAR - MAY: %	OF DAY: JUNE - AUG : _ %	SEPT- NOV :	%
ACK PARAMETERS:				
HEIGHT: FT DIAMETER: FT STACK LINING (M,R,O):	MIN EXIT TEMP: EXIT DIRECTION(V	^O F MIN FLOW AT /H): _ RAIN HAT (Y	MAX CAPACITY: /N):	ACFM
ILITANT DATA:				
TYPICAL				
OZONE EMIS ACTUAL DALLY METH		STON FACTORS	CONTROL PRIM SE	EQUIPMEN
EMISSIONS EMISSIONS CODE PROCESS	FUEL #1	FUEL #2 F	UEL #3 CODE CO	DDE EFFICY
(TONS/YR) (LBS/DAY) (C) ()())()	
x		······		
10		<u> </u>	<u>,</u>	
X			<u></u>	
	<u></u>			
AD				
AD				
AD X RACT REPORTING:	THROUGH SERT 30.	(IBS/DAY)	DATE OF OCCUPPENCE.	
AD X RACT REPORTING: MAX DAILY NOX EMISSIONS FROM MAY 1 1	THROUGH SEPT 30:	(LBS/DAY)	DATE OF OCCURRENCE:	<u></u>
AD	THROUGH SEPT 30: .	(LBS/DAY)	DATE OF OCCURRENCE:	<u></u>

		PA	GE OF
EMISSION STATEMENT	- PROCESS/IN	ICINERATOR UPDA	<u>TE</u> :
OURCE DESCRIPTION:		DEP REG: DEP STK:	
INITIAL STARTUP DATE: SI	HUTDOWN DATE:		
ROCESS DATA:			
ACTUAL ANNUAL PROCESS WEIGHT RATE: PEAK OZONE SEASON DAILY PROCESS RAT MAXIMUM PROCESS DESIGN RATE:	I:	UNITS	
UEL BURNING DATA:	F11F1 #4	51151 #0	F11F1 #3
TYPE OF FUEL MAX BURNER RATING (INCLUDE UNITS) OZONE SEASON TYPICAL DAILY FUEL USE ANNUAL USAGE (INCLUDE UNITS) SULFUR CONTENT (PERCENT BY WEIGHT) PERCENT ASH (SOLID FUELS ONLY) ACTUAL HOURS DER YEAR FUEL USE			FUEL #3
ACTUAL HOURS PER TEAR FUEL USE			
OURS OF OPERATION:	, *,,,, *,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,		
OURS OF OPERATION: ACTUAL HOURS PER DAY:ACTUAL PROCESS START TIME OF DAY: SEASONAL USE: DEC - FEB :% TACK PARAMETERS: HEIGHT:FT DIAMETER:FT STACK LINING (M,R,O): _	DAYS PER WEEK: PROCESS END TIME MAR - MAY: % MIN EXIT TEMP: EXIT DIRECTION()	ACTUAL WEEK E OF DAY: JUNE - AUG : OF MIN FLOW (/H): RAIN HAT	S PER YEAR:% SEPT- NOV : % AT MAX CAPACITY: ACFM (Y/N):
ACTUAL HOURS PER TEAR FOEL USE OURS OF OPERATION: ACTUAL HOURS PER DAY:ACTUAL PROCESS START TIME OF DAY: SEASONAL USE: DEC - FEB :7 TACK PARAMETERS: HEIGHT:FT DIAMETER:FT STACK LINING (M,R,0):	DAYS PER WEEK: PROCESS END TIME MAR - MAY: % MIN EXIT TEMP: EXIT DIRECTION(N	ACTUAL WEEK E OF DAY: JUNE - AUG : OF MIN FLOW //H): _ RAIN HAT	S PER YEAR:% SEPT- NOV :% AT MAX CAPACITY: ACFM (Y/N):
ACTUAL HOURS PER TEAR FOEL USE OURS OF OPERATION: ACTUAL HOURS PER DAY:ACTUAL PROCESS START TIME OF DAY: SEASONAL USE: DEC - FEB : TACK PARAMETERS: HEIGHT:FT DIAMETER:FT STACK LINING (M,R,0): POLLUTANT DATA: TYPICAL OZONE EMIS ACTUAL DAILY METH	DAYS PER WEEK: PROCESS END TIME MAR - MAY: % MIN EXIT TEMP: EXIT DIRECTION(N UNCONTROLLED EM	ACTUAL WEEK OF DAY: JUNE - AUG : OF MIN FLOW (7H): _ RAIN HAT ISSION FACTORS	S PER YEAR: % SEPT- NOV :% AT MAX CAPACITY: ACFM (Y/N): <u>CONTROL EQUIPME</u> PRIM SECD PERCI
ACTUAL HOURS PER TEAR FOEL USE IOURS OF OPERATION: ACTUAL HOURS PER DAY:ACTUAL PROCESS START TIME OF DAY: SEASONAL USE: DEC - FEB :% ITACK PARAMETERS: HEIGHT: FT DIAMETER: FT STACK LINING (M,R,O): POLLUTANT DATA: TYPICAL OZONE EMIS ACTUAL DAILY METH EMISSIONS EMISSIONS CODE PROCESS (TONS/YR) (LBS/DAY) (OC	DAYS PER WEEK: PROCESS END TIME MAR - MAY: % MIN EXIT TEMP: EXIT DIRECTION(1) UNCONTROLLED EM FUEL #1) (ACTUAL WEEK OF DAY: JUNE - AUG : OF MIN FLOW (//H): _ RAIN HAT ISSION FACTORS FUEL #2) (S PER YEAR: % SEPT- NOV :% AT MAX CAPACITY: ACFM (Y/N):ACFM (Y/N):ACFM PRIM SECD PERCI FUEL #3 CODE CODE EFFIC)
ACTUAL HOURS PER TEAR FOEL USE OURS OF OPERATION: ACTUAL HOURS PER DAY:ACTUAL PROCESS START TIME OF DAY:ACTUAL PROCESS START TIME OF DAY:ACTUAL SEASONAL USE: DEC - FEB :% TACK PARAMETERS: HEIGHT: FT DIAMETER: FT STACK LINING (M,R,O): FT POLLUTANT DATA: POLLUTANT DATA: ACTUAL DAILY METH EMISSIONS EMISSIONS CODE PROCESS (TONS/YR) (LBS/DAY) (OC	DAYS PER WEEK: PROCESS END TIME MAR - MAY: % MIN EXIT TEMP: EXIT DIRECTION(Y UNCONTROLLED EM: FUEL #1) (ACTUAL WEEK DOF DAY: JUNE - AUG : 	S PER YEAR:
ACTUAL HOURS PER TEAR FOEL USE IOURS OF OPERATION: ACTUAL HOURS PER DAY:ACTUAL PROCESS START TIME OF DAY: SEASONAL USE: DEC - FEB :% TACK PARAMETERS: HEIGHT: FT DIAMETER: FT STACK LINING (M,R,0): FT POLLUTANT DATA: POLLUTANT DATA: ACTUAL DAILY METH EMISSIONS EMISSIONS CODE PROCESS (TONS/YR) (LBS/DAY) (OC	DAYS PER WEEK: PROCESS END TIME MAR - MAY: % MIN EXIT TEMP: EXIT DIRECTION() UNCONTROLLED EM FUEL #1) (ACTUAL WEEK E OF DAY: JUNE - AUG : OF MIN FLOW W/H): _ RAIN HAT ISSION FACTORS FUEL #2) (S PER YEAR: % SEPT- NOV : % AT MAX CAPACITY: ACFM (Y/N): FUEL #3 CONTROL EQUIPME PRIM SECD PERCI CODE CODE EFFIC)
ACTUAL HOURS PER TEAR FOEL USE IOURS OF OPERATION: ACTUAL HOURS PER DAY:ACTUAL PROCESS START TIME OF DAY: SEASONAL USE: DEC - FEB :% STACK PARAMETERS: HEIGHT: FT DIAMETER: FT STACK LINING (M,R,0): POLLUTANT DATA: TYPICAL OZONE EMIS ACTUAL DAILY METH EMISSIONS EMISSIONS CODE PROCESS (TONS/YR) (LBS/DAY) { IOC	DAYS PER WEEK: PROCESS END TIME MAR - MAY: % MIN EXIT TEMP: EXIT DIRECTION(1) UNCONTROLLED EM FUEL #1) (ACTUAL WEEK DF DAY: JUNE - AUG :	S PER YEAR:

PAGEOF EMISSION STATEMENT - ABOVE GROUND STORAGE TANK UPDATE: DURCE DESCRIPTION: DEP REG: DEP STK: INITIAL STARTUP DATE: DEP STK: INITIAL STARTUP DATE: 1000 GALLONS COLOR OF STORAGE TANK: ROCESS DATA: STORAGE CAPACITY: 1000 GALLONS COLOR OF STORAGE TANK: ACTUAL ANNUAL PROCESS WEIGHT RATE: PEAK OZONE SEASON DAILY PROCESS RATE: OURS OF OPERATION: ACTUAL HOURS PER DAY: ACTUAL DAYS PER WEEK: ACTUAL WEEKS PER YEAR: PROCESS START TIME OF DAY: PROCESS END TIME OF DAY: SEASONAL USE: DEC - FEB : MAR - MAY: JUNE - AUG : SEPT- NOV : ARK PARAMETERS: HEIGHT ABOVE GRADE: FT OF TANK DIAMETER: OF OLLUTANT DATA: TYPICAL DAILY METHUNCONTROLLED EMISSION FACTORS FUEL #3 CONTROL EQUIPMEN EMISSIONS EMISSIONS CODE PROCESS FUEL #1 FUEL #2 FUEL #3 CONTROL EQUIPMEN EMISSIONS EMISSIONS CODE TOCESS FUEL #1 FUEL #2 FUEL #3 CONTROL EQUIPMEN EMISSIONS EMISSIONS CODE OF CONTROL ED EMISSION FACTORS FUEL #3 CONTROL EQUIPMEN EMISSIONS EMISSIONS CODE OF CONTROL ED EMISSION FACTORS FUEL #3 CONTROL EQUIPMEN CODE CODE CODE EFFIC (TONS/YR) (LBS/DAY) (LBS/1000 GAL) () () () () () () () () ()						DEP CO	DE:		
EMISSION STATEMENT - ABOYE GROUND STORAGE TANK UPDATE: DURCE DESCRIPTION: DEP REG: DEP REG: DEP STK: INITIAL STARTUP DATE: INITIAL STARTUP DATE: STORAGE CAPACITY: INITIAL STARTUP DATE: STORAGE CAPACITY: OUDO GALLONS COLOR OF STORAGE TANK: ACTUAL ANNUAL PROCESS WEIGHT RATE: PEKK OZONE SEASON DAILY PROCESS RATE: OURS OF OPERATION: ACTUAL DAYS PER WEEK: ACTUAL HOURS PER DAY: ACTUAL DAYS PER WEEK: ACTUAL HOURS PER DAY: ACTUAL HOURS PER DAY: ACTUAL HOURS PER AND: ANAR - MAY: X ACTUAL DAYS PER WEEK: ACTUAL HOURS PER ONE OF TANK DIAMETE							PAGE		DF
DURCE DESCRIPTION:		EMISSION	STATEMEN	T – ABOV	E GROUN	D STORAGE	TANK UP	DATE:	
INITIAL STARTUP DATE:	OURCE DESCR	IPTION:			<u> </u>		DEP REG: DEP STK:		
ROCESS DATA: STORAGE CAPACITY: 1000 GALLONS COLOR OF STORAGE TANK: ACTUAL ANNUAL PROCESS WEIGHT RATE:	INITIAL	STARTUP DAT	E:	SHUTDOW	IN DATE: _				
STORAGE CAPACITY: 1000 GALLONS COLOR OF STORAGE TANK: ACTUAL ANNUAL PROCESS WEIGHT RATE:	ROCESS DATA	:							
ACTUAL ANNUAL PROCESS WEIGHT RATE:	STORAG	E CAPACITY:	100	DO GALLONS	CO	LOR OF STORA	GE TANK:	<u></u>	
ACTUAL HOURS PER DAY:ACTUAL DAYS PER WEEK:ACTUAL WEEKS PER YEAR: PROCESS START TIME OF DAY:PROCESS END TIME OF DAY:SEASONAL USE: DEC - FEB :% MAR - MAY:% JUNE - AUG :% SEPT- NOV :% ANK PARAMETERS: HEIGHT ABOVE GRADE:FTOF TANK DIAMETER:OF AVERAGE ANNUAL TEMPERATURE:OF TYPICAL SUMMER TEMPERATURE:OF OLLUTANT DATA: TYPICALOZONE EMIS ACTUAL DAILY METHUNCONTROLLED EMISSION FACTORS FUEL #3 CONTROL EQUIPME EMISSIONS EMISSIONS CODE PROCESS FUEL #1 FUEL #2 FUEL #3 CODE CODE EFFIC (TONS/YR) (LBS/DAY) (LBS/1000 GAL) () () () () () OC	ACTUAL PEAK O OURS OF OPE	ANNUAL PROC ZONE SEASON RATION:	ESS WEIGHT R/ Daily process	ATE: S RATE:		<u> </u>	_		
HEIGHT ABOVE GRADE:FTOF TANK DIAMETER:FTOF OLLUTANT DATA:OZONE EMISOZONE EMISOZONE EMISOZONE EMISOZONE EMISSIONS CODE PROCESS FUEL #1 FUEL #2 FUEL #3 CODE CODE CODE EFFIC (TONS/YR) (LBS/DAY) (LBS/1000 GAL) () () () () () () () () ()	ACTUAL PROCESS SEASONA	HOURS PER DA START TIME L USE: DEC	Y: A(OF DAY: - FEB :	CTUAL DAYS PROCE & Mar -	PER WEEK: SS END TIM MAY: %	ACT E OF DAY: JUNE -	UAL WEEKS F AUG : %	PER YEAR: SEPT-	 NOV : %
OLLUTANT DATA: TYPICAL OZONE EMIS CONTROL EQUIPME ACTUAL DAILY METH UNCONTROLLED EMISSION FACTORS PRIM SECD PERCN EMISSIONS EMISSIONS CODE PROCESS FUEL #1 FUEL #2 FUEL #3 CODE CODE EFFIC OC	HEIGHT AVERAG	ABOVE GRADE E ANNUAL TEM	: FT PERATURE:	• _F		TANK DIA Typical	METER: SUMMER TEMI	FT PERATURE:	° _F
TYPICAL OZONE EMIS CONTROL EQUIPME ACTUAL DAILY METH UNCONTROLLED EMISSION FACTORS PRIM SECD PERCN EMISSIONS EMISSIONS CODE PROCESS FUEL #1 FUEL #2 FUEL #3 CODE CODE CODE CODE CODE EFFIC (TONS/YR) (LBS/DAY) (LBS/1000 GAL) ()	OLLUTANT DA	TA:							
	ACTUA EMISSIC (TONS/Y OC OX M10	TYPICAL OZONE L DAILY NS EMISSIONS R) (LBS/DAY) 	EMIS METH CODE PRO((LBS/100	UNCOM CESS 00 GAL) (ITROLLED EM FUEL #1	IISSION FACTO FUEL #) (IRS F(JEL #3)	CONTROL EQUIP PRIM SECD PER CODE CODE EFF
	EAD								

DEP CODE: PAGE OF EMISSION STATEMENT - GASOLINE LOADING FACILITY UPDATE:
DEP STK:
INITIAL STARTUP DATE: SHUTDOWN DATE:
PROCESS DATA:
ACTUAL ANNUAL PROCESS WEIGHT RATE: 1000 GALLONS / YEAR PEAK OZONE SEASON DAILY PROCESS RATE: 1000 GALLONS / DAY MAXIMUM PROCESS DESIGN RATE: 1000 GALLONS / HOUR
FUEL BURNING DATA: FUEL #1 FUEL #2 FUEL #3
TYPE OF FUEL
OZONE SEASON TYPICAL DAILY FUEL USE
SULFUR CONTENT (PERCENT BY WEIGHT)
ACTUAL HOURS PER YEAR FUEL USE
HOURS OF OPERATION:
ACTUAL HOURS PER DAY:ACTUAL DAYS PER WEEK:ACTUAL WEEKS PER YEAR: PROCESS START TIME OF DAY:PROCESS END TIME OF DAY: SEASONAL USE: DEC - FEB : % MAR - MAY:% JUNE - AUG :% SEPT- NOV :%
STACK PARAMETERS:
HEIGHT:FT DIAMETER: FT MIN EXIT TEMP: ^O F MIN FLOW AT MAX CAPACITY: ACFM STACK LINING (M,R,O): EXIT DIRECTION(V/H): RAIN HAT (Y/N):
POLLUTANT DATA:
TYPICAL OZONE EMIS CONTROL EQUIPMENT
ACTUAL DAILY METH UNCONTROLLED EMISSION FACTORS PRIM SECD PERCNT
(TONS/YR) (LBS/DAY) () () () () () ()
PM10
LEAD

2 - 9

Example 1. Fuel Burning Source

This example illustrates the general use of AP-42 emission factors to estimate emissions.

Description:	Commercial Boiler
SCC Code:	10300401
Annual Fuel Usage:	601,000 gals of # 6 Oil in 2002
Control Equipment:	None
Operating Schedule:	Days per week: 7
	Weeks per season: 13
Summer Seasonal Rate:	10%

From Tables 1.3-1 and 1.3-3 of AP-42, the emission factors (lbs / 1,000 gal) for this SCC code are as follows:

Pollutant:	Emission Factor:
NOx	47.00
VOC	1.60
CO	5.00

The equation used to calculate annual emissions for a fuel burning source is:

$$Ea = \frac{F \ x \ EF}{2,000}$$

The equation used to calculate the typical ozone daily emissions for a fuel burning source is:

$$Es = \frac{F \ x \ EF \ x \ Ts}{Ws \ x \ Ds}$$

Where:

Ds = days in operation per week

A sample calculation for annual CO emissions is:

$$Ea = \frac{601 \times 5.00}{2,000} = 1.50 \, TPY$$

A sample calculation for ozone season daily CO emissions is:

$$Es = \frac{601 \times 5.00 \times 0.10}{13 \times 7} = 3.30 \, lbs/day$$

Example 2. Gasoline Loading Facility

The following example calculates VOC emissions from a gasoline loading facility.

gasoline loading facility
40600141
gasoline submerged loading balance service
vapor recovery system
92%
regular unleaded gasoline, RVP=8.6
90,000,000 gallons/year
days per week: 6
weeks per season: 13
27%
10.72 lbs/1,000 gallons transferred
6.77 lbs/1,000 gallons transferred

The equation used to calculate the VOC emissions factor for loading losses at a gasoline facility $(RVP = 10 \text{ and temperature} = 50 \text{ }^{\circ}F)$ is:

$$L_L = \frac{12.46 \text{ x SPM}}{T}$$

Where:

L	= VOC emission factor, expressed in pounds of VOC emitted per
	thousand gallons of gasoline loaded.
S	= saturation factor 1.00 (see Table 5.2-1)
Р	= true vapor pressure of gasoline 4.2 psia (see Figure 7.1 - 6)
М	= molecular weight of gasoline vapors 66 (see table 7.1 - 2)
Т	= temperature of gasoline 510^{0} R

The calculation of the annual VOC emission factor for a gasoline loading facility is:

$$L_L = \frac{12.46 \text{ x} 1.0 \text{ x} 4.2 \text{ x} 66}{510} = 6.77 \text{ lbs/1,000 gal}$$

The equation used to calculate typical ozone daily VOC emissions for a gasoline loading facility is:

$$Es = \frac{Q \times EF \times Ts}{Ds \times Ws} \times [1 - (EFF)]$$

Where:

Es	= seasonally adjusted daily emissions (lbs / day)
Q	= throughput (gals / year)
EF	= emission factor (lbs / 1,000 gal)
Ts	= seasonal rate of use
EFF	= control efficiency
Ds	= 6 days per week
Ws	= 13 weeks per ozone season

The calculation of daily VOC emissions for the example gasoline loading facility is:

$$Es = \frac{90,000,000 \times 0.01072 \times 0.27}{13 \times 6} \times [1 - (0.92)] = 267.18 \, lbs/day$$

The equation used to calculate annual VOC emissions for a gasoline loading facility is:

$$Ea = \frac{Q \times EF}{2,000} \times [1 - (EFF)]$$

Where:

Ea = annual actual emissions (TPY) Q = throughput (gals / year) EF = emission factor (lbs / 1,000 gal) 2,000 = 2,000 lbs / ton EFF = control efficiency

The calculation of annual VOC emissions for the example gasoline loading facility is:

$$Ea = \frac{90,000,000 \times 0.00677}{2,000} \times [1 - (0.92)] = 24.37 TPY$$

Example 3. Surface Coating Plant

The example surface coating plant applies 55 tons (110,000 lbs) of coating annually: 12.5 tons (25,000 lbs) in Dec-Feb; 17.5 tons (35,000 lbs) in Mar-May; 10 tons (20,000 lbs) in Jun-Aug; and 15 tons (30,000 lbs) in Sept-Nov.

Description:	paint spray booth
SCC Code:	40200101
Annual Process Rate:	55 tons
Control Equipment:	
Primary:	vapor recovery system, $Code = 047$
Secondary:	n/a
Efficiency:	0.93
Capture Efficiency:	0.90
Operating Schedule:	days per week: 5
	weeks per season: 13

Summer Seasonal Rate : $\frac{10 \text{ tons}}{55 \text{ tons}} \times 100 = 18.2\%$

Emissions for coating facilities must be determined by material balance. Emission factors may not be used. Information from the coating supplier indicates that the coating contains 60% solvent. Thus, uncontrolled emissions are 60% of the total coating applied or 33 TPY. Assuming the primary control equipment, the VRS, has an actual efficiency (including downtime and maintenance degradation) of 93% and a capture efficiency of 90%, the control system efficiency would be (.93 x .90) x 100 or 83.7%. The actual annual "controlled" VOC emissions would be 33 TPY x (1 - .837) or 5.38 TPY.

The typical daily VOC emissions during the 3-month peak ozone season can be calculated using the following equation:

$$Es = \frac{Ea \ x \ Ts}{Ws \ x \ Ds}$$

Where:

Es	= seasonally adjusted daily emissions (lbs / day)
Ea	= actual annual "controlled" VOC emissions (lbs / year)
Ws	= weeks per ozone season

Ds	= days in operation per week
Ts	= season rate of use

Using our example, the daily VOC emissions during the ozone season is:

$$Es = \frac{10,760 \times 0.182}{13 \times 5} = 30.13 \, lbs/day$$

Example 4. Miscellaneous VOC losses from a waste solvent reclamation unit

The example unit reclaims 20,000,000 lbs of used toluene annually: 6,000,000 lbs in Dec-Feb; 4,000,000 lbs in Mar-May; 5,000,000 lbs in Jun-Aug; and the remaining 5,000,000 lbs in Sept-Nov.

red toluene fugitive losses
204: solvent spillage
205: solvent loading
0,000 / 2,000 = 10,000 tons
Season: 1 day per week; 13 weeks per season

Summer Seasonal Rate :
$$\frac{5,000,000}{20,000,000} \times 100 = 25\%$$

Table 4.7-1 of AP-42 gives the following fugitive emission factors for a fixed roof design storage tank:

Spillage losses: 0.20 lbs VOC per ton reclaimed solvent Loading losses: 0.72 lbs VOC per ton reclaimed solvent Losses from leaks: not available Losses from open sources: not available

The equation used to calculate annual fugitive emissions is:

$$Ea = \frac{F \ x \ EF}{2,000}$$

Where:

Ea	= annual actual emissions (TPY)
F	= annual tons of reclaimed solvent
EF	= emission factor (lbs / ton reclaimed solvent)

Specifically, annual spillage losses for this example would be:

$$Ea = \frac{10,000 \times 0.20}{2,000} = 1.0 \, TPY$$

In addition, annual-loading losses would be:

$$Ea = \frac{10,000 \times 0.72}{2,000} = 3.6 TPY$$

Combined annual fugitive losses for this example would be:

$$Ea(total) = 1.0 + 3.6 = 4.6 TPY (9,200 lbs/year)$$

Finally, the equation to calculate daily VOC combined emissions is:

$$Es = \frac{Ea(total) \ x \ Ts}{Ws \ x \ Ds}$$

Where:

Es	= seasonally adjusted daily emissions (lbs / day)
Ea (Total)	= combined annual fugitive losses (lbs / year)
Ts	= seasonal rate of use
Ws	= weeks per ozone season
Ds	= days in operation per week

Specifically, using this example, the daily fugitive VOC combined emissions would be:

$$Es = \frac{9,200 \ x \ 0.25}{13 \ x \ 1} = 176.92 \ lbs/day$$

Example 5. - Stoddard Solvent losses from a dry cleaning unit

This example illustrates the use of a material balance to estimate emissions from Stoddard Solvent. The dry cleaner uses 1,800 gallons of Stoddard Solvent during the year. Approximately 25 % or 450 gallons of the Stoddard Solvent are used during each season.

Description:	dry cleaner: Stoddard Solvent
SCC Code:	40100103

2 - 15

Annual Process Usage:1,800 gallons of Stoddard SolventDensity of Stoddard Solvent:13.6 lbs / galPeak Ozone Season Daily Process Rate:0.03 tons/day Stoddard SolventOperating Schedule During Ozone Season:5.5 days per week; 13 weeks per season:Control Equipment:vapor recovery system with 90% efficiency

Annual Process Rate = $\frac{1,800 \text{ gal } x \text{ 13.6 lbs/gal}}{2,000} = 12.24 \text{ TPY}$

Amount of Stoddard Solvent Recovered By Control Equipment = 12.24 x 0.90 = 11.0 TPY

Actual Annual VOC Emissions = 12.24 TPY - 11.00 TPY = 1.24 TPY

The typical daily VOC emissions during the 3-month peak ozone season can be calculated using the following equation:

$$Es = \frac{Pr \ x \ Sr \ x \ (1 - Eff)}{Ws \ x \ Ds}$$

Where:

Es = seasonally adjusted daily emissions (lbs / day) Pr = actual annual process weight Sr = season rate of use Eff = efficiency of the control equipment Ws = weeks per ozone season Ds = days in operation per week

Using our example, the daily VOC emissions during the ozone season is:

$$ES = \frac{24,480 \ lbs \ x \ 0.25 \ x \ (1 - 0.90)}{13 \ weeks \ x \ 5.5 \ days} = 8.56 \ lbs/day$$

2.4 EMISSION SUMMARY TABLES

For the 2002 periodic inventory, Connecticut is reporting all plants which reported their actual 2002 VOC, NOx, and CO emissions and are a major source, or have actual 2002 VOC or NOx emissions greater than 10 TPY, or CO emissions greater than 25 TPY. Appendix A, Table 1 lists the plants on the source list by county. Appendix A, Table 2 lists by SCC code the air pollution emission factors employed for each industrial process.

The following tables were prepared to display the emissions data in a variety of useful and easy-toread formats. Appendix A, Table 3 summarizes VOC, NOx, and CO emissions by major SCC category for the Connecticut portion of the NY-NJ-CT CMSA and for the Greater Connecticut Area. Appendix A, Table 4 summarizes CO emissions by major SCC category. Appendix A, Table 5 summarizes VOC, NOx and CO emissions for a typical ozone day by county. Appendix A, Table 6 summarizes typical winter day CO emissions by county.

Daily emissions by point for each plant on the source list is listed in Appendix A, Table 7. Emissions have been adjusted to account for Rule Effectiveness. This format was substituted for the AFS report because it is much easier to read and less voluminous. Operating parameters for all points on the source list for 2002 were submitted to EPA's National Emission Inventory Database.

2.5 QUALITY CONTROL PROCEDURES

2.5.1 Initial 1979 Quality Control Procedures

Quality Control (QC) measures for the point source inventory were originally instituted for the 1979 Ozone SIP. Those measures consisted of three separate activities. First, a procedure was developed to update the point source inventory. Second, the data must be verified by DEP personnel. Third, the data must be entered accurately.

Originally, the PIQ Inventory Update form was designed to provide DEP with the yearly changes in fuel use and process weights for the registered and permitted equipment at the inspected plants. In general, plants that had an EPA class of A1 (actual emissions > 100 TPY) were updated annually; plants with an EPA class of A2 (potential emissions > 100 TPY) were updated every second year; and plants with an EPA class of B (potential emissions < 100 TPY) were updated every third to fifth year.

Since 1993, the Inventory update procedure has been phased out with the implementation of our Emission Statement Program. The 2002 mailing included all plants which reported their actual 2002 VOC, NOx, and CO emissions and are a major source, or have actual 2002 VOC or NOx emissions greater than 10 TPY, or CO emissions greater than 25 TPY.

Initial data verification is done by our Inventory Staff, which checks for consistency and completeness. The Enforcement Division through their Pre-Inspection Questionnaire (PIQ) inspections verifies on-site company records regarding fuel use, solvent use and production rate data previously submitted in the Emission Statement Reports.

SAS^R Full Screen Product (SAS/FSP) is used for data entry. SAS/FSP procedures combine the convenience of interactive, menu-driven, full-screen facilities for data entry, editing, and data retrieval. Full-screen procedures allow one to work with an entire screen of data rather than one line of data at a time. The FSEDIT procedure of SAS/FSP allows one to enter and change information in a SAS data set displayed on a terminal screen. Data entry and error detection are made easier

because observations in the SAS data set are edited directly.

2.5.2 Additional Quality Control Procedures

The quality control program has three additional aspects. One aspect involves the procedure in which new permitted equipment is added to the point source inventory. Before a new permit record is transferred to the point source inventory, it must pass an edit check on 51 variables. If any of the variables are missing, the permit record is not transferred but is returned to the permit engineer with notification of the error sent to the engineer's supervisor.

Another aspect of quality control involves data verification by the users of the data. Point source inventory data are routinely used by: 1) the permit group to assess permit processing fees, 2) the modeling group for ambient impact analysis of new point sources, 3) the administrative enforcement group for state orders and notices of violation, and 4) the business office for Title V annual emission fees. As errors are detected by any of these groups, the appropriate corrections are made in the point source inventory.

The last aspect of quality control involves internal measures used by point source inventory personnel. Reasonableness checks are made on important variables. Listings are made in descending order for variables such as actual and potential emissions, fuel usage, and stack height. These types of listings are useful in identifying data that are out-of-bounds. Search and find commands in SAS/FSP are used to insure consistency for a particular variable; for example, SCC code or owner code for all equipment of the same type.

2.6 REFERENCES FOR SECTION 2

- State of Connecticut Department of Environmental Protection. <u>1990 Base Year Ozone and Carbon Monoxide Emissions Inventory</u>, Bureau of Air Management, Planning and Standards Division, Hartford, CT. November 1993.
- U.S. Environmental Protection Agency. <u>FIRE Version 6.24 Source Classification Codes and</u> <u>Emission Factor Listing for Criteria Air Pollutants</u>, EPA-454/R-95-012. Office of Air Quality Planning and Standards, Technical Support Division, Research Triangle Park, NC. March 2004.
- U.S. Environmental Protection Agency. <u>Compilation of Air Pollutant Emission Factors</u>, <u>Volume I: Stationary Point and Area Sources</u>, Fifth Edition and Supplements, AP-42. Office of Air Quality Planning and Standards, Office of Air and Radiation, Research Triangle Park, NC. January 1995-December 2003.
- 4. U.S. Environmental Protection Agency. <u>Procedures for the Preparation of Emission</u> <u>Inventories for Carbon Monoxide and Precursors of Ozone, Volume 1</u>, EPA-450/4-91-016. Office of Air Quality Planning and Standards, Office of Air and Radiation, Research Triangle Park, NC. May 1991.

SECTION 3 MOBILE SOURCES

3.1 INTRODUCTION

The mobile source emissions accounted for in this inventory are:

Highway Vehicles	Nonroad Sources	Aircraft	Commercial Marine Vessels	Railroad Locomotives
All vehicles registered for use on the public roadways.	 lawn and garden equipment airport service equipment recreational equipment recreational marine vessels light commercial equipment industrial equipment construction equipment agricultural equipment logging equipment 	 civilian commercial military 	All types of commercial vessels.	Locomotives operating on diesel fuel or coal.

3.2 Highway Vehicles

3.2.1 Traffic Data

The Connecticut Department of Transportation (CT DOT) provided average weekday, summer day and winter day 2002 Vehicle Miles Traveled (VMT) data for each county. CT DOT used their PERFORM travel demand forecasting model to develop VMT estimates. This model consists of a link-based network and trip generations based on land use, employment, census and car ownership data. Attachment B2 of the <u>1990 Base Year Ozone and Carbon Monoxide Emissions Inventory SIP¹</u> (Base Year Inventory) document contains a complete description of the PERFORM model. Although the basic equations used to generate estimates have not changed, the data that drives the model are continually updated. Each update carries a series number; for example series 27 was used for this inventory. All VMT estimates presented in this document were developed with the PERFORM model using estimates of 2000 levels of employment, population, households, household income, and vehicle availability data. These estimates were updated following the release of the 2000 Census data for Connecticut. CT DOT has used a base form of this model to estimate and forecast VMT data since 1980.

The PERFORM model was used to generate 2002 VMT estimates because of its ability to estimate VMT by county with vehicle speeds included. It is also compatible with VMT tracking and analysis required under the Clean Air Act. The 2002 VMT was generated as projections of the base 2000 model.

EPA requires that modeled VMT predictions be consistent with data collected as part of the Highway Performance Monitoring System (HPMS) program. HPMS data are collected for each of the following 12 functional road classes/facility types:

Rural	Urban
Interstate	Interstate
Other Principal Arterial	Other Freeways & Expressways
Minor Arterial	Other Principal Arterial
Major Collector	Minor Arterial
Minor Collector	Collector
Local	Local

To meet EPA's requirement, link volumes within the PERFORM model were stratified by HPMS functional class based on link location and facility type code. All highway network links in the model are individually coded for HPMS functional class. All HPMS functional classes are represented in the highway network. Intra-Zonal trips (those too short to get on the model network - less than 2% of the total VMT) are assigned an average trip length based on the size of the traffic analysis zone and were considered local road trips. The 2000 PERFORM model was

adjusted in this manner to produce data for these road classifications.

The following table shows the PERFORM model and HPMS VMT's for the base year and the PERFORM model VMT for 2002 (inventory year). The adjustments made by CT DOT ensure that PERFORM model VMT estimates are consistent with HPMS VMT (units for the numbers are millions of miles per day). These adjustments are carried throughout the forecasted years and are reflected in the 2002 VMT estimates.

	VMT in Millions of Miles per Day			
AREA	2000 UNADJUSTED MODEL	2000 HPMS	2000 ADJUSTED MODEL	2002 ADJUSTED MODEL
Rural	20.5	20.7	20.7	21.2
Small Urban Area (UA)	0.9	1.2	1.2	1.2
Bridgeport UA	7.6	8.5	8.5	8.7
New Haven UA	9.8	10.4	10.4	10.6
Norwalk UA	3.3	3.3	3.3	3.3
Stamford UA	4.5	4.5	4.5	4.5
Hartford UA	15.7	16.2	16.1	16.4
Springfield UA	2.3	2.0	2.0	2.0
Bristol UA	0.9	1.0	1.0	1.0
Danbury UA	4.0	4.0	4.0	4.1
New Britain UA	3.0	3.3	3.3	3.4
New London UA	4.9	5.1	5.1	5.2
Waterbury UA	3.2	3.2	3.2	3.3
STATEWIDE	80.6	83.4 ^H	83.3	84.9

Connecticut had an average of 84.9 million VMT per day in 2002.

^HHPMS VMT includes portions of Massachusetts. Connecticut only used in state VMT.

Validations of the PERFORM model were accomplished by comparing model output to known base data. In particular, HPMS VMT was an important basis of model validation and calibration. A link by link assignment versus Average Daily Traffic (ADT) tabulation was made to examine expressway assignments. Graphic plots were used as a visual review of model output of the highway network, with assignments and ADTs posted on a link basis.

CT DOT also used a self-consistent equilibrium assignment process in that the state of equilibrium within the PERFORM model was determined by the closure ratio criterion. This is the ratio of the summation of the loaded network travel time to the projected summation of loaded travel time after capacity-restrained adjustment for the current iteration. The suggested default of 0.10 was retained for all assignment runs. This closure ratio was always attained at a

point before the maximum number of iterations specified was reached. The equilibrium assignment module uses volume-to-capacity ratios to adjust link speeds between iterations so that links are not over assigned.

Previously, CT DOT categorized roads by four major types: Expressway, Arterial, Collector, and Local. CT DOT used this format to describe the twelve HPMS functional road classes, which were considered a hybrid mix of the four original road types. For example, the HPMS functional road class of "Rural: Interstate" takes on the characteristics of CT DOT's Expressway road type, while the HPMS road called "Rural: Minor Collector" CT DOT describes it as having Collector VMT characteristics. However, due to the changeover to the MOBILE6 emissions model and it's new data requirements, the VMT data supplied from the PERFORM model has changed from previous versions. VMT by geographic area is now tabulated by four highway classifications: expressway, arterial/collector, local and expressway ramp. Ramp VMT is estimated as a percentage of expressways' VMT based on the ratio of ramp mileage versus expressway mileage in each county.

Connecticut used "Travel Activity by Vehicle Type and Functional System" data reported by CT DOT to the Federal Highway Authority for the HPMS program (see Table 3.2.1-2a & b). This report lists thirteen HPMS vehicle type percentages on the twelve road types outlined previously. These data do not categorize vehicle types in the same manner as MOBILE6.2².

HPMS vehicle fractions were converted to MOBILE6 vehicle fractions by doing the following. The HPMS vehicle percentages were multiplied by the VMT for each HPMS road type. This generated VMT for each vehicle type on each road. These VMT were separated into three road types and summed (expressway, arterial/collector, and local road) while keeping the vehicle groups intact.

The thirteen vehicle groups were summed into three groups i.e. Light Duty Vehicles (LDV), Heavy Duty Vehicles (HDV) and Motorcycles (MC). "Passenger Car" and "Other 2-Axle, 4-Tire Vehicles" VMT were summed to get LDV VMT. "Motorcycle" VMT were summed for MC and the remaining vehicle categories were summed for the HDV group. All of the sums were done by the three road types.

A Connecticut vehicle VMT fraction of LDV, HDV and MC per road was determined using the total VMT by road versus the individual vehicle VMT. The MOBILE6 default vehicle fractions for the equivalent vehicle types were determined by summing LDV and LDT1, LDT2, LDT3 and LDT4 for the LDV. HDV was a summation of HDV2B, HDV3, HDV4, HDV5, HDV6, HDV7, HDV8A and HDV8B. MC was the MC default.

The ratio of the Connecticut VMT vehicle fractions to the summed MOBILE6 defaults was then multiplied by appropriate individual MOBILE6 vehicle fraction default values. This gave the Bureau a Connecticut specific VMT mix for the four road types (expressway VMT fractions were also used for ramps). This follows the methodology outlined in the MOBILE6 Technical Guidance³ section 4.1.4 "Disaggregation of Local Information".

A state-specific vehicle mix data was entered into MOBILE6 for each road class.

Variations in speed on the network are accounted for by the use of a new MOBILE6 input file depicting the speed distribution of VMT (in percentage form) for freeways and arterials only. A conversion is made internally to equate CT DOT's VMT speeds to the MOBILE6 speed ranges, shown as follows:

MOBILE Speed Bin #	Abbreviation	Description	Model Freeway Speeds	Model Arterial Speeds
1	2.5 mph	Average speed 0-2.5 mph	-	-
2	5 mph	Average speed 2.5-7.5 mph	-	5
3	10 mph	Average speed 7.5-12.5 mph	10	10
4	15 mph	Average speed 12.5-17.5 mph	-	15
5	20 mph	Average speed 17.5-22.5 mph	20	20
6	25 mph	Average speed 22.5-27.5 mph	-	25
7	30 mph	Average speed 27.5-32.5 mph	30	30
8	35 mph	Average speed 32.5-37.5 mph	-	35
9	40 mph	Average speed 37.5-42.5 mph	40	40
10	45 mph	Average speed 42.5-47.5 mph	-	45
11	50 mph	Average speed 47.5-52.5 mph	51	50
12	55 mph	Average speed 52.5-57.5 mph	54,56	-
13	60 mph	Average speed 57.5-62.5 mph	63	-
14	65+ mph	Average speed > 65.5 mph	65	-

MOBILE6/CT DOT Model Speed Bins

The procedure previously used to calculate speeds was retained; however, as MOBILE 6 only allows speed distributions for freeways and arterials, only those two categories are reported. These files are presented in Attachment C1.

TABLE 3.2.1 - 2aHPMS TRAVEL ACTIVITY PERCENTAGES BY VEHICLE TYPE AND FUNCTIONAL
SYSTEM CONNECTICUT - 2002

ROAD CLASS: RURAL								
VEHICLE TYPE	Interstate	Other Principal Arterial (OPA)	Minor Arterial (MA)	Major Collector	Minor Collector (NOTE*)	Local		
Motorcycle	0.04	0.02	0.70	0.18	0.27	0.19		
Passenger Car	75.56	79.13	80.22	76.04	83.80	80.61		
Light Truck	12.87	15.31	15.47	20.48	12.74	15.55		
Buses	0.30	0.36	0.07	0.27	0.00	0.05		
2-Axle, 6-Tire Single Trucks	2.10	1.47	1.14	1.31	1.04	1.72		
3-Axle Single Trucks	0.66	0.62	0.85	0.50	0.78	0.76		
4 Or More Axle Single Trucks	0.16	0.18	0.36	0.28	0.62	0.24		
4 Or Less Axle Trailer Trucks	0.98	0.71	0.59	0.37	0.48	0.45		
5-Axle Trailer Trucks	6.93	2.11	0.58	0.55	0.18	0.42		
6-Axle Tandem Trucks	0.23	0.05	0.02	0.02	0.09	0.01		
5 Or Less Axle Tandem Trucks	0.15	0.03	0.00	0.00	0.00	0.00		
6-Axle Tandem Trucks	0.02	0.01	0.00	0.00	0.00	0.00		
7 Or More Tandem Trucks	0.00	0.00	0.00	0.00	0.00	0.00		
TOTAL	100%	100%	100%	100%	100%	100%		

* NOTE: Rural Minor Collector mixes no longer tabulated for HPMS; the mixes shown are from 1999 HPMS.

TABLE 3.2.1 - 2b HPMS TRAVEL ACTIVITY PERCENTAGES BY VEHICLE TYPE AND FUNCTIONAL SYSTEM CONNECTICUT - 2002

ROAD CLASS: URBAN							
VEHICLE TYPE	Interstate	Other Freeway & Expressway (OF&E)	Other Principal Arterial (OPA)	Minor Arterial	Collector	Local	
Motorcycle	0.09	0.05	0.19	0.26	0.21	0.53	
Passenger Car	77.50	82.82	80.26	82.09	84.01	84.51	
Light Truck	11.72	12.33	14.80	15.21	12.47	12.99	
Buses	0.22	0.08	0.43	0.06	0.02	0.01	
2-Axle, 6-Tire Single							
Trucks	2.30	1.82	1.84	0.99	0.87	1.08	
3-Axle Single Trucks	0.64	0.58	0.64	0.30	0.38	0.18	
4 Or More Axle Single							
Trucks	0.17	0.18	0.19	0.14	0.60	0.32	
4 Or Less Axle Trailer							
Trucks	0.81	0.52	0.74	0.76	1.01	0.25	
5-Axle Trailer Trucks	6.08	1.54	0.82	0.18	0.42	0.13	
6 Or More Axle Trailer							
Trucks	0.16	0.05	0.02	0.01	0.01	0.00	
5 Or Less Axle Tandem							
Trucks	0.25	0.03	0.06	0.00	0.00	0.00	
6-Axle Tandem Trucks	0.06	0.00	0.01	0.00	0.00	0.00	
7 Or More Tandem							
Trucks	0.00	0.00	0.00	0.00	0.00	0.00	
TOTAL	100%	100%	100%	100%	100%	100%	

3.2.2 MOBILE6

MOBILE6.2, EPA's new Mobile Source Emission Factor Model, was used to calculate emission factors for highway vehicles as directed in the Procedures for Emission Inventory Preparation, Volume IV: Mobile Sources (Procedures Document)⁴. All input data supplied to the MOBILE6 computer program are presented in Appendix B, Tables 1, 2, 3, 4 and 6, and Attachments B1, C1 and D1. National default values were used for many of the input parameters such as:

- < basic emission rates
- < tampering rate
- < annual mileage accumulation rates, and
- < diesel fractions, etc.

MOBILE6 was run with the resulting emission factors applied to Connecticut county VMTs according to the status areas where they were located. Separate MOBILE6 parameters were developed for each 8-hour ozone non-attainment area and each Carbon Monoxide maintenance area. The Carbon Monoxide maintenance areas are based on the original 1990 temperature determinations and census results for the CT portion of the NY-NJ-CT CMSA and the Greater Connecticut Area, while the new 8-hour ozone non-attainment areas are based on updated temperature determinations and 2000 census results for the CT portion of the NY-NJ-CT CMSA and the Greater Connecticut Area. This follows EPA's guidance since minimum and maximum temperatures must be determined for each non-attainment area and vehicle speed profiles were derived for each county. Emission factors were calculated using the design temperatures calculated for each status area. The design temperature and status area for Carbon Monoxide remains unchanged and is based upon 1990 typical exceedance day temperatures to be consistent with the 1990 emission calculations, as required by EPA. The design temperature and status area for Ozone was modified so that it is now based upon the 8-hour standard typical exceedance day temperatures for 2002 (i.e. 2000, 2001, and 2002), in-state temperatures (Danbury versus LaGuadia Airport, NY), and drawn at county lines considering the 2000 census results defining metropolitan statistical areas.

Connecticut's Inspection and Maintenance (I/M) program began in 1983 with annual idle testing of tailpipe emissions for 25 years old or newer (i.e. model year 1958 and later) cars and trucks that had a Gross Vehicle Weight Rating (GVWR) of up to 10,000 pounds. The program was enhanced beginning in 1998, requiring biennial loaded ASM2525 testing for model year 1981 and later gasoline cars and model year 1981 and later gasoline cars gasoline trucks having a GVWR of up to 8,500 pounds. Model year 1980 and earlier gasoline cars that were 25 year old or newer, model year 1980 and earlier trucks that were 25 years old or newer, and all 25 year old or newer trucks having GVWR of 8,501 to 10,000 pounds were required to continue annual idle testing. MOBILE6 model runs for 2002 reflect these program requirements. All vehicles were also required to participate in a gas cap pressure test. Table 3 documents the input values used in the MOBILE6 external I/M file. I/M data was gathered from the "Evaluation of Test Data Collected in 2001 and 2002 from Connecticut's Inspection/Maintenance Program" prepared by dKC – de la Torre Klausmeier Consulting and the Connecticut Department of Motor Vehicles (DMV).

The first phase of the federally required reformulated gasoline (RFG) program began in Connecticut in 1995, and was included in the modeling for 2002. A summer Reid Vapor

Pressure (RVP) value of 6.86 psi was input based on a weighted average of RVP sampling in EPA's gasoline storage terminal compliance study¹¹ performed in 2002, however page 151 of the Mobile 6.2 users guide indicates value used internally within the model is 6.7 psi based on the use of the RFG program.² Similarly, a winter RVP of 13.1 psi was input based on the average RVP sampling in EPA's gasoline storage terminal compliance study⁵ performed in 1999, however page 160 of the Mobile 6.2 users guide indicates that all RVP effects are the same for RVP values greater than 11.7 psi.²

MOBILE6 was also run for winter CO emission estimates using eight sets of input parameters, (one for each county). These sets were identical to the ozone-input files except for changes in minimum and maximum temperatures, the month of analysis and gasoline RVP. The MOBILE6 input data used for the 2002 Ozone and CO inventories are presented in Appendix B, Table 6. The Air Bureau applied these emission factors to the seasonally adjusted VMT data to obtain emission totals for each season. Annual emissions were calculated using the unadjusted average daily VMT and summer emission factors, then multiplying by 365 days.

Klausmeier Consulting also generated Connecticut fleet age distribution data derived from 2002 DMV vehicle registration data with the aid of a VIN decoder. The consultant provided a 5-vehicle type/25 model year matrix to represent state-specific age percentages by vehicle type as defined in the MOBILE6.2 model guidance. The 25th model year contains all vehicles that are 25 years old and older. The Connecticut DEP used the 2002 DMV vehicle registration data to develop an age distribution profile for motorcycles and developed a database that included the consultants' results to check and further refine the derived age distribution data.

The percentage for each model year and each vehicle type was then calculated and formatted as necessary for use in the MOBILE6 model. Attachment D1 documents the input values used in the MOBILE6 external age distribution file. Table 3.1.2-1 contains the total number of vehicles in the DMV registry in 2002 for each of the 25 years.

TABLE 3.1.2 - 1								
2002 CT DEPARTMENT OF MOTOR VEHICLES REGISTRY								
Model Year	Model YearNumber of Light Duty VehiclesModel Year		Number of Light Duty Vehicles					
2002	188,348	1989	88,784					
2001	204,054	1988	79,675					
2000	211,150	1987	65,087					
1999	190,206	1986	46,695					
1998	177,299	1985	30,447					
1997	172,973	1984	20,072					
1996	148,491	1983	10,997					
1995	165,670	1982	6,347					
1994	141,790	1981	4,936					
1993	126,482	1980	3,257					
1992	103,487	1979	5,200					
1991	90,174	1978 (Note 1)	6,159					
1990	86,891	1977 or Older (Note 1)	15,740					
TOTAL NUMBER OF R	2,390,411 (Note 2)							

- Note 1: The 25th year is 1978. The total count for 1978 and older vehicles is 21,899. The above table shows that approximately 72% of the vehicles listed at the last available input year (Model Year 1978) are more than 25 years old (Model Year 1977 or Older). The total count at the 25th year is less than 1% of the total light duty vehicle count and therefore are not a dominant contributor of total emissions.
- Note 2: The total vehicle count for 2002 is less than the total vehicle count for 1999. This is a result of improvements to the treatment of DMV registration data, specifically more diligent elimination of off-road vehicles, specialty vehicles, motorcycles, trailers, and a more stringent review of VIN Decoder output against specific registry classification codes and other registry data.

MOBILE6.2 allows the user to input an hourly facility mix. For example, at 7am, 80% of the VMT can be assigned to expressways, 10% to arterials/collectors, 5% to local roads and 5% to ramps. Values like these can be input for each hour of the day. Connecticut opted to isolate each road to extract specific emission factors. This was accomplished by zeroing out all but one road type with the remaining road type having a value of 100%. Four MOBILE6 runs were carried out to obtain emission factors for each of the four road classes.

Emission factors for each vehicle type per road class in each county were matched with the corresponding county VMT. For example Hartford County summer day expressway emission factors were calculated with inputs such as Hartford expressway speed percentages, expressway vehicle mix, etc. Those emission factors were then matched with Hartford expressway VMT presented in Attachment E1 to perform the appropriate emission calculations. This same procedure was done for Arterials/Collectors, Local roads and Ramps. The formula used to calculate emissions for typical high ozone summer day in a county is presented below.

$$E_{C} = \sum_{V,R,C} \frac{VMT_{R,C} \times EF_{V,R,C} \times MIX_{V,R}}{453.6 \times 2000}$$

Where:

E _C	= tons emission per day in County C
MIX _{V,R}	= Percentage of Vehicle type V on road class R
VMT _{R,C}	= County Vehicle Miles Traveled for road class R in County C
EF _{V,R,C}	= MOBILE6 emission factor in grams/mile Vehicle type V on road class R
	in County C
453.6	= 453.6 grams/pound
2000	= 2000 pounds/ton

A sample calculation of summer day VOC emissions estimated for the 2002 Light Duty Gasoline Vehicles traveling on 'Arterial/Collector' roads in Hartford County is presented below. (Therefore, this calculation will represent one of the vehicle emissions, E_V , used in the summation for the county emissions, E_C .)

$$E_V = \frac{10,572,090 \times 1.0138 \times 0.511456}{453.6 \times 2000}$$

$$E_V = 6.043$$
 tons VOC per day

Mobile source emission factors by county are summarized in Appendix B Table 7 (Ozone Season) and Appendix B Table 8 (Winter Season). Summer daily emissions from mobile sources are summarized by county in Appendix B, Table 9, summarized by Road Type for the entire state in Appendix B, Table 10 and summarized by non-attainment status area in Appendix B, Table 11. Winter Daily Carbon Monoxide emissions are summarized in Appendix B, Table 12. Annual emissions from mobile sources are summarized by county in Appendix B, Table 13, summarized by Road Type for the entire state in Appendix B, Table 14 and summarized by non-attainment status area in Appendix B, Table 13, summarized by Road Type for the entire state in Appendix B, Table 14 and summarized by non-attainment status area in Appendix B, Table 15.

3.3 NONROAD MOBILE SOURCES

The Nonroad Mobile Sources consist of:

Nonroad Mobile Sources
Nonroad Mobile Sources < Aircraft < Commercial Marine Vessels < Locomotives < Lawn and Garden equipment < Airport service equipment < Recreational equipment < Recreational Marine Vessels
< Light Coninercial equipment < Industrial equipment < Construction equipment < Agricultural equipment < Logging equipment

The April 2004 draft U.S. EPA Nonroad Emission Model (NONROAD Model) was used to estimate 2002 VOC, NO_x , and CO annual emissions, 2002 VOC, NO_x , and CO daily emissions for a typical ozone season day and 2002 CO winter day emissions for all non-road mobile source categories except for locomotive, aircraft, and commercial marine vessels emissions. Emissions from aircraft, commercial marine vessels, and locomotives are discussed and calculated in sections 3.4, 3.5, and 3.6, respectively.

All input data supplied to the NONROAD Model is presented in Appendix B, Table 5. Gasoline fuel RVP, gasoline oxygen weight percent and gasoline sulfur percent were calculated from fuel sampling measurements¹¹ that included samples from Connecticut, New York, and New Jersey. No state modifications were made to the EPA base files via the NONROAD Model advanced options, therefore EPA supplied data were used for geographic allocation, temporal allocation, growth, equipment population, phase in, emission factors, deterioration factors, and activity.

Connecticut specific sampling measurements for diesel sulfur were not readily available, so test runs were conducted with varying sulfur inputs to determine the sensitivity of output results for pollutants within the scope of this report to varied sulfur concentrations. It was determined that sulfur did not impact CO, VOC, or NOx results, therefore the NONROAD Model default input value was used.

A summary of summer daily emissions, winter daily carbon monoxide emissions and annual emissions from non-road mobile sources are presented in Table 3.3-1. Summary data for aircraft, commercial marine vessel, and locomotive emissions are included in Table 3.3-1, but detailed calculations and discussions supporting the summary data are found in sections 3.4, 3.5, and 3.6, respectively.

TABLE 3.3-1

2002 SUMMARY OF ANNUAL AND DAILY EMISSIONS FROM NONROAD MOBILE SOURCES

				WINTER	ANNUAL	ANNUAL	ANNUAL
	DAILY VOC	DAILY CO	DAILY NOx	DAILY CO	VOC	CO	NOx
	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSION
County	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(tons/year)	(tons/year)	(tons/year)
Fairfield							
Agricultural Equipment	8	61	55	9	1	6	5
Aircraft Exhaust	361	5,762	188	3,756	58	819	33
Airport Equipment	0	0	0	0	0	0	0
Commercial Equipment	4,053	105,678	3,297	100,960	643	16,667	520
Commercial Marine Vessels	100	220	542	220	18	40	99
Construction and Mining Equipment	5,465	43,628	30,680	16,926	567	4,510	3,172
Industrial Equipment	2,577	41,425	10,620	41,578	409	6,544	1,693
Lawn and Garden Equipment (Com)	23,618	371,391	4,753	97,097	2,907	40,241	502
Lawn and Garden Equipment (Res)	4,585	77,763	584	17,716	779	11,936	88
Locomotives	110	264	2,664	264	14	34	346
Logging Equipment	0	0	0	0	0	0	0
Pleasure Craft	17,061	39,229	1,874	1,453	3,249	7,530	360
Railroad Equipment	16	191	68	186	2	28	10
Recreational Equipment	688	3,533	30	997	99	508	4
Fairfield Total:	58,643	689,145	55,355	281,162	8,747	88,863	6,833

TABLE 3.3-1

2002 SUMMARY OF ANNUAL AND DAILY EMISSIONS FROM NONROAD MOBILE SOURCES

	DAILY VOC	DAILY CO	DAILY NOx	WINTER DAILY CO	ANNUAL VOC	ANNUAL CO	ANNUAL NOx
Constant	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSION
County	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(tons/year)	(tons/year)	(tons/year)
Hartford					_		
Agricultural Equipment	69	555	493	81	7	55	49
Aircraft Exhaust	1,416	11,005	3,691	6,463	205	1,558	663
Airport Equipment	19	200	176	195	4	37	32
Commercial Equipment	3,294	85,634	2,625	79,772	524	13,506	414
Commercial Marine Vessels	25	51	143	51	5	9	26
Construction and Mining Equipment	2,091	16,765	11,716	6,415	217	1,733	1,211
Industrial Equipment	2,313	37,132	9,539	37,018	367	5,866	1,522
Lawn and Garden Equipment (Com)	18,581	294,241	3,669	69,759	2,253	31,639	386
Lawn and Garden Equipment (Res)	4,475	75,095	544	16,745	761	11,528	82
Locomotives	64	154	1,553	154	8	20	202
Logging Equipment	0	0	0	0	0	0	0
Pleasure Craft	1.473	3.018	121	112	280	579	23
Railroad Equipment	16	191	67	182	2	28	10
Recreational Equipment	169	11,309	61	3,063	24	1,626	9
Hartford Total:	34,007	535,350	34,399	220,010	4,658	68,184	4,630
Litchfield							
Agricultural Equipment	90	724	643	106	9	71	64
Aircraft Exhaust	15	442	3	161	2	49	0
Airport Equipment	0	0	0	0	0	0	0
Commercial Equipment	573	14,884	456	13,865	91	2,347	72
Construction and Mining Equipment	389	3,120	2,180	1,194	40	323	225
Industrial Equipment	556	8,945	2,286	8,917	88	1,413	364
Lawn and Garden Equipment (Com)	4.194	66.414	828	15,279	506	7.121	87
Lawn and Garden Equipment (Res)	1,260	21.143	153	4.653	214	3.242	23
Locomotives	10	26	266	26	1	3	35
Logging Equipment	5	30	8	29	1	5	1
Pleasure Craft	2 380	4 875	195	180	453	936	37
Railroad Equipment	2,000	42	15	40	1	6	2
Recreational Equipment	3 634	12.821	122	11 376	72.7	2 291	19
Litchfield Total:	13,108	133,466	7,156	55,827	2,132	17,808	931
TABLE 3.3-1

2002 SUMMARY OF ANNUAL AND DAILY EMISSIONS FROM NONROAD MOBILE SOURCES

	DAILY VOC FMISSIONS	DAILY CO	DAILY NOX	WINTER DAILY CO FMISSIONS	ANNUAL VOC EMISSIONS	ANNUAL CO FMISSIONS	ANNUAL NOx FMISSION
County	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(tons/year)	(tons/year)	(tons/year)
Middlesex						· · ·	
Agricultural Equipment	18	147	131	22	2	14	13
Aircraft Exhaust	17	407	2	162	3	37	1
Airport Equipment	0	0	0	0	0	0	0
Commercial Equipment	539	14,060	439	13,239	86	2,217	69
Commercial Marine Vessels	58	115	323	115	11	21	59
Construction and Mining Equipment	426	3,404	2,394	1,310	44	352	247
Industrial Equipment	438	7,038	1,809	7,037	70	1,112	289
Lawn and Garden Equipment (Com)	3,098	48,710	623	11,914	377	5,249	66
Lawn and Garden Equipment (Res)	962	16,328	123	3,632	163	2,504	19
Locomotives	61	220	883	220	8	29	115
Logging Equipment	0	0	0	0	0	0	0
Pleasure Craft	5,688	12,995	613	479	1,083	2,494	118
Railroad Equipment	3	34	12	33	0	5	2
Recreational Equipment	2,065	10,598	89	2,956	298	1,524	13
Middlesex Total:	13,374	114,057	7,442	41,119	2,145	15,558	1,009
New Haven				-		-	·
Agricultural Equipment	30	244	218	36	3	24	22
Aircraft Exhaust	352	11,245	41	3,881	41	1,232	6
Airport Equipment	5	48	43	47	1	9	8
Commercial Equipment	3,071	80,063	2,498	75,391	487	12,627	394
Commercial Marine Vessels	14	31	78	31	3	6	14
Construction and Mining Equipment	3,429	27,370	19,247	10,536	356	2,830	1,990
Industrial Equipment	2,112	33,821	8,749	33,818	336	5,344	1,397
Lawn and Garden Equipment (Com)	8,427	132,518	1,696	31,259	1,019	14,231	178
Lawn and Garden Equipment (Res)	4,225	71,669	538	16,155	718	11,003	81
Locomotives	199	488	4,932	488	26	63	641
Logging Equipment	0	0	0	0	0	0	0
Pleasure Craft	20,388	47,265	2,291	1,742	3,882	9,073	440
Railroad Equipment	16	182	65	175	2	27	9
Recreational Equipment	1,053	13,763	91	3,793	152	1,979	13
New Haven Total:	43,321	418,707	40,487	177,352	7,025	58,447	5,193

TABLE 3.3-1

2002 SUMMARY OF ANNUAL AND DAILY EMISSIONS FROM NONROAD MOBILE SOURCES

	DAILY VOC	DAILY CO	DAILY NOx	WINTER DAILY CO	ANNUAL VOC	ANNUAL CO	ANNUAL NOx
	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSION
County	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(tons/year)	(tons/year)	(tons/year)
New London							
Agricultural Equipment	53	429	381	63	5	42	38
Aircraft Exhaust	309	2,287	107	1,473	45	335	16
Airport Equipment	1	12	10	11	0	2	2
Commercial Equipment	509	13,230	406	12,325	81	2,087	64
Commercial Marine Vessels	57	122	314	122	10	22	57
Construction and Mining Equipment	1,215	9,740	6,807	3,727	126	1,007	704
Industrial Equipment	701	11,246	2,891	11,211	111	1,777	461
Lawn and Garden Equipment (Com)	2,036	32,240	402	9,034	256	3,527	43
Lawn and Garden Equipment (Res)	1,535	25,758	187	5,744	261	3,954	28
Locomotives	53	134	1,358	134	7	17	176
Logging Equipment	0	0	0	0	0	0	0
Pleasure Craft	8,936	19,744	925	726	1,699	3,790	178
Railroad Equipment	5	58	21	56	1	9	3
Recreational Equipment	2,943	11,679	106	3,249	426	1,679	15
New London Total:	18,353	126,679	13,915	47,873	3,029	18,248	1,785
Tolland							
Agricultural Equipment	38	307	273	45	4	30	27
Aircraft Exhaust	25	774	4	271	3	88	0
Airport Equipment	0	0	0	0	0	0	0
Commercial Equipment	227	5,892	181	5,488	36	929	28
Construction and Mining Equipment	473	3,793	2,650	1,451	49	392	274
Industrial Equipment	138	2,121	604	2,115	22	336	98
Lawn and Garden Equipment (Com)	1,018	16,120	201	3,938	124	1,738	21
Lawn and Garden Equipment (Res)	708	11,879	86	2,633	120	1,822	13
Locomotives	10	24	248	24	1	3	32
Logging Equipment	0	0	0	0	0	0	0
Pleasure Craft	680	1,393	56	52	129	267	11
Railroad Equipment	3	30	11	29	0	4	2
Recreational Equipment	740	6,796	47	1,860	107	977	7
Tolland Total:	4,059	49,129	4,360	17,907	596	6,589	513

TABLE 3.3-1

2002 SUMMARY OF ANNUAL AND DAILY EMISSIONS FROM NONROAD MOBILE SOURCES

				WINTER	ANNUAL	ANNUAL	ANNUAL
	DAILY VOC	DAILY CO	DAILY NOx	DAILY CO	VOC	CO	NOx
	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSIONS	EMISSION
County	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(tons/year)	(tons/year)	(tons/year)
Windham							
Agricultural Equipment	61	489	435	72	6	48	43
Aircraft Exhaust	79	1,663	13	796	11	219	2
Airport Equipment	0	0	0	0	0	0	0
Commercial Equipment	213	5,530	170	5,151	34	872	27
Construction and Mining Equipment	264	2,113	1,477	809	27	218	153
Industrial Equipment	265	4,233	1,095	4,220	42	669	175
Lawn and Garden Equipment (Com)	909	14,400	180	3,800	113	1,565	19
Lawn and Garden Equipment (Res)	609	10,221	74	2,260	103	1,568	11
Locomotives	13	32	326	32	2	4	42
Logging Equipment	35	212	58	204	6	33	9
Pleasure Craft	831	1,702	68	63	158	327	13
Railroad Equipment	2	24	9	23	0	4	1
Recreational Equipment	1,607	7,780	65	2,153	232	1,118	9
Windham Total:	4,887	48,400	3,969	19,584	734	6,646	505
State Total:	189,752	2,114,933	167,084	860,834	29,067	280,342	21,400

3.4 AIRCRAFT

Aircraft emissions were calculated using diverse databases along with other sources of information. 2002 CT DOT activity reports and Federal Aviation Administration (FAA) activity reports from the largest airports (those with FAA control towers) were considered where possible. However, Connecticut survey data collected using the form shown in Attachment F-1 generally provided aircraft specific LTOs and were considered to be of higher quality than other data sources. The largest airports in Connecticut are as follows.

- Bradley International Airport
- Danbury Municipal Airport
- Groton-New London Airport
- Hartford-Brainard Airport

- Igor I. Sikorsky Memorial Airport
- Tweed-New Haven Airport
- Waterbury-Oxford Airport

Table 3.4-1 provides a comparison between the Federal Aviation Administration's Terminal Area Forecast (TAF) Data and available survey data. The Terminal Area Forecast System is the official forecast of aviation activity at FAA facilities, which includes historical data (years 2002 and earlier) and future forecasts for the active airports in the National Plan of Integrated Airport System (NPIAS). This includes FAA towered airports, federally contracted towered airports, non-federal towered airports, and many non-towered airports. Airports that provided survey responses that had significantly different activity than reported in TAF were contacted to confirm appropriate LTO counts were used in the emissions estimates.

The Bureau used the FAA's Emission and Dispersion Modeling System (EDMS) version 4.2 software package to estimate emissions. In many cases the EDMS assigned a default engine to each type of aircraft, and each engine carried default emission factors. For exact survey response aircraft matches, the EDMS defaults were used. In other cases, research was required to assign the appropriate engine to the survey response. It is important to note that while it is the engine and not the specific aircraft model that defines the emission profile, multi-engine aircraft will generate pollution at a progressively proportional rate.

Because of the correlation between temperature and pollution production, an effort was made to seasonally adjust the LTOs at each airport. Annual, summer (Ozone season) and winter (CO season) aircraft specific LTO data were obtained from survey results. This enabled the Bureau to calculate seasonal emissions directly for these airports. Average seasonal adjustments were developed and applied to airports that did not supply seasonal LTO information. Seasonal adjustments were calculated for hospital and non-hospital helicopters and for fixed wing aircraft. Non-hospital helicopters and aircraft had increased activity during the summer and lowest activity in the winter, while hospital helicopter LTOs approximated uniform activity year round.

The emission rates for aircraft vary at different stages (or modes) of each LTO cycle. The four LTO modes are Taxi/Idle-out/in, Takeoff, Climb out, and Approach. Each mode occurs for a fixed length of time depending on the category of aircraft (i.e., jumbo jet, helicopter, turboprop, etc.). The emission estimates used default time-in-mode values provided by the EDMS model. The EPA default assignment of 26 minutes for Taxi/Idle-out/in was applied to all airports, including Bradley International Airport.

Table 3.4-2 shows how the aircraft make and model survey results reported to DEP were matched to the EDMS aircraft/engine model assignments. Table 3.4-2 shows composite emission factors of pounds of pollutant per LTO. Table 3.4-2 also shows the reported survey LTO count for the stated aircraft makes and models. LTO's were apportioned when more than one EDMS aircraft/engine model combination was assigned to the survey aircraft make and model. Individual surveys and web-based sources, such as <u>www.risingup.com</u> and <u>www.airliners.net</u>, were used and EDMS aircraft/engine emission estimates were reviewed to ensure reasonable assignments for the subject survey data.

When available, the default EDMS engine for the aircraft was used for the survey response. Otherwise, a weighted assignment of engines was used. A good example showing this situation is the aircraft model "Embraer EMB-135" model survey response, which was applied equally to ten engine types having similar but not identical emission factors.

Reviewing the table for more extreme examples, it is possible to assess a range of emission factors assigned to the survey results. Looking at the links to the EDMS options available for the survey response of "Beechjet", it is possible to see that both the Beechjet 400 and the Beechjet 400A are two engine airplanes assigned an EDMS engine model of "JT15D-5 (A & B)" with identical emission factors. Given that both options provide identical results, the percentage of LTOs assigned to each model would have no impact on calculated emissions. However, the survey response of "DC-8-70s" has the largest range of emission factors for linked EDMS airplane makes and models due in part to it being a four-engine airplane. The minimum CO emission factor for "DC-8-70s" is 45.636 lb CO/ LTO for the "CFM56-2A SERIES" engine, while the maximum CO emission factor for "DC-8-70s" is 263.496 lb CO/ LTO for the "JT3D-7 SERIES" engine. In this "DC-8-70s" case, the percent applied for each link has an impact to calculated emissions. 14% was applied to the largest emission factor, while the balance of the percent applied to various emission factors that were significantly lower than the maximum emission factor yielding a composite emission factor of 83.760 lb CO / LTO for "DC-8-70s". Clearly, the emission factor could vary from 45.636 lb CO/ LTO to 263.496 lb CO/ LTO depending upon the engines used on the "DC-8-70s" performing the LTOs. This largest range of emission factors was selected to illustrate the widest possible difference in emission factors for the purpose of illustrating how the use of different engines on an airplane can influence the emission factor. While this difference is extreme, given the next widest range of emission factors was less than half the range of this "DC-8-70s" example, the illustration that different EDMS assignments may or may not impact emission factors linked to a survey response is demonstrated by these two examples. Table 3.4-2 shows the range of emission factors linked to a survey response.

Table 3.4-2 also shows that the emission factor varies with engine model and number of engines on the airplane. When the number of engines cannot explain a difference in the presented emission factors for an engine model, it is usually due to the aircraft having different time-inmode values. This is most pronounced when the same engine is used on helicopters and fixed wing aircraft.

In cases where survey results were too general or the specific aircraft and engine combination could not be found in EDMS, a best estimate Connecticut specific composite set of emission

factors or EPA fleet average emission factors were applied. These cases are included in Table 3.4-2 with an engine beginning with "User-Created". The Connecticut specific composite emissions factors were developed from survey data and added to the EDMS options as a user defined type, and were used for less than 3% of the statewide LTOs. Connecticut specific composite emissions factors were developed for the following aircraft types: Military Helicopter, General Aviation Jet, General Aviation Multi Piston, and General Aviation Single Piston.

EPA fleet average emission factors were used when aircraft specific LTO data were not sufficiently defined (i.e. "All other aircraft", "Other", and "Turbine (all jets, turbo plants)" or when no aircraft specific survey results were available. The EPA Fleet Average Procedure specified in the 1992 Procedures for Emission Inventory Preparation Document⁴ was used for estimating emission factors associated with these LTOs, which accounted for 37% of statewide LTOs. The general aviation aircraft EPA fleet average was usually applied (approximately 93% of EPA fleet average procedure usage) while the air taxi aviation aircraft EPA fleet average was applied for the remaining cases (approximately 7% of EPA fleet average procedure usage). Air taxi contribution to the specific airport's traffic was based on available data concerning airport activities, typically obtained from the TAF air taxi operation counts or www.airnav.com. Aircraft fleet serving in an air taxi capacity use fewer of the smallest engines and use more turboprop and turbojet engines than used in general aviation fleet, consequently the air taxi fleet average emission factors.

Emissions were calculated using a methodology consistent with the 1992 Procedures for Emission Inventory Preparation Document⁴. The EDMS program returned emission estimates for each mode of operation. Internally, EDMS Mode 1 corresponds to approach, Mode 2 corresponds to climb out, Mode 3 corresponds to takeoff, and Mode 4 corresponds to idle. The emissions for each mode were combined to obtain a composite emission factor for each LTO, which when multiplied by the number of LTOs for a given period yields emission results for that period. The LTO seasonal adjustments and unit conversions were factored in the following equation.

$$E_{ij} = LTO_j \ x \ TIM_{jk} \ x \ FF_{jk} \ / 1000 \ x \ EI_{ijk} \ x \ N \ e_j \ / \ P \ / \ CF$$

Where:

E _{ij}	=	Total emissions of pollutant i, in pounds per day or tons per year,
		produced by aircraft type j for all LTO cycles
LTO _j	=	Annual Landing and Take-Off Cycles for aircraft type j. (If summer or winter emissions were sought, seasonal LTO Cycles for aircraft type j were used when known or seasonal LTO Cycles for aircraft type j were calculated from seasonal adjustment factors when not directly available from survey data)
TIMa	=	Time in mode for mode k in minutes for aircraft type i
FF _{jk}	=	Fuel flow for mode k, in pounds of fuel per minute, for each engine used
EI _{ijk}	=	on aircraft type j. Emission index for pollutant i, in pounds of pollutant per thousand pounds

1000	=	of fuel, in mode k for aircraft type j 1000 pounds of fuel per thousand pounds of fuel conversion factor to balance the units of the equation (i.e. FF_{jk} is in units of pounds of fuel per minute and E_{ijk} is in units of pounds of pollutant per thousand pounds of fuel, dividing by 1000 lbs/thousand pounds of fuel balances the units of
		the equation).
Nei	=	Number of engines used on aircraft type j
P	=	Period which is 1 year if calculating annual emissions or is the number of days in Ozone or CO season if calculating a daily emission rate
CF	=	Conversion factor for balancing units when annual emissions are calculated, which is 2000 for annual calculations and 1 for seasonal calculations. The units for the equation are pounds per day for seasonal input, but are not tons per year for annual input. Consequently, it is necessary to divide by 2000 pounds per ton to obtain the desired annual units of tons per year.

A sample calculation for CO emissions from Gulfstream II aircraft LTOs at Igor I. Sikorsky Memorial Airport in Fairfield County during the ozone season in 2002 was selected as an example, since it is powered by two engines (engine model is a Rolls Royce series SPEY MK511-8), which was included in Table 5-4 of the procedures document. This calculation cannot be matched to an output in Table 3.4-3, since Igor I. Sikorsky Memorial Airport has numerous other aircraft traffic. However, a discussion and information comparing the 1992 Procedures Document and EDMS emission results is presented to illustrate how the EMDS methodology is consistent with the 1992 Procedures.

TIM_{jk} for a Gulfstream II jet can be obtained from Commercial Carrier Jumbo, long and medium range jet row of the 1992 Procedures for Emission Inventory Preparation Document⁴ Table 5-1 or via EDMS table AIR_CAT row XCJX and is also shown on the Engine Emissions Tab of the EDMS Aircraft Operations & Assignments Form). The Parameters needed to calculate emissions were obtained from the 1992 Procedures Document and EDMS and presented below. This exercise confirmed consistency between EDMS and the 1992 Procedures Document for the SPEY MK511-8 aircraft engine.

Mode	EDMS 4.2 Mode Number	Time in Mode (Min)	1992 Procedures Document Fuel Flow (lb/min)	EDMS 4.2 Fuel Flow converted from metric units from EDMS Table ENG_EI	1992 Procedures Document CO Emission Rate (Ib/1000 Ib)	EDMS 4.2 CO Emission Rate From Table ENG_EI
Takeoff	3	0.7	117.86 lb/min	117.86 lb/min	0.12	0.12
Climb out	2	2.2	96.03 lb/min	96.03 lb/min	0.63	0.63
Approach	1	4.0	36.77 lb/min	36.77 lb/min	2.65	2.65
Idle	4	26	16.80 lb/min	16.80 lb/min	31.77	31.77

A sample calculation for CO emissions from Gulfstream II LTOs at Igor I. Sikorsky Memorial Airport in Fairfield County during the ozone season in 2002 follows.

$E_{ij} =$	200 x [(0.7	x 117.86	/1000	Х	0.12	Х	2)	takeoff
·		+ (2.2	x 96.03	/1000	Х	0.63	х	2)	climb out
		+ (4.0	x 36.77	/1000	х	2.65	х	2)	approach
		+ (26	x 16.80	/1000	Х	31.77	Х	2)] /91	taxi/idle
$E_{ij} =$	200 x	x [28.820] /91							All mo	des combined
			E	$C_{ij} = 63.341 \frac{ll}{dd}$	$\frac{bs}{av}CO$					

Table 3.4-2 presents EDMS composite LTO emission factors. The EDMS composite LTO CO emission factor for the Gulfstream II is 28.814 lb per LTO, which compares well with the 28.820 lb per LTO composite emission factor calculated above for all modes combined. EDMS was developed after 1992 and contains more engines and aircraft that contained in the 1992 Procedures Document.

Where detailed information on specific aircraft activity was not available, a generic emission factor, in units of lb. of pollutant per LTO, was applied. Two sets of different generic emission factors were used - one for general aviation and one for air taxis. The air taxis emission factors were applied where LTOs had more turboprop and turbojet engines LTOs than small aircraft LTOs. The general aviation and air taxis emission factors are listed in the Procedure Document⁴ section 5.2.4.2, while total hydrocarbon to VOC conversion factors are listed in section 5.6.2. EPA fleet average procedures emission factors used for air taxis were VOC = 1.223 pounds per LTO, CO = 28.130 pounds per LTO, and NOx = 0.158 pounds per LTO, while the EPA fleet average procedures emission factors used for general aviation aircraft were VOC = 0.382 pounds per LTO, CO = 12.014 pounds per LTO, and NOx = 0.065 pounds per LTO.

$$E_i = LTO_i x EF_i / P / CF$$

Where:

Ei	=	Total emissions of pollutant i, in pounds per day or tons per year, produced
		by aircraft type j for all LTO cycles
LTO _i	=	Annual Landing and Take-Off Cycles for aircraft type j. (If summer or
		winter emissions were sought, seasonal LTO Cycles for aircraft type j were
		used when known or seasonal LTO Cycles for aircraft type j were calculated
		from seasonal adjustment factors when not directly available from survey
		data.)
EFi	=	Emission factor for pollutant i, in pounds of pollutant per LTO
Р	=	Period which is 1 year if calculating annual emissions or is the number of
		days in Ozone or CO season if calculating a daily emission rate.
CF	=	Conversion factor for balancing units when annual emissions are calculated,

which is 2000 for annual calculations and 1 for seasonal calculations. The units for the equation are pounds per day for seasonal input, but are not tons per year for annual input. Consequently, it is necessary to divide by 2000 pounds per ton to obtain the desired annual units of tons per year.

A sample calculation for winter CO emissions for an airport without a survey response indicating specific aircraft activity can be demonstrated by showing an estimate for Simsbury Tri-Town Airport. Simsbury Tri-Town Airport had 4,726 LTO's reported for 2002 in FAA's TAF Database. 26 LTO's were stated to be Air Taxi flights and 4,700 LTOs were stated to be General Aviation flights. Using a seasonal adjustment factor calculated from survey responses (14% of the activity occurring in the winter) Simsbury Tri-Town Airport, in Hartford County would have a general LTOj equal to (4,700 x 0.14 or 658 LTOs) and an air taxi LTOj equal to (26 x 0.14 = 3.64). Emissions were estimated by summing the general aviation and air taxi emissions as follows:

General Aviation Contribution:

$$E_i = 658 x 12.014 / 91$$

 $E_i = 86.87 \frac{lbs. CO}{day}$

Air Taxi Contribution:

$$E_i = 3.64 x 28.130 / 91$$

 $E_i = 1.13 \frac{lbs.CO}{day}$

Combining the results calculated above yields the total emissions for Simsbury Tri-Town Airport (86.87 + 1.11 or 88.00 lbs CO/ winter day), which can be compared to the results shown in Table 3.4-3.

Comparison of TAF Database Airports Activity versus Survey Data

(Sorted by TAF Database Activity in Descending Order)

FAA Location ID	EDMS 4.2 Location ID	Airport	TAF (plus BTS) Counts	Survey Response
BDL	BDL	Bradley International Airport	72,712	73,748
DXR	DXR	Danbury Municipal Airport	57,268	(1) 51,449
HFD	HFD	Hartford-Brainard Airport	50,628	46,000
BDR	BDR	Igor I. Sikorsky Memorial Airport	49,295	46,583
OXC	OXC	Waterbury-Oxford Airport	46,729	62,500
GON	GON	Groton-New London Airport	35,171	34,765
HVN	HVN	Tweed-New Haven Airport	33,290	32,344
4B8	4B8	Robertson Field	29,599	N/A
IJD	IJD	Windham Airport	15,344	14,875
SNC	3B9 (2)	Chester Airport	10,400	1,060
5B3	5B3	Danielson Airport	10,232	N/A
MMK	MMK	Meriden-Markham Municipal Airport	9,014	N/A
22B (3)	22B	Mountain Meadows Airport	6,530	N/A
4B9	4B9	Simsbury Tri-Town Airport	4,726	N/A
N04	N04	Griswold Airport	1,567	N/A

(1) Danbury Municipal Airport survey results did not correspond to the survey format and did include aircraft specific landing and take-offs (LTO) data. These survey results were used for seasonal adjustments only.

(2) Chester Airport is now designated SNC, where it was previously designated 3B9 (See <u>http://www.airnav.com/airport/KSNC</u>).

(3) Mountain Meadows Airport was open in 2002, but has since closed and was not contained in 2005 FAA listings or web based references.

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	Emission I	Factor (lb	/ LTO)
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	СО	VOC	NOx
A300	1,200	50	A300-600	CF6-80C2A5F	2	27.139	2.116	56.416
	,	10	A300B	CF6-80C2A5	2	28.065	2.469	55.711
		10	А300-В4	JT9D-59A	2	87.964	22.00	54.586
		10	А300-В4	CF6-80C2A5	2	28.065	2.469	55.711
		5	A300-B4-100	JT9D-70	2	54.498	12.25	53.683
		5	A300-B4-100	CF6-50C2	2	30.269	3.792	52.404
		5	A300-B4-200	CF6-50C2	2	30.269	3.792	52.404
		5	A300-B4-605R	CF6-80C2A5	2	28.065	2.469	55.711
A319	4,108	100	A319	CFM56-5B6/P	2	19.93	4.365	18.651
A320	1,868	40	A320	V2527-A5	2	12.17	0.154	23.722
		30	A320-211	CFM56-5A1	2	13.625	1.367	19.864
		15	A320-200	V2500-A1	2	7.275	0.353	34.039
		15	A320-200	V2527-A5	2	12.17	0.154	23.722
A321	748	60	A321	CFM56-5B3/P	2	16.667	3.417	36.861
		5	A321	CFM56-5B2/2P DAC-II	2	41.8	4.233	25.75
		5	A321	V2524-A5	2	11.927	0.132	23.259
		5	A321	CFM56-5B2/2	2	45.878	5.423	25.375
		5	A321	CFM56-5B1	2	23.92	2.954	34.326
		5	A321	CFM56-5B2	2	23.435	2.866	37.434
		5	A321-100	CFM56-5B2	2	23.435	2.866	37.434
		5	A321-100	CFM56-5B2/2	2	45.878	5.423	25.375
		5	A321-100	CFM56-5B3/2P DAC-II	2	40.278	3.88	28.307
Aeronca 7AC	2	100	Cessna 150	O-200	1	9.193	0.265	0.022
ATR-42	1,120	100	ATR42	PW120	2	5.004	0	3.285
Aviat A1-A	30	100	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
B-727-100	300	60	B727-100	JT8D-9A	3	21.429	5.159	23.082
		25	B727-100C	TAY 651 (Transply)	3	44.577	5.004	19.775
		5	B727-100F	JT8D-7series OldCom	3	53.881	16.75	20.349
		5	B727-100RE	JT8D-217C	3	28.065	0	27.888
		5	B727-100RF	TAY650	3	28.836	1.896	17.13
B-727-200	1,201	80	B727-200	JT8D-15	3	19.533	3.086	27.403
		10	B727-200F	JT8D-15	3	19.533	3.086	27.403

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	Emission I	Factor (lb	/ LTO)
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	СО	VOC	NOx
		5	B727-200RE	JT8D-217C	3	28.065	0	27.888
		5	B727-200RF	JT8D-217C	3	28.065	0	27.888
B-737-200	4,480	90	B737-200	JT8D-15A	2	13.977	2.425	16.116
		3	B737-200C	JT8D-15 (old comb)	2	39.926	13.11	17.571
		3	B737-200C	JT8D-17 (old comb)	2	35.296	12.76	18.894
		2	B737-200C	JT8D-9series OldCom	2	35.362	10.86	14.859
		2	B737-200F	JT8D-9series OldCom	2	35.362	10.86	14.859
B-737-300	5,972	88	B737-300	CFM56-3-B1	2	28.748	2.006	15.873
		2	B737-300F	CFM56-3B-2	2	26.411	1.609	18.563
		2	B737-300F	CFM56-3C-1 (Rerated)	2	30.865	2.425	14.176
		2	B737-300F	CFM56-3-B4	2	32.121	2.932	15.102
		2	B737-300F	CFM56-3-B1	2	28.748	2.006	15.873
		2	B737-300F	CFM56-3B	2	26.015	1.301	20.701
		2	B737-300F	CFM56-3C-1	2	24.67	1.367	21.208
B-737-400	1,120	99	B737-400	CFM56-3B-2	2	26.411	1.609	18.563
	-	1	B737-400	CFM56-3C-1	2	24.67	1.367	21.208
B-737-500	374	99	B737-500	CFM56-3C-1	2	24.67	1.367	21.208
		1	B737-500	CFM56-3-B1	2	28.748	2.006	15.873
B-737-700	748	97	B737-700	CFM56-7B22	2	17.637	2.094	20.084
		1	B737-700	CFM56-7B20	2	19.07	2.425	16.887
B-737-700	748	1	B737-700	CFM56-7B20/2 (DAC)	2	43.938	6.482	12.346
		1	B737-700	CFM56-7B24	2	17.615	2.094	22.686
B-737-800	1,120	96	B737-800	CFM56-7B26	2	15.587	1.742	27.095
		1	B737-800	CFM56-7B24/2 (DAC)	2	44.622	7.628	15.587
		1	B737-800	CFM56-7B24	2	17.615	2.094	22.686
		1	B737-800	CFM56-7B27/2 (DAC)	2	40.984	6.592	20.481
		1	B737-800	CFM56-7B27	2	15.146	1.609	29.63
B-757	7,692	34	B757-200F	RB211-535E4	2	17.791	0.529	51.632
		26	B757-200	PW2037	2	24.67	2.293	35.803
		6	B757-300	PW2040	2	23.038	2.072	44.048
		5	B757-300	PW2043	2	22.664	1.962	47.774
		5	B757-300	RB211-535E4 PHASE 5	2	27.007	0.419	33.025
		5	B757-300	RB211-535E4B	2	25.618	0.243	39.375

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	Emission H	Factor (lb	/ LTO)
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	СО	VOC	NOx
		5	B757-300	RB211-535E4B old com	2	16.909	0.419	65.235
		5	B757-300	RB211-535E4B PHASE5	2	25.618	0.243	39.375
		2	B757-200	RB211-535E4 PHASE 5	2	27.007	0.419	33.025
		2	B757-200	RB211-535E4B	2	25.618	0.243	39.375
		2	B757-200	RB211-535E4	2	17.791	0.529	51.632
		1	B757-200	RB211-535C	2	26.566	2.646	40.918
		1	B757-200	RB211-535E4B PHASE5	2	25.618	0.243	39.375
		1	B757-200	RB211-535E4B old com	2	16.909	0.419	65.235
B-767-300	748	34	B767-300	CF6-80A2	2	32.628	8.003	52.36
		33	B767-300ER	PW4060	2	31.879	2.866	62.17
		33	B767-300F	CF6-80C2B7F	2	27.183	2.359	54.763
BE-1900	2,510	60	BH-1900	PT6A-67D	2	13.228	4.343	1.146
		20	UC-12J	PT6A-42	2	16.424	15.49	0.639
		20	UC-12J	PT6A-67B	2	13.47	4.652	0.97
Beechcraft Baron	3,900	34	337H Skymaster	TSIO-360C	2	35.384	1.631	0.132
		33	FT337P	TSIO-360C	2	25.353	1.676	0.11
		33	P-337P Skymaster	TSIO-360C	2	35.384	1.631	0.132
Beechcraft Bonanza	2,396	100	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
Beechcraft Bonanza / Sierra / Musketeer	300	50	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		25	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		25	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
Beechcraft King Air	8,990	20	Beech King Air 100	PT6A-28	2	1.852	0.132	0.838
		20	Beech King Air 200	PT6A-41	2	16.336	14.81	0.772
		20	Beech King Air 300	PT6A-60, -60A, -60AG	2	9.48	1.455	0.948
		20	Beech King Air 350	PT6A-60, -60A, -60AG	2	9.48	1.455	0.948
		10	Beech King Air 90	PT6A-28	2	1.852	0.132	0.838
		10	Beech King Air B200	PT6A-41	2	16.336	14.81	0.772
Beechjet	400	50	Beechjet 400	JT15D-5 (A & B)	2	25.375	26.14	0.926
		50	Beechjet 400A	JT15D-5 (A & B)	2	25.375	26.14	0.926
Bell Jet Ranger III	246	100	Bell 206	250B17B	1	1.367	0.198	0.198
Bell UH-1 or UH-1H Helicopter	773	20	AH-1J Cobra	T400-CP-400	2	0.573	0.044	1.742
		20	AH-1S Cobra	T53-L-11D	2	4.74	5.445	1.301
		20	AH-1S Cobra	T53-L-13	2	4.74	6.349	1.301

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	Emission 1	Factor (lb	/ LTO)
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	СО	VOC	NOx
		20	AH-1W Super Cobra	T700-GE-401 -401C	2	4.365	0.243	2.006
		20	UH-1N Iroquois	T400-CP-400	1	0.309	0.022	0.882
C-150, 170, 172, 182, PA -28 - 20	1,000	20	Cessna 150	O-200	1	9.193	0.265	0.022
		14	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		12	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		12	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		12	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
		10	Comanche	TIO-540-J2B2	1	53.462	1.124	0.022
		10	Piper PA-28	IO-320-D1AD	1	10.714	0.198	0.044
		10	Piper PA-28	O-320	1	16.05	0.309	0.022
Canadair Challenger	700	98	CL600	CF34-3B	2	16.094	1.676	2.491
-		1	CL600	ALF 502L-2	2	15.212	2.315	2.513
		1	CL600S	ALF 502L-2	2	15.212	2.315	2.513
Canadian Regional Jet	1,867	25	Bombardier CRJ700	CF34-8C1 Block 1	2	10.604	0.088	8.62
-		25	Bombardier CRJ700	CF34-8C1	2	12.522	0.066	9.348
		25	Bombardier CRJ900	CF34-8C5	2	9.105	0.088	9.722
		5	CL600	CF34-3B	2	16.094	1.676	2.491
		5	CL600S	ALF 502L-2	2	15.212	2.315	2.513
		5	CL601-3A	CF34-3A	2	14.617	1.433	2.601
		5	CL601-3R	CF34-3A	2	14.617	1.433	2.601
		5	CL604	CF34-3B	2	16.094	1.676	2.491
Cessna	6,964	20	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		20	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		20	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		20	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
		10	Cessna 150	O-200	1	9.193	0.265	0.022
		10	Cessna 208 Caravan	PT6A-114	1	0.992	0.066	0.419
Cessna 150	5,212	100	Cessna 150	O-200	1	9.193	0.265	0.022
Cessna 150 / 172 / 182	250	24	Cessna 150	O-200	1	9.193	0.265	0.022
		16	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		15	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		15	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		15	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
		15	Comanche	TIO-540-J2B2	1	53.462	1.124	0.022

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	Emission l	Factor (lb	/ LTO)
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	СО	VOC	NOx
Cessna 152	2,500	100	Cessna 150	O-200	1	9.193	0.265	0.022
Cessna 170B	100	25	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		25	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		25	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		25	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
Cessna 172 Skyhawk	8,954	25	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		25	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		25	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
		25	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
Cessna 180 Skywagon	363	25	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		25	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		25	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
		25	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
Cessna 182 Skylane	10,150	50	Comanche	TIO-540-J2B2	1	53.462	1.124	0.022
		14	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		12	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		12	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		12	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
Cessna 200 & 182	50	50	Comanche	TIO-540-J2B2	1	53.462	1.124	0.022
		14	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		12	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		12	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		12	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
Cessna 210	1,500	50	Comanche	TIO-540-J2B2	1	53.462	1.124	0.022
		14	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		12	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		12	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		12	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
Cessna 414	500	60	337H Skymaster	TSIO-360C	2	35.384	1.631	0.132
		40	Cessna T337	IO-360-B	2	24.317	0.485	0.11
Cessna 550	1,000	100	550 Citation	JT15D-4 (B,C,D)	2	18.32	7.76	0.926
Cessna Caravan	450	100	Cessna 208 Caravan	PT6A-114	1	0.992	0.066	0.419

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	Emission 1	Factor (lb	/ LTO)
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	СО	VOC	NOx
Cessna Centurion 11210 (1972)	15	100	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
Cessna Citation	6,037	30	500 Citation	JT15D-1A & 1B	2	21.87	8.598	0.573
	,	30	550 Citation	JT15D-4 (B,C,D)	2	18.32	7.76	0.926
		5	Citation Ultra	JT15D-5C	2	25.243	20.01	0.816
		4	552 Citation	JT15D-5 (A & B)	2	25.375	26.14	0.926
		4	560 Citation V	JT15D-5 (A & B)	2	25.375	26.14	0.926
		4	Citation Bravo	PW530	2	23.391	15.43	0.772
		4	Citation Sovereign	PW308C	2	13.36	1.94	2.888
		4	CITATION X	AE3007C	2	8.267	1.72	2.072
		1	551 Citation	JT15D-4 (B,C,D)	2	18.32	7.76	0.926
		1	552 Citation	JT15D-4 (B,C,D)	2	18.32	7.76	0.926
		1	C Citation	JT15D-4 (B,C,D)	2	18.32	7.76	0.926
		1	C Citation	JT15D-1	2	21.87	8.598	0.573
		1	Citation Bravo	JT15D-4 (B,C,D)	2	18.32	7.76	0.926
		1	CITATION I	JT15D-1A & 1B	2	21.87	8.598	0.573
		1	CITATION I	JT15D-1	2	21.87	8.598	0.573
		1	CITATION I SP	JT15D-1A & 1B	2	21.87	8.598	0.573
		1	CITATION II	JT15D-4 (B,C,D)	2	18.32	7.76	0.926
		1	CITATION II SP	JT15D-4 (B,C,D)	2	18.32	7.76	0.926
		1	CITATION SII	JT15D-4 (B,C,D)	2	18.32	7.76	0.926
		1	Citation Ultra	JT15D-5 (A & B)	2	25.375	26.14	0.926
		1	CITATION V	JT15D-5 (A & B)	2	25.375	26.14	0.926
		1	Citation VII	TFE731-3	2	9.083	1.764	1.742
		1	S550 Citation	JT15D-4 (B,C,D)	2	18.32	7.76	0.926
Cessna MEL	1,250	50	Cessna 441 Conquest2	TPE331-8	2	2.094	0.154	1.301
		50	Cessna T337	IO-360-B	2	24.317	0.485	0.11
Cessna S.E.L.	6,000	20	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		20	Cessna 172 Skyhawk	IO-360-B	1	12.17	0.265	0.066
		20	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
		20	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		10	Cessna 150	O-200	1	9.193	0.265	0.022
		10	Cessna 208 Caravan	PT6A-114	1	0.992	0.066	0.419
Cessna Twin Engine	1,043	50	Cessna 441 Conquest2	TPE331-8	2	2.094	0.154	1.301

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	Emission Factor (lb / LTO)		
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	CO	VOC	NOx
¥		50	Cessna T337	Ю-360-В	2	24.317	0.485	0.11
CH-47D or UH-47 Chinook Helicopter	737	100	HH-3E GREEN GIANT	T58-GE-5	2	15.3	6.967	2.227
Challenger	1,043	20	CL600	CF34-3B	2	16.094	1.676	2.491
-		20	CL600S	ALF 502L-2	2	15.212	2.315	2.513
		20	CL601-3A	CF34-3A	2	14.617	1.433	2.601
		20	CL601-3R	CF34-3A	2	14.617	1.433	2.601
		20	CL604	CF34-3B	2	16.094	1.676	2.491
Champs and other under 150 HP	50	20	Cessna 150	O-200	1	9.193	0.265	0.022
		20	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		20	Cessna 172 Skyhawk	IO-360-B	1	12.17	0.265	0.066
		20	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
		20	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
Citation II	75	100	CITATION II	JT15D-4 (B,C,D)	2	18.32	7.76	0.926
Dassault Falcon 200	450	23	Falcon 100	TFE731-2	2	10.384	3.66	1.279
		23	Falcon 20	CF700-2D	2	66.624	7.694	0.816
		23	Falcon 2000EX	PW308C	2	13.36	1.94	2.888
		23	Falcon 50	TFE731-3	3	13.603	2.646	2.579
		4	Falcon 100	TFE731-3	2	9.083	1.764	1.742
		4	Falcon 20	TFE731-3	2	9.083	1.764	1.742
DC-8-60s	129	10	DC8-61	JT3D-3B	4	203.66	235.1	24.163
		10	DC8-61F	JT3D-3B	4	203.66	235.1	24.163
		10	DC8-62C	JT3D-7 SERIES	4	263.49	239.7	25.662
		10	DC8-62C	JT3D-3B	4	203.66	235.1	24.163
		10	DC8-62F	JT3D-7 SERIES	4	263.49	239.7	25.662
		10	DC8-63	JT3D-7 SERIES	4	263.49	239.7	25.662
		10	DC8-63C	JT3D-7 SERIES	4	263.49	239.7	25.662
		10	DC8-63F	JT3D-7 SERIES	4	263.49	239.7	25.662
		5	DC8-60	JT3D-7 SERIES	4	263.49	239.7	25.662
		5	DC8-60	JT3D-3B	4	203.66	235.1	24.163
		5	DC8-62	JT3D-3B	4	203.66	235.1	24.163
		5	DC8-62	JT3D-7 SERIES	4	263.49	239.7	25.662
DC-8-70s	771	14	DC8-70	CFM56-2C5	4	58.004	3.66	34.436
		14	DC8-70	JT3D-7 SERIES	4	263.49	239.7	25.662

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	l Percent		No of	Emission H	Emission Factor (lb / LTO)		
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	СО	VOC	NOx
		3	DC8-71	CFM56-2A SERIES	4	45.636	2.337	40.323
		3	DC8-71	CFM56-2B	4	53.638	3.263	34.701
		3	DC8-71	CFM56-2B-1	4	58.004	3.66	34.436
		3	DC8-71	CFM56-2C5	4	58.004	3.66	34.436
		3	DC8-71F	CFM56-2C5	4	58.004	3.66	34.436
		3	DC8-71F	CFM56-2A SERIES	4	45.636	2.337	40.323
		3	DC8-71F	CFM56-2B	4	53.638	3.263	34.701
		3	DC8-71F	CFM56-2B-1	4	58.004	3.66	34.436
		3	DC8-72	CFM56-2A SERIES	4	45.636	2.337	40.323
		3	DC8-72	CFM56-2B	4	53.638	3.263	34.701
		3	DC8-72	CFM56-2B-1	4	58.004	3.66	34.436
		3	DC8-72	CFM56-2C5	4	58.004	3.66	34.436
		3	DC8-72C	CFM56-2A SERIES	4	45.636	2.337	40.323
		3	DC8-72C	CFM56-2B	4	53.638	3.263	34.701
		3	DC8-72C	CFM56-2B-1	4	58.004	3.66	34.436
		3	DC8-72C	CFM56-2C5	4	58.004	3.66	34.436
		3	DC8-73C	CFM56-2C5	4	58.004	3.66	34.436
		3	DC8-73C	CFM56-2A SERIES	4	45.636	2.337	40.323
		3	DC8-73C	CFM56-2B	4	53.638	3.263	34.701
		3	DC8-73C	CFM56-2B-1	4	58.004	3.66	34.436
		3	DC8-73F	CFM56-2C5	4	58.004	3.66	34.436
		3	DC8-73F	CFM56-2B-1	4	58.004	3.66	34.436
		3	DC8-73F	CFM56-2A SERIES	4	45.636	2.337	40.323
		3	DC8-73F	CFM56-2B	4	53.638	3.263	34.701
DC-9	1,494	20	DC9-15F	JT8D-7B	2	14.043	4.012	14.484
		20	DC9-20	JT8D-11	2	39.617	11.86	16.491
		5	DC9-10	JT8D-7series OldCom	2	35.913	11.17	13.58
		5	DC9-10	JT8D-7	2	14.043	4.012	14.484
		5	DC9-10	JT8D-7A	2	14.043	4.012	14.484
		5	DC9-10	JT8D-7B	2	14.043	4.012	14.484
		5	DC9-10C	JT8D-7B	2	14.043	4.012	14.484
		5	DC9-10C	JT8D-7A	2	14.043	4.012	14.484
		5	DC9-10C	JT8D-7	2	14.043	4.012	14.484
		5	DC9-10C	JT8D-7series OldCom	2	35.913	11.17	13.58
		4	DC9-10F	JT8D-7series OldCom	2	35.913	11.17	13.58

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	Emission H	Factor (lb	/ LTO)
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	СО	VOC	NOx
		4	DC9-10F	JT8D-7	2	14.043	4.012	14.484
		4	DC9-10F	JT8D-7B	2	14.043	4.012	14.484
		4	DC9-10F	JT8D-7A	2	14.043	4.012	14.484
		4	DC9-10F	JT8D-9series OldCom	2	35.362	10.86	14.859
DC-9/31/32/33	600	34	DC9-30	JT8D-7B	2	14.043	4.012	14.484
		34	DC9-30F	JT8D-9A	2	14.308	3.417	15.41
		3	DC9-30C	JT8D-7B	2	14.043	4.012	14.484
		3	DC9-30C	JT8D-9	2	14.308	3.417	15.41
		3	DC9-30C	JT8D-7	2	14.043	4.012	14.484
		3	DC9-30C	JT8D-17AR	2	12.787	1.94	22.201
		3	DC9-30C	JT8D-15	2	13.029	2.094	18.276
		3	DC9-30C	JT8D-11	2	39.617	11.86	16.491
		3	DC9-30C	JT8D-9A	2	14.308	3.417	15.41
		3	DC9-30C	JT8D-17	2	12.456	1.852	20.084
		2	DC9-30C	JT8D-9series OldCom	2	35.362	10.86	14.859
		2	DC9-30C	JT8D-7series OldCom	2	35.913	11.17	13.58
		2	DC9-30C	JT8D-17 (old comb)	2	35.296	12.76	18.894
		2	DC9-30C	JT8D-15 (old comb)	2	39.926	13.11	17.571
De Havilland Canada DHC2 Beaver	20	50	DHC-6	PT6A-20	2	2.072	0.132	0.794
		25	337H Skymaster	TSIO-360C	2	35.384	1.631	0.132
		25	Cessna T337	Ю-360-В	2	24.317	0.485	0.11
De Havilland Canada DHC-8	5,686	25	DHC-8-100	PW120A	2	5.004	0	3.131
		25	DHC-8-200	PW123D	2	3.461	0	4.762
		25	DHC-8-300	PW123	2	3.439	0	5.115
		13	DHC-8-400	PW127-A	2	3.77	0	4.762
		12	DHC-8-400	PW123	2	3.439	0	5.115
Embraer EMB-135	1,120	10	Embraer ERJ 135/140	AE3007A1P (Type 3)	2	13.625	1.301	5.864
		10	Embraer ERJ 135/140	AE3007A3 (Type 3)	2	13.735	1.345	5.445
		10	Embraer ERJ 135/140	AE3007A3 (Type 2)	2	10.957	1.874	6.283
		10	Embraer ERJ 135/140	AE3007A3 (Type 1)	2	8.642	1.698	5.798
		10	Embraer ERJ 135/140	AE3007A1/3 (Type 1)	2	8.62	1.676	5.798
		10	Embraer ERJ 135/140	AE3007A1P (Type 1)	2	8.223	1.455	6.371
		10	Embraer ERJ 135/140	AE3007A1/3 (Type 2)	2	10.207	1.742	6.437
		10	Embraer ERJ 135/140	AE3007A1P (Type 2)	2	10.516	1.72	6.9

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	Emission F	Factor (lb	/ LTO)
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	СО	VOC	NOx
		10	Embraer ERJ 135/140	AE3007A1/3	2	8.135	1.455	6.019
		10	Embraer ERJ 135/140	AE3007A1/3 (Type 3)	2	12.875	1.257	5.49
Embraer EMB-145	2,613	50	Embraer ERJ 145LR	AE3007A1/2	2	8.422	1.301	6.636
		25	Embraer ERJ 145	AE3007A	2	6.46	1.08	6.9
		25	Embraer ERJ 145	AE3007A1E	2	13.316	1.213	6.614
Enstrom 480 Helicopter	50	50	Bell 206	250B17B	1	1.367	0.198	0.198
		50	OH-6 Cayuse	250B17B	1	2.249	0.419	0.22
Fairchild-Dornier DO-328	374	50	DO 328	PW119-B	2	3.549	0	5.181
		50	Dornier 328JET	PW306B	2	1.257	12.54	6.57
Falcon 2000	144	100	Falcon 2000EX	PW308C	2	13.36	1.94	2.888
Falcon 50	400	100	Falcon 50	TFE731-3	3	13.603	2.646	2.579
General Aviation Multi Piston	1,480	100	CT G.A. Multi Piston	User-Created Composi	-	31.158	2.602	0.909
General Aviation Helicopter	2,973	20	Bell 206	250B17B	1	1.367	0.198	0.198
		20	Robinson R22	IO-320-D1AD	1	12.28	0.154	0.044
		20	Robinson R22	IO-360-B	1	13.14	0.176	0.066
		20	Robinson R22	O-320	1	15.565	0.243	0.022
		20	Robinson R22	TSIO-360C	1	19.445	0.353	0.066
General Aviation Jet	10,147	100	CT G.A. Jet	User-Created Composi	-	23.176	4.64	16.525
General Aviation Single Piston	1,480	100	CT G.A. Single Pisto	User-Created Composi	-	19.062	0.477	0.047
Grumman Tiger	3,000	100	Rockwell Commander	Ю-360-В	1	12.17	0.265	0.066
Gulfstream	1,043	15	Gulfstream I	RDa7	2	36.112	9.48	0.882
		15	Gulfstream II	SPEY MK511-8	2	28.814	3.549	16.336
		14	Gulfstream G350/G450	TAY 611-8C	2	21.319	0.86	5.225
		14	Gulfstream G550	BR700-710C4-11	2	18.629	1.389	6.085
		14	Gulfstream III	F113-RR-100	2	32.915	3.814	16.469
		14	Gulfstream III	SPEY MK511-8	2	28.814	3.549	16.336
		14	Gulfstream IV	TAY Mk611-8	2	19.555	3.197	12.412
Gulfstream II	800	100	Gulfstream II	SPEY MK511-8	2	28.814	3.549	16.336
Gulfstream III	800	100	Gulfstream III	SPEY MK511-8	2	28.814	3.549	16.336
Gulfstream IV	800	100	Gulfstream IV	TAY Mk611-8	2	19.555	3.197	12.412
H-60, UH-60 or UH-60A Helicopter	4,220	100	H-60 Black Hawk	T700-GE-700	2	4.63	4.277	2.227

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	Emission I	Factor (lb	/ LTO)
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	CO	VOC	NOx
Helicopter	4	20	Bell 206	250B17B	1	1.367	0.198	0.198
		20	Robinson R22	IO-320-D1AD	1	12.28	0.154	0.044
		20	Robinson R22	IO-360-B	1	13.14	0.176	0.066
		20	Robinson R22	O-320	1	15.565	0.243	0.022
		20	Robinson R22	TSIO-360C	1	19.445	0.353	0.066
HH-65 Dauphin Helicopter	348	100	H-60 Black Hawk	T700-GE-700	2	4.63	4.277	2.227
Lear Jet	1,390	20	Learjet 24D	CJ610-6	2	75.089	8.422	0.772
		20	Learjet 25B	CJ610-6	2	75.089	8.422	0.772
		20	Learjet 25C	CJ610-6	2	75.089	8.422	0.772
		20	Learjet 31	TFE731-2	2	10.384	3.66	1.279
		20	Learjet 35/36	TFE 731-2-2B	2	10.384	3.66	1.279
Lear Jet 25/35	600	34	Learjet 25B	CJ610-6	2	75.089	8.422	0.772
		33	Learjet 25C	CJ610-6	2	75.089	8.422	0.772
		33	Learjet 35/36	TFE 731-2-2B	2	10.384	3.66	1.279
Lear Jet 31, 45, 55, 60	2,500	50	Learjet 31	TFE 731-2-2B	2	10.384	3.66	1.279
		50	Learjet 31	TFE731-2	2	10.384	3.66	1.279
Lifestar MBK117 EuroCopter	2,201	34	AH-1S Cobra	T53-L-11D	2	4.74	5.445	1.301
		33	AH-1J Cobra	T400-CP-400	2	0.573	0.044	1.742
		33	AH-1S Cobra	T53-L-13	2	4.74	6.349	1.301
Lockheed Jetstar	800	100	Jetstar	TFE731-3	4	18.144	3.527	3.439
McDonnell Douglas MD-80	4,853	15	MD-80	JT8D-209	2	15.3	5.049	22.377
		15	MD-80	JT8D-219	2	17.725	0	20.283
		14	MD-80	JT8D-217	2	16.27	0	20.194
		14	MD-80	JT8D-217 (old comb)	2	14.242	4.497	26.367
		14	MD-80	JT8D-217A	2	16.27	0	20.194
		14	MD-80	JT8D-217C	2	18.739	0	18.585
		14	MD-80	JT8D-219 old comb	2	14.264	4.586	26.918
McDonnell Douglas MD-88	374	100	MD-80-88	JT8D-219	2	17.725	0	20.283
Military	2,585	100	A-10A Thunderbolt II	TF34-GE-100-100A	2	36.442	8.841	1.455
Military Helicopters	150	100	CT Ave. Mil Helicopt	User-Created Composi		5.577	4.344	2.089
Misc.	100	16	Cessna 150	O-200	1	9.193	0.265	0.022
		12	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	to of Emission Factor (lb / LT		
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	СО	VOC	NOx
		12	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		12	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		12	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		12	Cessna 208 Caravan	PT6A-114	1	0.992	0.066	0.419
		12	Cessna 441 Conquest2	TPE331-8	2	2.094	0.154	1.301
		12	Cessna T337	Ю-360-В	2	24.317	0.485	0.11
MK I Helicopter	11	20	Bell 206	250B17B	1	1.367	0.198	0.198
		20	Robinson R22	IO-320-D1AD	1	12.28	0.154	0.044
		20	Robinson R22	IO-360-B	1	13.14	0.176	0.066
		20	Robinson R22	O-320	1	15.565	0.243	0.022
		20	Robinson R22	TSIO-360C	1	19.445	0.353	0.066
Mooney	5,348	34	Cessna 172 Skyhawk	IO-360-B	1	12.17	0.265	0.066
		33	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		33	Comanche	TIO-540-J2B2	1	53.462	1.124	0.022
Other aircraft	172,274	99	EPA Fleet Ave Std	User-Created EPA	-	12.014	0.382	0.065
		1	EPA Fleet Ave Taxi	User-Created EPA	-	28.13	1.223	0.158
Pilatus	348	34	Cherokee six	TIO-540-J2B2	1	53.462	1.124	0.022
		33	Equator P-550 Turbo	PT6A-27	1	0.926	0.066	0.441
		33	Rockwell Commander	TSIO-360C	1	17.681	0.794	0.066
Piper 140	2,160	100	Piper PA-28	O-320	1	16.05	0.309	0.022
Piper Aztec / Seneca	100	50	Aztec	TIO-540-J2B2	2	106.92	2.271	0.022
-		13	FT337P	TSIO-360C	2	25.353	1.676	0.11
		13	P-337P Skymaster	TSIO-360C	2	35.384	1.631	0.132
		12	337H Skymaster	TSIO-360C	2	35.384	1.631	0.132
		12	Cessna T337	Ю-360-В	2	24.317	0.485	0.11
Piper J-3	103	100	Piper PA-28	O-320	1	16.05	0.309	0.022
Piper J3C-65	60	34	Cessna 150	O-200	1	9.193	0.265	0.022
-		33	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
		33	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
Piper MEL	1,750	33	PA-42 Cheyenne	PT6A-41	2	16.38	14.83	0.794
		33	Twin Comanche	IO-320-D1AD	2	21.451	0.419	0.088
		17	Aztec	TIO-540-J2B2	2	106.92	2.271	0.022
		17	PA-31T Cheyenne	PT6A-28	2	1.94	0.11	1.102

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

	Annual	Percent			No of	Emission l	Factor (lb	/ LTO)
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	CO	VOC	NOx
Piper Mojave	300	50	Aztec	TIO-540-J2B2	2	106.92	2.271	0.022
		50	Navajo	TIO-540-J2B2	2	106.92	2.271	0.022
Piper Navajo	300	100	Navajo	TIO-540-J2B2	2	106.92	2.271	0.022
Piper PA16	50	50	Cessna 150	O-200	1	9.193	0.265	0.022
		50	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
Piper PA-23 Aztech	250	100	Aztec	TIO-540-J2B2	2	106.92	2.271	0.022
Piper PA-28 Archer	5,000	34	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		33	Piper PA-28	IO-320-D1AD	1	10.714	0.198	0.044
		33	Piper PA-28	O-320	1	16.05	0.309	0.022
Piper PA-28 Cherokee Series	20,702	34	Cherokee six	TIO-540-J2B2	1	53.462	1.124	0.022
		33	Piper PA-28	O-320	1	16.05	0.309	0.022
		33	Piper PA-28	IO-320-D1AD	1	10.714	0.198	0.044
Piper PA-28 Warrior	9,703	100	Piper PA-28	O-320	1	16.05	0.309	0.022
Piper PA-28R Cherokee Arrow	5,000	90	Cessna 172 Skyhawk	IO-360-B	1	12.17	0.265	0.066
-		5	Piper PA-28	IO-320-D1AD	1	10.714	0.198	0.044
		5	Piper PA-28	O-320	1	16.05	0.309	0.022
Piper PA-31T Cheyenne	1,500	50	PA-31T Cheyenne	PT6A-28	2	1.94	0.11	1.102
		50	PA-42 Cheyenne	PT6A-41	2	16.38	14.83	0.794
Piper PA-34 Seneca	3,128	25	337H Skymaster	TSIO-360C	2	35.384	1.631	0.132
		25	Cessna T337	IO-360-B	2	24.317	0.485	0.11
		25	FT337P	TSIO-360C	2	25.353	1.676	0.11
		25	P-337P Skymaster	TSIO-360C	2	35.384	1.631	0.132
Piper PA-46 Malibu Meridian	696	50	Cherokee six	TIO-540-J2B2	1	53.462	1.124	0.022
		25	400A Hustler	PT6A-41	1	8.179	7.385	0.419
		25	Porter PC6/B2	PT6A-42	1	8.289	7.782	0.441
Piper Super Cub	106	100	Piper PA-28	O-320	1	16.05	0.309	0.022
Raytheon Hawker	800	100	Hawker Horizon	PW308A	2	11.993	2.161	2.734
Rockwell Sabreliner	2,000	100	Saberliner 75A	CF700-2D	2	66.624	7.694	0.816
SF-340	1,120	50	SF-340-A	CT7-5	2	4.145	0.617	1.499
		50	SF-340-B PLUS	CT7-5	2	4.145	0.617	1.499
Shorts 330	696	100	Shorts 330	PT6A-45R	2	3.968	0.683	1.19

Aircraft Survey Results Linked to EDMS 4.2 Aircraft Model and Engine

(Sorted	by Ai	rcraft	Model	per Survey	v. Percent	Applied.	EDMS	Aircraft and	EDMS	Engine)
(- 5			F	,,	FF,				0 -)

	Annual	Percent			No of	Emission 1	Factor (lb	/ LTO)
Aircraft Make Model Summary	LTOs	Applied	EDMS Aircraft	EDMS Engine	Engines	СО	VOC	NOx
Sikorsky S76 Helicopter	9,132	34	AH-1S Cobra	T53-L-11D	2	4.74	5.445	1.301
		33	AH-1J Cobra	T400-CP-400	2	0.573	0.044	1.742
		33	AH-1S Cobra	T53-L-13	2	4.74	6.349	1.301
Small, Non-Jet	53,600	10	337H Skymaster	TSIO-360C	2	35.384	1.631	0.132
		10	Aztec	TIO-540-J2B2	2	106.92	2.271	0.022
		10	Cessna 150	O-200	1	9.193	0.265	0.022
		10	Cessna 172 Skyhawk	O-320	1	16.05	0.309	0.022
		10	Cessna 172 Skyhawk	TSIO-360C	1	17.681	0.794	0.066
		10	Cessna 172 Skyhawk	IO-320-D1AD	1	10.714	0.198	0.044
		10	Cessna 172 Skyhawk	IO-360-B	1	12.17	0.265	0.066
		10	Comanche	TIO-540-J2B2	1	53.462	1.124	0.022
		10	P-337P Skymaster	TSIO-360C	2	35.384	1.631	0.132
		10	Socata Tampico	IO-320-D1AD	1	10.714	0.198	0.044
Socata TBM-700	348	100	Air Tractor AT602	PT6A-60, -60A, -60AG	1	4.74	0.728	0.485
Socata TBM-700 / Cessna Caravan	50	50	Air Tractor AT602	PT6A-60, -60A, -60AG	1	4.74	0.728	0.485
		50	Cessna 208 Caravan	PT6A-114	1	0.992	0.066	0.419
T Craft	8	50	Cessna 150	O-200	1	9.193	0.265	0.022
		50	Cessna 172 Skyhawk	Ю-360-В	1	12.17	0.265	0.066
Turbine (all jets, turbo plants)	11,000	100	EPA Fleet Ave Taxi	User-Created EPA	-	28.13	1.223	0.158
West Wind	696	33	IAI Westwind	CJ610-6	2	75.089	8.422	0.772
		33	Westwind 1	TFE731-3	2	9.083	1.764	1.742
		33	Westwind 2	TFE731-3	2	9.083	1.764	1.742
		1	IAI Westwind	TFE731-3	2	9.083	1.764	1.742
Westwind 2	750	100	Westwind 2	TFE731-3	2	9.083	1.764	1.742

SUMMARY OF ANNUAL AND DAILY EMISSIONS FROM AIRCRAFT

					WINTER	ANNUAL	ANNUAL	ANNUAL	
		DAILY VOC	DAILY CO	DAILY NOx	DAILY CO	VOC	CO	NOx	
	ANNUAL	EMISSIONS							
County	LTO	(LBS/DAY)	(LBS/DAY)	(LBS/DAY)	(LBS/DAY)	(TONS/YR)	(TONS/YR)	(TONS/YR)	
Fairfield									
Capt. Cove Sea/Heliport	5	0.22	0.18	0.08	0.00	0.01	0.01	0.00	
Cytec Industries Helistop	1	0.04	0.04	0.02	0.00	0.00	0.00	0.00	
Danbury Hospital Heliport	30	0.39	0.33	0.14	0.33	0.06	0.05	0.02	
Danbury Municipal Airport	57,269	75.60	2,362.61	12.79	1,600.48	11.10	346.77	1.88	
General Electric Co. Helipad	582	6.33	5.38	2.31	4.95	1.15	0.98	0.42	
Igor I. Sikorsky Memorial	46,583	235.84	3,269.40	150.72	2,087.76	38.76	453.79	27.56	
Sikorsky Bridgeport	1,585	1.45	79.65	0.51	32.29	0.18	9.79	0.06	
Sikorsky Helipad	3,132	41.22	44.62	21.46	30.28	6.70	7.25	3.49	
USSC Heliport	3	0.00	0.15	0.00	0.06	0.00	0.02	0.00	
	109,190	361.10	5,762.37	188.03	3,756.15	57.96	818.67	33.43	
Hartford									
Aetna @ Bradley International A	Airport 776	0.00	0.00	0.00	15.11	1.46	1.67	0.61	
Bancroft Airport	50	0.34	14.89	0.02	3.72	0.02	0.85	0.00	
Bradley International Airport	73,748	706.48	4,251.56	3,571.86	4,251.56	127.97	773.17	650.01	
Camp Rowland	101	1.94	3.46	0.82	1.44	0.21	0.34	0.09	
Corporate Ridge Helipad	3	0.00	0.15	0.00	0.06	0.00	0.02	0.00	
CT72 - Cigna Heliport	129	2.13	1.81	0.78	1.10	0.26	0.22	0.09	
Green Acres Airstrip	100	0.22	4.86	0.02	4.86	0.04	0.88	0.00	
Hartford Hospital Helipad	1,692	18.41	15.64	6.72	15.64	3.35	2.85	1.22	
Hartford-Brainard Airport	46,000	578.15	4,129.25	88.21	766.57	60.24	474.27	9.18	
Kaman Heliport	600	26.12	22.19	9.54	0.00	1.19	1.01	0.43	
Laurie Field	20	0.03	1.24	0.00	0.47	0.00	0.14	0.00	
Mountain Meadows Airport	6,530	11.35	351.93	1.91	123.17	1.29	40.03	0.22	
N B G H Heliport	13	0.01	0.65	0.00	0.26	0.00	0.08	0.00	
Nayaug Seaplane Landing Area	10	0.04	1.36	0.01	0.00	0.00	0.06	0.00	
Roberts Farm Airport	350	0.70	29.94	0.19	5.77	0.06	2.40	0.02	
Robertson Field	29,600	40.96	1,257.28	6.82	851.70	6.01	184.54	1.00	
Salmon River Airfield	280	0.32	10.24	0.03	8.73	0.05	1.79	0.01	

SUMMARY OF ANNUAL AND DAILY EMISSIONS FROM AIRCRAFT

					WINTER	ANNUAL	ANNUAL	ANNUAL
		DAILY VOC	DAILY CO	DAILY NOx	DAILY CO	VOC	CO	NOx
	ANNUAL	EMISSIONS						
County	LTO	(LBS/DAY)	(LBS/DAY)	(LBS/DAY)	(LBS/DAY)	(TONS/YR)	(TONS/YR)	(TONS/YR)
Hartford (Continued)								
Simsbury Tri-Town Airport	4,726	8.04	251.42	1.36	88.00	0.91	28.60	0.15
Skylark's Air Park	5,760	17.95	653.77	1.77	322.00	1.22	44.40	0.12
St. Francis Hospital	175	1.90	1.62	0.70	1.62	0.35	0.29	0.13
Stones Ranch	62	1.05	1.76	0.45	0.75	0.12	0.19	0.06
	170,725	1,416.14	11,005.00	3,691.21	6,462.53	204.75	1,557.79	663.36
Litchfield								
Good Hill Farm	150	0.51	20.50	0.04	13.67	0.04	1.55	0.00
Ripley Field	6	0.02	0.75	0.00	0.00	0.00	0.03	0.00
Segalla's Field	4	0.01	0.30	0.00	0.00	0.00	0.02	0.00
Sharon Hospital	42	0.66	0.56	0.24	0.16	0.08	0.07	0.03
Waterbury-Plymouth Airport	7,848	13.19	414.44	2.24	145.06	1.50	47.14	0.26
Wings Ago Airstrip	100	0.17	5.28	0.03	1.85	0.02	0.60	0.00
	8,150	14.56	441.83	2.56	160.73	1.64	49.42	0.29
Middlesex								
Aetna @ Middletown Heliport	776	0.00	0.00	0.00	15.11	1.46	1.67	0.61
Chester Airport	1,060	10.01	196.33	1.14	70.13	0.72	12.12	0.08
Devil's Hopyard Field	250	0.65	23.21	0.07	10.22	0.04	1.52	0.00
Goodspeed Airport & Seaplane Ba	se 3,500	5.88	184.83	1.00	64.69	0.67	21.02	0.11
Maplewood Farm Airport	60	0.06	2.71	0.01	1.39	0.01	0.37	0.00
	5,646	16.60	407.07	2.22	161.55	2.91	36.71	0.82

SUMMARY OF ANNUAL AND DAILY EMISSIONS FROM AIRCRAFT

					WINTER	ANNUAL	ANNUAL	ANNUAL
		DAILY VOC	DAILY CO	DAILY NOx	DAILY CO	VOC	CO	NOx
	ANNUAL	EMISSIONS						
County	LTO	(LBS/DAY)	(LBS/DAY)	(LBS/DAY)	(LBS/DAY)	(TONS/YR)	(TONS/YR)	(TONS/YR)
New Haven								
Clark Heliport	246	0.04	0.26	0.04	0.92	0.02	0.17	0.02
Griswold Airport	1,568	2.89	87.62	0.48	30.67	0.33	9.97	0.05
Meriden-Markham Municipal	Airport 9,014	12.03	374.40	2.03	253.63	1.77	54.95	0.30
North Canaan Airport	270	1.17	47.97	0.16	4.41	0.07	2.99	0.01
St. Mary's Hospital Heliport	24	0.40	0.34	0.14	0.19	0.05	0.04	0.02
St. Raphael Heliport	10	0.17	0.15	0.06	0.04	0.02	0.02	0.01
Tweed-New Haven Airport	32,344	62.46	1,520.17	17.38	884.30	8.88	216.55	2.94
Waterbury-Oxford Airport	62,500	270.45	9,212.19	19.72	2,705.67	29.10	946.98	2.34
Yale-New Haven Hospital	176	2.15	1.82	0.78	1.56	0.35	0.30	0.13
	106,152	351.76	11,244.92	40.79	3,881.39	40.58	1,231.96	5.82
New London								
Colchester Heliport	11	0.02	1.23	0.01	0.27	0.00	0.07	0.00
Gallup Farm	50	0.08	2.64	0.01	0.92	0.01	0.30	0.00
Groton-New London Airport	34,765	308.78	2,272.24	107.28	1,465.96	45.32	333.51	15.75
Mile Creek Airport	60	0.13	4.67	0.02	3.08	0.01	0.42	0.00
MPTN Heliport	100	0.09	5.03	0.03	2.04	0.01	0.62	0.00
Ski's Landing Area	6	0.00	0.00	0.00	0.00	0.00	0.05	0.00
Spruce Airport	17	0.04	1.42	0.00	0.59	0.00	0.09	0.00
Stonington Airpark	2	0.00	0.00	0.00	0.00	0.00	0.01	0.00
	35,011	309.15	2,287.22	107.35	1,472.86	45.36	335.07	15.75

SUMMARY OF ANNUAL AND DAILY EMISSIONS FROM AIRCRAFT

					WINTER	ANNUAL	ANNUAL	ANNUAL
		DAILY VOC	DAILY CO	DAILY NOx	DAILY CO	VOC	СО	NOx
	ANNUAL	EMISSIONS						
County	LTO	(LBS/DAY)	(LBS/DAY)	(LBS/DAY)	(LBS/DAY)	(TONS/YR)	(TONS/YR)	(TONS/YR)
Tolland								
Ellington Airport	14,600	24.55	771.01	4.17	269.85	2.79	87.70	0.47
Windward Heights Airstrip	5	0.02	0.73	0.00	0.00	0.00	0.03	0.00
Wysocki Airport	42	0.07	2.22	0.01	0.78	0.01	0.25	0.00
	14,647	24.63	773.96	4.18	270.63	2.80	87.99	0.48
Windham								
Danielson Airport	10,232	13.37	419.42	2.27	284.12	1.96	61.56	0.33
Toutant Airport	65	0.23	3.51	0.08	0.40	0.01	0.18	0.01
Windham Airport	14,875	62.29	1,127.21	10.00	492.46	8.60	148.90	1.36
Windham Community Memorial	51	0.56	0.47	0.20	0.47	0.10	0.09	0.04
Woodstock Airport	1,000	2.77	112.15	0.25	18.69	0.21	8.50	0.02
	26,223	79.21	1,662.76	12.81	796.14	10.89	219.22	1.76
State Total	475,744	2,573.15	33,585.12	4,049.15	16,961.97	366.89	4,336.83	721.70

3.5 COMMERCIAL MARINE VESSELS

Commercial vessels include all boats and ships used directly or indirectly in the conduct of commerce or military activity as directed in the 1989 Procedure Document⁹. These include vessels ranging from small charter boats to the largest tankers and military vessels. Emissions from commercial vessels were computed for major harbors and waterways in the State. Steamships and motorships are two subcategories of commercial vessels.

Table 3.4-2 presents the VOC, NOx, and CO daily emissions for a typical ozone summer day and a typical winter day due to waterborne commercial vessels and the numbers used in the calculation of these emissions.

Ship activity data of inbound ships, using each harbor and waterway in Connecticut were obtained from the <u>Waterborne Commerce of the United States</u>, <u>Calendar Year 2002</u>⁷. Since this document does not differentiate between vessel types, it was assumed that steamships had a draft of more than 18 feet, while motorships had a draft of less than 18 feet (1989 Procedures Document). For the Connecticut River, which borders more than one county, the number of commercial marine vessels was apportioned based upon the miles of river in each county.

The residual and distillate fuel sales in Connecticut for commercial marine vessel use were gathered from Energy Information Administration (EIA) Fuel Oil and Kerosene Sales⁸ Table 23 and Connecticut Port shipping statistics were extracted from the Waterborne Commerce of the United States. Energy Information Administration (EIA) 2002 Fuel Oil and Kerosene Sales⁸ Table 23 indicates that there was 2,425 thousand gallons of distillate fuel oil sold for vessel bunkering in 2002. Energy Information Administration (EIA) 2002 Fuel Oil and Kerosene Sales⁸ Table 23 indicates that there were no Residual (Number 6) fuel oil sales for Connecticut in 2002. Comparison of residual fuel oil sales for commercial and shipping activity revealed no discernable conclusion, other than the conclusion that the larger vessels were not refueling in Connecticut. This conclusion is consistent with statements made by personnel at the State Pier in New London Connecticut, who noted that most large vessels that come to Connecticut typically switch to distillate fuel oil engines prior to entering port for reliable and safe maneuvering, typically do not buy any fuel in Connecticut Ports, and typically bunker in a New Jersey Port. Based on this situation, it was concluded that all residual fuel sales information were probably low and that large vessels had limited bunkering in Connecticut Ports. It was further concluded that the 1999 fuel use estimate of 241.3 thousand gallons would be grown by 2.5 % based on the increase in shipping volume between 1999 (17,960 thousand short tons) and 2002 (18,403 thousand short tons) yielding an estimate of 247 thousand gallons of Residual fuel oil. The 1999 a fuel activity value of 241.3 thousand gallons was determined using an average value from the ratio of historical commercial vessel distillate values previously supplied by Connecticut Office of Policy and Management to the 1999 EIA State Energy Data on Distillate and Residual Fuel.

Fuel was apportioned to each port by assuming that only steamships use residual fuel (1989 Procedure Document). To apportion distillate fuel to each port, steamships were weighted by a factor of two in order to account for both the greater quantity of fuel used while moving and the use of auxiliary power generation systems while at dockside (1989 Procedures Document).

For example, all of the fuel sold in port j is not used there. It was assumed that 25% of the residual fuel and 75% of the distillate fuel was used in port (1989 Procedures Document). The remaining fuel was assumed to be used offshore. The annual quantity of residual and distillate fuel used in port j was calculated using the following equations:

$$Qr_{j} = \frac{N_{j>18} \times 0.25 \times Qr_{s}}{N_{s>18}}$$

Where:

Qr _i	=	Quantity of residual fuel used in port j for marine purposes (thousand gallons)
N _{j>18}	=	Number of vessels using port j with a draft greater than 18 feet
0.25	=	Assumed 25% of residual fuel is used in port j
Qr _s	=	Total quantity of residual fuel sold in CT for 2002 (thousand gallons)
$N_{s\geq 18}$	=	Number of vessels using ports within CT with a draft greater than 18 feet

$$Qd_{j} = \frac{(N_{j < 18} + (2 \times N_{j > 18})) \times 0.75 \times Qd_{s}}{N_{s < 18} + (2 \times N_{s > 18})}$$

where:

Qdj	=	Quantity of distillate fuel used in port j for marine use (thousand gallons)
N _{j>18}	=	Number of vessels using port j with a draft greater than 18 feet
N _{j<18}	=	Number of vessels using port j with a draft of 18 feet or less
0.75	=	Assume 75% of distillate fuel is used in port j
Qd _s	=	Total quantity of distillate fuel sold in CT for marine use (thousand gallons)
$N_{s\leq 18}$	=	Number of vessels using ports within CT with a draft of 18 feet or less
N _{j>18}	=	Number of vessels using port j with a draft greater than 18 feet
N _{s>18}	=	Number of vessels using ports within CT with a draft greater than 18 feet

Bridgeport Harbor in Fairfield County had both steamships and motorships coming inbound, therefore this harbor was used for both sample calculations.

A sample calculation for the quantity of residual fuel used in Bridgeport Harbor is:

$$Qr_{j} = \frac{275 \times 0.25 \times 247}{897}$$

 $Qr_i = 19$ thousand gallons of residual fuel

A sample calculation for the quantity of distillate fuel used in Bridgeport Harbor is:

$$Qd_{j} = \frac{(13,458 + (2 \times 275)) \times 0.75 \times 2,425}{42,247 + (2 \times 897)}$$

 $Qd_i = 578$ thousand gallons of distillate fuel

The 1989 Procedures Document presents separate emission factors for motorships by waterway classification (Table 7-2), for steamships hoteling (Table 7-3), and for motorships and steamships by vessel size (Table 7-5). Later emission factors were also available from a variety of studies, however these emission factors required detailed engine information and detailed time in mode information for the vessels. The 1989 Procedures Document motorship coastal and river emission factors presented in Table 7-2 (Coastal and River) and steamship emission factors presented in Table 7-3 were used due to vessel data available for this inventory. Use of the Table 7-5 motorship emission factors by vessel draft was not feasible, since the lowest draft value presented in the Waterborne Commerce of the United States, Calendar Year 2002⁷ was not consistent with the motorship draft ranges in Table 7-5. Detailed breakout of steamship operation and hoteling was also not available, however it was noted that most large vessels that come to Connecticut typically switch to distillate fuel oil engines prior to entering port for reliable and safe maneuvering. Consequently steamship hoteling emission factors were considered more appropriate than steamship operating emission factors. Since fuel data for each vessel type was unavailable, it was assumed that motorships used all the distillate fuel and that steamships used all the residual fuel (1989 Procedures Document). The major harbors and waterways in Connecticut were assumed to be in use year round with no seasonal variations; consequently typical summer and winter day emissions are identical. Table 3.5-3 of this document provides details of the emission estimates. The details presented include the applied emission factors and identification of ports and waterways where river waterway emission factors were applied and where costal waterway emission factors were applied.

The annual emissions were averaged over this time period to determine typical daily emissions, using the following equations:

$$Es_{j} = \frac{Qr_{j} \times EF_{s}}{365}$$
$$Em_{j} = \frac{Qd_{j} \times EF_{m}}{365}$$

Where:

Esi	= Emissions from steamships in port j (lbs/day)
Qr _i	= Quantity of residual fuel used in port j for marine purposes (thousand gallons)
EFs	= Emission factor for steamships (lbs/ thousand gallons)
365	= 365 days/year operation
Em _i	= Emissions from motorships in port j (lbs/day)
Qdi	= Quantity of distillate fuel used in port j for marine purposes (thousand gallons)
EF _m	= Emission factor for motorships (lbs/ thousand gallons)

A sample calculation for the VOC emissions from steamships using Bridgeport Harbor is:

$$Es_j = \frac{19 \times 3.20}{365}$$

$$Es_i = 0.17$$
 lbs VOC per day

A sample calculation for the VOC emissions from motorships using Bridgeport Harbor is:

$$Em_j = \frac{578 \times 50.0}{365}$$

$$Em_j = 79$$
 lbs VOC per day

County emissions were calculated by summing the emissions from each port in each respective county.

		Inbound Vesse	el Trip Count	Distillate	Residual
County	Port	Draft >18 ft. (# of ships)	Draft <= 18 ft (# of ships)	Fuel (thousand gallons)	Fuel (thousand gallons)
Fairfield					
Bridgeport I	Harbor	275	13,458	578	19
FiveMile Ri	iver Harbor	0	0	0	0
Greenwich l	Harbor	0	1,598	69	0
Housatonic	River	0	9	0	0
Norwalk Ha	arbor	0	485	21	0
Stamford Ha	arbor	0	1,348	58	0
Westport Ha	arbor and Saugatuck River	0	83	4	0
	Fairfield County Total:	275	16,981	730	19
Hartford					
Connecticut	River Below Hartford	0	4,319	186	0
	Hartford County Total:	0	4,319	186	0
Middlesex					
Clinton Har	bor	0	0	0	0
Connecticut	River Below Hartford	0	9,789	421	0
Patchogue F	River	0	0	0	0
	Middlesex County Total:	0	9,789	421	0

TABLE 3.5-12002 SUMMARY OF THE COMMERCIAL MARINE VESSEL ACTIVITY

2002 SUMMARY OF	THE COMMERC	CIAL MARINE VE El Trin Count	SSEL ACTIVITY Distillate	Residual
County Port	Draft >18 ft. (# of ships)	Draft <= 18 ft (# of ships)	Fuel (thousand gallons)	Fuel (thousand gallons)
New Haven				
Guilford Harbor	0	0	0	0
Branford Harbor	0	0	0	0
Milford Harbor	0	2	0	0
New Haven Harbor	474	1,502	101	33
Stony Creek	0	0	0	0
New Haven County Total:	474	1,504	101	33
New London				
Connecticut River Below Hartford	0	3,154	136	0
Mystic River	0	1,000	43	0
New London Harbor	91	5,394	230	6
Niantic Bay and Harbor	0	0	0	0
Pawcatuck River	0	0	0	0
Stonington Harbor	0	0	0	0
Thames River	57	106	9	4
New London County Total:	148	9,654	418	10
State Total:	897	42,247	1,857	62

TABLE 3.5-1 (Continued)

TABLE 3.5-2

2002 SUMMARY OF EMISSIONS FROM COMMERCIAL MARINE VESSELS

COUNTY / PORT	ANNUAL CO EMISSIONS (TONS/YR)	ANNUAL VOC EMISSIONS (TONS/YR)	ANNUAL NOx EMISSIONS (TONS/YR)	DAILY CO EMISSIONS (LBS/DAY)	DAILY VOC EMISSIONS (LBS/DAY)	DAILY NOx EMISSIONS (LBS/DAY)	
Fairfield							
Bridgeport Harbor	31.82	14.49	78.44	174.34	79.41	429.81	
FiveMile River Harbor	0.00	0.00	0.00	0.00	0.00	0.00	
Greenwich Harbor	3.78	1.72	9.29	20.73	9.42	50.89	
Housatonic River	0.02	0.01	0.05	0.11	0.05	0.30	
Norwalk Harbor	1.15	0.52	2.82	6.29	2.86	15.45	
Stamford Harbor	3.19	1.45	7.83	17.49	7.95	42.93	
Westport Harbor and Saugatuck River	0.20	0.09	0.48	1.08	0.49	2.64	
Fairfield County Total:	40.16	18.28	98.92	220.04	100.19	542.01	
Hartford							
Connecticut River Below Hartford	9.30	4.65	26.03	50.94	25.47	142.63	
Hartford County Total:	9.30	4.65	26.03	50.94	25.47	142.63	
Middlesex							
Clinton Harbor	0.00	0.00	0.00	0.00	0.00	0.00	
Connecticut River Below Hartford	21.07	10.54	59.00	115.46	57.73	323.28	
Patchogue River	0.00	0.00	0.00	0.00	0.00	0.00	
Middlesex County Total:	21.07	10.54	59.00	115.46	57.73	323.28	

Daily summer and daily winter emissions are identical due to uniform activity and emission factors.

TABLE 3.5-2 (Continued)

2002 SUMMARY OF EMISSIONS FROM COMMERCIAL MARINE VESSELS

COUNTY /	ANNUAL CO EMISSIONS	ANNUAL VOC EMISSIONS	ANNUAL NOx EMISSIONS	DAILY CO EMISSIONS	DAILY VOC EMISSIONS	DAILY NOx EMISSIONS
PORT	(TONS/YR)	(TONS/YR)	(TONS/YR)	(LBS/DAY)	(LBS/DAY)	(LBS/DAY)
New Haven						
Branford Harbor	0.00	0.00	0.00	0.00	0.00	0.00
Guilford Harbor	0.00	0.00	0.00	0.00	0.00	0.00
Milford Harbor	0.00	0.00	0.01	0.03	0.01	0.06
New Haven Harbor	5.56	2.58	14.25	30.49	14.15	78.10
Stony Creek	0.00	0.00	0.00	0.00	0.00	0.00
New Haven County Total:	5.57	2.58	14.26	30.52	14.16	78.16
New London						
Connecticut River Below Hartford	6.79	3.39	19.01	37.20	18.60	104.16
Mystic River	2.37	1.08	5.81	12.97	5.90	31.85
New London Harbor	12.66	5.77	31.20	69.40	31.60	170.96
Niantic Bay and Harbor	0.00	0.00	0.00	0.00	0.00	0.00
Pawcatuck River	0.00	0.00	0.00	0.00	0.00	0.00
Stonington Harbor	0.00	0.00	0.00	0.00	0.00	0.00
Thames River	0.45	0.23	1.27	2.49	1.24	6.97
New London County Total:	22.28	10.46	57.29	122.06	57.34	313.94
State Total:	98.37	46.52	255.50	539.01	254.88	1,400.03

Daily summer and daily winter emissions are identical due to uniform activity and emission factors.
Table 3.5-3Commercial Marine Emission FactorsUsed in the 2002 Periodic Emissions Inventory for the State of Connecticut

	Distilla	te Fuel	Residual Fuel		
Pollutant	Coastal Motorships (lbs/thousand gallons)	River Motorships (lbs /thousand gallons)	Steamships Hoteling (lbs /thousand gallons)	Operating (Ibs /thousand gallons)	
СО	110	100	0	3.5	
	270	280	36.4	55.8	
VOC	50	50	3.2		

The Coastal emission factors were used for all ports and waterways except those that were explicitly identified by a ton-mile assignment in the freight traffic portion of the <u>Waterborne Commerce of the United States</u>, Calendar Year 2002⁷ report. Three waterways were provided ton-mile values in the <u>Waterborne Commerce of the United States</u>, Calendar Year 2002⁷ report. These waterways were the Thames River, the Connecticut River and the Housatonic River. Only two other rivers were estimated to have commercial marine fuel use but did not warrant a ton-mile value in the freight traffic portion of the <u>Waterborne Commerce of the United States</u>, Calendar Year 2002⁷ report. These rivers were the Mystic River and the Saugatuck River (Westport Harbor and Saugatuck River). Visual inspection of maps showing the navigable length of the Mystic River and the Saugatuck River supports the use of a coastal emission factor for these rivers. All other rivers were estimated to have no significant commercial marine fuel use and consequently did not require an emission factor assignment.

Hoteling emission factors were used in all steamship calculations. Operating emission factors for steamships are presented above for comparison only. When the residual fuel use identified in Table 3.5-1 is considered, it can be seen that the difference between the emissions factors for steamship hoteling and steamship operation have very limited impact potential on the results of the 2002 Periodic Emissions Inventory for the State of Connecticut.

3.6 LOCOMOTIVES

Locomotive emissions were determined following guidance contained in the Procedures Document. Table 3.6-7 presents an estimate for the VOC, NO_x , and CO produced by locomotives activities for a typical ozone season day and annually. Table 3.6-7 also presents an estimate for the CO produced by locomotives activities for a winter day.

Thirteen companies operated locomotives in 2002:

- Amtrak
- Branford Steam Railroad
- Central New England Railroad
- Connecticut Southern Railroad
- CSX Transportation, Inc.
- Housatonic Railroad Company
- Metro-North Commuter Railroad Company
- Naugatuck Railroad Company
- New England Central Railroad, Inc.
- Providence and Worcester Railroad Company
- Shoreline East Railway
- Springfield Terminal Railway Company
- Valley Railroad Company

CSX Transportation, Inc. is the only Class I company providing freight service within Connecticut.

Branford Steam Railroad, Central New England Railroad, Connecticut Southern Railroad, Housatonic Railroad Company, New England Central Railroad, Inc., Providence and Worcester Railroad Company, and Springfield Terminal Railway Company are Class II and III companies that provide freight service within Connecticut. Naugatuck Railroad Company and Valley Railroad Company are tourist attractions that were classified with the same designations as these Class II and III companies. These two tourist attractions only account for 0.3% of the locomotive diesel fuel usage and are not a significant influence in emissions or in the seasonal distribution of emissions.

Amtrak, Shoreline East Railway and the Metro-North Commuter Railroad Company provide commuter and passenger service for Connecticut. Amtrak Line Haul Locomotives are classified under SCC 22-85-002-008 "Line Haul Locomotives Passenger (Diesel)", while Shoreline East Railway and the Metro-North Commuter Railroad Company are classified under 22-85-002-009 "Line Haul Locomotives Commuter Lines (Diesel)". While Shoreline East Railway is a subsidiary of Amtrak, the Shoreline East Railway functions primarily as a commuter line.

The tracks used by each company in each county were read from a map supplied by the CT DOT. Track's mileage for each railroad was then measured using the Connecticut State Road Map. Table 3.6-1 provides a tabulation of track mileage usage by diesel line haul locomotives.

Each company that operates locomotives in Connecticut provided an estimate for the amount of fuel consumed in 2002 in the state. Amtrak, Branford Steam Railroad, CSX Railroad, Metro-North Railroad, Springfield Terminal Railway Company and Valley Railroad were the only railroad companies that reported switchyard activity. Branford Steam Railroad, Central New England Railroad, Connecticut Southern Railroad, Housatonic Railroad Company, Naugatuck Railroad Company, New England Central Railroad, Inc, and Springfield Terminal Railway Company data was not available at the time of this draft. Therefore, 1999 activity data was used calculate emissions for the six companies that reported data for 1999. 1996 activity data was used for the Springfield Terminal Railway Company (formerly described as Boston and Maine Corporation a subsidiary of Guilford Rail Systems). Total locomotive diesel fuel usage for 2002 was estimated at 5.256,539 gallons based on Connecticut DEP survey results. The Energy Information Administration (EIA) Fuel Oil and Kerosene Sales⁸ Table 23 estimates total railroad distillate fuel use for transportation and heating at 4,797,000 gallons. While these numbers are relatively close (within 10% of each other), locomotive fuel usage survey results are considered to provide a better estimate of locomotive diesel fuel usage, especially considering Connecticut's size and the ability for out of state railroads to refuel outside of Connecticut (i.e. Providence and Worcester Railroad Company, CSX Transportation, Inc, and Springfield Terminal Railway Company). See Table 23 of Reference 8 for further information related to transportation related distillate diesel fuel sales.

The Valley Railroad Company is the only locomotive company in Connecticut that reported using a coal fired locomotive. In 2002, Valley Railroad Company used 386 tons of Pocahontas brand anthracite coal, and 3145 gallons of diesel fuel, all in Middlesex County.

The amount of fuel consumed by locomotives in each county annually was determined by the following equation (see Tables 3.5-2 and 3.5-3):

$$Q = \frac{QCT \times TMZ}{TMCT}$$

Where:

Q	=	amount of fuel consumed by line haul or switchyard locomotives
		by company in each county (gal)
QCT	=	amount of fuel consumed by line haul or switchyard locomotives
		by company in Connecticut (gal)
TMZ	=	miles of track used by each company in each county (miles)
ТМСТ	=	miles of track used by each company in Connecticut (miles)

A sample calculation for the quantity of diesel fuel consumed for line haul use by Metro-North Railroad in New Haven County is:

$$Q = \frac{1,585,153 \times 27.06}{51.26}$$

Q = 836,797 gallons of diesel fuel consumed in New Haven County

The emission factors for both diesel-powered line haul locomotives and diesel-powered switchyard locomotives were taken from Table 3 of the Technical Highlights Document¹². Since the Technical Highlights document presented an emission factor for total hydrocarbons (THC or HC), the value for the Diesel Engine Type was presented in that Table for Conversion Factors for Hydrocarbon Emission Results in EPA's <u>Conversion Factors for Hydrocarbon Emission Components¹³</u> was used to convert the emission factor to provide a VOC emission factor (i.e. 1.053 VOC/THC times the THC based emission factor yields a VOC emission factor). The emission factors for coal powered locomotives were obtained from Table 1.2-1 in <u>Compilation of Air Pollution Emission Factors</u> (AP-42)¹⁰.

Locomotives were assumed to operate 5 days per week 52 weeks of the year, with uniform activity throughout the year (i.e. typical summer and winter daily emissions are identical). The seasonal adjustment factor for uniform activity is 0.25 for all four seasons. The equation used to calculate daily emissions for this category is as follows:

$$E = \frac{Q \times EF \times SF}{DAYS \times 13}$$

Where:

E	=	county daily emissions from locomotives (lbs./day)
Q	=	amount of fuel consumed by locomotives by county
EF	=	emission factor (lbs./gal)
SF	=	seasonal adjustment factor (%/100)
DAYS	=	activity days per week (5 days)
13	=	52 weeks per year divided by 4 seasons is 13 weeks per season

A sample calculation for the VOC emissions from Metro-North line haul locomotives in New Haven County is:

$$E = \frac{836,797 \times 0.0232 \times 0.25}{5 \times 13}$$

$$E = 74.7$$
 lb. VOC per day

Calculated emissions are presented in Tables 3.6-4, 3.6-5, 3.6-6, 3.6-7 and 3.6-8.

Table 3.6-1 2002 DIESEL LINE HAUL LOCOMOTIVES TRACK MILEAGE IN EACH COUNTY BY COMPANY

Railroad Company					New	New			
Name	Fairfield	Hartford	Litchfield	Middlesex	Haven	London	Tolland	Windham	Total
Amtrak	0.00	33.90	0.00	11.60	38.90	33.90	0.00	0.00	118.30
Branford Steam Railroad	0.00	0.00	0.00	0.00	5.00	0.00	0.00	0.00	5.00
Central New England Railroad	0.00	3.75	0.00	0.00	0.00	0.00	0.00	0.00	3.75
Connecticut Southern Railroad	0.00	39.00	0.00	0.00	19.00	0.00	0.00	0.00	58.00
CSX Railroad	39.38	33.75	0.00	0.00	30.00	0.00	0.00	0.00	103.13
Housatonic Railroad Company	36.00	0.00	46.00	0.00	0.00	0.00	0.00	0.00	82.00
Metro-North Commuter Railroad Company	24.20	0.00	0.00	0.00	27.06	0.00	0.00	0.00	51.26
Naugatuck Railroad Company	0.00	0.00	15.50	0.00	4.10	0.00	0.00	0.00	19.60
New England Central Railroad, Inc	0.00	0.00	0.00	0.00	0.00	23.00	23.20	7.00	53.20
Providence and Worcester Railroad Company	72.40	0.00	0.00	17.10	58.20	73.50	0.00	46.20	267.40
Shoreline East Railway	0.00	0.00	0.00	10.00	21.80	0.00	0.00	0.00	31.80
Springfield Terminal Railway Company	0.00	18.40	24.10	0.00	28.50	0.00	0.00	0.00	71.00
Valley Railroad Company	0.00	0.00	0.00	13.00	0.00	0.00	0.00	0.00	13.00
All Railroads	171.98	128.80	85.60	51.70	232.56	130.40	23.20	53.20	877.44

Table 3.6-22002 GALLONS OF DIESEL FUEL USEFOR LINE HAUL LOCOMOTIVES BY COMPANY AND COUNTY

Railroad Company	Fairfield	Hartford	Litchfield	Middlesex	New Haven	New London	Tolland	Windham	Railroad State Total
Amtrak	0	310,786	0	106,346	356,625	310,786	0	0	1,084,544
Branford Steam Railroad	0	0	0	0	23,666	0	0	0	23,666
Central New England Railroad	0	17,640	0	0	0	0	0	0	17,640
Connecticut Southern Railroad	0	235,190	0	0	114,580	0	0	0	349,770
CSX Railroad	41,523	35,591	0	0	31,637	0	0	0	108,751
Housatonic Railroad Company	75,979	0	97,084	0	0	0	0	0	173,063
Metro- North Commuter Railroad Company	748,355	0	0	0	836,798	0	0	0	1,585,153
Naugatuck Railroad Company	0	0	11,307	0	2,991	0	0	0	14,298
New England Central Railroad, Inc	0	0	0	0	0	107,497	108,432	32,717	248,646
Providence and Worcester Railroad Company	172,107	0	0	40,650	138,351	174,722	0	109,825	635,654
Shoreline East Railway	0	0	0	233,531	509,098	0	0	0	742,629
Springfield Terminal Railway Company	0	6,064	7,943	0	9,393	0	0	0	23,400
Valley Railroad Company	0	0	0	2,720	0	0	0	0	2,720
Line Haul Fuel Total	1,037,964	605,272	116,334	383,247	2,023,138	593,006	108,432	142,542	5,009,935

Table 3.6-32002 GALLONS OF DIESEL FUEL USED BE EACH COMPANYFOR SWITCHYARD LOCOMOTIVES IN EACH COUNTY

					Railroad
Railroad Company	Fairfield	Hartford	Middlesex	New Haven	State Total
EAmtrak	0	0	0	26,576	26,576
Branford Steam Railroad	0	0	0	10,672	10,672
CSX Railroad	5,941	0	0	5,941	11,882
Metro-North Commuter Railroad Company	87,849	0	0	0	87,849
Springfield Terminal Railway Company	0	54,600	0	54,600	109,200
Valley Railroad Company	0	0	425	0	425
Switchyard Fuel Total	93,790	54,600	425	97,789	246,604

TABLE 3.6-4

2002 SUMMARY OF DIESEL LINE HAUL LOCOMOTIVES EMISSIONS BY COUNTY

(OZONE SEASON DAY CO EMISSIONS ARE IDENTICAL TO CO WINTER DAY EMISSIONS)

Count	CO (lbs/day)	VOC (lbs/day)	NOx (lbs/day)
Fairfield	234.11	92.68	2.376.29
Hartford	136.52	54.04	1,385.70
Litchfield	26.24	10.39	266.33
Middlesex	86.44	34.22	877.40
New Haven	456.31	180.64	4,631.73
New London	133.75	52.95	1,357.61
Tolland	24.46	9.68	248.24
Windham	32.15	12.73	326.33
STATE TOTAL	1,129.97	447.32	11,469.63

TABLE 3.6-5 2002 SUMMARY OF DIESEL POWERED SWITCHYARD LOCOMOTIVE EMISSIONS BY COUNTY

(OZONE SEASON DAY CO EMISSIONS ARE IDENTICAL TO CO WINTER DAY EMISSIONS)

0	\mathbf{CO}		NOx
County	(lbs/day)	(lbs/day)	(lbs/day)
Fairfield	30.30	17.59	287.88
Hartford	17.64	10.24	167.59
Middlesex	0.14	0.08	1.30
New Haven	31.59	18.34	300.16
STATE TOTAL	79.67	46.24	756.94

TABLE 3.6-6

2002 SUMMARY OF COAL POWERED LOCOMOTIVE EMISSIONS

(OZONE SEASON DAY CO EMISSIONS ARE IDENTICAL TO CO WINTER DAY EMISSIONS)

County	CO (lbs/day)	VOC (lbs/day)	NOx (lbs/day)
Middlesex	134	27	4
STATE TOTAL	134	27	4

TABLE 3.6-7

2002 SUMMARY OF ANNUAL AND DAILY EMISSIONS FROM LOCOMOTIVES

(OZONE SEASON DAY CO EMISSIONS ARE IDENTICAL TO CO WINTER DAY EMISSIONS)

County	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	264	110	2,664	34	14.3	346
Hartford	154	64	1,553	20	8.4	202
Litchfield	26	10	266	3	1.4	35
Middlesex	220	61	883	29	7.9	115
New Haven	488	199	4,932	63	25.9	641
New London	134	53	1,358	17	6.9	176
Tolland	24	10	248	3	1.3	32
Windham	32	13	326	4	1.7	42
STATE TOTAL	1,343	520	12,231	175	67.6	1,590

TABLE 3.6-8

2002 SUMMARY OF ANNUAL AND DAILY EMISSIONS FROM LOCOMOTIVES BY USE AND COUNTY

Commuter Rail County	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	197	83	1,983	26	10.8	258
Hartford	0	0	0	0	0.0	0
Litchfield	0	0	0	0	0.0	0
Middlesex	53	21	535	7	2.7	70
New Haven	304	120	3,081	39	15.6	401
New London	0	0	0	0	0.0	0
Tolland	0	0	0	0	0.0	0
Windham	0	0	0	0	0.0	0
Commuter Total:	553	224	5,599	72	29.2	728
Passenger Rail						
Fairfield	0	0	0	0	0.0	0
Hartford	70	28	712	9	3.6	92
Litchfield	0	0	0	0	0.0	0
Middlesex	24	9	243	3	1.2	32
New Haven	89	37	898	12	4.8	117
New London	70	28	712	9	3.6	92
Tolland	0	0	0	0	0.0	0
Windham	0	0	0	0	0.0	0
Passenger Total:	253	102	2,565	33	13.2	333
Entertainment Rail						
Fairfield	0	0	0	0	0.0	0
Hartford	0	0	0	0	0.0	0
Litchfield	(*) 3	(*) 1	(*) 26	0	0.1	3
Middlesex	(*) 134	(*) 27	(*) 12	17	3.5	2
New Haven	1	0	7	0	0.0	1
New London	0	0	0	0	0.0	0
Tolland	0	0	0	0	0.0	0
Windham	0	0	0	0	0.0	0
Entertainment Total:	(*) 13 8	(*) 28	(*) 45	18	3.7	6

(OZONE SEASON DAY CO EMISSIONS ARE IDENTICAL TO CO WINTER DAY EMISSIONS)

TABLE 3.6-8 (Continued)2002 SUMMARY OF ANNUAL AND DAILY EMISSIONSFROM LOCOMOTIVES BY USE AND COUNTY

(OZONE SEASON DAY CO EMISSIONS ARE IDENTICAL TO CO WINTER DAY EMISSIONS)

Freight Class I County	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	11	5	113	1	0.6	15
Hartford	8	3	81	1	0.4	11
Litchfield	0	0	0	0	0.0	0
Middlesex	0	0	0	0	0.0	0
New Haven	9	4	91	1	0.5	12
New London	0	0	0	0	0.0	0
Tolland	0	0	0	0	0.0	0
Windham	0	0	0	0	0.0	0
Freight Class I Total:	28	12	285	4	1.6	37

Freight Class II / III County	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
	,	,		,		<u> </u>
Fairfield	56	22	568	7	2.9	74
Hartford	76	33	760	10	4.3	99
Litchfield	24	9	240	3	1.2	31
Middlesex	9	4	93	1	0.5	12
New Haven	86	38	855	11	4.9	111
New London	64	25	646	8	3.3	84
Tolland	24	10	248	3	1.3	32
Windham	32	13	326	4	1.7	42
Freight Class II / III	371	154	3,738	48	20.0	486
STATE TOTAL	1,343	520	12,231	175	67.6	1,590

(*) Daily estimates for Entertainment contribution are based on the uniform activity assumption stated in the analytic method description. The activity of the Entertainment Rail does not conform to this assumption, but is a very small contributor to railroad emissions. Annual estimates for the Entertainment Rail contribution reflect activity and usage, however accurate daily estimates for Entertainment Rail contribution would require additional efforts that are not required to support a periodic emissions inventory.

3.7 REFERENCES FOR SECTION 3

- 1. <u>1990 Base Year Ozone and CO Emissions Inventory SIP</u>, The Bureau of Air Management, Department of Environmental Protection, State of Connecticut, Hartford, CT, November 1993
- 2. <u>User's Guide to MOBILE6.1 and MOBILE6.2 Mobile Source Emission Factor Model</u>, Document EPA420-R-03-010, US EPA, OTAQ, January 2002
- 3. <u>Technical Guidance on the Use of MOBILE6.2 for Emission Inventory Preparation</u>, Document EPA420-R-04-013, US EPA, OAR/OTAQ, August, 2004
- 4. <u>Procedures for Emission Inventory Preparation, Volume IV: MOBILE Sources, US EPA, OAQPS, 1992</u>
- 5. <u>1999 RFG Survey</u>, Fuels & Energy Division, US EPA, April 1997
- 6. <u>Airport Activity Statistics of Certificated Route Air Carriers CY 1995</u>, Federal Aviation Administration, U.S. Department of Transportation, Washington, DC
- Part 1 Waterborne Commerce of the United States 2002, Corps of Engineers, U.S. Department of Army, Alexandria, Virgina. For sale by: District Engineer, U.S. Army Engineer District, New Orleans, P.O. Box 60267, New Orleans, Lousiana 70160 available on the web at <u>http://www.iwr.usace.army.mil/ndc/wcsc/pdf/wcusatl02.pdf</u>
- Energy Information Administration <u>http://www.eia.doe.gov/emeu/states/main_ct.html_or</u> <u>http://www.eia.doe.gov/oil_gas/petroleum/data_publications/fuel_oil_and_kerosene_sales/fok</u> <u>s_historical.html (for multiple years) or for 2002 go to</u> <u>http://www.eia.doe.gov/pub/oil_gas/petroleum/data_publications/fuel_oil_and_kerosene_sale</u> <u>s/historical/2002/foks_2002.html</u>
- 9. <u>Procedures for Emission Inventory Preparation, Volume IV: MOBILE Sources</u>, US EPA, OAQPS, July 1989
- 10. <u>Compilation of Air Pollution Emission Factors (AP-42)</u>, Fifth Edition, with supplements A, B, C, D, E, and F, US EPA, OAQPS, Research Triangle Park, NC, May 1998
- 11. Fuels & Energy Division, US EPA: RFG Property and Performance Averages for Hartford, CT <u>http://www.epa.gov/otaq/regs/fuels/rfg/properf/hart-ct.htm</u>; RFG Property and Performance Averages for CT – remainder <u>http://www.epa.gov/otaq/regs/fuels/rfg/properf/ct-remain.htm</u>; and RFG Property and Performance Averages for NY-NJ-Long Is.-CT <u>http://www.epa.gov/otaq/regs/fuels/rfg/properf/ny-nj-ct.htm</u> (2002 Values presented on the page as of December 1, 2004)
- 12. <u>Technical Highlights Emission Factors for Locomotives</u>, US EPA, OMS, December 1997, Document Number EPA420-F-97-051
- 13. <u>Conversion Factors for Hydrocarbon Emission Components</u>, US EPA, OTAQ, May 2003, Document Number EPA420-P-03-002

SECTION 4 AREA SOURCES

4.1 INTRODUCTION

The Area Source Inventory estimates the emissions for those sources that are too small and/or too numerous to be handled individually in the point source inventory (e.g., residential heating). This section describes the methodology used to create peak ozone typical summer day and typical winter day area source inventories, excluding the mobile source categories.

Area sources can be divided into either evaporative sources or fuel combustion sources. The area source emissions are calculated for three periods of time, which include annual emissions, peak ozone typical summer day and typical winter day emissions. Emission estimates for CO, VOC, and NOx were calculated for the combustion sources while estimates of only VOC were calculated for evaporative sources in the 2002 Ozone/CO SIP emission inventory. Tables 1 and 2 in Appendix C list the CO, VOC, and NOx emissions from the area source categories for the peak ozone typical summer and winter day emissions. The tables are categorized by county and status area, respectively. Table 3 and Table 4 in Appendix C present annual emissions (TPY) by county and status area, respectively.

The statewide population statistics for 2002, used to calculate a large percentage of the emissions from area sources, were taken from the following United States Census Bureau website: <u>http://eire.census.gov/popest/data/cities/subtab13.php</u>. The 2002 statewide population was 3,460,503 people. The county populations were determined by aggregating the town populations within each county.

Area source emissions of CO, VOC and NOx for a typical summer day and CO for a typical winter day were determined using the following general equation unless specifically noted otherwise:

 $\frac{Emissions}{day} = \frac{Yearly\ Emissions\ x\ Seasonal\ Adjustment\ Factor}{no.\ of\ activity\ days/week\ x\ 13\ weeks}$

4.2 GASOLINE DISTRIBUTION LOSSES

Gasoline distribution produces VOC emissions that are based on the amount of gasoline sold. The total amount of gasoline sold in Connecticut in 2002 was 1,548,165,500 gallons while the total amount sold for the months of June, July and August 2002 was 409,099,148 gallons. The above information on gasoline sales was obtained from the State of Connecticut Department of Revenue Services (DRS), Excise Tax Subdivision.² DRS sales tax data includes sales to government agencies, miscellaneous non-taxable sales and use, and total taxable gasoline distribution. Sales of aviation fuel were not included in gasoline fuel sales because some types of aviation fuel such as jet kerosene are not as volatile as gasoline. Therefore, aircraft refueling losses will be addressed separately in Section 4.2.6.

The percent of gasoline sold during the ozone season was calculated by dividing the gallons of gasoline sold in the summer by the gallons of gasoline sold during the entire year. The period throughput was calculated to be 26.42%.

The CT DEP maintains a database of all active retail gasoline-dispensing facilities. This database was used to apportion the total amount of gasoline sold in the state to each county. Among other things this database identifies the town in which each dispensing facility is located. It does not include the amount of gasoline sold. In processing the data, dispensing facilities were deleted, if they were either a marina, closed, or did not sell gasoline.

A search of the Point Source Inventory showed that there were no bulk gasoline plants in operation in Connecticut in 2002.

The annual amount of gasoline sold in a county, expressed in thousand gallons, was determined by using the following equation:

$$Q = \frac{DRS \ x \ ZOPM}{SOPM \ x \ 1000}$$

Where:

Q	= gallons of gasoline sold annually in a county
DRS	= total gasoline sold in Connecticut, 2002 (1,548,165,500 gallons)
SOPM	= total amount of gasoline sold by service stations in the state in 1990
	(1,179,941,770 gallons)
ZOPM	= total amount of gasoline sold by service stations in a county in 1990
1,000	= one thousand gallons

The quantities (Q) determined using this equation were used in calculating emissions from tank truck unloading, vehicle refueling, and underground breathing. The gasoline throughput used to calculate emissions from tank trucks in transit will be estimated separately in Section 4.2.3. The throughput for this sub-category will include, in addition to the above, gasoline sold and transferred out-of-state.

A sample calculation to determine the annual amount of gasoline sold in Hartford County, expressed in gallons is:

$$Q = \frac{1,548,165,500 \times 310,637,760}{1,179,941,770 \times 1000}$$
$$Q = 407,578.30 \times 1,000 \text{ gallons}$$

4.2.1 Tank Truck Unloading

Table 4.2.1-1 contains the VOC annual and typical ozone season day emissions from tank truck unloading and the numbers used in the calculation of these emissions.

Since service station gasoline tanks must always be in compliance with the Regulations of Connecticut State Agencies $(RCSA)^3$ the VOC emissions from this source category were adjusted for control efficiency, rule penetration, and rule effectiveness.

Based on the RCSA, a gasoline storage tank having a capacity of more than 250 gallons is required to be of the submerged fill type unless the gasoline storage tank has a capacity of less than 1,000 gallons and was installed prior to June 1, 1972 or the underground gasoline storage tank was installed prior to June 1, 1972 and uses an offset fill pipe. As a result of the above regulations, the number of gasoline storage tanks that were not of the submerged fill type is insignificant compared with the total number of gasoline storage tanks in Connecticut. Therefore, it is appropriate to use the emission factor for submerged fill for all tank truck unloading. The uncontrolled emission factor for submerged filling was obtained from AP-42 and is 7.3 lb. of VOC/1,000 gallons.⁵

Effective May 31, 1983, a vapor balance emission control system must be used when a tank truck is unloading into a service station underground storage tank of a facility having an annual throughput greater than 120,000 gallons per year. The vapor balance control system is usually referred to as Stage I and requires that the transfer of gasoline from the tank truck to the underground storage tank is made through a properly maintained and operated approved control system which is in good working order, connected and operating. Stage I also requires that there are no leaks in the tank trucks pressure relief valves and hatch covers, nor in the truck tanks, storage tank or associated vapor and liquid lines during loading or unloading.³ The control efficiency for Stage I controls was determined using emission factors listed on Table 11.3-1 in EIIP's <u>Gasoline Marketing (Stage I and Stage II)</u>, external draft. The emission factor was determined by dividing the difference between emission factors for submerged filling (7.3 lb/1,000 gal) and balanced submerged filling (0.3 lb/1,000 gal) by the emission factor for submerged filling. Using this method, the control efficiency for Stage I controls is 95.89%.

The OPM, Energy Division's 1990 Petroleum Product Vendor Registration program was the only source available that could provide the data necessary to calculate rule penetration. In 1990 the rule penetration was 99.09% which was determined from the OPM 1990 data by dividing the amount of annual gasoline sales from outlets selling greater than 120,000 gallons per year (1,169,225,202 gal) by the total amount of annual gasoline sales (1,179,941,770 gal) in Connecticut. It is the conservatively assumed that the rule penetration is the same in 2002 as it was in 1990.

The Bureau of Air Management conducted a study in 1994 to determine the rule effectiveness of stage I controls²⁴. 106 gasoline tank trucks were followed, between July and September 1994, in unmarked cars and covertly observed as they delivered their gasoline to service stations. Based on these observations, stage I rule effectiveness in Connecticut was determined to be 96.8%.

Due to automation, bulk terminals in Connecticut are accessible seven days a week, therefore, tank truck unloading may take place seven days a week. The typical ozone season daily VOC emissions are calculated using the following equation:

$$E = \frac{Q \ x \ EF \ x \ POT \ x \ [1 - (Eff \ x \ RE \ x \ RP)]}{DAYS}$$

Where:

E	= daily county emissions expressed in pounds per day
Q	= thousands of gallons of gasoline sold in a county
EF	= emission factor of 7.3 lbs./ 1,000 gal (see above)
РОТ	= percentage of DRS's 2002 gasoline sold during June, July, and August
	of 2002 (see above)
Eff	= control efficiency of 95.89% (see above)
RE	= rule effectiveness of 96.8% (see above)
RP	= rule penetration of 99.09% (see above)
DAYS	= 92 days in the months of June, July and August

A sample calculation for Hartford County is:

 $E = \frac{407,578.30 \times 7.3 \times 0.2642 \times [1 - (0.9589 \times 0.968 \times 0.9909)]}{92}$

E = 685.65 lbs. VOC per day

County	Retail Gas (1000 Gal)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
Fairfield	367,891.70	107.74	618.89
Hartford	407,578.30	119.36	685.65
Litchfield	89,156.07	26.11	149.98
Middlesex	83,452.26	24.44	140.39
New Haven	364,067.08	106.62	612.45
New London	123,789.18	36.25	208.24
Tolland	63,052.14	18.46	106.07
Windham	49,178.76	14.40	82.73
State Total:	1,548,165.50	453.37	2,604.41

Table 4.2.1-1 Summary of the Emissions From Tank Truck Unloading

4.2.2 Vehicle Fueling and Underground Tank Breathing

Table 4.2.2-1 contains the VOC annual and typical ozone season day emissions from vehicle fueling and the data used to calculate these emissions. Table 4.2.2-2 contains the VOC annual and typical ozone season day emissions from underground tank breathing and the data used to calculate these emissions.

The VOC emissions resulting from vehicle fueling are determined by applying an emission factor to the amount of gasoline sold per day. MOBILE6.2⁶ was used to estimate an emission factor for evaporative losses from vehicle fueling and spillage at Stage II and non-Stage II vehicle fueling stations in 2002. The 2002 Reid Vapor Pressure Sampling Program showed that the average Reid Vapor Pressure (RVP) in Connecticut during June, July and August of 2002 was 6.86 psia, however the Mobile 6.2 Model used a RVP of 6.7 psia based on EPA projections for northern reformulated gasoline mixes (Reference 6 page 151). Stage II and non-Stage II emission factors were calculated using 2002 typical 8-hour ozone day temperatures. The basic input file supplied to the MOBILE6 computer program is presented in Table 4.2.2-3. Additional inputs, such as the inspection and maintenance program and registration age distribution input files used in this section are consistent with and are further described in Section 3 of this emissions inventory report.

Unlike the previous EPA MOBILE models, MOBILE6 does not provide a composite refueling emission factor in grams of VOC per gallon of gasoline sold for all vehicles. It does, however, provide a refueling emission factor in grams per vehicle mile traveled (VMT) for each vehicle class and model year, the fuel efficiency in miles per gallon by each vehicle class and model year, and adjustment factors that can be used to weight the emission factors and fuel efficiency with respect to vehicle age. The information garnered from MOBILE6 was used to develop VOC emission factors in grams per gallon of gasoline sold by vehicle

class using the registration distribution file to weight averages calculated from vehicle age specific refueling emission factors and fuel efficiencies. A composite weighted average emission factor in units of grams per gallons of gasoline sold was developed for all vehicles using the weighted average VOC emission factors in grams per gallon of gasoline calculated for each vehicle class and using the relative fraction of VMT by vehicle class. In addition to providing the inputs used in the Mobile 6.2 model, Table 4.2.2-3 also provides the detailed output data developed by the Mobile 6.2 model. Since the bulk of the information used to develop the refueling emission factors came from Mobile 6.2, the composite refueling emission factors are described as coming from MOBILE6.2.

For the non-Stage II stations, an emission factor of 2.98 grams per gallon of gasoline was calculated using a minimum ambient temperature of 67.7°F and a maximum ambient temperature of 95.5°F in the Greater Connecticut non-attainment status area. An emission factor of 2.81 grams per gallon of gasoline was calculated with a minimum ambient temperature of 66.5°F and a maximum ambient temperature of 91.6°F in the CT portion of the NY-NJ-CT CMSA non-attainment status area. Both MOBILE6 refueling emission factors were divided by 453.59 grams/lb. and multiplied by 1,000 to give an emission factor of 6.57 lbs/1,000 gallons for the Greater Connecticut status area and 6.20 lbs/1,000 gallons for the CT portion of the NY-NJ-CT CMSA factors only apply when Stage II is not implemented.

There were 485 stations in Connecticut that were not required to implement Stage II controls because their throughputs were less than 10,000 gallons per month. It was conservatively assumed that each of these stations sold 10,000 gallons of gasoline per month, for every month in 2002. The amount of gasoline sold at these stations was estimated to be 58,200 thousand gallons (485 * 10 * 12).

Of the 1,651 stations in Connecticut that were required to install Stage II controls, 64 were found to be out of compliance. Some of the 64 stations had installed Stage II controls but failed to pass the DEP approved test. Control efficiencies for all 64 stations were conservatively assumed to be zero. The amount of gasoline sold at these 64 stations were determined using the following equation:

$$Q_{nc} = \frac{(Q - Q_{nr}) \times NC}{REQ}$$

Where:

 Q_{nc} = thousands of gallons of gasoline sold at stations not in compliance

Q = thousands of gallons of gasoline sold in state

 Q_{nr} = thousands gallons of gasoline sold at stations not required to install Stage II controls

NC = number of stations out of compliance

REQ = number of stations required to install Stage II controls

A sample calculation of the thousands of gallons of gasoline sold at stations not in compliance is presented below:

$$Q_{nc} = \frac{(1,548,165.50-58,200) \times 64}{4-6}$$

 $Q_{nc} = 57,757.60 \text{ x } 1000 \text{ gallons}$

The total amount of gasoline sold in Connecticut in 2002 without Stage II controls is 115,957.60 thousand gallons (58,200 + 57,757.60). The total amount of gasoline sold with Stage II controls is 1,432,207.9 thousand gallons (1,548,165.50 - 115,957.60). Table 4.2.2-1 summarizes the quantity of gasoline sold with and without Stage II by county.

The daily non-Stage II VOC emissions are calculated using the following equation:

$$E_{ns} = \frac{Q_{ns} \, x \, POT \, x \, EF}{DAYS}$$

Where:

E _{ns}	= daily county non-Stage II emissions expressed in pounds per day
EF	= 6.57 lbs. per 1,000 gallons for Greater CT status area and 6.20 lbs. per 1,000 gallons for
	CT portion of the NY-NJ-CT status area
Q _{ns}	= thousands of gallons of gasoline sold without Stage II controls in a county during June,
	July, and August of 2002
POT	= percentage of DRS's gasoline sold during June, July, and August of 2002
DAYS	= 92 days in the months of June, July and August

A sample calculation of VOC emissions estimated from non-Stage II sources in Hartford County is presented below.

$$E_{ns} = \frac{26,567.72 \ x \ 0.2642 \ x \ 6.57}{92}$$

$$E_{ns} = 501.26$$
 lbs. VOC per day

Emission factors for the fueling stations that had implemented Stage II were also calculated using MOBILE6. All Inputs were identical to the inputs used for non-Stage II stations, such as RVP and temperature. However, Stage II parameters were included in the inputs.

Connecticut's Stage II program began in 1992 with a two-year phase-in period, a 10,000-gallon monthly throughput cutoff, and an annual inspection. Since the emission factors would only be applied to gasoline sold using Stage II, the Stage II parameters had to reflect a fully implemented program. Therefore, 86% program in-use efficiency for LDGV, LDGT and HDGV, as directed in the <u>Technical Guidance on the Use of MOBILE6 for Emission Inventory Preparation</u>, was used. This efficiency reflects annual inspections and

no gasoline station exemptions. Also, a two-year phase-in was input into the mobile model.

An emission factor of 0.68 grams per gallon of gasoline was calculated in the Greater Connecticut non-attainment status area. An emission factor of 0.66 grams per gallon of gasoline was calculated in the CT portion of the NY-NJ-CT CMSA non-attainment status area. Both MOBILE6 refueling emission factors were divided by 453.59 grams/lb. and multiplied by 1,000 to give an emission factor of 1.50 lbs/1,000 gallons and 1.46 lbs/1,000 gallons for the Greater Connecticut and the CT portion of the NY-NJ-CT status areas respectively. These emission factors only applied to gasoline sold using Stage II.

The summer day Stage II VOC emissions are calculated using the following equation:

$$E_{II} = \frac{Q_{II} \times POT \times EF}{DAYS}$$

Where:

E_{II}	= daily county emissions expressed in pounds per day
EF	= 1.50 lbs. per 1,000 gallons for Greater CT status area and 1.46 lbs. per 1,000 gallons for
	CT portion of the NY-NJ-CT status area
Q _{II}	= thousands of gallons of gasoline sold in a county using Stage II
POT	= percentage of DRS's gasoline sold during June, July, and August of 2002
DAYS	= 92 days in the months of June, July and August

A sample calculation of VOC emissions estimated from Stage II sources in Hartford County is presented below:

$$E_{II} = \frac{328,141.43 \times 0.2642 \times 1.50}{92}$$

 $E_{II} = 1,413.50$ lbs. VOC per day

Stage II and non-Stage II emissions were added together to get the total emissions for each county.

A sample calculation of the total VOC emissions estimated from refueling sources in Hartford County is presented below:

 $E_{tot} = 501.26 + 1,413.50 = 1,914.76$ lbs. VOC per day.

One pound of VOC per thousand gallons of gasoline sold is emitted to the air due to underground tank breathing, according to Table 11.3-1 in EIIP's <u>Gasoline Marketing (Stage I and Stage II)</u>. Table 4.2.2-2 summarizes the gallons of gasoline sold in each county and the emissions from tank breathing.

According to EPA's July 19, 2000 letter from David Conroy (EPA) to David Wackter (DEP), Pressure vacuum (PV) vent caps reduce VOC emissions from underground tank breathing by 90%. PV vent caps are required on all vacuum assist Stage II vapor recovery systems. There were 1,165 gasoline stations in Connecticut with vacuum assist Stage II vapor recovery systems in 2002. The rule penetration was calculated by dividing the 1,1165 gasoline stations with PV vent caps by the total number of gasoline stations in Connecticut (2,136). This resulted in a rule penetration of 54.54%. The default rule effectiveness of 80% was used

The typical summer day tank breathing VOC emissions are calculated using the following equation:

$$E = \frac{Q \ x \ EF \ x \ POT}{DAYS} \ x \left(1 - \left(\frac{CntrlE}{100} \ x \frac{RuleE}{100} \ x \frac{RuleP}{100}\right)\right)$$

Where:

E = daily county emissions expressed in pounds per day
EF = 1.0 lbs. per 1,000 gallons
Q = thousands of gallons of gasoline sold during 2002 in a county
POT = percentage of DRS's gasoline sold during June, July, and August of 2002
CntrlE = Percent of VOC controlled by PV vent caps
RuleE = Percent rule effectiveness of PV vent caps
RuleP = Percent rule penetration (see above)
DAYS = 92 days in the months of June, July and August

A sample calculation of VOC emissions estimated from tank breathing sources in Fairfield County is presented below:

$$E = \frac{316,893.67 \times 1.0 \times 0.2642}{92} \left(1 - \left(\frac{90}{100} \times \frac{80}{100} \times \frac{54.54}{100}\right)\right)$$

E = 552.68 lbs. VOC per day

County	Retail Gas Sold w/out Stage II (1,000 Gal)	Retail Gas Sold with Stage II (1,000 Gal)	Daily VOC Emissions (lbs/day)	Annual VOC Emissions (tons/year)
Fairfield	23 735 34	293 158 33	1 647 54	286 80
Hartford	26,567.72	328.141.43	1.914.30	333.24
Litchfield	9,516.79	117,543.20	685.72	119.37
Middlesex	7,364.19	90,956.05	511.17	88.98
New Haven	28,267.14	349,131.29	1,962.10	341.56
New London	11,159.57	137,833.39	804.09	139.97
Tolland	4,475.16	55,273.29	322.45	56.13
Windham	4,871.69	60,170.92	351.02	61.11
State Total	115,957.60	1,432,207.90	8,198.38	1,427.17

Table 4.2.2-1Summary of Vehicle Fueling Emissions

Table 4.2.2-2Summary of Underground Tank Breathing

County	Retail Gas Sold (1000 Gal)	Daily VOC Emissions (lbs/day)	Annual VOC Emissions (tons/year)
Fairfield	316,893.67	552.77	96.23
Hartford	354,709.14	618.73	107.71
Litchfield	127,059.99	221.63	38.58
Middlesex	98,320.23	171.50	29.86
New Haven	377,398.43	658.31	114.60
New London	148,992.97	259.89	45.24
Tolland	59,748.45	104.22	18.14
Windham	65,042.61	113.46	19.75
State Total	1,548,165.50	2,700.51	470.10

TABLE 4.2.2-31999 MOBILE6 INPUT DATA

MOBILE6 INPUT FILE : > REFUEL EMISSIONS * REVISED 11/29/02 REPORT FILE : C:\MOB02\Output\Refuel.TXT DATABASE OUTPUT : DATABASE OPTIONS : C:\Mob02\Opt\REFUEL.OPT : C:\MOB02\Output\Refuel.tb1 EMISSIONS TABLE RUN DATA EXPAND EVAPORATIVE : EXPAND BUS EFS EXPAND HDGV EFS : EXPAND LDT EFS : * Fuel Data : 2 N FUEL PROGRAM FUEL RVP : 6.86 * FUEL PROGRAM : 2 N assigns a FUEL RVP of 6.7 used per page 151 of the Mobile 6.2 Users Guide. * Vehicle Age Distribution REG DIST : C:\Mob02\CTREG02.D * I/M Data I/M DESC FILE : C:\Mob02\CTIM02.d ANTI-TAMP PROG : 83 78 50 22222 21111111 1 12 095. 12111112 VMT FRACTIONS : 0.4978 0.0757 0.2518 0.0776 0.0357 0.0192 0.0019 0.0015 0.0011 0.0042 0.0050 0.0055 0.0196 0.0010 0.0005 0.0019 SCENARIO RECORD : Hartford, Litchfield, New London, Tolland, and Windham County Refuel w/o Stage II CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Serious Area : 67.7 95.5 MIN/MAX TEMP RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 : 29.89 BAROMETRIC PRES SCENARIO RECORD : Fairfield, Middlesex, and New Haven County Refuel w/o Stage II : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1 BAROMETRIC PRES : 29.53

TABLE 4.2.2-31999 MOBILE6 INPUT DATA

•

END OF RUN

*RUN DATA

EXPAND EVAPORATIVE : EXPAND BUS EFS : EXPAND HDGV EFS : EXPAND LDT EFS : * Fuel Data : 2 N FUEL PROGRAM : 6.86 FUEL RVP STAGE II REFUELING : 92 2 86. 86. * FUEL PROGRAM : 2 N assigns a FUEL RVP of 6.7 used per page 151 of the Mobile 6.2 Users Guide. * Vehicle Age Distribution REG DIST : C:\Mob02\CTREG02.D * I/M Data I/M DESC FILE : C:\Mob02\CTIM02.d ANTI-TAMP PROG : 83 78 50 22222 2111111 1 12 095. 1211112 I/M DESC FILE : C:\Mob02\CTIM02.d VMT FRACTIONS 0.4978 0.0757 0.2518 0.0776 0.0357 0.0192 0.0019 0.0015 0.0011 0.0042 0.0050 0.0055 0.0196 0.0010 0.0005 0.0019 SCENARIO RECORD : Hartford, Litchfield, New London, Tolland, and Windham County Refuel w Stage II CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Serious Area MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 SCENARIO RECORD : Fairfield, Middlesex, and New Haven County Refuel w Stage II CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1 BAROMETRIC PRES : 29.53 END OF RUN

* MOBILE6.2.03 (24-Sep-2003) * MOBILE6.2.03 (24-3cp-2003) * Input file: C:\MOB02\REFUEL.IN (file 1, run 1). * M616 Comment: User has supplied post-1999 sulfur levels. * Reading Registration Distributions from the following external * data file: C:\MOB02\CTREG02.D \ast Reading I/M program description records from the following external * data file: C:\MOB02\CTIM02.D * 2002 CT I/M PROGRAMS * Revised 12/13/04 * File has been updated w/2002 stringency/compliance/waiver rates. * 12/13/04 draft of I/M File. Current Name CTIM02.d * Annual I/M test for the pre-81 CARS * Idle test started 1983 was upgraded to an ASM 2525 test in 1998. * Reading ASM I/M Test Credits from ASMDATA.D * Biennial I/M for the post-80 CARS * Idle test started 1983 was upgraded to an ASM 2525 test in 1998. * Reading ASM I/M Test Credits from ASMDATA.D * Annual Evap test for the pre-81 cars * Biennial Evap test for the post-81 cars * Annual I/M test for the pre-81 Trucks (GVWR 8,501-10,000lb) * Biennial I/M test for the post-80 Trucks (GVWR 8,501-10,000lb) M615 Comment: User supplied VMT mix. * Hartford, Litchfield, New London, Tolland, and Windham County Refuel w/o Stage II * File 1, Run 1, Scenario 1. *** I/M credits for Tech1&2 vehicles were read from the following external data file: TECH12.D M 48 Warning: there are no sales for vehicle class HDGV8b Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 67.7 (F) Maximum Temperature: 95.5 (F) Minimum Rel. Hum.: 38.8 (%) Maximum Rel. Hum.: 90.6 (%) Barometric Pressure: 29.89 (inches Hg) Fuel Sulfur Content: 129. ppm

Exhaust Evap Refor	I/M Program I/M Program ATP Program rmulated Gas	n: Yes m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4972	0.3274	0.1117		0.0179	0.0006	0.0017	0.0416	0.0019	1.0000
Composite Emission Fa	actors (g/m	i):								
Composite VOC :	1.139	1.027	1.368	1.114	2.149	0.612	0.600	0.693	4.57	1.133
Composite CO :	11.72	12.36	15.01	13.03	21.23	1.552	1.086	3.582	18.06	12.114
Composite NOX :	0.939	1.009	1.223	1.064	4.771	1.403	1.369	15.537	1.15	1.671
Non-Exhaust Emissions	(g/mi):									
Hot Soak Loss:	0.141	0.086	0.111	0.093	0.257	0.000	0.000	0.000	0.170	0.115
Diurnal Loss:	0.031	0.021	0.026	0.022	0.072	0.000	0.000	0.000	0.296	0.027
Resting Loss:	0.115	0.075	0.094	0.080	0.257	0.000	0.000	0.000	1.270	0.099
Running Loss:	0.234	0.168	0.174	0.169	0.290	0.000	0.000	0.000	0.000	0.196
Crankcase Loss:	0.008	0.009	0.009	0.009	0.012	0.000	0.000	0.000	0.000	0.008
Refueling Loss:	0.089	0.156	0.239	0.177	0.365	0.000	0.000	0.000	0.000	0.128
Total Non-Exhaust:	0.616	0.514	0.652	0.550	1.253	0.000	0.000	0.000	1.735	0.574
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0757	0.2518	0.0765	0.0352	0.0001	0.0016				
Composito Emission Es		 : \ •								
Composite MOC .	1 665	1).	1 /07	1 097	2 201	0 524				
Composite VOC :	16 62	11 09	16 15	12 52	4 065	0.534				
Composite NOX :	1 075	0 990	1 171	1 338	2 881	1 313				
Non-Exhaust Emissions	(g/mi):	0 054	0 1 2 2	0.064	0 000	0 000				
HOT SOAK LOSS:	0.195	0.054	0.132	0.064	0.000	0.000				
Diurnal Loss:	0.043	0.014	0.030	0.016	0.000	0.000				
Resting Loss:	0.167	0.04/	0.112	0.056	0.000	0.000				
Running Loss:	0.322	0.122	0.205	0.106	0.000	0.000				
Crankcase Loss:	0.011	0.009	0.010	0.008	0.000	0.000				
Refueling Loss:	0.159	0.155	0.239	0.239	0.000	0.000				
Total Non-Exhaust:	0.896	0.400	0.727	0.490	0.000	0.000				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0145	0.0005	0.0003	0.0006	0.0012	0.0006	0.0000	0.0000		
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	1.704	3.061	5.750	3.199	3.339	4.687	4.789	0.000		
Composite CO :	14.79	40.45	65.66	32.52	35.60	57.50	56.42	0.00		
Composite NOX :	4.441	5.272	6.491	5.914	5.917	7.006	7.607	0.000		

Non-Exhaust Emissions	(ɑ/mi):								
Hot. Soak Loss:	0.199	0.338	0.856	0.409	0.435	0.610	0.607	0.000	
Diurnal Loss:	0.054	0.089	0.273	0.132	0.135	0.180	0.184	0.000	
Resting Loss:	0.193	0.323	0.944	0.452	0.467	0.637	0.647	0.000	
Running Loss:	0.258	0.320	0.595	0.358	0.352	0.416	0.470	0.000	
Crankcase Loss:	0.011	0.013	0.017	0.013	0.013	0.014	0.015	0.000	
Refueling Loss:	0.347	0.377	0.397	0.438	0.440	0.479	0.510	0.000	
Total Non-Exhaust:	1.062	1.459	3.081	1.802	1.841	2.336	2.434	0.000	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0003	0.0005	0.0007						
Composite Emission Fa	actors (g/mi):	0 505						
Composite VOC	8.584	0.833	0.795						
Composite CO	134.03	5.440	2.740						
Composite NOX :	/.9/5	20.306	13.459						
Non-Exhaust Emissions	(g/mi):								
Hot Soak Loss:	0.853	0.000	0.000						
Diurnal Loss:	0.231	0.000	0.000						
Resting Loss:	0.813	0.000	0.000						
Running Loss:	1.020	0.000	0.000						
Crankcase Loss:	0.026	0.000	0.000						
Refueling Loss:	0.552	0.000	0.000						
Total Non-Exhaust:	3.494	0.000	0.000						
* # # # # # # # # #	# # # # # #	# # # #	# # # # #						
* Fairfield, Middlesex	k, and New H	aven Coun	ty Refuel w	w/o Stage I	I				
* File 1, Run 1, Scena	ario 2.								
* # # # # # # # # #	# # # # # #	# # # #	# # # # #						
M 48 Warning:									
there an	re no sales	for vehic	le class HI	DGV8b					
Ca	alendar Year	: 2002							
	Month	: July							
	Altitude	: Low							
Minimum	Temperature	: 66.5 (F)						
Maximum	Temperature	: 91.6 (F)						
Minimu	um Rel. Hum.	: 41.4 (8)						
Maximu	um Rel. Hum.	: 92.1 (응)						
Barometr	ric Pressure	: 29.53 (inches Hg)						
Fuel Sul	lfur Content	: 129. p	pm						
Exhaust	T/M Program	: Yes							
Evan	I/M Program	: Yes							
1 vap	ATP Program	: Yes							
Refor	mulated Gas	: Yes							

4 - 16

Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4972	0.3274	0.1117		0.0179	0.0006	0.0017	0.0416	0.0019	1.0000
Composite Emission Fa	actors (g/m	 i)∶								
Composite VOC :	1.100	0.993	1.322	1.077	2.044	0.612	0.600	0.693	4.44	1.095
Composite CO :	11.45	12.22	14.75	12.86	20.39	1.552	1.086	3.582	17.01	11.890
Composite NOX :	0.934	1.009	1.225	1.064	4.784	1.403	1.369	15.537	1.19	1.669
Non-Exhaust Emissions	(g/mi):									
Hot Soak Loss:	0.138	0.084	0.104	0.089	0.233	0.000	0.000	0.000	0.160	0.112
Diurnal Loss:	0.025	0.017	0.021	0.018	0.059	0.000	0.000	0.000	0.206	0.022
Resting Loss:	0.111	0.072	0.092	0.077	0.251	0.000	0.000	0.000	1.263	0.096
Running Loss:	0.217	0.154	0.158	0.155	0.261	0.000	0.000	0.000	0.000	0.180
Crankcase Loss:	0.008	0.009	0.009	0.009	0.012	0.000	0.000	0.000	0.000	0.008
Refueling Loss:	0.084	0.147	0.225	0.167	0.344	0.000	0.000	0.000	0.000	0.121
Total Non-Exhaust:	0.582	0.483	0.610	0.516	1.160	0.000	0.000	0.000	1.630	0.540
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0757	0.2518	0.0765	0.0352	0.0001	0.0016				
Composite Emission Fa	actors (g/m	 i)∶								
Composite VOC :	1.610	0.808	1.447	1.050	2.391	0.534				
Composite CO :	16.53	10.93	15.88	12.28	4.065	0.977				
Composite NOX :	1.077	0.989	1.173	1.338	2.881	1.313				
Non-Exhaust Emissions	(g/mi):									
Hot Soak Loss:	0.189	0.053	0.125	0.060	0.000	0.000				
Diurnal Loss:	0.036	0.011	0.025	0.013	0.000	0.000				
Resting Loss:	0.162	0.045	0.109	0.054	0.000	0.000				
Running Loss:	0.294	0.111	0.187	0.097	0.000	0.000				
Crankcase Loss:	0.011	0.009	0.010	0.008	0.000	0.000				
Refueling Loss:	0.150	0.146	0.225	0.226	0.000	0.000				
Total Non-Exhaust:	0.843	0.375	0.680	0.458	0.000	0.000				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0145	0.0005	0.0003	0.0006	0.0012	0.0006	0.0000	0.0000		
Composite Emission Es	ators (a/m									
Composite VOC .	1 622	-,• 2 017	5 444	3 030	3 173	4 461	4 559	0 000		
Composite CO :	14 31	38 47	5.111 62 34	3.039	34 04	54 68	53 76	0.000		
Composite NOV .	4 447	5 306	6 555	5 936	5 944	7 058	7 655	0.00		
COMPOSICE NOX .	1.11/	5.500	0.000	0.00	J. 911	1.050	1.055	0.000		

Non-Exhaust Emissions	(g/mi):								
Hot Soak Loss:	0.182	0.299	0.755	0.366	0.387	0.539	0.540	0.000	
Diurnal Loss:	0.044	0.073	0.222	0.107	0.109	0.145	0.149	0.000	
Resting Loss:	0.188	0.318	0.929	0.442	0.458	0.626	0.635	0.000	
Running Loss:	0.234	0.283	0.524	0.320	0.314	0.370	0.419	0.000	
Crankcase Loss:	0.011	0.013	0.017	0.013	0.013	0.014	0.015	0.000	
Refueling Loss:	0.327	0.356	0.374	0.413	0.415	0.451	0.481	0.000	
Total Non-Exhaust:	0.987	1.341	2.822	1.662	1.696	2.145	2.239	0.000	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0003	0.0005	0.0007						
		·							
Composite Emission Fa	actors (g/m 8.175	0.833	0.795						
Composite CO :	126.42	5.440	2.740						
Composite NOX :	8.128	20.306	13.459						
Non-Exposet Emiggiong									
Non-Exhaust Emissions	(g/IIII)·	0 000	0 000						
Diurpal Loga:	0.757	0.000	0.000						
Pesting Loss:	0.100	0.000	0.000						
Running Loss:	0.884	0.000	0.000						
Crankcase Loss:	0.001	0.000	0.000						
Refueling Loss:	0.020	0.000	0.000						
Total Non-Exhaust:	3 177	0.000	0.000						
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *	******	* * * * * * * * * *	* * * * * * * * * * *	* * *			
* MOBILE6.2.03 (24-Sep	p-2003)					*			
* Input file: C:\MOB02	2\REFUEL.IN	I (file 1,	run 2).			*			
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *	********	******	*******	*******	* * *			
M616 Comment:									
User ha	as supplied	l post-1999	9 sulfur le	vels.					
M601 Comment:									
User ha	as enabled	STAGE II F	REFUELING.						
* Reading Registration	n Distribut	ions from	the follow	ing externa	al				
* data file: C:\MOB02	\CTREG02.D								
* Reading I/M program	descriptio	n records	from the f	ollowing e	xternal				
* data file: C:\MOB02	CTIM02.D								
* 2002 CT I/M PROGRAMS	S								
* Revised 12/13/04									
* File has been update	ed w/2002 s	stringency/	compliance	/waiver rat	tes.				
* 12/13/04 draft of I	/M File. C	Current Nam	ne CTIM02.d						
* Annual I/M test for	the pre-81	CARS							
* Idle test started 19	983 was upg	graded to a	an ASM 2525	test in 19	998.				
* Reading NGM I/M Tool	t Credita f	rom AGMDAT	ם גי						
* Biennial I/M for the	= post - 80 (ARS	<i>D</i>						
* Idle test started 10	983 was und	araded to a	n ASM 2525	test in 10	998.				
	P P	,							

* Reading ASM I/M Test Credits from ASMDATA.D * Annual Evap test for the pre-81 cars * Biennial Evap test for the post-81 cars * Annual I/M test for the pre-81 Trucks (GVWR 8,501-10,000lb) * Biennial I/M test for the post-80 Trucks (GVWR 8,501-10,000lb) M615 Comment: User supplied VMT mix. * Hartford, Litchfield, New London, Tolland, and Windham County Refuel w Stage II * File 1, Run 2, Scenario 1. *** I/M credits for Tech1&2 vehicles were read from the following external data file: TECH12.D M 48 Warning: there are no sales for vehicle class HDGV8b Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 67.7 (F) Maximum Temperature: 95.5 (F) Minimum Rel. Hum.: 38.8 (%) Maximum Rel. Hum.: 90.6 (%) Barometric Pressure: 29.89 (inches Hq) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh >6000 GVWR: <6000 (All) ____ ____ ____ ____ ____ VMT Distribution: 0.4972 0.3274 0.1117 0.0179 0.0006 0.0017 0.0416 0.0019 1.0000 _____ _____ Composite Emission Factors (g/mi): 1.073 0.907 Composite VOC : 1.181 0.977 1.863 0.612 0.600 0.693 4.57 1.034 Composite CO : 11.72 12.36 15.01 13.03 21.23 1.552 1.086 3.582 18.06 12.114 Composite NOX : 0.939 1.009 1.223 1.064 4.771 1.403 1.369 15.537 1.15 1.671 _____ _____ Non-Exhaust Emissions (q/mi): Hot Soak Loss: 0.141 0.086 0.111 0.093 0.257 0.000 0.000 0.000 0.170 0.115 0.021 0.026 0.000 0.000 Diurnal Loss: 0.031 0.022 0.072 0.000 0.296 0.027 0.075 0.094 0.257 Resting Loss: 0.115 0.080 0.000 0.000 0.000 1.270 0.099 0.000 0.000 Running Loss: 0.234 0.168 0.174 0.169 0.290 0.000 0.000 0.196 0.008 0.000 0.000 Crankcase Loss: 0.009 0.009 0.009 0.012 0.000 0.000 0.008 Refueling Loss: 0.022 0.035 0.052 0.040 0.079 0.000 0.000 0.000 0.000 0.030 0.550 0.968 0.000 0.000 Total Non-Exhaust: 0.394 0.466 0.413 0.000 1.735 0.475 _____ _____

Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34			
VMT Mix:	0.0757	0.2518	0.0765	0.0352	0.0001	0.0016			
Composite Emission Factors (g/mi):									
Composite VOC :	1.541	0.716	1.311	0.899	2.391	0.534			
Composite CO :	16.63	11.08	16.15	12.53	4.065	0.977			
Composite NOX :	1.075	0.990	1.171	1.338	2.881	1.313			
Non-Exhaust Emissions (g/mi):									
Hot Soak Loss:	0.195	0.054	0.132	0.064	0.000	0.000			
Diurnal Loss:	0.043	0.014	0.030	0.016	0.000	0.000			
Resting Loss:	0.167	0.047	0.112	0.056	0.000	0.000			
Running Loss:	0.322	0.122	0.205	0.106	0.000	0.000			
Crankcase Loss:	0.011	0.009	0.010	0.008	0.000	0.000			
Refueling Loss:	0.036	0.035	0.052	0.052	0.000	0.000			
Total Non-Exhaust:	0.773	0.280	0.540	0.303	0.000	0.000			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
11									
VMT Mix:	0.0145	0.0005	0.0003	0.0006	0.0012	0.0006	0.0000	0.0000	
Composite Emission Fa	actors (g/m	ni):							
Composite VOC :	1.433	2.766	5.440	2.856	2.994	4.312	4.390	0.000	
Composite CO :	14.79	40.45	65.66	32.52	35.60	57.50	56.42	0.00	
Composite NOX :	4.441	5.272	6.491	5.914	5.917	7.006	7.607	0.000	
Non-Exhaust Emissions	 (ɑ/mi):								
Hot Soak Loss:	0.199	0.338	0.856	0.409	0.435	0.610	0.607	0.000	
Diurnal Loss:	0.054	0.089	0.273	0.132	0.135	0.180	0.184	0.000	
Resting Loss:	0.193	0.323	0.944	0.452	0.467	0.637	0.647	0.000	
Running Loss:	0.258	0.320	0.595	0.358	0.352	0.416	0.470	0.000	
Crankcase Loss:	0.011	0.013	0.017	0.013	0.013	0.014	0.015	0.000	
Refueling Loss:	0.075	0.082	0.086	0.095	0.096	0.104	0.111	0.000	
Total Non-Exhaust:	0.791	1.164	2.770	1.459	1.497	1.961	2.035	0.000	
ven. Type:	Gasbus	URBAN	SCHOOL						
VMT Mix:	0.0003	0.0005	0.0007						
Composite Emission Factors (g/mi):									
Composite VOC :	8.152	0.833	0.795						
Composite CO :	134.03	5.440	2.740						
Composite NOX :	7.975	20.306	13.459						
Non-Exhaust Emissions (g/mi):									
Hot Soak Loss:	0.853	0.000	0.000						
Diurnal Loss:	0.231	0.000	0.000						
Resting Loss:	0.813	0.000	0.000						
Running Loss:	1.020	0.000	0.000						
Crankcase Loss:	0.026	0.000	0.000						
Refueling Loss:	0.120	0.000	0.000						

Total Non-Exhaust: 3.063 0.000 0.000 _____ -------* Fairfield, Middlesex, and New Haven County Refuel w Stage II * File 1, Run 2, Scenario 2. M 48 Warning: there are no sales for vehicle class HDGV8b Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 66.5 (F) Maximum Temperature: 91.6 (F) Minimum Rel. Hum.: 41.4 (%) Maximum Rel. Hum.: 92.1 (%) Barometric Pressure: 29.53 (inches Hg) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh >6000 GVWR: <6000 (All) ____ ____ ____ _____ _____ ____ ____ ____ _____ _____ 0.4972 0.3274 0.1117 VMT Distribution: 0.0179 0.0006 0.0017 0.0416 0.0019 1.0000 _____ _____ _____ _____ Composite Emission Factors (g/mi): Composite VOC : 1.038 0.881 1.147 0.948 1.777 0.612 0.600 0.693 4.44 1.003 Composite CO : 11.45 12.22 14.75 12.86 20.39 1.552 1.086 3.582 17.01 11.890 0.934 15.537 Composite NOX : 1.009 1.225 1.064 4.784 1.403 1.369 1.19 1.669 _____ Non-Exhaust Emissions (g/mi): 0.138 0.084 0.104 0.089 0.233 0.000 0.000 0.000 0.160 Hot Soak Loss: 0.112 Diurnal Loss: 0.025 0.017 0.021 0.018 0.059 0.000 0.000 0.000 0.206 0.022 0.072 0.092 0.251 0.000 0.000 1.263 Resting Loss: 0.111 0.077 0.000 0.096 0.000 0.000 0.000 0.158 Running Loss: 0.217 0.261 0.000 0.154 0.155 0.000 0.180 Crankcase Loss: 0.008 0.009 0.009 0.009 0.012 0.000 0.000 0.008 0.000 Refueling Loss: 0.021 0.034 0.050 0.038 0.076 0.000 0.000 0.000 0.029 Total Non-Exhaust: 0.520 0.370 0.435 0.387 0.892 0.000 0.000 0.000 1.630 0.447 _____ _____ _____ _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ _____ _____ _____ _____ VMT Mix: 0.0757 0.2518 0.0765 0.0352 0.0001 0.0016 _____ _____ _ _ _ _ _ _ _ _ _ _ Composite Emission Factors (g/mi): Composite VOC : 1.494 0.696 1.272 0.875 2.391 0.534 15.88 16.53 10.93 12.28 4.065 0.977 Composite CO : Composite NOX : 1.077 0.989 1.173 1.338 2.881 1.313

Non-Exhaust Emissions	(q/mi):								
Hot Soak Loss:	0.189	0.053	0.125	0.060	0.000	0.000			
Diurnal Loss:	0 036	0 011	0 025	0 013	0 000	0 000			
Resting Logs:	0 162	0.011	0 109	0 054	0 000	0 000			
Reseing Loss:	0.102	0.015	0.107	0.001	0.000	0.000			
Crankaago Logg	0.294	0.111	0.107	0.097	0.000	0.000			
	0.011	0.009	0.010	0.008	0.000	0.000			
Refueling Loss.	0.035	0.034	0.050	0.050	0.000	0.000			
Total Non-Exhaust:	0./2/	0.263	0.505	0.282	0.000	0.000			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0145	0.0005	0.0003	0.0006	0.0012	0.0006	0.0000	0.0000	
Composite Emission Fa	actors (g/m	 ni):							
Composite VOC :	1.368	2.640	5.153	2.717	2.850	4.110	4.184	0.000	
Composite CO :	14.31	38.47	62.34	31.18	34.04	54.68	53.76	0.00	
Composite NOX :	4.447	5.306	6.555	5.936	5.944	7.058	7.655	0.000	
Non-Exhaust Emissions									
Not Soak Logg	0 182	0 200	0 755	0 366	0 387	0 539	0 540	0 000	
Diurpal Loga:	0.102	0.299	0.755	0.300	0.307	0.335	0.140	0.000	
Diuliai Loss:	0.044	0.073	0.222	0.107	0.109	0.145	0.149	0.000	
Resting Loss:	0.100	0.310	0.929	0.442	0.450	0.020	0.035	0.000	
Running Loss:	0.234	0.283	0.524	0.320	0.314	0.370	0.419	0.000	
Crankcase Loss:	0.011	0.013	0.017	0.013	0.013	0.014	0.015	0.000	
Refueling Loss:	0.073	0.079	0.083	0.092	0.092	0.100	0.107	0.000	
Total Non-Exhaust:	0.733	1.065	2.531	1.341	1.374	1.794	1.865	0.000	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0003	0.0005	0.0007						
Composite Emission F	actors (a/m	 ni):							
Composite VOC .	7 770	0 833	0 795						
Composite VOC ·	126 12	5 440	0.755						
	120.42	5.440	2.740						
	8.128	20.306	13.459						
Non-Exhaust Emissions	(g/mi):								
Hot Soak Loss:	0.757	0.000	0.000						
Diurnal Loss:	0.188	0.000	0.000						
Resting Loss:	0.802	0.000	0.000						
Running Loss:	0.884	0.000	0.000						
Crankcase Loss:	0.026	0.000	0.000						
Refueling Loss:	0.116	0.000	0.000						
Total Non-Exhaust:	2 772	0 000	0 000						
iocai non Exhaust.	4.114	0.000	0.000						

4.2.3 Gasoline Trucks in Transit

Table 4.2.3-1 contains the VOC annual and typical ozone season day emissions from gasoline trucks in transit and the data used in the calculation of these emissions.

The total amounts of gasoline throughput for trucks in transit during the months of June, July and August 2002 (482,949,080 gallons) and for calendar year 2002 (1,811,899,840 gallons) were obtained from DRS sales tax data.² Unlike the gasoline throughput used in tank truck unloading, vehicle fueling and underground tank breathing, the amounts include gasoline sold and transferred out of state. The aforementioned DRS sales tax data includes sales to government agencies, miscellaneous non-taxable sales and use, total taxable gasoline distribution, and sales and transfers out-of-state.

The ozone season throughput (POT) is 26.65 percent of the annual throughput. This was determined by dividing the ozone season throughput (482,949,080 gallons) by the annual throughput (1,811,899,840 gallons).

The VOC emissions resulting from gasoline trucks in transit are determined by applying an emission factor to the amount of gasoline sold per day. As with the tank truck unloading category above, it was assumed this activity takes place 7 days a week. Gasoline is distributed in Connecticut by truck, not railroad tank cars. Since the exact route a tank truck takes from a distribution point (bulk terminal or bulk plant) to an outlet is not known, the VOC emissions are apportioned to each county by vehicle miles traveled (VMTs), using the following equation:

$$Q = \frac{QS \ x \ ZVMT}{SVMT}$$

Where:

Q = gallons of gasoline sold per year in a county QS = gallons of gasoline sold per year in the state ZVMT = vehicle miles traveled in a county ⁸ SVMT = vehicle miles traveled in the state ⁸

A sample calculation for Fairfield County is:

$$Q = \frac{1,811,899,840 \times 20,436,608}{84,920,205}$$

$$Q = 436,045,66$$
 gallons

A search of the Point Source Inventory showed that there weren't any bulk gasoline plants in Connecticut in 2002.

AP-42 Table 5.2-5 gives a range of VOC emission factors for loaded and unloaded tank trucks in transit. The average values, for the ranges listed as typical on Table 5.2-5, were used as the emission factors. For a tank truck loaded with gasoline, that value is 0.005 pounds per 1,000 gallons. For a tank truck returning with vapor, that value is 0.055 pounds per 1,000 gallons. These two emission factors were added to equal a composite emission factor of 0.06 pounds of VOC per 1,000 gallons.

In Connecticut the RCSA regulate tank trucks for leak tightness. The effect of the leak tightness regulations is difficult to quantify. A tank truck that does not leak will have no VOC emissions in transit. The emission factor, as described above, does not account for emission reductions from the leak tightness regulation. Since the emissions are estimated conservatively, rule effectiveness, rule penetration and control efficiency were not applied. The VOC emissions from this category are very small.

The daily VOC emissions are calculated using the following equation:

$$E = \frac{EF \ x \ Q \ x \ POT}{DAYS}$$

Where:

E	= daily county emissions expressed in pounds per day
EF	= emission factor of 0.06 lbs. per 1,000 gallon
Q	= 1,000 gallons of gasoline sold per day in a county
POT	= percentage of gasoline sold during June, July and August of 2002
DAYS	= 92 days in the ozone season (June, July and August)

A sample calculation for Fairfield County is:

 $E = \frac{0.06 \ x \ 436,045.66 \ x \ 0.2665}{92}$

E = 75.80 lbs. VOC per day

				Annual VOC Dany VOC			
County	VMTs In County	Apportion Factor	Retail Gas (1000 Gal)	Emissions (tons/year)	Emissions (lbs/day)		
Fairfield	20,436,608	0.24	436,045.66	13.08	75.80		
Hartford	21,171,253	0.25	451,720.41	13.55	78.52		
Litchfield	4,199,795	0.05	89,608.92	2.69	15.58		
Middlesex	4,772,242	0.06	101,822.93	3.05	17.70		
New Haven	18,458,840	0.22	393,847.01	11.82	68.46		
New London	8,419,928	0.10	179,651.78	5.39	31.23		
Tolland	4,383,313	0.05	93,524.55	2.81	16.26		
Windham	3,078,226	0.04	65,678.56	1.97	11.42		
State Total:	84,920,205	1.00	1,811,899.84	54.36	314.97		

Table 4.2.3-1 Summary of the Emissions From Gasoline Trucks in Transit

Annual VOC Daily VOC

4.2.4 Barge loading/Unloading

The loading/unloading of gasoline at bulk terminals produces VOC emissions. In 1990 several people were contacted to determine under what circumstances barge loading/unloading caused VOC emissions. According to David Mark Wordt, EPA Chemicals Branch OAQPS, significant amounts of VOC may be emitted during the loading of ships or barges with gasoline. Mr. Wordt also stated that the amount of VOC emitted are negligible during the unloading of barges or ships, because the Coast Guard requires segregated or dedicated ballasting in Connecticut. If the barge does not have segregated or dedicated ballasting, VOC emissions would occur during unloading when the cargo tanks which contained gasoline are filled with sea water to ballast the ship or barge. John Johnson, of Bouchard Shipping, a major shipping company operating in Connecticut, confirmed that barges and ships unloading gasoline in Connecticut use segregated or dedicated ballasting.

According to CTDEP enforcement, loading of gasoline onto barges is no longer conducted in Connecticut. The loading of crude oil is the only other loading activity that has significant VOC emissions, but crude oil is not delivered to Connecticut. The VOC emissions from barge loading in Connecticut is considered negligible.
4.2.5 Aircraft Refueling

Emissions from aircraft refueling occur when vapor-laden air in a partially empty tank is displaced to the atmosphere as the tank is refilled. Table 4.2.5-1 contains the VOC annual and typical ozone season day emissions from aircraft refueling and the data used in the calculation of these emissions.

Emissions from aircraft refueling can be estimated using fuel sales data by type of fuel multiplied by the corresponding fuel emission factors. Jet kerosene (used primarily by turbojet aircraft), jet naphtha (used primarily by military aircraft), and aviation gasoline (used by general aviation reciprocating engines) are the three most common types of aircraft fuels used in the United States. The Energy Information Administration, which publishes the State Energy Data Reports, did not have aviation fuel consumption data for 2002. The most recent aviation fuel use data available is for calendar year 2001. It was assumed that 2001 aviation fuel use data best represents 2002 activity.

The energy consumption figures provided by the Energy Information Administration were 78,000 barrels of aviation fuel and 2,356,000 barrels of jet fuel. A petroleum barrel is defined as a unit of volume equal to 42 U.S. gallons. Converting barrels to gallons there were 3,276,000 gallons of aviation gasoline and 98,952,000 gallons of jet fuel consumed in CT during 2001.

Aviation gasoline was assumed to be gasoline RVP 7. The emission factors for aircraft refueling are temperature dependent i.e., the higher the temperatures the more VOC emissions. For this reason both daily and annual emission factors were estimated. The daily high temperature used for this category was 86 degrees Fahrenheit (546 degrees Rankine), which is the typical high ozone season day temperature. An interpolation between the 80 and 90 degree Fahrenheit figures, from Table 7.1-2 of AP-42, was done to approximate fuel true vapor pressure in psia for jet kerosene, jet naphtha, and gasoline RVP 7 (aviation gasoline) at 86 degrees Fahrenheit. To estimate the annual emission factors, an average annual high temperature of 50 degrees Fahrenheit and the corresponding fuel true vapor pressures from Table 7.1-2 of AP-42 were used. The loading method used for aircraft refueling is splash loading of a clean cargo tank. Emission factors were developed using the following equation:

$$EF = \frac{12.46 \, x \, S \, x \, P \, x \, M}{T}$$

Where:

EF	= emission factor expressed in pounds VOC per 1,000 gallons fuel throughput
S	= saturation factor of 1.45 from Table 5.2-1 of AP-42
Р	= fuel true vapor pressure in psia from Table 7.1-2 of AP-42
М	= fuel molecular weight in lb./lbmol from Table 7.1-2 of AP-42
Т	= study temperature in degrees Rankine

The typical ozone day emission factor for jet kerosene is:

$$EF = \frac{12.46 \ x \ 1.45 \ x \ 0.0186 \ x \ 130}{546}$$

EF = 0.08 lbs. VOC per 1,000 gallons

Using the same equation, the typical ozone day jet naphtha emission factor is 5.824 pounds per 1,000 gallons and the typical ozone day aviation gasoline emission factor is 13.051 pounds per 1,000 gallons.

The annual jet kerosene, jet naphtha, and aviation gasoline emission factors are 0.03, 2.83 and 6.99 pounds per 1,000 gallons, respectively.

VOC emissions were calculated based on fuel consumption and its corresponding emission factor.

The Energy Information Administration reported only total jet fuel consumption and did not separately account for jet naphtha and jet kerosene. Aircraft operations at each airport were used to apportion refueling emissions to each county and to estimate the percentage of jet fuel that was jet naphtha and jet kerosene.

Aircraft operations in Connecticut were separated out into three categories, military, air carrier (commercial) and general aviation.

Aircraft operations in 2002 were not available so 1999 data was used. It was assumed that the amount of jet naphtha consumed was proportional to the ratio of the number of military operations to the total number of jet operations; and the amount of jet kerosene was proportional to the ratio of the number of air carrier operations to the total number of jet operations. The total number of jet operations (88,739) is the sum of the military (13,182) and the air carrier operations (75,557). The total jet naphtha consumed was 14.85% of the total jet fuel consumed or 14,699,120 gallons. The total jet kerosene consumed was 85.15% of the total jet fuel consumed or 84,252,880 gallons. It was assumed that airports were in operation 365 days in 2002 with no seasonal variations in activity.

The equation used to calculate typical ozone season day VOC emissions for this category is as follows:

$$E = \frac{GAL \ x \ EF \ x \ Sadj}{DAYS \ x \ 1000}$$

Where:

E	= daily emissions expressed in pounds per day
GAL	= gallons of fuel per year consumed in 2002
EF	= typical ozone season day emission factor expressed in pounds VOC per 1,000
	gallons fuel throughput

Sadj	= percent summer throughput (25%)
DAYS	= 91 days per summer
1,000	= 1,000 gallons

A sample calculation for emissions from aircraft refueling of jet kerosene is:

$$E = \frac{84,252,880 \ x \ 0.08 \ x \ 0.25}{91 \ x \ 1,000}$$

$$E = 18.52$$
 lbs. VOC per day

Emissions for jet naphtha and aviation gasoline were calculated in the same manner. The statewide typical ozone season a day VOC emission from aircraft refueling of jet naphtha is 235.19 lbs./day and the statewide typical ozone season day VOC emissions from aircraft refueling of aviation gasoline is 117.46 lbs./day.

The statewide VOC emissions from aircraft refueling of aviation gasoline were apportioned to each county by the number of general aircraft operations. The emissions from aircraft refueling of jet kerosene and jet naphtha were apportioned to each county by the number of air carrier, and military aircraft operations, respectively.

Table -	4.2.5-1
---------	---------

Summary of Emissions From Aircraft Refueling

County	Air Carrier (LTO)	General Aviation (LTO)	Military (LTO)	Annual Emissions (Tons/Year)	Daily VOC Emissions (Lbs/Day)
Fairfield	3	108,736	865	3.56	37.95
Hartford	75,551	176,662	7,621	16.77	191.06
Litchfield	0	138	0	0.00	0.03
Middlesex	0	3,830	0	0.08	0.79
New Haven	0	199,835	394	4.65	48.41
New London	3	40,456	4,302	7.61	85.13
Tolland	0	54	0	0.00	0.01
Windham	0	37,533	0	0.76	7.77
State Total:	75,557	567,244	13,182	33.44	371.15

4.3 STATIONARY SOURCE SOLVENT EVAPORATION

4.3.1 Dry Cleaning

Table 4.3.1-1 contains the VOC annual and typical ozone season day emissions from dry cleaning and the data used in the calculation of these emissions.

For the 1990 and 1993 Ozone and Carbon Monoxide Emissions Inventories, perchloroethylene was considered a VOC. EPA has since reclassified perchloroethylene as an exempt VOC due to its negligible photochemical reactivity. Since nearly all dry cleaners in Connecticut use perchloroethylene, the current VOC emission estimates for this category are much less than in the 1990 and 1993 Emission Inventories.

A survey, which was included in Attachment C of the <u>1990 Base Year Ozone and Carbon Monoxide</u> <u>Emissions Inventory</u>⁷ for Connecticut, was conducted in 1990 to estimate the VOC emissions from dry cleaning during the ozone season. From the survey, it was estimated that 1,098 tons of VOC were emitted to the air from dry cleaners in 1990, and that 20 percent of the solvent used for dry cleaning in 1990 was used during the ozone season (June, July and August). Thus, it is estimated that 219.6 tons of VOC were emitted from dry cleaning operations during the ozone season in 1990. The estimated VOC emission takes into account the solvent recycling and disposal methods used by dry cleaners in Connecticut.

Of the dry cleaners surveyed in 1990, 97% reported using only perchloroethylene. At the time the 1990 VOC emissions from dry cleaners were determined perchloroethylene was considered a VOC. Perchloroethylene is now considered an exempt VOC. Therefore, to estimate the 2002 VOC emissions, the 1990 emissions were multiplied by 3% and grown to 2002 using population change from 1990 to 2002. It is estimated that 34.68 tons of VOC were emitted to the air from dry cleaners in 2002 and that 20% or 6.94 tons of VOC emissions from dry cleaners occurred during the ozone season.

$$E = \frac{E90 \times 0.03 \times Pop02}{Pop90}$$

Where:

E=total tons of VOC emissions from dry cleaners in 1999E90=total tons of VOC emissions from dry cleaners in 19900.03=97% of dry cleaners surveyed in 1990 reported using only perchloroethylenePop02=the 2002 state population¹Pop90=the 1990 state population¹

$$E = \frac{1,098 \times 0.03 \times 3,460,503}{3,287,116}$$

E = 34.68 tons VOC per year

A search of the Southern New England Telephone directory yellow pages was made in 1990 to determine the number of dry cleaning stores in each county. In 1990 the VOC emissions from dry cleaners were apportioned to each county based upon the number of dry cleaning stores in each county relative to the total number of dry cleaners in the state. For the 2002 Inventory the 1990 data for dry cleaning stores was used to apportion the emissions to the county.

A computer search of the Point Source Inventory revealed that there were no non- perchloroethylene dry cleaning emissions accounted for in the Point Source Inventory.

It is estimated that dry cleaners operate 5.6 days per week, 51 weeks per year. The equation used to calculate daily VOC emissions for this category is as follows:

$$E = \frac{6.94 \, x \, DZ \, x \, 2000}{DAYS \, x \, WEEKS \, x \, DTEL} - PT$$

Where:

E	= daily county emissions expressed in pounds per day
DZ	= number of dry cleaning stores in a county
DTEL	= total number of dry cleaning stores in the state
РТ	= daily point source VOC emissions from dry cleaning operations expressed in pounds per day
6.94	= 6.94 tons VOC emitted from dry cleaning operations during the ozone season in 2002
DAYS	= 5.6 activity days per week, unit conversion factor
WEEKS	= 13 weeks in ozone season, unit conversion factor
2000	= 2000 lbs. per ton, unit conversion factor

A sample calculation for Hartford County is:

$$E = \frac{6.94 \times 6.03 \times 2000}{5.6 \times 13 \times 23.01} - 0.00$$

E = 49.94 lbs. VOC per day

County	1990 Dry Cleaners in County	Est. 1990 Dry Cleaners in County Not Using Perc	Annual Point VOC (tons/year)	Daily Point VOC (lbs/day)	Annual VOC (tons/year)	Daily VOC (lbs/day)
Fairfield	240	7.20	0.00	0.00	10.85	59.62
Hartford	201	6.03	0.00	0.00	9.09	49.94
Litchfield	36	1.08	0.00	0.00	1.63	8.94
Middlesex	30	0.90	0.00	0.00	1.36	7.45
New Haven	187	5.61	0.00	0.00	8.46	46.46
New London	37	1.11	0.00	0.00	1.67	9.19
Tolland	24	0.72	0.00	0.00	1.09	5.96
Windham	12	0.36	0.00	0.00	0.54	2.98
State Total:	767	23.01	0.00	0.00	34.68	190.55

Summary of Emissions from Dry Cleaning

4.3.2 Surface Cleaning

Table 4.3.2-1 contains the VOC annual and typical ozone season day emissions from surface cleaning operations and the numbers used in the calculation of these emissions.

The alternative method for estimating VOC emissions from surface cleaning in the EIIP Procedures Document was used for this category. The VOC emissions resulting from surface cleaning were determined by using emission factors contained in Table 6.5-2 of the EIIP Procedures Document. Surface cleaning, or degreasing includes the solvent cleaning or conditioning of metal surfaces and parts, fabricated plastics, electronic and electrical components and other nonporous substrates. This category includes three types of surface cleaning operations: cold cleaning; vapor cleaning; and in-line cleaning, which can be either a cold or vapor cleaning process.

Section 22a-174-20-(L) of the RCSA contains regulations pertaining to surface cleaning operations (degreasers). After reviewing these regulations it was determined that rule effectiveness and rule penetration do not apply. The VOC emissions resulting from surface cleaning activities were determined by applying an emissions-per-employee factor to the number of employees in standard industrial classification (SIC) codes 25, 33-39, 417, 423, 551, 552, 554-556, and 753.

The Connecticut Department of Labor (DOL) provided the number of employees in the above SIC codes, for each county for 2002.

A computer search of the Point Source Inventory was used to determine the total surface cleaning emissions accounted for in the Point Source Inventory. Any surface cleaning VOC emissions already accounted for in the Point Source Inventory were subtracted from the total surface cleaning emissions that were estimated

using the per employee emission factor.

According to the EPA procedure document, surface-cleaning activity is uniform throughout the year. Based on our Point Source Inventory, the average days of surface-cleaning activity per week is five.

The equations used to calculate daily VOC emissions for this category are as follows:

$$E = \frac{EF \ x \ EMP}{DAYS \ x \ 52} - PT$$

Where:

E EF	 daily county emissions expressed in pounds per day emission factor of 87 pounds per year per employee, from Table 6.5-2 of the EIIP Procedures document
EMP	= number of employees in each county 12
РТ	 daily county surface cleaning VOC emissions from the point source inventory expressed in pounds per day
DAYS 52	 5 activity days per week, unit conversion factor 52 weeks per year, unit conversion factor

A sample calculation for Hartford County is:

$$E = \frac{87 \ x \ 62,677}{5 \ x \ 52} - 0.52 = 20,972.17 \text{ lbs. VOC per day}$$

Summary of Emissions from Surface Cleaning

County	No. of Surface Cleaning Employees	Annual Point VOC (tons/year)	Daily Point VOC (lbs/day)	Annual VOC (tons/year)	Daily VOC (lbs/day)
Fairfield	47,013	5.57	63.56	2,039.50	15,667.71
Hartford	62,677	0.07	0.52	2,726.38	20,972.17
Litchfield	11,688	16.48	120.67	491.95	3,790.32
Middlesex	10,295	0.00	0.00	447.83	3,444.87
New Haven	40,637	4.40	35.19	1,763.31	13,562.58
New London	12,938	0.00	0.00	562.80	4,329.25
Tolland	3,445	0.00	0.00	149.86	1,152.75
Windham	3,988	1.19	6.00	172.29	1,328.45
State Total	192,681	27.71	225.94	8,353.91	64,248.09

4.3.3 Surface Coating

Surface coating is divided into two main subcategories, non-industrial and industrial. Non-industrial surface coatings include architectural coatings, automobile refinishing and traffic markings. Industrial surface coatings include coating operations for: furniture and fixtures; metal containers; new automobiles; machinery and equipment; appliances; other transportation equipment; sheet, strip, and coil; factory finished wood; electrical insulation; other product coatings; high-performance maintenance; marine coatings; and other special purpose coatings.

Tables 4.3.3-1 contains the VOC annual and daily emissions for a typical ozone season day due to architectural, automobile refinishing, and traffic markings (non-industrial surface coating). This table also includes the data used to estimate these emissions.

4.3.3.1 Architectural Coating

Architectural coatings are used primarily by homeowners and painting contractors. Architectural coatings include interior and exterior house and building paints as well as coatings for other surfaces, such as curbs and signs.

The alternative method for estimating VOC emissions from architectural coating in the EIIP Procedures Document was used for this category. According to the U.S. Bureau of Census report, MA28F –Paint and Allied Products, there were 589,527,000 gallons of water based and 127,703,000 gallons of solvent based architectural coatings used respectively in the U.S. in 2002.³⁰ The U.S. Census Bureau estimates that there were 280,540,330 people living in the U.S. in 2002. Using this information a per capita usage factor for water and solvent based architectural coatings was calculated to be 2.10 and 0.46 gallons per person, respectively. The EIIP Procedures Document lists the average VOC content for water based and solvent based coatings as 0.74 and 3.87 pounds per gallon, respectively. Combining the Usage factors with the average VOC content gives an emission factor of 3.33 pounds of VOC per capita per year. This per capita emission factor accounts for all VOC emissions from this source category. There are no emissions from this category included in the Point Source Inventory.

Section 22a-174-20-(g) of the RCSA pertains to architectural surface coating. After reviewing these regulations it was determined that rule effectiveness and rule penetration do not apply. Connecticut does not have information on the waste recycling or waste solvent disposal activity for architectural surface coating.

According to the EPA Procedures document, architectural surface coating occurs seven days per week and a seasonal adjustment factor of 1.3 should be used.

The equation used to calculate daily VOC emissions for this category is as follows:

$$E = \frac{EF \ x \ POP \ x \ SAF}{DAYS \ x \ 52}$$

Where:

E	= daily county emissions expressed in pounds per day
EF	= emission factor of 3.33 lbs. per capita/year
POP	= county population 1
SAF	= seasonal adjustment factor, 1.3 (see above)
DAYS	= 7 days per week, unit conversion factor
52	= 52 weeks per year, unit conversion factor

A sample calculation for Hartford County is:

$$E = \frac{3.33 \times 867,332 \times 1.3}{52 \times 7}$$

E = 10,315.06 lbs. VOC per day

4.3.3.2 Automobile Refinishing

Automobile refinishing is the repainting of worn automobiles, and other vehicles. Coating of new automobiles is contained in the industrial subcategory.

In 1996 as part of the EPA's adopt-a-factor program, the Connecticut DEP gathered information from a subset of auto body refinisher in Connecticut to calculate a per employee VOC emission factor. Facilities were first sent a pre-inspection questionnaire (PIQ). This was followed up by an inspection of the facility by a member of the DEP's field staff to verify and edit the data on the PIQ. The data were analyzed for correctness and completeness. A per employee emission factor of 0.216 tons of VOC per employee was calculated using information from 226 facilities in Connecticut.

The DEP emission factor is based on employees that perform auto refinishing. The Connecticut Department of Labor (DOL) estimates that there were 2,590 employees that repair auto bodies, repaint and refinish auto bodies, straighten vehicle frames and replace vehicle glass in 2002.

The DOL was unable to provide the number of auto refinishing employees by county, therefore, the VOC

emissions from auto refinishing were calculated for the entire state and then apportioned to each county by population. The VOC emissions resulting from all auto refinishing activities in Connecticut were determined by multiplying the total number of auto refinishing employees in the state by the Connecticut developed per employee emission factor ($559.44 = 2,590 \times 0.216$). During 2002 it was estimated that 559.44 tons of VOC were emitted from auto refinishing activities in Connecticut.

There were no auto refinishers included in the point source section of the inventory.

According to the EPA procedure document, automobile refinishers operate uniformly throughout the year, 5 days per week.

The equations used to calculate daily VOC emissions for this category are as follows:

$$E = \frac{EState \ x \ POP \ x \ 2,000}{PState \ x \ DAYS \ x \ 52}$$

Where:

Е	= daily county emissions expressed in pounds per day
EState	=tons of VOC emitted in Connecticut from auto refinishing activities during 2002
	(see above)
POP	= county population 1
2,000	= conversion factor 2000 pounds per ton
PState	= statewide population 1
DAYS	= 5 activity days per week, unit conversion factor
52	= 52 weeks per year, unit conversion factor

A sample calculation using the per employee emission factor for Fairfield County is:

$$E = \frac{559.44 \times 896,202 \times 2,000}{3,460,503 \times 5 \times 52}$$

E = 1,114.50 lbs. VOC per day

4.3.3.3 Traffic Markings

Traffic marking operations consist of marking of highway center lines, edge stripes, and directional markings and painting on other paved and non-paved surfaces, such as markings in parking lots. Materials used for traffic markings include solvent-based paints, water-based paints, thermoplastics, preformed tapes, field-reacted materials, and permanent markers.²⁸

Alternative method I for estimating VOC emissions from traffic markings in the EIIP Procedures Document was used for this category. To determine Connecticut's VOC per capita emission factor for traffic markings the following steps were taken as outlined in EIIP's alternative method one:

- 1. Determine the amount of U.S. traffic paint usage for 2002;
- 2. Apportion this to the state level based on Connecticut's spending on highway maintenance relative to the national total;
- 3. Determine Connecticut's 2002 population;
- 4. Use the EIIP procedures Document's average VOC content for water based traffic coatings which is 0.72 pounds per gallon.²⁸ According to the Connecticut Department of Transportation, only water based traffic coatings are used by them. It was their understanding that local towns and municipalities in Connecticut do not use solvent-based traffic coatings.

A per capita emission factor was calculated because a per capita emission factor was used to calculate emissions from traffic markings in previous inventories. Keeping the emission factor in the same units will make it easier if comparisons need to be made between inventories.

According to the U.S. Census Bureau, Report MA28F-Paint and Allied Products there were 39,397,000 gallons of traffic paint applied in the U.S. in 2002³⁰. The Federal Highway Administration disbursed \$292,262,000 to Connecticut for highway maintenance and services in 2001 out of a nationwide disbursement of \$30,636,638,000³¹. Data for year 2001 was the most recent available data. The United States Census Bureau estimates that there were 3,460,503 people living in Connecticut in 2002.

The following equation was used to determine Connecticut's VOC per capita emission factor:

$$EF = \frac{Paint \ x \ \$CT \ x \ EFgal}{\$Nation \ x \ CTPOP}$$

Where:

EF	= emission factor expressed in pounds VOC per capita/year
Paint	= gallons of traffic paint used in 2002
\$CT	= dollars spent on highway maintenance in CT in 2001
\$Nation	= dollars spent on highway maintenance in USA in 2001
EFgal	= EIIP national traffic markings emission factor of 0.72 pounds per gallon
СТРОР	= Connecticut population in 2002^{1} .

Connecticut's VOC per capita emission factor for traffic markings is calculated below:

 $EF = \frac{39,397,000 \ x \ 292,262,000 \ x \ 0.72}{30,636,638,000 \ x \ 3,460,503}$

EF = 0.078 lbs. VOC per person.

This per capita emission factor accounts for all VOC emissions from this source category. There are no emissions from this source category included in the point source inventory.

According to the CT DOT, they have four trucks that perform traffic marking and operate 5 days per week for 8 months per year (34 weeks). In addition, contractors are hired to assist in the spring in traffic markings.

The equation used to calculate daily VOC emissions for this category is as follows:

$$E = \frac{EFE \ x \ POP}{DAYS \ x \ 34}$$

Where:

E	= daily county emissions expressed in pounds per day
EFE	= emission factor of 0.078 pounds per capita/year
POP	= county population 1
DAYS	= 5 activity days per week, unit conversion factor
34	= 34 weeks per year, unit conversion factor

A sample calculation for Hartford County is:

$$E = \frac{0.078 \, x \, 867,332}{5 \, x \, 34}$$

$$E = 397.95$$
 lbs. VOC per day

Summary of the Emissions from Non-Industrial Surface Coating Operations

County	Population	Architect Annual VOC Emissions (tons/year)	Traffic Mark. Annual VOC Emissions (tons/year)	Auto Ref. Annual VOC Emissions (tons/year)	Architect Daily VOC Emissions (lbs/day)	Traffic Mark. Daily VOC Emissions (lbs/day)	Auto Ref. Daily VOC Emissions (lbs/day)
Fairfield	896,202	1,492.18	34.95	144.88	10,658.40	411.20	1,114.50
Hartford	867,332	1,444.11	33.83	140.22	10,315.06	397.95	1,078.59
Litchfield	186,515	310.55	7.27	30.15	2,218.20	85.58	231.95
Middlesex	159,679	265.87	6.23	25.81	1,899.04	73.26	198.57
New Haven	835,657	1,391.37	32.59	135.10	9,938.35	383.42	1,039.20
New London	262,689	437.38	10.24	42.47	3,124.12	120.53	326.67
Tolland	141,089	234.91	5.50	22.81	1,677.95	64.73	175.46
Windham	111,340	185.38	4.34	18.00	1,324.15	51.09	138.46
State Total:	3,460,503	5,761.74	134.96	559.44	41,155.27	1,587.76	4,303.40

4.3.3.4 Industrial Surface Coating

VOC emissions resulting from industrial surface coating activities in Connecticut were determined by using the Bureau of Air Management's Permit Tracking System and general permits issued for industrial surface coaters.

In December of 1996 the Connecticut Bureau of Air Management (BAM) instituted a general permit program for industrial surface coaters. This program required all industrial surface coaters to obtain a general permit if they had potential emissions of any particular pollutant equal to or greater than 5 tons per year. For the determination of potential emissions it was assumed that an individual spray gun could be operated 8,760 hours per year. This in effect required that all industrial surface coaters in Connecticut would either be required to get: a general permit; or if it was larger, a new source review permit; or if it was old enough a registration. It was determined that the best way to estimate VOC emissions from industrial surface coaters was to utilize the information already contained in our Permit Tracking System and the general permits on file.

The emissions from industrial surface coaters that have new source review permits or registrations are recorded in our permit tracking system. This system is used to generate the Point Source Section of the Periodic Inventory. The VOC emissions from industrial surface coaters accounted for in the Point Source Section of the Periodic Inventory are located in Table 4.3.3.4-1.

Not all sources located in the Permit Tracking System are included in the Point Source Section of the Periodic Inventory. Only those sources in the Permit Tracking System that are major sources, or actually emitted 10 tons or more per year (TPY) of VOC or NOx, or 25 TPY of CO into the atmosphere during calendar year 2002 in Connecticut were included in the Point Source Section. The sources that are in the Permit Tracking System but not included in the Point Source Section are represented in Table 4.3.3.4-2.

In the 1999 Periodic Emission Inventory, the emissions from industrial surface coaters covered by the general permit program were estimated for each county. The emissions were based upon actual emission estimates provided by a random sampling of general permit applications. The emissions from general permits were then grown to account for those sources that needed a general permit but did not obtain one.

In March of 2002, Section 22a-174-3 of the RCSA was revised. As a result of this change, the number of general permits issued and renewed greatly decreased. Many sources opted out of the general permit program, choosing to be regulated by rule instead of by permit. For this reason, the general permitting activity in 2002 could not be used to estimate emissions from sources that were too small to be included in the Bureau's Permit Tracking System.

Instead emissions from these small industrial surface coaters were estimated by growing the emissions from general permits, in 1999 to 2002, using employment statistics. The Connecticut Department of Labor estimates that in 1999 and 2002, respectively, there were 92,391 and 84,050 industrial surface coating employees in Connecticut. The emissions from general permits were adjusted to account for the differences in the employment activity from 1999 to 2002.

Table 4.3.3.4-3 contains the VOC emissions by county from industrial surface coaters required to obtain a general permit.

According to EPA Procedures document, these sources typically operate 5 days per week 52 weeks per year, with no seasonal variations. The equation used to calculate daily VOC emissions from general permits is as follows:

$$EGEN = \frac{GEN \ x \ EFGEN \ x \ 2000 \ x \ 2 \ x \ Emp \ 2002}{DAYS \ x \ 52 \ x \ Emp \ 1999}$$

Where:

EGEN	= daily county emissions from industrial surface coaters required to get a
	general permits expressed in pounds per day
GEN	= general permits issued by county in 1999
EFGEN	= general permits emission factor of 1.71 tons of VOC per year, see above
Emp2002	= Industrial surface coating employee activity in Connecticut in 2002
2000	= conversion factor 2000 pounds per ton
2	= It is assumed that 50% of the industrial surface coaters that needed to obtain a general permit actually got one
DAVS	= 5 activity days per week unit conversion factor
57	= 52 works per year, unit conversion factor
52	- 52 weeks per year, unit conversion factor
Emp1999	= Industrial surface coating employee activity in Connecticut in 1999

A sample calculation for Fairfield County is:

$$EGEN = \frac{32 \ x \ 1 \ .71 \ x \ 2000 \ x \ 2 \ x \ 84 \ .050}{5 \ x \ 52 \ x \ 92 \ .391}$$

EGEN= 765.84 lbs VOC per day.

The area source emissions from industrial surface coaters is made up of industrial surface coaters required to get a general permit and the industrial surface coaters contained in the Permit Tracking System but not included in the Point Source Section of the Periodic Inventory. The equation used to calculate daily area source VOC emissions from industrial surface coaters is as follows:

$$E = EPT + EGEN$$

Where:

E	= daily county area source emissions from industrial surface coaters, expressed
	in pounds per day
EPT	= daily county emissions from industrial surface coaters in the Permit
	Tracking System but not included in the Point Source Section
EGEN	= daily county emissions from industrial surface coaters required to get a
	general permits expressed in pounds per day

A sample calculation for Fairfield County is:

E = 3,654.19 + 765.84

E = 4,420.04 lbs. VOC per day

County	Point Annual VOC Emissions (Tons/Year)	Point Daily VOC Emissions (Lbs/Day)	
Eairfield	70.50	<u>(105/2437)</u>	
Fairfield	70.39	090.93	
Hartford	110.55	2,248.11	
Litchfield	44.03	887.99	
Middlesex	110.41	852.62	
New Haven	155.40	1,053.38	
New London	22.12	323.83	
Tolland	74.35	1,150.38	
Windham	8.25	65.72	
State Total:	595.69	7,278.96	

Table 4.3.3.4-1 Point Source Section -VOC Emissions From Industrial Surface Coaters

Table 4.3.3.4-2

VOC Emissions From Industrial Surface Coaters In The Permit Tracking System That Are Not In The Point Source Section Of The Periodic Inventory

County	Annual VOC Emissions (Tons/Year)	Daily VOC Emissions (Lbs/Day)
Fairfield	297.15	3,654.19
Hartford	759.35	4,794.72
Litchfield	105.57	559.84
Middlesex	63.24	744.26
New Haven	487.53	4,343.40
New London	75.08	776.16
Tolland	43.44	510.81
Windham	31.54	270.42
State Total:	1,862.91	15,653.80

Table 4.3.3.4-3

VOC Emissions From Industrial Surface Coaters Required To Get A General Permit For Industrial Surface Coaters

County	Number of General Permits Issued	Annual VOC Emissions (Tons/Year)	Daily VOC Emissions (Lbs/Day)
Fairfield	32	99.56	765.84
Hartford	53	164.90	1,268.43
Litchfield	12	37.33	287.19
Middlesex	4	12.44	95.73
New Haven	38	118.23	909.44
New London	16	49.78	382.92
Tolland	5	15.56	119.66
Windham	3	9.33	71.80
State Total:	163	507.13	3,901.02

Table 4.3.3.4-4
Area Source VOC Emissions From Industrial Surface Coaters

County	Annual VOC Emissions (Tons/Year)	Daily VOC Emissions (Lbs/Day)
Fairfield	396.71	4,420.04
Hartford	924.25	6,063.15
Litchfield	142.91	847.03
Middlesex	75.69	839.99
New Haven	605.76	5,252.84
New London	124.86	1,159.08
Tolland	58.99	630.48
Windham	40.87	342.22
State Total:	2,370.04	19,554.82

4.3.4 Graphic Arts

Table 4.3.4-1 contains the VOC annual and typical ozone season day emissions from graphic arts and the numbers used in the calculation of these emissions. The VOC emissions from graphic arts facilities are determined by using an emission factor of 1.3 pounds per capita per year from Table 4.3-9 of the EPA procedures document. This per capita emission factor accounts for all VOC emissions for graphic arts facilities having VOC emissions less than 100 tons per year.

A computer search of the Point Source Inventory was used to determine the amount of graphic arts VOC emissions that are from sources having graphic arts VOC emissions less than 100 tons per year. Any such VOC emissions already accounted for in the Point Source Inventory must be subtracted from the graphic arts VOC emissions that were estimated using the per capita emission factor. If the difference between the VOC emissions calculated using the per capita emission factor and VOC emissions from the small graphic arts point sources is less than zero for a county, then the area source VOC emissions for that county is set equal to zero. The emissions resulting from graphic arts activities contained in the Point Source Inventory are calculated using the mass balance method, therefore, it is not necessary to make adjustments to the Point Source Inventory emissions for rule penetration, rule effectiveness, and control efficiency (i.e., these emissions are considered to be controlled emissions). The annual and daily VOC emissions from graphic arts point sources that are less than 100 tons per year are listed in Table 4.3.4-1.

Section 22a-174-20-(v) of the RCSA pertains to graphic arts. After reviewing these regulations it was determined that rule effectiveness and rule penetration do not apply. These regulations do not apply to lithography, which is the predominant printing process for the graphic arts facilities in the area source inventory. Connecticut does not have information on the waste recycling or waste solvent disposal activity for graphic arts.

According to Table 5.8-1 of the EPA Procedures document, there was uniform activity throughout the year for graphic arts facilities, and the number of activity days per week was five. The equation used to calculate daily VOC emissions for this category is as follows:

$$E = \frac{EF \ x \ POP}{DAYS \ x \ 52} - PTD$$

Where:

E	= daily county emissions expressed in pounds per day
EF	= emission factor of 1.3 lbs. per capita/year 10
POP	= county population 1
PTD	= daily county graphic arts VOC emissions in the Point Source Inventory that are from
	less than 100 TPY sources (see Table 4.3.4-1)
DAYS	= 5 activity days per week, unit conversion factor
52	= 52 weeks per year, unit conversion factor

A sample calculation for Hartford County is:

$$E = \frac{1.3 \, x \, 867,332}{5 \, x \, 52} - 86.18$$

E = 4,250.48 lbs. VOC per day

County	Population	Annual PT Emissions (Tons/Year)	Daily PT Emissions (Lbs/Day)	Annual Emissions (Tons/Year)	Daily VOC Emissions (Lbs/Day)
Fairfield	896,202	0.00	0.00	582.53	4,481.01
Hartford	867,332	11.14	86.18	552.62	4,250.48
Litchfield	186,515	0.00	0.00	121.23	932.58
Middlesex	159,679	48.00	0.00	55.79	798.40
New Haven	835,657	253.85	1,463.99	289.33	2,714.30
New London	262,689	5.10	40.00	165.65	1,273.45
Tolland	141,089	0.00	0.00	91.71	705.45
Windham	111,340	0.00	0.00	72.37	556.70
State Total:	3,460,503	318.09	1,590.17	1,931.23	15,712.3

Table 4.3.4-1 Summary Of Emissions From Graphic Arts

4.3.5 Asphalt Paving

The EIIP Procedures Document preferred method and a synthesis of the alternate method one for estimating VOC emissions from cutback asphalt and emulsified asphalt paving, respectively, were used for this category.

There are three different types of asphalt concrete: hot-mix, cutback, and emulsified. The descriptions that follow, of the three types of asphalt, were taken from the EIIP's Procedures Document for estimating emissions from Asphalt Paving. Cutback and emulsified asphalt cements are often referred to as liquefied asphalt.

Hot-mix asphalt concrete is most commonly used for paving travel surfaces of 2 to 6 inches thick. It is prepared by mixing heated uncut asphalt cement and aggregate, where the asphalt is used as a binder. For hot-mix asphalt, the organic components have high molecular weights and low vapor pressures. Therefore, hot-mix asphalt use produces minimal emissions of VOC.²⁸ No methodology could be found to estimate VOC emissions from paving with hot-mix asphalt and since the VOC emissions from hot-mix paving are considered minimal, no VOC emission estimates were made for this type of paving.

Cutback asphalt is used in liquid cement form for chip seal operations, as a tack coat in priming roadbeds for hot-mix applications, and in concrete form for paving operations for pavements up to several inches thick. In preparing cutback asphalt, asphalt cement is blended or "cut back" with a diluent, typically from 25 to 45 percent by volume of petroleum distillates, depending on the desired viscosity. For cutback asphalt, emissions are due to the use of diluents that contain VOCs. Cutback asphalt has the highest diluent content of the three asphalt categories and as a result, emits the most VOCs per ton used.²⁸ It was assumed that negligible amounts of VOC are emitted when using cutback asphalt as a tack coat prior to paving with hotmix asphalt or as a tack coat for curbing or curb repair. Therefore, the amount of cutback used in these types of applications were not included when calculating VOC emissions from cutback asphalt paving, and are referred to as cutback used as a tack coat for the remainder of this section.

Emulsified asphalt is used in most of the same applications as cutback asphalts but is a lower emitting alternative to the cutback asphalts. Instead of blending asphalt cement with petroleum distillates, emulsified asphalts use a blend of asphalt cement, water and an emulsifying agent, referred to as soap. Such blends typically contain one-third water, two-thirds asphalt cement and minor amounts of an emulsifier. Emulsified asphalt may contain up to 12 percent by volume solvents.²⁸

A survey was conducted to determine the amount of cutback and emulsified asphalt applied by each town during 2002. Each town was mailed a survey requesting the following information: amount of cutback and emulsified asphalt used, respectively, from June through September of 2002, and annually; the type of cutback asphalt; and the amount used as a tack coat. The survey was completed and returned by 158 out of 169 towns in the state, see Table 4.3.5-1.

To fill in missing data for towns that did not return a survey, average amounts of summertime and annual emulsified asphalt usages were calculated. This was done by summing the amount of emulsified asphalt used by each town and dividing it by the number of towns that completed the survey. This average usage was then assumed to be the amount of emulsified asphalt applied by the towns for which there were no data.

The same procedure was performed for cutback asphalt as well. The average gallons of emulsified asphalt applied annually and in the summer are 11,070 and 10,897 gallons, respectively. The average gallons of cutback asphalt applied annually and in the summer are 2,898 and 2,821 gallons, respectively. Table 4.3.5-2 lists the towns that did not return a survey.

In addition to the individual towns, the CT DOT also uses emulsified asphalt. The amount of emulsified asphalt applied in each town by the CT DOT is listed in Table 4.3.5-3. The CT DOT uses only emulsified liquefied asphalt¹³.

Liquefied asphalt is applied 5 days per week throughout the ozone season, which is June through August. The summertime activity requested in the survey of the towns includes asphalt usage from June through September. To calculate a typical ozone day emissions from liquefied asphalt use it was assumed that the asphalt usage was uniform throughout this period, i.e. 75 percent of the asphalt applied from June through September was used in the ozone season. It is not known when the CT DOT applied their emulsified asphalt so it was assumed that 75 percent of the CT DOT applied emulsified asphalt was used in the ozone season as well.

Table 4.3.5-4 contains the annual and ozone season cutback and emulsified asphalt usage by town including survey results, estimated average usages, and CT DOT applied asphalt. The amount of cutback used as a tack coat prior to paving with hot-mix asphalt is not included in Table 4.3.5-4, because it is assumed to produce negligible VOC emissions.

Since the type of emulsified asphalt used was not obtained in the survey, the default emission factor of 9.2 pounds of VOC per barrel of emulsified asphalt was used from Table 17.5-4 of the EIIP Procedures Document.

The only type of cutback asphalt applied in Connecticut during the ozone season of 2002 was MC-3000. MC-3000 contains up to 15% solvent by volume²⁷, of which no more than 5% of that volume under laboratory conditions can evaporate in order to pass the Method D-402 test. The principal solvent used in MC-3000 is kerosene²⁷. A barrel of MC-3000 consists of 42 gallons of product, of which 15% by volume is kerosene, therefore each barrel contains 6.3 gallons of kerosene. Since kerosene contains 6.77 pounds of VOCs per gallon, there are 42.65 pounds of VOCs per barrel. According to the EIIP Procedures Document, 75% by weight of the solvent in medium cure cutback asphalt evaporates. MC-3000 is a medium cure cutback asphalt, therefore, assuming 75% of the kerosene by weight evaporates, then the amount of VOCs emitted per barrel is 31.99 pounds.

The amount of cutback and emulsified asphalt used was summed by county and the gallons were converted to barrels (42 gallons per barrel).

Table 4.3.5-5 contains the VOC annual and typical summer day emissions from asphalt paving and the barrels of cutback and emulsified asphalt used.

The equation used to calculate daily VOC emissions for this category is as follows:

$$E = \frac{EF \ x \ Q}{DAYS \ x \ 13}$$

Where:

E	= daily county emissions expressed in pounds per day
EF	= emission factor of 31.99 lbs./barrel cutback and 9.2 lbs./barrel of emulsified.
Q	= Barrels of emulsified or cutback asphalt applied in the summer
DAYS	= 5 activity days per week, unit conversion factor
13	= 13 weeks during the ozone season, unit conversion factor

A sample calculation for VOC emissions from cutback asphalt on a typical summer day in Hartford County is:

$$E = \frac{31.99 \times 297}{5 \times 13}$$

E = 146.18 lbs. VOC per day.

	June-Sept.	Annual	June-Sept. Tack ^a June-Sept. ^b		Annual ^b
	Emulsified	Emulsified	Cutback	Cutback	Cutback
	Asphalt	Asphalt	Asphalt	Asphalt	Asphalt
Town	(Gallons)	(Gallons)	(Gallons)	(Gallons)	(Gallons)
Andover	0	0	0	0	0
Ansonia	0	0	0	0	0
Ashford	44,797	44,797	0	0	0
Avon	0	0	0	0	0
Barkhamsted	250	420	0	0	0
Beacon Falls	11,330	11,330	0	0	0
Berlin	0	0	0	0	0
Bethany	0	0	0	0	0
Bethel	10	15	0	0	0
Bethlehem	29,152	29,152	0	0	0
Bloomfield					
Bolton	0	0	0	0	0
Bozrah	0	0	0	0	0
Branford	0	0	0	0	0
Bridgeport	0	0	0	0	0
Bridgewater	36,282	36,282	0	0	0
Bristol	9,000	9,000	0	0	0
Brookfield	0	0	0	0	0
Brooklyn	0	0	0	0	0
Burlington	14,399	14,399	0	0	0
Canaan	20,000	20,000	0	0	0
Canterbury	135,450	135,450	0	0	0
Canton	45,400	45,400	0	0	0
Chaplin	0	0	0	0	0
Cheshire	0	0	0	0	0
Chester	0	0	0	0	0
Clinton	0	0	0	0	0
Colchester	65,556	65,556	0	0	0
Colebrook	0	0	0	44,000	44,000
Columbia	0	0	0	0	0
Cornwall	0	0	0	27,800	27,800
Coventry	0	0	0	0	0
Cromwell	0	0	0	0	0
Danbury	0	0	0	0	0
Darien	825	825	0	0	0
Deep River	0	0	0	0	0
Derby	0	0	0	0	0
Durham	50,000	50,000	0	0	0
Eastford	0	0	0	0	0
East Granby	0	0	0	0	0

	June-Sept.	Annual	June-Sept. Tack	^a June-Sept. ^b	Annual ^b
	Emulsified	Emulsified	Cutback	Cutback	Cutback
	Asphalt	Asphalt	Asphalt	Asphalt	Asphalt
Town	(Gallons)	(Gallons)	(Gallons)	(Gallons)	(Gallons)
East Haddam	0	0	0	0	0
East Hampton	45,117	45,117	0	0	0
East Hartford	0	0	0	0	0
East Haven	0	495	0	0	0
East Lyme	0	0	0	0	0
Easton	20	30	0	49,887	49,887
East Windsor	0	0	0	0	0
Ellington	0	0	0	0	0
Enfield	0	0	510	0	0
Essex	0	0	0	0	0
Fairfield	53,090	53,090	0	0	0
Farmington	0	0	0	0	0
Franklin	0	0	0	0	0
Glastonbury	3,306	3,306	0	0	0
Goshen	30,266	30,266	0	0	0
Granby	0	0	0	0	0
Greenwich	3,776	4,800	0	0	0
Griswold	0	0	0	0	0
Groton	0	0	0	0	0
Guilford	53,000	53,000	0	0	0
Haddam	0	2,600	0	0	0
Hamden	0	0	0	0	0
Hampton					
Hartford					
Hartland	25	565	25	12,475	12,475
Harwinton	0	0	0	40,300	40,300
Hebron	45	45	0	0	0
Kent	38,834	38,834	0	0	0
Killingly	50,169	50,169	0	0	0
Killingworth	0	0	0	0	0
Lebanon					
Ledyard	115	115	0	0	0
Lisbon	0	0	0	0	0
Litchfield	0	0	85	55,142	55,142
Lyme	2,125	2,125	0	0	0
Madison	25,000	25,000	0	0	0
Manchester	0	0	0	0	0
Mansfield	64,000	64,000	0	0	0
Marlborough	1,350	1,350	0	0	0
Meriden	1,830	2,655	0	0	0

	June-Sept.	Annual	June-Sept. Tack ^a June-Sept. ^b		Annual ^b
	Emulsified	Emulsified	Cutback	Cutback	Cutback
	Asphalt	Asphalt	Asphalt	Asphalt	Asphalt
Town	(Gallons)	(Gallons)	(Gallons)	(Gallons)	(Gallons)
Middlebury	0	0	0	0	0
Middlefield	35,000	35,000	0	0	0
Middletown	10	15	0	0	0
Milford	1,000	1,000	0	0	0
Monroe	2,775	2,775	0	0	0
Montville	24,300	24,300	0	0	0
Morris	0	0	0	0	0
Naugatuck	0	0	0	0	0
New Britain	0	0	0	0	0
New Canaan	0	0	0	0	0
New Fairfield	0	0	0	0	0
New Hartford					
New Haven	0	0	4,170	0	620
Newington	465	865	0	0	0
New London	0	2,827	0	0	0
New Milford	104,757	104,757	0	0	0
Newtown	0	0	0	0	0
Norfolk	0	0	20,087	810	810
North Branford	0	0	0	0	0
North Canaan	0	0	0	0	0
North Haven	0	0	0	0	0
North Stonington	27,450	27,450	0	0	0
Norwalk	4,760	4,760	0	0	0
Norwich	0	0	0	0	0
Old Lyme	8,000	8,000	0	0	0
Old Saybrook	0	0	0	0	0
Orange	0	0	0	40,155	40,155
Oxford					
Plainfield	0	0	0	0	0
Plainville	5	5	0	0	0
Plymouth	0	0	0	0	0
Pomfret	15,084	15,084	0	0	0
Portland	52,550	52,550	0	0	0
Preston	30,000	30,000	0	0	0
Prospect	0	0	0	0	0
Putnam	0	0	0	0	0
Redding	23,250	23,250	0	0	0
Ridgefield	18,875	18,875	0	0	0
Rocky Hill	600	600	0	0	0
Roxbury	0	0	0	21,073	21,073

	June-Sept.	Annual	June-Sept. Tack	^a June-Sept. ^b	Annual ^b
	Emulsified	Emulsified	Cutback	Cutback	Cutback
	Asphalt	Asphalt	Asphalt	Asphalt	Asphalt
Town	(Gallons)	(Gallons)	(Gallons)	(Gallons)	(Gallons)
Salem	0	0	0	0	0
Salisbury	0	0	0	41,900	41,900
Scotland	0	0	0	0	0
Seymour	0	0	0	0	0
Sharon	31,220	31,220	0	0	0
Shelton	49,723	49,723	0	2,500	2,500
Sherman					
Simsbury	60,102	60,102	0	0	0
Somers	68,360	68,360	0	0	0
Southbury	0	0	0	0	0
Southington	17,192	17,220	0	0	0
South Windsor	18,300	18,300	0	0	0
Sprague	0	0	0	0	0
Stafford	0	0	0	0	0
Stamford	55,369	60,269	0	0	0
Sterling					
Stonington	0	0	0	0	0
Stratford	3,000	5,900	1,000	0	358
Suffield	0	0	0	0	0
Thomaston	0	0	0	0	0
Thompson	30,000	30,000	0	0	0
Tolland	0	0	0	0	0
Torrington	19,595	21,770	0	0	0
Trumbull	0	0	0	0	0
Union	0	0	0	13,586	13,586
Vernon	1,040	1,040	0	0	0
Voluntown	0	0	0	0	0
Wallingford	25,037	25,037	0	0	0
Warren	0	0	0	20,383	20,383
Washington	38,982	38,982	0	0	0
Waterbury					
Waterford	18,362	24,706	0	0	0
Watertown	0	0	0	0	0
Westbrook	0	0	0	0	0
West Hartford					
West Haven	0	0	0	0	0
Weston	0	0	0	0	0
Westport	0	1,900	0	0	0
Wethersfield	0	0	0	0	0
Willington	51,772	51,772	0	0	0

Table 4.3.5-1
Summary Of The 2002 Survey Of Emulsified And Cutback Asphalt Use

T	June-Sept. Emulsified Asphalt	Annual Emulsified Asphalt	June-Sept. Tack Cutback Asphalt	^a June-Sept. ^b Cutback Asphalt	Annual ^b Cutback Asphalt
	(Gallons)	(Gallons)	(Gallons)	(Gallons)	(Gallons)
Wilton	0	0	0	0	0
Winchester	0	0	0	0	0
Windham	2,302	2,302	0	0	0
Windsor					
Windsor Locks	0	0	0	0	0
Wolcott	0	0	0	0	0
Woodbridge	5,332	5,432	0	0	0
Woodbury	42,659	42,659	0	0	0
Woodstock	0	0	0	75,633	86,853
State Total:	1,721,747	1,748,995	25,877	445,644	457,842

a –amount of cutback used as a tack coat prior to paving with hot-mix asphalt or as a tack coat for curbing or curb repair.

b-does not include cutback used as a tack coat prior to paving with hot-mix asphalt or as a tack coat for curbing or curb repair.

Towns That Did Not Reply To The 2002 Survey Of Cutback and Emulsified Asphalt Use

Bloomfield

Hampton

Hartford

Lebanon

New Hartford

Oxford

Sherman

Sterling

Waterbury

West Hartford

Windsor

 Table 4.3.5-3

 Amount Of Emulsified Asphalt Applied In 2002 By The Connecticut Department Of Transportation

	Emulsified
	Asphalt
Town	(Gallons)
Barkhamsted	18,200
Bozrah	4,925
Canaan	9,250
Canterbury	10,600
Colchester	1,000
East Haddam	55,250
East Hampton	2,300
Hartland	18,199
Kent	42,455
Killingly	10,166
Lebanon	4,925
Lyme	1,000
North Stonington	11,700
Putnam	10,167
Thompson	10,167
Warren	35,528
Washington	18,500
State Total:	264,332

Town	June-Aug. Emulsified Asphalt (gals/summer)	Annual Emulsified Asphalt (gals/year)	June-Aug. Cutback Asphalt (gals/summer)	Annual Cutback Asphalt (gals/year)
Andover	0	0	0	0
Ansonia	0	0	0	0
Ashford	33,598	44,797	0	0
Avon	0	0	0	0
Barkhamsted	10,425	18,620	0	0
Beacon Falls	8,498	11,330	0	0
Berlin	0	0	0	0
Bethany	0	0	0	0
Bethel	8	15	0	0
Bethlehem	21,864	29,152	0	0
Bloomfield	8,173	11,070	0	0
Bolton	0	0	0	0
Bozrah	2,770	4,925	0	0
Branford	0	0	0	0
Bridgeport	0	0	0	0
Bridgewater	27,212	36,282	0	0
Bristol	6,750	9,000	0	0
Brookfield	0	0	0	0
Brooklyn	0	0	0	0
Burlington	10,799	14,399	0	0
Canaan	20,203	29,250	0	0
Canterbury	107,550	146,050	0	0
Canton	34,050	45,400	0	0
Chaplin	0	0	0	0
Cheshire	0	0	0	0
Chester	0	0	0	0
Clinton	0	0	0	0
Colchester	49,730	66,556	0	0
Colebrook	0	0	33,000	44,000
Columbia	0	0	0	0
Cornwall	0	0	20,850	27,800
Coventry	0	0	0	0
Cromwell	0	0	0	0
Danbury	0	0	0	0
Darien	619	825	0	0
Deep River	0	0	0	0
Derby	0	0	0	0
Durham	37,500	50,000	0	0

Town	June-Aug. Emulsified Asphalt (gals/summer)	Annual Emulsified Asphalt (gals/year)	June-Aug. Cutback Asphalt (gals/summer)	Annual Cutback Asphalt (gals/year)
East Granby	0	0	0	0
East Haddam	31,078	55,250	0	0
East Hampton	35,132	47,417	0	0
East Hartford	0	0	0	0
East Haven	0	495	0	0
East Lyme	0	0	0	0
East Windsor	0	0	0	0
Eastford	0	0	0	0
Easton	15	30	37,415	49,887
Ellington	0	0	0	0
Enfield	0	0	0	128
Essex	0	0	0	0
Fairfield	39,818	53,090	0	0
Farmington	0	0	0	0
Franklin	0	0	0	0
Glastonbury	2,480	3,306	0	0
Goshen	22,700	30,266	0	0
Granby	0	0	0	0
Greenwich	2,832	4,800	0	0
Griswold	0	0	0	0
Groton	0	0	0	0
Guilford	39,750	53,000	0	0
Haddam	0	2,600	0	0
Hamden	0	0	0	0
Hampton	8,173	11,070	0	0
Hartford	8,173	11,070	0	0
Hartland	10,256	18,764	9,356	12,481
Harwinton	0	0	30,225	40,300
Hebron	34	45	0	0
Kent	53,006	81,289	0	0
Killingly	43,345	60,335	0	0
Killingworth	0	0	0	0
Lebanon	10,943	15,995	0	0
Ledyard	86	115	0	0
Lisbon	0	0	0	0
Litchfield	0	0	41,357	55,163
Lyme	2,156	3,125	0	0
Madison	18,750	25,000	0	0

Town	June-Aug. Emulsified Asphalt (gals/summer)	Annual Emulsified Asphalt (gals/year)	June-Aug. Cutback Asphalt (gals/summer)	Annual Cutback Asphalt (gals/year)
Manchester	0	0	0	0
Mansfield	48 000	64 000	0	0
Marlborough	1 013	1 350	Ő	Ő
Meriden	1 373	2 655	Ő	0 0
Middlebury	0	_,0	0	0
Middlefield	26.250	35.000	Ő	0 0
Middletown	8	15	0	0
Milford	750	1.000	0	0
Monroe	2.081	2,775	0	0
Montville	18.225	24.300	0	0
Morris	0	0	0	0
Naugatuck	0	0	0	0
New Britain	0	0	0	0
New Canaan	0	0	0	0
New Fairfield	0	0	0	0
New Hartford	8,173	11,070	0	0
New Haven	0	0	0	1,663
New London	0	2,827	0	0
New Milford	78,568	104,757	0	0
Newington	349	865	0	0
Newtown	0	0	0	0
Norfolk	0	0	608	5,832
North Branford	0	0	0	0
North Canaan	0	0	0	0
North Haven	0	0	0	0
North Stonington	27,169	39,150	0	0
Norwalk	3,570	4,760	0	0
Norwich	0	0	0	0
Old Lyme	6,000	8,000	0	0
Old Saybrook	0	0	0	0
Orange	0	0	30,116	40,155
Oxford	8,173	11,070	0	0
Plainfield	0	0	0	0
Plainville	4	5	0	0
Plymouth	0	0	0	0
Pomfret	11,313	15,084	0	0
Portland	39,413	52,550	0	0
Preston	22,500	30,000	0	0

Town	June-Aug. Emulsified Asphalt (gals/summer)	Annual Emulsified Asphalt (gals/year)	June-Aug. Cutback Asphalt (gals/summer)	Annual Cutback Asphalt (gals/year)
Prospect	0	0	0	0
Putnam	5,719	10,167	0	0
Redding	17,438	23,250	0	0
Ridgefield	14,156	18,875	0	0
Rocky Hill	450	600	0	0
Roxbury	0	0	15,805	21,073
Salem	0	0	0	0
Salisbury	0	0	31,425	41,900
Scotland	0	0	0	0
Seymour	0	0	0	0
Sharon	23,415	31,220	0	0
Shelton	37,292	49,723	1,875	2,500
Sherman	8,173	11,070	0	0
Simsbury	45,077	60,102	0	0
Somers	51,270	68,360	0	0
South Windsor	13,725	18,300	0	0
Southbury	0	0	0	0
Southington	12,894	17,220	0	0
Sprague	0	0	0	0
Stafford	0	0	0	0
Stamford	41,527	60,269	0	0
Sterling	8,173	11,070	0	0
Stonington	0	0	0	0
Stratford	2,250	5,900	0	608
Suffield	0	0	0	0
Thomaston	0	0	0	0
Thompson	28,219	40,167	0	0
Tolland	0	0	0	0
Torrington	14,696	21,770	0	0
Trumbull	0	0	0	0
Union	0	0	10,190	13,586
Vernon	780	1,040	0	0
Voluntown	0	0	0	0
Wallingford	18,778	25,037	0	0
Warren	19,985	35,528	15,287	20,383
Washington	39,643	57,482	0	0
Waterbury	8,173	11,070	0	0
Waterford	13,772	24,706	0	0

Town	June-Aug. Emulsified Asphalt (gals/summer)	Annual Emulsified Asphalt (gals/year)	June-Aug. Cutback Asphalt (gals/summer)	Annual Cutback Asphalt (gals/year)				
Watertown	0	0	0	0				
West Hartford	8.173	11.070	0	0				
West Haven	0	0	0	0				
Westbrook	0	0	0	0				
Weston	0	0	0	0				
Westport	0	1,900	0	0				
Wethersfield	0	0	0	0				
Willington	38,829	51,772	0	0				
Wilton	0	0	0	0				
Winchester	0	0	0	0				
Windham	1,727	2,302	0	0				
Windsor	8,173	11,070	0	0				
Windsor Locks	0	0	0	0				
Wolcott	0	0	0	0				
Woodbridge	3,999	5,432	0	0				
Woodbury	31,994	42,659	0	0				
Woodstock	0	0	56,725	86,853				
State Totals:	1,529,897	2,135,097	334,233	464,311				
	June-Aug. Emulsified	Emulsified	June-Aug. Cutback	Cutback	Daily VOC	Daily VOC	Annual VOC	Annual VOC
--------------	-------------------------	---------------------------	-------------------------	---------------------------	-------------------------	----------------------	---------------------------	------------------------
County	Asphalt (Brls/Summ.)	Asphalt (Barrels/Year)	Asphalt (Brls/Summ.)	Asphalt (Barrels/Year)	Emulsified (Lbs/Day)	Cutback (Lbs/Day)	Emulsified (Tons/Year)	Cutback (Tons/Year)
Fairfield	4,042	5,650	935	1,262	572.14	460.40	25.99	20.18
Hartford	4,060	5,562	223	300	574.70	109.64	25.58	4.80
Litchfield	8,854	12,603	4,489	6,106	1,253.23	2,209.49	57.98	97.67
Middlesex	4,033	5,782	0	0	570.80	0.00	26.60	0.00
New Haven	2,577	3,478	717	996	364.77	352.90	16.00	15.93
New London	3,651	5,231	0	0	516.79	0.00	24.06	0.00
Tolland	3,307	4,410	243	323	468.13	119.40	20.29	5.17
Windham	5,900	8,120	1,351	2,068	835.13	664.70	37.35	33.08
State Total:	36,426	50,836	7,958	11,055	5,155.70	3,916.53	233.84	176.83

Table 4.3.5-5Summary Of The Emissions From Asphalt Paving

4.3.6 Asphalt Roofing Kettles and Tankers

The VOC emissions from this category were not calculated because there is no information on the amount of fuel used to heat roofing asphalt. In addition, there is no emission factor to estimate the amount of VOC emitted from the heated material.

4.3.7 Pesticide Applications

Pesticide applications can be broken out into two subcategories, Agricultural and Nonagricultural (which includes municipal, commercial, and consumer). Agricultural pesticides are used to control weeds, insects, and other threats to the quality and yield of food production. Municipal applications cover state and public institutions. Commercial applications include applications by a commercial exterminator/lawn care service. Consumer applications include homeowner-applied insecticides, fungicides, nematicides, and herbicides.²⁸

Agricultural pesticide applicators are only required to report the application of restricted pesticide, which constitutes a small fraction of the total amount of agricultural pesticide applied in Connecticut. The Pesticide Section of the DEP does not collect information on the types and amounts of unrestricted agricultural pesticides applied in Connecticut.

Connecticut DEP was planning to use a database of pesticide applications under development by the Crop Life Foundation to estimate VOC emissions from this source category. This database is not yet available, so Connecticut DEP has chosen to adopt EPA's VOC emission estimates from pesticide applications using the EPA's "Solvent Mass Balance Approach For Estimating VOC Emissions From Eleven Nonpoint Solvent Source Categories"³⁴

EPA provided annual VOC emission estimates from both agricultural pesticide use and from commercial and consumer pesticide use. EPA was not able to provide daily VOC emissions from pesticide use, only annual emissions were available. To estimate daily emissions, weekly activity for pesticide use were assumed to be six days per week. It was assumed that 50% of all agricultural, commercial and consumer pesticides are applied in the summer.

The daily and annual VOC emissions from agricultural, commercial and consumer pesticide use in Connecticut are presented in Table 4.3.7-1.

	Annual VOC	Daily VOC
	Emissions	Emissions
County	(Tons/Year)	(Lbs/Day)
Fairfield	264.23	3,145.57
Hartford	197.77	2,354.42
Litchfield	50.76	604.26
Middlesex	34.97	416.35
New Haven	202.13	2,406.27
New London	65.87	784.17
Tolland	38.08	453.29
Windham	34.26	407.80
State Total:	888.06	10,572.14

Table 4.3.7-1 Summary of Emissions From 2002 Pesticide Applications

4.3.8 Commercial/Consumer Solvent Use

Table 4.3.8-1 contains the annual VOC and the typical ozone season day emissions from commercial/consumer solvent use. Emissions from commercial/consumer solvent use were taken from EPA's "Solvent Mass Balance Approach For Estimating VOC Emissions From Eleven Nonpoint Solvent Source Categories"³⁴. In previous years the emissions from this category were estimated using a per-capita emission factor that included emissions from consumer and commercial pesticide use. The emission estimates for commercial and consumer pesticide use in EPA's "Solvent Mass Balance Approach", is accounted for in their pesticide use section. The emission from pesticide use is addressed in the pesticide section of this report.

The emission estimates from EPA's "Solvent Mass Balance Approach" are based upon more recent solvent use information than the previously used per-capita emission factor. Typical summer day emissions were calculated assuming activity occurred everyday and was uniform throughout the year.

		Annual Emissions	Daily VOC Emissions
County	Population	(Tons/Year)	(Lbs/Day)
Fairfield	896,202	3,759.86	20,601.98
Hartford	867,332	2,485.81	13,620.89
Litchfield	186,515	465.45	2,550.41
Middlesex	159,679	564.22	3,091.63
New Haven	835,657	4,362.35	23,903.29
New London	262,689	2,319.84	12,711.45
Tolland	141,089	383.36	2,100.59
Windham	111,340	284.06	1,556.50
State	3,460,503	14,624.95	80,136.73

 Table 4.3.8-1

 Summary of Emissions From Commercial/Consumer Solvent Use

4.4 WASTE MANAGEMENT PRACTICES

4.4.1 Publicly Owned Treatment Works (POTWs)

Table 4.4.1-1 summarizes the annual VOC and the typical daily summer VOC emissions from POTWs by county. The estimated industrial flow from POTWs is also included.

The VOC emissions from POTWs are determined by applying an emission factor to the amount of industrial wastewater discharged to each POTW. The DEP's Bureau of Water Management provided a list of the towns, locations, and the average daily industrial flow rate in millions of gallons/day for all the POTWs in Connecticut in 2002.

The equation used to calculate the annual VOC emissions for this category is as follows:

$$E = \frac{Q \ x \ 1,000,000 \ x \ EF \ x \ 365}{2000}$$

Where:

E	= annual emissions expressed in tons per year
EF	=emission factor of 0.00011 lbs. of VOC per gallon of industrial wastewater discharged to POTWs ¹⁰
Q	=daily average amount of industrial wastewater discharged to each POTW expressed in millions of gallons per day
1,000,000	= 1,000,000 gallons, unit correction factor
365	= 365 days, unit correction factor
2000	= 2000 lbs./ton, unit correction factor

The typical daily summer VOC emissions are calculated by multiplying the annual VOC emissions by a seasonal adjustment factor and a unit correction factor. According to Table 5.8-1 of the EPA Procedures document, a seasonal adjustment factor of 1.4 should be used to calculate the typical daily summer VOC emissions. POTWs operate seven days a week. The equation used to calculate the typical daily summer VOC emissions for this category is as follows:

$$E = SAF \ x \ Q \ x \ 1,000,000 \ x \ EF$$

Where:

E	= daily emissions expressed in pounds per day
SAF	=seasonal adjustment factor of 1.4 to calculate daily VOC emissions for the summer.
EF	=emission factor of 0.00011 lbs. of VOC per gallon of industrial wastewater discharged to POTWs ¹⁰
Q	=daily average amount of industrial wastewater discharged to each POTW expressed in millions of gallons per day (see above)
1,000,000	= 1,000,000 gallons, unit correction factor

A sample calculation of the daily emissions in pounds per day for the Bristol POTW in Hartford County is:

E = 1.4 *x* 0.3 *x* 1,000,000 *x* 0.00011

= 46.20 lbs. VOC per day

Town	Facility	Est. Indust. Flow (mil. gal/day)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
	Cou	nty Fairfield	d	
Bethel	Bethel	0.200	4.02	30.80
Bridgeport	Bridgeport	5.500	110.41	847.00
Brookfield	Brookfield	0.015	0.30	2.31
Danbury	Danbury	1.000	20.08	154.00
Darien	Darien	0.000	0.00	0.00
Fairfield	Fairfield	0.111	2.23	17.11
Greenwich	Greenwich	0.137	2.75	21.10
New Canaan	New Canaan	0.216	4.34	33.26
Newtown	Newtown	0.005	0.10	0.77
Norwalk	Norwalk	0.500	10.04	77.00
Redding	Redding	0.000	0.00	0.00
Ridgefield	Ridgefield	0.100	2.01	15.40
Shelton	Shelton	0.350	7.03	53.90
Stamford	Stamford	2.500	50.19	385.00
Stratford	Stratford	1.574	31.61	242.45
Trumbull	Trumbull	0.171	3.43	26.33
Westport	Westport	0.000	0.00	0.00
Wilton	Wilton	0.000	0.00	0.00
County Total:		12.379	248.52	1,906.44

Town	Facility	Est. Indust. Flow (mil. gal/day)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
	County Ha	rtford		
Avon	Avon	0.007	0.15	1.12
Berlin	Berlin	0.213	4.27	32.74
Bristol	Bristol	0.300	6.02	46.20
Burlington	Burlington	0.000	0.00	0.00
Canton	Canton	0.000	0.00	0.00
East Granby	East Granby	0.200	4.02	30.80
East Windsor	East Windsor	0.025	0.50	3.85
Enfield	Enfield	0.000	0.00	0.00
Farmington	Farmington	1.300	26.10	200.20
Glastonbury	Glastonbury	0.040	0.80	6.16
Granby	Granby	0.000	0.00	0.00
Hartford	Hartford MDC	10.000	200.75	1,540.
Manchester	Manchester	0.500	10.04	77.00
New Britain	New Britain	0.548	11.00	84.39
Plainville	Plainville	0.089	1.79	13.72
Simsbury	Simsbury	0.004	0.08	0.62
South Windsor	South Windsor	0.790	15.86	121.66
Southington	Southington	0.700	14.05	107.80
Suffield	Suffield	0.125	2.51	19.25
Windsor Locks	Windsor Locks	0.082	1.64	12.59
County Total:		14.923	299.57	2,298.10

Town	Facility	Est. Indust. Flow (mil. gal/day)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
	County	Litchfield		
Goshen	Goshen (WI	RL) 0.000	0.00	0.00
Harwinton	Harwinton	0.000	0.00	0.00
Kent	Kent	0.000	0.00	0.00
Litchfield	Litchfield	0.000	0.00	0.00
Morris	Morris	0.000	0.00	0.00
New Hartford	New Hartfor	rd 0.000	0.00	0.00
New Milford	New Milford	d 0.005	0.10	0.77
Norfolk	Norfolk	0.000	0.00	0.00
North Canaan	North Canaa	an 0.050	1.00	7.70
Plymouth	Plymouth	0.030	0.60	4.62
Salisbury	Salisbury	0.000	0.00	0.00
Sharon	Sharon	0.000	0.00	0.00
Thomaston	Thomaston	0.050	1.00	7.70
Torrington	Torrington	0.300	6.02	46.20
Watertown	Watertown	0.050	1.00	7.70
Winchester	Winchester	0.005	0.10	0.77
County Total:		0.490	9.84	75.46
	County	Middlesex		
Chester	Chester	0.000	0.00	0.00
Cromwell	Cromwell	0.150	3.01	23.10
Cromwell	Mattabasset	t Dist 0.000	0.00	0.00
Deep River	Deep River	0.000	0.00	0.00
East Haddam	East Haddar	n 0.000	0.00	0.00
East Hampton	East Hampto	on 0.010	0.20	1.54
Middlefield	Middlefield	0.000	0.00	0.00
Middletown	Middletown	0.005	0.10	0.77
Portland	Portland	0.055	1.10	8.47
County Total:		0.220	4.42	33.88

Town	Facility	Est. In (mil.	dust. Flow gal/day)	Annual VOO Emissions (tons/year)	C Daily VOC Emissions (lbs/day)
	County	New Haven			
Ansonia	Ansonia		0.005	0.10	0.77
Beacon Falls	Beacon l	Falls	0.000	0.00	0.00
Branford	Branford	l	0.200	4.02	30.80
Cheshire	Cheshire	;	0.100	2.01	15.40
Derby	Derby		0.011	0.22	1.69
East Haven	East Hav	ven	0.000	0.00	0.00
Hamden	Hamden		0.100	2.01	15.40
Meriden	Meriden		0.750	15.06	115.50
Middlebury	Middleb	ury	0.200	4.02	30.80
Milford	Milford		1.000	20.08	154.00
Naugatuck	Naugatu	ck	1.400	28.11	215.60
New Haven	New Hay	ven	5.000	100.38	770.00
North Branford	North Br	anford	0.028	0.56	4.31
North Haven	North Ha	aven	0.200	4.02	30.80
Orange	Orange		0.000	0.00	0.00
Oxford	Oxford		0.027	0.54	4.16
Seymour	Seymour	•	0.000	0.00	0.00
Southbury	Southbur	ry -	0.000	0.00	0.00
Wallingford	Wallingf	ford	0.280	5.62	43.12
Waterbury	Waterbu	ry	1.575	31.62	242.55
West Haven	West Ha	ven	0.350	7.03	53.90
Wolcott	Wolcott		0.085	1.71	13.09
Woodbridge	Woodbri	dge	0.000	0.00	0.00
County Total:			11.311	227.07	1,741.89

Town	Facility	Est. Indust. Flow (mil. gal/day)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
	County New	London		
Colchester	Colchester	0.005	0.09	0.72
East Lyme	East Lyme	0.000	0.00	0.00
Griswold	Jewett City	0.000	0.00	0.00
Groton	Groton (Town)	0.030	0.60	4.62
Groton	Groton (City)	0.000	0.00	0.00
Ledyard	Ledyard	0.000	0.00	0.00
Montville	Montville	1.450	29.11	223.30
New London	New London	0.043	0.87	6.67
Norwich	Norwich	0.119	2.39	18.34
Sprague	Sprague	0.000	0.00	0.00
Stonington	Stonington	0.100	2.01	15.40
Waterford	Waterford	0.293	5.88	45.12
County Total:		2.040	40.95	314.18
	County To	olland		
Coventry	Coventry	0.005	0.10	0.77
Ellington	Ellington	0.045	0.90	6.93
Hebron	Hebron	0.000	0.00	0.00
Mansfield	Mansfield	0.000	0.00	0.00
Somers	Somers	0.010	0.20	1.54
Stafford	Stafford	0.450	9.03	69.30
Tolland	Tolland	0.000	0.00	0.00
Vernon	Vernon	0.653	13.10	100.49
County Total:		1.163	23.34	179.03

Town	Facility	Est. Indust. Flow (mil. gal/day)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
	County V	Vindham		
Brooklyn	Brooklyn	0.000	0.00	0.00
Killingly	Killingly	1.000	20.08	154.00
Plainfield	Plainfield	0.005	0.10	0.77
Putnam	Putnam	0.062	1.24	9.55
Sterling	Sterling	0.000	0.00	0.00
Thompson	Thompson	0.000	0.00	0.00
Windham	Windham			
Woodstock	Woodstock	0.005	0.10	0.78
County Total:		1.072	21.52	165.10
State Total:		43.598	875.23	6,714.07

4.4.2 Package Plants (Wastewater Treatment)

According to the Connecticut DEP, Bureau of Water Management, the package plants in Connecticut receive only sanitary wastes. All of the industrial wastewater is treated by facilities other than package plants. For this reason, the VOC emissions from package plants in Connecticut are considered negligible.

4.4.3 Industrial Wastewater Treatment and Hazardous Waste Treatment Storage and Disposal Facilities (TSDF)

Table 4.4.3-1 presents industrial wastewater treatment facility VOC emissions by county.

This category includes open and closed private landfills, waste piles, land treatment facilities, surface impoundments, and open tanks. Surface impoundments and open tanks include private wastewater treatment facilities, drying beds, and aerated and non-aerated lagoons.

Neither EPA's Surface Impoundment Model (SIMs)¹⁵ computer application nor the CHEMDAT7 model could be used to estimate VOC emissions for Resource Conservation and Recovery Act (RCRA) and Superfund sites because the input parameters needed are either not available or not easily obtained.

There are 100 RCRA land disposal facilities (LDFs) in Connecticut. Land disposal facilities include surface impoundments, waste piles, and landfills. Of the 98 land disposal facilities, 12 to 14 were landfills and the rest were surface impoundments. As of 1998, there were 4 land disposal facilities (some landfills, surface impoundments and one waste pile) which have not completed RCRA closure. None are receiving waste. All land disposal facilities in Connecticut ceased operation by mid 1986, except for one facility, which stopped receiving waste, and was closed with waste in place in 1993. The primary waste handled by LDFs in Connecticut was metal hydroxide sludge produced by metal refinishing operations. Only 2 or 3 LDFs did not have metal hydroxide as their primary waste. Metal hydroxide sludge contains only trace amounts of volatile organic compounds.

To close any RCRA land disposal facility, if liquid waste is present, it is removed and brought to an industrial hazardous waste treatment facility. The contaminated soil is either excavated, stabilized, or left in place. If the waste or contaminated soil is left in place, then the LDF is capped with an impermeable membrane. If an LDF is closed but not all of the waste, contaminated soil, or groundwater is removed then that facility is categorized as a closed RCRA landfill.

A few LDFs were clean-closed. A facility is considered "clean-closed" when the contaminants have been removed from soils and groundwater to levels which pose no risk to human health and the environment, and the excavation has been back filled with documented clean fill.

There are no fuel blenders in Connecticut. All fuel blenders discontinued operation when federal permit requirements became more stringent. There are 3 or 4 RCRA hazardous waste treatment facilities in Connecticut. Emissions from land treatment facilities were also assumed negligible because none exist in

Connecticut.

There are roughly 452 Superfund sites in Connecticut. Of these sites, approximately 322 contain either solvent, pesticide or paint waste. These 322 sites are thought to be the most likely to contain VOCs. The most commonly found materials at these Superfund sites are chlorinated degreasing agents and cleaning agents such as trichloroethylene, 111 trichloroethane, and tetrachloroethylene.

There were 200 ground water remediation sites active in 2002. Most projects last for an extended period of time. Once a remediation begins, it is an automated process that usually occurs 7 days a week, 24 hours a day, 52 weeks a year. The Bureau of Water Management estimates that: the average site processes 20,000 gallons per day; 75 percent of the sites use carbon bed absorbers; and the average influent VOC concentration is 5 parts per million (PPM) by weight. It is estimated that the average VOC control efficiency for carbon bed absorbers is 90 %. The typical contaminant removed is trichloroethylene, and petroleum constituents (benzene, toluene, etc). To be consistent with 1990, 1993, 1996 and 1999 inventories, the VOC emissions from ground water remediation was not estimated for 2002.

There were no groundwater remediation projects in the point source section of the inventory.

In order to estimate emissions from industrial wastewater treatment facilities the Bureau of Water Management had provided in the past for the desired year: the facility name, the town in which it is located, the industry discharging to the facility, and the effluent volumetric flow rate. This information was provided for all the industrial wastewater treatment facilities in Connecticut. According to the Connecticut Bureau of Water Management, 1996 data are the most recent data that they can provide, and the 1996 and 2002 activity should be assumed to be the same. So the 2002 VOC emissions from this category were assumed to be the same as 1996 estimates.

County	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs./day)
Fairfield	66.16	508.92
Hartford	41.50	319.23
Litchfield	7.34	56.43
Middlesex	8.02	61.69
New Haven	74.51	573.13
New London	12.02	92.49
Tolland	4.55	35.02
Windham	3.11	23.95
State	217.21	1,670.85

Table 4.4.3-1 Summary Of The Emissions From Industrial Wastewater Treatment Plants

4.4.4 Municipal Solid Waste Landfills

The AP-42 Section 2.4 guidance for estimating VOC emissions from municipal solid waste (MSW) landfills, released November, 1998 was used to estimate the emissions for this category.

Methane (CH_4) and carbon dioxide (CO_2) are the primary constituents of landfill gas and are produced by anaerobic decompositions of refuse in solid waste landfills. Landfill gas also contains a very small amount of non-methane organic compounds (NMOC). This NMOC fraction contains photochemically reactive and non-reactive VOC.

The Connecticut DEP created an inventory of VOC emissions from MSW landfills as an initial step in the implementation of the emission guidelines and new source performance standards for MSW landfills²⁶ (MSW landfills compliance study). This inventory contains the following information for each landfill in Connecticut: an estimate of the waste in place; the year the landfill opened; the year it was closed if it is no longer accepting waste; whether the landfill accepted industrial hazardous waste; and the amount of NMOC emitted in 1999. The NMOC emission estimates in the MSW landfills compliance study used the regulatory default value for total NMOC of 4,000 ppmv, expressed as hexane. This regulatory default value was developed for regulatory compliance purposes and should not be used to estimate actual emissions.

The intent of the 2002 Periodic Inventory is to estimate actual emissions. AP-42 lists default NMOC concentrations for the purpose of estimating actual emissions depending on the type of waste the landfill accepted. According to AP-42, if no site specific data are available and the landfill is known to have codisposed of MSW and non-resident waste, a default (NMOC) value of 2,420 ppmv as hexane, should be used to estimate actual emissions. If the landfill is known to contain only MSW or have very little organic commercial/industrial wastes, then the total NMOC value of 595 ppmv as hexane should be used. In addition, for co-disposal landfills, AP-42 estimates that 85% of the NMOC is made up of photochemically reactive VOC. For non-codisposal landfills only 39% of the NMOC contains photochemically reactive VOC. In the MSW landfills compliance study, facilities which reported receiving industrial hazardous waste were considered co-disposal landfills. All other facilities were considered non-codisposal. The same designation will be used for this inventory. If a facility reported receiving industrial hazardous waste then a default VOC value of 2,060 ppmv as hexane was used. For all other landfills a VOC value of 235 ppmv as hexane was used.

The amount of waste in place at each landfill was obtained from the MSW landfills compliance study²⁶. There were five landfills that reported the amount of ash in place (Hartford, New Haven, Groton, Bristol, and Shelton). In the MSW landfills compliance study²⁶ the amount of waste in place at these five landfills included the ash. Since ash is a nondegradable refuse, the amount of ash was subtracted from the amount of waste in place for these five landfills. The Montville SCRRA Ash landfill contains only ash, therefore, the amount of waste in place was set to zero.

There are no landfills in Connecticut accepting municipal solid waste (MSW). There are 5 landfills that are actively accepting bulky waste and/or special waste. Bulky waste includes land clearing, construction and demolition waste. Special waste contains such things as contaminated soils. According to the Bureau of Waste Management the amount of special waste disposed of at these landfills is relatively small. It was

assumed for the purpose of running the LAEM model that these 5 landfills were closed when they stopped accepting MSW. The East Hartford, Westbrook and Hartford landfills stopped accepting MSW in 1987. The Manchester and Windsor-Bloomfield landfills stopped accepting MSW in 1999.

To determine the average annual refuse acceptance rate (R) the waste in place (no ash) was divided by the number of years the landfill accepted waste.

It was assumed that landfills emit NMOC 365 days uniformly throughout the year.

Equations 1, 3, and 4 in section 2.4 of AP-42 were combined resulting in the following equation, which was used to estimate the daily NMOC emissions from landfills in Connecticut:

$$E_{unctrl} = 7.062 \ x \ 10^{-9} \ x \ L \ x \ R \ x \ VOC \ x \ (\ e^{(-kc)} - e^{(-kt)} \) \ x \ 2,000 \ / \ 365$$

Where:

Eunctrl	= uncontrolled mass emissions of VOC as hexane, lbs/day
7.062 x10	$^{.9}$ = conversion factor, assuming 55% of landfill gas is CH ₄ and 45% is CO ₂ , N ₂ , and
	other constituents, and expresses VOC as hexane
L	= methane generation potential, $m^3 CH_4/Mg$ refuse (EPA default = 100 m^3/Mg)
R	= average annual refuse acceptance rate during active life Mg/yr
VOC	= concentration of VOC in landfill gas, parts per million by volume (ppmv)
e	= base log, unitless
k	= methane generation rate constant, yr^{-1} (EPA default = 0.04/yr)
c	= time since landfill closure, yrs ($c = 0$ for active landfills)
t	= time since the initial refuse placement, yrs
2,000	= conversion factor 2,000 pounds per ton
365	= 365 days per year of operation

A sample calculation of the daily pounds of uncontrolled VOC emissions from the Hartford Landfill is:

$$E_{unctrl} = 7.062 \ x \ 10^{-9} \ x \ 100 \ x \ 106,566 \ x \ 2,060 \ x \ (\ e^{(-0.04 \ x \ 15)} - e^{(-0.04 \ x \ 47)} \) \ x \ 2,000 \ / \ 365$$

 $E_{unctrl} = 336.63$ pounds VOC per day

The emissions generated by the AP-42 equation listed above do not take into account the VOC emissions removed by control equipment. The following Connecticut landfills had VOC control equipment in operation in 2002: Hartford, Ellington, Shelton, Yaworski, Danbury and New Milford, see Table 4.4.4-1. The VOC's removed by controls were subtracted from the uncontrolled VOC emission estimates for these landfills.

The VOC after control emissions for the Danbury, New Milford and Shelton landfills are already accounted

for in the point source section of this inventory, therefore, they will not be included in the area source inventory. The daily amount of VOC's removed by controls for these two landfills were estimated using the following equation:

$$Erem = \frac{VOCcntrl}{1 - EFF}$$

Where:

Erem= daily VOC emissions removed by control equipment, expressed in pounds per dayEFF=VOC control efficiencyVOCcntrl=daily VOC emissions exiting control equipment, expressed in pounds per day

A sample calculation for the pounds of VOC removed by the control equipment at the Shelton Landfill is:

$$Erem = \frac{16.0}{1 - 0.98}$$

Erem = 800.00 lbs VOC removed per day

The after control emissions for the Hartford, Ellington and Yaworski landfills were not included in the point source section of this inventory, because their premise emissions were too small. However, detailed information was still available to estimate the amount of VOC emissions removed by control equipment at these landfills. Since, the after control emissions were not included in the point source section of this inventory, the total emissions removed by controls were estimated using the following equation:

$$Erem = \frac{VOCcntrl}{1 - EFF} - VOCcntrl$$

A sample calculation for the pounds of VOC removed by the control equipment at the Hartford Landfill is:

$$Erem = \frac{0.70}{1 - 0.98} - 0.70$$

Erem = 34.30 lbs VOC removed per day

Table 4.4.4-2 contains the VOC annual and typical ozone season day emissions from municipal solid waste landfills. The emissions from municipal solid waste landfills occur seven days a week uniformly throughout the year. The equation used to calculate daily VOC emissions for this category is as follows:

$$E = E_{unctrl} - Erem$$

Where:

E = daily landfill VOC emissions expressed in pounds per day
 E_{unctrl} = daily uncontrolled VOC emissions expressed in pounds per day
 Erem = daily VOC emissions removed by control equipment, expressed in pounds per day

A sample calculation for the Hartford landfill is:

E = 336.63 - 34.30

E = 302.33 lbs. of VOC per day

		Annual VOC	Daily VOC	Annual Emissions	Daily Emissions	Controlled Emis.
	Control	After Cntrls	After Cntrls	Removed By Cntrls	Removed By Cntrls	In Pt Source
Landfill	Efficiency	(Tons/Year)	(Lbs/Day)	(Tons/Year)	(Lbs/Day)	Section of SIP
Danbury Landfill	98.0%	0.100	0.000	5.000	0.000	Yes
Ellington CRRA Landfill	99.0%	0.400	2.300	39.600	227.700	No
Hartford CRRA Landfill	98.0%	0.100	0.700	4.900	34.300	No
New Milford Landfill	98.0%	2.200	8.520	110.000	426.000	Yes
Shelton CRRA Landfill	98.0%	3.000	16.000	150.000	800.000	Yes
Yaworski Regional Landf	ill 98.0%	0.100	0.000	4.900	0.000	No
		5.900	27.520	314.400	1,488.000	

Table 4.4.4-1Summary Of Landfills That Used Control Equipment In 2002

Table 4.4.4-2 Summary of VOC Emissions From Municipal Solid Waste Landfills

Landfill	Co-Disposal	Years Of Operation	Avg. Ann. Refuse Accept. Rate (MG/Y)	Annual Removed By Controls	Daily Emissions Removed By Controls	Annual Emissions (Tons/Year)	Daily Emissions (Lbs/Day)
	County F	airfield					
Danbury Landfill	Yes	1900 - 12/31/96	30,844	5.000	0.000	29.544	189.280
Fairfield Landfill	No	1950s - 1988	23,904	0.000	0.000	1.771	9.702
New Canaan Landfill	No	1930s - 1994	2,722	0.000	0.000	0.303	1.658
New Fairfield Dispos	al No	early 1940s - 12/30)/91 961	0.000	0.000	0.089	0.489
Newtown Landfill	No	1971 - 10/93	12,371	0.000	0.000	0.838	4.594
North Canaan Landfil	l No	1906(?) - 1994(?)	619	0.000	0.000	0.072	0.396
Redding Landfill	No	1962 - 6/94	6,115	0.000	0.000	0.532	2.916
Ridgefield Landfill	No	1929(?) - 1980	747	0.000	0.000	0.045	0.245
Seaside Park Landfill	Yes	1938 - 1993(?)	11,292	0.000	0.000	10.193	55.850
Shelton CRRA Landf	ill Yes	early 1960s - 1987	45,359	150.000	800.000	0.000	0.000
Stratford Landfill	No	1946 - 1983(?)	13,571	0.000	0.000	0.814	4.458
	County To	otal	148,504	155.000	800.000	44.200	269.589

Table 4.4.4-2					
Summary of VOC Emissions From Municipal Solid Waste Landfills					

Landfill	Co-Disposal	Years Of Operation	Avg. Ann. Refuse Accept. Rate (MG/Y)	Annual Removed By Controls	Daily Emissions Removed By Controls	Annual Emissions (Tons/Year)	Daily Emissions (Lbs/Day)
	County H	lartford					
Avon Landfill	No	1972 - 1994	24,989	0.000	0.000	1.763	9.658
Bristol Landfill	Yes	1950 - 2/28/97	11,562	0.000	0.000	11.671	63.952
Burlington Landfill	No	1966 - 1991(?)	13,166	0.000	0.000	0.890	4.875
East Granby Landfill	No	8/69 - 6/94	980	0.000	0.000	0.075	0.409
East Hartford Landfil	l No	1983 - 1987	217,725	0.000	0.000	2.932	16.068
Enfield Landfill	No	1967 - 1/94	47,232	0.000	0.000	3.760	20.600
Farmington Landfill	No	1933(?) - 1988	12,371	0.000	0.000	1.043	5.715
Granby Landfill	No	1953 - 1995(?)	2,521	0.000	0.000	0.257	1.410
Hartford CRRA Land	fill Yes	1955 - 1987	106,566	4.900	34.300	56.535	302.331
Hartland Landfill	No	1977- 1992	2,220	0.000	0.000	0.111	0.611
Manchester Sanitary I	LandfillNo	1952 - 1999	98,483	0.000	0.000	12.286	67.319
Marlborough Municip	oal No	1960 - 1993	10,545	0.000	0.000	0.895	4.904
NORCAP Regional L	andfillNo	3/75 - 7/96	112,318	0.000	0.000	8.334	45.665
Plainville Landfill	No	1950 - 1994	9,897	0.000	0.000	0.988	5.411
Simsbury Landfill	No	1920 - 1995	4,265	0.000	0.000	0.508	2.786
Suffield Municipal La	andfill No	1977 - 4/8/94	22,853	0.000	0.000	1.359	7.446
Windsor-Bloomfield	Sanitary Yes	7/5/72 - 1999	109,257	0.000	0.000	93.111	510.200
	County To	otal	806,949	4.900	34.300	196.518	1,069.360

Table 4.4.4-2 Summary of VOC Emissions From Municipal Solid Waste Landfills

Landfill	Co-Disposal	Years Of Operation	Avg. Ann. Refuse Accept. Rate (MG/Y)	Annual Removed By Controls	Daily Emissions Removed By Controls	Annual Emissions (Tons/Year)	Daily Emissions (Lbs/Day)
	County L	litchfield					
Barkhamsted-New H	artford Yes	4/74 - 10/93	26,316	0.000	0.000	14.220	77.920
Bethlehem Landfill	No	1941 - 1988	1,966	0.000	0.000	0.158	0.866
Canaan Landfill	No	1952(?) - 1994(?)	1,554	0.000	0.000	0.152	0.835
Cornwall Municipal	LandfillNo	1952(?) - 1995	3,235	0.000	0.000	0.333	1.825
Kent Landfill	No	1946 - 10/93	1,218	0.000	0.000	0.120	0.655
Litchfield Landfill	No	8/77 - 3/94 (?)	28,093	0.000	0.000	1.671	9.154
Morris Landfill	No	1967 - 1994(?)	3,547	0.000	0.000	0.282	1.547
New Milford Landfil	l Yes	1965 - 9/29/95	176,687	110.000	426.000	25.775	317.972
Norfolk Landfill	No	1938 - 10/93	6,787	0.000	0.000	0.699	3.829
Plymouth Landfill	No	1950(?) - 1974	19,993	0.000	0.000	0.668	3.661
Roxbury Landfill	No	1960(?) - 1/1/91	1,522	0.000	0.000	0.116	0.633
Torrington Landfill	Yes	1930 - 11/26/94	13,024	0.000	0.000	12.697	69.572
Washington Landfill	No	early 1940s (?) - 10	0/94 942	0.000	0.000	0.100	0.551
	County To	otal	284,884	110.000	426.000	56.991	489.021
	County N	Aiddlesex					
East Haddam Landfil	ll No	late 1930s(?) - 197	8(?) 7,547	0.000	0.000	0.409	2.243
Essex Landfill & Rec	cycling No	1950(?) - 1996(?)	2,172	0.000	0.000	0.238	1.307
Middlefield-Durham	LandfillNo	1971 - 1989	13,955	0.000	0.000	0.707	3.873
Middletown Landfill	No	1953 - 1997(?)	18,291	0.000	0.000	2.058	11.277
Portland Municipal L	andfillNo	5/67 - 1994(?)	9,677	0.000	0.000	0.770	4.220
Westbrook Landfill	No	1955 - 1987	7,175	0.000	0.000	0.472	2.586
	County To	otal	58,816			4.655	25.505

Table 4.4.4-2						
Summary of VOC Emissions From Municipal Solid Waste Landfills						

			Avg. Ann.				
			Refuse	Annual	Daily Emissions	Annual	Daily
			Accept. Rate	Removed By	Removed By	Emissions	Emissions
Landfill Co	o-Disposal	Years Of Operation	(MG/Y)	Controls	Controls	(Tons/Year)	(Lbs/Day)
	County N	ew Haven					
Branford Landfill	No	1960 - 1995	34,743	0.000	0.000	3.284	17.992
Cheshire Landfill	No	1970 - 1989	36,043	0.000	0.000	1.893	10.375
Derby Landfill	No	1962 - 9/93	30,335	0.000	0.000	2.496	13.678
Front Street (Helm Stre	et) No	1967(?) - 1989(?)	55,411	0.000	0.000	3.200	17.534
Hamden Landfill	No	early 1970s - 11/88	8(?) 11,042	0.000	0.000	0.537	2.944
Madison Bulky Waste S	Site No	12/68 - 1997	7,410	0.000	0.000	0.691	3.788
Meriden Landfill	No	1937(?) - 1/89	29,937	0.000	0.000	2.585	14.165
New Haven Landfill	No	early 1940s - 1998	41,579	0.000	0.000	3.364	18.434
North Branford Landfil	l No	1958 - 1987(?)	12,503	0.000	0.000	0.782	4.284
North End Disposal Are	ea No	1955 - 10/31/96	131,272	0.000	0.000	13.815	75.698
North Haven Landfill	No	1964 - 1993	33,222	0.000	0.000	2.641	14.472
Oxford Landfill	No	1976 - 7/30/88	14,470	0.000	0.000	0.523	2.866
Prospect Landfill	No	early 1960s(?) - 2/2	28/887,882	0.000	0.000	0.494	2.704
Seymour Landfill	No	1968 - 1997(?)	19,376	0.000	0.000	1.808	9.905
Southbury Landfill	No	1931 - 3/87	5,018	0.000	0.000	0.408	2.238
Spring Street Landfill	No	1908 - 1989(?)	23,551	0.000	0.000	2.233	12.236
Wallingford CRRA Lar	ndfillNo	early 1960s (?) - 19	95 18,046	0.000	0.000	1.706	9.346
Woodbridge Landfill	No	1968 - 4/9/94	3,813	0.000	0.000	0.297	1.628
	County To	otal	515,654			42.757	234.287

Table 4.4.4-2						
Summary of VOC Emissions From Municipal Solid Waste Landfills						

			Avg. Ann.				
			Refuse	Annual	Daily Emissions	Annual	Daily
			Accept. Rate	Removed By	Removed By	Emissions	Emissions
Landfill	Co-Disposal	Years Of Operation	(MG/Y)	Controls	Controls	(Tons/Year)	(Lbs/Day)
	County N	ew London					
Adelman Landfill	No	10/77 - 1994	13,376	0.000	0.000	0.795	4.359
Bronson Landfill	No	1963 - 8/92	6,812	0.000	0.000	0.520	2.851
Colchester Landfill	No	1960 - 10/94	3,682	0.000	0.000	0.330	1.808
East Lyme Landfill	No	1948 - 1992(?)	4,699	0.000	0.000	0.433	2.372
Groton MSW Landfil	l No	1956 - 10/9/94	41,778	0.000	0.000	3.934	21.557
Lebanon Landfill	No	1971(?) - 10/2/93	45,152	0.000	0.000	3.060	16.767
Ledyard Landfill	No	1950s(?) - 1995	5,237	0.000	0.000	0.548	3.005
Lyme Landfill	No	1950s(?) - 1994(?)	30,670	0.000	0.000	3.061	16.770
Montville Landfill	No	1966 - 10/94(?)	4,182	0.000	0.000	0.340	1.861
Montville SCRRRA A	Ash No	1993 - present	0	0.000	0.000	0.000	0.000
North Stonington Lan	dfill No	1955 - 1991	6,057	0.000	0.000	0.494	2.707
Norwich Landfill	No	1974 - 1997	19,764	0.000	0.000	1.615	8.852
Norwich State Hospit	al As No	early 1940s - 1985(?) 222	0.000	0.000	0.016	0.085
Preston Landfill	No	1957 - 1994(?)	5,761	0.000	0.000	0.536	2.939
Salem Landfill	No	1966 - 1995(?)	10,619	0.000	0.000	0.914	5.011
Sprague Landfill	No	1955 - 1993(?)	7,469	0.000	0.000	0.676	3.703
Stonington Landfill	No	10/68 - 1994 (?)	29,348	0.000	0.000	2.287	12.531
Waterford Refuse Dis	sposal No	1968 - 1996(?)	11,208	0.000	0.000	0.986	5.402
	County To	otal	246,036			20.546	112.579

Table 4.4.4-2	
Summary of VOC Emissions From Municipal Solid Waste Landfills	

Landfill	Co-Disposal	Years Of Operation	Avg. Ann. Refuse Accept. Rate (MG/Y)	Annual Removed By Controls	Daily Emissions Removed By Controls	Annual Emissions (Tons/Year)	Daily Emissions (Lbs/Day)
	County '	Tolland					
Andover Landfill	No	1950 - 1994	5,573	0.000	0.000	0.556	3.047
Columbia Landfill	No	1949 - 1994	435	0.000	0.000	0.044	0.240
Coventry Landfill	No	1942 - 10/9/93	4,848	0.000	0.000	0.488	2.676
Ellington CRRA Land	dfill No	1976 - 6/29/93	69,902	39.600	227.700	0.000	0.000
Hebron Landfill	No	1963 - 1995	19,579	0.000	0.000	1.773	9.716
Mansfield Bulky Was	ste No	1966 - 1994(?)	12,348	0.000	0.000	1.003	5.494
Somers Landfill	No	1954 - 1994(?)	9,906	0.000	0.000	0.953	5.221
Stafford Landfill	No	early 1960s - 6/94	3,958	0.000	0.000	0.355	1.943
UConn Landfill	No	1966 - 1996(?)	7,784	0.000	0.000	0.710	3.891
Willington Landfill	No	1978 - 10/93(?)	10,705	0.000	0.000	0.559	3.065
	County T	otal	145,037	39.600	227.700	6.441	35.294
	County	Windham					
Brooklyn Municipal I	LandfillNo	1967 - 1994	5,846	0.000	0.000	0.465	2.550
Donahue Landfill	No	1964(?) - 1994(?)	3,992	0.000	0.000	0.336	1.842
Killingly Landfill	No	early 1970s(?) - 19	95 19,595	0.000	0.000	1.554	8.514
Putnam Landfill	No	1968 - 6/28/97	29,862	0.000	0.000	2.786	15.265
Thompson Landfill	No	1956 - 1991	11,773	0.000	0.000	0.948	5.195
Windham Landfill	No	1946(?) - 1996(?)	27,216	0.000	0.000	3.073	16.836
Woodstock Landfill	No	mid-1940s - 4/96	4,574	0.000	0.000	0.534	2.924
Yaworski Regional L	andfillNo	1950 - 1994	26,347	4.900	0.000	0.000	16.625
	County T State T	`otal otal	129,205 2,335,085	4.900 314.400	0.000 1,488.000	9.696 381.804	69.752 2,305.387

4.4.5 Solid Waste Incineration

4.4.5.1 On-Site Incineration

Residential on-site incineration is prohibited in Connecticut. All on-site incinerators for commercial/institutional and industrial sources are in the point source inventory (Section 2.0).

4.4.5.2 Open Burning

The number of permits issued for each type of open burn category is listed on Table 4.4.5.2-1. Table 4.4.5.2-2 contains the VOC, NOx, and CO annual and daily emissions for open burning. The daily emissions represent both the typical ozone season day and winter day emissions.

Open burning in Connecticut is allowed on a permit basis only. The types of open burning that take place in Connecticut can be categorized as residential, refuse site, and fire department burns. According to state regulations a municipality that allows residential open burning must have a state trained Open Burning Official issuing the permits. It is assumed that the 5 towns that do not have an Open Burning Official have an ordinance prohibiting residential open burning.

Some towns in Connecticut collect brush at their transfer station or landfill for disposal via open burning. These types of burns are referred to as refuse site open burns, which are much larger than residential open burns. Permits for refuse site open burns are issued by the DEP's Bureau of Air Management. Fire department burns include the burning of old houses or barns for fire training purposes. There were no fire department burns in 2002.

Connecticut has an open burning regulation that allows the burning of brush 3 inches in diameter or less, for residential and refuse site burns. The burning of leaves, grass clippings, and municipal waste is prohibited, therefore, the emission factors from woody debris found in EIIP Table 16.4-2 was used for residential and refuse site open burns.

Although municipalities are required to send in a copy of any residential burning permit they issue, permits were received from only 33 of the 169 towns in Connecticut. There were 1,301 open burning permits issued in 2002, in the 33 towns whose total population was 416,055. From this it was estimated that there were 3.127 residential open burns per 1,000 people. The number of residential open burns in each town that permitted open burning, but did not submit information, was estimated by multiplying the town population by 3.127 and dividing by a thousand. The number of refuse site open burns were not apportioned using population data because their locations are known.

Since Connecticut's open burning permits do not provide the quantity of fuel burned (a necessary parameter needed to calculate emissions) estimates of 500 pounds per residential burn, and 10,000 pounds per refuse site burn were used. The amount of fuel burned in a residential burn and in a refuse burn was estimated

based on the experience of the Bureau of Air Management Inspectors.

Open burning may take place seven days a week and is uniform throughout the year (no seasonal adjustment factor is applied). Thus, the typical ozone season day and winter day emissions are identical. The emissions of a pollutant resulting from open burning are calculated using the following equation:

$$E = \frac{(RES \ x \ Q1 \ x \ EF2) + (REF \ x \ Q2 \ x \ EF2)}{(7 \ x \ 52)}$$

Where:

E	= daily inventory emissions from open burning expressed in pounds per day
RES	= number of residential open burns in a county (Table 4.4.5.2-1)
REF	= number of refuse site open burns in a county (Table 4.4.5.2-1)
Q1	= 0.25 tons (500 lbs.) burned per fire
Q2	= 5.0 tons (10,000 lbs.) burned per fire
EF2	= pollutant emission factor for municipal refuse burning and residential $burns^5$
7	= 7 activity days per week, unit conversion
52	= 52 weeks per year, unit conversion

A sample CO calculation for Fairfield County is:

 $E = \frac{(1,749.02 \ x \ 0.25 \ x \ 185.4) + (2 \ x \ 5.0 \ x \ 185.4)}{(7 \ x \ 52)}$

E = 227.80 lbs. CO per day

Table 4.4.5.2-1
Table Summary Of Input Parameters For Open Burning

County	Population [*]	Residential Open Burns	Fire Dept. Open Burns	Open Burns At Landfills
Fairfield	559,331	1,749.02	0	2
Hartford	742,774	2,322.65	0	11
Litchfield	186,515	583.23	0	10
Middlesex	159,679	499.31	0	9
New Haven	823,137	2,573.94	0	3
New London	262,689	821.43	0	9
Tolland	141,089	441.18	0	4
Windham	111,340	348.16	0	12
State Total:	2,986,554	9,338.93	0	60

* Population of towns that allow open burning

County	Annual VOC Emissions (Tons/Year)	Annual NOx Emissions (Tons/Year)	Annual CO Emissions (Tons/Year)	Daily VOC Emissions (Lbs/Day)	Daily NOx Emissions (Lbs/Day)	Daily CO Emissions (Lbs/Day)
Fairfield	3.40	0.17	41.46	18.68	0.91	227.81
Hartford	4.83	0.24	58.93	26.54	1.29	323.77
Litchfield	1.49	0.07	18.15	8.18	0.40	99.73
Middlesex	1.29	0.06	15.74	7.09	0.35	86.50
New Haven	5.00	0.24	61.04	27.50	1.34	335.39
New London	1.90	0.09	23.21	10.45	0.51	127.52
Tolland	0.99	0.05	12.08	5.44	0.26	66.37
Windham	1.12	0.05	13.63	6.14	0.30	74.89
State Total:	20.02	0.97	244.24	110.02	5.36	1,341.98

Table 4.4.5.2-2Summary Of The Emissions From Open Burning

4.5 SMALL STATIONARY SOURCE FUEL USE

Small stationary source fuel use is divided into three categories: residential, commercial/institutional, and industrial. This source category includes small boilers, furnaces, heaters, and other heating units too small to be considered point sources. The area source fuel use for each fuel type is determined by subtracting the annual point source fuel use from the annual state total fuel use. The emissions are estimated by multiplying the quantity of fuel consumed by the appropriate emission factor. The emission factors used in these calculations are from AP-42. The total fuel consumed for each category and fuel type was calculated using data obtained from the Energy Information Administration, which publishes the State Energy Data Reports. Data for 2002 consumption of residual and distillate oil were available, however, 2002 data were not available for natural gas, liquid propane gas, and coal use. Instead 2001 data were used for natural gas, liquid propane gas and coal consumption and assumed to be representative of 2002 consumption.

4.5.1 Residential Fuel Use

For residential fuel use, the fuel was apportioned to the counties relative to the number of housing units in a county. The number of housing units in each county were obtained from the U.S. Census Bureau and are listed on Table 4.5.1-1. Housing data were not available for 2002 since it was not a census year. It was assumed that the number of housing units in 2000 is representative of housing in 2002. According to the Energy Information Administration: 533,624 thousand gallons of distillate oil (including kerosene) were used in 2002; and 40,599 million cubic feet of natural gas, 58,262 thousand gallons of liquid propane gas, and 440 tons of anthracite coal were used in 2001.

Coal is used for space heating. Emissions resulting from burning coal occur only in the winter. Oil, natural gas, and liquid propane gas are used for space heating and the heating of water. Natural gas and liquid propane gas may also be used for appliances such as, ovens and clothes dryers. Therefore, emissions resulting from burning these fuels occur all year. Summertime emissions result from such things as heating water, cooking and clothes drying. To estimate summertime fuel use the DEP relied on the Energy Information Administration (EIA) data, which lists the amount of each fuel type consumed by end use and census region⁹. The end uses were broken out into 4 different categories; all uses, space heating, water heating, and appliances. There were 4 different census regions; Northeast, Midwest, South and West. Consumption data for Northeast Region was used and assumed to be representative of Connecticut households' relative fuel consumption between space heating, and water heating and appliances. These data were found in Tables 1. 2 and 3 of their website at http://www.eia.doe.gov/emeu/recs/byfuels/2001/byfuels 2001.html. According to the EIA data, 4,158 million gallons of oil were consumed for all residential uses in the Northeast, of which 888.8 million gallons were used for water heating. Therefore it is estimated that 21% of household oil used was for water heating. A similar calculation was done for liquid propane gas and natural gas. It was determined that 50% and 29% of liquid propane gas and natural gas, respectively were used for the heating of water and the running of appliances. It was assumed that the residential combustion of oil, natural gas and liquid propane gas takes place seven days a week throughout the year. There are no residential sources in the Point Source

Inventory.

Summertime emissions resulting from burning coal are set equal to zero. The emissions resulting from burning oil, natural gas, and liquid propane gas on a typical ozone summer day are calculated using the following equation:

$$E = \frac{EF \ x \ Q \ x \ ADJ \ x \ H}{365 \ x \ HT}$$

Where:

E	= daily county emissions for fuel type expressed in pounds per day (Table 4.5.1-2)
EF	= emission factor for the pollutant and fuel type
Q	= State total annual residential fuel used expressed in units compatible with the emission factor
ADJ	= 21%, 29% and 50% of oil, natural gas and liquid propane gas were used for heating water and/or appliances, respectively. No coal was used for heating water and/or appliances
Н	= housing units for fuel type in a county(Table 4.5.1-1)
HT	= State total housing units for fuel type (Table 4.5.1-1)
365	= 365 days per year, unit conversion factor

A sample CO calculation for oil use on a typical summer day in Hartford County is:

 $E = \frac{5.0 \ x \ 533,624 \ x \ 0.21 \ x \ 146,905}{365 \ x \ 682,434}$

E = 330.45 lbs. CO per day

To determine the CO emissions resulting from burning a fuel other than wood on a typical winter day, the typical daily CO emissions resulting from heating water (the same as typical ozone summer day CO emissions as calculated above) are added to the typical winter daily CO emissions resulting from space heating.

According to the Local Climatological Data of NOAA¹⁶, the heating degree-days (HDG) measured at Bradley Airport in 2002 was 5,677. For the 90-day winter period (January, February and December) there were 2,879 -degree days at Bradley Airport in 2002¹⁶, or 50.7 percent of the yearly total. Therefore, it is assumed that 50.7 percent of the fuel used for space heating is consumed in January, February, and December. As stated above, all coal use is for space heating. Twenty one percent, 29% and 50% of oil, natural gas, and liquid propane gas, respectively, were used for hot water and/or appliances. Therefore, the remaining 79%, 71% and 50% of oil, natural gas, and liquid propane gas, respectively were used for space heating.

The CO emissions resulting from burning a fuel other than wood on a typical winter day are calculated using the following equation:

$$E = \frac{EF \ x \ Q \ x \ ADJ \ x \ H}{365 \ x \ HT} + \frac{EF \ x \ Q \ x (1 - ADJ) \ x \ H \ x \ 0.507}{90 \ x \ HT}$$

Where:

 EF = emission factor for the pollutant and fuel type⁵ Q = State total annual residential fuel used expressed in units compatible with the emission factor⁹ ADJ = 21%, 29% and 50% of oil, natural gas and liquid propane gas were used for heating water and/or appliances, respectively. No coal was used for heating water and/appliances H = housing units for fuel type in a county (Table 4.5.1-1) 0.507 = 50.7% of fuel used for space heating in January, February, and December 365 = 365 days per year, unit conversion factor 90 = 90 days in January, February, and December, unit conversion factor HT = State total housing units for fuel type (sum from Table 4.5.1-1) 	E	= daily county emissions for fuel type expressed in pounds per day
 Q = State total annual residential fuel used expressed in units compatible with the emission factor? ADJ = 21%, 29% and 50% of oil, natural gas and liquid propane gas were used for heating water and/or appliances, respectively. No coal was used for heating water and/or appliances H = housing units for fuel type in a county (Table 4.5.1-1) 0.507 = 50.7% of fuel used for space heating in January, February, and December 365 = 365 days per year, unit conversion factor 90 = 90 days in January, February, and December, unit conversion factor HT = State total housing units for fuel type (sum from Table 4.5.1-1) 	EF	= emission factor for the pollutant and fuel type ⁵
 ADJ = 21%, 29% and 50% of oil, natural gas and liquid propane gas were used for heatin water and/or appliances, respectively. No coal was used for heating water and/appliances H = housing units for fuel type in a county (Table 4.5.1-1) 0.507 = 50.7% of fuel used for space heating in January, February, and December 365 = 365 days per year, unit conversion factor 90 = 90 days in January, February, and December, unit conversion factor HT = State total housing units for fuel type (sum from Table 4.5.1-1) 	Q	= State total annual residential fuel used expressed in units compatible with the emission factor ⁹
H= housing units for fuel type in a county (Table 4.5.1-1)0.507= 50.7% of fuel used for space heating in January, February, and December365= 365 days per year, unit conversion factor90= 90 days in January, February, and December, unit conversion factorHT= State total housing units for fuel type (sum from Table 4.5.1-1)	ADJ	= 21%, 29% and 50% of oil, natural gas and liquid propane gas were used for heating water and/or appliances, respectively. No coal was used for heating water and/or appliances
 0.507 = 50.7% of fuel used for space heating in January, February, and December 365 = 365 days per year, unit conversion factor 90 = 90 days in January, February, and December, unit conversion factor HT = State total housing units for fuel type (sum from Table 4.5.1-1) 	Н	= housing units for fuel type in a county (Table 4.5.1-1)
 365 = 365 days per year, unit conversion factor 90 = 90 days in January, February, and December, unit conversion factor HT = State total housing units for fuel type (sum from Table 4.5.1-1) 	0.507	= 50.7% of fuel used for space heating in January, February, and December
 90 = 90 days in January, February, and December, unit conversion factor HT = State total housing units for fuel type (sum from Table 4.5.1-1) 	365	= 365 days per year, unit conversion factor
HT = State total housing units for fuel type (sum from Table 4.5.1-1)	90	= 90 days in January, February, and December, unit conversion factor
	HT	= State total housing units for fuel type (sum from Table 4.5.1-1)

A sample CO calculation for oil use on a typical winter day in Hartford County is:

$$E = \frac{5.0 \times 533,624 \times 0.21 \times 146,905}{365 \times 682,434} + \frac{5.0 \times 533,624 \times (1 - 0.21) \times 146,905 \times 0.507}{90 \times 682,434}$$

E = 2886.5 lbs. CO per day

	No. of	No. of Gas	No. of Oil	No. of LPG	No. of Coal
County	Household	Household	Household	Household	Household
Fairfield	339,466	104,967	162,898	6,737	164
Hartford	353,022	135,763	146,905	7,522	384
Litchfield	79,267	8,892	46,349	1,902	136
Middlesex	67,285	6,074	40,271	1,942	56
New Haven	340,732	103,904	157,016	6,450	253
New London	110,674	10,411	65,677	3,335	231
Tolland	51,570	3,753	34,897	1,545	118
Windham	43,959	3,786	28,421	1,659	77
State Total	1,385,975	377,550	682,434	31,092	1,419

Table 4.5.1-1Summary of Household Residential Fuel Use

County	No. of Households	Gas (mil cu. ft/year)	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Winter CO (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	104,967	11,287.4	358.72	98.65	843.00	2,164.56	225.75	62.08	530.51
Hartford	135,763	14,599.0	463.97	127.59	1,090.32	2,799.61	291.98	80.29	686.15
Litchfield	8,892	956.2	30.39	8.36	71.41	183.36	19.12	5.26	44.94
Middlesex	6,074	653.2	20.76	5.71	48.78	125.25	13.06	3.59	30.70
New Haven	103,904	11,173.1	355.09	97.65	834.46	2,142.63	223.46	61.45	525.14
New Londor	n 10,411	1,119.5	35.58	9.78	83.61	214.69	22.39	6.16	52.62
Tolland	3,753	403.6	12.83	3.53	30.14	77.39	8.07	2.22	18.97
Windham	3,786	407.1	12.94	3.56	30.41	78.07	8.14	2.24	19.13
State Total	377,550	40,599.0	1,290.27	354.82	3,032.13	7,785.57	811.98	223.29	1,908.15

Table 4.5.1-2 Summary of Emissions from Residential Fuel Use of Natural Gas

	No. of	#2 Oil (1,000	Daily CO	Daily VOC	Daily NOx	Winter CO	Annual CO	Annual VOC	Annual NOx
County	Households	gal/year)	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(tons/year)	(tons/year)	(tons/year)
Fairfield	162,898	127,376.8	366.43	52.25	1,319.14	3,200.77	318.44	45.41	1,146.39
Hartford	146,905	114,871.2	330.45	47.12	1,189.63	2,886.53	287.18	40.95	1,033.84
Litchfield	46,349	36,242.2	104.26	14.87	375.33	910.71	90.61	12.92	326.18
Middlesex	40,271	31,489.6	90.59	12.92	326.11	791.28	78.72	11.23	283.41
New Haven	157,016	122,777.4	353.20	50.37	1,271.50	3,085.20	306.94	43.77	1,105.00
New Londor	n 65,677	51,355.6	147.74	21.07	531.85	1,290.48	128.39	18.31	462.20
Tolland	34,897	27,287.4	78.50	11.19	282.59	685.69	68.22	9.73	245.59
Windham	28,421	22,223.6	63.93	9.12	230.15	558.44	55.56	7.92	200.01
State Total	682,434	533,624.0	1,535.08	218.90	5,526.30	13,409.11	1,334.06	190.24	4,802.62

Table 4.5.1-3Summary of Emissions from Residential Fuel Use of #2 Fuel Oil

County	No. of Households	LPG (1,000 gal/year)	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Winter CO (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	6,737	12,624.2	32.86	9.34	242.11	100.42	11.99	3.41	88.37
Hartford	7,522	14,095.2	36.69	10.43	270.32	112.12	13.39	3.81	98.67
Litchfield	1,902	3,564.1	9.28	2.64	68.35	28.35	3.39	0.96	24.95
Middlesex	1,942	3,639.0	9.47	2.69	69.79	28.95	3.46	0.98	25.47
New Haven	6,450	12,086.4	31.46	8.94	231.79	96.14	11.48	3.26	84.60
New Londor	n 3,335	6,249.3	16.27	4.62	119.85	49.71	5.94	1.69	43.75
Tolland	1,545	2,895.1	7.54	2.14	55.52	23.03	2.75	0.78	20.27
Windham	1,659	3,108.7	8.09	2.30	59.62	24.73	2.95	0.84	21.76
State Total	31,092	58,262.0	151.64	43.10	1,117.35	463.44	55.35	15.73	407.83

Table 4.5.1-4

Summary of Emissions from Residential Fuel Use of Liquid Propane Gas

Table 4.5.1-5Summary of Emissions from Residential Fuel Use of Coal

	No. of	Coal	Winter CO	Annual CO	Annual VOC	Annual NOx
County	Households	(tons/year)	(lbs/day)	(tons/year)	(tons/year)	(tons/year)
Fairfield	164	50.9	0.17	0.02	0.00	0.46
Hartford	384	119.1	0.40	0.04	0.00	1.07
Litchfield	136	42.2	0.14	0.01	0.00	0.38
Middlesex	56	17.4	0.06	0.01	0.00	0.16
New Haven	253	78.4	0.27	0.02	0.00	0.71
New London	231	71.6	0.24	0.02	0.00	0.64
Tolland	118	36.6	0.12	0.01	0.00	0.33
Windham	77	23.9	0.08	0.01	0.00	0.21
State Total	1,419	440.0	1.49	0.13	0.02	3.96
4.5.2 Commercial/Institutional Fuel Use

For commercial/institutional fuel use, statewide annual fuel was apportioned to the counties relative to the number of non-manufacturing employees in a county. The number of non-manufacturing employees by county in 2002 was obtained from the Connecticut Labor Department, Employment Security Division¹² and is listed in Table 4.5.2-1. Similar to residential fuel use the statewide annual fuel use data for commercial/institutional operations were obtained from the Energy Information Administration. According to the Energy Administration: 14,164 thousand gallons of residual oil; and 122,273 thousand gallons of distillate oil (including kerosene) were used in 2002; and 44,404 million cubic feet of natural gas, 10,282 thousand gallons of liquid propane gas, and 3,558 tons of anthracite coal were consumed in 2001.

A computer search of the 2002 Point Source Inventory was used to determine the total statewide commercial/institutional fuel use that was accounted for in the Point Source Inventory. The fuel use by commercial/institutional sources already accounted for in the Point Source Inventory was subtracted from the total commercial/institutional fuel use to avoid being double counted. The fuel used by commercial/institutional sources from the Point Source Inventory is as follows: residual oil, 3,970 thousand gallons; distillate oil, 3,286 thousand gallons; natural gas, 4,680 million cubic feet; liquid propane, 6 thousand gallons; and anthracite coal, zero.

In this category, coal would only be used for space heating, a wintertime activity. As in the residential fuel use category, the emissions resulting from burning oil, natural gas, and liquid propane gas occur all year. Data are not available to calculate the amount of annual fuel used for purposes other than space heating as it was in the residential fuel use category. Therefore, the seasonal adjustment factors listed on Table 5.8-1 in the EPA Procedures document were used. The seasonal adjustment factor for the summer ozone season is 0.6 and the seasonal adjustment factor for the winter CO season is 1.4. Activities requiring the use of these fuels can take place seven days a week.

The annual fuel used in a county is calculated for each type of fuel using the following equation:

$$Q = (QT - PT) x \frac{NME}{NMET}$$

Where:

Q	= annual county fuel use expressed in the same units as QT
QT	= state total annual commercial/institutional fuel used
PT	= state annual commercial/institutional fuel use from Point Source
	Inventory in same units as QT
NME	= number of non-manufacturing employees in a county ¹²
NMET	= number of non-manufacturing employees in the state 12

A sample calculation for distillate oil use in Hartford County is:

 $Q = (122,273 - 3,286) x \frac{428,942}{1,392,495}$

Q = 36,652.6 x 1,000 gallons

Summertime emissions resulting from burning coal were set equal to zero. Emissions resulting from burning oil, natural gas, and liquid propane gas on a typical ozone summer day and a typical CO winter day are calculated using the following equation:

$$E = \frac{EF \ x \ Q \ x \ ADJ}{365}$$

Where:

E	= daily county emissions for fuel type expressed in pounds per day
EF	= emission factor for the pollutant and fuel type ⁵
Q	= annual county fuel used expressed in units compatible with EF
ADJ	= seasonal adjustment factor which 0.6 for ozone season and 1.4 for CO season
365	= 365 days per year, unit conversion factor

A sample CO calculation for a typical ozone summer day for distillate oil use in Hartford County is:

$$E = \frac{5.0 \times 36,652.6 \times 0.60}{365}$$

$$E = 301.25$$
 lbs. CO per day

A sample CO calculation for a typical winter day for distillate oil use in Hartford County is:

$$E = \frac{5.0 \times 36,652.6.2 \times 1.4}{365}$$

E = 702.93 lbs. CO per day

4.5.3 Industrial Fuel Use

For industrial fuel use, statewide annual fuel was apportioned to the counties relative to the number of manufacturing employees in 2002 by county were obtained from the Connecticut Labor Department, Employment Security Division¹² and is listed on Table 4.5.3-1. Similar to residential and commercial fuel use the statewide annual fuel use data were obtained from the Energy Information Administration. According to the Energy Administration: 14,743 thousand gallons of residual oil; and 15,384 thousand gallons of distillate oil (including kerosene) were used in 2002; and 26,019 million cubic feet of natural gas, 29,285 thousand gallons of liquid propane gas, and 0 tons of anthracite coal consumed in 2001.

A computer search of the 2002 Point Source Inventory was used to determine the total statewide industrial fuel use that was accounted for in the Point Source Inventory. The fuel use by industrial sources already accounted for in the Point Source Inventory must be subtracted from the total industrial fuel use. The total fuel use by industrial sources from the Point Source Inventory is as follows: residual oil, 20,663 thousand gallons; distillate oil, 4,116 gallons; natural gas, 17,022 million cubic feet; liquid propane gas, 303 thousand gallons; anthracite coal, 0 tons. Since the Point Source inventory accounts for more total residual oil use than listed in the Energy Information Administration's report, the emissions from residual oil were set equal to zero.

The industrial sector uses fuel primarily to provide process heat. Space heating requirements consume a quantity of fuel that is not significant. Therefore, the fuel use by industrial sources is uniform throughout the year. Activities requiring the use of these fuels can take place six days a week.

$$Q = (QT - PT) x \frac{ME}{MET}$$

The annual fuel used in a county is calculated for each type of fuel using the following equation:

Where:

Q	= annual county fuel use expressed in the same units as QT
QT	= state total annual industrial fuel used
РТ	= state annual industrial fuel use from Point Source inventory in same units as QT
ME	= number of manufacturing employees in a county from Table 4.5.3-1

MET = number of manufacturing employees in the state sum from Table 4.5.3-1 A sample calculation for distillate oil use in Hartford County is:

$$Q = (15,384 - 4,116) x \frac{68,574}{239,395}$$

$$Q = 3,227.7 \text{ x } 1,000 \text{ gallons}$$

The emissions resulting from fuel use by industrial sources on a typical ozone summer day and a typical CO winter day are calculated using the following equation:

$$E = \frac{EF \ x \ Q}{6 \ x \ 52}$$

Where:

E	= daily county emissions for fuel type expressed in pounds per day
EF	= emission factor for the pollutant and fuel type 5
Q	= annual county fuel used expressed in units compatible with EF
6	= 6 activity days per week, unit conversion factor
52	= 52 weeks per year, unit conversion factor

A sample CO calculation for distillate oil use in Hartford County is:

$$E = \frac{5.0 \ x \ 3,227.7}{6 \ x \ 52}$$

E = 51.73 lbs. CO per day

County	Non-Mfg. Employees by County	Area Gas (mil ft ³ /yr)	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Winter CO (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	361,454	10,311.3	355.95	96.61	1,695.00	830.55	108.27	29.39	515.56
Hartford	428,942	12,236.5	422.41	114.65	2,011.48	985.62	128.48	34.87	611.83
Litchfield	51,495	1,469.0	50.71	13.76	241.48	118.33	15.42	4.19	73.45
Middlesex	56,591	1,614.4	55.73	15.13	265.38	130.03	16.95	4.60	80.72
New Haven	317,907	9,069.0	313.07	84.98	1,490.79	730.49	95.22	25.85	453.45
New London	110,441	3,150.6	108.76	29.52	517.90	253.77	33.08	8.98	157.53
Tolland	34,736	990.9	34.21	9.28	162.89	79.82	10.40	2.82	49.55
Windham	30,929	882.3	30.46	8.27	145.04	71.07	9.26	2.51	44.12
State Total	1,392,495	39,724.0	1,371.29	372.21	6,529.95	3,199.68	417.10	113.21	1,986.20

Emissions Summary from Commercial Heating Using Natural Gas

County	Non-Mfg. Employees by County	Area #6 Oil (1000 gal)	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Winter CO (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	361,454	2,646.1	21.75	4.92	239.23	50.75	6.62	1.50	72.77
Hartford	428,942	3,140.1	25.81	5.83	283.90	60.22	7.85	1.77	86.35
Litchfield	51,495	377.0	3.10	0.70	34.08	7.23	0.94	0.21	10.37
Middlesex	56,591	414.3	3.41	0.77	37.46	7.95	1.04	0.23	11.39
New Haven	317,907	2,327.3	19.13	4.32	210.41	44.63	5.82	1.31	64.00
New London	110,441	808.5	6.65	1.50	73.10	15.51	2.02	0.46	22.23
Tolland	34,736	254.3	2.09	0.47	22.99	4.88	0.64	0.14	6.99
Windham	30,929	226.4	1.86	0.42	20.47	4.34	0.57	0.13	6.23
State Total	1,392,495	10,194.0	83.79	18.94	921.65	195.50	25.49	5.76	280.34

Emissions Summary from Commercial Heating Using Residual (#6) Oil

Emissions Summary from Commercial Heating Using Liquid Propane Gas

County	Non-Mfg. Employees by County	Area LPG (1000 gal)	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Winter CO (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	361,454	2,667.4	8.33	2.37	61.39	19.44	2.53	0.72	18.67
Hartford	428,942	3,165.4	9.89	2.81	72.85	23.07	3.01	0.85	22.16
Litchfield	51,495	380.0	1.19	0.34	8.75	2.77	0.36	0.10	2.66
Middlesex	56,591	417.6	1.30	0.37	9.61	3.04	0.40	0.11	2.92
New Haven	317,907	2,346.0	7.33	2.08	53.99	17.10	2.23	0.63	16.42
New London	110,441	815.0	2.55	0.72	18.76	5.94	0.77	0.22	5.71
Tolland	34,736	256.3	0.80	0.23	5.90	1.87	0.24	0.07	1.79
Windham	30,929	228.2	0.71	0.20	5.25	1.66	0.22	0.06	1.60
State Total	1,392,495	10,276.0	32.09	9.12	236.49	74.89	9.76	2.77	71.93

Emissions Summary from Commercial Heating Using Coal

County	Non- Mfg. Employees by County	Area Coal (tons)	Winter Day CO (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	361,454	923.6	318.83	41.56	4.62	1.39
Hartford	428,942	1,096.0	378.36	49.32	5.48	1.64
Litchfield	51,495	131.6	45.42	5.92	0.66	0.20
Middlesex	56,591	144.6	49.92	6.51	0.72	0.22
New Haven	317,907	812.3	280.42	36.55	4.06	1.22
New London	110,441	282.2	97.42	12.70	1.41	0.42
Tolland	34,736	88.8	30.64	3.99	0.44	0.13
Windham	30,929	79.0	27.28	3.56	0.40	0.12
State Total	1,392,495	3,558.0	1,228.30	160.11	17.79	5.34

County	Non-Mfg. Employees by County	Area #2 Oil (1000 gal)	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Winter CO (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	361,454	30,885.8	253.86	17.26	1,015.42	592.33	77.21	5.25	308.86
Hartford	428,942	36,652.6	301.25	20.49	1,205.01	702.92	91.63	6.23	366.53
Litchfield	51,495	4,400.2	36.17	2.46	144.66	84.39	11.00	0.75	44.00
Middlesex	56,591	4,835.6	39.74	2.70	158.98	92.74	12.09	0.82	48.36
New Haven	317,907	27,164.8	223.27	15.18	893.09	520.97	67.91	4.62	271.65
New London	110,441	9,437.0	77.56	5.27	310.26	180.98	23.59	1.60	94.37
Tolland	34,736	2,968.1	24.40	1.66	97.58	56.92	7.42	0.50	29.68
Windham	30,929	2,642.8	21.72	1.48	86.89	50.68	6.61	0.45	26.43
State Total	1,392,495	118,987.0	977.97	66.50	3,911.89	2,281.94	297.47	20.23	1,189.87

Emissions Summary from Commercial Heating Using Distillate (#2) Oil

Summary of Emissions from Industrial Heating Using #2 Oil

	Mfg. Employees	Area Ind. #2 Oil	Daily CO	Daily VOC	Daily NOx	Annual CO	Annual VOC	Annual NOx
County	by County	(1000 gal)	(lbs/day)	(lbs/day)	(lbs/day)	(tons/year)	(tons/year)	(tons/year)
Fairfield	62,831	2,957.4	47.39	1.90	189.57	7.39	0.30	29.57
Hartford	68,574	3,227.7	51.73	2.07	206.90	8.07	0.32	32.28
Litchfield	13,533	637.0	10.21	0.41	40.83	1.59	0.06	6.37
Middlesex	12,001	564.9	9.05	0.36	36.21	1.41	0.06	5.65
New Haven	51,662	2,431.7	38.97	1.56	155.88	6.08	0.24	24.32
New London	18,985	893.6	14.32	0.57	57.28	2.23	0.09	8.94
Tolland	3,509	165.2	2.65	0.11	10.59	0.41	0.02	1.65
Windham	8,300	390.7	6.26	0.25	25.04	0.98	0.04	3.91
State Total	239,395	11,268.0	180.58	7.22	722.31	28.17	1.13	112.68

Summary of Emissions from Industrial Heating Using Liquid Propane Gas

County	Mfg. Employees by County	Area Ind. LPG (1000 gal)	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	62,831	7,606.5	78.02	13.17	463.22	12.17	2.05	72.26
Hartford	68,574	8,301.8	85.15	14.37	505.56	13.28	2.24	78.87
Litchfield	13,533	1,638.4	16.80	2.84	99.77	2.62	0.44	15.56
Middlesex	12,001	1,452.9	14.90	2.51	88.48	2.32	0.39	13.80
New Haven	51,662	6,254.4	64.15	10.82	380.88	10.01	1.69	59.42
New London	18,985	2,298.4	23.57	3.98	139.97	3.68	0.62	21.83
Tolland	3,509	424.8	4.36	0.74	25.87	0.68	0.11	4.04
Windham	8,300	1,004.8	10.31	1.74	61.19	1.61	0.27	9.55
State Total	239,395	28,982.0	297.25	50.16	1,764.93	46.37	7.83	275.33

		Summing of						
County	Mfg. Employees by County	sArea Ind. Gas (mil ft ³ /yr)	Daily CO (lbs/day)	Daily VOC (lbs/day)	Daily NOx (lbs/day)	Annual CO (tons/year)	Annual VOC (tons/year)	Annual NOx (tons/year)
Fairfield	62,831	2,361.3	158.93	43.14	756.83	24.79	6.73	118.07
Hartford	68,574	2,577.1	173.46	47.08	826.01	27.06	7.34	128.86
Litchfield	13,533	508.6	34.23	9.29	163.01	5.34	1.45	25.43
Middlesex	12,001	451.0	30.36	8.24	144.56	4.74	1.29	22.55
New Haven	51,662	1,941.6	130.68	35.47	622.29	20.39	5.53	97.08
New London	18,985	713.5	48.02	13.03	228.68	7.49	2.03	35.67
Tolland	3,509	131.9	8.88	2.41	42.27	1.38	0.38	6.59
Windham	8,300	311.9	21.00	5.70	99.98	3.28	0.89	15.60
State Total	239,395	8,996.9	605.56	164.37	2,883.63	94.47	25.64	449.85

Summary of Emissions from Industrial Heating Using Natural Gas

4.5.4 Other Fuel Consumption

The 2002 annual and typical summer day VOC, NOx and CO emission estimates, and typical winter day CO emissions in Connecticut from residential wood burning are presented in Table 4.5.4-1. These emission estimates were taken from the Mid-Atlantic/ Northeast Visibility Union (MANE-VU) Residential Wood Combustion Emission Inventory³³ (RWC). The emission estimates in the RWC final report were based upon recently conducted surveys of residential wood burning activity and the type of wood burning equipment used in the Mid-Atlantic and Northeast states. Residential wood burning equipment includes both indoor and outdoor wood burning equipment such as, fireplaces, woodstoves, wood fired boilers and furnaces, chimineas, barbecues, and fire pits.

The methodology used previously for estimating emissions from residential wood combustion was based upon a survey conducted in Connecticut in 1989. In the past this survey was used to estimate the type and relative use of wood burning equipment in Connecticut. The RWC study represents current wood burning activity and current wood burning equipment, such as pellet stoves, which are much cleaner than older types of woodstoves. So as older less efficient woodstoves are replaced by cleaner burning woodstoves it is expected that the RWC emission estimates would be lower than the previously used methodology. A comparison of emission estimates using the old methodology and the RWC's emission estimates for Connecticut was done. As expected the RWC's emission estimates were much lower.

	Summer Day	Summer Day	Summer Day	Winter Day	Annual CO	Annual VOC	Annual NOx
	VOC Emissions	NOx Emissions	CO Emissions	CO Emissions	Emissions	Emissions	Emissions
County	(Lbs/Day)	(Lbs/Day)	(Lbs/Day)	(Lbs/Day)	(Tons/Yr)	(Tons/Yr)	(Tons/Yr)
Fairfield	4,310.40	62.24	5,462.28	94,752.60	8,502.75	5,699.15	106.36
Hartford	4,710.48	69.40	6,045.77	105,847.58	9,635.04	6,034.22	124.31
Litchfield	3,542.90	64.33	5,292.88	115,501.87	10,120.87	6,141.43	127.97
Middlesex	1,856.38	31.62	2,678.42	65,835.43	5,638.15	3,520.18	69.29
New Haven	5,176.58	79.93	6,854.26	127,075.34	11,048.46	7,317.48	138.12
New London	2,804.64	47.32	4,016.47	106,147.38	9,214.57	5,681.06	113.96
Tolland	2,073.45	37.44	3,081.56	65,405.99	5,776.65	3,439.09	73.75
Windham	1,949.67	35.67	2,919.39	60,791.05	5,316.34	3,235.15	67.50
State	26,424.50	427.95	36,351.04	741,357.23	65,252.83	41,067.78	821.26

 Table 4.5.4-1

 Summary Of The Emissions From Residential Wood Use 2002

4.6 OTHER AREA SOURCES

4.6.1 Forest Fires

The methodology found in The Data Needs and Availability for Wild Land Fire Emission Inventories³² was used to estimate the emissions for this category. Table 4.6.1-1 contains the annual VOC, NOx, and CO emissions from each forest fire. The typical daily VOC, NOx, and CO emissions for summer and the typical daily CO emissions for winter are also included. Table 4.6.1-2 summarizes the emissions by county. The Department of Environmental Protection, Division of Forestry provided the following for each forest fire in Connecticut in 2002:

- 1) Acres burned,
- 2) Town in which fire occurred,
- 3) Date on which fire occurred.

The emissions from forest fires are determined by applying emission factors to the tons of growth burned per acre, then multiplying this product by the amount of acres burned. In addition a state specific smoldering augmentation factor is included to account for additional smoldering emissions that occur on the day after an area is burned.

The Division of Forestry was not able to supply average fuel loading for forest fires. The fuel loading factor and the state average smoldering augmentation factor was obtained from Table 4 of the Data Needs and Availability for Wild Land Fire Emission Inventories.³² The emission factors were obtained from Table 2 of this same document³².

The equation used to calculate annual emissions for this category is as follows:

$$E = \frac{A \times EF \times F \times (SF + 1)}{2000}$$

Where:

E = annual emissions expressed in tons
 A = acres of forest burned
 F = fuel loading of 3.1 tons of forest material combusted per acre burned ³²
 SF = Connecticut smoldering augmentation factor of 0.170 ³²
 EF = pollutant emission factor, expressed in pounds of pollutant emitted per ton of material burned

The daily emissions are dependent on the number of days in the season. Summer includes June, July, and

August (92 days) while winter includes December, January, and February (90 days). The equation used to calculate daily emissions for this category is as follows:

$$E = \frac{A \ x \ EF \ x \ F \ (SF + 1)}{Days}$$

Where:

E	= daily emissions, expressed in pounds per day
А	= acres of forest burned during given season
F	= fuel loading of 3.1 tons of forest material combusted per acre burned 32
SF	= Connecticut smoldering augmentation factor of 0.170^{-32}
EF	= pollutant emission factor, expressed in pounds of pollutant emitted per ton of material burned
Days	= 92 days for the summer (June, July, August) and 90 for winter
-	(December, January, and February)

A sample calculation for typical summer day VOC emissions from forest fires in Hartford County is:

$$E = \frac{12.00 \, x \, 13.6 \, x \, 3.1 \, (0.170 + 1)}{92}$$

E = 6.43 lbs VOC per summer day

	Town	Season	Acres	Daily VOC Emission (lbs/day)	Daily CO Emission (lbs/day)	Daily NOx Emission (lbs/day)	Winter CO Emission (lbs/day)	Annual VOC Emission (Tons/year)	Annual CO Emission (Tons/year)	Annual NOx Emission (Tons/year)
Fairfiel	d									
	Brookfield	Spring	2.10	0.00	0.00	0.00	0.00	0.05	1.10	0.02
	New Fairfield	Spring	0.10	0.00	0.00	0.00	0.00	0.00	0.05	0.00
	Newtown	Spring	8.00	0.00	0.00	0.00	0.00	0.20	4.19	0.09
	Shelton	Spring	0.25	0.00	0.00	0.00	0.00	0.01	0.13	0.00
	County To	tal:	10.45	0.00	0.00	0.00	0.00	0.26	5.48	0.12
Hartfor	ď									
	Berlin	Spring	21.00	0.00	0.00	0.00	0.00	0.52	11.01	0.24
	Burlington	Winter	3.00	0.00	0.00	0.00	34.94	0.07	1.57	0.03
	Enfield	Summer	2.00	1.07	22.79	0.49	0.00	0.05	1.05	0.02
	Farmington	Spring	0.10	0.00	0.00	0.00	0.00	0.00	0.05	0.00
	Farmington	Winter	2.00	0.00	0.00	0.00	23.29	0.05	1.05	0.02
	Granby	Spring	0.25	0.00	0.00	0.00	0.00	0.01	0.13	0.00
	Plainville	Winter	0.10	0.00	0.00	0.00	1.16	0.00	0.05	0.00
	Simsbury	Winter	0.20	0.00	0.00	0.00	2.33	0.00	0.10	0.00
	South	Summer	10.00	5.36	113.94	2.44	0.00	0.25	5.24	0.11
	Windsor	Spring	12.00	0.00	0.00	0.00	0.00	0.30	6.29	0.13
	County To	tal:	50.65	6.43	136.72	2.93	61.73	1.25	26.55	0.57
Litchfi	eld									
	Barkhamsted	Spring	0.50	0.00	0.00	0.00	0.00	0.01	0.26	0.01
	Bethlehem	Winter	0.10	0.00	0.00	0.00	1.16	0.00	0.05	0.00

Town	Season	Acres	Daily VOC Emission (lbs/day)	Daily CO Emission (lbs/day)	Daily NOx Emission (lbs/day)	Winter CO Emission (lbs/day)	Annual VOC Emission (Tons/year)	Annual CO Emission (Tons/year)	Annual NOx Emission (Tons/year)
Cornwall	Summer	0.25	0.13	2.85	0.06	0.00	0.01	0.13	0.00
Cornwall	Spring	0.25	0.00	0.00	0.00	0.00	0.01	0.13	0.00
Harwinton	Winter	0.25	0.00	0.00	0.00	2.91	0.01	0.13	0.00
Harwinton	Spring	0.75	0.00	0.00	0.00	0.00	0.02	0.39	0.01
Kent	Winter	1.00	0.00	0.00	0.00	11.65	0.02	0.52	0.01
Kent	Spring	1.50	0.00	0.00	0.00	0.00	0.04	0.79	0.02
Kent	Fall	0.25	0.00	0.00	0.00	0.00	0.01	0.13	0.00
Litchfield	Fall	0.10	0.00	0.00	0.00	0.00	0.00	0.05	0.00
New Hartford	Spring	0.50	0.00	0.00	0.00	0.00	0.01	0.26	0.01
New Hartford	Fall	0.25	0.00	0.00	0.00	0.00	0.01	0.13	0.00
Norfolk	Spring	0.10	0.00	0.00	0.00	0.00	0.00	0.05	0.00
Plymouth	Spring	0.50	0.00	0.00	0.00	0.00	0.01	0.26	0.01
Plymouth	Summer	5.00	2.68	56.97	1.22	0.00	0.12	2.62	0.06
Sharon	Spring	5.00	0.00	0.00	0.00	0.00	0.12	2.62	0.06
Thomaston	Spring	0.20	0.00	0.00	0.00	0.00	0.00	0.10	0.00
Torrington	Spring	0.45	0.00	0.00	0.00	0.00	0.01	0.24	0.01
Watertown	Summer	0.10	0.05	1.14	0.02	0.00	0.00	0.05	0.00
Watertown	Fall	0.35	0.00	0.00	0.00	0.00	0.01	0.18	0.00
Watertown	Spring	0.85	0.00	0.00	0.00	0.00	0.02	0.45	0.01
Watertown	Winter	0.10	0.00	0.00	0.00	1.16	0.00	0.05	0.00
Winchester	Winter	0.50	0.00	0.00	0.00	5.82	0.01	0.26	0.01

	Town	Season	Acres	Daily VOC Emission (lbs/day)	Daily CO Emission (lbs/day)	Daily NOx Emission (lbs/day)	Winter CO Emission (lbs/day)	Annual VOC Emission (Tons/year)	Annual CO Emission (Tons/year)	Annual NOx Emission (Tons/year)
	Winchester	Spring	1.60	0.00	0.00	0.00	0.00	0.04	0.84	0.02
	Woodbury	Spring	5.35	0.00	0.00	0.00	0.00	0.13	2.80	0.06
	Woodbury	Summer	0.10	0.05	1.14	0.02	0.00	0.00	0.05	0.00
	County To	otal:	25.90	2.92	62.09	1.33	22.71	0.64	13.57	0.29
Middles	sex									
	Deep River	Spring	4.00	0.00	0.00	0.00	0.00	0.10	2.10	0.04
	Middlefield	Summer	0.20	0.11	2.28	0.05	0.00	0.00	0.10	0.00
	Middletown	Spring	5.00	0.00	0.00	0.00	0.00	0.12	2.62	0.06
	Westbrook	Spring	4.00	0.00	0.00	0.00	0.00	0.10	2.10	0.04
	County To	otal:	13.20	0.11	2.28	0.05	0.00	0.33	6.92	0.15
New Ha	aven									
	Beacon Falls	Spring	0.10	0.00	0.00	0.00	0.00	0.00	0.05	0.00
	Derby	Spring	0.10	0.00	0.00	0.00	0.00	0.00	0.05	0.00
	Derby	Winter	1.00	0.00	0.00	0.00	11.65	0.02	0.52	0.01
	Madison	Spring	1.50	0.00	0.00	0.00	0.00	0.04	0.79	0.02
	Meriden	Summer	2.00	1.07	22.79	0.49	0.00	0.05	1.05	0.02
	Meriden	Spring	0.10	0.00	0.00	0.00	0.00	0.00	0.05	0.00
	Meriden	Winter	1.50	0.00	0.00	0.00	17.47	0.04	0.79	0.02
	Naugatuck	Spring	20.50	0.00	0.00	0.00	0.00	0.51	10.74	0.23
	Naugatuck	Winter	0.50	0.00	0.00	0.00	5.82	0.01	0.26	0.01
	North Haven	Spring	10.00	0.00	0.00	0.00	0.00	0.25	5.24	0.11

	Town	Season	Acres	Daily VOC Emission (lbs/day)	Daily CO Emission (lbs/day)	Daily NOx Emission (lbs/day)	Winter CO Emission (lbs/day)	Annual VOC Emission (Tons/year)	Annual CO Emission (Tons/year)	Annual NOx Emission (Tons/year)
	Prospect	Spring	0.50	0.00	0.00	0.00	0.00	0.01	0.26	0.01
	Seymour	Fall	2.00	0.00	0.00	0.00	0.00	0.05	1.05	0.02
	Seymour	Spring	0.10	0.00	0.00	0.00	0.00	0.00	0.05	0.00
	Wolcott	Spring	0.10	0.00	0.00	0.00	0.00	0.00	0.05	0.00
	County Total:		40.00	1.07	22.79	0.49	34.94	0.99	20.96	0.45
New Lo	ondon									
	Griswold	Winter	1.00	0.00	0.00	0.00	11.65	0.02	0.52	0.01
	Griswold	Spring	0.50	0.00	0.00	0.00	0.00	0.01	0.26	0.01
	Montville	Summer	0.01	0.01	0.11	0.00	0.00	0.00	0.01	0.00
	County '	Total:	1.51	0.01	0.11	0.00	11.65	0.04	0.79	0.02
Tolland	l									
	Coventry	Summer	3.00	1.61	34.18	0.73	0.00	0.07	1.57	0.03
	Coventry	Winter	8.00	0.00	0.00	0.00	93.17	0.20	4.19	0.09
	Ellington	Spring	6.00	0.00	0.00	0.00	0.00	0.15	3.14	0.07
	Hebron	Winter	0.50	0.00	0.00	0.00	5.82	0.01	0.26	0.01
	Tolland	Spring	8.00	0.00	0.00	0.00	0.00	0.20	4.19	0.09
	County '	Total:	25.50	1.61	34.18	0.73	99.00	0.63	13.36	0.29
Windha	ım									
	Chaplin	Winter	1.00	0.00	0.00	0.00	11.65	0.02	0.52	0.01
	Killingly	Winter	2.50	0.00	0.00	0.00	29.12	0.06	1.31	0.03
	Killingly	Spring	11.75	0.00	0.00	0.00	0.00	0.29	6.16	0.13
	Killingly	Summer	5.00	2.68	56.97	1.22	0.00	0.12	2.62	0.06

Town	Season	Acres	Daily VOC Emission (lbs/day)	Daily CO Emission (lbs/day)	Daily NOx Emission (lbs/day)	Winter CO Emission (lbs/day)	Annual VOC Emission (Tons/year)	Annual CO Emission (Tons/year)	Annual NOx Emission (Tons/year)
Pomfret	Winter	1.00	0.00	0.00	0.00	11.65	0.02	0.52	0.01
Thompson	Spring	1.00	0.00	0.00	0.00	0.00	0.02	0.52	0.01
County 7	Fotal:	22.25	2.68	56.97	1.22	52.41	0.55	11.66	0.25
State T	otal:	189.46	14.83	315.14	6.76	282.43	4.67	99.30	2.13

2002 Summary Of Emissions From Forest Fires By County

		Acres	Acres	Annual	Annual	Annual				Winter
	Acres	Burned In	Burned In	VOC	NOx	CO	Daily VOC	Daily NOx	Daily CO	Daily CO
	Burned In	Summer of	Winter of	Emission	Emission	Emission	Emission	Emission	Emission	Emission
County	2002	2002	2002	(Tons/year)	(Tons/year)(Tons/year)	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)
Fairfield	10.45	0.00	0.00	0.26	0.12	5.48	0.00	0.00	0.00	0.00
Hartford	50.65	12.00	5.30	1.25	0.57	26.55	6.43	2.93	136.72	61.73
Litchfield	25.90	5.45	1.95	0.64	0.29	13.57	2.92	1.33	62.09	22.71
Middlesex	13.20	0.20	0.00	0.33	0.15	6.92	0.11	0.05	2.28	0.00
New Haven	40.00	2.00	3.00	0.99	0.45	20.96	1.07	0.49	22.79	34.94
New London	1.51	0.01	1.00	0.04	0.02	0.79	0.01	0.00	0.11	11.65
Tolland	25.50	3.00	8.50	0.63	0.29	13.36	1.61	0.73	34.18	99.00
Windham	22.25	5.00	4.50	0.55	0.25	11.66	2.68	1.22	56.97	52.41
State Total:	189.46	27.66	24.25	4.67	2.13	99.30	14.83	6.76	315.14	282.43

4.6.2 Slash Burning and Prescribed Burning

According to the Connecticut DEP's Bureau of Parks and Forests there were eleven instances of prescribed opening burning in 2002. These instances are as follows:

TABLE 4.6.2-1 SUMMARY OF EMISSIONS FROM PRESCRIBED BURNING

DATE	TOWN	ACRES BURNED
March 7	Lebanon	19
March 14	Lebanon	15
March 28	Waterford	11
April 2 & 4	Canaan	19
April 5	Burlington	0.25
April 12	Willington	1
April 12	Stafford	3
April 19	Chaplin	5
April 24	Lyme	17
May 8	Griswold	6
-		

None of these events occurred during the summer ozone season or the winter CO season.

4.6.3 Agricultural Burning

According to the Connecticut Department of Agriculture, the activity as described in the EPA Procedures document does not occur in Connecticut. If agricultural burning did occur in Connecticut, farmers would be required by the DEP to obtain an open burning permit. The emissions from any agricultural burning would be accounted for in the open burning section.

4.6.4 Structure Fires

Table 4.6.4-1 contains the number of residential and commercial structure fires that occurred in Connecticut in 2002. Table 4.6.4-2 contains the VOC, NOx, and CO annual and typical ozone season day and winter day CO emissions from structure fires and the numbers used in the calculation of these emissions. The preferred method for estimating emissions from structure fires described in Chapter 18 of the EIIP Procedures document was used. The emission factors in units of pounds per ton of material burned for VOC, NOx, and

CO are 11 lbs./ton, 1.4 lbs./ton and 60 lbs./ton, respectively¹⁰.

The number of structure fires reported by month in Connecticut for 2002 was provided by the state fire marshal. According to the fire marshal's office, there had been a reclassification of structure fires since 1999. In 1999 structure fires included confined fires, which are fires that that do not cause any damage to the structure of the house. Confined fires are such things as a furnace malfunctioning, a chimney fire that is contained within the flue, a pot that burns on a stove, etc. The number of 2002 structure fires is much less than in 1999 because they no longer include confined fires. The fuel-loading factor, 1.15 tons per fire, used in 1999 is based on the inclusion of confined fires within the overall category of structure fires and will not be used in 2002. According to the fire marshal's office, on average, about 50% of the home is burned in a reported structure fire.

The EIIP document estimates the combustible structural density of a home to be 16.3 pounds per square foot and states that the national median residence size in 1995 was 1732 square feet. The fuel-loading factor was calculated using the following equation:

$$Q = \frac{Area \ x \ Density \ x \ \%Burn}{2000}$$

Where:

= fuel loading factor, expressed in tons of material burned per fire 10
= median residence size, assumed to be 1732 square feet, see above
= average combustible structural density of a home, assumed to be 16.3 pounds per
square feet, see above
= Percent of home that is combusted in an average fire, assumed to be 50%, see above
= 2000 lbs./ton, unit conversion factor

The average fuel loading factor for structure fires in Connecticut is:

$$Q = \frac{1732 \, x \, 16.3 \, x \, 0.5}{2000}$$

Q = 7.1 tons of material combusted per fire

According to the state fire marshal's office, the percent of fire companies that submit information to them remains fairly constant from year to year. In 1999 it was estimated to be 82%, therefore, for 2002 it was assumed that 82% of the fire companies in Connecticut submitted data in 2002. The number of fires provided by the state fire marshal's office were increased by a factor of 1.22 to account for the 18% of the fire companies that did not report. The annual emissions resulting from structure fires were estimated using the following equation:

$$E = \frac{EF \ x \ Q \ x \ FIRES}{2000}$$

Where:

E	= annual county emissions expressed in tons per year
EF	= pollutant emission factor 10
Q	= fuel loading factor of 7.1 tons of material burned per fire, see above
FIRES	= number of residential and commercial structure fires in each county, see above
2000	= 2000 lbs./ton, unit conversion factor

The following equation was used to calculate the typical ozone summer day and winter day emissions from structure fires:

Where:

$$E = \frac{EF \ x \ Q \ x \ FIRES}{DAYS \ x \ 13}$$

Е	= daily county emissions expressed in pounds per day
EF	= pollutant emission factor 10
Q	= fuel loading factor of 7.1 tons of material burned per fire 10^{10}
FIRES	= number of residential and commercial structure fires in each county by season, see above
DAYS	= 7 activity days per week
13	= 13 weeks per summer, unit conversion factor

A sample calculation for typical summer day VOC emissions from structure fires in Hartford County is:

$$E = \frac{11x \ 7.1x \ 136}{7x \ 13}$$

E = 116.7 lbs. per day of VOC

	Summer	Winter	Annual
County	Structure Fires	Structure Fires	Structure Fires
Fairfield	158	137	636
Hartford	136	57	624
Litchfield	24	28	107
Middlesex	23	26	89
New Haven	150	145	516
New Londo	on 24	29	118
Tolland	14	21	73
Windham	12	12	52
State Total	: 541	455	2,215

Table 4.6.4-1Summary of Structure Fires In Connecticut

	Winter CO Emissions	Daily VOC Emissions	Daily NOx Emissions	Daily CO Emissions	Annual VOC Emissions	Annual NOx Emissions	Annual CO Emissions
County	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(tons/year)	(tons/year)	(tons/year)
Fairfield	641.34	135.60	17.26	739.65	24.84	3.16	135.47
Hartford	266.84	116.72	14.86	636.66	24.37	3.10	132.91
Litchfield	131.08	20.60	2.62	112.35	4.18	0.53	22.79
Middlesex	121.71	19.74	2.51	107.67	3.48	0.44	18.96
New Haven	678.79	128.74	16.38	702.20	20.15	2.56	109.91
New London	135.76	20.60	2.62	112.35	4.61	0.59	25.13
Tolland	98.31	12.02	1.53	65.54	2.85	0.36	15.55
Windham	56.18	10.30	1.31	56.18	2.03	0.26	11.08
State Total:	2,130.00	464.31	59.09	2,532.59	86.50	11.01	471.80

Summary of the Emissions from Structure Fires

4.6.5 Orchard Heaters

The activity as described in the EPA Procedures document does not occur in Connecticut.

4.6.6 Leaking Underground Storage Tanks

Table 4.6.6-1 summarizes the annual VOC emissions and the typical daily VOC emissions from leaking underground storage tanks (LUST).

Generally, VOC emissions to the air from soil saturated by a leaking underground storage tank are minimal until the process of removing the tank begins. During the process of removing an underground tank, a large quantity of soil surrounding the tank must be excavated. If the soil around the tank is found to be contaminated, all the additional saturated soil must also be excavated.

DEP's Office of Oil and Chemical Spills provided the number of leaking underground storage tanks identified in Connecticut in 2002. This list contains the day the DEP was notified of the LUST, the town in which the tank is located, and for most of the records the material the tank contained and the remediation method. The list does not contain the amount of fuel leaked. The tanks contained gasoline, diesel fuel, kerosene, waste oil, aviation oil, and heating fuel oil. It was assumed that no significant amount of VOCs was emitted if the remediation method was either no corrective action was taken or test wells. All other remediation methods were assumed to result in VOC emissions to the ambient air.

According to the DEP's underground storage tank group: roughly 95 percent of all soil removed is brought to a soil combustor or asphalt batching plants; only about 5 percent of contaminated soil removed from LUSTs go to landfills; the average amount of contaminated soil removed from a typical LUST site is 100 tons; and the average number of days from the time the contaminated soil is excavated to the time it is transported to a soil combustor or taken out of state to an asphalt batching plant is 21 days.

There is only one soil burner in Connecticut and the soil delivered to this facility is stored indoors under negative pressure and emissions are vented through their control equipment. VOC emissions at this facility are accounted for in the point source section of the inventory. All the asphalt-batching plants are located outside of Connecticut. It is not known how the soil is stored prior to being used at these facilities, however, it is assumed that these emissions are already accounted for in that state's point source inventory.

The summary of VOC emissions from leaking underground storage tanks was prepared using the emission factor provided in Emission Inventory Improvement Program's (EIIP) Remediation of Leaking Underground Storage Tanks Method Abstract. Since the amount of material leaked is unknown the default emission factor of 28 pounds of VOC per day per remediation was used. The default emission rate is based on typical levels of gasoline contaminates, quantities of soil removal and theoretical flux rate equations using summer temperatures. In addition, the EIIP methodology states that it was developed for leaking

underground storage tanks that contain gasoline or material of similar volatility and "...applying a gasoline based emission rate to tanks that stored less volatile substances would overestimate the emission rate for these tanks...".

The vapor pressure of gasoline, with a Reid vapor pressure of 10 psi, at 60 degrees Fahrenheit is 700 times more volatile than diesel fuel, or heating oil and 600 times more volatile than jet kerosene⁵. Since a typical remediation of gasoline contaminated soil emits 28 pounds of VOC per day; heating oil, diesel fuel, and kerosene are hundreds of times less volatile; and 95% of all contaminated soil removed is brought to a soil combustor or asphalt batching plant, it was assumed that the VOC s emitted from remediation of tanks containing these substances are negligible.

There were 134 tanks containing gasoline that were identified in 2002 which were remediated using methods that was assumed to emit VOC's to the ambient air.

It was assumed that the contaminated soil brought to a soil combustor or asphalt-batching plant emitted VOC for only 21 days, while the soil brought to a landfill emits VOC emissions for the entire ozone season.

The equation used to calculate the typical summer daily VOC emissions is as follows:

$$E = N \ x \ EF \ x (Land + (Cntrl \ x \frac{Site}{(Days)(Weeks)}))$$

Where:

E	= daily county emissions expressed in pounds per day
N	= number of leaking underground storage tanks in each county that have gone through
	remediation
EF	= emission factor of 28 pounds of VOC per day per remediation.
Land	= percent of soil brought to landfills
Cntrl	= percent of contaminated soil from LUSTs brought to soil combustor or asphalt
	batching plants
Site	= average number of days soil is left on site before being transported to soil combustor
	or asphalt batching plants
Days	= Days per week of activity
Weeks	= Weeks of activity is ozone season

A sample calculation for Fairfield County is:

$$E = 13 x 28 x (0.05 + (0.95 x \frac{21}{(7)(13)}))$$

E = 98 lbs. VOC per day

4 - 126

From the list provided by the DEP's Office of Oil and Chemical Spills, there were 41 leaking underground storage tanks containing gasoline, identified between June and August 2002. It was assumed that remediation was started when the LUST was identified. The annual emissions were calculated by scaling up the summer day emissions using the number of LUST identified in 2002 versus those identified in the summer.

The equation is as follows:

 $E = \frac{E_{DAY} x 7 x 13 x AnnualLUST}{2000 x SummerLUST}$

Where:

A sample calculation for Fairfield County is:

$$E = \frac{98 \ x \ 7 \ x \ 13 \ x \ 32}{2000 \ x \ 13}$$

E = 10.98 tons VOC per year

<u>County</u>	Summer Remediations	Annual Remediations	Daily VOC Emissions (lbs/day)	Annual VOC Emissions <u>(tons/yr)</u>
Fairfield	13	32	98.00	10.98
Hartford	15	33	113.08	11.32
Litchfield	3	10	22.62	3.43
Middlesex	3	4	22.62	1.37
New Haven	5	32	37.69	10.98
New London	1	16	7.54	5.49
Tolland	1	3	7.54	1.03
Windham	0	4	0.00	1.37
State Total:	41	134	309.08	45.96

Table 4.6.6-12002 Emissions from Leaking Underground Storage Tanks

4.6.7 Spills

A database file of the emergency episode reports for calendar year 2002 was obtained from the DEP's Bureau of Waste Management and used to estimate VOC emissions from chemical and oil spills. Emissions from these spills are presented in Table 4.6.7-1 and Table 6, which is located in Appendix C.

When an oil or chemical spill in Connecticut occurs typically adsorbent material such as speedy dry or soil is placed on the spill. A different process is used in disposing of the adsorbent material depending upon the size of the spill. For small spills the adsorbent material containing the oil or chemical spill is swept up and put in the trash. Municipal solid waste is typically picked up once per week and brought to a resource recovery facility where it is combusted. For large spills, when the material spilled is petroleum based, the adsorbent material is brought to a soil combustor or asphalt batching plant.

There is only one soil burner in Connecticut and the soil delivered to this facility is stored indoors under negative pressure and emissions are vented through their control equipment. VOC emissions at this facility are accounted for in the point source section of the inventory. All the asphalt-batching plants are located outside of Connecticut. It is not known how the soil is stored prior to being used at these facilities, however, it is assumed that these emissions are already accounted for in that state's point source inventory.

In determining densities, petroleum was assumed to be the same weight as gasoline. The density of paint thinner could not be found, therefore the density was set equal to mineral spirits. The density of lacquer thinner also could not be found, therefore its density was set equal to acetone. The density of jet fuel was assumed to be that of jet naphtha, which is much more volatile than jet kerosene. When substances were unknown or could not be associated with a similar substance they were assumed to be solvents with a density of 7.0 lbs./gal. When the substance spilled was unknown or the volatility could not be determined then the material was assumed to be very volatile and to evaporate completely to the ambient air. When substances were known but quantity was unknown the average amount of material spilled for that substance

was assumed. When there was only one spill of a substance and the quantity spilled was unknown an average amount of all the spills was used. When determining average quantity of material spilled outliers were removed that would skew the average. VOC emissions resulting from spills less than one gallon were considered negligible.

Because of the way spills are handled in Connecticut, it was assumed that substances with relatively low volatility such as, fuel oils, diesel fuel, lubricating oils, antifreeze, etc. would not volatize off in any appreciable amount. According to the oil and chemical spills section, when the material spilled is identified as petroleum, it is a catch all for petroleum products and may include such things as gasoline, diesel fuel, home heating oil, etc. Spills of petroleum were conservatively assumed to be gasoline. Emissions were computed based upon the density of the material (e.g., 1-gallon of jet fuel equals 6.4 pounds of VOC). The equation used to calculate the annual VOC emissions for this category is as follows:

$$E = \frac{S \ x \ WGT}{2000}$$

Where:

E	= annual county emissions expressed in tons/year
S	= quantity spilled in each county during 1999, expressed in gallons
WGT	= density of product expressed in lbs./gal
2000	= 2000 lbs per ton, unit conversion factor

A sample annual emission calculation for jet fuel spills in Fairfield County is:

$$E = \frac{134 \times 6.4}{2000}$$

$$E = 0.43$$
 tons VOC per year

Daily emissions were calculated by dividing total emissions from spills occurring in June, July, and August by 92 days. The equation used to calculate daily VOC emissions for this category is as follows:

$$E = \frac{S \ x \ WGT}{92}$$

Where:

E

= daily county emissions expressed in pounds/day

4 - 129

S	= quantity spilled in each county during June, July, and August, expressed in gallons
WGT	= density of product expressed in lbs./gal
92	= 92 days in June, July, and August

A sample emission calculation from jet fuel spilled in Fairfield County is:

$$E = \frac{1.00 \ x \ 6.4}{92}$$

E= 0.07 lbs. VOC per day

Table 4.6.7-1Emissions From Oil and Chemical Spills

			Annual VOC	Daily VOC	
Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	Emissions (lbs/Day)	
County = Fairfield					
#2 FUEL	1.00	7.54	0.00	0.08	
ALCOHOL	3.33	6.51	0.01	0.00	
ANTIFREEZE	104.69	9.34	0.49	3.55	
COOLANT	201.00	9.34	0.94	0.00	
DIESEL FUEL	4,569.44	7.30	16.68	99.49	
ETHYLENE GLYCOL	103.00	9.34	0.48	0.30	
FORMALDEHYDE	1.00	9.20	0.00	0.00	
GASOLINE	966.74	6.26	3.03	15.53	
HERBICIDE	49.80	7.20	0.18	3.90	
JET FUEL	134.00	6.76	0.45	0.07	
KEROSENE	61.00	6.76	0.21	0.44	
LIQUID ASPHALT	3.00	1.02	0.00	0.00	
MOTOR OIL	3.33	7.54	0.01	0.27	
OIL	508,626.15	7.54	1,917.01	826.26	
PESTICIDE	104.00	7.20	0.37	8.06	
PETROLEUM	93.80	6.26	0.29	2.74	
POWER STEERING FLUID	1.00	7.54	0.00	0.00	
SOLVENT	11,122.57	7.00	38.93	44.76	
UNKNOWN	272.69	7.00	0.95	9.17	
County Total:	526,421.55		1,980.05	1,014.63	
County =Hartford					
#2 FUEL	2.00	7.54	0.01	0.16	
ACRYLAMIDE	3.33	7.00	0.01	0.00	
ADHESIVE	55.00	7.00	0.19	0.00	
ALCOHOL	3.33	6.51	0.01	0.00	
ANTIFREEZE	1,139.90	9.34	5.32	31.54	
BRAKE FLUID	2.00	7.54	0.01	0.00	
COOLANT	150.50	9.34	0.70	7.16	

Table 4.6.7-1Emissions From Oil and Chemical Spills

Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Annual VOC Emissions (Tons/Year)	Daily VOC Emissions (lbs/Day)
DIESEL FUEL	4,344.33	7.30	15.86	88.21
ETHYLENE GLYCOL	1.00	9.34	0.00	0.00
FORMALDEHYDE	61.00	9.20	0.28	0.00
GASOLINE	41.33	6.26	0.13	1.41
GASOLINE	1,474.73	6.26	4.62	19.96
HERBICIDE	129.00	7.20	0.46	0.00
HYDRAULIC FLUID	1.00	7.54	0.00	0.00
JET FUEL	348.25	6.76	1.18	3.23
KEROSENE	69.71	6.76	0.24	0.37
LIQUID ASPHALT	10.00	1.02	0.01	0.11
MEK	20.00	6.72	0.07	0.00
MINERAL SPIRITS	18.00	6.40	0.06	0.00
MOTOR OILS	3.33	7.54	0.01	0.00
OIL	45,264.17	7.54	170.60	1,009.53
PAINT	3.33	4.50	0.01	0.00
PESTICIDE	79.00	7.20	0.28	0.78
PETROLEUM	178.40	6.26	0.56	1.39
POLYURETHANE	3.33	6.70	0.01	0.00
POWER STEERING FLUID	4.00	7.54	0.02	0.00
PROPANE	12,363.33	4.24	26.18	142.05
SOLVENT	6,091.08	7.00	21.32	96.47
UNKNOWN	299.08	7.00	1.05	14.00
XYLENE	3.00	7.17	0.01	0.16
County Total:	72,166.49		249.20	1,416.53
County = Litchfield				
ANTIFREEZE	88.69	9.34	0.41	3.00
BRAKE FLUID	1.00	7.54	0.00	0.00
DIESEL FUEL	748.89	7.30	2.73	14.75
GASOLINE	327.68	6.26	1.03	5.58
LIQUID ASPHALT	275.00	1.02	0.14	0.00
MEK	7.00	6.72	0.02	0.51

Table 4.6.7-1Emissions From Oil and Chemical Spills

Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Annual VOC Emissions (Tons/Year)	Daily VOC Emissions (lbs/Day)
OIL	10,946.31	7.54	41.26	260.15
PETROLEUM	197.00	6.26	0.62	4.31
PROPANE	45.00	4.24	0.10	2.07
SOLVENT	2,021.46	7.00	7.08	70.01
UNKNOWN	60.54	7.00	0.21	1.02
County Total:	14,718.58		53.60	361.41
County = Middlesex				
ANTIFREEZE	124.56	9.34	0.58	2.80
COOLANT	1.00	9.34	0.00	0.00
DIESEL FUEL	1,023.79	7.30	3.74	14.20
GAS0LINE	2.00	6.26	0.01	0.00
GASOLINE	391.12	6.26	1.22	4.58
JET FUEL	40.12	6.76	0.14	0.00
KEROSENE	534.71	6.76	1.81	34.15
OIL	11,231.66	7.54	42.33	207.08
PETROLEUM	68.40	6.26	0.21	0.34
SOLVENT	1,230.89	7.00	4.31	25.85
UNKNOWN	31.77	7.00	0.11	1.40
County Total:	14,680.02		54.46	290.40
County = New Haven				
#2 FUEL	19.33	7.54	0.07	0.00
ANTIFREEZE	413.12	9.34	1.93	14.98
DIESEL FUEL	11,956.17	7.30	43.64	98.05
ETHYLENE GLYCOL	25.00	9.34	0.12	0.00
GASOLINE	4,388.74	6.26	13.74	17.94
HEPTANE	35.00	5.70	0.10	0.00
HERBICIDE	110.00	7.20	0.40	0.00
JET FUEL	80.25	6.76	0.27	0.00
LIQUID ASPHALT	2.00	1.02	0.00	0.00
MINERAL SPIRITS	2.00	6.40	0.01	0.00
Table 4.6.7-1Emissions From Oil and Chemical Spills

			Annual VOC	Daily VOC	
Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	Emissions (lbs/Day)	
OIL	41,999.53	7.54	158.30	695.89	
PESTICIDE	24.00	7.20	0.09	1.80	
PETROLEUM	192.40	6.26	0.60	2.50	
PROPANE	3,135.83	4.24	6.64	142.05	
SOLVENT	4,205.30	7.00	14.72	91.24	
UNKNOWN	409.54	7.00	1.43	10.18	
County Total:	66,998.22		242.05	1,074.63	
County = New London					
#2 FUEL	1.00	7.54	0.00	0.08	
ANTIFREEZE	166.12	9.34	0.78	3.86	
DIESEL FUEL	1,632.13	7.30	5.96	47.28	
ETHYLENE GLYCOL	32.25	9.34	0.15	0.00	
GAS0LINE	55.00	6.26	0.17	3.74	
GASOLINE	956.74	6.26	2.99	11.48	
JET FUEL	35.12	6.76	0.12	0.73	
KEROSENE	360.00	6.76	1.22	0.00	
MOTOR OILS	3.33	7.54	0.01	0.00	
OIL	16,128.88	7.54	60.79	433.36	
PESTICIDE	46.00	7.20	0.17	1.80	
PETROLEUM	60.60	6.26	0.19	0.98	
PROPANE	30,743.33	4.24	65.10	160.46	
SOLVENT	1,474.41	7.00	5.16	18.15	
UNKNOWN	277.23	7.00	0.97	4.07	
County Total:	51,972.16		143.78	686.00	

Table 4.6.7-1Emissions From Oil and Chemical Spills

			Annual VOC	Daily VOC
Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	Emissions (lbs/Day)
County = Tolland				
ANTIFREEZE	131.00	9.34	0.61	2.34
DIESEL FUEL	581.97	7.30	2.12	5.79
GAS0LINE	5.00	6.26	0.02	0.00
GASOLINE	415.81	6.26	1.30	2.77
OIL	5,230.42	7.54	19.71	86.20
PROPANE	3,085.83	4.24	6.53	142.05
SOLVENT	557.31	7.00	1.95	16.93
TOLUENE	1.00	7.24	0.00	0.00
UNKNOWN	54.54	7.00	0.19	1.02
County Total:	10,062.89		32.45	257.09
County = Windham				
#2 FUEL	3.33	7.54	0.01	0.00
ANTIFREEZE	38.00	9.34	0.18	0.61
DIESEL FUEL	782.87	7.30	2.86	5.47
GASOLINE	141.06	6.26	0.44	3.38
HERBICIDE	10.00	7.20	0.04	0.00
KEROSENE	10.00	6.76	0.03	0.00
MOTOR OILS	3.33	7.54	0.01	0.00
OIL	4,010.10	7.54	15.11	176.58
PETROLEUM	40.20	6.26	0.13	0.00
POWER STEERING FLUID	1.00	7.54	0.00	0.00
SOLVENT	333.79	7.00	1.17	0.00
UNKNOWN	40.15	7.00	0.14	1.02
County Total:	5,413.84		20.12	187.06
State Total:	762,433.75		2,775.70	5,287.75

4.6.8 Breweries

Emissions from breweries were determined by using the AP-42 emission factor based upon the tons of grain handled. This follows the methodology given in Section 4.4.2 of the EPA Procedures document.

Connecticut has many brewpubs and a smaller amount of microbreweries in operation. A questionnaire was sent to each of these facilities requesting the tons of grain handled in 2002. Of the 18 surveys sent out; 6 were returned as undeliverable, these facilities were assumed to be closed, 6 were not returned. To estimate the tons of grain handled at these 6 facilities an average of the tons of grain handled at the other facilities was used (15 tons of grain).

According to the EPA Procedures document a small brewery usually operates year round on an eight-hour per day schedule for about three or four days a week.

The equation used to calculate daily VOC emissions for this category is as follows:

$$E = \frac{EF \ x \ GRAIN}{DAYS \ x \ 52}$$

Where:

E	= daily county emissions expressed in pounds per day
GRAIN	= tons of grain handled by breweries in a county
EF	= emission factor of 2.63 lbs./ton grain handled ⁵
DAYS	= 3 activity days per week, unit conversion factor
52	= 52 weeks per year, unit conversion factor

A sample calculation for Hartford County is:

$$E = \frac{2.63 \times 76.5}{3 \times 52}$$

$$E = 1.29$$
 lbs. VOC per day

The emissions from this category are assumed negligible.

Table 4.6.9-1Summary of Emissions From Breweries

	·	Tons of	Daily VOC	Annual VOC
County	Company	Grain Handled	Emissions (Lbs/Day)	Emissions (Tons/Yr)
Fairfield				
Fairneiu	Bank Street Brewing	5.00	0.08	0.01
	Champion Beyearage Company	0.00	0.00	0.01
	Classic Rock Brewpub	15.00	0.00	0.00
	Southport Brewing	10.00	0.23	0.02
	County Total	30.00	0.51	0.04
Hartford		20.00	0.01	0.01
11	City Steam Brasseire and Brewery Café	40.00	0.67	0.05
	John Harvard's Brew House #5	21.50	0.36	0.03
	Trout Brook Brewery and Restaurant #1	15.00	0.25	0.02
	County Total:	76.50	1.29	0.10
Litchfield	2			
	Hammer and Nails Brewers	15.00	0.25	0.02
	County Total:	15.00	0.25	0.02
New Haven				
	BruRm @Bar	15.00	0.25	0.02
	Naples Pizza and Restaurant	15.00	0.25	0.02
	County Total:	30.00	0.51	0.04
New London				
	Cottrell Brewing	15.00	0.25	0.02
	County Total:	15.00	0.25	0.02
Windham				
	Main Street Café, Willimantic Brewing	13.00	0.22	0.02
	County Total:	13.00	0.22	0.02
	State Total:	179.50	3.03	0.24

4.6.9 Wineries

Most of the VOC emissions from wineries occur during fermentation, filtering and bottling of the wine. According to an employee of Stonington Vineyards, wineries in Connecticut do not begin fermentation until late September or October. According to the Department of Revenue Services, there are 8 wineries in Connecticut. All of the wineries are relatively small. For these reasons, the VOC emissions from wineries in Connecticut during the summer months are considered negligible.

4.6.10 Distilleries

There is only one distillery in Connecticut. The distillery receives already distilled spirits from other facilities outside of Connecticut and blends them together. The distillery performs filtering and reduction of distilled spirits, but they do not perform fermentation or aging. For these reasons, the VOC emissions from distilleries in Connecticut are considered negligible.

4.6.11 Bakeries

Table 4.6.11-1 contains the VOC annual and typical ozone season day emissions from bakeries and the data used in the calculation of these emissions.

The VOC emissions from bakeries were estimated following the procedure outlined in the April 24, 1992 memorandum from Lucy Adams (Radian) to SIP Inventory Preparers and EPA Regions.

VOC's from bakeries are primarily ethanol, which result from yeast fermentation. Only bakery products that are leavened with yeast were considered for this inventory. These products include all breads, rolls, and sweet yeast goods. Bakeries use one of two yeast leavening processes: straight-dough or sponge-dough. The AP-42 emission factors for straight-dough and sponge-dough are 0.5 and 5 to 8 pounds of ethanol per 1,000 pounds of bread, respectively. Most commercial bakeries use the sponge-dough process. Since the sponge-dough emission factor is higher and thus more conservative, the lower sponge-dough emission factor from AP-42 is used along with 1990 per capita sales data to compute a per capita emission factor²². Since, more recent per capita sales data could not be found, it was assumed that the per capita consumption of bread in 1990 and 2002 are the same.

Consumption figures for the above mentioned yeast products were summed up to get a total annual consumption per capita (78.49 lb/yr). The lower emission factor for sponge-dough process 5-lb ethanol/1,000 lb bread produced was used. The calculations to compute the per capita emission factor are presented below:

$$EF = CONS \ x \ EF1$$

Where:

EF = emission factor expressed in pounds VOC per capita
 CONS = per capita consumption of bread and related products in pounds of bread per person
 EF1 = VOC emission factor for sponge-dough process of 5 pounds of VOC per 1,000 pounds bread⁵

The per capita emission factor is:

 $EF = 78.49 \ x \ 0.005$

EF= 0.39 lbs. VOC per capita

A computer search of the Point Source Inventory was used to determine the total bakery emissions accounted for in the Point Source Inventory. To avoid double counting, VOC emissions from bakeries already accounted for in the Point Source Inventory must be subtracted from the total emissions estimated using the per capita emission factor. It was assumed that bakeries operate 6 days per week, 52 weeks per year. The equation used to calculate daily VOC emissions for this category is as follows:

$$ES = \frac{CPOP \ x \ EF}{DAYS \ x \ WEEKS} - PT$$

Where:

= daily county VOC emissions from bakeries expressed in pounds per day
= 2002 county population
= per capita emission factor, 0.39 pounds VOC per capita
= 6 days per week, unit conversion factor
= 52 weeks per year, unit conversion factor
= VOC emissions from bakeries in the point source inventory

The VOC emissions from bakeries in Hartford County are:

$$ES = \frac{867,332 \times 0.39}{6 \times 52} - 0$$

ES = 1,084.17 lbs. VOC per day

County	Population	Annual PT Emissions (Tons/Year)	Daily PT Emissions (Lbs/Day)	Annual Emissions (Tons/Year)	Daily VOC Emissions (Lbs/Day)
Fairfield	896,202	109.50	664.26	65.26	456.00
Hartford	867,332	0.00	0.00	169.13	1,084.17
Litchfield	186,515	0.00	0.00	36.37	233.14
Middlesex	159,679	0.00	0.00	31.14	199.60
New Haven	835,657	0.00	0.00	162.95	1,044.57
New London	262,689	0.00	0.00	51.22	328.36
Tolland	141,089	0.00	0.00	27.51	176.36
Windham	111,340	0.24	0.58	21.47	138.59
State Total:	3,460,503	109.74	664.84	565.06	3,660.79

Table 4.6.11-1Summary of Emissions From Bakeries

4.6.12 Synthetic Organic Chemical Storage Tanks

Storage vessels containing synthetic organic liquids can be found in many industries, including petroleum producing and refining, petrochemical and chemical manufacturing, bulk storage and transfer operations and other industries consuming or producing organic liquids. Emission sources from organic liquids in storage depend upon the tank type. The type of tank used to store the organic liquid is unknown. It was assumed that tanks with a diameter less than 20 feet were external fixed roof tanks, and the remaining tanks were internal floating roof tanks.

"Fixed roof tank emission losses are the result of standing storage and withdrawal losses. Standing storage loss is the expulsion of vapor from a tank through vapor expansion and contraction, which are the results of changes in temperature and barometric pressure. This loss occurs without any liquid level change in the tank. The combined loss from filling and emptying is called withdrawal loss. Filling loss comes with an increase of the liquid level in the tank, when the pressure inside the tank exceeds the relief pressure and vapors are expelled from the tank. Emptying loss occurs when air drawn into the tank during liquid removal becomes saturated with organic vapor and expands, thus exceeding the capacity of the vapor space". Total VOC emissions are calculated by adding withdrawal and standing storage losses together.⁵

"Total emissions from floating roof tanks are the sum of standing storage and withdrawal losses. Withdrawal losses occur as the liquid level, and thus the floating roof, is lowered. Some liquid remains on the inner wall surface and evaporates. For an internal floating roof tank that has a column supported fixed roof, some liquid also clings to the columns and

evaporates. Evaporative loss occurs until the tank is filled and the exposed surfaces are again covered. Standing storage losses from floating roof tanks include rim seal and deck fitting losses, and for internal floating roof tanks also include deck seam losses for constructions other than welded decks. Other potential standing storage loss mechanisms include breathing losses as a result of temperature and pressure changes". Total VOC emissions are calculated by adding withdrawal and standing storage losses together. ⁵

Storage tank data were obtained from the 20002 Tier II database maintained by the Department of Environmental Protection as required by Title III of the Superfund and Amendments and Reauthorization Act. The database originally contained 6,011 observations, but after deleting any known non-volatile organic compounds and other data that was already accounted for in the point source inventory and other sections of the area source inventory, 942 observations remained, see Table 7 of Appendix C. Of the remaining 942 observations, sufficient data were available to calculate characteristic values such as density, vapor pressure, and molecular weight for 99 of the observations, see Table 8 and Table 9 of Appendix C. The VOC emissions for 94 of the 99 tanks for which data was available were assumed to have fixed roofs since their diameter was estimated to be less than 20 feet. The methodology in AP-42 section 7.1 was used to estimate the VOC emissions from synthetic organic chemical external fixed and internal floating roof storage tanks.

Since much of the data needed to compute standing storage and withdrawal losses was not available, various assumptions were made. The average atmospheric pressure at tank location was assumed to be 14.7 psia. The vapor space height was set to one-half of the tank height. To estimate the total daily solar insolation factor AP-42 Table 7.1-7 was used. The nearest city listed in AP-42 Table 7.1-7 is New York City. The daily total solar insolation factor of 1,784 Btu/ft²d for New York City was used for Connecticut. The maximum ozone summer day temperature, which is 95.5 degrees Fahrenheit, and the minimum ozone summer day temperature, which is 67.7 degrees Fahrenheit for Greater Connecticut in 2002 was used. It was assumed that the average tank's paint was light gray and in good condition and the corresponding tank paint solar absorptance was taken from AP-42 Table 7.1-6. The breather vent pressure setting range, ΔP_B , was assumed to be 0.06 psig. This assumption is recommended by AP-42 when the breather vent pressure setting range is unknown. The density, molecular weight, and vapor pressure for each of the 99 observations were obtained from AP-42 Table 7.1-3. No throughput data was available, but the average daily amount of chemical stored on site is known. It was assumed that the average daily amount of chemical stored on site was throughput each month, thus, the annual net throughput was assumed to be the average daily amount of chemical stored on site multiplied by 12. In addition it was assumed that there were 12 turnovers per year. Tank volume was calculated by dividing the average daily amount of chemical stored on site by the density of the chemical multiplied by a conversion factor of 7.4805 (7.4805 gal = 1 cubic foot). The average daily amount of chemical stored on site is reported by industries using a range value. For example if an industry has between 10,000 and 99,999 pounds of chemical stored on site on an average day then they would report their amount as range value "04".

To determine the pounds of chemical stored on site on a typical day the median value in each range was assumed.

$$V = \frac{AD}{DEN \ x \ 7.4805}$$

It was assumed that the tank diameter was equal to the tank height. The tank diameter was calculated based on the storage volume estimated above. To obtain tank height, the tank diameter was assumed to equal the tank height. The tank height was calculated by multiplying the volume by $4/\pi$ and the resulting number was taken to the .3333 power.

$$V = \frac{D^2 x T_H x \Pi}{4}$$
 Or $D = (\frac{4 x V}{\pi})^{.333333}$

Where:

nemical stored on site (lbs)
al)

AP-42 Section 7.1 was used to estimate the VOC emissions for this category. Due to the great number of equations involved in estimating the VOC emissions using this method, no sample calculation is provided for this category.

Since only 99 of the 942 observations had emissions calculated, a multiplication factor of 7.47 was applied to total emissions so as to make sure all of the 942 observations were accounted for. This scale-up factor was estimated by dividing the 67,351,550 pounds of volatile synthetic organic chemicals (SOC) stored statewide by the 9,011,700 pounds of volatile SOC stored in the tanks for which VOC emissions were calculated (pounds).

The state total VOC emissions from SOC tanks in 2002 were apportioned based upon the total pounds of SOC stored in each county (see Table 4.6.12-1).

A sample calculation for the tank height and diameter from a synthetic organic chemical storage tank containing isopropanol at the The Stamford Corporation in Fairfield County is as follows:

Tank Volume

$$V = \frac{50,000}{6.573 \, x \, 7.4805}$$

V = 1016.89 cubic feet

4 - 142

Tank Height and Diameter

$$D = \left(\frac{4 x \ 1,016.89}{\pi}\right)^{.333333}$$

D=10.9 ft (11 ft rounded off)

Table 4.6.12-1

C		T • •	D	α		G A A	<u>•</u> ••	CI • 1	C 4	m 1
Nummary	ZOT The	Emissions	КV	linnty	V Hrom	Synthetic	()rganic	• Chemical	Storage	lanks
Summar		11113510115	Dy.	Count	,	Synthetic	Organic	Chemical	Diorage	T anno

<u>County</u>	Amount On Site (lbs)	Annual Emissions (Tons/Year)	Daily VOC Emissions (Lbs/Day)
Fairfield	9,292,650	16.66	91.55
Hartford	35,577,100	63.79	350.49
Litchfield	1,443,500	2.59	14.22
Middlesex	2,244,550	4.02	22.11
New Haven	15,226,400	27.30	150.00
New London	566,100	1.02	5.58
Tolland	60,700	0.11	0.60
Windham	2,940,550	5.27	28.97
State Total:	67,351,550	120.76	663.51

4.6.13 Barge, Tank, Tank Truck, Rail Car and Drum Cleaning

The VOC emissions from this category are assumed negligible because the VOC emissions from Barge, Tank, Tank Truck, Rail Car and Drum Cleaning is less than one percent of the VOC emissions from synthetic organic chemical manufacturers.

4.7 REFERENCES FOR SECTION 4

- 1. <u>Connecticut Population and Housing Characteristics, 1990 Census Complete Count Data</u> and 1999 population data, Connecticut State Data Center, Office of Policy and Management, From OPM's website, October 2000.
- 2. State of Connecticut Department of Revenue Services, Excise Tax Subdivision, 92 Farmington Ave., Hartford, CT 06105.
- 3. Regulations of Connecticut State Agencies, Abatement of Air Pollution. Section 221-174 of the Connecticut General Statutes.
- 4.. Petroleum Product Vendor Registration Program FY90, Office of Policy and Management, Energy Division, State of Connecticut, 1992.
- 5. <u>Compilation of Air Pollution Emission Factors (AP-42)</u>, Fifth Edition, with supplements A, B, C, D, E, and F, US EPA, OAQPS, Research Triangle Park, NC, May 1998.
- 6. <u>User's Guide to MOBILE 6.1 and 6.2 Mobile Source Emission Factor Model</u>, Document EPA420-R-03-010, US EPA, OMS, August 2003.
- 7. <u>1990 Base Year Ozone And Carbon Monoxide Emissions Inventory</u>, Department of Environmental Protection, State of Connecticut, Hartford, CT. November 1993.
- 8. Department of Transportation, State of Connecticut, Wethersfield, CT.
- 9. <u>2001 Residential Energy Consumption Survey: Household Energy Consumption and Expenditures</u> <u>Tables</u>, Energy Information Administration, EI 30, 1000 Independence Avenue, SW, Washington, DC 20585
- 10. <u>Procedures for the Preparation of Emission Inventories for Carbon Monoxide and Precursors of</u> <u>Ozone</u>, Vol. 1, US EPA, OAQPS, May 1991.
- 11. Fax from Bill Cronin, Federal Aviation Administration, New England Region, Boston, MA, June 1998.
- 12. Connecticut Labor Department, Employment Security Division, Office of Research and Information, State of Connecticut, Hartford, CT, 96.
- 13. Bureau of Engineering and Highway Operation, Department of Transportation, State of Connecticut, August 1997.

- 14. Acres of Farmland by Town in 1996, Fred Schmura, Office of Policy and Management, State of Connecticut, May 1998.
- 15. <u>Surface Impoundment Modeling System (SIMS) Version 2.0 User's Manual</u>, OAQPS, US EPA, Research Triangle Park, NC, Sept. 1990.
- 16. <u>Local Climatological Data Monthly Summary</u>, Bradley Field, Hartford & LaGuardia Airport, New York, US Department of Commerce, NOAA, 1996.
- 17. <u>Pesticides Industry Sales And Usage: 1992 and 1993 Market Estimates</u>, Document 733-K-94-001, US EPA, Research Triangle Park, NC, June 1994.
- 18. <u>Connecticut Housing Production and Permit Authorized Construction, 1990</u>, Connecticut Department of Housing, 1990.
- 19. <u>Summary of Social, Economic, and Housing Characteristics</u>, Bureau of Census, U.S. Department of Commerce, Washington, DC, 1991.
- 20. Residential Use of Wood fuel in Connecticut, RPM Systems Inc., New Haven, CT, Oct 1991.
- 21. <u>The Climate of Connecticut</u>, State Geological and Natural History Survey, Joseph J. Brumbach, Bulletin #99, 1968.
- 22. <u>Bakery Production and Marketing Magazine</u>, June.
- 23. <u>Solid Waste Management Plan State of Connecticut</u>, Connecticut Department of Environmental Protection, 1983.
- 24. <u>Study of Stage I Rule Effectiveness in Connecticut</u>, Connecticut Department of Environmental Protection, Debra Tedford, 1995.
- 25. Telephone Conversation with Dennis Greci, Connecticut Department of Environmental Protection, Bureau of Water Management, July, 1997.
- 26. <u>Description of Establishment of Municipal Solid Waste Landfill Inventory</u>, Connecticut Department of Environmental Protection, Scott Koschwitz, June 1998.
- 27. Telephone Conversation with Pat Mitchell, Hudson Company, Providence, RI June 1998.
- 28. <u>EIIP Area Sources Preferred and Alternative Methods</u>, US EPA OAQPS, July 1997.
- 29. Email from Bradford Robinson To Chris Mulcahy, Connecticut Department of Environmental Protection, Bureau of Waste Management, October 4, 2000

- 30. <u>Report MA28F-Paint and Allied Products</u>, U.S. Census Bureau, Department of Commerce, Washington D.C.
- 31. <u>Highway Statistics for 2001</u>, Federal Highway Administration, U.S. Department of Transportation, Washington, D.C.
- 32. <u>Data Needs and Availability for Wild Land Fire Emission Inventories- Short-term Improvements to</u> <u>the Wild Land Fire Component of the National Emission Inventory</u>, EC/R Incorporated, Chapel Hill, NC
- 33. <u>MANE-VU Residential Wood Burning Combustion Emission Inventory</u>, prepared by E.H. Pechan & Associates, Inc., P.O. Box 1345, 6245 Pleasant Valley Road, El Dorado, CA 95623
- 34. <u>Solvent Mass Balance Approach For Estimating VOC Emissions From Eleven Nonpoint Solvent</u> <u>Source Categories</u>, EC/R Incorporated, Chapel Hill, NC.

SECTION 5 BIOGENIC SOURCES

EPA provided the VOC, NOx and CO typical summer day and annual emissions for Biogenics. According to EPA¹, the emissions were estimated using the following:

- 1) 2001 annual meteorology
- 2) Biogenic Emissions Inventory System 3.12 (BEIS3.12) model via the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system
- 3) Recently revised BEIS3.12 emission factors file
- 4) Biogenic Emissions Land use Database version 3 (BELD3) land use data (1-km original data aggregated to 36-km grid).
- 5) Post processing summation of county-total emissions from SMOKE, calculated from 36km grided emissions using the "land area" spatial surrogate. This means that when calculating the county total numbers, the 36-km grided emissions were assumed to be uniformly distributed over the grid cell for purposes of mapping to the counties.

The meteorology data used was based on a Lambert conformal grid that matches the national "unified grid", which has a 36-km grid cell size resolution. The meteorology data were computed using the Pennsylvania State/ National Center for Atmospheric Research Mesoscale Model (MM5) and then the Meteorology Chemistry Interface Processor (MCIP), preprocessor to the Community Multiscale Air Quality (CMAQ) model. The BEIS3.12 model uses the following data from the MCIP outputs: air temperature at 10 meters, surface pressure, solar radiation reaching the surface, convective precipitation, volumetric soil moisture in top centimeter, soil temperature in the top centimeter, and soil texture type by United States Department of Agriculture (USDA) category.

The annual and typical summer day biogenic emissions in each county were obtained from EPA^1 and are presented in Table 5-1.

	Summer Day VOC	Summer Day NOx	Summer Day CO	Annual VOC	Annual NOx	Annual CO
County	(lbs/day)	(lbs/day)	(lbs/day)	(tons/year)	(tons/year)	(tons/year)
Fairfield	79,899.82	420.59	10,039.56	5,771.80	47.60	816.10
Hartford	102,294.97	511.58	11,430.77	7,215.20	55.90	904.20
Litchfield	140,606.97	622.48	15,417.58	9,847.10	68.50	1,212.90
Middlesex	78,481.21	453.30	8,916.48	5,650.10	51.80	724.40
New Haven	92,880.48	441.21	10,995.60	6,694.30	49.90	893.20
New London	105,161.36	458.81	10,204.40	7,480.40	52.30	825.40
Tolland	80,783.34	460.86	9,006.59	5,718.70	49.40	711.50
Windham	108,350.66	454.70	9,824.18	7,602.70	49.10	777.70
State Total:	788,458.81	3,823.53	85,835.16	55,980.30	424.50	6,865.40

Table 5-1 Summary Of the 2002 Biogenic Emissions By County

5.2 REFERENCES FOR SECTION 5

1. E-mail from Bob McConnell, EPA-Region 1 to Christopher Mulcahy, Connecticut Department of Environmental Protection, Bureau of Air Management.

SECTION 6 QUALITY ASSURANCE

6.1 INTRODUCTION

Based upon EPA interpretation of Section 110(c)(3) of the CAA (codified in 40 CFR 51 Subpart Q), Connecticut is required to submit an emissions inventory to support SIP development in areas designated as non-attainment of the NAAQS. The 2002 Periodic Emission Inventory (2002 Point Inventory, 2002 Area Inventory and 2002 Mobile Inventory) compiled by the State of Connecticut encompasses all areas designated by EPA in the April 30, 2004, Federal Register notice (Vol. 69, FR 23858) as non-attainment for the new 8-hour ozone standard. In support of inventory development activities, the Department of Environmental Protection Bureau of Air Management (the Bureau) authored and submitted a quality assurance project plan to EPA for approval. The plan entitled Quality Assurance/Quality Control (QA/QC) Plan for Inventory Development¹ was accepted by EPA in 1991 and was incorporated as part of Connecticut's Inventory Preparation Plan.

This QA/QC plan formalized many of the procedures that were used in developing the <u>1987 State</u> <u>Implementation Plan (SIP) Emissions Inventory</u>². The plan was subsequently used in developing the 1990 Base Year Emissions Inventory and has been used in the 1993, 1996, and 1999 Periodic Emissions Inventories as well. This plan defines systematic procedures to:

- ensure the inventory is complete;
- assure the emission inventory is accurate and of the highest quality possible;
- secure the reasonableness of the emissions inventory; and
- confirm the emissions inventory is in compliance with EPA reporting requirements.

In this section the following basic elements are discussed. Section 6.2 states the purpose of the emissions inventory and presents the quality assurance statement; Section 6.3 describes the staff's responsibilities in developing the emissions inventory; Section 6.4 discusses the technical operation; Section 6.5 describes some of the QA/QC procedures utilized during the development of the emissions inventory and Sections 6.6 through 6.8 document the results of QA review for Point, Area, and Mobile sectors respectively.

6.2 PURPOSE AND INTENTION OF THE QA/QC PLAN

The purpose of the emissions inventory is to maintain an accurate record of point, area, and mobile air emissions. The emissions inventory plays an integral part in the Bureau's air quality improvement programs. The emissions inventory is used for:

- Enforcing and monitoring Connecticut's air program;
- Supporting other air quality programs;

- Evaluating trends in air quality;
- Supporting the development of the state's regulations;
- Supplying data for use in air quality models;
- Developing fee programs.

The purpose of the QA/QC plan is to ensure the development of a complete and accurate emissions inventory. As part of this plan, steps have been taken during the development of the emissions inventory to verify that it is reasonable. The scope of the Connecticut's involvement in developing and implementing the QA/QC plan is documented in Figure 6-1 with the Quality Assurance Policy Statement.

6.3 ORGANIZATION OF THE EMISSIONS INVENTORY AND THE QA/QC PROGRAM

The Emissions Inventory Group in the Bureau's Planning and Standards division developed the emissions inventory. An organizational chart of the personnel involved in developing the emissions inventory and a breakdown of responsibilities is shown in Figure 6-2.

The development of the inventory is divided into four main sections: Point Source, Mobile Source (on/off road), Area Source, and QA/QC activities. Members of the inventory group develop the three emission sections. A person from outside the inventory group is responsible for overseeing QA/QC activities.

The coordination between the different sections of the inventory other than the QA/QC activity is the responsibility of the supervising engineer of the inventory group. The supervising engineer has many years of experience in developing inventories and was responsible for overseeing the development of the 2002 Periodic Emissions Inventory. Within the inventory group, each member works closely with other members to ensure that all of the data is consistent and that double counting of emissions is avoided. The QA/QC coordinator acts as an outside reviewer of the inventory development to ensure the inventory is complete and accurate.

The 2002 Point Inventory was compiled by the supervising engineer and a staff engineer with the aide of two personnel who entered Emissions Statement data into the database. The staff engineer has 2 years of experience with expertise in database management and analysis. The supervising and staff engineers are responsible for ensuring that Emission Statements received from point source owners are reasonable and calculated correctly.

A senior engineer with more than 16 years of experience and another engineer with over one year of experience and considerable knowledge in data analysis developed the 2002 Area Inventory. The senior engineer was responsible for the development of the area source component of the 2002 periodic inventory.

An engineer with 1 year of experience in mobile sources developed the 2002 On-Road and Non-road Mobile Inventories. This engineer works closely with the supervisor of the inventory group, other engineers from the Bureau, and the Connecticut Department of Transportation to assure the mobile source data is as reasonable and accurate as possible.

Figure 6 - 1

Quality Assurance Policy Statement

The objective of the emission inventory is to compile an accurate and comprehensive inventory of emissions and facility data from point, area, and mobile sources for the current base year. The 1990 SIP inventory will be developed for volatile organic compounds (VCC), nitrogen oxides (NOx), and carbon monoxide (CO).

To ensure that this inventory is of the highest quality, the State of Connecticut Department of Environmental Protection Bureau of Air Management will apply certain quality assurance procedures at a number of points in the inventory process. The State of Connecticut Department of Environmental Protection will follow the procedures outlined in <u>Guidance For The Preparation Of</u> Quality Assurance Plans For O₃/CO SIP Emission Inventories.

oordina

Agenc Adminis trator

(Bureau Chief)

March 1991

Figure 6-2

Organization Chart of Individuals Involved In Developing the Emission Inventory

Department of Environmental Protection

Division of Air Quality Planning & Standards

Emission Inventory Group (860) 424-3027

William Simpson (Supervisor)

Chris Mulcahy (Area Source Inventory)

Steven Potter (Mobile Source Inventory)

Andrew Pollak (Point Source Inventory)

Department of Transportation

Bureau of Planning & Standards

Forecasting Group (860) 594-2026

Paul Buckley (Senior Planner) Data Analysis and Validation Group (860) 424-3027

Ellen Pierce, Ph.D (Supervisor)

Michael Trahiotis (QA/QC Officer)

6.4 TECHNICAL PROCEDURES

The emissions inventory is developed using a systematic procedure developed by the EPA. This systematic procedure incorporates four basic elements: task planning, data collection and analysis, data handling, and data reporting.

6.4.1 Task Planning

During the task planning portion of the emission inventory, personnel were assigned certain sections of the inventory to develop based on their experience and expertise in a particular area. Once assigned, the person would determine what method would yield the most accurate and reasonable emissions estimates for their source category. All of the methods used by the Bureau to develop the inventory are based on EPA recommended procedures.

The same source categories were used in the development of the 2002 Periodic Inventory as were used in the 1990 Base Year Inventory. For some source categories, adjustments were made to the 1990 estimates based on changes in applicable activity levels (e.g., sales, population, vehicle miles traveled (VMT), and fuel use) to obtain emission estimates for 2002.

The point source inventory was updated using new data from the 2002 Emission Statements sent out in January 2003. As the Emission Statements were returned, the Bureau checked the statements for accuracy and entered the new data into the inventory. Quality assurance calculations were performed on all annual emissions estimates. Facility wide emissions were required to agree within 1 ton per year with quality assurance calculations prior to acceptance of emissions data as final in the database. AP-42 emission factors were primarily used to calculate the emissions based on information in the Emission Statements.

The area source inventory was updated using population adjustments, updated sales data, and other relevant data. This data was obtained primarily from the Department of Revenue Services (DRS) and the Connecticut Office of Policy and Management (OPM). For example, if a source based its emissions on a per capita emission factor, the adjustment would be made based on the change in population from 1990 to 2002.

The mobile source inventory was updated using 2002 VMT and related data obtain from the Connecticut Department of Transportation (CT DOT). Emission estimates were then obtained by running the Mobile6.2 emissions model based on the CT DOT data.

Another aspect of the task planning portion of the emissions inventory technical procedure is scheduling and project planning. The activities in Table 3-3 and 3-4 in the <u>Quality</u> <u>Assurance/Quality Control (QA/QC) Plan for Inventory Development¹</u> were conducted on a routine basis, hence no rigid time structure is stated. During the development of the 2002 Periodic Emissions Inventory, the logical check point activities were carried out by the inventory personnel. By following these procedures, some deficiencies were located and corrected. Quality control checks were also included in the task planning portion of the emissions inventory.

6.4.2 Data Collection and Analysis

The data collection and analysis portion of the technical procedure involved: identifying the emission sources; utilizing the appropriate data collection procedure; confirming the data quality; using the correct calculation procedures; and verifying the emission estimates.

EPA's source lists were followed when identifying emission sources for the 2002 Periodic Emissions Inventory. Each emission source was identified and researched to verify if the source category applied to Connecticut. The methods used to collect the data are documented in the inventory narrative. For some categories, data were compared with the data from another reference (e.g., SCC 2465000000 Consumer/Commercial Solvent Use). Then engineering judgment was used to select the data most suitable for Connecticut. Computer programs that were developed specifically for generating the emissions inventory performed most calculations. The engineer maintains a record of equations and the assumptions used in developing the emissions estimates responsible for developing that section of the emissions inventory. The emission estimates were manually verified and using dimensional analysis checked the equations.

6.4.3 Data Handling

Separate databases are utilized for the point, area, and mobile source categories. The person who is responsible for the given category in the emission inventory maintains their respective database. Data is electronically or manually input into the database. The databases are electronically linked to computer programs which thereby minimize manual error.

6.4.4 Data Reporting

Data is reported as requested by EPA in the procedure documents and as shown on the example emission inventory document. It is the responsibility of the respective members of the inventory group to report each data category in a manner approved by EPA. During development of the inventory, members of the inventory group verified that the data was reported in an acceptable manner.

6.5 QA/QC PROCEDURES

QA/QC procedures were performed throughout the development of the 2002 Periodic Emissions Inventory. The procedures included checking calculations and procedures used in the inventory and conducting consistency checks on sections of the completed 2002 draft SIP emissions inventory. In previous years EPA has recommended that the State concentrate on verifying that: (1) emission estimation calculations were performed accurately; (2) data reported to EPA in the National Emissions Inventory (NEI) be reviewed to ensure that accurate transfer of the data has occurred; and (3) Level II consistency checklists be completed for each sector of the inventory. In support of these objectives, the QA/QC Officer conducted a QA review of each section of the 2002 Periodic Emissions Inventory. The results of the 2002 Point Inventory review will be presented in Section 6.6 and is followed by Area Sources and Mobile in sections 6.7 and 6.8 respectively. The results of the Level II Quality Review Checklist for each sector are briefly discussed in each section and a complete copy of the checklist is presented in Appendix D.

6.6 POINT SOURCE QA/QC AUDIT

6.6.1 Introduction

Section 2 'Stationary Point Sources' provides a thorough discussion describing the methods and procedures utilized to generate Connecticut's 2002 Point Inventory. The discussion ranges from the history of Connecticut's point source inventory, to emission statement examples, to step-by-step calculations for selected source categories (i.e. fuel burning source, Stoddard solvent losses from a dry cleaning unit). The section is well written and the process implemented by the Emissions Inventory Group to generate the 2002 Point Inventory is clearly communicated. The scope of the QA review was limited to manual calculation verification, comparisons to the MANE-VU 2002 Inventory and the CT 1999 NEI Inventory, and completion of the Level II Quality Review Checklist.

6.6.2 Manual VOC Calculations

The list provided below identifies the point/stack id combinations with estimated emissions greater than 1000 pounds per day VOC. The lists were utilized to select specific point and stack id's for hand calculation of Emission Statement data. The purpose of this review was to verify the accuracy

twn	prem	pointid	stackid	descript	name	vear	SCC	units	VOC. lbs/day
	prom	pointia	otacina	accerpt		yeur	500	1000	100, 100, aug
117	53	P0139	015	GASOLINE LOADING RACK	MOTIVA ENTERPRISES LLC	2002	40600141	GAL	3432.1
								TONS	
189	27	P0026	117	REAC TRAIN 103, 104, 106, 107	CYTEC INDUSTRIES INC	2002	30101899	PROD	1778.9
					PRATT & WHITNEY DIV			TONS	
53	9	U0004	804	THIN SOLV: IPA PMC 9094	UTC	2002	40200912	SOLV	1310
					CONN DEPT OF			1000	
213	9	E0010	018	EMERGENCY GEN 14 UNITS	TRANSPORTATION	2002	20300101	GAL	1251.9
								TONS	
189	27	R0182	054	REAC TRAIN 61/62, 66, & 65/68	CYTEC INDUSTRIES INC	2002	30101899	PROD	1217.9
								1000	
15	17	R0733	002	TRUCK LOAD RACK - GAS	MOTIVA ENTERPRISES LLC	2002	40600141	GAL	1186.1
								1000	
117	88	P0241	016	TRUCK LOAD RACK - GAS	GULF OIL L.P.	2002	40600141	GAL	1016.3

of data entry that was transcribed from hardcopy on the Emission Statements to the database. And further to assess the ability of the database to accurately calculate the emissions that were reported in Table 7 (Daily Emissions with RE, lbs/day) and Table 1 (Premises Emissions with RE, TPY). The four processes highlighted were verified via hand calculation. This review identified two errors in the reporting of ozone season daily fuel usage. The source of one error (U0004/804) was identified to be the conversion from annual solvent usage to ozone season daily solvent usage. The facility did

not divide their reported solvent usage by the number of days in the ozone season (91) and thus the daily emissions rate was higher by a factor of 91 than should have been calculated. In the other instance (E0010/018), the daily fuel use rate was entered in the units of gallons and not in thousands of gallons as requested on the Emission Statement. This error resulted in the over-reporting of daily fuel usage by 1000 times and thus VOC, NOx and CO emissions estimates were in error by a factor of 1000. Both errors were reported to the Emissions Inventory Group and the database was updated to reflect the correct summer day usages. The two other point/stack combinations (P0026/117 & P0241/016) were found to accurately report data provided on the emissions statement. Hand calculations of annual emissions for town/premise combinations (53/9, 213/9 & 117/88) verified the annual emissions reported in Table 1 were accurately reported.

6.6.3 Manual NOx Calculations

The list provided below identifies the point/stack id combinations reported to emit greater than 1000 pounds per day NOx.

twn	prem	pointid	stackid	descript	name		scc	units	NOx, lbs/day
					CONN DEPT OF			1000	
213	9	E0010	018	EMERGENCY GEN 14 UNITS	TRANSPORTATION	2002	20300101	GAL	13046.4
					NRG MIDDLETOWN			1000	
104	24	P0003	005	BLR C.E. #4	OPERATIONS, INC	2002	10100404	GAL	10880
					PSEG PWR CT LLC/BPT				
15	45	P0089	003	C.E. STEAM GENERATOR #3	HARBOR STA	2002	10100212	TONS	10208.9
					NRG MIDDLETOWN			1000	
104	24	R0100	003	BLR B&W (CY) #3	OPERATIONS, INC	2002	10100401	GAL	8611.4
					PSEG FOSSIL LLC/ POWER			1000	
117	551	P0031	001	C.E. STEAM GENERATOR 1	CT LLC	2002	10100404	GAL	5837.9
				ABB GT-24, UNIT #1 CC				1000	
105	251	P0068	001	TURBINE	MILFORD POWER CO LLC	2002	20100101	GAL	4817.1
				ABB GT-24, UNIT #2 CC				1000	
105	251	P0069	001	TURBINE	MILFORD POWER CO LLC	2002	20100101	GAL	3854.6
					NRG MONTVILLE			1000	
107	5	R0020	004	BLR C.E. #6	OPERATIONS, INC	2002	10100404	GAL	3581.7
					WHEELABRATOR			TONS	
15	765	P0097	010	B&W RES RECOV INCIN #1	BRIDGEPORT LP	2002	50100101	BURN	2753.1
					WHEELABRATOR			TONS	
15	765	P0098	011	B&W RES RECOV INCIN #2	BRIDGEPORT LP	2002	50100101	BURN	2740.1
					WHEELABRATOR			TONS	
15	765	P0099	012	B&W RES RECOV INCIN #3	BRIDGEPORT LP	2002	50100101	BURN	2601.7
					NRG MIDDLETOWN			MIL	
104	24	R0098	002	BLR RILEY #2	OPERATIONS, INC	2002	10100601	CU FT	2514.3
					AMERICAN REF FUEL CO OF			TONS	
150	12	P0001	001	DBA REFUSE INCIN #1	SE CT	2002	50100102	BURN	1679
					CAPITOL DISTRICT ENERGY			MIL	
75	766	P0064	001	GE PG 6531 GAS TURBINE	CENTER	2002	20200203	CU FT	1668.9
					C R R A / MID-			TONS	
75	158	P0044	101	C.E. VU-40 INCIN #1	CONNECTICUT	2002	50100103	BURN	1637.1
					AMERICAN REF FUEL CO OF			TONS	
150	12	P0002	001	DBA REFUSE INCIN #2	SE CT	2002	50100102	BURN	1593.6
					C R R A / MID-			TONS	
75	158	P0046	101	C.E. VU-40 INCIN #3	CONNECTICUT	2002	50100103	BURN	1584.9
					C R R A / MID-			TONS	
75	158	P0045	101	C.E. VU-40 INCIN #2	CONNECTICUT	2002	50100103	BURN	1537.3
					ALGONQUIN WINDSOR			MIL	
213	1	P0029	029	GE PB6541B GAS TURBINE	LOCKS LLC	2002	20200203	CU FT	1446.2
107	44	P0010	005	BLR CE FLUID BED #1	A E S THAMES, LLC	2002	10100217	TONS	1392.6
107	44	P0011	005	BLR CE FLUID BED #2	A E S THAMES, LLC	2002	10100217	TONS	1178.2
				FT-4 TURBINE DRIVE ENG	PRATT & WHITNEY DIV			1000	
104	7	P0027	114	X960	UTC	2002	20400101	GAL	1173.9
	l	D 000			NRG NORWALK HARBOR		101001	1000	11.00.0
137	14	R0028	001	BLR C.E. #1	OPERATIONS	2002	10100404	GAL	1160.6
1.00		D 000-			SPRAGUE PAPERBOARD		100001	MIL	
170	2	R0003	001	BLR B&W PFI-22-0 #1	INC	2002	10200601	CUFT	1155.1
		Dece						TONS	
26	202	P0027	002	MARTIN/ZURN INCIN #2	COVANTA BRISTOL, INC	2002	50100101	BURN	1120
	202	DOCAL	0.01		OGDEN MARTIN SYSTEMS	0000	C010010	TONS	1005
26	202	P0026	001	MARTIN/ZURN INCIN #1	OF BRISTL	2002	50100101	BURN	1096
15	962	D0100	005	260 MW SIEMENS TUDDINE	RRIDCEDORT ENERCY LLC	2002	20100201	CULET	1000.4
15	862	P0190	005	200 MW SIEMENS I URBINE	BRIDGEPORT ENERGY LLC	2002	20100201	CUFT	1009.4

The six processes highlighted were verified via hand calculation for daily emissions and town/premise combination 75/158 was verified for annual emissions. As previously identified, town/premise 213/9 was corrected by the Inventory Group. Hand calculations of daily and annual emissions verified the emissions reported in Tables 1 and 7 for NOx were accurately reported.

6.6.4 Manual CO Calculations

The list provided below identifies the point/stack id combinations reported to emit greater than 1000 pounds per summer and winter day CO. The 3 processes highlighted were verified via hand calculation for daily emissions and town/premise combination 15/45 was verified for annual emissions. As previously identified, town/premise 213/9 was corrected by the Inventory Group. Hand calculations of daily and annual emissions verified the emissions reported in Tables 1 and 7 for CO were accurately reported.

									CO Summer,
twn	prem	pointid	stackid	descript	name	year	scc	units	lbs/day
				ABB GT-24, UNIT #1 CC				1000	
105	251	P0068	001	TURBINE	MILFORD POWER CO LLC	2002	20100101	GAL	6939
					CONN DEPT OF			1000	
213	9	E0010	018	EMERGENCY GEN 14 UNITS	TRANSPORTATION	2002	20300101	GAL	2808
					NRG MIDDLETOWN			1000	
104	24	R0100	003	BLR B&W (CY) #3	OPERATIONS, INC	2002	10100401	GAL	2522.2
107	44	P0010	005	BLR CE FLUID BED #1	A E S THAMES, LLC	2002	10100217	TONS	1591.2
107	44	P0011	005	BLR CE FLUID BED #2	A E S THAMES, LLC	2002	10100217	TONS	1481.8
				ABB GT-24, UNIT #2 CC				1000	
105	251	P0069	001	TURBINE	MILFORD POWER CO LLC	2002	20100101	GAL	1461.8
					NRG MIDDLETOWN			1000	
104	24	P0003	005	BLR C.E. #4	OPERATIONS, INC	2002	10100404	GAL	1370.6
					PSEG PWR CT LLC/BPT				
15	45	P0089	003	C.E. STEAM GENERATOR #3	HARBOR STA	2002	10100212	TONS	1261.8
					PSEG FOSSIL LLC/ POWER			1000	
117	551	P0031	001	C.E. STEAM GENERATOR 1	CT LLC	2002	10100404	GAL	1221.8
					CAPITOL DISTRICT ENERGY			MIL	
75	766	P0064	001	GE PG 6531 GAS TURBINE	CENTER	2002	20200203	CU FT	1212.3
					ALGONQUIN WINDSOR			MIL	
213	1	P0029	029	GE PB6541B GAS TURBINE	LOCKS LLC	2002	20200203	CU FT	1087.1
									CO Winter

									CO Winter,
twn	prem	pointid	stackid	descript	name	year	scc	units	lbs/day
					PSEG FOSSIL LLC/ POWER			1000	
117	551	P0031	001	C.E. STEAM GENERATOR 1	CT LLC	2002	10100404	GAL	1581.4
107	44	P0010	005	BLR CE FLUID BED #1	A E S THAMES, LLC	2002	10100217	TONS	1560.7
					PSEG PWR CT LLC/BPT				
15	45	P0089	003	C.E. STEAM GENERATOR #3	HARBOR STA	2002	10100212	TONS	1558.7
107	44	P0011	005	BLR CE FLUID BED #2	A E S THAMES, LLC	2002	10100217	TONS	1492
					ALGONQUIN WINDSOR			MIL	
213	1	P0029	029	GE PB6541B GAS TURBINE	LOCKS LLC	2002	20200203	CU FT	1122.5

6.6.5 Level II Quality Review Checklist

The Level II Quality Review Checklist was completed during an interview with Andrew Pollak and is provided in Appendix D. Completion of the checklist verified that the 2002 Point Inventory was compiled in accordance with EPA guidance. Section 2.3.1 of the checklist asks states to evaluate the following question, "Does the sum of emissions from small VOC point sources (10-25 TPY)

represent at least 5 percent of the total point source VOC contribution?" The sum of emissions estimates for sources between 10 and 25 tons per year (TPY) was calculated to be 1,575 TPY. This estimate constitutes 4.6% of the total VOC emission estimate of 34,027 TPY. The sum of emissions estimates for the small VOC point sources was less than 5%, but was within 0.4% of the target value and thus judged to meet the tolerance presented in the checklist.

Section 2.3.2 of the Level II Quality Review Checklist asks states to evaluate the following question, "Are unadjusted annual emissions estimates (*without rule effectiveness*) for VOC, CO and NOx from point sources within 25% of the values reported in NEI (*with rule effectiveness*)". The annual and daily emissions data presented in the table below were generated to answer the question posed above. Both NOx and CO were well within the 25% difference. The annual and daily emission estimates for VOC were found to increase by 137% and 93% respectively in response to the application of 80% rule effectiveness.

It is important to note that the data presented in the table below was generated by a query of the emissions database on September 16, 2005. Thus the annual and daily emissions estimates with rule effectiveness do not exactly match the values reported in the 2002 Point Inventory. The estimates calculated in support of this analysis were compared with the 2002 Point Inventory estimates and found to be in very close agreement.

	Annual Emi	ssions, TPY	Percent	Daily Emissi	Percent	
Pollutant	w/out RE	with RE	Change	w/out RE	with RE	Change
VOC	2,058	4,879	137%	16,456	31,680	93%
NO _x	12,358	12,922	5%	103,200	113,600	10%
CO	3,936	4,444	13%	33,462	39,400	18%

The Truck Loading Rack at Gulf Oil Inc. (P0241/016) was selected to illustrate the potential impact rule effectiveness can have on VOC emissions estimates. Manual calculations performed in support of this analysis are provided at the end of this section. Per 2002 Emission Statement requirements, Gulf Oil reported a control efficiency of 99.3% for emissions from the loading rack. The equations provided in Example 2, Gasoline Loading Racks of the CTDEP Manual Emission Statement Instruction Manual for Reporting 2002 Calendar Year Emissions³ were utilized to calculate VOC emissions with and without rule effectiveness. The daily VOC emissions estimates with and without rule effectiveness calculated below for this rack were 1012.23 and 110.03 pounds per day (PPD) respectively. Fugitive emissions from the rack comprise 71% of the unadjusted daily VOC emissions and were not subject to rule effectiveness. The non fugitive emissions from the rack that were controlled prior to release increased from 31.8 to 934 PPD with the application of rule effectiveness In this specific example, the emissions from the rack subject to rule effectiveness increased by more than 1 order of magnitude.

The loading rack at Gulf Oil Inc. reported 251.2 million gallons of product processed in 2002. The large increase in emissions resulting from application of rule effectiveness can be attributed to the volume of product processed in combination with the reported 99.3 % control efficiency.

After compilation of the 2002 Point Inventory, EPA released a draft document <u>Emission Inventory</u> <u>Guidance for Implementation of Ozone and Particulate Matter National Ambient Air Quality</u> (NAAQS) and Regional Haze Rules⁴. This draft document represents a shift from EPA's prior rule effectiveness recommendation that states apply the 80% default to a recommendation that states apply a rule effectiveness value commensurate with the evaluation of source specific criteria. Based upon the relative increase in VOC emission estimates from controlled sources due to rule effectiveness, the Inventory Group should review EPA's updated guidance and consider implementing new procedures to account for rule effectiveness in the 2005 Periodic Emissions Inventory.

The equation used to calculate typical ozone daily VOC emissions for a gasoline loading facility is:

$$Es = \frac{Q \times EF \times Ts}{Ds \times Ws} \times [1 - (EFF)]$$

Where:

Es	=	seasonally adjusted daily emissions (PPD)
Q	=	throughput (x 1,000 gal/year)
EF	=	emission factor (lbs/1,000 gallons)
Ts	=	seasonal rate of use
EFF	=	Control efficiency
Ds	=	7 days per week
Ws	=	13 weeks per ozone season

The calculation of daily VOC emissions for the example gasoline loading facility is:

$$Es = \frac{251,193.2 \times 6.33 \times 0.26}{7 \times 13} \times [1 - (0.993)] = 31.8 PPD$$

The equation used to calculate daily fugitive emissions for the gasoline loading facility is:

$$Efs = \frac{Q \ x \ EFf \ x \ Ts}{D_s \ x \ W_s}$$

Where:

Efs	=	daily fugitive VOC emissions (TPY)
Q	=	throughput (x 1,000 gallons/year)
EFf	=	fugitive emission factor. EPA recommended fugitive emission factor for
		loading racks is 9 mg/L (0.075 lbs/1,000 gallons).
Ts	=	seasonal rate of use
Ds	=	7 days per week
Ws	=	13 weeks per ozone season
1 1	C 1 '1	

The calculation of daily fugitive VOC emissions for the gasoline loading facility is:

$$Efs = \frac{251,193.2 \times 0.109 \times 0.26}{7 \times 13} = 78.23 PPD$$

The equation to calculate total daily VOC emissions (Ets) for the example gasoline loading facility would be:

$$Ets = Es + Efs$$

6 - 11

The calculation of daily total VOC emissions for the gasoline loading facility is:

$$Ets = 31.8 + 78.23 = 110.03 PPD$$

The equation used to calculate typical ozone daily VOC emissions adjusted for Rule Effectiveness for a gasoline loading facility is:

$$Es = \frac{Q \times EF \times Ts}{Ds \times Ws} \times [1 - (EFF \times RE)]$$

Where:

Es	=	seasonally adjusted daily emissions (PPD)
Q	=	throughput (x 1,000 gal/year)
EF	=	emission factor (lbs/1,000 gallons)
Ts	=	seasonal rate of use
EFF	=	Control efficiency
RE	=	Rule Effectiveness (80%)
Ds	=	7 days per week
Ws	=	13 weeks per ozone season
		-

The calculation of daily VOC emissions for the example gasoline loading facility is:

$$Es = \frac{251,193.2 \times 6.33 \times 0.26}{7 \times 13} \times [1 - (0.993 \times 0.80)] = 934 PPD$$

The calculation of daily total Rule Effectiveness adjusted VOC emissions for the gasoline loading facility is:

$$Ets = 934 + 78.23 = 1012.23 PPD$$

6.6.6 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories

EPA guidance suggests states evaluate the reasonableness of their emission estimates⁵. In order to assess emission estimate reasonableness comparisons were made to the MANE-VU 2002⁶ and the CT 1999 NEI Inventories. The tables provided below compare the tons per year reported emissions and the percent change between the emissions inventories. The 2002 Point Inventory compares very closely to the MANE-VU 2002 Inventory. In comparison to the CT 1999 NEI, The 2002 Point Inventory estimates for VOC, NOx, and CO emissions are 21, 32 and 30% lower respectively. The inventory comparisons provided affirmatively answer that the emission estimates reported for the 2002 Point Inventory were reasonable.

		Point
Inventory	Pollutant	w/RE, TPY
2002 Point Inventory	VOC	4,821
CT MANE-VU 2002	VOC	4,907
CT 1999 NEI	VOC	6,077
2002 Point Inventory	NOx	12,929
CT MANE-VU 2002	NOx	12,923
CT 1999 NEI	NOx	19,151
2002 Point Inventory	СО	4,049
CT MANE-VU 2002	CO	4,053
CT 1999 NEI	СО	5,776

Comparisons		Point
Inventory	Pollutant	% Change
2002 Point Inventory to MANE-VU 2002*	VOC	-2%
*Expressed as % of 2002 Point Inventory	NOx	0%
	СО	0%
2002 Point Inventory to CT 1999 NEI*	VOC	-21%
*Expressed as % of CT 1999 NEI	NOx	-32%
	СО	-30%

6.7 AREA SOURCE QA/QC AUDIT

6.7.1 Introduction

Section 4 'Area Sources' provides a thorough discussion describing the methods and procedures utilized to generate Connecticut's 2002 Area Inventory. Sections 4.2 through 4.6 provide a clear and concise description of the methodologies and procedures utilized to calculate emissions estimates for each source category. Generally, area source emission estimates are derived from the product of activity and emission factor estimates. Activity estimates were obtained from sources such as excise tax revenue, surveys, employee estimates, and model outputs. The emission factors utilized in the 2002 Area Inventory were obtained, unless otherwise noted, from <u>Compilation of Air Pollutant Emission Factors</u>, Fifth Edition, Volume I (AP-42)⁷. The emission factor table in the database utilized to calculate the 2002 Area Inventory was imported directly from AP-42. This methodology provides a high degree of confidence that the proper emission factor as referenced in AP-42 was applied in the area inventory. The scope of this QA review did not seek to verify the precision, accuracy or reasonableness of activity estimates. The scope of the QA review was limited to manual calculation verification, comparisons to the MANE-VU 2002 Inventory and the CT 1999 NEI Inventory, and completion of the Level II Quality Review Checklist.

6.7.2 Manual Calculations

Limited manual calculations were performed to verify emissions estimates. Section 4 provides an in-depth description of the input variables and calculations performed in the generation of each source categories emission estimate. The documentation for each source category was reviewed and the text was verified to consistently match the equations provided. Manual calculations were performed to verify the daily VOC emissions estimates provided for Fairfield County emissions from Tank Truck Loading as well as Hartford County Vehicle Fueling (Stage II and non-Stage II). All emissions estimates reported in Section 4 verified via manual calculation were accurate.

6.7.3 Level II Quality Review Checklist

The Level II Quality Review Checklist was completed during an interview with Chris Mulcahy and is provided in Appendix D. Completion of the checklist verified that the 2002 Area Inventory was compiled in accordance with EPA guidance. Consistency checks calculated in support of questions 2.6.1 through 2.6.12 were predominately within the recommended range. As suggested in question 2.6.5, emissions from autobody refinishing were calculated to be 0.3 pounds per person. This value is outside the 1.7 to 2.9 pounds per person recommended range. However, the low emission estimate is consistent with the use of low pressure guns (HVLP) in Connecticut.

6.7.4 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories

The tables provided below compare the tons per year reported emissions and the percent change between the emissions inventories. The 2002 Area Inventory compares very closely to the MANE-

		Area
Inventory	Pollutant	w/RE, TPY
2002 Area Inventory	VOC	81,260
CT MANE-VU 2002	VOC	82,050
CT 1999 NEI	VOC	100,499
2002 Area Inventory	NOx	12,356
CT MANE-VU 2002	NOx	12,689
CT 1999 NEI	NOx	14,649
2002 Area Inventory	CO	69,190
CT MANE-VU 2002	CO	70,198
CT 1999 NEI	CO	186,770

Comparisons		Area
Inventory	Pollutant	% Change
2002 Area Inventory to MANE-VU 2002*	VOC	-1%
*Expressed as % of 2002 Area Inventory	NOx	-3%
	CO	-1%
2002 Area Inventory to CT 1999 NEI*	VOC	-19%
*Expressed as % of CT 1999 NEI	NOx	-16%
	CO	-63%

VU 2002 Inventory. The 2002 Area Inventory estimates for VOC, NOx, and CO emissions are 1, 3 and 1% lower respectively than those reported in the MANE-VU 2002 Inventory. In comparison to the CT 1999 NEI, the 2002 Area Inventory estimates for VOC, NOx, and CO emissions are 19, 16 and 63% lower respectively. Section 4.5.4 'Other Fuel Consumption' of the 2002 Area Inventory report discusses two factors that combine to lower the CO emissions estimate by 63%. The CT 1999 NEI used growth estimates from a 1989 survey to estimate the distribution of furnace types and wood consumption⁸. The 2002 Area Inventory adopted a regional survey conducted in support of the MANE-VU 2002 Inventory⁹. This updated wood consumption survey shifted the distribution of furnace types to a higher proportion of newer, low-emitting furnaces as well as reduced the quantity of wood consumed per year. The inventory comparisons provided affirmatively answer that the emission estimates reported for the 2002 Area Inventory were reasonable.

In an effort to further the comparison between the 2002 Area Inventory and MANE-VU 2002 Inventory, Fuel Combustion source categories were selected to compare NOx emissions estimates. The table provided below compares annual NOx emissions from residential and commercial combustion source categories with emissions greater than 100 TPY. All categories, with the exception of Residential Fuel Use LPG, agreed within plus or minus 10%. Residential Fuel Use LPG was further reviewed to identify the source of the difference between the two inventories. The 2002 Area Inventory applied the 14 lbs per 1000 gallons emission factor documented in AP-42 FIRE 6.25. Review of MANE-VU documentation identified that E.H. Pechan & Associates, Inc. (Pechan) selected an emission factor of 8 lbs per 1000 gallons to estimate emissions for this source category. QA review was not able to determine a reference from which Pechan selected to substitute an emission factor in place of that documented in AP-42 FIRE 6.25.

Fuel Use Type	CT 2002 NOx, TPY	2002 MANE-VU NOx. TPY	Percent Change
Commercial Heating Natural Gas	1.986	2.151	-8%
Commercial Heating Residential #6	280	259	8%
Commercial Heating Distillate Oil #2	1,190	1,085	9%
Residentail Wood	821	787	4%
Residential Fuel Use Natural Gas	1,908	1,952	-2%
Residential Fuel Use #2 Fuel Oil	4,803	5,087	-6%
Residential Fuel Use LPG	408	229	44%

The MANE-VU 2002 Inventory was compiled to support regional air quality planning efforts. Pechan obtained emissions inventories from the EPA via states submittal of preliminary inventories as required by the Consolidated Emissions Reporting Requirement (CERR). PECHAN then preformed a rigorous QA review and communicated with states to resolve issues identified in their review¹⁰. PECHAN staff and Christopher Mulcahy, the principal engineer responsible for the 2002 Area Inventory, completed an iterative process wherein the results of the QA review were updated into the Emission Inventory Group's area inventory database. The updated area inventory database was then utilized to prepare the preliminary area source submission for Connecticut's 2002 Periodic Emissions Inventory.

Thus the quality assurance procedures employed by Pechan in support of the MANE-VU 2002 Inventory provided a cross-benefit to the 2002 Area Inventory that was submitted by Connecticut. The reference to a quality assurance review for the area sources is technically viable due to the

iterative quality assurance review process documented by Pechan with the Emissions Inventory Group. The reference to QA review does not imply or assume that the MANE-VU 2002 Inventory and the 2002 Area Inventory are identical. As discussed above, in specific cases like Residential Fuel Use LPG, MANE-VU substituted default values or emission factors for data submitted by states. However, the breadth of scope of the Pechan review combined with the overall comparison between the two inventories provides the ability to reference the quality assurance procedures conducted by Pechan even though all of the inputs utilized to calculate each inventory were not identical.

6.8 MOBILE SOURCE QA/QC AUDIT

6.8.1 Introduction

Section 3 'Mobile Sources' provides a thorough discussion describing the methods and procedures utilized to generate Connecticut's 2002 Mobile Inventory. The 2002 Mobile Inventory can be subdivided into two sectors, highway vehicles and non-road sources. EPA Mobile6.2 model was run to calculate emission factors that were then imported to a post-processor database where emission estimates were calculated based upon Connecticut specific input data (vehicle miles traveled (VMT), I/M Program, vehicle age distribution). EPA NONROAD Model (April 2004 Draft) was run to calculate emission estimates for all non-road categories except aircraft, commercial marine, and locomotive. Aircraft and locomotive emission estimates were calculated from fuel use and apportioned based on commerce data. The scope of this QA review did not seek to verify the Mobile6.2 or NONROAD Models, since EPA directed use of these models. The scope of the QA review was limited to manual calculation verification, comparisons to the MANE-VU 2002 Inventory and the CT 1999 NEI Inventory, and completion of the Level II Quality Review Checklist.

The input data supplied to the NONROAD Model by the Emission Inventory Group did not replace files that estimated the population of non-road equipment in Connecticut. The input data reported in Appendix B Table 5 were reviewed but emission calculations and emission estimates were not verified as all calculations were made within the NONROAD Model. Therefore, limited QA Checklist questions pertaining to the non-road inventory were assessed where it was determined the QA Review would benefit from the answer provided.

6.8.2 Highway Vehicles Manual Calculations

New Haven Expressway Light Duty Gasoline Vehicles and Tolland County Heavy Duty Diesel Vehicles 8B were selected to perform manual calculation of emissions. VMT and composite emissions factors were obtained from MOBILE6.2 output reported in Attachment E1. The product of county level expressway VMT and composite emission factor was converted to Tons VOC per day units. Each calculation matched the values reported in Table 9.

6.8.3 Aircraft Manual Calculations

Hartford Hospital Helipad was selected as an airport to manually calculate emissions. The data reported in Table 3.4-2 were imported to an excel spreadsheet to perform the calculations with the aid of a mathematical expression. The 1,692 landings and takeoffs associated with Hartford Hospital Helipad were inserted into the 'Annual LTO's' column of the table. The annual emissions calculations for VOC, NOx, and CO were then performed and the 3 types of aircraft represented summed. The data reported in Table 3.4-3 for annual emissions for the helipad were verified to be correct. Furthermore, statewide annual emissions from aircraft reported in Table 3.4-3 were confirmed to be consistent with emission factors presented in Table 3.4-2.

6.8.4 Commercial Marine Manual Calculations

New Haven Harbor was selected to manually calculate emissions from the marine sector. The distillate and residual fuel usage reported in Table 3.5-1 was verified to be correct. Fuel usage and emissions factors provided in Table 3.5-3 were then utilized as inputs to the equations provided on page 3-46 to calculate emissions. The Bridgeport Harbor calculation provided in the sample calculation was reviewed, and was found to be correct and consistent with presented results. New Haven Harbor calculations identified a small error in VOC and NOx results presented in Table 3.5-2. Manual calculation determined the NOx emissions for New Haven Harbor to be 14.3 TPY, while the value reported in Table 3.5-2 on page 3-50 was 18 TPY. Review of the documentation and the method utilized in generation of the report identified the source of the discrepancy. Residual fuel daily emissions estimates were inappropriately totaled as yearly emissions when formatting data to produce Table 3.5-2. Data reported to EPA in the Preliminary 2002 Mobile Inventory NEI submission were verified to be consistent with the manual calculations. Thus, corrections to the report were required and no corrections to the files submitted to NEI required revision. Minor corrections to annual and daily VOC and NOx were required in Table 3.5-2 and in summary Table 3.3-1, as a result of the identified error.

6.8.5 Locomotive Manual Calculations

Line haul locomotives from Tolland County were selected to manually calculate VOC and NOx emissions. EPA documents <u>Technical Highlights Emission Factors for Locomotives</u>¹¹ and <u>Conversion Factors for Hydrocarbon Emission Components</u>¹² were obtained to verify emission factor calculations. The emission factor for line haul locomotives was correctly converted to VOC units from THC units per EPA guidance in <u>Conversion Factors for Hydrocarbon Emission</u> <u>Components</u>¹². The data reported in Table 3.6-4 for daily emissions from line haul locomotives were verified to be correct.

The conversion factor reported in <u>Conversion Factors for Hydrocarbon Emission Components</u>¹² for line haul locomotives is based upon speciated data from four on-road highway diesel engines. The

5.3% increase in emissions resulting from the THC to VOC conversion is relatively small. However, the composition of diesel exhaust is the result of a complex system that includes such factors as engine load and idling. Given that the conversion from THC to VOC is applied to all long haul locomotive emissions nationwide, it would benefit the accuracy and precision of the National Periodic Emissions Inventory to have speciated data from locomotives as the basis of conversion factors to adjust emissions from one expression to another (THC to VOC).

6.8.6 Level II Quality Review Checklist

The Level II Quality Review Checklist was completed during an interview with Steven Potter and is provided in Appendix D. Completion of the checklist verified that the 2002 Mobile Inventory was compiled in accordance with EPA guidance. VMT per person and VMT per gallon of gasoline were calculated as requested in 2.9.3 and 2.9.4 respectively. The 2002 Mobile Inventory estimates 8,600 VMT per person and 19 VMT per gallon. Both values are within the recommended range. Further, the VMT per vehicle was calculated to be 12,191 miles. This calculation is reasonable given typical urban/suburban travel patterns in Connecticut.

6.8.7 Comparison to MANE-VU 2002 & CT 1999 NEI Inventories

The tables provided below compare the tons per year reported emissions and the percent change between the emissions inventories. The 2002 Mobile Inventory compares very closely to the MANE-VU 2002 Inventory. The 2002 Mobile Inventory estimates for VOC and NOx emissions are 3 and 7% lower respectively than those reported in the MANE-VU 2002 Inventory. The 2002 Mobile Inventory estimates for CO were 32% lower than those reported in the MANE-VU 2002 Inventory. The 2002 Inventory utilized monthly average meteorological data in support of annual emissions estimates, whereas the 2002 Mobile Inventory used summer day emission factors with annual VMT to calculate annual emission estimates. Summer emissions factors for CO are less than winter emission factors and therefore it is logical that the 2002 Mobile Inventory is less than the MANE-VU 2002 Inventory.

In comparison to the CT 1999 NEI, the 2002 Mobile Inventory estimates for VOC, NOx, and CO emissions are 34, 10 and 17% lower respectively. The amplitude of VOC emission reductions relative to NOx and CO was determined to be consistent with two regulatory programs. In 1999 the Northeast introduced the National Low Emission Vehicles (NLEV) standards. Vehicle fleets sold in Connecticut model years 1999 through 2002 were required to reduce their emissions of non-methane organic gases (NMOG) by 50% of TIER I standards. Also in 2000, EPA implemented the second phase of the reformulated gasoline program. Lower fuel volatility levels required by the program resulted in lower VOC levels in the 2002 Mobile Inventory (1999 RVP 8.0 and 2002 RVP 6.9). These introductions in conjunction with the removal of older, higher emitting vehicles from the Connecticut vehicle fleet should result in continued VOC reductions in future inventories.

		Mobile On-road	Mobile Non-road
Inventory	Pollutant	TPY	TPY
2002 On-road Inventory	VOC	30,911	29,067
CT MANE-VU 2002	VOC	31,755	27,654
CT 1999 NEI	VOC	46,741	27,041
2002 On-road Inventory	NOx	64,028	21,405
CT MANE-VU 2002	NOx	68,816	24,276
CT 1999 NEI	NOx	70,816	50,629
2002 On-road Inventory	CO	426,371	280,342
CT MANE-VU 2002	CO	562,124	272,172
CT 1999 NEI	CO	514,038	260,731

Comparisons		Mobile On-road	Mobile Non-road
Inventory	Pollutant	% Change	% Change
2002 On-road Inventory to MANE-VU 2002*	VOC	-3%	5%
*Expressed as % of 2002 On-road Inventory	NOx	-7%	-13%
	СО	-32%	3%
2002 On-road Inventory to CT 1999 NEI*	VOC	-34%	7%
*Expressed as % of CT 1999 NEI	NOx	-10%	-58%
	СО	-17%	8%

6.9 **REFERENCES FOR SECTION 6**

- 1. Connecticut Department of Environmental Protection. <u>Quality Assurance/ Quality Control</u> <u>Plan For Emission Inventory Development</u>, Bureau of Air Management. March 1991.
- 2. Connecticut Department of Environmental Protection. Bureau of Air Management Emission Inventory 1987, Bureau of Air Management. October 1990.
- 3. <u>Emission Statement Instruction Manuel for Reporting 2002 Calendar Year Emissions</u> Bureau of Air Management. January 1993.
- 4. <u>Emission Inventory Guidance for Implementation of Ozone and Particulate Matter National</u> <u>Ambient Air Quality (NAAQS) and Regional Haze Rules</u>, EPA Draft Document, June 2003.
- 5. <u>EIIP Volume VI: Chapter 3 General QA/QC Methods Final Report</u>, Radian Corporation, 1997.
- 6. <u>2002 MANE-VU Regional Inventory</u>. Downloaded from MARAMA website in May of 2005.
- 7. <u>Compilation of Air Pollution Emission Factors (AP-42)</u>, Fifth Edition, with supplements A, B, C, D, E, and F, US EPA, OAQPS, Research Triangle Park, NC, May 1998.
- 8. <u>Residential Use of Wood fuel in Connecticut</u>, RPM Systems Inc., New Haven, CT, Oct 1991.
- MANE-VU Residential Wood Burning Combustion Emission Inventory, prepared by E.H. Pechan & Associates, Inc., P.O. Box 1345, 6245 Pleasant Valley Road, El Dorado, CA 95623
- 10. <u>Area and Point Source Emissions Modeling Inventory Project: Final</u>, prepared by E.H. Pechan & Associates, Inc., Carolina Environmental Program, and RWDI West Inc. January 2005.
- 11. <u>Technical Highlights Emission Factors for Locomotives</u>, US EPA, OMS, December 1997, Document Number EPA420-F-97-051
- 12. <u>Conversion Factors for Hydrocarbon Emission Components</u>, US EPA, OTAQ, May 2003, Document Number EPA420-P-03-002

STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

Gina McCarthy Commissioner

Bureau of Air Management

2002 PERIODIC OZONE AND CARBON MONOXIDE EMISSIONS INVENTORY

Appendices A, B, C, D, and Attachments

DECEMBER, 2005

79 Elm Street Hartford, CT 06106

Final Point Source List For the State of Connecticut 2002 Annual Emissions by Premises & County of Major Sources or Sources That Actually Emitted 10 TPY of VOC or NOx, or 25 TPY of CO

AFS County	AFS Plant				Prem Wi	ises Emissi th RE (TPY	ons Y)
#	ID	Premises Name	City/Town	SIC #	VOC	NOx	CO
Fairfield (County						
001	167	MOTIVA ENTERPRISES LLC	BRIDGEPORT	5171	255.00	0.00	0.00
001	195	PSEG PWR CT LLC/BPT HARBOR STA	BRIDGEPORT	4911	26.17	1,736.53	212.94
001	258	BRIDGEPORT MUTUAL MGMT CORP	BRIDGEPORT	6513	0.02	0.76	0.19
001	388	BURNS CONSTRUCTION CO	BRIDGEPORT	3357	1.61	16.76	3.61
001	742	PEOPLE'S BANK	BRIDGEPORT	6036	0.13	4.68	1.54
001	875	INTERCHURCH RESIDENCES	BRIDGEPORT	6513	0.02	0.89	0.19
001	881	CASCO PRODUCTS CORPORATION	BRIDGEPORT	3634	0.02	0.26	0.22
001	915	WHEELABRATOR BRIDGEPORT LP	BRIDGEPORT	4953	3.69	1,444.30	65.94
001	1012	BRIDGEPORT ENERGY LLC	BRIDGEPORT	4911	13.91	306.89	52.36
001	2193	STP PRODUCT MANUFACTURING CO.	BROOKFIELD		1.11	0.77	29.55
001	2259	RISDON-AMS COSMETIC CONT DIV	DANBURY	3479	14.56	0.77	0.63
001	2408	DANBURY /DPW (LANDFILL)	DANBURY	9511	5.39	4.95	9.21
001	2476	KINGSWOOD KITCHENS INC	DANBURY	2434	19.85	0.00	0.00
001	2504	DANBURY HIGH SCHOOL	DANBURY	8211	0.76	12.82	10.72
001	2540	PRESTONE PRODUCTS CORP	DANBURY	8734	0.01	0.01	0.24
001	3408	ARNOLD FOODS COMPANY	GREENWICH	2051	68.88	7.34	3.30
001	3408	BESTFOODS BAKING CO	GREENWICH	2051	1.21	0.13	0.03
001	3417	CONNECTICUT JET POWER, LLC	GREENWICH	4911	0.51	8.33	0.63
001	3919	VISHAY VITRAMON,INC	MONROE	3675	6.31	0.00	0.00
001	4203	NORWALK HOSPITAL ASSOCIATION	NORWALK	8062	6.71	38.88	12.03
001	4214	NRG NORWALK HARBOR OPERATIONS	SOUTH NORWALK	4911	10.57	185.02	50.06

Final Point Source List For the State of Connecticut 2002 Annual Emissions by Premises & County of Major Sources or Sources That Actually Emitted 10 TPY of VOC or NOx, or 25 TPY of CO

AFS	AFS			Premises Emissions			
County	Plant				Wi	ith RE (TP)	Y)
#	ID	Premises Name	City/Town	SIC #	VOC	NOx	CO
001	4225	PEPPERIDGE FARM INC	NORWALK	2051	39.78	11.88	2.55
001	4491	SOUTH NORWALK ELECTRIC & WATER	NORWALK	4911	0.04	0.24	0.09
001	4608	LA JOIES'S AUTO/SCRAP RECYCL	SOUTH NORWALK		1.13	11.81	2.54
001	5327	LAUREL RIDGE	RIDGEFIELD	8051	0.05	0.51	0.11
001	5486	SPONGEX CORPORATION	SHELTON	3086	147.67	3.15	2.52
001	5519	C R R A / SHELTON	SHELTON	9511	32.48	0.46	1.50
001	5994	GENERAL ELECTRIC CAPITAL CORP	STAMFORD	7389	0.29	4.87	4.06
001	6001	PITNEY BOWES INC	STAMFORD	3579	4.48	4.90	1.48
001	6009	STAMFORD HOSPITAL	STAMFORD	8062	0.22	6.35	1.69
001	6041	SPARTECH POLYCAST	STAMFORD	3081	0.05	0.79	0.17
001	6041	SPARTECH POLYCAST, INC	STAMFORD	3081	30.52	4.07	2.68
001	6375	HAYES HOUSE % CONSOLIDATED MGT	STAMFORD	6513	0.05	1.61	0.65
001	6617	PITNEY BOWES INC	STAMFORD	3579	0.05	1.24	0.68
001	7955	SIKORSKY AIRCRAFT	STRATFORD	3721	29.18	55.86	25.21
001	7958	ROSS & ROBERTS INC	STRATFORD	3081	22.24	4.59	2.22
001	8117	SARTOMER CO INC	STRATFORD	2869	395.06	0.35	0.29
001	8173	HAMPFORD RESEARCH INC	STRATFORD	2869	17.55	0.58	0.12
001	8455	ST JOSEPHS MANOR	TRUMBULL	8051	0.06	1.14	0.68
001	8820	ASML, US INCORPORATED	WILTON	3827	1.93	5.04	3.73
Totals F	or Fairfield				1,159.23	3,889.52	506.34
Hartfor	d County						
003	19	PRO LINE PRINTING INC	AVON	2752	9.10	28.00	6.37
003	406	JACOBS VEHICLE SYSTEMS, INC	BLOOMFIELD	3714	1.58	25.33	7.96
003	518	LESRO INDUSTRIES INC	BLOOMFIELD	2521	24.40	0.00	0.00
003	719	FIRESTONE BUILDING PRODUCTS CO	BRISTOL	3086	6.61	0.77	0.16
003	791	MARTIN CABINET INC	BRISTOL	2434	21.49	0.00	0.00
003	902	COVANTA BRISTOL, INC	BRISTOL	4953	1.02	187.31	13.82
003	902	OGDEN MARTIN SYSTEMS OF BRISTL	BRISTOL	4953	0.96	172.10	14.46
003	1333	CANTON VILLAGE CONSTRUCTION CO	CANTON	1429	1.30	13.58	2.92
003	1509	PRATT & WHITNEY DIV UTC	EAST HARTFORD	3724	9.87	219.55	102.30

_

Final Point Source List For the State of Connecticut 2002 Annual Emissions by Premises & County of Major Sources or Sources That Actually Emitted 10 TPY of VOC or NOx, or 25 TPY of CO

AFS	FS AFS Premises Emissions						ions
County	Plant				Wi	ith RE (TP	Y)
#	ID	Premises Name	City/Town	SIC #	VOC	NOx	СО
003	1510	PRATT & WHITNEY DIV UTC	EAST HARTFORD	3724	5.24	59.12	16.09
003	2064	HAMILTON STANDARD DIV UTC	EAST WINDSOR	3728	0.01	0.22	0.19
003	2064	HAMILTON SUNDSTRAND CORP	EAST WINDSOR	3728	0.02	0.27	0.20
003	2205	COMASEC SAFETY INC	ENFIELD	3069	10.60	0.00	0.00
003	2464	TRANS FLEX PACKAGERS INC	UNIONVILLE	2673	2.05	0.07	0.01
003	2775	PREFERRED FIXTURES	EAST GLASTONBURY	2541	3.72	0.22	0.07
003	3043	HARTFORD STEAM COMPANY	HARTFORD	4961	2.69	56.80	38.09
003	3059	C R R A / MID-CONNECTICUT	HARTFORD	4953	8.19	848.13	487.50
003	3094	M. SWIFT & SONS INC	HARTFORD	3497	0.12	0.85	0.09
003	3405	M D C /HARTFORD WPCF	HARTFORD	4952	25.94	17.65	22.36
003	3471	THE HARTFORD STEAM CO	HARTFORD	4911	0.79	39.93	24.37
003	3666	CAPITOL DISTRICT ENERGY CENTER	HARTFORD	4931	25.72	124.80	81.82
003	3671	CONN EDUCATION ASSOC INC	HARTFORD	8631	0.01	0.08	0.02
003	3671	CT ED ASC INC C/O CUSHMAN & WA	HARTFORD	8631	0.04	0.39	0.08
003	3678	CONN DEPT CORR / HARTFORD CCC	HARTFORD	9223	0.09	1.30	0.89
003	3694	HARTFORD COURANT CO	HARTFORD	2711	0.03	0.36	0.19
003	3695	MINNESOTA METHANE LLC	HARTFORD	9511	1.46	10.70	44.77
003	5227	DYNAMIC GUNVER TECHNOLOGIES	MANCHESTER	3728	0.19	0.00	0.00
003	5632	STANLEY HARDWARE DIV	NEW BRITAIN	3429	0.09	1.48	1.24
003	5882	STANLEY TOOLS DIV	NEW BRITAIN	3423	31.41	2.33	0.81
003	6103	HARTFORD HOSPITAL/NEWINGTON	NEWINGTON	8062	0.05	0.75	0.63
003	6484	WASLEY PRODUCTS INC	PLAINVILLE	3069	4.73	0.00	0.00
003	6704	CITGO PETROLEUM CORP	ROCKY HILL	5171	106.76	2.89	7.31
003	6715	CONN NATURAL GAS CORP	ROCKY HILL	4924	0.01	0.14	0.05
003	7029	TILCON CONNECTICUT INC	SOUTHINGTON	1422	0.00	0.00	0.00
003	8209	AMERADA HESS CORP	WETHERSFIELD	5171	7.80	0.00	0.00
003	8209	AMERADA HESS CORP-WETHERSFIELD	WETHERSFIELD	5171	58.25	0.00	0.00
003	8601	ALGONQUIN WINDSOR LOCKS LLC	WINDSOR LOCKS	4911	48.01	283.97	212.84
003	8602	HAMILTON SUNDSTRAND CORP	WINDSOR LOCKS	3728	15.73	19.41	10.57
Totals Fo	r Hartford				436.07	2,118.50	1,098.19

Table 1Final Point Source List For the State of Connecticut2002 Annual Emissions by Premises & County of Major Sourcesor Sources That Actually Emitted 10 TPY of VOC or NOx, or 25 TPY of CO

AFS	AFS			Premises Emissions				
County	Plant				Wi	ith RE (TPY	Y)	
#	ID	Premises Name	City/Town	SIC #	VOC	NOx	CO	
Litchfield	County							
005	606	KIMBERLY-CLARK CORP	NEW MILFORD	2621	44.03	52.15	25.95	
005	667	WASTE MANAGEMENT OF CT INC	NEW MILFORD	4953	2.20	30.19	37.14	
005	1202	G L C ASSOCIATES	THOMASTON	6512	0.07	9.60	0.89	
005	1205	WHYCO FINISHING TECH, INC.	THOMASTON	3471	9.58	2.66	1.92	
005	1205	WHYCO TECHNOLOGIES, INC.	THOMASTON	3471	0.07	0.73	0.16	
005	1407	FM PRECISION GOLF MFG CORP	TORRINGTON	3949	1.30	3.61	2.48	
005	1826	EYELEMATIC MFG CO	WATERTOWN	3469	18.93	0.87	0.42	
005	1832	COATS NORTH AMERICA	WATERTOWN	2284	28.52	2.77	0.58	
005	1880	HENLOPEN MANUFACTURING CO INC	WATERTOWN	3479	2.66	0.69	0.15	
Totals Fo	r Litchfield	1			107.36	103.26	69.68	
Middlesex	County							
007	105	ALGONQUIN GAS TRANSMISSION CO	CROMWELL	4922	25.47	200.50	27.61	
007	408	BROWNELL & COMPANY, INC	MOODUS	2298	17.11	0.00	0.00	
007	857	PRATT & WHITNEY DIV UTC	MIDDLETOWN	3724	21.78	459.52	115.90	
007	866	CONN VALLEY HOSPITAL	MIDDLETOWN	8063	0.82	12.14	10.86	
007	874	NRG MIDDLETOWN OPERATIONS, INC	MIDDLETOWN	4911	21.02	861.40	197.87	
007	1030	HABASIT ABT, INC	MIDDLETOWN	3052	85.64	1.09	0.23	
007	1355	DONNELLEY & SONS CO, R R	OLD SAYBROOK	2752	48.02	0.79	0.66	
007	1516	M. L. & P. TRUCKING, LLC	PORTLAND		0.07	0.70	0.21	
Totals Fo	r Middlese	x			219.94	1,536.13	353.33	
New Have	en County							
009	420	BLAKESLEE PRESTRESS INC	BRANFORD	3272	0.06	1.10	0.23	
009	775	KURT WEISS GREENHOUSES OF CT	CHESHIRE	0181	0.14	3.91	1.76	
009	1105	NEW HAVEN TERMINAL, INC	EAST HAVEN	4226	4.91	0.00	0.00	
009	1203	GUILFORD GRAVURE INC	GUILFORD	2754	6.23	0.46	0.10	
009	1920	J.E.M. INC.	MERIDEN	6512	0.05	0.71	0.53	
009	1958	CUNO INC	MERIDEN	3569	34.27	1.44	0.74	
009	2235	MID STATE MEDICAL CENTER	MERIDEN	8062	0.19	2.48	1.79	

Final Point Source List For the State of Connecticut 2002 Annual Emissions by Premises & County of Major Sources or Sources That Actually Emitted 10 TPY of VOC or NOx, or 25 TPY of CO

AFS	AFS				Prem	iises Emissi	ons
County	Plant				Wi	th RE (TP)	<i>(</i>)
#	ID	Premises Name	City/Town	SIC #	VOC	NOx	CO
009	2514	DEVON POWER, LLC	DEVON	4911	20.24	388.20	94.66
009	2520	BIC CONSUMER PROD. MANU. CO.	MILFORD	3951	27.82	3.63	0.47
009	2751	MILFORD POWER CO LLC	MILFORD	4911	0.68	47.78	43.50
009	2751	MILFORD POWER CO, LLC	MILFORD	4911	0.00	0.00	0.00
009	3006	CROMPTON MANUFACTURING CO INC	NAUGATUCK	2869	108.64	38.10	7.64
009	3011	BOROUGH OF NAUGATUCK	NAUGATUCK	4952	1.64	49.60	59.34
009	3011	NAUGATUCK WPCF % USFILTER OPS	NAUGATUCK	4952	3.23	51.20	79.86
009	3348	YALE UNIV /CENTRAL POWER PLT	NEW HAVEN	8221	15.93	41.36	8.25
009	3349	YALE UNIV /STERLING POWER PLT	NEW HAVEN	8221	0.02	0.17	0.04
009	3349	YALE UNIV, SCHOOL OF MEDICINE	NEW HAVEN	8221	4.63	114.08	28.49
009	3353	MOTIVA ENTERPRISES LLC	NEW HAVEN	5171	752.72	0.00	0.00
009	3371	SAINT-GOBAIN PPL CORP	NEW HAVEN	2672	104.08	5.85	1.54
009	3388	GULF OIL L.P.	NEW HAVEN	5171	210.85	0.00	0.00
009	3420	NEW HAVEN TERMINAL, INC	NEW HAVEN	4226	4.58	0.29	0.24
009	3512	WILLIAMS ENERGY VENTURES INC	NEW HAVEN	5171	23.75	0.00	0.00
009	3512	WILLIAMS TERMINALS HOLDINGS, L.	NEW HAVEN	4226	0.36	0.00	0.00
009	3764	SIMKINS INDUSTRIES INC	NEW HAVEN	2631	1.03	86.47	13.03
009	3811	ST RAPHAEL, HOSPITAL OF	NEW HAVEN	8062	1.95	14.33	2.68
009	3819	WILLIAMS TERMINAL HOLDINGS, L.P	NEW HAVEN	4226	3.09	0.00	0.00
009	3819	WILLIAMS ENERGY VENTURES, INC	NEW HAVEN	5171	104.65	0.08	0.02
009	3851	PSEG FOSSIL LLC/ POWER CT LLC	NEW HAVEN	4911	51.67	1,144.21	240.09
009	5403	CONN CONTAINER CORP	NORTH HAVEN	2653	12.93	3.09	1.91
009	5421	QUEBECOR, NORTHEAST GRAPHIC INC	NORTH HAVEN	2752	234.84	7.40	1.55
009	6505	ALLEGHENY LUDLUM CORP	WALLINGFORD	3312	14.14	40.09	4.50
009	6527	CYTEC INDUSTRIES INC	WALLINGFORD	2821	723.32	55.91	62.40
009	6550	CT ACQUISITIONS LLC DBA DANVER	WALLINGFORD	2522	0.43	0.00	0.00
009	6678	CRRA - WALLINGFORD SITE	WALLINGFORD	4953	0.47	122.31	9.43
009	6678	OGDEN PROJECTS OF WALLINGFORD	WALLINGFORD	4953	0.25	59.28	4.27
009	7053	SOMERS THIN STRIP	WATERBURY	3351	5.10	3.25	2.69
009	7474	PHOENIX SOILS LLC	WATERBURY	2875	0.00	18.11	4.79

Table 1Final Point Source List For the State of Connecticut2002 Annual Emissions by Premises & County of Major Sourcesor Sources That Actually Emitted 10 TPY of VOC or NOx, or 25 TPY of CO

AFS	AFS				Pren	nises Emiss	ions
County	Plant				W	ith RE (TP	Y)
#	ID	Premises Name	City/Town	SIC #	VOC	NOx	CO
Totals For	New Hav	en			2,478.88	2,304.86	676.53
New Lond	lon County	<i>y</i>					
011	604	PFIZER INC	GROTON	2833	57.36	283.36	117.27
011	605	ELECTRIC BOAT CORP	GROTON	3731	9.79	11.29	5.23
011	628	U S NAVAL SUBMARINE BASE/PWR P	GROTON	9711	7.33	36.73	32.82
011	635	UNIV OF CT / AVERY POINT	GROTON	8221	0.26	4.09	3.18
011	1202	DOW CHEMICAL CO	GALES FERRY	2821	37.80	13.02	10.48
011	1304	LISBON TEXTILE PRINTS INC	LISBON	2261	5.62	1.17	0.15
011	1314	RILEY ENERGY SYS-LISBON CORP	LISBON	4953	1.36	155.69	8.15
011	1314	WHEELABRATOR LISBON INC (WM)	LISBON	4953	0.86	156.42	9.94
011	1503	RAND-WHITNEY CONTAINERBOARD	MONTVILLE	2652	1.04	16.29	49.48
011	1504	SMURFIT-STONE CONTAINER CORP	UNCASVILLE	2631	0.01	0.11	0.02
011	1504	STONE CONTAINER CORP	UNCASVILLE	2631	22.85	0.01	0.00
011	1505	NRG MONTVILLE OPERATIONS, INC	UNCASVILLE	4911	13.00	403.76	60.30
011	1544	A E S THAMES, LLC	UNCASVILLE	4911	56.78	465.59	555.83
011	1830	PFIZER INC CRD	NEW LONDON		0.04	0.66	0.55
011	1830	PFIZER INC, PGRD-HEADQUARTERS	NEW LONDON		0.05	0.86	0.71
011	2414	THAMES PRINTING CO INC	NORWICH	2759	5.10	0.00	0.00
011	2432	PHELPS DODGE COPPER PROD CO	NORWICH	3351	1.91	26.21	7.23
011	2912	AMERICAN REF FUEL CO OF SE CT	PRESTON	4953	2.90	564.08	82.24
011	3102	SPRAGUE PAPERBOARD INC	VERSAILLES	2631	7.99	235.29	74.16
011	3803	DOMINION NUCLEAR CT., INC.	WATERFORD	4911	0.70	21.69	5.65
Totals For	New Lon	don			232.73	2,396.30	1,023.39
Tolland		County					
013	615	UNIV OF CT / STORRS	STORRS	8221	2.41	90.70	31.37
013	1205	ROCKVILLE GENERAL HOSPITAL	ROCKVILLE	8062	0.08	2.09	0.51
013	1215	AMERBELLE CORP	VERNON	2262	74.89	10.35	2.60
Totals For	. Tolland				77.38	103.15	34.47

Table 1Final Point Source List For the State of Connecticut2002 Annual Emissions by Premises & County of Major Sourcesor Sources That Actually Emitted 10 TPY of VOC or NOx, or 25 TPY of CO

AFS County	AFS Plant				Pren	nises Emiss ith PE (TP	ions V)	
#	ID	Premises Name	City/Town	SIC #	VOC	NOx	CO	
Windham	County							-
015	302	ALGONQUIN GAS TRANSMISSION CO	CHAPLIN	4922	0.36	12.16	10.92	
015	647	DELTA RUBBER CO SUB OF NN, INC	DANIELSON	3069	12.51	0.00	0.00	
015	665	FRITO-LAY INC	DAYVILLE	2096	4.32	42.17	30.76	
015	680	LAKE ROAD GENERATING CO, L.P.	KILLINGLY	4911	16.93	265.70	116.94	
015	1708	SCA PACKAGING NO AMERICA INC	PUTNAM	3086	60.67	1.70	1.43	
015	1708	TUSCARORA INCORPORATED	PUTNAM	3086	0.10	1.64	1.38	
015	2305	EXETER ENERGY L.P.	STERLING	4931	72.69	146.84	120.06	
015	2906	B I C C BRAND - REX CO	WILLIMANTIC	3357	0.03	0.49	0.41	
Totals For State-Wid	r Windhan le Totals:	n			167.60 4,879.19	470.70 12,922.41	281.90 4,043.81	

		DM 10	60-	NO	NOC	VOC	Adjusted	CO	T J	
SCC	PROCESS DESCRIPTION	lbs./unit	SOX lbs./unit	NOX lbs./unit	voc lbs./unit	factor	lbs./unit	CO lbs./unit	Lead lbs./unit	Units
10100101	UTILITY BOILER: ANTH COAL, PULVERIZED	2.3 A	39 S	18	0.07	1	0.07	0.6	0.0133	TONS
10100102	UTILITY BOILER: ANTH COAL, TRAVEL GRATE	0.8 A	39 S	9	0.2	1	0.2	0.6	0.0089	TONS
10100201	UTILITY BOILER: BIT COAL, PULVERIZED-WB	2.6 A	38 S	31	0.04	1	0.04	0.5	0.0142	TONS
10100202	UTILITY BOILER: BIT COAL, PULVERIZED-DB	2.3 A	38 S	22	0.06	1	0.06	0.5	0.0142	TONS
10100203	UTILITY BOILER: BIT COAL, CYCLONE	0.26 A	38 S	33	0.11	1	0.11	0.5	0.0142	TONS
10100204	UTILITY BOILER: BIT COAL, SPREAD STOKER	13.2	38 S	11	0.05	1	0.05	5	0.0142	TONS
10100205	UTILITY BOILER: BIT COAL, TRAVEL GRATE	6	38 S	7.5	0.05	1	0.05	6	0.0142	TONS
10100212	UTILITY BOILER: BIT COAL, TANGENT FIRED	2.3 A	38 S	15	0.06	1	0.06	0.5		TONS
10100217	UTILITY BOILER: BIT COAL, FLUIDIZED BED	12.4	2.53 S	15.2	0.05	1	0.05	18		TONS
10100401	UTILITY BOILER: #6 OIL, NORMAL FIRING	8.79 E	162.7 S	47	0.76	1.42	1.0792	5	0.0015	1000 GAL
10100404	UTILITY BOILER: #6 OIL, TANGENTIAL FIRED	8.79 E	162.7 S	32	0.76	1.42	1.0792	5	0.0015	1000 GAL
10100501	UTILITY BOILER: #2 OIL	1	147.7 S	24	0.2	1.49	0.298	5	0.0012	1000 GAL
10100504	UTILITY BOILER: #4 OIL, NORMAL FIRING	4.96	155.7 S	47	0.76	1.49	1.1324	5	0.0004	1000 GAL
10100505	UTILITY BOILER: #4 OIL, TANGENTIAL FIRED	4.96	155.7 S	32	0.76	1.49	1.1324	5	0.0004	1000 GAL
10100601	UTILITY BOILER: NAT GAS, > 100MMBTU/HR	7.6	0.6	280	5.5	1.08	5.94	84	0.0005	MIL CU FT
10100602	UTILITY BOILER: NAT GAS, <100MMBTU/HR	7.6	0.6	100	5.5	1.08	5.94	84	0.0005	MIL CU FT
10100604	UTILITY BOILER: NAT GAS, TANGENT FIRING	7.6	0.6	170	5.5	1.08	5.94	24	0.0005	MIL CU FT
10100801	UTILITY BOILER: COKE	7.9 A	39 S	21	0.07	0.85	0.0595	0.6		TONS
10100901	UTILITY BOILER: BARK FIRED	17	0.07	1.5	0.22	1	0.22	13.6	0.0029	TONS
10100902	UTILITY BOILER: WOOD/BARK FIRED	6.48	0.07	1.5	1.4	1	1.4	13.6		TONS
10100903	UTILITY BOILER: WOOD FIRED	7.92	0.07	1.5	1.4	1	1.4	13.6		TONS
10101001	UTILITY BOILER: BUTANE	0.28	86.5 S	13.2	0.26	1.08	0.2808	3.3		1000 GAL
10101002	UTILITY BOILER: PROPANE	0.26	86.5 S	12.4	0.25	1.08	0.27	3.1		1000 GAL
10101301	UTILITY BOILER: LIQUID WASTE				1	1	1			1000 GAL

SCC	PROCESS DESCRIPTION	PM10 lbs/unit	SOx lbs/unit	NOx lbs/unit	VOC lbs/unit	VOC Adjustmen factor	Adjusted t VOC	CO lbs/unit	Lead	Units
bee	TROCESS DESCRIPTION	105./ unit	105.7 unit	105./ umt	105./ umt	Inclui	105./ unit	105./ unit	105./ umt	Cinto
10101302	UTILITY BOILER: WASTE OIL	51 A	147 S	19	1	1.42	1.42	5	1.68	1000 GAL
10200101	INDUST BOILER: ANTH COAL, PULVERIZED	2.3 A	39 S	18	0.07	0.82	0.0574	0.6	0.0133	TONS
10200104	INDUST BOILER: ANTH COAL, TRAVEL GRATE	0.8 A	39 S	9	0.2	0.82	0.164	0.6	0.0089	TONS
10200107	INDUST BOILER: ANTH COAL, HAND FIRED	6.2	39 S	3	10	0.82	8.2	90	0.0133	TONS
10200201	INDUST BOILER: BIT COAL, PULVERIZED (WB)	2.6 A	38 S	31	0.04	0.82	0.0328	0.5	0.0142	TONS
10200202	INDUST BOILER: BIT COAL, PULVERIZED (DB)	2.3 A	38 S	22	0.06	0.82	0.0492	0.5	0.0142	TONS
10200203	INDUST BOILER: BIT COAL, CYCLONE	0.26 A	38 S	33	0.11	0.82	0.0902	0.5	0.0142	TONS
10200204	INDUST BOILER: BIT COAL, SPREADER STOKER	13.2	38 S	11	0.05	0.82	0.041	5	0.0142	TONS
10200205	INDUST BOILER: BIT COAL, OVERFEED STOKER	6	38 S	7.5	0.05	0.82	0.041	6	0.0142	TONS
10200206	INDUST BOILER: BIT COAL, UNDERFEED STOKER	6.2	31 S	9.5	1.3	0.82	1.066	11	0.0142	TONS
10200212	INDUST BOILER: BIT COAL, TANGENT FIRING	2.3 A	38 S	15	0.06	0.82	0.0492	0.5		TONS
10200217	INDUST BOILER: BIT COAL, FLUIDIZED BED	12.4	2.53 S	15.2	0.05	0.82	0.041	18		TONS
10200219	INDUST BOILER: BIT COAL, COGENERATION	2.3 A	39 S	15	0.07	0.82	0.0574	0.6		TONS
10200401	INDUST BOILER: #6 OIL, >100 MMBTU	10.68 E	162.7 S	47	0.28	1.42	0.3976	5	0.0015	1000 GAL
10200402	INDUSTRIAL BOILER: #6 OIL <100 MMBTU	10.68 E	159 S	55	1.13	1.42	1.6046	5	0.0015	1000 GAL
10200405	INDUST BOILER: #6 OIL, TANGENTIAL FIRING	10.68 E	162.7 S	32	0.28	1.42	0.3976	5	0.0015	1000 GAL
10200501	INDUST BOILER: #2 OIL >100 MMBTU	1	144 S	24	0.2	1.49	0.298	5	0.0012	1000 GAL
10200502	INDUST BOILER: #2 OIL <100 MMBTU	1	144 S	20	0.2	1.49	0.298	5	0.0012	1000 GAL
10200504	INDUST BOILER: #4 OIL > 100 MMBTU	6.02	155.7 S	47	0.2	1.49	0.298	5	0.0004	1000 GAL
10200505	INDUST BOILER: #2 OIL, COGENERATION	1	144 S	20	0.2	1.49	0.298	5		1000 GAL
10200601	INDUST BOILER: NAT GAS, >100 MMBTU/HR	7.6	0.6	280	5.5	1.08	5.94	84	0.0005	MIL CU FT
10200602	INDUST BOILER: NAT GAS, 10-100 MMBTU/HR	7.6	0.6	100	5.5	1.08	5.94	84	0.0005	MIL CU FT
10200603	INDUST BOILER: NAT GAS, <10 MMBTU/HR	7.6	0.6	100	5.5	1.08	5.94	84	0.0005	MIL CU FT
10200604	INDUST BOILER: NAT GAS, COGENERATION	7.6	0.6	170	5.5	1.08	5.94	24		MIL CU FT
10200699	INDUST BOILER: NAT GAS	7.6	0.6	100	5.5	1.08	5.94	84		MIL CU FT
10200901	INDUST BOILER: BARK, > 50000#	17	0.07	1.5	0.22	1	0.22	13.6	0.0029	TONS
10200902	INDUST BOILER: WOOD/BARK, > 50000#	6.48	0.07	1.5	1.4	1	1.4	13.6		TONS
10200903	INDUST BOILER: WOOD, > 50000#	7.92	0.07	1.5	1.4	1	1.4	13.6		TONS

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
10200904	INDUST BOILER: BARK, < 50000#	17	0.07	1.5	0.22	1	0.22	13.6	0.0029	TONS
10200905	INDUST BOILER: WOOD/BARK, < 50000#	6.48	0.07	1.5	1.4	1	1.4	13.6		TONS
10200906	INDUST BOILER: WOOD, < 50000#	7.92	0.07	1.5	1.4	1	1.4	13.6		TONS
10200907	INDUST BOILER: WOOD, COGENERATION	6.48	0.15	2.8	1.4	1	1.4	4		TONS
10201001	INDUST BOILER: BUTANE	0.6	0.02	21	0.6	1.08	0.648	3.6		1000 GAL
10201002	INDUST BOILER: PROPANE	0.6	0.02	19	0.5	1.08	0.54	3.2		1000 GAL
10201201	INDUST BOILER: SOLID WASTE		1.6	5.9	2	1	2			TONS
10201202	INDUST BOILER: RDF	44				1				TONS
10201301	INDUST BOILER: LIQUID WASTE		28	23	1	1	1			1000 GAL
10201302	INDUST BOILER: WASTE OIL	51 A	147 S	19	1	1.42	1.42	5	2.2	1000 GAL
10300101	COMM/INST BOILER: ANTH COAL, PULVERIZED	2.3 A	39 S	18	0.07	1	0.07	0.6	0.0133	TONS
10300102	COMM/INST BOILER: ANTH COAL, TRAVEL GRAT	0.8 A	39 S	9	0.2	1	0.2	0.6	0.0089	TONS
10300103	COMM/INST BOILER: ANTH COAL, HAND FIRED	6.2	39 S	3	10	1	10	90		TONS
10300205	COMM/INST BOILER: BIT COAL, PULVERIZED-W	2.6 A	38 S	31	0.04	1	0.04	0.5	0.0142	TONS
10300206	COMM/INST BOILER: BIT COAL, PULVERIZED-D	2.3 A	38 S	22	0.06	1	0.06	0.5	0.0142	TONS
10300207	COMM/INST BOILER: BIT COAL, OVERFEED	6	38 S	7.5	0.05	1	0.05	6	0.0142	TONS
10300208	COMM/INST BOILER: BIT COAL, UNDERFEED	6.2	31 S	9.5	1.3	1	1.3	11	0.0142	TONS
10300209	COMM/INST BOILER: BIT COAL, SPREADER	13.2	38 S	11	0.05	1	0.05	5	0.0142	TONS
10300214	COMM/INST BOILER: BIT COAL, HAND FIRED	6.2	31 S	9.1	10	1	10	275	0.0142	TONS
10300216	COMM/INST BOILER: BIT COAL, TANGENT FIRE	2.3 A	38 S	15	0.06	1	0.06	0.5		TONS
10300217	COMM/INST BOILER: BIT COAL, FLUID BED	12.4	2.53 S	15.2	0.05	1	0.05	18		TONS
10300401	COMM/INST BOILER: #6 OIL	7.7 E	162.7 S	47	1.13	1.42	1.6046	5	0.0015	1000 GAL
10300402	COMM/INST BOILER: #6 OIL <100 MMBTU	7.7 E	159 S	55	1.13	1.42	1.6046	5	0.0015	1000 GAL
10300501	COMM/INST BOILER: #2 OIL	1.08	144 S	20	0.34	1.49	0.5066	5	0.0012	1000 GAL
10300504	COMM/INST BOILER: #4 OIL < 100 MMBTU	4.34	152 S	20	0.34	1.49	0.5066	5	0.0004	1000 GAL
10300601	COMM/INST BOILER: NAT GAS, >100 MMBTU/HR	7.6	0.6	280	5.5	1.08	5.94	84	0.0005	MIL CU FT
10300602	COMM/INST BOILER: NAT GAS, 10-100 MMBTU	7.6	0.6	100	5.5	1.08	5.94	84	0.0005	MIL CU FT
10300603	COMM/INST BOILER: NAT GAS, <10 MMBTU/HR	7.6	0.6	100	5.5	1.08	5.94	84	0.0005	MIL CU FT

Source Classification Codes & Emission Factor Listing

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
10300901	COMM/INST BOILER: BARK	17	0.07	1.5	0.22	1	0.22	13.6	0.0029	TONS
10300902	COMM/INST BOILER: WOOD/BARK	6.48	0.07	1.5	1.4	1	1.4	13.6		TONS
10300903	COMM/INST BOILER: WOOD	7.92	0.07	1.5	1.4	1	1.4	13.6		TONS
10301001	COMM/INST BOILER: BUTANE	0.5	0.02	15	0.5	1	0.5	2.1		1000 GAL
10301002	COMM/INST BOILER: PROPANE	0.4	0.02	14	0.47	1.08	0.5076	1.9		1000 GAL
10301301	COMM/INST BOILER: LIQUID WASTE				1	1	1			1000 GAL
10301302	COMM/INST BOILER: WASTE OIL	51 A	147 S	19	0.1	1.42	0.142	5	2.2	1000 GAL
10500101	INDUST SPACE HEATER: ANTH COAL	5.2 A	39 S	18	0.07	0.82	0.0574	0.6	0.0133	TONS
10500105	INDUST SPACE HEATER: #2 OIL	1	144 S	20	0.2	1.49	0.298	5	0.0012	1000 GAL
10500106	INDUST SPACE HEATER: NAT GAS	3	0.6	100	5.3	1.08	5.724	20		MIL CU FT
10500110	INDUST SPACE HEATER: PROPANE	0.6	0.02	20	0.5	1.08	0.54	3.4		1000 GAL
10500201	COMM SPACE HEATER: ANTH COAL	2.3 A	39 S	18	0.07	1	0.07	0.6	0.0133	TONS
10500205	COMM SPACE HEATER: #2 OIL	1.08 A	144 S	20	0.7	1.49	1.043	5	0.0012	1000 GAL
10500206	COMM SPACE HEATER: NAT GAS	3	0.6	100	5.3	1.08	5.724	20		MIL CU FT
10500209	COMM SPACE HEATER: WOOD	6.48	0.1 S	0.68	1.4	1	1.4	4		TONS
10500210	COMM SPACE HEATER: PROPANE	0.45	0.02 S	14.5	0.5	1.08	0.54	2		1000 GAL
20100101	UTILITY TURBINE: #2 OIL	1.67	140.39 S	122.32	0.06	1.14	0.0684	0.46	0.0019	1000 GAL
20100102	UTILITY DIESEL: #2 OIL	42.5	39.7	604	57.96	1	57.96	130		1000 GAL
20100201	UTILITY TURBINE: NAT GAS	6.73	0.57	326.4	2.14	1.3	2.782	83.64		MIL CU FT
20100202	UTILITY DIESEL: NAT GAS	10	0.6	2840	116	0.41	47.56	399		MIL CU FT
20100901	UTILITY TURBINE: KERO(USE AP-42 #2 OIL)	1.62	136.35 S	118.8	0.06	1.14	0.0684	0.45	0.0019	1000 GAL
20100902	UTILITY DIESEL: KERO/NAPHTHA	32	6.2	469	37.5	1.14	42.75	102		1000 GAL
20200101	INDUST TURBINE: #2 OIL	1.67	140.39 S	122.32	0.06	1.14	0.0684	0.46	0.0019	1000 GAL
20200102	INDUST DIESEL: #2 OIL	42.5	39.7	604	57.96	1	57.96	130		1000 GAL
20200103	INDUST TURBINE: #2 OIL, COGEN	1.67	140.39 S	122.32	0.06	1.14	0.0684	0.46	0.0019	1000 GAL
20200104	INDUST DIESEL: #2 OIL, COGEN	42.78	40.02	608.58	57.96	1	57.96	131.1		1000 GAL
20200201	INDUST TURBINE: NAT GAS	6.73	0.57	326.4	2.14	1.3	2.782	83.64		MIL CU FT
20200202	INDUST DIESEL: NAT GAS	10	0.6	2840	116	0.41	47.56	399		MIL CU FT

A-11

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
20200202		672	0.57	226.4	2.14	1.2	2 7 8 2	82.64		MIL CUET
20200203	INDUST TURBINE. NAT GAS, COGEN	0.75	0.56	2000	1600	0.41	656	280		MIL CU FT
20200204	INDUST DIESEL: NAT GAS, COGEN	17	0.50	2900	21.5	0.41	21.5	200		MIL CU FI
20200233	INDUST DIESEL: NAT GAS,4-CTCLE RICH BURN	12.6	0.0	2420	291.1	1	291.1	7000		
20200301	INDUST I/C DIESEL: GASOLINE	12.0	10.0	205	12.7	1	12.7	/900		1000 GAL
20200401	INDUST DIESEL: LARGE BORE, DIESEL OIL	0.8	139.38 5	425	101.20	1	101.20	755.05		1000 GAL
20200402	INDUST DIESEL: LARGE BORE, NATGAS	2	14.87	2966.3	191.38	1	191.38	755.95		MIL CU FT
20200501	INDUST DIESEL: #6 OIL	42.5	155 \$	604	32.1	1	32.1	130		1000 GAL
20200901	INDUST TURBINE: KERO/NAPHTHA	8.54	6.2	97.7	4.77	1.14	5.4378	6.72		1000 GAL
20200902	INDUST DIESEL: KERO/NAPHTHA	42.5	6.2	604	37.5	1.14	42.75	130		1000 GAL
20300101	COMM/INST DIESEL: #2 OIL	42.5	39.7	604	57.96	1	57.96	130		1000 GAL
20300102	COMM/INST TURBINE: #2 OIL	1.67	140.39 S	122.32	0.06	1.14	0.0684	0.46	0.0019	1000 GAL
20300103	COMM/INST TURBINE: #2 OIL, COGEN	8.54	141.4 S	97.72	2.38	1.14	2.7132	6.72	0.0081	1000 GAL
20300201	COMM/INST DIESEL: NAT GAS	10	0.6	2840	116	0.41	47.56	399		MIL CU FT
20300202	COMM/INST TURBINE: NAT GAS	6.73	0.57	326.4	2.14	1.3	2.782	83.64		MIL CU FT
20300203	COMM/INST TURBINE: NAT GAS, COGEN	6.73	0.57	326.4	2.14	1.3	2.782	83.64		MIL CU FT
20300301	COMM INST DIESEL: GASOLINE	12.6	10.6	205	282.1	1	282.1	7900		1000 GAL
20301001	COMM/INST DIESEL: PROPANE	4.8	0.35	139	83	0.41	34.03	129		1000 GAL
20301002	COMM/INST DIESEL: BUTANE	4.8	0.35	139	83	0.41	34.03	129		1000 GAL
20400101	ENGINE TESTING: AIRCRAFT, TURBOJET	11.3	13	14.6	46	1.14	52.44	32.7		1000 GAL
20400102	ENGINE TESTING: AIRCRAFT, TURBOSHAFT	11.3	13	14.6	46	1.14	52.44	32.7		1000 GAL
20400110	ENGINE TESTING: AIRCRAFT, JET A	11.3	13	14.6	46	1	46	32.7		1000 GAL
20400111	ENGINE TESTING: AIRCRAFT, JP5	11.3	13	14.6	46	1	46	32.7		1000 GAL
20400112	ENGINE TESTING: AIRCRAFT, JP4	11.3	13	14.6	46	1	46	32.7		1000 GAL
20400301	ENGINE TESTING: TURBINE, NAT GAS	14	0.6	300	6.9	1.3	8.97	120		MIL CU FT
20400302	ENGINE TESTING: TURBINE, KERO	8.54	140 S	97.7	4.77	0.41	1.9557	6.72		1000 GAL
20400401	ENGINE TESTING: RECIPROCATING, GASOLINE	6.2	5.31	102	148	1	148	3940		1000 GAL
20400402	ENGINE TESTING: RECIPROCATING, DIESEL	42.5	39.7	604	32.1	1	32.1	130		1000 GAL
30100601	CHARCOAL MFG: GENERAL	250	0	24	314	0.88	276.32	344		TONS PROD

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted it VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
30100603	CHARCOAL MFG: BATCH KILN	310	0	24	270	0.88	237.6	290		TONS PROD
30100604	CHARCOAL MFG: CONTINUOUS FURNACE	310	0	24	270	0.88	237.6	290		TONS PROD
30101401	PAINT MFG: GENERAL MIXING & HANDLING	17	0	0	30	1	30	0		TONS PROD
30101499	PAINT MFG: OTHER NOT CLASSIFIED	0	0	0	0	1	0	0		TONS PROD
30101813	RECOVERY AND PURIFICATION SYSTEM				60					TONS PROD
30101817	PLASTICS PRODUCTION: POLYSTYRENE				0.42	1	0.42			TONS PROD
30101832	PLASTICS PRODUCTION: UREA-FORMALDEHYDE				14.7	1	14.7			TONS PROD
30101837	PLASTICS PRODUCTION: POLYESTER RESINS				0.5	1	0.5			TONS PROD
30101849	PLASTICS PRODUCTION: ABS RESIN				60	1	60			TONS PROD
30101881	PLASTICS PRODUCTION: BLOWING AGT-FREON				0	0.01	0			TONS PROD
30101899	PLASTICS PRODUCTION				3.17	1	3.17			TONS PROD
30102434	SYNTHETIC FIBER LAMINATE PROCESS		0	0	0	1	0	0		TONS SOLP
30102699	SYNTHETIC RUBBER PRODUCTION		0	0	0	1	0	0		TONS PROD
30103399	PESTICIDE PRODUCTION: OTHER		0	0	0	1	0	0		TONS PROD
30103402	ANALINE: GENERAL REACTOR	0	0	0	0.2	0	0	0	0	TONS PROD
30103410	ETHANOLAMINES: GENERAL	0	0	0	0	0	0	0	0	TONS PROD
30103411	ETHANOLAMINES: AMMONIA SCRUBBER VENT	0	0	0	0	0	0	0	0	TONS PROD
30104001	UREA PRODUCTION: GENERAL		0	0	0	1	0	0		TONS PROD
30106001	PHARMACEUTICAL: VACUUM DRYERS		0	0	0	1	0	0		100# PROD
30106002	PHARMACEUTICAL: REACTORS		0	0	0	1	0	0		100# PROD
30106003	PHARMACEUTICAL: DISTILLATION UNITS		0	0	0	1	0	0		100# PROD
30106004	PHARMACEUTICAL: FILTERS		0	0	0	1	0	0		100# PROD
30106005	PHARMACEUTICAL: EXTRACTORS		0	0	0	1	0	0		100# PROD
30106006	PHARMACEUTICAL: CENTRIFUGES		0	0	0	1	0	0		100# PROD
30106007	PHARMACEUTICAL: CRYSTALLIZERS		0	0	0	1	0	0		100# PROD
30106008	PHARMACEUTICAL: EXHAUST SYSTEMS		0	0	0	1	0	0		100# PROD
30106009	PHARMACEUTICAL: AIR DRYERS		0	0	0	1	0	0		100# PROD
30106010	PHARMACEUTICAL: STORAGE/TRANSFER		0	0	0	1	0	0		100# PROD

Source Classification Codes & Emission Factor Listing

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
30106099	PHARMACEUTICAL: OTHER	0	0	0	0	1	0	0	0	100# PROD
30182002	WASTE WATER TREATMENT									1000 GAL
30188801	INORGANIC STORAGE FUGITIVES									TONS PROD
30199999	CHEMICAL PRODUCTION					1				TONS PROD
30200801	FEED MFG: GENERAL	0	0	0	0	1	0	0	0	TONS PROC
30200802	FEED MFG: GRAIN RECEIVING	0.2	0	0	0	1	0	0	0	TONS PROC
30200803	FEED MFG: SHIPPING	0.03	0	0	0	1	0	0	0	TONS PROC
30200804	FEED MFG: HANDLING	0.45	0	0	0	1	0	0	0	TONS PROC
30200805	FEED MFG: GRINDING	0.06	0	0	0	1	0	0	0	TONS PROC
30200806	FEED MFG: PELLET COOLERS	0.1	0	0	0	1	0	0	0	TONS PROC
30201899	CANDY MFG	0	0	0	0	1	0	0	0	TONS PROC
30203201	BAKERY: BREAD, SPONGE DOUGH PROCESS	0	0	0	13	1	13	0	0	TONS PROD
30203202	BAKERY: BREAD, STRAIGHT DOUGH PROCESS	0	0	0	1	1	1	0	0	TONS PROD
30203299	BAKERY: OTHER	0	0	0	0	1	0	0	0	TONS PROC
30203399	TOBACCO PROCESSING: OTHER	0	0.48	0	0.34	1	0.34	0	0	TONS PROD
30203601	CONTINUOUS DEEP FAT FRYER-POTATO CHIPS	0	0	0	0.02	1	0.02	0	0	TON PROD
30203602	DEEP FAT FRYER-OTHER SNACK CHIPS	0	0	0	0.08	1	0.08	0	0	TON PROD
30299998	FOOD AND AGRICULTURE: OTHER	0	0	0	0	1	0	0	0	TONS PROC
30300901	STEEL PRODUCTION: OPEN HEARTH FURNACE	17.5	2.8	0	0.17	1	0.17	0	0.14	TONS PROD
30300904	STEEL PRODUCTION: ELECTRIC ARC FURNACE	6.55	0.07	0.2	0.35	1	0.35	18	0.22	TONS PROD
30300908	STEEL PRODUCTION: ELECTRIC ARC FURNACE	22	0.07	0.2	0.35	1	0.35	18	0.04	TONS PROD
30300911	STEEL PRODUCTION: SOAKING PITS	0.03	0	0	0.59	1	0.59	0		TONS PROD
30300913	STEEL PRODUCTION: BOF, OPEN HOOD	13.1	0	0.08	0	1	0	138	0.2	TONS PROD
30300914	STEEL PRODUCTION: BOF, CLOSED HOOD	13.1	0	0	0	1	0	138	0.2	TONS PROD
30300915	STEEL PRODUCTION: HOT METAL TRANSFER	0.09	0	0	0	1	0	0		TONS PROD
30300916	STEEL PRODUCTION: CHARGING BOF	0.34	0	0	0	1	0	0		TONS PROD
30300917	STEEL PRODUCTION: TAPPING BOF	0.46	0	0.02	0.01	1	0.01	0		TONS PROD
30300921	STEEL PRODUCTION: TEEMING (UNLEADED)	0.03	0	0	0	1	0	0		TONS PROD

A-14

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
30300925	STEEL PRODUCTION: TEEMING (LEADED)	0.36	0	0	0	1	0	0		TONS PROD
30300933	STEEL PRODUCTION: REHEAT FURNACES	0.08	0	0.8	0.01	1.08	0.0108	0		TONS PROD
30300934	STEEL PRODUCTION: ANNEALING FURNACES	0	0	0.1	0	1.08	0	0		TONS PROD
30300999	STEEL PRODUCTION: OTHER	0	0	0	0	1	0	0	0	TONS PROD
30400101	SEC ALUM SMELTING: SWEATING FURNACE	13.3	0.02	0.6	2.4	1	2.4	0		TONS PROC
30400102	SEC ALUM SMELTING: CRUCIBLE FURNACE	1.7	2.5	1.7	2.5	1	2.5	0		TONS PROC
30400103	SEC ALUM SMELTING: REVERBERATORY FURNACE	2.6	0.9	0.76	0.2	1	0.2	0		TONS PROC
30400199	SEC ALUM PRODUCTION: OTHER	0	0	0	0	1	0	0		TONS PROD
30400207	SEC COPPER SMELTING: SCRAP DRYER	253	1.5	18	0	1	0	0		TONS CHAR
30400208	SEC COPPER SMELTING: WIRE BURNING INCIN	253	12.8	1.7	0.6	0.85	0.51	0		TONS CHAR
30400209	SEC COPPER SMELTING: SWEATING FURNACE	13.8	0	0	0.12	1.08	0.1296	0		TONS PROD
30400214	SEC CU SMELT: REVERB FURN W/CU	5.1	0	0	0.2	1	0.2	0		TONS CHAR
30400215	SEC CU SMELT: REVERB FURN W/B&B	21.2	0		0.2	1	0.2	0		TONS CHAR
30400217	SEC COPPER SMELTING: ROTARY FURNACE	177	0		2.4	1	2.4	0		TONS CHAR
30400219	SEC COPPER SMELTING: CRUCIBLE & POT FURN	12.4	0.5	0		1		0		TONS CHAR
30400220	SEC CU SMELT: ELECT ARC FURN W/CU	5	0	0		1		0		TONS CHAR
30400221	SEC CU SMELT: ELECT ARC FURN W/B&B	6.5		0	0	1	0	0		TONS CHAR
30400223	SEC CU SMELT: ELECT IND FURN W/CU	7	0	0	0	1	0	0		TONS CHAR
30400224	SEC CU SMELT: ELECT IND FURN W/B&B	20		0	0	1	0	0		TONS CHAR
30400239	SEC CU PRODUCTION: CASTING OPERATIONS	0.02	0	0	0	1	0	0	0	TONS PROD
30400299	SEC COPPER SMELTING: OTHER		0	0	0	1	0	0		TONS PROD
30400301	GRAY IRON FOUNDRY: CUPOLA	12.4	1.2 S	0.1	0.18	1	0.18	145	0.6	TONS PROD
30400302	GRAY IRON FOUNDRY: REVERBERATORY FURNACE	1.7	180	5.8	0.15	1	0.15	0	0.076	TONS PROD
30400303	GRAY IRON FOUNDRY: ELECT INDUCTION FURN	0.86	0	0	0	1	0	0	0.01	TONS PROD
30400304	GRAY IRON FOUNDRY: ELECTRIC ARC FURNACE	11.6	0.24	0.6	0.3	1	0.3	19		TONS PROD
30400305	GRAY IRON FOUNDRY: ANNEALING OPERATION			1	0.1	1	0.1			TONS PROD
30400310	GRAY IRON FOUNDRY: INOCULATION	3.2	0	0	0	1	0	0		TONS PROD
30400315	GRAY IRON FOUNDRY: CHARGE HANDLING	0.36	0	0	0	1	0	0		TONS PROD

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
30400320	GRAY IRON FOUNDRY: POURING/CASTING	2.06	0.02	0.01	0.14	1	0.14	0		TONS PROD
30400325	GRAY IRON FOUNDRY: CASTINGS COOLING	1.4	0	0	0	1	0	0		TONS PROD
30400331	GRAY IRON FOUNDRY: CASTING SHAKEOUT	2.24	0	0	1.2	1	1.2	0		TONS PROD
30400340	GRAY IRON FOUNDRY: CASTINGS GRINDING		0	0	0	1	0	0		TONS PROD
30400350	GRAY IRON FOUNDRY: SAND GRINDING	0.54	0	0	0	1	0	0		TONS SAND
30400351	GRAY IRON FOUNDRY: CORE OVENS	2.22	0.32	0.5	0	1	0	0		TONS SAND
30400352	GRAY IRON FOUNDRY: SAND GRINDING	6	0	0	0	1	0	0		TONS PROD
30400353	GRAY IRON FOUNDRY: CORE OVENS	0.9	0.32	0.5	0	1	0	0		TONS METL
30400360	GRAY IRON FOUNDRY: CASTINGS FINISH	0	0	0	0	1	0	0		TONS PROD
30400398	GRAY IRON FOUNDRY: OTHER		0.06	0	0	1	0	0		TONS PROD
30400401	SEC LEAD SMELTING: POT FURNACE	0.2	0	0	0	1	0	0	0.2	TONS PROD
30400402	SEC LEAD SMELTING: REVERBERATORY FURNACE	194	80	0.3	0	1	0	0	65	TONS PROD
30400403	SEC LEAD SMELTING: BLAST FURNACE	129	53	0.1	0	1	0	0	104	TONS PROD
30400404	SEC LEAD SMELTING: ROTARY SWEAT FURNACE	64	0	0	0	1	0	0	11.5	TONS PROD
30400405	SEC LEAD SMELTING: REVERB SWEAT FURNACE	31	0	0	0	1	0	0	11.73	TONS PROD
30400505	BATTERY MFG	125	0	0	0	1	0	0	16.5	1000 BATT
30400599	BATTERY MFG: OTHER	0	0	0	0	1	0	0	0	TONS PROD
30400701	STEEL FOUNDRY: ELEC ARC FURNACE	6.3	0.24	0.2	0.35	1	0.35	0		TONS PROC
30400702	STEEL FOUNDRY: OPEN HEARTH FURNACE	9.4	0	0.01	0.17	1	0.17	0		TONS PROC
30400704	STEEL FOUNDRY: HEAT TREATING FURNACE		277	80.7	0.6	1	0.6			TONS PROC
30400705	STEEL FOUNDRY: ELEC INDUCTION FURNACE	0.09	0	0	0	1	0	0	0	TONS PROC
30400706	STEEL FOUNDRY: SAND GRINDING	0.54	0	0	0	1	0	0	0	TONS SAND
30400707	STEEL FOUNDRY: CORE OVENS	2.22	0.32	0.05	0	1	0	0	0	TONS SAND
30400709	STEEL FOUNDRY: CASTING SHAKEOUT	26.2	0	2.4	1.2	1	1.2	0	0	TONS PROC
30400711	STEEL FOUNDRY: CLEANING	1.7	0	0	0	1	0	0	0	TONS PROC
30400799	STEEL FOUNDRY: OTHER		0	0	0	1	0	0	0	TONS PROC
30400999	MALLEABLE IRON: OTHER		0	0	0	1	0	0	0	TONS PROC
30402201	METAL HEAT TREATING		0	4	0.1	1.08	0.108	0		TONS PROC

		DN/10	6 0	NO	VOC	VOC	Adjusted	CO	Land	
SCC	PROCESS DESCRIPTION	lbs./unit	lbs./unit	lbs./unit	lbs./unit	factor	lbs./unit	lbs./unit	lbs./unit	Units
30499999	MALLEABLE IRON: OTHER		0	0	0	1	0	0		TONS PROC
30500103	ASPHALT ROOF MFG: FELT SATURATION DIP	0.5	0	0	0.02	1	0.02	0.02		TONS ASPH
30500104	ASPHALT ROOFING MANUFACTURE DIP/SPRAY	2.26	0	0	0.03	1	0.03	0.25	0	TONS PROD
30500113	ASPHALT ROOF MFG: FELT SATURATION DIP				0.03	1	0.03			TONS FELT
30500201	ASPHALTIC CONCRETE:CONV PLANT,ROTY DRY	4.5				1				TONS PROD
30500202	ASPHALTIC CONCRETE: HOT ELEVATORS	0.03	0.09	0.03	0	1	0	0		TONS PROD
30500205	ASPHALTIC CONCRETE: DRUM PLANT	6.5				1				TONS PROD
30500206	ASPHALTIC CONCRETE: HEATER NG	0	0.6	140	2.8	1	2.8	35		MIL CU FT
30500207	ASPHALTIC CONCRETE: HEATER #6	0	159 S	55	0.28	1	0.28	5		1000 GAL
30500208	ASPHALTIC CONCRETE: HEATER #2	0	144 S	20	0.2	1	0.2	5		1000 GAL
30500209	ASPHALTIC CONCRETE: HEATER LPG	0	86.5 S	8.8	0.47	1	0.47	1.8		1000 GAL
30500301	BRICK MFG: RAW MATERIAL DRYING	41	0	0	0	1	0	0	0	TONS MATL
30500302	BRICK MFG: RAW MATERIAL GRINDING	5.32	0	0	0	1	0	0	0	TONS MATL
30500303	BRICK MFG: STORAGE	12	0	0	0	1	0	0	0	TONS MATL
30500308	BRICK MFG: SCREENING	1.4	0	0	0	1	0	0	0	TONS MATL
30500309	BRICK MFG: BLENDING AND MIXING	0	0	0	0	1	0	0	0	TONS MATL
30500311	BRICK MFG: GAS FIRED TUNNEL KILN	0.28	0.67	0.35	0.02	1.08	0.0216	1.2	0.0001	TONS PROD
30500312	BRICK MFG: OIL FIRED TUNNEL KILN	0.32	3.95 S	1.05	0.01	1.42	0.0142	0.12		TONS PROD
30500313	BRICK MFG: COAL FIRED TUNNEL KILN	0.48 A	7.31 S	1.45	0.01	0.82	0.0082	1.43		TONS PROD
30500314	BRICK MFG: GAS FIRED PERIODIC KILN	0.03	0	0.5	0.01	1.08	0.0108	0.15		TONS PROD
30500315	BRICK MFG: OIL FIRED PERIODIC KILN	0.47	5.9 S	1.62	0.01	1.42	0.0142	0.19		TONS PROD
30500316	BRICK MFG: COAL FIRED PERIODIC KILN	10	12.1 S	2.35	0.02	0.82	0.0164	2.39		TONS PROD
30500502	CASTABLE REFRACTORY: RAW MATERIAL CRUSH	61.2	0	0	0			0		TONS MATL
30500504	CASTABLE REFRACTORY CURING OVEN	0.1	0	0.16	1	1	1	0	0	TONS MATL
30500505	CASTABLE REFRACTORY: MOLDING AND SHAKE	20	0	0	0			0		TONS MATL
30500612	CEMENT MANUFACTURING: RAW MATL TRANSFER	0.15	0	0	0			0		TONS HNDL
30500613	CEMENT MANUFACTURING: RAW MATL GRIND/DRY	54	0	0	0			0	0.04	TONS PROD
30500618	CEMENT SILOS	0	0 S	0	0	1.08	0	0	0	TONS PROD

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
30501101	CONCRETE BATCHING	0.1	0	0	0	1	0	0	0	CU YRD PD
30501108	CONCRETE BATCHING: WEIGHT HOPPER	0.01	0	0	0	1	0	0	0	TONS PROC
30501112	CONCRETE BATCHING: WET MIXING	0	0	0	0	1	0	0	0	CU YRD PD
30501113	CONCRETE BATCHING: DRY MIXING	0	0	0	0	1	0	0	0	CU YRD PD
30501114	CONCRETE BATCHING: TRANSFERRING	0	0	0	0	1	0	0	0	CU YRD PD
30501115	CONCRETE BATCHING: STORAGE	0	0	0	0	1	0	0	0	CU YRD PD
30501199	CONCRETE BATCHING: OTHER	0.05	0	0	0	1	0	0	0	TONS PROD
30501402	GLASS MFG: CONTAINER GLASS MELT FURNACE	1.32	3.4	6.2	0.2	1	0.2	0.2		TONS PROD
30501601	LIME MFG: PRIMARY CRUSHING	0.02	0	0	0	1	0	0	0	TONS PROD
30501602	LIME MFG: SECONDARY CRUSHING	0.62	0	0	0	1	0	0	0	TONS PROD
30501603	LIME MFG: VERTICAL KILN	5	8.2	2.8	0.02	1	0.02	0		TONS PROD
30501604	LIME MFG: ROTARY KILN	42	6.71	2.8	0.06	1	0.06	2		TONS PROD
30501605	LIME MFG: CALCIMATIC KILN	31.5	0	0.15	0.02	1	0.02	0	0	TONS PROD
30501606	LIME MFG: FLUIDIZED BED KILN				0.02	1	0.02			TONS PROD
30501607	LIME MFG: RAW MATERIAL TRANSFER	0.18	0	0	0	1	0	0	0	TONS PROD
30501608	LIME MFG: RAW MATERIAL UNLOADING	0.1	0	0	0	1	0	0	0	TONS PROD
30501609	LIME MFG: HYDRATOR (ATMOS)	0.07	0	0	0	1	0	0	0	TONS PROD
30501610	LIME MFG: RAW MATERIAL STORAGE PILES	1.32	0	0	0	1	0	0	0	TONS PROD
30501611	LIME MFG: PRODUCT COOLER	25.2	0	0	0	1	0	0	0	TONS PROD
30501612	LIME MFG: PRESSURE HYDRATOR	0.07	0	0	0	1	0	0	0	TONS PROD
30501613	LIME MFG: LIME SILOS	0	0	0	0	1	0	0	0	TONS PROD
30501614	LIME MFG: PACKING/SHIPPING	0.12	0	0	0	1	0	0	0	TONS PROD
30501616	LIME MFG: PRIMARY SCREENING	0	0	0	0	1	0	0	0	TONS PROC
30501699	LIMESTONE PROCESSING PLANT	0	0	0	0	0	0	0	0	TONS PROD
30502001	STONE QUARRYING: PRIMARY CRUSH	0	0	0	0	1	0	0	0	TONS PROC
30502002	STONE QUARRYING: SECONDARY CRUSH	0.01	0	0	0	1	0	0	0	TONS PROC
30502003	STONE QUARRYING: TERTIARY CRUSH	0	0	0	0	1	0	0	0	TONS PROC
30502004	STONE QUARRYING: RECRUSH/SCREENING	0	0	0	0	1	0	0	0	TONS PROC

Source Classification Codes & Emission Factor Listing

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
30502005	STONE QUARRYING: FINES MILL	0.01	0	0	0	1	0	0	0	TONS PROC
30502006	STONE QUARRYING: SCREEN/CONVEY/ HANDLING	0	0	0	0	1	0	0	0	TONS PROC
30502007	STONE QUARRYING: OPEN STORAGE	0.12	0	0	0	1	0	0	0	TONS PROC
30502008	STONE QUARRYING: CUT STONE	0	0	0	0	1	0	0	0	TONS PROC
30502009	STONE QUARRYING: BLASTING		0	0	0	1	0	0	0	TONS PROC
30502010	STONE QUARRYING: DRILLING	0	0	0	0	1	0	0	0	TONS PROC
30502011	STONE QUARRYING: HAULING		0	0	0	1	0	0	0	TONS PROC
30502012	STONE QUARRYING: DRYING	5	0	0	0	1	0	0	0	TONS PROC
30502013	STONE QUARRYING: BAR GRIZZLIES	0	0	0	0	1	0	0	0	TONS PROC
30502014	STONE QUARRYING: SHAKER SCREENS	0	0	0	0	1	0	0	0	TONS PROC
30502015	STONE QUARRYING: VIBRATING SCREENS	0	0	0	0	1	0	0	0	TONS PROC
30502016	STONE QUARRYING: REVOLVING SCREENS	0	0	0	0	1	0	0	0	TONS PROC
30502501	SAND/GRAVEL: GENERAL	0.1	0	0	0	1	0	0	0	TONS PROD
30502502	SAND/GRAVEL: AGGREGATE STORAGE	0.12	0	0	0	1	0	0	0	TONS PROD
30502503	SAND/GRAVEL: MATERIAL TRANSFER	0.01	0	0	0	1	0	0	0	TONS PROD
30502504	SAND/GRAVEL: HAULING	6.2	0	0	0	1	0	0	0	VMT
30502510	SAND/GRAVEL: CRUSHING	0	0	0	0	1	0	0	0	TONS PROD
30502511	SAND/GRAVEL: SCREENING	0.07	0	0	0	1	0	0	0	TONS PROD
30503299	ASBESTOS MILLING: OTHER	0	0	0	0	1	0	0	0	TONS PROC
30503401	FELDSPAR:BALL MILL	8.4	0	0	0	1	0	0	0	TONS ROCK
30600505	INDUST WASTEWATER TREATEMENT PROCESSING	0	0	0	0.03	1	0.03	0	0	1000 GAL
30700199	SULFATE PULPING: OTHER					1				TONS PULP
30700299	SULFITE PULPING: OTHER					1				TONS PULP
30700301	NEUTRAL SULFITE PULPING: DIGESTER		4			1				TONS PULP
30700302	NEUTRAL SULFITE PULPING: EVAPORATOR		0.01			1				TONS PULP
30700303	NEUTRAL SULFITE PULPING: FLUID BED REACT	282		1.6	0.25	1	0.25			TONS PULP
30700399	NEUTRAL SULFITE PULPING: OTHER					1				TONS PULP
30700599	WOOD PRESSURE TREATING					1				TONS

A-19

Source Classification Codes & Emission Factor Listing

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
30700802	SAWMILL OPERATIONS: SAWING	0.2	0	0	0	1	0	0	0	TONS PROC
30701399	PAPER PRODUCTS					1				TONS PROC
30702099	FURNITURE MFG					1				TONS PROC
30703001	WOODWORKING:WASTE STORAGE BIN VENT	0.58	0	0	0	1	0	0	0	TONS PROC
30703002	WOODWORKING: WASTE STORAGE BIN	1.2	0	0	0	1	0	0	0	TONS PROC
30703099	WOODWORKING: OTHER	0	0	0	0	1	0	0	0	TONS PROC
30799998	PULP & PAPER: OTHER NOT CLASSIFIED	0	0	0	0	1	0	0	0	TONS PROC
30800101	TIRE MFG: UNDERTREAD & SIDEWALL	0	0	0	229	1	229		0	1000 TIRE
30800102	TIRE MFG: BEAD DIPPING	0	0	0	13.3	1	13.3	0	0	1000 TIRE
30800103	TIRE MFG: BEAD SWABBING	0	0	0	18.3	1	18.3	0	0	1000 TIRE
30800104	TIRE MFG: TIRE BUILDING	0	0	0	72.6	1	72.6	0	0	1000 TIRE
30800105	TIRE MFG: TREAD END CEMENTING	0	0	0	33.2	1	33.2	0	0	1000 TIRE
30800106	TIRE MFG: GREEN TIRE SPRAYING	0	0	0	301	1	301	0	0	1000 TIRE
30800107	TIRE MFG: TIRE CURING	0	0	0	4.4	1	4.4	0	0	1000 TIRE
30800108	TIRE MFG: SOLVENT MIXING	0	0	0	10.8	1	10.8	0	0	TONS SOLV
30800120	TIRE MFG: UNDERTREAD & SIDEWAL CEMENTING	0	0	0	1800	1	1800	0	0	TONS SOLV
30800121	TIRE MFG: TREAD END CEMENTING	0	0	0	1800	1	1800	0	0	TONS SOLV
30800122	TIRE MFG: BEAD DIPPING	0	0	0	1800	1	1800	0	0	TONS SOLV
30800123	TIRE MFG: GREEN TIRE SPRAYING	0	0	0	1840	1	1840	0	0	TONS SOLV
30800501	TIRE RETREADING: BUFFING MACHINES	0	0	0	600	1	600	0	0	1000 TIRE
30800699	RUBBER PRODUCTS	0	0	0	0	1	0	0	0	TONS PROD
30800701	PLASTIC PRODUCTS: MACHINING	0	0	0	13	1	13	0	0	TONS PROC
30800702	PLASTIC PRODUCTS: MOLD RELEASE	0	0	0	0	1	0	0	0	TONS PROD
30800703	PLASTIC PRODUCTS: SOLVENT CONSUMPTION	0	0	0	649	1	649	0	0	TONS SOLV
30800704	PLASTIC PRODUCTS: ADHESIVE CONSUMPTION	0	0	0	649	1	649	0	0	TONS ADHE
30800705	PLASTIC PRODUCTS: WAX BURNOUT OVEN	0	0	0	0	1	0	0	0	TONS WAX
30800720	FIBERGLASS RESIN PRODUCTS	0	0	0	0	1	0	0	0	TONS PROD
30800721	FIBERGLASS RESIN PRODUCTS: GEL COAT	0	0	0	940	1	940	0	0	TONS COAT

A-20

		PM10	SOx	NOx	VOC	VOC Adjustmen	Adjusted t VOC	СО	Lead	
SCC	PROCESS DESCRIPTION	lbs./unit	lbs./unit	lbs./unit	lbs./unit	factor	lbs./unit	lbs./unit	lbs./unit	Units
30800722	FIBERGLASS RESIN PRODUCTS: GEL COAT	0	0	0	600	1	600	0	0	TONS COAT
30800723	FIBERGLASS RESIN PRODUCTS: RESIN ROLL ON	0	0	0	500	1	500	0	0	TONS COAT
30800724	FIBERGLASS RESIN PRODUCTS: RESIN SPRY ON	0	0	0	220	1	220	0	0	TONS COAT
30800799	PLASTIC PRODUCTS	0	0	0	0	1	0	0	0	TONS PROD
30800901	PLASTIC PRODUCTS: POLYSTYRENE	0	0	0	49.8	1	49.8	0	0	TONS RESN
30900199	FABRICATED METALS: OTHER					1				TONS PROC
30900201	FABRICATED METALS: ABRASIVE BLAST					1				TONS ABRA
30900202	FABRICATED METALS: SAND ABRASIVE	27				1				TONS ABRA
30900203	FABRICATED METALS: SLAG ABRASIVE					1				TONS ABRA
30900204	FABRICATED METALS: GARNET ABRASIVE					1				TONS ABRA
30900205	FABRICATED METALS: STEEL GRIT ABRASIVE					1				TONS ABRA
30900206	FABRICATED METALS: WALNUT SHELL ABRASIVE					1				TONS ABRA
30900207	FABRICATED METALS: SHOT BLAST W/AIR					1				TONS SHOT
30900208	FABRICATED METALS: SHOT BLAST W/O AIR					1				TONS SHOT
30900301	FABRICATED METALS: BRUSH CLEANING					1				TONS ABRA
30900302	FABRICATED METALS: TUMBLE CLEANING					1				TONS ABRA
30900303	FABRICATED METALS: POLISHING					1				TONS ABRA
30900304	FABRICATED METALS: BUFFING					1				TONS ABRA
30901001	FABRICATED METALS: ELECTROPLATING			0.01	0.03	1	0.03			SQ FT PLA
30901097	FABRICATED METALS: ELECTROPLATING					1				TONS MKUP
30901098	FABRICATED METALS: ELECTROPLATING					1				GALS
30901101	FABRICATED METALS: ALKALINE CLEANING			0.3		1				TONS PROC
30901102	FABRICATED METALS: ACID CLEANING			13		1				TONS PROC
30901103	FABRICATED METALS: ANODIZING			0.2		1				TONS PROC
30901104	FABRICATED METALS: RINSING			8	100	1	100			TONS PROC
30901501	FABRICATED METALS: CHEMICAL MILLING			160		1				TONS PROC
30904001	FABRICATED METALS: METALLIZING				0	1	0		0.5	TONS SPRY
30904010	FABRICATED METALS: THERMAL SPRAYING					1				TONS SPRY

						VOC	Adjusted			
SCC	PROCESS DESCRIPTION	PM10 lbs/unit	SOx lbs /unit	NOx lbs /unit	VOC	Adjustmer	nt VOC	CO lbs /unit	Lead	Units
bee	I KOCESS DESCRIPTION	103./ unit	105./ 01110	105./ umt	105./ unit	lactor	105./ umit	105./ unit	105./ umt	Units
30904020	FABRICATED METALS: PLASMA ARC SPRAYING				0	1	0			TONS SPRY
30906001	PORCELAIN ENAMEL SPRAY BOOTH					1				GALS
30906099	PORCELAIN ENAMEL SPRAY BOOTH					1				TONS PROC
30999999	FABRICATED METALS: OTHER					1				TONS PROC
31307001	ELECTRICAL WINDINGS RECLAIM - SINGLE	0	2.5	0	950	1	950	0		TONS CHAR
31307002	ELECTRICAL WINDINGS RECLAIM - MULTIPLE	0	2.5	0.1	190	1	190	0		TONS CHAR
31401001	BRAKE SHOE DEBONDING - SINGLE CHAMBER	0	2.5	0	950	1	950	0		TONS CHAR
31401002	BRAKE SHOE DEBONDING - MULTIPLE CHAMBER	0	2.5	0	190	1	190	0		TONS CHAR
31502001	HEALTH SERVICES: ETO STERILIZATION	0	0	0	2000	1	2000	0	0	TONS SOLV
33000101	TEXTILE: FABRIC, YARN PREPARATION	0	0	0	0	1	0	0	0	TONS PROC
33000102	TEXTILE: FABRIC, PRINTING	0	0	0	284	1	284	0	0	TONS PROC
33000103	TEXTILE: FABRIC, POLYESTER THREAD	0	0	0	0	1	0	0	0	TONS PROC
33000104	TEXTILE: FABRIC, TENTER FRAMES	0	0	0	0.47	1	0.47	0	0	TONS PROC
33000105	TEXTILE: FABRIC, CARDING	0	0	0	0	1	0	0	0	TONS PROC
33000199	TEXTILE: FABRIC, OTHER	0	0	0	0	1	0	0	0	TONS PROC
33000201	TEXTILE: RUBBERIZED FABRIC, IMPREGNATION	0	0	0	0	1	0	0	0	TONS PROC
33000211	TEXTILE: FABRIC, IMPREGNATION	0	0	0	120	1	120	0	0	TONS COAT
33000212	TEXTILE: RUBBERIZED FABRIC, WET COATING	0	0	0	1200	1	1200	0	0	TONS COAT
33000213	TEXTILE: RUBBERIZED FABRIC,HOT MELT COAT	0	0	0	120	1	120	0	0	TONS COAT
33000214	TEXTILE: FABRIC, WET COAT MIXING	0	0	0	120	1	120	0	0	TONS COAT
33000297	TEXTILE: RUBBERIZED FABRIC, OTHER	0	0	0	2000	1	2000	0	0	TONS SOLV
33000299	TEXTILE: RUBBERIZED FABRIC, OTHER	0	0	0	0	1	0	0	0	TONS PROC
36000101	TYPESETTING: LEAD REMELTING	0.18	0	0	0	1	0	0	0.25	TONS MELT
39000189	PROCESS FUEL: ANTHRACITE COAL	2.3 A	39 S	18	0.07	1	0.07	0.6	0.0133	TONS
39000199	PROCESS FUEL: ANTHRACITE COAL	0	0	0	0	1	0	0	0	TONS
39000289	PROCESS FUEL: BITUMINOUS COAL	1.4 A	39 S	34	0.07	1	0.07	0.6	0.0133	TONS
39000299	PROCESS FUEL: BITUMINOUS COAL	0	0	0	0	1	0	0	0	TONS
39000402	PROCESS FUEL: #6 OIL, CEMENT KILN	0	0	0	0	1.42	0	0	0	1000 GAL

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmer factor	Adjusted nt VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
39000403	PROCESS FUEL: #6 OIL, LIME KILN	0	0	0	0	1.42	0	0	0	1000 GAL
39000489	PROCESS FUEL: #6 OIL	10.67 E	159 S	55	0.28	1.42	0.3976	5	0.0042	1000 GAL
39000499	PROCESS FUEL: #6 OIL	0	0	0	0	1.42	0	0	0	1000 GAL
39000502	PROCESS FUEL: #2 OIL, CEMENT KILN	0	0	0	0	1.49	0	0	0	1000 GAL
39000503	PROCESS FUEL: #2 OIL, LIME KILN	0	0	0	0	1.49	0	0	0	1000 GAL
39000588	PROCESS FUEL: #4 OIL	6	152 S	20	0.2	1.49	0.298	5	0.0004	1000 GAL
39000589	PROCESS FUEL: #2 OIL	1	144 S	20	0.2	1.49	0.298	5	0.0012	1000 GAL
39000598	PROCESS FUEL: #4 OIL	0	0	0	0	1.49	0	0	0	1000 GAL
39000599	PROCESS FUEL: #2 OIL	0	0	0	0	1.49	0	0	0	1000 GAL
39000602	PROCESS FUEL: NAT GAS, CEMENT KILN	0	0	0	0	1.08	0	0	0	MIL CU FT
39000603	PROCESS FUEL: NAT GAS, LIME KILN	0	0	0	0	1.08	0	0	0	MIL CU FT
39000689	PROCESS FUEL: NAT GAS	7.6	0.6	100	5.5	1.08	5.94	84	0.0005	MIL CU FT
39000699	PROCESS FUEL: NAT GAS	0	0	0	0	1.08	0	0	0	MIL CU FT
39000889	PROCESS FUEL: COKE	5.5 A	38 S	14	0.07	0.89	0.0623	0.6		TONS
39000899	PROCESS FUEL: COKE	0	0	0	0	0.89	0	0	0	TONS
39000989	PROCESS FUEL: WOOD	6.48	0.15	0.68	1.4	1	1.4	4		TONS
39000999	PROCESS FUEL: WOOD	0	0	0	0	1	0	0	0	TONS
39001089	PROCESS FUEL: LPG	0.4	0.02 S	14	0.5	1.08	0.54	1.9		1000 GAL
39001099	PROCESS FUEL: LPG	0	0	0	0	1.08	0	0	0	1000 GAL
39001389	PROCESS FUEL: WASTE OIL	16.3 A	147 S	20	1	1	1	5	1.68	1000 GAL
39001399	PROCESS FUEL: WASTE OIL	0	0	0	0	1	0	0	0	1000 GAL
39999995	MISC INDUST PROCESS	0	0	0	0	1	0	0	0	GALS
39999999	MISC PROCESS	0	0	0	0	1	0	0	0	
40100103	DRY CLEANING: PERCHLOROETHYLENE	0	0	0	2000	1	2000	0	0	TONS SOLV
40100104	DRY CLEANING: STODDARD	0	0	0	2000	1	2000	0	0	TONS SOLV
40100105	DRY CLEANING: FREON 113	0	0	0	2000	1	2000	0	0	TONS SOLV
40100201	OPEN-TOP VAPOR DEGREASING: STODDARD	0	0	0	2000	1	2000	0	0	TONS SOLV
40100202	OPEN-TOP VAPOR DEGREASING: 111 TRICHLOR	0	0	0	2000	1	2000	0	0	TONS SOLV

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
40100203	OPEN-TOP VAPOR DEGREASING: PERC	0	0	0	2000	1	2000	0	0	TONS SOLV
40100204	OPEN-TOP VAPOR DEGREASING: MC	0	0	0	2000	1	2000	0	0	TONS SOLV
40100205	OPEN-TOP VAPOR DEGREASING: TRICHLOR	0	0	0	2000	1	2000	0	0	TONS SOLV
40100206	OPEN-TOP VAPOR DEGREASING: TOLUENE	0	0	0	2000	1	2000	0	0	TONS SOLV
40100207	OPEN-TOP VAPOR DEGREASING: FREON 113	0	0	0	2000	1	2000	0	0	TONS SOLV
40100208	OPEN-TOP VAPOR DEGREASING: CHLOROSOLVE	0	0	0	2000	1	2000	0	0	TONS SOLV
40100209	OPEN-TOP VAPOR DEGREASING: BUTYL ACETATE	0	0	0	2000	1	2000	0	0	TONS SOLV
40100221	CONVEYORIZED VAPOR DEGREASING: STODDARD	0	0	0	2000	1	2000	0	0	TONS SOLV
40100222	CONVEYORIZED VAPOR DEGREASING: 111 TRI	0	0	0	2000	1	2000	0	0	TONS SOLV
40100223	CONVEYORIZED VAPOR DEGREASING: PERC	0	0	0	2000	1	2000	0	0	TONS SOLV
40100224	CONVEYORIZED VAPOR DEGREASING: MC	0	0	0	2000	1	2000	0	0	TONS SOLV
40100225	CONVEYORIZED VAPOR DEGREASING: TRICHLOR	0	0	0	2000	1	2000	0	0	TONS SOLV
40100227	CONVEYORIZED VAPOR DEGREASING: FREON 113	0	0	0	2000	1	2000	0	0	TONS SOLV
40100251	GENERAL DEGREASING UNIT: STODDARD	0	0	0	2000	1	2000	0	0	TONS SOLV
40100252	GENERAL DEGREASING UNIT: 111 TRICHLOR	0	0	0	2000	1	2000	0	0	TONS SOLV
40100253	GENERAL DEGREASING UNIT: PERC	0	0	0	2000	1	2000	0	0	TONS SOLV
40100254	GENERAL DEGREASING UNIT: MC	0	0	0	2000	1	2000	0	0	TONS SOLV
40100255	GENERAL DEGREASING UNIT: TRICHLOR	0	0	0	2000	1	2000	0	0	TONS SOLV
40100256	GENERAL DEGREASING UNIT: TOLUENE	0	0	0	2000	1	2000	0	0	TONS SOLV
40100257	GENERAL DEGREASING UNIT: FREON 113	0	0	0	2000	1	2000	0	0	TONS SOLV
40100295	OTHER NOT CLASSIFIED: GENERAL DEGREASING	0	0	0	2000	1	2000	0	0	GALS SOLV
40100296	CONVEYORIZED VAPOR DEGREASING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLV
40100297	OPEN-TOP VAPOR DEGREASING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLV
40100298	CONVEYORIZED VAPOR DEGREASING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLV
40100299	OPEN-TOP VAPOR DEGREASING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLV
40100301	COLD SOLVENT CLEANING: METHANOL	0	0	0	2000	1	2000	0	0	TONS SOLV
40100302	COLD SOLVENT CLEANING: MC	0	0	0	2000	1	2000	0	0	TONS SOLV
40100303	COLD SOLVENT CLEANING: STODDARD	0	0	0	2000	1	2000	0	0	TONS SOLV

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
40100304	COLD SOLVENT CLEANING: PERC	0	0	0	2000	1	2000	0	0	TONS SOLV
40100305	COLD SOLVENT CLEANING: 111 TRICHLOR	0	0	0	2000	1	2000	0	0	TONS SOLV
40100306	COLD SOLVENT CLEANING: TRICHLOR	0	0	0	2000	1	2000	0	0	TONS SOLV
40100307	COLD SOLVENT CLEANING: IPA	0	0	0	2000	1	2000	0	0	TONS SOLV
40100308	COLD SOLVENT CLEANING: MEK	0	0	0	2000	1	2000	0	0	TONS SOLV
40100309	COLD SOLVENT CLEANING: FREON	0	0	0	2000	1	2000	0	0	TONS SOLV
40100310	COLD SOLVENT CLEANING: ACETONE	0	0	0	2000	1	2000	0	0	TONS SOLV
40100399	COLD SOLVENT CLEANING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLV
40200101	COATING: PAINT (SOLVENT-BASE)	0	0	0	1120	1	1120	0	0	TONS COAT
40200110	COATING: PAINT (SOLVENT-BASE)	0	0	0	5.6	1	5.6	0	0	GALS PROC
40200201	COATING: PAINT (WATER-BASE)	0	0	0	246	1	246	0	0	TONS COAT
40200301	COATING: VARNISH/SHELLAC	0	0	0	1000	1	1000	0	0	TONS COAT
40200401	COATING: LACQUER	0	0	0	1540	1	1540	0	0	TONS COAT
40200501	COATING: ENAMEL	0	0	0	840	1	840	0	0	TONS COAT
40200601	COATING: PRIMER	0	0	0	1320	1	1320	0	0	TONS COAT
40200610	COATING: PRIMER	0	0	0	6.6	1	6.6	0	0	GALS PROC
40200701	COATING: ADHESIVE	0	0	0	1270	1	1270	0	0	TONS COAT
40200706	COATING: ADHESIVE, SOLVENT MIXING	0	0	0	200	1	200	0	0	TONS SOLV
40200707	COATING: ADHESIVE, SOLVENT STORAGE	0	0	0	0	1	0	0	0	TONS SOLV
40200801	COATING OVEN	0	5	54	800	1	800	0		TONS COAT
40200901	THINNING SOLVENTS: GENERAL	0	0	0	2000	1	2000	0	0	TONS SOLV
40200902	THINNING SOLVENTS: ACETONE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200903	THINNING SOLVENTS: BUTYL ACETATE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200904	THINNING SOLVENTS: BUTYL ALCOHOL	0	0	0	2000	1	2000	0	0	TONS SOLV
40200905	THINNING SOLVENTS: CARBITOL	0	0	0	2000	1	2000	0	0	TONS SOLV
40200906	THINNING SOLVENTS: CELLOSOLVE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200907	THINNING SOLVENTS: CELLOSOLVE ACETATE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200908	THINNING SOLVENTS: DIMETHYL FORMAMIDE	0	0	0	2000	1	2000	0	0	TONS SOLV

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
40200909	THINNING SOLVENTS: ETHYL ACETATE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200910	THINNING SOLVENTS: ETHYL ALCOHOL	0	0	0	2000	1	2000	0	0	TONS SOLV
40200911	THINNING SOLVENTS: GASOLINE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200912	THINNING SOLVENTS: ISOPROPYL ALCOHOL	0	0	0	2000	1	2000	0	0	TONS SOLV
40200913	THINNING SOLVENTS: ISOPROPYL ACETATE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200914	THINNING SOLVENTS: KEROSENE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200915	THINNING SOLVENTS: LACTOL SPIRITS	0	0	0	2000	1	2000	0	0	TONS SOLV
40200916	THINNING SOLVENTS: METHYL ACETATE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200917	THINNING SOLVENTS: METHYL ALCOHOL	0	0	0	2000	1	2000	0	0	TONS SOLV
40200918	THINNING SOLVENTS: MEK	0	0	0	2000	1	2000	0	0	TONS SOLV
40200919	THINNING SOLVENTS: MIBK	0	0	0	2000	1	2000	0	0	TONS SOLV
40200920	THINNING SOLVENTS: MINERAL SPIRITS	0	0	0	2000	1	2000	0	0	TONS SOLV
40200921	THINNING SOLVENTS: NAPHTHA	0	0	0	2000	1	2000	0	0	TONS SOLV
40200922	THINNING SOLVENTS: TOLUENE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200923	THINNING SOLVENTS: VARSOL	0	0	0	2000	1	2000	0	0	TONS SOLV
40200924	THINNING SOLVENTS: XYLENE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200925	THINNING SOLVENTS: BENZENE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200926	THINNING SOLVENTS: TURPENTINE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200927	THINNING SOLVENTS: HEXYLENE GLYCOL	0	0	0	2000	1	2000	0	0	TONS SOLV
40200928	THINNING SOLVENTS: ETHYLENE OXIDE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200929	THINNING SOLVENTS: 111 TRICHLOR	0	0	0	2000	1	2000	0	0	TONS SOLV
40200930	THINNING SOLVENTS: METHYLENE CHLORIDE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200931	THINNING SOLVENTS: PERCHLOROETHYLENE	0	0	0	2000	1	2000	0	0	TONS SOLV
40200998	THINNING SOLVENTS: GENERAL	0	0	0	2000	1	2000	0	0	GALS
40201101	FABRIC COATING	0	0	0	1600	1	1600	0	0	TONS SOLC
40201103	FABRIC COATING: MIXING	0	0	0	200	1	200	0	0	TONS SOLC
40201104	FABRIC COATING: STORAGE	0	0	0	0	1	0	0	0	TONS SOLC
40201105	FABRIC COATING: EQUIP CLEANUP	0	0	0	200	1	200	0	0	TONS SOLC

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted it VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
40201111	FABRIC PRINTING: ROLLER	0	0	0	284	1	284	0	0	TONS FABR
40201113	FABRIC PRINTING: ROTARY SCREEN	0	0	0	46	1	46	0	0	TONS FABR
40201115	FABRIC PRINTING: FLAT SCREEN	0	0	0	158	1	158	0	0	TONS FABR
40201199	FABRIC COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40201201	FABRIC DYEING	0	0	0	2000	1	2000	0	0	TONS DYE
40201210	FABRIC DYEING	0	0	0	0	1	0	0	0	GALS DYE
40201301	PAPER COATING	0	0	0	1400	1	1400	0	0	TONS SOLC
40201303	PAPER COATING: MIXING	0	0	0	300	1	300	0	0	TONS SOLC
40201304	PAPER COATING: STORAGE	0	0	0	0	1	0	0	0	TONS SOLC
40201305	PAPER COATING: EQUIP CLEANING	0	0	0	300	1	300	0	0	TONS SOLC
40201399	PAPER COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40201501	MAGNET WIRE COATING	0	0	0	1600	1	1600	0	0	TONS SOLC
40201502	MAGNET WIRE COATING: CLEANING	0	0	0	2000	1	2000	0	0	TONS SOLC
40201503	MAGNET WIRE COATING: MIXING	0	0	0	200	1	200	0	0	TONS SOLC
40201504	MAGNET WIRE COATING: STORAGE	0	0	0	0	1	0	0	0	TONS SOLC
40201505	MAGNET WIRE COATING: EQUIP CLEANUP	0	0	0	200	1	200	0	0	TONS SOLC
40201599	MAGNET WIRE COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40201699	AUTOMOBILE COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40201702	METAL CAN COATING: CLEANING	0	0	0	2000	1	2000	0	0	TONS SOLC
40201703	METAL CAN COATING: MIXING	0	0	0	200	1	200	0	0	TONS SOLC
40201704	METAL CAN COATING: STORAGE	0	0	0	0	1	0	0	0	TONS SOLC
40201705	METAL CAN COATING: EQUIP CLEANUP	0	0	0	200	1	200	0	0	TONS SOLC
40201721	METAL CAN COATING: EXT BASE COATING	0	0	0	900	1	900	0	0	TONS SOLC
40201722	METAL CAN COATING: INT SPRAY COATING	0	0	0	400	1	400	0	0	TONS SOLC
40201723	METAL CAN COATING: INT SHEET BASECOAT	0	0	0	2000	1	2000	0	0	TONS SOLC
40201724	METAL CAN COATING: EXT SHEET BASECOAT	0	0	0	700	1	700	0	0	TONS SOLC
40201725	METAL CAN COATING: SIDE SEAM SPRAY COAT	0	0	0	100	1	100	0	0	TONS SOLC
40201726	METAL CAN COATING: END SEALING	0	0	0	100	1	100	0	0	TONS SOLC

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted at VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
40201727	METAL CAN COATING: LITHOGRAPHY	0	0	0	400	1	400	0	0	TONS SOLC
40201728	METAL CAN COATING: OVER VARNISH	0	0	0	200	1	200	0	0	TONS SOLC
40201799	METAL CAN COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40201801	METAL COIL COATING: PRIME COATING	0	0	0	800	1	800	0	0	TONS SOLC
40201803	METAL COIL COATING: SOLVENT MIXING	0	0	0	200	1	200	0	0	TONS SOLC
40201804	METAL COIL COATING: SOLVENT STORAGE	0	0	0	0	1	0	0	0	TONS SOLC
40201805	METAL COIL COATING: EQUIP CLEANUP	0	0	0	200	1	200	0	0	TONS SOLC
40201806	METAL COIL COATING: FINISH COATING	0	0	0	800	1	800	0	0	TONS SOLC
40201899	METAL COIL COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40201901	WOOD FURNITURE COATING	0	0	0	1600	1	1600	0	0	TONS SOLC
40201903	WOOD FURNITURE COATING: MIXING	0	0	0	200	1	200	0	0	TONS SOLC
40201904	WOOD FURNITURE COATING: STORAGE	0	0	0	0	1	0	0	0	TONS SOLC
40201999	WOOD FURNITURE COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40202001	METAL FURNITURE COATING	0	0	0	1600	1	1600	0	0	TONS SOLC
40202002	METAL FURNITURE COATING: CLEANING	0	0	0	2000	1	2000	0	0	TONS SOLC
40202003	METAL FURNITURE COATING: MIXING	0	0	0	200	1	200	0	0	TONS SOLC
40202004	METAL FURNITURE COATING: STORAGE	0	0	0	2000	1	2000	0	0	TONS SOLC
40202005	METAL FURNITURE COATING: EQUIP CLEANUP	0	0	0	200	1	200	0	0	TONS SOLC
40202099	METAL FURNITURE COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40202101	FLAT WOOD PRODUCTS COATING: BASE	0	0	0	800	1	800	0	0	TONS SOLC
40202103	FLAT WOOD PRODUCTS COATING: MIXING	0	0	0	200	1	200	0	0	TONS SOLC
40202105	FLAT WOOD PRODUCTS COATING: CLEANUP	0	0	0	200	1	200	0	0	TONS SOLC
40202106	FLAT WOOD PRODUCTS COATING: TOPCOAT	0	0	0	800	1	800	0	0	TONS SOLC
40202107	FLAT WOOD PRODUCTS COATING: FILLER	0	0	0	2000	1	2000	0	0	TONS SOLC
40202108	FLAT WOOD PRODUCTS COATING: SEALER	0	0	0	2000	1	2000	0	0	TONS SOLC
40202109	FLAT WOOD PRODUCTS COATING: INK	0	0	0	2000	1	2000	0	0	TONS SOLC
40202199	FLAT WOOD PRODUCTS COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40202201	PLASTIC PARTS COATING	0	0	0	1600	1	1600	0	0	TONS SOLC

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted at VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
40202202	PLASTIC PARTS COATING: CLEANING	0	0	0	2000	1	2000	0	0	TONS SOLC
40202203	PLASTIC PARTS COATING: MIXING	0	0	0	200	1	200	0	0	TONS SOLC
40202204	PLASTIC PARTS COATING: STORAGE	0	0	0	0	1	0	0	0	TONS SOLC
40202205	PLASTIC PARTS COATING: EQUIP CLEANUP	0	0	0	200	1	200	0	0	TONS SOLC
40202299	PLASTIC PARTS COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40202301	LARGE SHIP COATING: PRIME COATING	0	0	0	800	1	800	0	0	TONS SOLC
40202302	LARGE SHIP COATING: CLEANING	0	0	0	2000	1	2000	0	0	TONS SOLC
40202303	LARGE SHIP COATING: MIXING	0	0	0	200	1	200	0	0	TONS SOLC
40202304	LARGE SHIP COATING: STORAGE	0	0	0	0	1	0	0	0	TONS SOLC
40202305	LARGE SHIP COATING: EQUIP CLEANUP	0	0	0	200	1	200	0	0	TONS SOLC
40202306	LARGE SHIP COATING: TOPCOAT	0	0	0	800	1	800	0	0	TONS SOLC
40202399	LARGE SHIP COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40202401	LARGE AIRCRAFT COATING: PRIMER	0	0	0	800	1	800	0	0	TONS COAT
40202402	LARGE AIRCRAFT COATING: CLEANING	0	0	0	2000	1	2000	0	0	TONS COAT
40202403	LARGE AIRCRAFT COATING: MIXING	0	0	0	200	1	200	0	0	TONS COAT
40202404	LARGE AIRCRAFT COATING: STORAGE	0	0	0	0	1	0	0	0	TONS COAT
40202405	LARGE AIRCRAFT COATING: EQUIP CLEANUP	0	0	0	200	1	200	0	0	TONS COAT
40202406	LARGE AIRCRAFT COATING: TOPCOAT	0	0	0	800	1	800	0	0	TONS COAT
40202499	LARGE AIRCRAFT COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS COAT
40202501	MISC METAL PARTS: COATING	0	0	0	1600	1	1600	0	0	TONS SOLC
40202502	MISC METAL PARTS COATING: CLEANING	0	0	0	2000	1	2000	0	0	TONS SOLC
40202503	MISC METAL PARTS COATING: MIXING	0	0	0	200	1	200	0	0	TONS SOLC
40202504	MISC METAL PARTS COATING: STORAGE	0	0	0	0	1	0	0	0	TONS SOLC
40202505	MISC METAL PARTS COATING: EQUIP CLEANUP	0	0	0	200	1	200	0	0	TONS SOLC
40202599	MISC METAL PARTS COATING: OTHER	0	0	0	2000	1	2000	0	0	TONS SOLC
40202601	STEEL DRUM COATING	0	0	0	4.3	1	4.3	0	0	GAL PAINT
40202602	STEEL DRUM COATING: CLEANING	0	0	0	0	1	0	0	0	GAL PAINT
40202603	STEEL DRUM COATING: MIXING	0	0	0	0.5	1	0.5	0	0	GAL PAINT

Source Classification Codes & Emission Factor Listing

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted at VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
40202604	STEEL DRUM COATING: STORAGE	0	0	0	0	1	0	0	0	GAL PAINT
40202605	STEEL DRUM COATING: EQUIP CLEANUP	0	0	0	0.5	1	0.5	0	0	GAL PAINT
40202606	STEEL DRUM COATING: INTERIOR	0	0	0	2.2	1	2.2	0	0	GAL PAINT
40202607	STEEL DRUM COATING: EXTERIOR	0	0	0	2.2	1	2.2	0	0	GAL PAINT
40202699	STEEL DRUM COATING: OTHER	0	0	0	0	1	0	0	0	GAL PAINT
40299996	MISC COATING	0	0	0	2000	1	2000	0	0	TONS SOLC
40301013	FIXED ROOF TANKS: JP4	0	0	0	8.8	1	8.8	0	0	1000 GAL
40301016	FIXED ROOF TANKS: JET A	0	0	0	0.44	1	0.44	0	0	1000 GAL
40301019	FIXED ROOF TANKS: #2 OIL	0	0	0	0.4	1	0.4	0	0	1000 GAL
40301099	FIXED ROOF TANKS: SPEC LIQ	0	0	0	0.4	1	0.4	0	0	1000 GAL
40301111	FLOAT ROOF TANKS: JP4	0	0	0	3.5	1	3.5	0	0	1000 GAL
40301113	FLOAT ROOF TANKS: JET A	0	0	0	0.04	1	0.04	0	0	1000 GAL
40301115	FLOAT ROOF TANKS: #2 OIL	0	0	0	0.03	1	0.03	0	0	1000 GAL
40400101	FIXED ROOF TANKS (67,000BBL) - GAS RVP13	0	0	0	30.5	1	30.5	0	0	1000 GAL
40400102	FIXED ROOF TANKS (67,000BBL) - GAS RVP10	0	0	0	23.4	1	23.4	0	0	1000 GAL
40400103	FIXED ROOF TANKS (67,000BBL) - GAS RVP7	0	0	0	16.5	1	16.5	0	0	1000 GAL
40400104	FIXED ROOF TANKS (250000BBL) - GAS RVP13	0	0	0	22	1	22	0	0	1000 GAL
40400105	FIXED ROOF TANKS (250000BBL) - GAS RVP10	0	0	0	16.9	1	16.9	0	0	1000 GAL
40400106	FIXED ROOF TANKS (250000BBL) - GAS RVP7	0	0	0	11.9	1	11.9	0	0	1000 GAL
40400107	FIXED ROOF TANKS - WORKING LOSS RVP13	0	0	0	10	1	10	0	0	1000 GAL
40400108	FIXED ROOF TANKS - WORKING LOSS RVP10	0	0	0	8.2	1	8.2	0	0	1000 GAL
40400109	FIXED ROOF TANKS - WORKING LOSS RVP7	0	0	0	5.7	1	5.7	0	0	1000 GAL
40400110	FLOAT ROOF TANKS (67,000BBL) - GAS RVP13	0	0	0	18.2	1	18.2	0	0	1000 GAL
40400111	FLOAT ROOF TANKS (67,000BBL) - GAS RVP10	0	0	0	13.4	1	13.4	0	0	1000 GAL
40400112	FLOAT ROOF TANKS (67,000BBL) - GAS RVP7	0	0	0	8.6	1	8.6	0	0	1000 GAL
40400113	FLOAT ROOF TANKS (250000BBL) - GAS RVP13	0	0	0	8.9	1	8.9	0	0	1000 GAL
40400114	FLOAT ROOF TANKS (250000BBL) - GAS RVP10	0	0	0	6.5	1	6.5	0	0	1000 GAL
40400115	FLOAT ROOF TANKS (250000BBL) - GAS RVP7	0	0	0	4.2	1	4.2	0	0	1000 GAL

A-30

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted at VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
40400116	FLOAT ROOF TANKS (67000BBL) - WITHDRAWAL	0	0	0	0.01	1	0.01	0	0	1000 GAL
40400117	FLOAT ROOF TANKS (250000BBL)- WITHDRAWAL	0	0	0	0.01	1	0.01	0	0	1000 GAL
40400130	FLOAT ROOF TANKS (EXT-PRI) - SPECIFY	0	0	0	0	1	0	0	0	1000 GAL
40400131	FLOAT ROOF TANKS (EXT-PRI) - GAS RVP13	0	0	0	18.2	1	18.2	0	0	1000 GAL
40400132	FLOAT ROOF TANKS (EXT-PRI) - GAS RVP10	0	0	0	13.4	1	13.4	0	0	1000 GAL
40400140	FLOAT ROOF TANKS (EXT-SEC) - SPECIFY	0	0	0	0	1	0	0	0	1000 GAL
40400141	FLOAT ROOF TANKS (EXT-SEC) - GAS RVP13	0	0	0	18.2	1	18.2	0	0	1000 GAL
40400142	FLOAT ROOF TANKS (EXT-SEC) - GAS RVP10	0	0	0	13.4	1	13.4	0	0	1000 GAL
40400160	FLOAT ROOF TANKS (INT-PRI) - SPECIFY	0	0	0	0	1	0	0	0	1000 GAL
40400161	FLOAT ROOF TANKS (INT-PRI) - GAS RVP13	0	0	0	18.2	1	18.2	0	0	1000 GAL
40400162	FLOAT ROOF TANKS (INT-PRI) - GAS RVP10	0	0	0	13.4	1	13.4	0	0	1000 GAL
40400170	FLOAT ROOF TANKS (INT-SEC) - SPECIFY	0	0	0	0	1	0	0	0	1000 GAL
40400171	FLOAT ROOF TANKS (INT-SEC) - GAS RVP13	0	0	0	18.2	1	18.2	0	0	1000 GAL
40400172	FLOAT ROOF TANKS (INT-SEC) - GAS RVP10	0	0	0	13.4	1	13.4	0	0	1000 GAL
40400250	LOADING RACK	0 0	0 0	0	4.8	1	4.8	0	0	1000 GAL
40400497	UNDERGROUND STORAGE TANK - MISC.	0	0	0	0	1	0	0	0	1000 GAL
40500101	PRINTING: DRYER	0	0	0	2000	0.84	1680	0	0	TONS SOLI
40500201	PRINTING: LETTER PRESS	0	0	0	238	0.35	83.3	0	0	TONS INK
40500202	PRINTING: THINNING - KEROSENE	0	0	0	2000	1	2000	0		TONS SOLA
40500203	PRINTING: THINNING - MINERAL SPIRITS	0	0	0	2000	1	2000	0		TONS SOLA
40500211	PRINTING: LETTER PRESS	0	0	0	1200	0.35	420	0	0	TONS SOLI
40500301	PRINTING: FLEXOGRAPHIC	0	0	0	711	1	711	0	0	TONS INK
40500302	PRINTING: THINNING - CARBITOL	0	0	0	2000	1	2000	0		TONS SOLA
40500303	PRINTING: THINNING - CELLOSOLVE	0	0	0	2000	1	2000	0		TONS SOLA
40500304	PRINTING: THINNING - ETHYL ALCOHOL	0	0	0	2000	1	2000	0		TONS SOLA
40500305	PRINTING: THINNING - ISOPROPYL ALCOHOL	0	0	0	2000	1	2000	0		TONS SOLA
40500306	PRINTING: THINNING - N-PROPYL ALCOHOL	0	0	0	2000	1	2000	0		TONS SOLA
40500307	PRINTING: THINNING - NAPTHA	0	0	0	2000	1	2000	0		TONS SOLA

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted at VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
40500311	PRINTING: FLEXOGRAPHIC	0	0	0	1910	1	1910	0	0	TONS SOLI
40500312	PRINTING: FLEXOGRAPHIC	0	0	0	0	1	0	0	0	GALS USED
40500314	PRINTING: FLEXOGRAPHIC CLEANUP	0	0	0	2000	1	2000	0	0	TONS SOLV
40500401	PRINTING: LITHOGRAPHIC	0	0	0	198	1	198	0	0	TONS INK
40500411	PRINTING: LITHOGRAPHIC	0	0	0	2000	1	2000	0	0	TONS SOLV
40500413	PRINTING: LITHOGRAPHIC CLEANUP	0	0	0	2000	1	2000	0	0	TONS SOLV
40500414	PRINTING: LITHOGRAPHIC CLEANUP	0	0	0	2000	1	2000	0	0	TONS SOLV
40500501	PRINTING: GRAVURE	0	0	0	711	1	711	0	0	TONS INK
40500502	PRINTING: THINNING - DIMETHYLFORMAMIDE	0	0	0	2000	1	2000	0		TONS SOLA
40500503	PRINTING: THINNING - ETHYL ACETATE	0	0	0	2000	1	2000	0		TONS SOLA
40500506	PRINTING: THINNING - MEK	0	0	0	2000	1	2000	0		TONS SOLA
40500507	PRINTING: THINNING - MIK	0	0	0	2000	1	2000	0		TONS SOLA
40500510	PRINTING: THINNING - TOLUENE	0	0	0	2000	1	2000	0		TONS SOLA
40500511	PRINTING: GRAVURE	0	0	0	1910	1	1910	0	0	TONS SOLI
40500514	PRINTING: GRAVURE CLEANUP	0	0	0	2000	1	2000	0	0	TONS SOLV
40500599	PRINTING: THINNING - OTHER	0	0	0	2000	1	2000	0		TONS SOLA
40500601	PRINTING: INK MIXING	0	0	0	2000	1	2000	0	0	TONS SOLI
40500701	PRINTING: SOLVENT STORAGE	0	0	0	2000	1	2000	0	0	TONS SOLS
40600131	GASOLINE SUBMERGED LOADING - NORMAL SERV	0	0	0	5	1	5	0	0	1000 GAL
40600136	GASOLINE SPLASH LOADING - NORMAL SERVICE	0	0	0	12	1	12	0	0	1000 GAL
40600141	GASOLINE SUBMERGED LOADING -BALANCE SERV	0	0	0	8	1	8	0	0	1000 GAL
40600144	GASOLINE SPLASH LOADING -BALANCE SERVICE	0	0	0	8	1	8	0	0	1000 GAL
49000199	SOLVENT EXTRACTION PROCESS	0 0	0 0	0	0	0	0	0	0	TONS SOLV
49000299	WASTE SOLVENT RECOVERY OPERATIONS	0	0	0	2000	1	2000	0	0	TONS SOLV
49000599	AIR STRIPPING TOWER - SPECIFY	0	0	0	2000	1	2000	0	0	TONS SOLV
49099998	MISC VOC EVAPORATION	0	0	0	0	1	0	0	0	GALS CONS
49099999	MISC VOC EVAPORATION	0	0	0	2000	1	2000	0	0	TONS SOLV
50100101	MUNICIPAL INCIN: MULTIPLE CHAMBER	1.4	3.23	3.16	1.5	1	1.5	0.3	0.12	TONS BURN

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
50100102	MUNICIPAL INCIN: SINGLE CHAMBER	14	1.7	3.6	0.1	1	0.1	2.2	0.18	TONS BURN
50100103	MUNICIPAL INCIN: RDF	44	3.9	5.02	0	1	0	1.92	0.201	TONS BURN
50100105	MASS BURN WATERWALL COMBUSTOR		3.46	3.56				0.46	0.213	TONS BURN
50100505	MUNICIPAL INCIN: PATHOLOGICAL	3.04	2.17	3.56	0.3	1	0.3	2.95	0.0728	TONS BURN
50100506	MUNICIPAL INCIN: SLUDGE	8.2	1	1.04	1	1	1	7.73	0.025	TONS DRY
50100515	MUNICIPAL INCIN: SLUDGE, MULTI-HEARTH	8.2	28	5	1.7	1	1.7	31	0.1	TONS DRY
50100516	MUNICIPAL INCIN: SLUDGE, FLUIDIZED BED	0.44	0.3	1.7		1		2.1	0.04	TONS DRY
50100517	MUNICIPAL INCIN: SLUDGE, ELECT INFRARED	6	18	8.6		1			0.1	TONS DRY
50100701	SEWAGE TREATMENT: ENTIRE PLANT	0	0	0	8.9			0	0	MM GAL
50100799	SEWAGE TREATMENT: COMPOSTING	0	0	0	0			0	0	TONS DRY
50190004	MUNICIPAL INCIN: RESIDUAL OIL	0 S	0 S	0	0	1.42	0	0	0	1000 GAL
50190005	MUNICIPAL INCIN: DISTILLATE OIL	0	0 S	0	0	1.49	0	0	0	1000 GAL
50190006	MUNICIPAL INCIN: NATURAL GAS	0	0	0	0	1.08	0	0	0	MIL CU FT
50190010	MUNICIPAL INCIN: LPG	0	0 S	0	0	1.08	0	0	0	1000 GAL
50200101	COMM/INST INCIN: MULTIPLE CHAMBER		2.5	3	3	1	3	10		TONS BURN
50200102	COMM/INST INCIN: SINGLE CHAMBER	5.7	2.5	2	15	1	15	20		TONS BURN
50200103	COMM/INST INCIN: CONTROLLED AIR	1.04	1.5	10	0	1	0	0		TONS BURN
50200301	COMM/INST INCIN: FLUE FED		0.5	3	15	1	15	20		TONS BURN
50200302	COMM/INST INCIN: FLUE FED W/CONTROLS	4.02	0.5	10	3	1	3	10		TONS BURN
50200505	COMM/INST INCIN: PATHOLOGICAL	3.04	2.17	3.56	0.3	1	0.3	2.95	0.0728	TONS BURN
50200506	COMM/INST INCIN: SLUDGE	8.2	1	5	1	1	1	0	0.1	TONS DRY
50200601	COMM/INST INCIN: WASTE GAS FLARE	17	0	40	5.6	1	5.6	750	0	MIL CU FT
50290004	COMM/INST INCIN: RESIDUAL OIL	0 S	0 S	0	0	1.42	0	0	0	1000 GAL
50290005	COMM/INST INCIN: DISTILLATE OIL	0	0 S	0	0	1.49	0	0	0	1000 GAL
50290006	COMM/INST INCIN: NATURAL GAS	0	0	0	0	1.08	0	0	0	MIL CU FT
50290010	COMM/INST INCIN: LPG	0	0 S	0	0	1.08	0	0	0	1000 GAL
50300101	INDUSTRIAL INCIN: MULTIPLE CHAMBER	4.7	2.5	3	3	1	3	10		TONS BURN
50300102	INDUSTRIAL INCIN: SINGLE CHAMBER	5.7	2.5	2	15	1	15	20	0.0018	TONS BURN

SCC	PROCESS DESCRIPTION	PM10 lbs./unit	SOx lbs./unit	NOx lbs./unit	VOC lbs./unit	VOC Adjustmen factor	Adjusted t VOC lbs./unit	CO lbs./unit	Lead lbs./unit	Units
50300103	INDUSTRIAL INCIN: CONTROLLED AIR		1.5	10	0	1	0	0		TONS BURN
50300505	INDUSTRIAL INCIN: PATHOLOGICAL		0	3	0	1	0	0		TONS BURN
50300506	INDUSTRIAL INCIN: SLUDGE	8.2	1	5	1	1	1	0		TONS DRY
50300601	LANDFILL GAS FLARE	0 0	0 0	0	0	0	0	0	0	MIL CU FT
50300820	TSDF LAND TREATMENT: FUGITIVE EMISSIONS	0	0	0	0	1	0	0	0	ACRES
50390004	INDUSTRIAL INCIN: RESIDUAL OIL	0 S	0 S	0	0	1.42	0	0	0	1000 GAL
50390005	INDUSTRIAL INCIN: DISTILLATE OIL	0	0 S	0	0	1.49	0	0	0	1000 GAL
50390006	INDUSTRIAL INCIN: NATURAL GAS	0	0	0	0	1.08	0	0	0	MIL CU FT
50390010	INDUSTRIAL INCIN: LPG	0	0 S	0	0	1.08	0	0	0	1000 GAL

TABLE 32002 Connecticut Point Source InventorySummary of Actual Daily VOC, NOx and CO Emissionsby Ozone Non-attainment Status Area and SCCfor a Typical High Ozone Summer Day

SCC DESCRIPTION	VOC (RE) LBS/DAY	NOx (RE) LBS/DAY	CO (RE) LBS/DAY
Status Area = CT. Portion CT-NY-NJ CMS			
UTILITY BOILER: BIT COAL, TANGENT FIRED	153.00	10,208.90	1,261.80
UTILITY BOILER: #6 OIL, NORMAL FIRING	19.30	995.00	90.50
UTILITY BOILER: #6 OIL, TANGENTIAL FIRED	108.10	1,922.40	508.20
UTILITY BOILER: #2 OIL	0.00	0.00	0.00
INDUST BOILER: #6 OIL, >100 MMBTU	4.90	311.20	67.10
INDUST BOILER: #2 OIL >100 MMBTU	0.60	4.10	3.60
INDUST BOILER: #4 OIL > 100 MMBTU	0.20	4.60	2.50
INDUST BOILER: NAT GAS, 10-100 MMBTU/HR	20.50	553.20	285.80
INDUST BOILER: NAT GAS, <10 MMBTU/HR	14.60	247.50	207.90
COMM/INST BOILER: #2 OIL	4.30	135.00	43.30
COMM/INST BOILER: #4 OIL < 100 MMBTU	0.10	5.00	1.30
COMM/INST BOILER: NAT GAS, 10-100 MMBTU	2.00	31.80	22.10
COMM/INST BOILER: NAT GAS, <10 MMBTU/HR	1.60	33.30	28.20
INDUST SPACE HEATER: PROPANE	0.00	0.00	0.00
UTILITY DIESEL: #2 OIL	0.00	0.00	0.00
UTILITY TURBINE: NAT GAS	89.90	1,982.60	338.20
UTILITY TURBINE: KERO(USE AP-42 #2 OIL)	5.90	96.80	7.30
INDUST DIESEL: #2 OIL	3.80	17.90	8.70
COMM/INST DIESEL: #2 OIL	16.50	200.40	38.80
COMM/INST TURBINE: NAT GAS, COGEN	34.70	183.40	60.60
ENGINE TESTING: RECIPROCATING, GASOLINE	6.10	4.20	162.90
PLASTICS PRODUCTION	150.70	2.70	0.60
CHEMICAL PRODUCTION	516.50	0.00	0.00
BAKERY: BREAD, SPONGE DOUGH PROCESS	173.00	8.30	1.70
BAKERY: BREAD, STRAIGHT DOUGH PROCESS	328.30	28.40	6.00
BAKERY: OTHER	46.20	2.30	0.80
TOBACCO PROCESSING: OTHER	116.70	13.40	2.90
STONE QUARRYING: PRIMARY CRUSH	12.30	128.70	27.70
SCC DESCRIPTION	VOC (RE) LBS/DAY	NOx (RE) LBS/DAY	CO (RE) LBS/DAY
--	---------------------	---------------------	--------------------
RUBBER PRODUCTS	1,108.10	0.00	0.00
PLASTIC PRODUCTS	0.20	4.10	0.90
FABRICATED METALS: ELECTROPLATING	0.00	0.00	0.00
HEALTH SERVICES: ETO STERILIZATION	0.30	0.00	0.00
PROCESS FUEL: NAT GAS	0.40	6.50	1.20
CONVEYORIZED VAPOR DEGREASING: TRICHLOR	47.10	0.00	0.00
COLD SOLVENT CLEANING: STODDARD	2.90	0.00	0.00
COLD SOLVENT CLEANING: IPA	5.20	0.00	0.00
COLD SOLVENT CLEANING: OTHER	8.40	0.00	0.00
COATING: PAINT (SOLVENT-BASE)	145.50	4.60	1.00
COATING: ENAMEL	0.80	0.00	0.00
THINNING SOLVENTS: DIMETHYL FORMAMIDE	0.00	0.00	0.00
THINNING SOLVENTS: ETHYL ALCOHOL	4.80	0.00	0.00
THINNING SOLVENTS: ISOPROPYL ALCOHOL	2.80	0.00	0.00
THINNING SOLVENTS: KEROSENE	18.00	0.00	0.00
THINNING SOLVENTS: XYLENE	0.20	0.00	0.00
FABRIC COATING	93.20	0.70	0.10
FABRIC COATING: MIXING	175.00	0.00	0.00
WOOD FURNITURE COATING	39.20	0.00	0.00
LARGE AIRCRAFT COATING: PRIMER	98.80	0.00	0.00
LARGE AIRCRAFT COATING: OTHER	8.40	0.00	0.00
MISC METAL PARTS: COATING	110.20	0.00	0.00
FIXED ROOF TANKS: #2 OIL	3.40	0.00	0.00
FIXED ROOF TANKS (67,000BBL) - GAS RVP13	0.00	0.00	0.00
FLOAT ROOF TANKS (67,000BBL) - GAS RVP10	264.40	0.00	0.00
GASOLINE SUBMERGED LOADING -BALANCE	1,256.20	0.00	0.00
SOLVENT EXTRACTION PROCESS	4.00	0.00	0.00
MISC VOC EVAPORATION	283.50	0.00	0.00
MUNICIPAL INCIN: MULTIPLE CHAMBER	39.30	8,094.90	370.10
COMM/INST INCIN: SINGLE CHAMBER	0.00	0.00	0.00
COMM/INST INCIN: WASTE GAS FLARE	178.60	16.20	53.80
LANDFILL GAS FLARE	5.40	8.80	1.10
Status Area Total	5,734.10	25,256.90	3,606.70
Status Area = Greater Connecticut Area			
UTILITY BOILER: BIT COAL, FLUIDIZED BED	312.80	2,570.80	3,073.00

	VOC (RE)	NOx (RE)	CO (RE)
SCC DESCRIPTION	LBS/DAY	LBS/DAY	LBS/DAY
UTILITY BOILER: #6 OIL, NORMAL FIRING	203.00	8,670.90	2,540.40
UTILITY BOILER: #6 OIL, TANGENTIAL FIRED	711.60	21,218.70	3,279.20
UTILITY BOILER: #2 OIL	0.10	4.70	1.40
UTILITY BOILER: NAT GAS, > 100MMBTU/HR	73.60	2,514.30	979.80
UTILITY BOILER: NAT GAS, <100MMBTU/HR	1.80	28.10	11.20
UTILITY BOILER: NAT GAS, TANGENT FIRING	71.90	1,497.30	292.00
INDUST BOILER: #6 OIL, >100 MMBTU	51.00	2,570.50	693.10
INDUSTRIAL BOILER: #6 OIL <100 MMBTU	0.40	48.40	4.40
INDUST BOILER: #2 OIL >100 MMBTU	8.70	759.30	135.50
INDUST BOILER: #4 OIL > 100 MMBTU	0.30	7.20	4.00
INDUST BOILER: NAT GAS, >100 MMBTU/HR	74.10	2,205.10	1,240.60
INDUST BOILER: NAT GAS, 10-100 MMBTU/HR	46.30	972.40	767.40
INDUST BOILER: NAT GAS, <10 MMBTU/HR	14.60	250.50	207.30
INDUST BOILER: PROPANE	0.20	0.80	0.80
INDUST BOILER: WASTE OIL	3.20	42.30	11.70
COMM/INST BOILER: #6 OIL	40.00	733.30	250.60
COMM/INST BOILER: #2 OIL	4.80	188.60	66.90
COMM/INST BOILER: #4 OIL < 100 MMBTU	0.40	14.40	3.50
COMM/INST BOILER: NAT GAS, >100 MMBTU/HR	14.30	193.40	117.90
COMM/INST BOILER: NAT GAS, 10-100 MMBTU	44.80	911.20	534.30
COMM/INST BOILER: NAT GAS, <10 MMBTU/HR	1.30	22.40	18.70
COMM/INST BOILER: PROPANE	0.00	0.10	0.00
INDUST SPACE HEATER: NAT GAS	0.00	0.00	0.00
INDUST SPACE HEATER: PROPANE	0.00	0.00	0.00
COMM SPACE HEATER: NAT GAS	0.10	1.40	0.30
UTILITY TURBINE: #2 OIL	122.70	8,682.40	8,402.20
UTILITY DIESEL: #2 OIL	12.00	622.60	46.10
UTILITY TURBINE: NAT GAS	296.30	3,493.20	1,893.90
UTILITY DIESEL: NAT GAS	7.40	54.70	227.90
UTILITY TURBINE: KERO(USE AP-42 #2 OIL)	55.00	906.60	68.00
INDUST DIESEL: #2 OIL	96.40	1,153.40	243.50
INDUST TURBINE: NAT GAS	7.40	333.30	92.20
INDUST DIESEL: NAT GAS	52.40	719.10	573.00
INDUST TURBINE: NAT GAS, COGEN	631.80	3,115.10	2,299.40
INDUST DIESEL: NAT GAS,4-CYCLE RICH BURN	0.00	0.00	0.00

SCC DESCRIPTION	VOC (RE) LBS/DAY	NOx (RE) LBS/DAY	CO (RE) LBS/DAY
INDUST DIESEL: LARGE BORE, DIESEL OIL	5.20	135.30	52.00
INDUST DIESEL: KERO/NAPHTHA	1.90	118.60	16.70
COMM/INST DIESEL: #2. OIL	93.20	1.052.80	227.70
COMM/INST DIESEL: NAT GAS	0.00	4.70	0.30
COMM/INST TURBINE: NAT GAS	9.40	134.10	136.50
COMM INST DIESEL: GASOLINE	0.70	0.50	19.00
COMM/INST DIESEL: PROPANE	0.10	0.70	0.70
ENGINE TESTING: AIRCRAFT, TURBOJET	511.30	4,068,60	1.116.10
ENGINE TESTING: AIRCRAFT, JET A	162.90	2,970.30	889.00
ENGINE TESTING: RECIPROCATING, DIESEL	0.60	9.90	2.80
RECOVERY AND PURIFICATION SYSTEM	183.10	0.00	0.00
PLASTICS PRODUCTION: POLYSTYRENE	9.30	0.00	0.00
PLASTICS PRODUCTION: POLYESTER RESINS	13.10	0.00	0.00
PLASTICS PRODUCTION: ABS RESIN	83.10	0.00	0.00
PLASTICS PRODUCTION: BLOWING AGT-FREON	36.20	0.00	0.00
PLASTICS PRODUCTION	4,202.40	7.10	1.20
SYNTHETIC RUBBER PRODUCTION	446.90	0.00	0.00
PESTICIDE PRODUCTION: OTHER	0.00	0.00	0.00
PHARMACEUTICAL: OTHER	107.40	4.70	0.00
WASTE WATER TREATMENT	425.50	0.00	0.00
INORGANIC STORAGE FUGITIVES	167.80	0.00	0.00
CHEMICAL PRODUCTION	0.20	6.40	1.30
FEED MFG: GRAIN RECEIVING	0.00	0.00	0.00
CONTINUOUS DEEP FAT FRYER-POTATO CHIPS	14.10	0.00	0.00
FOOD AND AGRICULTURE: OTHER	0.00	0.00	0.00
SEC COPPER SMELTING: OTHER	4.30	251.10	60.40
STEEL FOUNDRY: ELEC INDUCTION FURNACE	0.00	0.00	0.00
STEEL FOUNDRY: OTHER	0.90	201.60	3.40
ASPHALT ROOFING MANUFACTURE DIP/SPRAY	0.10	4.20	0.90
LIME MFG: ROTARY KILN	0.30	5.10	1.10
STONE QUARRYING: PRIMARY CRUSH	0.00	0.00	0.00
STONE QUARRYING: SECONDARY CRUSH	0.00	0.00	0.00
STONE QUARRYING: RECRUSH/SCREENING	0.00	0.00	0.00
STONE QUARRYING: SCREEN/CONVEY/	0.60	5.90	1.70
SAND/GRAVEL: GENERAL	0.00	0.00	0.00

SCC DESCRIPTION	VOC (RE)	NOx (RE) L BS/DAV	CO (RE) L BS/DAV
	0.10	0.00	0.00
PAPER PRODUCTS	340.80	154 50	39.60
	9 30	0.00	0.00
RUBBER PRODUCTS	9.50 72.50	0.00	0.00
	27.00	0.00	0.00
DI ASTIC DODUCTS: DOI VETVDENIE	27.00 488.00	0.00	0.00
EARDICATED METALS, ARDASIVE BLAST	488.00	0.00	0.00
FADRICATED METALS. ADRASIVE DEAST	0.00	0.00	0.00
FADRICATED METALS. STEEL ORT ADRASIVE	0.00	0.00	0.00
EADDICATED METALS, SHOT BEAST W/AIK	0.00	0.00	0.00
FADRICATED METALS. ELECTROPLATING	0.00	0.00	0.00
FADRICATED METALS. ELECTROPLATING	0.00	0.00	0.00
FADRICATED METALS. THERMAL STRATING	0.00	0.00	0.00
FADRICATED METALS, FLASMA ARC SERATING	0.00	0.00	0.00
TADRICATED METALS, OTHER	134.40	0.10	0.00
TEXTILE. FABRIC, FRINTING	228 50	21.60	0.20 5.40
TEXTILE. FABRIC, FOLTESTER THREAD	228.50	18.00	5.40 4.10
TEXTILE. FADRIC, TEXTER FRAMES	568.00	0.00	4.10
TEXTILE. ROBBERIZED FABRIC, WEI COATING	54 70	0.00	0.00
TEXTILE. FADRIC, WEI COAT MIAINO	515 50	0.00	0.00 3.00
TEXTILE. RUDDERIZED FADRIC, OTHER	5 50	0.00	0.00
DEACESS FLIEL · #2 OIL	0.10	6.00	0.00
DDOCESS FUEL : NAT CAS	0.10 35.40	0.90 78 20	1.00
DROCESS FUEL . LDC	0.20	/ 8.20	19.00
	0.20	4.80	0.00
MISC INDUST DECCESS	0.20	0.00	0.70
MISC PROCESS	354.80	0.00 26.10	0.00 5.40
	120.00	20.10	0.00
OPEN TOP VALOR DEGREASING. TRICILLOR	120.00	0.00	0.00
COLD SOLVENT CLEANING, STODDADD	1.20	0.00	0.00
COLD SOLVENT CLEANING, STODDARD	41.20	0.00	0.00
COATING: LACOUER	20.30 187.60	0.00	0.00
COATING: ENAMEL	3 10	0.00	0.00
COATING, ADHESIVE	5.40 67 50	0.00	0.00
THINNING SOLVENTS, GENEDAL	268.00	0.00	0.00
IIIIMININU SULVENIS. UENEKAL	200.00	0.00	0.00

	VOC (RE)	NOx (RE)	CO (RE)
SCC DESCRIPTION			
THINNING SOLVENTS: ETHYL ALCOHOL	0.00	0.00	0.00
THINNING SOLVENTS: ISOPROPYL ALCOHOL	28.20	0.00	0.00
THINNING SOLVENTS: KEROSENE	32.00	0.00	0.00
THINNING SOLVENTS: METHYL ALCOHOL	5.00	0.00	0.00
THINNING SOLVENTS: MEK	134.60	0.00	0.00
THINNING SOLVENTS: MIBK	0.00	0.00	0.00
THINNING SOLVENTS: MINERAL SPIRITS	192.20	0.00	0.00
THINNING SOLVENTS: NAPHTHA	0.00	0.00	0.00
THINNING SOLVENTS: TOLUENE	70.00	0.00	0.00
THINNING SOLVENTS: XYLENE	6.80	0.00	0.00
THINNING SOLVENTS: GENERAL	564.30	0.00	0.00
FABRIC COATING	1,064.10	18.00	3.80
FABRIC DYEING	11.20	0.00	0.00
PAPER COATING	16.20	0.00	0.00
METAL COIL COATING: EQUIP CLEANUP	40.00	0.00	0.00
METAL COIL COATING: FINISH COATING	40.00	0.00	0.00
METAL COIL COATING: OTHER	104.00	0.00	0.00
WOOD FURNITURE COATING	281.80	0.00	0.00
METAL FURNITURE COATING	0.00	0.00	0.00
LARGE SHIP COATING: PRIME COATING	100.00	0.00	0.00
LARGE SHIP COATING: OTHER	26.60	0.00	0.00
LARGE AIRCRAFT COATING: PRIMER	5.50	0.00	0.00
LARGE AIRCRAFT COATING: OTHER	0.00	0.00	0.00
MISC METAL PARTS: COATING	21.30	2.80	0.60
MISC METAL PARTS COATING: OTHER	285.20	3.90	0.80
MISC COATING	228.60	0.00	0.00
FIXED ROOF TANKS: JP4	0.50	0.00	0.00
FIXED ROOF TANKS: JET A	5.40	0.00	0.00
FIXED ROOF TANKS: #2 OIL	15.80	0.00	0.00
FIXED ROOF TANKS: SPEC LIQ	11.40	0.00	0.00
FLOAT ROOF TANKS: JET A	0.00	0.00	0.00
FLOAT ROOF TANKS: #2 OIL	12.20	0.00	0.00
FIXED ROOF TANKS (67,000BBL) - GAS RVP13	2.80	0.00	0.00
FIXED ROOF TANKS (250000BBL) - GAS RVP10	1.30	0.00	0.00
FLOAT ROOF TANKS (67,000BBL) - GAS RVP13	50.20	0.00	0.00

SCC DESCRIPTION	VOC (RE) LBS/DAY	NOx (RE) LBS/DAY	CO (RE) LBS/DAY
FLOAT ROOF TANKS (67,000BBL) - GAS RVP10	374.20	0.00	0.00
FLOAT ROOF TANKS (EXT-SEC) - GAS RVP13	22.30	0.00	0.00
FLOAT ROOF TANKS (INT-SEC) - GAS RVP13	243.20	0.00	0.00
UNDERGROUND STORAGE TANK - MISC.	0.40	0.00	0.00
PRINTING: DRYER	0.10	12.10	2.50
PRINTING: FLEXOGRAPHIC	17.90	0.30	0.00
PRINTING: FLEXOGRAPHIC	128.00	0.00	0.00
PRINTING: LITHOGRAPHIC	12.70	0.00	0.00
PRINTING: LITHOGRAPHIC	1,268.40	40.20	8.30
PRINTING: LITHOGRAPHIC CLEANUP	102.00	0.00	0.00
PRINTING: GRAVURE	40.00	0.00	0.00
PRINTING: THINNING - OTHER	8.70	0.00	0.00
GASOLINE SUBMERGED LOADING -BALANCE	5,713.40	14.70	37.30
AIR STRIPPING TOWER - SPECIFY	0.00	0.00	0.00
MISC VOC EVAPORATION	556.90	0.00	0.00
MUNICIPAL INCIN: MULTIPLE CHAMBER	428.20	5,923.00	1,021.30
MUNICIPAL INCIN: SINGLE CHAMBER	16.90	3,272.60	477.30
MUNICIPAL INCIN: RDF	41.80	4,759.30	2,855.60
MUNICIPAL INCIN: SLUDGE, MULTI-HEARTH	214.80	138.70	219.80
SEWAGE TREATMENT: ENTIRE PLANT	85.00	0.00	0.00
SEWAGE TREATMENT: COMPOSTING	45.70	0.00	0.00
MUNICIPAL INCIN: DISTILLATE OIL	1.20	25.60	35.50
COMM/INST INCIN: SINGLE CHAMBER	113.20	5.10	1.20
COMM/INST INCIN: PATHOLOGICAL	15.10	27.90	48.60
INDUSTRIAL INCIN: MULTIPLE CHAMBER	0.00	0.00	0.00
INDUSTRIAL INCIN: SINGLE CHAMBER	0.00	0.00	0.00
INDUSTRIAL INCIN: SLUDGE	119.70	58.90	303.70
LANDFILL GAS FLARE	1.30	14.90	34.20
TSDF LAND TREATMENT: FUGITIVE EMISSIONS	11.40	203.30	53.80
Status Area Total	25,946.90	88,344.50	35,796.40
State of Connecticut Total	31,681.00	113,601.40	39,403.10

SCC DESCRIPTION	CO (RE) LBS/DAY	
Fairfield County		
UTILITY BOILER: BIT COAL, TANGENT FIRED	1,558.70	
UTILITY BOILER: #6 OIL, NORMAL FIRING	0.00	
UTILITY BOILER: #6 OIL, TANGENTIAL FIRED	240.60	
UTILITY BOILER: #2 OIL	0.00	
INDUST BOILER: #6 OIL, >100 MMBTU	15.80	
INDUST BOILER: #2 OIL >100 MMBTU	0.90	
INDUST BOILER: #4 OIL > 100 MMBTU	15.50	
INDUST BOILER: NAT GAS, 10-100 MMBTU/HR	147.40	
INDUST BOILER: NAT GAS, <10 MMBTU/HR	43.60	
COMM/INST BOILER: #2 OIL	135.70	
COMM/INST BOILER: #4 OIL < 100 MMBTU	2.10	
COMM/INST BOILER: NAT GAS, 10-100 MMBTU	21.70	
COMM/INST BOILER: NAT GAS, <10 MMBTU/HR	37.70	
INDUST SPACE HEATER: PROPANE	0.00	
UTILITY DIESEL: #2 OIL	3.30	
UTILITY TURBINE: NAT GAS	333.70	
UTILITY TURBINE: KERO(USE AP-42 #2 OIL)	1.40	
INDUST DIESEL: #2 OIL	1.20	
COMM/INST DIESEL: #2 OIL	42.60	
COMM/INST TURBINE: NAT GAS, COGEN	61.30	
ENGINE TESTING: RECIPROCATING, GASOLINE	163.60	
PLASTICS PRODUCTION	0.60	
CHEMICAL PRODUCTION	0.00	
BAKERY: BREAD, SPONGE DOUGH PROCESS	2.30	
BAKERY: BREAD, STRAIGHT DOUGH PROCESS	4.70	
BAKERY: OTHER	0.90	
TOBACCO PROCESSING: OTHER	4.00	
STONE QUARRYING: PRIMARY CRUSH	27.80	

SCC DESCRIPTION	CO (RE) LBS/DAY	
RUBBER PRODUCTS	0.00	
PLASTIC PRODUCTS	0.90	
FABRICATED METALS: ELECTROPLATING	0.00	
HEALTH SERVICES: ETO STERILIZATION	0.00	
PROCESS FUEL: NAT GAS	1.60	
CONVEYORIZED VAPOR DEGREASING: TRICHLOR	0.00	
COLD SOLVENT CLEANING: STODDARD	0.00	
COLD SOLVENT CLEANING: IPA	0.00	
COLD SOLVENT CLEANING: OTHER	0.00	
COATING: PAINT (SOLVENT-BASE)	0.50	
COATING: ENAMEL	0.00	
THINNING SOLVENTS: DIMETHYL FORMAMIDE	0.00	
THINNING SOLVENTS: ETHYL ALCOHOL	0.00	
THINNING SOLVENTS: ISOPROPYL ALCOHOL	0.00	
THINNING SOLVENTS: KEROSENE	0.00	
THINNING SOLVENTS: XYLENE	0.00	
FABRIC COATING	0.10	
FABRIC COATING: MIXING	0.00	
WOOD FURNITURE COATING	0.00	
LARGE AIRCRAFT COATING: PRIMER	0.00	
LARGE AIRCRAFT COATING: OTHER	0.00	
MISC METAL PARTS: COATING	0.00	
FIXED ROOF TANKS: #2 OIL	0.00	
FIXED ROOF TANKS (67,000BBL) - GAS RVP13	0.00	
FLOAT ROOF TANKS (67,000BBL) - GAS RVP10	0.00	
GASOLINE SUBMERGED LOADING -BALANCE SERV	0.00	
SOLVENT EXTRACTION PROCESS	0.00	
MISC VOC EVAPORATION	0.00	
MUNICIPAL INCIN: MULTIPLE CHAMBER	362.30	
COMM/INST INCIN: SINGLE CHAMBER	0.00	
COMM/INST INCIN: WASTE GAS FLARE	52.60	
LANDFILL GAS FLARE	0.50	
County Total	3,285.60	
Hartford County		
INDUST BOILER: #6 OIL, >100 MMBTU	71.50	

SCC DESCRIPTION	CO (RE) LBS/DAY	
INDUST BOILER: #2 OIL >100 MMBTU	166.80	
INDUST BOILER: #4 OIL > 100 MMBTU	5.00	
INDUST BOILER: NAT GAS, >100 MMBTU/HR	207.10	
INDUST BOILER: NAT GAS, 10-100 MMBTU/HR	70.50	
INDUST BOILER: NAT GAS, <10 MMBTU/HR	0.00	
COMM/INST BOILER: #2 OIL	0.00	
COMM/INST BOILER: NAT GAS, >100 MMBTU/HR	152.60	
COMM/INST BOILER: NAT GAS, 10-100 MMBTU	169.10	
COMM/INST BOILER: NAT GAS, <10 MMBTU/HR	15.40	
INDUST SPACE HEATER: PROPANE	0.20	
UTILITY TURBINE: NAT GAS	489.30	
UTILITY DIESEL: NAT GAS	249.70	
UTILITY TURBINE: KERO(USE AP-42 #2 OIL)	2.40	
INDUST DIESEL: #2 OIL	6.70	
INDUST TURBINE: NAT GAS	1.80	
INDUST DIESEL: NAT GAS	1.70	
INDUST TURBINE: NAT GAS, COGEN	1,180.00	
INDUST DIESEL: LARGE BORE, DIESEL OIL	0.00	
COMM/INST DIESEL: #2 OIL	4.90	
COMM INST DIESEL: GASOLINE	30.40	
ENGINE TESTING: AIRCRAFT, TURBOJET	219.40	
ENGINE TESTING: AIRCRAFT, JET A	0.70	
ENGINE TESTING: RECIPROCATING, DIESEL	21.20	
PLASTICS PRODUCTION: BLOWING AGT-FREON	0.00	
ASPHALT ROOFING MANUFACTURE DIP/SPRAY	0.90	
STONE QUARRYING: PRIMARY CRUSH	5.70	
STONE QUARRYING: SECONDARY CRUSH	10.40	
STONE QUARRYING: RECRUSH/SCREENING	0.00	
SAND/GRAVEL: GENERAL	0.00	
FABRICATED METALS: PLASMA ARC SPRAYING	0.00	
FABRICATED METALS: OTHER	0.00	
PROCESS FUEL: NAT GAS	7.30	
PROCESS FUEL: LPG	0.20	
COLD SOLVENT CLEANING: STODDARD	0.00	
COATING: PAINT (SOLVENT-BASE)	0.00	

SCC DESCRIPTION	CO (RE) LBS/DAY	
COATING: LACQUER	0.00	
COATING: ADHESIVE	0.00	
THINNING SOLVENTS: GENERAL	0.00	
THINNING SOLVENTS: ISOPROPYL ALCOHOL	0.00	
THINNING SOLVENTS: METHYL ALCOHOL	0.00	
THINNING SOLVENTS: MEK	0.00	
THINNING SOLVENTS: MINERAL SPIRITS	0.00	
THINNING SOLVENTS: TOLUENE	0.00	
PAPER COATING	0.00	
METAL COIL COATING: EQUIP CLEANUP	0.00	
METAL COIL COATING: FINISH COATING	0.00	
METAL COIL COATING: OTHER	0.00	
WOOD FURNITURE COATING	0.00	
LARGE AIRCRAFT COATING: PRIMER	0.00	
LARGE AIRCRAFT COATING: OTHER	0.00	
MISC COATING	0.00	
FIXED ROOF TANKS: #2 OIL	0.00	
FLOAT ROOF TANKS (67,000BBL) - GAS RVP10	0.00	
FLOAT ROOF TANKS (EXT-SEC) - GAS RVP13	0.00	
FLOAT ROOF TANKS (INT-SEC) - GAS RVP13	0.00	
UNDERGROUND STORAGE TANK - MISC.	0.00	
PRINTING: DRYER	30.20	
PRINTING: FLEXOGRAPHIC	0.10	
PRINTING: LITHOGRAPHIC CLEANUP	0.00	
GASOLINE SUBMERGED LOADING -BALANCE SERV	40.20	
MISC VOC EVAPORATION	0.00	
MUNICIPAL INCIN: MULTIPLE CHAMBER	155.40	
MUNICIPAL INCIN: RDF	2,666.20	
MUNICIPAL INCIN: SLUDGE, MULTI-HEARTH	89.90	
SEWAGE TREATMENT: ENTIRE PLANT	0.00	
INDUSTRIAL INCIN: MULTIPLE CHAMBER	0.00	
INDUSTRIAL INCIN: SINGLE CHAMBER	0.00	
County Total	6,072.90	
Litchfield County		
INDUSTRIAL BOILER: #6 OIL <100 MMBTU	6.00	

SCC DESCRIPTION	CO (RE) LBS/DAY	
INDUST BOILER: #2 OIL >100 MMBTU	0.80	
INDUST BOILER: #4 OIL > 100 MMBTU	0.10	
INDUST BOILER: NAT GAS, 10-100 MMBTU/HR	132.30	
INDUST BOILER: NAT GAS, <10 MMBTU/HR	5.00	
INDUST SPACE HEATER: NAT GAS	0.20	
INDUST DIESEL: #2 OIL	1.40	
COMM/INST DIESEL: #2 OIL	1.40	
COMM/INST TURBINE: NAT GAS	146.30	
PAPER PRODUCTS	40.30	
PULP & PAPER: OTHER NOT CLASSIFIED	0.00	
FABRICATED METALS: ELECTROPLATING	0.00	
FABRICATED METALS: ELECTROPLATING	0.00	
TEXTILE: FABRIC, POLYESTER THREAD	5.40	
PROCESS FUEL: NAT GAS	0.90	
OPEN-TOP VAPOR DEGREASING: TRICHLOR	0.00	
COLD SOLVENT CLEANING: STODDARD	0.00	
THINNING SOLVENTS: GENERAL	0.00	
MISC METAL PARTS: COATING	0.60	
MISC COATING	0.00	
MISC VOC EVAPORATION	0.00	
SEWAGE TREATMENT: COMPOSTING	0.00	
COMM/INST INCIN: SINGLE CHAMBER	0.10	
LANDFILL GAS FLARE	98.90	
County Total	439.70	
Middlesex County		
UTILITY BOILER: #6 OIL, NORMAL FIRING	481.30	
UTILITY BOILER: #6 OIL, TANGENTIAL FIRED	26.00	
UTILITY BOILER: NAT GAS, > 100MMBTU/HR	464.30	
INDUST BOILER: #6 OIL, >100 MMBTU	78.50	
INDUST BOILER: #2 OIL >100 MMBTU	1.70	
INDUST BOILER: NAT GAS, 10-100 MMBTU/HR	59.10	
INDUST BOILER: NAT GAS, <10 MMBTU/HR	0.40	
UTILITY TURBINE: KERO(USE AP-42 #2 OIL)	0.40	
INDUST DIESEL: #2 OIL	0.40	
INDUST TURBINE: NAT GAS	71.50	

SCC DESCRIPTION	CO (RE) LBS/DAY	
INDUST DIESEL: NAT GAS	1,390.80	
INDUST DIESEL: LARGE BORE, DIESEL OIL	0.40	
COMM/INST DIESEL: #2 OIL	4.60	
ENGINE TESTING: AIRCRAFT, TURBOJET	48.80	
ENGINE TESTING: AIRCRAFT, JET A	813.70	
STONE QUARRYING: SCREEN/CONVEY/ HANDLING	1.10	
TEXTILE: RUBBERIZED FABRIC, WET COATING	0.00	
TEXTILE: FABRIC, WET COAT MIXING	0.00	
TEXTILE: RUBBERIZED FABRIC, OTHER	0.00	
PROCESS FUEL: LPG	0.00	
THINNING SOLVENTS: GENERAL	0.00	
THINNING SOLVENTS: METHYL ALCOHOL	0.00	
THINNING SOLVENTS: MEK	0.00	
THINNING SOLVENTS: TOLUENE	0.00	
THINNING SOLVENTS: XYLENE	0.00	
LARGE AIRCRAFT COATING: PRIMER	0.00	
MISC METAL PARTS: COATING	0.00	
MISC COATING	0.00	
FLOAT ROOF TANKS: JET A	0.00	
PRINTING: LITHOGRAPHIC	5.80	
MISC VOC EVAPORATION	0.00	
County Total	3,448.80	
New Haven County		
UTILITY BOILER: #6 OIL, NORMAL FIRING	43.60	
UTILITY BOILER: #6 OIL, TANGENTIAL FIRED	1,744.30	
UTILITY BOILER: #2 OIL	1.20	
UTILITY BOILER: NAT GAS, TANGENT FIRING	157.10	
INDUST BOILER: #6 OIL, >100 MMBTU	100.50	
INDUST BOILER: #2 OIL >100 MMBTU	3.30	
INDUST BOILER: #4 OIL > 100 MMBTU	14.80	
INDUST BOILER: NAT GAS, >100 MMBTU/HR	42.10	
INDUST BOILER: NAT GAS, 10-100 MMBTU/HR	173.60	
INDUST BOILER: NAT GAS, <10 MMBTU/HR	22.10	
COMM/INST BOILER: #6 OIL	104.20	
COMM/INST BOILER: #2 OIL	19.40	

SCC DESCRIPTION	CO (RE) LBS/DAY	
COMM/INST BOILER: #4 OIL < 100 MMBTU	0.20	
COMM/INST BOILER: NAT GAS, 10-100 MMBTU	87.90	
COMM/INST BOILER: NAT GAS, <10 MMBTU/HR	0.00	
COMM SPACE HEATER: NAT GAS	0.30	
UTILITY TURBINE: #2 OIL	88.80	
UTILITY DIESEL: #2 OIL	2.80	
UTILITY TURBINE: NAT GAS	179.90	
UTILITY DIESEL: NAT GAS	0.00	
UTILITY TURBINE: KERO(USE AP-42 #2 OIL)	0.80	
INDUST DIESEL: #2 OIL	0.60	
INDUST DIESEL: KERO/NAPHTHA	2.60	
COMM/INST DIESEL: #2 OIL	11.30	
RECOVERY AND PURIFICATION SYSTEM	0.00	
PLASTICS PRODUCTION: POLYESTER RESINS	0.00	
PLASTICS PRODUCTION	1.90	
SYNTHETIC RUBBER PRODUCTION	0.00	
PESTICIDE PRODUCTION: OTHER	0.00	
WASTE WATER TREATMENT	0.00	
INORGANIC STORAGE FUGITIVES	0.00	
STEEL FOUNDRY: ELEC INDUCTION FURNACE	0.00	
STEEL FOUNDRY: OTHER	4.40	
INDUST WASTEWATER TREATEMENT PROCESSING	0.00	
RUBBER PRODUCTS	0.00	
PLASTIC PRODUCTS: SOLVENT CONSUMPTION	0.00	
TEXTILE: RUBBERIZED FABRIC, OTHER	3.70	
PROCESS FUEL: #2 OIL	5.00	
PROCESS FUEL: NAT GAS	2.50	
PROCESS FUEL: LPG	0.00	
MISC INDUST PROCESS	0.00	
MISC PROCESS	3.30	
OPEN-TOP VAPOR DEGREASING: OTHER	0.00	
COLD SOLVENT CLEANING: STODDARD	0.00	
COATING: ADHESIVE	0.00	
THINNING SOLVENTS: GENERAL	0.00	
THINNING SOLVENTS: KEROSENE	0.00	

SCC DESCRIPTION	CO (RE) LBS/DAY					
THINNING SOLVENTS: MINERAL SPIRITS	0.00					
THINNING SOLVENTS: NAPHTHA	0.00					
THINNING SOLVENTS: TOLUENE	0.00					
METAL FURNITURE COATING	0.00					
MISC METAL PARTS COATING: OTHER	1.30					
MISC COATING	0.00					
FIXED ROOF TANKS: JP4	0.00					
FIXED ROOF TANKS: JET A	0.00					
FIXED ROOF TANKS: #2 OIL	0.00					
FIXED ROOF TANKS: SPEC LIQ	0.00					
FLOAT ROOF TANKS: #2 OIL	0.00					
FIXED ROOF TANKS (67,000BBL) - GAS RVP13	0.00					
FIXED ROOF TANKS (250000BBL) - GAS RVP10	0.00					
FLOAT ROOF TANKS (67,000BBL) - GAS RVP13	0.00					
FLOAT ROOF TANKS (67,000BBL) - GAS RVP10	0.00					
FLOAT ROOF TANKS (INT-SEC) - GAS RVP13	0.00					
UNDERGROUND STORAGE TANK - MISC.	0.00					
PRINTING: FLEXOGRAPHIC	0.00					
PRINTING: LITHOGRAPHIC	0.00					
PRINTING: LITHOGRAPHIC	8.60					
PRINTING: GRAVURE	0.00					
PRINTING: THINNING - OTHER	0.00					
GASOLINE SUBMERGED LOADING -BALANCE SERV	0.00					
AIR STRIPPING TOWER - SPECIFY	0.00					
MISC VOC EVAPORATION	0.00					
MUNICIPAL INCIN: MULTIPLE CHAMBER	75.30					
MUNICIPAL INCIN: DISTILLATE OIL	764.80					
COMM/INST INCIN: SINGLE CHAMBER	0.80					
INDUSTRIAL INCIN: SLUDGE	286.10					
TSDF LAND TREATMENT: FUGITIVE EMISSIONS	33.90					
County Total	3,993.00					
New London County						
UTILITY BOILER: BIT COAL, FLUIDIZED BED	3,052.70					
UTILITY BOILER: #6 OIL, TANGENTIAL FIRED	41.10					
UTILITY BOILER: NAT GAS, <100MMBTU/HR	21.90					

SCC DESCRIPTION	CO (RE) LBS/DAY	
UTILITY BOILER: NAT GAS, TANGENT FIRING	19.60	
INDUST BOILER: #6 OIL, >100 MMBTU	402.30	
INDUST BOILER: #2 OIL >100 MMBTU	4.10	
INDUST BOILER: #4 OIL > 100 MMBTU	26.20	
INDUST BOILER: NAT GAS, >100 MMBTU/HR	783.70	
INDUST BOILER: NAT GAS, 10-100 MMBTU/HR	77.20	
INDUST BOILER: NAT GAS, <10 MMBTU/HR	12.80	
INDUST BOILER: PROPANE	0.20	
COMM/INST BOILER: #2 OIL	7.90	
COMM/INST BOILER: #4 OIL < 100 MMBTU	11.60	
COMM/INST BOILER: NAT GAS, 10-100 MMBTU	25.00	
COMM/INST BOILER: PROPANE	0.50	
UTILITY DIESEL: #2 OIL	2.70	
INDUST DIESEL: #2 OIL	56.40	
INDUST TURBINE: NAT GAS	172.10	
INDUST DIESEL: NAT GAS	0.20	
INDUST DIESEL: LARGE BORE, DIESEL OIL	197.20	
INDUST DIESEL: KERO/NAPHTHA	10.90	
COMM/INST DIESEL: #2 OIL	6.10	
COMM INST DIESEL: GASOLINE	1.20	
COMM/INST DIESEL: PROPANE	1.20	
PLASTICS PRODUCTION: POLYSTYRENE	0.00	
PLASTICS PRODUCTION: ABS RESIN	0.00	
PLASTICS PRODUCTION	0.00	
PHARMACEUTICAL: OTHER	0.00	
CHEMICAL PRODUCTION	0.80	
SEC COPPER SMELTING: OTHER	47.20	
LIME MFG: ROTARY KILN	1.20	
PAPER PRODUCTS	0.00	
FABRICATED METALS: ABRASIVE BLAST	0.00	
FABRICATED METALS: STEEL GRIT ABRASIVE	0.00	
FABRICATED METALS: SHOT BLAST W/AIR	0.00	
FABRICATED METALS: THERMAL SPRAYING	0.00	
FABRICATED METALS: OTHER	0.00	
TEXTILE: FABRIC, PRINTING	0.40	

SCC DESCRIPTION	CO (RE) LBS/DAY	
PROCESS FUEL: NAT GAS	3.60	
PROCESS FUEL: LPG	0.90	
MISC PROCESS	6.00	
COATING: PAINT (SOLVENT-BASE)	0.00	
COATING: ENAMEL	0.00	
THINNING SOLVENTS: ETHYL ALCOHOL	0.00	
THINNING SOLVENTS: ISOPROPYL ALCOHOL	0.00	
THINNING SOLVENTS: MINERAL SPIRITS	0.00	
THINNING SOLVENTS: XYLENE	0.00	
PAPER COATING	0.00	
LARGE SHIP COATING: PRIME COATING	0.00	
LARGE SHIP COATING: OTHER	0.00	
PRINTING: LITHOGRAPHIC	0.00	
PRINTING: LITHOGRAPHIC CLEANUP	0.00	
MISC VOC EVAPORATION	0.00	
MUNICIPAL INCIN: MULTIPLE CHAMBER	99.40	
MUNICIPAL INCIN: SINGLE CHAMBER	451.90	
COMM/INST INCIN: PATHOLOGICAL	37.80	
INDUSTRIAL INCIN: SLUDGE	0.00	
TSDF LAND TREATMENT: FUGITIVE EMISSIONS	0.00	
County Total	5,584.00	
Tolland County		
INDUST BOILER: WASTE OIL	13.80	
COMM/INST BOILER: #2 OIL	199.90	
COMM/INST BOILER: #4 OIL < 100 MMBTU	2.50	
COMM/INST BOILER: NAT GAS, >100 MMBTU/HR	16.70	
COMM/INST BOILER: NAT GAS, 10-100 MMBTU	44.90	
COMM/INST DIESEL: #2 OIL	19.50	
COMM/INST DIESEL: NAT GAS	0.10	
COMM/INST DIESEL: PROPANE	1.00	
TEXTILE: FABRIC, TENTER FRAMES	1.90	
PROCESS FUEL: NAT GAS	1.90	
THINNING SOLVENTS: MEK	0.00	
THINNING SOLVENTS: MINERAL SPIRITS	0.00	
FABRIC COATING	2.10	

SCC DESCRIPTION	CO (RE) LBS/DAY	
FABRIC DYEING	0.00	
County Total	304.30	
Windham County		
INDUST BOILER: NAT GAS, 10-100 MMBTU/HR	165.20	
INDUST BOILER: NAT GAS, <10 MMBTU/HR	70.10	
UTILITY TURBINE: NAT GAS	288.40	
INDUST DIESEL: #2 OIL	8.70	
INDUST TURBINE: NAT GAS	1,040.30	
INDUST DIESEL: NAT GAS,4-CYCLE RICH BURN	0.60	
COMM/INST DIESEL: #2 OIL	1.70	
SYNTHETIC RUBBER PRODUCTION	0.00	
FEED MFG: GRAIN RECEIVING	0.00	
CONTINUOUS DEEP FAT FRYER-POTATO CHIPS	0.00	
FOOD AND AGRICULTURE: OTHER	0.00	
PLASTIC PRODUCTS: POLYSTYRENE	0.00	
PROCESS FUEL: NAT GAS	9.10	
COLD SOLVENT CLEANING: STODDARD	0.00	
COATING: PAINT (SOLVENT-BASE)	0.00	
COATING: ADHESIVE	0.00	
THINNING SOLVENTS: GENERAL	0.00	
THINNING SOLVENTS: ETHYL ALCOHOL	0.00	
THINNING SOLVENTS: METHYL ALCOHOL	0.00	
THINNING SOLVENTS: MEK	0.00	
THINNING SOLVENTS: MIBK	0.00	
THINNING SOLVENTS: TOLUENE	0.00	
THINNING SOLVENTS: XYLENE	0.00	
THINNING SOLVENTS: GENERAL	0.00	
MISC VOC EVAPORATION	0.00	
MUNICIPAL INCIN: MULTIPLE CHAMBER	659.20	
County Total	2,243.30	
State of Connecticut Total	25,371.60	

Table 52002 State of Connecticut Point Source InventorySummary of Actual Daily VOC, NOx and CO Emissions by Countyfor a Typical High Ozone Summer Day

County	VOC (RE) Lbs/day	NOx (RE) Lbs/Day	CO (RE) Lbs/Day
Fairfield	5,734.10	25,256.90	3,606.70
Hartford	3,584.70	15,433.50	8,121.30
Litchfield	1,269.40	500.30	314.20
Middlesex	1,733.30	27,973.90	6,148.20
New Haven	15,108.40	22,279.40	11,824.90
New London	1,868.90	17,917.60	7,017.10
Tolland	1,205.60	942.10	296.00
Windham	1,176.60	3,297.70	2,074.70
State Total	31,681.00	113,601.40	39,403.10

Table 6

2002 State of Connecticut Point Source Inventory Summary of Actual Daily CO Emissions by County for a Typical Winter Day

County	CO (RE) Lbs/Day
•	· · · · ·
Fairfield	3,285.60
Hartford	6,072.90
Litchfield	439.70
Middlesex	3,448.80
New Haven	3,993.00
New London	5,584.00
Tolland	304.30
Windham	2,243.30
State Total	25,371.60

Plant Information:

Plant N Addres	lame:	MOTIVA ENTERPRISES LLC 250 EAGLES NEST RD, BRIDGE	EPOR	Г. СТ	AFS	ID : 001 - 167	UTM (CT ID: 15- Coord: Zone	-17 :18 X:	653.8	SIC Coo Y: 4558.8	le: 5171			
Ozone	Status	Area: CT. Portion CT-NY-NJ CMS	5	,	CO	Status Area: Fa	airfield								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operat	ting Sc	hedule	e	Rate/		Contro	l Equip	Equip	Daily Emi	issions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0001	003	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.00000	1000 GAL	095		0	0	0	0	0
E0002	004	FIXED ROOF TANKS (67,000BBL) -	- 24	52	7	40400101	0.06500	1000 GAL	095		0	0	0	0	0
E0003	005	FIXED ROOF TANKS (67,000BBL) -	- 24	52	7	40400101	0.00700	1000 GAL	095		0	0	0	0	0
E0004	006	FIXED ROOF TANKS (67,000BBL) -	- 24	52	7	40400101	0.00000	1000 GAL	095		0	0	0	0	0
E0005	007	FIXED ROOF TANKS (67,000BBL) -	- 24	52	7	40400101	0.00000	1000 GAL	095		0	0	0	0	0
E0006	008	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	15.38400	1000 GAL	095		0	0.7	0	0	0
E0007	009	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.00000	1000 GAL	095		0	0	0	0	0
E0008	010	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	55.61100	1000 GAL	095		0	1.8	0	0	0
E0009	011	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	33.93700	1000 GAL	095		0	0.9	0	0	0
E0010	012	FIXED ROOF TANKS (67,000BBL) -	- 24	52	7	40400101	0.03100	1000 GAL	095		0	0	0	0	0
E0011	013	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.03720	1000 GAL	095		0	0	0	0	0
E0012	014	FIXED ROOF TANKS (67,000BBL) -	- 24	52	7	40400101	0.00000	1000 GAL	095		0	0	0	0	0
E0013	015	FIXED ROOF TANKS (67,000BBL) -	- 24	52	7	40400101	0.01600	1000 GAL	095		0	0	0	0	0
P0168	003	GASOLINE SUBMERGED	24	52	1	40600141	42.20000	1000 GAL	048		99.9	70.1	0	0	0
R0733	002	GASOLINE SUBMERGED	24	52	7	40600141	953.18000	1000 GAL	048		99.9	1186.1	0	0	0
R0734	002	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	278.98900	1000 GAL	095		0	50.1	0	0	0
R0735	002	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	153.34000	1000 GAL	095		0	31.2	0	0	0
R0736	002	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	98.82300	1000 GAL	095		0	38.8	0	0	0
R0737	002	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	5.83400	1000 GAL	095		0	0	0	0	0
R0738	002	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	129.83400	1000 GAL	095		0	42.2	0	0	0
R0952	002	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	113.80000	1000 GAL	095		0	46	0	0	0
R0953	002	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	0.00000	1000 GAL	095		0	0	0	0	0
R0954	002	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	687.47700	1000 GAL	095		0	56.1	0	0	0

Plant 1	Inform	ation:												
Plant N	lame:	PSEG PWR CT LLC/BPT HAR	BOR		AFS ID : 001 - 195			CT ID: 15-	-45	e: 4911				
Addres	ss:	1 ATLANTIC ST, BRIDGEPOR	T, CT		~~		UTM C	Coord: Zone:	: 18 X: 652.3	Y: 4559.2				
Ozone	Status	Area: CT. Portion CT-NY-NJ CM	S		COS	Status Area: Fai	rfield							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operat	ing Sc	hedule	:	Rate/		Control Equip	Equip	Daily En	nissions with	n RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
E0002	010	COMM/INST DIESEL: #2 OIL	1	1	1	20300101	0.00100	1000 GAL		0	0	0	0	0
E0003	011	COMM/INST DIESEL: #2 OIL	1	1	1	20300101	0.00100	1000 GAL		0	0	0	0	0
E0004	012	INDUST SPACE HEATER:	7	22	7	10500110	0.00000	1000 GAL		0	0	0	0	0
E0005	013	INDUST SPACE HEATER:	7	22	7	10500110	0.00000	1000 GAL		0	0	0	0	0
E0006	014	INDUST SPACE HEATER:	7	22	7	10500110	0.00000	1000 GAL		0	0	0	0	0
P0089	003	UTILITY BOILER: BIT COAL,	24	39	7	10100212	2,480.0000	TONS		0	153	10208.9	1261.8	1558.7
R0162	002	UTILITY BOILER: #6 OIL,	24	10	7	10100401	17.82000	1000 GAL		0	19.3	995	90.5	0
R0166	004	UTILITY TURBINE: KERO(USE	6	12	2	20100901	0.10900	1000 GAL		0	0.6	9.6	0.7	0.3
Plant 2	[nform	ation:												
Plant N	Vame:	BRIDGEPORT MUTUAL MGN	1T		AFS	ID : 001 - 258		CT ID: 15-	-108	SIC Cod	e: 6513			
Addres	ss :	62 ROWSLEY ST, BRIDGEPO	RT, CT				UTM C	Coord: Zone:	: 18 X: 648.9	Y: 4557.6				
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	1S		COS	Status Area: Fai	rfield							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Control Equip	Equip	Daily En	nissions with	n RE (lbs/ d	lav)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
R0457	001	COMM/INST BOILER: #4 OIL < 10	0 24	39	7	10300504	0.25100	1000 GAL		0	0.1	5	1.3	2.1
Plant	Inform	ation												
I lunt	morm													
Plant N	lame:	BURNS CONSTRUCTION CO			AFS	ID : 001 - 388		CT ID: 15-	-238	SIC Cod	e: 3357			
Addres	ss :	412 HOUSATONIC AVE, BRII	GEPO	RT, CI	Г		UTM C	Coord: Zone:	: 18 X: 632.5	Y: 4601.9				
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	1S		COS	Status Area: Fai	rfield							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Control Equip	Equip	Daily En	nissions with	n RE (lbs/ d	lav)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0059	001	STONE QUARRYING: PRIMARY	24	49	5	30502001	56.15400	TONS		0	12.3	128.7	27.7	27.8

Plant 1	Inform	ation:												
Plant N Addres	Name: ss :	PEOPLE'S BANK 850 MAIN ST, BRIDGEPORT, CT			AFS ID : 001 - 742 CT ID: 15-592 SIC Code: 6036 UTM Coord: Zone: 18 X: 651.9 Y: 4559.7									
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	1S		CO	Status Area: Fairfi	eld							
<u>2002 I</u>	nform	ation:												
Point ID P0120 P0121	Stack ID 001 001	Process Description COMM/INST BOILER: #2 OIL COMM/INST BOILER: #2 OIL	Operat H/D 24 24	ing Sc D/W 52 52	hedule W/Y 7 7	SCC 10300501 10300501	Rate/ Day 0.46800 0.46800	Units 1000 GAL 1000 GAL	Control Equip 1 2	Equip Eff 0 0	Daily Emi VOC 0.4 0.4	ssions with NOx 13.7 13.7	n RE (lbs/ day CO-s 4.4 4.4	() CO-w 4.9 4.9
Plant]	Inform	ation:												
Plant N Addres Ozone	Vame: ss : Status	INTERCHURCH RESIDENCES 3030 PARK AVE, BRIDGEPOF Area : CT. Portion CT-NY-NJ CM	5 RT, CT 1S		AFS CO	ID : 001 - 875 Status Area: Fairfi	UTM C eld	CT ID: 15- Coord: Zone	725 : 18 X: 650.6	SIC Cod Y: 4562.7	le: 6513			
<u>2002 I</u>	nforma	ation:												
Point ID R0813	Stack ID 001	Process Description COMM/INST BOILER: #2 OIL	Operat H/D 24	ing Sc D/W 26	hedule W/Y 7	SCC 10300501	Rate/ Day 0.20000	Units 1000 GAL	Control Equip 1 2	Equip Eff 0	Daily Emi VOC 0.1	ssions with NOx 4.8	n RE (lbs/ day CO-s 1	() CO-w 1.2
Plant]	Inform	ation:												
Plant N Addres Ozone	Name: ss : Status	CASCO PRODUCTS CORPOR. 380 HORACE ST, BRIDGEPOP Area : CT. Portion CT-NY-NJ CM	ATION RT, CT IS		AFS CO	ID : 001 - 881 Status Area: Fairfi	UTM C eld	CT ID: 15- Coord: Zone:	731 : 18 X: 652.9	SIC Cod Y: 4562.5	le: 3634			
2002 I	nforma	ation:												
Point ID P0031 P0065	Stack ID 001 002	Process Description INDUST BOILER: NAT GAS, <10 INDUST BOILER: #4 OIL > 100	Operat H/D 24 2	ing Sc D/W 52 52	hedule W/Y 7 7	SCC 10200603 10200504	Rate/ Day 0.06900 0.00000	Units MIL CU FT 1000 GAL	Control Equip 1 2	Equip Eff 0 0	Daily Emi VOC 0.4 0	ssions with NOx 6.9 0	1 RE (lbs/ day CO-s 5.8 0	() CO-w 1.2 0
Plant]	Inform	ation:												
Plant N Addres Ozone	Vame: ss : Status	WHEELABRATOR BRIDGEPO 6 HOWARD AVE, BRIDGEPO Area : CT. Portion CT-NY-NJ CM	ORT LP RT, CT IS		AFS CO	ID : 001 - 915 Status Area: Fairfi	UTM C eld	CT ID: 15- Coord: Zone:	765 : 18 X: 649.7 X	SIC Cod Y: 4557.8	le: 4953			
<u>2002 I</u>	nform	ation:												
Point ID	Stack ID	Process Description	Operat H/D	ing Sc D/W	hedule W/Y	SCC	Rate/ Day	Units	Control Equip 1 2	Equip Eff	Daily Emi VOC	ssions with NOx	1 RE (lbs/ day CO-s	() CO-w

P0097 P0098 P0099	010 011 012	MUNICIPAL INCIN: MULTIPLE MUNICIPAL INCIN: MULTIPLE MUNICIPAL INCIN: MULTIPLE	24 24 24	52 52 52	7 7 7	50100101 50100101 50100101	669.86400 697.23800 686.45500	TONS TONS TONS			0 0 0	13 13.2 13.1	2753.1 2740.1 2601.7	107.2 132.5 130.4	107.1 127.2 128
Plant]	Inform	ation:													
Plant N Addres Ozone	Vame: ss : Status	BRIDGEPORT ENERGY LLC 10 ATLANTIC ST, BRIDGEPOR Area : CT. Portion CT-NY-NJ CM	RT, CT S		AFS CO S	ID : 001 - 1012 Status Area: Fairt	UTM C field	CT ID: 15-8 Coord: Zone:	862 18 X:	652.3	SIC Cod Y: 4559.1	e: 4911			
<u>2002 I</u>	nforma	ition:													
Point ID P0190 P0191	Stack ID 005 005	Process Description UTILITY TURBINE: NAT GAS UTILITY TURBINE: NAT GAS	Operatir H/D 24 24	ng Sch D/W 52 52	edule W/Y 7 7	SCC 20100201 20100201	Rate/ Day 37.51300 37.38500	Units MIL CU FT MIL CU FT	Control 1 065 065	Equip 2 02 02	Equip Eff 75 75	Daily Em VOC 45 44.9	issions with NOx 1009.4 973.2	n RE (lbs/ da CO-s 188.3 149.9	y) CO-w 185.9 147.8
Plant 1	Inform	ation:													
Plant N Addres Ozone	Name: ss : Status	STP PRODUCT MANUFACTUR 115 COMMERCE RD, BROOKF Area : CT. Portion CT-NY-NJ CM	RING FIELD, C S	СТ	AFS CO S	ID : 001 - 2193 Status Area: Fairt	UTM C field	CT ID: 28-4 Coord: Zone:	43 18 X:	634.1	SIC Cod Y: 4589.4	e:			
<u>2002 I</u>	nforma	ition:													
Point ID P0011 P0012	Stack ID 002 003	Process Description ENGINE TESTING: ENGINE TESTING:	Operatin H/D 24 24 24	ng Sch D/W 52 52	edule W/Y 7 7	SCC 20400401 20400401	Rate/ Day 0.02700 0.01400	Units 1000 GAL 1000 GAL	Control 1	Equip 2	Equip Eff 0 0	Daily Em VOC 4 2.1	issions with NOx 2.8 1.4	n RE (lbs/ da CO-s 106.4 55.2	y) CO-w 108.2 54.1
Plant]	Inform	ation:													
Plant N Addres Ozone	Name: ss : Status	RISDON-AMS COSMETIC CON RTE 6-OLD NEWTOWN RD, D Area : CT. Portion CT-NY-NJ CM	NT DIV ANBUR S	Y, CI	AFS CO S	ID : 001 - 2259 Status Area: Fairt	UTM C field	CT ID: 44-9 Coord: Zone:	9 18 X:	631.8	SIC Cod Y: 4584.7	e: 3479			
<u>2002 I</u>	nforma	ition:													
Point ID E0001 P0066 P0077 R0011 R0012 R0013 R0094	Stack ID 009 008 009 002 003 003 003 004	Process Description PROCESS FUEL: NAT GAS CONVEYORIZED VAPOR SOLVENT EXTRACTION PROCESS INDUST BOILER: NAT GAS, <10 INDUST BOILER: NAT GAS, <10 INDUST BOILER: NAT GAS, <10 MISC METAL PARTS: COATING	Operatin H/D 1 16 16 5 24 24 16 16 16	ng Sch D/W 48 48 52 52 52 52 52 48	edule W/Y 5 7 7 7 7 7 5	SCC 39000689 40100225 49000199 10200603 10200603 10200603 40202501	Rate/ Day 0.00200 0.28200 0.00200 0.00500 0.01500 0.01500 0.0040	Units MIL CU FT TONS MIL CU FT MIL CU FT MIL CU FT TONS	Control 1 048	Equip 2	Equip Eff 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 47.1 4 0 0.1 0.1 0.8	issions with NOx 0.2 0 0.5 1.5 1.5 1.5 0	n RE (lbs/ da CO-s 0 0 0,4 1.3 1.3 0	y) CO-w 0 0 2.7 1.3 1.3 0

TABLE 7
DETAIL LISTING OF 2002 CONNECTICUT POINT SOURCE INVENTORY

R0095	004	MISC METAL PARTS: COATING	12	48	5	40202501	0.00000	TONS		0	0	0	0	0
R0096	005	MISC METAL PARTS: COATING	4	36	5	40202501	0.00070	TONS		0	1.4	0	0	0
R0097	005	MISC METAL PARTS: COATING	16	48	5	40202501	0.00000	TONS		0	0	0	0	0
R0098	005	MISC METAL PARTS: COATING	8	48	5	40202501	0.00000	TONS		0	0	0	0	0
R0099	006	MISC METAL PARTS: COATING	6	48	5	40202501	0.00000	TONS		0	0	0	0	0
R0100	006	MISC METAL PARTS: COATING	8	36	5	40202501	0.02300	TONS		0	46	0	0	0
R0101	006	MISC METAL PARTS: COATING	16	48	5	40202501	0.03000	TONS		0	60	0	0	0
R0102	004	MISC METAL PARTS: COATING	16	38	3	40202501	0.00000	TONS		0	0	0	0	0
R0103	004	MISC METAL PARTS: COATING	6	36	5	40202501	0.00100	TONS		0	2	0	0	0
R0105	004	MISC METAL PARTS: COATING	16	48	5	40202501	0.00000	TONS		0	0	0	0	0
R0108	007	MISC METAL PARTS: COATING	4	1	2	40202501	0.00000	TONS		0	0	0	0	0
R0189	007	MISC METAL PARTS: COATING	6	36	5	40202501	0.00000	TONS		0	0	0	0	0
U0003	803	COLD SOLVENT CLEANING: IPA	16	51	5	40100307	0.00230	TONS		0	4.6	0	0	0
U0004	804	COLD SOLVENT CLEANING:	16	51	5	40100303	0.00145	TONS		0	2.9	0	0	0
Plant	Inforn	nation:												
Plant N	Name:	DANBURY /DPW (LANDFILL))		AFS	ID : 001 - 2408		CT ID: 44-	158	SIC Co	le: 9511			
Addre		23 PLUMTREES RD DANBUR	Y CT			12 . 001 2.00	UTM (oord: Zone:	18 X 633 1	V· 4586.6				
Ozona	Statua	Area : CT. Dortion CT. NV. NI CM	(C) (C)		CO	Status Aroos Fairf	ald	zone.	10 1. 055.1	1. 4500.0				
Ozone	Status	Alea. C1. Foluoli C1-N1-NJ CW	15		0.	Status Alea. Faill	elu							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operatir	ng Scl	redule		Rate/		Control Equip	Fauin	Daily Fmi	ssions with	n RF (lbs/ d	av)
ID	ID	Description		D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOv	CO-s	CO-w
E0001	003	COMM/INST BOILED: NAT GAS	24	27	7	10300603	0.00000	MIL CU FT	1 2	0	100		0	27
E0001	003	COMM/INST BOILER: NAT GAS,	24	52	7	10300603	0.03400	MIL CUFT		0	0.1	3.4	20	2.7
E0002	004	COMM/INST DIESEL · #2 OII	1	12	1	20300101	0.00000	1000 GAI		0	0.1	0.4	2.9	0.3
E0003	005	COMM/INST DIESEL: #2 OIL	1	12	1	20300101	0.00000	1000 GAL		0	0	0	0	0.5
E0004	000	COMM/INST BOIL EP: #2 OIL	24	52	7	10300501	0.00000	1000 GAL		0	0	0	0	0.5
E0005	007	LANDEILL GAS ELAPE	17	26	7	50300601	0.00000	1000 GAL		0	0	0	0	0.1
E0000	008	LANDFILL GAS FLARE	24	20 52	7	50200601	0.00000			0	5.4	0	11	0.1
E0007	009	LANDFILL OAS FLARE	24	52	7	4000000	26,00000	TONG		0	5.4	0.0	1.1	0.4
E0008	010	MISC VOC EVADODATION	24	~ /			4610000							
E0010	010	MISC VOC EVAPORATION	24 24	52 52	7	49099999	36.00000	IUNS MILCUET		0	0	0	0	1.0
E0010	010 011 012	MISC VOC EVAPORATION COMM/INST BOILER: NAT GAS, COMM/INST BOILEP: NAT GAS	24 24 24	52 52 52	7 7 7	10300603	0.00000	MIL CU FT		0	0	0	0	1.9 0.3
E0010 E0011	010 011 012 001	MISC VOC EVAPORATION COMM/INST BOILER: NAT GAS, COMM/INST BOILER: NAT GAS,	24 24 24 24	52 52 52 52	7 7 7 7	49099999 10300603 10300603 50200601	0.00000 0.00000 0.00030	MIL CU FT MIL CU FT		0 0 0	000	0 0 12 7	0 0 0 45 5	1.9 0.3

Plant	Inform	ation:												
Plant M Addres	Name: ss :	KINGSWOOD KITCHENS IN 70 BEAVER ST, DANBURY,	C CT		AFS	ID : 001 - 2476	UTM (CT ID: 44 Coord: Zone	-226 :: 18 X: 628.5	SIC Coo Y: 4583.7	le: 2434			
Ozone	Status	Area : CT. Portion CT-NY-NJ Cl	MS		CO	Status Area: Fairf	ield							
<u>2002 I</u>	nforma	ation:												
Point	Stack	Process	Operat	ing Sc	hedule	2	Rate/		Control Equip	Equip	Daily Em	issions witl	h RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0078	001	COATING: PAINT	8	50	5	40200101	0.01200	TONS		0	18.2	0	0	0
P0079	002	COATING: PAINT	8	50	5	40200101	0.03300	TONS		0	46	0	0	0
P0080	003	COATING: PAINT	8	50	5	40200101	0.02400	TONS		0	32	0	0	0
P0083	004	COATING: PAINT	8	50	5	40200101	0.02330	TONS		0	29.1	0	0	0
P0084	005	COATING: PAINT	8	50	5	40200101	0.00000	TONS		0	0	0	0	0
P0173	006	WOOD FURNITURE COATING	8	50	5	40201901	0.02000	TONS		0	32	0	0	0
P0174	007	WOOD FURNITURE COATING	8	50	5	40201901	0.00450	TONS		0	7.2	0	0	0
Plant	Inform	ation:												
Plant I	Name:	DANBURY HIGH SCHOOL			AFS	ID : 001 - 2504		CT ID: 44	-254	SIC Co	le: 8211			
Addre	ss :	CLAPBOARD RIDGE RD. DA	NBURY	. CT			UTM (Coord: Zone	: 18 X: 627.7	Y: 4585.9				
Ozone	Status	Area : CT. Portion CT-NY-NJ Cl	MS	·	CO	Status Area: Fairf	ield							
<u>2002 I</u>	nforma	ation:												
Point	Stack	Process	Operat	ing Sc	hedule	<u>,</u>	Rate/		Control Equip	Equip	Daily Em	issions with	h RE (lbs/ d	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0059	001	COMM/INST BOILER: #2 OIL	24	52	7	10300501	0.12900	1000 GAL		0	0.4	8.6	5.3	38.5
P0060	002	COMM/INST BOILER: #2 OIL	24	52	7	10300501	0.12900	1000 GAL		0	0.4	8.6	5.3	38.5
P0061	003	COMM/INST BOILER: #2 OIL	24	52	7	10300501	0.12900	1000 GAL		0	0.4	8.6	5.3	38.5
Plant	Inform	ation:												
Plant 1	Name:	PRESTONE PRODUCTS COR	Р		AFS	ID:001-2540		CT ID: 44	-290	SIC Co	le: 8734			
Addre	SS :	STILL RIVER RD CORP CEN	TER. DA	NBU	RY C	Т	UTM (Coord: Zone	: 18 X: 633 Y	• 4586				
Ozone	Status .	Area : CT. Portion CT-NY-NJ Cl	MS		CO	- Status Area: Fairf	ield	200101 20110	10 11 000 1					
2002 I	nforma	ation:												
Point	Stack	Process	Operat	ing Sc	hedule	x	Rate/		Control Equip	Equip	Daily Fm	issions with	h RE (lbs/ d	av)
ID	ID	Description		D/W	W/V	ŚĊĊ	Dav	Units	1 2	Equip	VOC	NOv	CO-s	со-w
P0105	001	FNGINE TESTING	24	52	7	20400401	0.00000	1000 GAI	1 2	0	,	0	0	0
P0124	002	ENGINE TESTING:	24	52	, 7	20400401	0.00033	1000 GAL		Ő	0 0	0 0	1.3	1.3

Plant Information:

Plant N Addres	lame: s :	ARNOLD FOODS COMPANY 10 HAMILTON AVE, GREENW	/ICH. C	T	AFS	ID : 001 - 3408	UTM C	CT ID: 67- Coord: Zone:	8 18 X:	614.4	SIC Code Y: 4541.4	e: 2051			
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	IS		COS	Status Area: Fairf	ield								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operati	ing Scl	hedule		Rate/		Contro	l Equip	Equip	Daily Emi	issions with	RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0038	008	PROCESS FUEL: NAT GAS	24	52	5	39000689	0.00710	MIL CU FT	0	0	0	0	0.7	0.1	0.2
P0039	003	PROCESS FUEL: NAT GAS	24	52	5	39000689	0.01100	MIL CU FT	0	0	0	0.1	1.1	0.2	0.3
P0040	004	PROCESS FUEL: NAT GAS	17	52	5	39000689	0.01180	MIL CU FT	0	0	0	0.1	1.2	0.2	0.4
P0041	007	PROCESS FUEL: NAT GAS	24	52	6	39000689	0.01920	MIL CU FT	0	0	0	0.1	1.9	0.4	0.4
P0053	019	TOBACCO PROCESSING: OTHER	24	52	5	30203399	27.24000	TONS			0	38.9	4.4	0.9	1.3
P0054	020	TOBACCO PROCESSING: OTHER	24	52	5	30203399	27.24000	TONS			0	38.9	4.5	1	1.4
P0055	021	TOBACCO PROCESSING: OTHER	16	52	5	30203399	27.24000	TONS			0	38.9	4.5	1	1.3
P0056	001	COMM/INST BOILER: NAT GAS,	24	52	5	10300602	0.12600	MIL CU FT			0	0.5	4.4	8.8	11.3
P0069	014	COMM/INST BOILER: NAT GAS,	24	52	7	10300602	0.03110	MIL CU FT			0	0.2	3.1	2.6	1.6
R0014	008	BAKERY: BREAD, SPONGE	24	52	5	30203201	90.30000	TONS	019		95	93.7	4.3	0.9	1
R0016	003	BAKERY: BREAD, STRAIGHT	16	52	5	30203202	51.03000	TONS	019		95	64.5	3.3	0.7	0.9
R0017	004	BAKERY: BREAD, SPONGE	24	52	5	30203201	75.36000	TONS	019		95	71.9	3.8	0.8	0.9
R0019	007	BAKERY: BREAD, STRAIGHT	18	52	6	30203202	28.23000	TONS	019		95	44.1	3.7	0.8	0.5
R0022	009	BAKERY: OTHER	12	52	5	30203299	6.00000	TONS			0	0.1	1.8	0.4	0.4
E0001	022	BAKERY: BREAD, SPONGE	24	52	5	30203201	6.85000	TONS			0	7.4	0.2	0	0.4
<u>Plant l</u>	nform	ation:													
Plant N	lame:	CONNECTICUT JET POWER, I	LLC		AFS	ID : 001 - 3417		CT ID: 67-	17		SIC Code	e: 4911			
Addres	s :	SOUND SHORE DR, GREENW	ICH, C	Г			UTM C	Coord: Zone:	18 X:	617.9	Y: 4542.7				
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	IS		COS	Status Area: Fairf	ield								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operati	ing Sc	hedule		Rate/		Contro	l Equip	Equip	Daily Emi	issions with	RE (lbs/ d	ay)
ID	ID	Description	- H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
R0052	001	UTILITY TURBINE: KERO(USE	24	52	7	20100901	0.38500	1000 GAL			0	2.1	34.6	2.6	0.4
R0053	002	UTILITY TURBINE: KERO(USE	24	52	7	20100901	0.33700	1000 GAL			0	1.8	27.6	2.3	0.4
R0054	003	UTILITY TURBINE: KERO(USE	24	52	7	20100901	0.25500	1000 GAL			0	1.4	25	1.7	0.3

Plant Information:

Plant N	lame:	VISHAY VITRAMON,INC			AFS	ID : 001 - 3919		CT ID: 106	5-19		SIC Coc	le: 3675			
Addres	s:	10 MAIN ST, MONROE, CT					UTM C	Coord: Zone:	18 X:	645.5	Y: 4579.2				
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	S		CO	Status Area: Fairfi	eld								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operati	ing Sc	hedule	9	Rate/		Contro	l Equip	Equip	Daily Em	issions wit	h RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
U0002	802	THINNING SOLVENTS: ETHYL	8	50	5	40200910	0.00240	TONS			0	4.8	0	0	0
U0003	803	THINNING SOLVENTS:	24	50	5	40200912	0.00140	TONS			0	2.8	0	0	0
U0004	804	THINNING SOLVENTS: XYLENE	5	50	5	40200924	0.00050	TONS			0	0.2	0	0	0
U0005	805	MISC VOC EVAPORATION	24	50	5	49099999	0.07730	TONS			0	34	0	0	0
<u>Plant l</u>	nform	ation:													
Plant N	lame:	NORWALK HOSPITAL			AFS	ID : 001 - 4203		CT ID: 137	-3		SIC Coc	le: 8062			
Addres	s :	40 MAPLE ST - 24 STEVENS S'	T, NOR	RWAL	.K, CT		UTM C	Coord: Zone:	18 X:	632.5	Y: 4552				
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	S		CO	Status Area: Fairfi	eld								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operati	ing Sc	hedule	9	Rate/		Contro	l Equip	Equip	Daily Em	issions wit	h RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0001	006	COMM/INST DIESEL: #2 OIL	1	12	1	20300101	0.00100	1000 GAL			0	0.1	0.6	0.1	1
E0002	007	COMM/INST DIESEL: #2 OIL	1	12	1	20300101	0.00000	1000 GAL			0	0	0	0	0.1
P0038	002	COMM/INST DIESEL: #2 OIL	1	12	1	20300101	0.00200	1000 GAL			0	0.1	1.2	0.3	1.4
P0039	002	COMM/INST DIESEL: #2 OIL	1	12	1	20300101	0.00100	1000 GAL			0	0.1	0.6	0.1	1.6
P0051	003	COMM/INST TURBINE: NAT GAS,	24	52	7	20300203	0.44200	MIL CU FT	028		62	17.7	93.6	30.9	31.4
P0052	003	COMM/INST TURBINE: NAT GAS,	24	52	7	20300203	0.42400	MIL CU FT	028		62	17	89.8	29.7	29.9
P0053	003	COMM/INST BOILER: NAT GAS,	24	50	7	10300602	0.03700	MIL CU FT			0	0.1	5.1	0.7	1.5
P0054	003	COMM/INST BOILER: NAT GAS,	24	50	7	10300602	0.03700	MIL CU FT			0	0.1	5.1	0.7	1.5
P0059	004	COMM/INST INCIN: SINGLE	8	50	5	50200102	0.00000	TONS			0	0	0	0	0
P0066	005	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00200	1000 GAL			0	0.1	1.2	0.3	2.2
P0135	008	COMM/INST DIESEL: #2 OIL	1	12	1	20300101	0.00600	1000 GAL			0	0.3	3.6	0.8	4.6
110001	801	HEALTH SERVICES: ETO	14	52	7	31502001	0.00017	TONS			0	0.3	0	0	0

Plant]	[nform	ation:													
Plant N Addres Ozone	Vame: ss : Status	NRG NORWALK HARBOR MANRESA ISLAND AVE, SO Area : CT. Portion CT-NY-NJ Cl	OUTH NOF MS	RWA	AFS LK, C CO S	ID : 001 - 4214 T Status Area: Fair	UTM (field	CT ID: 13 [°] Coord: Zone	7-14 :18 X:	633.9	SIC Coo Y: 4548.2	de: 4911			
<u>2002 I</u>	nform	ation:													
Point	Stack	Process	Operatin	ig Scl	hedule		Rate/		Contro	l Equip	Equip	Daily Em	issions with	h RE (lbs/ d	ay)
ID	ID	Description	H/D I)/W	W/Y	SCC	Dav	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0001	004	UTILITY DIESEL: #2 OIL	24	52	7	20100102	0.00000	1000 GAL	•	-	0	0	0	0	0.1
E0002	005	UTILITY DIESEL: #2 OIL	24	52	7	20100102	0.00000	1000 GAL			0	Õ	0	Õ	0
E0005	008	COMM/INST DIESEL: #2 OIL	24	52	7	20300101	0.00000	1000 GAL			0	Õ	0	Õ	0
P0125	006	COMM/INST DIESEL: #2 OIL	24	26	7	20300101	0.00000	1000 GAL			0	0	0	0	0
P0126	007	COMM/INST DIESEL: #2 OIL	24	52	6	20300101	0.00000	1000 GAL			0	0	0	0	0
R0028	001	UTILITY BOILER: #6 OIL,	24	48	7	10100404	49.41100	1000 GAL	081		0	53.7	1160.6	252.8	83.5
R0030	001	UTILITY BOILER: #6 OIL,	24	52	7	10100404	50.20000	1000 GAL			0	54.4	761.8	255.4	157.1
R0032	002	UTILITY BOILER: #2 OIL	24	52	7	10100501	0.00000	1000 GAL			0	0	0	0	0
R0033	003	COMM/INST BOILER: #2 OIL	24	40	7	10300501	0.09400	1000 GAL			0	0	2.3	0.5	2.1
Plant]	Inform	ation:													
Plant N	Jame:	PEPPERIDGE FARM INC			AFS	ID:001-4225		CT ID: 13'	7-25		SIC Co	de: 2051			
Addres	s ·	595 WESTPORT AVE NORW	ALK CT				UTM (oord Zone	· 18 X·	635.7	Y· 4554 3				
Ozone	Status	Area : CT. Portion CT-NY-NJ C	MS		COS	Status Area: Fair	field		. 10 11.	00011	11 100 110				
2002 I	nform	ation:													
Point	Stack	Process	Operatin	ig Scl	hedule		Rate/		Contro	l Equip	Equip	Daily Em	issions with	h RE (lbs/ d	av)
ID	ID	Description	H/D I	D/W	W/Y	SCC	Dav	Units	1	2	Eff	vốc	NOx	CÔ-s	CO-w
P0068	004	BAKERY: OTHER	16	52	5	30203299	34.00000	TONS	020	-	98.5	46.1	0.5	0.4	0.5
R0078	001	COMM/INST BOILER: #2 OIL	12	52	7	10300501	1.22000	1000 GAL			0	0.6	29.3	6.1	1.9
R0079	001	COMM/INST BOILER: #2 OIL	12	52	7	10300501	1.20000	1000 GAL			0	0.6	28.8	6	1.9
R0080	002	BAKERY: BREAD, STRAIGHT	24	51	6	30203202	41.96000	TONS	020		98.5	57.9	4.1	0.9	0.9
R0081	002	BAKERY: BREAD, STRAIGHT	24	51	6	30203202	49.60000	TONS	020		98.5	68.4	4.9	1	0.9
R0082	003	BAKERY: BREAD, STRAIGHT	24	51	6	30203202	45.09000	TONS	020		98.5	62.2	4.9	1	0.9

0.00200 MIL CU FT

16.89000 TONS

0

98.5

020

0

31.2

0.2

7.5

0.2

1.6

0.2

0.6

24 51 7 10300603

16 52 5 30203202

R0220 006 COMM/INST BOILER: NAT GAS,

R0261 007 BAKERY: BREAD, STRAIGHT

Plant l	nform	ation:												
Plant N Addres	lame: s :	SOUTH NORWALK ELECTR 1 STATE ST, NORWALK, CT	IC &		AFS	ID : 001 - 4491	UTM (CT ID: 13 Coord: Zone	7-291 : 18 X: 632.5	SIC Cod Y: 4550.4	e: 4911			
Ozone	Status .	Area : CT. Portion CT-NY-NJ C	MS		COS	Status Area: Fairfi	eld							
<u>2002 I</u>	nforma	<u>ition:</u>												
Point	Stack	Process	Operati	ng Scl	hedule		Rate/		Control Equip	o Equip	Daily Emi	ssions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0040	006	UTILITY DIESEL: #2 OIL	1	52	1	20100102	0.00000	1000 GAL		0	0	0	0	0.4
R0165	001	UTILITY DIESEL: #2 OIL	1	52	1	20100102	0.00000	1000 GAL		0	0	0	0	0
R0166	002	UTILITY DIESEL: #2 OIL	1	52	1	20100102	0.00000	1000 GAL		0	0	0	0	1.3
R0168	003	UTILITY DIESEL: #2 OIL	1	52	1	20100102	0.00000	1000 GAL		0	0	0	0	1.5
R0170	004	UTILITY DIESEL: #2 OIL	24	52	1	20100102	0.00000	1000 GAL		0	0	0	0	0
R0171	005	UTILITY DIESEL: #2 OIL	1	52	1	20100102	0.00000	1000 GAL		0	0	0	0	0
R0261	007	UTILITY DIESEL: #2 OIL	1	52	1	20100102	0.05900	1000 GAL		0	0	0	0	0
R0262	008	UTILITY DIESEL: #2 OIL	1	52	3	20100102	0.00000	1000 GAL		0	0	0	0	0
<u>Plant l</u>	nform	ation:												
Plant N	lame:	LA JOIES'S AUTO/SCRAP RE	ECYCL		AFS	ID : 001 - 4608		CT ID: 13	7-408	SIC Cod	e:			
Addres	s :	40 MEADOW ST. SOUTH NO	RWALK	. CT			UTM (Coord: Zone	: 18 X: 658.4	Y: 4575.5				
Ozone	Status .	Area : CT. Portion CT-NY-NJ C	MS	,	COS	Status Area: Fairfi	eld							
<u>2002 I</u>	nforma	<u>ition:</u>												
Point	Stack	Process	Operati	ng Scl	hedule	•	Rate/		Control Equip	equip	Daily Emi	ssions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1 2	Eff	vóc	NOx	CO-s	CO-w
P0082	001	COMM/INST DIESEL: #2 OIL	1	52	2	20300101	0.10577	1000 GAL		0	6.1	63.9	13.8	13.8
P0083	002	COMM/INST DIESEL: #2 OIL	6	42	3	20300101	0.14410	1000 GAL		0	8.4	87	18.7	15.9
<u>Plant l</u>	nform	ation:												
Plant N	lame:	LAUREL RIDGE			AFS	ID : 001 - 5327		CT ID: 154	4-27	SIC Cod	e: 8051			
Addres	ç ·	642 DANBURY RD RIDGEFI	FLD CT				UTM (oord Zone	$\cdot 18 \times 627.9$	Y · 4575 7				
Ozone	S. Status	Area : CT Portion CT-NY-NLC	MS		CO	Status Area: Fairfi	eld		. 10 11. 027.9	1.4575.7				
2002 1	e e		IVIS		001	Status / Ica. I alli	elu							
2002 1	norma	iuon:												
Point	Stack	Process	Operati	ng Scl	hedule	;	Rate/		Control Equip	o Equip	Daily Emi	ssions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0001	001	COMM/INST DIESEL: #2 OIL	24	52	7	20300101	0.00000	1000 GAL		0	0	0	0	0.5
P0002	002	COMM/INST DIESEL: #2 OIL	24	52	7	20300101	0.00000	1000 GAL		0	0	0	0	0.1

Plant 2	Inform	ation:													
Plant N Addres	Name: ss :	SPONGEX CORPORATION 6 BRIDGE ST, SHELTON, CT			AFS	ID : 001 - 5486	UTM (CT ID: 163 Coord: Zone:	3-86 18 X: 659	S 9.6 Y:	SIC Code 4575.5	3086			
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	4S		COS	Status Area: Fairfi	ield								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operat	ing Sc	hedule	:	Rate/		Control Ed	juip E	Equip	Daily Emi	issions with	n RE (lbs/ d	ay)
ID P0015	ID 005	Description RUBBER PRODUCTS	H/D 24	D/W 50	W/Y 5	SCC 30800699	Day 0.00000	Units TONS	1 2 046	E 0	Eff)	VOC 0	NOx 0	CO-s 0	CO-w
P0034 P0086	005 007	RUBBER PRODUCTS INDUST BOILER: NAT GAS,	24 24	25 52	5 7	30800699 10200602	$0.00000 \\ 0.16000$	TONS MIL CU FT		0 0)	0 1	0 16	0 13.4	0 13.8
R0109 R0110	002 003	RUBBER PRODUCTS RUBBER PRODUCTS	24 24	50 50	5 5	30800699 30800699	0.11100 0.73900	TONS TONS		000))	42.5 298.3	0 0	0 0	0 0
R0111 R0112 R0113	004 006 005	RUBBER PRODUCTS RUBBER PRODUCTS RUBBER PRODUCTS	24 24 24	50 50 50	5 5 5	30800699 30800699 30800699	0.42300 1.26800 0.21000	TONS TONS TONS		0 0 0)))	170.7 511.8 84.8	0 0 0	0 0 0	0 0 0
Plant 1	Inform	ation:													
Plant N	Name:	C R R A / SHELTON			AFS	ID : 001 - 5519		CT ID: 163	8-119	S	SIC Code	9511			
Addres Ozone	ss : Status	866 RIVER RD, SHELTON, CT Area : CT. Portion CT-NY-NJ CM	4S		CO S	Status Area: Fairfi	UTM (ield	Coord: Zone:	18 X: 659	9.8 Y:	4569.5				
<u>2002 I</u>	nforma	ation:													
Point ID	Stack ID	Process Description	Operat H/D	ing Sc D/W	hedule W/Y	SCC	Rate/ Day	Units	Control Ed	luip E E	Equip Eff	Daily Emi VOC	issions with NOx	n RE (lbs/ d CO-s	ay) CO-w
F0091	001	COMM/INST INCIN. WASTE GAS	24	52	/	3020001	1.36791	MIL CU FI	000	0	,	1/0.4	2.3	0.3	0.3
Plant]	Inform	ation:													
Plant N Addres	Name: ss :	GENERAL ELECTRIC CAPITA 120 LONG RIDGE RD, STAMF	AL FORD, (CT	AFS	ID : 001 - 5994	UTM (CT ID: 172 Coord: Zone:	2-44 18 X: 62	S I.4 Y:	SIC Code 4547.7	: 7389			
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	4S		COS	Status Area: Fairfi	ield								
<u>2002 I</u>	nforma	ation:													
Point ID	Stack	Process Description	Operat H/D	ing Sc D/W	hedule W/Y	SCC	Rate/ Day	Units	Control Ea	luip E F	Equip Eff	Daily Emi	issions with NOx	n RE (lbs/ d	ay) CO-w
P0081 P0082 P0083	001 002 003	COMM/INST BOILER: NAT GAS, COMM/INST BOILER: NAT GAS, COMM/INST BOILER: NAT GAS	18 18 18	52 52 52	7 7 7 7	10300603 10300603 10300603	0.05700 0.05700 0.05700	MIL CU FT MIL CU FT MIL CU FT		0))	0.3 0.3 0.3	5.7 5.7 5.7	4.8 4.8 4.8	5.3 5.3 5.3
P0084	004	COMM/INST BOILER: NAT GAS,	18	52	, 7	10300603	0.05700	MIL CU FT		0)	0.3	5.7	4.8	5.3

0.05700 MIL CU FT

0

0.3

5.7

4.8

5.3

18 52 7 10300603

P0085 005 COMM/INST BOILER: NAT GAS,

P0095	006	COMM/INST DIESEL: #2 OIL	5	26	1	20300101	0.00010	1000 GAL			0	0	0.1	0	0.3
Plant]	[nform	ation:													
Plant N Addres Ozone	Vame: ss : Status	PITNEY BOWES INC 69 WALTER WHEELER DR, S Area : CT. Portion CT-NY-NJ CN	TAMFOI /IS	RD, C	AFS CT CO S	ID : 001 - 6001 Status Area: Fairf	UTM (CT ID: 172 Coord: Zone:	2-51 18 X: 62	22.8	SIC Coc Y: 4544.2	le: 3579			
<u>2002 I</u>	nforma	ation:													
Point ID P0018 P0026 P0035 P0151 P0152 R0270 U0001 Plant I Plant M Addres	Stack ID 021 023 022 018 012 011 801 Inform Name:	Process Description INDUST BOILER: #4 OIL > 100 INDUST BOILER: NAT GAS, INDUST BOILER: #4 OIL > 100 COATING: PAINT COATING: ENAMEL FABRICATED METALS: MISC VOC EVAPORATION ation: STAMFORD HOSPITAL W BROAD & SHEL BURNE RI	Operatir H/D 1 24 24 16 16 18 12	ng Sc D/W 26 26 26 50 50 50 52	hedule W/Y 7 7 6 6 6 6 6 6 8 7 8 7	SCC 10200504 10200602 10200504 40200101 40200501 30901097 49099999 ID : 001 - 6009	Rate/ Day 0.00000 0.06500 0.00000 0.01700 0.00400 0.00400 0.02800	Units 1000 GAL MIL CU FT 1000 GAL TONS TONS TONS TONS CT ID: 172 Coord: Zone:	Control I 1 2-59	Equip 2	Equip Eff 0 0 0 0 0 0 0 0 0 SIC Coc Y: 4545 6	Daily Em VOC 0 0.4 0 3 0.8 0 56 le: 8062	issions witl NOx 0 6.5 0 0 0 0 0 0	n RE (lbs/ da CO-s 0 5.5 0 0 0 0 0 0	ay) CO-w 6.2 0 4.9 0 0 0 0 0
Ozone	ss. Status	Area : CT. Portion CT-NY-NJ CM	AS	FUK	CO S	Status Area: Fairf	ield	Looid. Zolle.	10 A.U.	21.0	1.4545.0				
2002 I	nforma	ation:													
Point ID E0001 E0002 P0086 P0087 P0088 P0089 P0090 P0090 P0090 P0091 P0092 P0194 P0196 P0197	Stack ID 008 009 002 003 004 005 005 005 005 006 007 005	Process Description INDUST DIESEL: #2 OIL INDUST DIESEL: #2 OIL COMM/INST DIESEL: #2 OIL COMM/INST DIESEL: #2 OIL COMM/INST DIESEL: #2 OIL COMM/INST BOILER: NAT GAS, COMM/INST BOILER: NAT GAS, COMM/INST BOILER: #2 OIL COMM/INST BOILER: #2 OIL INDUST DIESEL: #2 OIL INDUST DIESEL: #2 OIL INDUST BOILER: #2 OIL INDUST BOILER: #2 OIL	Operatir H/D I 24 24 24 24 24 24 24 24 24 24 24 24 24	ng Sc D/W 3 3 3 3 3 52 52 52 52 52 52 52 52 52 52	hedule W/Y 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SCC 20200102 20200102 20300101 20300101 20300101 10300602 10300501 10300501 20200102 20200102 10200501	Rate/ Day 0.00040 0.00000 0.00050 0.00050 0.00060 0.06640 0.05920 0.23600 0.023600 0.00160 0.00160 0.13900	Units 1000 GAL 1000 GAL 1000 GAL 1000 GAL MIL CU FT MIL CU FT 1000 GAL 1000 GAL 1000 GAL 1000 GAL	Control F 1 000 000 205 205 205 205 205 205	Equip 2 00 00 00	Equip Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	issions with NOx 0.2 0 0.1 0.1 0.2 3.3 2.8 9.7 5.6 0.6 0.6 2.8	n RE (lbs/ da CO-s 0.1 0 0 0 0 1.3 1.2 3.3 1.4 0 0 3.3	ay) CO-w 0.1 0.1 0 0 0 0 0.8 1 1.4 1.5 0 0 0.6

Plant	Inform	ation
-------	--------	-------

Plant N Addres Ozone	Vame: ss : Status	SPARTECH POLYCAST 69 SOUTHFIELD AVE, STAM Area : CT. Portion CT-NY-NJ CN	FORD, (As	СТ	AFS	ID : 001 - 6041 Status Area: Fairf	UTM C	CT ID: 172 Coord: Zone:	2-91 18 X:	622 Y:	SIC Cod 4543.7	e: 3081			
2002 I	nforma	ation:													
Point	Stack	Process	Operati	ing Scl	hedule		Rate/		Control	l Equip	Equip	Daily Emi	ssions with	RE (lbs/ d	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0002	009	PLASTIC PRODUCTS	24	52	7	30800799	23.10000	TONS			0	0.2	4.1	0.9	0.9
E0003	010	INDUST BOILER: NAT GAS, <10	24	52	7	10200603	0.06300	MIL CU FT			0	0.4	6.3	5.3	7.9
E0004	011	INDUST BOILER: NAT GAS, <10	24	52	7	10200603	0.08600	MIL CU FT			0	0.5	8.6	7.2	6.8
P0079	008	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.77000	1000 GAL	010		0	1.3	41.4	4.6	0.2
P0156	010	COATING: PAINT	24	52	7	40200101	2.92000	TONS	019		94.5	17.2	4.6	1	0.5
R0256	001	PLASTICS PRODUCTION	24	52	7	30101899	23.10000	TONS	021		0	72.8	27	0	0
K0237	003	FLASTICS FRODUCTION	24	52	/	30101899	25.10000	IONS	021		99	11.9	2.7	0.0	0.0
Plant 1	[nform	ation:													
Plant N	Jame:	HAYES HOUSE % CONSOLID	ATED		AFS	ID : 001 - 6375		CT ID: 172	2-425		SIC Cod	e: 6513			
Addres	s :	44 STRAWBERRY HILL AVE.	STAM	FORD	CT	12 1001 0070	UTM (Coord: Zone:	18 X:	623.4	Y: 4546.3	0010			
Ozone	Status	Area : CT. Portion CT-NY-NJ CN	4S	ond	COS	Status Area: Fairf	ïeld		10 11	02011					
2002 I	nforma	ation:													
Doint	Stock	Process	Operati	ing Sel	hadula		Data/		Control	Equip	Fauin	Daily Emi	scione with	DE (lbs/d	ov)
ID	ID	Description			W/V	SCC	Day	Unite	1	2	Equip				CO W
R0333	001	COMM/INST BOILER: NAT GAS	12	52	7	10300602	0.04000	MIL CUET	1	2	0	02		34	2
R0334	001	COMM/INST BOILER: NAT GAS,	12	52	7	10300602	0.04000	MIL CU FT			0	0.2	4	3.4	2
10000	001			02		10000002	0101000				0	0.2	·	511	-
<u>Plant l</u>	Inform	ation:													
Plant N	Jame:	PITNEY BOWES INC			AFS	ID:001-6617		CT ID: 172	2-667		SIC Cod	e: 3579			
Addres	s:	23 BARRY PLACE. STAMFOR	RD. CT				UTM C	Coord: Zone:	18 X:	622.8	Y: 4544.3				
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	1S		COS	Status Area: Fairf	ïeld								
2002 I	nforma	ation:													
Doint	Stock	Process	Operation	ing Sal	hadula		Data/		Control	Equip	Fauin	Daily Emi	scione with	DE (lbs/ d	av)
ID	ID	Description				SCC	Nate/	Unite	1	r Equip	Equip	VOC	NOv		(CO_{W})
D0005	002	INDUST BOILED. #4 OIL > 100	24	52	7	10200504	Day 0.04000	1000 GAT	1	2	0	02	4.6	2.5	4 A
R0174	001	INDUST BOILER: NAT GAS,	24 24	26	7	10200602	0.01500	MIL CU FT			0	0.1	1.5	1.3	4.4 0

0.1

12.2

Plant Information:

R0039 001

R0040 002 FABRIC COATING

R0041 002 FABRIC COATING

INDUST BOILER: NAT GAS,

Plant N Addres	lame: s :	SIKORSKY AIRCRAFT 6900 MAIN ST, STRATFORD,	СТ		AFS	ID : 001 - 7955	UTM (CT ID: 178 Coord: Zone:	3-5 18 X	: 659.4	SIC Cod Y: 4567.9	e: 3721			
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	٨S		COS	Status Area: Fairfi	ield								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operati	ng Sc	hedule		Rate/		Contro	ol Equip	Equip	Daily Em	issions with	ı RE (lbs/ da	y)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0035	031	LARGE AIRCRAFT COATING:	16	50	6	40202401	0.00200	TONS			0	1.6	0	0	0
P0036	032	LARGE AIRCRAFT COATING:	16	50	6	40202401	0.01400	TONS			0	8.6	0	0	0
P0037	033	LARGE AIRCRAFT COATING:	16	50	6	40202401	0.02500	TONS			0	16.9	0	0	0
P0038	034	LARGE AIRCRAFT COATING:	16	50	6	40202401	0.02700	TONS			0	23.5	0	0	0
P0039	004	INDUST BOILER: NAT GAS,	24	43	7	10200602	0.79000	MIL CU FT			0	4.7	94.8	66.4	53.5
P0046	035	INDUST DIESEL: #2 OIL	1	12	1	20200102	0.06600	1000 GAL			0	3.8	16.5	8.6	1
P0077	039	LARGE AIRCRAFT COATING:	16	48	6	40202401	0.00300	TONS			0	2.4	0	0	0
P0078	041	LARGE AIRCRAFT COATING:	24	52	7	40202401	0.01800	TONS			0	12.6	0	0	0
P0081	039	LARGE AIRCRAFT COATING:	16	50	6	40202401	0.00000	TONS			0	0	0	0	0
P0117	043	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	3.60000	1000 GAL			0	0	0	0	0
R0016	004	INDUST BOILER: NAT GAS,	24	47	7	10200602	0.82000	MIL CU FT			0	4.9	155.8	68.9	47.3
R0017	005	INDUST BOILER: #6 OIL, >100	24	39	7	10200401	4.26700	1000 GAL			0	4.9	311.2	67.1	15.8
R0018	006	INDUST BOILER: NAT GAS,	24	37	7	10200602	0.73300	MIL CU FT			0	4.4	146.6	61.6	6.4
R0019	007	INDUST BOILER: NAT GAS,	24	40	7	10200602	0.59600	MIL CU FT			0	3.5	107.3	50.1	14.2
R0024	011	LARGE AIRCRAFT COATING:	16	50	6	40202401	0.08400	TONS			0	33.2	0	0	0
R0026	013	PROCESS FUEL: NAT GAS	16	50	6	39000689	0.01400	MIL CU FT	0	0	0	0.1	1.4	0.3	0.3
U0001	801	LARGE AIRCRAFT COATING:	16	50	6	40202499	0.00000	TONS	048		99	0	0	0	0
U0003	803	LARGE AIRCRAFT COATING:	16	50	6	40202499	0.01000	TONS			0	8.4	0	0	0
U0006	806	MISC VOC EVAPORATION	16	50	6	49099999	0.10100	TONS			0	87.9	0	0	0
Plant 1	nform	ation:													
Plant N	lame:	ROSS & ROBERTS INC			AFS	ID : 001 - 7958		CT ID: 178	8-8		SIC Cod	e: 3081			
Addres	s :	1299 W BROAD ST, STRATFO	ORD, CT				UTM (Coord: Zone:	18 X	: 656.1	Y: 4561.4				
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	AS		COS	Status Area: Fairfi	ield								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operati	ng Sc	hedule		Rate/		Contro	ol Equip	Equip	Daily Em	issions with	n RE (lbs/ da	y)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0001	003	FABRIC COATING	8	48	5	40201101	0.01400	TONS			0	28	0	0	0

0.21000

0.00000

0.04100

MIL CU FT

TONS

TONS

1.5

11.2

24.7

0.7

18.6

0.1

R0043	003	FABRIC COATING	8	13	1	40201101	0.01200	TONS		0	24	0	0	0
R0044	004	FABRIC COATING	8	45	4	40201101	0.01500	TONS		0	30	0	0	0
R0048	008	FABRIC COATING: MIXING	9 24	48	5	40201103	0.02800	TONS	018	34.1 34.8	40.7	0	0	0
U0001	801	THINNING SOLVENTS	24 16	48	5	40200914	0.09300	TONS	018	0 0	134.3	0	0	0
U0002	802	THINNING SOLVENTS:	24	52	3	40200908	0.00000	TONS		0	0	0	0	0
<u>Plant l</u>	[nform	nation:												
Plant N	Jame:	SARTOMER CO INC			AFS	ID:001-8117		CT ID: 178	3-167	SIC Co	de: 2869			
Addres	s:	125 ONTARIO ST, STRATFOR	D, CT				UTM (Coord: Zone:	18 X: 655.2	Y: 4560				
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	4S		CO	Status Area: Fairf	ield							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operat	ing Sc	hedule	e	Rate/		Control Equip	Equip	Daily Em	issions with	h RE (lbs/ da	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
E0001	001	INDUST BOILER: NAT GAS, <10	24	52	7	10200603	0.01400	MIL CU FT		0	0.1	1.4	1.2	2
P0112	001	MISC VOC EVAPORATION	24	52	7	49099999	0.04000	TONS	072	95 95	19.2	0	0	0
P0113 R0304	005	MISC VOC EVAPORATION	24 24	52 52	7	49099999 49099999	0.04000	TONS	072	95 95	19.2 67.2	0	0	0
R0504	010	wise voe Evalokation	24	52	,	47077777	0.14000	10105	072)5	07.2	0	0	0
Plant l	Inform	lation:												
Plant N	lame:	HAMPFORD RESEARCH INC			AFS	ID:001-8173		CT ID: 178	3-223	SIC Co	de: 2869			
Addres	s :	54 VETERANS BLVD, STRAT	FORD,	CT			UTM (Coord: Zone:	18 X: 657.5	Y: 4562.2	2			
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	4S		CO	Status Area: Fairf	ïeld							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operat	ing Sc	hedule	2	Rate/		Control Equip	Equip	Daily Em	issions with	h RE (lbs/ da	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0089	005	INDUST BOILER: #2 OIL >100	24	26	7	10200501	0.05300	1000 GAL		0	0	1.3	0.3	0.3
P0121	005	COMM/INST BOILER: #2 OIL	24	26	7	10300501	0.05300	1000 GAL	072	0	0	1.3	0.3	0.3
P01/8	002	CHEMICAL PRODUCTION	10	52	5	30199999	8.00500	TONS	073	0	510.5	0	0	0
Plant 1	[nform	nation:												
Plant N	lame:	ST JOSEPHS MANOR			AFS	ID : 001 - 8455		CT ID: 185	5-5	SIC Co	de: 8051			
Addres	ss :	6448 MAIN ST, TRUMBULL, O	CT				UTM (Coord: Zone:	18 X: 648.8	Y: 4570.5	5			
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	4S		CO	Status Area: Fairf	ïeld							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operat	ing Scl	hedule	e	Rate/		Control Equip	Equip	Daily Em	issions with	h RE (lbs/ da	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0009	003	COMM/INST DIESEL: #2 OIL	24	52	7	20300101	0.00070	1000 GAL		0	0	0.4	0.1	0.1

P0010	002	COMM/INST BOILER: NAT GAS,	24	52	7	10300603	0.00300	MIL CU FT		0	0	0.3	0.3	1.2		
P0011	002	COMM/INST BOILER: NAT GAS,	24	52	7	10300603	0.00700	MIL CU FT		0	0	0.7	0.6	1.2		
P0012	002	COMM/INST BOILER: NAT GAS,	24	52	7	10300603	0.00200	MIL CU FT		0	0	0.2	0.2	1.3		
Plant 1	Inform	ation:														
Plant Name: ASML, US INCORPORATED					AFS	ID : 001 - 8820		CT ID: 209-20 SIC Code: 3827								
Address :		77 DANBURY RD, WILTON, C	CT				UTM C	UTM Coord: Zone: 18 X: 632.7 Y: 4558.5								
Ozone	Status	Area : CT. Portion CT-NY-NJ CM	1S		CO	Status Area: Fairfi	eld									
<u>2002 I</u>	nforma	ntion:														
Point	Stack	Process	Operati	ng Sc	hedule		Rate/		Control Equip	Equip	Daily Em	issions witl	n RE (lbs/ d	ay)		
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w		
P0013	005	INDUST BOILER: NAT GAS, <10	24	52	7	10200603	0.08750	MIL CU FT		0	0.5	8.8	7.4	8.2		
P0016	006	INDUST BOILER: NAT GAS, <10	24	52	7	10200603	0.08750	MIL CU FT		0	0.5	8.8	7.4	8.2		
R0004	001	INDUST BOILER: NAT GAS, <10	24 24	52 52	7	10200603	2 01000	MIL CU FT		0	11.9	2.2	1.8	2		
U0001	801	COLD SOLVENT CLEANING: IPA	16	50	6	40100307	0.00200	TONS		0	0.6	0	0	0		
U0005	805	COLD SOLVENT CLEANING:	16	50	6	40100399	0.00570	TONS		0	8.4	0	0	0		
Plant]	[nform	ation:														
Plant Name:		PRO LINE PRINTING INC			AFS	ID : 003 - 19		CT ID: 4-1	9	SIC Coc	le: 2752					
Address :		60 SECURITY DR, AVON, CT					UTM (UTM Coord: Zone: 18 X: 679.9 Y: 4630.5								
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: Hartf	ord									
2002 I	nforma	ation:														
Point	Stack	Process	Operati	ng Sc	ng Schedule				Control Equip Equip Daily Emissions w					ay)		
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w		
P0019	001	PRINTING: DRYER	24	52	7	40500101	0.07200	TONS SOLI	021 09	99	0.1	12.1	2.5	30.2		
P0026	001	PROCESS FUEL: NAT GAS	24	52	7	39000689	0.05710	MIL CU FT	0 0	0	0.1	9.6	5.6	4.7		
U0001	801	PRINTING: LITHOGRAPHIC	8	50	5	40500413	0.03400	TONS		0	68	0	0	0		
Plant]	[nform	ation:														
Plant Name:		ACOBS VEHICLE SYSTEMS, INC AFS ID : 003 - 406					CT ID: 11-6 SIC Code: 3714									
Address :		22 E DUDLEY TOWN RD, BLOOMFIELD, CT						UTM Coord: Zone: 18 X: 690.9 Y: 4635.9								
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: Hartf	ord									
<u>2002 I</u>	nforma	ation:														
Point	Stack	Process	Operati	Operating Schedule			Rate/		Control Equip Equip Daily Emissions with RE (lbs/ da							
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w		
E0001	005	ENGINE TESTING:	24	50	7	20400402	0.05400	1000 GAL		0	0.6	9.9	2.8	21.2		
E0002	001	INDUST BOILER: NAT GAS,	24	51	1	10200602	0.04000	MIL CU FT		0	0.2	4	3.4	5.6		

P0073 R0008 U0001	004 002 801	COMM/INST DIESEL: #2 OIL INDUST BOILER: #6 OIL, >100 COLD SOLVENT CLEANING:	1 8 8	52 1 50	1 1 5	20300101 10200401 40100303	0.00150 0.00000 0.00700	1000 GAL 1000 GAL TONS		0 0 0	0 0 0.5	0 0 0	0 0 0	0 0.2 0	
Plant]	[nform	ation:													
Plant Name: Address : Ozone Status		LESRO INDUSTRIES INC 55 PETERS RD, BLOOMFIELI Area : Greater Connecticut Area) INDUSTRIES INC ERS RD, BLOOMFIELD, CT Freater Connecticut Area			ID : 003 - 518 Status Area: Hartf	UTM C Ford	CT ID: 11- Coord: Zone	-118 : 18 X: 687 Y	SIC Coo 7: 4636	le: 2521				
<u>2002 I</u>	nforma	ation:													
Point ID	Stack ID	Process Description	Operatin H/D I	g Sche D/W W	edule N/Y	SCC	Rate/ Day	Units	Control Equip 1 2	Equip Eff 0	Daily Emi VOC	issions with NOx	n RE (lbs/ da CO-s	y) CO-w	
E0001 E0002 P0077 P0078	005 006 001 002	WOOD FURNITURE COATING WOOD FURNITURE COATING WOOD FURNITURE COATING WOOD FURNITURE COATING	9 9 9 9	51 51 51 51	5 5 5 5	40201901 40201901 40201901 40201901	0.02000 0.03100 0.03700 0.03000	TONS TONS TONS TONS		0 0 0	62 74 60	0 0 0	0 0 0	0 0 0	
P0080	004	WOOD FURNITURE COATING	9	51	5	40201901	0.00770	TONS		0	15.4	0	0	0	
Plant]	[nform	ation:													
Plant Name: Address :		FIRESTONE BUILDING PROD 780 JAMES P CASEY RD, BRI	ESTONE BUILDING PRODUCTS AJ JAMES P CASEY RD, BRISTOL, CT				UTM C	CT ID: 26- Coord: Zone	-19 : 18 X: 667.9	SIC Code: 3086 Y: 4617.8					
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Harti	ord								
2002 1	niorma	ation:													
Point ID P0045 P0046	Stack ID 014 015	Process Description PLASTICS PRODUCTION: ASPHALT ROOFING	Operatin H/D I 24 24	g Sche D/W V 52 52	edule N/Y 7 7	SCC 30101881 30500104	Rate/ Day 28.97000 74.32300	Units TONS TONS	Control Equip 1 2 022 021	Equip Eff 95 95	Daily Emi VOC 36.2 0.1	NOx 0 4.2	n RE (lbs/ da CO-s 0 0.9	y) CO-w 0 0.9	
Plant]	[nform	ation:													
Plant Name: Address : Ozone Status		MARTIN CABINET INC 500 BROAD ST, BRISTOL, CT Area : Greater Connecticut Area	AFS ID : 003 - 791 CO Status Area: Ha				CT ID: 26-91 SIC Code: 2434 UTM Coord: Zone: 18 X: 676.8 Y: 4614.7 Yord								
2002 I	nforma	ation:													
Point	Stack	Process	Operating Schedule				Rate/	Linita	Control Equip	Equip	Equip Daily Emissions with RE (lbs/				
E0001 P0036	002 001	COMM/INST BOILER: #2 OIL COATING: LACQUER	H/D L 8 8	50 50 50	5 5	10300501 40200401	0.00000 0.13400	1000 GAL TONS	1 <i>Z</i>	0 0	0 187.6	NOX 0 0	0 0	0 0	
Plant N	ant Name: COVANTA BRISTOL, INC Idress : 170 ENTERPRISE DR, BRIS		л ст		AFS	5 ID : 003 - 902	LITM (CT ID: 26-	-202 · 18 X·	673.5	SIC Co	de: 4953			
----------------	--	---------------------------------	----------	--------	-------	-----------------------	-----------	--------------	-----------------	---------	------------	----------	--------------	-----------------	-------
Ozone	Status	Area : Greater Connecticut Area	JL, CI		CO	Status Area: H	artford	Looid. Zone.	. 10 A.	075.5	1.4012.7				
	o contractions				00	Status / Hea. Th	artiora								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operati	ing Sc	hedul	e	Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0027	002	MUNICIPAL INCIN: MULTIPLE	24	50	7	50100101	306.00000	TONS	032	03	0	6.1	1120	82.6	75.9
P0026	001	MUNICIPAL INCIN: MULTIPLE	24	50	7	50100101	307.00000	TONS	032	03	0	6.1	1096	92.1	79.5
<u>Plant l</u>	[nform	ation:													
Plant N	Jame.	CANTON VILLAGE CONSTR	UCTION	J	ΔES	SID · 003 - 133	3	CT ID: 33.	.33		SIC Co	de: 1429			
Addres	s ·	60 RAMP RD CANTON CT	ocnor	•	711 6	ID . 005 - 155		CT ID. 33-	· 18 X·	671.4	Y • 4633 3	uc. 1429			
Ozone	s . Status	Area : Greater Connecticut Area			CO	Status Area: H	artford	Long. Lone.	. 10 71.	0/1.4	1. 4055.5				
OZOIIC	Status	Area : Greater Connecticut Area			co	Status / fiea. Th	artiold								
<u>2002 I</u>	nforma	ation:													
Point	nt Stack Process Operating			ing Sc	hedul	e	Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	Ď/W	W/Y	SCC	Day	Units	1	2	Eff	VÓC	NOx	CO-s	CO-w
P0018	001	STONE QUARRYING: PRIMARY	24	52	7	30502001	0.00000	TONS			0	0	0	0	5.7
P0019	002	STONE QUARRYING:	24	52	7	30502002	0.00000	TONS			0	0	0	0	10.4
<u>Plant l</u>	[nform	ation:													
Plant N	Jame:	PRATT & WHITNEY DIV UT(,		AES	SID : 003 - 150	9	CT ID: 53-	.9		SIC Co	de: 3724			
Addres	s :	400 MAIN ST (MAIN PLANT)	EASTI	HART	FORI	D. CT	UTM (Coord: Zone:	18 X:	696.4	Y: 4624.5	1			
Ozone	Status	Area : Greater Connecticut Area	, 211011		CO	Status Area: Ha	artford	Zona. Zone.	. 10 11.	070.1	1. 1021.0				
2002 I	nform	ation:													
Doint	Staalr	Pro coss	Omerati		hadul	_	Data/		Contro	1 Eauin	Equin	Daily Em	icciona wit	b DE (lba/ d	or.)
Point	Stack	Process			W/V	SCC	Rate/	Linita		n Equip	Equip		Issions with	1 KE (10 s/ a)	ay)
ID E0001	1D 052	MISC COATING	П/D	D/ W	W/I	SCC 40200006	Day	TONS	1	Z		voc	NOX	CO-s	CO-w
E0001 E0004	113	I ARGE AIRCRAFT COATING	12	50	6	40299990	0.00200	TONS			0	0	0	0	0
E0004	113	LARGE AIRCRAFT COATING:	12	50	6	40202401	0.00000	TONS			0	0	0	0	0
E0005	129	LARGE AIRCRAFT COATING:	12	50	6	40202401	0.00100	TONS			0	0	0	0	0
E0010	120	INDUST DIESEL: NAT GAS	1	52	1	20200202	0.00000	MIL CU FT			Ő	Ő	Ő	Ő	0.3
E0011	123	COMM/INST DIESEL: #2 OIL	24	52	1	20300101	0.00000	1000 GAL			0	0	0	0	0.5
E0012	118	INDUST DIESEL: NAT GAS	1	52	1	20200202	0.00100	MIL CU FT			0	0.1	1.8	17.6	0.8
M0295	901	ENGINE TESTING: AIRCRAFT,	10	25	5	20400101	1.30200	1000 GAL			0	5.1	218.7	37.7	4.8
M0296	902	ENGINE TESTING: AIRCRAFT,	4	24	4	20400101	3.48700	1000 GAL			0	16.5	697.2	124.5	19.8
P0049	107	UTILITY TURBINE: NAT GAS	24	50	7	20100201	5.89000	MIL CU FT	028	06	70	12.4	212.7	453.5	380.7

P0055	109	LARGE AIRCRAFT COATING:	24	52	7	40202401	0.00000	TONS			0	0	0	0	0
P0065	052	LARGE AIRCRAFT COATING:	12	50	6	40202401	0.00100	TONS			0	0.2	0	0	0
P0066	053	LARGE AIRCRAFT COATING:	12	50	6	40202401	0.00000	TONS			0	0	0	0	0
P0081	116	INDUST DIESEL: #2 OIL	1	52	1	20200102	0.02100	1000 GAL			0	1	8.9	2.7	0.6
P0098	119	INDUST DIESEL: NAT GAS	1	52	1	20200202	0.00000	MIL CU FT			0	0	0	0	0.4
P0121	122	MISC COATING	2	52	7	40299996	0.00000	TONS	048		71	0	0	0	0
P0122	123	LARGE AIRCRAFT COATING:	24	52	7	40202401	0.00200	TONS			0	0	0	0	0
P0123	124	FABRICATED METALS: PLASMA	24	52	7	30904020	0.03300	TONS			0	0	0	0	0
P0132	127	FABRICATED METALS: PLASMA	24	52	7	30904020	0.00000	TONS			0	0	0	0	0
R0019	001	INDUST BOILER: NAT GAS,	2	4	2	10200602	0.02300	MIL CU FT			0	0.1	2.3	1.9	0.3
R0020	002	INDUST BOILER: NAT GAS,	1	2	3	10200602	0.00000	MIL CU FT			0	0	0	0	0
R0039	017	INDUST BOILER: NAT GAS, >100	14	34	3	10200601	0.34600	MIL CU FT			0	2.1	145.3	29.1	88.8
R0041	019	INDUST BOILER: NAT GAS, >100	12	9	3	10200601	0.01800	MIL CU FT			0	0	0	0	24.5
R0042	020	INDUST BOILER: #6 OIL, >100	20	31	6	10200401	0.00000	1000 GAL			0	0	0	0	71.2
U0004	804	THINNING SOLVENTS:	16	50	6	40200912	0.00710	TONS			0	14.2	0	0	0
U0014	814	THINNING SOLVENTS: GENERAL	16	50	6	40200901	0.05100	TONS			0	102	0	0	0
Plant I	nforn	nation:													
Plant N	Jame:	PRATT & WHITNEY DIV UTC			AFS	ID : 003 - 1510		CT ID: 53-	-10		SIC Cod	le: 3724			
Addres	s:	PENT RD (WILLGOOS LAB), E	AST HA	ARTFO	ORD.	. CT	UTM (Coord: Zone:	: 18 X:	696.4	Y: 4623.6				
Ozone	Status	Area · Greater Connecticut Area			CO	Status Area: Hartfo	ord								
OLONE	otatas				001	Status Pilea. Harti	ora								
<u>2002 I</u> 1	nform	ation:													
Point	Stack	Process	Operatin	ig Sch	edule	2	Rate/		Control	l Equip	Equip	Daily Emi	issions with	n RE (lbs/ da	ay)
ID	ID	Description	H/D I	Ď∕W '	W/Y	SCC	Day	Units	1	2	Eff	VÓC	NOx	CO-s	CO-w
M0339	031	ENGINE TESTING: AIRCRAFT,	4	2	2	20400101	0.00000	1000 GAL			0	0	0	0	13.6
M0340	032	ENGINE TESTING: AIRCRAFT,	1	2	3	20400101	0.40900	1000 GAL			0	18.3	119.4	20.6	0.8
M0241	022	ENGINE TESTING: A ID CD AET	6	14	4	20400101	2 60000	1000 C AT			0	10.0	620 6	170.2	27

WI0559	051	ENGINE LESTING: AIKCKAFT,	4	2	2	20400101	0.00000	1000 GAL	0	0	0	0	15.0
M0340	032	ENGINE TESTING: AIRCRAFT,	1	2	3	20400101	0.40900	1000 GAL	0	18.3	119.4	20.6	0.8
M0341	033	ENGINE TESTING: AIRCRAFT,	6	14	4	20400101	2.69900	1000 GAL	0	18.8	630.6	178.3	27
M0342	007	ENGINE TESTING: AIRCRAFT,	24	0	0	20400101	0.00000	1000 GAL	0	0	0	0	0
M0343	008	ENGINE TESTING: AIRCRAFT,	24	0	0	20400101	0.00000	1000 GAL	0	0	0	0	0
M0344	009	ENGINE TESTING: AIRCRAFT,	2	4	3	20400101	0.00000	1000 GAL	0	0	0	0	19.3
P0045	007	ENGINE TESTING: AIRCRAFT,	3	6	2	20400101	0.00000	1000 GAL	0	0	0	0	21.1
P0056	046	ENGINE TESTING: AIRCRAFT, JET	24	0	0	20400110	0.00000	1000 GAL	0	0	0	0	0
P0059	012	ENGINE TESTING: AIRCRAFT, JET	24	0	0	20400110	0.00000	1000 GAL	0	0	0	0	0
P0060	047	INDUST DIESEL: #2 OIL	24	0	0	20200102	0.00000	1000 GAL	0	0	0	0	0
P0061	048	INDUST DIESEL: #2 OIL	24	0	0	20200102	0.00000	1000 GAL	0	0	0	0	0
P0062	033	ENGINE TESTING: AIRCRAFT, JET	24	0	0	20400110	0.00000	1000 GAL	0	0	0	0	0
P0111	050	LARGE AIRCRAFT COATING:	2	8	1	40202401	0.00000	TONS	0	0	0	0	0
R0133	038	COMM/INST BOILER: NAT GAS,	3	2	2	10300601	0.00000	MIL CU FT	0	0	0	0	1.2
R0149	009	COMM/INST BOILER: NAT GAS,	2	4	2	10300601	0.00000	MIL CU FT	0	0	0	0	0.3
R0150	010	ENGINE TESTING: AIRCRAFT,	7	8	3	20400101	12.93500	1000 GAL	0	255.9	485.3	379	60.2

R0151	011	ENGINE TESTING: AIRCRAFT,	8	10	3	20400101	6.31200	1000 GAL		0	125.6	239.5	168	52.5
R0163	023	ENGINE TESTING: AIRCRAFT, JE	Т 24	0	0	20400110	0.00000	1000 GAL		0	0	0	0	0
R0164	024	INDUST BOILER: #2 OIL >100	17	31	4	10200501	0.13600	1000 GAL		0	0	0	0	67.8
R0166	026	INDUST BOILER: #2 OIL >100	15	13	3	10200501	7.91600	1000 GAL		0	2.4	291.4	39.6	26.6
R0167	027	INDUST BOILER: #2 OIL >100	7	10	3	10200501	6 29400	1000 GAL 1000 GAL		0	5.5 1.9	281.7	59.5 31.5	25.1
Plant	[nform	ation	·		-					÷				
	, T					ID 002 2064			<i>C</i> 1		2729			
Plant N	vame:	HAMILION SIANDARD DIV		СТ	AFS	ID : 003 - 2064	UTMC	CT ID: 5/-	04 18 V. 600 2 V	SIC COde	e: 3728			
Ozone	Status	Area : Greater Connecticut Area	NDSOK,	CI	COS	Status Area: Hartfe	ord	ooru. Zone.	10 A. 099.2	1.4045.5				
020110	Status	Area : Oreater Connecticut Area			0.	Status Area. Harti	лu							
2002 I	nforma	ation:												
Point	Stack	Process	Operatio	ng Sch	nedule	•	Rate/		Control Equip	Equip	Daily Emi	ssions with	RE (lbs/ da	y)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0007	001	INDUST BOILER: NAT GAS,	24	26	7	10200602	0.03000	MIL CU FT		0	0.2	3	2.5	0.6
P0008	002	INDUST BOILER: NAT GAS,	24	26	7	10200602	0.03000	MIL CU FT		0	0.2	3	2.5	0.6
P0020 P0021	010	COMM/INST DIESEL: #2 OIL	1	12	1	20300101	0.00000	1000 GAL 1000 GAI		0	0	0	0	0.2
10021	011	COMM/INST DIESEL. #2 OIL	2	12	1	20300101	0.00000	1000 GAL		0	0	0	0	0.5
Plant 1	[nform	ation:												
Plant N	Jame:	COMASEC SAFETY INC			AFS	ID : 003 - 2205		CT ID: 59-	105	SIC Code	e: 3069			
Addres	ss :	8 NIBLICK RD, ENFIELD, CT					UTM C	oord: Zone:	18 X: 700.5	Y: 4650.1				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Hartfo	ord							
<u>2002 I</u>	nforma	ation:												
Point	Stack	Process	Operatii	ng Sch	nedule	•	Rate/		Control Equip	Equip	Daily Emi	ssions with	RE (lbs/ da	y)
ID	ID	Description	H/D	Ď/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
U0001	801	THINNING SOLVENTS: MINERAL	, 11	50	5	40200920	0.05000	TONS		0	100	0	0	0
Plant 1	Inform	ation:												
Plant N	Vame:	TRANS FLEX PACKAGERS IN	C		AFS	ID : 003 - 2464		CT ID: 62-	64	SIC Code	e: 2673			
Addres	ss :	34 BURNHAM AVE, UNIONVI	LLE, CI	Γ			UTM C	oord: Zone:	18 X: 675.8	Y: 4624.7				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Hartfo	ord							
<u>2002 I</u>	nforma	ation:												
Point	Stack	Process	Operatii	1g Sch	nedule		Rate/		Control Equip	Equip	Daily Emi	ssions with	RE (lbs/ da	y)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VÓC	NOx	CO-s	CO-w
P0027	001	PRINTING: FLEXOGRAPHIC	17	52	5	40500301	0.10500	TONS INK	019	95	17.9	0.3	0	0.1

Plant 1	Inform	ation:													
Plant N Addres Ozone	Vame: ss : Status	PREFERRED FIXTURES 32 ROARING BROOK PLAZA Area : Greater Connecticut Area	, EAST G	ILAS	AFS TONE CO S	ID : 003 - 2775 SURY, CT Status Area: Har	UTM (tford	CT ID: 64- Coord: Zone:	75 18 X:	705.1	SIC Coo Y: 4618.2	de: 2541			
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operatir	ng Scl	hedule		Rate/		Contro	l Equip	Equip	Daily En	nissions witl	h RE (lbs/ d	ay)
ID P0007 P0008 R0043 R0044	ID 003 004 002 001	Description WOOD FURNITURE COATING WOOD FURNITURE COATING INDUST BOILER: #4 OIL > 100 INDUST BOILER: #4 OIL > 100	H/D 1 8 8 24 24 24	D/W 52 52 39 52	W/Y 6 6 2 1	SCC 40201901 40201901 10200504 10200504	Day 0.00900 0.01000 0.00000 0.00000	Units TONS TONS 1000 GAL 1000 GAL	1	2	Eff 0 0 0 0	VOC 14.4 16 0 0	NOx 0 0 0 0	CO-s 0 0 0 0	CO-w 0 2.6 0
Plant]	[nform	ation:													
Plant N Addres Ozone	Vame: ss : Status	HARTFORD STEAM COMPAN 60 COLUMBUS BLVD, HART Area : Greater Connecticut Area	VY FORD, C	Т	AFS	ID : 003 - 3043 Status Area: Har	UTM (tford	CT ID: 75- Coord: Zone:	143 18 X:	693.8	SIC Coo Y: 4624	de: 4961			
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operatir	ng Scl	hedule		Rate/		Contro	l Equip	Equip	Daily En	nissions with	h RE (lbs/ d	lay)
ID	ID	Description	H/D I	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0001	007	FIXED ROOF TANKS: #2 OIL	24	0	0	40301019	0.00000	1000 GAL			0	0	0	0	0
E0002	008	FIXED ROOF TANKS: #2 OIL	24	0	0	40301019	0.00000	1000 GAL			0	0	0	0	0
E0003	009	COMM/INST BOIL EP: NAT GAS	24 12	0	7	40301019	0.00000	MIL CU ET			0	21	15	20.1	15.4
R0228	001	COMM/INST BOILER. NAT GAS,	12	6	7	10300602	0.34000	MIL CUFT			0	2.1	68.8	37.3	19.4
R0220	002	COMM/INST BOILER: NAT GAS,	12	6	7	10300602	1.04500	MIL CU FT			0	6.2	155.2	87.8	71.2
R0231	004	COMM/INST BOILER: NAT GAS,	12	6	7	10300602	0.89800	MIL CU FT			0	5.3	116.3	75.4	63.1
R0232	006	COMM/INST BOILER: NAT GAS,	12	6	7	10300601	0.77600	MIL CU FT	024		0	4.6	53	65.2	47.4
Plant]	[nform	ation:													
Plant N Addres	Name: ss :	C R R A / MID-CONNECTICU RESERVE-MAXIM RDS, HAR	Г TFORD,	СТ	AFS	ID : 003 - 3059	UTM (CT ID: 75- Coord: Zone:	158 18 X:	695.1	SIC Coo Y: 4624.4	de: 4953			
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Har	tford								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operatir	ng Scl	hedule		Rate/		Contro	l Equip	Equip	Daily En	nissions with	h RE (lbs/ d	lay)
ID	ID	Description	H/D 1	D/W	W/Y	SCC	Day	Units	1	2^{-1}	Eff	VOC	NOx	CO-s	CO-w
P0044 P0045	101 101	MUNICIPAL INCIN: RDF MUNICIPAL INCIN: RDF	24 24	52 52	7 7	50100103 50100103	662.63400 669.16600	TONS TONS	032 032		0 0	14.4 13.7	1637.1 1537.3	995.6 938.2	900.9 897.1

							TAB	LE 7						
				DET	AIL L	ISTING OF 2002	2 CONNEC	TICUT POIN	IT SOURCE IN	IVENTOR	RΥ			
P0046	101	MUNICIPAL INCIN: RDF	24	52	7	50100103	673.84500	TONS	032	0	13.7	1584.9	921.8	868.2
R0260	013	UTILITY TURBINE: KERO(USE	24	52	7	20100901	0.56100	1000 GAL		0	3.1	55.8	3.8	0.2
R0261	012	UTILITY TURBINE: KERO(USE	24	52	7	20100901	0.56100	1000 GAL		0	3.1	56.4	3.8	0.2
R0262	011	UTILITY TURBINE: KERO(USE	24	52	7	20100901	0.54900	1000 GAL		0	3	55.9	3.7	0.5
R0263	010	UTILITY TURBINE: KERO(USE	24	52	7	20100901	0.54900	1000 GAL		0	3	58.3	3.7	0.5
R0264	009	UTILITY TURBINE: KERO(USE	24	52	7	20100901	0.59500	1000 GAL		0	3.2	57.1	4	0.3
R0265	008	UTILITY TURBINE: KERO(USE	24	52	7	20100901	0.59500	1000 GAL		0	3.2	55.9	4	0.3
R0266	007	UTILITY TURBINE: KERO(USE	24	52	7	20100901	0.52900	1000 GAL		0	2.9	50.5	3.6	0.2
K0207	000	UTILITT TURDINE: KERO(USE	24	32	/	20100901	0.52900	1000 GAL		0	2.9	50.5	5.0	0.2
Plant Diant N	Inform	ation:				ID . 002 2004		CT ID: 75	104	SIC Ca	da. 2407			
	vame:	M. SWIFT & SUNS INC	CT		Агз	ID:005-3094		CT ID: 73-	-194 . 19 V. (02.7	SIC C0	de: 5497			
Addres	SS:	10 LOVE LANE, HARTFORD,	CI		~~~		UIMO	Coord: Zone	: 18 X: 692.7	Y: 4629.2	2			
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: Hari	tford							
<u>2002 I</u>	nforma	ation:												
Point	Stack	Process	Operation	ng Sc	hedule	e	Rate/		Control Equip	Equip	Daily En	nissions with	h RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0058	006	INDUSTRIAL INCIN: MULTIPLE	2	5	2	50300101	0.00000	TONS		0	0	0	0	0
R0326	001	INDUSTRIAL INCIN: SINGLE	1	10	1	50300102	0.00096	TONS		0	0	0	0	0
R0327	001	FABRICATED METALS: OTHER	8	20	3	30999999	0.00500	TONS		0	0	0.1	0	0
R0334	006	PAPER COATING	5	15	4	40201301	0.00000	TONS	021	93	0	0	0	(
R0335	006	PAPER COATING	24	0	0	40201301	0.00000	TONS	021	93	0	0	0	(
R0336	006	PAPER COATING	24	0	0	40201301	0.00000	TONS	021	93	0	0	0	(
R033/	006	PAPER COATING	24	0	0	40201301	0.00000	TONS	021	93	0	0	0	
RU338	006	PAPER COATING	24	12	1	40201301	0.00000	TONS	021	93	0	0	0	
R0339	006	PAPER COATING	2	12	1	40201301	0.00000	TONS	021	95	18	0	0	
R0344	000	PAPER COATING	2 4	10	1	40201301	0.00300	TONS	021	93	1.8	0	0	
R0347	005	INDUST BOILER: NAT GAS <10	+ 2	5	2	10200603	0.00100	MIL CUET	021	95	0.4	0	0	0
R0350	005	INDUST BOILER. NAT GAS, <10	6	25	2 4	10200003	0.13000	1000 GAI		0	0	0	0	12
R0351	005	INDUST BOILER: #4 OIL > 100	6	25	4	10200504	0.13000	1000 GAL		0	0	0	0	1.2
Plant 1	[nform	ation:												
Plant N	lame:	M D C /HARTFORD WPCF			AFS	ID:003-3405		CT ID: 75-	-505	SIC Co	de: 4952			
Addres	s:	240 BRAINARD RD, HARTFO	RD, CT				UTM (Coord: Zone	: 18 X: 695.3	Y: 4622.4	1			
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: Hart	tford							
2002 I	nforma	ation:												
Point	Stack	Process	Operation	ng Sc	hedule	e	Rate/		Control Equip	Equip	Daily En	nissions with	h RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w

E0002	005	SEWAGE TREATMENT: ENTIRE	24 24	52	7	50100701	94.20000	1000 GAL			0	82.5	0	0	0
E0005	000	SEWAGE IREATMENT: ENTIRE	24	32	3 7	10200602	0.00500	1000 GAL			0	2.5	0	0	0
E0005	008	COMM/INST BOILER: NAT GAS,	24	30	/	10300603	0.00000	MIL CU FI			0	0	0	0	0.4
E0006	009	COMM/INST BOILER: NAT GAS,	24	30	7	10300603	0.00000	MIL CU FT			0	0	0	0	4.8
E0007	010	COMM/INST BOILER: NAT GAS,	24	30	7	10300603	0.00000	MIL CU FT			0	0	0	0	0.2
E0008	011	COMM INST DIESEL: GASOLINE	2	20	1	20300301	0.00200	1000 GAL			0	0.6	0.4	15.8	30.4
P0006	001	MUNICIPAL INCIN: SLUDGE,	24	48	5	50100515	65.60000	TONS DRY	055	02	0	45.5	28.2	2.7	1.6
P0007	002	MUNICIPAL INCIN: SLUDGE,	24	23	5	50100515	64.60000	TONS DRY	055	02	0	169.3	110.5	217.1	76.2
P0008	003	MUNICIPAL INCIN: SLUDGE,	24	14	5	50100515	0.00000	TONS DRY	055	02	0	0	0	0	12.1
P0212	004	INDUST DIESEL: #2 OIL	24	52	7	20200102	0.00000	1000 GAL			0	0	0	0	0.1
P0213	005	INDUST DIESEL: #2 OIL	24	8	7	20200102	0.00000	1000 GAL			0	0	0	0	0
P0214	006	INDUST DIESEL: #2 OIL	24	52	7	20200102	0.02150	1000 GAL			0	1.2	13	2.8	1.2
P0215	007	INDUST DIESEL: #2 OIL	24	11	7	20200102	0.00200	1000 GAL			0	0.1	1.2	0.3	0
P0216	008	INDUST DIESEL: #2 OIL	24	52	7	20200102	0.02100	1000 GAL			0	1.2	12.7	2.7	0
P0217	009	INDUST DIESEL: #2 OIL	24	12	7	20200102	0.00700	1000 GAL			0	0.4	4.2	0.9	2.1
Plant 1	nform	ation:													
Plant N	lame:	THE HARTFORD STEAM CO			AFS	ID : 003 - 3471		CT ID: 75-4	571		SIC Cod	le: 4911			
Addros		10 IEEEEDSON ST. HADTEOD	р ст			12.000 0.01	UTM	Coord: Zone:	18 V.	603.1	V: 1625				
Orana	Status	Area - Creater Compatiant Area	D, C1		CO	Status Anas Hant	Fond	Joord. Zone.	10 A.	075.1	1.4025				
Ozone	Status	Area : Greater Connecticut Area			CO.	Status Area: Haru	loru								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operatin	ng Sch	edule		Rate/		Contro	l Equip	Equip	Daily Em	issions with	h RE (lbs/ da	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1	2	Eff	vóc	NOx	CÔ-s	CO-w
P0250	003	LITH ITY TURBINE: NAT GAS	24	52	7	20100201	1.93/00	MIL CU FT	028	-	75	25	204.2	106.4	108.6
P0251	003	COMM/INST BOILER: NAT GAS	6	52	7	10300601	0.05900	MIL CU FT	205	02	0	0.4	204.2	5	51.5
D0237	003	UNDEPGROUND STOPAGE	24	52	0	10300001	0.00000	1000 GAI	205	02	0	0.4	2.1	0	0
F0337 D0229	004	UNDERGROUND STORAGE	24	0	0	40400497	0.00000	1000 GAL			0	0	0	0	0
F0336	004	UNDERGROUND STORAGE	24	0	0	40400497	0.00000	1000 GAL			0	0	0	0	0
Plant]	nform	ation:													
Dlant N	Iama.	CADITOL DISTRICT ENERGY			٨ES	ID · 003 3666		CT ID: 75 7	166		SIC Cod	la: 1031			
	ame.	CAFILOL DISTRICT ENERGY			АГЗ	ID . 005 - 5000		CT ID. 75-7	10. 17	601.0		10. 4931			
Addres	s :	490 CAPITOL AVE, HARTFOR	RD, CT				UTM	Coord: Zone:	18 X:	691.9	Y: 4625.8				
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: Harth	ford								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Onerati	ng Sch	edula	`	Rate/		Contro	l Fauin	Fauip	Daily Em	issions with	h RE (lbs/ d	av)
ID	ID	Description			W/W	, SCC	Nate/	Linita	1	2 Depuip	Equip		NO:		"y) CO
ID D0061	1D 001		H/D .	D/ W	VV / Y	SUL	Day		1	2			NUX	CO-s	CO-w
P0064	001	INDUST TURBINE: NAT GAS,	18	35	4	20200203	9.95100	MIL CU FT	028		0	379.4	1668.9	1212.3	57.5
P0065	002	COMM/INST BOILER: NAT GAS,	18	52	7	10300601	0.55900	MIL CU FT			0	7.5	78.3	22.5	52.2
P0150	003	INDUST DIESEL: LARGE BORE,	1	35	3	20200401	0.00600	1000 GAL			0	0.1	2.6	0.7	0

Plant]	[nform	ation:												
Plant N	Vame:	CONN EDUCATION ASSOC II	NC		AFS	ID : 003 - 3671		CT ID: 75-	771	SIC Co	de: 8631			
Addres	ss :	21 OAK ST, HARTFORD, CT					UTM C	Coord: Zone:	18 X: 691.9	Y: 4626				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Hartfo	ord							
2002 I	nforma	ntion:												
Point	Stack	Process	Operatir	ig Scl	hedule	;	Rate/		Control Equip	Equip	Daily Em	issions witl	h RE (lbs/ d	ay)
ID	ID	Description	H/D I	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0087	001	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00750	1000 GAL		0	0.4	4.5	1	0.7
P0147	001	COMM/INST DIESEL: #2 OIL	24	52	7	20300101	0.00400	1000 GAL		0	0.2	2.4	0.5	0.5
Plant]	[nform	ation:												
Plant N	Vame:	CONN DEPT CORR / HARTFO	ORD		AFS	ID : 003 - 3678		CT ID: 75-	778	SIC Co	de: 9223			
Addres	ss :	177 WESTON ST, HARTFORD	, CT				UTM C	Coord: Zone:	18 X: 694 Y	<i>t</i> : 4629				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Hartfo	ord							
<u>2002 I</u>	nforma	<u>ition:</u>												
Point	Stack	Process	Operatir	ig Scl	nedule	•	Rate/		Control Equip	equip	Daily Em	issions with	h RE (lbs/ d	ay)
ID	ID	Description	H/D I	Ď∕W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0204	018	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00660	1000 GAL		0	0.4	4	0.9	0.6
P0205	009	COMM/INST BOILER: NAT GAS,	24	52	7	10300603	0.01800	MIL CU FT		0	0.1	1.8	1.5	1.5
P0206	010	COMM/INST BOILER: NAT GAS,	24	52	7	10300603	0.01800	MIL CU FT		0	0.1	1.8	1.5	1.5
P0207	011	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00800	1000 GAL		0	0.5	4.8	1	0.8
P0208	012	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00800	1000 GAL		0	0.5	4.8	1	0.8
P0209	013	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00600	1000 GAL		0	0.3	3.6	0.8	0.5
P0211	014	COMM/INST BOILER: NAT GAS,	24	52	7	10300603	0.01800	MIL CU FT		0	0.1	1.8	1.5	1.5
Plant]	[nform	ation:												
Plant N	Jame:	HARTFORD COURANT CO			AFS	ID : 003 - 3694		CT ID: 75-	794	SIC Co	de: 2711			
Addres	ss :	121 WARWARME AVE (DIST	FAC), H	ARTI	FORD	, CT	UTM (Coord: Zone:	18 X: 694 Y	<i>t</i> : 4624				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Hartfo	ord							
<u>2002 I</u>	nforma	ition:												
Point	Stack	Process	Operatir	ig Scl	hedule	:	Rate/		Control Equip	Equip	Daily Em	issions witl	h RE (lbs/ d	ay)
ID	ID	Description	H/D 1	D/W	W/Y	SCC	Day	Units	1 2	Eff	voc	NOx	CO-s	CO-w
P0170	001	INDUST DIESEL: #2 OIL	24	52	1	20200102	0.00200	1000 GAL		0	0.1	1.2	0.3	1.5
P0280	001	COMM/INST BOILER: NAT GAS,	24	52	7	10300603	0.00030	MIL CU FT		0	0	0	0	1
P0281	002	COMM/INST BOILER: NAT GAS,	24	52	7	10300603	0.00030	MIL CU FT		0	0	0	0	1

Plant Na Address Ozone S	ame: s : Status	MINNESOTA METHANE LLC JENNINGS RD (LANDFILL), F Area : Greater Connecticut Area	IARTFO	RD, N	AFS AN CO S	ID : 003 - 3695 Status Area: Hartfo	UTM C	CT ID: 75- Coord: Zone:	795 18 X:	650.4	SIC Code Y: 4558.3	e: 9511			
2002 In	forma	ation:													
Point ID P0165 P0166	Stack ID 001 002	Process Description UTILITY DIESEL: NAT GAS UTILITY DIESEL: NAT GAS	Operatin H/D 24 24	ng Scl D/W 50 50	nedule W/Y 7 7	SCC 20100202 20100202	Rate/ Day 0.29900 0.35400	Units MIL CU FT MIL CU FT	Contro 1	l Equip 2	Equip Eff 0 0	Daily Emi VOC 3.3 4.1	ssions with NOx 20 34.7	RE (lbs/ da CO-s 99.8 128.1	y) CO-w 121.5 128.2
<u>Plant Ir</u>	nform	ation:													
Plant Na Address Ozone S	ame: s : Status	DYNAMIC GUNVER 255 SHELDON ROAD, MANCI Area : Greater Connecticut Area	HESTER	, CT	AFS	ID : 003 - 5227 Status Area: Hartfo	UTM C	CT ID: 97- Coord: Zone:	227 18 X:	707 Y	SIC Code : 4630.5	e: 3728			
<u>2002 In</u>	forma	ation:													
Point ID P0119	Stack ID 001	Process Description COATING: PAINT	Operatin H/D 24	ng Scl D/W 52	nedule W/Y 7	SCC 40200101	Rate/ Day 0.00093	Units TONS	Contro 1	l Equip 2	Equip Eff 0	Daily Emi VOC 1	ssions with NOx 0	RE (lbs/ da CO-s 0	y) CO-w 0
<u>Plant Ir</u>	nform	ation:													
Plant Na Address Ozone S	ame: s : Status	STANLEY HARDWARE DIV 100 CURTIS ST, NEW BRITAI Area : Greater Connecticut Area	N, CT		AFS	ID : 003 - 5632 Status Area: Hartfo	UTM C	CT ID: 110 Coord: Zone:)-32 18 X:	683.7	SIC Code Y: 4615.5	e: 3429			
<u>2002 In</u>	forma	ation:													
Point ID E0001 E0002 P0090	Stack ID 079 079 079	Process Description INDUST BOILER: #2 OIL >100 INDUST BOILER: #2 OIL >100 COMM/INST DIESEL: #2 OIL	Operatin H/D 24 24 24 24	ng Scl D/W 15 15 52	nedule W/Y 5 5 7	SCC 10200501 10200501 20300101	Rate/ Day 0.00000 0.00000 0.00000	Units 1000 GAL 1000 GAL 1000 GAL	Contro 1	l Equip 2	Equip Eff 0 0 0	Daily Emi VOC 0 0 0	ssions with NOx 0 0 0	RE (lbs/ da CO-s 0 0 0	y) CO-w 13.4 13.4 0

Plant Information:

Plant N Addres	Name: ss :	STANLEY TOOLS DIV 600 MYRTLE ST, NEW BRITA	AIN, CT		AFS	ID : 003 - 5882	UTM C	CT ID: 110 Coord: Zone	0-282 : 18 X	: 683.3	SIC Cod Y: 4615.1	e: 3423			
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: Hartfe	ord								
2002 I	nforma	ation:													
Point	Stack	Process	Operat	ing Sc	hedule	2	Rate/		Contro	ol Equip	Equip	Daily Em	issions with	n RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0001	077	INDUST BOILER: #2 OIL >100	24	21	7	10200501	0.00000	1000 GAL			0	0	0	0	5.4
E0002	077	INDUST BOILER: #2 OIL >100	24	15	7	10200501	0.00000	1000 GAL			0	0	0	0	3.9
P0012	024	METAL COIL COATING: OTHER	8	50	7	40201899	0.01200	TONS			0	24	0	0	0
P0013	024	METAL COIL COATING: OTHER	24	52	7	40201899	0.02000	TONS			0	40	0	0	0
P0019	024	METAL COIL COATING: OTHER	24	52	7	40201899	0.02000	TONS			0	40	0	0	0
U0001	801	METAL COIL COATING: EQUIP	8	52	5	40201805	0.02000	TONS			0	40	0	0	0
U0002	802	METAL COIL COATING: FINISH	24	52	7	40201806	0.02000	TONS			0	40	0	0	0
Plant l	[nform	ation:													
Plant N	Jame:	HARTFORD			AFS	ID : 003 - 6103		CT ID: 12	7-3		SIC Cod	e: 8062			
Addres	s ·	181 F CEDAR ST NEWINGTO	N CT			12 1000 0100	UTM (oord Zone	· 18 X	$\cdot 690.2^{-1}$	$Y \cdot 4618.8$	0002			
Ozone	Status	Area : Greater Connecticut Area	, 01		CO	Status Area: Hartfo	ord		. 10 71	. 070.2	1.4010.0				
2002 1		-4 ²													
<u>2002 I</u>	niorma	ation:													
Point	Stack	Process	Operat	ing Sc	hedule	2	Rate/		Contro	ol Equip	Equip	Daily Em	issions with	RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
R0006	002	COMM/INST BOILER: NAT GAS,	24	26	7	10300603	0.04100	MIL CU FT			0	0.2	4.1	3.4	3.5
Plant 1	[nform	ation:													
Plant N	Jame.	WASI FY PRODUCTS INC			AFS	ID · 003 - 6484		CT ID· 14	6-84		SIC Cod	e· 3069			
Addros	anne.	87 SDDING I ANE DI AINVILI	F CT		711 5	ID:005 0404	UTMO	Cord: Zona	· 18 V	. 677 1	V: 4617.7	c. 5007			
Ozona	Status	Area : Greater Connecticut Area	ль, с і		CO	Status Areas Hartf	ord	John Zohie	. 10 A	. 077.1	1.4017.7				
Ozone	Status	Alea . Gleater Connecticut Alea			CO.	Status Alea. Halli	Jiu								
2002 I	nforma	ation:													
Point	Stack	Process	Operat	ing Sc	hedule	2	Rate/		Contro	ol Equip	Equip	Daily Em	issions with	n RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2^{-1}	Eff	VOC	NOx	CO-s	CO-w
R0131	001	COATING: ADHESIVE	2	48	5	40200701	0.02200	TONS			0	19.8	0	0	0
R0132	002	COATING: ADHESIVE	3	48	5	40200701	0.02200	TONS			0	19.8	0	0	0

Plant 1	Inform	ation:													
Plant N Addres Ozone	Name: ss : Status	CITGO PETROLEUM CORP 109 DIVIDEND RD, ROCKY H Area : Greater Connecticut Area	ILL, CI	Г	AFS	ID : 003 - 670 Status Area: H)4 UTM (artford	CT ID: 15: Coord: Zone	5-4 : 18 X:	697.1	SIC Coo Y: 4613.9	le: 5171			
2002 I	nforma	ation:													
Point	Stack	Process	Operat	ing Sc	hedule	;	Rate/		Contro	l Equip	Equip	Daily Em	issions with	h RE (lbs/ d	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0012	004	GASOLINE SUBMERGED	24	52	7	40600141	450.87600	1000 GAL	021		99	485.1	14.7	37.3	40.2
P0013	005	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	281.42300	1000 GAL	091	09	0	31.2	0	0	0
P0014	006	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	57.10100	1000 GAL	091	09	0	11.5	0	0	0
R0014	002	FLOAT ROOF TANKS (EXT-SEC) -	- 24	52	7	40400141	69.33600	1000 GAL	091	09	0	10.2	0	0	0
R0015	003	FLOAT ROOF TANKS (EXT-SEC)	- 24	52	7	40400141	82.22200	1000 GAL	091	09	0	12.1	0	0	0
Plant]	[nform	ation:													
Plant N	Vame:	CONN NATURAL GAS CORP			AFS	ID:003-67	15	CT ID: 15	5-15		SIC Coc	le: 4924			
Addres	ss :	1376 CROMWELL AVE, ROCK	Y HIL	L, CT			UTM (Coord: Zone	:18 X:	693.1	Y: 4611.5				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: H	artford								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operat	ing Sc	hedule	;	Rate/		Contro	ol Equip	Equip	Daily Em	issions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0010	012	INDUST DIESEL: NAT GAS	1	12	1	20200202	0.00040	MIL CU FT	•		0	0	0	0.2	0.2
P0011	016	PROCESS FUEL: NAT GAS	12	2	1	39000689	0.00000	MIL CU FT	•		0	0	0	0	0.8
P0015	007	PROCESS FUEL: NAT GAS	11	2	1	39000689	0.00000	MIL CU FT	•		0	0	0	0	0.8
P0077	017	PROCESS FUEL: NAT GAS	10	2	2	39000689	0.01300	MIL CU FT	000	00	0	0	0	0	1
R0029	005	PROCESS FUEL: NAT GAS	2	1	1	39000689	0.00000	MIL CU FT			0	0	0	0	0
R0032	003	INDUST TURBINE: NAT GAS	1	12	1	20200201	0.00200	MIL CU FT			0	0	0.7	0.4	0.9
R0034	004	INDUST TURBINE: NAT GAS	1	12	1	20200201	0.00300	MIL CU FI			0	0	1.1	0.5	0.9
Plant]	[nform	ation:													
Plant N	Vame:	TILCON CONNECTICUT INC			AFS	ID:003-702	29	CT ID: 168	8-29		SIC Coc	le: 1422			
Addres	s :	W QUEEN ST, SOUTHINGTON	I, CT				UTM (Coord: Zone	:18 X:	673 Y	: 4612				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: H	artford								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operat	ing Sc	hedule	;	Rate/		Contro	l Equip	Equip	Daily Em	issions witl	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2^{-1}	Eff	VOC	NOx	CO-s	CO-w
P0044	001	STONE QUARRYING:	24	52	7	30502004	0.00000	TONS			0	0	0	0	0
R0070	001	SAND/GRAVEL: GENERAL	8	40	5	30502501	681.00000	TONS			0	0	0	0	0

Plant	Information:	

Plant N	lame:	AMERADA HESS CORP		CT	AFS	ID : 003 - 8209		CT ID: 20	7-9	605 G	SIC Co	de: 5171			
Addres	Statua	50 BURBANK RD, WETHERSF	IELD,	CI	CO	Status Amagu Ha	UIM (tford	Coord: Zone	: 18 X:	695.6	Y:4621				
Ozone	Status	Area: Greater Connecticut Area			CO.	Status Area: nai	uoru								
<u>2002 I</u>	nforma	ntion:													
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Contro	l Equip	Equip	Daily Em	nissions with	h RE (lbs/ c	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0001	005	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	145.70000	1000 GAL			0	43.9	0	0	0
P0004	007	GASOLINE SUBMERGED	24	52	7	40600141	172.50000	1000 GAL	047		97	306.7	0	0	0
R0028	003	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	26.86000	1000 GAL			0	21	0	0	0
R0029	002	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	10.44700	1000 GAL			0	1.6	0	0	0
<u>Plant l</u>	[nform	ation:													
Plant N	Jame:	ALGONOUIN WINDSOR LOCK	KSLLO		AFS	ID : 003 - 8601		CT ID: 21	3-1		SIC Co	de: 4911			
Addres	s :	26 CANAL BANK RD. WINDSO	OR LO	CKS. (CT	12 . 000 0001	UTM (Coord: Zone	:18 X:	696.8	Y: 4644				
Ozone	Status	Area : Greater Connecticut Area		, -	CO	Status Area: Ha	rtford								
2002 1	nforme	tion.													
2002 1	morma	<u>10011:</u>													
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Contro	ol Equip	Equip	Daily Em	nissions with	h RE (lbs/ c	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0029	029	INDUST TURBINE: NAT GAS,	24	51	7	20200203	9.70600	MIL CU FT	028		0	252.4	1446.2	1087.1	1122.5
P0031	029	INDUST BOILER: NAT GAS, >100	24	20	3	10200601	0.68900	MIL CU FT	028		0	3.9	75.8	56.5	18.2
P0032	029	INDUST BOILER: NAT GAS, >100	24	21	3	10200601	0.83200	MIL CU FI	028		0	4.7	91.5	68.2	75.6
<u>Plant l</u>	[nform	ation:													
Plant N	Jame:	HAMILTON SUNDSTRAND CO	ORP		AFS	ID:003-8602	2	CT ID: 21	3-2		SIC Co	de: 3728			
Addres	s :	1 HAMILTON RD. WINDSOR I	LOCKS	S. CT		12 . 000 0001	UTM (Coord: Zone	: 18 X:	691.5	Y: 4643.9)			
Ozone	Status	Area : Greater Connecticut Area		,	CO	Status Area: Ha	rtford								
2002 II	nforma	ition:													
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Contro	l Fauin	Fauin	Daily Fm	nissions with	h RF (lbs/ a	lav)
ID	ID	Description		D/W	W/Y	SCC	Dav	Units	1	7 Equip	Equip	VOC	NOv	CO-s	CO-w
P0038	065	LARGE AIRCRAFT COATING	24	50	5	40202499	0.00200	TONS	1	2	0	0	0	0	0
P0039	066	INDUST DIESEL: #2 OIL	1	12	1	20200102	0.02900	1000 GAL			0	1.7	17.5	3.8	0.4
P0043	068	LARGE AIRCRAFT COATING:	24	50	2	40202499	0.00006	TONS			0	0	0	0	0
P0044	069	LARGE AIRCRAFT COATING:	24	52	6	40202401	0.00100	TONS			0	1.6	0	0	0
P0047	057	ENGINE TESTING: AIRCRAFT, JE	T 24	9	7	20400110	0.00000	1000 GAL			0	0	0	0	0.7
P0057	061	LARGE AIRCRAFT COATING:	24	52	6	40202499	0.00030	TONS			0	0	0	0	0
P0058	072	INDUST DIESEL: #2 OIL	1	6	1	20200102	0.04400	1000 GAL			0	2.6	26.6	5.7	0.8

TABLE 7
DETAIL LISTING OF 2002 CONNECTICUT POINT SOURCE INVENTORY

P0063	076	LARGE AIRCRAFT COATING:	24	1	6	40202401	0.00030	TONS		0	0	0	0	0
P0079	064	LARGE AIRCRAFT COATING:	24	50	6	40202401	0.00200	TONS		0	1.6	0	0	0
P0082	072	INDUST SPACE HEATER:	24	9	5	10500110	0.00000	1000 GAL		0	0	0	0	0.2
P0085	074	LARGE AIRCRAFT COATING:	8	52	7	40202401	0.00100	TONS		0	1.2	0	0	0
P0086	075	LARGE AIRCRAFT COATING:	8	52	7	40202401	0.00000	TONS		0	0	0	0	0
R0052	041	INDUST BOILER: NAT GAS,	24	29	7	10200602	0.38800	MIL CU FT		0	2.3	45.4	32.6	17.9
R0053	042	INDUST BOILER: NAT GAS,	24	36	7	10200602	0.44700	MIL CU FT		0	2.8	47.1	39.5	19.7
R0054	043	INDUST BOILER: NAT GAS,	24	30	7	10200602	0.43600	MIL CU FT		0	2.6	55.8	36.6	25.8
R0055	044	INDUST BOILER: #6 OIL, >100	24	14	7	10200401	0.07600	1000 GAL		0	0	5.1	0.4	0.1
R0059	048	INDUST BOILER: #2 OIL >100	24	52	7	10200501	0.00000	1000 GAL		0	0	0	0	1.4
R0060	049	INDUST BOILER: #2 OIL >100	24	21	7	10200501	0.00000	1000 GAL		0	0	0	0	1.3
R0064	053	PROCESS FUEL: LPG	24	27	5	39001099	0.12400	1000 GAL		0	0.1	1.9	0.3	0.1
R0065	054	PROCESS FUEL: LPG	24	32	5	39001099	0.13800	1000 GAL		0	0.1	2	0.4	0.1
R0094	056	ENGINE TESTING: AIRCRAFT,	24	23	2	20400101	0.07100	1000 GAL		0	3.7	1	2.3	0.3
R0097	059	ENGINE TESTING: AIRCRAFT,	24	12	1	20400101	0.00000	1000 GAL		0	0	0	0	0
U0005	805	THINNING SOLVENTS:	24	50	6	40200912	0.00100	TONS		0	2	0	0	0
U0006	806	THINNING SOLVENTS: METHYL	24	50	6	40200917	0.00050	TONS		0	1	0	0	0
U0007	807	THINNING SOLVENTS: MEK	24	50	6	40200918	0.00500	TONS		0	10	0	0	0
U0008	808	THINNING SOLVENTS: MINERAL	24	50	6	40200920	0.02900	TONS		0	58	0	0	0
U0009	809	THINNING SOLVENTS: TOLUENE	24	50	6	40200922	0.00200	TONS		0	4	0	0	0
U0010	810	MISC VOC EVAPORATION	24	50	6	49099999	0.00100	TONS		0	2	0	0	0
Plant	Inform	nation.												
r lailt														
Plant N	Name:	KIMBERLY-CLARK CORP			AFS	ID : 005 - 606		CT ID: 130	0-6	SIC Coo	de: 2621			
Addres	ss :	58 PICKETT DISTRICT RD, NE	W MIL	FORD	, CT		UTM C	Coord: Zone	: 18 X: 632.5	Y: 4601.9				
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: Lite	chfield							
2002 1	nform	ation:												
Point	Stack	Process	Operatii	ng Sch	edule	•	Rate/		Control Equip	Equip	Daily Emi	ssions with	n RE (lbs/ da	ay)
ID	ID	Description	H/D	Ď/W	W/Y	SCC	Dav	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
E0001	021	PAPER PRODUCTS	24	52	7	30701399	29.55000	TONS		0	0	0	0	0
E0002	022	PAPER PRODUCTS	24	52	7	30701399	25,93000	TONS		Õ	Õ	Ő	0	Õ
E0003	023	PAPER PRODUCTS	24	52	7	30701399	22.48000	TONS		Ő	Ő	Ő	Ő	Ő
E0004	024	PAPER PRODUCTS	24	52	7	30701399	138 40000	TONS		Õ	Õ	Ő	0	Õ
E0005	025	PAPER PRODUCTS	24	52	7	30701399	54 40000	TONS		0	0	Ő	Ő	Ő
E0005	026	PAPER PRODUCTS	24	52	7	30701399	5 64000	TONS		0	0	0	Ő	Ő
E0007	027	PAPER PRODUCTS	24	52	7	30701399	0.00050	TONS		0	0.9	0	Ő	0
E0000	029	PAPER PRODUCTS	24	52	7	30701399	0.00030	TONS		0	0.2	0	0 0	0
E0010	030	INDUST DIESEL: #2 OIL	1	52	1	20200102	0.00600	1000 GAI		0	0.3	26	0.8	05
E0010	031	INDUST DIESEL: #2 OIL	24	52	1	20200102	0.00500	1000 GAL		0	0.3	2.0	0.0	0.5
E0011	032	INDUST DIESEL. #2 OIL	24	52	1	20200102	0.00500	1000 GAL		0	0.3	22	0.7	0.5
20012	004		<u> </u>	-14		_0200102	0.00500	1000 011			0.0	4.4	N/. /	V.T

E0013	033	SEWAGE TREATMENT:	24	52	7	50100799	2.76000	TONS DRY		0	21.6	0	0	0
E0014	034	SEWAGE TREATMENT:	24	52	7	50100799	2.59600	TONS DRY		0	24.1	0	0	0
P0014	015	PAPER PRODUCTS	24	52	7	30701399	98.10000	TONS		0	3.5	98.6	21.5	21.8
P0026	010	PAPER PRODUCTS	24	52	7	30701399	97.20000	TONS		0	2.9	55.9	18.1	18.5
P0029	018	PAPER PRODUCTS	24	52	7	30701399	195.30000	TONS		0	174.8	0	0	0
P0033	020	PULP & PAPER: OTHER NOT	24	50	7	30799998	61.20000	TONS		0	9.3	0	0	0
R0017	011	INDUST BOILER: NAT GAS,	24	52	7	10200602	0.60800	MIL CU FT		0	3.6	53.1	51.1	69.4
R0018	011	INDUST BOILER: #2 OIL >100	24	50	7	10200501	0.05600	1000 GAL		0	0	1.1	0.3	0.8
R0019	012	INDUST BOILER: NAT GAS,	24	50	7	10200602	0.24600	MIL CU FT		0	1.5	32.3	20.7	42.1
R0062	006	PAPER PRODUCTS	24	52	7	30701399	21.62000	TONS		0	0	0	0	0
R0063	007	PAPER PRODUCTS	24	50	7	30701399	26.13000	TONS		0	0	0	0	0
R0064	008	PAPER PRODUCTS	24	50	7	30701399	15.88000	TONS		0	0	0	0	0
R0065	009	PAPER PRODUCTS	24	52	7	30701399	22.37000	TONS		0	0	0	0	0
U0001	801	COLD SOLVENT CLEANING:	24	52	7	40100303	0.00100	TONS		0	0.7	0	0	0
U0002	802	PAPER PRODUCTS	20	52	5	30701399	22.20000	TONS		0	0	0	0	0
Plant	Inform	ation:												
Plant N	Vame:	WASTE MANAGEMENT OF (CT INC		AFS	ID : 005 - 667		CT ID: 130)-67	SIC Co	le: 4953			
Addres		182-2 DANBURY RD NEW M	IIL FORD	NH			UTM (oord Zone	18 X 630.9	$Y \cdot 4600.8$				
Ozone	Status	Area : Greater Connecticut Area		,	CO	Status Area: Lito	hfield	Zone.	10 11.050.9	1. 1000.0				
OZOIIC	Status	Thea : Greater Connecticut Thea			001	Status / Hou. End	linera							
2002 I	nform	ation:												
Point	Stack	Process	Operatir	1g Sch	nedule		Rate/		Control Equip	Equip	Daily Emi	issions with	n RE (lbs/ da	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1 2	Eff	VOC	NOv	CO-s	
P0021	001	LANDEILL GAS ELARE	24	52	7	50300601	0 19/00	Onits	1 2	0	13	14.9	34.2	98.9
P0021	001	COMM/INST TURBINE: NAT GA	s 24	52	7	20300202	1 85000	MIL CU FT		0	9.4	134.1	136.5	146.3
10022	002	COMM/INST TORDINE. NAT GA	5 24	52	,	20300202	1.05000	WILL COT I		0	2.4	154.1	150.5	140.5
Plant 1	Inform	ation:												
Plant N	Jame.	G L C ASSOCIATES			ΔFS	$ID \cdot 0.05 = 1202$		CT ID: 180	1_2	SIC Co	de: 6512			
Addray	vanie.	125 S MAIN ST THOMASTO	N CT		AI 5	ID . 005 - 1202	UTM	CTID. 100	19 V 660 V	1614 5	uc. 0512			
Ozono	Statua	Area : Greater Connacticut Area	N, CI		CO	Status Aroas Lite	bfield	Joord. Zone.	18 A. 000 1	. 4014.5				
Ozone	Status	Alea . Gleater Connecticut Alea			CO.	Status Alea. Litt	lineid							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operatir	ng Sch	nedule	•	Rate/		Control Equip	Equip	Daily Emi	issions with	n RE (lbs/ da	ay)
ID	ID	Description	H/D	Ď/W	W/Y	SCC	Dav	Units	1 2	Eff	vóc	NOx	CO-s	CO-w
P0019	003	INDUST BOILER: NAT GAS	8	52	2	10200602	0.00600	MIL CU FT	026 20	75	0	0.2	0.5	0.4
R0002	001	INDUSTRIAL BOILER: #6 OIL	9	52	6	10200402	0.35700	1000 GAL	-10 10	0	0.1	19.6	1.8	2.5
R0003	001	INDUSTRIAL BOILER: #6 OIL	11	52	6	10200402	0.38900	1000 GAL		0	0.2	21.4	1.9	2.7

0.13400 1000 GAL

0

0.1

7.4

0.7

0.8

3 52 6 10200402

R0004 001 INDUSTRIAL BOILER: #6 OIL

Plant	Inform	ation
-------	--------	-------

Plant N Addres Ozone	t Name: WHYCO FINISHING TECH,INC. ress : 670 WATERBURY RD, THOMASTON, C ne Status Area : Greater Connecticut Area			I, CT	AFS CO S	ID : 005 - 1205 Status Area: Litch	UTM (CT ID: 180 Coord: Zone:)-5 18 X:	659.8	SIC Cod Y: 4612	e: 3471			
<u>2002 I</u>	nforma	ation:													
2002 II Point ID P0002 P0014 P0015 R0057 R0074 R0076 U0003 F0001	Stack ID 009 010 010 002 006 008 803 010	Process Description INDUST BOILER: NAT GAS, COMM/INST DIESEL: #2 OIL MISC COATING INDUST BOILER: #4 OIL > 100 FABRICATED METALS: INDUST BOILER: NAT GAS, <10 MISC VOC EVAPORATION COMM/INST DIESEL: #2 OIL	Opera H/D 24 24 24 24 24 12 24 16	ting Sc D/W 51 52 52 0 52 51 50 52	hedule W/Y 7 7 0 5 7 6	SCC 10200602 20300101 40299996 10200504 30901097 10200603 49099999 20300101	Rate/ Day 0.06900 0.01600 0.03000 0.02200 0.03300 0.00010 0.00010	Units MIL CU FT 1000 GAL TONS 1000 GAL TONS MIL CU FT TONS 1000 GAL	Contro 1 065	l Equip 2	Equip Eff 0 90 0 0 0 0 0 0	Daily Emi VOC 0.4 0.7 60 0 0 0.2 0.2 0.2 0.4	ssions with NOx 6.9 2.7 0 0 0 3.3 0 4 2	n RE (lbs/ da CO-s 5.8 0.7 0 0 0 2.8 0 0 9	iy) CO-w 6.8 0.9 0 0 0 3.3 0 0 5
Plant D Plant N Addres Ozone	I <mark>nform</mark> Jame: ss : Status	ation: FM PRECISION GOLF MFG CO 535 MIGEON AVE, TORRING Area : Greater Connecticut Area	ORP FON, C	Т	AFS CO S	ID : 005 - 1407 Status Area: Litch	UTM (CT ID: 183 Coord: Zone:	-7 18 X:	654.9	SIC Cod Y: 4630.5	e: 3949			
2002 I	nforma	ation:													
Point ID P0017 R0011 R0127 U0007	Stack ID 001 001 005 807	Process Description INDUST BOILER: NAT GAS, INDUST BOILER: #4 OIL > 100 FABRICATED METALS: THINNING SOLVENTS: GENERAL	Opera H/D 24 3 24 2	ting Sc D/W 32 50 50 50	hedule W/Y 7 6 5 5 5	SCC 10200602 10200504 30901098 40200998	Rate/ Day 0.06300 0.00200 7.66700 89.70000	Units MIL CU FT 1000 GAL GALS TONS	Contro 1	l Equip 2	Equip Eff 0 0 0 0	Daily Emi VOC 0.4 0 564.2	issions with NOx 7.8 0.1 0 0	n RE (lbs/ da CO-s 5.5 0 0 0	ay) CO-w 13.6 0.1 0 0
Plant]	[nform	ation:													
Plant N Addres Ozone	Vame: ss : Status	EYELEMATIC MFG CO 1 SEEMAR RD, WATERTOWN Area : Greater Connecticut Area	I, CT		AFS CO S	ID : 005 - 1826 Status Area: Litch	UTM (CT ID: 200 Coord: Zone:	-26 18 X:	659.3	SIC Cod Y: 4608.7	e: 3469			
<u>2002 I</u>	nforma	ation:													
Point ID E0001 E0002	Stack ID 003 004	Process Description INDUST BOILER: NAT GAS, <10 INDUST SPACE HEATER: NAT	Opera H/D 24 2	ting Sc D/W 50 26	hedule W/Y 7 5	SCC 10200603 10500106	Rate/ Day 0.02000 0.00000	Units MIL CU FT MIL CU FT	Contro 1	l Equip 2	Equip Eff 0 0	Daily Emi VOC 0.1 0	NOx 2 0	n RE (lbs/ da CO-s 1.7 0	ay) CO-w 1.7 0.2

TABLE 7	
DETAIL LISTING OF 2002 CONNECTICUT POINT SOURCE INVENTORY	

P0014	001	COMM/INST INCIN: SINGLE	4	50	5	50200102	0.00400	TONS		0	2.5	0	0.1	0.1
P0015	001	MISC METAL PARTS: COATING	16	50	5	40202501	0.04000	TONS	022	98	17.3	2.8	0.6	0.6
U0001	801	OPEN-TOP VAPOR	16	50	5	40100205	0.06000	TONS	048	0	120	0	0	0
Plant l	[nform	ation:												
Plant N	Jame.	COATS NORTH AMERICA			ΔFS	ID · 005 - 1832		CT ID: 200)-32	SIC Cod	le· 2284			
Addres	e ·	150 CALLENDER RD WATER	TOWN	СТ	111.0	ID . 005 - 1052	UTM (oord: Zone:	18×657.2	$V \cdot 4607.3$	10. 2204			
Ozona	Status	Area : Greater Connecticut Area	(10,010,	CI	COS	tatus Araas Litchf	iold	zona. Zone.	10 A. 057.2	1.4007.5				
Ozone	Status	Area . Oreater Connecticut Area			0.5	atus Area. Litem	ieiu							
<u>2002 I</u>	nforma	ation:												
Point	Stack	Process	Operatin	ng Sch	nedule		Rate/		Control Equip	Equip	Daily Emi	issions with	n RE (lbs/ da	ıy)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
R0030	002	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0031	003	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0032	004	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0033	005	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0034	006	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0036	009	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0037	010	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0038	011	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0039	012	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0040	013	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0041	014	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0042	015	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0043	016	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0044	017	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0045	018	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0046	019	TEXTILE: FABRIC, POLYESTER	24	50	ິ	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
R0047	020	TEXTLE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.6	1.2	0.3	0.3
R0048	021	TEXTILE: FABRIC, POLYESTER	24	50	5	33000103	0.14700	TONS		0	12.7	1.2	0.3	0.3
<u>Plant l</u>	[nform	ation:												
Plant N	lame:	HENLOPEN MANUFACTURIN	NG CO		AFS	ID : 005 - 1880		CT ID: 200)-80	SIC Cod	le: 3479			
Addres	s :	401 PARK RD, WATERTOWN,	, CT				UTM C	Coord: Zone:	18 X: 659.2	Y: 4609.2				
Ozone	Status	Area : Greater Connecticut Area			COS	tatus Area: Litchf	ïeld							
<u>2002 I</u>	nforma	ation:												
Point	Stack	Process	Operatir	1g Sch	nedule		Rate/		Control Equip	Equip	Daily Emi	issions with	n RE (lbs/ da	v)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
E0001	001	PROCESS FUEL: NAT GAS	16	48	6	39000689	0.05500	MIL CU FT	0 0	0	18.8	5.5	1.2	0.9

Plant N	lame:	ALGONQUIN GAS TRANSMIS	SION	W	AFS	ID : 007 - 105		CT ID: 43-	.5	. (02.9	SIC Cod	le: 4922			
Addres	Statue	252 SHUNPIKE ROAD, CROMM	VELL, I	Λ	CO	Status Area: Mide	UIMU	Loord: Zone:	18 A	: 093.8	1:4011.5				
OZOIIE	Status	Area . Oreater Connecticut Area			0.	Status Alea. Milu	IICSCA								
2002 I	nforma	ation:													
Point	Stack	Process	Operatin	ig Sc	hedule	•	Rate/		Contro	ol Equip	Equip	Daily Em	issions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D I	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0005	007	INDUST TURBINE: NAT GAS	13	28	4	20200201	1.00300	MIL CU FT			0	2.1	149.3	20.7	30.2
P0006	008	INDUST TURBINE: NAT GAS	11	24	3	20200201	1.02600	MIL CU FT			0	2.8	136.5	21.2	41.3
R0011	001	INDUST DIESEL: NAT GAS	10	22	3	20200202	0.00000	MIL CU FT			0	0	0	0	145.2
R0012	002	INDUST DIESEL: NAT GAS	10	22	3	20200202	0.00000	MIL CU FT			0	0	0	0	144.3
R0013	003	INDUST DIESEL: NAT GAS	7	15	2	20200202	0.00000	MIL CU FT			0	0	0	0	215.5
R0014	004	INDUST DIESEL: NAT GAS	5	10	1	20200202	0.00800	MIL CU FT			0	0	0	0	580.4
R0015	005	INDUST DIESEL: NAT GAS	3	6	1	20200202	0.01200	MIL CU FT			0	0	0	0	109.3
R0016	006	INDUST DIESEL: NAT GAS	3	6	1	20200202	0.01800	MIL CU FT			0	0	0	0	196.1
U0001	801	MISC VOC EVAPORATION	24	52	7	49099999	0.01300	TONS			0	26	0	0	0
<u>Plant l</u>	[nform	ation:													
Plant N	Jame:	BROWNELL & COMPANY, INC	2		AFS	ID : 007 - 408		CT ID: 51-	-8		SIC Cod	le: 2298			
Addres	s:	423 E HADDAM-MOODUS RD.	MOOD	US.	СТ		UTM (Coord: Zone:	18 X	: 712.3	Y: 4597.2				
Ozone	Status	Area : Greater Connecticut Area	,	,	COS	Status Area: Mido	ilesex								
2002 I	nforma	ation:													
Point	Stack	Process	Operatin	ig Sc	hedule		Rate/		Contro	ol Equip	Equip	Dailv Em	issions with	n RE (lbs/ d	av)
ID	ID	Description	H/D I	D/W	W/Y	SCC	Dav	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
U0001	801	THINNING SOLVENTS' METHYL	8	49	5	40200917	0.00000	TONS	-	-	0	0	0	0	0
U0002	802	THINNING SOLVENTS: MEK	8	49	5	40200918	0.04400	TONS			Ő	88	Ő	Ő	Ő
U0003	803	THINNING SOLVENTS: TOLUENE	8	49	5	40200922	0.03000	TONS			Õ	60	0	Õ	Õ
U0004	804	MISC VOC EVAPORATION	8	49	5	49099999	0.00170	TONS			0	3.4	0	0	0
U0005	805	THINNING SOLVENTS: XYLENE	8	49	5	40200924	0.00030	TONS			0	0.6	0	0	0
U0007	807	THINNING SOLVENTS: GENERAL	8	49	5	40200901	0.00000	TONS			0	0	0	0	0

Plant Information:

Plant N	lame:	PRATT & WHITNEY DIV UTC			AFS	ID : 007 - 857		CT ID: 104	4-7	SIC Coc	le: 3724			
Addres	s:	AIRCRAFT RD, MIDDLETOWN	, CT				UTM (Coord: Zone	: 18 X: 703.3	Y: 4601.8				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Mid	dlesex							
<u>2002 I</u>	nforma	ation:												
Point	Stack	Process	Operat	ing Scl	hedule	;	Rate/		Control Equip	Equip	Daily En	nissions wit	h RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
M0136	104	ENGINE TESTING: AIRCRAFT, JET	3	41	4	20400110	1.76300	1000 GAL		0	7.4	201.7	74.9	19
M0137	105	ENGINE TESTING: AIRCRAFT, JET	3	37	3	20400110	1.87900	1000 GAL		0	8.1	201.4	74.5	33.3
M0138	106	ENGINE TESTING: AIRCRAFT, JET	2	52	6	20400110	1.14700	1000 GAL		0	10.2	262.8	81.6	99.1
M0139	107	ENGINE TESTING: AIRCRAFT, JET	2	41	3	20400110	1.38100	1000 GAL		0	5	286.1	80.2	70.2
M0140	108	ENGINE TESTING: AIRCRAFT, JET	3	49	5	20400110	1.35500	1000 GAL		0	9	319.3	97	118.2
M0141	109	ENGINE TESTING: AIRCRAFT, JET	2	50	6	20400110	1.55900	1000 GAL		0	21.3	319.1	126.7	123.3
M0142	110	ENGINE TESTING: AIRCRAFT, JET	3	51	5	20400110	1.83700	1000 GAL		0	14.5	548.7	135.1	143.3
M0143	111	ENGINE TESTING: AIRCRAFT, JET	3	46	4	20400110	2.26500	1000 GAL		0	16.3	795.8	167.1	179.3
P0005	112	PROCESS FUEL: LPG	4	1	1	39001089	0.00000	1000 GAL		0	0	0	0	0
P0024	014	INDUST BOILER: #6 OIL, >100	10	46	6	10200401	0.74200	1000 GAL		0	0.3	42.9	3.7	10.8
P0027	114	ENGINE TESTING: AIRCRAFT,	7	13	1	20400101	12.90100	1000 GAL		0	8.7	1173.9	121.9	38.6
P0028	115	ENGINE TESTING: AIRCRAFT, JET	8	12	1	20400110	0.78150	1000 GAL		0	36.2	17.9	26.4	5.2
P0029	116	ENGINE TESTING: AIRCRAFT, JET	8	12	1	20400110	0.75400	1000 GAL		0	34.9	17.5	25.5	4.9
P0030	117	ENGINE TESTING: AIRCRAFT,	5	12	1	20400101	4.19200	1000 GAL		0	58.7	503	83.8	10.2
P0036	001	INDUST BOILER: #6 OIL, >100	17	43	4	10200401	3.12500	1000 GAL		0	1.2	204.3	15.6	1.1
P0062	026	ENGINE TESTING: AIRCRAFT, JET	2	15	2	20400110	0.00000	1000 GAL		0	0	0	0	17.9
P0072	027	LARGE AIRCRAFT COATING:	16	52	5	40202401	0.00010	TONS		0	0.1	0	0	0
P0073	028	LARGE AIRCRAFT COATING:	16	52	5	40202401	0.00001	TONS		0	0	0	0	0
P0074	029	LARGE AIRCRAFT COATING:	16	52	5	40202401	0.00002	TONS		0	0	0	0	0
P0075	030	LARGE AIRCRAFT COATING:	16	52	5	40202401	0.00010	TONS		0	0	0	0	0
P0077	031	INDUST DIESEL: #2 OIL	0	52	1	20200102	0.10300	1000 GAL		0	6	62.2	13.4	0.3
P0078	032	INDUST DIESEL: #2 OIL	2	26	1	20200102	0.00010	1000 GAL		0	0	0.1	0	0
P0080	033	INDUST DIESEL: #2 OIL	0	6	1	20200102	0.04180	1000 GAL		0	2.4	25.2	5.4	0.1
P0081	034	INDUST DIESEL: #2 OIL	24	52	7	20200102	0.00000	1000 GAL		0	0	0	0	0
P0126	035	LARGE AIRCRAFT COATING:	16	52	5	40202401	0.00100	TONS		0	0.8	0	0	0
R0015	001	INDUST BOILER: #6 OIL, >100	12	35	5	10200401	0.07800	1000 GAL		0	0	4.1	0.4	23.9
R0016	002	INDUST BOILER: #6 OIL, >100	11	40	5	10200401	0.14200	1000 GAL		0	0.1	7.6	0.7	13.3
R0028	010	FLOAT ROOF TANKS: JET A	24	52	0	40301113	0.00000	1000 GAL		0	0	0	0	0
R0029	011	FLOAT ROOF TANKS: JET A	24	52	0	40301113	0.00000	1000 GAL		0	0	0	0	0
R0034	103	ENGINE TESTING: AIRCRAFT,	24	4	0	20400101	0.00000	1000 GAL		0	0	0	0	0
U0002	802	MISC METAL PARTS: COATING	16	52	7	40202501	0.00200	TONS		0	4	0	0	0
U0005	805	THINNING SOLVENTS: MEK	24	52	7	40200918	0.00500	TONS		0	10	0	0	0

U0006	806	THINNING SOLVENTS: GENERA	L 24	52	7	40200901	0.01600	TONS		0	32	0	0	0
Plant 1	nform	ation:												
Plant N Addres Ozone	lame: s : Status	CONN VALLEY HOSPITAL SILVER ST & SWEET DR, MII Area : Greater Connecticut Area	ODLETC)WN,	AFS CT CO S	ID : 007 - 866 Status Area: Mic	UTM C ldlesex	CT ID: 104 Coord: Zone:	l-16 18 X: 698.8	SIC Cod Y: 4602.7	e: 8063			
<u>2002 I</u>	nforma	<u>ition:</u>												
Point	Stack	Process	Operation	ng Scl	hedule	SCC	Rate/	Unita	Control Equip	Equip Eff	Daily Emi	issions with	RE (lbs/ da	y) CO w
E0001 E0002 E0003 E0004 E0005 E0006 E0007 R0113 R0114 R0115 R0116 R0235	ID 003 004 005 005 005 004 00. 001 001 001 001 002	COMM/INST DIESEL: #2 OIL COMM/INST DIESEL: #2 OIL COMM/INST DIESEL: #2 OIL COMM/INST DIESEL: #2 OIL COMM/INST DIESEL: #2 OIL INDUST DIESEL: LARGE BORE, INDUST BOILER: NAT GAS, <10 INDUST BOILER: NAT GAS, INDUST DIESEL: LARGE BORE,	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24$	52 52 52 52 52 52 52 52 52 52 52 52 52 5	1 1 1 1 1 7 7 7 7 7 7 7 1	20300101 20300101 20300101 20300101 20300101 20200401 10200603 10200602 10200602 10200602 20200401	$\begin{array}{c} Day\\ 0.00100\\ 0.00100\\ 0.00093\\ 0.00093\\ 0.00100\\ 0.02300\\ 0.17400\\ 0.13400\\ 0.09600\\ 0.00200\\ 0.02000\\ 0.00100\\ \end{array}$	0000 GAL 1000 GAL 1000 GAL 1000 GAL 1000 GAL 1000 GAL MIL CU FT MIL CU FT MIL CU FT MIL CU FT 1000 GAL	1 2	En 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.3 \\ 1 \\ 0.8 \\ 0.6 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	NOX 0.6 0.6 0.6 0.6 9.8 17.4 11 10.8 0 0 0.4	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 2.6 \\ 14.6 \\ 11.3 \\ 8.4 \\ 0 \\ 0 \\ 0.1 \end{array}$	$\begin{array}{c} 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0 \\ 0 \\ 26.5 \\ 13.7 \\ 15.4 \\ 0 \\ 0.4 \end{array}$
Plant l	nform	ation:												
Plant N Addres Ozone	lame: s : Status	NRG MIDDLETOWN OPERAT 1866 RIVER RD, MIDDLETOV Area : Greater Connecticut Area	TIONS, VN, CT		AFS CO S	ID : 007 - 874 Status Area: Mic	UTM C ldlesex	CT ID: 104 Coord: Zone:	1-24 18 X: 701.9	SIC Cod Y: 4603.1	e: 4911			
2002 I	nforma	<u>ition:</u>												
Point ID E0001 E0002 P0002 P0003 R0098 R0100 R0102	Stack ID 006 007 005 005 002 003 004	Process Description INDUST BOILER: NAT GAS, <10 INDUST BOILER: NAT GAS, <10 INDUST BOILER: #6 OIL, >100 UTILITY BOILER: #6 OIL, UTILITY BOILER: MAT GAS, > UTILITY BOILER: #6 OIL, UTILITY TURBINE: KERO(USE	Operatin H/D 24 24 24 24 24 24 24 24 24	ng Sch D/W 52 52 52 40 52 52 52 52 52	hedule W/Y 7 7 7 7 7 7 7 7	SCC 10200603 10200603 10200401 10100404 10100601 10100401 20100901	Rate/ Day 0.03400 0.01800 3.76700 273.60000 11.30000 32.90000 5.37500	Units MIL CU FT MIL CU FT 1000 GAL 1000 GAL MIL CU FT 1000 GAL 1000 GAL	Control Equip 1 2 033 033 033	Equip Eff 0 0 28 28 28 28 0	Daily Emi VOC 0.2 0.1 1.5 295.4 73.6 202.2 29.2	issions with NOx 3.4 1.8 177 10880 2514.3 8611.4 442.3	n RE (lbs/ da CO-s 2.9 1.5 18.8 1370.6 979.8 2522.2 36.1	y) CO-w 0.3 0.1 29.4 26 464.3 481.3 0.4

Plant N Addres Ozone	lame: s : Status	HABASIT ABT, INC 50 INDUSTRIAL PARK RD, MIDDLETOW rea : Greater Connecticut Area			AFS N, CT CO S	ID : 007 - 1030 Status Area: Midd	UTM C lesex	CT ID: 104 Coord: Zone:	4-180 : 18 X: (590.2	SIC Cod Y: 4606.4	e: 3052			
<u>2002 Ii</u>	nforma	ation:													
Point	Stack	Process	Operati	ing Sc	hedule		Rate/		Control	Equip	Equip	Daily Em	issions with	n RE (lbs/ d	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0015	001	INDUST BOILER: #2 OIL >100	24	52	7	10200501	0.05000	1000 GAL			0	0	1.2	0.3	1
P0016	002	TEXTILE: RUBBERIZED FABRIC,	24	50	5	33000212	1.13000	TONS	048		90.4	540.1	0	0	0
P0017	003	TEXTILE: RUBBERIZED FABRIC,	24	50	5	33000212	0.03500	TONS	048		88.1	17.8	0	0	0
P0018	002	TEXTILE: FABRIC, WET COAT	24	50	5	33000214	1.30000	TONS	048		90.4	54.7	0	0	0
P0019	002	TEXTILE: RUBBERIZED FABRIC,	24	50	5	33000299	0.01000	TONS	048		90.4	5.5	0	0	0
P0021	003	TEXTILE: RUBBERIZED FABRIC,	24	50	5	33000212	0.02300	TONS	048		90.4	11	0	0	0
P0035	001	INDUST BOILER: #2 OIL >100	24	52	7	10200501	0.20000	1000 GAL			0	0.1	4.8	1	0.7
U0001	801	MISC COATING	1	50	5	40299996	0.01400	TONS			0	28	0	0	0
<u>Plant I</u>	nform	ation:													
Plant N	lame:	DONNELLEY & SONS CO, R R	ł		AFS	ID : 007 - 1355		CT ID: 142	2-5		SIC Cod	e: 2752			
Addres	s:	SCHOOLHOUSE RD. OLD SA	YBROO	K. IL			UTM C	Coord: Zone:	18 X: 7	717.4	Y: 4574.1				
Ozone	Status	Area : Greater Connecticut Area		,	COS	Status Area: Midd	lesex								
<u>2002 I</u> 1	nforma	ation:													
Point	Stack	Process	Operati	ing Sc	hedule		Rate/		Control	Equip	Equip	Daily Em	issions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0017	013	PRINTING: LITHOGRAPHIC	19	21	7	40500411	0.00000	TONS	021		97	0	0	0	0.7
P0018	013	PRINTING: LITHOGRAPHIC	21	2	7	40500411	0.00000	TONS	021		97	0	0	0	0.9
P0019	013	PRINTING: LITHOGRAPHIC	21	21	7	40500411	0.00000	TONS	021		97	0	0	0	0.9
P0022	013	PRINTING: LITHOGRAPHIC	20	21	7	40500411	0.00000	TONS	021		97	0	0	0	1.5
P0026	013	PRINTING: LITHOGRAPHIC	24	21	7	40500411	0.00000	TONS	021		97	0	0	0	1.8
P0027	014	PRINTING: LITHOGRAPHIC	24	21	7	40500411	0.00000	TONS			0	0	0	0	0
R0006	001	INDUST BOILER: NAT GAS,	24	27	7	10200602	0.00000	MIL CU FT			0	0	0	0	3.5
R0007	002	INDUST BOILER: NAT GAS,	8	30	5	10200602	0.00000	MIL CU FT			0	0	0	0	0

CT ID: 149-66

SIC Code:

CO-w

CO-w

CO-w

4.6

4.6

4.6

2.8

2.8

2.1

0.2

1.1

Address : 5 WILCOX HILL ROAD, PORTLAND, CT UTM Coord: Zone: 18 X: 702 Y: 4608 Ozone Status Area : Greater Connecticut Area CO Status Area: Middlesex 2002 Information: **Operating Schedule** Point Stack Process Control Equip Equip Daily Emissions with RE (lbs/ day) Rate/ Description H/D D/W W/Y SCC 2 VOC CO-s ID Day Units 1 Eff NOx P0030 001 STONE QUARRYING: 24 52 7 30502006 TONS 0 0.6 5.9 650.00000 1.7 **Plant Information:** Plant Name: BLAKESLEE PRESTRESS INC AFS ID : 009 - 420 CT ID: 14-20 SIC Code: 3272 RTE 139. BRANFORD, CT UTM Coord: Zone: 18 X: 683.6 Y: 4587.3 Address : Ozone Status Area : Greater Connecticut Area CO Status Area: New Haven 2002 Information: Control Equip Equip Point Stack Process **Operating Schedule** Rate/ Daily Emissions with RE (lbs/ day) ID Description H/D D/W W/Y SCC Dav Units 1 2 Eff VOC NOx CO-s R0020 003 PROCESS FUEL: NAT GAS 5 39000689 0.06000 MIL CU FT 0.3 10 52 0 1.3 6 R0021 004 COMM/INST BOILER: #4 OIL < 100 10 1 5 10300504 0.00000 1000 GAL 0 0 0 0 **Plant Information:** Plant Name: KURT WEISS GREENHOUSES OF AFS ID : 009 - 775 CT ID: 35-75 SIC Code: 0181 Address : 301 EAST JOHNSON AVE. CHESHIRE, CT UTM Coord: Zone: 18 X: 676.8 Y: 4601.6 Ozone Status Area : Greater Connecticut Area CO Status Area: New Haven 2002 Information: Control Equip Point Stack Process **Operating Schedule** Rate/ Equip Daily Emissions with RE (lbs/ day) ID H/D D/W W/Y SCC 2 Eff VOC NOx CO-s Description Dav 1 Units COMM/INST BOILER: #2 OIL 7 0.00000 1000 GAL P0019 001 24 30 10300501 0 0 0 0 7 COMM/INST BOILER: #2 OIL 24 10300501 1000 GAL P0020 002 30 0.00000 0 0 0 0 P0025 003 COMM/INST BOILER: #2 OIL 24 30 7 10300501 0.00000 1000 GAL 0 0 0 0 P0072 004 COMM/INST BOILER: #2 OIL 24 30 7 10300501 0.00000 1000 GAL 0 0 0 0 P0073 005 COMM/INST BOILER: #2 OIL 24 30 7 10300501 0.00000 1000 GAL 0 0 0 0

AFS ID : 007 - 1516

Plant Information:

ID

ID

ID

Plant Name: M. L. & P. TRUCKING, LLC

<u>Plant Information:</u>

Plant N Addres	Name:	NEW HAVEN TERMINAL, INC 119 FRONTAGE RD. EAST HA) VEN. (СТ	AFS	ID : 009 - 1105	UTM C	CT ID: 54- Coord: Zone:	5 18 X:	: 676.4	SIC Code Y: 4572.9	: 4226			
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: New	Haven	Jone Lone	10 11		11 10 / 20				
2002 I	nforma	ution:													
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Contro	ol Equip	Eauip	Daily Emi	ssions with	RE (lbs/ da	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	 CO-w
P0001	012	FLOAT ROOF TANKS: #2 OIL	24	52	7	40301115	54.13000	1000 GAL	•	-	0	0.1	0	0	0
R0007	001	FLOAT ROOF TANKS: #2 OIL	24	52	7	40301115	2,25000	1000 GAL			Ő	0.5	Ő	Ő	Ő
R0008	002	FLOAT ROOF TANKS: #2 OIL	24	52	7	40301115	0.87700	1000 GAL			Ő	0.2	Ő	Ő	ů 0
R0009	003	FLOAT ROOF TANKS: #2 OIL	24	44	7	40301115	1.43700	1000 GAL			0	0	0	0	0
R0010	004	FLOAT ROOF TANKS: #2 OIL	24	52	7	40301115	2.80600	1000 GAL			0	0.5	0	0	0
R0011	005	FLOAT ROOF TANKS: #2 OIL	24	52	7	40301115	31.26800	1000 GAL			0	8.3	0	0	0
R0012	006	FLOAT ROOF TANKS: #2 OIL	24	36	7	40301115	26.84400	1000 GAL			0	0.1	0	0	0
R0013	007	FLOAT ROOF TANKS: #2 OIL	24	36	7	40301115	26.84400	1000 GAL			0	0.1	0	0	0
R0014	010	FLOAT ROOF TANKS: #2 OIL	24	36	7	40301115	8.26000	1000 GAL			0	0	0	0	0
R0015	009	FLOAT ROOF TANKS: #2 OIL	24	52	7	40301115	2.82800	1000 GAL			0	0.5	0	0	0
R0016	010	FLOAT ROOF TANKS: #2 OIL	24	44	7	40301115	2.65400	1000 GAL			0	0	0	0	0
U0001	781	FLOAT ROOF TANKS: #2 OIL	24	52	7	40301115	2.60300	1000 GAL			0	0.1	0	0	0
U0002	782	FLOAT ROOF TANKS: #2 OIL	24	52	7	40301115	1.74400	1000 GAL			0	0.4	0	0	0
U0003	783	FLOAT ROOF TANKS: #2 OIL	24	52	7	40301115	1.71300	1000 GAL			0	0.4	0	0	0
U0004	784	FLOAT ROOF TANKS: #2 OIL	24	52	7	40301115	5.38900	1000 GAL			0	1	0	0	0
<u>Plant l</u>	[nform	ation:													
Plant N	Jame:	GUILFORD GRAVURE INC			AFS	ID : 009 - 1203		CT ID: 71-	3		SIC Code	: 2754			
Addres	s :	251 BOSTON POST RD. GUILE	ORD.	CT			UTM C	loord: Zone:	18 X	696.3	Y: 4573.2				
Ozone	Status	Area : Greater Connecticut Area	0112,		COS	Status Area: New	Haven		10 11	, .,	11 10 / 012				
<u>2002 I</u>	nforma	ition:													
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Contro	ol Equip	Equip	Dailv Emi	ssions with	RE (lbs/ da	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1	2	Eff	VÓC	NOx	CÒ-s	CO-w
E0001	007	COMM SPACE HEATER: NAT GAS	5 24	52	5	10500206	0.01200	MIL CU FT	-		0	0.1	1.4	0.3	0.3
P0005	006	PROCESS FUEL: NAT GAS	24	35	5	39000689	0.02115	MIL CU FT	0	0	0	12.1	2.1	0.4	0.4
R0045	005	PRINTING: GRAVURE	24	35	3	40500511	0.02000	TONS SOLI	[0	40	0	0	0

Plant Information:

P0056 008 COMM/INST DIESEL: #2 OIL

Plant N Addres Ozone	lame: s : Status	J.E.M. INC. 1 KING PLACE, MERIDEN, CT Area : Greater Connecticut Area			AFS CO S	ID : 009 - 1920 Status Area: New	UTM C Haven	CT ID: 100 Coord: Zone:	0-20 18 X: 682	2.8 Y	SIC Code Y: 4600.2	e: 6512			
<u>2002 I</u>	nforma	ation:													
Point ID E0001 P0020 P0021 R0062	Stack ID 004 001 003 001	Process Description COMM/INST DIESEL: #2 OIL COMM/INST BOILER: NAT GAS, COMM/INST DIESEL: #2 OIL COMM/INST BOILER: NAT GAS,	Operatin H/D 1 24 1 24	ng Sch D/W 12 14 12 20	hedule W/Y 1 7 1 7	SCC 20300101 10300602 20300101 10300602	Rate/ Day 0.01500 0.19000 0.14800 0.10100	Units 1000 GAL MIL CU FT 1000 GAL MIL CU FT	Control Eq 1 2	quip	Equip Eff 0 0 0 0	Daily Emi VOC 0.9 1.1 8.6 0	issions with NOx 9.1 19 89.4 0	h RE (lbs/ da CO-s 1.9 16 19.2 0	CO-w 0.4 2.8 0.5 0
R0063	001	COMM/INST BOILER: NAT GAS,	24	21	7	10300602	0.07100	MIL CU FT			0	0	0	0	0
Plant l	nform	ation:													
Plant N Addres Ozone	lame: s : Status	CUNO INC 400 RESEARCH PKWY, MERI Area : Greater Connecticut Area	DEN, CI	Г	AFS CO S	ID : 009 - 1958 Status Area: New	UTM C Haven	CT ID: 100 Coord: Zone:	-58 18 X: 686	5.7 Y	SIC Code Y: 4598.9	e: 3569			
2002 In	nforma	ation:													
Point ID P0006 P0040	Stack ID 001 002	Process Description INDUST BOILER: NAT GAS, <10 MISC METAL PARTS COATING:	Operation H/D 24 14	ng Scl D/W 52 48	hedule W/Y 7 5	SCC 10200603 40202599	Rate/ Day 0.03800 0.94000	Units MIL CU FT TONS	Control Eq 1 2 022	quip	Equip Eff 0 98	Daily Emi VOC 0.2 285.2	issions with NOx 3.8 3.9	h RE (lbs/ da CO-s 3.2 0.8	CO-w 3.2 1.3
Plant 1	nform	ation:													
Plant N Addres Ozone	lame: s : Status	MID STATE MEDICAL CENTE 435 LEWIS AVE, MERIDEN, C Area : Greater Connecticut Area	ER T		AFS CO S	ID : 009 - 2235 Status Area: New	UTM C Haven	CT ID: 100 Coord: Zone:	-335 18 X: 683	3.3 Y	SIC Code Y: 4601.8	e: 8062			
2002 II	nforma	ation:													
Point ID E0001 P0053 P0054 P0055	Stack ID 006 004 005 007	Process Description COMM/INST BOILER: NAT GAS, COMM/INST BOILER: NAT GAS, COMM/INST BOILER: NAT GAS, COMM/INST DIESEL: #2 OIL	Operatin H/D 24 24 24 24 1	ng Scl D/W 26 52 52 12	hedule W/Y 7 7 7 1	SCC 10300603 10300602 10300602 20300101	Rate/ Day 0.12900 0.02800 0.02800 0.00200	Units MIL CU FT MIL CU FT MIL CU FT 1000 GAL	Control Eq 1 2	quip	Equip Eff 0 0 0 0	Daily Emi VOC 0.8 0.2 0.2 0	issions with NOx 12.9 0.8 0.8 1.2	h RE (lbs/ da CO-s 10.8 1 1 0.3	(y) CO-w 0 3.1 3.1 1.5

0.00200 1000 GAL

1 12 1 20300101

0

0

1.2

0.3

1.5

Plant Information:

U0004 804 MISC VOC EVAPORATION

Plant N	lame:	DEVON POWER, LLC	VON POWER, LLC) NAUGATUCK AVE, DEVON, CT				UTM C	CT ID: 105	5-14 18 X	• 657 7	SIC Code	e: 4911			
Ozone	s. Status.	Area : Greater Connecticut Area	on, ci		COS	Status Area: New	Haven	Jonu. Zone.	10 A	. 057.7	1.4505.5				
2002 II	nforma	<u>ition:</u>													
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Contro	ol Equip	Equip	Daily Emi	ssions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0001	008	INDUST BOILER: NAT GAS, <10	24	52	7	10200603	0.00500	MIL CU FT			0	0	0.5	0.4	0.6
E0002	009	INDUST BOILER: NAT GAS, <10	24	52	7	10200603	0.00900	MIL CU FT			0	0.1	0.9	0.8	0.4
P0026	001	UTILITY TURBINE: KERO(USE	24	52	7	20100901	0.25000	1000 GAL			0	1.4	22.5	1.7	0.8
P0040	008	UTILITY TURBINE: NAT GAS	24	26	7	20100201	1.23000	MIL CU FT	028		80	12.9	217.7	74.3	68.1
P0041	009	UTILITY TURBINE: NAT GAS	24	26	7	20100201	1.31000	MIL CU FT	028		80	13.8	207	79.1	77.2
P0042	010	UTILITY TURBINE: NAT GAS	24	26	7	20100201	1.34000	MIL CU FT	028		80	14.1	218.9	80.9	0
P0043	011	UTILITY TURBINE: NAT GAS	24	26	7	20100201	1.17000	MIL CU FT	028		80	12.3	195	70.6	0
R0040	002	UTILITY BOILER: #6 OIL,	24	26	7	10100401	0.54000	1000 GAL			0	0	0	0	24.5
R0055	007	UTILITY BOILER: NAT GAS,	24	52	7	10100604	7.50000	MIL CU FT			0	46.3	934.3	188.2	157.1
R0058	007	UTILITY BOILER: #6 OIL,	24	52	7	10100404	7.70000	1000 GAL			0	46.3	919.1	192.3	162.9
<u>Plant I</u>	nform	ation:													
Plant N	lame:	BIC CONSUMER PROD. MAN	U. CO.		AFS	ID : 009 - 2520		CT ID: 105	5-20		SIC Code	e: 3951			
Addres	s :	500 BIC DR, MILFORD, CT					UTM C	Coord: Zone:	18 X	: 659.3	Y: 4565				
Ozone	Status	Area : Greater Connecticut Area			CO S	Status Area: New I	Haven								
<u>2002 I</u>	nforma	tion:													
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Contro	ol Equip	Equip	Daily Emi	ssions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0018	003	INDUST BOILER: #4 OIL > 100	16	40	7	10200504	0.00000	1000 GAL			0	0	0	0	1.9
P0024	004	INDUST BOILER: #4 OIL > 100	2	9	5	10200504	0.00000	1000 GAL			0	0	0	0	0.1
P0038	006	COMM/INST INCIN: SINGLE	24	49	6	50200102	0.26700	TONS			0	110.7	5.1	1.1	0.8
R0079	001	INDUST BOILER: #4 OIL > 100	24	52	2	10200504	0.00000	1000 GAL			0	0	0	0	0
R0080	001	INDUST BOILER: #4 OIL > 100	5	40	7	10200504	0.00000	1000 GAL			0	0	0	0	1.7
U0002	802	COLD SOLVENT CLEANING:	24	50	5	40100303	0.01800	TONS			0	34	0	0	0

5.23100 TONS

24 49 6 49099999

0

87.5

0

0

0

Plant N	Jame:	MILFORD POWER CO LLC			AFS	ID:009-2751		CT ID: 105	5-251		SIC Co	de: 4911			
Addres	ss :	55 SHELLAND ST, MILFORD,	CT				UTM (Coord: Zone:	18 X:	659.3	Y: 4565.1				
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: Nev	w Haven								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operati	ng Scl	hedule	2	Rate/		Contro	l Equip	Equip	Daily Em	issions wit	h RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0068	001	UTILITY TURBINE: #2 OIL	24	52	7	20100101	368.73000	1000 GAL	139	06	90	61.3	4817.1	6939	37.9
P0069	001	UTILITY TURBINE: #2 OIL	24	52	7	20100101	368.73000	1000 GAL	139	06	90	61.3	3854.6	1461.8	49.7
P0089	003	FIXED ROOF TANKS: #2 OIL	24	0	0	40301019	0.00000	1000 GAL			0	0	0	0	0
Plant 1	[nform	ation:													
Plant N	Vame:	CROMPTON MANUFACTURI	NG CO		AFS	ID : 009 - 3006		CT ID: 109	9-6		SIC Co	de: 2869			
Addres	s:	280 ELM ST. NAUGATUCK, C	Т				UTM (Coord: Zone:	18 X:	662.6	Y: 4593.5				
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: Nev	w Haven								
2002 I	nforma	ation:													
Point	Stack	Process	Operati	ng Scl	hedule	e	Rate/		Contro	l Equip	Equip	Daily Em	issions wit	h RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0034	045	SYNTHETIC RUBBER	24	40	7	30102699	1.69000	TONS	073	05	85	0	0	0	0
P0035	045	SYNTHETIC RUBBER	24	40	7	30102699	0.00000	TONS	073	05	85	0	0	0	0
P0036	045	SYNTHETIC RUBBER	24	40	7	30102699	0.00000	TONS	073	05	85	0	0	0	0
P0037	045	SYNTHETIC RUBBER	24	40	7	30102699	0.00000	TONS	073	05	85	0	0	0	0
P0038	045	SYNTHETIC RUBBER	24	40	7	30102699	0.00000	TONS	073	05	85	0	0	0	0
P0041	059	PESTICIDE PRODUCTION:	24	28	5	30103399	1.12000	TONS	073		85	0	0	0	0
P0042	059	PESTICIDE PRODUCTION:	24	28	5	30103399	0.00000	TONS	073		85	0	0	0	0
P0043	059	PESTICIDE PRODUCTION:	24	28	5	30103399	0.00000	TONS	073		85	0	0	0	0
P0044	059	PESTICIDE PRODUCTION:	24	28	5	30103399	0.00000	TONS	073		85	0	0	0	0
P0045	045	SYNTHETIC RUBBER	24	25	5	30102699	0.00000	TONS	073	05	85	0	0	0	0
P0046	045	SYNTHETIC RUBBER	8	25	5	30102699	0.00000	TONS	073	05	85	0	0	0	0
R0240	028	INDUST BOILER: NAT GAS, >100	24	45	7	10200601	0.15300	MIL CU FT			0	0.9	17	12.9	42.1
R0241	029	INDUST BOILER: NAT GAS,	24	20	7	10200602	0.79700	MIL CU FT			0	4.7	133.9	66.9	0
R0243	029	INDUST BOILER: #6 OIL, >100	24	13	1	10200401	0.00000	1000 GAL			0	0	0	0	0.2
R0247	033	SYNTHETIC RUBBER	24	51	7	30102699	1.47000	TONS	073	05	85	0.1	0	0	0
R0248	033	SYNTHETIC RUBBER	24	32	7	30102699	1.45000	TONS	073	05	85	10	0	0	0
R0310	051	SYNTHETIC RUBBER	24	14	5	30102699	3.25000	TONS			0	0	0	0	0
R0312	051	SYNTHETIC RUBBER	24	14	5	30102699	0.00000	TONS			0	0	0	0	0
R0314	052	SYNTHETIC RUBBER	24	12	5	30102699	0.21700	TONS			0	0	0	0	0
R0316	053	SYNTHETIC RUBBER	24	12	5	30102699	0.00000	TONS			0	0	0	0	0

]	DETA	IL L	STING OF 200	2 CONNEC	FICUT POIN	T SOUI	RCE IN	VENTOR	Y			
R0318 R0326 R0327 R0328	054 055 055 055	SYNTHETIC RUBBER SYNTHETIC RUBBER SYNTHETIC RUBBER SYNTHETIC RUBBER	24 24 24 24	14 50 45 45	5 7 5 5	30102699 30102699 30102699 30102699 30102699	0.00000 8.40000 3.24000 0.00000	TONS TONS TONS TONS	053 073 073	05 05	0 90 99 99	0 18.7 381.5 0	0 0 0 0	0 0 0 0	0 0 0 0
R0329 R0331 R0332 R0333 R0334	055 056 056 056 056	SYNTHETIC RUBBER SYNTHETIC RUBBER SYNTHETIC RUBBER SYNTHETIC RUBBER SYNTHETIC RUBBER	24 24 24 24 24 24	45 40 52 40 40	5 5 7 5 5	30102699 30102699 30102699 30102699 30102699	0.00000 1.16000 0.00000 0.00000 0.00000	TONS TONS TONS TONS TONS	073 053 053 053 053	05 07 07 07 07	99 85 85 85 85	0 4 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0
R0335 R0336 R0337 R0338 U0001 U0002	056 056 056 056 801 802	SYNTHETIC RUBBER SYNTHETIC RUBBER SYNTHETIC RUBBER RUBBER PRODUCTS MISC VOC EVAPORATION	24 24 24 24 24 24 16	40 40 40 40 52 50	5 5 5 7 5	30102699 30102699 30102699 30102699 30800699 49099999	$\begin{array}{c} 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 10.96000\\ 33.02000 \end{array}$	TONS TONS TONS TONS TONS TONS	053 053 053 053	07 07 07 07	85 85 85 85 85 0	0 0 0 72.5 0.1	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0
U0003 U0008 <u>Plant I</u> Plant N	803 808 I nform Jame:	INDUST WASTEWATER PLASTIC PRODUCTS: SOLVENT ation: BOROUGH OF NAUGATUCK	24 24	52 52	7 7 AFS	30600505 30800703 ID : 009 - 3011	526.20000 103.70000	1000 GAL TONS CT ID: 109	9-11		0 0 SIC Co	0.1 27 de: 4952	0 0	0 0	0 0
Addres Ozone 2002 In	ss : Status nform :	500 CHERRY ST, NAUGATUC Area : Greater Connecticut Area ation:	K, CT		CO	Status Area: Ne	UTM (w Haven	Coord: Zone:	:18 X:	662.5	Y: 4592.7	,			
Point ID P0002 P0077 P0001	Stack ID 002 003 001	Process Description MUNICIPAL INCIN: DISTILLATE UNDERGROUND STORAGE MUNICIPAL INCIN: DISTILLATE	Operatir H/D 1 24 24 24 24	ng Sch D/W 43 52 45	edule W/Y 7 7 7	SCC 50190005 40400497 50190005	Rate/ Day 1.20000 2.39900 1.20000	Units 1000 GAL 1000 GAL 1000 GAL	Control 1 0 0	l Equip 2 0 0	Equip Eff 0 0 0	Daily Emi VOC 0.4 0.8	ssions with NOx 12.4 0 13.2	1 RE (lbs/ da CO-s 14.9 0 20.6	iy) CO-w 326 0 438.8
Plant N Addres Ozone	Vame: ss : Status	YALE UNIV /CENTRAL POWF 18 ASHMUN ST, NEW HAVEN Area : Greater Connecticut Area	ER PLT I, CT		AFS CO :	ID : 009 - 3348 Status Area: Ne	3 UTM (w Haven	CT ID: 117 Coord: Zone:	7-48 : 18 X:	673.4	SIC Co Y: 4574.4	de: 8221			
2002 In Point ID E0001 P0204 P0205	nform: Stack ID 006 005 005	ation: Process Description UTILITY TURBINE: #2 OIL UTILITY TURBINE: NAT GAS UTILITY TURBINE: NAT GAS	Operatir H/D 1 1 24 24 24	ng Sch D/W 52 52 52 52	iedule W/Y 1 7 7	SCC 20100101 20100201 20100201	Rate/ Day 0.02410 1.91500 1.95500	Units 1000 GAL MIL CU FT MIL CU FT	Control 1 028 028	l Equip 2 06 06	Equip Eff 0 90 90	Daily Emi VOC 0.1 27.6 28.3	ssions with NOx 9.3 52.7 54.1	n RE (lbs/ da CO-s 1.3 11.3 11.5	ay) CO-w 1.2 10.9 12.3

TABLE 7

P0206 P0207 P0208 P0209 P0210	005 004 004 004 004	UTILITY TURBINE: NAT GAS UTILITY DIESEL: #2 OIL UTILITY DIESEL: #2 OIL UTILITY DIESEL: #2 OIL UTILITY BOILER: #6 OIL,	24 24 24 24 24	52 52 52 52 52 52	7 7 7 7 7	20100201 20100102 20100102 20100102 10100401	$\begin{array}{c} 1.92800 \\ 1.51100 \\ 1.74600 \\ 1.50200 \\ 1.53500 \end{array}$	MIL CU FT 1000 GAL 1000 GAL 1000 GAL 1000 GAL	028 065 139 139 028	06 02	90 90 90 90 0	27.9 3.2 3.7 3.2 0.8	53.4 190 219.6 188.9 59.5	11.4 12.9 14.9 12.9 18.2	11.4 0.6 0.9 0.7 19.1
Plant I	nform	ation:													
Plant N Addres	lame: s :	YALE UNIV /STERLING POW 309 CONGRESS AVE, NEW H	ER PLT AVEN, C	Т	AFS	ID : 009 - 334	9 UTM C	CT ID: 117 Coord: Zone:	7-49 18 X:	672.9	SIC Coo Y: 4574	le: 8221			
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Ne	ew Haven								
2002 I	nforma	ation:													
Point	Stack	Process	Operatir	ig Sch	nedule		Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ da	ay)
ID	ID	Description	H/D I	Ď/₩	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0001	006	UTILITY DIESEL: #2 OIL	24	52	1	20100102	0.00880	1000 GAL	000	00	0	0.5	5.3	1.1	0.3
E0002	007	UTILITY DIESEL: #2 OIL	24	52	1	20100102	0.00530	1000 GAL	000	00	0	0	1.6	0.2	0
E0003	008	UTILITY DIESEL: #2 OIL	24	52	1	20100102	0.00120	1000 GAL			0	0	0.3	0	0
E0004	009	UTILITY DIESEL: #2 OIL	24	52	1	20100102	0.00150	1000 GAL			0	0	0.5	0.1	0
P0105	003	COMM/INST BOILER: NAT GAS,	24	52	7	10300602	1.25470	MIL CU FT			0	7.5	76.8	105.4	64.5
P0118	005	COMM/INST DIESEL: #2 OIL	24	20	1	20300101	0.20500	1000 GAL			0	11.9	123.8	26.7	1.6
P0220	001	COMM/INST BOILER: #6 OIL	24	52	7	10300401	0.00000	1000 GAL			0	0	0	0	0
P0223	011	UTILITY DIESEL: NAT GAS	24	52	1	20100202	0.00000	MIL CU FT			0	0	0	0	0
P0225	010	UTILITY DIESEL: #2 OIL	24	52	1	20100102	0.00790	1000 GAL	026	00	0	0.5	4.8	1	0.3
P0326	001	COMM/INST BOILER: #6 OIL	24	8	/	10300401	0.99310	1000 GAL	026	02	0	15.9	39.7	12.5	6.8
R0170	002	COMM/INST BOILER: #6 OIL	24	52 52	7	10300401	3.38900	1000 GAL			0	8.3	251.7	57.2	24.2
R01/1 R0005	003	COMM/INST BOILER: #6 OIL	24	52 52	7	10300401	2.83400	1000 GAL			0	0.4	105.5 278.6	39.8 81.1	24.9 48 3
K0995	002	COMM/INST BOILER. #0 OIL	24	32	/	10300401	2.91000	1000 GAL			0	9.4	278.0	01.1	40.5
Plant 1	[nform	ation:													
Plant N	Jame:	MOTIVA ENTERPRISES LLC			AFS	ID:009-335	3	CT ID: 117	7-53		SIC Coo	le: 5171			
Addres	s:	481 EAST SHORE PARKWAY,	NEW H	AVE	N, CT		UTM C	Coord: Zone:	18 X:	675.7	Y: 4572.8				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Ne	ew Haven								
2002 I	nforma	ation:													
Point	Stack	Process	Operatir	ig Sch	nedule		Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ da	av)
ID	ID	Description	H/D I)/W	W/Y	SCC	Dav	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0135	011	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	1.047.2010	1000 GAL	091	09	97	53.9	0	0	0
P0136	012	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	0.00000	1000 GAL	091	09	97	0	Ő	Ő	Ő
P0137	013	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	239.84500	1000 GAL	091	09	97	32.6	0	0	0
P0138	014	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	49.41100	1000 GAL	091	09	97	12.4	0	0	0
P0139	015	GASOLINE SUBMERGED	24	52	7	40600141	1,443.9440	1000 GAL	048		99.7	3432.1	0	0	0

TABLE 7
DETAIL LISTING OF 2002 CONNECTICUT POINT SOURCE INVENTORY

R0198	001	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	14.22300	1000 GAL	091	09	97	3	0	0	0
R0199	002	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	49.89700	1000 GAL	091	09	97	0.6	0	0	0
R0200	003	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	53.25400	1000 GAL	091	09	97	15.4	0	0	0
R0201	004	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	66.27600	1000 GAL	091	09	97	2.5	0	0	0
R0202	005	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	31.01100	1000 GAL	091	09	97	1.9	0	0	0
R0203	006	FIXED ROOF TANKS: JET A	24	52	7	40301016	222.31600	1000 GAL	091	09	97	3.6	0	0	0
R0204	007	FIXED ROOF TANKS: JET A	24	52	7	40301016	119.99800	1000 GAL	091	09	97	1.8	0	0	0
R0205	008	FIXED ROOF TANKS (67,000BBL)	- 24	52	7	40400101	170.29000	1000 GAL	091	09	97	2.8	0	0	0
R0206	009	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	164.04600	1000 GAL	091	09	97	2.7	0	0	0
U0001	801	MISC VOC EVAPORATION	24	52	7	49099999	0.06700	TONS			0	134	0	0	0
Plant 1	[nform	ation:													
Plant N	Vame:	SAINT-GOBAIN PPL CORP			AFS	ID : 009 - 33	71	CT ID: 11	7-71		SIC Co	de: 2672			
Addres	ss :	407 EAST ST, NEW HAVEN, C	Т				UTM C	Coord: Zone	:18 X:	675.2	Y: 4575.1				
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: N	lew Haven								
2002 I	nforma	ation:													
Point	Stack	Process	Operati	ng Scl	hedule	•	Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0062	006	TEXTILE: RUBBERIZED FABRIC,	18	50	5	33000297	0.56000	TONS	021		90	313.9	18.5	3.9	3.7
P0077	006	TEXTILE: RUBBERIZED FABRIC,	18	50	5	33000297	0.36000	TONS	021		90	201.6	0	0	0
P0162	004	PROCESS FUEL: #2 OIL	8	30	2	39000589	0.11700	1000 GAL	0	0	0	0.1	6.9	1.6	5
R0256	001	INDUST BOILER: #2 OIL >100	24	24	7	10200501	0.00000	1000 GAL			0	0	0	0	3.1
R0257	002	INDUST BOILER: #2 OIL >100	24	0	0	10200501	0.00000	1000 GAL			0	0	0	0	0
R0258	003	TEXTILE: RUBBERIZED FABRIC.	12	50	5	33000297	0.40400	TONS			0	0	0	0	0
R0259	003	TEXTILE: RUBBERIZED FABRIC.	23	28	3	33000297	0.07990	TONS			0	Õ	Õ	0	0
R0261	003	TEXTILE: RUBBERIZED FABRIC.	16	50	5	33000297	0.21500	TONS			0	0	0	0	0
R0262	004	MISC COATING	10	13	3	40299996	0.27000	TONS	021		98	116.6	Õ	Õ	Õ
R0263	004	COATING: ADHESIVE	8	50	4	40200701	0.06000	TONS	021		98	25.9	Õ	Õ	Ő
R0913	013	RUBBER PRODUCTS	6	3	1	30800699	0.00000	TONS	021		0	0	Ő	Ő	Ő
U0001	801	MISC COATING	8	50	5	40299996	0.01200	TONS			0	24	0	0	0
<u>Plant l</u>	[nform	ation:													
Plant N	Jame:	GULF OIL L.P.			AFS	ID : 009 - 33	88	CT ID: 11	7-88		SIC Co	de: 5171			
Addres	· ·	428-500 WATERFRONT ST N	EW HAV	VEN (СТ		UTM	oord Zone	· 18 X·	675.4	Y· 4573 1				
Ozone	Status	Area : Greater Connecticut Area	200 III I	. Д і (,	CO	Status Area: N	lew Haven		. 10 11.	075.1	1. 1070.1				
<u>2002 I</u> 1	nforma	ation:													
Point	Stack	Process	Operati	ng Scl	hedule	;	Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1	2	Eff	VÓC	NOx	CO-s	CO-w
P0241	016	GASOLINE SUBMERGED	24	52	7	40600141	719,24100	1000 GAL	048	-	99.3	1016.3	0	0	0

P0243	013	FLOAT ROOF TANKS (67.000BBL	.) 24	52	7	40400111	0.00000	1000 GAL		0	0	0	0	0
P0352	012	FLOAT ROOF TANKS (67.000BBL) 24	52	7	40400110	150.80000	1000 GAL		Õ	17.7	Ő	Õ	Õ
P0353	014	FLOAT ROOF TANKS (67,000BBI) 24	52	7	40400110	180,00000	1000 GAL		Õ	32.5	0	Õ	Õ
R0298	001	FLOAT ROOF TANKS (67,000BBL) 24	52	7	40400111	104 60000	1000 GAL		Ő	37	Ő	Ő	Ő
R0307	008	FLOAT ROOF TANKS (67,000BBL	.) 24	52	7	40400111	11 60000	1000 GAL		Ő	12.4	Ő	Ő	Ő
R0309	009	FLOAT ROOF TANKS (67,000BBL	27 - 24	52	7	40400111	7 10000	1000 GAL		0	9.6	0	0	0
R0312	011	FLOAT ROOF TANKS (67,000BBL) 24	52	7	40400111	224 20000	1000 GAL		0	49.1	0	Ő	Ő
R0312	015	FLOAT ROOF TANKS (67,000BBL	27 - 24	52	7	40400111	40 80000	1000 GAL		0	93	0	0	0
100017	015		2) 24	52	,	40400111	40.00000	1000 0712		0	7.5	0	0	0
Plant]	[nforn	nation:												
Plant N	Jame:	NEW HAVEN TERMINAL, IN	С		AFS	ID:009-34	20	CT ID: 117	-120	SIC Co	de: 4226			
Addres	s ·	100 WATERFRONT ST NEW	- HAVFN	СТ			UTM C	oord Zone	18 X · 675 4	Y· 4573				
Ozone	Statue	Area : Greater Connecticut Area		, ст	CO	Status Areas N	Vew Haven	Zone.	10 11.075.4	1.4575				
OZOIIE	Status	Area . Greater Connecticut Area			CO.	Status Alea. I	New Haven							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operati	ng Scl	hedule	;	Rate/		Control Equip	Equip	Daily Em	issions with	RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
E0001	013	INDUST BOILER: NAT GAS, <10	24	52	7	10200603	0.00000	MIL CU FT		0	0	0	0	0.6
E0002	014	INDUST BOILER: NAT GAS, <10	24	52	7	10200603	0.00000	MIL CU FT		0	0	0	0	1.7
E0003	032	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.00000	1000 GAL		0	0	0	0	0
E0004	033	GASOLINE SUBMERGED	24	52	7	40600141	40.41000	1000 GAL		0	1.6	0	0	0
E0005	031	FIXED ROOF TANKS: SPEC LIQ	24	52	7	40301099	0.36700			0	0	0	0	0
E0006	031	FIXED ROOF TANKS: SPEC LIO	24	52	7	40301099	1.75800			0	0	0	0	0
R0430	001	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	4.58200	1000 GAL		0	0.4	0	0	0
R0431	002	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	4.99200	1000 GAL		0	0.4	0	0	0
R0432	003	FIXED ROOF TANKS: JP4	24	52	7	40301013	1.25400	1000 GAL	095	0	0.1	0	0	0
R0433	004	FIXED ROOF TANKS: JP4	24	52	7	40301013	3.37400	1000 GAL	095	0	0.4	0	0	0
R0434	005	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	3.30500	1000 GAL		0	0.3	0	0	0
R0435	006	FIXED ROOF TANKS: #2 OIL	24	0	0	40301019	0.00000	1000 GAL		0	0	0	0	0
R0438	009	FIXED ROOF TANKS: SPEC LIO	24	52	7	40301099	12.27300			0	3.7	0	0	0
R0440	011	FIXED ROOF TANKS: SPEC LIO	24	52	7	40301099	12.32200			Õ	3.7	Ő	Õ	Õ
R0442	013	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	3 01200	1000 GAL	095	Õ	0.4	0	Õ	Õ
R0443	014	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	1.58500	1000 GAL	095	Ő	0.2	Ő	Ő	Ő
R0444	015	FIXED ROOF TANKS: SPEC LIO	24	52	7	40301099	0.00000			Õ	0	0	Õ	Õ
R0445	016	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.63800	1000 GAL		0	0.1	Ő	Ő	Ő
R0446	017	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	1 71000	1000 GAL		Ő	0.1	Ő	Ő	Ő
R0447	018	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.63800	1000 GAL		Ő	0.1	Ő	Ő	Ő
R0448	019	FIXED ROOF TANKS: #2 OIL	24	52	, 7	40301019	0.43300	1000 GAL		0	0	ő	Ő	0
R0449	020	FIXED ROOF TANKS: #2 OIL	24	52	, 7	40301019	0.45600	1000 GAL		Ő	ő	ŏ	ŏ	0
R0450	021	FIXED ROOF TANKS: SPEC LIO	24	52	7	40301099	14.26100			Ő	4	õ	õ	Ő
R0451	022	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	1.41300	1000 GAL		Ő	0.1	ŏ	ŏ	Ő

R0452	023	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	6.51800	1000 GAL			0	0.9	0	0	0
R0453	024	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	6.50000	1000 GAL			0	0.9	0	0	0
R0454	025	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.00000	1000 GAL			0	0	0	0	0
R0456	027	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.00000	1000 GAL			0	0	0	0	0
R0457	028	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.00000	1000 GAL			0	0	0	0	0
R0458	029	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.00000	1000 GAL			0	0	0	0	0
Plant 1	Inforn	nation:													
Plant N	Name:	WILLIAMS ENERGY VENTUR	ES INC		AFS	ID : 009 - 35	512	CT ID: 11	7-212		SIC Co	de: 5171			
Addres	ss :	134 FORBES AVE. NEW HAVE	EN. OK				UTM	Coord: Zone	: 18 X:	675.7	Y: 4573.1				
Ozone	Status	Area : Greater Connecticut Area	,		CO	Status Area: I	New Haven	Joine Lone		0/01/	11 10/011				
2002 T		ation.													
2002 1	morm	<u>auon:</u>													
Point	Stack	Process	Operatir	ig Scl	hedule	:	Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ da	ay)
ID	ID	Description	H/D I	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0002	016	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	13.21200	1000 GAL			0	0.7	0	0	0
E0003	017	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	160.16700	1000 GAL			0	6.5	0	0	0
E0004	018	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	9.68200	1000 GAL			0	0.5	0	0	0
E0005	019	MISC PROCESS	24	52	7	39999999	2,208.0000				0	220.8	0	0	0
P0046	011	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	116.56500	1000 GAL			0	25.1	0	0	0
P0125	012	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	20.09900	1000 GAL			0	42.5	0	0	0
P0154	013	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	13.48200	1000 GAL			0	19.1	0	0	0
P0167	014	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	25.17300	1000 GAL			0	14.8	0	0	0
R0625	003	FLOAT ROOF TANKS (INT-SEC) -	24	52	7	40400171	119.33500	1000 GAL			0	20.8	0	0	0
R0627	005	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	31.80100	1000 GAL			0	29.8	0	0	0
R0628	006	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	262.34100	1000 GAL			0	33.2	0	0	0
R0908	008	FLOAT ROOF TANKS (67,000BBL)	24	52	7	40400111	63.79900	1000 GAL			0	0.2	0	0	0
E0001	015	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	47.69100	1000 GAL			0	2	0	0	0
Plant 1	Inforn	nation:													
Plant N	Name:	SIMKINS INDUSTRIES INC			AFS	ID:009-37	764	CT ID: 11	7-464		SIC Co	de: 2631			
Addres	ss :	259 EAST ST. NEW HAVEN, C	Т				UTM	Coord: Zone	:18 X:	671.7	Y: 4574.1				
Ozone	Status	Area : Greater Connecticut Area	-		CO	Status Area: I	New Haven								
2002 1	nform	ation													
2002 1	11101111														
Point	Stack	Process	Operatir	ig Scl	hedule	:	Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ da	ay)
ID	ID	Description	H/D I	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
R0673	001	INDUST BOILER: #6 OIL, >100	24	50	5	10200401	16.17800	1000 GAL	029		0	6.4	558.1	80.9	100.3

Plant N	Vame:	ST RAPHAEL, HOSPITAL OF			AFS	ID:009-38	11	CT ID: 117	-511	7 (70.0	SIC Co	de: 8062			
Addres	SS:	1450 CHAPEL SI, NEW HAVE	IN, CI		00			Loord: Zone:	18 2	X: 6/2.3	1:45/5.1				
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: N	ew Haven								
<u>2002 I</u>	nform	ation:													
Point	Stack	Process	Operat	ing Sc	hedule	e	Rate/		Cont	rol Equip	Equip	Daily Em	issions with	h RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0006	003	COMM/INST BOILER: NAT GAS,	24	52	7	10300602	0.31000	MIL CU FT			0	1.8	31	26	4.8
P0103	004	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.02000	1000 GAL			0	1.2	12.1	2.6	0.5
P0104	004	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.02000	1000 GAL			0	1.2	12.1	2.6	0.5
P0128	008	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.02000	1000 GAL			0	1.2	12.1	2.6	0.5
P0164	006	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.02000	1000 GAL			0	1.2	12.1	2.6	0.5
P0165	007	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.02000	1000 GAL			0	1.2	12.1	2.6	0.5
P0181	009	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.02000	1000 GAL			0	1.2	12.1	2.6	0.5
P0191	003	COMM/INST BOILER: NAT GAS,	24	52	7	10300602	0.31000	MIL CU FT			0	1.8	31	26	4.8
P0192	003	COMM/INST BOILER: NAT GAS,	24	52	7	10300602	0.31000	MIL CU FT			0	1.8	31	26	4.8
U0001	801	THINNING SOLVENTS: TOLUENE	E 8	52	5	40200922	0.00300	TONS			0	6	0	0	0
U0002	802	OPEN-TOP VAPOR	24	52	7	40100299	0.00600	TONS			0	1.2	0	0	0
Plant]	Inform	nation:													
Plant N	Jame:	WILLIAMS ENERGY VENTUR	RES.		AFS	ID : 009 - 38	19	CT ID: 117	-519		SIC Co	de: 5171			
Addres		280 WATERERONT ST. NEW F	HAVEN	J OK	/		UTM (Coord: Zone:	18 3	K· 675 6	Y · 4573 2)			
Ozone	status	Area · Greater Connecticut Area	1111121	, OR	CO	Status Area: N	ew Haven	coold. Zone.	10 1	1.075.0	1. 4575.2				
OZONC	olucus	· · · · · · · · · · · · · · · · · · ·			001	Status / fieu. 1	ew maven								
2002 1	nform	ation:													
Point	Stack	Process	Operat	ing Sc	hedule	e	Rate/		Cont	rol Equip	Equip	Daily Em	issions with	h RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0002	011	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.91300	1000 GAL			0	0.2	0	0	0
E0003	012	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	224.07300	1000 GAL			0	4.7	0	0	0
E0004	013	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	149.66900	1000 GAL			0	3.5	0	0	0
E0005	014	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	152.46100	1000 GAL			0	3.5	0	0	0
E0006	015	FIXED ROOF TANKS: #2 OIL	24	52	7	40301019	0.04000	1000 GAL			0	0	0	0	0
E0007	016	FIXED ROOF TANKS (67,000BBL)	- 24	52	7	40400101	0.01800	1000 GAL			0	0	0	0	0
E0008	017	FIXED ROOF TANKS (67,000BBL)	- 24	52	7	40400101	0.00000	1000 GAL			0	0	0	0	0
E0009	018	FIXED ROOF TANKS (67,000BBL)	- 24	52	7	40400101	0.01600	1000 GAL			0	0	0	0	0
E0010	019	MISC PROCESS	24	52	7	39999999	2,208.0000				0	132.5	0	0	0
E0011	012	INDUST BOILER: #2 OIL >100	24	36	7	10200501	0.00000	1000 GAL			0	0	0	0	0.2
R0810	001	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	0.00000	1000 GAL			0	0	0	0	0
R0811	002	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	149.17400	1000 GAL			0	22.8	0	0	0

TABLI	E 7
DETAIL LISTING OF 2002 CONNECTI	CUT POINT SOURCE INVENTORY

R0812	003	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	0.00000	1000 GAL		0	0	0	0	0
R0813	004	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	296.47100	1000 GAL		0	31.7	0	0	0
R0814	005	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	0.00000	1000 GAL		0	0	0	0	0
R0815	006	GASOLINE SUBMERGED	24	52	7	40600141	562.39700	1000 GAL	048	99.8	461.5	0	0	0
R0979	007	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	0.00000	1000 GAL		0	0	0	0	0
R1005	008	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	72.03500	1000 GAL		0	16	0	0	0
R1006	009	FLOAT ROOF TANKS (67,000BBL)) 24	52	7	40400111	31.09400	1000 GAL		0	0.1	0	0	0
E0001	010	GASOLINE SUBMERGED	24	52	/	40600141	481.07000	1000 GAL		0	10.1	0	0	0
Plant 1	Inform	nation:												
Plant N	Jame:	PSEG FOSSIL LLC/ POWER C	ГLLC		AFS	ID:009-385	51	CT ID: 117	7-551	SIC Co	de: 4911			
Addres	ss :	1 WATERFRONT ST, NEW HA	VEN, C	СТ			UTM C	Coord: Zone:	: 18 X: 675.5	Y: 4572.8	;			
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: No	ew Haven							
2002 I	nform	ation:												
Doint	Staal	Drogoog	Omenat	na Ca	hadula		Data/		Control Equin	Equin	Daily Em	issions with	DE (lha/ d)
Politi	Slack	Description	Uperat.		MUX	SCC	Rate/	T.T: 4-		Equip		NO-	CO = CO	(y)
ID E0001	ID 004	Description	H/D	D/W	W/Y	SCC 20100101	Day	Units	1 2	EII	VUC	NOX	CO-s	CO-w
E0001 D0021	004	UTILITY POIL ED: #2 OIL	1	12	1	20100101	0.01400	1000 GAL		0	0	1.4	0.1	12
P0021 P0031	002	UTILITY BOILER: #2 OIL	24	52	7	10100301	241 67000	1000 GAL		0	263.4	4.7 5837 9	1221.8	1581.4
Plant N Plant N Addres Ozone	Inform Jame: Ss : Status	nation: CONN CONTAINER CORP 455 SACKETT POINT RD, NOI Area : Greater Connecticut Area	RTH HA	VEN	AFS , CT CO S	ID : 009 - 540 Status Area: No)3 UTM C ew Haven	CT ID: 135 Coord: Zone:	5-3 : 18 X: 677 Y:	SIC Co 4581.8	de: 2653			
2002 1	nform	ation.			001	Status Filou. I v								
2002 1			_											
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Control Equip	Equip	Daily Em	issions with	n RE (lbs/ da	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0064	001	INDUST BOILER: #4 OIL > 100	24	51	7	10200504	0.05500	1000 GAL	-	0	0.3	7	4	10.5
U0001	801	PRINTING: FLEXOGRAPHIC	24	51	5	40500311	0.16000	TONS SOL	1	0	128	0	0	0
Plant]	[nform	nation:												
Plant N	Jame:	OUEBECOR NORTHEAST GR	APHIC		AFS	ID : 009 - 542	21	CT ID: 134	5-21	SIC Co	de: 2752			
Addres	SS :	291 STATE ST. NORTH HAVE	N. CT				UTM C	Coord: Zone:	: 18 X: 669.1	Y: 4582.4				
Ozone	Status	Area : Greater Connecticut Area	,		COS	Status Area: N	ew Haven							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operati	ing Sc	hedule	;	Rate/		Control Equip	Equip	Daily Em	issions with	n RE (lbs/ da	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
P0058	002	PRINTING: LITHOGRAPHIC	24	52	7	40500411	0.56400	TONS	022	98	118.3	5.6	1.2	1.2

TABLE 7
DETAIL LISTING OF 2002 CONNECTICUT POINT SOURCE INVENTORY

P0059 P0060 P0061 P0062 P0063 P0090 P0090 P0091 P0099 U0001	003 003 002 002 004 005 005 006 801	PRINTING: LITHOGRAPHIC PRINTING: LITHOGRAPHIC PRINTING: LITHOGRAPHIC PRINTING: LITHOGRAPHIC PRINTING: LITHOGRAPHIC PRINTING: LITHOGRAPHIC PRINTING: LITHOGRAPHIC PRINTING: LITHOGRAPHIC PRINTING: LITHOGRAPHIC PRINTING: LITHOGRAPHIC	24 24 24 24 24 24 24 24 24 24 24	52 52 52 52 52 52 52 52 52 52 52	7 7 7 7 7 7 7 7 7	40500411 40500411 40500411 40500411 40500411 40500411 40500411 40500401	0.78400 0.81000 0.80000 0.53900 0.48100 0.53100 0.56400 0.94900 0.08800	TONS TONS TONS TONS TONS TONS TONS TONS INK	021 021 021 021 021 021 021 021	98 98 98 98 98 98 98 98 98 98	162.2 169.2 165.7 111.2 99.9 110.7 117.1 196.4 12.7	3.9 7.8 4 2.6 3.8 5 2.8 4.7 0	$\begin{array}{c} 0.8 \\ 1.6 \\ 0.8 \\ 0.5 \\ 0.8 \\ 1 \\ 0.6 \\ 1 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0.8 \\ 1.7 \\ 0.8 \\ 0.6 \\ 0.8 \\ 1.1 \\ 0.6 \\ 1 \\ 0 \\ 0 \end{array}$
U0002	802	PRINTING: LITHOGRAPHIC	24	52 52	6	40500411	0.05600	TONS		0	11./ × 7	0	0	0
00003	803	PRINTING: THINNING - OTHER	24	52	0	40500599	0.00900	TONS		0	8.7	0	0	0
<u>Plant I</u>	nform	nation:												
Plant N	ame.	ALLEGHENY LUDLUM CORP			AFS	ID · 009 - 6505	5	CT ID· 189	-5	SIC Cod	le: 3312			
Addres	s ·	80 VALLEY ST WALLINGFOR	р ст		111.0	ID . 007 0000		oord: Zone:	18 X 680.6	Y· 4590.8				
Ozone	Status	Area : Greater Connecticut Area	D, C1		COS	Status Area: Ne	w Haven	zone.	10 11.000.0	1. 4590.0				
<u>2002 I</u> 1	nform	ation:												
Point	Stack	Process	Onerati	ing Sch	edule		Rate/		Control Equip	Fauin	Daily Em	issions with	n RF (lbs/ de	av)
Point	Stack	Process	Operati	ing Sch	nedule W/Y	SCC	Rate/	Units	Control Equip	Equip Eff	Daily Em	issions with NOx	n RE (lbs/ da	ay) CO-w
Point ID F0001	Stack ID 016	Process O Description STEEL FOUNDRY: OTHER	Operati H/D 24	ing Scł D/W 38	nedule W/Y	SCC 30400799	Rate/ Day 48 70000	Units TONS	Control Equip 1 2	Equip Eff 0	Daily Em VOC	issions witl NOx	n RE (lbs/ da CO-s	ay) CO-w
Point ID E0001 E0002	Stack ID 016 017	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER	Operati H/D 24 24	ing Sch D/W 38 44	nedule W/Y 5 7	SCC 30400799 30400799	Rate/ Day 48.70000 52.80000	Units TONS TONS	Control Equip 1 2	Equip Eff 0 0	Daily Em VOC 0 0	issions with NOx 0 0	n RE (lbs/ da CO-s 0 0	ay) CO-w 0
Point ID E0001 E0002 E0003	Stack ID 016 017 018	Process O Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER	Operati H/D 24 24 24 24	ing Sch D/W 38 44 0	nedule W/Y 5 7 0	SCC 30400799 30400799 30400799	Rate/ Day 48.70000 52.80000 0.00000	Units TONS TONS TONS	Control Equip 1 2	Equip Eff 0 0 0	Daily Em VOC 0 0	issions with NOx 0 0 0	n RE (lbs/ da CO-s 0 0 0	ay) CO-w 0 0
Point ID E0001 E0002 E0003 E0004	Stack ID 016 017 018 019	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC	Operati H/D 24 24 24 24 24	ing Sch D/W 38 44 0 43	w/Y 5 7 0 7	SCC 30400799 30400799 30400799 30400705	Rate/ Day 48.70000 52.80000 0.00000 117.00000	Units TONS TONS TONS TONS	Control Equip 1 2	Equip Eff 0 0 0 0	Daily Em VOC 0 0 0 0	issions with NOx 0 0 0 0	n RE (lbs/ da CO-s 0 0 0 0	ay) CO-w 0 0 0 0
Point ID E0001 E0002 E0003 E0004 E0005	Stack ID 016 017 018 019 020	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC	Operati H/D 24 24 24 24 24 16	ing Sch D/W 38 44 0 43 30	nedule W/Y 5 7 0 7 5	SCC 30400799 30400799 30400799 30400705 30400705	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000	Units TONS TONS TONS TONS TONS	Control Equip 1 2	Equip Eff 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0	issions with NOx 0 0 0 0 0 0	n RE (lbs/ da CO-s 0 0 0 0 0	ay) CO-w 0 0 0 0 0
Point ID E0001 E0002 E0003 E0004 E0005 E0006	Stack ID 016 017 018 019 020 021	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC	Operati H/D 24 24 24 24 24 16 8	ing Sch D/W 38 44 0 43 30 16	nedule W/Y 5 7 0 7 5 2	SCC 30400799 30400799 30400799 30400705 30400705 30400705	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000	Units TONS TONS TONS TONS TONS TONS	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0	issions with NOx 0 0 0 0 0 0 0 0	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0
Point ID E0001 E0002 E0003 E0004 E0005 E0006 E0007	Stack ID 016 017 018 019 020 021 022	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC	Operati H/D 24 24 24 24 24 16 8 8	ing Sch D/W 38 44 0 43 30 16 42	nedule W/Y 5 7 0 7 5 2 4	SCC 30400799 30400799 30400709 30400705 30400705 30400705 30400705	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000 25.50000	Units TONS TONS TONS TONS TONS TONS TONS	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0	issions with NOx 0 0 0 0 0 0 0 0 0	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0
Point ID E0001 E0002 E0003 E0004 E0005 E0006 E0007 P0036	Stack ID 016 017 018 019 020 021 022 014	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC INDUST BOILER: NAT GAS,	Operati H/D 24 24 24 24 16 8 8 24	ing Sch D/W 38 44 0 43 30 16 42 17	nedule W/Y 5 7 0 7 5 2 4 7	SCC 30400799 30400799 30400705 30400705 30400705 30400705 10200602	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000 25.50000 0.04200	Units TONS TONS TONS TONS TONS TONS MIL CU FT	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0 0 0	issions with NOx 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 0 10.4
Point ID E0001 E0002 E0003 E0004 E0005 E0006 E0007 P0036 P0037	Stack ID 016 017 018 019 020 021 022 014 014	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS,	Operati H/D 24 24 24 24 16 8 8 24 24 24	ing Sch D/W 38 44 0 43 30 16 42 17 32	nedule W/Y 5 7 0 7 5 2 4 7 7 7	SCC 30400799 30400799 30400709 30400705 30400705 30400705 10200602 10200602	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000 25.50000 0.04200 0.08000	Units TONS TONS TONS TONS TONS TONS MIL CU FT MIL CU FT	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0 0 0 0	issions witl NOx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 10.4 8.6
Point ID E0001 E0002 E0003 E0004 E0005 E0006 E0007 P0036 P0037 P0038	Stack ID 016 017 018 019 020 021 022 014 014 014	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS,	Operati H/D 24 24 24 24 24 16 8 8 24 24 24 24	ing Sch D/W 38 44 0 43 30 16 42 17 32 15	nedule W/Y 5 7 0 7 5 2 4 7 7 7 7	SCC 30400799 30400799 30400705 30400705 30400705 30400705 10200602 10200602 10200602	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000 25.50000 0.04200 0.08000 0.08000	Units TONS TONS TONS TONS TONS MIL CU FT MIL CU FT MIL CU FT	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	issions witl NOx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Point ID E0001 E0002 E0003 E0004 E0005 E0006 E0007 P0036 P0037 P0038 R0014	Stack ID 016 017 018 019 020 021 022 014 014 014 001	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, STEEL FOUNDRY: OTHER	Operati H/D 24 24 24 24 16 8 8 24 24 24 24 24 24	ing Sch D/W 38 44 0 43 30 16 42 17 32 15 45	nedule W/Y 5 7 0 7 5 2 4 7 7 7 5	SCC 30400799 30400799 30400799 30400705 30400705 30400705 10200602 10200602 10200602 30400799	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000 25.50000 0.04200 0.04200 0.08000 0.08000 43.30000	Units TONS TONS TONS TONS TONS MIL CU FT MIL CU FT MIL CU FT TONS	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	issions witl NOx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 10.4 8.6 11.9 0
Point ID E0001 E0002 E0003 E0004 E0005 E0006 E0007 P0036 P0037 P0038 R0014 R0015	Stack ID 016 017 018 019 020 021 022 014 014 014 001 002	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER	Operati H/D 24 24 24 24 16 8 8 24 24 24 24 24 24	ing Sch D/W 38 44 0 43 30 16 42 17 32 15 45 45	nedule W/Y 5 7 0 7 5 2 4 7 7 7 5 5 5	SCC 30400799 30400799 30400705 30400705 30400705 30400705 10200602 10200602 10200602 30400799	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000 25.50000 0.04200 0.04200 0.08000 43.30000 43.30000	Units TONS TONS TONS TONS TONS MIL CU FT MIL CU FT MIL CU FT TONS TONS	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	issions witl NOx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 175.3	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 10.4 8.6 11.9 0 0
Point ID E0001 E0002 E0003 E0004 E0005 E0006 E0007 P0036 P0037 P0038 R0014 R0015 R0016	Stack ID 016 017 018 019 020 021 022 014 014 014 001 002 003	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER	Operati H/D 24 24 24 24 16 8 8 24 24 24 24 24 24 24	ing Sch D/W 38 44 0 43 30 16 42 17 32 15 45 45 49	nedule W/Y 5 7 0 7 5 2 4 7 7 7 5 5 5 5	SCC 30400799 30400799 30400705 30400705 30400705 30400705 10200602 10200602 10200602 30400799 30400799 30400799	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000 25.50000 0.04200 0.04200 0.08000 0.08000 43.30000 43.30000	Units TONS TONS TONS TONS TONS TONS MIL CU FT MIL CU FT TONS TONS TONS	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	issions witl NOx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Point ID E0001 E0002 E0003 E0004 E0005 E0006 E0007 P0036 P0037 P0038 R0014 R0015 R0016 R0026	Stack ID 016 017 018 019 020 021 022 014 014 014 001 002 003 013	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER	Operati H/D 24 24 24 24 16 8 8 24 24 24 24 24 24 24 24 24	ing Sch D/W 38 44 0 43 30 16 42 17 32 15 45 45 45 49 32	nedule W/Y 5 7 0 7 5 2 4 7 7 7 5 5 5 5 6	SCC 30400799 30400799 30400705 30400705 30400705 30400705 10200602 10200602 10200602 30400799 30400799 30400799	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000 25.50000 0.04200 0.04200 0.08000 43.30000 43.30000 43.30000 48.70000	Units TONS TONS TONS TONS TONS MIL CU FT MIL CU FT MIL CU FT TONS TONS TONS TONS	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	issions with NOx 0 0 0 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \text{Ay)}\\ \text{CO-w} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10.4 \\ 8.6 \\ 11.9 \\ 0 \\ 0 \\ 2.2 \\ 2.2 \end{array}$
Point ID E0001 E0002 E0003 E0004 E0005 E0006 E0007 P0036 P0037 P0038 R0014 R0015 R0016 R0026 U0001	Stack ID 016 017 018 019 020 021 022 014 014 001 002 003 013 801	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER	Operati H/D 24 24 24 24 16 8 8 24 24 24 24 24 24 24 24 24 24	ing Sch D/W 38 44 0 43 30 16 42 17 32 15 45 45 45 49 32 52	nedule W/Y 5 7 0 7 5 2 4 7 7 7 5 5 5 6 7	SCC 30400799 30400799 30400705 30400705 30400705 30400705 10200602 10200602 10200602 30400799 30400799 30400799 30400799	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000 25.50000 0.04200 0.04200 0.08000 43.30000 43.30000 43.30000 43.30000 48.70000 0.00000	Units TONS TONS TONS TONS TONS MIL CU FT MIL CU FT MIL CU FT TONS TONS TONS TONS TONS	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \text{issions with} \\ \text{NOx} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \text{Ay)}\\ \text{CO-w} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10.4 \\ 8.6 \\ 11.9 \\ 0 \\ 0 \\ 2.2 \\ 2.2 \\ 0 \end{array}$
Point ID E0001 E0002 E0003 E0004 E0005 E0006 E0007 P0036 P0037 P0038 R0014 R0015 R0016 R0016 R0026 U0001 U0002	Stack ID 016 017 018 019 020 021 022 014 014 001 002 003 013 801 802	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, STEEL FOUNDRY: OTHER STEEL FOUNDRY: SMINERAL	Operati H/D 24 24 24 24 16 8 8 24 24 24 24 24 24 24 24 24 24 8	ing Sch D/W 38 44 0 43 30 16 42 17 32 15 45 45 49 32 52 50	nedule W/Y 5 7 0 7 5 2 4 7 7 7 5 5 5 6 7 5 5	SCC 30400799 30400799 30400705 30400705 30400705 30400705 10200602 10200602 10200602 30400799 30400799 30400799 30400799 30400799	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000 25.50000 0.04200 0.08000 43.30000 43.30000 43.30000 43.30000 48.70000 0.00000 0.00000	Units TONS TONS TONS TONS TONS TONS MIL CU FT MIL CU FT MIL CU FT MIL CU FT TONS TONS TONS TONS TONS TONS TONS	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \text{issions with} \\ \text{NOx} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.2 2.2
Point ID E0001 E0002 E0003 E0004 E0005 E0006 E0007 P0036 P0037 P0038 R0014 R0015 R0016 R0016 R0026 U0001 U0002 U0003	Stack ID 016 017 018 019 020 021 022 014 014 001 002 003 013 801 802 803	Process Description STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: OTHER STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC STEEL FOUNDRY: ELEC INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, INDUST BOILER: NAT GAS, STEEL FOUNDRY: OTHER STEEL FOUNDRY: SMINERAL THINNING SOLVENTS: MINERAL	Operati H/D 24 24 24 24 16 8 8 24 24 24 24 24 24 24 24 24 24 24 24 24	ing Sch D/W 38 44 0 43 30 16 42 17 32 15 45 45 45 49 32 52 50 52	redule W/Y 5 7 0 7 5 2 4 7 7 5 5 5 6 7 5 7	SCC 30400799 30400799 30400705 30400705 30400705 30400705 10200602 10200602 10200602 30400799 30400799 30400799 30400799 30400799 40200914 40200920	Rate/ Day 48.70000 52.80000 0.00000 117.00000 20.80000 1.10000 25.50000 0.04200 0.08000 43.30000 43.30000 43.30000 43.30000 43.30000 0.00000 0.00000 0.00000	Units TONS TONS TONS TONS TONS TONS MIL CU FT MIL CU FT MIL CU FT TONS TONS TONS TONS TONS TONS TONS TON	Control Equip 1 2	Equip Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Em VOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	issions with NOx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ da CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.2 2.2 0 0 0 0

Plant N	Vame:	CYTEC INDUSTRIES INC			AFS	ID:009-6527	7	CT ID: 189	-27		SIC Coc	de: 2821			
Addres	ss :	S CHERRY & BALL STS, WAL	LINGF	ORD,	СТ		UTM (Coord: Zone:	18 X:	680.5	Y: 4589.2				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Ne	w Haven								
<u>2002 I</u>	nform	ation:													
Point	Stack	Process	Operati	ng Sc	hedule	:	Rate/		Contro	l Equip	Equip	Daily Em	issions wit	h RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0002	135	INDUST BOILER: NAT GAS, <10	24	50	7	10200603	0.01300	MIL CU FT			0	0.1	1.3	1.1	1.2
E0003	136	RECOVERY AND PURIFICATION	24	47	7	30101813	2.32700		072		99.9	183.1	0	0	0
E0004	137	COMM/INST DIESEL: #2 OIL	1	12	1	20300101	0.00200	1000 GAL			0	0.1	1.2	0.3	2.2
E0005	138	PROCESS FUEL: LPG	6	52	7	39001089	0.02300	1000 GAL	0	0	0	0	0.3	0	0
E0006	139	AIR STRIPPING TOWER -	24	52	5	49000599	0.00000	TONS	099		0	0	0	0	0
E0007	141	MISC INDUST PROCESS	24	52	7	39999995	19.00000	GALS			0	0	0	0	0
E0008	142	MISC PROCESS	24	47	3	39999999	0.00000				0	0.1	0.9	0.2	0.4
E0009	143	INDUST DIESEL: #2 OIL	1	52	1	20200102	0.00200	1000 GAL			0	0	1.2	0.1	0.2
P0004	099	PLASTICS PRODUCTION	24	49	5	30101899	0.12000	TONS			0	0	0	0	0
P0007	105	PLASTICS PRODUCTION	24	49	3	30101899	13.52000	TONS	072		98.3	79.2	0	0	0
P0008	106	PLASTICS PRODUCTION	24	49	2	30101899	8.37000	TONS	053		98	72.4	0	0	0
P0009	104	MISC PROCESS	24	47	3	39999999	0.00000				0	1.4	25.2	5.2	2.9
P0010	079	INDUSTRIAL INCIN: SLUDGE	24	49	5	50300506	3.01800	TONS DRY			0	16.7	44	303.6	286.1
P0011	103	PLASTICS PRODUCTION	24	33	7	30101899	21.10000	TONS	048		95	77.9	0	0	0
P0012	032	PLASTICS PRODUCTION:	24	51	6	30101837	13.46600	TONS	072	07	98.9	13.1	0	0	0
P0018	112	PLASTICS PRODUCTION	24	47	7	30101899	111.71900	TONS	072	05	99.9	120.6	0	0	0
P0020	103	PLASTICS PRODUCTION	24	52	4	30101899	0.00000	TONS	048		95	0	0	0	0
P0026	117	PLASTICS PRODUCTION	24	49	6	30101899	72.15900	TONS	072	05	99	1778.9	0	0	0
P0075	132	INDUST DIESEL:	1	11	1	20200902	0.13300	1000 GAL			0	1.5	113.8	15.5	2.6
P0082	133	INDUST DIESEL: #2 OIL	1	15	1	20200102	0.00200	1000 GAL			0	0	1.1	0.1	0.1
P0097	134	UNDERGROUND STORAGE	24	52	7	40400497	0.30900	1000 GAL	047	04	95	0	0	0	0
P0098	135	UNDERGROUND STORAGE	24	52	7	40400497	7.39000	1000 GAL	047	04	95	0.4	0	0	0
P0099	136	UNDERGROUND STORAGE	24	52	7	40400497	0.06700	1000 GAL	047	04	95	0	0	0	0
P0100	138	UNDERGROUND STORAGE	24	52	7	40400497	0.95800	1000 GAL	047	07	95	0	0	0	0
P0155	139	UNDERGROUND STORAGE	24	52	7	40400497	0.00000	1000 GAL	001		95	0	0	0	0
P0189	140	INDUST DIESEL: #2 OIL	1	52	1	20200102	0.00400	1000 GAL			0	0	1	0.1	0.3
R0108	005	INDUST BOILER: NAT GAS,	24	50	7	10200602	0.73200	MIL CU FT			0	4.3	52.9	61.5	51.9
R0109	006	INDUST BOILER: #2 OIL >100	24	50	7	10200501	0.00000	1000 GAL			0	0	0	0	0
R0110	007	INDUST BOILER: NAT GAS,	24	50	7	10200602	1.38100	MIL CU FT			0	8.2	285	116	90.8
R0150	029	PLASTICS PRODUCTION	24	49	6	30101899	38.02900	TONS	072	07	98.9	207.2	0	0	0
R0173	047	PLASTICS PRODUCTION	20	47	5	30101899	12.10900	TONS	002		90	337.7	7.1	1.2	1.9
R0182	054	PLASTICS PRODUCTION	24	50	6	30101899	33.44330	TONS		07	99	1217.9	0	0	0

TABLE 7	
DETAIL LISTING OF 2002 CONNECTICUT POINT SOURCE INVENTOR	Y

R0201	068	PLASTICS PRODUCTION	24	49	6	30101899	30.44500	TONS		07	99	17.5	0	0	0
R0213	103	PLASTICS PRODUCTION	24	38	7	30101899	20.00000	TONS	048		95	83.9	0	0	0
R0214	103	PLASTICS PRODUCTION	24	33	7	30101899	20.90000	TONS	048		95	82.1	0	0	0
R0246	097	PLASTICS PRODUCTION	24	50	7	30101899	7.30000	TONS			0	4.4	0	0	0
U0001	801	MISC VOC EVAPORATION	24	49	3	49099999	211.40000	TONS	050		99	2.2	0	0	0
U0004	804	INORGANIC STORAGE	24	52	7	30188801	39.60000				0	165.9	0	0	0
U0005	805	INORGANIC STORAGE	24	52	7	30188801	39.60000				0	0.6	0	0	0
U0006	806	INORGANIC STORAGE	24	52	7	30188801	39.60000				0	1.3	0	0	0
U0007	807	MISC VOC EVAPORATION	24	52	7	49099999	281.01000	TONS			0	25.3	0	0	0
U0008	808	MISC VOC EVAPORATION	24	52	7	49099999	0.06800	TONS			0	136	0	0	0
U0009	809	WASTE WATER TREATMENT	24	52	7	30182002	2,350.7180				0	425.5	0	0	0
U0010	810	TSDF LAND TREATMENT:	16	50	5	50300820	0.02308	ACRES			0	1.2	0	0	0
U0011	811	MISC VOC EVAPORATION	16	50	5	49099999	0.00012	TONS			0	0.2	0	0	0
U0012	812	FIXED ROOF TANKS (250000BBL)) 24	52	7	40400105	11.95055	1000 GAL			0	1.3	0	0	0
<u>Plant I</u>	nform	nation:													
Plant N	lame:	CT ACOUISITIONS LLC DBA			AFS	ID : 009 - 6	550	CT ID: 18	9-50		SIC Co	de: 2522			
Addres	s ·	1 GRAND ST WALLINGFORD) CT				UTM (oord Zone	· 18 X·	681 Y	4591				
Ozone	S . Statue	Area : Greater Connecticut Area	, ст		CO	Status Area.	New Haven		. 10 71.	001 1					
OZOIIC	Status	Thea . Greater Connecticut Thea			co	Status Mea.									
<u>2002 Ir</u>	nform	ation:													
Point	Stack	Process	Operati	ing Scl	hedule	<u>,</u>	Rate/		Contro	l Equip	Equip	Daily Em	issions with	RE (lbs/ da	v)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1	2	Eff	VOC	NOx	CO-s	 CO-w
P0188	001	METAL FURNITURE COATING	8	21	5	40202001	0.00000	TONS	1	2	0	0		0	0
10100	001	METAL I ORIGITORE COATING	0	21	5	40202001	0.00000	10105			0	0	0	0	0
<u>Plant I</u>	nform	nation:													
Plant N	lame:	CRRA - WALLINGFORD SITE			AFS	ID : 009 - 6	678	CT ID: 18	9-178		SIC Co	de: 4953			
Addres	s ·	530 S CHERRY ST WALLING	FORD	СТ			UTM (oord Zone	· 18 X·	680.9	Y· 4589 7				
Ozone	S . Statue	Area : Greater Connecticut Area	rond,	CI	CO	Status Area.	New Haven		. 10 71.	000.7	1. 4507.7				
OZOIIE	Status	Area . Greater Connecticut Area			CO	Status Area.									
<u>2002 Ir</u>	nform	ation:													
Point	Stack	Process	Operati	ing Scl	hedule	e	Rate/		Contro	l Equip	Equip	Daily Em	issions with	RE (lbs/ da	ıy)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0062	001	MUNICIPAL INCIN: MULTIPLE	24	50	7	50100101	157.80000	TONS	026	03	0	1.5	389.8	36.3	30.6
P0063	001	MUNICIPAL INCIN: MULTIPLE	24	50	7	50100101	154.70000	TONS	026	03	0	1.5	400.7	24.8	21.2
P0061	001	MUNICIPAL INCIN: MULTIPLE	24	50	7	50100101	160.30000	TONS	026	03	0	1.7	389.5	28.1	23.5

Plant l	[nform	ation:													
Plant N Addres	Vame: ss :	SOMERS THIN STRIP 215 PIEDMONT ST, WATERB	URY, C	Т	AFS	ID : 009 - 7053	UTM C	CT ID: 192 Coord: Zone:	2-53 18 X:	663.8	SIC Cod Y: 4600.2	e: 3351			
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Nev	Haven								
2002 II	nforma	ation:													
Point ID E0003 E0004 P0247 R0638 R0639 R0640	Stack ID 007 008 014 001 001 001	Process Description INDUST BOILER: NAT GAS, <10 INDUST BOILER: NAT GAS, <10 COMM/INST DIESEL: #2 OIL INDUST BOILER: #4 OIL > 100 INDUST BOILER: NAT GAS, <10 INDUST BOILER: NAT GAS, <10	Operati H/D 24 24 1 24 24 24 24 24	ing Sci D/W 49 49 12 26 52 52	hedule W/Y 6 7 1 7 7 7 7	SCC 10200603 10200603 20300101 10200504 10200603 10200603	Rate/ Day 0.00700 0.05700 0.01100 0.00000 0.03400 0.03000	Units MIL CU FT MIL CU FT 1000 GAL 1000 GAL MIL CU FT MIL CU FT	Contro 1 0 0	bl Equip 2 0 0	Equip Eff 0 0 0 0 0 0 0	Daily Em VOC 0 0.3 0.6 0 0.2 0.2	issions with NOx 0.7 5.7 6.6 0 3.4 3	1 RE (lbs/ d CO-s 0.6 4.8 1.4 0 2.9 2.5	ay) CO-w 0.2 3.8 0.6 0.6 1.7 3.3
R0641 U0002	002 802	INDUST BOILER: NAT GAS, <10 THINNING SOLVENTS:	24 24	52 50	, 7 5	10200603 40200914	0.05100 0.01600	MIL CU FT TONS			0 0	0.3 32	5.1 0	4.3 0	5.4 0
<u>Plant l</u>	[nform	ation:													
Plant N Addres Ozone	Vame: ss : Status	PHOENIX SOILS LLC 130 FREIGHT ST, WATERBUI Area : Greater Connecticut Area	RY, CT		AFS	ID : 009 - 7474 Status Area: Nev	UTM C Haven	CT ID: 192 Coord: Zone:	2-474 18 X:	662.5	SIC Cod Y: 4602	e: 2875			
2002 I	nforma	ation:													
Point ID P0123	Stack ID 007	Process Description TSDF LAND TREATMENT:	Operati H/D 24	ing Sci D/W 44	hedule W/Y 5	SCC 50300820	Rate/ Day 897.00000	Units ACRES	Contro 1	ol Equip 2	Equip Eff 0	Daily Em VOC 0	issions with NOx 203.3	n RE (lbs/ d CO-s 53.8	ay) CO-w 33.9
<u>Plant l</u>	[nform	ation:													
Plant N Addres Ozone	Vame: ss : Status	PFIZER INC 445 EASTERN POINT RD, GR Area : Greater Connecticut Area	OTON, (СТ	AFS	ID : 011 - 604 Status Area: Nev	UTM C / London	CT ID: 70- coord: Zone:	4 18 X:	744.5	SIC Cod Y: 4579.5	e: 2833			
<u>2002 I</u>	nforma	ation:													
Point ID E0004 E0005 E0007 E0008	Stack ID 152 153 155 156	Process Description INDUST DIESEL: #2 OIL INDUST DIESEL: #2 OIL INDUST DIESEL: NAT GAS INDUST DIESEL: NAT GAS	Operati H/D 2 1 2 1	ing Sci D/W 52 12 12 52	hedule W/Y 1 1 1	SCC 20200102 20200102 20200202 20200202 10201002	Rate/ Day 0.04400 0.02100 0.00100 0.00100	Units 1000 GAL 1000 GAL MIL CU FT MIL CU FT	Contro 1	ol Equip 2	Equip Eff 0 0 0 0	Daily Em VOC 2.6 1.2 0 0	issions with NOx 26.6 12.7 2.8 2.8 0.8	n RE (lbs/ d CO-s 5.7 2.7 0.4 0.4 0.4	ay) CO-w 1.6 0.7 0.1 0.1

TABLE 7
DETAIL LISTING OF 2002 CONNECTICUT POINT SOURCE INVENTORY

E0010	158	INDUST DIESEL: #2 OIL	1	12	1	20200102	0.00050	1000 GAL			0	0	0.3	0.1	0
E0011	159	INDUST DIESEL: #2 OIL	1	12	1	20200102	0.00120	1000 GAL			0	0.1	0.7	0.2	0.1
E0012	160	INDUST DIESEL: #2 OIL	1	12	1	20200102	0.00100	1000 GAL			0	0.1	0.6	0.1	0.1
E0013	161	INDUST DIESEL: #2 OIL	1	12	1	20200102	0.00140	1000 GAL			0	0.1	0.8	0.2	0
E0014	162	COATING: PAINT	24	52	7	40200101	0.00000	TONS			0	0	0	0	0
E0017	153	INDUST DIESEL: #2 OIL	2	12	1	20200102	0.00700	1000 GAL			0	0.4	4.2	0.9	0.6
E0020	168	COMM/INST DIESEL: #2 OIL	1	12	1	20300101	0.23200	1000 GAL			0	2.7	114.6	25.6	0
P0001	029	INDUST BOILER: NAT GAS, >100	24	28	7	10200601	3.36400	MIL CU FT			0	20	387.6	282.6	185.4
P0062	006	COMM/INST INCIN:	13	51	5	50200505	2.30200	TONS	025	00	5	15.1	27.9	48.6	37.8
P0066	131	INDUST DIESEL: #2 OIL	1	12	1	20200102	0.01900	1000 GAL			0	0.6	8.9	1.9	0.2
P0067	132	INDUST DIESEL: #2 OIL	1	12	1	20200102	0.03700	1000 GAL			0	1.2	17.4	3.9	0.8
P0079	137	INDUSTRIAL INCIN: SLUDGE	24	49	7	50300506	10.69700	TONS DRY	070		66.7	103	14.9	0.1	0
P0081	138	PHARMACEUTICAL: OTHER	24	52	7	30106099	27.30000	100#	001		93	107.4	4.7	0	0
P0082	139	INDUST BOILER: NAT GAS,	24	52	1	10200602	0.06300	MIL CU FT			0	0.4	6.3	5.3	3.9
P0097	141	INDUST DIESEL: #2 OIL	1	12	1	20200102	0.03100	1000 GAL			0	0.4	12.8	4.7	2.4
P0099	142	INDUST DIESEL: #2 OIL	1	12	1	20200102	0.03600	1000 GAL			0	0.5	21.1	6.1	2.4
P0100	143	INDUST DIESEL: #2 OIL	1	12	1	20200102	0.03800	1000 GAL			0	0.6	22.3	6.5	2.5
P0245	169	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00070	1000 GAL			0	0	0.4	0.2	0.7
P0264	171	COMM/INST DIESEL: #2 OIL	24	52	1	20300101	0.05700	1000 GAL			0	3.3	34.4	7.4	0.8
R0007	001	INDUST BOILER: #6 OIL, >100	24	28	7	10200401	7.98100	1000 GAL			0	0	0	0	95.2
R0008	001	INDUST BOILER: #6 OIL, >100	24	35	7	10200401	5.33800	1000 GAL			0	11	400.8	152.8	82.3
R0009	002	INDUST BOILER: NAT GAS, >100	24	29	7	10200601	1.57600	MIL CU FT			0	9.4	243.6	132.4	8.6
R0010	003	INDUST BOILER: #6 OIL, >100	24	34	7	10200401	3.23500	1000 GAL			0	13.9	283.3	194.1	0
R0012	004	INDUST BOILER: #6 OIL, >100	24	30	7	10200401	13.86300	1000 GAL			0	16.6	887.3	225.7	224.8
U0001	801	MISC VOC EVAPORATION	24	52	7	49099999	0.07000	TONS			0	140	0	0	0
U0003	803	MISC VOC EVAPORATION	24	52	7	49099999	0.00000	TONS			0	0	0	0	0

Plant Information:

Plant Name:	ELECTRIC BOAT CORP	AFS ID : 011 - 605	CT ID: 70-5		SIC Code: 3731
Address :	75 EASTERN POINT RD, GROTON, CT		UTM Coord: Zone: 18	X: 744.4	Y: 4581
Ozone Status	Area : Greater Connecticut Area	CO Status Area: New Lo	ondon		

2002 Information:

Point	Stack	Process	Operatii	ng Scl	hedule		Rate/		Contro	l Equip	Equip	Daily Emi	ssions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0008	023	INDUST BOILER: NAT GAS,	21	30	6	10200602	0.10500	MIL CU FT			0	0.6	16.4	8.8	9.4
P0032	004	INDUST BOILER: #4 OIL > 100	17	20	5	10200504	0.00000	1000 GAL			0	0	0	0	6.6
P0055	026	INDUST BOILER: NAT GAS, <10	12	25	6	10200603	0.03500	MIL CU FT			0	0.2	5.1	2.9	3.2
P0059	027	LARGE SHIP COATING: PRIME	24	0	0	40202301	0.00000	TONS			0	0	0	0	0
P0094	029	LARGE SHIP COATING: OTHER	20	52	5	40202399	0.01300	TONS			0	26	0	0	0
P0144	040	INDUST DIESEL: #2 OIL	1	52	1	20200102	0.00200	1000 GAL			0	0.1	1.2	0.3	2.1
TABLE 7															

DETAIL LISTING OF 2002 CONNECTICUT POINT SOURCE INVENTORY															

P0145	041	INDUST DIESEL: #2 OIL	1	13	1	20200102	0.00200	1000 GAL	0	0.1	1.2	0.3	0.5
P0146	042	INDUST DIESEL: #2 OIL	1	52	1	20200102	0.00200	1000 GAL	0	0.1	1.2	0.3	0.4
P0147	043	INDUST DIESEL: #2 OIL	1	52	1	20200102	0.00200	1000 GAL	0	0.1	1.2	0.3	1
P0148	044	INDUST DIESEL: #2 OIL	1	52	1	20200102	0.00200	1000 GAL	0	0.1	1.2	0.3	1
P0149	045	COMM/INST DIESEL: PROPANE	1	52	1	20301001	0.00300	1000 GAL	0	0.1	0.4	0.4	1.2
P0150	046	INDUST DIESEL:	1	52	1	20200902	0.00200	1000 GAL	0	0.1	1.2	0.3	6.3
P0152	038	INDUST DIESEL:	1	52	1	20200902	0.00200	1000 GAL	0	0.1	1.2	0.3	1.8
P0153	039	INDUST DIESEL:	1	52	1	20200902	0.00200	1000 GAL	0	0.1	1.2	0.3	2
P0240	048	MISC PROCESS	24	52	7	39999999	0.00000		0	0	0	0	0
P0241	048	LARGE SHIP COATING: OTHER	8	51	7	40202399	0.00030	TONS	0	0.6	0	0	0
P0255	049	FABRICATED METALS: SHOT	8	51	7	30900207	0.25000	TONS	0	0	0	0	0
P0256	050	FABRICATED METALS: STEEL	8	51	7	30900205	0.00000	TONS	0	0	0	0	0
P0257	051	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00200	1000 GAL	0	0	0.5	0.1	0.7
P0258	052	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00200	1000 GAL	0	0	0.5	0.1	0
P0259	053	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00200	1000 GAL	0	0	0.5	0.1	0.7
P0260	054	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00200	1000 GAL	0	0	0.5	0.1	0.7
P0261	055	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.01000	1000 GAL	0	0.6	6	1.3	1.3
P0262	999	INDUST DIESEL:	1	52	1	20200902	0.00200	1000 GAL	0	0.1	1.2	0.3	0.8
R0057	001	INDUST BOILER: NAT GAS, <10	22	28	6	10200603	0.11400	MIL CU FT	0	0.7	13.6	9.6	9.6
R0066	004	INDUST BOILER: #4 OIL > 100	20	4	5	10200504	0.00000	1000 GAL	0	0	0	0	0
R0067	004	INDUST BOILER: #4 OIL > 100	22	25	6	10200504	0.00000	1000 GAL	0	0	0	0	3.7
R0068	005	INDUST BOILER: #4 OIL > 100	12	11	5	10200504	0.00000	1000 GAL	0	0	0	0	2.6
R0069	006	INDUST BOILER: #2 OIL >100	8	11	3	10200501	0.00000	1000 GAL	0	0	0	0	0.9
R0074	011	INDUST BOILER: #4 OIL > 100	21	30	6	10200504	0.00000	1000 GAL	0	0	0	0	13.1
R0075	012	FABRICATED METALS: SHOT	6	51	5	30900207	0.00000	TONS	0	0	0	0	0
R0094	021	FABRICATED METALS: OTHER	8	51	7	30999999	1.90000	TONS	0	0	0	0	0
R0095	022	LARGE SHIP COATING: PRIME	8	51	5	40202301	0.05000	TONS	0	100	0	0	0
R0227	024	COATING: PAINT	8	51	5	40200101	0.04600	TONS	0	19.5	0	0	0

Plant Information:

Plant Name:	U S NAVAL SUBMARINE	AFS ID : 011 - 628	CT ID: 70-28	SIC Code: 9711
Address :	RTE 12-CRYSTAL LAKE RD, GROTON, CT		UTM Coord: Zone: 18	X: 743.5 Y: 4587.1
Ozone Status	Area : Greater Connecticut Area	CO Status Area: New Lo	ondon	

2002 Information:

Point	Stack	Process	Operat	ing Sc	hedule	•	Rate/		Contro	ol Equip	Equip	Daily Emi	ssions with	h RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0001	011	INDUST DIESEL: #2 OIL	1	52	1	20200102	0.01380	1000 GAL			0	0.8	8.3	1.8	38.4
E0002	012	INDUST DIESEL: LARGE BORE,	1	52	1	20200401	0.00100	1000 GAL			0	0	0.4	0.1	0.8
E0004	022	COMM INST DIESEL: GASOLINE	24	52	7	20300301	0.00040	1000 GAL			0	0	0	0	0.6
P0061	007	INDUST DIESEL: LARGE BORE,	3	52	1	20200401	0.04500	1000 GAL			0	0.9	20.4	7.5	4.3

TABLE 7
DETAIL LISTING OF 2002 CONNECTICUT POINT SOURCE INVENTORY

P0074	008	COMM/INST BOILER: #2 OIL	24	13	1	10300501	0.00000	1000 GAL	024		0	0	0	0	1.7
P0075	009	COMM/INST BOILER: #2 OIL	24	52	7	10300501	0.00000	1000 GAL			0	0	0	0	0.6
P0096	010	INDUST TURBINE: NAT GAS	24	52	7	20200201	0.11000	MIL CU FT	028	02	0	1.4	7.8	15.3	172.1
P0202	011	COMM/INST DIESEL: #2 OIL	24	52	7	20300101	0.00300	1000 GAL			0	0.2	1.8	0.4	0.1
P0203	012	COMM/INST DIESEL: #2 OIL	24	52	7	20300101	0.00000	1000 GAL			0	0	0	0	0
P0205	014	COMM/INST DIESEL: #2 OIL	24	52	1	20300101	0.00050	1000 GAL			0	0	0.3	0.1	0
P0208	017	COMM/INST DIESEL: #2 OIL	24	52	7	20300101	0.00000	1000 GAL			0	0	0	0	0
P0210	019	COMM/INST DIESEL: #2 OIL	24	52	7	20300101	0.00010	1000 GAL			0	0	0.1	0	0
P0211	020	COMM/INST DIESEL: #2 OIL	24	52	7	20300101	0.00000	1000 GAL			0	0	0	0	0
P0213	022	COMM INST DIESEL: GASOLINE	24	52	7	20300301	0.00040	1000 GAL			0	0.1	0.1	3.2	0.6
P0214	023	COMM/INST BOILER: #2 OIL	24	52	7	10300501	0.00000	1000 GAL			0	0	0	0	0
P0226	810	FABRICATED METALS:	8	50	5	30904010	0.00100	TONS			0	0	0	0	0
P0227	013	COMM/INST DIESEL: #2 OIL	24	39	1	20300101	0.00000	1000 GAL			0	0	0	0	0
P0228	811	FABRICATED METALS:	8	50	5	30904010	0.00200	TONS			0	0	0	0	0
P0231	011	FABRICATED METALS:	8	50	5	30900201	0.00500	TONS			0	0	0	0	0
P0235	012	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00020	1000 GAL			0	0	0.1	0	0.1
R0196	001	COMM/INST BOILER: NAT GAS,	24	44	7	10300602	0.78400	MIL CU FT			0	4.7	88.3	0.8	0.5
R0197	002	COMM/INST BOILER: NAT GAS,	24	22	7	10300602	0.41600	MIL CU FT			0	2.2	44.3	0	0
R0198	003	COMM/INST BOILER: #2 OIL	24	13	7	10300501	0.00000	1000 GAL			0	0	0	0	1.7
U0003	803	COATING: ENAMEL	8	50	5	40200501	0.00700	TONS			0	3.4	0	0	0
U0004	804	THINNING SOLVENTS: ETHYL	8	50	5	40200910	0.00000	TONS			0	0	0	0	0
U0005	805	THINNING SOLVENTS: MINERAL	8	52	5	40200920	0.01800	TONS			0	6.2	0	0	0
U0006	806	THINNING SOLVENTS: XYLENE	8	50	5	40200924	0.05200	TONS			0	6	0	0	0
<u>Plant I</u>	nform	nation:													
Plant N	lame.	UNIV OF CT / AVERY POINT			AFS	ID · 011 - 635		CT ID· 70-	35		SIC Co	de: 8221			
Addres	c ·	AVERY POINT GROTON CT				ID . 011 055	UTM (Cord: Zone:	18 X-	745.6	V: 4578 1				
Orana	S. Status	Aver Creater Corportiout Area			CO	Status Areas Norre	London	Joord. Zone.	10 A.	745.0	1.4570.1				
Ozone	Status	Area : Greater Connecticut Area			0.	Status Area: New	London								
<u>2002 I</u>	nform	ation:													
Point	Stack	Process	Operatin	ng Sch	edule		Rate/		Contro	l Equip	Equip	Daily Emi	ssions with	h RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0110	002	INDUST DIESEL: NAT GAS	24	6	7	20200202	1.10000	MIL CU FT			0	52.3	711.7	554.4	0
P0111	003	COMM/INST DIESEL: #2 OIL	24	52	7	20300101	0.10000	1000 GAL			0	5.8	60.4	13	0.2
P0112	004	INDUST DIESEL: #2 OIL	24	52	7	20200102	0.14000	1000 GAL			0	8.1	84.6	18.2	0.2
P0113	005	INDUST DIESEL: #2 OIL	24	52	7	20200102	0.04800	1000 GAL			0	2.8	29	6.2	0.1
P0114	006	INDUST DIESEL: #2 OIL	24	52	7	20200102	0.00000	1000 GAL			0	0	0	0	0
P0115	007	COMM/INST BOILER: NAT GAS,	24	8	7	10300602	0.00000	MIL CU FT			0	0	0	0	10.5
P0116	007	COMM/INST BOILER: NAT GAS,	24	24	7	10300602	0.00300	MIL CU FT			0	0	0.3	0.3	0
P0117	007	COMM/INST BOILER: NAT GAS,	24	18	7	10300602	0.00000	MIL CU FT			0	0	0	0	11
P0118	008	INDUST DIESEL: #2 OIL	24	52	7	20200102	0.00000	1000 GAL			0	0	0	0	0

Plant Information:

Plant N	Name:	DOW CHEMICAL CO	СТ		AFS	ID : 011 - 1202	2 UTM (CT ID: 92-	-2 - 18 - X -	7137	SIC Coc	le: 2821			
Ozone	Status	Area : Greater Connecticut Area	CI		COS	Status Area: Ne	w London	LUUIU. LUIIE.	. 10 A.	145.1	1.4391.0				
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Contro	l Equip	Equip	Dailv Em	issions with	h RE (lbs/ d	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0006	043	INDUST BOILER: #2 OIL >100	24	51	7	10200501	0.65400	1000 GAL	•	-	0	0.8	30.1	3.3	3.1
P0007	044	INDUST BOILER: #2 OIL >100	24	4	7	10200501	0.00500	1000 GAL			Ő	0	0.1	0	0.1
P0010	047	PLASTICS PRODUCTION:	24	.52	7	30101817	189.74000	TONS	072	02	99.9	9.3	0	Ő	0
P0015	007	INDUST BOILER: NAT GAS.	24	45	7	10200602	0.38700	MIL CU FT	• • =		0	2.3	23.2	32.5	38.6
P0016	022	PLASTICS PRODUCTION	24	38	7	30101899	346.99200	TONS	001	02	99.9	122.7	0	0	0
P0018	053	CHEMICAL PRODUCTION	24	52	7	30199999	0.29700	TONS	099	02	99.9	0.2	6.4	1.3	0.8
P0019	054	INDUST DIESEL: LARGE BORE,	1	52	1	20200401	0.08300	1000 GAL			0	1.6	33.5	22.5	1.8
P0020	008	INDUST BOILER: NAT GAS,	24	35	7	10200602	0.17200	MIL CU FT			0	1	10.3	14.4	15.3
P0022	009	TSDF LAND TREATMENT:	24	17	7	50300820	0.00800	ACRES			0	10.2	0	0	0
R0075	038	PLASTICS PRODUCTION: ABS	24	46	7	30101849	97.23700	TONS	072	02	99.9	83.1	0	0	0
R0078	039	PLASTICS PRODUCTION	24	40	7	30101899	19.58800	TONS			0	0	0	0	0
Plant]	[nform	ation:													
Plant N	Jame.	I ISBON TEXTILE PRINTS IN	C		AFS	$ID \cdot 011 - 1304$	1	CT ID: 93-	.4		SIC Cor	le: 2261			
Addree	vanne.	RTE 12 LISBON CT	C		111.5	ID:011 150-	UTM (Coord: Zone:	- 10 V	250.5	V: 1608 6	10. 2201			
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Ne	w London	coord. Zone.	. I) A.	250.5	1.4008.0				
2002 1	nforme	ation													
2002 1															
Point	Stack	Process	Operat	ing Sc	hedule		Rate/		Contro	ol Equip	Equip	Daily Em	issions with	h RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0003	003	INDUST BOILER: #4 OIL > 100	6	17	7	10200504	0.00300	1000 GAL			0	0	0.1	0	0.2
P0004	009	TEXTILE: FABRIC, PRINTING	8	50	5	33000102	0.00000	TONS			0	0	0	0	0
P0005	010	PROCESS FUEL: LPG	8	50	5	39001089	0.32300	1000 GAL	0	0	0	0.2	4.5	0.6	0.9
P0006	011	TEXTILE: FABRIC, PRINTING	8	50	5	33000102	0.00000	TONS			0	0	0	0	0
P0011	012	TEXTILE: FABRIC, PRINTING	8	50	5	33000102	17.22000	TONS			0	64.6	0.8	0.1	0.2
P0018	013	TEXTILE: FABRIC, PRINTING	8	50	5	33000102	17.22000	TONS			0	69.8	0.8	0.1	0.2

Plant Information:

Plant N Addres	Name:	RILEY ENERGY SYS-LISBON 425 S BURNHAM HWY, LISBO	CORP ON, CT		AFS	ID : 011 - 13	314 UTM C	CT ID: 93- Coord: Zone:	-14 : 18 X:	746.6	SIC Cod Y: 4607.8	le: 4953			
Ozone	Status	Area : Greater Connecticut Area			CO:	Status Area: I	New London								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operati	ng Scl	hedule	;	Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0008	001	MUNICIPAL INCIN: MULTIPLE	24	52	7	50100101	249.27000	TONS	107		40	7.5	857.7	44.9	44.8
P0009	001	MUNICIPAL INCIN: MULTIPLE	24	52	7	50100101	249.69000	TONS	107		40	4.7	864.2	54.9	54.6
P0010	003	MISC PROCESS	10	52	1	39999999	20.16000				0	0	0	0	0
Plant 1	Inform	ation:													
Plant N	Vame:	RAND-WHITNEY			AFS	ID:011-15	503	CT ID: 107	7-3		SIC Cod	le: 2652			
Addres	ss :	RTE 163, MONTVILLE, CT					UTM C	Coord: Zone:	:18 X:	739 Y	: 4592.4				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: I	New London								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operati	ng Scl	hedule	•	Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ d	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0019	003	INDUST BOILER: NAT GAS, >100	24	52	7	10200601	2.26000	MIL CU FT	024	02	0	5.7	89.2	270.8	271.8
Plant]	Inform	ation:													
Plant N	Jame:	SMURFIT-STONE CONTAINE	R		AFS	ID:011-14	504	CT ID: 107	7-4		SIC Coc	le: 2631			
Addres	ss :	125 DEPOT RD. UNCASVILLE	E. CT				UTM C	Coord: Zone:	:18 X:	663.8	Y: 4592.8				
Ozone	Status	Area : Greater Connecticut Area	, -		COS	Status Area: I	New London								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operati	ng Scl	hedule	•	Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ d	av)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VÓC	NOx	CO-s	CO-w
E0001	001	INDUST DIESEL: #2 OIL	1	52	1	20200102	1.00000	1000 GAL			0	58	709.3	141	0.8
P0008	004	INDUST BOILER: #6 OIL, >100	0	1	3	10200401	0.00000	1000 GAL	033	02	0	0	0	0	0
R0035	003	PAPER PRODUCTS	24	49	7	30701399	540.80000	TONS			0	152	0	0	0
U0003	803	PAPER PRODUCTS	24	52	7	30701399	540.80000	TONS			0	2	0	0	0
00004	804	PAPER PRODUCTS	24	49	1	30/01399	540.80000	TONS			U	3.9	0	0	0

Plant Information:

Plant N Addres	Name: ss :	NRG MONTVILLE OPERATIO 74 LATHROP RD, UNCASVIL	ONS, LE, CT		AFS	ID : 011 - 15	05 UTM C	CT ID: 107 Coord: Zone:	7-5 18 X:	742.3	SIC Cod Y: 4590.3	e: 4911			
Ozone	Status A	Area : Greater Connecticut Area			COS	Status Area: N	lew London								
<u>2002 I</u>	nforma	tion:													
Point	Stack	Process	Operatio	ıg Scl	nedule		Rate/		Contro	l Equip	Equip	Daily Em	nissions wit	h RE (lbs/ d	ay)
ID P0012 P0013 P0032 P0037 R0017 R0020 R0021 R0022	1D 007 007 008 009 003 004 005 006	Description UTILITY BOILER: NAT GAS, UTILITY BOILER: NAT GAS, UTILITY DIESEL: #2 OIL UTILITY DIESEL: #2 OIL UTILITY BOILER: NAT GAS, UTILITY BOILER: #6 OIL, UTILITY DIESEL: #2 OIL UTILITY DIESEL: #2 OIL	H/D 1 24 24 24 24 24 24 24 24 24	D/W 52 52 52 23 52 52 52 52 52 52	W/Y 7 7 7 7 7 7 7 7 7	SCC 10100602 20100102 20100102 10100604 10100404 20100102 20100102	Day 0.15900 0.00000 0.00300 4.20400 98.58000 0.01300 0.01400	Units MIL CU FT 1000 GAL 1000 GAL MIL CU FT 1000 GAL 1000 GAL 1000 GAL 1000 GAL	033 025	03	EII 0 0 0 0 5 30 0 0	0.9 0.9 0 0.1 25.6 106.5 0.4 0.4	NOx 14.3 13.8 0 1.5 563 3581.7 4.8 5.3	5.6 5.6 0 0.5 103.8 494.5 1.2 1.3	17.2 4.7 0 0.3 19.6 41.1 1.4
Plant 1	Inform	ation:													
Plant N Addres Ozone	Vame: ss : Status A	A E S THAMES, LLC 141 DEPOT RD, UNCASVILLE Area : Greater Connecticut Area	E, CT		AFS CO S	ID : 011 - 15 Status Area: N	44 UTM C Iew London	CT ID: 107 Coord: Zone:	-44 18 X:	742.5	SIC Cod Y: 4591.1	e: 4911			
2002 I	nforma	<u>ition:</u>													
Point ID P0010 P0011 P0014 P0015 P0020 P0021	Stack ID 005 005 006 002 003 004	Process Description UTILITY BOILER: BIT COAL, UTILITY BOILER: BIT COAL, LIME MFG: ROTARY KILN MISC PROCESS COMM/INST DIESEL: #2 OIL UTILITY DIESEL: #2 OIL	Operatin H/D 1 24 24 5 15 1 1	ng Sch D/W 52 52 52 52 20 45	nedule W/Y 7 7 7 1 1	SCC 10100217 10100217 30501604 3999999 20300101 20100102	Rate/ Day 949.32000 936.93000 207.25400 2,581.5400 0.00059 0.00000	Units TONS TONS TONS 1000 GAL 1000 GAL	Contro 1 025 025	l Equip 2	Equip Eff 84.3 84.3 0 0 0 0	Daily Em VOC 126 186.8 0.3 0 0 0	nissions wit NOx 1392.6 1178.2 5.1 0 0.4 0	h RE (lbs/ d CO-s 1591.2 1481.8 1.1 0 0.1 0	ay) CO-w 1560.7 1492 1.2 0 0.4 0
Plant 1	Inform	ation:													
Plant N Addres Ozone	Vame: ss : Status A	PFIZER INC CRD 30-80 PEQUOT AVE, NEW LO Area : Greater Connecticut Area	NDON, (СТ	AFS CO S	ID : 011 - 18 Status Area: N	30 UTM C Iew London	CT ID: 128 Coord: Zone:	3-130 18 X:	741.1	SIC Cod Y: 4579.3	e:			
2002 1	nforma	ition:													
Point ID	Stack ID	Process Description	Operatii H/D	ng Scl D/W	nedule W/Y	SCC	Rate/ Day	Units	Contro 1	l Equip 2	Equip Eff	Daily En VOC	nissions wit NOx	h RE (lbs/ d CO-s	ay) CO-w

P0040 P0041 P0042	001 002 003	COMM/INST BOILER: NAT GAS, COMM/INST BOILER: #2 OIL COMM/INST BOILER: #2 OIL	24 24 24	52 52 52	7 7 7	10300602 10300501 10300501	$0.05900 \\ 0.05250 \\ 0.04400$	MIL CU FT 1000 GAL 1000 GAL		0 0 0	0.4 0.2 0.1	7.3 4.3 3	5.2 2.8 1.8	3 1.6 2.3
Plant 1	[nform	ation:												
Plant N Addres Ozone	Name: ss : Status	THAMES PRINTING CO INC 1 WISCONSIN AVE, NORWIC Area : Greater Connecticut Area	H, CT		AFS	ID : 011 - 2414 Status Area: New I	UTM C London	CT ID: 139 loord: Zone:	9-114 18 X: 740.7	SIC Code Y: 4605.2	e: 2759			
<u>2002 I</u>	nforma	ation:												
Point ID U0001 U0002	Stack ID 801 802	Process Description PRINTING: LITHOGRAPHIC PRINTING: LITHOGRAPHIC	Operati H/D 24 24	ng Sch D/W 50 50	nedule W/Y 5 5	SCC 40500411 40500413	Rate/ Day 0.00600 0.01700	Units TONS TONS	Control Equip 1 2	Equip Eff 0 0	Daily Emi VOC 6 34	ssions with NOx 0 0	RE (lbs/ da CO-s 0 0	y) CO-w 0 0
Plant]	[nform	ation:												
Plant N Addres Ozone	Vame: ss : Status	PHELPS DODGE COPPER PRC 41 WAWECUS ST, NORWICH, Area : Greater Connecticut Area	DD CO , CT		AFS CO S	ID : 011 - 2432 Status Area: New I	UTM C London	CT ID: 139 oord: Zone:	9-132 18 X: 741 Y:	SIC Code 4604.1	e: 3351			
<u>2002 I</u>	nforma	ation:												
Point ID P0024 P0027 U0001	Stack ID 001 003 801	Process Description INDUST BOILER: NAT GAS, SEC COPPER SMELTING: OTHER THINNING SOLVENTS:	Operati H/D 20 24 24	ng Sch D/W 49 49 49	nedule W/Y 5 5 6	SCC 10200602 30400299 1, 40200912	Rate/ Day 0.16000 ,292.9000 0.00600	Units MIL CU FT TONS TONS	Control Equip 1 2 022	Equip Eff 0 99 0	Daily Emi VOC 1 4.3 12	ssions with NOx 16 251.1 0	RE (lbs/ da) CO-s 13.4 60.4 0	y) CO-w 8.4 47.2 0
Plant]	[nform	ation:												
Plant N Addres Ozone	Vame: ss : Status	AMERICAN REF FUEL CO OF 132 MILITARY HWY, PRESTO Area : Greater Connecticut Area	SE CT N, CT		AFS CO S	ID : 011 - 2912 Status Area: New I	UTM C London	CT ID: 150 boord: Zone:)-12 18 X: 744.9	SIC Code Y: 4595.5	e: 4953			
<u>2002 I</u>	nforma	ation:												
Point ID E0001 P0001 P0002	Stack ID 002 001 001	Process Description COMM/INST DIESEL: #2 OIL MUNICIPAL INCIN: SINGLE MUNICIPAL INCIN: SINGLE	Operati H/D 1 24 24	ng Sch D/W 52 52 52 52	nedule W/Y 1 7 7	SCC 20300101 50100102 3 50100102 3	Rate/ Day 0.10653 365.00000 363.00000	Units 1000 GAL TONS TONS	Control Equip 1 2	Equip Eff 0 0 0	Daily Emi VOC 6.2 8.5 8.4	ssions with NOx 64.3 1679 1593.6	RE (lbs/ day CO-s 13.8 259.5 217.8	y) CO-w 0.4 244.3 207.6

Plant	Inform	nation:
-------	--------	---------

Plant N	Vame:	SPRAGUE PAPERBOARD INC			AFS	ID : 011 - 3102		CT ID: 170	-2		SIC Cod	e: 2631			
Addres	s:	130 INLAND RD, VERSAILLES	S, CT				UTM (Coord: Zone:	18 X:	746.3	Y: 4611.8				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: New	London								
<u>2002 I</u>	nform	ation:													
Point	Stack	Process	Operatio	ng Sc	hedule		Rate/		Contro	l Equip	Equip	Daily En	issions with	h RE (lbs/ d	lay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
E0001	003	MISC PROCESS	24	33	7	39999999	0.00000				0	0	0	0	1.5
E0002	004	MISC PROCESS	24	23	7	39999999	0.00000				0	0	0	0	1.5
E0003	005	MISC PROCESS	24	23	7	39999999	0.00000				0	0	0	0	1.5
E0004	006	MISC PROCESS	24	26	7	39999999	0.00000				0	0	0	0	1.5
E0005	007	PROCESS FUEL: NAT GAS	24	50	7	39000689	0.08000	MIL CU FT	0	0	0	0.5	10.1	1.7	1.1
E0006	008	PROCESS FUEL: NAT GAS	24	52	7	39000689	0.08000	MIL CU FT	0	0	0	0.5	10.1	1.7	1.1
E0007	009	PROCESS FUEL: NAT GAS	24	50	7	39000689	0.11000	MIL CU FT	0	0	0	0.6	9.9	2.3	1.4
P0001	002	INDUST BOILER: NAT GAS,	24	19	7	10200602	0.01000	MIL CU FT			0	0	0	0	1.6
R0003	001	INDUST BOILER: NAT GAS, >100	24	50	7	10200601	4.62000	MIL CU FT			0	27.4	1155.1	388.1	317.9
U0001	801	PAPER COATING	24	50	7	40201301	0.00700	TONS			0	14	0	0	0
Plant]	[nform	nation:													
Plant N	Jame:	DOMINION NUCLEAR CT., IN	C.		AFS	ID:011-3803		CT ID: 199	-3		SIC Cod	e: 4911			
Addres	ss :	ROPE FERRY RD. WATERFOR	ND. CT				UTM (oord: Zone:	18 X:	737.1	Y: 4576.9				
Ozone	Status	Area : Greater Connecticut Area	ш, ст		COS	Status Area: New	London		10 11.	10111	1. 1070.9				
<u>2002 I</u>	nform	ation:													
Point	Stack	Process	Operatio	ng Sc	hedule		Rate/		Contro	l Equin	Equip	Daily Fr	issions wit	h RF (lbs/ d	lav)
ID	ID	Description		D/W	W/V	SCC	Dov	Unite	1	n Equip	Equip		NOv	CO_{\circ}	CO w
	ID 004		п/D	12	VV / I	SCC 20200401	Day		1	2		VUC	NOX	CO-s	CO-w
E0001	004	INDUST DIESEL: LARGE BURE,	0 14	13	1	20200401	0.00100	1000 GAL			0	0	0.5	0.1	0.1
P0007	007	COMM/INST DOILER: #4 OIL < 100	0 14	10	4	10200504	0.01300	1000 GAL			0	0	0.3	0.1	3.7
P0008	007	COMM/INST DULER: #4 OIL < 100 INDUST DIESEL + LADGE DODE	0 15	19	5	20200401	0.00800	1000 GAL			0	03	0.4	24	1.9
P0009	008	INDUST DIESEL. LARGE BORE,	4	14	1	20200401	0.02200	1000 GAL			0	0.3	0.J	2.4	10.0
P0010	009	INDUST DIESEL LARGE BORE,	4	14	1	20200401	0.02200	1000 GAL			0	0.3	6.7	2.4	23.9
P0017	010	COMM/INST DOIL ED: DOODANE	5	25	1	20200401	0.01000	1000 GAL			0	0.1	0.2	1.1	13.0
P0045	014	INDUST DIESEL + #2 OII	<i>S</i>	55	2	20200102	0.00200	1000 GAL			0	0	0.1	0	0.5
P0045	017	INDUST DIESEL. #2 OIL	0	12	2	20200102	0.00010	1000 GAL			0	0	0.1	0	0.1
P0040	018	INDUST DIESEL. #2 OIL	4	13	ے 1	20200102	0.00000	1000 GAL			0	0	0	0	0.4
P0052	010	INDUST DIESEL #2 OIL	3	12	1	20200102	0.00000	1000 GAL			0	0	0	0	0
P0052	020	INDUST DIESEL #2 OIL	8	12	1	20200102	0.00000	1000 GAL			0	0.1	0.8	0.1	0
10055		The second	()	.,		/ 4 / / 4 // 1 / / / /	V.(N.).N.()				11		11/3		
P0055	020	INDUST DIESEL: #2 OIE	6	10	1	20200401	0.05500	1000 GAI			õ	0.8	23.5	6.1	70

P0056	022	INDUST DIESEL: LARGE BORE,	5	14	1	20200401	0.05800	1000 GAL		0	0.8	24.8	6.4	52.9
P0000	025	COMM/INST DIESEL: #2 OIL COMM/INST BOIL EP: #4 OIL < 10	10 24	13	1	20300101	0.00000	1000 GAL		0	0	0	0	0
R0003	001	COMM/INST BOILER: #4 OIL < 10 COMM/INST BOILER: #4 OIL < 10	$10 24 \\ 10 24$	26	0	10300504	0.00000	1000 GAL		0	0	0	0	0
R0004	001	COMM/INST BOILER: #4 OIL < 10	0 24	20	1	10300504	0.00000	1000 GAL		0	0	0	0	0
R0005	001	INDUST DIESEL: LARGE BORE.	24	13	0	20200401	0.00000	1000 GAL		0	0	0	0	0
DI	г.е.									÷	-	÷	-	÷
Plant	Inform	lation:												
Plant N	Jame:	UNIV OF CT / STORRS			AFS	ID : 013 - 615		CT ID: 98-	15	SIC Coc	le: 8221			
Addres	ss :	25 LEDOYT RD, U-38, STORR	S, CT				UTM C	Coord: Zone:	18 X: 728.6	Y: 4631.3				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Tolla	nd							
2002 I	nform	ation:												
Point	Stack	Process	Operati	ng Scl	nedule		Rate/		Control Equip	Equip	Daily Em	issions with	n RE (lbs/ da	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
E0001	015	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.25600	1000 GAL		0	14.8	154.6	33.3	1.6
E0002	030	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00500	1000 GAL		0	0.3	3	0.7	3.3
E0003	031	COMM/INST DIESEL: NAT GAS	8	13	5	20300201	0.00040	MIL CU FT		0	0	0.1	0.1	0.1
E0004	007	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00000	1000 GAL		0	0	0	0	0
P0008	012	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.05100	1000 GAL		0	3	30.8	6.6	0.5
P0009	013	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.04400	1000 GAL		0	2.6	26.6	5.7	0.5
P0011	005	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.08600	1000 GAL		0	5	51.9	11.2	0.5
P0012	006	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.18100	1000 GAL		0	10.5	109.3	23.5	1.2
P0014	008	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00120	1000 GAL		0	0.1	0.7	0.2	0.8
P0015	009	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00100	1000 GAL		0	0.1	0.6	0.1	0.4
P0017	011	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.01800	1000 GAL		0	1	10.9	2.3	0.7
P0018	012	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00400	1000 GAL		0	0.2	2.4	0.5	0.8
P0019	013	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00100	1000 GAL		0	0.1	0.6	0.1	1.3
P0020	014	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00400	1000 GAL		0	0.2	2.4	0.5	2.7
P0026	016	COMM/INST DIESEL: #2 OIL	24	35	7	20300101	0.00000	1000 GAL		0	0	0	0	0
P0027	017	COMM/INST DIESEL: NAT GAS	8	27	5	20300201	0.00080	MIL CU FT		0	0	2.3	0.1	0
P0028	017	COMM/INST DIESEL: NAT GAS	8	27	5	20300201	0.00080	MIL CU FT		0	0	2.3	0.1	0
P0030	016	COMM/INST DIESEL: PROPANE	1	52	1	20301001	0.00100	1000 GAL		0	0	0.1	0.1	0.4
P0031	017	COMM/INST DIESEL: PROPANE	1	52	1	20301001	0.00120	1000 GAL		0	0	0.2	0.2	0.6
P0032	018	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00090	1000 GAL		0	0	0.5	0.1	0.5
P0033	019	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00200	1000 GAL		0	0.1	1.2	0.3	1.2
P0034	020	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00000	1000 GAL		0	0	0	0	0.1
P0035	021	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00020	1000 GAL		0	0	0.1	0.1	0.2
P0036	022	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00010	1000 GAL		0	0	0	0	0.2
P0037	023	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00013	1000 GAL		0	0	0	0	0.2
P0038	024	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00000	1000 GAL		0	0	0	0	1.6

TABLE 7	
DETAIL LISTING OF 2002 CONNECTICUT POINT SOURCE INVENTOR	Y

P0039	025	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00010	1000 GAL		0	0	0.1	0	0.1
P0043	029	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00030	1000 GAL		0	0	0.1	0	0.1
R0014	001	COMM/INST BOILER: NAT GAS,	24	10	7	10300602	0.01700	MIL CU FT		0	0.1	3.9	1.4	7.6
R0015	001	COMM/INST BOILER: NAT GAS,	24	1	7	10300602	0.03780	MIL CU FT		0	0.2	10.9	3.2	1
R0016	001	COMM/INST BOILER: #2 OIL	24	17	7	10300501	0.00140	1000 GAL		0	0	0	0	93.8
R0017	002	COMM/INST BOILER: NAT GAS,	24	19	7	10300602	0.50000	MIL CU FT		0	3	100	42	5.2
R0018	002	COMM/INST BOILER: #2 OIL	24	47	7	10300501	0.70000	1000 GAL		0	4.5	181.3	62.3	34.7
R0019	002	COMM/INST BOILER: NAT GAS,	24	33	7	10300602	0.60000	MIL CU FT		0	3.6	80.5	50.4	31.1
R0020	003	COMM/INST BOILER: NAT GAS,	24	8	7	10300601	0.30000	MIL CU FT		0	1.8	60	25.2	16.7
R0021	004	COMM/INST BOILER: #2 OIL	24	19	7	10300501	0.00000	1000 GAL		0	0	0	0	71.4
Plant]	Inform	nation:												
Plant N	Jame:	ROCKVILLE GENERAL HOSP	ITAL		AFS	ID : 013 - 1205		CT ID: 187	-5	SIC Co	le: 8062			
Addres		31 UNION ST ROCKVILLE C	Г			12 1010 1200	UTM (Coord: Zone:	18 X·7117	$V \cdot 46381$				
Ozone	s . Statue	Area : Greater Connecticut Area	1		CO	Status Area: Tolla	nd	zoora. Zone.	10 2. /11./	1. 4050.1				
OZOIIC	Status	Area : Greater Connecticut Area			CO	Status Area. 1011a	nu							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operat	ing Sc	hedule	;	Rate/		Control Equip	Equip	Daily Em	issions with	n RE (lbs/ da	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
R0008	003	COMM/INST BOILER: #4 OIL < 100	0 24	26	7	10300504	0.36000	1000 GAL		0	0.2	7.2	1.8	1.7
R0009	003	COMM/INST BOILER: #4 OIL < 100	0 24	26	7	10300504	0.31400	1000 GAL		0	0.2	6.3	1.6	0.8
R0080	004	COMM/INST DIESEL: #2 OIL	24	52	1	20300101	0.00200	1000 GAL		0	0.1	1.2	0.3	1
Plant]	Inform	nation:												
Di	,				. 50	ID 010 1015				010 C	1 22 62			
Plant N	ame:	AMERBELLE CORP			AFS	ID:013-1215		CT ID: 187	-15	SIC Coc	de: 2262			
Addres	ss :	104 E MAIN ST, VERNON, CT					UTM C	Coord: Zone:	18 X: 711.8	Y: 4637.7				
Ozone	Status	Area : Greater Connecticut Area			CO	Status Area: Tolla	nd							
<u>2002 I</u>	nform	ation:												
Point	Stack	Process	Operat	ing Scl	hedule	•	Rate/		Control Equip	Equip	Daily Em	issions witl	n RE (lbs/ da	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Day	Units	1 2	Eff	VOC	NOx	CO-s	CO-w
E0001	023	PROCESS FUEL: NAT GAS	24	22	7	39000689	0.00000	MIL CU FT		0	0	0	0	1.3
P0009	018	INDUST BOILER: WASTE OIL	24	50	7	10201302	1.65000	1000 GAL		0	2.4	32.1	8.8	11.8
P0010	018	INDUST BOILER: WASTE OIL	24	34	6	10201302	0.52100	1000 GAL		0	0.8	10.2	2.9	2
R0044	011	PROCESS FUEL: NAT GAS	24	50	5	39000689	0.05000	MIL CU FT	0 0	0	1.3	5	1.1	0.1
R0045	011	TEXTILE: FABRIC, TENTER	24	50	5	33000104	0.14000	TONS		0	5.4	5	1.1	0.5
R0046	006	TEXTILE: FABRIC, TENTER	24	50	5	33000104	0.14000	TONS		0	5.4	5	1.1	0.5
R0048	002	TEXTILE: FABRIC, TENTER	24	50	5	33000104	0.11300	TONS		0	4.4	3.9	0.8	0.4
R0049	001	TEXTILE: FABRIC, TENTER	24	50	5	33000104	0.14000	TONS		0	5.4	5	1.1	0.5
R0050	017	PROCESS FUEL: NAT GAS	16	50	5	39000689	0.05000	MIL CU FT		0	0.3	5	1.1	0.4
R0051	017	PROCESS FUEL: NAT GAS	20	50	1	39000689	0.00000	MIL CU FT		0	0	0	0	0

R0064 R0065 R0068 U0001 U0002 U0003	022 022 022 801 802 803	FABRIC COATING FABRIC COATING PROCESS FUEL: NAT GAS THINNING SOLVENTS: MEK THINNING SOLVENTS: MINERAL FABRIC DYEING	24 24 24 8 24 24	50 50 50 50 50 50	6 6 4 6 5 5	40201101 40201101 39000689 40200918 40200920 40201201	$\begin{array}{c} 1.10000\\ 1.34000\\ 0.00800\\ 0.01260\\ 0.01400\\ 2.78700 \end{array}$	TONS TONS MIL CU FT TONS TONS TONS DYE	021 021 0	0	97.8 97.8 0 0 0 0	479.7 584.4 0 25.2 28 11.2	9 9 0.8 0 0 0	$ \begin{array}{r} 1.9 \\ 1.9 \\ 0.2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0.7 \\ 1.4 \\ 0.1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $
Plant I	nform	ation:	SION			ID : 015 202		CT ID: 24	2			1 4022			
Addres	s :	539 TOWER HILL RD, CHAPLI	N, TX		АГЗ	ID : 013 - 302	UTM C	CT ID: 54-	2 18 X:	735.9	Y: 4633.1	le: 4922			
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Wind	ham								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operating	g Sch	edule		Rate/		Control	l Equip	Equip	Daily Emi	ssions with	n RE (lbs/ d	ay)
ID	ID	Description	H/D D)/W \	W/Y	SCC	Day	Units	1	2	Eff	VOC	NOx	CO-s	CO-w
P0001 P0002	001	INDUST TURBINE: NAT GAS	5	10	1	20200201	0.11500	MIL CU FT	099		0	0.5	16.1 21.8	14.5	4/9.8
P0002	002	INDUST DIESEL: NAT	1	1	1	20200253	0.00000	MIL CU FT	077		0	0.0	0	0	0.6
<u>Plant I</u>	nform	nation:													
Dlant N	Inman	DELTA DUDDED CO CUD OEN	TNT			ID : 015 C47			47		ara a	0.000			
I fam Iv	ame:	DELTA RUBBER CO SUB OF N	NIN,		AFS	ID:015-04/		CT ID: 89-	4/		SIC Coc	le: 3069			
Addres	s :	39 WAUREGAN RD, DANIELS	NN, ON, CT		AFS	ID : 015 - 047	UTM C	CT ID: 89-	47 19 X:	260.1	SIC Coc Y: 4630.7	le: 3069			
Addres Ozone	s : Status	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area	NN, ON, CT		CO S	ID : 015 - 647 Status Area: Wind	UTM C ham	CT ID: 89-4 loord: Zone:	47 19 X::	260.1	SIC Coc Y: 4630.7	le: 3069			
Addres Ozone 2002 In	s : Status nforma	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area	ON, CT		CO S	ID : 015 - 647 Status Area: Wind	UTM C ham	CTTD: 89-4 Coord: Zone:	47 19 X::	260.1	Y: 4630.7	le: 3069			
Addres Ozone 2002 In Point	s : Status <u>nforma</u> Stack	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process	ON, CT	g Sch	CO S co s	Status Area: Wind	UTM C ham Rate/	CT ID: 89-4 coord: Zone:	47 19 X∷ Control	260.1	Y: 4630.7 Equip	le: 3069 Daily Emi	ssions with	n RE (lbs/ d	ay)
Addres Ozone 2002 L Point ID	s : Status nforma Stack ID	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description	ON, CT Operating H/D D	g Sch	CO S edule W/Y	SCC	UTM C ham Rate/ Day	Units	47 19 X: Control	260.1 l Equip 2	Y: 4630.7 Equip Eff	Daily Emi VOC	ssions with NOx	n RE (lbs/ d CO-s	ay) CO-w
Addres Ozone 2002 In Point ID P0085	s : Status <u>nforma</u> Stack ID 001	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description COATING: ADHESIVE	ON, CT Operating H/D D 24	g Sch D/W V 50	CO S edule W/Y 6	Status Area: Wind SCC 40200701	UTM C ham Rate/ Day 0.00100	Units TONS	47 19 X: Control 1	260.1 l Equip 2	Equip Eff 0	Daily Emi VOC	issions with NOx 0	n RE (lbs/ d CO-s 0	ay) CO-w 0
Addres Ozone 2002 In Point ID P0085 P0086 U0001	s : Status <u>nforma</u> Stack ID 001 002 801	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description COATING: ADHESIVE COATING: PAINT THINNING SOLVENTS: MEK	ON, CT Operating H/D D 24 24 24 24	g Sch 50 50 50	CO S eedule W/Y 6 5 5	Status Area: Wind SCC 40200701 40200101 40200918	UTM C ham Rate/ Day 0.00100 0.00050 0.00050	Units TONS TONS TONS	47 19 X: Control 1	260.1 l Equip 2	Equip Eff 0 0	Daily Emi VOC 14	issions with NOx 0 0	n RE (lbs/ d CO-s 0 0 0	ay) CO-w 0 0
Addres Ozone 2002 In Point ID P0085 P0086 U0001 U0002	ame: s : Status <u>aforma</u> Stack ID 001 002 801 802	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description COATING: ADHESIVE COATING: PAINT THINNING SOLVENTS: MEK THINNING SOLVENTS: TOLUENE	ON, CT Operatin H/D D 24 24 24 24 24 24	g Sch 50 50 50 50 50	COS eedule W/Y 6 5 5 6	SCC 40200701 40200101 40200918 40200922	UTM C ham Rate/ Day 0.00100 0.00050 0.00070 0.00000	Units TONS TONS TONS TONS TONS	47 19 X: Control	260.1 l Equip 2	SIC Coc Y: 4630.7 Eff 0 0 0 0	Daily Emi VOC 1.4 0	issions with NOx 0 0 0 0	n RE (lbs/ d CO-s 0 0 0 0	ay) CO-w 0 0 0 0 0
Addres Ozone 2002 In Point ID P0085 P0086 U0001 U0002 U0003	s : Status Stack ID 001 002 801 802 803	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description COATING: ADHESIVE COATING: PAINT THINNING SOLVENTS: MEK THINNING SOLVENTS: TOLUENE THINNING SOLVENTS: ETHYL	ON, CT Operating H/D D 24 24 24 24 24 24 24	g Sch 50 50 50 50 50 50	CO S eedule W/Y 6 5 5 6 6	SCC 40200701 40200101 40200918 40200922 40200910	UTM C ham Rate/ Day 0.00100 0.00050 0.00070 0.00000 0.00000	Units TONS TONS TONS TONS TONS TONS TONS	47 19 X: 1 Control 1	260.1 l Equip 2	SIC Coc Y: 4630.7 Eff 0 0 0 0 0 0	Daily Emi VOC 1.4 0	issions with NOx 0 0 0 0 0 0	n RE (lbs/ d CO-s 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0
Addres Ozone 2002 L Point ID P0085 P0086 U0001 U0002 U0003 U0004	s : Status <u>nforma</u> Stack ID 001 002 801 802 803 803	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description COATING: ADHESIVE COATING: PAINT THINNING SOLVENTS: MEK THINNING SOLVENTS: TOLUENE THINNING SOLVENTS: ETHYL THINNING SOLVENTS: METHYL	Operating H/D D 24 24 24 24 24 24	g Sch 50 50 50 50 50 50	CO S eedule W/Y 6 5 5 6 6 5	SCC 40200701 40200101 40200918 40200922 40200910 40200917	UTM C ham Rate/ Day 0.00100 0.00050 0.00070 0.00000 0.00000 0.00000 0.00200	Units TONS TONS TONS TONS TONS TONS TONS TONS	47 19 X: Control	260.1 1 Equip 2	SIC Coc Y: 4630.7 Eff 0 0 0 0 0 0	Daily Emi VOC 2 0 1.4 0 4	issions with NOx 0 0 0 0 0 0	n RE (lbs/ d CO-s 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0
Addres Ozone 2002 L Point ID P0085 P0086 U0001 U0002 U0003 U0004 U0005	s : Status <u>nforma</u> Stack ID 001 002 801 802 803 804 805 809	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description COATING: ADHESIVE COATING: ADHESIVE COATING: PAINT THINNING SOLVENTS: MEK THINNING SOLVENTS: TOLUENE THINNING SOLVENTS: MEHYL THINNING SOLVENTS: MIBK THINNING SOLVENTS: MIBK	Operating H/D D 24 24 24 24 24 24 24 24 24 24 24	g Sch 50 50 50 50 50 50 50 50	COS eedule W/Y 6 5 6 6 5 6 5	SCC 40200701 40200101 40200918 40200918 40200910 40200917 40200919 40200919	UTM C ham Rate/ Day 0.00100 0.00050 0.00070 0.00000 0.00000 0.00000 0.00000 0.00000	Units TONS TONS TONS TONS TONS TONS TONS TONS	47 19 X: Control 1	260.1	SIC Coc Y: 4630.7 Eff 0 0 0 0 0 0 0 0	Daily Emi VOC 2 0 1.4 0 4 0 2	issions with NOx 0 0 0 0 0 0 0 0	n RE (lbs/ d CO-s 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0
Address Ozone 2002 II Point ID P0085 P0086 U0001 U0002 U0003 U0004 U0003 U0004 U0005 U0008	s : Status <u>aforma</u> Stack ID 001 002 801 802 803 804 805 808 809	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description COATING: ADHESIVE COATING: ADHESIVE COATING: PAINT THINNING SOLVENTS: MEK THINNING SOLVENTS: TOLUENE THINNING SOLVENTS: MIBK THINNING SOLVENTS: MIBK THINNING SOLVENTS: XYLENE THINNING SOLVENTS: SERNERAL	Operating H/D D 24 24 24 24 24 24 24 24 24 24 24 24 24	g Sch 50 50 50 50 50 50 50 50 50 50	CO S eedule W/Y 6 5 6 6 5 6 5 5 5	SCC 40200701 40200101 40200918 40200918 40200910 40200917 40200919 40200901	UTM C ham Rate/ Day 0.00100 0.00050 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00010 0.000010	Units TONS TONS TONS TONS TONS TONS TONS TONS	47 19 X: Control 1	260.1	SIC Coc Y: 4630.7 Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Emi VOC 2 0 1.4 0 4 0 0.2 60	issions with NOx 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ d CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 0 0 0
Address Ozone 2002 II Point ID P0085 P0086 U0001 U0002 U0003 U0004 U0005 U0009 U0009 U0009	s : Status aforma Stack ID 001 002 801 802 803 804 805 808 809 810	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description COATING: ADHESIVE COATING: ADHESIVE COATING: PAINT THINNING SOLVENTS: MEK THINNING SOLVENTS: TOLUENE THINNING SOLVENTS: METHYL THINNING SOLVENTS: MIBK THINNING SOLVENTS: MIBK THINNING SOLVENTS: SENERAL THINNING SOLVENTS: GENERAL THINNING SOLVENTS: GENERAL	Operating H/D D 24 24 24 24 24 24 24 24 24 24 24 24 24	g Sch 50 50 50 50 50 50 50 50 50 50 50	AFS CO 9 edule W/Y 6 5 6 6 5 6 5 6 5 6	SCC 40200701 40200701 40200918 40200918 40200917 40200917 40200919 40200924 40200901 40200901 40200901	UTM C ham Rate/ Day 0.00100 0.00050 0.00000 0.00000 0.00000 0.00000 0.00010 0.03000 0.00000	Units TONS TONS TONS TONS TONS TONS TONS TONS	47 19 X: Control 1	260.1	SIC Coc Y: 4630.7 Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Emi VOC 2 0 1.4 0 4 0 0.2 60 0	issions with NOx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ d CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Addres Ozone 2002 L Point ID P0085 P0086 U0001 U0002 U0003 U0003 U0005 U0005 U0005 U0008 U0009 U0010 U0011	s : Status hforma Stack ID 001 002 801 802 803 804 805 808 809 810 811	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description COATING: ADHESIVE COATING: ADHESIVE COATING: PAINT THINNING SOLVENTS: MEK THINNING SOLVENTS: TOLUENE THINNING SOLVENTS: TOLUENE THINNING SOLVENTS: MIBK THINNING SOLVENTS: MIBK THINNING SOLVENTS: XYLENE THINNING SOLVENTS: GENERAL THINNING SOLVENTS: GENERAL SYNTHETIC RUBBER	Operating H/D E 24 24 24 24 24 24 24 24 24 24 24 24 24	g Sch 50 50 50 50 50 50 50 50 50 50 50 50 50	AFS CO 2 wedule W/Y 6 5 6 6 5 6 5 6 5 6 5 5 6 5	SCC 40200701 40200701 40200918 40200918 40200910 40200917 40200917 40200917 40200919 40200924 40200901 40200928 30102699	UTM C ham Rate/ Day 0.00100 0.00050 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2.41500	Units TONS TONS TONS TONS TONS TONS TONS TONS	47 19 X: Control 1	260.1	SIC Coc Y: 4630.7 Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Emi VOC 2 0 1.4 0 4 0 0.2 60 0 30.1	issions with NOx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ d CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Addres Ozone 2002 L Point ID P0085 P0086 U0001 U0003 U0004 U0003 U0004 U0005 U0008 U0009 U0010 U0011 U0012	s : Status forma Stack ID 001 002 801 802 803 804 805 808 809 810 811 812	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description COATING: ADHESIVE COATING: ADHESIVE COATING: PAINT THINNING SOLVENTS: MEK THINNING SOLVENTS: TOLUENE THINNING SOLVENTS: MIBK THINNING SOLVENTS: MIBK THINNING SOLVENTS: MIBK THINNING SOLVENTS: MIBK THINNING SOLVENTS: GENERAL THINNING SOLVENTS: GENERAL SYNTHETIC RUBBER SYNTHETIC RUBBER	Operating H/D D 24 24 24 24 24 24 24 24 24 24 24 24 24	g Sch 50 50 50 50 50 50 50 50 50 50 50 50 50	AFS CO \$ edule W/Y 6 5 6 6 5 6 5 6 5 6 5 7	SCC 40200701 40200701 40200918 40200918 40200910 40200917 40200917 40200917 40200924 40200924 40200901 40200998 30102699 30102699	UTM C ham Rate/ Day 0.00100 0.00050 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2.41500 0.09800	Units TONS TONS TONS TONS TONS TONS TONS TONS	47 19 X: Control 1	260.1	SIC Coc Y: 4630.7 Equip Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Emi VOC 2 0 1.4 0 4 0 0.2 60 0 30.1 2.5	issions with NOx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ d CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Addres Ozone 2002 L Point ID P0085 P0086 U0001 U0002 U0003 U0004 U0003 U0004 U0005 U0008 U0009 U0010 U0011 U0012 U0013 U0013	s : Status nforma Stack ID 001 002 801 802 803 804 803 804 805 808 809 810 811 812 813 816	39 WAUREGAN RD, DANIELS Area : Greater Connecticut Area ation: Process Description COATING: ADHESIVE COATING: ADHESIVE COATING: PAINT THINNING SOLVENTS: MEK THINNING SOLVENTS: TOLUENE THINNING SOLVENTS: TOLUENE THINNING SOLVENTS: MIBK THINNING SOLVENTS: MIBK THINNING SOLVENTS: GENERAL THINNING SOLVENTS: GENERAL SYNTHETIC RUBBER MISC VOC EVAPORATION THINNING SOLVENTS: GENERAL	Operating H/D D 24 24 24 24 24 24 24 24 24 24 24 24 24	g Sch 50 50 50 50 50 50 50 50 50 50 50 50 50	AFS CO \$ edule W/Y 6 5 6 6 5 6 5 6 5 6 5 7 7 5	SCC 40200701 40200701 40200101 40200918 40200922 40200910 40200917 40200919 40200924 40200901 40200924 40200901 40200998 30102699 30102699 40909999	UTM C ham Rate/ Day 0.00100 0.00050 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2.41500 0.09800 0.00000 0.00000	Units Tons Tons Tons Tons Tons Tons Tons Ton	47 19 X: Control 1	260.1	SIC Coc Y: 4630.7 Eff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Emi VOC 2 0 1.4 0 4 0 0.2 60 0 30.1 2.5 0 0	issions with NOx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n RE (lbs/ d CO-s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ay) CO-w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 7	
DETAIL LISTING OF 2002 CONNECTICUT POINT SOURCE INVENTORY	

U0017	817	THINNING SOLVENTS: GENERA	L 24	50	5	40200998	0.00002	TONS			0	0	0	0	0
Plant]	Inform	ation:													
Plant N Addres Ozone	Name: ss : Status	FRITO-LAY INC 1886 UPPER MAPLE ST, DAY Area : Greater Connecticut Area	VILLE, O	СТ	AFS	ID : 015 - 665 Status Area: Win	UTM (ndham	CT ID: 89- Coord: Zone:	65 19 X:	260 Y:	SIC Coc 4638.2	le: 2096			
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operatir	ng Scl	hedule		Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ da	ay)
ID	ID	Description	H/D	Ď/W	W/Y	SCC	Day	Units	1	2	Eff	VÓC	NOx	CO-s	CO-w
E0001	019	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.00970	1000 GAL			0	0.6	5.9	1.3	1.3
E0002	018	COMM/INST DIESEL: #2 OIL	1	52	1	20300101	0.04300	1000 GAL			Õ	2.5	26	5.6	0.4
E0005	003	CONTINUOUS DEEP FAT	24	52	4	30203601	21.96000				0	1.9	0	0	0
E0006	006	CONTINUOUS DEEP FAT	24	52	5	30203601	22,95000				0	2	0	0	0
E0007	026	CONTINUOUS DEEP FAT	24	52	5	30203601	57.18000				0	5.7	0	0	0
E0008	014	FOOD AND AGRICULTURE:	24	52	5	30299998	57.18000	TONS			0	0	0	0	0
E0009	023	PROCESS FUEL: NAT GAS	24	52	4	39000689	0.03000	MIL CU FT			0	0.2	3	0.6	2.1
E0010	025	PROCESS FUEL: NAT GAS	24	52	5	39000689	0.05200	MIL CU FT	0	0	0	0.3	5.2	1.1	3.4
E0011	015	PROCESS FUEL: NAT GAS	24	52	5	39000689	0.05000	MIL CU FT	0	0	0	0.3	5	1.1	3.4
E0012	027	PROCESS FUEL: NAT GAS	24	52	4	39000689	0.00900	MIL CU FT			0	0.1	0.9	0.2	0.2
E0013	096	FEED MFG: GRAIN RECEIVING	24	52	7	30200802	114.70000	TONS			0	0	0	0	0
E0014	010	FEED MFG: GRAIN RECEIVING	24	52	7	30200802	114.70000	TONS			0	0	0	0	0
E0015	047	FEED MFG: GRAIN RECEIVING	24	52	7	30200802	114.70000	TONS			0	0	0	0	0
P0012	001	CONTINUOUS DEEP FAT	24	52	5	30203601	64.56000		014		80	2.3	0	0	0
P0025	012	INDUST BOILER: NAT GAS.	24	52	7	10200602	0.44700	MIL CU FT			0	2.7	50.1	47.4	35.6
P0026	012	INDUST BOILER: NAT GAS,	24	52	7	10200602	0.47100	MIL CU FT			0	2.8	54.2	52.3	35.5
P0027	012	INDUST BOILER: NAT GAS,	24	52	7	10200602	0.42800	MIL CU FT			0	2.5	38.9	124.5	91.5
P0028	013	CONTINUOUS DEEP FAT	24	52	4	30203601	64.56000		014		80	2.2	0	0	0
P0039	017	FOOD AND AGRICULTURE:	24	52	5	30299998	9.97200	TONS			0	0	0	0	0
U0001	801	COLD SOLVENT CLEANING:	24	52	7	40100303	0.00300	TONS			0	6	0	0	0
Plant 1	Inform	ation:													
Diant N	Jama:	I AKE DOAD GENEDATING (A ES	ID:015 680			80		SIC Cod	la: 1011			
Addma	vanie.	54 ALEVANDED DADK WAV		CIV	CT	ID . 015 - 000		CTID. 07-	10 V.	250 7	V. 4620 5	10. 4711			
Addres	SS :	JO ALEAANDER PARK WAT,	, KILLIIN	GL I,			UTMC	Joord: Zone:	19 A:	239.1	1:4039.3				
Ozone	Status	Area : Greater Connecticut Area			COS	Status Area: Wil	ndham								
<u>2002 I</u>	nforma	ation:													
Point	Stack	Process	Operatir	ng Scl	hedule		Rate/		Contro	l Equip	Equip	Daily Em	issions with	n RE (lbs/ da	ay)
ID	ID	Description	H/D	D/W	W/Y	SCC	Dav	Units	1	2	Eff	vốc	NOx	CÔ-s	CO-w
 P0067	001	UTILITY TURBINE: NAT GAS	24	52	7	20100201	35.67000	MIL CU FT	139	06	90	36.4	646.6	476.4	113.2
P0068	002	UTILITY TURBINE: NAT GAS	24	52	7	20100201	36.36000	MIL CU FT	139	06	90	18.2	667.6	256.8	115.4

P0069 P0070 P0071 P0072 P0073	003 004 005 006 007	UTILITY TURBINE: NAT GAS INDUST DIESEL: #2 OIL INDUST DIESEL: #2 OIL INDUST DIESEL: #2 OIL INDUST DIESEL: #2 OIL	24 1 1 1 1	52 52 52 52 52 52	7 1 1 1 1	20100201 20200102 20200102 20200102 20200102	36.68000 0.00100 0.00100 0.00100 0.00100	MIL CU FT 1000 GAL 1000 GAL 1000 GAL 1000 GAL	139	06	90 0 0 0 0	89.9 0.1 0.1 0.1 0.1	763.3 0.6 0.6 0.6 0.6	261.7 0.1 0.1 0.1 0.1	59.8 1.3 2.3 1.8 0
Plant 1	[nform	ation:													
Plant N Addres Ozone	Vame: ss : Status	SCA PACKAGING NO AMERI 29 PARK RD, PUTNAM, PA Area : Greater Connecticut Area	ICA INC	1	AFS CO S	ID : 015 - 1708 Status Area: Win	UTM C ndham	CT ID: 152 Coord: Zone:	2-8 19 X:	259.8	SIC Cod Y: 4642.1	le: 3086			
<u>2002 I</u>	nforma	ation:													
Point ID P0015 P0017 P0026 P0010	Stack ID 002 004 001 003	Process Description INDUST BOILER: NAT GAS, <10 PLASTIC PRODUCTS: INDUST BOILER: NAT GAS, <10 INDUST BOILER: NAT GAS, <10	Operatin H/D I 24 24 24 24 24	g Sche D/W W 28 52 52 52 50	edule V/Y 1 7 5 5	SCC 10200603 30800901 10200603 10200603	Rate/ Day 0.88800 6.35000 0.76000 0.14700	Units MIL CU FT TONS MIL CU FT MIL CU FT	Contro 1	l Equip 2	Equip Eff 0 0 0 0	Daily Emi VOC 5.3 488 4.5 0.9	issions with NOx 88.8 0 76 14.7	n RE (lbs/ da CO-s 74.6 0 63.8 12.3	ny) CO-w 55 0 2.4 12.7
<u>Plant l</u>	[nform	ation:													
Plant N Addres Ozone	Vame: ss : Status	EXETER ENERGY L.P. 10 EXETER DR, STERLING IN Area : Greater Connecticut Area	ND PRK, S	STERL (AFS JING CO S	ID : 015 - 2305 , CT Status Area: Win	UTM C ndham	CT ID: 176 Coord: Zone:	5-5 19 X:	265.2	SIC Cod Y: 4621.4	le: 4931			
<u>2002 I</u>	nforma	ation:													
Point ID P0001 P0002 P0003 P0004	Stack ID 001 001 002 003	Process Description MUNICIPAL INCIN: MULTIPLE MUNICIPAL INCIN: MULTIPLE INDUST DIESEL: #2 OIL INDUST DIESEL: #2 OIL	Operatin H/D I 24 24 24 24 24	g Sche D/W W 52 52 52 52 52	dule V/Y 7 7 1 1	SCC 50100101 50100101 20200102 20200102	Rate/ Day 124.70000 141.30000 0.00000 0.00600	Units TONS TONS 1000 GAL 1000 GAL	Contro 1 032 032	l Equip 2	Equip Eff 50 50 0 0	Daily Emi VOC 187.1 212 0 0.3	issions with NOx 371.9 433.2 0 3.6	n RE (lbs/ da CO-s 325.5 332.1 0 0.8	y) CO-w 341.8 317.4 0 3.3
<u>Plant l</u>	[nform	ation:													
Plant N Addres Ozone	Vame: ss : Status	B I C C BRAND - REX CO 1600 W MAIN ST, WILLIMAN Area : Greater Connecticut Area	TIC, CT	(AFS CO S	ID : 015 - 2906 Status Area: Win	UTM C	CT ID: 211 Coord: Zone:	l-6 18 X:	729.4	SIC Cod Y: 4622.7	le: 3357			
<u>2002 I</u>	nforma	ation:													
Point ID P0017	Stack ID 012	Process Description INDUST BOILER: NAT GAS,	Operatin H/D I 24	g Sche D/W W 50	dule V/Y 6	SCC 10200602	Rate/ Day 0.02500	Units MIL CU FT	Contro 1	l Equip 2	Equip Eff 0	Daily Emi VOC 0.1	ssions with NOx 2.5	n RE (lbs/ da CO-s 2.1	ay) CO-w 2.6

TABLE 1	
MOBILE6 Commands and Codes	

COMMAND	Code or Command Function
	HEADER SECTION
MOBILE6 INPUT FILE	Identifies MOBILE6 input file as a regular command input file as opposed to a batch input file.
REPORT FILE	Specifies the name of descriptive output file.
DATABASE OUTPUT	Report output in database format.
DATABASE OPTIONS	External file with database output selection records (see Table 2).
EMISSION TABLE	Specifies name for database output file.
	RUN DATA SECTION
LDT EFs	Displays Emission Factors (EFs) by 6 Light Duty Truck classes.
EXPAND HDGV EFs	Displays EFs by 8 Heavy Duty Gasoline Vehicle classes.
EXPAND HDDV EFs	Displays EFs by 8 Heavy Duty Diesel Vehicle classes.
EXPAND BUS EFs	Displays EFs by 3 Bus classes.
94+ LDG IMP	External file (NLEVNE.D) with 1994 and later fleet penetration fractions for light-duty gasoline vehicles under the Tier 1, NLEV (or California LEV 1), and Tier 2 standards for northeastern states subject to the earlier phase-in provisions on NLEV.
EXPAND FUEL PROGRAM	Designates fuel sulfur level of gasoline and Reformulated Gasoline Northern Region (2 N) use was input.
NO REFUELING	Excludes Stage II emissions from all output values.
FUEL RVP	Average Reid Vapor Pressure of gasoline in Connecticut. 6.86 psi was input for Summer runs, but the model overrides this input based on the FUEL PROGRAM and CALENDAR YEAR (6.7 psi per Page 151 of Section 3 Reference 2). 13.1 psi was input for Winter runs, however the Mobile 6.2 Users Guide indicates RVP effects are the same for all RVP values greater than 11.7 psi (per Page 160 of Section 3 Reference 2).
REG DIST	Name of the external file containing vehicle registration distributions by age for 16 composite vehicle types (see Attachment D1).
I/M DESC FILE	Name of the external file containing I/M program description records (see Table 3).
ANTI-TAMP PROGRAM	Anti-tampering program parameters (see Table 4)
REBUILD EFFECTS	Rebuild program effectiveness rate used to reduce heavy-duty diesel vehicle NOx off-cycle emissions. The default value of 90% was overridden with a value of 7% based on survey results performed for northeast states.
MIN/MAX TEMP	See the write up in the SCENARIO SECTION.
VMT BY FACILITY	Name of the external file containing VMT distributions by facility type.
VMT BY HOUR	Name of the external file containing VMT distributions by hour (see Attachment B1).
VMT FRACTIONS	Fraction of VMT accumulated by each of the 16 vehicle types.

TABLE 1 (Continued)MOBILE6 Commands and Codes

COMMAND	Code or Command Function
	SCENARIO SECTION
SCENARIO RECORD	Marks the start of new scenario and labels the individual scenario results.
CALENDAR YEAR	2002
	Minimum and Maximum daily temperatures (°F). The MIN/MAX TEMP command can appear in the RUN or SCENARIO SECTION with the RUN values applying to all scenarios that do not explicitly override the run data. This approach was used in Winter runs to simplify / shorten the input file.
MIN/MAX TEMP	Summer Ozone runs used values determined from averages determined from the 8-hour Ozone Design Days and Areas determined from 2000 Census Data. The Summer Min/Max values used were 66.5°F / 91.6°F for Fairfield, Middlesex, and New Haven Counties and 67.7°F / 95.5°F for Hartford, Litchfield, New London, Tolland, and Windham Counties.
	Winter CO runs used the established values determine for CO in 1990. This Winter Min/Max values used were 33°F / 49°F for Southwest CT (Fairfield County) and 18°F / 44°F for Greater CT (Hartford, Litchfield, Middlesex, New Haven, New London, Tolland, and Windham Counties).
RELATIVE HUMIDITY	Summer Ozone runs used twenty-four hourly relative humidity values determined from averages determined from the 8-hour Ozone Design Days. The start and order of the humidity values correspond to a 6 am start time and the subsequent hourly intervals that follow (i.e. the first value corresponds to 6 am (i.e. 6:00 am through 6:59 am) and the last or 24 th value corresponds to 5 am (i.e. 5:00 am through 5:59 am)). Not used in Winter runs.
BAROMETRIC PRES	Summer Ozone runs used barometric pressure values determined from averages determined from the 8-hour Ozone Design Days overriding the default value of 29.92 inches of mercury when converting relative humidity to absolute humidity. A value of 29.53 inches of mercury for Fairfield, Middlesex, and New Haven Counties 29.89 inches of mercury for Hartford, Litchfield, New London, Tolland, and Windham Counties. Not used in Winter runs.
EVALUATION MONTH	7 for Summer runs, 1 for Winter runs
SPEED VMT	Name of the external file containing VMT distributions by speed for each hour of day and county (see Attachment C1)

TABLE 2Summary of Database Options Utilized

		CODE OR (COMMAND FUNCTION)												
DATABASE COMMAND	SUM	MER OZ	ONE SEA	SON	WINTER CO SEASON									
	Exp.	Art	Local	Ramp	Exp.	Art	Local	Ramp						
DATABASE FACILITIES	Freeway	Arterial	Local Ramp		Freeway	Arterial	Local	Ramp						
POLLUTANTS	N/A CO													
AGGREGATED OUTPUT	(Spec facil	ifies outp ity type, a	ut will rep and emissi	oresent dai on type fo	ly time pe r each vel	riod aggre nicle class	gated ove and pollu	r age, tant)						
WITH FIELDNAMES (Places a row of column names in first row of output ta														

TABLE 3Summary of I/M Programs

PROGRAM		I/.	M PROGR	AM NUMB	ER							
PARAMETER	1	2	3	4	5	6						
Program Start Year	19	998	1983									
Program End Year		2050										
Inspection Frequency	Annual	Biennial	Annual	Biennial	Annual	Biennial						
Program Type Facility		Test-Only										
Test Type	ASM 252	5 Phase-In	Gas	Cap	Id	lle						
First Model Year	1978	1981	1978	1981	1978	1981						
Last Model Year	1980	2050	1980	2050	1980	2050						
Vehicle Types Subject To												
Inspections:												
LDGV	2=Yes	2=Yes	2=Yes	2=Yes	1=No	1=No						
LDGT1	2=Yes	2=Yes	2=Yes	2=Yes	1=No	1=No						
LDGT2	2=Yes	2=Yes	2=Yes	2=Yes	1=No	1=No						
LDGT3	2=Yes	2=Yes	2=Yes	2=Yes	1=No	1=No						
LDGT4	2=Yes	2=Yes	2=Yes	2=Yes	1=No	1=No						
HDGV2B	1=No	1=No	2=Yes	2=Yes	2=Yes	2=Yes						
Stringency Level	22	2.0	N	/A	22	2.0						
Compliance Rate (%)	94.9											
Waiver Rates (%)	5.55	3.83	0.0	0.0	5.55	3.83						

TABLE 4 Summary of Anti-Tampering Program (ATP)

PROGRAM PARAMETER	CODE OR (COMMAND FUNCTION)		
Start Year Of Program	1983		
First Model Year	1978		
Last Model Year	2050		
Vehicle Types Subject To Inspections:			
LDGV	2=Yes		
LDGT1	2=Yes		
LDGT2	2=Yes		
LDGT3	2=Yes		
LDGT4	2=Yes		
HDGV2B	2=Yes		
HDGV3	1=No		
HDGV4	1=No		
HDGV5	1=No		
HDGV6	1=No		
HDGV7	1=No		
HDGV8A	1=No		
HDGV8B	1=No		
GAS BUS	1=No		
ATP On/Off	1=On		
Program Frequency	2=Biennial		
Compliance Rate (%)	95.		
Inspections Conducted:			
Air Pump System Disabled	1=No		
Catalyst Removal	2=Yes		
Fuel Inlet Restrictor Disablement	1=No		
Tailpipe Lead Deposit Test	1=No		
EGR Disablement	1=No		
Evaporative System Disable	1=No		
PCV System Disablement	1=No		
Missing Gas Cap	2=Yes		

TABLE 5 Summary of 2002 NONROAD Model Commands and Codes

PROGRAM PARAMETER	REGION				
	Summer Season ^A		Winter Season		
	Hartford, Litchfield, New London, Tolland, and Windham Counties	Fairfield, Middlesex, and New Haven Counties	All CT counties except Fairfield	Fairfield	
Seasonal Period	Summer ^A	Summer ^A	Winter	Winter	
Year	2002				
Туре	Typical Day				
Fuel RVP for Gas (psi)	6.86		13.1		
Oxygen weight %	2.1		2.0		
Gas Sulfur %	0.0106		0.0135		
Diesel Sulfur %	0.2318				
CNG/LPG Sulfur %	0.003				
Minimum temp (°F)	67.7 ^в	66.5 ^B	18 ^C	33 ^C	
Maximum temp (°F)	95.5 ^B	91.6 ^B	44 ^C	49 ^C	
Average temp (°F)	86.2 ^B	83.2 ^B	35.4 ^C	45 ^C	
Stage II Control %	0				

^A Parameters also used for annual emissions.
 ^B 2002 8-Hour Ozone Design Values with Consideration of 2000 Census Results for Status Area Determination.
 ^C Original 1990 CO Design Values.

B - 5

TABLE 6A

Mobile 6.2 Input Files - 2002 Periodic Ozone and CO Mobile 6.2 Batch Input Data

MOBILE6 Batch File :

> Ozone MOBILE6 Runs

>Now Running CT Expressway Input File C:\MOB02\02CTE03.in

>Now Running CT Arterial/Collector Input File C:\MOB02\02CTA03.in

>Now Running CT Local Input File C:\MOB02\02CTLO3.in

>Now Running CT Ramp Input File C:\MOB02\02CTR03.in

> CO MOBILE6 Runs

>Now Running CT Expressway Input File C:\MOB02\02CTECO.in

>Now Running CT Arterial/Collector Input File
C:\MOB02\02CTACO.in

>Now Running CT Local Input File C:\MOB02\02CTLCO.in

>Now Running CT Ramp Input File C:\MOB02\02CTRCO.in

MOBILE6 INPUT FILE : > 2002 Mobile Connecticut County Expressway Ozone EFs * REVISED 01/05/05 REPORT FILE : C:\MOB02\Output\CT0203.TXT DATABASE OUTPUT : DATABASE OPTIONS : C:\MOB02\Opt\CTdbE03.opt EMISSIONS TABLE : C:\MOB02\Output\CT02O3.tb1 RUN DATA EXPAND LDT EFS : EXPAND HDGV EFS : EXPAND HDDV EFS : EXPAND BUS EFS : * LEV phase-in data 94+ LDG IMP : NLEVNE.D * Fuel Data FUEL PROGRAM : 2 N : NO REFUELING FUEL RVP : 6.86 : C:\MOB02\CTReg02.d REG DIST * I/M Data I/M DESC FILE : C:\MOB02\CTIM02.d ANTI-TAMP PROG : 83 78 50 22222 2111111 1 12 095. 1211112 : 0.07 REBUILD EFFECTS > Expressway VMT Data VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY VMT BY HOUR : VMT FRACTIONS : : C:\MOB02\CTHVMT.def 0.4823 0.0733 0.2438 0.0752 0.0346 0.0291 0.0029 0.0023 0.0017 0.0064 0.0076 0.0083 0.0297 0.0014 0.0007 0.0007 SCENARIO RECORD : FAIRFIELD COUNTY 03 SEASON - EXPRESSWAYS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1 BAROMETRIC PRES : 29.53 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt1.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section.

SCENARIO RECORD : HARTFORD COUNTY O3 SEASON - EXPRESSWAYS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt2.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. SCENARIO RECORD : LITCHFIELD COUNTY 03 SEASON - EXPRESSWAYS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties : 67.7 95.5 MIN/MAX TEMP RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 * VMT Characteristics : C:\MOB02\VMT\COUNTY\02sdvmt3.CTY SPEED VMT *VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. SCENARIO RECORD : MIDDLESEX COUNTY O3 SEASON - EXPRESSWAYS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties : 66.5 91.6 MIN/MAX TEMP RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1 BAROMETRIC PRES : 29.53

* VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt4.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. : NEW HAVEN COUNTY O3 SEASON - EXPRESSWAYS SCENARIO RECORD CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1 BAROMETRIC PRES : 29.53 * VMT Characteristics : C:\MOB02\VMT\COUNTY\02sdvmt5.CTY SPEED VMT *VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. SCENARIO RECORD : NEW LONDON COUNTY 03 SEASON - EXPRESSWAYS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt6.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. SCENARIO RECORD : TOLLAND COUNTY O3 SEASON - EXPRESSWAYS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 ABSOLUTE HUMIDITY : 96

* VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt7.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. SCENARIO RECORD : WINDHAM COUNTY O3 SEASON - EXPRESSWAYS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt8.CTY
*VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. END OF RUN

MOBILE6 INPUT FILE : > 2002 Mobile Connecticut County ARTERIALS/COLLECTOR Ozone EFs * REVISED 01/05/05 REPORT FILE : C:\MOB02\Output\CT0203.TXT Append DATABASE OUTPUT : DATABASE OPTIONS : C:\MOB02\Opt\CTdbA03.opt EMISSIONS TABLE : C:\MOB02\Output\CT0203.tb1 Append RUN DATA EXPAND LDT EFS : EXPAND HDGV EFS : EXPAND HDDV EFS : EXPAND BUS EFS : * LEV phase-in data 94+ LDG IMP : NLEVNE.D * Fuel Data FUEL PROGRAM : 2 N : NO REFUELING FUEL RVP : 6.86 : C:\MOB02\CTReg02.d REG DIST * I/M Data I/M DESC FILE : C:\MOB02\CTIM02.d ANTI-TAMP PROG : 83 78 50 22222 2111111 1 12 095. 1211112 : 0.07 REBUILD EFFECTS > ARTERIALS/COLLECTOR VMT Data VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY VMT BY HOUR : VMT FRACTIONS : : C:\MOB02\CTHVMT.def 0.5121 0.0778 0.2588 0.0798 0.0367 0.0104 0.0010 0.0008 0.0006 0.0023 0.0027 0.0030 0.0106 0.0005 0.0002 0.0027 SCENARIO RECORD : FAIRFIELD COUNTY 03 SEASON - ARTERIALS/COLLECTORS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1 BAROMETRIC PRES : 29.53 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt1.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section.

SCENARIO RECORD : HARTFORD COUNTY O3 SEASON - ARTERIALS/COLLECTORS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt2.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : LITCHFIELD COUNTY O3 SEASON - ARTERIALS/COLLECTORS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties : 67.7 95.5 MIN/MAX TEMP RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 * VMT Characteristics : C:\MOB02\VMT\COUNTY\02sdvmt3.CTY SPEED VMT *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : MIDDLESEX COUNTY O3 SEASON - ARTERIALS/COLLECTORS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1

BAROMETRIC PRES : 29.53 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt4.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : NEW HAVEN COUNTY 03 SEASON - ARTERIALS/COLLECTORS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1 BAROMETRIC PRES : 29.53 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt5.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : NEW LONDON COUNTY O3 SEASON - ARTERIALS/COLLECTORS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt6.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : TOLLAND COUNTY O3 SEASON - ARTERIALS/COLLECTORS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties

: 67.7 95.5 MIN/MAX TEMP ABSOLUTE HUMIDITY : 96 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt7.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : WINDHAM COUNTY O3 SEASON - ARTERIALS/COLLECTORS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt8.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. END OF RUN

MOBILE6 INPUT FILE : > 2002 Mobile Connecticut County LOCAL ROAD Ozone EFs * REVISED 01/05/05 REPORT FILE : C:\MOB02\Output\CT0203.TXT Append DATABASE OUTPUT : DATABASE OPTIONS : C:\MOB02\Opt\CTdbL03.opt EMISSIONS TABLE : C:\MOB02\Output\CT0203.tb1 Append RUN DATA EXPAND LDT EFS : EXPAND HDGV EFS : EXPAND HDDV EFS : EXPAND BUS EFS : * LEV phase-in data 94+ LDG IMP : NLEVNE.D * Fuel Data FUEL PROGRAM : 2 N : NO REFUELING : 6.86 FUEL RVP : C:\MOB02\CTReg02.d REG DIST * I/M Data I/M DESC FILE : C:\MOB02\CTIM02.d ANTI-TAMP PROG : 83 78 50 22222 2111111 1 12 095. 1211112 : 0.07 REBUILD EFFECTS > LOCAL ROAD VMT Data VMT BY FACILITY : C:\MOB02\VMT\FCVMTL.CTY VMT BY HOUR : VMT FRACTIONS : : C:\MOB02\CTHVMT.def 0.5151 0.0783 0.2605 0.0803 0.0369 0.0079 0.0008 0.0006 0.0005 0.0017 0.0021 0.0023 0.0081 0.0004 0.0002 0.0043 SCENARIO RECORD : FAIRFIELD COUNTY 03 SEASON - LOCAL ROADS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1 BAROMETRIC PRES : 29.53 SCENARIO RECORD : HARTFORD COUNTY 03 SEASON - LOCAL ROADS CALENDAR YEAR : 2002 EVALUATION MONTH : 7

* Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 : LITCHFIELD COUNTY 03 SEASON - LOCAL ROADS SCENARIO RECORD CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 SCENARIO RECORD : MIDDLESEX COUNTY 03 SEASON - LOCAL ROADS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1 BAROMETRIC PRES : 29.53 SCENARIO RECORD : NEW HAVEN COUNTY O3 SEASON - LOCAL ROADS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1

BAROMETRIC PRES : 29.53 SCENARIO RECORD : NEW LONDON COUNTY 03 SEASON - LOCAL ROADS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 SCENARIO RECORD : TOLLAND COUNTY O3 SEASON - LOCAL ROADS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 ABSOLUTE HUMIDITY : 96 SCENARIO RECORD : WINDHAM COUNTY O3 SEASON - LOCAL ROADS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 END OF RUN

MOBILE6 INPUT FILE : > 2002 Mobile Connecticut County Ramp Ozone EFs * REVISED 01/05/05 REPORT FILE : C:\MOB02\Output\CT0203.TXT Append DATABASE OUTPUT : DATABASE OPTIONS : C:\MOB02\Opt\CTdbR03.opt EMISSIONS TABLE : C:\MOB02\Output\CT0203.tb1 Append RUN DATA EXPAND LDT EFS : EXPAND HDGV EFS : EXPAND HDDV EFS : EXPAND BUS EFS : * LEV phase-in data 94+ LDG IMP : NLEVNE.D * Fuel Data FUEL PROGRAM : 2 N : NO REFUELING FUEL RVP : 6.86 : C:\MOB02\CTReg02.d REG DIST * I/M Data I/M DESC FILE : C:\MOB02\CTIM02.d ANTI-TAMP PROG : 83 78 50 22222 21111111 1 12 095. 12111112 : 0.07 REBUILD EFFECTS > RAMP VMT Data VMT BY FACILITY : C:\MOB02\VMT\FCVMTR.CTY VMT BY HOUR : C:\MOB02\CTHVMT.def VMT FRACTIONS : 0.4823 0.0733 0.2438 0.0752 0.0346 0.0291 0.0029 0.0023 0.0017 0.0064 0.0076 0.0083 0.0297 0.0014 0.0007 0.0007 SCENARIO RECORD : FAIRFIELD COUNTY 03 SEASON - RAMPS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1 BAROMETRIC PRES : 29.53 SCENARIO RECORD : HARTFORD COUNTY 03 SEASON - RAMPS CALENDAR YEAR : 2002 EVALUATION MONTH : 7

* Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 SCENARIO RECORD : LITCHFIELD COUNTY 03 SEASON - RAMPS CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 SCENARIO RECORD : MIDDLESEX COUNTY 03 SEASON - RAMPS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1 BAROMETRIC PRES : 29.53 SCENARIO RECORD : NEW HAVEN COUNTY O3 SEASON - RAMPS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Fairfield, Middlesex, and New Haven Counties MIN/MAX TEMP : 66.5 91.6 RELATIVE HUMIDITY : 84.0 74.5 65.2 58.8 53.6 48.0 45.5 42.8 41.4 44.3 45.8 49.9 56.9 66.0 69.7 71.5 76.1 79.1 85.7 86.7 89.8 90.5 90.7 92.1

BAROMETRIC PRES : 29.53 SCENARIO RECORD : NEW LONDON COUNTY 03 SEASON - RAMPS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 SCENARIO RECORD : TOLLAND COUNTY O3 SEASON - RAMPS : 2002 CALENDAR YEAR EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 ABSOLUTE HUMIDITY : 96 SCENARIO RECORD : WINDHAM COUNTY O3 SEASON - RAMPS CALENDAR YEAR : 2002 CALENDAR YEAR : 2002 EVALUATION MONTH : 7 * Weather Data for Hartford, Litchfield, New London, Tolland, and Windham Counties MIN/MAX TEMP : 67.7 95.5 RELATIVE HUMIDITY : 86.2 76.2 69.5 61.2 53.8 49.0 44.5 41.2 40.4 38.8 40.8 43.7 47.3 56.5 63.5 67.6 72.8 75.3 75.6 81.8 85.3 87.4 89.1 90.6 BAROMETRIC PRES : 29.89 END OF RUN

TABLE 6C Mobile 6.2 Input Files - 2002 Periodic CO Mobile 6.2 Input Data

MOBILE6 INPUT FILE :

> 2002 Mobile Connecticut County Expressway CO EFs * REVISED 01/05/05 POLLUTANTS : CO REPORT FILE : C:\MOB02\Output\CT02CO.TXT DATABASE OUTPUT : DATABASE OPTIONS : C:\MOB02\Opt\CTdbEC0.opt EMISSIONS TABLE : C:\MOB02\Output\CT02C0.tb1 RUN DATA EXPAND BUS EFS : EXPAND HDGV EFS : EXPAND HDDV EFS : EXPAND LDT EFS : * LEV phase-in data 94+ LDG IMP : NLEVNE.D * Fuel Data FUEL PROGRAM : 2 N : NO REFUELING : 13.1 FUEL RVP REG DIST : C:\MOB02\CTREG02.D * I/M Data I/M DESC FILE : C:\MOB02\CTIM02.d ANTI-TAMP PROG : 83 78 50 22222 21111111 1 12 095. 12111112 REBUILD EFFECTS : 0.07 * Weather Data MIN/MAX TEMP : 18. 44. > Expressway VMT Data VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY VMT BY HOUR : C:\MOB02\CTHVMT.def VMT FRACTIONS : 0.4823 0.0733 0.2438 0.0752 0.0346 0.0291 0.0029 0.0023 0.0017 0.0064 0.0076 0.0083 0.0297 0.0014 0.0007 0.0007 SCENARIO RECORD : FAIRFIELD COUNTY CO SEASON - EXPRESSWAYS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * Weather Data MIN/MAX TEMP : 33. 49. * VMT Characteristics : C:\MOB02\VMT\COUNTY\02sdvmt1.CTY SPEED VMT *VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section.

TABLE 6C Mobile 6.2 Input Files - 2002 Periodic CO Mobile 6.2 Input Data

SCENARIO RECORD : HARTFORD COUNTY CO SEASON - EXPRESSWAYS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt2.CTY
*VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. SCENARIO RECORD : LITCHFIELD COUNTY CO SEASON - EXPRESSWAYS : 2002 CALENDAR YEAR EVALUATION MONTH : 1 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt3.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. SCENARIO RECORD : MIDDLESEX COUNTY CO SEASON - EXPRESSWAYS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt4.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. SCENARIO RECORD : NEW HAVEN COUNTY CO SEASON - EXPRESSWAYS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt5.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. SCENARIO RECORD : NEW LONDON COUNTY CO SEASON - EXPRESSWAYS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt6.CTY
*VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run Section. SCENARIO RECORD : TOLLAND COUNTY CO SEASON - EXPRESSWAYS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * VMT Characteristics

TABLE 6C Mobile 6.2 Input Files - 2002 Periodic CO Mobile 6.2 Input Data

SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt7.CTY
*VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run
Section.
SCENARIO RECORD : WINDHAM COUNTY CO SEASON - EXPRESSWAYS
CALENDAR YEAR : 2002
EVALUATION MONTH : 1
* VMT Characteristics
SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt8.CTY
*VMT BY FACILITY : C:\MOB02\VMT\FCVMTF.CTY File/Path set in Run
Section.

END OF RUN
MOBILE6 INPUT FILE :

> 2002 Mobile Connecticut County ARTERIALS/COLLECTOR CO EFs * REVISED 01/05/05 POLLUTANTS : CO REPORT FILE : C:\MOB02\Output\CT02CO.TXT Append DATABASE OUTPUT : DATABASE OPTIONS : C:\MOB02\Opt\CTdbAC0.opt EMISSIONS TABLE : C:\MOB02\Output\CT02C0.tb1 Append RUN DATA EXPAND BUS EFS : EXPAND HDGV EFS : EXPAND HDDV EFS : EXPAND LDT EFS : * LEV phase-in data 94+ LDG IMP : NLEVNE.D * Fuel Data FUEL PROGRAM : 2 N : NO REFUELING : 13.1 FUEL RVP REG DIST : C:\MOB02\CTREG02.D * I/M Data I/M DESC FILE : C:\MOB02\CTIM02.d ANTI-TAMP PROG : 83 78 50 22222 2111111 1 12 095. 1211112 REBUILD EFFECTS : 0.07 * Weather Data MIN/MAX TEMP : 18. 44. > ARTERIALS/COLLECTOR VMT Data VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY VMT BY HOUR : C:\MOB02\CTHVMT.def VMT FRACTIONS : 0.5121 0.0778 0.2588 0.0798 0.0367 0.0104 0.0010 0.0008 0.0006 0.0023 0.0027 0.0030 0.0106 0.0005 0.0002 0.0027 SCENARIO RECORD : FAIRFIELD COUNTY CO SEASON - ARTERIALS/COLLECTORS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * Weather Data MIN/MAX TEMP : 33. 49. * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt1.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section.

SCENARIO RECORD : HARTFORD COUNTY CO SEASON - ARTERIALS/COLLECTORS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * VMT Characteristics : C:\MOB02\VMT\COUNTY\02sdvmt2.CTY SPEED VMT *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : LITCHFIELD COUNTY CO SEASON - ARTERIALS/COLLECTORS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt3.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : MIDDLESEX COUNTY CO SEASON - ARTERIALS/COLLECTORS : 2002 CALENDAR YEAR EVALUATION MONTH : 1 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt4.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : NEW HAVEN COUNTY CO SEASON - ARTERIALS/COLLECTORS : 2002 CALENDAR YEAR EVALUATION MONTH : 1 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt5.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : NEW LONDON COUNTY CO SEASON - ARTERIALS/COLLECTORS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt6.CTY
*VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : TOLLAND COUNTY CO SEASON - ARTERIALS/COLLECTORS : 2002 CALENDAR YEAR EVALUATION MONTH : 1

TABLE 6CMobile 6.2 Input Files - 2002 Periodic CO Mobile 6.2 Input Data

* VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt7.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section. SCENARIO RECORD : WINDHAM COUNTY CO SEASON - ARTERIALS/COLLECTORS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * VMT Characteristics SPEED VMT : C:\MOB02\VMT\COUNTY\02sdvmt8.CTY *VMT BY FACILITY : C:\MOB02\VMT\FCVMTA.CTY File/Path set in Run Section.

END OF RUN

MOBILE6 INPUT FILE :

> 2002 Mobile Connecticut County Local Road CO EFs * REVISED 01/05/05 POLLUTANTS : CO REPORT FILE : C:\MOB02\Output\CT02CO.TXT Append DATABASE OUTPUT : DATABASE OPTIONS : C:\MOB02\Opt\CTdbLC0.opt EMISSIONS TABLE : C:\MOB02\Output\CT02C0.tb1 Append RUN DATA : EXPAND BUS EFS EXPAND HDGV EFS : EXPAND HDDV EFS : EXPAND LDT EFS : * LEV phase-in data 94+ LDG IMP : NLEVNE.D * Fuel Data FUEL PROGRAM : 2 N : NO REFUELING : 13.1 FUEL RVP REG DIST : C:\MOB02\CTREG02.D * I/M Data I/M DESC FILE : C:\MOB02\CTIM02.d ANTI-TAMP PROG : 83 77 50 22222 21111111 1 12 095. 12111112 REBUILD EFFECTS : 0.07 * Weather Data MIN/MAX TEMP : 18. 44. > LOCAL ROAD VMT Data VMT BY FACILITY : C:\MOB02\VMT\FCVMTL.CTY VMT BY HOUR : C:\MOB02\CTHVMT.def VMT FRACTIONS : 0.5151 0.0783 0.2605 0.0803 0.0369 0.0079 0.0008 0.0006 0.0005 0.0017 0.0021 0.0023 0.0081 0.0004 0.0002 0.0043 SCENARIO RECORD : FAIRFIELD COUNTY CO SEASON - LOCAL ROADS CALENDAR YEAR : 2002 EVALUATION MONTH : 1 * Weather Data MIN/MAX TEMP : 33. 49. SCENARIO RECORD : HARTFORD COUNTY CO SEASON - LOCAL ROADS CALENDAR YEAR : 2002 EVALUATION MONTH : 1

SCENARIO RECORD	: LITCHFIELD COUNTY CO SEASON - LOCAL ROADS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1
SCENARIO RECORD	: MIDDLESEX COUNTY CO SEASON - LOCAL ROADS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1
SCENARIO RECORD	: NEW HAVEN COUNTY CO SEASON - LOCAL ROADS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1
SCENARIO RECORD	: NEW LONDON COUNTY CO SEASON - LOCAL ROADS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1
SCENARIO RECORD	: TOLLAND COUNTY CO SEASON - LOCAL ROADS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1
SCENARIO RECORD CALENDAR YEAR EVALUATION MONTH END OF RUN	: WINDHAM COUNTY CO SEASON - LOCAL ROADS : 2002 : 1

MOBILE6 INPUT FILE :

<pre>> 2002 Mobile Conne * REVISED 01/05/05</pre>	cticut County Ramp CO EFs
POLIJITANTS	: CO
REPORT FILE	: C:\MOB02\Output\CT02CO.TXT Append
DATABASE OUTPUT	:
DATABASE OPTIONS	: C:\MOB02\Opt\CTdbRC0.opt
EMISSIONS TABLE	: C:\MOB02\Output\CT02CO.tb1 Append
RUN DATA	
EXPAND BUS EFS	:
EXPAND HDGV EFS	:
EXPAND HDDV EFS	:
EXPAND LDT EFS	:
* LEV phase-in data	
94+ LDG IMP	: NLEVNE.D
* Fuel Data	
FUEL PROGRAM	: 2 N
NO REFUELING	:
FUEL RVP	: 13.1
REG DIST	: C:\MOB02\CTREG02.D
* I/M Data	
I/M DESC FILE	: C:\MOB02\CTIM02.d
ANTI-TAMP PROG	: 83 78 50 22222 21111111 1 12 095. 12111112
REBUILD EFFECTS	: 0.07
* Weather Data	
MIN/MAX TEMP	: 18. 44.
> RAMP VMT Data	
VMT BY FACILITY	: C:\MOB02\VMT\FCVMTR.CTY
VMT BY HOUR	: C:\MOB02\CTHVMT.def
VMT FRACTIONS	:
0.4823 0.0733 0.243	8 0.0752 0.0346 0.0291 0.0029 0.0023
0.0017 0.0064 0.007	6 0.0083 0.0297 0.0014 0.0007 0.0007
SCENARIO RECORD	: FAIRFIELD COUNTY CO SEASON - RAMPS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1
* Weather Data	
MIN/MAX TEMP	: 33. 49.
SCENARIO RECORD	: HARTFORD COUNTY CO SEASON - RAMPS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1

SCENARIO RECORD	: LITCHFIELD COUNTY CO SEASON - RAMPS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1
SCENARIO RECORD	: MIDDLESEX COUNTY CO SEASON - RAMPS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1
SCENARIO RECORD	: NEW HAVEN COUNTY CO SEASON - RAMPS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1
SCENARIO RECORD	: NEW LONDON COUNTY CO SEASON - RAMPS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1
SCENARIO RECORD	: TOLLAND COUNTY CO SEASON - RAMPS
CALENDAR YEAR	: 2002
EVALUATION MONTH	: 1
SCENARIO RECORD CALENDAR YEAR EVALUATION MONTH END OF RUN	: WINDHAM COUNTY CO SEASON - RAMPS : 2002 : 1

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* MOBILE6.2.03 (24-Sep-2003) * Input file: C:\MOB02\02CTE03.IN (file 1, run 1). * Reading 94+ LEV IMPLEMENTATION SCHEDULE from the following external * data file: NLEVNE.D M616 Comment: User has supplied post-1999 sulfur levels. M603 Comment: User has disabled the calculation of REFUELING emissions. * Reading Registration Distributions from the following external * data file: C:\MOB02\CTREG02.D * Reading I/M program description records from the following external * data file: C:\MOB02\CTIM02.D * 2002 CT I/M PROGRAMS Revised 12/13/04 * File has been updated w/2002 stringency/compliance/waiver rates. * 12/13/04 draft of I/M File. Current Name CTIM02.d * Annual I/M test for the pre-81 CARS * Idle test started 1983 was upgraded to an ASM 2525 test in 1998. * Reading ASM I/M Test Credits from ASMDATA.D * Biennial I/M for the post-80 CARS * Idle test started 1983 was upgraded to an ASM 2525 test in 1998. * Reading ASM I/M Test Credits from ASMDATA.D * Annual Evap test for the pre-81 cars * Biennial Evap test for the post-81 cars * Annual I/M test for the pre-81 Trucks (GVWR 8,501-10,000lb) * Biennial I/M test for the post-80 Trucks (GVWR 8,501-10,000lb) * Expressway VMT Data * Reading Hourly Roadway VMT distribution from the following external * data file: C:\MOB02\VMT\FCVMTF.CTY

Reading User Supplied ROADWAY VMT Factors

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* Reading Hourly VMT distribution from the following external * data file: C:\MOB02\CTHVMT.DEF M615 Comment: User supplied VMT mix. * FAIRFIELD COUNTY 03 SEASON - EXPRESSWAYS * File 1, Run 1, Scenario 1. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT1.CTY *** I/M credits for Tech1&2 vehicles were read from the following external data file: TECH12.D M 48 Warning: there are no sales for vehicle class HDGV8b HDDV DEFEAT DEVICE EFFECTS ARE PRESENT. THE REBUILD FRACTION IS 0.07. LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 66.5 (F) Maximum Temperature: 91.6 (F) Minimum Rel. Hum.: 41.4 (%) Maximum Rel. Hum.: 92.1 (%) Barometric Pressure: 29.53 (inches Hq) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGT12 LDGT34 LDGT LDDT All Veh LDGV HDGV LDDV HDDV MC GVWR: <6000 >6000 (All) ____ _____ ____ _____ _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _____ ____ VMT Distribution: 0.4817 0.3170 0.1082 0.0272 0.0006 0.0016 0.0629 0.0007 1.0000

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite Emission Fa	ictors (g/m	 i):								
Composite VOC :	0.839	0.682	0.929	0.745	1.123	0.483	0.465	0.474	4.20	0.785
Composite CO :	13.36	14.09	16.61	14.73	17.63	1.353	0.919	2.737	16.28	13.364
Composite NOX :	0.973	1.043	1.249	1.095	5.448	1.644	1.724	22.378	1.43	2.496
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	ictors (q/m	 i):								
Composite VOC :	1.196	0.527	1.030	0.710	2.085	0.406				
Composite CO :	18.69	12.71	17.78	14.08	3.750	0.815				
Composite NOX :	1.125	1.018	1.199	1.359	3.576	1.656				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000		
Composite Emission Fa	ctors (q/m	 i):								
Composite VOC :	0.853	1.648	3.521	1.783	1.871	2.694	2.731	0.000		
Composite CO :	12.42	33.43	54.17	27.08	29.56	47.51	46.70	0.00		
Composite NOX :	5.068	6.043	7.462	6.762	6.771	8.037	8.719	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297		
Composite Emission Fa	ictors (q/m	 i):								
Composite VOC :	0.182	0.204	0.238	0.243	0.367	0.465	0.478	0.597		
Composite CO :	0.833	0.972	1.076	1.085	1.467	1.875	2.875	3.808		
Composite NOX :	5.726	6.520	7.617	7.986	12.354	15.372	26.612	30.865		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0004	0.0007	0.0010							
Composite Emission Fa	ctors (g/m	 i):								

Composite VOC : 4.774 0.570

0.544

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite CO : 109.89 4.161 2.096 Composite NOX : 9.244 25.729 17.056 * HARTFORD COUNTY O3 SEASON - EXPRESSWAYS * File 1, Run 1, Scenario 2. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT2.CTY M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 67.7 (F) Maximum Temperature: 95.5 (F) Minimum Rel. Hum.: 38.8 (%) Maximum Rel. Hum.: 90.6 (%) Barometric Pressure: 29.89 (inches Hq) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGT12 LDGT34 LDGV LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ ____ ____ ____ _____ _ _ _ _ _ _ ____ _____ ____ VMT Distribution: 0.4817 0.3170 0.1082 0.0272 0.0006 0.0016 0.0629 0.0007 1.0000 _____ Composite Emission Factors (g/mi): Composite VOC : 0.849 0.685 0.935 0.749 1.128 0.473 0.452 0.453 4.43 0.791 Composite CO : 0.920 14.20 14.84 17.45 15.51 19.03 1.355 2.745 19.38 14.139 Composite NOX : 0.979 1.053 1.256 1.105 5.550 1.766 1.853 23.587 1.44 2.582

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34		
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016		
Composite Emission Fa	actors (g/m	 i):						
Composite VOC :	1.197	0.531	1.035	0.716	2.055	0.393		
Composite CO :	19.43	13.47	18.62	14.89	3.754	0.817		
Composite NOX :	1.132	1.029	1.205	1.367	3.829	1.781		
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000
Composite Emission F	actors (g/m	 i):						
Composite VOC :	0.855	1.649	3.591	1.805	1.896	2.724	2.757	0.000
Composite CO :	13.31	36.46	59.18	29.30	32.07	51.82	50.84	0.00
Composite NOX :	5.169	6.131	7.544	6.881	6.884	8.146	8.847	0.000
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B
VM1 M1X.	0.0071	0.0021	0.0019	0.0008	0.0045	0.0008	0.0003	0.0297
Composite Emission F	actors (g/m	i):						
Composite VOC :	0.174	0.195	0.227	0.232	0.351	0.444	0.456	0.570
Composite CO :	0.835	0.975	1.079	1.088	1.472	1.881	2.884	3.820
Composite NOX :	6.165	7.020	8.201	8.598	13.234	16.470	27.935	32.385
Veh. Type:	GasBUS	URBAN	SCHOOL					
VMT Mix:	0.0004	0.0007	0.0010					
Composite Emission Fa	actors (g/m	i):						
Composite VOC :	4.751	0.544	0.520					
Composite CO :	120.87	4.173	2.102					
Composite NOX :	9.253	27.704	18.366					

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* LITCHFIELD COUNTY 03 SEASON - EXPRESSWAYS * File 1, Run 1, Scenario 3. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT3.CTY M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 67.7 (F) Maximum Temperature: 95.5 (F) Minimum Rel. Hum.: 38.8 (%) Maximum Rel. Hum.: 90.6 (%) Barometric Pressure: 29.89 (inches Hg) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGT34 MC All Veh LDGV LDGT12 LDGT HDGV LDDV LDDT HDDV GVWR: <6000 >6000 (All) ____ ____ ____ ____ _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ ____ VMT Distribution: 0.4817 0.3170 0.1082 0.0272 0.0006 0.0016 0.0629 0.0007 1.0000 _____ _____ _____ _____ Composite Emission Factors (g/mi): 0.842 0.679 0.927 Composite VOC : 0.742 1.105 0.468 0.446 0.444 4.49 0.783 Composite CO : 14.42 15.08 17.67 15.74 19.49 1.359 0.924 2.763 20.78 14.357 Composite NOX : 0.982 1.058 1.261 1.109 5.606 1.831 1.923 24.236 1.47 2.628 _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ ____ _____ ____ _____ VMT Mix: 0.0733 0.2438 0.0741 0.0341 0.0001 0.0016 _____ _____

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite Emission Fa	actors (g/m	ιi):							
Composite VOC :	1.184	0.527	1.026	0.711	2.042	0.388			
Composite CO :	19.68	13.69	18.85	15.10	3.760	0.820			
Composite NOX :	1.137	1.034	1.210	1.372	3.965	1.848			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000	
Composite Emission Fa	actors (g/m	ni):							
Composite VOC :	0.837	1.612	3.528	1.771	1.860	2.672	2.704	0.000	
Composite CO :	13.63	37.34	60.61	30.00	32.84	53.07	52.07	0.00	
Composite NOX :	5.222	6.193	7.619	6.950	6.953	8.228	8.935	0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297	
Composite Emission Fa	actors (g/m	ii):							
Composite VOC :	0.170	0.191	0.222	0.227	0.344	0.435	0.447	0.559	
Composite CO :	0.841	0.981	1.086	1.095	1.481	1.893	2.902	3.844	
Composite NOX :	6.401	7.288	8.514	8.926	13.706	17.060	28.646	33.202	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa	actors (g/m	າ່):							
Composite VOC :	4.633	0.534	0.510						
Composite CO :	123.81	4.200	2.115						
Composite NOX :	9.344	28.764	19.069						
* # # # # # # # # # # * MIDDLESEX COUNTY 03	# # # # # SEASON - E	# # # # # XPRESSWAYS	# # # # #						
* File 1, Run 1, Scena	ario 4.								
* # # # # # # # # # #	# # # # #	# # # # #	# # # # #						

* Reading Hourly, Roadway, and Speed VMT dist. from the following external

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

* data file: C:\MOB02\ M 48 Warning:	VMT\COUNTY	\02SDVMT4.	CTY							
there ar	re no sales	for vehic	le class HI	DGV8b						
LEV phase-in data rea Ca Minimum Maximum Minimu	d from file lendar Yea: Mont Altitud Temperatur Temperatur m Rel. Hum	e NLEVNE.D r: 2002 n: July e: Low e: 66.5 (1 e: 91.6 (1 .: 41.4 (1)	F) F) %)							
Maximu Barometr	m Rel. Hum	.: 92.1 (⊇: 29 53 (%) inches Hal							
Fuel Sul	fur Conten	t: 129. p	pm							
Exhaust Evap Refor	I/M Program I/M Program ATP Program mulated Gam	n: Yes n: Yes n: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa	ictors (g/m	 i):								
Composite VOC : Composite CO : Composite NOX :	0.820 13.91 0.979	0.665 14.68 1.056	0.907 17.20 1.262	0.726 15.32 1.108	1.048 18.40 5.604	0.468 1.353 1.802	0.447 0.919 1.892	0.444 2.737 23.952	4.32 18.75 1.51	0.765 13.903 2.608
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa Composite VOC : Composite CO : Composite NOX :	actors (g/m. 1.160 19.35 1.138	i): 0.516 13.28 1.031	1.004 18.38 1.211	0.696 14.63 1.371	2.043 3.751 3.905	0.388 0.815 1.819				

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000	
Composite Emission Fa	actors (g/m	 .i):							
Composite VOC :	0.796	1.530	3.319	1.674	1.757	2.525	2.557	0.000	
Composite CO :	12.96	34.89	56.53	28.26	30.86	49.58	48.75	0.00	
Composite NOX :	5.213	6.215	7.673	6.955	6.964	8.265	8.966	0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297	
Composite Emission Fa	actors (g/m	 .i):							
Composite VOC :	0.171	0.191	0.223	0.228	0.344	0.436	0.448	0.559	
Composite CO :	0.833	0.972	1.076	1.085	1.467	1.876	2.875	3.809	
Composite NOX :	6.297	7.171	8.377	8.783	13.500	16.802	28.335	32.844	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa	actors (g/m	 ນ່):							
Composite VOC :	4.399	0.534	0.510						
Composite CO :	114.68	4.161	2.096						
Composite NOX :	9.502	28.300	18.761						
<pre>* # # # # # # # # # # # # * NEW HAVEN COUNTY 03 * File 1, Run 1, Scena * # # # # # # # # # # * Reading Hourly, Road * data file: C:\MOB02 M 48 Warning:</pre>	# # # # # SEASON - E ario 5. # # # # # dway, and S \VMT\COUNTY	# # # # # XPRESSWAYS # # # # # Speed VMT d \02SDVMT5.	# # # # # # # # # # # # List. from CTY	the follow	ving extern	al			

there are no sales for vehicle class HDGV8b

LEV phase-in data read from file NLEVNE.D

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Ca Minimum Maximum Minimu Maximu	lendar Yean Month Altitude Temperature m Rel. Hum Poll Hum	<pre>c: 2002 h: July e: Low e: 66.5 (1 e: 91.6 (1 .: 41.4 (1) </pre>	F) F) %)							
Barometr	ic Pressure	e: 29.53 (°, inches Hg)							
Fuel Sul	fur Content	z: 129. p	pm							
Exhaust Evap Refor	I/M Program I/M Program ATP Program mulated Gas	n: Yes n: Yes n: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa	ctors (g/mi	i):								
Composite VOC :	0.831	0.674	0.919	0.736	1.090	0.477	0.457	0.461	4.26	0.776
Composite CO :	13.61	14.37	16.89	15.01	18.03	1.354	0.920	2.743	17.47	13.618
Composite NOX :	0.976	1.049	1.255	1.101	5.520	1.719	1.803	23.123	1.47	2.549
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	ctors (g/mi	L):								
Composite VOC :	1.180	0.522	1.018	0.704	2.066	0.398				
Composite CO :	19.00	12.98	18.06	14.34	3.753	0.816				
Composite NOX :	1.131	1.024	1.205	1.365	3.732	1.733				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000		

Composite Emission Factors (g/mi):

TABLE 72002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite VOC : Composite CO : Composite NOX :	0.828 12.70 5.134	1.596 34.18 6.122	3.433 55.38 7.559	1.736 27.69 6.851	1.822 30.23 6.859	2.620 48.57 8.142	2.656 47.75 8.832	0.000 0.00 0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297	
Composite Emission Fa	ictors (g/m	 i):							
Composite VOC :	0.177	0.198	0.231	0.236	0.357	0.452	0.465	0.580	
Composite CO :	0.835	0.974	1.078	1.088	1.471	1.880	2.882	3.817	
Composite NOX :	5.997	6.828	7.977	8.363	12.896	16.049	27.427	31.802	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa	ictors (g/m	 i):							
Composite VOC :	4.611	0.555	0.530						
Composite CO :	112.36	4.171	2.101						
Composite NOX :	9.363	26.946	17.863						
* # # # # # # # # # # # * NEW LONDON COUNTY 03 * File 1, Run 1, Scena * # # # # # # # # # # #	# # # # # SEASON - rio 6. # # # # # #	# # # # # EXPRESSWAY # # # # #	# # # # # # S # # # # # #						
* Reading Hourly, Road * data file: C:\MOB02\ M 48 Warning: there ar	lway, and S VMT\COUNTY e no sales	peed VMT d \02SDVMT6. for vehic	ist. from CTY le class H	the follow DGV8b	ving extern	al			
LEV phase-in data rea Ca Minimum Maximum	d from fil lendar Yea Mont Altitud Temperatur Temperatur	e NLEVNE.D r: 2002 h: July e: Low e: 67.7 (e: 95.5 (F) F)						

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Minimu Maximu Barometr Fuel Sul	um Rel. Hum um Rel. Hum ric Pressure fur Conten	.: 38.8 (.: 90.6 (e: 29.89 (t: 129. p	%) %) inches Hg) pm							
Exhaust Evap Refor	I/M Program I/M Program ATP Program Tmulated Gam	m: Yes m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa Composite VOC : Composite CO : Composite NOX :	actors (g/m. 0.845 14.27 0.980	i): 0.681 14.93 1.054	0.930 17.53 1.257	0.744 15.59 1.106	1.110 18.98 5.573	0.469 1.349 1.781	0.448 0.916 1.869	0.446 2.723 23.739	4.43 19.52 1.45	0.786 14.208 2.593
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	actors (g/m	i):								
Composite VOC : Composite CO : Composite NOX :	1.190 19.52 1.134	0.528 13.55 1.030	1.030 18.70 1.206	0.713 14.97 1.368	2.045 3.745 3.861	0.389 0.812 1.797				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000		
Composite Emission Fa Composite VOC : Composite CO : Composite NOX :	actors (g/m. 0.841 13.28 5.191	i): 1.618 36.36 6.157	3.539 59.01 7.575	1.778 29.22 6.910	1.866 31.98 6.913	2.681 51.67 8.180	2.713 50.70 8.884	0.000 0.00 0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

VWT Mix: 0.0010 0.0021 0.0019 0.0008 0.0045 0.0068 0.0083 0.0297 Composite WOC: 0.111 0.122 0.223 0.228 0.345 0.437 0.449 0.561 Composite WOX: 6.220 7.083 8.274 8.675 13.345 16.608 28.102 32.577 Veh. Type: GasBUS URBAN SCHOOL 32.577 Veh. Type: GasBUS URBAN SCHOOL 32.577 Veh. Type: GasBUS URBAN SCHOOL VWT Mix: 0.0004 0.0007 0.0010 Composite WOC: 4.654 0.536 0.512 Composite WOC: 4.654 0.536 0.512 Composite WOC: 4.654 0.536 0.512 Composite WOX: 9.291 27.953 18.531 * # # # # # # # # # # # # # # # # # # #										
Composite Rmission Factors (g/ml): Composite VOC: 0.171 0.192 0.223 0.228 0.345 0.437 0.449 0.561 Composite NOX: 6.220 7.083 8.274 8.675 13.345 16.608 28.102 32.577 Veh. Type: GaeBUS URBAN SCHOOL VMT Mix: 0.0004 0.0007 0.0010 Composite Smission Factors (g/ml): Composite VOC: 4.654 0.536 0.512 Composite VOC: 4.654 0.536 0.512 Composite NOX: 9.291 27.953 18.531 * # # # # # # # # # # # # # # # # # # #	VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297	
Composite VOC : 0.171 0.192 0.223 0.228 0.345 0.437 0.449 0.561 Composite VOC : 0.829 0.967 1.070 1.080 1.460 1.866 2.860 3.789 Composite NOX : 6.220 7.083 8.274 8.675 13.345 16.608 28.102 32.577 Veh. Type: GasBUS URBAN SCHOOL 	Composite Emission Fa	actors (g/m	 i):							
Composite CO: 0.829 0.967 1.070 1.080 1.460 1.866 2.860 3.789 Composite NOX: 6.220 7.083 8.274 8.675 13.345 16.608 28.102 32.577 Veh. Type: GasBUS URBAN SCHOOL 	Composite VOC :	0.171	0.192	0.223	0.228	0.345	0.437	0.449	0.561	
Composite NOX : 6.220 7.083 8.274 8.675 13.345 16.608 28.102 32.577 Veh. Type: GasEUS URBAN SCHOOL 	Composite CO :	0.829	0.967	1.070	1.080	1.460	1.866	2.860	3.789	
Veh. Type: GasBUS URBAN SCHOOL VMT Mix: 0.0004 0.0007 0.0010 Composite Emission Factors (g/mi):	Composite NOX :	6.220	7.083	8.274	8.675	13.345	16.608	28.102	32.577	
<pre>VMT Mix: 0.004 0.0007 0.0010 Composite Emission Factors (g/mi): Composite VOC: 4.654 0.536 0.512 Composite CO: 120.51 4.139 2.085 Composite NOX: 9.291 27.953 18.531 * # # # # # # # # # # # # # # # # # # #</pre>	Veh. Type:	GasBUS	URBAN	SCHOOL						
Composite Emission Factors (g/mi): Composite VOC : 4.654 0.536 0.512 Composite CO : 120.51 4.139 2.085 Composite NOX : 9.291 27.953 18.531 * # # # # # # # # # # # # # # # # # # #	VMT Mix:	0.0004	0.0007	0.0010						
Composite VOC : 4.654 0.536 0.512 Composite CO : 120.51 4.139 2.085 Composite NOX : 9.291 27.953 18.531 * # # # # # # # # # # # # # # # # # # #	Composite Emission Fa	actors (g/m	i):							
<pre>Composite CO : 120.51 4.139 2.085 Composite NOX : 9.291 27.953 18.531 * # # # # # # # # # # # # # # # # # #</pre>	Composite VOC :	4.654	0.536	0.512						
<pre>Composite NOX : 9.291 27.953 18.531 ************************************</pre>	Composite CO :	120.51	4.139	2.085						
<pre>* # # # # # # # # # # # # # # # # # # #</pre>	Composite NOX :	9.291	27.953	18.531						
LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 67.7 (F) Maximum Temperature: 95.5 (F) Absolute Humidity: 96. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes	<pre>* # # # # # # # # # # # # # # # # # # #</pre>	# # # # # # dway, and S \VMT\COUNTY re no sales	# # # # # # peed VMT d \02SDVMT7. for vehic	# # # # # # List. from CTY :le class H	the follow HDGV8b	ing extern	al			
	LEV phase-in data rea Ca Minimum Maximum Absolu Fuel Sul Exhaust	ad from fil alendar Yea Mont Altitud Temperatur Temperatur Ite Humidit Ifur Conten	e NLEVNE.D r: 2002 h: July e: Low e: 67.7 (e: 95.5 (y: 96.g t: 129.p m: Yes	F) F) prains/lb ppm						
Evap I/M Program: Yes	Evap	I/M Program	m: Yes							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Refor	ATP Program mulated Gam	m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	0.842	0.679	0.927	0.742	1.105	0.468	0.447	0.444	4.48	0.783
Composite CO :	14.36	15.02	17.62	15.68	19.40	1.357	0.922	2.756	20.54	14.301
Composite NOX :	0.980	1.055	1.259	1.107	5.602	1.823	1.914	24.159	1.47	2.621
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	actors (q/m	 i):								
Composite VOC :	1.185	0.527	1.026	0.711	2.042	0.388				
Composite CO :	19.63	13.63	18.80	15.05	3.758	0.819				
Composite NOX :	1.135	1.032	1.208	1.370	3.949	1.840				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000		
Composite Emission Fa	actors (q/m	 i):								
Composite VOC :	0.837	1.612	3.529	1.772	1.860	2.673	2.704	0.000		
Composite CO :	13.57	37.17	60.34	29.86	32.69	52.84	51.83	0.00		
Composite NOX :	5.218	6.188	7.613	6.944	6.948	8.221	8.928	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297		
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	0.171	0.191	0.223	0.227	0.344	0.435	0.447	0.559		
Composite CO :	0.839	0.978	1.083	1.093	1.477	1.888	2.895	3.835		
Composite NOX :	6.373	7.257	8.477	8.888	13.651	16.990	28.562	33.106		

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type: URBAN SCHOOL GasBUS ____ ____ ____ VMT Mix: 0.0004 0.0007 0.0010 _____ Composite Emission Factors (q/mi): Composite VOC : 4.635 0.534 0.510 Composite CO : 123.24 4.190 2.110 Composite NOX : 9.337 28.640 18.987 * WINDHAM COUNTY O3 SEASON - EXPRESSWAYS * File 1, Run 1, Scenario 8. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT8.CTY M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 67.7 (F) Maximum Temperature: 95.5 (F) Minimum Rel. Hum.: 38.8 (%) Maximum Rel. Hum.: 90.6 (%) Barometric Pressure: 29.89 (inches Hq) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes LDGT Vehicle Type: LDGV LDGT12 LDGT34 HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All)

TABLE 7 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa	ctors (g/m	 i):								
Composite VOC :	0.842	0.679	0.927	0.742	1.105	0.468	0.446	0.444	4.49	0.783
Composite CO :	14.42	15.08	17.67	15.74	19.49	1.359	0.924	2.763	20.78	14.357
Composite NOX :	0.982	1.058	1.261	1.109	5.606	1.831	1.923	24.236	1.47	2.628
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	ctors (g/m	 i):								
Composite VOC :	1.184	0.527	1.026	0.711	2.042	0.388				
Composite CO :	19.68	13.69	18.85	15.10	3.760	0.820				
Composite NOX :	1.137	1.034	1.210	1.372	3.965	1.848				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000		
Composite Emission Fa	ctors (g/m	i):								
Composite VOC :	0.837	1.612	3.528	1.771	1.860	2.672	2.704	0.000		
Composite CO :	13.63	37.34	60.61	30.00	32.84	53.07	52.07	0.00		
Composite NOX :	5.222	6.193	7.619	6.950	6.953	8.228	8.935	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297		
Composite Emission Fa	ctors (g/m	 i):								
Composite VOC :	0.170	0.191	0.222	0.227	0.344	0.435	0.447	0.559		
Composite CO :	0.841	0.981	1.086	1.095	1.481	1.893	2.902	3.844		
Composite NOX :	6.401	7.288	8.514	8.926	13.706	17.060	28.646	33.202		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0004	0.0007	0.0010							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite Emission Factors (g/mi): Composite VOC : 4.633 0.534 0.510 Composite CO : 123.81 4.200 2.115 Composite NOX : 9.344 28.764 19.069

<pre>* Reading 94+ LEV IMPLEMENTATION SCHEDULE from the following external * data file: NLEVNE.D M616 Comment:</pre>
* Reading Registration Distributions from the following external * data file: C:\MOB02\CTREG02.D
<pre>* Reading I/M program description records from the following external * data file: C:\MOB02\CTIM02.D * 2002 CT I/M PROGRAMS Revised 12/13/04 * File has been updated w/2002 stringency/compliance/waiver rates. * 12/13/04 draft of I/M File. Current Name CTIM02.d * Annual I/M test for the pre-81 CARS * Idle test started 1983 was upgraded to an ASM 2525 test in 1998.</pre>
* Reading ASM I/M Test Credits from ASMDATA.D * Biennial I/M for the post-80 CARS * Idle test started 1983 was upgraded to an ASM 2525 test in 1998.
<pre>* Reading ASM I/M Test Credits from ASMDATA.D * Annual Evap test for the pre-81 cars * Biennial Evap test for the post-81 cars * Annual I/M test for the pre-81 Trucks (GVWR 8,501-10,000lb) * Biennial I/M test for the post-80 Trucks (GVWR 8,501-10,000lb)</pre>

* ARTERIALS/COLLECTOR VMT Data

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* Reading Hourly Roadway VMT distribution from the following external * data file: C:\MOB02\VMT\FCVMTA.CTY Reading User Supplied ROADWAY VMT Factors * Reading Hourly VMT distribution from the following external * data file: C:\MOB02\CTHVMT.DEF M615 Comment: User supplied VMT mix. * FAIRFIELD COUNTY O3 SEASON - ARTERIALS/COLLECTORS * File 2, Run 1, Scenario 1. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT1.CTY *** I/M credits for Tech1&2 vehicles were read from the following external data file: TECH12.D M 48 Warning: there are no sales for vehicle class HDGV8b HDDV DEFEAT DEVICE EFFECTS ARE PRESENT. THE REBUILD FRACTION IS 0.07. LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 66.5 (F) Maximum Temperature: 91.6 (F) Minimum Rel. Hum.: 41.4 (%) Maximum Rel. Hum.: 92.1 (%) Barometric Pressure: 29.53 (inches Hq) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5115	0.3365	0.1148		0.0097	0.0006	0.0017	0.0224	0.0027	1.0000
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	1.021	0.837	1.124	0.910	1.796	0.620	0.630	0.742	4.48	0.980
Composite CO :	10.96	11.38	14.03	12.06	20.27	1.571	1.102	3.659	17.14	11.376
Composite NOX :	1.002	1.032	1.250	1.087	4.544	1.169	1.217	13.767	1.11	1.362
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0778	0.2588	0.0787	0.0362	0.0001	0.0017				
Composite Emission Fa	actors (q/m	 i):								
Composite VOC :	1.492	0.639	1.254	0.842	2.460	0.563				
Composite CO :	15.78	10.06	15.14	11.60	4.095	0.992				
Composite NOX :	1.113	1.008	1.196	1.367	2.585	1.167				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0079	0.0003	0.0001	0.0003	0.0007	0.0003	0.0000	0.0000		
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	1.372	2.731	5.358	2.778	2.919	4.252	4.324	0.000		
Composite CO :	14.27	38.65	62.67	31.22	34.12	54.93	53.97	0.00		
Composite NOX :	4.228	5.042	6.226	5.642	5.649	6.706	7.274	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0025	0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106		
Composite Emission Fa	actors (q/m	 i):								
Composite VOC :	0.285	0.319	0.372	0.380	0.575	0.727	0.747	0.934		
Composite CO :	1.113	1.299	1.438	1.451	1.961	2.507	3.843	5.091		
Composite NOX :	4.006	4.561	5.329	5.587	8.201	10.226	15.842	18.534		
Veh. Type:	GasBUS	URBAN	SCHOOL							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

VMT Mix:	0.0001	0.0002	0.0004							
Composite Emission Fac	ctors (g/m	.):								
Composite VOC :	8.194	0.892	0.852							
Composite CO :	127.43	5.562	2.801							
Composite NOX :	7.714	17.990	11.923							
<pre>* # # # # # # # # # # # * HARTFORD COUNTY 03 SI * File 2, Run 1, Scenar * # # # # # # # # # # # * Reading Hourly, Roads</pre>	# # # # # # EASON - AR rio 2. # # # # # # # way, and Sp	# # # # # TERIALS/CO # # # # # Deed VMT d	# # # # # # LLECTORS # # # # # # ist. from 1	the follow	ing extern	al				
* data file: C:\MOB02\V M 48 Warning:	VMT\COUNTY	02SDVMT2.	СТҮ		-					
there are	e no sales	for vehic	le class HI	OGV8b						
LEV phase-in data read	d from file	NLEVNE.D								
Cal	lendar Yeai	: 2002								
	Month	n: Julv								
	Altitude	e: Low								
Minimum 7	remperature	e: 67.7 (F)							
Maximum 5	- Femperature	e: 95.5 (F)							
Minimur	n Rel. Hum	: 38.8 (8)							
Maximur	n Rel. Hum	: 90.6 (8)							
Barometri	ic Pressure	e: 29.89 (inches Hg)							
Fuel Sult	Eur Content	: 129. p	pm							
Exhaust	I/M Program	1: Yes								
Елар -	I/M PIOgiai	Vog								
Reform	mulated Gas	s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5115	0.3365	0.1148		0.0097	0.0006	0.0017	0.0224	0.0027	1.0000

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite Emission Fa	ictors (g/m	i):		·						
Composite VOC :	1.014	0.827	1.113	0.900	1.734	0.596	0.601	0.695	4.46	0.971
Composite CO :	11.19	11.55	14.26	12.24	19.38	1.500	1.042	3.356	16.69	11.560
Composite NOX :	0.989	1.018	1.230	1.072	4.604	1.155	1.203	13.633	1.08	1.345
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0778	0.2588	0.0787	0.0362	0.0001	0.0017				
Composite Emission Fa		 i):								
Composite VOC :	1.476	0.632	1.242	0.833	2.394	0.536				
Composite CO :	15.85	10.26	15.36	11.86	3.982	0.934				
Composite NOX :	1.097	0.994	1.176	1.347	2.557	1.153				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0079	0.0003	0.0001	0.0003	0.0007	0.0003	0.0000	0.0000		
Composite Emission Fa		 i):								
Composite VOC :	1.324	2.618	5.242	2.698	2.833	4.111	4.179	0.000		
Composite CO :	13.55	37.31	60.60	29.91	32.76	53.04	52.00	0.00		
Composite NOX :	4.290	5.089	6.262	5.710	5.713	6.761	7.342	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0025	0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106		
Composite Emission Fa		 i):								
Composite VOC :	0.267	0.299	0.348	0.356	0.538	0.681	0.700	0.874		
Composite CO :	1.021	1.191	1.319	1.331	1.799	2.300	3.525	4.670		
Composite NOX :	3.957	4.506	5.264	5.519	8.104	10.104	15.695	18.365		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0001	0.0002	0.0004							
Composite Emission Fa		 i):								

Composite VOC : 7.825 0.835

0.798

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite CO : 124.03 5.102 2.570 Composite NOX : 7.684 17.771 11.778 * LITCHFIELD COUNTY O3 SEASON - ARTERIALS/COLLECTORS * File 2, Run 1, Scenario 3. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT3.CTY M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 67.7 (F) Maximum Temperature: 95.5 (F) Minimum Rel. Hum.: 38.8 (%) Maximum Rel. Hum.: 90.6 (%) Barometric Pressure: 29.89 (inches Hq) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGT12 LDGT34 All Veh LDGV LDGT HDGV LDDV LDDT HDDV MC GVWR: <6000 >6000 (All) ____ ____ ____ ____ ____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _____ ____ VMT Distribution: 0.5115 0.3365 0.1148 0.0097 0.0006 0.0017 0.0224 0.0027 1.0000 _____ Composite Emission Factors (g/mi): Composite VOC : 0.933 0.759 1.029 0.827 1.418 0.537 0.530 0.579 4.17 0.890 Composite CO : 0.922 11.71 12.21 14.84 12.88 16.14 1.357 2.755 13.67 12.058 Composite NOX : 0.955 1.000 1.207 1.052 4.860 1.177 1.226 13.849 1.13 1.327

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34			
VMT Mix:	0.0778	0.2588	0.0787	0.0362	0.0001	0.0017			
Composite Emission Fa	actors (g/m	 າ່):							
Composite VOC :	1.350	0.581	1.145	0.774	2.232	0.468			
Composite CO :	16.50	10.92	15.94	12.45	3.757	0.818			
Composite NOX :	1.080	0.976	1.155	1.319	2,602	1.176			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0079	0.0003	0.0001	0.0003	0.0007	0.0003	0.0000	0.0000	
Composite Emission F	actors (g/m	ıi):							
Composite VOC :	1.083	2.104	4.370	2.229	2.339	3.373	3.425	0.000	
Composite CO :	11.30	31.04	50.39	24.91	27.27	44.12	43.26	0.00	
Composite NOX :	4.528	5.372	6.609	6.028	6.031	7.137	7.750	0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0025	0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106	
Composite Emission Fa	actors (q/m	 ນ່):							
Composite VOC :	0.222	0.249	0.290	0.297	0.449	0.568	0.583	0.729	
Composite CO :	0.838	0.978	1.083	1.092	1.477	1.887	2.893	3.833	
Composite NOX :	4.036	4.595	5.368	5.628	8.261	10.300	15.931	18.636	
Veh Type:	GasBIIS	IIRBAN	SCHOOL						
ven. rype.									
VMT Mix:	0.0001	0.0002	0.0004						
Composite Emission F	actors (ɑ/m	 ນi):							
Composite VOC :	6.194	0.696	0.665						
Composite CO :	103.03	4.188	2.109						
Composite NOX :	8.108	18.123	12.011						

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* MIDDLESEX COUNTY O3 SEASON - ARTERIALS/COLLECTORS * File 2, Run 1, Scenario 4. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT4.CTY M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 66.5 (F) Maximum Temperature: 91.6 (F) Minimum Rel. Hum.: 41.4 (%) Maximum Rel. Hum.: 92.1 (%) Barometric Pressure: 29.53 (inches Hg) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGT34 MC All Veh LDGV LDGT12 LDGT HDGV LDDV LDDT HDDV GVWR: <6000 >6000 (All) ____ ____ ____ ____ ____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ ____ VMT Distribution: 0.5115 0.3365 0.1148 0.0097 0.0006 0.0017 0.0224 0.0027 1.0000 _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ Composite Emission Factors (g/mi): 0.921 0.753 Composite VOC : 1.019 0.820 1.420 0.552 0.549 0.609 4.11 0.881 Composite CO : 11.26 11.85 14.39 12.50 16.24 1.393 0.952 2.905 13.56 11.664 Composite NOX : 0.956 1.002 1.212 1.055 4.804 1.171 1.220 13.791 1.16 1.327 _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ _____ ____ _____ ____ ____ VMT Mix: 0.0778 0.2588 0.0787 0.0362 0.0001 0.0017 _____ _____

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite Emission Factors (g/mi):											
Composite VOC :	1.340	0.576	1.135	0.768	2.274	0.485					
Composite CO :	16.19	10.55	15.49	12.01	3.813	0.847					
Composite NOX :	1.084	0.977	1.161	1.324	2.590	1.170					
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B			
VMT Mix:	0.0079	0.0003	0.0001	0.0003	0.0007	0.0003	0.0000	0.0000			
Composite Emission Fa	actors (g/m	ιi):									
Composite VOC :	1.085	2.120	4.322	2.220	2.330	3.371	3.425	0.000			
Composite CO :	11.44	30.91	50.11	25.00	27.31	43.93	43.17	0.00			
Composite NOX :	4.470	5.330	6.582	5.964	5.972	7.089	7.690	0.000			
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B			
VMT Mix:	0.0025	0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106			
Composite Emission Fa	actors (g/m										
Composite VOC :	0.234	0.262	0.305	0.312	0.472	0.597	0.614	0.767			
Composite CO :	0.884	1.031	1.142	1.152	1.557	1.990	3.051	4.042			
Composite NOX :	4.015	4.571	5.340	5.599	8.218	10.247	15.867	18.563			
Veh. Type:	GasBUS	URBAN	SCHOOL								
VMT Mix:	0.0001	0.0002	0.0004								
Composite Emission Fa	actors (g/m	ιi):									
Composite VOC :	6.260	0.733	0.700								
Composite CO :	101.78	4.416	2.224								
Composite NOX :	8.153	18.028	11.948								
* # # # # # # # # # # # * NEW HAVEN COUNTY 03 * File 2, Run 1, Scena	# # # # # SEASON - A ario 5.	# # # # # RTERIALS/C	# # # # # OLLECTORS								

* Reading Hourly, Roadway, and Speed VMT dist. from the following external

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

* data file: C:\MOB02\ M 48 Warning:	VMT\COUNTY'	\02SDVMT5.	СТҮ							
there ar	e no sales	for vehic	le class H	DGV8b						
LEV phase-in data rea Ca Minimum Maximum Minimu Maximu Barometr Fuel Sul	d from file lendar Yea: Montl Altitude Temperature m Rel. Hum m Rel. Hum ic Pressure fur Conten	e NLEVNE.D r: 2002 h: July e: Low e: 66.5 () e: 91.6 () .: 41.4 () .: 92.1 () e: 29.53 () t: 129. p	F) F) %) inches Hg) pm							
Exhaust Evap Refor	I/M Program I/M Program ATP Program mulated Gas	m: Yes m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5115	0.3365	0.1148		0.0097	0.0006	0.0017	0.0224	0.0027	1.0000
Composite Emission Fa Composite VOC : Composite CO : Composite NOX :	ctors (g/m: 0.975 10.94 0.976	i): 0.798 11.44 1.012	1.076 14.03 1.227	0.868 12.10 1.067	1.631 18.37 4.628	0.593 1.491 1.155	0.597 1.035 1.203	0.689 3.321 13.631	4.31 15.52 1.12	0.935 11.355 1.337
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0778	0.2588	0.0787	0.0362	0.0001	0.0017				
Composite Emission Fa Composite VOC : Composite CO : Composite NOX :	ctors (g/m: 1.423 15.78 1.094	i): 0.610 10.14 0.988	1.199 15.13 1.174	0.807 11.64 1.342	2.385 3.969 2.557	0.532 0.927 1.153				

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

HDGV5 HDGV6 HDGV7 HDGV8A HDGV8B	HI	HDGV4	HDGV3	HDGV2B	Veh. Type:
0.0003 0.0007 0.0003 0.0000 0.0000	0	0.0001	0.0003	0.0079	VMT Mix:
			mi):	actors (g/	Composite Emission F
3 2.533 2.661 3.866 3.930 0.000		4.903	2.463	1.246	Composite VOC :
28.28 30.90 49.74 48.87 0.00	2	56.74	35.00	12.94	Composite CO :
5.746 5.753 6.829 7.408 0.000		6.341	5.135	4.306	Composite NOX :
HDDV5 HDDV6 HDDV7 HDDV8A HDDV8B	HI	HDDV4	HDDV3	HDDV2B	Veh. Type:
7 0.0003 0.0016 0.0024 0.0030 0.0106	0	0.0007	0.0007	0.0025	VMT Mix:
			mi):	actors (g/	Composite Emission F
5 0.353 0.533 0.675 0.693 0.867	. (0.345	0.296	0.264	Composite VOC :
5 1.317 1.780 2.275 3.488 4.620		1.305	1.179	1.011	Composite CO :
3 5.518 8.102 10.102 15.693 18.363		5.263	4.505	3.957	Composite NOX :
		SCHOOL	URBAN	GasBUS	Veh. Type:
ł		0.0004	0.0002	0.0001	VMT Mix:
			 mi):	actors (g/	Composite Emission F
L		0.791	0.828	7.344	Composite VOC :
2		2.542	5.048	115.32	Composite CO :
		11.775	17.768	7.855	Composite NOX :
2 5 	 #	2.542 11.775 	5.048 17.768 : # # # # # #	115.32 7.855 # # # # # #	Composite CO : Composite NOX :

NEW LONDON COUNTY 03 SEASON - ARTERIALS/COLLECTORS

* File 2, Run 1, Scenario 6.

* Reading Hourly, Roadway, and Speed VMT dist. from the following external

* data file: C:\MOB02\VMT\COUNTY\02SDVMT6.CTY M 48 Warning:

there are no sales for vehicle class HDGV8b

LEV phase-in data read from file NLEVNE.D

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Ca Minimum Maximum Minimu Maximu Barometr Fuel Sul	lendar Year Month Altitude Temperature m Rel. Hum m Rel. Hum ic Pressure fur Content	r: 2002 h: July e: Low e: 67.7 (1 e: 95.5 (1 .: 38.8 (1 .: 90.6 (1 e: 29.89 (1 c: 129. p)	F) F) %) inches Hg) pm							
Exhaust	I/M Program	n: Yes								
ьvaр	ATP Program	n: Yes								
Refor	mulated Gas	s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5115	0.3365	0.1148		0.0097	0.0006	0.0017	0.0224	0.0027	1.0000
Composite Emission Fa	ctors (g/m	i):								
Composite VOC :	0.990	0.807	1.088	0.878	1.638	0.578	0.579	0.659	4.37	0.946
Composite CO :	11.33	11.73	14.41	12.41	18.34	1.455	1.004	3.167	15.77	11.688
		1.012			4.079	1.130				1.550
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0778	0.2588	0.0787	0.0362	0.0001	0.0017				
Composite Emission Fa	ctors (g/m	i):								
Composite VOC :	1.439	0.617	1.213	0.816	2.344	0.515				
Composite CO :	16.02	10.44	15.51	12.02	3.911	0.898				
Composite NOX :	1.091	0.988	1.169	1.338	2.563	1.156				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0079	0.0003	0.0001	0.0003	0.0007	0.0003	0.0000	0.0000		

Composite Emission Factors (g/mi):

TABLE 72002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite VOC : Composite CO : Composite NOX :	1.251 12.83 4.359	2.460 35.30 5.172	4.975 57.33 6.364	2.554 28.31 5.803	2.681 31.00 5.806	3.884 50.18 6.871	3.948 49.20 7.462	0.000 0.00 0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0025	0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106	
Composite Emission Fa	ctors (g/m	 i):							
Composite VOC :	0.253	0.283	0.330	0.338	0.511	0.646	0.664	0.830	
Composite CO :	0.964	1.124	1.245	1.256	1.698	2.170	3.326	4.406	
Composite NOX :	3.967	4.518	5.278	5.533	8.124	10.129	15.726	18.400	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0001	0.0002	0.0004						
Composite Emission Fa	 ctors (g/m	 i):							
Composite VOC :	7.325	0.793	0.757						
Composite CO :	117.30	4.814	2.425						
Composite NOX :	7.809	17.817	11.808						
* # # # # # # # # # # # * TOLLAND COUNTY O3 SE * File 2, Run 1, Scena * # # # # # # # # # #	# # # # # ASON - ART rio 7. # # # # # #	# # # # # ERIALS/COL # # # # #	# # # # # # LECTORS # # # # # #						
* Reading Hourly, Road * data file: C:\MOB02\ M 48 Warning: there ar	way, and S VMT\COUNTY e no sales	peed VMT d \02SDVMT7. for vehic	ist. from CTY le class H	the follow DGV8b	ving extern	al			
LEV phase-in data rea Ca Minimum Maximum	d from fil lendar Yea Mont Altitud Temperatur Temperatur	e NLEVNE.D r: 2002 h: July e: Low e: 67.7 (e: 95.5 (F) F)						
2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Absolute Humidity: 96. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ _____ _____ _____ _____ _ _ _ _ _ _ _ _____ _____ ____ VMT Distribution: 0.3365 0.1148 0.0097 0.0006 0.0017 0.0224 0.0027 0.5115 1.0000 _____ . _ _ _ _ _ _ Composite Emission Factors (g/mi): Composite VOC : 0.932 0.758 1.028 0.827 1.428 0.541 0.535 0.588 4.18 0.889 Composite CO : 11.54 12.05 14.68 12.72 16.23 1.363 0.927 2.779 13.75 11.905 4.833 Composite NOX : 0.952 0.996 1.203 1.049 1.174 1.222 13.815 1.13 1.323 _____ _____ _____ LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 Veh. Type: ____ ____ ____ ____ ____ ____ 0.0778 0.2588 0.0787 VMT Mix: 0.0362 0.0001 0.0017 _____ _____ Composite Emission Factors (q/mi): Composite VOC : 1.350 0.580 0.773 2.244 0.473 1.145 16.32 10.77 12.30 3.766 0.823 Composite CO : 15.77 0.972 Composite NOX : 1.076 1.151 1.315 2.595 1.172 _____ _____ _ _ _ _ _ _ _ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ ______ Veh. Type: HDGV2B HDGV3 HDGV4 HDGV5 HDGV6 HDGV7 HDGV8A HDGV8B ____ ____ ____ ____ ____ ____ ____ ____ 0.0079 0.0003 VMT Mix: 0.0003 0.0001 0.0003 0.0007 0.0000 0.0000 _____ _____ _____ Composite Emission Factors (g/mi): Composite VOC : 1.091 2.121 4.399 2.245 2.355 3.398 3.451 0.000 Composite CO : 11.36 31.20 50.66 25.04 27.42 44.35 43.49 0.00 7.097 Composite NOX : 4.503 5.341 6.572 5.993 5.997 7.707 0.000 _____ -----_____ -----_____ -----_ _ _ _ _ _ _ _ _ Veh. Type: HDDV2B HDDV3 HDDV4 HDDV5 HDDV6 HDDV7 HDDV8A HDDV8B ____ ____ ____ ____ ____ ____ ____ _ _ _ _ _ _ 0.0025 0.0007 0.0007 0.0003 0.0016 0.0024 0.0030 0.0106 VMT Mix:

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite Emission Fa	actors (q/m	 i):							
Composite VOC :	0.226	0.253	0.295	0.301	0.455	0.576	0.592	0.740	
Composite CO :	0.846	0.987	1.092	1.102	1.490	1.904	2.919	3.867	
Composite NOX :	4.023	4.581	5.352	5.611	8.236	10.269	15.894	18.594	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0001	0.0002	0.0004						
Composite Emission Fa	actors (g/m								
Composite VOC :	6.248	0.707	0.675						
Composite CO :	103.59	4.225	2.128						
Composite NOX :	8.064	18.069	11.975						
<pre>* # # # # # # # # # # # # # # # # # # #</pre>	<pre># # # # # # dway, and S \VMT\COUNTY re no sales ad from fil</pre>	# # # # # peed VMT d \02SDVMT8. for vehic e NLEVNE.D	# # # # # dist. from CTY le class H	the follow. HDGV8b	ing extern	al			
Ca	alendar Yea	r: 2002							
	Altitud	e: Low							
Minimum	Temperatur	e: 67.7 (F)						
Maximum	Temperatur	e: 95.5 (F)						
Minimu	um Rel. Hum	.: 38.8 (응)						
Maximu	um Rel. Hum	.: 90.6 (응)						
Barometi	ric Pressur	e: 29.89 (inches Hg))					
Fuel Sul	lfur Conten	t: 129. p	pm						
Exhaust	I/M Progra	m: Yes							
Evap	I/M Progra	m: Yes							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Refor	ATP Program rmulated Gas	m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5115	0.3365	0.1148		0.0097	0.0006	0.0017	0.0224	0.0027	1.0000
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	0.923	0.750	1.017	0.818	1.381	0.531	0.523	0.568	4.13	0.880
Composite CO :	11.68	12.20	14.82	12.87	15.69	1.339	0.907	2.680	13.31	12.030
Composite NOX :	0.948	0.994	1.201	1.047	4.876	1.174	1.222	13.815	1.14	1.320
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0778	0.2588	0.0787	0.0362	0.0001	0.0017				
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	1.334	0.574	1.133	0.766	2.216	0.461				
Composite CO :	16.47	10.92	15.91	12.44	3.729	0.804				
Composite NOX :	1.074	0.970	1.149	1.312	2.595	1.172				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0079	0.0003	0.0001	0.0003	0.0007	0.0003	0.0000	0.0000		
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	1.055	2.043	4.266	2.174	2.280	3.285	3.336	0.000		
Composite CO :	10.99	30.16	48.96	24.21	26.51	42.87	42.04	0.00		
Composite NOX :	4.543	5.389	6.631	6.047	6.050	7.160	7.776	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0025	0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106		
Composite Emission Fa	actors (q/m	 i):								
Composite VOC :	0.218	0.244	0.285	0.291	0.440	0.557	0.572	0.715		
Composite CO :	0.816	0.951	1.054	1.063	1.437	1.836	2.815	3.729		
Composite NOX :	4.023	4.581	5.352	5.611	8.236	10.269	15.893	18.593		

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Veh. Type:	GasBUS	URBAN	SCHOOL	
VMT Mix:	0.0001	0.0002	0.0004	
Composite Emission Fa	actors (g/m	i):		
Composite VOC :	5.999	0.683	0.652	
Composite CO :	100.09	4.074	2.052	
Composite NOX :	8.135	18.067	11.974	
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *	*****	********	*******
* MOBILE6.2.03 (24-Sep	p-2003)			*
* Input file: C:\MOB0	2\02CTLO3.I	N (file 3,	run 1).	*
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * *	***********************
* Reading 94+ LEV IMP: * data file: NLEVNE.D M616 Comment: User ha M603 Comment: User ha	LEMENTATION as supplied as disabled	SCHEDULE post-1999 the calcu	from the f sulfur le lation of	collowing external evels. REFUELING emissions.
* Reading Registration * data file: C:\MOB02	n Distribut \CTREG02.D	ions from	the follow	ving external
<pre>* Reading I/M program * data file: C:\MOBO2' * 2002 CT I/M PROGRAM * File has been update * 12/13/04 draft of I * Annual I/M test for * Idle test started 1</pre>	description CTIM02.D S Revise ed w/2002 s /M File. C the pre-81 983 was upg	n records d 12/13/04 tringency/ urrent Nam CARS raded to a	from the f compliance e CTIM02.c n ASM 2525	Collowing external e/waiver rates. d 5 test in 1998.
* Reading ASM I/M Tes * Biennial I/M for the * Idle test started 1	t Credits f e post-80 C. 983 was upg	rom ASMDAT ARS raded to a	A.D n ASM 2525	5 test in 1998.
* keading ASM 1/M Tes	t Credits f	rom ASMDAT	A.D	

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

```
* Annual Evap test for the pre-81 cars
* Biennial Evap test for the post-81 cars
* Annual I/M test for the pre-81 Trucks (GVWR 8,501-10,000lb)
* Biennial I/M test for the post-80 Trucks (GVWR 8,501-10,000lb)
* LOCAL ROAD VMT Data
* Reading Hourly Roadway VMT distribution from the following external
* data file: C:\MOB02\VMT\FCVMTL.CTY
 Reading User Supplied ROADWAY VMT Factors
* Reading Hourly VMT distribution from the following external
* data file: C:\MOB02\CTHVMT.DEF
 M615 Comment:
             User supplied VMT mix.
* FAIRFIELD COUNTY 03 SEASON - LOCAL ROADS
* File 3, Run 1, Scenario 1.
*** I/M credits for Tech1&2 vehicles were read from the following external
   data file: TECH12.D
 M 48 Warning:
             there are no sales for vehicle class HDGV8b
HDDV DEFEAT DEVICE EFFECTS ARE PRESENT. THE REBUILD FRACTION IS 0.07.
LEV phase-in data read from file NLEVNE.D
                  Calendar Year: 2002
                         Month: July
                       Altitude: Low
             Minimum Temperature: 66.5 (F)
             Maximum Temperature: 91.6 (F)
              Minimum Rel. Hum.: 41.4 (%)
              Maximum Rel. Hum.: 92.1 (%)
             Barometric Pressure: 29.53 (inches Hq)
             Fuel Sulfur Content: 129. ppm
             Exhaust I/M Program: Yes
               Evap I/M Program: Yes
```

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Refor	ATP Progra mulated Ga	m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5145	0.3387	0.1155		0.0074	0.0006	0.0017	0.0172	0.0043	1.0000
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	1.311	1.087	1.439	1.176	3.340	0.903	0.974	1.299	5.73	1.283
Composite CO :	7.90	9.09	12.03	9.84	40.76	2.446	1.835	7.357	28.55	9.089
Composite NOX :	0.933	0.929	1.139	0.982	3.878	1.456	1.523	14.022	0.94	1.204
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0783	0.2605	0.0792	0.0364	0.0001	0.0017				
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	1.925	0.835	1.606	1.077	3.241	0.891				
Composite CO :	13.80	7.68	13.20	9.47	5.478	1.702				
Composite NOX :	1.009	0.905	1.087	1.252	3.183	1.462				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000		
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	2.520	5.297	9.660	5.087	5.371	7.983	8.102	0.000		
Composite CO :	28.58	76.99	124.75	62.35	68.08	109.41	107.56	0.00		
Composite NOX :	3.604	4.297	5.305	4.808	4.814	5.714	6.199	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081		
Composite Emission Fa	actors (q/m	 i):								
Composite VOC :	0.498	0.558	0.651	0.665	1.005	1.273	1.307	1.634		
Composite CO :	2.237	2.610	2.890	2.915	3.941	5.037	7.721	10.228		
Composite NOX :	5.044	5.744	6.710	7.035	10.090	12.592	15.342	17.691		

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type: GasBUS URBAN SCHOOL ____ ____ ____ VMT Mix: 0.0001 0.0002 0.0003 _____ Composite Emission Factors (q/mi): Composite VOC : 16.276 1.561 1.490 Composite CO : 253.13 5.628 11.175 Composite NOX : 6.569 22.662 15.021 * HARTFORD COUNTY O3 SEASON - LOCAL ROADS * File 3, Run 1, Scenario 2. M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 67.7 (F) Maximum Temperature: 95.5 (F) Minimum Rel. Hum.: 38.8 (%) Maximum Rel. Hum.: 90.6 (%) Barometric Pressure: 29.89 (inches Hq) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes LDGV LDGT12 LDGT HDGV Vehicle Type: LDGT34 LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ ____ ____ _____ _____ _ _ _ _ _ _ _____ ____ _ _ _ _ _ _ _ VMT Distribution: 0.5145 0.3387 0.1155 0.0074 0.0006 0.0017 0.0172 0.0043 1.0000 _____ _____ _____

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite Emission Fa	actors (g/m	i):								
Composite VOC :	1.363	1.131	1.495	1.224	3.468	0.903	0.974	1.299	5.88	1.333
Composite CO :	7.94	9.10	12.21	9.89	42.48	2.446	1.835	7.357	30.43	9.154
Composite NOX :	0.948	0.934	1.142	0.987	3.867	1.456	1.523	14.022	0.91	1.214
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0783	0.2605	0.0792	0.0364	0.0001	0.0017				
Composite Emission Fa	actors (q/m	 i):								
Composite VOC :	2.004	0.869	1.669	1.117	3.241	0.891				
Composite CO :	13.81	7.68	13.40	9.62	5.478	1.702				
Composite NOX :	1.011	0.911	1.089	1.257	3.183	1.462				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000		
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	2.616	5.495	10.087	5.289	5.580	8.281	8.409	0.000		
Composite CO :	29.58	81.05	131.57	65.11	71.28	115.21	113.02	0.00		
Composite NOX :	3.599	4.269	5.252	4.790	4.793	5.671	6.159	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081		
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	0.498	0.558	0.651	0.665	1.005	1.273	1.307	1.634		
Composite CO :	2.237	2.610	2.890	2.915	3.941	5.037	7.721	10.228		
Composite NOX :	5.044	5.744	6.710	7.035	10.090	12.592	15.342	17.691		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0001	0.0002	0.0003							
Composite Emission Fa	actors (g/m	i):								
Composite VOC :	16.927	1.561	1.490							
Composite CO :	268.76	11.175	5.628							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite NOX : 6.440 22.662 15.021 _____ * LITCHFIELD COUNTY 03 SEASON - LOCAL ROADS * File 3, Run 1, Scenario 3. M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 67.7 (F) Maximum Temperature: 95.5 (F) Minimum Rel. Hum.: 38.8 (%) Maximum Rel. Hum.: 90.6 (%) Barometric Pressure: 29.89 (inches Hq) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ _____ _ _ _ _ _ _ ____ _____ ____ ____ ____ ____ VMT Distribution: 0.1155 0.0074 0.0006 0.0172 0.5145 0.3387 0.0017 0.0043 1.0000 _____ ------_____ _____ Composite Emission Factors (g/mi): Composite VOC : 1.363 1.131 1.495 1.224 3.468 0.903 0.974 1.299 5.88 1.333 Composite CO : 7.94 9.10 12.21 9.89 42.48 2.446 1.835 7.357 30.43 9.154 0.948 Composite NOX : 0.934 1.142 0.987 3.867 0.91 1.456 1.523 14.022 1.214 _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ ____ ____ ____ ____ 0.0783 0.2605 0.0792 0.0364 0.0001 0.0017 VMT Mix:

TABLE 72002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite Emission Fa	actors (g/m	11):							
Composite VOC :	2.004	0.869	1.669	1.117	3.241	0.891			
Composite CO :	13.81	7.68	13.40	9.62	5.478	1.702			
Composite NOX :	1.011	0.911	1.089	1.257	3.183	1.462			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
11									
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000	
Composite Emission Fa	actors (g/m	i):							
Composite VOC :	2.616	5.495	10.087	5.289	5.580	8.281	8.409	0.000	
Composite CO :	29.58	81.05	131.57	65.11	71.28	115.21	113.02	0.00	
Composite NOX :	3.599	4.269	5.252	4.790	4.793	5.671	6.159	0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081	
Composite Emission Fa	actors (g/m	i):							
Composite VOC :	0.498	0.558	0.651	0.665	1.005	1.273	1.307	1.634	
Composite CO :	2.237	2.610	2.890	2.915	3.941	5.037	7.721	10.228	
Composite NOX :	5.044	5.744	6.710	7.035	10.090	12.592	15.342	17.691	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0001	0.0002	0.0003						
Composite Emission Fa	actors (g/m	i):							
Composite VOC :	16.927	1.561	1.490						
Composite CO :	268.76	11.175	5.628						
Composite NOX :	6.440	22.662	15.021						
<pre>* # # # # # # # # # # # # # # # # # # #</pre>	# # # # # SEASON - L ario 4. # # # # #	 # # # # # OCAL ROADS # # # # # #	# # # # # # 5 # # # # # #						
M TO WALILLING.									

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

there are no sales for vehicle class HDGV8b

LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 66.5 (F) Maximum Temperature: 91.6 (F) Minimum Rel. Hum.: 41.4 (%) Maximum Rel. Hum.: 92.1 (%) Barometric Pressure: 29.53 (inches Hq) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGT12 LDGT34 HDGV LDDT MC All Veh LDGV LDGT LDDV HDDV GVWR: <6000 >6000 (All) ____ ____ ____ ____ _____ ____ ____ _____ ____ ____ VMT Distribution: 0.3387 0.1155 0.0074 0.0172 0.5145 0.0006 0.0017 0.0043 1.0000 _____ Composite Emission Factors (g/mi): Composite VOC : 1.439 0.974 1.311 1.087 1.176 3.340 0.903 1.299 5.73 1.283 7.90 9.84 40.76 1.835 7.357 Composite CO : 9.09 12.03 2.446 28.55 9.089 Composite NOX : 0.933 0.929 1.139 0.982 3.878 1.456 1.523 14.022 0.94 1.204 _____ _____ LDGT2 LDDT12 LDDT34 Veh. Type: LDGT1 LDGT3 LDGT4 ____ ____ ____ ____ ____ ____ 0.0783 0.0792 0.0364 0.0001 0.0017 VMT Mix: 0.2605 _____ _____ Composite Emission Factors (q/mi): Composite VOC : 1.925 0.835 1.606 1.077 3.241 0.891 Composite CO : 13.80 7.68 9.47 5.478 1.702 13.20 Composite NOX : 1.009 0.905 1.087 1.252 3.183 1.462 _____ _____ Veh. Type: HDGV2B HDGV3 HDGV4 HDGV5 HDGV6 HDGV7 HDGV8A HDGV8B ____ ____ ____ _____ ____ ____ _ _ _ _ _ _ _ _ _ _ _ _ _

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000	
Composite Emission Fa	actors (g/m	 າi):							
Composite VOC :	2.520	5.297	9.660	5.087	5.371	7.983	8.102	0.000	
Composite CO :	28.58	76.99	124.75	62.35	68.08	109.41	107.56	0.00	
Composite NOX :	3.604	4.297	5.305	4.808	4.814	5.714	6.199	0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081	
Composite Emission Fa	actors (g/m	າi):							
Composite VOC :	0.498	0.558	0.651	0.665	1.005	1.273	1.307	1.634	
Composite CO :	2.237	2.610	2.890	2.915	3.941	5.037	7.721	10.228	
Composite NOX :	5.044	5.744	6.710	7.035	10.090	12.592	15.342	17.691	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0001	0.0002	0.0003						
Composite Emission Fa	actors (g/m	າi):							
Composite VOC :	16.276	1.561	1.490						
Composite CO :	253.13	11.175	5.628						
Composite NOX :	6.569	22.662	15.021						
<pre>* # # # # # # # # # # # * NEW HAVEN COUNTY 03 * File 3, Run 1, Scena * # # # # # # # # # # M 48 Warning: there an</pre>	# # # # # SEASON - I ario 5. # # # # # # re no sales	# # # # # OCAL ROAD: # # # # # # 5 for vehic	# # # # # # S # # # # # # cle class H	DGV8b					
LEV phase-in data rea Ca Minimum Maximum	ad from fil alendar Yea Mont Altitud Temperatur Temperatur	e NLEVNE.1 ar: 2002 ch: July de: Low ce: 66.5 ce: 91.6) (F) (F)						

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Minimu Maximu Barometr Fuel Sul	um Rel. Hum um Rel. Hum ric Pressur fur Conten	.: 41.4 (.: 92.1 (e: 29.53 (t: 129.p	%) %) inches Hg) ppm							
Exhaust Evap Refor	I/M Program I/M Program ATP Program cmulated Ga	m: Yes m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5145	0.3387	0.1155		0.0074	0.0006	0.0017	0.0172	0.0043	1.0000
Composite Emission Fa Composite VOC : Composite CO : Composite NOX :	actors (g/m 1.311 7.90 0.933	i): 1.087 9.09 0.929	1.439 12.03 1.139	1.176 9.84 0.982	3.340 40.76 3.878	0.903 2.446 1.456	0.974 1.835 1.523	1.299 7.357 14.022	5.73 28.55 0.94	1.283 9.089 1.204
Veh. Type: VMT Mix:	LDGT1 0.0783	LDGT2 0.2605	LDGT3 0.0792	LDGT4 0.0364	LDDT12 0.0001	LDDT34 0.0017				
Composite Emission Fa	actors (g/m	 i):								
Composite VOC : Composite CO : Composite NOX :	1.925 13.80 1.009	0.835 7.68 0.905	1.606 13.20 1.087	1.077 9.47 1.252	3.241 5.478 3.183	0.891 1.702 1.462				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000		
Composite Emission Fa Composite VOC : Composite CO : Composite NOX :	actors (g/m 2.520 28.58 3.604	i): 5.297 76.99 4.297	9.660 124.75 5.305	5.087 62.35 4.808	5.371 68.08 4.814	7.983 109.41 5.714	8.102 107.56 6.199	0.000 0.00 0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081	
Composite Emission F	actors (q/m	 າi):							
Composite VOC :	0.498	0.558	0.651	0.665	1.005	1.273	1.307	1.634	
Composite CO :	2.237	2.610	2.890	2,915	3.941	5.037	7.721	10.228	
Composite NOX :	5.044	5.744	6.710	7.035	10.090	12.592	15.342	17.691	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0001	0.0002	0.0003						
Composite Emission F	actors (g/m	 າi):							
Composite VOC :	16.276	1.561	1.490						
Composite CO :	253.13	11.175	5.628						
Composite NOX :	6.569	22.662	15.021						
* File 3, Run 1, Scen * # # # # # # # # # # # M 48 Warning:	ario 6. # # # # # #	# # # # #	# # # # #						
there a	re no sales	s for vehic	le class H	HDGV8b					
LEV phase-in data re	ad from fil	e NLEVNE.I)						
C	alendar Yea	ar: 2002							
	Mont	h: July							
	Altitud	le: Low							
Minimum	Temperatur	re: 67.7 (F)						
Maximum	Temperatur	re: 95.5 (F)						
Minim	um Rel. Hum	1.: 38.8 (8) 9.)						
Maxim	um Rei. Hum ria Droggur	190.0	inchog Ug))					
Fuel Su	lfur Conten	it: 129. p	pm)					
Fyhauet	T/M Drogra	m: Voc							
Evan	I/M Progra	m: Yes							
Evap	ATP Progra	m: Yes							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Refor	mulated Ga	s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5145	0.3387	0.1155		0.0074	0.0006	0.0017	0.0172	0.0043	1.0000
Composite Emission Fa	ctors (g/m	 i):								
Composite VOC :	1.363	1.131	1.495	1.224	3.468	0.903	0.974	1.299	5.88	1.333
Composite CO :	7.94	9.10	12.21	9.89	42.48	2.446	1.835	7.357	30.43	9.154
Composite NOX :	0.948	0.934	1.142	0.987	3.867	1.456	1.523	14.022	0.91	1.214
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0783	0.2605	0.0792	0.0364	0.0001	0.0017				
Composite Emission Fa	ctors (g/m	 i):								
Composite VOC :	2.004	0.869	1.669	1.117	3.241	0.891				
Composite CO :	13.81	7.68	13.40	9.62	5.478	1.702				
Composite NOX :	1.011	0.911	1.089	1.257	3.183	1.462				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000		
Composite Emission Fa	ctors (g/m	 i):								
Composite VOC :	2.616	5.495	10.087	5.289	5.580	8.281	8.409	0.000		
Composite CO :	29.58	81.05	131.57	65.11	71.28	115.21	113.02	0.00		
Composite NOX :	3.599	4.269	5.252	4.790	4.793	5.671	6.159	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081		
Composite Emission Fa	ctors (g/m	 i):								
Composite VOC :	0.498	0.558	0.651	0.665	1.005	1.273	1.307	1.634		
Composite CO :	2.237	2.610	2.890	2.915	3.941	5.037	7.721	10.228		
Composite NOX :	5.044	5.744	6.710	7.035	10.090	12.592	15.342	17.691		

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type: GasBUS URBAN SCHOOL _ _ _ _ _ _ ____ ____ VMT Mix: 0.0001 0.0002 0.0003 _____ Composite Emission Factors (g/mi): Composite VOC : 16.927 1.561 1.490 Composite CO : 268.76 11.175 5.628 Composite NOX : 6.440 22.662 15.021 _____ * TOLLAND COUNTY O3 SEASON - LOCAL ROADS * File 3, Run 1, Scenario 7. M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 67.7 (F) Maximum Temperature: 95.5 (F) Absolute Humidity: 96. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGT12 HDGV LDGV LDGT34 LDGT LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ ____ ____ ____ ____ _____ ____ ____ _ _ _ _ _ _ VMT Distribution: 0.0074 0.0006 0.0017 0.0043 1.0000 0.5145 0.3387 0.1155 0.0172 ____ Composite Emission Factors (g/mi): Composite VOC : 1.363 1.130 1.495 1.223 3.468 0.903 0.974 1.299 5.88 1.332 12.20 Composite CO : 7.93 9.09 9.88 42.48 2.446 1.835 7.357 30.43 9.146

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite NOX :	0.947	0.933	1.140	0.985	3.867	1.456	1.523	14.022	0.90	1.212
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0783	0.2605	0.0792	0.0364	0.0001	0.0017				
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	2.004	0.868	1.668	1.116	3.241	0.891				
Composite CO :	13.80	7.67	13.38	9.61	5.478	1.702				
Composite NOX :	1.009	0.910	1.087	1.256	3.183	1.462				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000		
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	2.616	5.495	10.087	5.289	5.580	8.281	8.409	0.000		
Composite CO :	29.58	81.05	131.57	65.11	71.28	115.21	113.02	0.00		
Composite NOX :	3.599	4.269	5.252	4.790	4.793	5.671	6.159	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081		
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	0.498	0.558	0.651	0.665	1.005	1.273	1.307	1.634		
Composite CO :	2.237	2.610	2.890	2.915	3.941	5.037	7.721	10.228		
Composite NOX :	5.044	5.744	6.710	7.035	10.090	12.592	15.342	17.691		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0001	0.0002	0.0003							
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	16.927	1.561	1.490							
Composite CO :	268.76	11.175	5.628							
Composite NOX :	6.440	22.662	15.021							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* WINDHAM COUNTY O3 SEASON - LOCAL ROADS * File 3, Run 1, Scenario 8. M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 67.7 (F) Maximum Temperature: 95.5 (F) Minimum Rel. Hum.: 38.8 (%) Maximum Rel. Hum.: 90.6 (%) Barometric Pressure: 29.89 (inches Hq) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV All Veh MC GVWR: <6000 >6000 (All) ____ ____ ____ _____ _____ ____ ____ _____ _____ ____ VMT Distribution: 0.5145 0.3387 0.1155 0.0074 0.0006 0.0017 0.0172 0.0043 1.0000 Composite Emission Factors (g/mi): Composite VOC : 1.363 1.131 1.495 1.224 3.468 0.903 0.974 1.299 5.88 1.333 Composite CO : 7.94 9.89 42.48 2.446 1.835 9.10 12.21 7.357 30.43 9.154 3.867 Composite NOX : 0.948 0.934 1.142 0.987 1.456 1.523 14.022 0.91 1.214 Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ _____ ____ ____ _____ ____ 0.0783 0.2605 0.0792 0.0364 0.0001 0.0017 VMT Mix: _____ _____ Composite Emission Factors (q/mi): Composite VOC : 2.004 0.869 1.669 1.117 3.241 0.891

TABLE 7 2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite CO : Composite NOX :	13.81 1.011	7.68 0.911	13.40 1.089	9.62 1.257	5.478 3.183	1.702 1.462			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000	
Composite Emission Fa	actors (g/m	ni):							
Composite VOC :	2.616	5.495	10.087	5.289	5.580	8.281	8.409	0.000	
Composite CO :	29.58	81.05	131.57	65.11	71.28	115.21	113.02	0.00	
Composite NOX :	3.599	4.269	5.252	4.790	4.793	5.671	6.159	0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081	
Composite Emission Fa	actors (g/m	ni):							
Composite VOC :	0.498	0.558	0.651	0.665	1.005	1.273	1.307	1.634	
Composite CO :	2.237	2.610	2.890	2.915	3.941	5.037	7.721	10.228	
Composite NOX :	5.044	5.744	6.710	7.035	10.090	12.592	15.342	17.691	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0001	0.0002	0.0003						
Composite Emission Fa	actors (g/m	ni):							
Composite VOC :	16.927	1.561	1.490						
Composite CO :	268.76	11.175	5.628						
Composite NOX :	6.440	22.662	15.021						
****	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * *			
* MOBILE6.2.03 (24-Se	p-2003)					*			
* Input file: C:\MOB0	2\02CTR03.1	IN (file 4	, run 1).			*			
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *	* * * *			
* Reading 94+ LEV IMP	LEMENTATION	I SCHEDULE	from the f	following e	external				

* data file: NLEVNE.D

M616 Comment:

User has supplied post-1999 sulfur levels.

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

M603 Comment:

User has disabled the calculation of REFUELING emissions.

- * Reading Registration Distributions from the following external
- * data file: C:\MOB02\CTREG02.D
- * Reading I/M program description records from the following external
- * data file: C:\MOB02\CTIM02.D
- * 2002 CT I/M PROGRAMS Revised 12/13/04
- * File has been updated w/2002 stringency/compliance/waiver rates.
- * 12/13/04 draft of I/M File. Current Name CTIM02.d
- \star Annual I/M test for the pre-81 CARS
- * Idle test started 1983 was upgraded to an ASM 2525 test in 1998.
- * Reading ASM I/M Test Credits from ASMDATA.D
- * Biennial I/M for the post-80 CARS
- * Idle test started 1983 was upgraded to an ASM 2525 test in 1998.

* Reading ASM I/M Test Credits from ASMDATA.D

- * Annual Evap test for the pre-81 cars
- * Biennial Evap test for the post-81 cars
- * Annual I/M test for the pre-81 Trucks (GVWR 8,501-10,000lb)
- * Biennial I/M test for the post-80 Trucks (GVWR 8,501-10,000lb)
- * RAMP VMT Data
- * Reading Hourly Roadway VMT distribution from the following external
- * data file: C:\MOB02\VMT\FCVMTR.CTY

Reading User Supplied ROADWAY VMT Factors

- * Reading Hourly VMT distribution from the following external
- * data file: C:\MOB02\CTHVMT.DEF
- M615 Comment: User supplied VMT mix.
- * FAIRFIELD COUNTY O3 SEASON RAMPS
- * File 4, Run 1, Scenario 1.

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

*** I/M credits for Tech1&2 vehicles were read from the following external data file: TECH12.D M 48 Warning: there are no sales for vehicle class HDGV8b HDDV DEFEAT DEVICE EFFECTS ARE PRESENT. THE REBUILD FRACTION IS 0.07. LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: July Altitude: Low Minimum Temperature: 66.5 (F) Maximum Temperature: 91.6 (F) Minimum Rel. Hum.: 41.4 (%) Maximum Rel. Hum.: 92.1 (%) Barometric Pressure: 29.53 (inches Hq) Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ ____ _____ ____ ____ ____ _____ _____ ____ VMT Distribution: 0.4817 0.3170 0.1082 0.0272 0.0006 0.0016 0.0629 0.0007 1.0000 Composite Emission Factors (g/mi): Composite VOC : 1.063 0.887 1.156 0.956 1.392 0.557 0.555 0.619 4.07 0.999 15.04 1.364 0.928 2.782 Composite CO : 20.91 18.39 20.07 18.82 13.04 18.673 1.085 Composite NOX : 1.157 1.240 1.455 1.295 4.664 1.127 10.189 1.14 1.879 _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ _____ ____ ____ _____ ____ 0.0733 0.2438 0.0741 0.0341 0.0001 0.0016 VMT Mix: Composite Emission Factors (q/mi): 0.707 1.274 0.900 Composite VOC : 1.488 2.288 0.491

TABLE 72002 CONNECTICUT MOBILE SOURCE REPORTMobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite CO : Composite NOX :	22.87 1.336	17.05 1.212	21.21 1.398	17.59 1.579	3.767 2.409	0.824 1.080			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000	
Composite Emission Fa	ictors (g/m	 i):							
Composite VOC :	1.064	2.065	4.227	2.172	2.280	3.292	3.345	0.000	
Composite CO :	10.59	28.53	46.23	23.10	25.23	40.54	39.85	0.00	
Composite NOX :	4.338	5.172	6.385	5.788	5.795	6.878	7.461	0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297	
Composite Emission Fa	ictors (g/m	 i):							
Composite VOC :	0.238	0.266	0.310	0.317	0.480	0.607	0.624	0.780	
Composite CO :	0.847	0.988	1.094	1.103	1.491	1.906	2.922	3.871	
Composite NOX :	3.701	4.214	4.923	5.161	7.419	9.257	11.159	12.817	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa	ictors (g/m	 i):							
Composite VOC :	6.075	0.745	0.711						
Composite CO :	93.80	4.229	2.130						
Composite NOX :	7.907	16.650	11.043						
<pre>* # # # # # # # # # # # * HARTFORD COUNTY 03 S * File 4, Run 1, Scena * # # # # # # # # # # M 48 Warning:</pre>	# # # # # EASON - RA Irio 2. # # # # # Te no sales	# # # # # # MPS # # # # # # for vehic e NLEVNE.D	# # # # # # # # # # le class H	DGV8b					

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Ca Minimum Maximum Minimu Maximu Barometr Fuel Sul	lendar Year Month Altitude Temperature m Rel. Hum m Rel. Hum ic Pressure fur Content	r: 2002 h: July e: Low e: 67.7 (12 e: 95.5 (12 c: 38.8 (12) c: 90.6 (12) e: 29.89 (12) c: 129. pj	F) F) %) %) inches Hg) pm							
Exhaust	I/M Program	n: Yes								
Evap	1/M Prograf ATP Prograf	n: Yes n: Yes								
Refor	mulated Gas	s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa	ctors (g/m	i):								
Composite VOC :	1.092	0.908	1.184	0.979	1.465	0.557	0.555	0.619	4.20	1.025
Composite CO :	21.48	18.50	20.30	18.96	15.68	1.364	0.928	2.782	13.82	19.024
Composite NOX :	1.158	1.243	1.455	1.29/	4.651	1.085 	1.12/	10.189	1.10	1.880
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	ctors (g/m	i):								
Composite VOC :	1.526	0.723	1.306	0.920	2.288	0.491				
Composite CO :	22.93	17.17	21.44	17.82	3.767	0.824				
Composite NOX :	1.337	1.215	1.397	1.580	2.409	1.080				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000		

Composite Emission Factors (g/mi):

TABLE 72002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite VOC : Composite CO : Composite NOX :	1.118 10.96 4.332	2.171 30.03 5.138	4.479 48.75 6.321	2.292 24.13 5.766	2.405 26.41 5.769	3.470 42.69 6.826	3.524 41.88 7.414	0.000 0.00 0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297	
Composite Emission Fa	ctors (g/m	 ນ່):							
Composite VOC :	0.238	0.266	0.310	0.317	0.480	0.607	0.624	0.780	
Composite CO :	0.847	0.988	1.094	1.103	1.491	1.906	2.922	3.871	
Composite NOX :	3.701	4.214	4.923	5.161	7.419	9.257	11.159	12.817	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa	ctors (g/m	 ນ່):							
Composite VOC :	6.391	0.745	0.711						
Composite CO :	99.59	4.229	2.130						
Composite NOX :	7.752	16.650	11.043						
<pre>* # # # # # # # # # # * LITCHFIELD COUNTY 03 * File 4, Run 1, Scena * # # # # # # # # # M 48 Warning: there ar</pre>	# # # # # # SEASON - rio 3. # # # # # e no sales	# # # # # # RAMPS # # # # # # for vehic	# # # # # # # # # # # # le class H	DGV8b					
LEV phase-in data rea Ca Minimum Maximum Minimu Maximu Barometr	d from fil lendar Yea Mont Altitud Temperatur Temperatur m Rel. Hum m Rel. Hum ic Pressur	e NLEVNE.D h: 2002 h: July le: Low ce: 67.7 (ce: 95.5 (h.: 38.8 (h.: 90.6 (ce: 29.89 (F) F) %) %)						

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV All Veh MC GVWR: <6000 >6000 (All) ____ ____ ____ ____ _____ ____ _ _ _ _ _ _ ____ _____ ____ VMT Distribution: 0.0272 0.4817 0.3170 0.1082 0.0006 0.0016 0.0629 0.0007 1.0000 _____ Composite Emission Factors (q/mi): Composite VOC : 1.092 0.908 1.184 0.979 1.465 0.557 0.555 0.619 4.20 1.025 Composite CO : 20.30 18.96 15.68 1.364 0.928 19.024 21.48 18.50 2.782 13.82 Composite NOX : 1.158 1.243 1.455 1.297 4.651 1.085 1.127 10.189 1.10 1.880 _____ _____ _ _ _ _ _ _ _ _ _ _ ------Veh. Type: LDGT1 LDGT2 LDGT4 LDDT34 LDGT3 LDDT12 ____ ____ ____ ____ ____ ____ VMT Mix: 0.0733 0.2438 0.0741 0.0341 0.0001 0.0016 _____ _____ _ _ _ _ _ _ _ _ _ _ _ Composite Emission Factors (g/mi): Composite VOC : 1.526 0.723 1.306 0.920 2.288 0.491 22.93 21.44 17.82 3.767 Composite CO : 17.17 0.824 1.580 Composite NOX : 1.337 1.215 1.397 2.409 1.080 ------_ _____ _____ HDGV2B HDGV5 HDGV7 Veh. Type: HDGV3 HDGV4 HDGV6 HDGV8A HDGV8B ____ ____ ____ ____ ____ ____ _ _ _ _ _ _ ____ 0.0220 0.0008 0.0004 0.0009 0.0019 0.0008 0.0000 VMT Mix: 0.0000 _____ _____ _ _ _ _ _ _ _ . _____ Composite Emission Factors (g/mi): Composite VOC : 1.118 2.171 4.479 2.292 2.405 3.470 3.524 0.000 Composite CO : 10.96 30.03 48.75 24.13 26.41 42.69 41.88 0.00 Composite NOX : 4.332 5.138 6.321 5.766 5.769 6.826 7.414 0.000 _____ . _ _ _ _ _ _ _ _____ _____ . _ _ _ _ _ _ . _____ Veh. Type: HDDV2B HDDV3 HDDV4 HDDV5 HDDV6 HDDV7 HDDV8A HDDV8B ____ ____ ____ ____ _ _ _ _ _ _ _ _ _ _ _ _ ____ ____ VMT Mix: 0.0071 0.0021 0.0019 0.0008 0.0045 0.0068 0.0083 0.0297 _____ _____

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite Emission F	actors (g/m	ιi):								
Composite VOC :	0.238	0.266	0.310	0.317	0.480	0.607	0.624	0.780		
Composite CO :	0.847	0.988	1.094	1.103	1.491	1.906	2.922	3.871		
Composite NOX :	3.701	4.214	4.923	5.161	7.419	9.257	11.159	12.817		
Veh. Type:	GasBUS	URBAN	SCHOOL							-
VMT Mix:	0.0004	0.0007	0.0010							
Composite Emission F	actors (g/m	 ni):								-
Composite VOC :	6.391	0.745	0.711							
Composite CO :	99.59	4.229	2.130							
Composite NOX :	7.752	16.650	11.043							
										-
* # # # # # # # # #	# # # # #	# # # # #	# # # # #							
* MIDDLESEX COUNTY 03	SEASON - R	AMPS								
* File 4, Run 1, Scen	ario 4.									
* # # # # # # # # #	# # # # #	# # # # #	# # # # #							
M 48 Warning:										
there a	re no sales	for vehic	le class H	DGV8b						
IFV phage_in data re	ad from fil	A NI FUNE D	`							
LEV pliase-ill data ie	au IIOM III alendar Vea	r: 2002)							
	Mont	h: July								
	Altitud	le: Low								
Minimum	Temperatur	re: 66.5 (F)							
Maximum	Temperatur	e: 91.6 (-, F)							
Minim	um Rel. Hum	n.: 41.4 (8)							
Maxim	um Rel. Hum	n.: 92.1 (8)							
Baromet	ric Pressur	re: 29.53 (inches Hq)							
Fuel Su	lfur Conten	it: 129. p	pm							
Exhaust	I/M Progra	um: Yes								
Evap	I/M Progra	m: Yes								
-	ATP Progra	m: Yes								
Refo	rmulated Ga	s: Yes								
Vehicle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC All	Veh

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

GVWR:		<6000	>6000	(All)						
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	1.063	0.887	1.156	0.956	1.392	0.557	0.555	0.619	4.07	0.999
Composite CO :	20.91	18.39	20.07	18.82	15.04	1.364	0.928	2.782	13.04	18.673
Composite NOX :	1.157	1.240	1.455	1.295	4.664	1.085	1.127	10.189	1.14	1.879
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	1.488	0.707	1.274	0.900	2.288	0.491				
Composite CO :	22.87	17.05	21.21	17.59	3.767	0.824				
Composite NOX :	1.336	1.212	1.398	1.579	2.409	1.080				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000		
Composite Emission Fa	actors (q/m	 i):								
Composite VOC :	1.064	2.065	4.227	2.172	2.280	3.292	3.345	0.000		
Composite CO :	10.59	28.53	46.23	23.10	25.23	40.54	39.85	0.00		
Composite NOX :	4.338	5.172	6.385	5.788	5.795	6.878	7.461	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297		
Composite Emission Fa	actors (g/m	 i):								
Composite VOC :	0.238	0.266	0.310	0.317	0.480	0.607	0.624	0.780		
Composite CO :	0.847	0.988	1.094	1.103	1.491	1.906	2.922	3.871		
Composite NOX :	3.701	4.214	4.923	5.161	7.419	9.257	11.159	12.817		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0004	0.0007	0.0010							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite Emission Fa	ctors (g/m	i):								
Composite VOC :	6.075	0.745	0.711							
Composite CO :	93.80	4.229	2.130							
Composite NOX :	7.907	16.650	11.043							
* # # # # # # # # # #										
* NEW HAVEN COUNTY O3	SEASON - R									
* File 4. Run 1. Scena	rio 5.									
* # # # # # # # # # #	# # # # #	# # # # #	# # # # #							
M 48 Warning:										
there ar	e no sales	for vehic	le class HI	GV8b						
LEV phase-in data rea	d from fil	e NLEVNE.D								
Calendar Year: 2002										
	Mont	h: July								
	Altitud	e: Low								
Minimum	Temperatur	e: 66.5 (F)							
Maximum	Temperatur	e: 91.6 (F)							
Minimu	ım Rel. Hum	.: 41.4 (응)							
Maximu	ım Rel. Hum	.: 92.1 (응)							
Barometr	ic Pressur	e: 29.53 (inches Hg)							
Fuel Sul	fur Conten	t: 129. p	pm							
Exhaust	I/M Progra	m: Yes								
Evap	I/M Progra	m: Yes								
LVap	ATP Progra	m: Yes								
Refor	mulated Ga	s: Yes								
Vehicle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC	All Veh
GVWR:		<6000	>6000	(All)						
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa	etors (a/m	 i):								
Composite VOC :	1.063	0.887	1,156	0.956	1.392	0.557	0.555	0.619	4.07	0.999
Composite CO :	20.91	18.39	20.07	18.82	15.04	1.364	0.928	2.782	13.04	18.673
Composite NOX :	1.157	1.240	1.455	1.295	4.664	1.085	1.127	10.189	1.14	1.879

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34			
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016			
Composite Emission Fa	actors (g/m								
Composite VOC :	1.488	0.707	1.274	0.900	2.288	0.491			
Composite CO :	22.87	17.05	21.21	17.59	3.767	0.824			
Composite NOX :	1.336	1.212	1.398	1.579	2.409	1.080			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000	
Composite Emission Fa	actors (q/m	 i):							
Composite VOC :	1.064	2.065	4.227	2.172	2.280	3,292	3.345	0.000	
Composite CO :	10.59	28.53	46.23	23.10	25.23	40.54	39.85	0.00	
Composite NOX :	4 338	5 172	6 385	5 788	5 795	6 878	7 461	0 000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297	
Composite Emission Fa	actors (g/m	 i):							
Composite VOC :	0.238	0.266	0.310	0.317	0.480	0.607	0.624	0.780	
Composite CO :	0.847	0.988	1.094	1.103	1.491	1.906	2.922	3.871	
Composite NOX :	3.701	4.214	4.923	5.161	7.419	9.257	11.159	12.817	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa	actors (a/m	 i):							
Composite VOC :	6.075	0.745	0.711						
Composite CO :	93.80	4.229	2.130						
Composite NOX :	7.907	16.650	11.043						

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

* NEW LONDON COUNTY 03	3 SEASON - 1	RAMPS								
* # # # # # # # # # # # #	# # # # # #	# # # # #	# # # # #							
M 48 Warning:										
there ar	re no sales	for vehic	le class H	DGV8b						
IEV phage in data rea	d from fil									
LEV phase-in data iea	alendar Yea	e NLEVNE.D r: 2002								
	Mont	h: July								
	Altitud	e: Low								
Minimum	Temperatur	e: 67.7 (F)							
Maximum	Temperatur	e: 95.5 ()	F)							
Minimu	um Rel. Hum	.: 38.8 (8) 9. \							
Barometr	im Rel. Hum ric Pressur	90.6 (e: 29.89 (6) inches Hal							
Fuel Sul	fur Conten	t: 129. p	om							
			2							
Exhaust	I/M Progra	m: Yes								
Evap	I/M Progra	m: Yes								
Pefor	ATP Programulated Ca	m: Yes								
ice i of	illuraced Ga	5. 165								
Vehicle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC	All Veh
GVWR:		<6000	>6000	(All)						
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Es	ators (a/m	 ;):								
Composite VOC :	1.092	0.908	1.184	0.979	1.465	0.557	0.555	0.619	4.20	1.025
Composite CO :	21.48	18.50	20.30	18.96	15.68	1.364	0.928	2.782	13.82	19.024
Composite NOX :	1.158	1.243	1.455	1.297	4.651	1.085	1.127	10.189	1.10	1.880
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	actors (g/m	i):	1 200	0.000	2 200	0 401				
Composite CO	1.520 22 93	U./∠3 17 17	1.306 21 44	U.9∠U 17 82	2.208 3 767	0.491				
COMPOSICE CO ·	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	×/•×/	21.II	I/.02	5.107	0.024				

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite NOX :	1.337	1.215	1.397	1.580	2.409	1.080			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000	
Composite Emission Fa	ictors (g/m	 ນi):							
Composite VOC :	1.118	2.171	4.479	2.292	2.405	3.470	3.524	0.000	
Composite CO :	10.96	30.03	48.75	24.13	26.41	42.69	41.88	0.00	
Composite NOX :	4.332	5.138	6.321	5.766	5.769	6.826	7.414	0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297	
Composite Emission Fa	ictors (g/m	 							
Composite VOC :	0.238	0.266	0.310	0.317	0.480	0.607	0.624	0.780	
Composite CO :	0.847	0.988	1.094	1.103	1.491	1.906	2.922	3.871	
Composite NOX :	3.701	4.214	4.923	5.161	7.419	9.257	11.159	12.817	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa	ictors (g/m	 ນi):							
Composite VOC :	6.391	0.745	0.711						
Composite CO :	99.59	4.229	2.130						
Composite NOX :	7.752	16.650	11.043						
<pre>* # # # # # # # # # # # * TOLLAND COUNTY O3 SE * File 4, Run 1, Scena * # # # # # # # # # # M 48 Warning:</pre>	# # # # # # CASON - RAM Irio 7. # # # # # # Te no sales	# # # # # # IPS # # # # # # : for vehic .e NLEVNE.I	# # # # # # # # # # # # 2le class H	DGV8b					
Ca	lendar Yea	r: 2002							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Minimum T	Montl Altitud	h: July e: Low								
Millinum I Maximum T	emperatur	e• 07.7 (. ≏: 95.5 (1	<i>ር)</i> ፑ)							
Absolut	e Humidit	v: 96. g	rains/lb							
Fuel Sulf	ur Conten	t: 129. p	pm							
Exhaust I	/M Program	m: Yes								
Evap I	/M Program	m: Yes								
A	TP Program	m: Yes								
Reiorm	ulated Ga	S• 185								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	 0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fac	tors (a/m	 i):								
Composite VOC :	1.091	0.908	1.184	0.978	1,465	0.557	0.555	0.619	4.20	1.025
Composite CO :	21.43	18.48	20.28	18.94	15.68	1.364	0.928	2.782	13.82	18.991
Composite NOX :	1.157	1.241	1.453	1.295	4.651	1.085	1.127	10.189	1.10	1.879
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fac	tors (g/m	 i):								
Composite VOC :	1.525	0.723	1.306	0.919	2.288	0.491				
Composite CO :	22.91	17.15	21.42	17.80	3.767	0.824				
Composite NOX :	1.335	1.213	1.396	1.578	2.409	1.080				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000		
Composite Emission Fac	tors (g/m	 i):								
Composite VOC :	1.118	2.171	4.479	2.292	2.405	3.470	3.524	0.000		
Composite CO :	10.96	30.03	48.75	24.13	26.41	42.69	41.88	0.00		
Composite NOX :	4.332	5.138	6.321	5.766	5.769	6.826	7.414	0.000		

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297	
Composite Emission Fa		 າi):							
Composite VOC :	0.238	0.266	0.310	0.317	0.480	0.607	0.624	0.780	
Composite CO :	0.847	0.988	1.094	1.103	1.491	1.906	2.922	3.871	
Composite NOX :	3.701	4.214	4.923	5.161	7.419	9.257	11.159	12.817	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa	ictors (g/m	 ni):							
Composite VOC :	6.391	0.745	0.711						
Composite CO :	99.59	4.229	2.130						
Composite NOX :	7.752	16.650	11.043						
* WINDHAM COUNTY O3 SE * File 4, Run 1, Scena * # # # # # # # # # # M 48 Warning: there ar	ASON - RAM Tio 8. # # # # # # Te no sales	" " " " " " IPS # # # # # # s for vehic	" " " " " " # # # # # # :le class H	IDGV8b					
LEV phase-in data rea	d from fil	e NLEVNE.I)						
Ca	lendar Yea	ar: 2002							
	Mont	h: July							
	Altitud	le: Low							
Minimum	Temperatur	re: 67.7 (F)						
Maximum	Temperatur	re: 95.5 (F)						
Minimu	ım Rel. Hum	n.: 38.8 (응)						
Maximu	ım Rel. Hum	n.: 90.6 (응)						
Barometr	ic Pressur	re: 29.89 (inches Hg)						
Fuel Sul	fur Conter	nt: 129. p	pm						
Exhaust	I/M Progra	m: Yes							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Evap Refor	I/M Progra ATP Progra mulated Ga	m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa	.ctors (g/m	 i):								
Composite VOC :	1.092	0.908	1.184	0.979	1.465	0.557	0.555	0.619	4.20	1.025
Composite CO :	21.48	18.50	20.30	18.96	15.68	1.364	0.928	2.782	13.82	19.024
Composite NOX :	1.158	1.243	1.455	1.297	4.651	1.085	1.127	10.189	1.10	1.880
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	.ctors (g/m	 i):								
Composite VOC :	1.526	0.723	1.306	0.920	2.288	0.491				
Composite CO :	22.93	17.17	21.44	17.82	3.767	0.824				
Composite NOX :	1.337	1.215	1.397	1.580	2.409	1.080				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0008	0.0000	0.0000		
Composite Emission Fa		 i):								
Composite VOC :	1.118	2.171	4.479	2.292	2.405	3.470	3.524	0.000		
Composite CO :	10.96	30.03	48.75	24.13	26.41	42.69	41.88	0.00		
Composite NOX :	4.332	5.138	6.321	5.766	5.769	6.826	7.414	0.000		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0068	0.0083	0.0297		
Composite Emission Fa	.ctors (g/m	 i):								
Composite VOC :	0.238	0.266	0.310	0.317	0.480	0.607	0.624	0.780		
Composite CO :	0.847	0.988	1.094	1.103	1.491	1.906	2.922	3.871		

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Ozone Emissions Factors by Road Type and County

Composite NOX :	3.701	4.214	4.923	5.161	7.419	9.257	11.159	12.817	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission F	actors (g/m	ni):							
Composite VOC :	6.391	0.745	0.711						
Composite CO :	99.59	4.229	2.130						
Composite NOX :	7.752	16.650	11.043						

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* MOBILE6.2.03 (24-Sep-2003) * Input file: C:\MOB02\02CTECO.IN (file 5, run 1). * Reading 94+ LEV IMPLEMENTATION SCHEDULE from the following external * data file: NLEVNE.D M616 Comment: User has supplied post-1999 sulfur levels. M603 Comment: User has disabled the calculation of REFUELING emissions. * Reading Registration Distributions from the following external * data file: C:\MOB02\CTREG02.D * Reading I/M program description records from the following external * data file: C:\MOB02\CTIM02.D * 2002 CT I/M PROGRAMS Revised 12/13/04 * File has been updated w/2002 stringency/compliance/waiver rates. * 12/13/04 draft of I/M File. Current Name CTIM02.d * Annual I/M test for the pre-81 CARS * Idle test started 1983 was upgraded to an ASM 2525 test in 1998. * Reading ASM I/M Test Credits from ASMDATA.D * Biennial I/M for the post-80 CARS * Idle test started 1983 was upgraded to an ASM 2525 test in 1998. * Reading ASM I/M Test Credits from ASMDATA.D * Annual Evap test for the pre-81 cars * Biennial Evap test for the post-81 cars * Annual I/M test for the pre-81 Trucks (GVWR 8,501-10,000lb) * Biennial I/M test for the post-80 Trucks (GVWR 8,501-10,000lb) * Expressway VMT Data * Reading Hourly Roadway VMT distribution from the following external * data file: C:\MOB02\VMT\FCVMTF.CTY

Reading User Supplied ROADWAY VMT Factors
2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* Reading Hourly VMT distribution from the following external * data file: C:\MOB02\CTHVMT.DEF M615 Comment: User supplied VMT mix. * FAIRFIELD COUNTY CO SEASON - EXPRESSWAYS * File 5, Run 1, Scenario 1. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT1.CTY M112 Warning: Wintertime Reformulated Gasoline Rules Apply *** I/M credits for Tech1&2 vehicles were read from the following external data file: TECH12.D M 48 Warning: there are no sales for vehicle class HDGV8b HDDV DEFEAT DEVICE EFFECTS ARE PRESENT. THE REBUILD FRACTION IS 0.07. LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 33.0 (F) Maximum Temperature: 49.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGT12 LDGT34 LDGT LDDT All Veh LDGV HDGV LDDV HDDV MC GVWR: <6000 >6000 (All) ____ ____ ____ _____ _____ _____ _ _ _ _ _ _ _____ _____ ____ VMT Distribution: 0.4817 0.3170 0.1082 0.0272 0.0006 0.0016 0.0629 0.0007 1.0000

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

Composite Emission Fa	actors (g/m	i):								
Composite CO :	20.86	23.20	25.41	23.76	18.66	1.353	0.931	2.820	16.49	20.850
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	actors (q/m	 i):								
Composite CO :	32.98	20.26	27.39	21.11	3.605	0.822				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000		
Composite Emission Fa	actors (g/m	 i):								
Composite CO :	13.55	34.04	53.40	28.42	30.71	47.97	47.23	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297		
Composite Emission Fa	actors (g/m	 i):								
Composite CO :	0.840	0.983	1.080	1.084	1.501	1.921	2.966	3.938		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0004	0.0007	0.0010							
Composite Emission Fa	actors (g/m	 i):								
Composite CO :	100.52	4.222	2.121							
<pre>* # # # # # # # # # # # # # # # # # # #</pre>	# # # # # EASON - EX mrio 2. # # # # # #	# # # # # # PRESSWAYS # # # # # #	# # # # # # # # # # # #	the follow	ing extern	- -				

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

* data file: C:\MOB02\ M112 Warning:	VMT\COUNTY	\02SDVMT2.	CTY							
Wintert	ime Reform	ulated Gas	soline Rule	vlqqA z						
M 48 Warning:				11 2						
there ar	re no sales	for vehic	cle class H	DGV8b						
LEV phase-in data rea	d from fil	e NLEVNE.I)							
Ca	lendar Yea	r: 2002								
	Mont	n: Jan.								
Minimum	Temperatur	е, цом с. 18 0 (۲ .							
Maximum	Temperatur	e: 18.0 (፲፱) ፲፱)							
Absolu	ite Humidit	v: 75. c	rains/lb							
Fuel Sul	fur Conten	t: 129. p	ppm							
Exhaust	I/M Progra	m: Yes								
Evap	I/M Progra	m: Yes								
	ATP Progra	m: Yes								
Refor	mulated Ga	s: Yes								
Vehicle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC	All Veh
GVWR:		<6000	>6000	(All)						
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa	ictors (g/m	 i):								
Composite CO :	24.20	26.84	29.05	27.40	19.98	1.354	0.933	2.829	19.46	24.048
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	ictors (g/m	 i):								
Composite CO :	37.97	23.49	31.30	24.16	3.608	0.823				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000		

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

Composite Emission Fa	ctors (g/m	i):							
Composite CO :	14.51	36.40	57.15	30.45	32.89	51.39	50.60	0.00	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297	
Composite Emission Fa	ctors (q/m	 i):							
Composite CO :	0.842	0.986	1.083	1.087	1.506	1.927	2.975	3.950	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa	ctors (q/m	 i):							
Composite CO :	107.57	4.235	2.128						
<pre>* # # # # # # # # # # * LITCHFIELD COUNTY CC * File 5, Run 1, Scena * # # # # # # # # # # * Reading Hourly, Road</pre>	# # # # # # SEASON - : rio 3. # # # # # #	# # # # # # EXPRESSWAY # # # # # # peed VMT d	# # # # # # S # # # # # # ist. from	the follow	ving extern	al			
* data file: C:\MOB02\ M112 Warning:	/M.I./GOUN.I.A	02SDVMT3.	CIY						
Wintert	ime Reform	ulated Gas	oline Rule	s Apply					
M 48 Warning:									
there ar	e no sales	for vehic	le class H	IDGV8b					
LEV phase-in data rea Ca Minimum Maximum Absolu	d from fil lendar Yea Mont Altitud Temperatur Temperatur te Humidit	e NLEVNE.D r: 2002 h: Jan. e: Low e: 18.0 (e: 44.0 (v: 75. a	F) F) rains/lb						
Fuel Sul	fur Conten	t: 129. p	m						

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Exhaust Evap Refor	I/M Progra I/M Progra ATP Progra mulated Ga	m: Yes m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa Composite CO :	ctors (g/m. 24.37	ui): 27.02	29.25	27.59	20.43	1.359	0.936	2.847	20.51	24.222
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa Composite CO :	ctors (g/m. 38.21	ui): 23.66	31.51	24.34	3.615	0.827				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000		
Composite Emission Fa Composite CO :	ctors (g/m. 14.84	ii): 37.22	58.43	31.13	33.63	52.54	51.73	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297		
Composite Emission Fa Composite CO :	ctors (g/m. 0.848	ni): 0.993	1.090	1.094	1.516	1.939	2.994	3.976		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0004	0.0007	0.0010							

Composite Emission Factors (g/mi):

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite CO : 109.98 4.262 2.142 _____ * MIDDLESEX COUNTY CO SEASON - EXPRESSWAYS * File 5, Run 1, Scenario 4. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT4.CTY M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ _____ _____ ____ _____ ____ ____ VMT Distribution: 0.4817 0.3170 0.1082 0.0272 0.0006 0.0016 0.0629 0.0007 1.0000 _____ Composite Emission Factors (q/mi): 24.31 27.52 20.14 Composite CO : 26.96 29.18 1.353 0.931 2.821 19.92 24.157 _____ _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 -----____ ____ _____ ____

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016			
Composite Emission Fa Composite CO :	ctors (g/m 38.13	i): 23.60	31.44	24.28	3.605	0.822			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000	
Composite Emission Fa Composite CO :	ctors (g/m 14.63	i): 36.69	57.60	30.69	33.15	51.79	51.00	0.00	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297	
Composite Emission Fa Composite CO :	ctors (g/m 0.840	i): 0.984	1.080	1.084	1.502	1.921	2.967	3.939	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa Composite CO :	ctors (g/m 108.41	i): 4.223	2.122						
<pre>* # # # # # # # # # # # * NEW HAVEN COUNTY CO * File 5, Run 1, Scena * # # # # # # # # # # * Reading Hourly, Road * data file: C:\MOB02\ M112 Warning: Wintert M 48 Warning: there ar</pre>	# # # # # # SEASON - E rio 5. # # # # # way, and S VMT\COUNTY ime Reform e no sales	# # # # # # XPRESSWAYS # # # # # # peed VMT d \02SDVMT5. ulated Gas for vehic	# # # # # # # # # # # # ist. from CTY oline Rule le class H	the follow s Apply DGV8b	ing extern	al			

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

LEV phase-in data rea Ca Minimum Maximum Absolu Fuel Sul Exhaust Evap	d from fil lendar Yea Mont Altitud Temperatur Temperatur te Humidit fur Conten I/M Progra I/M Progra ATP Progra	e NLEVNE.D r: 2002 h: Jan. e: Low e: 18.0 (e: 44.0 (y: 75. g t: 129. p m: Yes m: Yes m: Yes	F) F) grains/lb opm							
Refor	mulated Ga	s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa	 lctors (q/m	 1i):								
Composite CO :	24.08	26.69	28.90	27.25	19.72	1.354	0.932	2.827	18.79	23.916
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	ictors (g/m	 i):								
Composite CO :	37.78	23.36	31.14	24.02	3.608	0.823				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000		
Composite Emission Fa Composite CO :	ictors (g/m 14.32	ui): 35.93	56.40	30.05	32.46	50.72	49.94	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297		

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

Compos	ite Emission Fa mposite CO :	o.842	i): 0.986	1.083	1.086	1.505	1.925	2.973	3.948	
	Veh. Type:	GasBUS	URBAN	SCHOOL						
	VMT Mix:	0.0004	0.0007	0.0010						
Compos	ite Emission Fa mposite CO :	actors (g/m 106.16	i): 4.232	2.127						
<pre>* # # # # * NEW L * File * # # # # * Readi: * data : M112 1 M 48 1</pre>	<pre># # # # # # # # ONDON COUNTY CC 5, Run 1, Scena # # # # # # # # ng Hourly, Road file: C:\MOB02\ Warning:</pre>	# # # # # SEASON - ario 6. # # # # # Way, and S VMT\COUNTY time Reform re no sales	# # # # # EXPRESSWAY # # # # # peed VMT d \02SDVMT6. ulated Gas for vehic	# # # # # # S # # # # # # dist. from f CTY coline Rules le class H	the follow s Apply DGV8b	ing externa	.1			
LEV ph	ase-in data rea Ca Minimum Maximum Absolu Fuel Sul Exhaust Evap Refor	ad from fil alendar Yea Mont Altitud Temperatur Temperatur te Humidit fur Conten I/M Progra ATP Progra cmulated Ga	e NLEVNE.D r: 2002 h: Jan. e: Low e: 18.0 (e: 44.0 (y: 75.g t: 129.p m: Yes m: Yes m: Yes s: Yes	F) F) rains/lb pm						
	Vehicle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC All Ve

TABLE 82002 CONNECTICUT MOBILE SOURCE REPORTMobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

GVWR:		<6000	>6000	(All)						
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa	actors (g/m									
Composite CO :	24.26	26.90	29.12	27.46	19.94	1.349	0.928	2.806	19.57	24.099
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa	actors (g/m	1i):								
Composite CO :	38.05	23.55	31.37	24.22	3.600	0.819				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000		
Composite Emission Fa	actors (g/m	 ιi):								
Composite CO :	14.48	36.33	57.04	30.39	32.83	51.29	50.50	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297		
Composite Emission Fa	actors (g/m									
Composite CO :	0.836	0.978	1.075	1.078	1.494	1.911	2.951	3.918		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0004	0.0007	0.0010							
Composite Emission Fa	actors (g/m	 .i):								
Composite CO :	107.35	4.200	2.111							

* TOLLAND COUNTY CO SEASON - EXPRESSWAYS

* File 5, Run 1, Scenario 7.

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT7.CTY M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV All Veh MC GVWR: <6000 >6000 (All) ____ ____ ____ _____ ____ ____ ____ ____ _____ ____ VMT Distribution: 0.0016 0.4817 0.3170 0.1082 0.0272 0.0006 0.0629 0.0007 1.0000 Composite Emission Factors (g/mi): Composite CO : 27.00 29.23 27.57 20.35 1.357 0.935 20.35 24.35 2.840 24.205 _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ ____ ____ ____ ____ VMT Mix: 0.0733 0.2438 0.0741 0.0341 0.0001 0.0016 _____ Composite Emission Factors (g/mi): Composite CO : 38.19 23.64 31.49 24.32 3.612 0.825 Veh. Type: HDGV2B HDGV3 HDGV4 HDGV5 HDGV6 HDGV7 HDGV8A HDGV8B

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000	
Composite Emission Fa	ctors (a/m	i):							
Composite CO :	14.78	37.08	58.21	31.01	33.50	52.34	51.54	0.00	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297	
Composite Emission Fo	atoma (a/m								
Composite CO :	0.846	0.990	1.088	1.091	1.512	1.934	2.987	3.966	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa Composite CO :	ctors (g/m 109.56	4.251	2.136						
* # # # # # # # # # # # * WINDHAM COUNTY CO SE * File 5, Run 1, Scena * # # # # # # # # # # #	# # # # # ASON - EXP rio 8. # # # # #	# # # # # RESSWAYS # # # # # #	* * * * * *						
* Reading Hourly, Road * data file: C:\MOB02\ M112 Warning: Wintert M 48 Warning:	way, and S VMT\COUNTY ime Reform	peed VMT d \02SDVMT8. ulated Gas	ist. from CTY coline Rule	the follow es Apply	ving extern	al			
M 40 Waining.	e no caled	for vehic	le alaca W	IDCUR					
	c no sares	IOI Venite							
LEV phase-in data rea	d from fil	e NLEVNE.D)						
Ca	lendar Yea	r: 2002							
	Mont	n: Jan.							
	ALTITUD	e: Low	-						
Minimum	Temperatur	e: 18.0 (F')						
Maximum	remperatur	e. 44.0 (r)						

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ ____ VMT Distribution: 0.3170 0.1082 0.0272 0.0006 0.0016 0.4817 0.0629 0.0007 1.0000 _____ -----Composite Emission Factors (g/mi): 27.02 29.25 27.59 20.43 1.359 0.936 Composite CO : 24.37 2.847 20.51 24.222 _ _ _ _ _ _ _____ _____ _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ ____ ____ ____ ____ 0.0733 0.0741 0.0001 0.0016 VMT Mix: 0.2438 0.0341 _____ Composite Emission Factors (g/mi): 24.34 Composite CO : 38.21 31.51 3.615 0.827 23.66 _____ _____ _____ _____ _____ Veh. Type: HDGV2B HDGV3 HDGV4 HDGV5 HDGV6 HDGV7 HDGV8A HDGV8B ____ ____ ____ ____ _____ _____ ____ ____ VMT Mix: 0.0220 0.0008 0.0004 0.0009 0.0019 0.0009 0.0000 0.0000 _____ _____ _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ Composite Emission Factors (g/mi): 37.22 52.54 Composite CO : 14.84 58.43 31.13 33.63 51.73 0.00 _____ -----_____ _____ Veh. Type: HDDV2B HDDV3 HDDV4 HDDV5 HDDV6 HDDV7 HDDV8A HDDV8B ____ ____ ____ ____ ____ ____ ____ _ _ _ _ _ _ VMT Mix: 0.0071 0.0021 0.0019 0.0008 0.0045 0.0067 0.0083 0.0297 _____ _____ _____ Composite Emission Factors (q/mi): Composite CO : 0.848 0.993 1.090 1.094 1.516 1.939 2.994 3.976 _____ _____ Veh. Type: GasBUS URBAN SCHOOL ____ ____ ____

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

VMT Mix: 0.0004 0.0007 0.0010
Composite Emission Factors (g/mi): Composite CO : 109.98 4.262 2.142
<pre>************************************</pre>
User has disabled the calculation of REFUELING emissions. * Reading Registration Distributions from the following external * data file: C:\MOB02\CTREG02.D
 * Reading I/M program description records from the following external * data file: C:\MOB02\CTIM02.D * 2002 CT I/M PROGRAMS Revised 12/13/04 * File has been updated w/2002 stringency/compliance/waiver rates. * 12/13/04 draft of I/M File. Current Name CTIM02.d * Annual I/M test for the pre-81 CARS * Idle test started 1983 was upgraded to an ASM 2525 test in 1998.
* Reading ASM I/M Test Credits from ASMDATA.D * Biennial I/M for the post-80 CARS * Idle test started 1983 was upgraded to an ASM 2525 test in 1998.
 * Reading ASM I/M Test Credits from ASMDATA.D * Annual Evap test for the pre-81 cars * Biennial Evap test for the post-81 cars * Annual I/M test for the pre-81 Trucks (GVWR 8,501-10,000lb) * Biennial I/M test for the post-80 Trucks (GVWR 8,501-10,000lb) * ARTERIALS/COLLECTOR VMT Data

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* Reading Hourly Roadway VMT distribution from the following external * data file: C:\MOB02\VMT\FCVMTA.CTY Reading User Supplied ROADWAY VMT Factors * Reading Hourly VMT distribution from the following external * data file: C:\MOB02\CTHVMT.DEF M615 Comment: User supplied VMT mix. * FAIRFIELD COUNTY CO SEASON - ARTERIALS/COLLECTORS * File 6, Run 1, Scenario 1. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT1.CTY M112 Warning: Wintertime Reformulated Gasoline Rules Apply *** I/M credits for Tech1&2 vehicles were read from the following external data file: TECH12.D M 48 Warning: there are no sales for vehicle class HDGV8b HDDV DEFEAT DEVICE EFFECTS ARE PRESENT. THE REBUILD FRACTION IS 0.07. LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 33.0 (F) Maximum Temperature: 49.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV All Veh MC GVWR: <6000 >6000 (All) ____ ____ ____ ____ _ _ _ _ _ _ ____ _ _ _ _ _ _ _ ____ ____ ____ VMT Distribution: 0.5114 0.3365 0.1148 0.0097 0.0007 0.0017 0.0224 0.0027 1.0000 _____ Composite Emission Factors (g/mi): Composite CO : 18.94 21.03 21.58 21.16 1.572 3.770 23.17 1.117 16.80 19.762 _____ _____ _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 _____ ____ _____ ____ _____ _____ 0.0778 0.2588 0.0787 0.0362 0.0001 0.0017 VMT Mix: Composite Emission Factors (g/mi): 19.07 1.000 Composite CO : 30.28 18.25 25.06 3.949 _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ Veh. Type: HDGV2B HDGV3 HDGV4 HDGV5 HDGV6 HDGV7 HDGV8A HDGV8B ____ ____ ____ _ _ _ _ _ _ _ _ _ _ _ _ ____ ____ ____ 0.0079 0.0003 0.0003 0.0007 0.0003 VMT Mix: 0.0001 0.0000 0.0000 Composite Emission Factors (g/mi): 32.30 Composite CO : 34.89 54.48 53.65 0.00 15.40 38.66 60.66 _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _____ _____ HDDV7 Veh. Type: HDDV2B HDDV3 HDDV4 HDDV5 HDDV6 HDDV8A HDDV8B ____ ____ ____ ____ ____ _____ _____ ____ VMT Mix: 0.0025 0.0007 0.0007 0.0003 0.0016 0.0024 0.0030 0.0106 _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ Composite Emission Factors (g/mi): 2.007 Composite CO : 1.123 1.315 1.444 1.449 2.568 3.965 5.264 _____ _____ Veh. Type: GasBUS URBAN SCHOOL ____ ____ ____ VMT Mix: 0.0001 0.0002 0.0004 _____ _ _ _ _ _ _ _ _ _ _ _ _ Composite Emission Factors (q/mi): Composite CO : 114.14 5.644 2.836

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* HARTFORD COUNTY CO SEASON - ARTERIALS/COLLECTORS * File 6, Run 1, Scenario 2. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT2.CTY M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGT12 LDGT34 HDGV LDDT MC All Veh LDGV LDGT LDDV HDDV <6000 GVWR: >6000 (All) ____ ____ ____ _____ ____ ____ _____ ____ ____ ____ VMT Distribution: 0.5114 0.3365 0.1148 0.0097 0.0007 0.0017 0.0224 0.0027 1.0000 _____ _____ Composite Emission Factors (g/mi): 20.00 Composite CO : 21.67 23.96 26.03 24.49 1.500 1.056 3.458 16.81 22.459 _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ ____ _____ _____ ____ 0.0778 0.2588 0.0787 0.0362 0.0001 0.0017 VMT Mix: _____ Composite Emission Factors (q/mi): Composite CO : 34.31 20.86 28.14 21.45 3.836 0.942

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0079	0.0003	0.0001	0.0003	0.0007	0.0003	0.0000	0.0000	
Composite Emission Fa	actors (g/m	 ni):							
Composite CO :	14.55	36.52	57.34	30.53	32.99	51.55	50.75	0.00	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0025	0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106	
Composite Emission Fa	actors (g/m	ni):							
Composite CO :	1.030	1.206	1.325	1.329	1.841	2.355	3.637	4.829	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0001	0.0002	0.0004						
Composite Emission Fa Composite CO :	actors (g/m 107.95	ni): 5.177	2.601						
<pre>* # # # # # # # # # # # * LITCHFIELD COUNTY CC * File 6, Run 1, Scena * # # # # # # # # # # #</pre>	# # # # #) SEASON - ario 3. # # # # # #	# # # # # ARTERIALS/ # # # # #	# # # # # COLLECTORS # # # # #	3					
* Reading Hourly, Road * data file: C:\MOB02\ M112 Warning: Wintert M 48 Warning: there ar	lway, and S VMT\COUNTY time Reform	Speed VMT of (\02SDVMT3. mulated Gas	list. from CTY coline Rule le class F	the follow es Apply HDGV8b	ving extern	al			
LEV phase-in data rea Ca	nd from fil alendar Yea Mont Altitud	le NLEVNE.D ar: 2002 ch: Jan. de: Low)						

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Minimum Maximum Absolu Fuel Sul	Temperatur Temperatur ate Humidit fur Conten	e: 18.0 (e: 44.0 (y: 75.g t: 129.p	F) F) grains/lb opm							
Exhaust Evap Refor	I/M Progra I/M Progra ATP Progra rmulated Ga	m: Yes m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5114	0.3365	0.1148		0.0097	0.0007	0.0017	0.0224	0.0027	1.0000
Composite Emission Fa Composite CO :	actors (g/m 22.01	i): 24.35	26.40	24.87	16.80	1.357	0.935	2.839	14.46	22.750
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0778	0.2588	0.0787	0.0362	0.0001	0.0017				
Composite Emission Fa Composite CO :	actors (g/m 34.75	i): 21.23	28.51	21.81	3.612	0.825				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0079	0.0003	0.0001	0.0003	0.0007	0.0003	0.0000	0.0000		
Composite Emission Fa Composite CO :	actors (g/m 12.22	i): 30.67	48.16	25.65	27.71	43.30	42.63	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0025	0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106		
Composite Emission Fa Composite CO :	actors (g/m 0.845	i): 0.990	1.087	1.091	1.511	1.933	2.985	3.964		

- -

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type: GasBUS URBAN SCHOOL ____ ____ ____ VMT Mix: 0.0001 0.0002 0.0004 _____ _____ Composite Emission Factors (g/mi): Composite CO : 90.65 4.249 2.135 _____ * MIDDLESEX COUNTY CO SEASON - ARTERIALS/COLLECTORS * File 6, Run 1, Scenario 4. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT4.CTY M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes HDGV Vehicle Type: LDGV LDGT12 LDGT34 LDGT LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ _____ _____ ____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ ____ VMT Distribution: 0.5114 0.3365 0.1148 0.0097 0.0007 0.0017 0.0224 0.0027 1.0000 _____

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite CO :	21.90	24.23	26.27	24.75	17.58	1.392	0.965	2.993	15.02	22.651
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0778	0.2588	0.0787	0.0362	0.0001	0.0017				
Composite Emission Fa Composite CO :	ctors (g/m 34.60	i): 21.11	28.38	21.69	3.668	0.854				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0079	0.0003	0.0001	0.0003	0.0007	0.0003	0.0000	0.0000		
Composite Emission Fa Composite CO :	ctors (g/m 12.79	i): 32.10	50.40	26.84	29.00	45.31	44.61	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0025	0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106		
Composite Emission Fa Composite CO :	ctors (g/m 0.891	i): 1.044	1.146	1.150	1.593	2.039	3.148	4.180		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0001	0.0002	0.0004							
Composite Emission Fa Composite CO :	ctors (g/m 94.87	i): 4.481	2.252							
<pre>* # # # # # # # # # # # # # # # # # # #</pre>	 # # # # # SEASON - A rio 5. # # # # # way. and S	 # # # # # RTERIALS/C # # # # # # peed VMT d	 # # # # # # OLLECTORS # # # # # # ist. from	the follow	ing extern	al				

* data file: C:\MOB02\VMT\COUNTY\02SDVMT5.CTY

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

M112 Warning:

Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGT12 LDGV LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ _____ ____ _ _ _ _ _ _ _ _ _ _ _ _ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ VMT Distribution: 0.3365 0.1148 0.0097 0.0007 0.0017 0.0224 0.0027 1.0000 0.5114 _ _ _ _ _ _ _ Composite Emission Factors (q/mi): 23.95 Composite CO : 21.66 26.01 24.47 19.81 1.491 1.049 3.422 16.68 22.442 _____ _____ _ _ _ _ _ _ _ _ _ _ _____ _____ _ _ _ _ _ _ _ _ _ _ _ _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ ____ ____ ____ _____ 0.0778 0.2588 0.0787 0.0017 VMT Mix: 0.0362 0.0001 _____ _____ Composite Emission Factors (g/mi): Composite CO : 34.28 20.84 28.11 21.44 3.823 0.935 ____ _____ ____ _____ _____ HDGV5 Veh. Type: HDGV2B HDGV3 HDGV4 HDGV6 HDGV7 HDGV8A HDGV8B ____ ____ ____ ____ ____ ____ _ _ _ _ _ _ ____ VMT Mix: 0.0079 0.0003 0.0001 0.0003 0.0007 0.0003 0.0000 0.0000 _____ _____

Composite Emission Factors (g/mi):

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Composite CC) : 14.41	36.16	56.78	30.23	32.67	51.04	50.26	0.00		
Veh. Ty	rpe: HDDV2	B HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT M	Iix: 0.002	5 0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106		
Composite Emissi	on Factors (g/mi):	1 211	1 215	1 001	2 220	2 600	 ۸ 770		
				1.315	1.021	2.330	5.599	4.778		
Veh. Ty	pe: GasBU	S URBAN	SCHOOL							
VMT M	lix: 0.000	1 0.0002	0.0004							
Composite Emissi Composite CC	on Factors () : 106.89	g/mi): 5.122	2.574							
<pre>* # # # # # # # # # # # # # # # # # # #</pre>										
Min Max A Fue Exh	Calendar M Alti imum Tempera imum Tempera bsolute Humi l Sulfur Con naust I/M Pro	Year: 2002 onth: Jan. tude: Low ture: 18.0 ture: 44.0 dity: 75. tent: 129. gram: Yes	(F) (F) grains/lb ppm							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Evap Refor	I/M Progra ATP Progra mulated Ga	m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5114	0.3365	0.1148		0.0097	0.0007	0.0017	0.0224	0.0027	1.0000
Composite Emission Fa Composite CO :	ctors (g/m. 21.77	1): 24.07	26.13	24.60	18.98	1.455	1.018	3.263	16.09	22.539
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0778	0.2588	0.0787	0.0362	0.0001	0.0017				
Composite Emission Fa Composite CO :	ctors (g/m. 34.43	i): 20.96	28.24	21.55	3.766	0.905				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0079	0.0003	0.0001	0.0003	0.0007	0.0003	0.0000	0.0000		
Composite Emission Fa Composite CO :	ctors (g/m 13.80	i): 34.65	54.40	28.97	31.30	48.91	48.15	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0025	0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106		
Composite Emission Fa Composite CO :	ctors (g/m. 0.972	i): 1.138	1.250	1.254	1.737	2.223	3.432	4.557		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0001	0.0002	0.0004							
Composite Emission Fa Composite CO :	.ctors (g/m 102.41	 i): 4.885	2.455							

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* TOLLAND COUNTY CO SEASON - ARTERIALS/COLLECTORS * File 6, Run 1, Scenario 7. * Reading Hourly, Roadway, and Speed VMT dist. from the following external * data file: C:\MOB02\VMT\COUNTY\02SDVMT7.CTY M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV All Veh MC GVWR: <6000 >6000 (All) ____ ____ _ _ _ _ _ _ ____ ____ ____ ____ _____ ____ ____ 0.3365 0.0017 0.0224 VMT Distribution: 0.5114 0.1148 0.0097 0.0007 0.0027 1.0000 _____ _____ Composite Emission Factors (g/mi): 24.23 24.75 16.88 1.363 0.940 Composite CO : 21.90 26.27 2.864 14.50 22.643 _____ _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ ____ ____ ____ ____ 0.0778 0.2588 0.0787 0.0362 0.0001 0.0017 VMT Mix:

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

Composite Em	ission Fac	ctors (g/m	 i):							
Composit	e CO :	34.59	21.12	28.37	21.70	3.621	0.830			
Veh	. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
V	MT Mix:	0.0079	0.0003	0.0001	0.0003	0.0007	0.0003	0.0000	0.0000	
Composite Em	ission Fac	ctors (g/m	 i):							
Composit	e CO :	12.28	30.81	48.38	25.77	27.84	43.49	42.82	0.00	
Veh	. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
V	MT Mix:	0.0025	0.0007	0.0007	0.0003	0.0016	0.0024	0.0030	0.0106	
Composite Em Composit	ission Fac e CO :	ctors (g/m 0.853	i): 0.999	1.097	1.101	1.524	1.950	3.012	3.999	
Veh	. Type:	GasBUS	URBAN	SCHOOL						
V	MT Mix:	0.0001	0.0002	0.0004						
Composite Em	ission Fac	ctors (g/m	 i):							
Composit	e CO :	91.06	4.287	2.154						
* # # # # # # * WINDHAM COU * File 6, Run * # # # # # # #	: # # # # # # NTY CO SE <i>I</i> 1, Scenar : # # # # #	# # # # # # ASON - ART cio 8. # # # # # #	# # # # # ERIALS/COL # # # # # #	# # # # # # LECTORS # # # # # #						
* Reading Hou * data file: M112 Warnin M 48 Warnin	rly, Roadw C:\MOB02\\ g: Winterti g: there are	vay, and S /MT\COUNTY ime Reform e no sales	peed VMT d \02SDVMT8. ulated Gas for vehic	ist. from CTY oline Rule le class H	the follow s Apply DGV8b	ing extern	al			
LEV phase-in	data read	d from fil	e NLEVNE.D							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDT HDDV MC All Veh LDDV GVWR: <6000 >6000 (All) ____ ____ ____ ____ ____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ ____ VMT Distribution: 0.0097 0.0007 0.5114 0.3365 0.1148 0.0017 0.0224 0.0027 1.0000 _____ Composite Emission Factors (g/mi): Composite CO : 21.96 24.30 26.34 24.82 16.36 1.339 0.920 2.762 14.18 22.697 _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ ____ ____ ____ ____ 0.0778 0.2588 0.0787 0.0362 0.0001 0.0017 VMT Mix: _____ _____ Composite Emission Factors (g/mi): 3.584 Composite CO : 34.67 21.19 28.44 21.76 0.811 _____ _____ _____ _____ HDGV2B HDGV3 HDGV4 HDGV5 HDGV6 HDGV7 Veh. Type: HDGV8A HDGV8B ____ ____ ____ ____ ____ ____ ____ ____ 0.0079 0.0003 0.0001 0.0003 0.0007 0.0003 0.0000 VMT Mix: 0.0000 _____ Composite Emission Factors (q/mi): Composite CO : 11.90 29.87 46.89 24.98 26.98 42.16 41.51 0.00 _____ _____ Veh. Type: HDDV2B HDDV3 HDDV4 HDDV5 HDDV6 HDDV7 HDDV8A HDDV8B ____ ____ ____ ____ ____ ____ ____ _____ VMT Mix: 0.0025 0.0007 0.0007 0.0003 0.0016 0.0024 0.0030 0.0106 _____ _____

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

Composite Emission Fa Composite CO :	ctors (g/m: 0.822	i): 0.963	1.058	1.061	1.470	1.881	2.904	3.856				
Veh. Type:	GasBUS	URBAN	SCHOOL									
VMT Mix:	0.0001	0.0002	0.0004									
Composite Emission Fa Composite CO :	ctors (g/m: 88.27	i): 4.134	2.077									
**************************************	********** -2003) \02CTLCO.II *********	**************************************	<pre>********** run 1). ************************************</pre>	*********	**********	* * * * * *						
<pre>* Reading 94+ LEV IMPLEMENTATION SCHEDULE from the following external * data file: NLEVNE.D M616 Comment: User has supplied post-1999 sulfur levels. M603 Comment: User has disabled the calculation of REFUELING emissions.</pre>												
* Reading Registration * data file: C:\MOB02\	Distribut: CTREG02.D	ions from	the follow	ing extern	al							
<pre>* Reading I/M program * data file: C:\MOB02\ * 2002 CT I/M PROGRAMS * File has been update * 12/13/04 draft of I/ * Annual I/M test for * Idle test started 19</pre>	description CTIM02.D Revised d w/2002 st M File. Cu the pre-81 83 was upg	n records d 12/13/04 tringency/ urrent Nam CARS raded to a	from the f compliance e CTIM02.d n ASM 2525	ollowing e /waiver ra test in l	xternal tes. 998.							
* Reading ASM I/M Test * Biennial I/M for the * Idle test started 19	Credits fr post-80 CA 83 was upgr	rom ASMDAI ARS raded to a	'A.D n ASM 2525	test in 1	998.							
* Reading ASM I/M Test	Credits fi	rom ASMDAI	'A.D									

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* Annual I/M test for the pre-81 Trucks (GVWR 8,501-10,000lb) * Biennial I/M test for the post-80 Trucks (GVWR 8,501-10,000lb) * LOCAL ROAD VMT Data * Reading Hourly Roadway VMT distribution from the following external * data file: C:\MOB02\VMT\FCVMTL.CTY Reading User Supplied ROADWAY VMT Factors * Reading Hourly VMT distribution from the following external * data file: C:\MOB02\CTHVMT.DEF M615 Comment: User supplied VMT mix. * FAIRFIELD COUNTY CO SEASON - LOCAL ROADS * File 7, Run 1, Scenario 1. M112 Warning: Wintertime Reformulated Gasoline Rules Apply *** I/M credits for Tech1&2 vehicles were read from the following external data file: TECH12.D M 48 Warning: there are no sales for vehicle class HDGV8b HDDV DEFEAT DEVICE EFFECTS ARE PRESENT. THE REBUILD FRACTION IS 0.07. LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 33.0 (F) Maximum Temperature: 49.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes

* Annual Evap test for the pre-81 cars * Biennial Evap test for the post-81 cars

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Refo	ATP Progra rmulated Ga	m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5144	0.3387	0.1155		0.0074	0.0007	0.0017	0.0172	0.0043	1.0000
Composite Emission Fa Composite CO :	actors (g/m 16.69	18.59	20.71	19.13	43.09	2.449	1.859	7.581	27.10	17.846
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0783	0.2605	0.0792	0.0364	0.0001	0.0017				
Composite Emission Fa Composite CO :	actors (g/m 27.71	ii): 15.85	22.57	16.67	5.328	1.717				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000		
Composite Emission Fa Composite CO :	actors (g/m 31.17	ii): 78.31	122.86	65.40	70.65	110.36	108.66	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081		
Composite Emission Fa Composite CO :	actors (g/m 2.256	11): 2.641	2.901	2.911	4.032	5.159	7.967	10.577		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0001	0.0002	0.0003							
Composite Emission Fa Composite CO :	actors (g/m 231.26	11.340	5.698							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

* HARTFORD COUNTY CO SEASON - LOCAL ROADS * File 7, Run 1, Scenario 2. M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ _____ ____ _____ _ _ _ _ _ _ ____ ____ ____ ____ VMT Distribution: 0.5144 0.3387 0.1155 0.0074 0.0007 0.0017 0.0172 0.0043 1.0000 _____ Composite Emission Factors (q/mi): 21.44 21.97 2.449 Composite CO : 19.38 23.53 44.51 1.859 7.581 28.59 20.534 _____ _____ LDGT4 Veh. Type: LDGT1 LDGT2 LDGT3 LDDT12 LDDT34 ____ ____ ____ ____ ____ ____ 0.0783 0.2605 0.0792 0.0364 0.0001 0.0017 VMT Mix: _____ Composite Emission Factors (g/mi): Composite CO : 31.72 18.35 25.62 18.97 5.328 1.717 _____

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type: HDGV2B HDGV3 HDGV4 HDGV5 HDGV6 HDGV7 HDGV8A HDGV8B _ _ _ _ _ _ ____ ____ ____ ____ ____ _ _ _ _ _ _ ____ VMT Mix: 0.0060 0.0002 0.0001 0.0003 0.0005 0.0002 0.0000 0.0000 _____ Composite Emission Factors (g/mi): Composite CO : 32.20 80.79 126.84 67.57 72.99 114.05 112.29 0.00 _____ _____ _ _ _ _ _ _ _ _ _ _ _ _____ Veh. Type: HDDV2B HDDV3 HDDV4 HDDV5 HDDV6 HDDV7 HDDV8A HDDV8B ____ ____ ____ ____ ____ ____ ____ ____ 0.0019 0.0006 0.0005 0.0002 0.0019 0.0023 VMT Mix: 0.0012 0.0081 _____ _____ Composite Emission Factors (g/mi): Composite CO : 2.256 2.641 2.901 2.911 4.032 5.159 7.967 10.577 _____ Veh. Type: GasBUS URBAN SCHOOL ____ ____ ____ 0.0001 0.0002 VMT Mix: 0.0003 _____ Composite Emission Factors (g/mi): Composite CO : 238.73 11.340 5.698 * LITCHFIELD COUNTY CO SEASON - LOCAL ROADS * File 7, Run 1, Scenario 3. M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Exhaust Evap Refor	I/M Progra I/M Progra ATP Progra rmulated Ga	um: Yes um: Yes um: Yes us: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5144	0.3387	0.1155		0.0074	0.0007	0.0017	0.0172	0.0043	1.0000
Composite Emission Fa Composite CO :	actors (g/m 19.38	ni): 21.44	23.53	21.97	44.51	2.449	1.859	7.581	28.59	20.534
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0783	0.2605	0.0792	0.0364	0.0001	0.0017				
Composite Emission Fa Composite CO :	actors (g/m 31.72	18.35	25.62	18.97	5.328	1.717				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000		
Composite Emission Fa Composite CO :	actors (g/m 32.20	ni): 80.79	126.84	67.57	72.99	114.05	112.29	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081		
Composite Emission Fa Composite CO :	actors (g/m 2.256	ni): 2.641	2.901	2.911	4.032	5.159	7.967	10.577		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0001	0.0002	0.0003							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite Emission Factors (g/mi): Composite CO : 238.73 11.340 5.698 _____ * MIDDLESEX COUNTY CO SEASON - LOCAL ROADS * File 7, Run 1, Scenario 4. M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ ____ ____ _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ ____ VMT Distribution: 0.0074 0.0007 0.5144 0.3387 0.1155 0.0017 0.0172 0.0043 1.0000 _____ Composite Emission Factors (g/mi): Composite CO : 19.38 21.44 23.53 21.97 44.51 2.449 1.859 7.581 28.59 20.534 _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ _____ _____ _____ _____ ____ VMT Mix: 0.0783 0.2605 0.0792 0.0364 0.0001 0.0017 _____

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT CONNECTICUT MOBILE SOURCE REPORT CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

Composite Emission Fa Composite CO :	actors (g/m 31.72	ii): 18.35	25.62	18.97	5.328	1.717			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
MT Mise.									
VMI MIX.	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000		
Composite Emission Fa Composite CO :	actors (g/m 32.20	ni): 80.79	126.84	67.57	72.99	114.05	112.29	0.00	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081	
Composite Emission Fa	actors (g/m	 ນ່):							
Composite CO :	2.256	2.641	2.901	2.911	4.032	5.159	7.967	10.577	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0001	0.0002	0.0003						
Composite Emission Fa Composite CO :	actors (g/m 238.73	ni): 11.340	5.698						
<pre>* # # # # # # # # # # # # # # # # # # #</pre>									
LEV phase-in data rea Ca Minimum	d from fil lendar Yea Mont Altitud Temperatur	e NLEVNE.I n: 2002 h: Jan. le: Low re: 18.0) (F)						

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Maximum Absolu Fuel Sul	Temperatur te Humidit fur Conten	e: 44.0 y: 75.9 t: 129.9	(F) grains/lb opm							
Exhaust Evap Refor	I/M Progra I/M Progra ATP Progra mulated Ga	m: Yes m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5144	0.3387	0.1155		0.0074	0.0007	0.0017	0.0172	0.0043	1.0000
Composite Emission Fa Composite CO :	ctors (g/m. 19.38	i): 21.44	23.53	21.97	44.51	2.449	1.859	7.581	28.59	20.534
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0783	0.2605	0.0792	0.0364	0.0001	0.0017				
Composite Emission Fa Composite CO :	ctors (g/m. 31.72	i): 18.35	25.62	18.97	5.328	1.717				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000		
Composite Emission Fa Composite CO :	ctors (g/m 32.20	i): 80.79	126.84	67.57	72.99	114.05	112.29	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081		
Composite Emission Fa Composite CO :	ctors (g/m. 2.256	i): 2.641	2.901	2.911	4.032	5.159	7.967	10.577		
Veh. Type:	GasBUS	URBAN	SCHOOL							
2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

VMT Mix:	0.0001	0.0002	0.0003							
Composite Emission Fa	actors (g/m	 i):								
Composite CO :	238.73	11.340	5.698							
* # # # # # # # # # # # * NIEW LONDON COUNTY CO			# # # # #							
* File 7. Run 1. Scena	rio 6.	LOCAL ROAL	5							
* # # # # # # # # # #	# # # # #	# # # # #	# # # # #							
M112 Warning:										
Wintert	ime Reform	ulated Gas	oline Rules	Apply						
M 48 Warning:	a no golog	for wohic	lo aloga u	OT 70h						
chere ar	e no sales	TOT VEHIC	TE CIASS HI	GVOD						
LEV phase-in data rea	ad from fil	e NLEVNE.D)							
Ca	alendar Yea	r: 2002								
	Mont	h: Jan.								
	Altitud	e: Low	-							
Minimum	Temperatur	e: 18.0 (F.)							
Absolu	ite Humidit	v: 75 c	r) rains/lb							
Fuel Sul	lfur Conten	t: 129. p	opm							
Exhaust	I/M Progra	m: Yes								
Evap	I/M Progra	m: Yes								
	ATP Progra	m: Yes								
Refor	rmulated Ga	s: Yes								
Vehicle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC	All Veh
GVWR:		<6000	>6000	(All)						
VMT Distribution:	0.5144	0.3387	0.1155		0.0074	0.0007	0.0017	0.0172	0.0043	1.0000
Composite Emission Fa	actors (g/m	 i):								
Composite CO :	19.38	21.44	23.53	21.97	44.51	2.449	1.859	7.581	28.59	20.534
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				

TABLE 82002 CONNECTICUT MOBILE SOURCE REPORTMobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

VMT Mix:	0.0783	0.2605	0.0792	0.0364	0.0001	0.0017			
Composite Emission Fa Composite CO :	ctors (g/m 31.72	i): 18.35	25.62	18.97	5.328	1.717			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000	
Composite Emission Fa Composite CO :	ctors (g/m 32.20	i): 80.79	126.84	67.57	72.99	114.05	112.29	0.00	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081	
Composite Emission Fa Composite CO :	ctors (g/m 2.256	i): 2.641	2.901	2.911	4.032	5.159	7.967	10.577	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0001	0.0002	0.0003						
Composite Emission Fa Composite CO :	ctors (g/m 238.73	i): 11.340	5.698						
<pre>* # # # # # # # # # # # # * TOLLAND COUNTY CO SE * File 7, Run 1, Scena * # # # # # # # # # # M112 Warning:</pre>	# # # # # # ASON - LOC rio 7. # # # # # ime Reform e no sales d from fil lendar Yea	# # # # # # AL ROADS # # # # # # ulated Gas for vehic e NLEVNE.I r: 2002	# # # # # # # # # # # # soline Rule cle class H	s Apply DGV8b					

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Minimum Maximum Absolu Fuel Sul	Mont) Altitud Temperatur Temperatur ute Humidit Ifur Conten	h: Jan. e: Low e: 18.0 e: 44.0 y: 75.9 t: 129.9	(F) (F) grains/lb ppm							
Exhaust Evap Refor	I/M Program I/M Program ATP Program cmulated Gam	m: Yes m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.5144	0.3387	0.1155		0.0074	0.0007	0.0017	0.0172	0.0043	1.0000
Composite Emission Fa Composite CO :	actors (g/m. 19.38	i): 21.44	23.53	21.97	44.51	2.449	1.859	7.581	28.59	20.534
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0783	0.2605	0.0792	0.0364	0.0001	0.0017				
Composite Emission Fa Composite CO :	actors (g/m. 31.72	i): 18.35	25.62	18.97	5.328	1.717				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000		
Composite Emission Fa Composite CO :	actors (g/m. 32.20	i): 80.79	126.84	67.57	72.99	114.05	112.29	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081		

Composite Emission Factors (g/mi):

_

TABLE 82002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Composite CO : 2.256 2.641 2.901 2.911 4.032 5.159 7.967 10.577 Veh. Type: GasBUS URBAN SCHOOL ____ ____ ____ VMT Mix: 0.0001 0.0002 0.0003 _____ _____ Composite Emission Factors (g/mi): Composite CO : 238.73 11.340 5.698 _____ * WINDHAM COUNTY CO SEASON - LOCAL ROADS * File 7, Run 1, Scenario 8. M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ ____ ____ ____ ____ ____ ____ _ _ _ _ _ _ ____ VMT Distribution: 0.5144 0.3387 0.1155 0.0074 0.0007 0.0017 0.0172 0.0043 1.0000 _____ _____

Composite Emission Factors (g/mi):

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite CO :	19.38	21.44	23.53	21.97	44.51	2.449	1.859	7.581	28.59	20.534
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0783	0.2605	0.0792	0.0364	0.0001	0.0017				
Composite Emission Fa Composite CO :	actors (g/m 31.72	ni): 18.35	25.62	18.97	5.328	1.717				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0060	0.0002	0.0001	0.0003	0.0005	0.0002	0.0000	0.0000		
Composite Emission Fa Composite CO :	actors (g/m 32.20	ni): 80.79	126.84	67.57	72.99	114.05	112.29	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0019	0.0006	0.0005	0.0002	0.0012	0.0019	0.0023	0.0081		
Composite Emission Fa Composite CO :	actors (g/m 2.256	ni): 2.641	2.901	2.911	4.032	5.159	7.967	10.577		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0001	0.0002	0.0003							
Composite Emission Fa Composite CO :	actors (g/m 238.73	11.340	5.698							
**************************************	2\02CTRCO.I	X (file 8	**************************************	* * * * * * * * * * *	*****	* * * * * * * * * *				
* Reading 94+ LEV IMPI	LEMENTATION	I SCHEDULE	from the f	ollowing e	external					

* data file: NLEVNE.D

M616 Comment:

User has supplied post-1999 sulfur levels.

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

M603 Comment:

User has disabled the calculation of REFUELING emissions.

- * Reading Registration Distributions from the following external
- * data file: C:\MOB02\CTREG02.D
- * Reading I/M program description records from the following external
- * data file: C:\MOB02\CTIM02.D
- * 2002 CT I/M PROGRAMS Revised 12/13/04
- * File has been updated w/2002 stringency/compliance/waiver rates.
- * 12/13/04 draft of I/M File. Current Name CTIM02.d
- \star Annual I/M test for the pre-81 CARS
- * Idle test started 1983 was upgraded to an ASM 2525 test in 1998.
- * Reading ASM I/M Test Credits from ASMDATA.D
- * Biennial I/M for the post-80 CARS
- * Idle test started 1983 was upgraded to an ASM 2525 test in 1998.

* Reading ASM I/M Test Credits from ASMDATA.D

- * Annual Evap test for the pre-81 cars
- * Biennial Evap test for the post-81 cars
- * Annual I/M test for the pre-81 Trucks (GVWR 8,501-10,000lb)
- * Biennial I/M test for the post-80 Trucks (GVWR 8,501-10,000lb)
- * RAMP VMT Data
- * Reading Hourly Roadway VMT distribution from the following external
- * data file: C:\MOB02\VMT\FCVMTR.CTY

Reading User Supplied ROADWAY VMT Factors

- * Reading Hourly VMT distribution from the following external
- * data file: C:\MOB02\CTHVMT.DEF
- M615 Comment: User supplied VMT mix.
- * FAIRFIELD COUNTY CO SEASON RAMPS
- * File 8, Run 1, Scenario 1.

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

M112 Warning: Wintertime Reformulated Gasoline Rules Apply *** I/M credits for Tech1&2 vehicles were read from the following external data file: TECH12.D M 48 Warning: there are no sales for vehicle class HDGV8b HDDV DEFEAT DEVICE EFFECTS ARE PRESENT. THE REBUILD FRACTION IS 0.07. LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 33.0 (F) Maximum Temperature: 49.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ ____ _____ ____ ____ ____ _____ _____ ____ 0.0016 VMT Distribution: 0.4817 0.3170 0.1082 0.0272 0.0006 0.0629 0.0007 1.0000 Composite Emission Factors (q/mi): Composite CO : 31.59 32.43 31.81 15.91 1.363 0.940 13.51 30.09 2.867 28.646 _____ LDGT2 Veh. Type: LDGT1 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ ____ ____ ____ ____ VMT Mix: 0.0733 0.2438 0.0741 0.0341 0.0001 0.0016 _____ Composite Emission Factors (g/mi): Composite CO : 40.76 28.84 34.32 28.33 3.622 0.830 Veh. Type: HDGV2B HDGV3 HDGV4 HDGV5 HDGV6 HDGV7 HDGV8A HDGV8B

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000	
Composite Emission Fa	ctors (q/m	 i):							
Composite CO :	11.55	29.02	45.53	24.23	26.18	40.89	40.26	0.00	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297	
Composite Emission Fa	ctors (q/m	 i):							
Composite CO :	0.854	1.000	1.098	1.102	1.526	1.953	3.015	4.003	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa	ctors (q/m	 i):							
Composite CO :	85.69	4.292	2.156						
<pre>* # # # # # # # # # # # # # # # # # # #</pre>	# # # # # # EASON - RAI rio 2. # # # # # #	# # # # # # MPS # # # # # #	 # # # # # # # # # # # #						
Wintert	ime Reform	ulated Gas	oline Rule	es Apply					
M 48 Warning:									
there are	e no sales	for vehic	le class H	IDGV8b					
LEV phase-in data rea Ca Minimum ' Maximum ' Absolu	d from fild lendar Yea: Montl Altitude Temperature Temperature te Humidity	e NLEVNE.D r: 2002 h: Jan. e: Low e: 18.0 (e: 44.0 (v: 75.g	F) F) rains/lb						
Fuel Sul:	fur Conten	t: 129. p	pm						

TABLE 82002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Exhaust Evap Refor	I/M Progra I/M Progra ATP Progra mulated Ga	m: Yes m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa Composite CO :	ctors (g/m. 33.73	ui): 35.52	36.22	35.70	16.43	1.363	0.940	2.867	14.70	32.067
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa Composite CO :	ctors (g/m. 45.87	1): 32.41	38.35	31.59	3.622	0.830				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000		
Composite Emission Fa Composite CO :	ctors (g/m. 11.93	1): 29.94	47.00	25.04	27.05	42.26	41.61	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297		
Composite Emission Fa Composite CO :	ctors (g/m. 0.854	1.000	1.098	1.102	1.526	1.953	3.015	4.003		
Veh. Type:	GasBUS	URBAN	SCHOOL							
VMT Mix:	0.0004	0.0007	0.0010							

Composite Emission Factors (g/mi):

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Composite CO : 88.46 4.292 2.156 * LITCHFIELD COUNTY CO SEASON - RAMPS * File 8, Run 1, Scenario 3. M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ ____ _____ ____ _____ ____ _____ ____ _ _ _ _ _ _ ____ VMT Distribution: 0.3170 0.1082 0.4817 0.0272 0.0006 0.0016 0.0629 0.0007 1.0000 _____ _____ _____ Composite Emission Factors (g/mi): Composite CO : 33.73 35.52 36.22 35.70 16.43 1.363 0.940 2.867 14.70 32.067 _____ LDGT2 Veh. Type: LDGT1 LDGT3 LDGT4 LDDT12 LDDT34 _____ ____ ____ _____ ____ ____ VMT Mix: 0.0733 0.2438 0.0741 0.0341 0.0001 0.0016 _____

Composite Emission Factors (g/mi):

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Composite CO :	45.87	32.41	38.35	31.59	3.622	0.830			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000	
Composite Emission Fa	actors (g/m	 ιi):							
Composite CO :	11.93	29.94	47.00	25.04	27.05	42.26	41.61	0.00	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297	
Composite Emission Fa	actors (g/m	 າi):							
Composite CO :	0.854	1.000	1.098	1.102	1.526	1.953	3.015	4.003	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa	actors (g/m	 ນ່):							
Composite CO :	88.46	4.292	2.156						
<pre>* # # # # # # # # # # # * MIDDLESEX COUNTY CO * File 8, Run 1, Scena * # # # # # # # # # # M112 Warning: Wintert M 48 Warning: there are there are</pre>	# # # # # # SEASON - R ario 4. # # # # # # cime Reform	# # # # # # AMPS # # # # # # wulated Gas	# # # # # # # # # # # # coline Rule	es Apply					
chere ar	e no sales	, IOI VEIIIC	TE CIASS I	IDGVOD					
LEV phase-in data rea Ca Minimum Maximum	d from fil alendar Yea Mont Altitud Temperatur Temperatur	e NLEVNE.D ar: 2002 h: Jan. le: Low re: 18.0 (re: 44.0 (F) F)						

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) ____ _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ ____ VMT Distribution: 0.3170 0.1082 0.0272 0.0006 0.0016 0.4817 0.0629 0.0007 1.0000 _____ -----Composite Emission Factors (g/mi): 35.52 35.70 Composite CO : 33.73 36.22 16.43 1.363 0.940 2.867 14.70 32.067 _ _ _ _ _ _ _ _ _ _ _ _ _ _____ _____ LDGT2 Veh. Type: LDGT1 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ ____ ____ ____ ____ 0.0733 0.0741 0.0001 0.0016 VMT Mix: 0.2438 0.0341 _____ Composite Emission Factors (g/mi): 31.59 Composite CO : 45.87 32.41 38.35 3.622 0.830 _____ _ _ _ _ _ _ _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _ _ _ _ _____ _____ Veh. Type: HDGV2B HDGV3 HDGV4 HDGV5 HDGV6 HDGV7 HDGV8A HDGV8B ____ ____ ____ ____ _____ _____ ____ ____ VMT Mix: 0.0220 0.0008 0.0004 0.0009 0.0019 0.0009 0.0000 0.0000 _____ _____ _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ Composite Emission Factors (g/mi): 47.00 25.04 27.05 42.26 Composite CO : 11.93 29.94 41.61 0.00 _____ _____ _____ Veh. Type: HDDV2B HDDV3 HDDV4 HDDV5 HDDV6 HDDV7 HDDV8A HDDV8B ____ ____ ____ ____ ____ ____ ____ _ _ _ _ _ _ VMT Mix: 0.0071 0.0021 0.0019 0.0008 0.0045 0.0067 0.0083 0.0297 _____ Composite Emission Factors (q/mi): Composite CO : 0.854 1.000 1.098 1.102 1.526 1.953 3.015 4.003 _____ _____ Veh. Type: GasBUS URBAN SCHOOL ____ ____ ____

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

VMT Mix: 0.0004 0.0007 0.0010 Composite Emission Factors (q/mi): Composite CO : 88.46 4.292 2.156 _____ * NEW HAVEN COUNTY CO SEASON - RAMPS * File 8, Run 1, Scenario 5. M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh <6000 >6000 GVWR: (All) _____ _____ _____ _____ ____ ____ ____ VMT Distribution: 0.4817 0.3170 0.1082 0.0272 0.0006 0.0016 0.0629 0.0007 1.0000 _____ Composite Emission Factors (q/mi): 35.70 14.70 Composite CO : 33.73 35.52 36.22 16.43 1.363 0.940 2.867 32.067 _____ _____ Veh. Type: LDGT1 LDGT2 LDGT3 LDGT4 LDDT12 LDDT34 ____ ____ ____ ____ ____ ____

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016			
Composite Emission Fa Composite CO :	ctors (g/m 45.87	i): 32.41	38.35	31.59	3.622	0.830			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000	
Composite Emission Fa Composite CO :	ctors (g/m 11.93	i): 29.94	47.00	25.04	27.05	42.26	41.61	0.00	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297	
Composite Emission Fa Composite CO :	ctors (g/m. 0.854	i): 1.000	1.098	1.102	1.526	1.953	3.015	4.003	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa Composite CO :	ctors (g/m 88.46	ui): 4.292	2.156						
<pre>* # # # # # # # # # # # * NEW LONDON COUNTY CC * File 8, Run 1, Scena * # # # # # # # # # # M112 Warning:</pre>	# # # # # # SEASON - rio 6. # # # # # ime Reform e no sales d from fil	# # # # # # RAMPS # # # # # # ulated Gas for vehic e NLEVNE.D	# # # # # # # # # # # # oline Rule le class H	s Apply DGV8b					
Ca	Mont	h: Jan.							

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Minimum Maximum Absolu Fuel Sul	Altitud Temperatur Temperatur Ite Humidit fur Conten	e: Low e: 18.0 (e: 44.0 (y: 75.g t: 129.p	F) F) grains/lb opm							
Exhaust Evap Refor	I/M Progra I/M Progra ATP Progra mulated Ga	m: Yes m: Yes m: Yes s: Yes								
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa Composite CO :	actors (g/m 33.73	i): 35.52	36.22	35.70	16.43	1.363	0.940	2.867	14.70	32.067
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa Composite CO :	actors (g/m 45.87	i): 32.41	38.35	31.59	3.622	0.830				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000		
Composite Emission Fa Composite CO :	actors (g/m 11.93	i): 29.94	47.00	25.04	27.05	42.26	41.61	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297		
Composite Emission Fa Composite CO :	actors (g/m 0.854	i): 1.000	1.098	1.102	1.526	1.953	3.015	4.003		

TABLE 82002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type: URBAN SCHOOL GasBUS ____ ____ ____ VMT Mix: 0.0004 0.0007 0.0010 _____ _____ _____ Composite Emission Factors (g/mi): Composite CO : 88.46 4.292 2.156 * TOLLAND COUNTY CO SEASON - RAMPS * File 8, Run 1, Scenario 7. M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file NLEVNE.D Calendar Year: 2002 Month: Jan. Altitude: Low Minimum Temperature: 18.0 (F) Maximum Temperature: 44.0 (F) Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 129. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: Yes Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (All) _____ ____ ____ _ _ _ _ _ _ _ _____ _____ _ _ _ _ _ _ _ _____ _____ ____ VMT Distribution: 0.4817 0.3170 0.1082 0.0272 0.0006 0.0016 0.0629 0.0007 1.0000 _____ _____ _____ Composite Emission Factors (q/mi): Composite CO : 33.73 35.52 36.22 35.70 16.43 1.363 0.940 2.867 14.70 32.067

TABLE 82002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34			
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016			
Composite Emission Fa	.ctors (g/m	 i):							
Composite CO :	45.87	32.41	38.35	31.59	3.622	0.830			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000	
Composite Emission Fa	ctors (g/m	 i):							
Composite CO :	11.93	29.94	47.00	25.04	27.05	42.26	41.61	0.00	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297	
Composite Emission Fa Composite CO :	ctors (g/m. 0.854	1.000	1.098	1.102	1.526	1.953	3.015	4.003	
Veh. Type:	GasBUS	URBAN	SCHOOL						·
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa		 i):							
Composite CO :	88.46	4.292	2.156						
<pre>* # # # # # # # # # # * WINDHAM COUNTY CO SE * File 8, Run 1, Scena * # # # # # # # # # # M112 Warning: Wintert M 48 Warning:</pre>	# # # # # ASON - RAM rio 8. # # # # # ime Reform	# # # # # IPS # # # # # # wlated Gas	# # # # # # # # # # # # oline Rule	s Apply					
there ar	e no sales	for vehic	le class H	DGV8b					

2002 CONNECTICUT MOBILE SOURCE REPORT

Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County

(On-Road Vehicles by Road Type, County and Vehicle Type)

LEV phase-in data rea Ca Minimum Maximum Absolu Fuel Sul Exhaust Evap Refor	d from fil alendar Yea Mont Altitud Temperatur Temperatur te Humidit fur Conten I/M Progra I/M Progra ATP Progra	e NLEVNE.D r: 2002 h: Jan. le: Low re: 18.0 (re: 44.0 (ry: 75. g t: 129. p m: Yes m: Yes m: Yes s: Yes	F) F) rains/lb pm							
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.4817	0.3170	0.1082		0.0272	0.0006	0.0016	0.0629	0.0007	1.0000
Composite Emission Fa Composite CO :	actors (g/m 33.73	ui): 35.52	36.22	35.70	16.43	1.363	0.940	2.867	14.70	32.067
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0733	0.2438	0.0741	0.0341	0.0001	0.0016				
Composite Emission Fa Composite CO :	actors (g/m 45.87	ui): 32.41	38.35	31.59	3.622	0.830				
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0220	0.0008	0.0004	0.0009	0.0019	0.0009	0.0000	0.0000		
Composite Emission Fa Composite CO :	actors (g/m 11.93	ui): 29.94	47.00	25.04	27.05	42.26	41.61	0.00		
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0071	0.0021	0.0019	0.0008	0.0045	0.0067	0.0083	0.0297		

TABLE 8 2002 CONNECTICUT MOBILE SOURCE REPORT Mobile 6.2 Descriptive Output of Carbon Monoxide Emissions Factors by Road Type and County (On-Road Vehicles by Road Type, County and Vehicle Type)

Composite Emission Fa	actors (g/m	 ni):							
Composite CO :	0.854	1.000	1.098	1.102	1.526	1.953	3.015	4.003	
Veh. Type:	GasBUS	URBAN	SCHOOL						
VMT Mix:	0.0004	0.0007	0.0010						
Composite Emission Fa Composite CO :	actors (g/m 88.46	1.292	2.156						

2002 CONNECTICUT MOBILE SOURCE REPORT

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Fairfield	Freeway	Light-Duty Gasoline Vehicle	72.077	5.251	4.531
		Light-Duty Gasoline Truck 1	15.345	0.923	0.982
		Light-Duty Gasoline Truck 2	34.712	2.781	1.440
		Light-Duty Gasoline Truck 3	14.769	0.996	0.855
		Light-Duty Gasoline Truck 4	5.379	0.519	0.271
		Heavy-Duty Gasoline Vehicle 2B	3.066	1.251	0.211
		Heavy-Duty Gasoline Vehicle 3	0.294	0.053	0.014
		Heavy-Duty Gasoline Vehicle 4	0.237	0.033	0.015
		Heavy-Duty Gasoline Vehicle 5	0.263	0.066	0.017
		Heavy-Duty Gasoline Vehicle 6	0.619	0.142	0.039
		Heavy-Duty Gasoline Vehicle 7	0.451	0.076	0.026
		Heavy-Duty Gasoline Vehicle 8A	0.002	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.009	0.011	0.003
		Light-Duty Diesel Truck 1 and 2	0.002	0.002	0.001
		Heavy-Duty Diesel Vehicle 2B	0.066	0.453	0.014
		Heavy-Duty Diesel Vehicle 3	0.023	0.154	0.005
		Heavy-Duty Diesel Vehicle 4	0.023	0.163	0.005
		Heavy-Duty Diesel Vehicle 5	0.010	0.074	0.002
		Heavy-Duty Diesel Vehicle 6	0.074	0.627	0.019
		Heavy-Duty Diesel Vehicle 7	0.142	1.163	0.035
		Heavy-Duty Diesel Vehicle 8A	0.267	2.474	0.044
		Heavy-Duty Diesel Vehicle 8B	1.267	10.271	0.199
		Motorcycle	0.128	0.011	0.033
		All Gasoline Bus	0.431	0.036	0.019
		Diesel Commercial Bus	0.033	0.202	0.004
		Diesel School Bus	0.025	0.201	0.006
		Light-Duty Diesel Truck 3 and 4	0.014	0.029	0.007
		Road Type Total	149.727	27.964	8.799

Summer Daily Emissions by County (On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Fairfield	Arterial	Light-Duty Gasoline Vehicle	59.933	5.479	5.580
		Light-Duty Gasoline Truck 1	13.120	0.925	1.240
		Light-Duty Gasoline Truck 2	27.827	2.787	1.769
		Light-Duty Gasoline Truck 3	12.737	1.006	1.054
		Light-Duty Gasoline Truck 4	4.486	0.529	0.325
		Heavy-Duty Gasoline Vehicle 2B	1.202	0.356	0.116
		Heavy-Duty Gasoline Vehicle 3	0.112	0.015	0.008
		Heavy-Duty Gasoline Vehicle 4	0.091	0.009	0.008
		Heavy-Duty Gasoline Vehicle 5	0.102	0.018	0.009
		Heavy-Duty Gasoline Vehicle 6	0.245	0.041	0.021
		Heavy-Duty Gasoline Vehicle 7	0.177	0.022	0.014
		Heavy-Duty Gasoline Vehicle 8A	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.011	0.008	0.004
		Light-Duty Diesel Truck 1 and 2	0.003	0.002	0.002
		Heavy-Duty Diesel Vehicle 2B	0.030	0.108	0.008
		Heavy-Duty Diesel Vehicle 3	0.010	0.036	0.002
		Heavy-Duty Diesel Vehicle 4	0.010	0.038	0.003
		Heavy-Duty Diesel Vehicle 5	0.005	0.018	0.001
		Heavy-Duty Diesel Vehicle 6	0.034	0.143	0.010
		Heavy-Duty Diesel Vehicle 7	0.064	0.262	0.019
		Heavy-Duty Diesel Vehicle 8A	0.123	0.508	0.024
		Heavy-Duty Diesel Vehicle 8B	0.577	2.100	0.106
		Motorcycle	0.495	0.032	0.129
		All Gasoline Bus	0.170	0.010	0.011
		Diesel Commercial Bus	0.012	0.038	0.002
		Diesel School Bus	0.011	0.048	0.003
		Light-Duty Diesel Truck 3 and 4	0.018	0.021	0.010

Road Type Total

121.604

14.557 10.478

TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County

(On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Fairfield	Local	Light-Duty Gasoline Vehicle	9.201	1.086	1.526
		Light-Duty Gasoline Truck 1	2.445	0.179	0.341
		Light-Duty Gasoline Truck 2	4.527	0.534	0.492
		Light-Duty Gasoline Truck 3	2.366	0.195	0.288
		Light-Duty Gasoline Truck 4	0.780	0.103	0.089
		Heavy-Duty Gasoline Vehicle 2B	0.387	0.049	0.034
		Heavy-Duty Gasoline Vehicle 3	0.038	0.002	0.003
		Heavy-Duty Gasoline Vehicle 4	0.029	0.001	0.002
		Heavy-Duty Gasoline Vehicle 5	0.036	0.003	0.003
		Heavy-Duty Gasoline Vehicle 6	0.076	0.005	0.006
		Heavy-Duty Gasoline Vehicle 7	0.058	0.003	0.004
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.004	0.002	0.001
		Light-Duty Diesel Truck 1 and 2	0.001	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.010	0.022	0.002
		Heavy-Duty Diesel Vehicle 3	0.003	0.008	0.001
		Heavy-Duty Diesel Vehicle 4	0.003	0.008	0.001
		Heavy-Duty Diesel Vehicle 5	0.002	0.004	0.000
		Heavy-Duty Diesel Vehicle 6	0.011	0.028	0.003
		Heavy-Duty Diesel Vehicle 7	0.021	0.053	0.005
		Heavy-Duty Diesel Vehicle 8A	0.040	0.080	0.007
		Heavy-Duty Diesel Vehicle 8B	0.188	0.324	0.030
		Motorcycle	0.278	0.009	0.056
		All Gasoline Bus	0.057	0.001	0.004
		Diesel Commercial Bus	0.005	0.010	0.001
		Diesel School Bus	0.004	0.010	0.001
		Light-Duty Diesel Truck 3 and 4	0.006	0.006	0.003
		Road Type Total	20.575	2.725	2.904

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Fairfield	Ramp	Light-Duty Gasoline Vehicle	4.581	0.253	0.233
		Light-Duty Gasoline Truck 1	0.762	0.045	0.050
		Light-Duty Gasoline Truck 2	1.890	0.134	0.078
		Light-Duty Gasoline Truck 3	0.715	0.047	0.043
		Light-Duty Gasoline Truck 4	0.273	0.024	0.014
		Heavy-Duty Gasoline Vehicle 2B	0.106	0.043	0.011
		Heavy-Duty Gasoline Vehicle 3	0.010	0.002	0.001
		Heavy-Duty Gasoline Vehicle 4	0.008	0.001	0.001
		Heavy-Duty Gasoline Vehicle 5	0.009	0.002	0.001
		Heavy-Duty Gasoline Vehicle 6	0.021	0.005	0.002
		Heavy-Duty Gasoline Vehicle 7	0.016	0.003	0.001
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.000	0.000	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.003	0.012	0.001
		Heavy-Duty Diesel Vehicle 3	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 4	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 5	0.000	0.002	0.000
		Heavy-Duty Diesel Vehicle 6	0.003	0.015	0.001
		Heavy-Duty Diesel Vehicle 7	0.006	0.028	0.002
		Heavy-Duty Diesel Vehicle 8A	0.011	0.042	0.002
		Heavy-Duty Diesel Vehicle 8B	0.052	0.173	0.011
		Motorcycle	0.004	0.000	0.001
		All Gasoline Bus	0.015	0.001	0.001
		Diesel Commercial Bus	0.001	0.005	0.000
		Diesel School Bus	0.001	0.005	0.000
		Light-Duty Diesel Truck 3 and 4	0.001	0.001	0.000
		Road Type Total	8.490	0.854	0.454
		County Total	300.397	46.100	22.635

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Hartford	Freeway	Light-Duty Gasoline Vehicle	76.327	5.266	4.564
		Light-Duty Gasoline Truck 1	15.886	0.926	0.979
		Light-Duty Gasoline Truck 2	36.635	2.799	1.445
		Light-Duty Gasoline Truck 3	15.408	0.997	0.857
		Light-Duty Gasoline Truck 4	5.665	0.520	0.272
		Heavy-Duty Gasoline Vehicle 2B	3.274	1.272	0.210
		Heavy-Duty Gasoline Vehicle 3	0.319	0.054	0.014
		Heavy-Duty Gasoline Vehicle 4	0.258	0.033	0.016
		Heavy-Duty Gasoline Vehicle 5	0.284	0.067	0.017
		Heavy-Duty Gasoline Vehicle 6	0.669	0.144	0.040
		Heavy-Duty Gasoline Vehicle 7	0.490	0.077	0.026
		Heavy-Duty Gasoline Vehicle 8A	0.002	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.009	0.012	0.003
		Light-Duty Diesel Truck 1 and 2	0.002	0.002	0.001
		Heavy-Duty Diesel Vehicle 2B	0.066	0.486	0.014
		Heavy-Duty Diesel Vehicle 3	0.023	0.166	0.005
		Heavy-Duty Diesel Vehicle 4	0.023	0.175	0.005
		Heavy-Duty Diesel Vehicle 5	0.010	0.080	0.002
		Heavy-Duty Diesel Vehicle 6	0.074	0.669	0.018
		Heavy-Duty Diesel Vehicle 7	0.142	1.241	0.033
		Heavy-Duty Diesel Vehicle 8A	0.267	2.587	0.042
		Heavy-Duty Diesel Vehicle 8B	1.266	10.734	0.189
		Motorcycle	0.151	0.011	0.035
		All Gasoline Bus	0.472	0.036	0.019
		Diesel Commercial Bus	0.033	0.216	0.004
		Diesel School Bus	0.025	0.215	0.006
		Light-Duty Diesel Truck 3 and 4	0.014	0.031	0.007
		Road Type Total	157.795	28.816	8.823

Summer Daily Emissions by County (On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Hartford	Arterial	Light-Duty Gasoline Vehicle	66.718	5.892	6.043
		Light-Duty Gasoline Truck 1	14.360	0.994	1.338
		Light-Duty Gasoline Truck 2	30.932	2.997	1.906
		Light-Duty Gasoline Truck 3	14.083	1.079	1.139
		Light-Duty Gasoline Truck 4	4.998	0.568	0.351
		Heavy-Duty Gasoline Vehicle 2B	1.244	0.394	0.122
		Heavy-Duty Gasoline Vehicle 3	0.118	0.016	0.008
		Heavy-Duty Gasoline Vehicle 4	0.096	0.010	0.008
		Heavy-Duty Gasoline Vehicle 5	0.107	0.020	0.010
		Heavy-Duty Gasoline Vehicle 6	0.256	0.045	0.022
		Heavy-Duty Gasoline Vehicle 7	0.186	0.024	0.014
		Heavy-Duty Gasoline Vehicle 8A	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.011	0.009	0.004
		Light-Duty Diesel Truck 1 and 2	0.003	0.002	0.002
		Heavy-Duty Diesel Vehicle 2B	0.030	0.116	0.008
		Heavy-Duty Diesel Vehicle 3	0.010	0.038	0.003
		Heavy-Duty Diesel Vehicle 4	0.010	0.041	0.003
		Heavy-Duty Diesel Vehicle 5	0.005	0.019	0.001
		Heavy-Duty Diesel Vehicle 6	0.034	0.154	0.010
		Heavy-Duty Diesel Vehicle 7	0.064	0.282	0.019
		Heavy-Duty Diesel Vehicle 8A	0.123	0.549	0.024
		Heavy-Duty Diesel Vehicle 8B	0.577	2.269	0.108
		Motorcycle	0.525	0.034	0.140
		All Gasoline Bus	0.181	0.011	0.011
		Diesel Commercial Bus	0.012	0.041	0.002
		Diesel School Bus	0.011	0.051	0.003
		Light-Duty Diesel Truck 3 and 4	0.018	0.022	0.010
		Road Type Total	134.712	15.677	11.310

Road Type Total

134.712

TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County

(On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Hartford	Local	Light-Duty Gasoline Vehicle	8.981	1.072	1.542
		Light-Duty Gasoline Truck 1	2.376	0.174	0.345
		Light-Duty Gasoline Truck 2	4.397	0.521	0.497
		Light-Duty Gasoline Truck 3	2.331	0.189	0.290
		Light-Duty Gasoline Truck 4	0.769	0.100	0.089
		Heavy-Duty Gasoline Vehicle 2B	0.389	0.047	0.034
		Heavy-Duty Gasoline Vehicle 3	0.039	0.002	0.003
		Heavy-Duty Gasoline Vehicle 4	0.029	0.001	0.002
		Heavy-Duty Gasoline Vehicle 5	0.036	0.003	0.003
		Heavy-Duty Gasoline Vehicle 6	0.078	0.005	0.006
		Heavy-Duty Gasoline Vehicle 7	0.059	0.003	0.004
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.003	0.002	0.001
		Light-Duty Diesel Truck 1 and 2	0.001	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.009	0.021	0.002
		Heavy-Duty Diesel Vehicle 3	0.003	0.007	0.001
		Heavy-Duty Diesel Vehicle 4	0.003	0.007	0.001
		Heavy-Duty Diesel Vehicle 5	0.002	0.004	0.000
		Heavy-Duty Diesel Vehicle 6	0.010	0.027	0.003
		Heavy-Duty Diesel Vehicle 7	0.021	0.052	0.005
		Heavy-Duty Diesel Vehicle 8A	0.039	0.078	0.007
		Heavy-Duty Diesel Vehicle 8B	0.182	0.315	0.029
		Motorcycle	0.288	0.009	0.056
		All Gasoline Bus	0.059	0.001	0.004
		Diesel Commercial Bus	0.005	0.010	0.001
		Diesel School Bus	0.004	0.010	0.001
		Light-Duty Diesel Truck 3 and 4	0.006	0.005	0.003
		Road Type Total	20.119	2.667	2.929

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Hartford	Ramp	Light-Duty Gasoline Vehicle	4.937	0.266	0.251
		Light-Duty Gasoline Truck 1	0.802	0.047	0.053
		Light-Duty Gasoline Truck 2	1.998	0.141	0.084
		Light-Duty Gasoline Truck 3	0.758	0.049	0.046
		Light-Duty Gasoline Truck 4	0.290	0.026	0.015
		Heavy-Duty Gasoline Vehicle 2B	0.115	0.046	0.012
		Heavy-Duty Gasoline Vehicle 3	0.011	0.002	0.001
		Heavy-Duty Gasoline Vehicle 4	0.009	0.001	0.001
		Heavy-Duty Gasoline Vehicle 5	0.010	0.002	0.001
		Heavy-Duty Gasoline Vehicle 6	0.024	0.005	0.002
		Heavy-Duty Gasoline Vehicle 7	0.017	0.003	0.001
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.000	0.000	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.003	0.012	0.001
		Heavy-Duty Diesel Vehicle 3	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 4	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 5	0.000	0.002	0.000
		Heavy-Duty Diesel Vehicle 6	0.003	0.016	0.001
		Heavy-Duty Diesel Vehicle 7	0.006	0.030	0.002
		Heavy-Duty Diesel Vehicle 8A	0.012	0.044	0.002
		Heavy-Duty Diesel Vehicle 8B	0.055	0.182	0.011
		Motorcycle	0.005	0.000	0.001
		All Gasoline Bus	0.017	0.001	0.001
		Diesel Commercial Bus	0.001	0.006	0.000
		Diesel School Bus	0.001	0.006	0.000
		Light-Duty Diesel Truck 3 and 4	0.001	0.001	0.000
		Road Type Total	9.077	0.897	0.489
		County Total	321.703	48.057	23.551

TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County

(On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Litchfield	Freeway	Light-Duty Gasoline Vehicle	4.316	0.294	0.252
		Light-Duty Gasoline Truck 1	0.896	0.052	0.054
		Light-Duty Gasoline Truck 2	2.074	0.157	0.080
		Light-Duty Gasoline Truck 3	0.869	0.056	0.047
		Light-Duty Gasoline Truck 4	0.320	0.029	0.015
		Heavy-Duty Gasoline Vehicle 2B	0.187	0.072	0.011
		Heavy-Duty Gasoline Vehicle 3	0.018	0.003	0.001
		Heavy-Duty Gasoline Vehicle 4	0.015	0.002	0.001
		Heavy-Duty Gasoline Vehicle 5	0.016	0.004	0.001
		Heavy-Duty Gasoline Vehicle 6	0.038	0.008	0.002
		Heavy-Duty Gasoline Vehicle 7	0.028	0.004	0.001
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.001	0.001	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.004	0.028	0.001
		Heavy-Duty Diesel Vehicle 3	0.001	0.010	0.000
		Heavy-Duty Diesel Vehicle 4	0.001	0.010	0.000
		Heavy-Duty Diesel Vehicle 5	0.001	0.005	0.000
		Heavy-Duty Diesel Vehicle 6	0.004	0.039	0.001
		Heavy-Duty Diesel Vehicle 7	0.008	0.072	0.002
		Heavy-Duty Diesel Vehicle 8A	0.015	0.148	0.002
		Heavy-Duty Diesel Vehicle 8B	0.071	0.613	0.010
		Motorcycle	0.009	0.001	0.002
		All Gasoline Bus	0.027	0.002	0.001
		Diesel Commercial Bus	0.002	0.013	0.000
		Diesel School Bus	0.001	0.012	0.000
		Light-Duty Diesel Truck 3 and 4	0.001	0.002	0.000
		Road Type Total	8.923	1.633	0.487

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Litchfield	Arterial	Light-Duty Gasoline Vehicle	22.163	1.807	1.767
		Light-Duty Gasoline Truck 1	4.748	0.311	0.389
		Light-Duty Gasoline Truck 2	10.465	0.935	0.557
		Light-Duty Gasoline Truck 3	4.641	0.336	0.334
		Light-Duty Gasoline Truck 4	1.666	0.177	0.104
		Heavy-Duty Gasoline Vehicle 2B	0.329	0.132	0.032
		Heavy-Duty Gasoline Vehicle 3	0.031	0.005	0.002
		Heavy-Duty Gasoline Vehicle 4	0.025	0.003	0.002
		Heavy-Duty Gasoline Vehicle 5	0.028	0.007	0.003
		Heavy-Duty Gasoline Vehicle 6	0.068	0.015	0.006
		Heavy-Duty Gasoline Vehicle 7	0.049	0.008	0.004
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.003	0.003	0.001
		Light-Duty Diesel Truck 1 and 2	0.001	0.001	0.001
		Heavy-Duty Diesel Vehicle 2B	0.008	0.038	0.002
		Heavy-Duty Diesel Vehicle 3	0.003	0.012	0.001
		Heavy-Duty Diesel Vehicle 4	0.003	0.013	0.001
		Heavy-Duty Diesel Vehicle 5	0.001	0.006	0.000
		Heavy-Duty Diesel Vehicle 6	0.009	0.050	0.003
		Heavy-Duty Diesel Vehicle 7	0.017	0.091	0.005
		Heavy-Duty Diesel Vehicle 8A	0.032	0.177	0.006
		Heavy-Duty Diesel Vehicle 8B	0.150	0.731	0.029
		Motorcycle	0.137	0.011	0.042
		All Gasoline Bus	0.048	0.004	0.003
		Diesel Commercial Bus	0.003	0.013	0.001
		Diesel School Bus	0.003	0.017	0.001
		Light-Duty Diesel Truck 3 and 4	0.005	0.007	0.003
		Road Type Total	44.637	4.911	3.294

TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County

(On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Litchfield	Local	Light-Duty Gasoline Vehicle	3.389	0.405	0.582
		Light-Duty Gasoline Truck 1	0.896	0.066	0.130
		Light-Duty Gasoline Truck 2	1.659	0.197	0.188
		Light-Duty Gasoline Truck 3	0.879	0.071	0.110
		Light-Duty Gasoline Truck 4	0.290	0.038	0.034
		Heavy-Duty Gasoline Vehicle 2B	0.147	0.018	0.013
		Heavy-Duty Gasoline Vehicle 3	0.015	0.001	0.001
		Heavy-Duty Gasoline Vehicle 4	0.011	0.000	0.001
		Heavy-Duty Gasoline Vehicle 5	0.014	0.001	0.001
		Heavy-Duty Gasoline Vehicle 6	0.029	0.002	0.002
		Heavy-Duty Gasoline Vehicle 7	0.022	0.001	0.002
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.001	0.001	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.004	0.008	0.001
		Heavy-Duty Diesel Vehicle 3	0.001	0.003	0.000
		Heavy-Duty Diesel Vehicle 4	0.001	0.003	0.000
		Heavy-Duty Diesel Vehicle 5	0.001	0.001	0.000
		Heavy-Duty Diesel Vehicle 6	0.004	0.010	0.001
		Heavy-Duty Diesel Vehicle 7	0.008	0.019	0.002
		Heavy-Duty Diesel Vehicle 8A	0.015	0.029	0.002
		Heavy-Duty Diesel Vehicle 8B	0.069	0.119	0.011
		Motorcycle	0.109	0.003	0.021
		All Gasoline Bus	0.022	0.001	0.001
		Diesel Commercial Bus	0.002	0.004	0.000
		Diesel School Bus	0.001	0.004	0.000
		Light-Duty Diesel Truck 3 and 4	0.002	0.002	0.001
		Road Type Total	7.591	1.006	1.105

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Litchfield	Ramp	Light-Duty Gasoline Vehicle	0.247	0.013	0.013
		Light-Duty Gasoline Truck 1	0.040	0.002	0.003
		Light-Duty Gasoline Truck 2	0.100	0.007	0.004
		Light-Duty Gasoline Truck 3	0.038	0.002	0.002
		Light-Duty Gasoline Truck 4	0.015	0.001	0.001
		Heavy-Duty Gasoline Vehicle 2B	0.006	0.002	0.001
		Heavy-Duty Gasoline Vehicle 3	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 4	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 5	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 6	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 7	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.000	0.000	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 3	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 4	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 5	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 6	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 7	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 8A	0.001	0.002	0.000
		Heavy-Duty Diesel Vehicle 8B	0.003	0.009	0.001
		Motorcycle	0.000	0.000	0.000
		All Gasoline Bus	0.001	0.000	0.000
		Diesel Commercial Bus	0.000	0.000	0.000
		Diesel School Bus	0.000	0.000	0.000
		Light-Duty Diesel Truck 3 and 4	0.000	0.000	0.000
		Road Type Total	0.454	0.045	0.024
		County Total	61.605	7.595	4.911

Summer Daily Emissions by County (On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Middlesex	Freeway	Light-Duty Gasoline Vehicle	19.691	1.386	1.162
		Light-Duty Gasoline Truck 1	4.166	0.245	0.250
		Light-Duty Gasoline Truck 2	9.518	0.739	0.370
		Light-Duty Gasoline Truck 3	4.005	0.264	0.219
		Light-Duty Gasoline Truck 4	1.466	0.137	0.070
		Heavy-Duty Gasoline Vehicle 2B	0.840	0.338	0.052
		Heavy-Duty Gasoline Vehicle 3	0.081	0.014	0.004
		Heavy-Duty Gasoline Vehicle 4	0.065	0.009	0.004
		Heavy-Duty Gasoline Vehicle 5	0.072	0.018	0.004
		Heavy-Duty Gasoline Vehicle 6	0.169	0.038	0.010
		Heavy-Duty Gasoline Vehicle 7	0.124	0.021	0.006
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.002	0.003	0.001
		Light-Duty Diesel Truck 1 and 2	0.001	0.001	0.000
		Heavy-Duty Diesel Vehicle 2B	0.017	0.131	0.004
		Heavy-Duty Diesel Vehicle 3	0.006	0.045	0.001
		Heavy-Duty Diesel Vehicle 4	0.006	0.047	0.001
		Heavy-Duty Diesel Vehicle 5	0.003	0.021	0.001
		Heavy-Duty Diesel Vehicle 6	0.020	0.180	0.005
		Heavy-Duty Diesel Vehicle 7	0.037	0.333	0.009
		Heavy-Duty Diesel Vehicle 8A	0.070	0.691	0.011
		Heavy-Duty Diesel Vehicle 8B	0.333	2.867	0.049
		Motorcycle	0.039	0.003	0.009
		All Gasoline Bus	0.118	0.010	0.005
		Diesel Commercial Bus	0.009	0.058	0.001
		Diesel School Bus	0.006	0.058	0.002
		Light-Duty Diesel Truck 3 and 4	0.004	0.008	0.002
		Road Type Total	40.866	7.666	2.247

Road Type Total

7.666

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Middlesex	Arterial	Light-Duty Gasoline Vehicle	12.773	1.084	1.045
		Light-Duty Gasoline Truck 1	2.791	0.187	0.231
		Light-Duty Gasoline Truck 2	6.055	0.561	0.331
		Light-Duty Gasoline Truck 3	2.702	0.203	0.198
		Light-Duty Gasoline Truck 4	0.963	0.106	0.062
		Heavy-Duty Gasoline Vehicle 2B	0.200	0.078	0.019
		Heavy-Duty Gasoline Vehicle 3	0.019	0.003	0.001
		Heavy-Duty Gasoline Vehicle 4	0.015	0.002	0.001
		Heavy-Duty Gasoline Vehicle 5	0.017	0.004	0.002
		Heavy-Duty Gasoline Vehicle 6	0.041	0.009	0.003
		Heavy-Duty Gasoline Vehicle 7	0.029	0.005	0.002
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.002	0.002	0.001
		Light-Duty Diesel Truck 1 and 2	0.001	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.005	0.022	0.001
		Heavy-Duty Diesel Vehicle 3	0.002	0.007	0.000
		Heavy-Duty Diesel Vehicle 4	0.002	0.008	0.000
		Heavy-Duty Diesel Vehicle 5	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 6	0.006	0.030	0.002
		Heavy-Duty Diesel Vehicle 7	0.011	0.055	0.003
		Heavy-Duty Diesel Vehicle 8A	0.020	0.106	0.004
		Heavy-Duty Diesel Vehicle 8B	0.095	0.436	0.018
		Motorcycle	0.081	0.007	0.025
		All Gasoline Bus	0.028	0.002	0.002
		Diesel Commercial Bus	0.002	0.008	0.000
		Diesel School Bus	0.002	0.010	0.001
		Light-Duty Diesel Truck 3 and 4	0.003	0.004	0.002
		Road Type Total	25.864	2.942	1.954

TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County

(On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Middlesex	Local	Light-Duty Gasoline Vehicle	2.102	0.248	0.349
		Light-Duty Gasoline Truck 1	0.559	0.041	0.078
		Light-Duty Gasoline Truck 2	1.034	0.122	0.112
		Light-Duty Gasoline Truck 3	0.541	0.044	0.066
		Light-Duty Gasoline Truck 4	0.178	0.024	0.020
		Heavy-Duty Gasoline Vehicle 2B	0.088	0.011	0.008
		Heavy-Duty Gasoline Vehicle 3	0.009	0.000	0.001
		Heavy-Duty Gasoline Vehicle 4	0.007	0.000	0.001
		Heavy-Duty Gasoline Vehicle 5	0.008	0.001	0.001
		Heavy-Duty Gasoline Vehicle 6	0.017	0.001	0.001
		Heavy-Duty Gasoline Vehicle 7	0.013	0.001	0.001
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.001	0.000	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.002	0.005	0.000
		Heavy-Duty Diesel Vehicle 3	0.001	0.002	0.000
		Heavy-Duty Diesel Vehicle 4	0.001	0.002	0.000
		Heavy-Duty Diesel Vehicle 5	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 6	0.002	0.006	0.001
		Heavy-Duty Diesel Vehicle 7	0.005	0.012	0.001
		Heavy-Duty Diesel Vehicle 8A	0.009	0.018	0.002
		Heavy-Duty Diesel Vehicle 8B	0.043	0.074	0.007
		Motorcycle	0.063	0.002	0.013
		All Gasoline Bus	0.013	0.000	0.001
		Diesel Commercial Bus	0.001	0.002	0.000
		Diesel School Bus	0.001	0.002	0.000
		Light-Duty Diesel Truck 3 and 4	0.001	0.001	0.001
		Road Type Total	4.701	0.623	0.663

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Middlesex	Ramp	Light-Duty Gasoline Vehicle	0.916	0.051	0.047
		Light-Duty Gasoline Truck 1	0.152	0.009	0.010
		Light-Duty Gasoline Truck 2	0.378	0.027	0.016
		Light-Duty Gasoline Truck 3	0.143	0.009	0.009
		Light-Duty Gasoline Truck 4	0.055	0.005	0.003
		Heavy-Duty Gasoline Vehicle 2B	0.021	0.009	0.002
		Heavy-Duty Gasoline Vehicle 3	0.002	0.000	0.000
		Heavy-Duty Gasoline Vehicle 4	0.002	0.000	0.000
		Heavy-Duty Gasoline Vehicle 5	0.002	0.000	0.000
		Heavy-Duty Gasoline Vehicle 6	0.004	0.001	0.000
		Heavy-Duty Gasoline Vehicle 7	0.003	0.001	0.000
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.000	0.000	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.001	0.002	0.000
		Heavy-Duty Diesel Vehicle 3	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 4	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 5	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 6	0.001	0.003	0.000
		Heavy-Duty Diesel Vehicle 7	0.001	0.006	0.000
		Heavy-Duty Diesel Vehicle 8A	0.002	0.008	0.000
		Heavy-Duty Diesel Vehicle 8B	0.010	0.035	0.002
		Motorcycle	0.001	0.000	0.000
		All Gasoline Bus	0.003	0.000	0.000
		Diesel Commercial Bus	0.000	0.001	0.000
		Diesel School Bus	0.000	0.001	0.000
		Light-Duty Diesel Truck 3 and 4	0.000	0.000	0.000
		Road Type Total	1.697	0.171	0.091
		County Total	73.128	11.401	4.956

Summer Daily Emissions by County (On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
New Haven	Freeway	Light-Duty Gasoline Vehicle	71.246	5.107	4.349
		Light-Duty Gasoline Truck 1	15.121	0.900	0.939
		Light-Duty Gasoline Truck 2	34.370	2.713	1.382
		Light-Duty Gasoline Truck 3	14.546	0.970	0.820
		Light-Duty Gasoline Truck 4	5.311	0.506	0.261
		Heavy-Duty Gasoline Vehicle 2B	3.040	1.229	0.198
		Heavy-Duty Gasoline Vehicle 3	0.291	0.052	0.014
		Heavy-Duty Gasoline Vehicle 4	0.235	0.032	0.015
		Heavy-Duty Gasoline Vehicle 5	0.261	0.065	0.016
		Heavy-Duty Gasoline Vehicle 6	0.613	0.139	0.037
		Heavy-Duty Gasoline Vehicle 7	0.447	0.075	0.024
		Heavy-Duty Gasoline Vehicle 8A	0.002	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.009	0.011	0.003
		Light-Duty Diesel Truck 1 and 2	0.002	0.002	0.001
		Heavy-Duty Diesel Vehicle 2B	0.064	0.460	0.014
		Heavy-Duty Diesel Vehicle 3	0.022	0.157	0.005
		Heavy-Duty Diesel Vehicle 4	0.022	0.165	0.005
		Heavy-Duty Diesel Vehicle 5	0.010	0.076	0.002
		Heavy-Duty Diesel Vehicle 6	0.072	0.635	0.018
		Heavy-Duty Diesel Vehicle 7	0.138	1.177	0.033
		Heavy-Duty Diesel Vehicle 8A	0.260	2.472	0.042
		Heavy-Duty Diesel Vehicle 8B	1.232	10.261	0.187
		Motorcycle	0.133	0.011	0.032
		All Gasoline Bus	0.427	0.036	0.018
		Diesel Commercial Bus	0.032	0.205	0.004
		Diesel School Bus	0.024	0.204	0.006
		Light-Duty Diesel Truck 3 and 4	0.014	0.030	0.007
		Road Type Total	147.946	27.690	8.431

Road Type Total

147.946
TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County (On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
New Haven	Arterial	Light-Duty Gasoline Vehicle	50.589	4.512	4.507
		Light-Duty Gasoline Truck 1	11.091	0.769	1.000
		Light-Duty Gasoline Truck 2	23.714	2.311	1.427
		Light-Duty Gasoline Truck 3	10.760	0.835	0.853
		Light-Duty Gasoline Truck 4	3.805	0.439	0.264
		Heavy-Duty Gasoline Vehicle 2B	0.921	0.307	0.089
		Heavy-Duty Gasoline Vehicle 3	0.086	0.013	0.006
		Heavy-Duty Gasoline Vehicle 4	0.070	0.008	0.006
		Heavy-Duty Gasoline Vehicle 5	0.078	0.016	0.007
		Heavy-Duty Gasoline Vehicle 6	0.187	0.035	0.016
		Heavy-Duty Gasoline Vehicle 7	0.135	0.019	0.011
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.009	0.007	0.003
		Light-Duty Diesel Truck 1 and 2	0.002	0.001	0.001
		Heavy-Duty Diesel Vehicle 2B	0.023	0.090	0.006
		Heavy-Duty Diesel Vehicle 3	0.008	0.030	0.002
		Heavy-Duty Diesel Vehicle 4	0.008	0.032	0.002
		Heavy-Duty Diesel Vehicle 5	0.003	0.015	0.001
		Heavy-Duty Diesel Vehicle 6	0.026	0.119	0.008
		Heavy-Duty Diesel Vehicle 7	0.049	0.219	0.015
		Heavy-Duty Diesel Vehicle 8A	0.095	0.425	0.019
		Heavy-Duty Diesel Vehicle 8B	0.443	1.759	0.083
		Motorcycle	0.379	0.027	0.105
		All Gasoline Bus	0.130	0.009	0.008
		Diesel Commercial Bus	0.009	0.032	0.001
		Diesel School Bus	0.009	0.040	0.003
		Light-Duty Diesel Truck 3 and 4	0.014	0.017	0.008
		Road Type Total	102.644	12.086	8.450

Road Type Total

102.644

Summer Daily Emissions by County

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
New Haven	Local	Light-Duty Gasoline Vehicle	7.530	0.889	1.249
		Light-Duty Gasoline Truck 1	2.001	0.146	0.279
		Light-Duty Gasoline Truck 2	3.705	0.437	0.403
		Light-Duty Gasoline Truck 3	1.936	0.159	0.236
		Light-Duty Gasoline Truck 4	0.638	0.084	0.073
		Heavy-Duty Gasoline Vehicle 2B	0.317	0.040	0.028
		Heavy-Duty Gasoline Vehicle 3	0.031	0.002	0.002
		Heavy-Duty Gasoline Vehicle 4	0.024	0.001	0.002
		Heavy-Duty Gasoline Vehicle 5	0.029	0.002	0.002
		Heavy-Duty Gasoline Vehicle 6	0.063	0.004	0.005
		Heavy-Duty Gasoline Vehicle 7	0.047	0.002	0.003
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.003	0.002	0.001
		Light-Duty Diesel Truck 1 and 2	0.001	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.008	0.018	0.002
		Heavy-Duty Diesel Vehicle 3	0.003	0.006	0.001
		Heavy-Duty Diesel Vehicle 4	0.003	0.006	0.001
		Heavy-Duty Diesel Vehicle 5	0.001	0.003	0.000
		Heavy-Duty Diesel Vehicle 6	0.009	0.023	0.002
		Heavy-Duty Diesel Vehicle 7	0.017	0.044	0.004
		Heavy-Duty Diesel Vehicle 8A	0.033	0.065	0.006
		Heavy-Duty Diesel Vehicle 8B	0.153	0.265	0.025
		Motorcycle	0.227	0.007	0.046
		All Gasoline Bus	0.047	0.001	0.003
		Diesel Commercial Bus	0.004	0.008	0.001
		Diesel School Bus	0.003	0.008	0.001
		Light-Duty Diesel Truck 3 and 4	0.005	0.005	0.003
		Road Type Total	16.839	2.230	2.376

TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County (On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
New Haven	Ramp	Light-Duty Gasoline Vehicle	4.323	0.239	0.220
		Light-Duty Gasoline Truck 1	0.719	0.042	0.047
		Light-Duty Gasoline Truck 2	1.784	0.127	0.074
		Light-Duty Gasoline Truck 3	0.675	0.044	0.041
		Light-Duty Gasoline Truck 4	0.257	0.023	0.013
		Heavy-Duty Gasoline Vehicle 2B	0.100	0.041	0.010
		Heavy-Duty Gasoline Vehicle 3	0.010	0.002	0.001
		Heavy-Duty Gasoline Vehicle 4	0.008	0.001	0.001
		Heavy-Duty Gasoline Vehicle 5	0.009	0.002	0.001
		Heavy-Duty Gasoline Vehicle 6	0.020	0.005	0.002
		Heavy-Duty Gasoline Vehicle 7	0.015	0.003	0.001
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.000	0.000	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.003	0.011	0.001
		Heavy-Duty Diesel Vehicle 3	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 4	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 5	0.000	0.002	0.000
		Heavy-Duty Diesel Vehicle 6	0.003	0.014	0.001
		Heavy-Duty Diesel Vehicle 7	0.006	0.027	0.002
		Heavy-Duty Diesel Vehicle 8A	0.010	0.040	0.002
		Heavy-Duty Diesel Vehicle 8B	0.049	0.163	0.010
		Motorcycle	0.004	0.000	0.001
		All Gasoline Bus	0.014	0.001	0.001
		Diesel Commercial Bus	0.001	0.005	0.000
		Diesel School Bus	0.001	0.005	0.000
		Light-Duty Diesel Truck 3 and 4	0.001	0.001	0.000
		Road Type Total	8.013	0.806	0.429
		County Total	275.443	42.813	19.687

TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County (On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
New London	Freeway	Light-Duty Gasoline Vehicle	29.557	2.028	1.749
		Light-Duty Gasoline Truck 1	6.147	0.357	0.375
		Light-Duty Gasoline Truck 2	14.198	1.079	0.554
		Light-Duty Gasoline Truck 3	5.961	0.384	0.328
		Light-Duty Gasoline Truck 4	2.193	0.201	0.104
		Heavy-Duty Gasoline Vehicle 2B	1.258	0.492	0.080
		Heavy-Duty Gasoline Vehicle 3	0.123	0.021	0.005
		Heavy-Duty Gasoline Vehicle 4	0.099	0.013	0.006
		Heavy-Duty Gasoline Vehicle 5	0.109	0.026	0.007
		Heavy-Duty Gasoline Vehicle 6	0.257	0.056	0.015
		Heavy-Duty Gasoline Vehicle 7	0.188	0.030	0.010
		Heavy-Duty Gasoline Vehicle 8A	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.003	0.005	0.001
		Light-Duty Diesel Truck 1 and 2	0.001	0.001	0.001
		Heavy-Duty Diesel Vehicle 2B	0.025	0.189	0.005
		Heavy-Duty Diesel Vehicle 3	0.009	0.064	0.002
		Heavy-Duty Diesel Vehicle 4	0.009	0.068	0.002
		Heavy-Duty Diesel Vehicle 5	0.004	0.031	0.001
		Heavy-Duty Diesel Vehicle 6	0.028	0.260	0.007
		Heavy-Duty Diesel Vehicle 7	0.054	0.482	0.013
		Heavy-Duty Diesel Vehicle 8A	0.102	1.002	0.016
		Heavy-Duty Diesel Vehicle 8B	0.484	4.159	0.072
		Motorcycle	0.059	0.004	0.013
		All Gasoline Bus	0.181	0.014	0.007
		Diesel Commercial Bus	0.012	0.084	0.002
		Diesel School Bus	0.009	0.084	0.002
		Light-Duty Diesel Truck 3 and 4	0.005	0.012	0.003
		Road Type Total	61.078	11.146	3.378

Road Type Total

TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County (On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
New London	Arterial	Light-Duty Gasoline Vehicle	28.696	2.478	2.507
		Light-Duty Gasoline Truck 1	6.171	0.420	0.554
		Light-Duty Gasoline Truck 2	13.380	1.266	0.790
		Light-Duty Gasoline Truck 3	6.046	0.456	0.473
		Light-Duty Gasoline Truck 4	2.153	0.240	0.146
		Heavy-Duty Gasoline Vehicle 2B	0.501	0.170	0.049
		Heavy-Duty Gasoline Vehicle 3	0.047	0.007	0.003
		Heavy-Duty Gasoline Vehicle 4	0.039	0.004	0.003
		Heavy-Duty Gasoline Vehicle 5	0.043	0.009	0.004
		Heavy-Duty Gasoline Vehicle 6	0.103	0.019	0.009
		Heavy-Duty Gasoline Vehicle 7	0.075	0.010	0.006
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.005	0.004	0.002
		Light-Duty Diesel Truck 1 and 2	0.001	0.001	0.001
		Heavy-Duty Diesel Vehicle 2B	0.012	0.050	0.003
		Heavy-Duty Diesel Vehicle 3	0.004	0.016	0.001
		Heavy-Duty Diesel Vehicle 4	0.004	0.017	0.001
		Heavy-Duty Diesel Vehicle 5	0.002	0.008	0.000
		Heavy-Duty Diesel Vehicle 6	0.014	0.066	0.004
		Heavy-Duty Diesel Vehicle 7	0.026	0.120	0.008
		Heavy-Duty Diesel Vehicle 8A	0.049	0.234	0.010
		Heavy-Duty Diesel Vehicle 8B	0.231	0.966	0.044
		Motorcycle	0.211	0.015	0.058
		All Gasoline Bus	0.073	0.005	0.005
		Diesel Commercial Bus	0.005	0.018	0.001
		Diesel School Bus	0.005	0.022	0.001
		Light-Duty Diesel Truck 3 and 4	0.007	0.010	0.004
		Road Type Total	57.902	6.630	4.688

Road Type Total

6.630

4.688

Summer Daily Emissions by County

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
New London	Local	Light-Duty Gasoline Vehicle	3.258	0.389	0.559
		Light-Duty Gasoline Truck 1	0.862	0.063	0.125
		Light-Duty Gasoline Truck 2	1.595	0.189	0.180
		Light-Duty Gasoline Truck 3	0.846	0.069	0.105
		Light-Duty Gasoline Truck 4	0.279	0.036	0.032
		Heavy-Duty Gasoline Vehicle 2B	0.141	0.017	0.012
		Heavy-Duty Gasoline Vehicle 3	0.014	0.001	0.001
		Heavy-Duty Gasoline Vehicle 4	0.011	0.000	0.001
		Heavy-Duty Gasoline Vehicle 5	0.013	0.001	0.001
		Heavy-Duty Gasoline Vehicle 6	0.028	0.002	0.002
		Heavy-Duty Gasoline Vehicle 7	0.021	0.001	0.002
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.001	0.001	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.003	0.008	0.001
		Heavy-Duty Diesel Vehicle 3	0.001	0.003	0.000
		Heavy-Duty Diesel Vehicle 4	0.001	0.003	0.000
		Heavy-Duty Diesel Vehicle 5	0.001	0.001	0.000
		Heavy-Duty Diesel Vehicle 6	0.004	0.010	0.001
		Heavy-Duty Diesel Vehicle 7	0.007	0.019	0.002
		Heavy-Duty Diesel Vehicle 8A	0.014	0.028	0.002
		Heavy-Duty Diesel Vehicle 8B	0.066	0.114	0.011
		Motorcycle	0.104	0.003	0.020
		All Gasoline Bus	0.021	0.001	0.001
		Diesel Commercial Bus	0.002	0.004	0.000
		Diesel School Bus	0.001	0.004	0.000
		Light-Duty Diesel Truck 3 and 4	0.002	0.002	0.001
		Road Type Total	7.298	0.968	1.063

TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County (On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
New London	Ramp	Light-Duty Gasoline Vehicle	1.329	0.072	0.068
		Light-Duty Gasoline Truck 1	0.216	0.013	0.014
		Light-Duty Gasoline Truck 2	0.538	0.038	0.023
		Light-Duty Gasoline Truck 3	0.204	0.013	0.012
		Light-Duty Gasoline Truck 4	0.078	0.007	0.004
		Heavy-Duty Gasoline Vehicle 2B	0.031	0.012	0.003
		Heavy-Duty Gasoline Vehicle 3	0.003	0.001	0.000
		Heavy-Duty Gasoline Vehicle 4	0.002	0.000	0.000
		Heavy-Duty Gasoline Vehicle 5	0.003	0.001	0.000
		Heavy-Duty Gasoline Vehicle 6	0.006	0.001	0.001
		Heavy-Duty Gasoline Vehicle 7	0.005	0.001	0.000
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.000	0.000	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.001	0.003	0.000
		Heavy-Duty Diesel Vehicle 3	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 4	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 5	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 6	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 7	0.002	0.008	0.001
		Heavy-Duty Diesel Vehicle 8A	0.003	0.012	0.001
		Heavy-Duty Diesel Vehicle 8B	0.015	0.049	0.003
		Motorcycle	0.001	0.000	0.000
		All Gasoline Bus	0.004	0.000	0.000
		Diesel Commercial Bus	0.000	0.001	0.000
		Diesel School Bus	0.000	0.001	0.000
		Light-Duty Diesel Truck 3 and 4	0.000	0.000	0.000
		Road Type Total	2.442	0.241	0.132
		County Total	128.721	18.985	9.260

Summer Daily Emissions by County

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Tolland	Freeway	Light-Duty Gasoline Vehicle	14.691	1.003	0.862
		Light-Duty Gasoline Truck 1	3.054	0.177	0.184
		Light-Duty Gasoline Truck 2	7.060	0.534	0.273
		Light-Duty Gasoline Truck 3	2.961	0.190	0.162
		Light-Duty Gasoline Truck 4	1.090	0.099	0.052
		Heavy-Duty Gasoline Vehicle 2B	0.635	0.244	0.039
		Heavy-Duty Gasoline Vehicle 3	0.062	0.010	0.003
		Heavy-Duty Gasoline Vehicle 4	0.050	0.006	0.003
		Heavy-Duty Gasoline Vehicle 5	0.055	0.013	0.003
		Heavy-Duty Gasoline Vehicle 6	0.130	0.028	0.007
		Heavy-Duty Gasoline Vehicle 7	0.095	0.015	0.005
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.002	0.002	0.001
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.013	0.096	0.003
		Heavy-Duty Diesel Vehicle 3	0.004	0.033	0.001
		Heavy-Duty Diesel Vehicle 4	0.004	0.034	0.001
		Heavy-Duty Diesel Vehicle 5	0.002	0.016	0.000
		Heavy-Duty Diesel Vehicle 6	0.014	0.131	0.003
		Heavy-Duty Diesel Vehicle 7	0.027	0.244	0.006
		Heavy-Duty Diesel Vehicle 8A	0.051	0.503	0.008
		Heavy-Duty Diesel Vehicle 8B	0.242	2.089	0.035
		Motorcycle	0.031	0.002	0.007
		All Gasoline Bus	0.092	0.007	0.003
		Diesel Commercial Bus	0.006	0.043	0.001
		Diesel School Bus	0.005	0.042	0.001
		Light-Duty Diesel Truck 3 and 4	0.003	0.006	0.001
		Road Type Total	30.380	5.568	1.664

Summer Daily Emissions by County

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Tolland	Arterial	Light-Duty Gasoline Vehicle	15.727	1.297	1.270
		Light-Duty Gasoline Truck 1	3.379	0.223	0.280
		Light-Duty Gasoline Truck 2	7.424	0.670	0.400
		Light-Duty Gasoline Truck 3	3.305	0.241	0.240
		Light-Duty Gasoline Truck 4	1.185	0.127	0.075
		Heavy-Duty Gasoline Vehicle 2B	0.238	0.094	0.023
		Heavy-Duty Gasoline Vehicle 3	0.023	0.004	0.002
		Heavy-Duty Gasoline Vehicle 4	0.018	0.002	0.002
		Heavy-Duty Gasoline Vehicle 5	0.020	0.005	0.002
		Heavy-Duty Gasoline Vehicle 6	0.049	0.011	0.004
		Heavy-Duty Gasoline Vehicle 7	0.036	0.006	0.003
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.002	0.002	0.001
		Light-Duty Diesel Truck 1 and 2	0.001	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.006	0.027	0.002
		Heavy-Duty Diesel Vehicle 3	0.002	0.009	0.000
		Heavy-Duty Diesel Vehicle 4	0.002	0.009	0.001
		Heavy-Duty Diesel Vehicle 5	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 6	0.006	0.036	0.002
		Heavy-Duty Diesel Vehicle 7	0.012	0.066	0.004
		Heavy-Duty Diesel Vehicle 8A	0.023	0.127	0.005
		Heavy-Duty Diesel Vehicle 8B	0.109	0.525	0.021
		Motorcycle	0.099	0.008	0.030
		All Gasoline Bus	0.034	0.003	0.002
		Diesel Commercial Bus	0.002	0.010	0.000
		Diesel School Bus	0.002	0.012	0.001
		Light-Duty Diesel Truck 3 and 4	0.004	0.005	0.002
		Road Type Total	31.710	3.523	2.369

Summer Daily Emissions by County

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Tolland	Local	Light-Duty Gasoline Vehicle	1.999	0.239	0.343
		Light-Duty Gasoline Truck 1	0.529	0.039	0.077
		Light-Duty Gasoline Truck 2	0.979	0.116	0.111
		Light-Duty Gasoline Truck 3	0.519	0.042	0.065
		Light-Duty Gasoline Truck 4	0.171	0.022	0.020
		Heavy-Duty Gasoline Vehicle 2B	0.087	0.011	0.008
		Heavy-Duty Gasoline Vehicle 3	0.009	0.000	0.001
		Heavy-Duty Gasoline Vehicle 4	0.007	0.000	0.001
		Heavy-Duty Gasoline Vehicle 5	0.008	0.001	0.001
		Heavy-Duty Gasoline Vehicle 6	0.017	0.001	0.001
		Heavy-Duty Gasoline Vehicle 7	0.013	0.001	0.001
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.001	0.000	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.002	0.005	0.000
		Heavy-Duty Diesel Vehicle 3	0.001	0.002	0.000
		Heavy-Duty Diesel Vehicle 4	0.001	0.002	0.000
		Heavy-Duty Diesel Vehicle 5	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 6	0.002	0.006	0.001
		Heavy-Duty Diesel Vehicle 7	0.005	0.012	0.001
		Heavy-Duty Diesel Vehicle 8A	0.009	0.017	0.001
		Heavy-Duty Diesel Vehicle 8B	0.041	0.070	0.006
		Motorcycle	0.064	0.002	0.012
		All Gasoline Bus	0.013	0.000	0.001
		Diesel Commercial Bus	0.001	0.002	0.000
		Diesel School Bus	0.001	0.002	0.000
		Light-Duty Diesel Truck 3 and 4	0.001	0.001	0.001
		Road Type Total	4.479	0.594	0.652

TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County (On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Tolland	Ramp	Light-Duty Gasoline Vehicle	0.425	0.023	0.022
		Light-Duty Gasoline Truck 1	0.069	0.004	0.005
		Light-Duty Gasoline Truck 2	0.172	0.012	0.007
		Light-Duty Gasoline Truck 3	0.065	0.004	0.004
		Light-Duty Gasoline Truck 4	0.025	0.002	0.001
		Heavy-Duty Gasoline Vehicle 2B	0.010	0.004	0.001
		Heavy-Duty Gasoline Vehicle 3	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 4	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 5	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 6	0.002	0.000	0.000
		Heavy-Duty Gasoline Vehicle 7	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.000	0.000	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 3	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 4	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 5	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 6	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 7	0.001	0.003	0.000
		Heavy-Duty Diesel Vehicle 8A	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 8B	0.005	0.016	0.001
		Motorcycle	0.000	0.000	0.000
		All Gasoline Bus	0.001	0.000	0.000
		Diesel Commercial Bus	0.000	0.000	0.000
		Diesel School Bus	0.000	0.000	0.000
		Light-Duty Diesel Truck 3 and 4	0.000	0.000	0.000
		Road Type Total	0.781	0.077	0.042
		County Total	67.349	9.762	4.728

Summer Daily Emissions by County

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Windham	Freeway	Light-Duty Gasoline Vehicle	6.933	0.472	0.405
		Light-Duty Gasoline Truck 1	1.440	0.083	0.087
		Light-Duty Gasoline Truck 2	3.332	0.252	0.128
		Light-Duty Gasoline Truck 3	1.396	0.090	0.076
		Light-Duty Gasoline Truck 4	0.514	0.047	0.024
		Heavy-Duty Gasoline Vehicle 2B	0.300	0.115	0.018
		Heavy-Duty Gasoline Vehicle 3	0.029	0.005	0.001
		Heavy-Duty Gasoline Vehicle 4	0.024	0.003	0.001
		Heavy-Duty Gasoline Vehicle 5	0.026	0.006	0.002
		Heavy-Duty Gasoline Vehicle 6	0.061	0.013	0.003
		Heavy-Duty Gasoline Vehicle 7	0.045	0.007	0.002
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.001	0.001	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.006	0.045	0.001
		Heavy-Duty Diesel Vehicle 3	0.002	0.015	0.000
		Heavy-Duty Diesel Vehicle 4	0.002	0.016	0.000
		Heavy-Duty Diesel Vehicle 5	0.001	0.007	0.000
		Heavy-Duty Diesel Vehicle 6	0.007	0.062	0.002
		Heavy-Duty Diesel Vehicle 7	0.013	0.115	0.003
		Heavy-Duty Diesel Vehicle 8A	0.024	0.237	0.004
		Heavy-Duty Diesel Vehicle 8B	0.114	0.984	0.017
		Motorcycle	0.015	0.001	0.003
		All Gasoline Bus	0.043	0.003	0.002
		Diesel Commercial Bus	0.003	0.020	0.000
		Diesel School Bus	0.002	0.020	0.001
		Light-Duty Diesel Truck 3 and 4	0.001	0.003	0.001
		Road Type Total	14.333	2.623	0.782

Summer Daily Emissions by County

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Windham	Arterial	Light-Duty Gasoline Vehicle	14.315	1.162	1.131
		Light-Duty Gasoline Truck 1	3.070	0.200	0.249
		Light-Duty Gasoline Truck 2	6.775	0.602	0.356
		Light-Duty Gasoline Truck 3	3.000	0.217	0.214
		Light-Duty Gasoline Truck 4	1.078	0.114	0.066
		Heavy-Duty Gasoline Vehicle 2B	0.207	0.086	0.020
		Heavy-Duty Gasoline Vehicle 3	0.020	0.004	0.001
		Heavy-Duty Gasoline Vehicle 4	0.016	0.002	0.001
		Heavy-Duty Gasoline Vehicle 5	0.018	0.004	0.002
		Heavy-Duty Gasoline Vehicle 6	0.043	0.010	0.004
		Heavy-Duty Gasoline Vehicle 7	0.031	0.005	0.002
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.002	0.002	0.001
		Light-Duty Diesel Truck 1 and 2	0.001	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.005	0.024	0.001
		Heavy-Duty Diesel Vehicle 3	0.002	0.008	0.000
		Heavy-Duty Diesel Vehicle 4	0.002	0.009	0.000
		Heavy-Duty Diesel Vehicle 5	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 6	0.006	0.032	0.002
		Heavy-Duty Diesel Vehicle 7	0.011	0.059	0.003
		Heavy-Duty Diesel Vehicle 8A	0.020	0.114	0.004
		Heavy-Duty Diesel Vehicle 8B	0.095	0.472	0.018
		Motorcycle	0.086	0.007	0.027
		All Gasoline Bus	0.030	0.002	0.002
		Diesel Commercial Bus	0.002	0.009	0.000
		Diesel School Bus	0.002	0.011	0.001
		Light-Duty Diesel Truck 3 and 4	0.003	0.005	0.002
		Road Type Total	28.839	3.164	2.108

Summer Daily Emissions by County

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Windham	Local	Light-Duty Gasoline Vehicle	1.374	0.164	0.236
		Light-Duty Gasoline Truck 1	0.363	0.027	0.053
		Light-Duty Gasoline Truck 2	0.673	0.080	0.076
		Light-Duty Gasoline Truck 3	0.357	0.029	0.044
		Light-Duty Gasoline Truck 4	0.118	0.015	0.014
		Heavy-Duty Gasoline Vehicle 2B	0.059	0.007	0.005
		Heavy-Duty Gasoline Vehicle 3	0.006	0.000	0.000
		Heavy-Duty Gasoline Vehicle 4	0.005	0.000	0.000
		Heavy-Duty Gasoline Vehicle 5	0.006	0.000	0.000
		Heavy-Duty Gasoline Vehicle 6	0.012	0.001	0.001
		Heavy-Duty Gasoline Vehicle 7	0.009	0.000	0.001
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.001	0.000	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.001	0.003	0.000
		Heavy-Duty Diesel Vehicle 3	0.001	0.001	0.000
		Heavy-Duty Diesel Vehicle 4	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 5	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 6	0.002	0.004	0.000
		Heavy-Duty Diesel Vehicle 7	0.003	0.008	0.001
		Heavy-Duty Diesel Vehicle 8A	0.006	0.012	0.001
		Heavy-Duty Diesel Vehicle 8B	0.028	0.048	0.004
		Motorcycle	0.044	0.001	0.008
		All Gasoline Bus	0.009	0.000	0.001
		Diesel Commercial Bus	0.001	0.002	0.000
		Diesel School Bus	0.001	0.002	0.000
		Light-Duty Diesel Truck 3 and 4	0.001	0.001	0.001
		Road Type Total	3.077	0.408	0.448

TABLE 9 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by County (On-Road Vehicles by County, Road Type and Vehicle Type)

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Windham	Ramp	Light-Duty Gasoline Vehicle	0.442	0.024	0.022
		Light-Duty Gasoline Truck 1	0.072	0.004	0.005
		Light-Duty Gasoline Truck 2	0.179	0.013	0.008
		Light-Duty Gasoline Truck 3	0.068	0.004	0.004
		Light-Duty Gasoline Truck 4	0.026	0.002	0.001
		Heavy-Duty Gasoline Vehicle 2B	0.010	0.004	0.001
		Heavy-Duty Gasoline Vehicle 3	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 4	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 5	0.001	0.000	0.000
		Heavy-Duty Gasoline Vehicle 6	0.002	0.000	0.000
		Heavy-Duty Gasoline Vehicle 7	0.002	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
		Light-Duty Diesel Vehicle	0.000	0.000	0.000
		Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 2B	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 3	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 4	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 5	0.000	0.000	0.000
		Heavy-Duty Diesel Vehicle 6	0.000	0.001	0.000
		Heavy-Duty Diesel Vehicle 7	0.001	0.003	0.000
		Heavy-Duty Diesel Vehicle 8A	0.001	0.004	0.000
		Heavy-Duty Diesel Vehicle 8B	0.005	0.016	0.001
		Motorcycle	0.000	0.000	0.000
		All Gasoline Bus	0.001	0.000	0.000
		Diesel Commercial Bus	0.000	0.000	0.000
		Diesel School Bus	0.000	0.000	0.000
		Light-Duty Diesel Truck 3 and 4	0.000	0.000	0.000
		Road Type Total	0.812	0.080	0.044
		County Total	47.061	6.276	3.382
		State Total	1,275.408	190.989	93.110

TABLE 10 2002 CONNECTICUT MOBILE SOURCE REPORT

State Summer Daily Emissions

(On-Road Vehicles by Road Type and Vehicle Type)

Road Type	Vahiela Class	CO	NOx (tons/day)	VOC
Road Type	Venicie Class	(tons/day)	(tons/uay)	(tons/uay)
Freeway	Light-Duty Gasoline Vehicle	294.839	20.807	17.873
	Light-Duty Gasoline Truck 1	62.055	3.662	3.849
	Light-Duty Gasoline Truck 2	141.898	11.054	5.671
	Light-Duty Gasoline Truck 3	59.914	3.947	3.364
	Light-Duty Gasoline Truck 4	21.938	2.058	1.069
	Heavy-Duty Gasoline Vehicle 2B	12.600	5.013	0.820
	Heavy-Duty Gasoline Vehicle 3	1.218	0.212	0.056
	Heavy-Duty Gasoline Vehicle 4	0.983	0.130	0.061
	Heavy-Duty Gasoline Vehicle 5	1.087	0.263	0.068
	Heavy-Duty Gasoline Vehicle 6	2.556	0.567	0.153
	Heavy-Duty Gasoline Vehicle 7	1.869	0.305	0.100
	Heavy-Duty Gasoline Vehicle 8A	0.006	0.001	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.036	0.046	0.013
	Light-Duty Diesel Truck 1 and 2	0.010	0.010	0.005
	Heavy-Duty Diesel Vehicle 2B	0.260	1.886	0.055
	Heavy-Duty Diesel Vehicle 3	0.091	0.644	0.018
	Heavy-Duty Diesel Vehicle 4	0.091	0.679	0.019
	Heavy-Duty Diesel Vehicle 5	0.040	0.310	0.009
	Heavy-Duty Diesel Vehicle 6	0.294	2.603	0.071
	Heavy-Duty Diesel Vehicle 7	0.561	4.827	0.134
	Heavy-Duty Diesel Vehicle 8A	1.056	10.114	0.169
	Heavy-Duty Diesel Vehicle 8B	5.008	41.979	0.757
	Motorcycle	0.563	0.045	0.134
	All Gasoline Bus	1.791	0.144	0.072
	Diesel Commercial Bus	0.129	0.841	0.017
	Diesel School Bus	0.097	0.836	0.024
	Light-Duty Diesel Truck 3 and 4	0.057	0.121	0.028
	Road Type Total	611.048	113.105	34.611

Road Type Total

TABLE 10 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT State Summer Daily Emissions

		СО	NOx	VOC
Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Arterial	Light-Duty Gasoline Vehicle	270.914	23.712	23.850
	Light-Duty Gasoline Truck 1	58.731	4.029	5.280
	Light-Duty Gasoline Truck 2	126.570	12.129	7.535
	Light-Duty Gasoline Truck 3	57.275	4.372	4.504
	Light-Duty Gasoline Truck 4	20.333	2.298	1.393
	Heavy-Duty Gasoline Vehicle 2B	4.843	1.617	0.468
	Heavy-Duty Gasoline Vehicle 3	0.455	0.066	0.032
	Heavy-Duty Gasoline Vehicle 4	0.370	0.041	0.032
	Heavy-Duty Gasoline Vehicle 5	0.413	0.084	0.037
	Heavy-Duty Gasoline Vehicle 6	0.991	0.184	0.085
	Heavy-Duty Gasoline Vehicle 7	0.718	0.098	0.056
	Heavy-Duty Gasoline Vehicle 8A	0.002	0.000	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.045	0.035	0.018
	Light-Duty Diesel Truck 1 and 2	0.011	0.007	0.007
	Heavy-Duty Diesel Vehicle 2B	0.118	0.476	0.031
	Heavy-Duty Diesel Vehicle 3	0.040	0.157	0.010
	Heavy-Duty Diesel Vehicle 4	0.040	0.167	0.011
	Heavy-Duty Diesel Vehicle 5	0.018	0.077	0.005
	Heavy-Duty Diesel Vehicle 6	0.135	0.629	0.040
	Heavy-Duty Diesel Vehicle 7	0.254	1.155	0.075
	Heavy-Duty Diesel Vehicle 8A	0.486	2.239	0.096
	Heavy-Duty Diesel Vehicle 8B	2.277	9.259	0.426
	Motorcycle	2.012	0.142	0.556
	All Gasoline Bus	0.694	0.046	0.044
	Diesel Commercial Bus	0.047	0.169	0.008
	Diesel School Bus	0.044	0.210	0.014
	Light-Duty Diesel Truck 3 and 4	0.072	0.092	0.041
	Road Type Total	547.912	63.490	44.653

TABLE 10 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT State Summer Daily Emissions

		СО	NOx	VOC
Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Local	Light-Duty Gasoline Vehicle	37.832	4.492	6.386
	Light-Duty Gasoline Truck 1	10.031	0.734	1.428
	Light-Duty Gasoline Truck 2	18.569	2.196	2.060
	Light-Duty Gasoline Truck 3	9.774	0.799	1.203
	Light-Duty Gasoline Truck 4	3.222	0.423	0.370
	Heavy-Duty Gasoline Vehicle 2B	1.616	0.200	0.143
	Heavy-Duty Gasoline Vehicle 3	0.159	0.009	0.011
	Heavy-Duty Gasoline Vehicle 4	0.121	0.005	0.009
	Heavy-Duty Gasoline Vehicle 5	0.151	0.011	0.012
	Heavy-Duty Gasoline Vehicle 6	0.321	0.022	0.025
	Heavy-Duty Gasoline Vehicle 7	0.244	0.012	0.018
	Heavy-Duty Gasoline Vehicle 8A	0.001	0.000	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.015	0.009	0.005
	Light-Duty Diesel Truck 1 and 2	0.003	0.002	0.002
	Heavy-Duty Diesel Vehicle 2B	0.040	0.090	0.009
	Heavy-Duty Diesel Vehicle 3	0.014	0.031	0.003
	Heavy-Duty Diesel Vehicle 4	0.013	0.031	0.003
	Heavy-Duty Diesel Vehicle 5	0.007	0.016	0.002
	Heavy-Duty Diesel Vehicle 6	0.044	0.113	0.011
	Heavy-Duty Diesel Vehicle 7	0.087	0.218	0.022
	Heavy-Duty Diesel Vehicle 8A	0.165	0.327	0.028
	Heavy-Duty Diesel Vehicle 8B	0.769	1.330	0.123
	Motorcycle	1.177	0.037	0.232
	All Gasoline Bus	0.242	0.006	0.015
	Diesel Commercial Bus	0.021	0.042	0.003
	Diesel School Bus	0.016	0.042	0.004
	Light-Duty Diesel Truck 3 and 4	0.027	0.023	0.014
	Road Type Total	84.680	11.221	12.141

TABLE 10 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT State Summer Daily Emissions

		CO	NOx	VOC
Road Type	Vehicle Class	(tons/day)	(tons/day)	(tons/day)
Ramp	Light-Duty Gasoline Vehicle	17.199	0.941	0.874
	Light-Duty Gasoline Truck 1	2.831	0.165	0.186
	Light-Duty Gasoline Truck 2	7.037	0.499	0.294
	Light-Duty Gasoline Truck 3	2.666	0.175	0.161
	Light-Duty Gasoline Truck 4	1.018	0.091	0.052
	Heavy-Duty Gasoline Vehicle 2B	0.400	0.161	0.040
	Heavy-Duty Gasoline Vehicle 3	0.039	0.007	0.003
	Heavy-Duty Gasoline Vehicle 4	0.031	0.004	0.003
	Heavy-Duty Gasoline Vehicle 5	0.034	0.008	0.003
	Heavy-Duty Gasoline Vehicle 6	0.081	0.018	0.007
	Heavy-Duty Gasoline Vehicle 7	0.059	0.010	0.005
	Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.001	0.001	0.001
	Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
	Heavy-Duty Diesel Vehicle 2B	0.010	0.044	0.003
	Heavy-Duty Diesel Vehicle 3	0.004	0.015	0.001
	Heavy-Duty Diesel Vehicle 4	0.004	0.016	0.001
	Heavy-Duty Diesel Vehicle 5	0.002	0.007	0.000
	Heavy-Duty Diesel Vehicle 6	0.011	0.057	0.004
	Heavy-Duty Diesel Vehicle 7	0.022	0.106	0.007
	Heavy-Duty Diesel Vehicle 8A	0.041	0.156	0.009
	Heavy-Duty Diesel Vehicle 8B	0.194	0.643	0.039
	Motorcycle	0.016	0.001	0.005
	All Gasoline Bus	0.057	0.005	0.004
	Diesel Commercial Bus	0.005	0.020	0.001
	Diesel School Bus	0.004	0.020	0.001
	Light-Duty Diesel Truck 3 and 4	0.002	0.003	0.001
	Road Type Total	31.768	3.173	1.705
	State Total	1,275.408	190.989	93.110

TABLE 11

2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by 8-Hour Ozone Status Area (On-Road Vehicles by 8-Hour Status Area, Road Type and Vehicle Type)

Road Type	Vehicle Class	CO (tons/day)	NOx (tons/day)	VOC (tons/day)
Freeway	Light-Duty Gasoline Vehicle	163.014	11.744	10.041
	Light-Duty Gasoline Truck 1	34.632	2.068	2.170
	Light-Duty Gasoline Truck 2	78.599	6.233	3.192
	Light-Duty Gasoline Truck 3	33.319	2.230	1.894
	Light-Duty Gasoline Truck 4	12.155	1.162	0.602
	Heavy-Duty Gasoline Vehicle 2B	6.946	2.819	0.461
	Heavy-Duty Gasoline Vehicle 3	0.666	0.120	0.032
	Heavy-Duty Gasoline Vehicle 4	0.538	0.074	0.034
	Heavy-Duty Gasoline Vehicle 5	0.597	0.148	0.038
	Heavy-Duty Gasoline Vehicle 6	1.402	0.319	0.086
	Heavy-Duty Gasoline Vehicle 7	1.022	0.172	0.056
	Heavy-Duty Gasoline Vehicle 8A	0.004	0.001	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.020	0.026	0.007
	Light-Duty Diesel Truck 1 and 2	0.005	0.005	0.003
	Heavy-Duty Diesel Vehicle 2B	0.147	1.043	0.032
	Heavy-Duty Diesel Vehicle 3	0.051	0.356	0.011
	Heavy-Duty Diesel Vehicle 4	0.051	0.375	0.011
	Heavy-Duty Diesel Vehicle 5	0.023	0.172	0.005
	Heavy-Duty Diesel Vehicle 6	0.166	1.442	0.041
	Heavy-Duty Diesel Vehicle 7	0.317	2.674	0.077
	Heavy-Duty Diesel Vehicle 8A	0.597	5.637	0.097
	Heavy-Duty Diesel Vehicle 8B	2.831	23.399	0.435
	Motorcycle	0.299	0.026	0.074
	All Gasoline Bus	0.976	0.082	0.041
	Diesel Commercial Bus	0.073	0.465	0.010
	Diesel School Bus	0.055	0.462	0.014
	Light-Duty Diesel Truck 3 and 4	0.032	0.067	0.016
	Road Type Total	338.539	63.320	19.477

Summer Daily Emissions by 8-Hour Ozone Status Area

(On-Road Vehicles by 8-Hour Status Area, Road Type and Vehicle Type)

Road Type	Vehicle Class	CO (tons/day)	NOx (tons/day)	VOC (tons/day)
Arterial	Light-Duty Casoline Vehicle	123 205	11.075	11 132
Aiteriai	Light-Duty Gasoline Truck 1	27.002	1.881	2.471
	Light-Duty Gasoline Truck 2	57.596	5.659	3.526
	Light-Duty Gasoline Truck 3	26.199	2.043	2.105
	Light-Duty Gasoline Truck 4	9.254	1.073	0.651
	Heavy-Duty Gasoline Vehicle 2B	2.323	0.741	0.223
	Heavy-Duty Gasoline Vehicle 3	0.216	0.030	0.015
	Heavy-Duty Gasoline Vehicle 4	0.176	0.019	0.015
	Heavy-Duty Gasoline Vehicle 5	0.197	0.038	0.018
	Heavy-Duty Gasoline Vehicle 6	0.473	0.084	0.041
	Heavy-Duty Gasoline Vehicle 7	0.341	0.045	0.026
	Heavy-Duty Gasoline Vehicle 8A	0.001	0.000	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.021	0.016	0.008
	Light-Duty Diesel Truck 1 and 2	0.005	0.003	0.003
	Heavy-Duty Diesel Vehicle 2B	0.058	0.221	0.015
	Heavy-Duty Diesel Vehicle 3	0.020	0.073	0.005
	Heavy-Duty Diesel Vehicle 4	0.020	0.077	0.005
	Heavy-Duty Diesel Vehicle 5	0.009	0.036	0.002
	Heavy-Duty Diesel Vehicle 6	0.066	0.292	0.020
	Heavy-Duty Diesel Vehicle 7	0.124	0.536	0.036
	Heavy-Duty Diesel Vehicle 8A	0.238	1.039	0.047
	Heavy-Duty Diesel Vehicle 8B	1.115	4.296	0.207
	Motorcycle	0.955	0.066	0.259
	All Gasoline Bus	0.329	0.021	0.021
	Diesel Commercial Bus	0.023	0.079	0.004
	Diesel School Bus	0.022	0.098	0.007
	Light-Duty Diesel Truck 3 and 4	0.035	0.043	0.020
	Road Type Total	250.112	29.584	20.883

Summer Daily Emissions by 8-Hour Ozone Status Area

(On-Road Vehicles by 8-Hour Status Area, Road Type and Vehicle Type)

Road Type	Vehicle Class	CO (tons/day)	NOx (tons/day)	VOC (tons/day)
Local		(10113/4443)	(tons, aug)	(tolls/ duj)
Lucai	Light-Duty Gasoline Venicle	5.005	2.223	3.124 0.698
	Light-Duty Gasoline Truck 2	9.267	1.093	1.008
	Light-Duty Gasoline Truck 3	4.843	0.399	0.589
	Light-Duty Gasoline Truck 4	1.596	0.211	0.181
	Heavy-Duty Gasoline Vehicle 2B	0.793	0.100	0.070
	Heavy-Duty Gasoline Vehicle 3	0.077	0.004	0.005
	Heavy-Duty Gasoline Vehicle 4	0.059	0.003	0.005
	Heavy-Duty Gasoline Vehicle 5	0.074	0.006	0.006
	Heavy-Duty Gasoline Vehicle 6	0.156	0.011	0.012
	Heavy-Duty Gasoline Vehicle 7	0.119	0.006	0.009
	Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.007	0.004	0.003
	Light-Duty Diesel Truck 1 and 2	0.002	0.001	0.001
	Heavy-Duty Diesel Vehicle 2B	0.020	0.045	0.004
	Heavy-Duty Diesel Vehicle 3	0.007	0.016	0.002
	Heavy-Duty Diesel Vehicle 4	0.007	0.015	0.002
	Heavy-Duty Diesel Vehicle 5	0.003	0.008	0.001
	Heavy-Duty Diesel Vehicle 6	0.022	0.056	0.006
	Heavy-Duty Diesel Vehicle 7	0.044	0.109	0.011
	Heavy-Duty Diesel Vehicle 8A	0.082	0.163	0.014
	Heavy-Duty Diesel Vehicle 8B	0.384	0.664	0.061
	Motorcycle	0.569	0.019	0.114
	All Gasoline Bus	0.117	0.003	0.008
	Diesel Commercial Bus	0.010	0.021	0.001
	Diesel School Bus	0.008	0.021	0.002
	Light-Duty Diesel Truck 3 and 4	0.013	0.011	0.007
	Road Type Total	42.116	5.578	5.943

Summer Daily Emissions by 8-Hour Ozone Status Area

(On-Road Vehicles by 8-Hour Status Area, Road Type and Vehicle Type)

Road Type	Vehicle Class	CO	NOx (tons/day)	VOC
Road Type	venicie class	(tons/uay)	(tons/day)	(tons/day)
Ramp	Light-Duty Gasoline Vehicle	9.820	0.543	0.499
		1.055	0.095	0.100
	Light Duty Caseline Truck 2	4.031	0.200	0.100
	Light Duty Gasoline Truck 3	1.533	0.101	0.092
	Light-Duty Gasoline Truck 4	0.585	0.052	0.030
	Heavy-Duty Gasoline Vehicle 2B	0.228	0.093	0.023
	Heavy-Duty Gasoline Vehicle 3	0.022	0.004	0.002
	Heavy-Duty Gasoline Vehicle 4	0.018	0.002	0.002
	Heavy-Duty Gasoline Vehicle 5	0.020	0.005	0.002
	Heavy-Duty Gasoline Vehicle 6	0.046	0.011	0.004
	Heavy-Duty Gasoline Vehicle 7	0.034	0.006	0.003
	Heavy-Duty Gasoline Vehicle 8A	0.000	0.000	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.001	0.001	0.000
	Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
	Heavy-Duty Diesel Vehicle 2B	0.006	0.025	0.002
	Heavy-Duty Diesel Vehicle 3	0.002	0.009	0.001
	Heavy-Duty Diesel Vehicle 4	0.002	0.009	0.001
	Heavy-Duty Diesel Vehicle 5	0.001	0.004	0.000
	Heavy-Duty Diesel Vehicle 6	0.007	0.033	0.002
	Heavy-Duty Diesel Vehicle 7	0.013	0.061	0.004
	Heavy-Duty Diesel Vehicle 8A	0.024	0.090	0.005
	Heavy-Duty Diesel Vehicle 8B	0.112	0.371	0.023
	Motorcycle	0.009	0.001	0.003
	All Gasoline Bus	0.032	0.003	0.002
	Diesel Commercial Bus	0.003	0.011	0.001
	Diesel School Bus	0.002	0.011	0.001
	Light-Duty Diesel Truck 3 and 4	0.001	0.002	0.001
	Road Type Total	18.201	1.832	0.974
	Status Area Total	648.968	100.313	47.278

TABLE 11 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by 8-Hour Ozone Status Area (On-Road Vehicles by 8-Hour Status Area, Road Type and Vehicle Type)

Greater Connecticut Area

Road Type	Vehicle Class	CO (tons/day)	NOx (tons/dav)	VOC (tons/dav)
Eroowoy	Light Duty Capalina Vahiala	121.924	0.062	7 000
Гісемау	Light-Duty Gasoline Truck 1	27 424	9.063 1.594	7.032 1.678
	Light-Duty Gasoline Truck 2	63,299	4.821	2.479
	Light-Duty Gasoline Truck 3	26 594	1 717	1 470
	Light-Duty Gasoline Truck 4	9 782	0.896	0 468
	Heavy-Duty Gasoline Vehicle 2B	5 654	2 194	0.359
	Heavy-Duty Gasoline Vehicle 3	0.552	0.093	0.025
	Heavy-Duty Gasoline Vehicle 4	0.446	0.057	0.027
	Heavy-Duty Gasoline Vehicle 5	0 490	0 115	0.030
	Heavy-Duty Gasoline Vehicle 6	1 154	0.110	0.068
	Heavy-Duty Gasoline Vehicle 7	0.847	0.133	0.044
	Heavy-Duty Gasoline Vehicle 8A	0.003	0.001	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.016	0.021	0.005
	Light-Duty Diesel Truck 1 and 2	0.004	0.004	0.002
	Heavy-Duty Diesel Vehicle 2B	0.113	0.843	0.023
	Heavy-Duty Diesel Vehicle 3	0.040	0.288	0.008
	Heavy-Duty Diesel Vehicle 4	0.040	0.303	0.008
	Heavy-Duty Diesel Vehicle 5	0.017	0.139	0.004
	Heavy-Duty Diesel Vehicle 6	0.128	1,161	0.030
	Heavy-Duty Diesel Vehicle 7	0.244	2,153	0.057
	Heavy-Duty Diesel Vehicle 8A	0.459	4.477	0.072
	Heavy-Duty Diesel Vehicle 8B	2.177	18.580	0.323
	Motorcycle	0.264	0.020	0.060
	All Gasoline Bus	0.815	0.062	0.032
	Diesel Commercial Bus	0.056	0.376	0.007
	Diesel School Bus	0.042	0.374	0.010
	Light-Duty Diesel Truck 3 and 4	0.025	0.054	0.012
	Road Type Total	272.509	49.786	15.134

Road Type Total

49.786

TABLE 11 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Summer Daily Emissions by 8-Hour Ozone Status Area (On-Road Vehicles by 8-Hour Status Area, Road Type and Vehicle Type)

Greater Connecticut Area

Road Type	Vehicle Class	CO (tons/day)	NOx (tons/day)	VOC (tons/day)
Arterial	Light-Duty Gasoline Vehicle	147.619	12.637	12.718
	Light-Duty Gasoline Truck 1	31.729	2.148	2.809
	Light-Duty Gasoline Truck 2	68.975	6.470	4.009
	Light-Duty Gasoline Truck 3	31.075	2.329	2.399
	Light-Duty Gasoline Truck 4	11.080	1.224	0.742
	Heavy-Duty Gasoline Vehicle 2B	2.520	0.876	0.245
	Heavy-Duty Gasoline Vehicle 3	0.238	0.036	0.017
	Heavy-Duty Gasoline Vehicle 4	0.194	0.022	0.017
	Heavy-Duty Gasoline Vehicle 5	0.216	0.045	0.019
	Heavy-Duty Gasoline Vehicle 6	0.519	0.099	0.045
	Heavy-Duty Gasoline Vehicle 7	0.377	0.053	0.029
	Heavy-Duty Gasoline Vehicle 8A	0.001	0.000	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.023	0.019	0.009
	Light-Duty Diesel Truck 1 and 2	0.006	0.004	0.004
	Heavy-Duty Diesel Vehicle 2B	0.060	0.255	0.016
	Heavy-Duty Diesel Vehicle 3	0.020	0.084	0.005
	Heavy-Duty Diesel Vehicle 4	0.021	0.089	0.005
	Heavy-Duty Diesel Vehicle 5	0.009	0.041	0.002
	Heavy-Duty Diesel Vehicle 6	0.069	0.337	0.021
	Heavy-Duty Diesel Vehicle 7	0.130	0.619	0.039
	Heavy-Duty Diesel Vehicle 8A	0.248	1.200	0.050
	Heavy-Duty Diesel Vehicle 8B	1.163	4.964	0.219
	Motorcycle	1.058	0.076	0.297
	All Gasoline Bus	0.365	0.025	0.023
	Diesel Commercial Bus	0.024	0.091	0.004
	Diesel School Bus	0.023	0.113	0.007
	Light-Duty Diesel Truck 3 and 4	0.038	0.049	0.022
	Road Type Total	297.800	33.906	23.770

Road Type Total

33.906

Summer Daily Emissions by 8-Hour Ozone Status Area (On-Road Vehicles by 8-Hour Status Area, Road Type and Vehicle Type)

Greater Connecticut Area

Road Type	Vehicle Class	CO (tons/day)	NOx (tons/day)	VOC (tons/day)
Local	Light-Duty Gasoline Vehicle	19.000	2,269	3.262
	Light-Duty Gasoline Truck 1	5.026	0.368	0.729
	Light-Duty Gasoline Truck 2	9.303	1.103	1.052
	Light-Duty Gasoline Truck 3	4.931	0.401	0.614
	Light-Duty Gasoline Truck 4	1.626	0.213	0.189
	Heavy-Duty Gasoline Vehicle 2B	0.823	0.100	0.073
	Heavy-Duty Gasoline Vehicle 3	0.082	0.004	0.006
	Heavy-Duty Gasoline Vehicle 4	0.062	0.002	0.005
	Heavy-Duty Gasoline Vehicle 5	0.077	0.006	0.006
	Heavy-Duty Gasoline Vehicle 6	0.164	0.011	0.013
	Heavy-Duty Gasoline Vehicle 7	0.125	0.006	0.009
	Heavy-Duty Gasoline Vehicle 8A	0.001	0.000	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.007	0.004	0.003
	Light-Duty Diesel Truck 1 and 2	0.002	0.001	0.001
	Heavy-Duty Diesel Vehicle 2B	0.020	0.045	0.004
	Heavy-Duty Diesel Vehicle 3	0.007	0.016	0.002
	Heavy-Duty Diesel Vehicle 4	0.007	0.016	0.002
	Heavy-Duty Diesel Vehicle 5	0.003	0.008	0.001
	Heavy-Duty Diesel Vehicle 6	0.022	0.056	0.006
	Heavy-Duty Diesel Vehicle 7	0.044	0.109	0.011
	Heavy-Duty Diesel Vehicle 8A	0.083	0.164	0.014
	Heavy-Duty Diesel Vehicle 8B	0.385	0.666	0.062
	Motorcycle	0.609	0.018	0.118
	All Gasoline Bus	0.125	0.003	0.008
	Diesel Commercial Bus	0.010	0.021	0.001
	Diesel School Bus	0.008	0.021	0.002
	Light-Duty Diesel Truck 3 and 4	0.013	0.011	0.007
	Road Type Total	42.565	5.643	6.197

Summer Daily Emissions by 8-Hour Ozone Status Area (On-Road Vehicles by 8-Hour Status Area, Road Type and Vehicle Type)

Greater Connecticut Area

Road Type	Vehicle Class	CO (tons/day)	NOx (tons/day)	VOC (tons/day)
Down		(tons, ady)	(tons, aug)	0.075
катр	Light-Duty Gasoline Venicle	7.379 1.198	0.398	0.375
	Light-Duty Gasoline Truck 2	2 986	0.211	0 126
	Light-Duty Gasoline Truck 3	1 133	0.074	0.069
	Light-Duty Gasoline Truck 4	0 433	0.038	0.022
	Heavy-Duty Gasoline Vehicle 2B	0.172	0.068	0.018
	Heavy-Duty Gasoline Vehicle 3	0.017	0.003	0.001
	Heavy-Duty Gasoline Vehicle 4	0.014	0.002	0.001
	Heavy-Duty Gasoline Vehicle 5	0.015	0.004	0.001
	Heavy-Duty Gasoline Vehicle 6	0.035	0.008	0.003
	Heavy-Duty Gasoline Vehicle 7	0.026	0.000	0.002
	Heavy-Duty Gasoline Vehicle 8A	0.020	0.000	0.000
	Heavy-Duty Gasoline Vehicle 8B	0.000	0.000	0.000
	Light-Duty Diesel Vehicle	0.001	0.000	0.000
	Light-Duty Diesel Truck 1 and 2	0.000	0.000	0.000
	Heavy-Duty Diesel Vehicle 2B	0.004	0.019	0.001
	Heavy-Duty Diesel Vehicle 3	0.001	0.006	0.000
	Heavy-Duty Diesel Vehicle 4	0.001	0.007	0.000
	Heavy-Duty Diesel Vehicle 5	0.001	0.003	0.000
	Heavy-Duty Diesel Vehicle 6	0.005	0.024	0.002
	Heavy-Duty Diesel Vehicle 7	0.009	0.045	0.003
	Heavy-Duty Diesel Vehicle 8A	0.017	0.066	0.004
	Heavy-Duty Diesel Vehicle 8B	0.082	0.271	0.017
	Motorcycle	0.007	0.001	0.002
	All Gasoline Bus	0.025	0.002	0.002
	Diesel Commercial Bus	0.002	0.008	0.000
	Diesel School Bus	0.002	0.008	0.001
	Light-Duty Diesel Truck 3 and 4	0.001	0.001	0.001
	Road Type Total	13.567	1.341	0.731
	Status Area Total	626.440	90.676	45.832
	State Total	1,275.408	190.989	93.110

TABLE 122002 CONNECTICUT MOBILE SOURCE REPORT

Daily Winter CO Emissions by CO Status Area (On-Road Vehicles by County, Road Type and Vehicle

			Winter CO	
County	Road Type	Vehicle Class	(tons/day)	
Fairfield	Freeway	Light-Duty Gasoline Vehicle	98.512	
		Light-Duty Gasoline Truck 1	23.693	
		Light-Duty Gasoline Truck 2	48.428	
		Light-Duty Gasoline Truck 3	19.911	
		Light-Duty Gasoline Truck 4	7.056	
		Heavy-Duty Gasoline Vehicle 2B	2.923	
		Heavy-Duty Gasoline Vehicle 3	0.261	
		Heavy-Duty Gasoline Vehicle 4	0.213	
		Heavy-Duty Gasoline Vehicle 5	0.245	
		Heavy-Duty Gasoline Vehicle 6	0.569	
		Heavy-Duty Gasoline Vehicle 7	0.405	
		Heavy-Duty Gasoline Vehicle 8A	0.001	
		Heavy-Duty Gasoline Vehicle 8B	0.000	
		Light-Duty Diesel Vehicle	0.008	
		Light-Duty Diesel Truck 1 and 2	0.002	
		Heavy-Duty Diesel Vehicle 2B	0.058	
		Heavy-Duty Diesel Vehicle 3	0.020	
		Heavy-Duty Diesel Vehicle 4	0.020	
		Heavy-Duty Diesel Vehicle 5	0.009	
		Heavy-Duty Diesel Vehicle 6	0.066	
		Heavy-Duty Diesel Vehicle 7	0.127	
		Heavy-Duty Diesel Vehicle 8A	0.241	
		Heavy-Duty Diesel Vehicle 8B	1.147	
		Motorcycle	0.113	
		All Gasoline Bus	0.357	
		Diesel Commercial Bus	0.029	
		Diesel School Bus	0.022	
		Light-Duty Diesel Truck 3 and 4	0.013	
		Road Type Total	204.450	

TABLE 12 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT Daily Winter CO Emissions by CO Status Area

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Fairfield	Arterial	Light-Duty Gasoline Vehicle	94.710
		Light-Duty Gasoline Truck 1	23.024
		Light-Duty Gasoline Truck 2	46.178
		Light-Duty Gasoline Truck 3	19.277
		Light-Duty Gasoline Truck 4	6.745
		Heavy-Duty Gasoline Vehicle 2B	1.184
		Heavy-Duty Gasoline Vehicle 3	0.102
		Heavy-Duty Gasoline Vehicle 4	0.084
		Heavy-Duty Gasoline Vehicle 5	0.098
		Heavy-Duty Gasoline Vehicle 6	0.232
		Heavy-Duty Gasoline Vehicle 7	0.163
		Heavy-Duty Gasoline Vehicle 8A	0.001
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.010
		Light-Duty Diesel Truck 1 and 2	0.003
		Heavy-Duty Diesel Vehicle 2B	0.028
		Heavy-Duty Diesel Vehicle 3	0.009
		Heavy-Duty Diesel Vehicle 4	0.009
		Heavy-Duty Diesel Vehicle 5	0.004
		Heavy-Duty Diesel Vehicle 6	0.032
		Heavy-Duty Diesel Vehicle 7	0.060
		Heavy-Duty Diesel Vehicle 8A	0.116
		Heavy-Duty Diesel Vehicle 8B	0.546
		Motorcycle	0.443
		All Gasoline Bus	0.144
		Diesel Commercial Bus	0.011
		Diesel School Bus	0.010
		Light-Duty Diesel Truck 3 and 4	0.016
		Road Type Total	193.239

TABLE 12 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT Daily Winter CO Emissions by CO Status Area

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Fairfield	Local	Light-Duty Gasoline Vehicle	17.827
		Light-Duty Gasoline Truck 1	4.502
		Light-Duty Gasoline Truck 2	8.573
		Light-Duty Gasoline Truck 3	3.710
		Light-Duty Gasoline Truck 4	1.258
		Heavy-Duty Gasoline Vehicle 2B	0.387
		Heavy-Duty Gasoline Vehicle 3	0.035
		Heavy-Duty Gasoline Vehicle 4	0.027
		Heavy-Duty Gasoline Vehicle 5	0.035
		Heavy-Duty Gasoline Vehicle 6	0.074
		Heavy-Duty Gasoline Vehicle 7	0.055
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.003
		Light-Duty Diesel Truck 1 and 2	0.001
		Heavy-Duty Diesel Vehicle 2B	0.009
		Heavy-Duty Diesel Vehicle 3	0.003
		Heavy-Duty Diesel Vehicle 4	0.003
		Heavy-Duty Diesel Vehicle 5	0.001
		Heavy-Duty Diesel Vehicle 6	0.010
		Heavy-Duty Diesel Vehicle 7	0.020
		Heavy-Duty Diesel Vehicle 8A	0.038
		Heavy-Duty Diesel Vehicle 8B	0.178
		Motorcycle	0.242
		All Gasoline Bus	0.049
		Diesel Commercial Bus	0.005
		Diesel School Bus	0.004
		Light-Duty Diesel Truck 3 and 4	0.006
		Road Type Total	37.055

TABLE 12 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT Daily Winter CO Emissions by CO Status Area

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Fairfield	Ramp	Light-Duty Gasoline Vehicle	5.768
		Light-Duty Gasoline Truck 1	1.188
		Light-Duty Gasoline Truck 2	2.798
		Light-Duty Gasoline Truck 3	1.013
		Light-Duty Gasoline Truck 4	0.384
		Heavy-Duty Gasoline Vehicle 2B	0.101
		Heavy-Duty Gasoline Vehicle 3	0.009
		Heavy-Duty Gasoline Vehicle 4	0.007
		Heavy-Duty Gasoline Vehicle 5	0.008
		Heavy-Duty Gasoline Vehicle 6	0.020
		Heavy-Duty Gasoline Vehicle 7	0.014
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.000
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.002
		Heavy-Duty Diesel Vehicle 3	0.001
		Heavy-Duty Diesel Vehicle 4	0.001
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.003
		Heavy-Duty Diesel Vehicle 7	0.005
		Heavy-Duty Diesel Vehicle 8A	0.010
		Heavy-Duty Diesel Vehicle 8B	0.047
		Motorcycle	0.004
		All Gasoline Bus	0.012
		Diesel Commercial Bus	0.001
		Diesel School Bus	0.001
		Light-Duty Diesel Truck 3 and 4	0.001
		Road Type Total	11.399
		CO Status Area Total	446.144

TABLE 12 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT Daily Winter CO Emissions by CO Status Area

			Winter CO	
County	Road Type	Vehicle Class	(tons/day)	
Hartford	Freeway	Light-Duty Gasoline Vehicle	114.032	
		Light-Duty Gasoline Truck 1	27.204	
		Light-Duty Gasoline Truck 2	56.010	
		Light-Duty Gasoline Truck 3	22.702	
		Light-Duty Gasoline Truck 4	8.057	
		Heavy-Duty Gasoline Vehicle 2B	3.123	
		Heavy-Duty Gasoline Vehicle 3	0.279	
		Heavy-Duty Gasoline Vehicle 4	0.227	
		Heavy-Duty Gasoline Vehicle 5	0.262	
		Heavy-Duty Gasoline Vehicle 6	0.608	
		Heavy-Duty Gasoline Vehicle 7	0.433	
		Heavy-Duty Gasoline Vehicle 8A	0.001	
		Heavy-Duty Gasoline Vehicle 8B	0.000	
		Light-Duty Diesel Vehicle	0.008	
		Light-Duty Diesel Truck 1 and 2	0.002	
		Heavy-Duty Diesel Vehicle 2B	0.059	
		Heavy-Duty Diesel Vehicle 3	0.020	
		Heavy-Duty Diesel Vehicle 4	0.020	
		Heavy-Duty Diesel Vehicle 5	0.009	
		Heavy-Duty Diesel Vehicle 6	0.066	
		Heavy-Duty Diesel Vehicle 7	0.127	
		Heavy-Duty Diesel Vehicle 8A	0.241	
		Heavy-Duty Diesel Vehicle 8B	1.148	
		Motorcycle	0.133	
		All Gasoline Bus	0.381	
		Diesel Commercial Bus	0.029	
		Diesel School Bus	0.022	
		Light-Duty Diesel Truck 3 and 4	0.013	
		Road Type Total	235.216	

TABLE 12 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT Daily Winter CO Emissions by CO Status Area

			Winter CO	
County	Road Type	Vehicle Class	(tons/day)	
Hartford	Arterial	Light-Duty Gasoline Vehicle	118.573	
		Light-Duty Gasoline Truck 1	28.533	
		Light-Duty Gasoline Truck 2	57.727	
		Light-Duty Gasoline Truck 3	23.679	
		Light-Duty Gasoline Truck 4	8.299	
		Heavy-Duty Gasoline Vehicle 2B	1.224	
		Heavy-Duty Gasoline Vehicle 3	0.105	
		Heavy-Duty Gasoline Vehicle 4	0.086	
		Heavy-Duty Gasoline Vehicle 5	0.102	
		Heavy-Duty Gasoline Vehicle 6	0.240	
		Heavy-Duty Gasoline Vehicle 7	0.169	
		Heavy-Duty Gasoline Vehicle 8A	0.001	
		Heavy-Duty Gasoline Vehicle 8B	0.000	
		Light-Duty Diesel Vehicle	0.010	
		Light-Duty Diesel Truck 1 and 2	0.003	
		Heavy-Duty Diesel Vehicle 2B	0.028	
		Heavy-Duty Diesel Vehicle 3	0.009	
		Heavy-Duty Diesel Vehicle 4	0.009	
		Heavy-Duty Diesel Vehicle 5	0.004	
		Heavy-Duty Diesel Vehicle 6	0.032	
		Heavy-Duty Diesel Vehicle 7	0.060	
		Heavy-Duty Diesel Vehicle 8A	0.117	
		Heavy-Duty Diesel Vehicle 8B	0.548	
		Motorcycle	0.486	
		All Gasoline Bus	0.149	
		Diesel Commercial Bus	0.011	
		Diesel School Bus	0.010	
		Light-Duty Diesel Truck 3 and 4	0.017	
		Road Type Total	240.231	

TABLE 12 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT Daily Winter CO Emissions by CO Status Area

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Hartford	Local	Light-Duty Gasoline Vehicle	20.122
		Light-Duty Gasoline Truck 1	5.011
		Light-Duty Gasoline Truck 2	9.647
		Light-Duty Gasoline Truck 3	4.095
		Light-Duty Gasoline Truck 4	1.392
		Heavy-Duty Gasoline Vehicle 2B	0.388
		Heavy-Duty Gasoline Vehicle 3	0.035
		Heavy-Duty Gasoline Vehicle 4	0.027
		Heavy-Duty Gasoline Vehicle 5	0.035
		Heavy-Duty Gasoline Vehicle 6	0.074
		Heavy-Duty Gasoline Vehicle 7	0.055
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.003
		Light-Duty Diesel Truck 1 and 2	0.001
		Heavy-Duty Diesel Vehicle 2B	0.009
		Heavy-Duty Diesel Vehicle 3	0.003
		Heavy-Duty Diesel Vehicle 4	0.003
		Heavy-Duty Diesel Vehicle 5	0.001
		Heavy-Duty Diesel Vehicle 6	0.010
		Heavy-Duty Diesel Vehicle 7	0.019
		Heavy-Duty Diesel Vehicle 8A	0.037
		Heavy-Duty Diesel Vehicle 8B	0.173
		Motorcycle	0.248
		All Gasoline Bus	0.050
		Diesel Commercial Bus	0.005
		Diesel School Bus	0.003
		Light-Duty Diesel Truck 3 and 4	0.006
		Road Type Total	41.453

TABLE 12 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT Daily Winter CO Emissions by CO Status Area

County	Road Type	Vehicle Class	Winter CO (tons/day)
Hartford	Ramp	Light-Duty Gasoline Vehicle	6.794
		Light-Duty Gasoline Truck 1	1.405
		Light-Duty Gasoline Truck 2	3.304
		Light-Duty Gasoline Truck 3	1.189
		Light-Duty Gasoline Truck 4	0.450
		Heavy-Duty Gasoline Vehicle 2B	0.110
		Heavy-Duty Gasoline Vehicle 3	0.010
		Heavy-Duty Gasoline Vehicle 4	0.008
		Heavy-Duty Gasoline Vehicle 5	0.009
		Heavy-Duty Gasoline Vehicle 6	0.021
		Heavy-Duty Gasoline Vehicle 7	0.015
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.000
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.003
		Heavy-Duty Diesel Vehicle 3	0.001
		Heavy-Duty Diesel Vehicle 4	0.001
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.003
		Heavy-Duty Diesel Vehicle 7	0.006
		Heavy-Duty Diesel Vehicle 8A	0.010
		Heavy-Duty Diesel Vehicle 8B	0.050
		Motorcycle	0.004
		All Gasoline Bus	0.013
		Diesel Commercial Bus	0.001
		Diesel School Bus	0.001
		Light-Duty Diesel Truck 3 and 4	0.001
		Road Type Total	13.409
		CO Status Area Total	530.309

TABLE 12 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT Daily Winter CO Emissions by CO Status Area

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Litchfield	Freeway	Light-Duty Gasoline Vehicle	6.297
		Light-Duty Gasoline Truck 1	1.501
		Light-Duty Gasoline Truck 2	3.094
		Light-Duty Gasoline Truck 3	1.253
		Light-Duty Gasoline Truck 4	0.445
		Heavy-Duty Gasoline Vehicle 2B	0.175
		Heavy-Duty Gasoline Vehicle 3	0.016
		Heavy-Duty Gasoline Vehicle 4	0.013
		Heavy-Duty Gasoline Vehicle 5	0.015
		Heavy-Duty Gasoline Vehicle 6	0.034
		Heavy-Duty Gasoline Vehicle 7	0.024
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.000
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.003
		Heavy-Duty Diesel Vehicle 3	0.001
		Heavy-Duty Diesel Vehicle 4	0.001
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.004
		Heavy-Duty Diesel Vehicle 7	0.007
		Heavy-Duty Diesel Vehicle 8A	0.013
		Heavy-Duty Diesel Vehicle 8B	0.063
		Motorcycle	0.008
		All Gasoline Bus	0.021
		Diesel Commercial Bus	0.002
		Diesel School Bus	0.001
		Light-Duty Diesel Truck 3 and 4	0.001
		Road Type Total	12.994
			Winter CO
------------	-----------	---------------------------------	------------
County	Road Type	Vehicle Class	(tons/day)
Litchfield	Arterial	Light-Duty Gasoline Vehicle	36.687
		Light-Duty Gasoline Truck 1	8.807
		Light-Duty Gasoline Truck 2	17.907
		Light-Duty Gasoline Truck 3	7.312
		Light-Duty Gasoline Truck 4	2.571
		Heavy-Duty Gasoline Vehicle 2B	0.313
		Heavy-Duty Gasoline Vehicle 3	0.027
		Heavy-Duty Gasoline Vehicle 4	0.022
		Heavy-Duty Gasoline Vehicle 5	0.026
		Heavy-Duty Gasoline Vehicle 6	0.061
		Heavy-Duty Gasoline Vehicle 7	0.043
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.003
		Light-Duty Diesel Truck 1 and 2	0.001
		Heavy-Duty Diesel Vehicle 2B	0.007
		Heavy-Duty Diesel Vehicle 3	0.002
		Heavy-Duty Diesel Vehicle 4	0.002
		Heavy-Duty Diesel Vehicle 5	0.001
		Heavy-Duty Diesel Vehicle 6	0.008
		Heavy-Duty Diesel Vehicle 7	0.015
		Heavy-Duty Diesel Vehicle 8A	0.029
		Heavy-Duty Diesel Vehicle 8B	0.137
		Motorcycle	0.127
		All Gasoline Bus	0.038
		Diesel Commercial Bus	0.003
		Diesel School Bus	0.003
		Light-Duty Diesel Truck 3 and 4	0.004
		Road Type Total	74.158

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Litchfield	Local	Light-Duty Gasoline Vehicle	7.266
		Light-Duty Gasoline Truck 1	1.809
		Light-Duty Gasoline Truck 2	3.483
		Light-Duty Gasoline Truck 3	1.479
		Light-Duty Gasoline Truck 4	0.503
		Heavy-Duty Gasoline Vehicle 2B	0.140
		Heavy-Duty Gasoline Vehicle 3	0.013
		Heavy-Duty Gasoline Vehicle 4	0.010
		Heavy-Duty Gasoline Vehicle 5	0.013
		Heavy-Duty Gasoline Vehicle 6	0.027
		Heavy-Duty Gasoline Vehicle 7	0.020
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.001
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.003
		Heavy-Duty Diesel Vehicle 3	0.001
		Heavy-Duty Diesel Vehicle 4	0.001
		Heavy-Duty Diesel Vehicle 5	0.001
		Heavy-Duty Diesel Vehicle 6	0.004
		Heavy-Duty Diesel Vehicle 7	0.007
		Heavy-Duty Diesel Vehicle 8A	0.013
		Heavy-Duty Diesel Vehicle 8B	0.062
		Motorcycle	0.090
		All Gasoline Bus	0.018
		Diesel Commercial Bus	0.002
		Diesel School Bus	0.001
		Light-Duty Diesel Truck 3 and 4	0.002
		Road Type Total	14.969

(On-Road Vehicles by County, Road Type and Vehicle

County	Road Type	Vehicle Class	Winter CO (tons/day)
Litchfield	Ramp	Light-Duty Gasoline Vehicle	0.335
	•	Light-Duty Gasoline Truck 1	0.069
		Light-Duty Gasoline Truck 2	0.163
		Light-Duty Gasoline Truck 3	0.059
		Light-Duty Gasoline Truck 4	0.022
		Heavy-Duty Gasoline Vehicle 2B	0.005
		Heavy-Duty Gasoline Vehicle 3	0.000
		Heavy-Duty Gasoline Vehicle 4	0.000
		Heavy-Duty Gasoline Vehicle 5	0.000
		Heavy-Duty Gasoline Vehicle 6	0.001
		Heavy-Duty Gasoline Vehicle 7	0.001
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.000
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.000
		Heavy-Duty Diesel Vehicle 3	0.000
		Heavy-Duty Diesel Vehicle 4	0.000
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.000
		Heavy-Duty Diesel Vehicle 7	0.000
		Heavy-Duty Diesel Vehicle 8A	0.001
		Heavy-Duty Diesel Vehicle 8B	0.002
		Motorcycle	0.000
		All Gasoline Bus	0.001
		Diesel Commercial Bus	0.000
		Diesel School Bus	0.000
		Light-Duty Diesel Truck 3 and 4	0.000
		Road Type Total	0.661
		CO Status Area Total	102.781

CO Status Area Total

			Winter CO	
County	Road Type	Vehicle Class	(tons/day)	
Middlesex	Freeway	Light-Duty Gasoline Vehicle	29.772	
		Light-Duty Gasoline Truck 1	7.100	
		Light-Duty Gasoline Truck 2	14.627	
		Light-Duty Gasoline Truck 3	5.926	
		Light-Duty Gasoline Truck 4	2.104	
		Heavy-Duty Gasoline Vehicle 2B	0.818	
		Heavy-Duty Gasoline Vehicle 3	0.073	
		Heavy-Duty Gasoline Vehicle 4	0.059	
		Heavy-Duty Gasoline Vehicle 5	0.069	
		Heavy-Duty Gasoline Vehicle 6	0.159	
		Heavy-Duty Gasoline Vehicle 7	0.114	
		Heavy-Duty Gasoline Vehicle 8A	0.000	
		Heavy-Duty Gasoline Vehicle 8B	0.000	
		Light-Duty Diesel Vehicle	0.002	
		Light-Duty Diesel Truck 1 and 2	0.001	
		Heavy-Duty Diesel Vehicle 2B	0.015	
		Heavy-Duty Diesel Vehicle 3	0.005	
		Heavy-Duty Diesel Vehicle 4	0.005	
		Heavy-Duty Diesel Vehicle 5	0.002	
		Heavy-Duty Diesel Vehicle 6	0.017	
		Heavy-Duty Diesel Vehicle 7	0.033	
		Heavy-Duty Diesel Vehicle 8A	0.063	
		Heavy-Duty Diesel Vehicle 8B	0.297	
		Motorcycle	0.035	
		All Gasoline Bus	0.100	
		Diesel Commercial Bus	0.008	
		Diesel School Bus	0.006	
		Light-Duty Diesel Truck 3 and 4	0.003	
		Road Type Total	61.415	_

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Middlesex	Arterial	Light-Duty Gasoline Vehicle	21.951
		Light-Duty Gasoline Truck 1	5.273
		Light-Duty Gasoline Truck 2	10.707
		Light-Duty Gasoline Truck 3	4.377
		Light-Duty Gasoline Truck 4	1.538
		Heavy-Duty Gasoline Vehicle 2B	0.197
		Heavy-Duty Gasoline Vehicle 3	0.017
		Heavy-Duty Gasoline Vehicle 4	0.014
		Heavy-Duty Gasoline Vehicle 5	0.016
		Heavy-Duty Gasoline Vehicle 6	0.039
		Heavy-Duty Gasoline Vehicle 7	0.027
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.002
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.004
		Heavy-Duty Diesel Vehicle 3	0.001
		Heavy-Duty Diesel Vehicle 4	0.001
		Heavy-Duty Diesel Vehicle 5	0.001
		Heavy-Duty Diesel Vehicle 6	0.005
		Heavy-Duty Diesel Vehicle 7	0.010
		Heavy-Duty Diesel Vehicle 8A	0.019
		Heavy-Duty Diesel Vehicle 8B	0.087
		Motorcycle	0.079
		All Gasoline Bus	0.024
		Diesel Commercial Bus	0.002
		Diesel School Bus	0.002
		Light-Duty Diesel Truck 3 and 4	0.003
		Road Type Total	44.395

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Middlesex	Local	Light-Duty Gasoline Vehicle	4.531
		Light-Duty Gasoline Truck 1	1.128
		Light-Duty Gasoline Truck 2	2.173
		Light-Duty Gasoline Truck 3	0.922
		Light-Duty Gasoline Truck 4	0.314
		Heavy-Duty Gasoline Vehicle 2B	0.087
		Heavy-Duty Gasoline Vehicle 3	0.008
		Heavy-Duty Gasoline Vehicle 4	0.006
		Heavy-Duty Gasoline Vehicle 5	0.008
		Heavy-Duty Gasoline Vehicle 6	0.017
		Heavy-Duty Gasoline Vehicle 7	0.012
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.001
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.002
		Heavy-Duty Diesel Vehicle 3	0.001
		Heavy-Duty Diesel Vehicle 4	0.001
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.002
		Heavy-Duty Diesel Vehicle 7	0.004
		Heavy-Duty Diesel Vehicle 8A	0.008
		Heavy-Duty Diesel Vehicle 8B	0.039
		Motorcycle	0.056
		All Gasoline Bus	0.011
		Diesel Commercial Bus	0.001
		Diesel School Bus	0.001
		Light-Duty Diesel Truck 3 and 4	0.001
		Road Type Total	9.335

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Middlesex	Ramp	Light-Duty Gasoline Vehicle	1.277
		Light-Duty Gasoline Truck 1	0.264
		Light-Duty Gasoline Truck 2	0.621
		Light-Duty Gasoline Truck 3	0.224
		Light-Duty Gasoline Truck 4	0.085
		Heavy-Duty Gasoline Vehicle 2B	0.021
		Heavy-Duty Gasoline Vehicle 3	0.002
		Heavy-Duty Gasoline Vehicle 4	0.002
		Heavy-Duty Gasoline Vehicle 5	0.002
		Heavy-Duty Gasoline Vehicle 6	0.004
		Heavy-Duty Gasoline Vehicle 7	0.003
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.000
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.000
		Heavy-Duty Diesel Vehicle 3	0.000
		Heavy-Duty Diesel Vehicle 4	0.000
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.001
		Heavy-Duty Diesel Vehicle 7	0.001
		Heavy-Duty Diesel Vehicle 8A	0.002
		Heavy-Duty Diesel Vehicle 8B	0.009
		Motorcycle	0.001
		All Gasoline Bus	0.003
		Diesel Commercial Bus	0.000
		Diesel School Bus	0.000
		Light-Duty Diesel Truck 3 and 4	0.000
		Road Type Total	2.521
		CO Status Area Total	117.667

			Winter CO	
County	Road Type	Vehicle Class	(tons/day)	
New Haven	Freeway	Light-Duty Gasoline Vehicle	110.180	
		Light-Duty Gasoline Truck 1	26.295	
		Light-Duty Gasoline Truck 2	54.102	
		Light-Duty Gasoline Truck 3	21.938	
		Light-Duty Gasoline Truck 4	7.782	
		Heavy-Duty Gasoline Vehicle 2B	2.994	
		Heavy-Duty Gasoline Vehicle 3	0.267	
		Heavy-Duty Gasoline Vehicle 4	0.218	
		Heavy-Duty Gasoline Vehicle 5	0.251	
		Heavy-Duty Gasoline Vehicle 6	0.583	
		Heavy-Duty Gasoline Vehicle 7	0.415	
		Heavy-Duty Gasoline Vehicle 8A	0.001	
		Heavy-Duty Gasoline Vehicle 8B	0.000	
		Light-Duty Diesel Vehicle	0.008	
		Light-Duty Diesel Truck 1 and 2	0.002	
		Heavy-Duty Diesel Vehicle 2B	0.057	
		Heavy-Duty Diesel Vehicle 3	0.020	
		Heavy-Duty Diesel Vehicle 4	0.019	
		Heavy-Duty Diesel Vehicle 5	0.008	
		Heavy-Duty Diesel Vehicle 6	0.064	
		Heavy-Duty Diesel Vehicle 7	0.123	
		Heavy-Duty Diesel Vehicle 8A	0.234	
		Heavy-Duty Diesel Vehicle 8B	1.114	
		Motorcycle	0.125	
		All Gasoline Bus	0.365	
		Diesel Commercial Bus	0.028	
		Diesel School Bus	0.021	
		Light-Duty Diesel Truck 3 and 4	0.012	
		Road Type Total	227.229	

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
New Haven	Arterial	Light-Duty Gasoline Vehicle	91.869
		Light-Duty Gasoline Truck 1	22.106
		Light-Duty Gasoline Truck 2	44.730
		Light-Duty Gasoline Truck 3	18.343
		Light-Duty Gasoline Truck 4	6.430
		Heavy-Duty Gasoline Vehicle 2B	0.939
		Heavy-Duty Gasoline Vehicle 3	0.081
		Heavy-Duty Gasoline Vehicle 4	0.066
		Heavy-Duty Gasoline Vehicle 5	0.078
		Heavy-Duty Gasoline Vehicle 6	0.184
		Heavy-Duty Gasoline Vehicle 7	0.130
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.008
		Light-Duty Diesel Truck 1 and 2	0.002
		Heavy-Duty Diesel Vehicle 2B	0.021
		Heavy-Duty Diesel Vehicle 3	0.007
		Heavy-Duty Diesel Vehicle 4	0.007
		Heavy-Duty Diesel Vehicle 5	0.003
		Heavy-Duty Diesel Vehicle 6	0.024
		Heavy-Duty Diesel Vehicle 7	0.046
		Heavy-Duty Diesel Vehicle 8A	0.089
		Heavy-Duty Diesel Vehicle 8B	0.420
		Motorcycle	0.374
		All Gasoline Bus	0.114
		Diesel Commercial Bus	0.008
		Diesel School Bus	0.008
		Light-Duty Diesel Truck 3 and 4	0.013
		Road Type Total	186.103

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
New Haven	Local	Light-Duty Gasoline Vehicle	16.856
		Light-Duty Gasoline Truck 1	4.198
		Light-Duty Gasoline Truck 2	8.081
		Light-Duty Gasoline Truck 3	3.431
		Light-Duty Gasoline Truck 4	1.166
		Heavy-Duty Gasoline Vehicle 2B	0.325
		Heavy-Duty Gasoline Vehicle 3	0.030
		Heavy-Duty Gasoline Vehicle 4	0.023
		Heavy-Duty Gasoline Vehicle 5	0.030
		Heavy-Duty Gasoline Vehicle 6	0.062
		Heavy-Duty Gasoline Vehicle 7	0.046
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.003
		Light-Duty Diesel Truck 1 and 2	0.001
		Heavy-Duty Diesel Vehicle 2B	0.007
		Heavy-Duty Diesel Vehicle 3	0.003
		Heavy-Duty Diesel Vehicle 4	0.002
		Heavy-Duty Diesel Vehicle 5	0.001
		Heavy-Duty Diesel Vehicle 6	0.008
		Heavy-Duty Diesel Vehicle 7	0.016
		Heavy-Duty Diesel Vehicle 8A	0.031
		Heavy-Duty Diesel Vehicle 8B	0.145
		Motorcycle	0.208
		All Gasoline Bus	0.042
		Diesel Commercial Bus	0.004
		Diesel School Bus	0.003
		Light-Duty Diesel Truck 3 and 4	0.005
		Road Type Total	34.726

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
New Haven	Ramp	Light-Duty Gasoline Vehicle	6.097
		Light-Duty Gasoline Truck 1	1.261
		Light-Duty Gasoline Truck 2	2.965
		Light-Duty Gasoline Truck 3	1.067
		Light-Duty Gasoline Truck 4	0.404
		Heavy-Duty Gasoline Vehicle 2B	0.099
		Heavy-Duty Gasoline Vehicle 3	0.009
		Heavy-Duty Gasoline Vehicle 4	0.007
		Heavy-Duty Gasoline Vehicle 5	0.008
		Heavy-Duty Gasoline Vehicle 6	0.019
		Heavy-Duty Gasoline Vehicle 7	0.014
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.000
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.002
		Heavy-Duty Diesel Vehicle 3	0.001
		Heavy-Duty Diesel Vehicle 4	0.001
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.003
		Heavy-Duty Diesel Vehicle 7	0.005
		Heavy-Duty Diesel Vehicle 8A	0.009
		Heavy-Duty Diesel Vehicle 8B	0.045
		Motorcycle	0.004
		All Gasoline Bus	0.012
		Diesel Commercial Bus	0.001
		Diesel School Bus	0.001
		Light-Duty Diesel Truck 3 and 4	0.000
		Road Type Total	12.035
		CO Status Area Total	460.093

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
New London	Freeway	Light-Duty Gasoline Vehicle	43.743
		Light-Duty Gasoline Truck 1	10.433
		Light-Duty Gasoline Truck 2	21.489
		Light-Duty Gasoline Truck 3	8.708
		Light-Duty Gasoline Truck 4	3.091
		Heavy-Duty Gasoline Vehicle 2B	1.193
		Heavy-Duty Gasoline Vehicle 3	0.106
		Heavy-Duty Gasoline Vehicle 4	0.087
		Heavy-Duty Gasoline Vehicle 5	0.100
		Heavy-Duty Gasoline Vehicle 6	0.232
		Heavy-Duty Gasoline Vehicle 7	0.166
		Heavy-Duty Gasoline Vehicle 8A	0.001
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.003
		Light-Duty Diesel Truck 1 and 2	0.001
		Heavy-Duty Diesel Vehicle 2B	0.022
		Heavy-Duty Diesel Vehicle 3	0.008
		Heavy-Duty Diesel Vehicle 4	0.008
		Heavy-Duty Diesel Vehicle 5	0.003
		Heavy-Duty Diesel Vehicle 6	0.025
		Heavy-Duty Diesel Vehicle 7	0.048
		Heavy-Duty Diesel Vehicle 8A	0.092
		Heavy-Duty Diesel Vehicle 8B	0.436
		Motorcycle	0.051
		All Gasoline Bus	0.145
		Diesel Commercial Bus	0.011
		Diesel School Bus	0.008
		Light-Duty Diesel Truck 3 and 4	0.005
		Road Type Total	90.214

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
New London	Arterial	Light-Duty Gasoline Vehicle	49.179
		Light-Duty Gasoline Truck 1	11.826
		Light-Duty Gasoline Truck 2	23.961
		Light-Duty Gasoline Truck 3	9.815
		Light-Duty Gasoline Truck 4	3.443
		Heavy-Duty Gasoline Vehicle 2B	0.479
		Heavy-Duty Gasoline Vehicle 3	0.041
		Heavy-Duty Gasoline Vehicle 4	0.034
		Heavy-Duty Gasoline Vehicle 5	0.040
		Heavy-Duty Gasoline Vehicle 6	0.094
		Heavy-Duty Gasoline Vehicle 7	0.066
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.004
		Light-Duty Diesel Truck 1 and 2	0.001
		Heavy-Duty Diesel Vehicle 2B	0.011
		Heavy-Duty Diesel Vehicle 3	0.004
		Heavy-Duty Diesel Vehicle 4	0.004
		Heavy-Duty Diesel Vehicle 5	0.002
		Heavy-Duty Diesel Vehicle 6	0.012
		Heavy-Duty Diesel Vehicle 7	0.024
		Heavy-Duty Diesel Vehicle 8A	0.045
		Heavy-Duty Diesel Vehicle 8B	0.213
		Motorcycle	0.192
		All Gasoline Bus	0.058
		Diesel Commercial Bus	0.004
		Diesel School Bus	0.004
		Light-Duty Diesel Truck 3 and 4	0.007
		Road Type Total	99.564

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
New London	Local	Light-Duty Gasoline Vehicle	7.141
		Light-Duty Gasoline Truck 1	1.778
		Light-Duty Gasoline Truck 2	3.424
		Light-Duty Gasoline Truck 3	1.453
		Light-Duty Gasoline Truck 4	0.494
		Heavy-Duty Gasoline Vehicle 2B	0.138
		Heavy-Duty Gasoline Vehicle 3	0.013
		Heavy-Duty Gasoline Vehicle 4	0.010
		Heavy-Duty Gasoline Vehicle 5	0.013
		Heavy-Duty Gasoline Vehicle 6	0.026
		Heavy-Duty Gasoline Vehicle 7	0.019
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.001
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.003
		Heavy-Duty Diesel Vehicle 3	0.001
		Heavy-Duty Diesel Vehicle 4	0.001
		Heavy-Duty Diesel Vehicle 5	0.001
		Heavy-Duty Diesel Vehicle 6	0.003
		Heavy-Duty Diesel Vehicle 7	0.007
		Heavy-Duty Diesel Vehicle 8A	0.013
		Heavy-Duty Diesel Vehicle 8B	0.061
		Motorcycle	0.088
		All Gasoline Bus	0.018
		Diesel Commercial Bus	0.002
		Diesel School Bus	0.001
		Light-Duty Diesel Truck 3 and 4	0.002
		Road Type Total	14.712

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
New London	Ramp	Light-Duty Gasoline Vehicle	1.816
		Light-Duty Gasoline Truck 1	0.376
		Light-Duty Gasoline Truck 2	0.883
		Light-Duty Gasoline Truck 3	0.318
		Light-Duty Gasoline Truck 4	0.120
		Heavy-Duty Gasoline Vehicle 2B	0.029
		Heavy-Duty Gasoline Vehicle 3	0.003
		Heavy-Duty Gasoline Vehicle 4	0.002
		Heavy-Duty Gasoline Vehicle 5	0.002
		Heavy-Duty Gasoline Vehicle 6	0.006
		Heavy-Duty Gasoline Vehicle 7	0.004
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.000
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.001
		Heavy-Duty Diesel Vehicle 3	0.000
		Heavy-Duty Diesel Vehicle 4	0.000
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.001
		Heavy-Duty Diesel Vehicle 7	0.001
		Heavy-Duty Diesel Vehicle 8A	0.003
		Heavy-Duty Diesel Vehicle 8B	0.013
		Motorcycle	0.001
		All Gasoline Bus	0.004
		Diesel Commercial Bus	0.000
		Diesel School Bus	0.000
		Light-Duty Diesel Truck 3 and 4	0.000
		Road Type Total	3.585
		CO Status Area Total	208.076

a ,			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Tolland	Freeway	Light-Duty Gasoline Vehicle	21.454
		Light-Duty Gasoline Truck 1	5.116
		Light-Duty Gasoline Truck 2	10.541
		Light-Duty Gasoline Truck 3	4.271
		Light-Duty Gasoline Truck 4	1.517
		Heavy-Duty Gasoline Vehicle 2B	0.595
		Heavy-Duty Gasoline Vehicle 3	0.053
		Heavy-Duty Gasoline Vehicle 4	0.043
		Heavy-Duty Gasoline Vehicle 5	0.050
		Heavy-Duty Gasoline Vehicle 6	0.116
		Heavy-Duty Gasoline Vehicle 7	0.083
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.002
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.011
		Heavy-Duty Diesel Vehicle 3	0.004
		Heavy-Duty Diesel Vehicle 4	0.004
		Heavy-Duty Diesel Vehicle 5	0.002
		Heavy-Duty Diesel Vehicle 6	0.012
		Heavy-Duty Diesel Vehicle 7	0.024
		Heavy-Duty Diesel Vehicle 8A	0.045
		Heavy-Duty Diesel Vehicle 8B	0.215
		Motorcycle	0.026
		All Gasoline Bus	0.073
		Diesel Commercial Bus	0.005
		Diesel School Bus	0.004
		Light-Duty Diesel Truck 3 and 4	0.002
		Road Type Total	44.268

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Tolland	Arterial	Light-Duty Gasoline Vehicle	26.128
		Light-Duty Gasoline Truck 1	6.273
		Light-Duty Gasoline Truck 2	12.751
		Light-Duty Gasoline Truck 3	5.207
		Light-Duty Gasoline Truck 4	1.830
		Heavy-Duty Gasoline Vehicle 2B	0.225
		Heavy-Duty Gasoline Vehicle 3	0.019
		Heavy-Duty Gasoline Vehicle 4	0.016
		Heavy-Duty Gasoline Vehicle 5	0.019
		Heavy-Duty Gasoline Vehicle 6	0.044
		Heavy-Duty Gasoline Vehicle 7	0.031
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.002
		Light-Duty Diesel Truck 1 and 2	0.001
		Heavy-Duty Diesel Vehicle 2B	0.005
		Heavy-Duty Diesel Vehicle 3	0.002
		Heavy-Duty Diesel Vehicle 4	0.002
		Heavy-Duty Diesel Vehicle 5	0.001
		Heavy-Duty Diesel Vehicle 6	0.006
		Heavy-Duty Diesel Vehicle 7	0.011
		Heavy-Duty Diesel Vehicle 8A	0.021
		Heavy-Duty Diesel Vehicle 8B	0.099
		Motorcycle	0.091
		All Gasoline Bus	0.027
		Diesel Commercial Bus	0.002
		Diesel School Bus	0.002
		Light-Duty Diesel Truck 3 and 4	0.003
		Road Type Total	52.817

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Tolland	Local	Light-Duty Gasoline Vehicle	4.257
		Light-Duty Gasoline Truck 1	1.060
		Light-Duty Gasoline Truck 2	2.041
		Light-Duty Gasoline Truck 3	0.866
		Light-Duty Gasoline Truck 4	0.295
		Heavy-Duty Gasoline Vehicle 2B	0.082
		Heavy-Duty Gasoline Vehicle 3	0.007
		Heavy-Duty Gasoline Vehicle 4	0.006
		Heavy-Duty Gasoline Vehicle 5	0.007
		Heavy-Duty Gasoline Vehicle 6	0.016
		Heavy-Duty Gasoline Vehicle 7	0.012
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.001
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.002
		Heavy-Duty Diesel Vehicle 3	0.001
		Heavy-Duty Diesel Vehicle 4	0.001
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.002
		Heavy-Duty Diesel Vehicle 7	0.004
		Heavy-Duty Diesel Vehicle 8A	0.008
		Heavy-Duty Diesel Vehicle 8B	0.037
		Motorcycle	0.053
		All Gasoline Bus	0.011
		Diesel Commercial Bus	0.001
		Diesel School Bus	0.001
		Light-Duty Diesel Truck 3 and 4	0.001
		Road Type Total	8.771

County	Road Type	Vehicle Class	Winter CO (tons/day)
Tolland	Ramp	Light-Duty Gasoline Vehicle	0.575
	-	Light-Duty Gasoline Truck 1	0.119
		Light-Duty Gasoline Truck 2	0.280
		Light-Duty Gasoline Truck 3	0.101
		Light-Duty Gasoline Truck 4	0.038
		Heavy-Duty Gasoline Vehicle 2B	0.009
		Heavy-Duty Gasoline Vehicle 3	0.001
		Heavy-Duty Gasoline Vehicle 4	0.001
		Heavy-Duty Gasoline Vehicle 5	0.001
		Heavy-Duty Gasoline Vehicle 6	0.002
		Heavy-Duty Gasoline Vehicle 7	0.001
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.000
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.000
		Heavy-Duty Diesel Vehicle 3	0.000
		Heavy-Duty Diesel Vehicle 4	0.000
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.000
		Heavy-Duty Diesel Vehicle 7	0.000
		Heavy-Duty Diesel Vehicle 8A	0.001
		Heavy-Duty Diesel Vehicle 8B	0.004
		Motorcycle	0.000
		All Gasoline Bus	0.001
		Diesel Commercial Bus	0.000
		Diesel School Bus	0.000
		Light-Duty Diesel Truck 3 and 4	0.000
-		Road Type Total	1.136
		CO Status Area Total	106.991

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Windham	Freeway	Light-Duty Gasoline Vehicle	10.022
		Light-Duty Gasoline Truck 1	2.390
		Light-Duty Gasoline Truck 2	4.924
		Light-Duty Gasoline Truck 3	1.995
		Light-Duty Gasoline Truck 4	0.708
		Heavy-Duty Gasoline Vehicle 2B	0.279
		Heavy-Duty Gasoline Vehicle 3	0.025
		Heavy-Duty Gasoline Vehicle 4	0.020
		Heavy-Duty Gasoline Vehicle 5	0.023
		Heavy-Duty Gasoline Vehicle 6	0.054
		Heavy-Duty Gasoline Vehicle 7	0.039
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.001
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.005
		Heavy-Duty Diesel Vehicle 3	0.002
		Heavy-Duty Diesel Vehicle 4	0.002
		Heavy-Duty Diesel Vehicle 5	0.001
		Heavy-Duty Diesel Vehicle 6	0.006
		Heavy-Duty Diesel Vehicle 7	0.011
		Heavy-Duty Diesel Vehicle 8A	0.021
		Heavy-Duty Diesel Vehicle 8B	0.101
		Motorcycle	0.012
		All Gasoline Bus	0.034
		Diesel Commercial Bus	0.003
		Diesel School Bus	0.002
		Light-Duty Diesel Truck 3 and 4	0.001
		Road Type Total	20.681

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Windham	Arterial	Light-Duty Gasoline Vehicle	23.152
		Light-Duty Gasoline Truck 1	5.557
		Light-Duty Gasoline Truck 2	11.302
		Light-Duty Gasoline Truck 3	4.613
		Light-Duty Gasoline Truck 4	1.622
		Heavy-Duty Gasoline Vehicle 2B	0.193
		Heavy-Duty Gasoline Vehicle 3	0.017
		Heavy-Duty Gasoline Vehicle 4	0.014
		Heavy-Duty Gasoline Vehicle 5	0.016
		Heavy-Duty Gasoline Vehicle 6	0.038
		Heavy-Duty Gasoline Vehicle 7	0.027
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.002
		Light-Duty Diesel Truck 1 and 2	0.001
		Heavy-Duty Diesel Vehicle 2B	0.004
		Heavy-Duty Diesel Vehicle 3	0.001
		Heavy-Duty Diesel Vehicle 4	0.001
		Heavy-Duty Diesel Vehicle 5	0.001
		Heavy-Duty Diesel Vehicle 6	0.005
		Heavy-Duty Diesel Vehicle 7	0.009
		Heavy-Duty Diesel Vehicle 8A	0.018
		Heavy-Duty Diesel Vehicle 8B	0.084
		Motorcycle	0.079
		All Gasoline Bus	0.023
		Diesel Commercial Bus	0.002
		Diesel School Bus	0.002
		Light-Duty Diesel Truck 3 and 4	0.003
		Road Type Total	46.785

			Winter CO
County	Road Type	Vehicle Class	(tons/day)
Windham	Local	Light-Duty Gasoline Vehicle	2.896
		Light-Duty Gasoline Truck 1	0.721
		Light-Duty Gasoline Truck 2	1.388
		Light-Duty Gasoline Truck 3	0.589
		Light-Duty Gasoline Truck 4	0.200
		Heavy-Duty Gasoline Vehicle 2B	0.056
		Heavy-Duty Gasoline Vehicle 3	0.005
		Heavy-Duty Gasoline Vehicle 4	0.004
		Heavy-Duty Gasoline Vehicle 5	0.005
		Heavy-Duty Gasoline Vehicle 6	0.011
		Heavy-Duty Gasoline Vehicle 7	0.008
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.000
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.001
		Heavy-Duty Diesel Vehicle 3	0.000
		Heavy-Duty Diesel Vehicle 4	0.000
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.001
		Heavy-Duty Diesel Vehicle 7	0.003
		Heavy-Duty Diesel Vehicle 8A	0.005
		Heavy-Duty Diesel Vehicle 8B	0.025
		Motorcycle	0.036
		All Gasoline Bus	0.007
		Diesel Commercial Bus	0.001
		Diesel School Bus	0.000
		Light-Duty Diesel Truck 3 and 4	0.001
		Road Type Total	5.965

County	Road Type	Vehicle Class	Winter CO (tons/day)
Windham	Ramp	Light-Duty Gasoline Vehicle	0.593
		Light-Duty Gasoline Truck 1	0.123
		Light-Duty Gasoline Truck 2	0.288
		Light-Duty Gasoline Truck 3	0.104
		Light-Duty Gasoline Truck 4	0.039
		Heavy-Duty Gasoline Vehicle 2B	0.010
		Heavy-Duty Gasoline Vehicle 3	0.001
		Heavy-Duty Gasoline Vehicle 4	0.001
		Heavy-Duty Gasoline Vehicle 5	0.001
		Heavy-Duty Gasoline Vehicle 6	0.002
		Heavy-Duty Gasoline Vehicle 7	0.001
		Heavy-Duty Gasoline Vehicle 8A	0.000
		Heavy-Duty Gasoline Vehicle 8B	0.000
		Light-Duty Diesel Vehicle	0.000
		Light-Duty Diesel Truck 1 and 2	0.000
		Heavy-Duty Diesel Vehicle 2B	0.000
		Heavy-Duty Diesel Vehicle 3	0.000
		Heavy-Duty Diesel Vehicle 4	0.000
		Heavy-Duty Diesel Vehicle 5	0.000
		Heavy-Duty Diesel Vehicle 6	0.000
		Heavy-Duty Diesel Vehicle 7	0.000
		Heavy-Duty Diesel Vehicle 8A	0.001
		Heavy-Duty Diesel Vehicle 8B	0.004
		Motorcycle	0.000
		All Gasoline Bus	0.001
		Diesel Commercial Bus	0.000
		Diesel School Bus	0.000
		Light-Duty Diesel Truck 3 and 4	0.000
		Road Type Total	1.171
		CO Status Area Total	74.601
		CO State Total	2,046.662

TABLE 13 2002 CONNECTICUT MOBILE SOURCE REPORT Annual Emissions by County

Annual Emissions by County

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Fairfield	Freeway	Light-Duty Gasoline Vehicle	24,466.4	1,782.5	1,537.9
		Light-Duty Gasoline Truck 1	5,208.7	313.3	333.2
		Light-Duty Gasoline Truck 2	11,782.8	944.1	488.7
		Light-Duty Gasoline Truck 3	5,013.2	338.0	290.3
		Light-Duty Gasoline Truck 4	1,825.8	176.3	92.0
		Heavy-Duty Gasoline Vehicle 2B	1,040.8	424.8	71.5
		Heavy-Duty Gasoline Vehicle 3	99.8	18.0	4.9
		Heavy-Duty Gasoline Vehicle 4	80.5	11.1	5.2
		Heavy-Duty Gasoline Vehicle 5	89.4	22.3	5.9
		Heavy-Duty Gasoline Vehicle 6	210.0	48.1	13.3
		Heavy-Duty Gasoline Vehicle 7	153.2	25.9	8.7
		Heavy-Duty Gasoline Vehicle 8A	0.5	0.1	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	3.1	3.8	1.1
		Light-Duty Diesel Truck 1 and 2	0.8	0.8	0.5
		Heavy-Duty Diesel Vehicle 2B	22.4	153.7	4.9
		Heavy-Duty Diesel Vehicle 3	7.8	52.4	1.6
		Heavy-Duty Diesel Vehicle 4	7.8	55.3	1.7
		Heavy-Duty Diesel Vehicle 5	3.4	25.3	0.8
		Heavy-Duty Diesel Vehicle 6	25.3	212.9	6.3
		Heavy-Duty Diesel Vehicle 7	48.2	394.7	11.9
		Heavy-Duty Diesel Vehicle 8A	90.7	839.7	15.1
		Heavy-Duty Diesel Vehicle 8B	430.2	3,486.4	67.4
		Motorcycle	43.3	3.8	11.2
		All Gasoline Bus	146.3	12.3	6.4
		Diesel Commercial Bus	11.1	68.5	1.5
		Diesel School Bus	8.4	68.1	2.2
		Light-Duty Diesel Truck 3 and 4	4.9	9.9	2.4
		Road Type Total	50,824.9	9,492.3	2,986.8

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Fairfield	Arterial	Light-Duty Gasoline Vehicle	19,906.8	1,819.7	1,853.5
		Light-Duty Gasoline Truck 1	4,357.7	307.3	412.0
		Light-Duty Gasoline Truck 2	9,242.8	925.8	587.6
		Light-Duty Gasoline Truck 3	4,230.5	334.0	350.2
		Light-Duty Gasoline Truck 4	1,489.9	175.6	108.1
		Heavy-Duty Gasoline Vehicle 2B	399.2	118.3	38.4
		Heavy-Duty Gasoline Vehicle 3	37.2	4.9	2.6
		Heavy-Duty Gasoline Vehicle 4	30.3	3.0	2.6
		Heavy-Duty Gasoline Vehicle 5	33.9	6.1	3.0
		Heavy-Duty Gasoline Vehicle 6	81.3	13.5	7.0
		Heavy-Duty Gasoline Vehicle 7	58.7	7.2	4.5
		Heavy-Duty Gasoline Vehicle 8A	0.2	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	3.6	2.7	1.4
		Light-Duty Diesel Truck 1 and 2	0.9	0.6	0.5
		Heavy-Duty Diesel Vehicle 2B	10.0	35.9	2.6
		Heavy-Duty Diesel Vehicle 3	3.4	11.8	0.8
		Heavy-Duty Diesel Vehicle 4	3.4	12.6	0.9
		Heavy-Duty Diesel Vehicle 5	1.5	5.8	0.4
		Heavy-Duty Diesel Vehicle 6	11.3	47.4	3.3
		Heavy-Duty Diesel Vehicle 7	21.4	87.1	6.2
		Heavy-Duty Diesel Vehicle 8A	40.9	168.7	8.0
		Heavy-Duty Diesel Vehicle 8B	191.6	697.5	35.1
		Motorcycle	164.3	10.6	42.9
		All Gasoline Bus	56.6	3.4	3.6
		Diesel Commercial Bus	3.9	12.8	0.6
		Diesel School Bus	3.7	15.9	1.1
		Light-Duty Diesel Truck 3 and 4	5.9	6.9	3.3
		Road Type Total	40,390.8	4,835.0	3,480.4

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Fairfield	Local	Light-Duty Gasoline Vehicle	2,903.2	342.8	481.6
		Light-Duty Gasoline Truck 1	771.5	56.4	107.6
		Light-Duty Gasoline Truck 2	1,428.5	168.4	155.4
		Light-Duty Gasoline Truck 3	746.6	61.5	90.8
		Light-Duty Gasoline Truck 4	246.0	32.5	28.0
		Heavy-Duty Gasoline Vehicle 2B	122.2	15.4	10.8
		Heavy-Duty Gasoline Vehicle 3	11.9	0.7	0.8
		Heavy-Duty Gasoline Vehicle 4	9.1	0.4	0.7
		Heavy-Duty Gasoline Vehicle 5	11.4	0.9	0.9
		Heavy-Duty Gasoline Vehicle 6	24.1	1.7	1.9
		Heavy-Duty Gasoline Vehicle 7	18.3	1.0	1.3
		Heavy-Duty Gasoline Vehicle 8A	0.1	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	1.1	0.7	0.4
		Light-Duty Diesel Truck 1 and 2	0.2	0.1	0.1
		Heavy-Duty Diesel Vehicle 2B	3.1	6.9	0.7
		Heavy-Duty Diesel Vehicle 3	1.1	2.4	0.2
		Heavy-Duty Diesel Vehicle 4	1.0	2.4	0.2
		Heavy-Duty Diesel Vehicle 5	0.5	1.2	0.1
		Heavy-Duty Diesel Vehicle 6	3.4	8.7	0.9
		Heavy-Duty Diesel Vehicle 7	6.7	16.8	1.7
		Heavy-Duty Diesel Vehicle 8A	12.7	25.2	2.1
		Heavy-Duty Diesel Vehicle 8B	59.2	102.4	9.5
		Motorcycle	87.7	2.9	17.6
		All Gasoline Bus	18.1	0.5	1.2
		Diesel Commercial Bus	1.6	3.2	0.2
		Diesel School Bus	1.2	3.2	0.3
		Light-Duty Diesel Truck 3 and 4	2.0	1.8	1.1
		Road Type Total	6,492.5	859.8	916.2

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Fairfield	Ramp	Light-Duty Gasoline Vehicle	1,554.9	86.0	79.0
		Light-Duty Gasoline Truck 1	258.6	15.1	16.8
		Light-Duty Gasoline Truck 2	641.5	45.6	26.6
		Light-Duty Gasoline Truck 3	242.7	16.0	14.6
		Light-Duty Gasoline Truck 4	92.6	8.3	4.7
		Heavy-Duty Gasoline Vehicle 2B	36.0	14.8	3.6
		Heavy-Duty Gasoline Vehicle 3	3.5	0.6	0.3
		Heavy-Duty Gasoline Vehicle 4	2.8	0.4	0.3
		Heavy-Duty Gasoline Vehicle 5	3.1	0.8	0.3
		Heavy-Duty Gasoline Vehicle 6	7.3	1.7	0.7
		Heavy-Duty Gasoline Vehicle 7	5.3	0.9	0.4
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.1	0.1	0.1
		Light-Duty Diesel Truck 1 and 2	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	0.9	4.0	0.3
		Heavy-Duty Diesel Vehicle 3	0.3	1.4	0.1
		Heavy-Duty Diesel Vehicle 4	0.3	1.5	0.1
		Heavy-Duty Diesel Vehicle 5	0.1	0.7	0.0
		Heavy-Duty Diesel Vehicle 6	1.0	5.2	0.3
		Heavy-Duty Diesel Vehicle 7	2.0	9.6	0.6
		Heavy-Duty Diesel Vehicle 8A	3.7	14.3	0.8
		Heavy-Duty Diesel Vehicle 8B	17.7	58.8	3.6
		Motorcycle	1.4	0.1	0.4
		All Gasoline Bus	5.1	0.4	0.3
		Diesel Commercial Bus	0.5	1.8	0.1
		Diesel School Bus	0.3	1.8	0.1
		Light-Duty Diesel Truck 3 and 4	0.2	0.3	0.1
		Road Type Total	2,882.1	290.0	154.2
		County Total	100,590.3	15,477.2	7,537.6

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Hartford	Freeway	Light-Duty Gasoline Vehicle	25,909.3	1,787.4	1,549.3
		Light-Duty Gasoline Truck 1	5,392.6	314.2	332.3
		Light-Duty Gasoline Truck 2	12,435.6	950.1	490.4
		Light-Duty Gasoline Truck 3	5,230.2	338.5	290.8
		Light-Duty Gasoline Truck 4	1,922.9	176.6	92.5
		Heavy-Duty Gasoline Vehicle 2B	1,111.5	431.7	71.4
		Heavy-Duty Gasoline Vehicle 3	108.4	18.2	4.9
		Heavy-Duty Gasoline Vehicle 4	87.7	11.2	5.3
		Heavy-Duty Gasoline Vehicle 5	96.3	22.6	5.9
		Heavy-Duty Gasoline Vehicle 6	226.9	48.7	13.4
		Heavy-Duty Gasoline Vehicle 7	166.5	26.2	8.8
		Heavy-Duty Gasoline Vehicle 8A	0.6	0.1	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	3.1	4.0	1.1
		Light-Duty Diesel Truck 1 and 2	0.8	0.8	0.5
		Heavy-Duty Diesel Vehicle 2B	22.3	164.8	4.6
		Heavy-Duty Diesel Vehicle 3	7.8	56.2	1.6
		Heavy-Duty Diesel Vehicle 4	7.8	59.3	1.6
		Heavy-Duty Diesel Vehicle 5	3.4	27.1	0.7
		Heavy-Duty Diesel Vehicle 6	25.3	227.2	6.0
		Heavy-Duty Diesel Vehicle 7	48.1	421.3	11.4
		Heavy-Duty Diesel Vehicle 8A	90.6	878.1	14.3
		Heavy-Duty Diesel Vehicle 8B	429.8	3,643.8	64.1
		Motorcycle	51.4	3.8	11.7
		All Gasoline Bus	160.3	12.3	6.3
		Diesel Commercial Bus	11.1	73.5	1.4
		Diesel School Bus	8.4	73.1	2.1
		Light-Duty Diesel Truck 3 and 4	4.9	10.6	2.3
		Road Type Total	53,563.6	9,781.6	2,994.9

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Hartford	Arterial	Light-Duty Gasoline Vehicle	22,160.4	1,957.1	2,007.0
		Light-Duty Gasoline Truck 1	4,769.8	330.1	444.4
		Light-Duty Gasoline Truck 2	10,274.0	995.5	633.0
		Light-Duty Gasoline Truck 3	4,677.5	358.3	378.3
		Light-Duty Gasoline Truck 4	1,660.0	188.5	116.6
		Heavy-Duty Gasoline Vehicle 2B	413.1	130.8	40.4
		Heavy-Duty Gasoline Vehicle 3	39.1	5.3	2.7
		Heavy-Duty Gasoline Vehicle 4	31.9	3.3	2.8
		Heavy-Duty Gasoline Vehicle 5	35.4	6.8	3.2
		Heavy-Duty Gasoline Vehicle 6	85.1	14.8	7.4
		Heavy-Duty Gasoline Vehicle 7	61.8	7.9	4.8
		Heavy-Duty Gasoline Vehicle 8A	0.2	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	3.7	2.9	1.5
		Light-Duty Diesel Truck 1 and 2	0.9	0.6	0.6
		Heavy-Duty Diesel Vehicle 2B	10.0	38.6	2.6
		Heavy-Duty Diesel Vehicle 3	3.4	12.7	0.8
		Heavy-Duty Diesel Vehicle 4	3.4	13.5	0.9
		Heavy-Duty Diesel Vehicle 5	1.5	6.3	0.4
		Heavy-Duty Diesel Vehicle 6	11.3	51.1	3.4
		Heavy-Duty Diesel Vehicle 7	21.4	93.8	6.3
		Heavy-Duty Diesel Vehicle 8A	40.9	182.2	8.1
		Heavy-Duty Diesel Vehicle 8B	191.6	753.5	35.9
		Motorcycle	174.4	11.3	46.6
		All Gasoline Bus	60.0	3.7	3.8
		Diesel Commercial Bus	3.9	13.8	0.6
		Diesel School Bus	3.7	17.1	1.2
		Light-Duty Diesel Truck 3 and 4	6.0	7.5	3.5
		Road Type Total	44,744.7	5,207.1	3,756.7

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Hartford	Local	Light-Duty Gasoline Vehicle	2,847.8	340.1	488.8
		Light-Duty Gasoline Truck 1	753.3	55.1	109.3
		Light-Duty Gasoline Truck 2	1,394.3	165.4	157.7
		Light-Duty Gasoline Truck 3	739.1	60.1	92.1
		Light-Duty Gasoline Truck 4	243.7	31.9	28.3
		Heavy-Duty Gasoline Vehicle 2B	123.3	15.0	10.9
		Heavy-Duty Gasoline Vehicle 3	12.3	0.6	0.8
		Heavy-Duty Gasoline Vehicle 4	9.4	0.4	0.7
		Heavy-Duty Gasoline Vehicle 5	11.6	0.9	0.9
		Heavy-Duty Gasoline Vehicle 6	24.6	1.7	1.9
		Heavy-Duty Gasoline Vehicle 7	18.8	0.9	1.4
		Heavy-Duty Gasoline Vehicle 8A	0.1	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	1.1	0.7	0.4
		Light-Duty Diesel Truck 1 and 2	0.2	0.1	0.1
		Heavy-Duty Diesel Vehicle 2B	3.0	6.7	0.7
		Heavy-Duty Diesel Vehicle 3	1.1	2.3	0.2
		Heavy-Duty Diesel Vehicle 4	1.0	2.3	0.2
		Heavy-Duty Diesel Vehicle 5	0.5	1.2	0.1
		Heavy-Duty Diesel Vehicle 6	3.3	8.5	0.8
		Heavy-Duty Diesel Vehicle 7	6.5	16.4	1.7
		Heavy-Duty Diesel Vehicle 8A	12.4	24.6	2.1
		Heavy-Duty Diesel Vehicle 8B	57.7	99.9	9.2
		Motorcycle	91.2	2.7	17.6
		All Gasoline Bus	18.7	0.4	1.2
		Diesel Commercial Bus	1.6	3.2	0.2
		Diesel School Bus	1.2	3.1	0.3
		Light-Duty Diesel Truck 3 and 4	2.0	1.7	1.0
		Road Type Total	6,379.7	845.8	928.8

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Hartford	Ramp	Light-Duty Gasoline Vehicle	1,676.0	90.4	85.2
		Light-Duty Gasoline Truck 1	272.1	15.9	18.1
		Light-Duty Gasoline Truck 2	678.1	48.0	28.5
		Light-Duty Gasoline Truck 3	257.4	16.8	15.7
		Light-Duty Gasoline Truck 4	98.4	8.7	5.1
		Heavy-Duty Gasoline Vehicle 2B	39.1	15.5	4.0
		Heavy-Duty Gasoline Vehicle 3	3.8	0.7	0.3
		Heavy-Duty Gasoline Vehicle 4	3.1	0.4	0.3
		Heavy-Duty Gasoline Vehicle 5	3.4	0.8	0.3
		Heavy-Duty Gasoline Vehicle 6	8.0	1.7	0.7
		Heavy-Duty Gasoline Vehicle 7	5.9	0.9	0.5
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.1	0.1	0.1
		Light-Duty Diesel Truck 1 and 2	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	1.0	4.2	0.3
		Heavy-Duty Diesel Vehicle 3	0.3	1.4	0.1
		Heavy-Duty Diesel Vehicle 4	0.3	1.5	0.1
		Heavy-Duty Diesel Vehicle 5	0.1	0.7	0.0
		Heavy-Duty Diesel Vehicle 6	1.1	5.4	0.4
		Heavy-Duty Diesel Vehicle 7	2.1	10.1	0.7
		Heavy-Duty Diesel Vehicle 8A	3.9	15.0	0.8
		Heavy-Duty Diesel Vehicle 8B	18.6	61.7	3.7
		Motorcycle	1.6	0.1	0.5
		All Gasoline Bus	5.6	0.4	0.4
		Diesel Commercial Bus	0.5	1.9	0.1
		Diesel School Bus	0.4	1.9	0.1
		Light-Duty Diesel Truck 3 and 4	0.2	0.3	0.1
		Road Type Total	3,081.2	304.6	166.0
		County Total	107,769.2	16,139.0	7,846.4

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Litchfield	Freeway	Light-Duty Gasoline Vehicle	1,465.1	99.8	85.6
		Light-Duty Gasoline Truck 1	304.2	17.6	18.3
		Light-Duty Gasoline Truck 2	704.1	53.2	27.1
		Light-Duty Gasoline Truck 3	294.9	18.9	16.1
		Light-Duty Gasoline Truck 4	108.6	9.9	5.1
		Heavy-Duty Gasoline Vehicle 2B	63.4	24.3	3.9
		Heavy-Duty Gasoline Vehicle 3	6.2	1.0	0.3
		Heavy-Duty Gasoline Vehicle 4	5.0	0.6	0.3
		Heavy-Duty Gasoline Vehicle 5	5.5	1.3	0.3
		Heavy-Duty Gasoline Vehicle 6	12.9	2.7	0.7
		Heavy-Duty Gasoline Vehicle 7	9.5	1.5	0.5
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.2	0.2	0.1
		Light-Duty Diesel Truck 1 and 2	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	1.3	9.5	0.3
		Heavy-Duty Diesel Vehicle 3	0.4	3.3	0.1
		Heavy-Duty Diesel Vehicle 4	0.4	3.4	0.1
		Heavy-Duty Diesel Vehicle 5	0.2	1.6	0.0
		Heavy-Duty Diesel Vehicle 6	1.4	13.1	0.3
		Heavy-Duty Diesel Vehicle 7	2.7	24.3	0.6
		Heavy-Duty Diesel Vehicle 8A	5.1	50.1	0.8
		Heavy-Duty Diesel Vehicle 8B	24.1	208.0	3.5
		Motorcycle	3.1	0.2	0.7
		All Gasoline Bus	9.1	0.7	0.3
		Diesel Commercial Bus	0.6	4.2	0.1
		Diesel School Bus	0.5	4.2	0.1
		Light-Duty Diesel Truck 3 and 4	0.3	0.6	0.1
		Road Type Total	3,028.8	554.3	165.3

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Litchfield	Arterial	Light-Duty Gasoline Vehicle	7,361.6	600.3	586.8
		Light-Duty Gasoline Truck 1	1,577.1	103.2	129.1
		Light-Duty Gasoline Truck 2	3,475.8	310.5	184.9
		Light-Duty Gasoline Truck 3	1,541.6	111.7	110.8
		Light-Duty Gasoline Truck 4	553.5	58.7	34.4
		Heavy-Duty Gasoline Vehicle 2B	109.4	43.9	10.5
		Heavy-Duty Gasoline Vehicle 3	10.3	1.8	0.7
		Heavy-Duty Gasoline Vehicle 4	8.4	1.1	0.7
		Heavy-Duty Gasoline Vehicle 5	9.4	2.3	0.8
		Heavy-Duty Gasoline Vehicle 6	22.5	5.0	1.9
		Heavy-Duty Gasoline Vehicle 7	16.3	2.6	1.2
		Heavy-Duty Gasoline Vehicle 8A	0.1	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	1.1	0.9	0.4
		Light-Duty Diesel Truck 1 and 2	0.3	0.2	0.2
		Heavy-Duty Diesel Vehicle 2B	2.6	12.5	0.7
		Heavy-Duty Diesel Vehicle 3	0.9	4.1	0.2
		Heavy-Duty Diesel Vehicle 4	0.9	4.4	0.2
		Heavy-Duty Diesel Vehicle 5	0.4	2.0	0.1
		Heavy-Duty Diesel Vehicle 6	3.0	16.5	0.9
		Heavy-Duty Diesel Vehicle 7	5.6	30.4	1.7
		Heavy-Duty Diesel Vehicle 8A	10.7	58.7	2.2
		Heavy-Duty Diesel Vehicle 8B	50.0	242.9	9.5
		Motorcycle	45.4	3.8	13.8
		All Gasoline Bus	15.8	1.2	1.0
		Diesel Commercial Bus	1.0	4.5	0.2
		Diesel School Bus	1.0	5.5	0.3
		Light-Duty Diesel Truck 3 and 4	1.7	2.4	1.0
		Road Type Total	14,826.3	1,631.2	1,094.2

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Litchfield	Local	Light-Duty Gasoline Vehicle	985.3	117.7	169.1
		Light-Duty Gasoline Truck 1	260.6	19.1	37.8
		Light-Duty Gasoline Truck 2	482.4	57.2	54.5
		Light-Duty Gasoline Truck 3	255.7	20.8	31.9
		Light-Duty Gasoline Truck 4	84.3	11.0	9.8
		Heavy-Duty Gasoline Vehicle 2B	42.7	5.2	3.8
		Heavy-Duty Gasoline Vehicle 3	4.2	0.2	0.3
		Heavy-Duty Gasoline Vehicle 4	3.2	0.1	0.2
		Heavy-Duty Gasoline Vehicle 5	4.0	0.3	0.3
		Heavy-Duty Gasoline Vehicle 6	8.5	0.6	0.7
		Heavy-Duty Gasoline Vehicle 7	6.5	0.3	0.5
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.4	0.2	0.1
		Light-Duty Diesel Truck 1 and 2	0.1	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	1.0	2.3	0.2
		Heavy-Duty Diesel Vehicle 3	0.4	0.8	0.1
		Heavy-Duty Diesel Vehicle 4	0.3	0.8	0.1
		Heavy-Duty Diesel Vehicle 5	0.2	0.4	0.0
		Heavy-Duty Diesel Vehicle 6	1.1	2.9	0.3
		Heavy-Duty Diesel Vehicle 7	2.3	5.7	0.6
		Heavy-Duty Diesel Vehicle 8A	4.3	8.5	0.7
		Heavy-Duty Diesel Vehicle 8B	20.0	34.6	3.2
		Motorcycle	31.6	0.9	6.1
		All Gasoline Bus	6.5	0.2	0.4
		Diesel Commercial Bus	0.5	1.1	0.1
		Diesel School Bus	0.4	1.1	0.1
		Light-Duty Diesel Truck 3 and 4	0.7	0.6	0.4
		Road Type Total	2,207.3	292.6	321.4

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Litchfield	Ramp	Light-Duty Gasoline Vehicle	83.9	4.5	4.3
		Light-Duty Gasoline Truck 1	13.6	0.8	0.9
		Light-Duty Gasoline Truck 2	33.9	2.4	1.4
		Light-Duty Gasoline Truck 3	12.9	0.8	0.8
		Light-Duty Gasoline Truck 4	4.9	0.4	0.3
		Heavy-Duty Gasoline Vehicle 2B	2.0	0.8	0.2
		Heavy-Duty Gasoline Vehicle 3	0.2	0.0	0.0
		Heavy-Duty Gasoline Vehicle 4	0.2	0.0	0.0
		Heavy-Duty Gasoline Vehicle 5	0.2	0.0	0.0
		Heavy-Duty Gasoline Vehicle 6	0.4	0.1	0.0
		Heavy-Duty Gasoline Vehicle 7	0.3	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.0	0.0	0.0
		Light-Duty Diesel Truck 1 and 2	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	0.0	0.2	0.0
		Heavy-Duty Diesel Vehicle 3	0.0	0.1	0.0
		Heavy-Duty Diesel Vehicle 4	0.0	0.1	0.0
		Heavy-Duty Diesel Vehicle 5	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 6	0.1	0.3	0.0
		Heavy-Duty Diesel Vehicle 7	0.1	0.5	0.0
		Heavy-Duty Diesel Vehicle 8A	0.2	0.8	0.0
		Heavy-Duty Diesel Vehicle 8B	0.9	3.1	0.2
		Motorcycle	0.1	0.0	0.0
		All Gasoline Bus	0.3	0.0	0.0
		Diesel Commercial Bus	0.0	0.1	0.0
		Diesel School Bus	0.0	0.1	0.0
		Light-Duty Diesel Truck 3 and 4	0.0	0.0	0.0
		Road Type Total	154.2	15.2	8.3
		County Total	20,216.6	2,493.4	1,589.1

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Middlesex	Freeway	Light-Duty Gasoline Vehicle	6,684.2	470.6	394.3
		Light-Duty Gasoline Truck 1	1,414.0	83.2	84.8
		Light-Duty Gasoline Truck 2	3,230.7	250.8	125.4
		Light-Duty Gasoline Truck 3	1,359.4	89.6	74.3
		Light-Duty Gasoline Truck 4	497.6	46.7	23.7
		Heavy-Duty Gasoline Vehicle 2B	285.1	114.6	17.5
		Heavy-Duty Gasoline Vehicle 3	27.3	4.9	1.2
		Heavy-Duty Gasoline Vehicle 4	22.1	3.0	1.3
		Heavy-Duty Gasoline Vehicle 5	24.5	6.0	1.4
		Heavy-Duty Gasoline Vehicle 6	57.5	13.0	3.3
		Heavy-Duty Gasoline Vehicle 7	42.0	7.0	2.1
		Heavy-Duty Gasoline Vehicle 8A	0.1	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.8	1.1	0.3
		Light-Duty Diesel Truck 1 and 2	0.2	0.2	0.1
		Heavy-Duty Diesel Vehicle 2B	5.9	44.3	1.2
		Heavy-Duty Diesel Vehicle 3	2.1	15.1	0.4
		Heavy-Duty Diesel Vehicle 4	2.0	16.0	0.4
		Heavy-Duty Diesel Vehicle 5	0.9	7.3	0.2
		Heavy-Duty Diesel Vehicle 6	6.6	61.0	1.6
		Heavy-Duty Diesel Vehicle 7	12.6	113.2	2.9
		Heavy-Duty Diesel Vehicle 8A	23.8	234.6	3.7
		Heavy-Duty Diesel Vehicle 8B	112.9	973.3	16.6
		Motorcycle	13.1	1.1	3.0
		All Gasoline Bus	40.0	3.3	1.5
		Diesel Commercial Bus	2.9	19.8	0.4
		Diesel School Bus	2.2	19.7	0.5
		Light-Duty Diesel Truck 3 and 4	1.3	2.9	0.6
		Road Type Total	13,871.9	2,602.1	762.8
			СО	NOx	VOC
-----------	-----------	---------------------------------	-------------	-------------	-------------
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Middlesex	Arterial	Light-Duty Gasoline Vehicle	4,242.5	360.0	347.1
		Light-Duty Gasoline Truck 1	926.9	62.1	76.7
		Light-Duty Gasoline Truck 2	2,011.2	186.2	109.8
		Light-Duty Gasoline Truck 3	897.6	67.3	65.8
		Light-Duty Gasoline Truck 4	319.8	35.3	20.5
		Heavy-Duty Gasoline Vehicle 2B	66.4	25.9	6.3
		Heavy-Duty Gasoline Vehicle 3	6.2	1.1	0.4
		Heavy-Duty Gasoline Vehicle 4	5.0	0.7	0.4
		Heavy-Duty Gasoline Vehicle 5	5.6	1.3	0.5
		Heavy-Duty Gasoline Vehicle 6	13.5	3.0	1.2
		Heavy-Duty Gasoline Vehicle 7	9.7	1.6	0.7
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.7	0.6	0.3
		Light-Duty Diesel Truck 1 and 2	0.2	0.1	0.1
		Heavy-Duty Diesel Vehicle 2B	1.6	7.5	0.4
		Heavy-Duty Diesel Vehicle 3	0.6	2.5	0.1
		Heavy-Duty Diesel Vehicle 4	0.6	2.6	0.1
		Heavy-Duty Diesel Vehicle 5	0.2	1.2	0.1
		Heavy-Duty Diesel Vehicle 6	1.9	9.9	0.6
		Heavy-Duty Diesel Vehicle 7	3.5	18.1	1.1
		Heavy-Duty Diesel Vehicle 8A	6.7	35.0	1.4
		Heavy-Duty Diesel Vehicle 8B	31.6	144.9	6.0
		Motorcycle	27.0	2.3	8.2
		All Gasoline Bus	9.4	0.8	0.6
		Diesel Commercial Bus	0.7	2.7	0.1
		Diesel School Bus	0.6	3.3	0.2
		Light-Duty Diesel Truck 3 and 4	1.0	1.4	0.6
		Road Type Total	8,590.7	977.2	649.2

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Middlesex	Local	Light-Duty Gasoline Vehicle	629.8	74.4	104.5
		Light-Duty Gasoline Truck 1	167.4	12.2	23.3
		Light-Duty Gasoline Truck 2	309.9	36.5	33.7
		Light-Duty Gasoline Truck 3	162.0	13.3	19.7
		Light-Duty Gasoline Truck 4	53.4	7.1	6.1
		Heavy-Duty Gasoline Vehicle 2B	26.5	3.3	2.3
		Heavy-Duty Gasoline Vehicle 3	2.6	0.1	0.2
		Heavy-Duty Gasoline Vehicle 4	2.0	0.1	0.2
		Heavy-Duty Gasoline Vehicle 5	2.5	0.2	0.2
		Heavy-Duty Gasoline Vehicle 6	5.2	0.4	0.4
		Heavy-Duty Gasoline Vehicle 7	4.0	0.2	0.3
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.2	0.1	0.1
		Light-Duty Diesel Truck 1 and 2	0.1	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	0.7	1.5	0.1
		Heavy-Duty Diesel Vehicle 3	0.2	0.5	0.1
		Heavy-Duty Diesel Vehicle 4	0.2	0.5	0.1
		Heavy-Duty Diesel Vehicle 5	0.1	0.3	0.0
		Heavy-Duty Diesel Vehicle 6	0.7	1.9	0.2
		Heavy-Duty Diesel Vehicle 7	1.5	3.6	0.4
		Heavy-Duty Diesel Vehicle 8A	2.8	5.5	0.5
		Heavy-Duty Diesel Vehicle 8B	12.8	22.2	2.1
		Motorcycle	19.0	0.6	3.8
		All Gasoline Bus	3.9	0.1	0.3
		Diesel Commercial Bus	0.3	0.7	0.0
		Diesel School Bus	0.3	0.7	0.1
		Light-Duty Diesel Truck 3 and 4	0.4	0.4	0.2
		Road Type Total	1,408.4	186.5	198.8

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Middlesex	Ramp	Light-Duty Gasoline Vehicle	310.9	17.2	15.8
		Light-Duty Gasoline Truck 1	51.7	3.0	3.4
		Light-Duty Gasoline Truck 2	128.3	9.1	5.3
		Light-Duty Gasoline Truck 3	48.5	3.2	2.9
		Light-Duty Gasoline Truck 4	18.5	1.7	0.9
		Heavy-Duty Gasoline Vehicle 2B	7.2	3.0	0.7
		Heavy-Duty Gasoline Vehicle 3	0.7	0.1	0.1
		Heavy-Duty Gasoline Vehicle 4	0.6	0.1	0.1
		Heavy-Duty Gasoline Vehicle 5	0.6	0.2	0.1
		Heavy-Duty Gasoline Vehicle 6	1.5	0.3	0.1
		Heavy-Duty Gasoline Vehicle 7	1.1	0.2	0.1
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.0	0.0	0.0
		Light-Duty Diesel Truck 1 and 2	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	0.2	0.8	0.1
		Heavy-Duty Diesel Vehicle 3	0.1	0.3	0.0
		Heavy-Duty Diesel Vehicle 4	0.1	0.3	0.0
		Heavy-Duty Diesel Vehicle 5	0.0	0.1	0.0
		Heavy-Duty Diesel Vehicle 6	0.2	1.0	0.1
		Heavy-Duty Diesel Vehicle 7	0.4	1.9	0.1
		Heavy-Duty Diesel Vehicle 8A	0.7	2.9	0.2
		Heavy-Duty Diesel Vehicle 8B	3.5	11.7	0.7
		Motorcycle	0.3	0.0	0.1
		All Gasoline Bus	1.0	0.1	0.1
		Diesel Commercial Bus	0.1	0.4	0.0
		Diesel School Bus	0.1	0.4	0.0
		Light-Duty Diesel Truck 3 and 4	0.0	0.1	0.0
		Road Type Total	576.2	58.0	30.8
		County Total	24,447.2	3,823.8	1,641.6

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
New Haven	Freeway	Light-Duty Gasoline Vehicle	24,184.6	1,733.5	1,476.1
		Light-Duty Gasoline Truck 1	5,133.0	305.5	318.8
		Light-Duty Gasoline Truck 2	11,667.0	920.9	469.3
		Light-Duty Gasoline Truck 3	4,937.6	329.4	278.4
		Light-Duty Gasoline Truck 4	1,802.7	171.6	88.5
		Heavy-Duty Gasoline Vehicle 2B	1,032.0	417.3	67.3
		Heavy-Duty Gasoline Vehicle 3	98.9	17.7	4.6
		Heavy-Duty Gasoline Vehicle 4	79.9	10.9	4.9
		Heavy-Duty Gasoline Vehicle 5	88.6	21.9	5.6
		Heavy-Duty Gasoline Vehicle 6	208.2	47.3	12.5
		Heavy-Duty Gasoline Vehicle 7	151.9	25.5	8.2
		Heavy-Duty Gasoline Vehicle 8A	0.5	0.1	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	3.0	3.8	1.1
		Light-Duty Diesel Truck 1 and 2	0.8	0.8	0.4
		Heavy-Duty Diesel Vehicle 2B	21.7	156.1	4.6
		Heavy-Duty Diesel Vehicle 3	7.6	53.3	1.5
		Heavy-Duty Diesel Vehicle 4	7.6	56.2	1.6
		Heavy-Duty Diesel Vehicle 5	3.3	25.7	0.7
		Heavy-Duty Diesel Vehicle 6	24.6	215.5	6.0
		Heavy-Duty Diesel Vehicle 7	46.8	399.6	11.3
		Heavy-Duty Diesel Vehicle 8A	88.2	839.2	14.2
		Heavy-Duty Diesel Vehicle 8B	418.1	3,483.1	63.6
		Motorcycle	45.1	3.8	11.0
		All Gasoline Bus	145.0	12.1	6.0
		Diesel Commercial Bus	10.8	69.6	1.4
		Diesel School Bus	8.1	69.2	2.1
		Light-Duty Diesel Truck 3 and 4	4.7	10.1	2.3
		Road Type Total	50,220.3	9,399.4	2,862.0

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
New Haven	Arterial	Light-Duty Gasoline Vehicle	16,803.2	1,498.8	1,496.9
		Light-Duty Gasoline Truck 1	3,684.0	255.5	332.1
		Light-Duty Gasoline Truck 2	7,876.5	767.7	473.9
		Light-Duty Gasoline Truck 3	3,574.0	277.3	283.2
		Light-Duty Gasoline Truck 4	1,263.9	145.7	87.6
		Heavy-Duty Gasoline Vehicle 2B	306.0	101.8	29.5
		Heavy-Duty Gasoline Vehicle 3	28.5	4.2	2.0
		Heavy-Duty Gasoline Vehicle 4	23.2	2.6	2.0
		Heavy-Duty Gasoline Vehicle 5	26.0	5.3	2.3
		Heavy-Duty Gasoline Vehicle 6	62.3	11.6	5.4
		Heavy-Duty Gasoline Vehicle 7	45.0	6.2	3.5
		Heavy-Duty Gasoline Vehicle 8A	0.1	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	2.9	2.2	1.1
		Light-Duty Diesel Truck 1 and 2	0.7	0.5	0.4
		Heavy-Duty Diesel Vehicle 2B	7.7	30.0	2.0
		Heavy-Duty Diesel Vehicle 3	2.6	9.9	0.6
		Heavy-Duty Diesel Vehicle 4	2.6	10.5	0.7
		Heavy-Duty Diesel Vehicle 5	1.2	4.9	0.3
		Heavy-Duty Diesel Vehicle 6	8.7	39.6	2.6
		Heavy-Duty Diesel Vehicle 7	16.4	72.8	4.9
		Heavy-Duty Diesel Vehicle 8A	31.4	141.3	6.2
		Heavy-Duty Diesel Vehicle 8B	147.0	584.4	27.6
		Motorcycle	125.8	9.1	35.0
		All Gasoline Bus	43.3	2.9	2.8
		Diesel Commercial Bus	3.0	10.7	0.5
		Diesel School Bus	2.9	13.3	0.9
		Light-Duty Diesel Truck 3 and 4	4.6	5.8	2.7
		Road Type Total	34,093.3	4,014.3	2,806.7

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
New Haven	Local	Light-Duty Gasoline Vehicle	2,401.3	283.5	398.4
		Light-Duty Gasoline Truck 1	638.1	46.6	89.0
		Light-Duty Gasoline Truck 2	1,181.6	139.3	128.5
		Light-Duty Gasoline Truck 3	617.5	50.8	75.1
		Light-Duty Gasoline Truck 4	203.5	26.9	23.1
		Heavy-Duty Gasoline Vehicle 2B	101.1	12.7	8.9
		Heavy-Duty Gasoline Vehicle 3	9.9	0.6	0.7
		Heavy-Duty Gasoline Vehicle 4	7.5	0.3	0.6
		Heavy-Duty Gasoline Vehicle 5	9.4	0.7	0.8
		Heavy-Duty Gasoline Vehicle 6	20.0	1.4	1.6
		Heavy-Duty Gasoline Vehicle 7	15.1	0.8	1.1
		Heavy-Duty Gasoline Vehicle 8A	0.1	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.9	0.6	0.3
		Light-Duty Diesel Truck 1 and 2	0.2	0.1	0.1
		Heavy-Duty Diesel Vehicle 2B	2.5	5.7	0.6
		Heavy-Duty Diesel Vehicle 3	0.9	2.0	0.2
		Heavy-Duty Diesel Vehicle 4	0.9	2.0	0.2
		Heavy-Duty Diesel Vehicle 5	0.4	1.0	0.1
		Heavy-Duty Diesel Vehicle 6	2.8	7.2	0.7
		Heavy-Duty Diesel Vehicle 7	5.6	13.9	1.4
		Heavy-Duty Diesel Vehicle 8A	10.5	20.8	1.8
		Heavy-Duty Diesel Vehicle 8B	49.0	84.7	7.8
		Motorcycle	72.5	2.4	14.6
		All Gasoline Bus	15.0	0.4	1.0
		Diesel Commercial Bus	1.3	2.7	0.2
		Diesel School Bus	1.0	2.7	0.3
		Light-Duty Diesel Truck 3 and 4	1.7	1.5	0.9
		Road Type Total	5,370.2	711.2	757.9

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
New Haven	Ramp	Light-Duty Gasoline Vehicle	1,467.5	81.2	74.6
		Light-Duty Gasoline Truck 1	244.0	14.3	15.9
		Light-Duty Gasoline Truck 2	605.5	43.0	25.1
		Light-Duty Gasoline Truck 3	229.0	15.1	13.8
		Light-Duty Gasoline Truck 4	87.4	7.8	4.5
		Heavy-Duty Gasoline Vehicle 2B	34.0	13.9	3.4
		Heavy-Duty Gasoline Vehicle 3	3.3	0.6	0.2
		Heavy-Duty Gasoline Vehicle 4	2.6	0.4	0.2
		Heavy-Duty Gasoline Vehicle 5	2.9	0.7	0.3
		Heavy-Duty Gasoline Vehicle 6	6.9	1.6	0.6
		Heavy-Duty Gasoline Vehicle 7	5.0	0.8	0.4
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.1	0.1	0.0
		Light-Duty Diesel Truck 1 and 2	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	0.9	3.8	0.2
		Heavy-Duty Diesel Vehicle 3	0.3	1.3	0.1
		Heavy-Duty Diesel Vehicle 4	0.3	1.4	0.1
		Heavy-Duty Diesel Vehicle 5	0.1	0.6	0.0
		Heavy-Duty Diesel Vehicle 6	1.0	4.9	0.3
		Heavy-Duty Diesel Vehicle 7	1.9	9.1	0.6
		Heavy-Duty Diesel Vehicle 8A	3.5	13.5	0.8
		Heavy-Duty Diesel Vehicle 8B	16.7	55.4	3.4
		Motorcycle	1.3	0.1	0.4
		All Gasoline Bus	4.8	0.4	0.3
		Diesel Commercial Bus	0.4	1.7	0.1
		Diesel School Bus	0.3	1.7	0.1
		Light-Duty Diesel Truck 3 and 4	0.2	0.2	0.1
		Road Type Total	2,720.1	273.7	145.5
		County Total	92,403.9	14,398.7	6,572.1

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
New London	Freeway	Light-Duty Gasoline Vehicle	10,033.2	688.5	593.7
		Light-Duty Gasoline Truck 1	2,086.8	121.2	127.2
		Light-Duty Gasoline Truck 2	4,819.4	366.4	187.9
		Light-Duty Gasoline Truck 3	2,023.5	130.5	111.4
		Light-Duty Gasoline Truck 4	744.5	68.1	35.5
		Heavy-Duty Gasoline Vehicle 2B	427.0	167.0	27.1
		Heavy-Duty Gasoline Vehicle 3	41.6	7.1	1.9
		Heavy-Duty Gasoline Vehicle 4	33.7	4.3	2.0
		Heavy-Duty Gasoline Vehicle 5	37.0	8.8	2.3
		Heavy-Duty Gasoline Vehicle 6	87.2	18.8	5.1
		Heavy-Duty Gasoline Vehicle 7	63.9	10.1	3.3
		Heavy-Duty Gasoline Vehicle 8A	0.2	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	1.2	1.6	0.4
		Light-Duty Diesel Truck 1 and 2	0.3	0.3	0.2
		Heavy-Duty Diesel Vehicle 2B	8.5	64.1	1.8
		Heavy-Duty Diesel Vehicle 3	3.0	21.9	0.6
		Heavy-Duty Diesel Vehicle 4	3.0	23.0	0.6
		Heavy-Duty Diesel Vehicle 5	1.3	10.5	0.3
		Heavy-Duty Diesel Vehicle 6	9.7	88.3	2.3
		Heavy-Duty Diesel Vehicle 7	18.4	163.6	4.3
		Heavy-Duty Diesel Vehicle 8A	34.6	340.2	5.4
		Heavy-Duty Diesel Vehicle 8B	164.2	1,411.8	24.3
		Motorcycle	19.9	1.5	4.5
		All Gasoline Bus	61.5	4.7	2.4
		Diesel Commercial Bus	4.2	28.6	0.5
		Diesel School Bus	3.2	28.4	0.8
		Light-Duty Diesel Truck 3 and 4	1.9	4.1	0.9
		Road Type Total	20,733.1	3,783.4	1,146.6

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
New London	Arterial	Light-Duty Gasoline Vehicle	9,531.3	823.1	832.9
		Light-Duty Gasoline Truck 1	2,049.8	139.6	184.1
		Light-Duty Gasoline Truck 2	4,444.1	420.6	262.6
		Light-Duty Gasoline Truck 3	2,008.2	151.4	157.1
		Light-Duty Gasoline Truck 4	715.1	79.6	48.5
		Heavy-Duty Gasoline Vehicle 2B	166.3	56.5	16.2
		Heavy-Duty Gasoline Vehicle 3	15.7	2.3	1.1
		Heavy-Duty Gasoline Vehicle 4	12.8	1.4	1.1
		Heavy-Duty Gasoline Vehicle 5	14.3	2.9	1.3
		Heavy-Duty Gasoline Vehicle 6	34.2	6.4	3.0
		Heavy-Duty Gasoline Vehicle 7	24.9	3.4	1.9
		Heavy-Duty Gasoline Vehicle 8A	0.1	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	1.5	1.2	0.6
		Light-Duty Diesel Truck 1 and 2	0.4	0.3	0.2
		Heavy-Duty Diesel Vehicle 2B	4.0	16.5	1.1
		Heavy-Duty Diesel Vehicle 3	1.3	5.4	0.3
		Heavy-Duty Diesel Vehicle 4	1.4	5.8	0.4
		Heavy-Duty Diesel Vehicle 5	0.6	2.7	0.2
		Heavy-Duty Diesel Vehicle 6	4.6	21.8	1.4
		Heavy-Duty Diesel Vehicle 7	8.6	40.0	2.6
		Heavy-Duty Diesel Vehicle 8A	16.4	77.6	3.3
		Heavy-Duty Diesel Vehicle 8B	76.9	320.9	14.5
		Motorcycle	70.1	4.9	19.4
		All Gasoline Bus	24.1	1.6	1.5
		Diesel Commercial Bus	1.6	5.9	0.3
		Diesel School Bus	1.5	7.3	0.5
		Light-Duty Diesel Truck 3 and 4	2.5	3.2	1.4
		Road Type Total	19,232.1	2,202.2	1,557.2

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
New London	Local	Light-Duty Gasoline Vehicle	978.0	116.8	167.9
		Light-Duty Gasoline Truck 1	258.7	18.9	37.5
		Light-Duty Gasoline Truck 2	478.9	56.8	54.1
		Light-Duty Gasoline Truck 3	253.8	20.6	31.6
		Light-Duty Gasoline Truck 4	83.7	10.9	9.7
		Heavy-Duty Gasoline Vehicle 2B	42.4	5.2	3.7
		Heavy-Duty Gasoline Vehicle 3	4.2	0.2	0.3
		Heavy-Duty Gasoline Vehicle 4	3.2	0.1	0.2
		Heavy-Duty Gasoline Vehicle 5	4.0	0.3	0.3
		Heavy-Duty Gasoline Vehicle 6	8.5	0.6	0.7
		Heavy-Duty Gasoline Vehicle 7	6.5	0.3	0.5
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.4	0.2	0.1
		Light-Duty Diesel Truck 1 and 2	0.1	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	1.0	2.3	0.2
		Heavy-Duty Diesel Vehicle 3	0.4	0.8	0.1
		Heavy-Duty Diesel Vehicle 4	0.3	0.8	0.1
		Heavy-Duty Diesel Vehicle 5	0.2	0.4	0.0
		Heavy-Duty Diesel Vehicle 6	1.1	2.9	0.3
		Heavy-Duty Diesel Vehicle 7	2.2	5.6	0.6
		Heavy-Duty Diesel Vehicle 8A	4.2	8.4	0.7
		Heavy-Duty Diesel Vehicle 8B	19.8	34.3	3.2
		Motorcycle	31.3	0.9	6.0
		All Gasoline Bus	6.4	0.2	0.4
		Diesel Commercial Bus	0.5	1.1	0.1
		Diesel School Bus	0.4	1.1	0.1
		Light-Duty Diesel Truck 3 and 4	0.7	0.6	0.4
		Road Type Total	2,191.0	290.5	319.0

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
New London	Ramp	Light-Duty Gasoline Vehicle	451.0	24.3	22.9
		Light-Duty Gasoline Truck 1	73.2	4.3	4.9
		Light-Duty Gasoline Truck 2	182.5	12.9	7.7
		Light-Duty Gasoline Truck 3	69.3	4.5	4.2
		Light-Duty Gasoline Truck 4	26.5	2.3	1.4
		Heavy-Duty Gasoline Vehicle 2B	10.5	4.2	1.1
		Heavy-Duty Gasoline Vehicle 3	1.0	0.2	0.1
		Heavy-Duty Gasoline Vehicle 4	0.8	0.1	0.1
		Heavy-Duty Gasoline Vehicle 5	0.9	0.2	0.1
		Heavy-Duty Gasoline Vehicle 6	2.2	0.5	0.2
		Heavy-Duty Gasoline Vehicle 7	1.6	0.3	0.1
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.0	0.0	0.0
		Light-Duty Diesel Truck 1 and 2	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	0.3	1.1	0.1
		Heavy-Duty Diesel Vehicle 3	0.1	0.4	0.0
		Heavy-Duty Diesel Vehicle 4	0.1	0.4	0.0
		Heavy-Duty Diesel Vehicle 5	0.0	0.2	0.0
		Heavy-Duty Diesel Vehicle 6	0.3	1.5	0.1
		Heavy-Duty Diesel Vehicle 7	0.6	2.7	0.2
		Heavy-Duty Diesel Vehicle 8A	1.1	4.0	0.2
		Heavy-Duty Diesel Vehicle 8B	5.0	16.6	1.0
		Motorcycle	0.4	0.0	0.1
		All Gasoline Bus	1.5	0.1	0.1
		Diesel Commercial Bus	0.1	0.5	0.0
		Diesel School Bus	0.1	0.5	0.0
		Light-Duty Diesel Truck 3 and 4	0.1	0.1	0.0
		Road Type Total	829.1	82.0	44.7
		County Total	42,985.3	6,358.1	3,067.5

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Tolland	Freeway	Light-Duty Gasoline Vehicle	4,986.7	340.4	292.5
		Light-Duty Gasoline Truck 1	1,036.8	60.0	62.6
		Light-Duty Gasoline Truck 2	2,396.5	181.3	92.6
		Light-Duty Gasoline Truck 3	1,005.1	64.6	54.9
		Light-Duty Gasoline Truck 4	370.0	33.7	17.5
		Heavy-Duty Gasoline Vehicle 2B	215.6	82.9	13.3
		Heavy-Duty Gasoline Vehicle 3	21.0	3.5	0.9
		Heavy-Duty Gasoline Vehicle 4	17.0	2.1	1.0
		Heavy-Duty Gasoline Vehicle 5	18.7	4.3	1.1
		Heavy-Duty Gasoline Vehicle 6	44.0	9.4	2.5
		Heavy-Duty Gasoline Vehicle 7	32.3	5.0	1.6
		Heavy-Duty Gasoline Vehicle 8A	0.1	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.6	0.8	0.2
		Light-Duty Diesel Truck 1 and 2	0.2	0.2	0.1
		Heavy-Duty Diesel Vehicle 2B	4.3	32.4	0.9
		Heavy-Duty Diesel Vehicle 3	1.5	11.1	0.3
		Heavy-Duty Diesel Vehicle 4	1.5	11.7	0.3
		Heavy-Duty Diesel Vehicle 5	0.7	5.3	0.1
		Heavy-Duty Diesel Vehicle 6	4.8	44.6	1.1
		Heavy-Duty Diesel Vehicle 7	9.2	82.7	2.1
		Heavy-Duty Diesel Vehicle 8A	17.3	170.9	2.7
		Heavy-Duty Diesel Vehicle 8B	82.1	709.0	12.0
		Motorcycle	10.4	0.7	2.3
		All Gasoline Bus	31.1	2.4	1.2
		Diesel Commercial Bus	2.1	14.5	0.3
		Diesel School Bus	1.6	14.4	0.4
		Light-Duty Diesel Truck 3 and 4	0.9	2.1	0.4
		Road Type Total	10,312.3	1,890.0	564.9

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Tolland	Arterial	Light-Duty Gasoline Vehicle	5,223.7	430.9	421.8
		Light-Duty Gasoline Truck 1	1,122.5	74.0	92.8
		Light-Duty Gasoline Truck 2	2,465.7	222.6	132.8
		Light-Duty Gasoline Truck 3	1,097.7	80.1	79.7
		Light-Duty Gasoline Truck 4	393.5	42.1	24.7
		Heavy-Duty Gasoline Vehicle 2B	79.2	31.4	7.6
		Heavy-Duty Gasoline Vehicle 3	7.5	1.3	0.5
		Heavy-Duty Gasoline Vehicle 4	6.1	0.8	0.5
		Heavy-Duty Gasoline Vehicle 5	6.8	1.6	0.6
		Heavy-Duty Gasoline Vehicle 6	16.3	3.6	1.4
		Heavy-Duty Gasoline Vehicle 7	11.8	1.9	0.9
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.8	0.7	0.3
		Light-Duty Diesel Truck 1 and 2	0.2	0.1	0.1
		Heavy-Duty Diesel Vehicle 2B	1.9	9.0	0.5
		Heavy-Duty Diesel Vehicle 3	0.6	3.0	0.2
		Heavy-Duty Diesel Vehicle 4	0.6	3.1	0.2
		Heavy-Duty Diesel Vehicle 5	0.3	1.5	0.1
		Heavy-Duty Diesel Vehicle 6	2.1	11.9	0.7
		Heavy-Duty Diesel Vehicle 7	4.0	21.8	1.2
		Heavy-Duty Diesel Vehicle 8A	7.7	42.2	1.6
		Heavy-Duty Diesel Vehicle 8B	36.3	174.4	6.9
		Motorcycle	32.8	2.7	10.0
		All Gasoline Bus	11.5	0.9	0.7
		Diesel Commercial Bus	0.7	3.2	0.1
		Diesel School Bus	0.7	4.0	0.2
		Light-Duty Diesel Truck 3 and 4	1.2	1.7	0.7
		Road Type Total	10,532.4	1,170.3	786.9

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Tolland	Local	Light-Duty Gasoline Vehicle	586.9	70.1	100.8
		Light-Duty Gasoline Truck 1	155.3	11.4	22.5
		Light-Duty Gasoline Truck 2	287.4	34.1	32.5
		Light-Duty Gasoline Truck 3	152.4	12.4	19.0
		Light-Duty Gasoline Truck 4	50.2	6.6	5.8
		Heavy-Duty Gasoline Vehicle 2B	25.4	3.1	2.3
		Heavy-Duty Gasoline Vehicle 3	2.5	0.1	0.2
		Heavy-Duty Gasoline Vehicle 4	1.9	0.1	0.1
		Heavy-Duty Gasoline Vehicle 5	2.4	0.2	0.2
		Heavy-Duty Gasoline Vehicle 6	5.1	0.3	0.4
		Heavy-Duty Gasoline Vehicle 7	3.9	0.2	0.3
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.2	0.1	0.1
		Light-Duty Diesel Truck 1 and 2	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	0.6	1.4	0.1
		Heavy-Duty Diesel Vehicle 3	0.2	0.5	0.0
		Heavy-Duty Diesel Vehicle 4	0.2	0.5	0.0
		Heavy-Duty Diesel Vehicle 5	0.1	0.2	0.0
		Heavy-Duty Diesel Vehicle 6	0.7	1.7	0.2
		Heavy-Duty Diesel Vehicle 7	1.4	3.4	0.3
		Heavy-Duty Diesel Vehicle 8A	2.6	5.1	0.4
		Heavy-Duty Diesel Vehicle 8B	11.9	20.6	1.9
		Motorcycle	18.8	0.6	3.6
		All Gasoline Bus	3.9	0.1	0.2
		Diesel Commercial Bus	0.3	0.7	0.0
		Diesel School Bus	0.2	0.6	0.1
		Light-Duty Diesel Truck 3 and 4	0.4	0.4	0.2
		Road Type Total	1,315.0	174.3	191.6

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Tolland	Ramp	Light-Duty Gasoline Vehicle	144.2	7.8	7.3
		Light-Duty Gasoline Truck 1	23.4	1.4	1.6
		Light-Duty Gasoline Truck 2	58.4	4.1	2.5
		Light-Duty Gasoline Truck 3	22.2	1.4	1.4
		Light-Duty Gasoline Truck 4	8.5	0.8	0.4
		Heavy-Duty Gasoline Vehicle 2B	3.4	1.3	0.3
		Heavy-Duty Gasoline Vehicle 3	0.3	0.1	0.0
		Heavy-Duty Gasoline Vehicle 4	0.3	0.0	0.0
		Heavy-Duty Gasoline Vehicle 5	0.3	0.1	0.0
		Heavy-Duty Gasoline Vehicle 6	0.7	0.2	0.1
		Heavy-Duty Gasoline Vehicle 7	0.5	0.1	0.0
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.0	0.0	0.0
		Light-Duty Diesel Truck 1 and 2	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	0.1	0.4	0.0
		Heavy-Duty Diesel Vehicle 3	0.0	0.1	0.0
		Heavy-Duty Diesel Vehicle 4	0.0	0.1	0.0
		Heavy-Duty Diesel Vehicle 5	0.0	0.1	0.0
		Heavy-Duty Diesel Vehicle 6	0.1	0.5	0.0
		Heavy-Duty Diesel Vehicle 7	0.2	0.9	0.1
		Heavy-Duty Diesel Vehicle 8A	0.3	1.3	0.1
		Heavy-Duty Diesel Vehicle 8B	1.6	5.3	0.3
		Motorcycle	0.1	0.0	0.0
		All Gasoline Bus	0.5	0.0	0.0
		Diesel Commercial Bus	0.0	0.2	0.0
		Diesel School Bus	0.0	0.2	0.0
		Light-Duty Diesel Truck 3 and 4	0.0	0.0	0.0
		Road Type Total	265.2	26.2	14.3
		County Total	22,425.0	3,260.8	1,557.7

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Windham	Freeway	Light-Duty Gasoline Vehicle	2,353.5	160.2	137.5
		Light-Duty Gasoline Truck 1	488.7	28.2	29.4
		Light-Duty Gasoline Truck 2	1,131.0	85.4	43.5
		Light-Duty Gasoline Truck 3	473.7	30.4	25.8
		Light-Duty Gasoline Truck 4	174.5	15.9	8.2
		Heavy-Duty Gasoline Vehicle 2B	101.8	39.0	6.3
		Heavy-Duty Gasoline Vehicle 3	9.9	1.6	0.4
		Heavy-Duty Gasoline Vehicle 4	8.0	1.0	0.5
		Heavy-Duty Gasoline Vehicle 5	8.8	2.0	0.5
		Heavy-Duty Gasoline Vehicle 6	20.8	4.4	1.2
		Heavy-Duty Gasoline Vehicle 7	15.3	2.4	0.8
		Heavy-Duty Gasoline Vehicle 8A	0.1	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.3	0.4	0.1
		Light-Duty Diesel Truck 1 and 2	0.1	0.1	0.0
		Heavy-Duty Diesel Vehicle 2B	2.0	15.3	0.4
		Heavy-Duty Diesel Vehicle 3	0.7	5.2	0.1
		Heavy-Duty Diesel Vehicle 4	0.7	5.5	0.1
		Heavy-Duty Diesel Vehicle 5	0.3	2.5	0.1
		Heavy-Duty Diesel Vehicle 6	2.3	21.1	0.5
		Heavy-Duty Diesel Vehicle 7	4.3	39.0	1.0
		Heavy-Duty Diesel Vehicle 8A	8.2	80.5	1.3
		Heavy-Duty Diesel Vehicle 8B	38.7	334.2	5.6
		Motorcycle	4.9	0.3	1.1
		All Gasoline Bus	14.7	1.1	0.5
		Diesel Commercial Bus	1.0	6.8	0.1
		Diesel School Bus	0.8	6.8	0.2
		Light-Duty Diesel Truck 3 and 4	0.4	1.0	0.2
		Road Type Total	4,865.4	890.5	265.5

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Windham	Arterial	Light-Duty Gasoline Vehicle	4,754.7	385.9	375.7
		Light-Duty Gasoline Truck 1	1,019.6	66.5	82.6
		Light-Duty Gasoline Truck 2	2,250.3	199.9	118.3
		Light-Duty Gasoline Truck 3	996.6	72.0	71.0
		Light-Duty Gasoline Truck 4	358.1	37.8	22.1
		Heavy-Duty Gasoline Vehicle 2B	68.9	28.5	6.6
		Heavy-Duty Gasoline Vehicle 3	6.5	1.2	0.4
		Heavy-Duty Gasoline Vehicle 4	5.3	0.7	0.5
		Heavy-Duty Gasoline Vehicle 5	5.9	1.5	0.5
		Heavy-Duty Gasoline Vehicle 6	14.2	3.2	1.2
		Heavy-Duty Gasoline Vehicle 7	10.3	1.7	0.8
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.7	0.6	0.3
		Light-Duty Diesel Truck 1 and 2	0.2	0.1	0.1
		Heavy-Duty Diesel Vehicle 2B	1.6	8.1	0.4
		Heavy-Duty Diesel Vehicle 3	0.6	2.7	0.1
		Heavy-Duty Diesel Vehicle 4	0.6	2.8	0.2
		Heavy-Duty Diesel Vehicle 5	0.2	1.3	0.1
		Heavy-Duty Diesel Vehicle 6	1.9	10.7	0.6
		Heavy-Duty Diesel Vehicle 7	3.5	19.6	1.1
		Heavy-Duty Diesel Vehicle 8A	6.7	38.0	1.4
		Heavy-Duty Diesel Vehicle 8B	31.5	156.9	6.0
		Motorcycle	28.6	2.4	8.9
		All Gasoline Bus	10.0	0.8	0.6
		Diesel Commercial Bus	0.6	2.9	0.1
		Diesel School Bus	0.6	3.6	0.2
		Light-Duty Diesel Truck 3 and 4	1.1	1.6	0.6
		Road Type Total	9,578.7	1,051.0	700.3

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Windham	Local	Light-Duty Gasoline Vehicle	363.2	43.4	62.3
		Light-Duty Gasoline Truck 1	96.1	7.0	13.9
		Light-Duty Gasoline Truck 2	177.8	21.1	20.1
		Light-Duty Gasoline Truck 3	94.3	7.7	11.7
		Light-Duty Gasoline Truck 4	31.1	4.1	3.6
		Heavy-Duty Gasoline Vehicle 2B	15.7	1.9	1.4
		Heavy-Duty Gasoline Vehicle 3	1.6	0.1	0.1
		Heavy-Duty Gasoline Vehicle 4	1.2	0.0	0.1
		Heavy-Duty Gasoline Vehicle 5	1.5	0.1	0.1
		Heavy-Duty Gasoline Vehicle 6	3.1	0.2	0.2
		Heavy-Duty Gasoline Vehicle 7	2.4	0.1	0.2
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.1	0.1	0.1
		Light-Duty Diesel Truck 1 and 2	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	0.4	0.9	0.1
		Heavy-Duty Diesel Vehicle 3	0.1	0.3	0.0
		Heavy-Duty Diesel Vehicle 4	0.1	0.3	0.0
		Heavy-Duty Diesel Vehicle 5	0.1	0.2	0.0
		Heavy-Duty Diesel Vehicle 6	0.4	1.1	0.1
		Heavy-Duty Diesel Vehicle 7	0.8	2.1	0.2
		Heavy-Duty Diesel Vehicle 8A	1.6	3.1	0.3
		Heavy-Duty Diesel Vehicle 8B	7.4	12.7	1.2
		Motorcycle	11.6	0.3	2.2
		All Gasoline Bus	2.4	0.1	0.2
		Diesel Commercial Bus	0.2	0.4	0.0
		Diesel School Bus	0.2	0.4	0.0
		Light-Duty Diesel Truck 3 and 4	0.3	0.2	0.1
		Road Type Total	813.7	107.9	118.5

			СО	NOx	VOC
County	Road Type	Vehicle Class	(tons/year)	(tons/year)	(tons/year)
Windham	Ramp	Light-Duty Gasoline Vehicle	149.9	8.1	7.6
		Light-Duty Gasoline Truck 1	24.3	1.4	1.6
		Light-Duty Gasoline Truck 2	60.7	4.3	2.6
		Light-Duty Gasoline Truck 3	23.0	1.5	1.4
		Light-Duty Gasoline Truck 4	8.8	0.8	0.5
		Heavy-Duty Gasoline Vehicle 2B	3.5	1.4	0.4
		Heavy-Duty Gasoline Vehicle 3	0.3	0.1	0.0
		Heavy-Duty Gasoline Vehicle 4	0.3	0.0	0.0
		Heavy-Duty Gasoline Vehicle 5	0.3	0.1	0.0
		Heavy-Duty Gasoline Vehicle 6	0.7	0.2	0.1
		Heavy-Duty Gasoline Vehicle 7	0.5	0.1	0.0
		Heavy-Duty Gasoline Vehicle 8A	0.0	0.0	0.0
		Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
		Light-Duty Diesel Vehicle	0.0	0.0	0.0
		Light-Duty Diesel Truck 1 and 2	0.0	0.0	0.0
		Heavy-Duty Diesel Vehicle 2B	0.1	0.4	0.0
		Heavy-Duty Diesel Vehicle 3	0.0	0.1	0.0
		Heavy-Duty Diesel Vehicle 4	0.0	0.1	0.0
		Heavy-Duty Diesel Vehicle 5	0.0	0.1	0.0
		Heavy-Duty Diesel Vehicle 6	0.1	0.5	0.0
		Heavy-Duty Diesel Vehicle 7	0.2	0.9	0.1
		Heavy-Duty Diesel Vehicle 8A	0.4	1.3	0.1
		Heavy-Duty Diesel Vehicle 8B	1.7	5.5	0.3
		Motorcycle	0.1	0.0	0.0
		All Gasoline Bus	0.5	0.0	0.0
		Diesel Commercial Bus	0.0	0.2	0.0
		Diesel School Bus	0.0	0.2	0.0
		Light-Duty Diesel Truck 3 and 4	0.0	0.0	0.0
		Road Type Total	275.6	27.2	14.8
		County Total	15,533.4	2,076.5	1,099.1
		State Total	426,370.7	64,027.6	30,911.1

		СО	NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Freeway	Light-Duty Gasoline Vehicle	100,083.0	7,062.9	6,067.0
	Light-Duty Gasoline Truck 1	21,064.7	1,243.1	1,306.5
	Light-Duty Gasoline Truck 2	48,167.3	3,752.4	1,925.0
	Light-Duty Gasoline Truck 3	20,337.7	1,339.9	1,141.9
	Light-Duty Gasoline Truck 4	7,446.7	698.6	363.0
	Heavy-Duty Gasoline Vehicle 2B	4,277.2	1,701.6	278.3
	Heavy-Duty Gasoline Vehicle 3	413.3	72.1	19.1
	Heavy-Duty Gasoline Vehicle 4	333.8	44.3	20.6
	Heavy-Duty Gasoline Vehicle 5	368.8	89.3	23.0
	Heavy-Duty Gasoline Vehicle 6	867.6	192.4	52.0
	Heavy-Duty Gasoline Vehicle 7	634.5	103.5	34.0
	Heavy-Duty Gasoline Vehicle	2.2	0.4	0.1
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle	12.3	15.7	4.3
	Light-Duty Diesel Truck 1 and	3.3	3.3	1.8
	Heavy-Duty Diesel Vehicle 2B	88.3	640.2	18.6
	Heavy-Duty Diesel Vehicle 3	30.9	218.5	6.3
	Heavy-Duty Diesel Vehicle 4	30.9	230.4	6.6
	Heavy-Duty Diesel Vehicle 5	13.6	105.3	2.9
	Heavy-Duty Diesel Vehicle 6	99.9	883.7	24.1
	Heavy-Duty Diesel Vehicle 7	190.3	1,638.5	45.5
	Heavy-Duty Diesel Vehicle 8A	358.5	3,433.4	57.5
	Heavy-Duty Diesel Vehicle 8B	1,700.0	14,249.7	257.1
	Motorcycle	191.2	15.3	45.4
	All Gasoline Bus	608.1	48.9	24.6
	Diesel Commercial Bus	43.8	285.4	5.8
	Diesel School Bus	33.1	283.8	8.3
	Light-Duty Diesel Truck 3 and	19.3	41.2	9.4
	Road Type Total	207,420.3	38,393.6	11,748.7

		СО	NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Arterial	Light-Duty Gasoline Vehicle	89,984.2	7,875.9	7,921.7
	Light-Duty Gasoline Truck 1	19,507.5	1,338.3	1,753.8
	Light-Duty Gasoline Truck 2	42,040.3	4,028.8	2,502.8
	Light-Duty Gasoline Truck 3	19,023.8	1,452.2	1,495.9
	Light-Duty Gasoline Truck 4	6,753.8	763.2	462.6
	Heavy-Duty Gasoline Vehicle 2B	1,608.5	537.1	155.5
	Heavy-Duty Gasoline Vehicle 3	151.1	22.0	10.5
	Heavy-Duty Gasoline Vehicle 4	123.0	13.6	10.6
	Heavy-Duty Gasoline Vehicle 5	137.3	27.8	12.3
	Heavy-Duty Gasoline Vehicle 6	329.3	61.0	28.3
	Heavy-Duty Gasoline Vehicle 7	238.5	32.4	18.4
	Heavy-Duty Gasoline Vehicle	0.8	0.1	0.1
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle	14.9	11.7	5.9
	Light-Duty Diesel Truck 1 and	3.8	2.5	2.3
	Heavy-Duty Diesel Vehicle 2B	39.4	158.0	10.3
	Heavy-Duty Diesel Vehicle 3	13.3	52.0	3.3
	Heavy-Duty Diesel Vehicle 4	13.4	55.3	3.5
	Heavy-Duty Diesel Vehicle 5	6.0	25.7	1.6
	Heavy-Duty Diesel Vehicle 6	44.8	208.9	13.4
	Heavy-Duty Diesel Vehicle 7	84.3	383.6	25.0
	Heavy-Duty Diesel Vehicle 8A	161.5	743.7	32.0
	Heavy-Duty Diesel Vehicle 8B	756.3	3,075.5	141.5
	Motorcycle	668.4	47.1	184.8
	All Gasoline Bus	230.6	15.4	14.5
	Diesel Commercial Bus	15.6	56.3	2.6
	Diesel School Bus	14.7	69.9	4.6
	Light-Duty Diesel Truck 3 and	24.0	30.5	13.8
	Road Type Total	181,988.9	21,088.2	14,831.6

		СО	NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Local	Light-Duty Gasoline Vehicle	11,695.6	1,388.6	1,973.5
	Light-Duty Gasoline Truck 1	3,101.0	226.8	441.2
	Light-Duty Gasoline Truck 2	5,740.8	678.8	636.5
	Light-Duty Gasoline Truck 3	3,021.3	247.1	371.9
	Light-Duty Gasoline Truck 4	995.9	130.9	114.5
	Heavy-Duty Gasoline Vehicle 2B	499.3	61.9	44.1
	Heavy-Duty Gasoline Vehicle 3	49.2	2.7	3.4
	Heavy-Duty Gasoline Vehicle 4	37.5	1.5	2.9
	Heavy-Duty Gasoline Vehicle 5	46.6	3.5	3.8
	Heavy-Duty Gasoline Vehicle 6	99.2	6.8	7.8
	Heavy-Duty Gasoline Vehicle 7	75.4	3.8	5.5
	Heavy-Duty Gasoline Vehicle	0.3	0.0	0.0
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle	4.5	2.7	1.7
	Light-Duty Diesel Truck 1 and	1.0	0.6	0.6
	Heavy-Duty Diesel Vehicle 2B	12.3	27.7	2.7
	Heavy-Duty Diesel Vehicle 3	4.4	9.6	0.9
	Heavy-Duty Diesel Vehicle 4	4.1	9.6	0.9
	Heavy-Duty Diesel Vehicle 5	2.0	4.9	0.5
	Heavy-Duty Diesel Vehicle 6	13.6	34.9	3.5
	Heavy-Duty Diesel Vehicle 7	27.0	67.4	6.8
	Heavy-Duty Diesel Vehicle 8A	50.9	101.2	8.6
	Heavy-Duty Diesel Vehicle 8B	237.8	411.3	38.0
	Motorcycle	363.8	11.4	71.6
	All Gasoline Bus	74.9	1.9	4.8
	Diesel Commercial Bus	6.4	13.0	0.9
	Diesel School Bus	4.8	12.9	1.3
	Light-Duty Diesel Truck 3 and	8.2	7.1	4.3
	Road Type Total	26,177.9	3,468.7	3,752.1

		СО	NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Ramp	Light-Duty Gasoline Vehicle	5,838.2	319.4	296.7
	Light-Duty Gasoline Truck 1	960.9	56.1	63.1
	Light-Duty Gasoline Truck 2	2,388.8	169.4	99.7
	Light-Duty Gasoline Truck 3	905.0	59.4	54.7
	Light-Duty Gasoline Truck 4	345.5	30.9	17.7
	Heavy-Duty Gasoline Vehicle 2B	135.7	54.8	13.7
	Heavy-Duty Gasoline Vehicle 3	13.1	2.3	0.9
	Heavy-Duty Gasoline Vehicle 4	10.6	1.4	1.0
	Heavy-Duty Gasoline Vehicle 5	11.7	2.9	1.1
	Heavy-Duty Gasoline Vehicle 6	27.5	6.2	2.5
	Heavy-Duty Gasoline Vehicle 7	20.1	3.3	1.6
	Heavy-Duty Gasoline Vehicle	0.1	0.0	0.0
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle	0.5	0.4	0.2
	Light-Duty Diesel Truck 1 and	0.1	0.1	0.1
	Heavy-Duty Diesel Vehicle 2B	3.4	15.0	1.0
	Heavy-Duty Diesel Vehicle 3	1.2	5.1	0.3
	Heavy-Duty Diesel Vehicle 4	1.2	5.4	0.3
	Heavy-Duty Diesel Vehicle 5	0.5	2.5	0.2
	Heavy-Duty Diesel Vehicle 6	3.9	19.3	1.2
	Heavy-Duty Diesel Vehicle 7	7.4	35.8	2.3
	Heavy-Duty Diesel Vehicle 8A	13.9	53.0	3.0
	Heavy-Duty Diesel Vehicle 8B	65.9	218.1	13.3
	Motorcycle	5.4	0.5	1.7
	All Gasoline Bus	19.3	1.6	1.2
	Diesel Commercial Bus	1.7	6.7	0.3
	Diesel School Bus	1.3	6.6	0.4
	Light-Duty Diesel Truck 3 and	0.7	1.0	0.4
	Road Type Total	10,783.7	1,077.0	578.7
	State Total	426,370.7	64,027.6	30,911.1

TABLE 152002 CONNECTICUT MOBILE SOURCE REPORT

Annual Emissions by 8-Hour Ozone Status Area

CT Portion CT-NY-NJ CMSA		СО	NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Freeway	Light-Duty Gasoline Vehicle	55,335.1	3,986.6	3,408.4
	Light-Duty Gasoline Truck 1	11,755.7	702.0	736.8
	Light-Duty Gasoline Truck 2	26,680.6	2,115.9	1,083.4
	Light-Duty Gasoline Truck 3	11,310.2	757.0	642.9
	Light-Duty Gasoline Truck 4	4,126.1	394.6	204.2
	Heavy-Duty Gasoline Vehicle 2B	2,357.9	956.8	156.4
	Heavy-Duty Gasoline Vehicle 3	226.1	40.6	10.7
	Heavy-Duty Gasoline Vehicle 4	182.5	25.0	11.5
	Heavy-Duty Gasoline Vehicle 5	202.5	50.3	12.9
	Heavy-Duty Gasoline Vehicle 6	475.8	108.3	29.1
	Heavy-Duty Gasoline Vehicle 7	347.1	58.4	19.0
	Heavy-Duty Gasoline Vehicle	1.2	0.2	0.1
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle	6.9	8.7	2.5
	Light-Duty Diesel Truck 1 and	1.8	1.8	1.0
	Heavy-Duty Diesel Vehicle 2B	49.9	354.1	10.7
	Heavy-Duty Diesel Vehicle 3	17.5	120.8	3.6
	Heavy-Duty Diesel Vehicle 4	17.5	127.4	3.8
	Heavy-Duty Diesel Vehicle 5	7.7	58.2	1.7
	Heavy-Duty Diesel Vehicle 6	56.5	489.5	13.9
	Heavy-Duty Diesel Vehicle 7	107.6	907.5	26.1
	Heavy-Duty Diesel Vehicle 8A	202.7	1,913.5	33.0
	Heavy-Duty Diesel Vehicle 8B	961.1	7,942.8	147.6
	Motorcycle	101.5	8.7	25.2
	All Gasoline Bus	331.3	27.7	13.8
	Diesel Commercial Bus	24.7	157.8	3.3
	Diesel School Bus	18.7	156.9	4.8
	Light-Duty Diesel Truck 3 and	10.9	22.8	5.3
	Road Type Total	114,917.1	21,493.9	6,611.6

,	•	• •	• • •	
T Portion CT-NY-NJ CMSA		СО	NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Arterial	Light-Duty Gasoline Vehicle	40,952.4	3,678.5	3,697.5
	Light-Duty Gasoline Truck 1	8,968.6	624.8	820.8
	Light-Duty Gasoline Truck 2	19,130.4	1,879.7	1,171.3
	Light-Duty Gasoline Truck 3	8,702.1	678.6	699.2
	Light-Duty Gasoline Truck 4	3,073.7	356.5	216.2
	Heavy-Duty Gasoline Vehicle 2B	771.6	246.0	74.2
	Heavy-Duty Gasoline Vehicle 3	71.8	10.1	5.1
	Heavy-Duty Gasoline Vehicle 4	58.4	6.3	5.0
	Heavy-Duty Gasoline Vehicle 5	65.5	12.8	5.8
	Heavy-Duty Gasoline Vehicle 6	157.0	28.0	13.5
	Heavy-Duty Gasoline Vehicle 7	113.4	14.9	8.8
	Heavy-Duty Gasoline Vehicle	0.4	0.1	0.0
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle	7.1	5.4	2.8
	Light-Duty Diesel Truck 1 and	1.8	1.1	1.1
	Heavy-Duty Diesel Vehicle 2B	19.3	73.3	5.0
	Heavy-Duty Diesel Vehicle 3	6.5	24.1	1.6
	Heavy-Duty Diesel Vehicle 4	6.6	25.7	1.7
	Heavy-Duty Diesel Vehicle 5	2.9	11.9	0.8
	Heavy-Duty Diesel Vehicle 6	21.9	96.9	6.5
	Heavy-Duty Diesel Vehicle 7	41.3	178.0	12.1
	Heavy-Duty Diesel Vehicle 8A	79.1	345.0	15.6
	Heavy-Duty Diesel Vehicle 8B	370.2	1,426.9	68.7
	Motorcycle	317.1	22.0	86.1
	All Gasoline Bus	109.2	7.1	7.0
	Diesel Commercial Bus	7.6	26.1	1.2
	Diesel School Bus	7.2	32.4	2.2
	Light-Duty Diesel Truck 3 and	11.6	14.1	6.6
	Road Type Total	83,074.7	9,826.5	6,936.3

TABLE 15 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Annual Emissions by 8-Hour Ozone Status Area

CT Portion CT-NY-NJ CMSA		СО	NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Local	Light-Duty Gasoline Vehicle	5,934.4	700.6	984.5
	Light-Duty Gasoline Truck 1	1,577.0	115.3	220.0
	Light-Duty Gasoline Truck 2	2,920.0	344.3	317.5
	Light-Duty Gasoline Truck 3	1,526.0	125.6	185.6
	Light-Duty Gasoline Truck 4	502.8	66.4	57.2
	Heavy-Duty Gasoline Vehicle 2B	249.8	31.5	22.0
	Heavy-Duty Gasoline Vehicle 3	24.4	1.4	1.7
	Heavy-Duty Gasoline Vehicle 4	18.6	0.8	1.4
	Heavy-Duty Gasoline Vehicle 5	23.2	1.8	1.9
	Heavy-Duty Gasoline Vehicle 6	49.3	3.5	3.9
	Heavy-Duty Gasoline Vehicle 7	37.4	2.0	2.7
	Heavy-Duty Gasoline Vehicle	0.2	0.0	0.0
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle Light-Duty Diesel Truck 1 and		1.4	0.8
			0.3	0.3
	Heavy-Duty Diesel Vehicle 2B	6.3	14.1	1.4
	Heavy-Duty Diesel Vehicle 3	2.2	4.9	0.5
	Heavy-Duty Diesel Vehicle 4	2.1	4.9	0.5
	Heavy-Duty Diesel Vehicle 5	1.0	2.5	0.2
	Heavy-Duty Diesel Vehicle 6	6.9	17.7	1.8
	Heavy-Duty Diesel Vehicle 7	13.7	34.3	3.5
	Heavy-Duty Diesel Vehicle 8A	25.9	51.5	4.4
	Heavy-Duty Diesel Vehicle 8B	121.0	209.2	19.3
	Motorcycle	179.2	5.9	36.0
	All Gasoline Bus	37.0	1.0	2.4
	Diesel Commercial Bus	3.3	6.6	0.5
	Diesel School Bus	2.5	6.6	0.7
	Light-Duty Diesel Truck 3 and	4.2	3.6	2.2
	Road Type Total	13,271.1	1,757.6	1,872.9

TABLE 15 (Continued) 2002 CONNECTICUT MOBILE SOURCE REPORT

Annual Emissions by 8-Hour Ozone Status Area

CT Portion CT-NY-N	CT Portion CT-NY-NJ CMSA		NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Ramp	Light-Duty Gasoline Vehicle	3,333.3	184.4	169.4
	Light-Duty Gasoline Truck 1	554.3	32.4	36.1
	Light-Duty Gasoline Truck 2	1,375.3	97.7	57.0
	Light-Duty Gasoline Truck 3	520.2	34.3	31.3
	Light-Duty Gasoline Truck 4		17.8	10.2
	Heavy-Duty Gasoline Vehicle 2B	77.2	31.6	7.8
	Heavy-Duty Gasoline Vehicle 3	7.4	1.3	0.5
	Heavy-Duty Gasoline Vehicle 4	6.0	0.8	0.5
	Heavy-Duty Gasoline Vehicle 5	6.6	1.7	0.6
	Heavy-Duty Gasoline Vehicle 6	15.6	3.6	1.4
	Heavy-Duty Gasoline Vehicle 7	11.4	1.9	0.9
	Heavy-Duty Gasoline Vehicle	0.0	0.0	0.0
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle Light-Duty Diesel Truck 1 and	0.3	0.2	0.1
		0.1	0.0	0.0
	Heavy-Duty Diesel Vehicle 2B	2.0	8.6	0.6
	Heavy-Duty Diesel Vehicle 3	0.7	2.9	0.2
	Heavy-Duty Diesel Vehicle 4	0.7	3.1	0.2
	Heavy-Duty Diesel Vehicle 5	0.3	1.4	0.1
	Heavy-Duty Diesel Vehicle 6	2.2	11.1	0.7
	Heavy-Duty Diesel Vehicle 7	4.3	20.7	1.4
	Heavy-Duty Diesel Vehicle 8A	8.0	30.6	1.7
	Heavy-Duty Diesel Vehicle 8B	38.0	125.9	7.7
	Motorcycle	3.0	0.3	0.9
	All Gasoline Bus	10.9	0.9	0.7
	Diesel Commercial Bus	1.0	3.9	0.2
	Diesel School Bus	0.7	3.8	0.2
	Light-Duty Diesel Truck 3 and	0.4	0.6	0.3
	Road Type Total	6,178.3	621.8	330.6
	Status Area Total	217,441.3	33,699.7	15,751.3

Greater Connecticut Area		со	NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Freeway	Light-Duty Gasoline Vehicle	44,747.8	3,076.3	2,658.6
	Light-Duty Gasoline Truck 1	9,309.0	541.2	569.7
	Light-Duty Gasoline Truck 2	21,486.7	1,636.5	841.6
	Light-Duty Gasoline Truck 3	9,027.5	583.0	498.9
	Light-Duty Gasoline Truck 4	3,320.6	304.1	158.8
	Heavy-Duty Gasoline Vehicle 2B	1,919.3	744.9	122.0
	Heavy-Duty Gasoline Vehicle 3	187.2	31.5	8.4
	Heavy-Duty Gasoline Vehicle 4	151.4	19.3	9.1
	Heavy-Duty Gasoline Vehicle 5	166.4	39.0	10.1
	Heavy-Duty Gasoline Vehicle 6	391.9	84.1	22.9
	Heavy-Duty Gasoline Vehicle 7	287.5	45.2	14.9
	Heavy-Duty Gasoline Vehicle	1.0	0.2	0.1
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle	5.3	7.0	1.9
	Light-Duty Diesel Truck 1 and	1.4	1.5	0.8
	Heavy-Duty Diesel Vehicle 2B	38.4	286.1	7.9
	Heavy-Duty Diesel Vehicle 3	13.4	97.6	2.7
	Heavy-Duty Diesel Vehicle 4	13.4	103.0	2.8
	Heavy-Duty Diesel Vehicle 5	5.9	47.0	1.2
	Heavy-Duty Diesel Vehicle 6	43.4	394.2	10.3
	Heavy-Duty Diesel Vehicle 7	82.7	731.0	19.4
	Heavy-Duty Diesel Vehicle 8A	155.8	1,519.9	24.5
	Heavy-Duty Diesel Vehicle 8B	738.9	6,306.9	109.5
	Motorcycle	89.7	6.6	20.3
	All Gasoline Bus	276.7	21.2	10.7
	Diesel Commercial Bus	19.0	127.5	2.5
	Diesel School Bus	14.4	126.8	3.5
	Light-Duty Diesel Truck 3 and	8.4	18.4	4.0
	Road Type Total	92,503.2	16,899.8	5,137.1

	-			
Greater Connecticut Area		CO	NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Arterial	Light-Duty Gasoline Vehicle	49,031.8	4,197.3	4,224.2
	Light-Duty Gasoline Truck 1	10,538.8	713.4	933.0
	Light-Duty Gasoline Truck 2	22,909.9	2,149.1	1,331.5
	Light-Duty Gasoline Truck 3	10,321.7	773.5	796.7
	Light-Duty Gasoline Truck 4	3,680.1	406.7	246.4
	Heavy-Duty Gasoline Vehicle 2B	836.9	291.1	81.3
	Heavy-Duty Gasoline Vehicle 3	79.2	11.9	5.5
	Heavy-Duty Gasoline Vehicle 4	64.6	7.3	5.6
	Heavy-Duty Gasoline Vehicle 5	71.7	15.0	6.5
	Heavy-Duty Gasoline Vehicle 6	172.3	33.0	14.9
	Heavy-Duty Gasoline Vehicle 7	125.1	17.5	9.7
	Heavy-Duty Gasoline Vehicle	0.4	0.1	0.0
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle	7.8	6.3	3.1
	Light-Duty Diesel Truck 1 and	2.0	1.3	1.2
	Heavy-Duty Diesel Vehicle 2B	20.1	84.7	5.3
	Heavy-Duty Diesel Vehicle 3	6.8	27.9	1.7
	Heavy-Duty Diesel Vehicle 4	6.8	29.7	1.8
	Heavy-Duty Diesel Vehicle 5	3.1	13.8	0.8
	Heavy-Duty Diesel Vehicle 6	22.9	112.0	6.9
	Heavy-Duty Diesel Vehicle 7	43.0	205.6	12.8
	Heavy-Duty Diesel Vehicle 8A	82.5	398.7	16.5
	Heavy-Duty Diesel Vehicle 8B	386.1	1,648.7	72.8
	Motorcycle	351.3	25.1	98.7
	All Gasoline Bus	121.4	8.3	7.5
	Diesel Commercial Bus	8.0	30.2	1.3
	Diesel School Bus	7.5	37.5	2.4
	Light-Duty Diesel Truck 3 and	12.5	16.3	7.1
	Road Type Total	98,914.2	11,261.8	7,895.3

Greater Connecticut A	Area	СО	NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Local	Light-Duty Gasoline Vehicle	5,761.2	688.0	989.0
	Light-Duty Gasoline Truck 1	1,524.0	111.5	221.2
	Light-Duty Gasoline Truck 2	2,820.8	334.5	319.0
	Light-Duty Gasoline Truck 3	1,495.2	121.5	186.3
	Light-Duty Gasoline Truck 4	493.0	64.5	57.3
	Heavy-Duty Gasoline Vehicle 2B	249.6	30.4	22.1
	Heavy-Duty Gasoline Vehicle 3	24.8	1.3	1.7
	Heavy-Duty Gasoline Vehicle 4	18.9	0.8	1.5
	Heavy-Duty Gasoline Vehicle 5	23.4	1.7	1.9
	Heavy-Duty Gasoline Vehicle 6	49.9	3.4	3.9
	Heavy-Duty Gasoline Vehicle 7	38.0	1.9	2.7
	Heavy-Duty Gasoline Vehicle	0.2	0.0	0.0
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle	2.2	1.3	0.8
	Light-Duty Diesel Truck 1 and	0.5	0.3	0.3
	Heavy-Duty Diesel Vehicle 2B	6.0	13.6	1.3
	Heavy-Duty Diesel Vehicle 3	2.1	4.7	0.5
	Heavy-Duty Diesel Vehicle 4	2.0	4.7	0.5
	Heavy-Duty Diesel Vehicle 5	1.0	2.4	0.2
	Heavy-Duty Diesel Vehicle 6	6.7	17.1	1.7
	Heavy-Duty Diesel Vehicle 7	13.3	33.1	3.3
	Heavy-Duty Diesel Vehicle 8A	25.0	49.7	4.2
	Heavy-Duty Diesel Vehicle 8B	116.8	202.1	18.7
	Motorcycle	184.5	5.5	35.6
	All Gasoline Bus	37.9	0.9	2.4
	Diesel Commercial Bus	3.2	6.4	0.4
	Diesel School Bus	2.4	6.4	0.6
	Light-Duty Diesel Truck 3 and	4.0	3.5	2.1
	Road Type Total	12,906.8	1,711.1	1,879.2

		• 1	• 1	
reater Connecticut Area	l de la constante d	СО	NOx	VOC
Road Type	Vehicle	(tons/year)	(tons/year)	(tons/year)
Ramp	Light-Duty Gasoline Vehicle	2,504.9	135.1	127.3
-	Light-Duty Gasoline Truck 1	406.7	23.7	27.1
	Light-Duty Gasoline Truck 2	1,013.5	71.7	42.7
	Light-Duty Gasoline Truck 3	384.8	25.1	23.4
	Light-Duty Gasoline Truck 4	147.0	13.0	7.6
	Heavy-Duty Gasoline Vehicle 2B	58.5	23.1	6.0
	Heavy-Duty Gasoline Vehicle 3	5.7	1.0	0.4
	Heavy-Duty Gasoline Vehicle 4	4.6	0.6	0.4
	Heavy-Duty Gasoline Vehicle 5	5.1	1.2	0.5
	Heavy-Duty Gasoline Vehicle 6	11.9	2.6	1.1
	Heavy-Duty Gasoline Vehicle 7	8.8	1.4	0.7
	Heavy-Duty Gasoline Vehicle	0.0	0.0	0.0
	Heavy-Duty Gasoline Vehicle 8B	0.0	0.0	0.0
	Light-Duty Diesel Vehicle	0.2	0.2	0.1
	Light-Duty Diesel Truck 1 and	0.1	0.0	0.0
	Heavy-Duty Diesel Vehicle 2B	1.4	6.3	0.4
	Heavy-Duty Diesel Vehicle 3	0.5	2.2	0.1
	Heavy-Duty Diesel Vehicle 4	0.5	2.3	0.1
	Heavy-Duty Diesel Vehicle 5	0.2	1.0	0.1
	Heavy-Duty Diesel Vehicle 6	1.6	8.1	0.5
	Heavy-Duty Diesel Vehicle 7	3.1	15.1	1.0
	Heavy-Duty Diesel Vehicle 8A	5.9	22.4	1.3
	Heavy-Duty Diesel Vehicle 8B	27.8	92.2	5.6
	Motorcycle	2.3	0.2	0.7
	All Gasoline Bus	8.4	0.7	0.5
	Diesel Commercial Bus	0.7	2.8	0.1
	Diesel School Bus	0.5	2.8	0.2
	Light-Duty Diesel Truck 3 and	0.3	0.4	0.2
	Road Type Total	4,605.3	455.2	248.1
	Status Area Total	208,929.4	30,327.9	15,159.8
	State Total	426,370.7	64,027.6	30,911.1

Table 1

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County) (Excluding Mobile Sources)

	Typical High Ozone Summer Day			Typical Winter Dav
Fairfield	CO(RE)	VOC(RE)	OC(RE) NOx(RE)	
	T/D	T/D	T/D	T/D
GASOLINE DISTRIBUTION	_/_			_/_
Tank Truck Unloading	0.000	0.267	0.000	0.000
Vehicle Fueling	0.000	0.824	0.000	0.000
Underground Tank Breathing	0.000	0.276	0.000	0.000
Gasoline Trucks in Transit	0.000	0.038	0.000	0.000
Aircraft Refueling	0.000	0.019	0.000	0.000
Subtotal	0.000	1.424	0.000	0.000
RESIDENTIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.039
Distillate Oil	0.183	0.026	0.660	1.600
LP Gas	0.016	0.005	0.121	0.050
Natural Gas	0.179	0.025	0.421	1.082
Wood	1.244	0.807	0.016	47.225
Subtotal	1.623	0.862	1.218	49.997
COMMERCIAL/INSTITUTIONAL FUEL US	E			
Anthracite Coal	0.000	0.000	0.000	0.159
Residual Oil	0.011	0.002	0.120	0.025
Distillate Oil	0.127	0.013	0.508	0.296
LP Gas	0.004	0.001	0.031	0.010
Natural Gas	0.178	0.048	0.847	0.415
Subtotal	0.320	0.065	1.506	0.906
INDUSTRIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000	0.000
Distillate Oil	0.024	0.001	0.095	0.024
LP Gas	0.039	0.007	0.232	0.039
Natural Gas	0.079	0.022	0.378	0.079
Subtotal	0.142	0.029	0.705	0.142
SOLID WASTE DISPOSAL				
On-Site Incineration	0.000	0.000	0.000	0.000
Open Burning	0.114	0.009	0.000	0.114
Subtotal	0.114	0.009	0.000	0.114

Table 1

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County) (Excluding Mobile Sources)

	T Ozo	Typical Winter Day		
Fairfield	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	0.030	0.000	0.000
Surface Cleaning	0.000	7.834	0.000	0.000
Arch Surface Coating	0.000	5.329	0.000	0.000
Auto Refinishing	0.000	0.557	0.000	0.000
Traffic Lane Marking	0.000	0.206	0.000	0.000
Other Small Ind Surf Coat	0.000	2.210	0.000	0.000
Graphic Arts	0.000	2.241	0.000	0.000
Cutback Asphalt	0.000	0.230	0.000	0.000
Emulsified Asphalt	0.000	0.286	0.000	0.000
Asphalt Roofing	0.000	0.000	0.000	0.000
Pesticides	0.000	1.573	0.000	0.000
Comm/Consum Solvents	0.000	10.301	0.000	0.000
Subtotal	0.000	30.796	0.000	0.000
OTHER SOURCES				
Forest Fires	0.000	0.000	0.000	0.000
Slash/Prescribed Burning	0.000	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000	0.000
Structural Fires	0.370	0.068	0.009	0.321
Orchard Heaters	0.000	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000	0.000
Bakeries	0.000	0.228	0.000	0.000
Breweries	0.000	0.000	0.000	0.000
Wineries	0.000	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000	0.000
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	0.046	0.000	0.000
Subtotal	0.370	0.342	0.009	0.321

Table 1 2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County) (Excluding Mobile Sources)

	T Ozo	Typical Winter Day		
Fairfield	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
WASTE MANAGEMENT PRACTICES				
POTW	0.000	0.953	0.000	0.000
Waste Treat Package Plants	0.000	0.000	0.000	0.000
TSDF	0.000	0.254	0.000	0.000
Landfills	0.000	0.135	0.000	0.000
Subtotal	0.000	1.342	0.000	0.000
Leaking Underground				
Storage Tanks	0.000	0.049	0.000	0.000
Spills	0.000	0.050	0.000	0.000
Biogenics	5.020	39.950	0.210	0.000
GRAND TOTAL FOR COUNTY	7.588	74.918	3.648	51.480

Table 1

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County) (Excluding Mobile Sources)

	Typical High Ozone Summer Day				
Hartford	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)	
	т/D	T/D	т/р	т/р	
GASOLINE DISTRIBUTION	1/D	1/D	1/12	170	
Tank Truck Unloading	0.000	0.298	0.000	0.000	
Vehicle Fueling	0.000	0.957	0.000	0.000	
Underground Tank Breathing	0.000	0.309	0.000	0.000	
Gasoline Trucks in Transit	0.000	0.039	0.000	0.000	
Aircraft Refueling	0.000	0.096	0.000	0.000	
Subtotal	0.000	1.700	0.000	0.000	
RESIDENTIAL FUEL USE					
Anthracite Coal	0.000	0.000	0.000	0.092	
Distillate Oil	0.165	0.024	0.595	1.443	
LP Gas	0.018	0.005	0.135	0.056	
Natural Gas	0.232	0.032	0.545	1.400	
Wood	1.253	0.751	0.016	52.726	
Subtotal	1.669	0.811	1.292	55.717	
COMMERCIAL/INSTITUTIONAL FUEL USE	Ξ				
Anthracite Coal	0.000	0.000	0.000	0.189	
Residual Oil	0.013	0.003	0.142	0.030	
Distillate Oil	0.151	0.015	0.603	0.351	
LP Gas	0.005	0.001	0.036	0.012	
Natural Gas	0.211	0.057	1.006	0.493	
Subtotal	0.380	0.077	1.787	1.075	
INDUSTRIAL FUEL USE					
Anthracite Coal	0.000	0.000	0.000	0.000	
Residual Oil	0.000	0.000	0.000	0.000	
Distillate Oil	0.026	0.001	0.103	0.026	
LP Gas	0.043	0.007	0.253	0.043	
Natural Gas	0.087	0.024	0.413	0.087	
Subtotal	0.155	0.032	0.769	0.155	
SOLID WASTE DISPOSAL					
On-Site Incineration	0.000	0.000	0.000	0.000	
Open Burning	0.162	0.013	0.001	0.162	
Subtotal	0.162	0.013	0.001	0.162	

Table 1

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County) (Excluding Mobile Sources)

	T Ozo	Typical Winter Day		
Hartford	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	0.025	0.000	0.000
Surface Cleaning	0.000	10.486	0.000	0.000
Arch Surface Coating	0.000	5.158	0.000	0.000
Auto Refinishing	0.000	0.539	0.000	0.000
Traffic Lane Marking	0.000	0.199	0.000	0.000
Other Small Ind Surf Coat	0.000	3.032	0.000	0.000
Graphic Arts	0.000	2.125	0.000	0.000
Cutback Asphalt	0.000	0.055	0.000	0.000
Emulsified Asphalt	0.000	0.287	0.000	0.000
Asphalt Roofing	0.000	0.000	0.000	0.000
Pesticides	0.000	1.177	0.000	0.000
Comm/Consum Solvents	0.000	6.810	0.000	0.000
Subtotal	0.000	29.893	0.000	0.000
OTHER SOURCES				
Forest Fires	0.068	0.003	0.001	0.031
Slash/Prescribed Burning	0.000	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000	0.000
Structural Fires	0.318	0.058	0.007	0.133
Orchard Heaters	0.000	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000	0.000
Bakeries	0.000	0.542	0.000	0.000
Breweries	0.000	0.001	0.000	0.000
Wineries	0.000	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000	0.000
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	0.175	0.000	0.000
Subtotal	0.387	0.780	0.009	0.164
	T Ozo	Typical Winter Day		
----------------------------	----------	-----------------------	---------	--------
Hartford	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
WASTE MANAGEMENT PRACTICES				
POTW	0.000	1.149	0.000	0.000
Waste Treat Package Plants	0.000	0.000	0.000	0.000
TSDF	0.000	0.160	0.000	0.000
Landfills	0.000	0.535	0.000	0.000
Subtotal	0.000	1.843	0.000	0.000
Leaking Underground				
Storage Tanks	0.000	0.057	0.000	0.000
Spills	0.000	0.170	0.000	0.000
Biogenics	5.715	51.147	0.256	0.000
GRAND TOTAL FOR COUNTY	8.467	86.523	4.113	57.274

	Т	Typical		
	Ozo	ne Summer Day		Winter Day
Litchfield	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
GASOLINE DISTRIBUTION				
Tank Truck Unloading	0.000	0.107	0.000	0.000
Vehicle Fueling	0.000	0.343	0.000	0.000
Underground Tank Breathing	0.000	0.111	0.000	0.000
Gasoline Trucks in Transit	0.000	0.008	0.000	0.000
Aircraft Refueling	0.000	0.000	0.000	0.000
Subtotal	0.000	0.568	0.000	0.000
RESIDENTIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.033
Distillate Oil	0.052	0.007	0.188	0.455
LP Gas	0.005	0.001	0.034	0.014
Natural Gas	0.015	0.002	0.036	0.092
Wood	2.036	1.218	0.026	57.682
Subtotal	2.108	1.229	0.283	58.276
COMMERCIAL/INSTITUTIONAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.023
Residual Oil	0.002	0.000	0.017	0.004
Distillate Oil	0.018	0.002	0.072	0.042
LP Gas	0.001	0.000	0.004	0.001
Natural Gas	0.025	0.007	0.121	0.059
Subtotal	0.046	0.009	0.214	0.129
INDUSTRIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000	0.000
Distillate Oil	0.005	0.000	0.020	0.005
LP Gas	0.008	0.001	0.050	0.008
Natural Gas	0.017	0.005	0.082	0.017
Subtotal	0.031	0.006	0.152	0.031
SOLID WASTE DISPOSAL				
On-Site Incineration	0.000	0.000	0.000	0.000
Open Burning	0.050	0.004	0.000	0.050
Subtotal	0.050	0.004	0.000	0.050

	T Ozo	Typical Winter Day		
Litchfield	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	0.004	0.000	0.000
Surface Cleaning	0.000	1.895	0.000	0.000
Arch Surface Coating	0.000	1.109	0.000	0.000
Auto Refinishing	0.000	0.116	0.000	0.000
Traffic Lane Marking	0.000	0.043	0.000	0.000
Other Small Ind Surf Coat	0.000	0.424	0.000	0.000
Graphic Arts	0.000	0.466	0.000	0.000
Cutback Asphalt	0.000	1.105	0.000	0.000
Emulsified Asphalt	0.000	0.627	0.000	0.000
Asphalt Roofing	0.000	0.000	0.000	0.000
Pesticides	0.000	0.302	0.000	0.000
Comm/Consum Solvents	0.000	1.275	0.000	0.000
Subtotal	0.000	7.366	0.000	0.000
OTHER SOURCES				
Forest Fires	0.031	0.001	0.001	0.011
Slash/Prescribed Burning	0.000	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000	0.000
Structural Fires	0.056	0.010	0.001	0.066
Orchard Heaters	0.000	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000	0.000
Bakeries	0.000	0.117	0.000	0.000
Breweries	0.000	0.000	0.000	0.000
Wineries	0.000	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000	0.000
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	0.007	0.000	0.000
Subtotal	0.087	0.136	0.002	0.077

	T Ozo	Typical Winter Day		
Litchfield	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
WASTE MANAGEMENT PRACTICES				
POTW	0.000	0.038	0.000	0.000
Waste Treat Package Plants	0.000	0.000	0.000	0.000
TSDF	0.000	0.028	0.000	0.000
Landfills	0.000	0.245	0.000	0.000
Subtotal	0.000	0.310	0.000	0.000
Leaking Underground				
Storage Tanks	0.000	0.011	0.000	0.000
Spills	0.000	0.029	0.000	0.000
Biogenics	7.709	70.303	0.311	0.000
GRAND TOTAL FOR COUNTY	10.030	79.973	0.963	58.562

	T	Typical		
Middleson		ne Summer Day	NO-(DE)	Winter Day
Middlesex	CO(RE)	VOC(RE)	NOX(RE)	CO(RE)
	T/D	T/D	T/D	T/D
GASOLINE DISTRIBUTION	0.000	0.000	0.000	0.000
Tank Truck Unloading	0.000	0.083	0.000	0.000
Vehicle Fueling	0.000	0.256	0.000	0.000
Underground Tank Breathing	0.000	0.086	0.000	0.000
Gasoline Trucks in Transit	0.000	0.009	0.000	0.000
Aircraft Refueling	0.000	0.000	0.000	0.000
Subtotal	0.000	0.433	0.000	0.000
RESIDENTIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.013
Distillate Oil	0.045	0.006	0.163	0.396
LP Gas	0.005	0.001	0.035	0.014
Natural Gas	0.010	0.001	0.024	0.063
Wood	0.983	0.605	0.012	32.882
Subtotal	1.044	0.615	0.234	33.368
COMMERCIAL/INSTITUTIONAL FUEL USE	Ξ			
Anthracite Coal	0.000	0.000	0.000	0.025
Residual Oil	0.002	0.000	0.019	0.004
Distillate Oil	0.020	0.002	0.079	0.046
LP Gas	0.001	0.000	0.005	0.002
Natural Gas	0.028	0.008	0.133	0.065
Subtotal	0.050	0.010	0.236	0.142
INDUSTRIAL FLIEL LISE				
Anthracite Coal	0.000	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000
LP Gas	0.005	0.000	0.013	0.005
Natural Gas	0.007	0.001	0.072	0.007
	0.015	0.004	0.072	0.013
Subtotal	0.027	0.006	0.135	0.027
SOLID WASTE DISPOSAL				
On-Site Incineration	0.000	0.000	0.000	0.000
Open Burning	0.043	0.004	0.000	0.043
Subtotal	0.043	0.004	0.000	0.043

	T Ozo	Typical Winter Dav		
Middlesex	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	0.004	0.000	0.000
Surface Cleaning	0.000	1.722	0.000	0.000
Arch Surface Coating	0.000	0.950	0.000	0.000
Auto Refinishing	0.000	0.099	0.000	0.000
Traffic Lane Marking	0.000	0.037	0.000	0.000
Other Small Ind Surf Coat	0.000	0.420	0.000	0.000
Graphic Arts	0.000	0.399	0.000	0.000
Cutback Asphalt	0.000	0.000	0.000	0.000
Emulsified Asphalt	0.000	0.285	0.000	0.000
Asphalt Roofing	0.000	0.000	0.000	0.000
Pesticides	0.000	0.208	0.000	0.000
Comm/Consum Solvents	0.000	1.546	0.000	0.000
Subtotal	0.000	5.670	0.000	0.000
OTHER SOURCES				
Forest Fires	0.001	0.000	0.000	0.000
Slash/Prescribed Burning	0.000	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000	0.000
Structural Fires	0.054	0.010	0.001	0.061
Orchard Heaters	0.000	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000	0.000
Bakeries	0.000	0.100	0.000	0.000
Breweries	0.000	0.000	0.000	0.000
Wineries	0.000	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000	0.000
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	0.011	0.000	0.000
Subtotal	0.055	0.121	0.001	0.061

	T Ozo	Typical Winter Day		
Middlesex	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
WASTE MANAGEMENT PRACTICES				
POTW	0.000	0.017	0.000	0.000
Waste Treat Package Plants	0.000	0.000	0.000	0.000
TSDF	0.000	0.031	0.000	0.000
Landfills	0.000	0.013	0.000	0.000
Subtotal	0.000	0.061	0.000	0.000
Leaking Underground				
Storage Tanks	0.000	0.011	0.000	0.000
Spills	0.000	0.013	0.000	0.000
Biogenics	4.458	39.241	0.227	0.000
GRAND TOTAL FOR COUNTY	5.677	46.184	0.833	33.641

	T Ozo	Typical Winter Day		
New Haven	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
GASOLINE DISTRIBUTION	1/2	112	1,2	1,2
Tank Truck Unloading	0.000	0.317	0.000	0.000
Vehicle Fueling	0.000	0.981	0.000	0.000
Underground Tank Breathing	0.000	0.329	0.000	0.000
Gasoline Trucks in Transit	0.000	0.034	0.000	0.000
Aircraft Refueling	0.000	0.024	0.000	0.000
Subtotal	0.000	1.686	0.000	0.000
RESIDENTIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.061
Distillate Oil	0.177	0.025	0.636	1.543
LP Gas	0.016	0.004	0.116	0.048
Natural Gas	0.178	0.024	0.417	1.071
Wood	1.989	1.284	0.025	63.383
Subtotal	2.358	1.338	1.194	66.106
COMMERCIAL/INSTITUTIONAL FUEL USE	3			
Anthracite Coal	0.000	0.000	0.000	0.140
Residual Oil	0.010	0.002	0.105	0.022
Distillate Oil	0.112	0.011	0.447	0.260
LP Gas	0.004	0.001	0.027	0.009
Natural Gas	0.157	0.042	0.745	0.365
Subtotal	0.281	0.057	1.324	0.797
INDUSTRIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000	0.000
Distillate Oil	0.019	0.001	0.078	0.019
LP Gas	0.032	0.005	0.190	0.032
Natural Gas	0.065	0.018	0.311	0.065
Subtotal	0.117	0.024	0.580	0.117
SOLID WASTE DISPOSAL				
On-Site Incineration	0.000	0.000	0.000	0.000
Open Burning	0.168	0.014	0.001	0.168
Subtotal	0.168	0.014	0.001	0.168

	T Ozo	Typical Winter Dav		
New Haven	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	0.023	0.000	0.000
Surface Cleaning	0.000	6.781	0.000	0.000
Arch Surface Coating	0.000	4.969	0.000	0.000
Auto Refinishing	0.000	0.520	0.000	0.000
Traffic Lane Marking	0.000	0.192	0.000	0.000
Other Small Ind Surf Coat	0.000	2.626	0.000	0.000
Graphic Arts	0.000	1.357	0.000	0.000
Cutback Asphalt	0.000	0.176	0.000	0.000
Emulsified Asphalt	0.000	0.182	0.000	0.000
Asphalt Roofing	0.000	0.000	0.000	0.000
Pesticides	0.000	1.203	0.000	0.000
Comm/Consum Solvents	0.000	11.952	0.000	0.000
Subtotal	0.000	29.982	0.000	0.000
OTHER SOURCES				
Forest Fires	0.011	0.001	0.000	0.017
Slash/Prescribed Burning	0.000	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000	0.000
Structural Fires	0.351	0.064	0.008	0.339
Orchard Heaters	0.000	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000	0.000
Bakeries	0.000	0.522	0.000	0.000
Breweries	0.000	0.000	0.000	0.000
Wineries	0.000	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000	0.000
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	0.075	0.000	0.000
Subtotal	0.362	0.662	0.008	0.357

	T Ozo	Typical Winter Day		
New Haven	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
WASTE MANAGEMENT PRACTICES				
POTW	0.000	0.871	0.000	0.000
Waste Treat Package Plants	0.000	0.000	0.000	0.000
TSDF	0.000	0.287	0.000	0.000
Landfills	0.000	0.117	0.000	0.000
Subtotal	0.000	1.275	0.000	0.000
Leaking Underground				
Storage Tanks	0.000	0.019	0.000	0.000
Spills	0.000	0.099	0.000	0.000
Biogenics	5.498	46.440	0.221	0.000
GRAND TOTAL FOR COUNTY	8.785	81.597	3.327	67.544

	T Ozo	Typical Winter Day		
New London	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	т/D	т/р	Τ/D	т/р
GASOLINE DISTRIBUTION	1/D	1/D	170	170
Tank Truck Unloading	0.000	0.125	0.000	0.000
Vehicle Fueling	0.000	0.402	0.000	0.000
Underground Tank Breathing	0.000	0.130	0.000	0.000
Gasoline Trucks in Transit	0.000	0.016	0.000	0.000
Aircraft Refueling	0.000	0.043	0.000	0.000
Subtotal	0.000	0.715	0.000	0.000
RESIDENTIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.055
Distillate Oil	0.074	0.011	0.266	0.645
LP Gas	0.008	0.002	0.060	0.025
Natural Gas	0.018	0.002	0.042	0.107
Wood	1.397	0.848	0.017	53.008
Subtotal	1.497	0.864	0.385	53.841
COMMERCIAL/INSTITUTIONAL FUEL USI	E			
Anthracite Coal	0.000	0.000	0.000	0.049
Residual Oil	0.003	0.001	0.037	0.008
Distillate Oil	0.039	0.004	0.155	0.090
LP Gas	0.001	0.000	0.009	0.003
Natural Gas	0.054	0.015	0.259	0.127
Subtotal	0.098	0.020	0.460	0.277
INDUSTRIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000	0.000
Distillate Oil	0.007	0.000	0.029	0.007
LP Gas	0.012	0.002	0.070	0.012
Natural Gas	0.024	0.007	0.114	0.024
Subtotal	0.043	0.009	0.213	0.043
SOLID WASTE DISPOSAL				
On-Site Incineration	0.000	0.000	0.000	0.000
Open Burning	0.064	0.005	0.000	0.064
Subtotal	0.064	0.005	0.000	0.064

	T Ozo	Typical Winter Day		
New London	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	0.005	0.000	0.000
Surface Cleaning	0.000	2.165	0.000	0.000
Arch Surface Coating	0.000	1.562	0.000	0.000
Auto Refinishing	0.000	0.163	0.000	0.000
Traffic Lane Marking	0.000	0.060	0.000	0.000
Other Small Ind Surf Coat	0.000	0.580	0.000	0.000
Graphic Arts	0.000	0.637	0.000	0.000
Cutback Asphalt	0.000	0.000	0.000	0.000
Emulsified Asphalt	0.000	0.258	0.000	0.000
Asphalt Roofing	0.000	0.000	0.000	0.000
Pesticides	0.000	0.392	0.000	0.000
Comm/Consum Solvents	0.000	6.356	0.000	0.000
Subtotal	0.000	12.177	0.000	0.000
OTHER SOURCES				
Forest Fires	0.000	0.000	0.000	0.006
Slash/Prescribed Burning	0.000	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000	0.000
Structural Fires	0.056	0.010	0.001	0.068
Orchard Heaters	0.000	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000	0.000
Bakeries	0.000	0.164	0.000	0.000
Breweries	0.000	0.000	0.000	0.000
Wineries	0.000	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000	0.000
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	0.003	0.000	0.000
Subtotal	0.056	0.177	0.001	0.074

	T Ozo	Typical Winter Day		
New London	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
WASTE MANAGEMENT PRACTICES				
POTW	0.000	0.157	0.000	0.000
Waste Treat Package Plants	0.000	0.000	0.000	0.000
TSDF	0.000	0.046	0.000	0.000
Landfills	0.000	0.056	0.000	0.000
Subtotal	0.000	0.260	0.000	0.000
Leaking Underground				
Storage Tanks	0.000	0.004	0.000	0.000
Spills	0.000	0.032	0.000	0.000
Biogenics	5.102	52.581	0.229	0.000
GRAND TOTAL FOR COUNTY	6.860	66.843	1.289	54.298

	T Ozo	Typical Winter Day		
Tolland	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	Т/Д	T/D	T/D	T/D
GASOLINE DISTRIBUTION	1,12	110	1,12	112
Tank Truck Unloading	0.000	0.050	0.000	0.000
Vehicle Fueling	0.000	0.161	0.000	0.000
Underground Tank Breathing	0.000	0.052	0.000	0.000
Gasoline Trucks in Transit	0.000	0.008	0.000	0.000
Aircraft Refueling	0.000	0.000	0.000	0.000
Subtotal	0.000	0.272	0.000	0.000
RESIDENTIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.028
Distillate Oil	0.039	0.006	0.141	0.343
LP Gas	0.004	0.001	0.028	0.012
Natural Gas	0.006	0.001	0.015	0.039
Wood	1.118	0.653	0.014	32.654
Subtotal	1.167	0.661	0.198	33.075
COMMERCIAL/INSTITUTIONAL FUEL US	E			
Anthracite Coal	0.000	0.000	0.000	0.015
Residual Oil	0.001	0.000	0.011	0.002
Distillate Oil	0.012	0.001	0.049	0.028
LP Gas	0.000	0.000	0.003	0.001
Natural Gas	0.017	0.005	0.081	0.040
Subtotal	0.031	0.006	0.145	0.087
INDUSTRIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000	0.000
Distillate Oil	0.001	0.000	0.005	0.001
LP Gas	0.002	0.000	0.013	0.002
Natural Gas	0.004	0.001	0.021	0.004
Subtotal	0.008	0.002	0.039	0.008
SOLID WASTE DISPOSAL				
On-Site Incineration	0.000	0.000	0.000	0.000
Open Burning	0.033	0.003	0.000	0.033
Subtotal	0.033	0.003	0.000	0.033

	T Ozo	Typical Winter Day		
Tolland	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	0.003	0.000	0.000
Surface Cleaning	0.000	0.576	0.000	0.000
Arch Surface Coating	0.000	0.839	0.000	0.000
Auto Refinishing	0.000	0.088	0.000	0.000
Traffic Lane Marking	0.000	0.032	0.000	0.000
Other Small Ind Surf Coat	0.000	0.315	0.000	0.000
Graphic Arts	0.000	0.353	0.000	0.000
Cutback Asphalt	0.000	0.060	0.000	0.000
Emulsified Asphalt	0.000	0.234	0.000	0.000
Asphalt Roofing	0.000	0.000	0.000	0.000
Pesticides	0.000	0.227	0.000	0.000
Comm/Consum Solvents	0.000	1.050	0.000	0.000
Subtotal	0.000	3.777	0.000	0.000
OTHER SOURCES				
Forest Fires	0.017	0.001	0.000	0.049
Slash/Prescribed Burning	0.000	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000	0.000
Structural Fires	0.033	0.006	0.001	0.049
Orchard Heaters	0.000	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000	0.000
Bakeries	0.000	0.088	0.000	0.000
Breweries	0.000	0.000	0.000	0.000
Wineries	0.000	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000	0.000
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	0.000	0.000	0.000
Subtotal	0.050	0.095	0.001	0.099

	T Ozo	Typical Winter Day		
Tolland	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
WASTE MANAGEMENT PRACTICES				
POTW	0.000	0.090	0.000	0.000
Waste Treat Package Plants	0.000	0.000	0.000	0.000
TSDF	0.000	0.018	0.000	0.000
Landfills	0.000	0.018	0.000	0.000
Subtotal	0.000	0.125	0.000	0.000
Leaking Underground				
Storage Tanks	0.000	0.004	0.000	0.000
Spills	0.000	0.011	0.000	0.000
Biogenics	4.503	40.392	0.230	0.000
GRAND TOTAL FOR COUNTY	5.792	45.347	0.614	33.302

		Typical Winter Day		
Windham	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
GASOLINE DISTRIBUTION	1,2	1,2	112	112
Tank Truck Unloading	0.000	0.055	0.000	0.000
Vehicle Fueling	0.000	0.176	0.000	0.000
Underground Tank Breathing	0.000	0.057	0.000	0.000
Gasoline Trucks in Transit	0.000	0.006	0.000	0.000
Aircraft Refueling	0.000	0.004	0.000	0.000
Subtotal	0.000	0.297	0.000	0.000
RESIDENTIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.018
Distillate Oil	0.032	0.005	0.115	0.279
LP Gas	0.004	0.001	0.030	0.012
Natural Gas	0.006	0.001	0.015	0.039
Wood	1.136	0.681	0.015	30.357
Subtotal	1.178	0.688	0.175	30.706
COMMERCIAL/INSTITUTIONAL FUEL USE	Ξ			
Anthracite Coal	0.000	0.000	0.000	0.014
Residual Oil	0.001	0.000	0.010	0.002
Distillate Oil	0.011	0.001	0.043	0.025
LP Gas	0.000	0.000	0.003	0.001
Natural Gas	0.015	0.004	0.073	0.036
Subtotal	0.027	0.006	0.129	0.078
INDUSTRIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000	0.000
Distillate Oil	0.003	0.000	0.013	0.003
LP Gas	0.005	0.001	0.031	0.005
Natural Gas	0.010	0.003	0.050	0.010
Subtotal	0.019	0.004	0.093	0.019
SOLID WASTE DISPOSAL				
On-Site Incineration	0.000	0.000	0.000	0.000
Open Burning	0.037	0.003	0.000	0.037
Subtotal	0.037	0.003	0.000	0.037

	T Ozo	Typical Winter Day		
Windham	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	0.001	0.000	0.000
Surface Cleaning	0.000	0.664	0.000	0.000
Arch Surface Coating	0.000	0.662	0.000	0.000
Auto Refinishing	0.000	0.069	0.000	0.000
Traffic Lane Marking	0.000	0.026	0.000	0.000
Other Small Ind Surf Coat	0.000	0.171	0.000	0.000
Graphic Arts	0.000	0.278	0.000	0.000
Cutback Asphalt	0.000	0.332	0.000	0.000
Emulsified Asphalt	0.000	0.418	0.000	0.000
Asphalt Roofing	0.000	0.000	0.000	0.000
Pesticides	0.000	0.204	0.000	0.000
Comm/Consum Solvents	0.000	0.778	0.000	0.000
Subtotal	0.000	3.604	0.000	0.000
OTHER SOURCES				
Forest Fires	0.028	0.001	0.001	0.026
Slash/Prescribed Burning	0.000	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000	0.000
Structural Fires	0.028	0.005	0.001	0.028
Orchard Heaters	0.000	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000	0.000
Bakeries	0.000	0.069	0.000	0.000
Breweries	0.000	0.000	0.000	0.000
Wineries	0.000	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000	0.000
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	0.014	0.000	0.000
Subtotal	0.057	0.090	0.001	0.054

	T Ozo	Typical Winter Day		
Windham	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
	T/D	T/D	T/D	T/D
WASTE MANAGEMENT PRACTICES				
POTW	0.000	0.083	0.000	0.000
Waste Treat Package Plants	0.000	0.000	0.000	0.000
TSDF	0.000	0.012	0.000	0.000
Landfills	0.000	0.035	0.000	0.000
Subtotal	0.000	0.129	0.000	0.000
Leaking Underground				
Storage Tanks	0.000	0.000	0.000	0.000
Spills	0.000	0.007	0.000	0.000
Biogenics	4.912	54.175	0.227	0.000
GRAND TOTAL FOR COUNTY	6.231	59.003	0.625	30.894
StateTotal	59.430	540.388	15.412	386.996

	Typical High			Typical	
	Ozo	ne Summer Day		Winter Day	
	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)	
STATE TOTALS	T/D	T/D	T/D	T/D	
GASOLINE DISTRIBUTION					
Tank Truck Unloading	0.000	1.302	0.000	0.000	
Vehicle Fueling	0.000	4.099	0.000	0.000	
Underground Tank Breathing	0.000	1.350	0.000	0.000	
Gasoline Trucks in Transit	0.000	0.157	0.000	0.000	
Aircraft Refueling	0.000	0.186	0.000	0.000	
Subtotal	0.000	7.095	0.000	0.000	
RESIDENTIAL FUEL USE					
Anthracite Coal	0.000	0.000	0.000	0.341	
Distillate Oil	0.768	0.109	2.763	6.705	
LP Gas	0.076	0.022	0.559	0.232	
Natural Gas	0.645	0.089	1.516	3.893	
Wood	11.155	6.847	0.142	369.917	
Subtotal	12.643	7.067	4.980	381.087	
COMMERCIAL/INSTITUTIONAL FUEL USE					
Anthracite Coal	0.000	0.000	0.000	0.614	
Residual Oil	0.042	0.009	0.461	0.098	
Distillate Oil	0.489	0.050	1.956	1.141	
LP Gas	0.016	0.005	0.118	0.037	
Natural Gas	0.686	0.186	3.265	1.600	
Subtotal	1.233	0.250	5.800	3.490	
INDUSTRIAL FUEL USE					
Anthracite Coal	0.000	0.000	0.000	0.000	
Residual Oil	0.000	0.000	0.000	0.000	
Distillate Oil	0.090	0.004	0.361	0.090	
LP Gas	0.149	0.025	0.882	0.149	
Natural Gas	0.303	0.082	1.442	0.303	
Subtotal	0.542	0.111	2.685	0.542	
SOLID WASTE DISPOSAL					
On-Site Incineration	0.000	0.000	0.000	0.000	
Open Burning	0.671	0.055	0.003	0.671	
Subtotal	0.671	0.055	0.003	0.671	

	T Ozo	Typical Winter Day		
	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
STATE TOTALS	T/D	T/D	T/D	T/D
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	0.095	0.000	0.000
Surface Cleaning	0.000	32.124	0.000	0.000
Arch Surface Coating	0.000	20.578	0.000	0.000
Auto Refinishing	0.000	2.152	0.000	0.000
Traffic Lane Marking	0.000	0.794	0.000	0.000
Other Small Ind Surf Coat	0.000	9.777	0.000	0.000
Graphic Arts	0.000	7.856	0.000	0.000
Cutback Asphalt	0.000	1.958	0.000	0.000
Emulsified Asphalt	0.000	2.578	0.000	0.000
Asphalt Roofing	0.000	0.000	0.000	0.000
Pesticides	0.000	5.286	0.000	0.000
Comm/Consum Solvents	0.000	40.068	0.000	0.000
Subtotal	0.000	123.267	0.000	0.000
OTHER SOURCES				
Forest Fires	0.158	0.007	0.003	0.141
Slash/Prescribed Burning	0.000	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000	0.000
Structural Fires	1.266	0.232	0.030	1.065
Orchard Heaters	0.000	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000	0.000
Bakeries	0.000	1.830	0.000	0.000
Breweries	0.000	0.002	0.000	0.000
Wineries	0.000	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000	0.000
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	0.332	0.000	0.000
Subtotal	1.424	2.403	0.033	1.206

	Т	Typical		
	Ozo	Ozone Summer Day		
	CO(RE)	VOC(RE)	NOx(RE)	CO(RE)
STATE TOTALS	T/D	T/D	T/D	T/D
WASTE MANAGEMENT PRACTICES				
POTW	0.000	3.357	0.000	0.000
Waste Treat Package Plants	0.000	0.000	0.000	0.000
TSDF	0.000	0.835	0.000	0.000
Landfills	0.000	1.153	0.000	0.000
Subtotal	0.000	5.345	0.000	0.000
Leaking Underground				
Storage Tanks	0.000	0.155	0.000	0.000
Spills	0.000	0.411	0.000	0.000
Biogenics	42.918	394.229	1.912	0.000
State Total:	59.430	540.388	15.412	386.996

		Typical High		
		Ozone Summer Day		
	CO(RE)	VOC(RE)	NOx(RE)	
CT Portion CT-NY-NJ CMSA	T/D	T/D	T/D	
GASOLINE DISTRIBUTION				
Tank Truck Unloading	0.000	0.667	0.000	
Vehicle Fueling	0.000	2.060	0.000	
Underground Tank Breathing	0.000	0.691	0.000	
Gasoline Trucks in Transit	0.000	0.081	0.000	
Aircraft Refueling	0.000	0.044	0.000	
Subtotal	0.000	3.543	0.000	
RESIDENTIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	
Distillate Oil	0.405	0.058	1.458	
LP Gas	0.037	0.010	0.272	
Natural Gas	0.367	0.051	0.863	
Wood	4.215	2.696	0.053	
Subtotal	5.025	2.815	2.646	
COMMERCIAL/INSTITUTIONAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	
Residual Oil	0.022	0.005	0.244	
Distillate Oil	0.258	0.026	1.034	
LP Gas	0.008	0.002	0.062	
Natural Gas	0.362	0.098	1.726	
Subtotal	0.651	0.132	3.065	
INDUSTRIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	
Residual Oil	0.000	0.000	0.000	
Distillate Oil	0.048	0.002	0.191	
LP Gas	0.079	0.013	0.466	
Natural Gas	0.160	0.043	0.762	
Subtotal	0.286	0.059	1.419	
SOLID WASTE DISPOSAL				
On-Site Incineration	0.000	0.000	0.000	
Open Burning	0.325	0.027	0.001	
Subtotal	0.325	0.027	0.001	

	Typical High			
		Ozone Summer Day		
	CO(RE)	VOC(RE)	NOx(RE)	
CT Portion CT-NY-NJ CMSA	T/D	T/D	T/D	
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	0.057	0.000	
Surface Cleaning	0.000	16.338	0.000	
Arch Surface Coating	0.000	11.248	0.000	
Auto Refinishing	0.000	1.176	0.000	
Traffic Lane Marking	0.000	0.434	0.000	
Other Small Ind Surf Coat	0.000	5.256	0.000	
Graphic Arts	0.000	3.997	0.000	
Cutback Asphalt	0.000	0.407	0.000	
Emulsified Asphalt	0.000	0.754	0.000	
Asphalt Roofing	0.000	0.000	0.000	
Pesticides	0.000	2.984	0.000	
Comm/Consum Solvents	0.000	23.798	0.000	
Subtotal	0.000	66.449	0.000	
OTHER SOURCES				
Forest Fires	0.013	0.001	0.000	
Slash/Prescribed Burning	0.000	0.000	0.000	
Agricultural Burning	0.000	0.000	0.000	
Structural Fires	0.775	0.142	0.018	
Orchard Heaters	0.000	0.000	0.000	
Barge, Tank, Rail Car, and	0.000	0.000	0.000	
Drum Cleaning	0.000	0.000	0.000	
Bakeries	0.000	0.850	0.000	
Breweries	0.000	0.001	0.000	
Wineries	0.000	0.000	0.000	
Distilleries	0.000	0.000	0.000	
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	0.132	0.000	
Subtotal	0.787	1.125	0.018	

	Typical High Ozone Summer Day		
	CO(RE)	VOC(RE)	NOx(RE)
CT Portion CT-NY-NJ CMSA	T/D	T/D	T/D
WASTE MANAGEMENT PRACTICES			
POTW	0.000	1.841	0.000
Waste Treat Package Plants	0.000	0.000	0.000
TSDF	0.000	0.572	0.000
Landfills	0.000	0.265	0.000
Subtotal	0.000	2.678	0.000
Leaking Underground			
Storage Tanks	0.000	0.079	0.000
Spills	0.000	0.162	0.000
Biogenics	14.976	125.631	0.658
CT Portion CT-NY-NJ CMSA Total:	22.050	202.699	7.808

	Typical High		
	Ozone Summer Day		
	CO(RE)	VOC(RE)	NOx(RE)
Greater Connecticut Area	T/D	T/D	T/D
GASOLINE DISTRIBUTION			
Tank Truck Unloading	0.000	0.636	0.000
Vehicle Fueling	0.000	2.039	0.000
Underground Tank Breathing	0.000	0.659	0.000
Gasoline Trucks in Transit	0.000	0.077	0.000
Aircraft Refueling	0.000	0.142	0.000
Subtotal	0.000	3.552	0.000
RESIDENTIAL FUEL USE			
Anthracite Coal	0.000	0.000	0.000
Distillate Oil	0.362	0.052	1.305
LP Gas	0.039	0.011	0.287
Natural Gas	0.278	0.038	0.653
Wood	6.940	4.151	0.089
Subtotal	7.619	4.252	2.333
COMMERCIAL/INSTITUTIONAL FUEL USE			
Anthracite Coal	0.000	0.000	0.000
Residual Oil	0.020	0.004	0.217
Distillate Oil	0.231	0.024	0.922
LP Gas	0.008	0.002	0.056
Natural Gas	0.323	0.088	1.539
Subtotal	0.581	0.118	2.735
INDUSTRIAL FUEL USE			
Anthracite Coal	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000
Distillate Oil	0.043	0.002	0.170
LP Gas	0.070	0.012	0.416
Natural Gas	0.143	0.039	0.680
Subtotal	0.255	0.052	1.266
SOLID WASTE DISPOSAL			
On-Site Incineration	0.000	0.000	0.000
Open Burning	0.346	0.028	0.001
Subtotal	0.346	0.028	0.001

	Typical High		
	Ozone Summer Day		
	CO(RE)	VOC(RE)	NOx(RE)
Greater Connecticut Area	T/D	T/D	T/D
STATIONARY SOURCE SOLVENT USE			
Dry Cleaning	0.000	0.039	0.000
Surface Cleaning	0.000	15.786	0.000
Arch Surface Coating	0.000	9.330	0.000
Auto Refinishing	0.000	0.976	0.000
Traffic Lane Marking	0.000	0.360	0.000
Other Small Ind Surf Coat	0.000	4.521	0.000
Graphic Arts	0.000	3.859	0.000
Cutback Asphalt	0.000	1.552	0.000
Emulsified Asphalt	0.000	1.824	0.000
Asphalt Roofing	0.000	0.000	0.000
Pesticides	0.000	2.302	0.000
Comm/Consum Solvents	0.000	16.270	0.000
Subtotal	0.000	56.818	0.000
OTHER SOURCES			
Forest Fires	0.145	0.007	0.003
Slash/Prescribed Burning	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000
Structural Fires	0.492	0.090	0.011
Orchard Heaters	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000
Bakeries	0.000	0.980	0.000
Breweries	0.000	0.001	0.000
Wineries	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000
Synthetic Organic Chemical			
Manufacturing Tank Storage	0.000	0.200	0.000
Subtotal	0.637	1.278	0.015

	Typical High Ozone Summer Day		
	CO(RE)	VOC(RE)	NOx(RE)
Greater Connecticut Area	T/D	T/D	T/D
WASTE MANAGEMENT PRACTICES			
POTW	0.000	1.516	0.000
Waste Treat Package Plants	0.000	0.000	0.000
TSDF	0.000	0.264	0.000
Landfills	0.000	0.888	0.000
Subtotal	0.000	2.667	0.000
Leaking Underground			
Storage Tanks	0.000	0.075	0.000
Spills	0.000	0.249	0.000
Biogenics	27.942	268.599	1.254
Greater Connecticut Area Total:	37.380	337.689	7.604

	Typical
	Winter Day
Fairfield	CO(RE)
	T/D
RESIDENTIAL FUEL USE	
Anthracite Coal	0.039
Distillate Oil	1.600
LP Gas	0.050
Natural Gas	1.082
Wood	47.225
Subtotal	49.997
COMMERCIAL/INSTITUTIONAL FUEL USE	
Anthracite Coal	0.159
Residual Oil	0.025
Distillate Oil	0.296
LP Gas	0.010
Natural Gas	0.415
Subtotal	0.906
INDUSTRIAL FUEL USE	
Anthracite Coal	0.000
Residual Oil	0.000
Distillate Oil	0.024
LP Gas	0.039
Natural Gas	0.079
Subtotal	0.142
SOLID WASTE DISPOSAL	
On-Site Incineration	0.000
Open Burning	0.114
Subtotal	0.114
OTHER SOURCES	
Forest Fires	0.000
Slash/Prescribed Burning	0.000
Agricultural Burning	0.000
Structural Fires	0.321
Urchard Heaters	0.000
Subtotal	0.321
Fairfield Total:	51.480

	Typical
	Winter Day
Hartford	CO(KE)
	T/D
RESIDENTIAL FUEL USE	
Anthracite Coal	0.092
Distillate Oil	1.443
LP Gas	0.056
Natural Gas	1.400
Wood	52.726
Subtotal	55.717
COMMERCIAL/INSTITUTIONAL FUEL USE	
Anthracite Coal	0.189
Residual Oil	0.030
Distillate Oil	0.351
LP Gas	0.012
Natural Gas	0.493
Subtotal	1.075
INDUSTRIAL FUEL USE	
Anthracite Coal	0.000
Residual Oil	0.000
Distillate Oil	0.026
LP Gas	0.043
Natural Gas	0.087
Subtotal	0.155
SOLID WASTE DISPOSAL	
On-Site Incineration	0.000
Open Burning	0.162
Subtotal	0.162
OTHER SOURCES	0.001
Forest Fires	0.031
Siasn/Prescribed Burning	0.000
Agricultural Durfilling	0.000
Orchard Heaters	0.155
	0.000
SUDIOTAI	0.164
Hartford Total:	57.274

	Typical
	Winter Day CO(RE)
Litchfield	
	T/D
RESIDENTIAL FUEL USE	0.033
Distillate Oil	0.055
I P Gas	0.455
Natural Gas	0.092
Wood	57.682
Subtotal	58.276
COMMERCIAL/INSTITUTIONAL FLIEL LISE	
Anthracite Coal	0.023
Residual Oil	0.004
Distillate Oil	0.042
LP Gas	0.001
Natural Gas	0.059
Subtotal	0.129
INDUSTRIAL FUEL USE	
Anthracite Coal	0.000
Residual Oil	0.000
Distillate Oil	0.005
LP Gas	0.008
Natural Gas	0.017
Subtotal	0.031
SOLID WASTE DISPOSAL	
On-Site Incineration	0.000
Open Burning	0.050
Subtotal	0.050
OTHER SOURCES	
Forest Fires	0.011
Slash/Prescribed Burning	0.000
Agricultural Burning	0.000
Orchard Heaters	
	0.000
Subtotal	0.077
Litchfield Total:	58.562

	Typical
	Winter Day
N#111	CO(RE)
Middlesex	Т/Л
RESIDENTIAL FUEL USE	1/D
Anthracite Coal	0.013
Distillate Oil	0.396
LP Gas	0.014
Natural Gas	0.063
Wood	32.882
Subtotal	33.368
COMMERCIAL/INSTITUTIONAL FUEL USE	
Anthracite Coal	0.025
Residual Oil	0.004
Distillate Oil	0.046
LP Gas	0.002
Natural Gas	0.065
Subtotal	0.142
INDUSTRIAL FUEL USE	
Anthracite Coal	0.000
Residual Oil	0.000
Distillate Oil	0.005
LP Gas	0.007
Natural Gas	0.015
Subtotal	0.027
SOLID WASTE DISPOSAL	
On-Site Incineration	0.000
Open Burning	0.043
Subtotal	0.043
OTHER SOURCES	
Forest Fires	0.000
Slash/Prescribed Burning	0.000
Agricultural Burning	0.000
Structural Fires	0.061
Orchard Heaters	0.000
Subtotal	0.061
Middlesex Total:	33.641

	Typical
	Winter Day CO(RE)
New Haven	
	T/D
RESIDENTIAL FUEL USE	0.061
Anthracite Coal	0.061
	1.543
LP GdS Natural Gas	0.048
Wood	1.071
	03.383
Subtotal	66.106
COMMERCIAL/INSTITUTIONAL FUEL USE	
Anthracite Coal	0.140
Residual Oil	0.022
Distillate Oil	0.260
LP Gas	0.009
Natural Gas	0.365
Subtotal	0.797
INDUCTDIAL CLICI LICE	
INDUSTRIAL FUEL USE	0.000
Aninfactie Coal	0.000
Distillata Oil	0.000
I P Cos	0.019
Natural Gas	0.052
	0.005
Subtotal	0.117
SOLID WASTE DISPOSAL	
On-Site Incineration	0.000
Open Burning	0.168
Subtotal	0.168
OTHER SOURCES	
Forest Fires	0.017
Slash/Prescribed Burning	0.000
Agricultural Burning	0.000
Structural Fires	0.339
Orchard Heaters	0.000
Subtotal	0.357
New Haven Total:	67.544

	Typical
	Winter Day CO(RE)
New London	、 /
	T/D
RESIDENTIAL FUEL USE	0.055
Anthracite Coal	0.055
Distillate Oil	0.645
LP Gas	0.025
Natural Gas	0.107
wood	55.008
Subtotal	53.841
COMMERCIAL/INSTITUTIONAL FUEL USE	
Anthracite Coal	0.049
Residual Oil	0.008
Distillate Oil	0.090
LP Gas	0.003
Natural Gas	0.127
Subtotal	0.277
INDUSTRIAL FUEL USE	
Anthracite Coal	0.000
Residual Oil	0.000
Distillate Oil	0.007
LP Gas	0.012
Natural Gas	0.024
Subtotal	0.043
SOLID WASTE DISPOSAL	0.000
On-Site Incineration	0.000
Open Burning	0.064
Subtotal	0.064
OTHER SOURCES	
Forest Fires	0.006
Slash/Prescribed Burning	0.000
Agricultural Burning	0.000
Structural Fires	0.068
Orchard Heaters	0.000
Subtotal	0.074
New London Total:	54.298

	Typical
	Winter Day
	CO(RE)
Tolland	ТФ
RESIDENTIAL FUEL USE	1/D
Anthracite Coal	0.028
Distillate Oil	0.343
LP Gas	0.012
Natural Gas	0.039
Wood	32.654
Subtotal	33.075
COMMERCIAL/INSTITUTIONAL FUEL USE	
Anthracite Coal	0.015
Residual Oil	0.002
Distillate Oil	0.028
LP Gas	0.001
Natural Gas	0.040
Subtotal	0.087
INDUSTRIAL FUEL USE	
Anthracite Coal	0.000
Residual Oil	0.000
Distillate Oil	0.001
LP Gas	0.002
Natural Gas	0.004
Subtotal	0.008
SOLID WASTE DISPOSAL	
On-Site Incineration	0.000
Open Burning	0.033
Subtotal	0.033
OTHER SOURCES	0.040
Forest Fires	0.049
Slash/Prescribed Burning	0.000
Agricultural Burning Structural Fires	0.000
Orchard Hostors	0.049
	0.000
Subtotal	0.099
Tolland Total:	33.302

	Typical			
	Winter Day			
	CO(RE)			
Windham				
	T/D			
RESIDENTIAL FUEL USE	0.010			
Anthracite Coal	0.018			
Distillate Oil	0.279			
LP Gas	0.012			
Natural Gas	0.039			
Wood	30.357			
Subtotal	30.706			
COMMERCIAL/INSTITUTIONAL FUEL USE				
Anthracite Coal	0.014			
Residual Oil	0.002			
Distillate Oil	0.025			
LP Gas	0.001			
Natural Gas	0.036			
Subtotal	0.078			
INDUSTRIAL FUEL USE				
Anthracite Coal	0.000			
Residual Oil	0.000			
Distillate Oil	0.003			
LP Gas	0.005			
Natural Gas	0.010			
Subtotal	0.019			
SOLID WASTE DISPOSAL	0.000			
On-Site Incineration	0.000			
Open Burning	0.037			
Subtotal	0.037			
OTHER SOURCES				
Forest Fires	0.026			
Slash/Prescribed Burning	0.000			
Agricultural Burning	0.000			
Structural Fires	0.028			
Orchard Heaters	0.000			
Subtotal	0.054			
Windham Total:	30.894			
	Typical			
-----------------------------------	-----------	------------------	-----------	--
		Annual Emissions		
Fairfield	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
GASOLINE DISTRIBUTION				
Tank Truck Unloading	0.000	92.801	0.000	
Vehicle Fueling	0.000	286.797	0.000	
Underground Tank Breathing	0.000	96.225	0.000	
Gasoline Trucks in Transit	0.000	13.081	0.000	
Aircraft Refueling	0.000	3.560	0.000	
Subtotal	0.000	492.465	0.000	
RESIDENTIAL FUEL USE				
Anthracite Coal	6.992	0.254	0.076	
Distillate Oil	318.442	45.410	1,146.392	
LP Gas	11.993	3.409	88.369	
Natural Gas	225.748	31.040	530.507	
Wood	7,789.100	5,052.200	99.019	
Subtotal	8,352.275	5,132.313	1,864.364	
COMMERCIAL/INSTITUTIONAL FUEL USE				
Anthracite Coal	41.560	4.618	1.385	
Residual Oil	6.615	1.495	72.767	
Distillate Oil	77.215	7.876	308.858	
LP Gas	2.534	0.720	18.672	
Natural Gas	108.268	29.387	515.564	
Subtotal	236.192	44.096	917.246	
INDUSTRIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	
Residual Oil	0.000	0.000	0.000	
Distillate Oil	7.393	0.296	29.574	
LP Gas	12.170	2.054	72.262	
Natural Gas	24.794	6.730	118.065	
Subtotal	44.358	9.079	219.901	
SOLID WASTE DISPOSAL				
On-Site Incineration	0.000	0.000	0.000	
Open Burning	41.461	3.399	0.165	
Subtotal	41.461	3.399	0.165	

	Typical			
		Annual Emissions		
Fairfield	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	10.852	0.000	
Surface Cleaning	0.000	2,039.498	0.000	
Arch Surface Coating	0.000	1,492.176	0.000	
Auto Refinishing	0.000	144.884	0.000	
Traffic Lane Marking	0.000	34.952	0.000	
Other Small Ind Surf Coat	0.000	396.706	0.000	
Graphic Arts	0.000	582.531	0.000	
Cutback Asphalt	0.000	20.182	0.000	
Emulsified Asphalt	0.000	25.988	0.000	
Asphalt Roofing	0.000	0.000	0.000	
Pesticides	0.000	264.228	0.000	
Comm/Consum Solvents	0.000	3,759.861	0.000	
Subtotal	0.000	8,771.858	0.000	
OTHER SOURCES				
Forest Fires	5.477	0.258	0.117	
Slash/Prescribed Burning	0.000	0.000	0.000	
Agricultural Burning	0.000	0.000	0.000	
Structural Fires	135.468	24.836	3.161	
Orchard Heaters	0.000	0.000	0.000	
Barge, Tank, Rail Car, and	0.000	0.000	0.000	
Drum Cleaning	0.000	0.000	0.000	
Bakeries	0.000	65.255	0.000	
Breweries	0.000	0.039	0.000	
Wineries	0.000	0.000	0.000	
Distilleries	0.000	0.000	0.000	
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	16.661	0.000	
Subtotal	140.945	107.050	3.278	

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County)
(Excluding Mobile Sources)

Fairfield		Typical		
	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
WASTE MANAGEMENT PRACTICES				
POTW	0.000	248.518	0.000	
Waste Treat Package Plants	0.000	0.000	0.000	
TSDF	0.000	66.159	0.000	
Landfills	0.000	44.200	0.000	
Subtotal	0.000	358.877	0.000	
Leaking Underground				
Storage Tanks	0.000	10.976	0.000	
Spills	0.000	21.448	0.000	
Biogenics	816.100	5,771.800	47.600	
GRAND TOTAL FOR COUNTY	9,631.331	20,723.361	3,052.555	

		Annual Emissions	
Hartford	CO(RE)	VOC(RE)	NOx(RE)
	T/Y	T/Y	T/Y
GASOLINE DISTRIBUTION			
Tank Truck Unloading	0.000	103.875	0.000
Vehicle Fueling	0.000	333.234	0.000
Underground Tank Breathing	0.000	107.708	0.000
Gasoline Trucks in Transit	0.000	13.552	0.000
Aircraft Refueling	0.000	16.770	0.000
Subtotal	0.000	575.138	0.000
RESIDENTIAL FUEL USE			
Anthracite Coal	16.372	0.595	0.179
Distillate Oil	287.178	40.952	1,033.841
LP Gas	13.390	3.806	98.666
Natural Gas	291.979	40.147	686.152
Wood	8,784.800	5,263.400	115.560
Subtotal	9,393.720	5,348.900	1,934.398
COMMERCIAL/INSTITUTIONAL FUEL USE			
Anthracite Coal	49.320	5.480	1.644
Residual Oil	7.850	1.774	86.354
Distillate Oil	91.631	9.346	366.526
LP Gas	3.007	0.855	22.158
Natural Gas	128.483	34.874	611.826
Subtotal	280.292	52.329	1,088.507
INDUSTRIAL FUEL USE			
Anthracite Coal	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000
Distillate Oil	8.069	0.323	32.277
LP Gas	13.283	2.241	78.867
Natural Gas	27.060	7.345	128.857
Subtotal	48.412	9.909	240.001
SOLID WASTE DISPOSAL			
On-Site Incineration	0.000	0.000	0.000
Open Burning	58.926	4.831	0.235
Subtotal	58.926	4.831	0.235

	Typical			
		Annual Emissions		
Hartford	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	9.088	0.000	
Surface Cleaning	0.000	2,726.383	0.000	
Arch Surface Coating	0.000	1,444.108	0.000	
Auto Refinishing	0.000	140.217	0.000	
Traffic Lane Marking	0.000	33.826	0.000	
Other Small Ind Surf Coat	0.000	924.247	0.000	
Graphic Arts	0.000	552.623	0.000	
Cutback Asphalt	0.000	4.802	0.000	
Emulsified Asphalt	0.000	25.584	0.000	
Asphalt Roofing	0.000	0.000	0.000	
Pesticides	0.000	197.772	0.000	
Comm/Consum Solvents	0.000	2,485.812	0.000	
Subtotal	0.000	8,544.461	0.000	
OTHER SOURCES				
Forest Fires	26.546	1.249	0.569	
Slash/Prescribed Burning	0.000	0.000	0.000	
Agricultural Burning	0.000	0.000	0.000	
Structural Fires	132.912	24.367	3.101	
Orchard Heaters	0.000	0.000	0.000	
Barge, Tank, Rail Car, and	0.000	0.000	0.000	
Drum Cleaning	0.000	0.000	0.000	
Bakeries	0.000	169.130	0.000	
Breweries	0.000	0.101	0.000	
Wineries	0.000	0.000	0.000	
Distilleries	0.000	0.000	0.000	
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	63.789	0.000	
Subtotal	159.458	258.636	3.671	

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County)
(Excluding Mobile Sources)

Hartford		Typical			
	CO(RE)	VOC(RE)	NOx(RE)		
	T/Y	T/Y	T/Y		
WASTE MANAGEMENT PRACTICES					
POTW	0.000	299.574	0.000		
Waste Treat Package Plants	0.000	0.000	0.000		
TSDF	0.000	41.499	0.000		
Landfills	0.000	196.518	0.000		
Subtotal	0.000	537.591	0.000		
Leaking Underground					
Storage Tanks	0.000	11.319	0.000		
Spills	0.000	44.909	0.000		
Biogenics	904.200	7,215.200	55.900		
GRAND TOTAL FOR COUNTY	10,845.008	22,603.223	3,322.712		

Litchfield	CO(RE)	VOC(RE)	NOx(RE)
	T/Y	T/Y	T/Y
GASOLINE DISTRIBUTION			
Tank Truck Unloading	0.000	37.209	0.000
Vehicle Fueling	0.000	119.367	0.000
Underground Tank Breathing	0.000	38.582	0.000
Gasoline Trucks in Transit	0.000	2.688	0.000
Aircraft Refueling	0.000	0.003	0.000
Subtotal	0.000	197.849	0.000
RESIDENTIAL FUEL USE			
Anthracite Coal	5.798	0.211	0.063
Distillate Oil	90.606	12.920	326.180
LP Gas	3.386	0.962	24.949
Natural Gas	19 124	2.629	44 941
Wood	9.838.700	5.885.600	125.060
Subtotal	9,957.614	5,902.323	521.193
COMMERCIAL/INSTITUTIONAL FUEL USE	5 0.21	0.650	0.105
Anthracite Coal	5.921	0.658	0.197
Residual Oil	0.942	0.213	10.367
Distillate Oil	11.000	1.122	44.002
LP Gas	0.361	0.103	2.660
Natural Gas	15.425	4.187	73.450
Subtotal	33.649	6.282	130.677
INDUSTRIAL FUEL USE			
Anthracite Coal	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000
Distillate Oil	1.592	0.064	6.370
LP Gas	2.621	0.442	15.564
Natural Gas	5.340	1.449	25.430
Subtotal	9.554	1.956	47.364
SOLID WASTE DISPOSAL			
On-Site Incineration	0.000	0.000	0.000
Open Burning	18.151	1.488	0.072
Subtotal	18.151	1.488	0.072

	Typical			
		Annual Emissions		
Litchfield	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	1.628	0.000	
Surface Cleaning	0.000	491.947	0.000	
Arch Surface Coating	0.000	310.547	0.000	
Auto Refinishing	0.000	30.153	0.000	
Traffic Lane Marking	0.000	7.274	0.000	
Other Small Ind Surf Coat	0.000	142.909	0.000	
Graphic Arts	0.000	121.235	0.000	
Cutback Asphalt	0.000	97.665	0.000	
Emulsified Asphalt	0.000	57.976	0.000	
Asphalt Roofing	0.000	0.000	0.000	
Pesticides	0.000	50.758	0.000	
Comm/Consum Solvents	0.000	465.451	0.000	
Subtotal	0.000	1,777.542	0.000	
OTHER SOURCES				
Forest Fires	13.574	0.639	0.291	
Slash/Prescribed Burning	0.000	0.000	0.000	
Agricultural Burning	0.000	0.000	0.000	
Structural Fires	22.791	4.178	0.532	
Orchard Heaters	0.000	0.000	0.000	
Barge, Tank, Rail Car, and	0.000	0.000	0.000	
Drum Cleaning	0.000	0.000	0.000	
Bakeries	0.000	36.370	0.000	
Breweries	0.000	0.020	0.000	
Wineries	0.000	0.000	0.000	
Distilleries	0.000	0.000	0.000	
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	2.588	0.000	
Subtotal	36.365	43.795	0.823	

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County)
(Excluding Mobile Sources)

Litchfield				
	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
WASTE MANAGEMENT PRACTICES				
POTW	0.000	9.837	0.000	
Waste Treat Package Plants	0.000	0.000	0.000	
TSDF	0.000	7.336	0.000	
Landfills	0.000	56.991	0.000	
Subtotal	0.000	74.164	0.000	
Leaking Underground				
Storage Tanks	0.000	3.430	0.000	
Spills	0.000	6.168	0.000	
Biogenics	1,212.900	9,847.100	68.500	
GRAND TOTAL FOR COUNTY	11,268.234	17,862.098	768.629	

	Typical		
		Annual Emissions	
Middlesex	CO(RE)	VOC(RE)	NOx(RE)
	T/Y	T/Y	T/Y
GASOLINE DISTRIBUTION			
Tank Truck Unloading	0.000	28.793	0.000
Vehicle Fueling	0.000	88.982	0.000
Underground Tank Breathing	0.000	29.855	0.000
Gasoline Trucks in Transit	0.000	3.055	0.000
Aircraft Refueling	0.000	0.077	0.000
Subtotal	0.000	150.762	0.000
RESIDENTIAL FUEL USE			
Anthracite Coal	2.388	0.087	0.026
Distillate Oil	78.724	11.226	283.406
LP Gas	3.457	0.983	25.473
Natural Gas	13.063	1.796	30.698
Wood	5.471.600	3.369.200	67.579
Subtotal	5,569.232	3,383.292	407.183
COMMERCIAL/INSTITUTIONAL FUEL USE			
Anthracite Coal	6 507	0.723	0.217
Residual Oil	1.036	0.234	11.393
Distillate Oil	12.089	1.233	48.356
LP Gas	0.397	0.113	2.923
Natural Gas	16.951	4.601	80.719
Subtotal	36.070	6.004	143 600
Subiotai	30.979	0.904	143.009
INDUSTRIAL FUEL USE			
Anthracite Coal	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000
Distillate Oil	1.412	0.056	5.649
LP Gas	2.325	0.392	13.802
Natural Gas	4.736	1.285	22.551
Subtotal	8.473	1.734	42.002
SOLID WASTE DISPOSAL			
On-Site Incineration	0.000	0.000	0.000
Open Burning	15.743	1.291	0.063
Subtotal	15.743	1.291	0.063

	Typical			
		Annual Emissions		
Middlesex	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	1.356	0.000	
Surface Cleaning	0.000	447.833	0.000	
Arch Surface Coating	0.000	265.866	0.000	
Auto Refinishing	0.000	25.815	0.000	
Traffic Lane Marking	0.000	6.227	0.000	
Other Small Ind Surf Coat	0.000	75.689	0.000	
Graphic Arts	0.000	55.794	0.000	
Cutback Asphalt	0.000	0.000	0.000	
Emulsified Asphalt	0.000	26.596	0.000	
Asphalt Roofing	0.000	0.000	0.000	
Pesticides	0.000	34.974	0.000	
Comm/Consum Solvents	0.000	564.222	0.000	
Subtotal	0.000	1,504.371	0.000	
OTHER SOURCES				
Forest Fires	6.918	0.326	0.148	
Slash/Prescribed Burning	0.000	0.000	0.000	
Agricultural Burning	0.000	0.000	0.000	
Structural Fires	18.957	3.475	0.442	
Orchard Heaters	0.000	0.000	0.000	
Barge, Tank, Rail Car, and	0.000	0.000	0.000	
Drum Cleaning	0.000	0.000	0.000	
Bakeries	0.000	31.137	0.000	
Breweries	0.000	0.000	0.000	
Wineries	0.000	0.000	0.000	
Distilleries	0.000	0.000	0.000	
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	4.024	0.000	
Subtotal	25.875	38.963	0.591	

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County)
(Excluding Mobile Sources)

		Typical		
Middlesex	Annual Emissions			
	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
WASTE MANAGEMENT PRACTICES				
POTW	0.000	4.417	0.000	
Waste Treat Package Plants	0.000	0.000	0.000	
TSDF	0.000	8.020	0.000	
Landfills	0.000	4.655	0.000	
Subtotal	0.000	17.091	0.000	
Leaking Underground				
Storage Tanks	0.000	1.372	0.000	
Spills	0.000	4.244	0.000	
Biogenics	724.400	5,650.100	51.800	
GRAND TOTAL FOR COUNTY	6,380.702	10,760.124	645.247	

	Typical		
		Annual Emissions	
New Haven	CO(RE)	VOC(RE)	NOx(RE)
	T/Y	T/Y	T/Y
GASOLINE DISTRIBUTION			
Tank Truck Unloading	0.000	110.519	0.000
Vehicle Fueling	0.000	341.555	0.000
Underground Tank Breathing	0.000	114.598	0.000
Gasoline Trucks in Transit	0.000	11.815	0.000
Aircraft Refueling	0.000	4.654	0.000
Subtotal	0.000	583.142	0.000
RESIDENTIAL FUEL USE			
Anthracite Coal	10.787	0.392	0.118
Distillate Oil	306.944	43.770	1,104.997
LP Gas	11.482	3.263	84.605
Natural Gas	223.462	30.726	525.135
Wood	10,347.000	6,681.800	130.900
Subtotal	10,899.674	6,759.952	1,845.754
COMMERCIAL/INSTITUTIONAL FUEL USE			
Anthracite Coal	36.553	4.061	1.218
Residual Oil	5.818	1.315	64.001
Distillate Oil	67.912	6.927	271.648
LP Gas	2.229	0.633	16.422
Natural Gas	95.225	25.847	453.450
Subtotal	207.737	38.783	806.739
INDUSTRIAL FUEL USE			
Anthracite Coal	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000
Distillate Oil	6.079	0.243	24.317
LP Gas	10.007	1.689	59.417
Natural Gas	20.386	5.533	97.078
Subtotal	36.473	7.465	180.811
SOLID WASTE DISPOSAL			
On-Site Incineration	0.000	0.000	0.000
Open Burning	61.042	5.004	0.244
Subtotal	61.042	5.004	0.244

	Typical			
		Annual Emissions		
New Haven	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
STATIONARY SOURCE SOLVENT USE				
Dry Cleaning	0.000	8.455	0.000	
Surface Cleaning	0.000	1,763.306	0.000	
Arch Surface Coating	0.000	1,391.369	0.000	
Auto Refinishing	0.000	135.096	0.000	
Traffic Lane Marking	0.000	32.591	0.000	
Other Small Ind Surf Coat	0.000	605.761	0.000	
Graphic Arts	0.000	289.325	0.000	
Cutback Asphalt	0.000	15.925	0.000	
Emulsified Asphalt	0.000	16.000	0.000	
Asphalt Roofing	0.000	0.000	0.000	
Pesticides	0.000	202.127	0.000	
Comm/Consum Solvents	0.000	4,362.350	0.000	
Subtotal	0.000	8,822.306	0.000	
OTHER SOURCES				
Forest Fires	20.964	0.987	0.450	
Slash/Prescribed Burning	0.000	0.000	0.000	
Agricultural Burning	0.000	0.000	0.000	
Structural Fires	109.908	20.150	2.565	
Orchard Heaters	0.000	0.000	0.000	
Barge, Tank, Rail Car, and	0.000	0.000	0.000	
Drum Cleaning	0.000	0.000	0.000	
Bakeries	0.000	162.953	0.000	
Breweries	0.000	0.039	0.000	
Wineries	0.000	0.000	0.000	
Distilleries	0.000	0.000	0.000	
Synthetic Organic Chemical				
Manufacturing Tank Storage	0.000	27.301	0.000	
Subtotal	130.872	211.429	3.014	

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County)
(Excluding Mobile Sources)

		Typical		
New Haven	Annual Emissions			
	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
WASTE MANAGEMENT PRACTICES				
POTW	0.000	227.068	0.000	
Waste Treat Package Plants	0.000	0.000	0.000	
TSDF	0.000	74.506	0.000	
Landfills	0.000	42.757	0.000	
Subtotal	0.000	344.332	0.000	
Leaking Underground				
Storage Tanks	0.000	10.976	0.000	
Spills	0.000	66.694	0.000	
Biogenics	893.200	6,694.300	49.900	
GRAND TOTAL FOR COUNTY	12,228.997	23,544.384	2,886.462	

	Typical		
New London	CO(RE)	VOC(RE)	NOx(RE)
	T/Y	T/Y	T/Y
GASOLINE DISTRIBUTION			
Tank Truck Unloading	0.000	43.632	0.000
Vehicle Fueling	0.000	139.972	0.000
Underground Tank Breathing	0.000	45.242	0.000
Gasoline Trucks in Transit	0.000	5.390	0.000
Aircraft Refueling	0.000	7.614	0.000
Subtotal	0.000	241.850	0.000
RESIDENTIAL FUEL USE			
Anthracite Coal	9.849	0.358	0.107
Distillate Oil	128.389	18.308	462.201
LP Gas	5.937	1.687	43.745
Natural Gas	22.390	3.079	52.618
Wood	8,926.400	5,419.800	110.990
Subtotal	9,092.965	5,443.232	669.661
COMMERCIAL/INSTITUTIONAL FUEL USE			
Anthracite Coal	12.699	1.411	0.423
Residual Oil	2.021	0.457	22.234
Distillate Oil	23.593	2.406	94.370
LP Gas	0.774	0.220	5.705
Natural Gas	33.081	8.979	157.529
Subtotal	72.168	13.473	280.261
INDUSTRIAL FUEL USE			
Anthracite Coal	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000
Distillate Oil	2.234	0.089	8.936
LP Gas	3.677	0.621	21.835
Natural Gas	7.492	2.033	35.675
Subtotal	13.403	2.743	66.445
SOLID WASTE DISPOSAL			
On-Site Incineration	0.000	0.000	0.000
Open Burning	23.208	1.903	0.093
Subtotal	23.208	1.903	0.093

		Typical	
		Annual Emissions	
New London	CO(RE)	VOC(RE)	NOx(RE)
	T/Y	T/Y	T/Y
STATIONARY SOURCE SOLVENT USE			
Dry Cleaning	0.000	1.673	0.000
Surface Cleaning	0.000	562.803	0.000
Arch Surface Coating	0.000	437.377	0.000
Auto Refinishing	0.000	42.468	0.000
Traffic Lane Marking	0.000	10.245	0.000
Other Small Ind Surf Coat	0.000	124.861	0.000
Graphic Arts	0.000	165.648	0.000
Cutback Asphalt	0.000	0.000	0.000
Emulsified Asphalt	0.000	24.062	0.000
Asphalt Roofing	0.000	0.000	0.000
Pesticides	0.000	65.871	0.000
Comm/Consum Solvents	0.000	2,319.840	0.000
Subtotal	0.000	3,754.847	0.000
OTHER SOURCES			
Forest Fires	0.791	0.037	0.017
Slash/Prescribed Burning	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000
Structural Fires	25.134	4.608	0.586
Orchard Heaters	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000
Bakeries	0.000	51.224	0.000
Breweries	0.000	0.020	0.000
Wineries	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000
Synthetic Organic Chemical			
Manufacturing Tank Storage	0.000	1.015	0.000
Subtotal	25.925	56.904	0.603

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County)
(Excluding Mobile Sources)

		Typical		
New London	Annual Emissions			
	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
WASTE MANAGEMENT PRACTICES				
POTW	0.000	40.955	0.000	
Waste Treat Package Plants	0.000	0.000	0.000	
TSDF	0.000	12.023	0.000	
Landfills	0.000	20.546	0.000	
Subtotal	0.000	73.524	0.000	
Leaking Underground				
Storage Tanks	0.000	5.488	0.000	
Spills	0.000	73.732	0.000	
Biogenics	825.400	7,480.400	52.300	
GRAND TOTAL FOR COUNTY	10,053.069	17,148.096	1,069.364	

	Typical			
		Annual Emissions		
Tolland	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
GASOLINE DISTRIBUTION				
Tank Truck Unloading	0.000	17.497	0.000	
Vehicle Fueling	0.000	56.131	0.000	
Underground Tank Breathing	0.000	18.143	0.000	
Gasoline Trucks in Transit	0.000	2.806	0.000	
Aircraft Refueling	0.000	0.001	0.000	
Subtotal	0.000	94.578	0.000	
RESIDENTIAL FUEL USE				
Anthracite Coal	5.031	0.183	0.055	
Distillate Oil	68.219	9.728	245.587	
LP Gas	2.750	0.782	20.266	
Natural Gas	8.071	1.110	18.968	
Wood	5,580.800	3,261.500	71.738	
Subtotal	5,664.871	3,273.302	356.613	
COMMERCIAL/INSTITUTIONAL FUEL USE				
Anthracite Coal	3.994	0.444	0.133	
Residual Oil	0.636	0.144	6.993	
Distillate Oil	7.420	0.757	29.681	
LP Gas	0.244	0.069	1.794	
Natural Gas	10.405	2.824	49.546	
Subtotal	22.698	4.238	88.148	
INDUSTRIAL FUEL USE				
Anthracite Coal	0.000	0.000	0.000	
Residual Oil	0.000	0.000	0.000	
Distillate Oil	0.413	0.017	1.652	
LP Gas	0.680	0.115	4.036	
Natural Gas	1.385	0.376	6.594	
Subtotal	2.477	0.507	12.281	
SOLID WASTE DISPOSAL				
On-Site Incineration	0.000	0.000	0.000	
Open Burning	12.078	0.990	0.048	
Subtotal	12.078	0.990	0.048	

		Typical	
		Annual Emissions	
Tolland	CO(RE)	VOC(RE)	NOx(RE)
	T/Y	T/Y	T/Y
STATIONARY SOURCE SOLVENT USE			
Dry Cleaning	0.000	1.085	0.000
Surface Cleaning	0.000	149.858	0.000
Arch Surface Coating	0.000	234.913	0.000
Auto Refinishing	0.000	22.809	0.000
Traffic Lane Marking	0.000	5.502	0.000
Other Small Ind Surf Coat	0.000	58.994	0.000
Graphic Arts	0.000	91.708	0.000
Cutback Asphalt	0.000	5.174	0.000
Emulsified Asphalt	0.000	20.286	0.000
Asphalt Roofing	0.000	0.000	0.000
Pesticides	0.000	38.076	0.000
Comm/Consum Solvents	0.000	383.357	0.000
Subtotal	0.000	1,011.762	0.000
OTHER SOURCES			
Forest Fires	13.365	0.629	0.287
Slash/Prescribed Burning	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000
Structural Fires	15.549	2.851	0.363
Orchard Heaters	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000
Bakeries	0.000	27.512	0.000
Breweries	0.000	0.000	0.000
Wineries	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000
Synthetic Organic Chemical			
Manufacturing Tank Storage	0.000	0.109	0.000
Subtotal	28.914	31.101	0.650

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County)
(Excluding Mobile Sources)

		Typical		
		Annual Emissions		
Tolland	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
WASTE MANAGEMENT PRACTICES				
POTW	0.000	23.338	0.000	
Waste Treat Package Plants	0.000	0.000	0.000	
TSDF	0.000	4.553	0.000	
Landfills	0.000	6.441	0.000	
Subtotal	0.000	34.332	0.000	
Leaking Underground				
Storage Tanks	0.000	1.029	0.000	
Spills	0.000	3.404	0.000	
Biogenics	711.500	5,718.700	49.400	
GRAND TOTAL FOR COUNTY	6,442.539	10,173.943	507.140	

		Annual Emissions	
Windham	CO(RE)	VOC(RE)	NOx(RE)
	T/Y	T/Y	T/Y
GASOLINE DISTRIBUTION			
Tank Truck Unloading	0.000	19.047	0.000
Vehicle Fueling	0.000	61.105	0.000
Underground Tank Breathing	0.000	19.750	0.000
Gasoline Trucks in Transit	0.000	1.970	0.000
Aircraft Refueling	0.000	0.757	0.000
Subtotal	0.000	102.630	0.000
RESIDENTIAL FUEL USE			
Anthracite Coal	3.283	0.119	0.036
Distillate Oil	55.559	7.923	200.012
LP Gas	2.953	0.839	21.761
Natural Gas	8.142	1.120	19.135
Wood	5,164.700	3.097.700	65.937
Subtotal	5,234.638	3,107.701	306.881
COMMERCIAL/INSTITUTIONAL FUEL USE			
Anthracite Coal	3,556	0.395	0.119
Residual Oil	0.566	0.128	6.227
Distillate Oil	6.607	0.674	26.428
LP Gas	0.217	0.062	1.598
Natural Gas	9.264	2.515	44.116
Subtotal	20.211	3.773	78.487
INDUSTRIAL FUEL USE			
Anthracite Coal	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000
Distillate Oil	0.000	0.000	3 907
LP Gas	1.608	0.032	9.546
Natural Gas	3 275	0.889	15 596
	5.275	0.009	13.390
Subtotal	5.860	1.199	29.049
SOLID WASTE DISPOSAL			
On-Site Incineration	0.000	0.000	0.000
Open Burning	13.631	1.118	0.054
Subtotal	13.631	1.118	0.054

		Typical	
		Annual Emissions	
Windham	CO(RE)	VOC(RE)	NOx(RE)
	T/Y	T/Y	T/Y
STATIONARY SOURCE SOLVENT USE			
Dry Cleaning	0.000	0.543	0.000
Surface Cleaning	0.000	172.288	0.000
Arch Surface Coating	0.000	185.381	0.000
Auto Refinishing	0.000	18.000	0.000
Traffic Lane Marking	0.000	4.342	0.000
Other Small Ind Surf Coat	0.000	40.871	0.000
Graphic Arts	0.000	72.371	0.000
Cutback Asphalt	0.000	33.077	0.000
Emulsified Asphalt	0.000	37.352	0.000
Asphalt Roofing	0.000	0.000	0.000
Pesticides	0.000	34.255	0.000
Comm/Consum Solvents	0.000	284.062	0.000
Subtotal	0.000	882.541	0.000
OTHER SOURCES			
Forest Fires	11.661	0.549	0.250
Slash/Prescribed Burning	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000
Structural Fires	11.076	2.031	0.258
Orchard Heaters	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000
Bakeries	0.000	21.473	0.000
Breweries	0.000	0.017	0.000
Wineries	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000
Synthetic Organic Chemical			
Manufacturing Tank Storage	0.000	5.272	0.000
Subtotal	22.737	29.342	0.509

2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By County)	
(Excluding Mobile Sources)	

		Typical		
		Annual Emissions		
Windham	CO(RE)	VOC(RE)	NOx(RE)	
	T/Y	T/Y	T/Y	
WASTE MANAGEMENT PRACTICES				
POTW	0.000	21.521	0.000	
Waste Treat Package Plants	0.000	0.000	0.000	
TSDF	0.000	3.113	0.000	
Landfills	0.000	9.696	0.000	
Subtotal	0.000	34.330	0.000	
Leaking Underground				
Storage Tanks	0.000	1.372	0.000	
Spills	0.000	2.156	0.000	
Biogenics	777.700	7,602.700	49.100	
GRAND TOTAL FOR COUNTY	6,074.776	11,768.863	464.080	
State Total	72,924.655	134,584.09	12,716.189	

Table 3 2002 Connecticut Area Source Report With Rule Effectiveness Emissions (Excluding Mobile Sources)

		Typical	
		Annual Emissions	
	CO(RE)	VOC(RE)	NOx(RE)
STATE TOTALS	T/Y	T/Y	T/Y
GASOLINE DISTRIBUTION			
Tank Truck Unloading	0.000	453.373	0.000
Vehicle Fueling	0.000	1,427.144	0.000
Underground Tank Breathing	0.000	470.103	0.000
Gasoline Trucks in Transit	0.000	54.357	0.000
Aircraft Refueling	0.000	33.436	0.000
Subtotal	0.000	2,438.413	0.000
RESIDENTIAL FUEL USE			
Anthracite Coal	60.500	2.200	0.660
Distillate Oil	1,334.060	190.237	4,802.616
LP Gas	55.349	15.731	407.834
Natural Gas	811.980	111.647	1,908.153
Wood	61,903.100	38,031.200	786.783
Subtotal	64,164.989	38,351.015	7,906.046
COMMERCIAL/INSTITUTIONAL FUEL USE			
Anthracite Coal	160.110	17.790	5.337
Residual Oil	25.485	5.760	280.335
Distillate Oil	297.468	30.342	1,189.870
LP Gas	9.762	2.775	71.932
Natural Gas	417.102	113.213	1,986.200
Subtotal	909.927	169.879	3,533.674
INDUSTRIAL FUEL USE			
Anthracite Coal	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000
Distillate Oil	28.170	1.127	112.680
LP Gas	46.371	7.825	275.329
Natural Gas	94.468	25.641	449.846
Subtotal	169.009	34.593	837.855
SOLID WASTE DISPOSAL			
On-Site Incineration	0.000	0.000	0.000
Open Burning	244.240	20.024	0.975
Subtotal	244.240	20.024	0.975

		Typical	
		Annual Emissions	
	CO(RE)	VOC(RE)	NOx(RE)
STATE TOTALS	T/Y	T/Y	T/Y
STATIONARY SOURCE SOLVENT USE			
Dry Cleaning	0.000	34.680	0.000
Surface Cleaning	0.000	8,353.914	0.000
Arch Surface Coating	0.000	5,761.737	0.000
Auto Refinishing	0.000	559.442	0.000
Traffic Lane Marking	0.000	134.960	0.000
Other Small Ind Surf Coat	0.000	2,370.038	0.000
Graphic Arts	0.000	1,931.235	0.000
Cutback Asphalt	0.000	176.825	0.000
Emulsified Asphalt	0.000	233.844	0.000
Asphalt Roofing	0.000	0.000	0.000
Pesticides	0.000	888.060	0.000
Comm/Consum Solvents	0.000	14,624.954	0.000
Subtotal	0.000	35,069.689	0.000
OTHER SOURCES			
Forest Fires	99.296	4.673	2.130
Slash/Prescribed Burning	0.000	0.000	0.000
Agricultural Burning	0.000	0.000	0.000
Structural Fires	471.795	86.496	11.009
Orchard Heaters	0.000	0.000	0.000
Barge, Tank, Rail Car, and	0.000	0.000	0.000
Drum Cleaning	0.000	0.000	0.000
Bakeries	0.000	565.056	0.000
Breweries	0.000	0.236	0.000
Wineries	0.000	0.000	0.000
Distilleries	0.000	0.000	0.000
Synthetic Organic Chemical			
Manufacturing Tank Storage	0.000	120.759	0.000
Subtotal	571.091	777.220	13.139

Table 3 2002 Connecticut Area Source Report With Rule Effectiveness Emissions (Excluding Mobile Sources)

		Typical	
		Annual Emissions	
	CO(RE)	VOC(RE)	NOx(RE)
STATE TOTALS	T/Y	T/Y	T/Y
WASTE MANAGEMENT PRACTICES			
POTW	0.000	875.227	0.000
Waste Treat Package Plants	0.000	0.000	0.000
TSDF	0.000	217.211	0.000
Landfills	0.000	381.804	0.000
Subtotal	0.000	1,474.242	0.000
Leaking Underground			
Storage Tanks	0.000	45.962	0.000
Spills	0.000	222.755	0.000
Biogenics	6,865.400	55,980.300	424.500
State Total:	72,924.655	134,584.09	12,716.189

Table 4 2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By Non-Attainment Area) (Excluding Mobile Sources)

	Typical		
		Annual Emissions	
	CO(RE)	VOC(RE)	NOx(RE)
CT Portion CT-NY-NJ CMSA	T/Y	T/Y	T/Y
GASOLINE DISTRIBUTION			
Tank Truck Unloading	0.000	232.113	0.000
Vehicle Fueling	0.000	717.335	0.000
Underground Tank Breathing	0.000	240.678	0.000
Gasoline Trucks in Transit	0.000	27.951	0.000
Aircraft Refueling	0.000	8.291	0.000
Subtotal	0.000	1,226.368	0.000
RESIDENTIAL FUEL USE			
Anthracite Coal	20.167	0.733	0.220
Distillate Oil	704.110	100.406	2,534.795
LP Gas	26.932	7.654	198.447
Natural Gas	462.273	63.562	1,086.341
Wood	23,607.700	15,103.200	297.498
Subtotal	24,821.181	15,275.556	4,117.301
COMMERCIAL/INSTITUTIONAL FUEL USE			
Anthracite Coal	84.620	9.402	2.821
Residual Oil	13.469	3.044	148.161
Distillate Oil	157.216	16.036	628.862
LP Gas	5.159	1.466	38.017
Natural Gas	220.444	59.835	1,049.733
Subtotal	480.908	89.783	1,867.593
INDUSTRIAL FUEL USE			
Anthracite Coal	0.000	0.000	0.000
Residual Oil	0.000	0.000	0.000
Distillate Oil	14.885	0.595	59.539
LP Gas	24.502	4.135	145.481
Natural Gas	49.916	13.549	237.694
Subtotal	89.303	18.279	442.714
SOLID WASTE DISPOSAL			
On-Site Incineration	0.000	0.000	0.000
Open Burning	118.245	9.694	0.472
Subtotal	118.245	9.694	0.472

	Typical					
	Annual Emissions					
	CO(RE)	VOC(RE)	NOx(RE)			
CT Portion CT-NY-NJ CMSA	T/Y	T/Y	T/Y			
STATIONARY SOURCE SOLVENT USE						
Dry Cleaning	0.000	20.663	0.000			
Surface Cleaning	0.000	4,250.636	0.000			
Arch Surface Coating	0.000	3,149.411	0.000			
Auto Refinishing	0.000	305.795	0.000			
Traffic Lane Marking	0.000	73.770	0.000			
Other Small Ind Surf Coat	0.000	1,078.156	0.000			
Graphic Arts	0.000	927.651	0.000			
Cutback Asphalt	0.000	36.108	0.000			
Emulsified Asphalt	0.000	68.584	0.000			
Asphalt Roofing	0.000	0.000	0.000			
Pesticides	0.000	501.328	0.000			
Comm/Consum Solvents	0.000	8,686.433	0.000			
Subtotal	0.000	19,098.535	0.000			
OTHER SOURCES						
Forest Fires	33.359	1.570	0.716			
Slash/Prescribed Burning	0.000	0.000	0.000			
Agricultural Burning	0.000	0.000	0.000			
Structural Fires	264.333	48.461	6.168			
Orchard Heaters	0.000	0.000	0.000			
Barge, Tank, Rail Car, and	0.000	0.000	0.000			
Drum Cleaning	0.000	0.000	0.000			
Bakeries	0.000	259.346	0.000			
Breweries	0.000	0.079	0.000			
Wineries	0.000	0.000	0.000			
Distilleries	0.000	0.000	0.000			
Synthetic Organic Chemical						
Manufacturing Tank Storage	0.000	47.986	0.000			
Subtotal	297.692	357.442	6.883			

Table 4 2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By Non-Attainment Area) (Excluding Mobile Sources)

	Typical					
	CO(RE)	Annual Emissions VOC(RE)	NOx(RE)			
CT Portion CT-NY-NJ CMSA	T/Y	T/Y	T/Y			
WASTE MANAGEMENT PRACTICES						
POTW	0.000	480.002	0.000			
Waste Treat Package Plants	0.000	0.000	0.000			
TSDF	0.000	148.686	0.000			
Landfills	0.000	91.612	0.000			
Subtotal	0.000	720.300	0.000			
Leaking Underground						
Storage Tanks	0.000	23.324	0.000			
Spills	0.000	92.386	0.000			
Biogenics	2,433.700	18,116.200	149.300			
CT Portion CT-NY-NJ CMSA Total:	28,241.029	55,027.869	6,584.264			

Table 4 2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By Non-Attainment Area) (Excluding Mobile Sources)

	Typical				
	Annual Emissions				
	CO(RE)	VOC(RE)	NOx(RE)		
Greater Connecticut Area	T/Y	T/Y	T/Y		
GASOLINE DISTRIBUTION					
Tank Truck Unloading	0.000	221.260	0.000		
Vehicle Fueling	0.000	709.809	0.000		
Underground Tank Breathing	0.000	229.425	0.000		
Gasoline Trucks in Transit	0.000	26.406	0.000		
Aircraft Refueling	0.000	25.144	0.000		
Subtotal	0.000	1,212.044	0.000		
RESIDENTIAL FUEL USE					
Anthracite Coal	40.333	1.467	0.440		
Distillate Oil	629,950	89.831	2.267.821		
LP Gas	28.417	8.076	209.387		
Natural Gas	349.707	48.085	821.812		
Wood	38,295.400	22,928.000	489.285		
Subtotal	39,343.808	23,075.459	3,788.745		
COMMERCIAL/INSTITUTIONAL FUEL USE					
Anthracite Coal	75.490	8.388	2.516		
Residual Oil	12.016	2.716	132.174		
Distillate Oil	140.252	14.306	561.008		
LP Gas	4.603	1.308	33.915		
Natural Gas	196.658	53.379	936.467		
Subtotal	429.018	80.096	1,666.081		
INDUSTRIAL FUEL USE					
Anthracite Coal	0.000	0.000	0.000		
Residual Oil	0.000	0.000	0.000		
Distillate Oil	13.285	0.531	53.141		
LP Gas	21.869	3.690	129.848		
Natural Gas	44.552	12.093	212.152		
Subtotal	79.706	16.314	395.140		
SOLID WASTE DISPOSAL					
On-Site Incineration	0.000	0.000	0.000		
Open Burning	125.994	10.330	0.503		
Subtotal	125.994	10.330	0.503		

	Typical				
	Annual Emissions				
	CO(RE)	VOC(RE)	NOx(RE)		
Greater Connecticut Area	T/Y	T/Y	T/Y		
STATIONARY SOURCE SOLVENT USE					
Dry Cleaning	0.000	14.017	0.000		
Surface Cleaning	0.000	4,103.278	0.000		
Arch Surface Coating	0.000	2,612.327	0.000		
Auto Refinishing	0.000	253.647	0.000		
Traffic Lane Marking	0.000	61.190	0.000		
Other Small Ind Surf Coat	0.000	1,291.882	0.000		
Graphic Arts	0.000	1,003.584	0.000		
Cutback Asphalt	0.000	140.717	0.000		
Emulsified Asphalt	0.000	165.260	0.000		
Asphalt Roofing	0.000	0.000	0.000		
Pesticides	0.000	386.731	0.000		
Comm/Consum Solvents	0.000	5,938.521	0.000		
Subtotal	0.000	15,971.153	0.000		
OTHER SOURCES					
Forest Fires	65.937	3.103	1.415		
Slash/Prescribed Burning	0.000	0.000	0.000		
Agricultural Burning	0.000	0.000	0.000		
Structural Fires	207.462	38.035	4.841		
Orchard Heaters	0.000	0.000	0.000		
Barge, Tank, Rail Car, and	0.000	0.000	0.000		
Drum Cleaning	0.000	0.000	0.000		
Bakeries	0.000	305.710	0.000		
Breweries	0.000	0.157	0.000		
Wineries	0.000	0.000	0.000		
Distilleries	0.000	0.000	0.000		
Synthetic Organic Chemical					
Manufacturing Tank Storage	0.000	72.773	0.000		
Subtotal	273.399	419.778	6.255		

Table 4 2002 Connecticut Area Source Report With Rule Effectiveness Emissions (By Non-Attainment Area) (Excluding Mobile Sources)

	Typical					
	Annual Emissions					
	CO(RE)	VOC(RE)	NOx(RE)			
Greater Connecticut Area	T/Y	T/Y	T/Y			
WASTE MANAGEMENT PRACTICES						
POTW	0.000	395.225	0.000			
Waste Treat Package Plants	0.000	0.000	0.000			
TSDF	0.000	68.525	0.000			
Landfills	0.000	290.192	0.000			
Subtotal	0.000	753.942	0.000			
Leaking Underground						
Storage Tanks	0.000	22.638	0.000			
Spills	0.000	130.368	0.000			
Biogenics	4,431.700	37,864.100	275.200			
Greater Connecticut Area Total:	44,683.626	79,556.223	6,131.924			

Table 5 Summary of VOC Emissions from Industrial Wastewater Treatment Facilities

County	Town	Industry	Flow (gal/day)	Influent Conc. (gm/m3)	Effluent Conc. (gm/m3)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
Fairfield							
Bethel		METAL FINISHING	23,000	4.56	0.50	0.101	0.779
Bethel		ORGANIC CHEMICALS MFG	40,000	9.96	0.00	0.432	3.325
Bridge	port	CAR WASHES	3,000	0.00	0.00	0.000	0.000
Bridger	port	IRON & STEEL MFG	450,000	4.56	0.00	2.226	17.125
Bridger	port	METAL FINISHING	2,125,220	4.56	0.50	9.361	72.008
Bridger	port	PHOTOGRAPHIC EQUIPT SUPP	4,200	3.42	0.00	0.016	0.120
Bridger	port	PHOTOGRAPHIC PROCESSING	812	3.42	0.00	0.003	0.023
Bridge	port	TEXTILE MILLS	16,000	0.79	0.00	0.014	0.105
Brookf	ield	METAL FINISHING	300	4.56	0.50	0.001	0.010
Danbur	у	ELECTRICAL CO	256,000	6.81	0.00	1.891	14.549
Danbur	y	METAL FINISHING	218,080	4.56	0.50	0.961	7.389
Danbur	y	ORGANIC CHEMICALS MFG	5,570	9.96	0.00	0.060	0.463
Danbur	y	PHARMACEUTICAL PREPARATI	306,300	111.00	0.00	36.886	283.742
Danbur	y	PHOTOGRAPHIC EQUIPT SUPP	5,200	3.42	0.00	0.019	0.148
Danbur	y	PHOTOGRAPHIC PROCESSING	6,260	3.42	0.00	0.023	0.179
Danbur	y	PRINTING & PUBLISHING	90	0.26	0.00	0.000	0.000
Danbur	y	TEXTILE MILLS	307,900	0.79	0.00	0.264	2.030
Darien		CAR WASHES	100	0.00	0.00	0.000	0.000
Fairfiel	d	CAR WASHES	300	0.00	0.00	0.000	0.000
Fairfiel	d	METAL FINISHING	287,600	4.56	0.50	1.267	9.745
Greenw	vich	CAR WASHES	450	0.00	0.00	0.000	0.000
Greenw	vich	METAL FINISHING	32,000	4.56	0.50	0.141	1.084
Norwal	k	CAR WASHES	115	0.00	0.00	0.000	0.000
Norwal	k	ELECTRICAL CO	2,205	6.81	0.00	0.016	0.125
Norwal	k	METAL FINISHING	141,900	4.56	0.50	0.625	4.808
Norwal	k	ORGANIC CHEMICALS MFG	13,000	9.96	0.00	0.140	1.081
Norwal	k	PHOTOGRAPHIC EQUIPT SUPP	80	3.42	0.00	0.000	0.002
Shelton	ı	INDUSTRIAL LAUNDRIES	4,000	1.35	0.00	0.006	0.045
Shelton	1	METAL FINISHING	349,100	4.56	0.50	1.538	11.828
Shelton	ı	PHOTOGRAPHIC EQUIPT SUPP	3,200	3.42	0.00	0.012	0.091

Table 5 Summary of VOC Emissions from Industrial Wastewater Treatment Facilities

County	Town	Industry	Flow (gal/day)	Influent Conc. (gm/m3)	Effluent Conc. (gm/m3)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
Stamfor	rd	CAR WASHES	3,800	0.00	0.00	0.000	0.000
Stamfor	rd	METAL FINISHING	401,056	4.56	0.50	1.767	13.589
Stamfor	rd	ORGANIC CHEMICALS MFG	13,500	9.96	0.00	0.146	1.122
Stamfor	rd	PETROLEUM REFINING	100	13.20	0.00	0.001	0.011
Stamfor	rd	PHARMACEUTICAL PREPARATI	1,200	111.00	0.00	0.145	1.112
Stamfor	rd	PHOTOGRAPHIC PROCESSING	2,500	3.42	0.00	0.009	0.071
Stamfor	rd	PLASTICS PROCESSING	5,000	0.07	0.00	0.000	0.003
Stratfor	rd	CAR WASHES	3,500	0.00	0.00	0.000	0.000
Stratfor	rd	INDUSTRIAL LAUNDRIES	103,000	1.35	0.00	0.151	1.160
Stratfor	rd	IRON & STEEL MFG	375	4.56	0.00	0.002	0.014
Stratfor	rd	METAL FINISHING	1,753,740	4.56	0.50	7.725	59.422
Stratfor	rd	ORGANIC CHEMICALS MFG	550	9.96	0.00	0.006	0.046
Stratfor	rd	RUBBER PROCESSING	2,600	0.09	0.00	0.000	0.002
Trumbu	ıll	CAR WASHES	50	0.00	0.00	0.000	0.000
Trumbu	ıll	PETROLEUM REFINING	12,000	13.20	0.00	0.172	1.322
Trumbu	ıll	PHOTOGRAPHIC PROCESSING	8,260	3.42	0.00	0.031	0.236
Wilton		PHOTOGRAPHIC PROCESSING	12	3.42	0.00	0.000	0.000
		County Total:	6,913,225			66.159	508.916
Hartford							
Avon		METAL FINISHING	1,090	4.56	0.50	0.005	0.037
Avon		PHOTOGRAPHIC PROCESSING	4,340	3.42	0.00	0.016	0.124
Avon		PLASTICS PROCESSING	5,030	0.07	0.00	0.000	0.003
Avon		PRINTING & PUBLISHING	500	0.26	0.00	0.000	0.001
Berlin		METAL FINISHING	198,000	4.56	0.50	0.872	6.709
Bloomf	field	CAR WASHES	100	0.00	0.00	0.000	0.000
Bloomf	field	METAL FINISHING	5,228	4.56	0.50	0.419	3.227
Bloomf	field	PAINT & INK FORMULATION	10	4.40	0.00	0.000	0.000
Bloomf	field	PHOTOGRAPHIC EQUIPT SUPP	3,702	3.42	0.00	0.014	0.106
Bloomf	field	PHOTOGRAPHIC PROCESSING	4,500	3.42	0.00	0.017	0.128
Bristol		CAR WASHES	420	0.00	0.00	0.000	0.000

Table 5 Summary of VOC Emissions from Industrial Wastewater Treatment Facilities

County Town	Industry	Flow (gal/day)	Influent Conc. (gm/m3)	Effluent Conc. (gm/m3)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
Bristol	IRON & STEEL MFG	28,800	4.56	0.00	0.142	1.096
Bristol	METAL FINISHING	628,276	4.56	0.50	2.767	21.288
East Granby	CAR WASHES	400	0.00	0.00	0.000	0.000
East Granby	ELECTRICAL CO	12,250	6.81	0.00	0.091	0.696
East Granby	METAL FINISHING	2,100	4.56	0.50	0.009	0.071
East Granby	PAINT & INK FORMULATION	60	4.40	0.00	0.000	0.002
East Hartford	CAR WASHES	6,000	0.00	0.00	0.000	0.000
East Hartford	METAL FINISHING	4,038,122	4.56	0.50	17.787	136.823
East Hartford	PHOTOGRAPHIC EQUIPT SUPP	500	3.42	0.00	0.002	0.014
East Hartford	PHOTOGRAPHIC PROCESSING	61,257	3.42	0.00	0.227	1.748
East Hartford	PULP AND PAPER MILLS	850,000	0.06	0.00	0.055	0.426
East Windsor	METAL FINISHING	39,060	4.56	0.50	0.172	1.323
East Windsor	MISC LAUNDRY & GARMENT	2,595	1.35	0.00	0.004	0.029
Enfield	CAR WASHES	10	0.00	0.00	0.000	0.000
Enfield	METAL FINISHING	300	4.56	0.50	0.001	0.010
Enfield	PHOTOGRAPHIC EQUIPT SUPP	21,000	3.42	0.00	0.078	0.599
Enfield	PHOTOGRAPHIC PROCESSING	2,080	3.42	0.00	0.008	0.059
Enfield	RUBBER PROCESSING	4,000	0.09	0.00	0.000	0.003
Farmington	IRON & STEEL MFG	40,000	4.56	0.00	0.198	1.522
Farmington	METAL FINISHING	14,000	4.56	0.50	0.062	0.474
Farmington	PLASTICS PROCESSING	250	0.07	0.00	0.000	0.000
Farmington	TEXTILE MILLS	258,500	0.79	0.00	0.222	1.704
Glastonbury	METAL FINISHING	1,640	4.56	0.50	0.007	0.056
Hartford	METAL FINISHING	112,820	4.56	0.50	0.497	3.823
Hartford	PHOTOGRAPHIC EQUIPT SUPP	1,920	3.42	0.00	0.007	0.055
Hartford	PHOTOGRAPHIC PROCESSING	720	3.42	0.00	0.003	0.021
Manchester	METAL FINISHING	148,950	4.56	0.50	0.656	5.047
Manchester	PHOTOGRAPHIC PROCESSING	300	3.42	0.00	0.001	0.009
Manchester	PRINTING & PUBLISHING	715	0.26	0.00	0.000	0.002
Manchester	PULP AND PAPER MILLS	300,000	0.06	0.00	0.020	0.150
New Britain	METAL FINISHING	1,346,325	4.56	0.50	5.930	45.617
New Britain	PHOTOGRAPHIC PROCESSING	14,020	3.42	0.00	0.052	0.400
Table 5 Summary of VOC Emissions from Industrial Wastewater Treatment Facilities

County Town	Industry	Flow (gal/day)	Influent Conc. (gm/m3)	Effluent Conc. (gm/m3)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
New Britain	PLASTICS PROCESSING	4.960	0.07	0.00	0.000	0.003
Newington	ADHESIVES & SEALANTS	460	2.60	0.00	0.001	0.010
Newington	CAR WASHES	1.000	0.00	0.00	0.000	0.000
Newington	METAL FINISHING	228,314	4.56	0.50	1.006	7.736
Plainville	METAL FINISHING	145,000	4.56	0.50	0.639	4.913
Rocky Hill	METAL FINISHING	33,000	4.56	0.50	0.145	1.118
Simsbury	CAR WASHES	2,800	0.00	0.00	0.000	0.000
Simsbury	EXPLOSIVES MFG	600	0.00	0.00	0.000	0.000
Simsbury	PLASTICS PROCESSING	38,200	0.07	0.00	0.003	0.022
South Windsor	BATTERY MANUFACTURING	2,200	0.04	0.00	0.000	0.001
South Windsor	METAL FINISHING	70,900	4.56	0.50	0.312	2.402
South Windsor	PHOTOGRAPHIC EQUIPT SUPP	61	3.42	0.00	0.000	0.002
South Windsor	PHOTOGRAPHIC PROCESSING	721	3.42	0.00	0.003	0.021
South Windsor	PRINTING & PUBLISHING	3,620	0.26	0.00	0.001	0.008
Southington	METAL FINISHING	486,797	4.56	0.50	2.144	16.494
Southington	PLASTICS PROCESSING	4,600	0.07	0.00	0.000	0.003
Suffield	CAR WASHES	7,700	0.00	0.00	0.000	0.000
West Hartford	CAR WASHES	2,520	0.00	0.00	0.000	0.000
West Hartford	METAL FINISHING	344,825	4.56	0.50	1.519	11.684
West Hartford	PHOTOGRAPHIC EQUIPT SUPP	5,500	3.42	0.00	0.020	0.157
West Hartford	PHOTOGRAPHIC PROCESSING	2,200	3.42	0.00	0.008	0.063
Windsor	INDUSTRIAL LAUNDRIES	23,500	1.35	0.00	0.034	0.265
Windsor	IRON & STEEL MFG	2,880	4.56	0.00	0.014	0.110
Windsor	METAL FINISHING	54,341	4.56	0.50	0.239	1.841
Windsor	PRINTING & PUBLISHING	396,000	0.26	0.00	0.112	0.859
Windsor Locks	CAR WASHES	1,300	0.00	0.00	0.000	0.000
Windsor Locks	METAL FINISHING	933,400	4.56	0.50	4.111	31.626
Windsor Locks	PULP AND PAPER MILLS	12,952,800	0.06	0.00	0.843	6.486
	County Total:	24,000,089			41.499	319.225

Table 5 Summary of VOC Emissions from Industrial Wastewater Treatment Facilities

County Town	Industry	Flow (gal/day)	Influent Conc. (gm/m3)	Effluent Conc. (gm/m3)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
Litchfield						
Litchfield	METAL FINISHING	9,000	4.56	0.50	0.040	0.305
New Hartford	METAL FINISHING	22,300	4.56	0.50	0.098	0.756
New Milford	METAL FINISHING	9,720	4.56	0.50	0.043	0.329
New Milford	PULP AND PAPER MILLS	8,430,000	0.06	0.00	0.549	4.221
Plymouth	METAL FINISHING	49,030	4.56	0.50	0.216	1.661
Thomaston	METAL FINISHING	647,000	4.56	0.50	2.850	21.922
Torrington	CAR WASHES	1,100	0.00	0.00	0.000	0.000
Torrington	IRON & STEEL MFG	3,500	4.56	0.00	0.017	0.133
Torrington	METAL FINISHING	414,310	4.56	0.50	1.825	14.038
Torrington	PHOTOGRAPHIC EQUIPT SUPP	5	3.42	0.00	0.000	0.000
Watertown	CAR WASHES	26,000	0.00	0.00	0.000	0.000
Watertown	INDUSTRIAL LAUNDRIES	12,340	1.35	0.00	0.018	0.139
Watertown	METAL FINISHING	343,600	4.56	0.50	1.513	11.642
Watertown	PAINT & INK FORMULATION	20	4.40	0.00	0.000	0.001
Watertown	TEXTILE MILLS	20,000	0.79	0.00	0.017	0.132
Winchester	CAR WASHES	1,875	0.00	0.00	0.000	0.000
Winchester	METAL FINISHING	33,100	4.56	0.50	0.146	1.122
Winchester	ORGANIC CHEMICALS MFG	400	9.96	0.00	0.004	0.033
Winchester	TEXTILE MILLS	0	0.79	0.00	0.000	0.000
	County Total:	10,023,300			7.336	56.434
Middlesex						
Chester	METAL FINISHING	12.000	4.56	0.50	0.053	0.407
Clinton	METAL FINISHING	200.000	4.56	0.50	0.881	6.777
Clinton	PHARMACEUTICAL PREPARATI	15,000	111.00	0.00	1.806	13.895
Cromwell	CAR WASHES	210	0.00	0.00	0.000	0.000
Cromwell	METAL FINISHING	15,000	4.56	0.50	0.066	0.508
Deep River	METAL FINISHING	800	4.56	0.50	0.004	0.027
East Hampton	PHOTOGRAPHIC EOUIPT SUPP	150	3.42	0.00	0.001	0.004
Essex	METAL FINISHING	150	4.56	0.50	0.001	0.005

			Table 5			
Summary of	of VOC	Emissions from	Industrial	Wastewater	Treatment 1	Facilities

County Town	Industry	Flow (gal/day)	Influent Conc. (gm/m3)	Effluent Conc. (gm/m3)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
Middlefield	METAL FINISHING	1,200	4.56	0.50	0.005	0.041
Middletown	CAR WASHES	1,350	0.00	0.00	0.000	0.000
Middletown	METAL FINISHING	1,180,750	4.56	0.50	5.201	40.007
Middletown	PHOTOGRAPHIC EQUIPT SUPP	0	3.42	0.00	0.000	0.000
Middletown	RUBBER PROCESSING	2,900	0.09	0.00	0.000	0.002
Portland	PHOTOGRAPHIC EQUIPT SUPP	500	3.42	0.00	0.002	0.014
Portland	PRINTING & PUBLISHING	2,700	0.26	0.00	0.001	0.006
	County Total:	1,432,710			8.020	61.693
New Haven						
Ansonia	METAL FINISHING	17.000	4.56	0.50	0.075	0.576
Beacon Falls	METAL FINISHING	149,800	4.56	0.50	0.660	5.076
Branford	CAR WASHES	800	0.00	0.00	0.000	0.000
Branford	INDUSTRIAL LAUNDRIES	32,000	1.35	0.00	0.047	0.361
Branford	METAL FINISHING	264,700	4.56	0.50	1.166	8.969
Cheshire	CAR WASHES	325	0.00	0.00	0.000	0.000
Cheshire	METAL FINISHING	107,550	4.56	0.50	0.474	3.644
Cheshire	PHOTOGRAPHIC EQUIPT SUPP	400	3.42	0.00	0.001	0.011
Cheshire	PLASTICS PROCESSING	20,516	0.07	0.00	0.002	0.012
Derby	METAL FINISHING	31,438	4.56	0.50	0.138	1.065
Derby	PHOTOGRAPHIC PROCESSING	20,000	3.42	0.00	0.074	0.571
East Haven	PHOTOGRAPHIC PROCESSING	575	3.42	0.00	0.002	0.016
Guilford	MISC LAUNDRY & GARMENT	750	1.35	0.00	0.001	0.008
Hamden	CAR WASHES	700	0.00	0.00	0.000	0.000
Hamden	METAL FINISHING	172,816	4.56	0.50	0.761	5.855
Hamden	PHOTOGRAPHIC PROCESSING	400	3.42	0.00	0.001	0.011
Madison	PHARMACEUTICAL PREPARATI	20	111.00	0.00	0.002	0.019
Meriden	CAR WASHES	4,000	0.00	0.00	0.000	0.000
Meriden	INDUSTRIAL LAUNDRIES	12,000	1.35	0.00	0.018	0.135
Meriden	METAL FINISHING	310,980	4.56	0.50	1.370	10.537
Meriden	MISC LAUNDRY & GARMENT	200	1.35	0.00	0.000	0.002

Table 5 Summary of VOC Emissions from Industrial Wastewater Treatment Facilities

County Town	Industry	Flow (gal/day)	Influent Conc. (gm/m3)	Effluent Conc. (gm/m3)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
Meriden	PRINTING & PUBLISHING	1,200	0.26	0.00	0.000	0.003
Milford	CAR WASHES	9,160	0.00	0.00	0.000	0.000
Milford	INDUSTRIAL LAUNDRIES	120,000	1.35	0.00	0.176	1.352
Milford	METAL FINISHING	374,750	4.56	0.50	1.651	12.698
Naugatuck	CAR WASHES	4,000	0.00	0.00	0.000	0.000
Naugatuck	INORGANIC CHEMICAL MFG	2,000,000	0.00	0.00	0.000	0.000
Naugatuck	METAL FINISHING	228,210	4.56	0.50	1.005	7.732
New Haven	CAR WASHES	4,500	0.00	0.00	0.000	0.000
New Haven	INORGANIC CHEMICAL MFG	360	0.00	0.00	0.000	0.000
New Haven	METAL FINISHING	764,110	4.56	0.50	3.366	25.890
New Haven	PETROLEUM REFINING	12,000	13.20	0.00	0.172	1.322
New Haven	PULP AND PAPER MILLS	180,000	0.06	0.00	0.012	0.090
North Branford	ELECTRICAL CO	2,520	6.81	0.00	0.019	0.143
North Haven	CAR WASHES	1,010	0.00	0.00	0.000	0.000
North Haven	METAL FINISHING	971,641	4.56	0.50	4.280	32.922
North Haven	ORGANIC CHEMICALS MFG	601,330	9.96	0.00	6.498	49.983
North Haven	PHOTOGRAPHIC PROCESSING	2,700	3.42	0.00	0.010	0.077
North Haven	PLASTICS PROCESSING	2,000	0.07	0.00	0.000	0.001
Orange	CAR WASHES	1,300	0.00	0.00	0.000	0.000
Orange	METAL FINISHING	142,600	4.56	0.50	0.628	4.832
Seymour	METAL FINISHING	62,015	4.56	0.50	0.273	2.101
Wallingford	IRON & STEEL MFG	312,000	4.56	0.00	1.544	11.873
Wallingford	METAL FINISHING	218,860	4.56	0.50	0.964	7.416
Wallingford	ORGANIC CHEMICALS MFG	2,500,350	9.96	0.00	27.018	207.832
Waterbury	BATTERY MANUFACTURING	1,000	0.04	0.00	0.000	0.000
Waterbury	CAR WASHES	15,645	0.00	0.00	0.000	0.000
Waterbury	INORGANIC CHEMICAL MFG	2,010	0.00	0.00	0.000	0.000
Waterbury	IRON & STEEL MFG	57,600	4.56	0.00	0.285	2.192
Waterbury	METAL FINISHING	2,525,390	4.56	0.50	11.124	85.567
Waterbury	NONFEROUS METALS MFG	2,170,000	0.11	0.00	0.259	1.992
Waterbury	TEXTILE MILLS	250,000	0.79	0.00	0.214	1.648
West Haven	ADHESIVES & SEALANTS	4,900	2.60	0.00	0.014	0.106

			Table 5			
Summary of	of VOC	Emissions from	Industrial	Wastewater	Treatment 1	Facilities

County Town	Industry	Flow (gal/day)	Influent Conc. (gm/m3)	Effluent Conc. (gm/m3)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
		1 100				0.000
West Haven	CAR WASHES	1,120	0.00	0.00	0.000	0.000
West Haven	METAL FINISHING	235,300	4.56	0.50	1.036	7.973
West Haven	MISC LAUNDRY & GARMENT	35,000	1.35	0.00	0.051	0.394
West Haven	ORGANIC CHEMICALS MFG	44,000	9.96	0.00	0.475	3.657
West Haven	PHARMACEUTICAL PREPARATI	71,200	111.00	0.00	8.574	65.956
Woodbridge	PHOTOGRAPHIC PROCESSING	17,580	3.42	0.00	0.065	0.502
	County Total:	15,094,331			74.506	573.125
New London						
Bozrah	CAR WASHES	1,400	0.00	0.00	0.000	0.000
Griswold	METAL FINISHING	2,500	4.56	0.50	0.011	0.085
Groton	CAR WASHES	560	0.00	0.00	0.000	0.000
Groton	METAL FINISHING	16.000	4.56	0.50	0.070	0.542
Groton	PHARMACEUTICAL PREPARATI	93,500	111.00	0.00	11.260	86.614
Ledyard	ORGANIC CHEMICALS MFG	21,000	9.96	0.00	0.227	1.746
Lisbon	TEXTILE MILLS	28.000	0.79	0.00	0.024	0.185
Montville	PHOTOGRAPHIC PROCESSING	14.400	3.42	0.00	0.053	0.411
Montville	PULP AND PAPER MILLS	1.205.000	0.06	0.00	0.078	0.603
New London	CAR WASHES	300	0.00	0.00	0.000	0.000
Norwich	CAR WASHES	500	0.00	0.00	0.000	0.000
Norwich	METAL FINISHING	28,100	4.56	0.50	0.124	0.952
Norwich	PHOTOGRAPHIC PROCESSING	2.200	3.42	0.00	0.008	0.063
Norwich	RUBBER PROCESSING	400	0.09	0.00	0.000	0.000
Sprague	PULP AND PAPER MILLS	950.000	0.06	0.00	0.062	0.476
Stonington	BATTERY MANUFACTURING	12.100	0.04	0.00	0.001	0.004
Stonington	PHOTOGRAPHIC PROCESSING	25.600	3.42	0.00	0.095	0.731
Waterford	MISC LAUNDRY & GARMENT	6.720	1.35	0.00	0.010	0.076
	County Total:	2,408,280			12.023	92.487

 Table 5

 Summary of VOC Emissions from Industrial Wastewater Treatment Facilities

County	Town	Industry	Flow (gal/day)	Influent Conc. (gm/m3)	Effluent Conc. (gm/m3)	Annual VOC Emissions (tons/year)	Daily VOC Emissions (lbs/day)
Tolland							
Ellingto	on	PHOTOGRAPHIC PROCESSING	400	3.42	0.00	0.001	0.011
Stafford	b	ELECTRICAL CO	187,000	6.81	0.00	1.382	10.628
Stafford	b	METAL FINISHING	31,100	4.56	0.50	0.137	1.054
Stafford	b	PHOTOGRAPHIC PROCESSING	300	3.42	0.00	0.001	0.009
Stafford	b	PRINTING & PUBLISHING	200,000	0.26	0.00	0.056	0.434
Stafford	b	PULP AND PAPER MILLS	300	0.06	0.00	0.000	0.000
Stafford	b	TEXTILE MILLS	525,000	0.79	0.00	0.450	3.461
Vernon	l	METAL FINISHING	378,780	4.56	0.50	1.668	12.834
Vernon		TEXTILE MILLS	1,000,000	0.79	0.00	0.857	6.593
		County Total:	2,322,880			4.553	35.024
Windham							
Brookly	yn	NONFEROUS METALS MFG	6,500	0.11	0.00	0.001	0.006
Killing	ly	CAR WASHES	9,900	0.00	0.00	0.000	0.000
Killing	ly	METAL FINISHING	300,500	4.56	0.50	1.324	10.182
Killing	ly	PLASTICS PROCESSING	307,000	0.07	0.00	0.023	0.179
Plainfie	eld	BATTERY MANUFACTURING	5,500	0.04	0.00	0.000	0.002
Plainfie	eld	METAL FINISHING	58,400	4.56	0.50	0.257	1.979
Putnam	l	METAL FINISHING	289,600	4.56	0.50	1.276	9.812
Putnam	l	PLASTICS PROCESSING	10,836	0.07	0.00	0.001	0.006
Putnam	l	TEXTILE MILLS	50	0.79	0.00	0.000	0.000
Thomp	son	METAL FINISHING	45,000	4.56	0.50	0.198	1.525
Windha	am	METAL FINISHING	7,480	4.56	0.50	0.033	0.253
Windha	am	PORCELAIN ENAMELING	12	0.07	0.00	0.000	0.000
Windha	am	PULP AND PAPER MILLS	3,000	0.06	0.00	0.000	0.002
		County Total:	1,043,778			3.113	23.946
		State Total:	63,238,593			217.211	1,670.851

Town	Spill Date	Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Annual VOC Emissions (Tons/Year)	Daily VOC Emissions (lbs/Day)
County = Fairfield						
WESTPORT	11/18/20	02 ALCOHOL	1.00	6.51	0.00	0.00
GREENWICH	11/5/20	02 FORMALDEHYDE	1.00	9.20	0.00	0.00
BRIDGEPORT	4/8/20	02 GASOLINE	1.00	6.26	0.00	0.00
BRIDGEPORT	6/26/20	02 GASOLINE	2.00	6.26	0.01	0.14
BRIDGEPORT	4/3/20	02 GASOLINE	5.00	6.26	0.02	0.00
BRIDGEPORT	10/15/20	02 GASOLINE	10.00	6.26	0.03	0.00
BRIDGEPORT	1/31/20	02 GASOLINE	10.00	6.26	0.03	0.00
BRIDGEPORT	3/21/20	02 GASOLINE	10.00	6.26	0.03	0.00
BRIDGEPORT	7/17/20	02 GASOLINE	10.00	6.26	0.03	0.68
BRIDGEPORT	4/11/20	02 GASOLINE	13.94	6.26	0.04	0.00
BRIDGEPORT	9/24/20	02 GASOLINE	150.00	6.26	0.47	0.00
BROOKFIELD	12/20/20	02 GASOLINE	10.00	6.26	0.03	0.00
BROOKFIELD	4/12/20	02 GASOLINE	10.00	6.26	0.03	0.00
BROOKFIELD	11/1/20	02 GASOLINE	13.94	6.26	0.04	0.00
BROOKFIELD	6/10/20	02 GASOLINE	13.94	6.26	0.04	0.95
DANBURY	5/16/20	02 GASOLINE	1.00	6.26	0.00	0.00
DANBURY	10/7/20	02 GASOLINE	2.00	6.26	0.01	0.00
DANBURY	9/6/20	02 GASOLINE	5.00	6.26	0.02	0.00
DANBURY	8/30/20	02 GASOLINE	5.00	6.26	0.02	0.34
DANBURY	3/21/20	02 GASOLINE	5.00	6.26	0.02	0.00
DANBURY	11/6/20	02 GASOLINE	10.00	6.26	0.03	0.00
DANBURY	9/24/20	02 GASOLINE	10.00	6.26	0.03	0.00
DARIEN	9/21/20	02 GASOLINE	2.00	6.26	0.01	0.00
DARIEN	4/18/20	02 GASOLINE	5.00	6.26	0.02	0.00
DARIEN	8/17/20	02 GASOLINE	13.94	6.26	0.04	0.95
DARIEN	4/18/20	02 GASOLINE	70.00	6.26	0.22	0.00
EASTON	2/13/20	02 GASOLINE	1.00	6.26	0.00	0.00
EASTON	3/22/20	02 GASOLINE	13.94	6.26	0.04	0.00
FAIRFIELD	11/12/20	02 GASOLINE	2.00	6.26	0.01	0.00
FAIRFIELD	4/16/20	02 GASOLINE	2.00	6.26	0.01	0.00
FAIRFIELD	10/3/20	02 GASOLINE	3.00	6.26	0.01	0.00
FAIRFIELD	8/9/20	02 GASOLINE	4.00	6.26	0.01	0.27
FAIRFIELD	10/2/20	02 GASOLINE	5.00	6.26	0.02	0.00
FAIRFIELD	8/10/20	02 GASOLINE	5.00	6.26	0.02	0.34
FAIRFIELD	11/6/20	02 GASOLINE	5.00	6.26	0.02	0.00
FAIRFIELD	6/27/20	02 GASOLINE	8.00	6.26	0.03	0.54
GREENWICH	6/26/20	J2 GASOLINE	4.00	6.26	0.01	0.27
MONROE	5/3/20	J2 GASOLINE	1.00	6.26	0.00	0.00
MONKOE	11/7/20	J2 GASOLINE	13.94	6.26	0.04	0.00
MONKOE	5/7/20	JZ GASOLINE	13.94	6.26	0.04	0.00
NEW CANAAN	3/17/20	J2 GASOLINE	5.00	6.26	0.02	0.00
NEW CANAAN	3/17/20	JZ GASOLINE	13.94	6.26	0.04	0.00

				Annual	Daily	
				VOC	VOC	
Spill	Material	Spillage	Weight	Emissions	Emissions	
Town Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)	
NEW CANAAN 6/12/24	002 GASOLINE	13.94	6.26	0.04	0.95	
NEW FAIRFIELD 6/15/20	002 GASOLINE	1.00	6.26	0.00	0.07	
NEW FAIRFIELD 11/28/20	002 GASOLINE	1.00	6.26	0.00	0.00	
NEW FAIRFIELD 6/21/20	002 GASOLINE	8.00	6.26	0.03	0.54	
NEW FAIRFIELD 3/21/20	002 GASOLINE	10.00	6.26	0.03	0.00	
NEW FAIRFIELD 8/3/20	002 GASOLINE	13.94	6.26	0.04	0.95	
NEW FAIRFIELD 6/4/20	002 GASOLINE	13.94	6.26	0.04	0.95	
NEW FAIRFIELD 7/31/20	002 GASOLINE	13.94	6.26	0.04	0.95	
NEWTOWN 10/15/20	002 GASOLINE	1.00	6.26	0.00	0.00	
NEWTOWN 10/10/20	002 GASOLINE	1.00	6.26	0.00	0.00	
NEWTOWN 7/26/20	002 GASOLINE	2.00	6.26	0.01	0.14	
NEWTOWN 5/8/20	002 GASOLINE	4.00	6.26	0.01	0.00	
NEWTOWN 1/3/20	002 GASOLINE	4.00	6.26	0.01	0.00	
NEWTOWN 5/15/20	002 GASOLINE	5.00	6.26	0.02	0.00	
NEWTOWN 8/10/20	002 GASOLINE	10.00	6.26	0.03	0.68	
NORWALK 3/13/20	002 GASOLINE	1.00	6.26	0.00	0.00	
NORWALK 12/26/20	002 GASOLINE	1.00	6.26	0.00	0.00	
NORWALK 12/21/20	002 GASOLINE	2.00	6.26	0.01	0.00	
NORWALK 1/25/20	002 GASOLINE	3.00	6.26	0.01	0.00	
NORWALK 9/7/20	002 GASOLINE	5.00	6.26	0.02	0.00	
NORWALK 9/4/20	002 GASOLINE	5.00	6.26	0.02	0.00	
NORWALK 12/19/20	002 GASOLINE	13.94	6.26	0.04	0.00	
NORWALK 8/6/20	002 GASOLINE	13.94	6.26	0.04	0.95	
NORWALK 9/14/20	002 GASOLINE	13.94	6.26	0.04	0.00	
NORWALK 5/25/20	002 GASOLINE	15.00	6.26	0.05	0.00	
NORWALK 8/28/20	002 GASOLINE	30.00	6.26	0.09	2.04	
REDDING 12/28/20	002 GASOLINE	3.00	6.26	0.01	0.00	
RIDGEFIELD 8/10/20	002 GASOLINE	1.00	6.26	0.00	0.07	
RIDGEFIELD 4/25/24	002 GASOLINE	5.00	6.26	0.02	0.00	
RIDGEFIELD 7/9/20	002 GASOLINE	13.94	6.26	0.04	0.95	
SHELTON 2/21/2	002 GASOLINE	10.00	6.26	0.03	0.00	
STAMFORD 9/23/2	002 GASOLINE	2.00	6.26	0.01	0.00	
STAMFORD 7/9/2	002 GASOLINE	3.00	6.26	0.01	0.20	
STAMFORD 8/26/2	002 GASOLINE	13.94	6.26	0.04	0.95	
STAMFORD 3/11/2	002 GASOLINE	15.00	6.26	0.05	0.00	
STRATFORD 8/17/2	002 GASOLINE	1.00	6.26	0.00	0.07	
STRATFORD 3/2/2	002 GASOLINE	1.00	6.26	0.00	0.00	
STRATFORD 2/23/20	002 GASOLINE	1.00	6.26	0.00	0.00	
STRATFORD 2/23/2	002 GASOLINE	1.00	6.26	0.00	0.00	
STRATFORD 2/21/2	002 GASOLINE	1.00	6.26	0.00	0.00	
STRATFORD 10/3/2	002 GASOLINE	1.00	6.26	0.00	0.00	
STRATFORD 5/29/2	002 GASOLINE	1.00	6.26	0.00	0.00	
STRATFORD 5/28/2	002 GASOLINE	1.00	6.26	0.00	0.00	
STRATFORD 5/21/2	002 GASOLINE	1.00	6.26	0.00	0.00	
STRATFORD 11/24/20	002 GASOLINE	2.00	6.26	0.01	0.00	

				Annual VOC	Daily VOC
Town	Spill Material Date Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	Emissions (lbs/Day)
STRATFORD	4/29/2002 GASOLINE	2.00	6.26	0.01	0.00
STRATFORD	6/13/2002 GASOLINE	3.00	6.26	0.01	0.20
STRATFORD	8/1/2002 GASOLINE	10.00	6.26	0.03	0.68
STRATFORD	5/31/2002 GASOLINE	10.00	6.26	0.03	0.00
STRATFORD	3/23/2002 GASOLINE	15.00	6.26	0.05	0.00
STRATFORD	10/7/2002 GASOLINE	40.00	6.26	0.13	0.00
TRUMBULL	4/8/2002 GASOLINE	1.00	6.26	0.00	0.00
TRUMBULL	5/23/2002 GASOLINE	1.00	6.26	0.00	0.00
TRUMBULL	2/18/2002 GASOLINE	1.00	6.26	0.00	0.00
TRUMBULL	4/12/2002 GASOLINE	1.00	6.26	0.00	0.00
TRUMBULL	6/21/2002 GASOLINE	1.00	6.26	0.00	0.07
TRUMBULL	11/24/2002 GASOLINE	1.00	6.26	0.00	0.00
TRUMBULL	3/30/2002 GASOLINE	1.00	6.26	0.00	0.00
TRUMBULL	3/19/2002 GASOLINE	1.00	6.26	0.00	0.00
TRUMBULL	3/30/2002 GASOLINE	2.00	6.26	0.01	0.00
TRUMBULL	1/21/2002 GASOLINE	2.00	6.26	0.01	0.00
TRUMBULL	12/1/2002 GASOLINE	2.00	6.26	0.01	0.00
TRUMBULL	4/6/2002 GASOLINE	2.00	6.26	0.01	0.00
TRUMBULL	12/21/2002 GASOLINE	2.00	6.26	0.01	0.00
TRUMBULL	3/27/2002 GASOLINE	2.00	6.26	0.01	0.00
TRUMBULI	12/1/2002 GASOLINE	2.00	6.26	0.01	0.00
TRUMBULI	11/1/2002 GASOLINE	3.00	6.26	0.01	0.00
TRUMBUL	2/6/2002 GASOLINE	5.00	6.26	0.01	0.00
TRUMBUL	0/13/2002 GASOLINE	5.00	6.26	0.02	0.00
TRUMBUL	4/16/2002 GASOLINE	5.00 8.00	6.20	0.02	0.00
	12/25/2002 GASOLINE	8.00	6.26	0.03	0.00
	7/28/2002 GASOLINE	10.00	6.20	0.03	0.00
	2/22/2002 CASOLINE	10.00	6.20	0.03	0.08
	5/25/2002 GASOLINE	10.00	6.26	0.03	0.00
	4/20/2002 GASOLINE	13.94	6.26	0.04	0.00
	1/10/2002 GASOLINE	15.94	0.20	0.04	0.00
IKUMBULL	1/1/9/2002 GASOLINE	15.00	6.26	0.05	0.00
WESTON	1/14/2002 GASOLINE	13.94	6.26	0.04	0.00
WESTPORT	12/4/2002 GASOLINE	1.00	6.26	0.00	0.00
WESTPORT	6/9/2002 GASOLINE	1.00	6.26	0.00	0.07
WESTPORT	4/11/2002 GASOLINE	5.00	6.26	0.02	0.00
WESTPORT	4/12/2002 GASOLINE	10.00	6.26	0.03	0.00
WESTPORT	7/10/2002 GASOLINE	10.00	6.26	0.03	0.68
WESTPORT	4/28/2002 GASOLINE	15.00	6.26	0.05	0.00
WESTPORT	7/8/2002 GASOLINE	18.00	6.26	0.06	1.22
WILTON	7/3/2002 GASOLINE	1.00	6.26	0.00	0.07
WILTON	12/20/2002 GASOLINE	5.00	6.26	0.02	0.00
STAMFORD	7/23/2002 HERBICIDE	49.80	7.20	0.18	3.90
DANBURY	11/26/2002 JET FUEL	5.00	6.40	0.02	0.00
STRATFORD	6/12/2002 JET FUEL	1.00	6.40	0.00	0.07
STRATFORD	4/29/2002 JET FUEL	3.00	6.40	0.01	0.00

	Spill	Material	Spillage	Weight	Annual VOC Emissions	Daily VOC Emissions
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)
STRATFORD	11/13/200	2 JET FUEL	5.00	6.40	0.02	0.00
STRATFORD	3/12/200	2 JET FUEL	5.00	6.40	0.02	0.00
STRATFORD	4/16/200	2 JET FUEL	5.00	6.40	0.02	0.00
STRATFORD	9/10/200	2 JET FUEL	10.00	6.40	0.03	0.00
STRATFORD	9/11/200	2 JET FUEL	15.00	6.40	0.05	0.00
STRATFORD	2/8/200	2 JET FUEL	30.00	6.40	0.10	0.00
STRATFORD	4/22/200	2 JET FUEL	55.00	6.40	0.18	0.00
BROOKFIELD	8/10/200	2 PESTICIDE	80.00	7.20	0.29	6.26
NEW CANAAN	4/19/200	2 PESTICIDE	1.00	7.20	0.00	0.00
WESTPORT	6/24/200	2 PESTICIDE	23.00	7.20	0.08	1.80
BRIDGEPORT	6/5/200	2 PETROLEUM	13.40	6.26	0.04	0.91
BRIDGEPORT	11/25/200	2 PETROLEUM	13.40	6.26	0.04	0.00
DANBURY	4/10/200	2 PETROLEUM	13.40	6.26	0.04	0.00
NEWTOWN	8/12/200	2 PETROLEUM	13.40	6.26	0.04	0.91
REDDING	4/25/200	2 PETROLEUM	13.40	6.26	0.04	0.00
RIDGEFIELD	6/13/200	2 PETROLEUM	13.40	6.26	0.04	0.91
TRUMBULL	4/4/200	2 PETROLEUM	13.40	6.26	0.04	0.00
BETHEL	11/2/200	2 SOLVENT	3.00	7.00	0.01	0.00
BRIDGEPORT	4/16/200	2 SOLVENT	20.00	7.00	0.07	0.00
BRIDGEPORT	4/8/200	2 SOLVENT	50.00	7.00	0.18	0.00
BRIDGEPORT	10/17/200	2 SOLVENT	74.29	7.00	0.26	0.00
BRIDGEPORT	8/10/200	2 SOLVENT	74.29	7.00	0.26	5.65
BRIDGEPORT	10/22/200	2 SOLVENT	74.29	7.00	0.26	0.00
DANBURY	5/21/200	2 SOLVENT	2.00	7.00	0.01	0.00
DANBURY	8/1/200	2 SOLVENT	5.00	7.00	0.02	0.38
DANBURY	11/14/200	2 SOLVENT	74.29	7.00	0.26	0.00
DANBURY	9/1/200	2 SOLVENT	74.29	7.00	0.26	0.00
DANBURY	7/7/200	2 SOLVENT	74.29	7.00	0.26	5.65
DANBURY	10/4/200	2 SOLVENT	74.29	7.00	0.26	0.00
DANBURY	2/25/200	2 SOLVENT	200.00	7.00	0.70	0.00
FAIRFIELD	4/2/200	2 SOLVENT	74.29	7.00	0.26	0.00
FAIRFIELD	3/10/200	2 SOLVENT	74.29	7.00	0.26	0.00
GREENWICH	12/3/200	2 SOLVENT	74.29	7.00	0.26	0.00
GREENWICH	2/10/200	2 SOLVENT	74.29	7.00	0.26	0.00
NORWALK	8/13/200	2 SOLVENT	1.00	7.00	0.00	0.08
NORWALK	8/21/200	2 SOLVENT	1.00	7.00	0.00	0.08
NORWALK	7/10/200	2 SOLVENT	2.00	7.00	0.01	0.15
NORWALK	6/2/200	2 SOLVENT	74.29	7.00	0.26	5.65
NORWALK	12/16/200	2 SOLVENT	74.29	7.00	0.26	0.00
NORWALK	11/16/200	2 SOLVENT	74.29	7.00	0.26	0.00
NORWALK	5/15/200	2 SOLVENT	74.29	7.00	0.26	0.00
SHELTON	6/3/200	2 SOLVENT	1.00	7.00	0.00	0.08
SHELTON	4/3/200	2 SOLVENT	74.29	7.00	0.26	0.00
SHELTON	1/16/200	2 SOLVENT	74.29	7.00	0.26	0.00
STAMFORD	12/10/200	2 SOLVENT	1.00	7.00	0.00	0.00

					Annual	Daily	
					VOC	VOC	
	Spill	Material	Spillage	Weight	Emissions	Emissions	
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)	
STAMFORD	2/11/200	2 SOLVENT	2.00	7.00	0.01	0.00	
STAMFORD	10/17/200	2 SOLVENT	3.00	7.00	0.01	0.00	
STAMFORD	1/4/200	2 SOLVENT	74.29	7.00	0.26	0.00	
STAMFORD	12/3/200	2 SOLVENT	74.29	7.00	0.26	0.00	
STAMFORD	4/1/200	2 SOLVENT	74.29	7.00	0.26	0.00	
STAMFORD	5/11/200	2 SOLVENT	74.29	7.00	0.26	0.00	
STRATFORD	8/23/200	2 SOLVENT	74.29	7.00	0.26	5.65	
STRATFORD	6/28/200	2 SOLVENT	74.29	7.00	0.26	5.65	
STRATFORD	7/15/200	2 SOLVENT	74.29	7.00	0.26	5.65	
STRATFORD	10/26/200	2 SOLVENT	200.00	7.00	0.70	0.00	
STRATFORD	3/9/200	2 SOLVENT	500.00	7.00	1.75	0.00	
TRUMBULL	8/11/200	2 SOLVENT	74.29	7.00	0.26	5.65	
WESTPORT	10/9/200	2 SOLVENT	1,000.00	7.00	3.50	0.00	
WILTON	11/10/200	2 SOLVENT	1.00	7.00	0.00	0.00	
WILTON	7/3/200	2 SOLVENT	1.00	7.00	0.00	0.08	
WILTON	7/5/200	2 SOLVENT	25.00	7.00	0.09	1.90	
WILTON	2/20/200	2 SOLVENT	74.29	7.00	0.26	0.00	
WILTON	11/12/200	2 SOLVENT	74.29	7.00	0.26	0.00	
BRIDGEPORT	3/15/200	2 UNKNOWN	5.00	7.00	0.02	0.00	
BRIDGEPORT	7/31/200	2 UNKNOWN	31.81	7.00	0.11	2.42	
BRIDGEPORT	10/30/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
BRIDGEPORT	5/28/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
BRIDGEPORT	4/30/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
BRIDGEPORT	8/6/200	2 UNKNOWN	31.81	7.00	0.11	2.42	
DANBURY	7/3/200	2 UNKNOWN	31.81	7.00	0.11	2.42	
DANBURY	10/24/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
DANBURY	8/24/200	2 UNKNOWN	31.81	7.00	0.11	2.42	
DANBURY	10/11/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
DANBURY	4/8/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
EASTON	5/16/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
FAIRFIELD	7/23/200	2 UNKNOWN	31.81	7.00	0.11	2.42	
FAIRFIELD	7/9/200	2 UNKNOWN	31.81	7.00	0.11	2.42	
NEWTOWN	10/19/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
NEWTOWN	12/21/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
NORWALK	11/17/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
STAMFORD	1/24/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
STAMFORD	8/5/200	2 UNKNOWN	31.81	7.00	0.11	2.42	
STAMFORD	7/21/200	2 UNKNOWN	31.81	7.00	0.11	2.42	
STRATFORD	9/16/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
STRATFORD	8/19/200	2 UNKNOWN	31.81	7.00	0.11	2.42	
TRUMBULL	6/20/200	2 UNKNOWN	31.81	7.00	0.11	2.42	
TRUMBULL	11/21/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
TRUMBULL	1/14/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
WESTPORT	5/29/200	2 UNKNOWN	31.81	7.00	0.11	0.00	

Town	Spill Date	Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Annual VOC Emissions (Tons/Year)	Daily VOC Emissions (lbs/Day)
		County Total:	6,255.58		21.45	99.88
County = Hartford						
NEW BRITAIN	1/17/200	02 ACRYLAMIDE	1.00	7.00	0.00	0.00
EAST WINDSOR	4/29/200	02 ALCOHOL	1.00	6.51	0.00	0.00
FARMINGTON	3/15/200	02 FORMALDEHYDE	60.00	9.20	0.28	0.00
NEW BRITAIN	12/26/200	02 FORMALDEHYDE	1.00	9.20	0.00	0.00
AVON	7/9/200	02 GASOLINE	1.00	6.26	0.00	0.07
AVON	6/22/200	02 GASOLINE	2.00	6.26	0.01	0.14
AVON	11/29/200	02 GASOLINE	10.00	6.26	0.03	0.00
BERLIN	9/25/200	02 GASOLINE	1.00	6.26	0.00	0.00
BERLIN	8/28/200	02 GASOLINE	1.00	6.26	0.00	0.07
BERLIN	3/24/200	02 GASOLINE	1.00	6.26	0.00	0.00
BERLIN	8/29/200	02 GASOLINE	1.00	6.26	0.00	0.07
BERLIN	11/18/200	02 GASOLINE	2.00	6.26	0.01	0.00
BERLIN	9/24/200	02 GASOLINE	2.00	6.26	0.01	0.00
BERLIN	2/22/200	02 GASOLINE	2.00	6.26	0.01	0.00
BERLIN	5/21/200	02 GASOLINE	2.00	6.26	0.01	0.00
BERLIN	5/9/200	02 GASOLINE	3.00	6.26	0.01	0.00
BERLIN	5/21/200	02 GASOLINE	3.00	6.26	0.01	0.00
BERLIN	6/18/200	02 GASOLINE	3.00	6.26	0.01	0.20
BERLIN	7/11/200	02 GASOLINE	4.00	6.26	0.01	0.27
BERLIN	8/17/200	02 GASOLINE	10.00	6.26	0.03	0.68
BERLIN	10/24/200	02 GASOLINE	10.00	6.26	0.03	0.00
BERLIN	12/1/200	02 GASOLINE	13.94	6.26	0.04	0.00
BERLIN	6/4/200	02 GASOLINE	13.94	6.26	0.04	0.95
BERLIN	11/19/200	02 GASOLINE	15.00	6.26	0.05	0.00
BERLIN	6/13/200	02 GASOLINE	2,500.00	6.26	7.83	170.11
BLOOMFIELD	8/29/200	02 GASOLINE	1.00	6.26	0.00	0.07
BLOOMFIELD	6/4/200	02 GASOLINE	1.00	6.26	0.00	0.07
BLOOMFIELD	1/17/200	02 GASOLINE	1.00	6.26	0.00	0.00
BLOOMFIELD	12/17/200	J2 GASOLINE	1.00	6.26	0.00	0.00
BLOOMFIELD	11/30/200	J2 GASOLINE	2.00	6.26	0.01	0.00
BLOOMFIELD	4/6/200	J2 GASOLINE	2.00	6.26	0.01	0.00
BLOOMFIELD	6/23/200	J2 GASOLINE	2.00	6.26	0.01	0.14
BLOOMFIELD	8/20/200	J2 GASOLINE	2.00	6.26	0.01	0.14
BLOOMFIELD	12/23/200	J2 GASOLINE	5.00	6.26	0.02	0.00
BLOOMFIELD	4/25/200	J2 GASOLINE	6.00 12.04	6.26	0.02	0.00
BLUUWIFIELD	5/21/200	D2 CASOLINE	13.94	0.20	0.04	0.00
DRISTOL	5/ 1/200	D2 CASOLINE	2.00	0.20	0.01	0.00
DRISTOL	3/1/200	D2 CASOLINE	3.00	0.20	0.01	0.00
DRISTOL	12/15/200	D2 GASOLINE	5.00 2.50	0.20	0.01	0.00
DRISTOL	0/0/200	D2 CASOLINE	5.50	6.26	0.01	0.24
DRISTUL	0/9/200	JZ UASULINE	4.00	0.20	0.01	0.27

					Annual	Daily
					VOC	VOC
æ	Spill	Material	Spillage	Weight	Emissions	Emissions
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)
BRISTOL	8/30/200	2 GASOLINE	5.00	6.26	0.02	0.34
BRISTOL	10/31/200	02 GASOLINE	5.00	6.26	0.02	0.00
BRISTOL	12/7/200	02 GASOLINE	6.00	6.26	0.02	0.00
BRISTOL	1/20/200	02 GASOLINE	13.94	6.26	0.04	0.00
BRISTOL	6/17/200	02 GASOLINE	13.94	6.26	0.04	0.95
BRISTOL	1/5/200	02 GASOLINE	14.00	6.26	0.04	0.00
CANTON	6/8/200	02 GASOLINE	1.00	6.26	0.00	0.07
CANTON	4/28/200	02 GASOLINE	1.00	6.26	0.00	0.00
CANTON	2/12/200	02 GASOLINE	5.00	6.26	0.02	0.00
CANTON	11/14/200	02 GASOLINE	13.94	6.26	0.04	0.00
EAST HARTFORD	3/7/200	02 GASOLINE	1.00	6.26	0.00	0.00
EAST HARTFORD	7/26/200	2 GASOLINE	1.00	6.26	0.00	0.07
EAST HARTFORD	8/26/200	2 GASOLINE	1.00	6.26	0.00	0.07
EAST HARTFORD	6/8/200	02 GASOLINE	1.00	6.26	0.00	0.07
EAST HARTFORD	4/25/200	2 GASOLINE	1.00	6.26	0.00	0.00
EAST HARTFORD	7/23/200	02 GASOLINE	2.00	6.26	0.01	0.14
EAST HARTFORD	3/18/200	02 GASOLINE	2.00	6.26	0.01	0.00
EAST HARTFORD	10/21/200	02 GASOLINE	2.00	6.26	0.01	0.00
EAST HARTFORD	6/10/200	02 GASOLINE	2.00	6.26	0.01	0.14
EAST HARTFORD	12/13/200	02 GASOLINE	2.00	6.26	0.01	0.00
EAST HARTFORD	4/9/200	2 GASOLINE	2.00	6.26	0.01	0.00
EAST HARTFORD	2/15/200	2 GASOLINE	2.00	6.26	0.01	0.00
EAST HARTFORD	6/15/200	2 GASOLINE	2.00	6.26	0.01	0.14
EAST HARTFORD	3/1/200	2 GASOLINE	2.00	6.26	0.01	0.00
EAST HARTFORD	11/12/200	2 GASOLINE	2.00	6.26	0.01	0.00
EAST HARTFORD	10/1/200	2 GASOLINE	2.00	6.26	0.01	0.00
EAST HARTFORD	11/18/200	2 GASOLINE	3.00	6.26	0.01	0.00
EAST HARTFORD	1/4/200	2 GASOLINE	3.00	6.26	0.01	0.00
EAST HARTFORD	6/11/200	2 GASOLINE	3.00	6.26	0.01	0.00
EAST HARTFORD	12/26/200	2 GASOLINE	3.00	6.26	0.01	0.00
EAST HARTFORD	6/14/200	2 GASOLINE	5.00	6.26	0.02	0.34
EAST HARTFORD	3/9/200	2 GASOLINE	5.00	6.26	0.02	0.00
EAST HARTFORD	2/14/200	2 GASOLINE	7.00	6.26	0.02	0.00
EAST HARTFORD	1/4/200	2 GASOLINE	8.00	6.26	0.03	0.00
EAST HARTFORD	10/13/200	2 GASOLINE	13.00	6.26	0.04	0.00
EAST HARTFORD	11/13/200	2 GASOLINE	13.00	6.26	0.04	0.00
EAST HARTFORD	10/25/200	2 GASOLINE	13.94	6.26	0.04	0.00
EAST HARTFORD	5/29/200	2 GASOLINE	13.94	6.26	0.04	0.00
EAST HARTFORD	6/11/200	2 GASOLINE	15.00	6.26	0.05	1 02
EAST HARTFORD	8/1/200	2 GASOLINE	20.00	6.20	0.05	1.02
EAST HARTFORD	12/9/200	2 GASOLINE	25.00	6.20	0.00	0.00
FAST WINDSOR	2/22/200	2 GASOLINE	20.00	6.20	0.00	0.00
EAST WINDSOR	10/30/200	2 GASOLINE	20.00	6.26	0.01	0.00
ENFIFI D	3/17/200	2 GASOLINE	1 00	6.20	0.00	0.00
ENFIELD	6/4/200	2 GASOLINE	1.00	6.20	0.00	0.00
	0/ 7/ 200		1.00	0.20	0.00	0.07

				Annual VOC	Daily VOC
Town	Spill Material Date Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	Emissions (lbs/Day)
ENFIELD	3/16/2002 GASOLINE	1.00	6.26	0.00	0.00
ENFIELD	4/10/2002 GASOLINE	1.00	6.26	0.00	0.00
ENFIELD	3/9/2002 GASOLINE	1.00	6.26	0.00	0.00
ENFIELD	3/2/2002 GASOLINE	1.00	6.26	0.00	0.00
ENFIELD	6/23/2002 GASOLINE	2.00	6.26	0.01	0.14
ENFIELD	5/9/2002 GASOLINE	2.00	6.26	0.01	0.00
ENFIELD	3/13/2002 GASOLINE	2.00	6.26	0.01	0.00
ENFIELD	10/10/2002 GASOLINE	2.00	6.26	0.01	0.00
ENFIELD	12/29/2002 GASOLINE	3.00	6.26	0.01	0.00
ENFIELD	7/30/2002 GASOLINE	3.00	6.26	0.01	0.20
ENFIELD	1/10/2002 GASOLINE	3.00	6.26	0.01	0.00
ENFIELD	3/7/2002 GASOLINE	3.00	6.26	0.01	0.00
ENFIELD	1/6/2002 GASOLINE	5.00	6.26	0.02	0.00
ENFIELD	9/2/2002 GASOLINE	5.00	6.26	0.02	0.00
ENFIELD	9/19/2002 GASOLINE	5.00	6.26	0.02	0.00
ENFIELD	11/19/2002 GASOLINE	5.00	6.26	0.02	0.00
ENFIELD	7/24/2002 GASOLINE	8.00	6.26	0.02	0.54
ENFIELD	7/31/2002 GASOLINE	12.00	6.26	0.03	0.82
ENFIELD	7/19/2002 GASOLINE	13.94	6.26	0.04	0.95
ENFIELD	2/28/2002 GASOLINE	15.00	6.26	0.05	0.00
FARMINGTON	2/16/2002 GASOLINE	1 00	6.26	0.00	0.00
FARMINGTON	7/19/2002 GASOLINE	1.00	6.26	0.00	0.00
FARMINGTON	4/6/2002 GASOLINE	1.00	6.26	0.00	0.00
FARMINGTON	3/28/2002 GASOLINE	1.00	6.26	0.00	0.00
FARMINGTON	4/11/2002 GASOLINE	1.00	6.26	0.00	0.00
FARMINGTON	12/17/2002 GASOLINE	1.00	6.26	0.00	0.00
FARMINGTON	7/26/2002 GASOLINE	1.00	6.26	0.00	0.00
FARMINGTON	2/14/2002 GASOLINE	1.00	6.26	0.00	0.07
FARMINGTON	4/19/2002 GASOLINE	1.00	6.26	0.00	0.00
FARMINGTON	3/10/2002 GASOLINE	1.00	6.26	0.00	0.00
FARMINGTON	6/18/2002 GASOLINE	3.00	6.26	0.00	0.00
FARMINGTON	6/6/2002 GASOLINE	5.00	6.20	0.01	0.20
FARMINGTON	6/15/2002 GASOLINE	5.00	6.26	0.02	0.34
FARMINGTON	2/24/2002 GASOLINE	8.00	6.26	0.02	0.00
GLASTONBURY	6/26/2002 GASOLINE	1.00	6.26	0.00	0.00
GLASTONBURY	4/10/2002 GASOLINE	1.00	6.26	0.00	0.07
GLASTONBURY	$\frac{12}{9}$	2.00	6.26	0.00	0.00
GLASTONBURV	6/3/2002 GASOLINE	2.00	6.20	0.01	0.00
CLASTONBURY	7/25/2002 GASOLINE	2.00	6.26	0.01	0.14
CLASTONDURI	10/5/2002 CASOLINE	2.00	6.26	0.01	0.14
CLASTONDUKI	1/7/2002 CASOLINE	5.00	6.26	0.01	0.00
CLASTONDUKI	1/1/2002 CASOLINE $2/1/2002$ CASOLINE	J.00 7.00	6.26	0.02	0.00
	2/1/2002 CASOLINE	/.00	6.26	0.02	0.00
ULASI UNBUKI	5/20/2002 CASOLINE	10.00	0.20	0.05	0.00
ULAS I UNBURY	5/50/2002 GASOLINE	13.00	0.20	0.04	0.00
GLASIONBURY	1/1//2002 GASULINE	13.94	0.26	0.04	0.00

	a m		a .w		Annual VOC	Daily VOC
Town	Spill Date	Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	Emissions (lbs/Day)
GLASTONBURY	11/15/200	2 GASOLINE	13.94	6.26	0.04	0.00
HARTFORD	5/8/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	12/18/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	5/11/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	11/21/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	10/21/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	2/15/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	4/26/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	5/7/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	2/10/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	6/26/200	2 GASOLINE	1.00	6.26	0.00	0.07
HARTFORD	12/14/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	7/24/200	2 GASOLINE	1.00	6.26	0.00	0.07
HARTFORD	1/10/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	3/16/200	2 GASOLINE	1.00	6.26	0.00	0.00
HARTFORD	9/20/200	2 GASOLINE	1.50	6.26	0.00	0.00
HARTFORD	11/21/200	2 GASOLINE	2.00	6.26	0.01	0.00
HARTFORD	10/26/200	2 GASOLINE	2.00	6.26	0.01	0.00
HARTFORD	3/31/200	2 GASOLINE	2.00	6.26	0.01	0.00
HARTFORD	10/22/200	2 GASOLINE	2.00	6.26	0.01	0.00
HARTFORD	10/1/200	2 GASOLINE	2.00	6.26	0.01	0.00
HARTFORD	5/31/200	2 GASOLINE	2.00	6.26	0.01	0.00
HARTFORD	6/15/200	2 GASOLINE	2.00	6.26	0.01	0.14
HARTFORD	12/9/200	2 GASOLINE	2.00	6.26	0.01	0.00
HARTFORD	12/1/200	2 GASOLINE	2.00	6.26	0.01	0.00
HARTFORD	10/25/200	2 GASOLINE	2.00	6.26	0.01	0.00
HARTFORD	6/5/200	2 GASOLINE	2.00	6.26	0.01	0.14
HARTFORD	4/14/200	2 GASOLINE	2.00	6.26	0.01	0.00
HARTFORD	2/21/200	2 GASOLINE	3.00	6.26	0.01	0.00
HARTFORD	7/21/200	2 GASOLINE	3.00	6.26	0.01	0.20
HARTFORD	12/4/200	2 GASOLINE	4.00	6.26	0.01	0.00
HARTFORD	1/16/200	2 GASOLINE	4.00	6.26	0.01	0.00
HARTFORD	5/4/200	2 GASOLINE	4.00	6.26	0.01	0.00
HARTFORD	4/5/200	2 GASOLINE	5.00	6.26	0.02	0.00
HARTFORD	8/29/200	2 GASOLINE	5.00	6.26	0.02	0.34
HARTFORD	10/20/200	2 GASOLINE	5.00	6.26	0.02	0.00
HARTFORD	5/7/200	2 GASOLINE	5.00	6.26	0.02	0.00
HARTFORD	8/13/200	2 GASOLINE	5.00	6.26	0.02	0.34
HARTFORD	9/22/200	2 GASOLINE	5.00	6.26	0.02	0.00
HARTFORD	1/17/200	2 GASOLINE	10.00	6.26	0.03	0.00
HARTFORD	4/2/200	2 GASOLINE	10.00	6.26	0.03	0.00
HARTFORD	3/2/200	2 GASOLINE	13.94	6.26	0.04	0.00
HARTFORD	5/21/200	2 GASOLINE	13.94	6.26	0.04	0.00
HARTFORD	12/20/200	2 GASOLINE	13.94	6.26	0.04	0.00
HARTFORD	9/26/200	2 GASOLINE	13.94	6.26	0.04	0.00

				Annual VOC	Daily VOC
Spill Town Date	Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	Emissions (lbs/Day)
HARTFORD 9/25/2	2002 GASOLINE	13.94	6.26	0.04	0.00
HARTFORD 9/25/2	2002 GASOLINE	13.94	6.26	0.04	0.00
HARTFORD 6/7/2	2002 GASOLINE	13.94	6.26	0.04	0.95
HARTFORD 5/31/2	2002 GASOLINE	13.94	6.26	0.04	0.00
HARTFORD 2/7/2	2002 GASOLINE	13.94	6.26	0.04	0.00
HARTFORD 9/2/2	2002 GASOLINE	15.00	6.26	0.05	0.00
HARTFORD 9/15/2	2002 GASOLINE	16.00	6.26	0.05	0.00
HARTFORD 7/19/2	2002 GASOLINE	20.00	6.26	0.06	1.36
HARTFORD 9/7/2	2002 GASOLINE	30.00	6.26	0.09	0.00
MANCHESTER 6/15/2	2002 GASOLINE	1.00	6.26	0.00	0.07
MANCHESTER 10/3/2	2002 GASOLINE	1.00	6.26	0.00	0.00
MANCHESTER 8/20/2	2002 GASOLINE	1.00	6.26	0.00	0.07
MANCHESTER 1/12/2	2002 GASOLINE	1.00	6.26	0.00	0.00
MANCHESTER 4/3/2	2002 GASOLINE	1.00	6.26	0.00	0.00
MANCHESTER 12/2/2	2002 GASOLINE	1.00	6.26	0.00	0.00
MANCHESTER $4/19/2$	2002 GASOLINE	1.00	6.26	0.00	0.00
MANCHESTER 4/30/2	2002 GASOLINE	1.00	6.26	0.00	0.00
MANCHESTER 1/22/2	2002 GASOLINE	1.00	6.26	0.00	0.00
MANCHESTER 12/21/2	2002 GASOLINE	1.00	6.26	0.00	0.00
MANCHESTER 2/16/2	2002 GASOLINE	1.00	6.26	0.00	0.00
MANCHESTER 10/23/2	2002 GASOLINE	1.00	6.26	0.00	0.00
MANCHESTER 12/21/2	2002 GASOLINE	2.00	6.26	0.00	0.00
MANCHESTER 1/17/2	2002 GASOLINE	2.00	6.26	0.01	0.00
MANCHESTER 4/30/2	2002 GASOLINE	2.00	6.26	0.01	0.00
MANCHESTER 3/29/2	2002 GASOLINE	2.00	6.26	0.01	0.00
MANCHESTER 7/27/2	2002 GASOLINE	2.00	6.26	0.01	0.00
MANCHESTER 9/8/2	2002 GASOLINE	2.00	6.26	0.01	0.00
MANCHESTER 4/3/2	2002 GASOLINE	2.00	6.26	0.01	0.00
MANCHESTER 6/3/2	2002 GASOLINE	2.00	6.26	0.01	0.00
MANCHESTER 1/26/2	2002 GASOLINE	3.00	6.20	0.01	0.00
MANCHESTER 4/21/2	2002 GASOLINE	3.00	6.26	0.01	0.00
MANCHESTER 1/5/2	2002 GASOLINE	3.00	6.26	0.01	0.00
MANCHESTER 4/10/2	2002 GASOLINE	3.00	6.26	0.01	0.00
MANCHESTER 11/19/2	2002 GASOLINE	3.00	6.26	0.01	0.00
MANCHESTER 5/7/2	2002 GASOLINE	3.00	6.26	0.01	0.00
MANCHESTER 1/28/2	2002 GASOLINE	3.00	6.26	0.01	0.00
MANCHESTER 6/6/2	2002 GASOLINE	3.00	6.26	0.01	0.00
MANCHESTER 2/28/2	2002 GASOLINE	3.00	6.20	0.01	0.20
MANCHESTER 3/20/2	2002 GASOLINE	3.00	6.26	0.01	0.00
MANCHESTER $3/29/2$ MANCHESTER $3/22/2$	2002 GASOLINE	3.00	6.26	0.01	0.00
MANCHESTER 3/22/2	2002 GASOLINE	5.00	6.20	0.01	0.00
MANCHESTER $\frac{12}{11/2}$	2002 GASOLINE	5.00	6.20	0.02	0.00
MANCHESTER $12/14/2$	2002 GASOLINE	5.00	6.20	0.02	0.34
$MANCHESTER \qquad 12/14/2$	2002 CASOLINE	5.00	6.20	0.02	0.00
MANCHECTED = 1/20/2		10.00	6.20	0.02	0.00

					Annual VOC	Daily VOC Emissions (lbs/Day)
Town	Spill Date	Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	
MANCHESTER	6/17/200	2 GASOLINE	10.00	6.26	0.03	0.68
MANCHESTER	9/29/200	2 GASOLINE	10.00	6.26	0.03	0.00
MANCHESTER	12/20/200	2 GASOLINE	13.94	6.26	0.04	0.00
MANCHESTER	1/22/200	2 GASOLINE	13.94	6.26	0.04	0.00
MANCHESTER	12/12/200	2 GASOLINE	13.94	6.26	0.04	0.00
MANCHESTER	5/31/200	2 GASOLINE	13.94	6.26	0.04	0.00
MANCHESTER	3/22/200	2 GASOLINE	20.00	6.26	0.06	0.00
MANCHESTER	9/4/200	2 GASOLINE	35.00	6.26	0.11	0.00
NEW BRITAIN	5/8/200	2 GASOLINE	1.00	6.26	0.00	0.00
NEW BRITAIN	3/28/200	2 GASOLINE	1.00	6.26	0.00	0.00
NEW BRITAIN	1/27/200	2 GASOLINE	1.00	6.26	0.00	0.00
NEW BRITAIN	9/10/200	2 GASOLINE	1.00	6.26	0.00	0.00
NEW BRITAIN	12/23/200	2 GASOLINE	1.00	6.26	0.00	0.00
NEW BRITAIN	3/23/200	2 GASOLINE	1.00	6.26	0.00	0.00
NEW BRITAIN	4/19/200	2 GASOLINE	1.00	6.26	0.00	0.00
NEW BRITAIN	7/31/200	2 GASOLINE	1.00	6.26	0.00	0.07
NEW BRITAIN	1/12/200	2 GASOLINE	2.00	6.26	0.01	0.00
NEW BRITAIN	5/27/200	2 GASOLINE	2.00	6.26	0.01	0.00
NEW BRITAIN	3/2/200	2 GASOLINE	2.00	6.26	0.01	0.00
NEW BRITAIN	2/13/200	2 GASOLINE	3.00	6.26	0.01	0.00
NEW BRITAIN	3/1/200	2 GASOLINE	3.00	6.26	0.01	0.00
NEW BRITAIN	2/8/200	2 GASOLINE	10.00	6.26	0.03	0.00
NEW BRITAIN	8/7/200	2 GASOLINE	13.94	6.26	0.04	0.95
NEW BRITAIN	4/5/200	2 GASOLINE	13.94	6.26	0.04	0.00
NEWINGTON	1/26/200	2 GASOLINE	1.00	6.26	0.00	0.00
NEWINGTON	7/18/200	2 GASOLINE	2.00	6.26	0.01	0.14
NEWINGTON	9/9/200	2 GASOLINE	3.00	6.26	0.01	0.00
NEWINGTON	8/11/200	2 GASOLINE	5.00	6.26	0.02	0.34
NEWINGTON	12/12/200	2 GASOLINE	13.94	6.26	0.04	0.00
NEWINGTON	12/13/200	2 GASOLINE	15.00	6.26	0.05	0.00
ROCKY HILL	4/13/200	2 GASOLINE	2.00	6.26	0.01	0.00
ROCKY HILL	4/17/200	2 GASOLINE	3.00	6.26	0.01	0.00
ROCKY HILL	6/14/200	2 GASOLINE	5.00	6.26	0.02	0.34
ROCKY HILL	1/26/200	2 GASOLINE	5.00	6.26	0.02	0.00
ROCKY HILL	1/19/200	2 GASOLINE	10.00	6.26	0.03	0.00
SIMSBURY	9/29/200	2 GASOLINE	1.00	6.26	0.00	0.00
SIMSBURY	5/13/200	2 GASOLINE	1.00	6.26	0.00	0.00
SIMSBURY	10/5/200	2 GASOLINE	1.00	6.26	0.00	0.00
SIMSBURY	4/13/200	2 GASOLINE	4.00	6.26	0.01	0.00
SIMSBURY	3/25/200	2 GASOLINE	4.00	6.26	0.01	0.00
SIMSBURY	4/12/200	2 GASOLINE	5.00	6.26	0.02	0.00
SIMSBURY	6/12/200	2 GASOLINE	13.94	6.26	0.04	0.95
SOUTH WINDSOR	5/17/200	2 GASOLINE	2.00	6.26	0.01	0.00
SOUTH WINDSOR	1/22/200	2 GASOLINE	2.00	6.26	0.01	0.00
SOUTH WINDSOR	1/25/200	2 GASOLINE	3.00	6.26	0.01	0.00

					Annual	Daily
					VOC	VOC
T	Spill	Material	Spillage	Weight	Emissions	Emissions
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)
SOUTH WINDSOR	2/2/200	2 GASOLINE	5.00	6.26	0.02	0.00
SOUTH WINDSOR	2/21/200	2 GASOLINE	5.00	6.26	0.02	0.00
SOUTH WINDSOR	2/3/200	2 GASOLINE	10.00	6.26	0.03	0.00
SOUTHINGTON	8/1/200	2 GASOLINE	1.00	6.26	0.00	0.07
SOUTHINGTON	4/19/200	2 GASOLINE	1.00	6.26	0.00	0.00
SOUTHINGTON	7/12/200	2 GASOLINE	2.00	6.26	0.01	0.14
SOUTHINGTON	2/1/200	2 GASOLINE	4.00	6.26	0.01	0.00
SOUTHINGTON	11/20/200	2 GASOLINE	5.00	6.26	0.02	0.00
SOUTHINGTON	2/7/200	2 GASOLINE	10.00	6.26	0.03	0.00
SOUTHINGTON	1/1/200	2 GASOLINE	10.00	6.26	0.03	0.00
SOUTHINGTON	11/13/200	2 GASOLINE	12.00	6.26	0.04	0.00
SOUTHINGTON	12/6/200	2 GASOLINE	13.94	6.26	0.04	0.00
SOUTHINGTON	2/4/200	2 GASOLINE	15.00	6.26	0.05	0.00
SOUTHINGTON	2/25/200	2 GASOLINE	20.00	6.26	0.06	0.00
SUFFIELD	8/26/200	2 GASOLINE	1.00	6.26	0.00	0.07
SUFFIELD	8/18/200	2 GASOLINE	1.00	6.26	0.00	0.07
SUFFIELD	9/6/200	2 GASOLINE	1.00	6.26	0.00	0.00
SUFFIELD	6/8/200	2 GASOLINE	2.00	6.26	0.01	0.14
SUFFIELD	7/23/200	2 GASOLINE	3.00	6.26	0.01	0.20
WEST HARTFORD	10/22/200	2 GASOLINE	1.00	6.26	0.00	0.00
WEST HARTFORD	5/16/200	2 GASOLINE	1.00	6.26	0.00	0.00
WEST HARTFORD	3/27/200	2 GASOLINE	1.00	6.26	0.00	0.00
WEST HARTFORD	7/28/200	2 GASOLINE	2.00	6.26	0.01	0.14
WEST HARTFORD	3/1/200	2 GASOLINE	3.00	6.26	0.01	0.00
WEST HARTFORD	9/25/200	2 GASOLINE	5.00	6.26	0.02	0.00
WEST HARTFORD	9/27/200	2 GASOLINE	10.00	6.26	0.03	0.00
WEST HARTFORD	12/13/200	2 GASOLINE	13.94	6.26	0.04	0.00
WEST HARTFORD	4/15/200	2 GASOLINE	13.94	6.26	0.04	0.00
WEST HARTFORD	7/16/200	2 GASOLINE	13.94	6.26	0.04	0.95
WEST HARTFORD	12/9/200	2 GASOLINE	13.94	6.26	0.04	0.00
WEST HARTFORD	7/16/200	2 GASOLINE	13.94	6.26	0.04	0.95
WEST HARTFORD	10/5/200	2 GASOLINE	13.94	6.26	0.04	0.00
WETHERSFIELD	1/20/200	2 GASOLINE	1.00	6.26	0.00	0.00
WETHERSFIELD	7/12/200	2 GASOLINE	1.00	6.26	0.00	0.07
WETHERSFIELD	1/12/200	2 GASOLINE	1.00	6.26	0.00	0.00
WETHERSFIELD	3/17/200	2 GASOLINE	1.00	6.26	0.00	0.00
WETHERSFIELD	4/26/200	2 GASOLINE	1.00	6.26	0.00	0.00
WETHERSFIELD	9/17/200	2 GASOLINE	1.00	6.26	0.00	0.00
WETHERSFIELD	5/31/200	2 GASOLINE	2.00	6.26	0.01	0.00
WETHERSFIELD	3/29/200	2 GASOLINE	2.00	6.26	0.01	0.00
WETHERSFIELD	8/27/200	2 GASOLINE	2.00	6.26	0.01	0.14
WETHERSFIELD	9/24/200	2 GASOLINE	10.00	6.26	0.03	0.00
WETHERSFIELD	10/5/200	2 GASOLINE	13.94	6.26	0.04	0.00
WETHERSFIELD	2/21/200	2 GASOLINE	13.94	6.26	0.04	0.00
WETHERSFIELD	5/17/200	2 GASOLINE	20.00	6.26	0.06	0.00

					Annual VOC	Daily VOC Emissions (lbs/Day)
Town	Spill Date	Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	
WETHERSFIELD	3/9/200	2 GASOLINE	20.00	6.26	0.06	0.00
WINDSOR	7/7/200	2 GASOLINE	1.00	6.26	0.00	0.07
WINDSOR	5/2/200	2 GASOLINE	8.00	6.26	0.03	0.00
WINDSOR	10/29/200	2 GASOLINE	13.94	6.26	0.04	0.00
WINDSOR LOCKS	3/2/200	2 GASOLINE	3.00	6.26	0.01	0.00
WINDSOR LOCKS	5/20/200	2 GASOLINE	13.94	6.26	0.04	0.00
GLASTONBURY	9/16/200	2 HERBICIDE	125.00	7.20	0.45	0.00
SOUTH WINDSOR	9/3/200	2 HERBICIDE	3.00	7.20	0.01	0.00
WEST HARTFORD	4/10/200	2 HERBICIDE	1.00	7.20	0.00	0.00
BLOOMFIELD	1/29/200	2 JET FUEL	1.00	6.40	0.00	0.00
EAST GRANBY	5/22/200	2 JET FUEL	2.00	6.40	0.01	0.00
EAST GRANBY	8/12/200	2 JET FUEL	3.00	6.40	0.01	0.21
EAST GRANBY	5/29/200	2 JET FUEL	3.00	6.40	0.01	0.00
EAST GRANBY	3/25/200	2 JET FUEL	5.00	6.40	0.02	0.00
EAST GRANBY	7/9/200	2 JET FUEL	5.00	6.40	0.02	0.35
EAST GRANBY	8/14/200	2 JET FUEL	8.00	6.40	0.03	0.56
EAST GRANBY	5/3/200	2 JET FUEL	50.00	6.40	0.16	0.00
EAST HARTFORD	3/12/200	2 JET FUEL	1.00	6.40	0.00	0.00
EAST HARTFORD	2/26/200	2 JET FUEL	4.00	6.40	0.01	0.00
EAST HARTFORD	5/13/200	2 JET FUEL	4.00	6.40	0.01	0.00
EAST HARTFORD	5/10/200	2 JET FUEL	5.00	6.40	0.02	0.00
EAST HARTFORD	3/5/200	2 JET FUEL	10.12	6.40	0.03	0.00
HARTFORD	4/15/200	2 JET FUEL	3.00	6.40	0.01	0.00
HARTFORD	8/13/200	2 JET FUEL	3.00	6.40	0.01	0.21
WINDSOR	2/28/200	2 JET FUEL	10.12	6.40	0.03	0.00
WINDSOR	2/15/200	2 JET FUEL	15.00	6.40	0.05	0.00
WINDSOR LOCKS	9/12/200	2 JET FUEL	1.00	6.40	0.00	0.00
WINDSOR LOCKS	10/23/200	2 JET FUEL	2.00	6.40	0.01	0.00
WINDSOR LOCKS	1/13/200	2 JET FUEL	2.00	6.40	0.01	0.00
WINDSOR LOCKS	7/5/200	2 JET FUEL	2.00	6.40	0.01	0.14
WINDSOR LOCKS	4/24/200	2 JET FUEL	3.00	6.40	0.01	0.00
WINDSOR LOCKS	2/4/200	2 JET FUEL	3.00	6.40	0.01	0.00
WINDSOR LOCKS	3/7/200	2 JET FUEL	5.00	6.40	0.02	0.00
WINDSOR LOCKS	6/28/200	2 JET FUEL	5.00	6.40	0.02	0.35
WINDSOR LOCKS	4/7/200	2 JET FUEL	5.00	6.40	0.02	0.00
WINDSOR LOCKS	2/5/200	2 JET FUEL	5.00	6.40	0.02	0.00
WINDSOR LOCKS	6/20/200	2 JET FUEL	8.00	6.40	0.03	0.56
WINDSOR LOCKS	1/10/200	2 JET FUEL	10.00	6.40	0.03	0.00
WINDSOR LOCKS	4/16/200	2 JET FUEL	10.00	6.40	0.03	0.00
WINDSOR LOCKS	6/13/200	2 JET FUEL	10.00	6.40	0.03	0.70
WINDSOR LOCKS	4/14/200	2 JET FUEL	20.00	6.40	0.06	0.00
WINDSOR LOCKS	9/11/200	2 JET FUEL	50.00	6.40	0.16	0.00
WINDSOR LOCKS	11/15/200	2 JET FUEL	75.00	6.40	0.24	0.00
BLOOMFIELD	11/14/200	02 MEK	20.00	6.72	0.07	0.00
ENFIELD	8/16/200	2 PESTICIDE	10.00	7.20	0.04	0.78

	Spill	Material	Spillage	Weight	Annual VOC Emissions	Daily VOC Emissions
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)
MANCHESTER	3/22/200	2 PESTICIDE	23.00	7.20	0.08	0.00
SIMSBURY	3/11/200	2 PESTICIDE	23.00	7.20	0.08	0.00
BERLIN	9/27/200	2 PETROLEUM	1.00	6.26	0.00	0.00
BERLIN	11/25/200	2 PETROLEUM	1.00	6.26	0.00	0.00
BLOOMFIELD	8/19/200	2 PETROLEUM	1.00	6.26	0.00	0.07
BRISTOL	12/5/200	2 PETROLEUM	13.40	6.26	0.04	0.00
EAST HARTFORD	10/21/200	2 PETROLEUM	1.00	6.26	0.00	0.00
EAST HARTFORD	4/8/200	2 PETROLEUM	13.40	6.26	0.04	0.00
EAST HARTFORD	1/22/200	2 PETROLEUM	13.40	6.26	0.04	0.00
ENFIELD	7/1/200	2 PETROLEUM	5.00	6.26	0.02	0.34
HARTFORD	1/14/200	2 PETROLEUM	1.00	6.26	0.00	0.00
HARTFORD	4/25/200	2 PETROLEUM	13.40	6.26	0.04	0.00
HARTFORD	9/27/200	2 PETROLEUM	20.00	6.26	0.06	0.00
NEWINGTON	8/26/200	2 PETROLEUM	1.00	6.26	0.00	0.07
NEWINGTON	11/1/200	2 PETROLEUM	13.40	6.26	0.04	0.00
SOUTH WINDSOR	4/22/200	2 PETROLEUM	13.40	6.26	0.04	0.00
SOUTH WINDSOR	1/8/200	2 PETROLEUM	13.40	6.26	0.04	0.00
SOUTHINGTON	1/11/200	2 PETROLEUM	13.40	6.26	0.04	0.00
WEST HARTFORD	3/20/200	2 PETROLEUM	13.40	6.26	0.04	0.00
WINDSOR	10/1/200	2 PETROLEUM	13.40	6.26	0.04	0.00
WINDSOR LOCKS	8/15/200	2 PETROLEUM	13.40	6.26	0.04	0.91
SOUTHINGTON	10/14/200	2 POLYURETHANE	1.00	6.70	0.00	0.00
BRISTOL	6/26/200	2 PROPANE	122.50	4.24	0.26	5.64
EAST HARTFORD	4/12/200	2 PROPANE	122.50	4.24	0.26	0.00
EAST HARTFORD	4/4/200	2 PROPANE	122.50	4.24	0.26	0.00
MANCHESTER	1/29/200	2 PROPANE	20.00	4.24	0.04	0.00
AVON	12/22/200	2 SOLVENT	15.00	7.00	0.05	0.00
AVON	7/24/200	2 SOLVENT	74.29	7.00	0.26	5.65
AVON	6/3/200	2 SOLVENT	74.29	7.00	0.26	5.65
BERLIN	7/16/200	2 SOLVENT	1.00	7.00	0.00	0.08
BERLIN	5/21/200	2 SOLVENT	3.00	7.00	0.01	0.00
BERLIN	6/18/200	2 SOLVENT	20.00	7.00	0.07	1.52
BERLIN	12/4/200	2 SOLVENT	30.00	7.00	0.11	0.00
BERLIN	4/10/200	2 SOLVENT	74.29	7.00	0.26	0.00
BLOOMFIELD	7/25/200	2 SOLVENT	74.29	7.00	0.26	5.65
BRISTOL	2/18/200	2 SOLVENT	74.29	7.00	0.26	0.00
BRISTOL	2/24/200	2 SOLVENT	74.29	7.00	0.26	0.00
BRISTOL	4/19/200	2 SOLVENT	500.00	7.00	1.75	0.00
CANTON	10/22/200	2 SOLVENT	74.29	7.00	0.26	0.00
EAST HARTFORD	2/18/200	2 SOLVENT	1.00	7.00	0.00	0.00
EAST HARTFORD	8/27/200	2 SOLVENT	1.00	7.00	0.00	0.08
EAST HARTFORD	4/23/200	2 SOLVENT	5.00	7.00	0.02	0.00
EAST HARTFORD	2/15/200	2 SOLVENT	15.00	7.00	0.05	0.00
EAST HARTFORD	4/16/200	2 SOLVENT	30.00	7.00	0.11	0.00
EAST HARTFORD	4/18/200	2 SOLVENT	40.00	7.00	0.14	0.00

					Annual	Daily	
					VOC	VOC	
Town	Spill Date	Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	Emissions (lbs/Dav)	
	11/7/200		(2	(()	(
EAST HARTFORD	11/7/200	J2 SOLVENT	74.29	7.00	0.26	0.00	
EAST HARTFORD	4/27/200	D2 SOLVENT	74.29	7.00	0.26	0.00	
EAST HARTFORD	1/4/200	D2 SOLVENT	80.00	7.00	0.28	0.00	
ENFIELD	8/16/200	J2 SOLVENT	5.00	7.00	0.02	0.38	
ENFIELD	9/30/200	J2 SOLVENT	7.00	7.00	0.02	0.00	
ENFIELD	8/24/200	J2 SOLVENT	20.00	7.00	0.07	1.52	
ENFIELD	2/5/200	D2 SOLVENT	74.29	7.00	0.26	0.00	
ENFIELD	10/22/200	D2 SOLVENT	74.29	7.00	0.26	0.00	
ENFIELD	1/23/200	D2 SOLVENT	74.29	7.00	0.26	0.00	
ENFIELD	2/17/200	D2 SOLVENT	74.29	7.00	0.26	0.00	
ENFIELD	5/3/200	02 SOLVENT	600.00	7.00	2.10	0.00	
FARMINGTON	4/29/200	02 SOLVENT	1.00	7.00	0.00	0.00	
FARMINGTON	4/17/200	02 SOLVENT	74.29	7.00	0.26	0.00	
GLASTONBURY	7/23/200	02 SOLVENT	74.29	7.00	0.26	5.65	
GRANBY	9/20/200	02 SOLVENT	10.00	7.00	0.04	0.00	
GRANBY	6/23/200	02 SOLVENT	74.29	7.00	0.26	5.65	
HARTFORD	9/19/200	02 SOLVENT	1.00	7.00	0.00	0.00	
HARTFORD	5/22/200	02 SOLVENT	1.00	7.00	0.00	0.00	
HARTFORD	9/16/200	02 SOLVENT	1.00	7.00	0.00	0.00	
HARTFORD	8/26/200	02 SOLVENT	2.00	7.00	0.01	0.15	
HARTFORD	4/25/200	02 SOLVENT	30.00	7.00	0.11	0.00	
HARTFORD	4/4/200	2 SOLVENT	50.00	7.00	0.18	0.00	
HARTFORD	4/17/200	2 SOLVENT	74.29	7.00	0.26	0.00	
HARTFORD	9/16/200	02 SOLVENT	74.29	7.00	0.26	0.00	
HARTFORD	11/21/200	2 SOLVENT	74.29	7.00	0.26	0.00	
HARTFORD	3/25/200	2 SOLVENT	74.29	7.00	0.26	0.00	
HARTFORD	10/24/200	02 SOLVENT	74.29	7.00	0.26	0.00	
HARTFORD	3/27/200	02 SOLVENT	74.29	7.00	0.26	0.00	
MANCHESTER	3/4/200	02 SOLVENT	1.00	7.00	0.00	0.00	
MANCHESTER	6/18/200	02 SOLVENT	1.00	7.00	0.00	0.08	
MANCHESTER	8/26/200	02 SOLVENT	3.00	7.00	0.01	0.23	
MANCHESTER	11/15/200	02 SOLVENT	74.29	7.00	0.26	0.00	
MANCHESTER	7/8/200	02 SOLVENT	74.29	7.00	0.26	5.65	
MANCHESTER	10/14/200	2 SOLVENT	74.29	7.00	0.26	0.00	
MANCHESTER	9/1/200	2 SOLVENT	74.29	7.00	0.26	0.00	
NEW BRITAIN	6/25/200	02 SOLVENT	1.00	7.00	0.00	0.08	
NEW BRITAIN	10/28/200	02 SOLVENT	1.00	7.00	0.00	0.00	
NEW BRITAIN	9/1/200	02 SOLVENT	3.00	7.00	0.01	0.00	
NEW BRITAIN	6/24/200	2 SOLVENT	5.00	7.00	0.02	0.38	
NEW BRITAIN	3/12/200	02 SOLVENT	74.29	7.00	0.26	0.00	
NEW BRITAIN	12/13/200	02 SOLVENT	74.29	7.00	0.26	0.00	
NEW BRITAIN	10/22/200	2 SOLVENT	74.29	7.00	0.26	0.00	
NEW BRITAIN	1/22/200	2 SOLVENT	74.29	7.00	0.26	0.00	
NEW BRITAIN	12/17/200	2 SOLVENT	74.29	7.00	0.26	0.00	
NEW BRITAIN	1/16/200	02 SOLVENT	74.29	7.00	0.26	0.00	

					Annual	Daily	
	Spill Material				VOC	VOC Emissions	
			Spillage	Weight	Emissions		
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)	
ROCKY HILL	6/18/2002	SOLVENT	74.29	7.00	0.26	5.65	
SIMSBURY	8/10/2002	SOLVENT	74.29	7.00	0.26	5.65	
SOUTH WINDSOR	5/3/2002	SOLVENT	74.29	7.00	0.26	0.00	
SOUTH WINDSOR	2/26/2002	SOLVENT	74.29	7.00	0.26	0.00	
SOUTH WINDSOR	3/19/2002	SOLVENT	74.29	7.00	0.26	0.00	
SOUTH WINDSOR	4/24/2002	SOLVENT	100.00	7.00	0.35	0.00	
SOUTHINGTON	2/21/2002	SOLVENT	2.00	7.00	0.01	0.00	
SOUTHINGTON	7/15/2002	SOLVENT	74.29	7.00	0.26	5.65	
SOUTHINGTON	2/28/2002	SOLVENT	74.29	7.00	0.26	0.00	
SOUTHINGTON	2/28/2002	SOLVENT	74.29	7.00	0.26	0.00	
SUFFIELD	4/13/2002	SOLVENT	15.00	7.00	0.05	0.00	
WEST HARTFORD	6/3/2002	SOLVENT	10.00	7.00	0.04	0.76	
WEST HARTFORD	10/1/2002	SOLVENT	74.29	7.00	0.26	0.00	
WEST HARTFORD	9/25/2002	SOLVENT	74.29	7.00	0.26	0.00	
WEST HARTFORD	3/30/2002	SOLVENT	1.500.00	7.00	5.25	0.00	
WINDSOR	6/3/2002	SOLVENT	50.00	7.00	0.18	3 80	
WINDSOR	10/7/2002	SOLVENT	74.29	7.00	0.26	0.00	
WINDSOR LOCKS	11/4/2002	SOLVENT	1.00	7.00	0.00	0.00	
WINDSOR LOCKS	2/19/2002	SOLVENT	5.00	7.00	0.02	0.00	
WINDSOR LOCKS	10/8/2002	SOLVENT	10.00	7.00	0.02	0.00	
WINDSOR LOCKS	9/12/2002	SOLVENT	74 29	7.00	0.26	0.00	
WINDSOR LOCKS	7/2/2002	SOLVENT	500.00	7.00	1.75	38.04	
AVON	5/29/2002	UNKNOWN	5.00	7.00	0.02	0.00	
AVON	12/28/2002	UNKNOWN	31.81	7.00	0.02	0.00	
BERLIN	6/7/2002	UNKNOWN	31.81	7.00	0.11	2 42	
BERLIN	7/19/2002	UNKNOWN	31.81	7.00	0.11	2.12	
BLOOMFIELD	6/7/2002	UNKNOWN	31.81	7.00	0.11	2.12	
BLOOMFIELD	7/25/2002	UNKNOWN	31.81	7.00	0.11	2.12	
BURLINGTON	10/16/2002	UNKNOWN	31.81	7.00	0.11	0.00	
FAST HARTFORD	7/24/2002	UNKNOWN	10.00	7.00	0.11	0.00	
EAST HARTFORD	8/16/2002	UNKNOWN	31.81	7.00	0.11	2 42	
FAST WINDSOR	6/28/2002	UNKNOWN	31.01	7.00	0.11	2.42	
EAST WINDSOR	7/16/2002	UNKNOWN	31.01	7.00	0.11	2.42	
ENFIFI D	11/13/2002	UNKNOWN	31.01	7.00	0.11	0.00	
FARMINGTON	7/9/2002	UNKNOWN	31.01	7.00	0.11	2 42	
HARTFORD	3/11/2002	UNKNOWN	31.81	7.00	0.11	0.00	
HARTFORD	8/9/2002	UNKNOWN	31.01	7.00	0.11	2 42	
	8/9/2002 1/7/2002	UNKNOWN	31.01	7.00	0.11	2.42	
	6/26/2002	UNKNOWN	21.01	7.00	0.11	0.00	
	6/20/2002		31.01 21.91	7.00	0.11	2.42	
	6/9/2002		31.81 21.91	7.00	0.11	2.42	
MANCHEGTED	7/20/2002		31.01 21.01	7.00	0.11	2.42	
MANCHESTER	10/22/2002		31.01 21.01	7.00	0.11	2.42	
WANCIES I EK	10/22/2002		31.81 21.91	7.00	0.11	0.00	
NEW BRITAIN	1/5/2002		31.81 21.91	7.00	0.11	0.00	
NEW BKITAIN	11/20/2002	UNKNUWN	31.81	7.00	0.11	0.00	

Town	Spill Data	Material	Spillage (Collors)	Weight	Annual VOC Emissions (Tons/Voor)	Daily VOC Emissions (lbs/Day)
TOWN	Date	Spineu	(Ganons)	(105/gal)	(10115/1041)	(105/Day)
NEW BRITAIN	4/18/2002	2 UNKNOWN	100.00	7.00	0.35	0.00
ROCKY HILL	2/4/200	2 UNKNOWN	5.00	7.00	0.02	0.00
SIMSBURY	12/20/200	2 UNKNOWN	31.81	7.00	0.11	0.00
SIMSBURY	3/30/200	2 UNKNOWN	55.00	7.00	0.19	0.00
SOUTH WINDSOR	6/26/2002	2 UNKNOWN	31.81	7.00	0.11	2.42
SOUTHINGTON	2/6/2002	2 UNKNOWN	31.81	7.00	0.11	0.00
SOUTHINGTON	7/12/200	2 UNKNOWN	31.81	7.00	0.11	2.42
SOUTHINGTON	1/7/200	2 UNKNOWN	31.81	7.00	0.11	0.00
SUFFIELD	10/14/2002	2 UNKNOWN	31.81	7.00	0.11	0.00
WETHERSFIELD	2/6/200	2 UNKNOWN	3.00	7.00	0.01	0.00
WETHERSFIELD	2/6/200	2 UNKNOWN	31.81	7.00	0.11	0.00
WINDSOR	5/31/200	2 UNKNOWN	31.81	7.00	0.11	0.00
WINDSOR LOCKS	5/1/2002	2 UNKNOWN	31.81	7.00	0.11	0.00
NEW BRITAIN	6/11/2002	2 XYLENE	1.00	7.17	0.00	0.08
NEW BRITAIN	10/24/2002	2 XYLENE	1.00	7.17	0.00	0.00
NEWINGTON	6/28/2002	2 XYLENE	1.00	7.17	0.00	0.08
		County Total:	13,451.96		44.91	339.51
County = Litchfield						
BARKHAMSTED	11/4/2002	2 GASOLINE	2.00	6.26	0.01	0.00
BARKHAMSTED	11/2/2002	2 GASOLINE	3.00	6.26	0.01	0.00
COLEBROOK	8/16/2002	2 GASOLINE	8.00	6.26	0.03	0.54
HARWINTON	5/13/2002	2 GASOLINE	13.94	6.26	0.04	0.00
KENT	10/4/2002	2 GASOLINE	4.00	6.26	0.01	0.00
LITCHFIELD	7/13/200	2 GASOLINE	2.00	6.26	0.01	0.14
LITCHFIELD	5/25/200	2 GASOLINE	2.00	6.26	0.01	0.00
LITCHFIELD	7/5/200	2 GASOLINE	5.00	6.26	0.02	0.34
LITCHFIELD	5/28/200	2 GASOLINE	10.00	6.26	0.03	0.00
LITCHFIELD	6/24/200	2 GASOLINE	13.94	6.26	0.04	0.95
LITCHFIELD	5/12/200	2 GASOLINE	50.00	6.26	0.16	0.00
NEW HARTFORD	5/18/200	2 GASOLINE	1.00	6.26	0.00	0.00
NEW MILFORD	2/9/200	2 GASOLINE	1.00	6.26	0.00	0.00
NEW MILFORD	1/10/200	2 GASOLINE	5.00	6.26	0.02	0.00
NEW MILFORD	5/23/200	2 GASOLINE	13.94	6.26	0.04	0.00
PLYMOUTH	5/31/200	2 GASOLINE	1.00	6.26	0.00	0.00
PLYMOUTH	9/1/200	2 GASOLINE	1.00	6.26	0.00	0.00
PLYMOUTH	3/9/200	2 GASOLINE	1.00	6.26	0.00	0.00
PLYMOUTH	4/23/200	2 GASOLINE	2.00	6.26	0.01	0.00
PLYMOUTH	2/19/200	2 GASOLINE	2.00	6.26	0.01	0.00
PLYMOUTH	6/29/200	2 GASOLINE	5.00	6.26	0.02	0.34
PLYMOUTH	2/8/200	2 GASOLINE	5.00	6.26	0.02	0.00
PLYMOUTH	0/14/200	2 GASOLINE	5.00	0.26	0.02	0.34
PLYMUUTH	11/25/200	ZUANULINE	5.00	0.20	0.02	0.00

					Annual	Daily	
					VOC	VOC	
	Spill	Material	Spillage	Weight	Emissions	Emissions	
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)	
PLYMOUTH	6/22/2002	2 GASOLINE	5.00	6.26	0.02	0.34	
PLYMOUTH	3/20/2002	2 GASOLINE	13.94	6.26	0.04	0.00	
THOMASTON	4/10/2002	2 GASOLINE	2.00	6.26	0.01	0.00	
THOMASTON	9/27/2002	2 GASOLINE	3.00	6.26	0.01	0.00	
THOMASTON	4/17/2002	2 GASOLINE	40.00	6.26	0.13	0.00	
TORRINGTON	3/9/2002	2 GASOLINE	1.00	6.26	0.00	0.00	
TORRINGTON	4/15/2002	2 GASOLINE	1.00	6.26	0.00	0.00	
TORRINGTON	8/23/2002	2 GASOLINE	1.00	6.26	0.00	0.07	
TORRINGTON	11/23/2002	2 GASOLINE	1.00	6.26	0.00	0.00	
TORRINGTON	4/15/2002	2 GASOLINE	2.00	6.26	0.01	0.00	
TORRINGTON	9/6/2002	2 GASOLINE	2.00	6.26	0.01	0.00	
TORRINGTON	8/26/2002	2 GASOLINE	5.00	6.26	0.02	0.34	
TORRINGTON	6/7/2002	2 GASOLINE	13.94	6.26	0.04	0.95	
TORRINGTON	11/16/2002	2 GASOLINE	13.94	6.26	0.04	0.00	
TORRINGTON	8/6/2002	2 GASOLINE	13.94	6.26	0.04	0.95	
WATERTOWN	9/20/2002	2 GASOLINE	2.00	6.26	0.01	0.00	
WATERTOWN	11/30/2002	2 GASOLINE	6.00	6.26	0.02	0.00	
WATERTOWN	1/28/2002	2 GASOLINE	10.00	6.26	0.03	0.00	
WATERTOWN	3/18/2002	2 GASOLINE	13.94	6.26	0.04	0.00	
WINCHESTER	6/14/2002	2 GASOLINE	1.00	6.26	0.00	0.07	
WINCHESTER	5/22/2002	2 GASOLINE	1.00	6.26	0.00	0.00	
WINCHESTER	1/13/2002	2 GASOLINE	1.00	6.26	0.00	0.00	
WINCHESTER	2/23/2002	2 GASOLINE	1.00	6.26	0.00	0.00	
WINCHESTER	12/9/2002	2 GASOLINE	1.00	6.26	0.00	0.00	
WINCHESTER	2/27/2002	2 GASOLINE	1.50	6.26	0.00	0.00	
WINCHESTER	8/15/2002	2 GASOLINE	2.00	6.26	0.01	0.14	
WINCHESTER	2/28/2002	2 GASOLINE	3.00	6.26	0.01	0.00	
WINCHESTER	7/20/2002	2 GASOLINE	3.00	6.26	0.01	0.20	
WINCHESTER	3/3/2002	2 GASOLINE	3.00	6.26	0.01	0.00	
WINCHESTER	1/15/2002	2 GASOLINE	4.00	6.26	0.01	0.00	
WINCHESTER	10/4/2002	2 GASOLINE	13.94	6.26	0.04	0.00	
WINCHESTER	11/22/2002	2 GASOLINE	13.94	6.26	0.04	0.00	
WOODBURY	9/24/2002	2 GASOLINE	1.00	6.26	0.00	0.00	
WOODBURY	6/27/2002	2 GASOLINE	8.00	6.26	0.03	0.54	
WATERTOWN	7/11/2002	2 MEK	7.00	6.72	0.02	0.51	
PLYMOUTH	10/21/2002	2 PETROLEUM	25.00	6.26	0.08	0.00	
THOMASTON	3/26/2002	2 PETROLEUM	13.40	6.26	0.04	0.00	
TORRINGTON	8/15/2002	2 PETROLEUM	13.40	6.26	0.04	0.91	
TORRINGTON	1/23/2002	2 PETROLEUM	13.40	6.26	0.04	0.00	
TORRINGTON	7/17/2002	2 PETROLEUM	50.00	6.26	0.16	3.40	
TORRINGTON	1/23/2002	2 PETROLEUM	55.00	6.26	0.17	0.00	
WATERTOWN	2/27/2002	2 PETROLEUM	13.40	6.26	0.04	0.00	
WINCHESTER	4/5/2002	2 PETROLEUM	13.40	6.26	0.04	0.00	
WOODBURY	8/31/2002	2 PROPANE	20.00	4.24	0.04	0.92	
BRIDGEWATER	10/9/2002	2 SOLVENT	74.29	7.00	0.26	0.00	

					Annual	Daily	
					VOC	VOC	
	Spill	Material	Spillage	Weight	Emissions	Emissions	
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)	
HARWINTON	9/13/200	02 SOLVENT	74.29	7.00	0.26	0.00	
NEW MILFORD	8/31/200	02 SOLVENT	74.29	7.00	0.26	5.65	
NEW MILFORD	11/18/200	02 SOLVENT	100.00	7.00	0.35	0.00	
PLYMOUTH	6/21/200	02 SOLVENT	74.29	7.00	0.26	5.65	
PLYMOUTH	8/8/200	02 SOLVENT	74.29	7.00	0.26	5.65	
PLYMOUTH	6/3/200	02 SOLVENT	74.29	7.00	0.26	5.65	
TORRINGTON	1/14/200	02 SOLVENT	74.29	7.00	0.26	0.00	
TORRINGTON	3/7/200	02 SOLVENT	74.29	7.00	0.26	0.00	
TORRINGTON	7/10/200	02 SOLVENT	74.29	7.00	0.26	5.65	
WASHINGTON	7/24/200	02 SOLVENT	74.29	7.00	0.26	5.65	
WATERTOWN	7/14/200	02 SOLVENT	74.29	7.00	0.26	5.65	
WOODBURY	8/28/200	02 SOLVENT	25.00	7.00	0.09	1.90	
BRIDGEWATER	9/3/200	02 UNKNOWN	31.81	7.00	0.11	0.00	
HARWINTON	5/18/200)2 UNKNOWN	31.81	7.00	0.11	0.00	
KENT	7/18/200	02 UNKNOWN	31.81	7.00	0.11	2.42	
LITCHFIELD	11/5/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
MORRIS	10/2/200	02 UNKNOWN	31.81	7.00	0.11	0.00	
NEW HARTFORD	4/10/200	2 UNKNOWN	1.00	7.00	0.00	0.00	
PLYMOUTH	5/6/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
THOMASTON	7/26/200	2 UNKNOWN	31.81	7.00	0.11	2.42	
TORRINGTON	4/13/200	2 UNKNOWN	6.00	7.00	0.02	0.00	
WINCHESTER	10/20/200	2 UNKNOWN	31.81	7.00	0.11	0.00	
WINCHESTER	10/25/200	02 UNKNOWN	31.81	7.00	0.11	0.00	
		County Total:	1,830.42		6.17	58.31	
County = Middlesex							
CLINTON	5/18/200	02 GASOLINE	10.00	6.26	0.03	0.00	
CROMWELL	11/7/200	02 GASOLINE	1.00	6.26	0.00	0.00	
CROMWELL	11/4/200	02 GASOLINE	1.00	6.26	0.00	0.00	
CROMWELL	3/27/200	02 GASOLINE	1.00	6.26	0.00	0.00	
CROMWELL	2/20/200	02 GASOLINE	1.00	6.26	0.00	0.00	
CROMWELL	1/13/200	02 GASOLINE	2.00	6.26	0.01	0.00	
CROMWELL	11/8/200	02 GASOLINE	2.00	6.26	0.01	0.00	
CROMWELL	2/17/200	02 GASOLINE	2.00	6.26	0.01	0.00	
CROMWELL	7/5/200	02 GASOLINE	2.00	6.26	0.01	0.14	
CROMWELL	4/4/200	02 GASOLINE	2.00	6.26	0.01	0.00	
CROMWELL	12/26/200	02 GASOLINE	4.00	6.26	0.01	0.00	
CROMWELL	11/28/200	02 GASOLINE	5.00	6.26	0.02	0.00	
CROMWELL	6/17/200	02 GASOLINE	10.00	6.26	0.03	0.68	
CROMWELL	8/6/200	02 GASOLINE	12.00	6.26	0.04	0.82	
CROMWELL	11/13/200	02 GASOLINE	13.94	6.26	0.04	0.00	
CROMWELL	1/28/200	02 GASOLINE	15.00	6.26	0.05	0.00	
CROMWELL	12/7/200	02 GASOLINE	17.00	6.26	0.05	0.00	

					Annual VOC	Daily VOC
	Spill Matarial		Snillage	Weight	Fmissions	Fmissions
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)
CROMWELL	5/10/2002	2 GASOLINE	50.00	6.26	0.16	0.00
DEEP RIVER	9/27/2002	2 GASOLINE	4.00	6.26	0.01	0.00
DURHAM	9/18/2002	2 GASOLINE	2.00	6.26	0.01	0.00
DURHAM	10/7/2002	2 GASOLINE	10.00	6.26	0.03	0.00
EAST HADDAM	11/1/2002	2 GASOLINE	10.00	6.26	0.03	0.00
EAST HAMPTON	9/7/2002	2 GASOLINE	2.00	6.26	0.01	0.00
EAST HAMPTON	7/21/2002	2 GASOLINE	5.00	6.26	0.02	0.34
EAST HAMPTON	1/19/2002	2 GASOLINE	10.00	6.26	0.03	0.00
HADDAM	9/18/2002	2 GASOLINE	13.94	6.26	0.04	0.00
HADDAM	6/3/2002	2 GASOLINE	20.00	6.26	0.06	1.36
MIDDLEFIELD	3/20/2002	2 GASOLINE	1.00	6.26	0.00	0.00
MIDDLEFIELD	4/13/2002	2 GASOLINE	1.00	6.26	0.00	0.00
MIDDLEFIELD	7/16/2002	2 GASOLINE	2.00	6.26	0.01	0.14
MIDDLETOWN	3/14/2002	2 GASOLINE	1.00	6.26	0.00	0.00
MIDDLETOWN	5/6/2002	2 GASOLINE	1.00	6.26	0.00	0.00
MIDDLETOWN	5/28/2002	2 GASOLINE	2.00	6.26	0.01	0.00
MIDDLETOWN	3/15/2002	2 GASOLINE	3.00	6.26	0.01	0.00
MIDDLETOWN	5/16/2002	2 GASOLINE	10.00	6.26	0.03	0.00
MIDDLETOWN	12/10/2002	2 GASOLINE	13.94	6.26	0.04	0.00
MIDDLETOWN	8/8/2002	2 GASOLINE	13.94	6.26	0.04	0.95
MIDDLETOWN	11/7/2002	2 GASOLINE	15.00	6.26	0.05	0.00
MIDDLETOWN	3/12/2002	2 GASOLINE	15.00	6.26	0.05	0.00
MIDDLETOWN	3/31/2002	2 GASOLINE	20.00	6.26	0.06	0.00
OLD SAYBROOK	2/21/2002	2 GASOLINE	1.00	6.26	0.00	0.00
OLD SAYBROOK	10/18/2002	2 GASOLINE	1.00	6.26	0.00	0.00
OLD SAYBROOK	5/22/2002	2 GASOLINE	1.00	6.26	0.00	0.00
OLD SAYBROOK	5/22/2002	2 GASOLINE	2.00	6.26	0.01	0.00
OLD SAYBROOK	2/28/2002	2 GASOLINE	3.00	6.26	0.01	0.00
OLD SAYBROOK	2/21/2002	2 GASOLINE	5.00	6.26	0.02	0.00
OLD SAYBROOK	10/21/2002	2 GASOLINE	6.00	6.26	0.02	0.00
OLD SAYBROOK	12/20/2002	2 GASOLINE	10.00	6.26	0.03	0.00
OLD SAYBROOK	7/13/200	2 GASOLINE	13.94	6.26	0.04	0.95
OLD SAYBROOK	10/17/2002	2 GASOLINE	15.00	6.26	0.05	0.00
OLD SAYBROOK	11/15/2002	2 GASOLINE	60.00	6.26	0.19	0.00
PORTLAND	4/21/2002	2 GASOLINE	2.00	6.26	0.01	0.00
PORTLAND	4/26/200	2 GASOLINE	2.00	6.26	0.01	0.00
PORTLAND	5/5/200	2 GASOLINE	5.00	6.26	0.02	0.00
PORTLAND	2/4/200	2 GASOLINE	5.00	6.26	0.02	0.00
WESTBROOK	4/5/200	2 GASOLINE	13.94	6.26	0.04	0.00
CHESTER	1/31/200	2 JET FUEL	10.12	6.40	0.03	0.00
MIDDLETOWN	2/5/200	2 JET FUEL	30.00	6.40	0.10	0.00
CHESTER	8/21/200	2 PETROLEUM	5.00	6.26	0.02	0.34
MIDDLETOWN	1/2/200	2 PETROLEUM	50.00	6.26	0.16	0.00
OLD SAYBROOK	5/16/200	2 PETROLEUM	13.40	6.26	0.04	0.00
CLINTON	7/24/200	2 SOLVENT	5.00	7.00	0.02	0.38

_	Spill	Material	Spillage	Weight	Annual VOC Emissions	Daily VOC Emissions
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)
CROMWELL	4/15/2002	2 SOLVENT	1.00	7.00	0.00	0.00
CROMWELL	11/13/2002	2 SOLVENT	74.29	7.00	0.26	0.00
CROMWELL	9/4/2002	2 SOLVENT	74.29	7.00	0.26	0.00
EAST HAMPTON	5/3/2002	2 SOLVENT	74.29	7.00	0.26	0.00
MIDDLETOWN	9/2/2002	2 SOLVENT	1.00	7.00	0.00	0.00
MIDDLETOWN	6/27/2002	2 SOLVENT	1.00	7.00	0.00	0.08
MIDDLETOWN	5/13/2002	2 SOLVENT	74.29	7.00	0.26	0.00
MIDDLETOWN	6/12/2002	2 SOLVENT	74.29	7.00	0.26	5.65
MIDDLETOWN	6/26/2002	2 SOLVENT	74.29	7.00	0.26	5.65
MIDDLETOWN	8/20/2002	2 SOLVENT	74.29	7.00	0.26	5.65
EAST HADDAM	3/20/2002	2 UNKNOWN	31.81	7.00	0.11	0.00
ESSEX	5/2/2002	2 UNKNOWN	31.81	7.00	0.11	0.00
HADDAM	3/12/2002	2 UNKNOWN	31.81	7.00	0.11	0.00
MIDDLETOWN	8/9/2002	2 UNKNOWN	31.81	7.00	0.11	2.42
PORTLAND	7/29/200	2 UNKNOWN	5.00	7.00	0.02	0.38
PORTLAND	11/30/2002	2 UNKNOWN	31.81	7.00	0.11	0.00
		County Total:	1,273.27		4.24	25.92
County = New Haven						
ANSONIA	3/16/2002	2 GASOLINE	13.94	6.26	0.04	0.00
ANSONIA	9/3/200	2 GASOLINE	13.94	6.26	0.04	0.00
BEACON FALLS	2/3/200	2 GASOLINE	1.00	6.26	0.00	0.00
BEACON FALLS	4/27/200	2 GASOLINE	13.94	6.26	0.04	0.00
BEACON FALLS	4/27/200	2 GASOLINE	50.00	6.26	0.16	0.00
BRANFORD	6/24/2002	2 GASOLINE	6.00	6.26	0.02	0.41
BRANFORD	10/28/200	2 GASOLINE	13.94	6.26	0.04	0.00
BRANFORD	6/13/2002	2 GASOLINE	13.94	6.26	0.04	0.95
CHESHIRE	10/23/2002	2 GASOLINE	1.00	6.26	0.00	0.00
CHESHIRE	9/3/200	2 GASOLINE	2.00	6.26	0.01	0.00
CHESHIRE	4/13/200	2 GASOLINE	2.00	6.26	0.01	0.00
CHESHIRE	4/20/200	2 GASOLINE	6.00	6.26	0.02	0.00
CHESHIRE	12/19/200	2 GASOLINE	13.94	6.26	0.04	0.00
EAST HAVEN	5/6/200	2 GASOLINE	13.94	6.26	0.04	0.00
EAST HAVEN	7/3/200	2 GASOLINE	13.94	6.26	0.04	0.95
GUILFORD	10/8/200	2 GASOLINE	4.00	6.26	0.01	0.00
GUILFORD	4/3/200	2 GASOLINE	5.00	6.26	0.02	0.00
GUILFORD	7/20/200	2 GASOLINE	9.00	6.26	0.03	0.61
GUILFORD	7/20/200	2 GASOLINE	10.00	6.26	0.03	0.68
GUILFORD	6/21/200	2 GASOLINE	10.00	6.26	0.03	0.68
GUILFORD	10/17/200	2 GASOLINE	13.94	6.26	0.04	0.00
HAMDEN	12/21/200	2 GASOLINE	3.00	6.26	0.01	0.00
HAMDEN	6/12/200	2 GASOLINE	10.00	6.26	0.03	0.68
HAMDEN	1/25/200	2 GASOLINE	13.94	6.26	0.04	0.95

				Annual VOC	Daily VOC
Town	Spill Material Date Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	Emissions (lbs/Day)
HAMDEN	10/22/2002 GASOLINE	15.00	6.26	0.05	0.00
HAMDEN	7/29/2002 GASOLINE	40.00	6.26	0.13	2.72
MADISON	7/25/2002 GASOLINE	5.00	6.26	0.02	0.34
MADISON	1/27/2002 GASOLINE	5.00	6.26	0.02	0.00
MERIDEN	2/20/2002 GASOLINE	1.00	6.26	0.00	0.00
MERIDEN	2/15/2002 GASOLINE	2.00	6.26	0.01	0.00
MERIDEN	3/25/2002 GASOLINE	13.94	6.26	0.04	0.00
MERIDEN	11/28/2002 GASOLINE	15.00	6.26	0.05	0.00
MERIDEN	8/20/2002 GASOLINE	16.00	6.26	0.05	1.09
MILFORD	6/19/2002 GASOLINE	1.00	6.26	0.00	0.07
MILFORD	10/16/2002 GASOLINE	1.00	6.26	0.00	0.00
MILFORD	4/13/2002 GASOLINE	3.00	6.26	0.01	0.00
MILFORD	1/28/2002 GASOLINE	5.00	6.26	0.02	0.00
MILFORD	2/4/2002 GASOLINE	10.00	6.26	0.03	0.00
MILFORD	6/15/2002 GASOLINE	13.94	6.26	0.03	0.00
MILFORD	6/18/2002 GASOLINE	13.94	6.26	0.04	0.95
MILFORD	2/8/2002 GASOLINE	15.00	6.26	0.05	0.00
MILFORD	3/9/2002 GASOLINE	20.00	6.26	0.05	0.00
NAUGATUCK	10/19/2002 GASOLINE	1.00	6.26	0.00	0.00
NAUGATUCK	8/1/2002 GASOLINE	1.00	6.26	0.00	0.00
NAUGATUCK	3/19/2002 GASOLINE	1.00	6.26	0.00	0.07
NAUGATUCK	7/27/2002 GASOLINE	1.00	6.26	0.00	0.07
NAUGATUCK	7/5/2002 GASOLINE	1.00	6.26	0.00	0.07
NAUGATUCK	10/18/2002 GASOLINE	1.00	6.26	0.00	0.00
NAUGATUCK	11/19/2002 GASOLINE	1.00	6.26	0.00	0.00
NAUGATUCK	2/22/2002 GASOLINE	1.00	6.26	0.00	0.00
NAUGATUCK	5/16/2002 GASOLINE	2.00	6.26	0.00	0.00
NAUGATUCK	3/2/2002 GASOLINE	2.00	6.26	0.01	0.00
NAUGATUCK	10/25/2002 GASOLINE	2.00	6.26	0.01	0.00
NAUGATUCK	10/25/2002 GASOLINE	2.00	6.26	0.01	0.00
NAUGATUCK	4/0/2002 GASOLINE	2.00	6.26	0.01	0.00
NAUGATUCK	7/31/2002 GASOLINE	2.00	6.26	0.01	0.14
NAUGATUCK	10/6/2002 GASOLINE	2.00	6.26	0.01	0.14
NAUGATUCK	1/1/2002 GASOLINE	3.00	6.26	0.01	0.00
NAUGATUCK	5/2/2002 GASOLINE	3.00	6.26	0.01	0.00
NAUGATUCK	1/17/2002 GASOLINE	4.00	6.26	0.01	0.00
NAUGATUCK	2/12/2002 CASOLINE	4.00	6.26	0.01	0.00
NAUGATUCK	8/13/2002 GASOLINE	4.00	6.26	0.01	0.27
NAUGATUCK	2/22/2002 GASOLINE	5.00	0.20	0.02	0.00
NAUGATUCK	5/4/2002 GASOLINE	5.00	0.20	0.02	0.00
NAUGATUCK	1/9/2002 GASOLINE	5.00	6.26	0.02	0.00
NAUGATUCK	4/28/2002 GASOLINE	6.00	0.26	0.02	0.00
NAUGATUCK	1/30/2002 GASOLINE	/.00	0.26	0.02	0.00
NAUGATUCK	10/17/2002 GASOLINE	13.94	6.26	0.04	0.00
NAUGATUCK	6/1/2002 GASOLINE	13.94	6.26	0.04	0.95
NAUGATUCK	1/27/2002 GASOLINE	13.94	6.26	0.04	0.00

					Annual	Daily	
	Spill Material				VOC	VOC Emissions	
			Spillage	Weight	Emissions		
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)	
NAUGATUCK	1/7/200	02 GASOLINE	13.94	6.26	0.04	0.00	
NEW HAVEN	6/21/200	02 GASOLINE	3.00	6.26	0.01	0.20	
NEW HAVEN	2/26/200	02 GASOLINE	10.00	6.26	0.03	0.00	
NEW HAVEN	1/4/200	02 GASOLINE	13.94	6.26	0.04	0.00	
NEW HAVEN	6/15/200	02 GASOLINE	13.94	6.26	0.04	0.95	
NEW HAVEN	8/31/200	02 GASOLINE	16.00	6.26	0.05	1.09	
NEW HAVEN	4/19/200	02 GASOLINE	35.00	6.26	0.11	0.00	
NEW HAVEN	4/30/200	02 GASOLINE	40.00	6.26	0.13	0.00	
NEW HAVEN	2/20/200	02 GASOLINE	200.00	6.26	0.63	0.00	
NEW HAVEN	9/13/200	02 GASOLINE	200.00	6.26	0.63	0.00	
NEW HAVEN	1/1/200	02 GASOLINE	3,000.00	6.26	9.39	0.00	
NORTH BRANFORD	7/19/200	02 GASOLINE	1.50	6.26	0.00	0.10	
NORTH HAVEN	11/13/200	02 GASOLINE	5.00	6.26	0.02	0.00	
NORTH HAVEN	11/25/200	02 GASOLINE	5.00	6.26	0.02	0.00	
NORTH HAVEN	9/2/200	02 GASOLINE	8.00	6.26	0.03	0.00	
NORTH HAVEN	9/11/200	02 GASOLINE	10.00	6.26	0.03	0.00	
NORTH HAVEN	10/26/200	02 GASOLINE	13.94	6.26	0.04	0.00	
NORTH HAVEN	6/18/200	02 GASOLINE	13.94	6.26	0.04	0.95	
NORTH HAVEN	9/11/200	2 GASOLINE	15.00	6.26	0.05	0.00	
NORTH HAVEN	2/22/200	02 GASOLINE	70.00	6.26	0.22	0.00	
OXFORD	9/25/200	02 GASOLINE	1.00	6.26	0.00	0.00	
OXFORD	4/3/200	02 GASOLINE	1.00	6.26	0.00	0.00	
OXFORD	2/8/200	02 GASOLINE	3.00	6.26	0.01	0.00	
OXFORD	8/28/200	02 GASOLINE	5.00	6.26	0.02	0.34	
OXFORD	11/26/200	02 GASOLINE	13.94	6.26	0.04	0.00	
PROSPECT	10/14/200	02 GASOLINE	10.00	6.26	0.03	0.00	
PROSPECT	11/20/200	02 GASOLINE	13.94	6.26	0.04	0.00	
PROSPECT	10/12/200	02 GASOLINE	30.00	6.26	0.09	0.00	
SEYMOUR	10/29/200	02 GASOLINE	13.94	6.26	0.04	0.00	
SOUTHBURY	5/30/200	2 GASOLINE	1.00	6.26	0.00	0.00	
SOUTHBURY	8/5/200	02 GASOLINE	13.94	6.26	0.04	0.95	
WALLINGFORD	4/10/200	2 GASOLINE	1.00	6.26	0.00	0.00	
WALLINGFORD	1/18/200	02 GASOLINE	3.00	6.26	0.01	0.00	
WALLINGFORD	3/14/200	2 GASOLINE	10.00	6.26	0.03	0.00	
WALLINGFORD	8/29/200	02 GASOLINE	13.94	6.26	0.04	0.95	
WALLINGFORD	11/17/200	2 GASOLINE	13.94	6.26	0.04	0.00	
WATERBURY	2/16/200	02 GASOLINE	1.00	6.26	0.00	0.00	
WATERBURY	7/24/200	02 GASOLINE	1.00	6.26	0.00	0.07	
WATERBURY	4/2/200	02 GASOLINE	1.00	6.26	0.00	0.00	
WATERBURY	5/10/200	2 GASOLINE	2.00	6.26	0.01	0.00	
WATERBURY	6/10/200	2 GASOLINE	2.00	6.26	0.01	0.14	
WATERBURY	10/22/200	2 GASOLINE	3.00	6.26	0.01	0.00	
WATERBURY	6/18/200	2 GASOLINE	3.00	6.26	0.01	0.20	
WATERBURY	12/18/200	2 GASOLINE	5.00	6.26	0.02	0.00	
WATERBURY	11/2/200	02 GASOLINE	10.00	6.26	0.03	0.00	

				Ar			
					VOC	VOC	
	Spill	Material	Spillage	Weight	Emissions	Emissions	
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)	
WATERBURY	1/17/2002	GASOLINE	13.94	6.26	0.04	0.00	
WATERBURY	4/27/2002	GASOLINE	15.00	6.26	0.05	0.00	
WEST HAVEN	9/3/2002	GASOLINE	13.94	6.26	0.04	0.00	
WEST HAVEN	3/18/2002	GASOLINE	13.94	6.26	0.04	0.00	
WEST HAVEN	6/10/2002	GASOLINE	18.00	6.26	0.06	1.22	
WOLCOTT 1	1/22/2002	GASOLINE	1.00	6.26	0.00	0.00	
WOLCOTT	4/26/2002	GASOLINE	7.00	6.26	0.02	0.00	
NAUGATUCK	5/20/2002	HEPTANE	5.00	5.70	0.01	0.00	
NAUGATUCK	5/21/2002	HEPTANE	30.00	5.70	0.09	0.00	
WATERBURY	5/31/2002	HERBICIDE	110.00	7.20	0.40	0.00	
MILFORD	12/4/2002	2 JET FUEL	25.00	6.40	0.08	0.00	
NEW HAVEN	5/31/2002	2 JET FUEL	10.12	6.40	0.03	0.00	
NEW HAVEN	1/6/2002	2 JET FUEL	15.00	6.40	0.05	0.00	
OXFORD	4/12/2002	2 JET FUEL	10.12	6.40	0.03	0.00	
OXFORD	3/21/2002	2 JET FUEL	20.00	6.40	0.06	0.00	
WALLINGFORD	9/8/2002	PESTICIDE	1.00	7.20	0.00	0.00	
BETHANY	5/1/2002	PETROLEUM	10.00	6.26	0.03	0.00	
CHESHIRE	4/5/2002	PETROLEUM	13.40	6.26	0.04	0.00	
DERBY	5/20/2002	PETROLEUM	13.40	6.26	0.04	0.00	
HAMDEN	3/25/2002	PETROLEUM	13.40	6.26	0.04	0.00	
MILFORD	6/19/2002	PETROLEUM	13.40	6.26	0.04	0.91	
NAUGATUCK	9/26/2002	PETROLEUM	13.40	6.26	0.04	0.00	
NEW HAVEN	8/5/2002	PETROLEUM	13.40	6.26	0.04	0.91	
NEW HAVEN	2/6/2002	PETROLEUM	25.00	6.26	0.08	0.00	
NORTH HAVEN 1	1/25/2002	PETROLEUM	13.40	6.26	0.04	0.00	
ORANGE 1	2/12/2002	PETROLEUM	13.40	6.26	0.04	0.00	
OXFORD	6/17/2002	PETROLEUM	5.00	6.26	0.02	0.34	
WATERBURY	8/15/2002	PETROLEUM	5.00	6.26	0.02	0.34	
WATERBURY 1	1/19/2002	PETROLEUM	13.40	6.26	0.04	0.00	
WATERBURY	2/20/2002	PETROLEUM	13.40	6.26	0.04	0.00	
WEST HAVEN 1	1/19/2002	PETROLEUM	13.40	6.26	0.04	0.00	
SEYMOUR	3/7/2002	PROPANE	50.00	4.24	0.11	0.00	
WATERBURY	8/22/2002	PROPANE	122.50	4.24	0.26	5.64	
BRANFORD	2/7/2002	2 SOLVENT	3.00	7.00	0.01	0.00	
BRANFORD	9/24/2002	2 SOLVENT	20.00	7.00	0.07	0.00	
BRANFORD	11/7/2002	2 SOLVENT	74.29	7.00	0.26	0.00	
CHESHIRE	5/15/2002	2 SOLVENT	5.00	7.00	0.02	0.00	
EAST HAVEN	10/7/2002	2 SOLVENT	74.29	7.00	0.26	0.00	
GUILFORD	9/4/2002	2 SOLVENT	2.00	7.00	0.01	0.00	
MERIDEN	8/27/2002	SOLVENT	74.29	7.00	0.26	5.65	
MERIDEN	8/20/2002	SOLVENT	74.29	7.00	0.26	5.65	
MILFORD 1	0/12/2002	2 SOLVENT	10.00	7.00	0.04	0.00	
MILFORD	3/30/2002	SOLVENT	74.29	7.00	0.26	0.00	
NAUGATUCK	2/22/2002	SOLVENT	1.00	7.00	0.00	0.00	
NAUGATUCK 1	0/24/2002	SOLVENT	2.00	7.00	0.01	0.00	

				Annual	Daily	
					VOC	VOC
	Spill	Material	Spillage	Weight	Emissions	Emissions
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)
NAUGATUCK	2/21/200	2 SOLVENT	2.00	7.00	0.01	0.00
NAUGATUCK	2/6/200	2 SOLVENT	3.00	7.00	0.01	0.00
NAUGATUCK	5/10/200	2 SOLVENT	5.00	7.00	0.02	0.00
NAUGATUCK	5/17/200	2 SOLVENT	5.00	7.00	0.02	0.00
NAUGATUCK	1/7/200	2 SOLVENT	10.00	7.00	0.04	0.00
NAUGATUCK	9/17/200	2 SOLVENT	10.00	7.00	0.04	0.00
NAUGATUCK	9/17/200	2 SOLVENT	10.00	7.00	0.04	0.00
NAUGATUCK	1/16/200	2 SOLVENT	12.00	7.00	0.04	0.00
NAUGATUCK	7/12/200	2 SOLVENT	21.00	7.00	0.07	1.60
NAUGATUCK	5/9/200	2 SOLVENT	40.00	7.00	0.14	0.00
NAUGATUCK	5/21/200	2 SOLVENT	50.00	7.00	0.18	0.00
NAUGATUCK	3/6/200	2 SOLVENT	74.29	7.00	0.26	0.00
NAUGATUCK	1/4/200	2 SOLVENT	100.00	7.00	0.35	0.00
NAUGATUCK	11/21/200	2 SOLVENT	100.00	7.00	0.35	0.00
NAUGATUCK	4/13/200	2 SOLVENT	200.00	7.00	0.70	0.00
NAUGATUCK	10/26/200	2 SOLVENT	9,000.00	7.00	31.50	0.00
NEW HAVEN	8/5/200	2 SOLVENT	1.00	7.00	0.00	0.08
NEW HAVEN	5/10/200	2 SOLVENT	2.00	7.00	0.01	0.00
NEW HAVEN	12/19/200	2 SOLVENT	2.00	7.00	0.01	0.00
NEW HAVEN	11/7/200	2 SOLVENT	74.29	7.00	0.26	0.00
NEW HAVEN	8/21/200	2 SOLVENT	74.29	7.00	0.26	5.65
NEW HAVEN	12/17/200	2 SOLVENT	74.29	7.00	0.26	0.00
NEW HAVEN	7/21/200	2 SOLVENT	74.29	7.00	0.26	5.65
NEW HAVEN	12/4/200	2 SOLVENT	74.29	7.00	0.26	0.00
NEW HAVEN	9/2/200	2 SOLVENT	74.29	7.00	0.26	0.00
NEW HAVEN	6/25/200	2 SOLVENT	74.29	7.00	0.26	5.65
NEW HAVEN	6/26/200	2 SOLVENT	74.29	7.00	0.26	5.65
NEW HAVEN	9/25/200	2 SOLVENT	74.29	7.00	0.26	0.00
NEW HAVEN	1/7/200	2 SOLVENT	74.29	7.00	0.26	0.00
NORTH HAVEN	6/15/200	2 SOLVENT	1.00	7.00	0.00	0.08
NORTH HAVEN	3/1/200	2 SOLVENT	15.00	7.00	0.05	0.00
NORTH HAVEN	4/22/200	2 SOLVENT	74.29	7.00	0.26	0.00
NORTH HAVEN	9/1/200	2 SOLVENT	74.29	7.00	0.26	0.00
ORANGE	4/2/200	2 SOLVENT	1.00	7.00	0.00	0.00
SEYMOUR	10/23/200	2 SOLVENT	74.29	7.00	0.26	0.00
SEYMOUR	7/17/200	2 SOLVENT	74.29	7.00	0.26	5.65
WALLINGFORD	7/23/200	2 SOLVENT	2.00	7.00	0.01	0.15
WALLINGFORD	8/2/200	2 SOLVENT	5.00	7.00	0.02	0.38
WALLINGFORD	1/14/200	2 SOLVENT	5.00	7.00	0.02	0.00
WALLINGFORD	7/9/200	2 SOLVENT	15.00	7.00	0.05	1.14
WALLINGFORD	3/7/200	2 SOLVENT	132.00	7.00	0.46	0.00
WATERBURY	6/20/200	2 SOLVENT	1.00	7.00	0.00	0.08
WATERBURY	7/11/200	2 SOLVENT	15.00	7.00	0.05	1.14
WATERBURY	3/18/200	2 SOLVENT	74.29	7.00	0.26	0.00
WATERBURY	6/4/200	2 SOLVENT	1,000.00	7.00	3.50	76.09

					Daily VOC	
~				VUC	voc	
Spill Town Date	Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	Emissions (lbs/Day)	
WEST HAVEN 2/6/2	2002 SOLVENT	350.00	7.00	1.23	0.00	
WOODBRIDGE 6/21/2	2002 SOLVENT	265.00	7.00	0.93	20.16	
BEACON FALLS 7/9/2	2002 UNKNOWN	31.81	7.00	0.11	2.42	
BRANFORD 3/7/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
BRANFORD 3/8/2	2002 UNKNOWN	55.00	7.00	0.19	0.00	
CHESHIRE 6/4/2	2002 UNKNOWN	31.81	7.00	0.11	2.42	
CHESHIRE 3/30/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
EAST HAVEN 11/23/2	2002 UNKNOWN	1.00	7.00	0.00	0.00	
EAST HAVEN 11/18/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
EAST HAVEN 11/22/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
HAMDEN 7/25/2	2002 UNKNOWN	31.81	7.00	0.11	2.42	
HAMDEN 6/5/2	2002 UNKNOWN	31.81	7.00	0.11	2.42	
MERIDEN 5/30/2	2002 UNKNOWN	5.00	7.00	0.02	0.00	
MERIDEN 5/24/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
MERIDEN 7/8/2	2002 UNKNOWN	31.81	7.00	0.11	2.42	
MERIDEN 4/16/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
MILFORD 12/30/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
MILFORD 1/30/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
NAUGATUCK 10/5/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
NAUGATUCK 6/3/2	2002 UNKNOWN	31.81	7.00	0.11	2.42	
NEW HAVEN 6/14/2	2002 UNKNOWN	31.81	7.00	0.11	2.42	
NEW HAVEN 5/31/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
NEW HAVEN 10/1/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
NEW HAVEN 3/17/2	2002 UNKNOWN	110.00	7.00	0.39	0.00	
NORTH HAVEN 5/29/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
NORTH HAVEN 9/25/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
ORANGE 1/23/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
OXFORD 3/30/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
SEYMOUR 4/29/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
SEYMOUR 9/11/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
SEYMOUR 3/17/2	2002 UNKNOWN	110.00	7.00	0.39	0.00	
SOUTHBURY 4/29/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
WALLINGFORD 7/25/2	2002 UNKNOWN	31.81	7.00	0.11	2.42	
WALLINGFORD 4/12/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
WALLINGFORD 7/18/2	2002 UNKNOWN	31.81	7.00	0.11	2.42	
WALLINGFORD 9/24/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
WALLINGFORD 10/23/2	2002 UNKNOWN	55.00	7.00	0.19	0.00	
WATERBURY 9/11/2	2002 UNKNOWN	2.00	7.00	0.01	0.00	
WATERBURY 12/25/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
WATERBURY 3/7/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
WATERBURY 1/2.4/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
WEST HAVEN 8/27/2	2002 UNKNOWN	31.81	7.00	0.11	2.42	
WEST HAVEN 10/14/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
WEST HAVEN 1/7/2	2002 UNKNOWN	31.81	7.00	0.11	0.00	
WEST HAVEN 8/16/2	2002 UNKNOWN	31.81	7.00	0.11	2.42	

Town	Spill Date	Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Annual VOC Emissions (Tons/Year)	Daily VOC Emissions (lbs/Day)
WEST HAVEN	3/2/200	2 UNKNOWN	31.81	7.00	0.11	0.00
WESTHAVEN	7/12/200	2 UNKNOWN	31.81	7.00	0.11	2.42
		County Total:	19,630.77		66.69	198.53
County = New Lone	don					
COLCHESTER	12/24/200	2 GASOLINE	5.00	6.26	0.02	0.00
COLCHESTER	8/29/200	2 GASOLINE	12.00	6.26	0.04	0.82
COLCHESTER	3/18/200	2 GASOLINE	13.94	6.26	0.04	0.00
COLCHESTER	11/7/200	2 GASOLINE	15.00	6.26	0.05	0.00
EAST LYME	5/28/200	2 GASOLINE	5.00	6.26	0.02	0.00
EAST LYME	8/1/200	2 GASOLINE	13.94	6.26	0.04	0.95
FRANKLIN	1/11/200	2 GASOLINE	10.00	6.26	0.03	0.00
GRISWOLD	8/3/200	2 GASOLINE	1.00	6.26	0.00	0.07
GRISWOLD	1/21/200	2 GASOLINE	10.00	6.26	0.03	0.00
GRISWOLD	9/12/200	2 GASOLINE	18.00	6.26	0.06	0.00
GROTON	8/28/200	2 GASOLINE	1.00	6.26	0.00	0.07
GROTON	3/6/200	2 GASOLINE	1.00	6.26	0.00	0.00
GROTON	8/17/200	2 GASOLINE	1.00	6.26	0.00	0.07
GROTON	9/27/200	2 GASOLINE	1.00	6.26	0.00	0.00
GROTON	3/12/200	2 GASOLINE	1.00	6.26	0.00	0.00
GROTON	9/9/200	2 GASOLINE	1.00	6.26	0.00	0.00
GROTON	10/24/200	2 GASOLINE	1.00	6.26	0.00	0.00
GROTON	3/29/200	2 GASOLINE	1.00	6.26	0.00	0.00
GROTON	1/29/200	2 GASOLINE	1.00	6.26	0.00	0.00
GROTON	8/9/200	2 GASOLINE	1.00	6.26	0.00	0.07
GROTON	8/4/200	2 GASOLINE	1.00	6.26	0.00	0.07
GROTON	7/24/200	2 GASOLINE	1.00	6.26	0.00	0.07
GROION	//20/200	2 GASOLINE	1.00	6.26	0.00	0.07
GROION	4/1/200	2 GASOLINE	1.00	6.26	0.00	0.00
GROION	1/31/200	2 GASOLINE	1.00	6.26	0.00	0.00
GROTON	8/11/200	2 GASOLINE	1.00	6.26	0.00	0.07
GROTON	1/23/200	2 GASOLINE	1.00	6.26	0.00	0.00
GROTON	6/24/200	2 GASOLINE	1.00	0.20 6.26	0.00	0.07
GROTON	6/23/200	2 GASOLINE	1.00	6.26	0.00	0.07
GROTON	12/2/200 5/21/200	2 GASOLINE	1.00	0.20 6.26	0.00	0.00
GROTON	5/31/200	2 GASOLINE	1.00	0.20	0.00	0.00
GROTON	3/11/200	2 CASOLINE	1.00	0.20	0.00	0.00
GROTON	1/2/200	2 GASOLINE	1.00	0.20	0.00	0.00
GROTON	12/28/200	2 CASOLINE	1.00	0.20	0.00	0.00
GROTON	δ/ 0/ 200 1 /2 /200	2 GASOLINE	2.00	0.20	0.01	0.14
GROTON	5/1/200	2 CASOLINE	2.00	6.26	0.01	0.00
GROTON	11/18/200	2 GASOLINE 2 GASOLINE	2.00	6.20	0.01	0.00
	11/10/200		2.00	0.20	0.01	0.00

			Annual			Daily	
	Spill Material				VOC	VOC Emissions	
			Spillage	Weight	Emissions		
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)	
GROTON	4/27/200	2 GASOLINE	2.50	6.26	0.01	0.00	
GROTON	3/9/200	2 GASOLINE	3.00	6.26	0.01	0.00	
GROTON	3/17/200	2 GASOLINE	3.00	6.26	0.01	0.00	
GROTON	8/7/200	2 GASOLINE	3.00	6.26	0.01	0.20	
GROTON	8/31/200	2 GASOLINE	3.00	6.26	0.01	0.20	
GROTON	12/27/200	2 GASOLINE	5.00	6.26	0.02	0.00	
GROTON	5/25/200	2 GASOLINE	5.00	6.26	0.02	0.00	
GROTON	8/27/200	2 GASOLINE	5.00	6.26	0.02	0.34	
GROTON	12/26/200	2 GASOLINE	5.00	6.26	0.02	0.00	
GROTON	2/6/200	2 GASOLINE	5.00	6.26	0.02	0.00	
GROTON	12/20/200	2 GASOLINE	10.00	6.26	0.03	0.00	
GROTON	10/20/200	2 GASOLINE	10.00	6.26	0.03	0.00	
GROTON	3/2/200	2 GASOLINE	13.94	6.26	0.04	0.00	
GROTON	12/21/200	2 GASOLINE	15.00	6.26	0.05	0.00	
GROTON	5/10/200	2 GASOLINE	50.00	6.26	0.16	0.00	
LEBANON	11/1/200	2 GASOLINE	8.00	6.26	0.03	0.00	
LEDYARD	1/25/200	2 GASOLINE	1.00	6.26	0.00	0.00	
LEDYARD	5/11/200	2 GASOLINE	2.00	6.26	0.01	0.00	
LEDYARD	4/2/200	2 GASOLINE	2.00	6.26	0.01	0.00	
LEDYARD	12/1/200	2 GASOLINE	2.00	6.26	0.01	0.00	
LEDYARD	5/17/200	2 GASOLINE	2.00	6.26	0.01	0.00	
LEDYARD	4/26/200	2 GASOLINE	3.00	6.26	0.01	0.00	
LEDYARD	3/21/200	2 GASOLINE	3.00	6.26	0.01	0.00	
LEDYARD	3/3/200	2 GASOLINE	5.00	6.26	0.02	0.00	
LEDYARD	3/13/200	2 GASOLINE	6.00	6.26	0.02	0.00	
LEDYARD	10/8/200	2 GASOLINE	10.00	6.26	0.03	0.00	
LEDYARD	11/28/200	2 GASOLINE	13.94	6.26	0.04	0.00	
LEDYARD	3/5/200	2 GASOLINE	13.94	6.26	0.04	0.00	
LEDYARD	11/16/200	2 GASOLINE	15.00	6.26	0.05	0.00	
LISBON	1/30/200	2 GASOLINE	1.00	6.26	0.00	0.00	
LISBON	9/25/200	2 GASOLINE	3.00	6.26	0.01	0.00	
LISBON	10/24/200	2 GASOLINE	5.00	6.26	0.02	0.00	
LISBON	11/23/200	2 GASOLINE	5.00	6.26	0.02	0.00	
LISBON	9/30/200	2 GASOLINE	13.94	6.26	0.04	0.00	
LISBON	10/19/200	2 GASOLINE	16.00	6.26	0.05	0.00	
MONTVILLE	9/15/200	2 GASOLINE	1.00	6.26	0.00	0.00	
MONTVILLE	7/8/200	2 GASOLINE	2.00	6.26	0.01	0.14	
MONTVILLE	5/22/200	2 GASOLINE	2.00	6.26	0.01	0.00	
MONTVILLE	4/18/200	2 GASOLINE	5.00	6.26	0.02	0.00	
MONTVILLE	1/9/200	2 GASOLINE	10.00	6.26	0.03	0.00	
MONTVILLE	1/25/200	2 GASOLINE	10.00	6.26	0.03	0.00	
NEW LONDON	8/27/200	2 GASOLINE	1.00	6.26	0.00	0.07	
NEW LONDON	1/29/200	2 GASOLINE	1.00	6.26	0.00	0.00	
NEW LONDON	11/27/200	2 GASOLINE	2.00	6.26	0.01	0.00	
NEW LONDON	12/18/200	2 GASOLINE	2.00	6.26	0.01	0.00	

Town		Material Spilled		Weight (lbs/gal)	Annual VOC Emissions (Tons/Year)	Daily VOC Emissions (lbs/Day)
	Spill Date		Spillage (Gallons)			
NEW LONDON	9/27/200	2 GASOLINE	3.00	6.26	0.01	0.00
NEW LONDON	12/13/200	2 GASOLINE	10.00	6.26	0.03	0.00
NEW LONDON	3/29/200	2 GASOLINE	10.00	6.26	0.03	0.00
NEW LONDON	5/8/200	2 GASOLINE	13.94	6.26	0.04	0.00
NEW LONDON	8/12/200	2 GASOLINE	13.94	6.26	0.04	0.95
NORTH STONINGTON	5/22/200	2 GASOLINE	1.00	6.26	0.00	0.00
NORTH STONINGTON	5/23/200	2 GASOLINE	1.00	6.26	0.00	0.00
NORTH STONINGTON	2/2/200	2 GASOLINE	2.00	6.26	0.01	0.00
NORTH STONINGTON	8/7/200	2 GASOLINE	16.00	6.26	0.05	1.09
NORWICH	11/11/200	2 GASOLINE	1.00	6.26	0.00	0.00
NORWICH	2/9/200	2 GASOLINE	2.00	6.26	0.01	0.00
NORWICH	10/28/200	2 GASOLINE	7.00	6.26	0.02	0.00
NORWICH	9/5/200	2 GASOLINE	13.94	6.26	0.04	0.00
OLD LYME	10/13/200	2 GASOLINE	10.00	6.26	0.03	0.00
OLD LYME	8/8/200	2 GASOLINE	13.94	6.26	0.04	0.95
PRESTON	6/10/200	2 GASOLINE	3.00	6.26	0.01	0.20
SALEM	6/23/200	2 GASOLINE	20.00	6.26	0.06	1.36
STONINGTON	12/14/200	2 GASOLINE	1.00	6.26	0.00	0.00
STONINGTON	8/4/200	2 GASOLINE	1.00	6.26	0.00	0.07
STONINGTON	3/13/200	2 GASOLINE	3.00	6.26	0.01	0.00
STONINGTON	7/9/200	2 GASOLINE	5.00	6.26	0.02	0.34
STONINGTON	7/19/200	2 GASOLINE	10.00	6.26	0.03	0.68
STONINGTON	8/12/200	2 GASOLINE	13.94	6.26	0.04	0.95
STONINGTON	7/17/200	2 GASOLINE	13.94	6.26	0.04	0.95
STONINGTON	4/3/200	2 GASOLINE	13.94	6.26	0.04	0.00
STONINGTON	8/28/200	2 GASOLINE	15.00	6.26	0.05	1.02
STONINGTON	5/4/200	2 GASOLINE	20.00	6.26	0.06	0.00
STONINGTON	6/24/200	2 GASOLINE	20.00	6.26	0.06	1.36
WATERFORD	10/11/200	2 GASOLINE	1.00	6.26	0.00	0.00
WATERFORD	4/15/200	2 GASOLINE	1.00	6.26	0.00	0.00
WATERFORD	4/23/200	2 GASOLINE	3.00	6.26	0.01	0.00
WATERFORD	11/2/200	2 GASOLINE	5.00	6.26	0.02	0.00
WATERFORD	2/28/200	2 GASOLINE	8.00	6.26	0.03	0.00
WATERFORD	11/6/200	2 GASOLINE	10.00	6.26	0.03	0.00
WATERFORD	3/13/200	2 GASOLINE	13.94	6.26	0.04	0.00
WATERFORD	11/9/200	2 GASOLINE	13.94	6.26	0.04	0.00
WATERFORD	5/26/200	2 GASOLINE	300.00	6.26	0.94	0.00
GRISWOLD	7/5/200	2 JET FUEL	5.00	6.40	0.02	0.35
GROTON	10/1/200	2 JET FUEL	1.00	6.40	0.00	0.00
GROTON	5/24/200	2 JET FUEL	1.00	6.40	0.00	0.00
GROTON	11/5/200	2 JET FUEL	1.00	6.40	0.00	0.00
GROTON	7/18/200	2 JET FUEL	1.00	6.40	0.00	0.07
GROTON	8/14/200	2 JET FUEL	2.00	6.40	0.01	0.14
GROTON	7/10/200	2 JET FUEL	2.00	6.40	0.01	0.14
GROTON	1/11/200	2 JET FUEL	2.00	6.40	0.01	0.00

Town		Material Spilled		Weight (lbs/gal)	Annual VOC Emissions (Tons/Year)	Daily VOC Emissions (lbs/Day)
	Spill Date		Spillage (Gallons)			
GROTON	9/5/2002	2 JET FUEL	2.00	6.40	0.01	0.00
GROTON	10/30/2002	2 JET FUEL	3.00	6.40	0.01	0.00
GROTON	2/25/2002	2 JET FUEL	5.00	6.40	0.02	0.00
GROTON	3/8/2002	2 JET FUEL	10.12	6.40	0.03	0.00
EAST LYME	6/21/2002	2 PESTICIDE	23.00	7.20	0.08	1.80
GRISWOLD	12/2/2002	2 PESTICIDE	23.00	7.20	0.08	0.00
EAST LYME	6/6/2002	2 PETROLEUM	1.00	6.26	0.00	0.07
FRANKLIN	3/27/2002	2 PETROLEUM	5.00	6.26	0.02	0.00
GROTON	12/11/2002	2 PETROLEUM	1.00	6.26	0.00	0.00
MONTVILLE	5/13/2002	2 PETROLEUM	13.40	6.26	0.04	0.00
NEW LONDON	9/23/2002	2 PETROLEUM	13.40	6.26	0.04	0.00
NORWICH	6/15/2002	2 PETROLEUM	13.40	6.26	0.04	0.91
OLD LYME	2/20/2002	2 PETROLEUM	13.40	6.26	0.04	0.00
GROTON	5/23/2002	2 PROPANE	122.50	4.24	0.26	0.00
MONTVILLE	11/12/2002	2 PROPANE	122.50	4.24	0.26	0.00
NORTH STONINGTON	8/8/2002	2 PROPANE	400.00	4.24	0.85	18.41
SALEM	8/4/2002	2 PROPANE	122.50	4.24	0.26	5.64
COLCHESTER	5/20/2002	2 SOLVENT	74.29	7.00	0.26	0.00
COLCHESTER	5/27/2002	2 SOLVENT	18,000.00	7.00	63.00	0.00
EAST LYME	5/27/2002	2 SOLVENT	74.29	7.00	0.26	0.00
FRANKLIN	12/18/2002	2 SOLVENT	74.29	7.00	0.26	0.00
FRANKLIN	5/6/2002	2 SOLVENT	74.29	7.00	0.26	0.00
GROTON	6/2/2002	2 SOLVENT	1.00	7.00	0.00	0.08
GROTON	8/8/2002	2 SOLVENT	1.00	7.00	0.00	0.08
GROTON	8/11/2002	2 SOLVENT	55.00	7.00	0.19	4.18
GROTON	6/25/2002	2 SOLVENT	74.29	7.00	0.26	5.65
GROTON	2/12/2002	2 SOLVENT	74.29	7.00	0.26	0.00
GROTON	5/22/2002	2 SOLVENT	74.29	7.00	0.26	0.00
LEDYARD	8/5/2002	2 SOLVENT	5.00	7.00	0.02	0.38
LISBON	4/5/2002	2 SOLVENT	74.29	7.00	0.26	0.00
NEW LONDON	1/29/2002	2 SOLVENT	1.00	7.00	0.00	0.00
NEW LONDON	5/2/2002	2 SOLVENT	1.00	7.00	0.00	0.00
NEW LONDON	5/18/2002	2 SOLVENT	74.29	7.00	0.26	0.00
SALEM	11/14/2002	2 SOLVENT	74.29	7.00	0.26	0.00
STONINGTON	3/18/2002	2 SOLVENT	74 29	7.00	0.26	0.00
COLCHESTER	4/18/2002	2 UNKNOWN	20.00	7.00	0.07	0.00
EASTLYME	3/9/2002	2 UNKNOWN	4 00	7.00	0.01	0.00
GROTON	3/6/2002	2 UNKNOWN	31.81	7.00	0.11	0.00
GROTON	1/8/2002	2 UNKNOWN	31.81	7.00	0.11	0.00
GROTON	6/20/2002	2 UNKNOWN	31.81	7.00	0.11	2 42
GROTON	11/6/2002	UNKNOWN	31.81	7.00	0.11	0.00
GROTON	12/5/2002	UNKNOWN	110.00	7.00	0 39	0.00
LYME	2/26/2002	UNKNOWN	31 81	7.00	0.11	0.00
LYME	6/29/2002	UNKNOWN	31.81	7.00	0.11	0.00 2 42
MONTVILLE	9/15/2002	2 UNKNOWN	31.81	7.00	0.11	0.00
Table 6Estimated VOC Emissions From Each Spill

					Annual	Daily VOC
	<i>a</i> m		a m		VUC	
Town	Spill Date	Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Emissions (Tons/Year)	Emissions (lbs/Day)
MONTVILLE	6/10/200	2 UNKNOWN	31.81	7.00	0.11	2.42
NORWICH	4/30/200	2 UNKNOWN	31.81	7.00	0.11	0.00
NORWICH	3/2/200	2 UNKNOWN	31.81	7.00	0.11	0.00
PRESTON	2/21/200	2 UNKNOWN	31.81	7.00	0.11	0.00
SALEM	8/22/200	2 UNKNOWN	31.81	7.00	0.11	2.42
SALEM	4/26/200	2 UNKNOWN	31.81	7.00	0.11	0.00
SALEM	11/25/200	2 UNKNOWN	31.81	7.00	0.11	0.00
WATERFORD	6/18/200	2 UNKNOWN	31.81	7.00	0.11	2.42
WATERFORD	12/2/200	2 UNKNOWN	31.81	7.00	0.11	0.00
		County Total:	21,489.00		73.73	63.45
County = Tolland						
ANDOVER	1/9/200	2 GASOLINE	5.00	6.26	0.02	0.00
ANDOVER	9/29/200	2 GASOLINE	10.00	6.26	0.03	0.00
ANDOVER	10/22/200	2 GASOLINE	50.00	6.26	0.16	0.00
COVENTRY	9/27/200	2 GASOLINE	1.00	6.26	0.00	0.00
COVENTRY	9/27/200	2 GASOLINE	1.00	6.26	0.00	0.00
COVENTRY	12/6/200	2 GASOLINE	2.00	6.26	0.01	0.00
COVENTRY	2/14/200	2 GASOLINE	2.00	6.26	0.01	0.00
COVENTRY	5/23/200	2 GASOLINE	3.00	6.26	0.01	0.00
COVENTRY	6/15/200	2 GASOLINE	5.00	6.26	0.02	0.34
COVENTRY	4/28/200	2 GASOLINE	5.00	6.26	0.02	0.00
ELLINGTON	4/29/200	2 GASOLINE	5.00	6.26	0.02	0.00
HEBRON	1/15/200	2 GASOLINE	13.94	6.26	0.04	0.00
MANSFIELD	12/11/200	2 GASOLINE	1.00	6.26	0.00	0.00
MANSFIELD	10/29/200	2 GASOLINE	1.00	6.26	0.00	0.00
MANSFIELD	8/6/200	2 GASOLINE	1.00	6.26	0.00	0.07
MANSFIELD	9/13/200	2 GASOLINE	1.00	6.26	0.00	0.00
MANSFIELD	4/26/200	2 GASOLINE	1.00	6.26	0.00	0.00
MANSFIELD	4/6/200	2 GASOLINE	2.00	6.26	0.01	0.00
MANSFIELD	8/10/200	2 GASOLINE	3.00	6.26	0.01	0.20
MANSFIELD	3/6/200	2 GASOLINE	4.00	6.26	0.01	0.00
MANSFIELD	12/21/200	2 GASOLINE	5.00	6.26	0.02	0.00
MANSFIELD	5/8/200	2 GASOLINE	5.00	6.26	0.02	0.00
MANSFIELD	1/10/200	2 GASOLINE	10.00	6.26	0.03	0.00
MANSFIELD	4/20/200	2 GASOLINE	13.94	6.26	0.04	0.00
MANSFIELD	10/19/200	2 GASOLINE	20.00	6.26	0.06	0.00
SOMERS	1/7/200	2 GASOLINE	2.00	6.26	0.01	0.00
SOMERS	9/27/200	2 GASOLINE	13.94	6.26	0.04	0.00
STAFFORD	3/16/200	2 GASOLINE	3.00	6.26	0.01	0.00
STAFFORD	5/14/200	2 GASOLINE	10.00	6.26	0.03	0.00
TOLLAND	9/3/200	2 GASOLINE	1.00	6.26	0.00	0.00
TOLLAND	9/2/200	2 GASOLINE	2.00	6.26	0.01	0.00

Table 6Estimated VOC Emissions From Each Spill

					Annual	Daily
					VOC	VOC
	Spill	Material	Spillage	Weight	Emissions	Emissions
Town	Date	Spilled	(Gallons)	(lbs/gal)	(Tons/Year)	(lbs/Day)
TOLLAND	12/27/200	2 GASOLINE	4.00	6.26	0.01	0.00
TOLLAND	11/10/200	2 GASOLINE	8.00	6.26	0.03	0.00
TOLLAND	11/28/200	2 GASOLINE	13.94	6.26	0.04	0.00
TOLLAND	6/7/200	2 GASOLINE	15.00	6.26	0.05	1.02
TOLLAND	12/2/200	2 GASOLINE	100.00	6.26	0.31	0.00
UNION	6/23/200	2 GASOLINE	13.94	6.26	0.04	0.95
VERNON	5/15/200	2 GASOLINE	1.00	6.26	0.00	0.00
VERNON	4/30/200	2 GASOLINE	1.00	6.26	0.00	0.00
VERNON	8/30/200	2 GASOLINE	2.00	6.26	0.01	0.14
VERNON	12/26/200	2 GASOLINE	2.00	6.26	0.01	0.00
VERNON	7/9/200	2 GASOLINE	2.00	6.26	0.01	0.14
VERNON	2/17/200	2 GASOLINE	2.00	6.26	0.01	0.00
VERNON	6/22/200	2 GASOLINE	2.00	6.26	0.01	0.14
VERNON	12/26/200	2 GASOLINE	7.00	6.26	0.02	0.00
VERNON	9/26/200	2 GASOLINE	10.00	6.26	0.03	0.00
VERNON	1/16/200	2 GASOLINE	13.94	6.26	0.04	0.00
WILLINGTON	11/1/200	2 GASOLINE	1.00	6.26	0.00	0.00
WILLINGTON	5/17/200	2 GASOLINE	1.00	6.26	0.00	0.00
WILLINGTON	9/7/200	2 GASOLINE	2.00	6.26	0.01	0.00
WILLINGTON	11/17/200	2 GASOLINE	10.00	6.26	0.03	0.00
WILLINGTON	5/10/200	2 GASOLINE	13.94	6.26	0.04	0.00
WILLINGTON	11/17/200	2 GASOLINE	15.00	6.26	0.05	0.00
COLUMBIA	7/12/200	2 PROPANE	122.50	4.24	0.26	5.64
COVENTRY	8/15/200	2 SOLVENT	74.29	7.00	0.26	5.65
MANSFIELD	5/20/200	2 SOLVENT	74.29	7.00	0.26	0.00
MANSFIELD	4/10/200	2 SOLVENT	74.29	7.00	0.26	0.00
MANSFIELD	2/5/200	2 SOLVENT	74.29	7.00	0.26	0.00
MANSFIELD	8/24/200	2 SOLVENT	74.29	7.00	0.26	5.65
UNION	2/20/200	2 SOLVENT	1.00	7.00	0.00	0.00
MANSFIELD	10/25/200	2 TOLUENE	1.00	7.24	0.00	0.00
MANSFIELD	9/18/200	2 UNKNOWN	31.81	7.00	0.11	0.00
STAFFORD	9/9/200	2 UNKNOWN	31.81	7.00	0.11	0.00
STAFFORD	7/18/200	2 UNKNOWN	31.81	7.00	0.11	2.42
TOLLAND	5/17/200	2 UNKNOWN	31.81	7.00	0.11	0.00
VERNON	3/31/200	2 UNKNOWN	1.00	7.00	0.00	0.00
		County Total:	1,067.78		3.40	22.35
~						
County = Windham	10/4/200	2 GASOLINE	12.04	676	0.04	0.00
RROOKI VN	7/10/200	2 GASOLINE 2 GASOLINE	13.74	6.20	0.04	0.00
CHAPI IN	7/10/200	2 GASOLINE 2 GASOLINE	2 00	6.20	0.04	0.93
ULAI LIN UAMPTON	2/10/200 5/17/200	2 GASOLINE	2.00	6.20	0.01	0.00
	3/1/200	2 GASOLINE 2 GASOLINE	10.74	6.20	0.04	0.00
MELINOLI	5/1/200		1.00	0.20	0.00	0.00

Table 6Estimated VOC Emissions From Each Spill

Town	Spill Date	Material Spilled	Spillage (Gallons)	Weight (lbs/gal)	Annual VOC Emissions (Tons/Year)	Daily VOC Emissions (lbs/Day)
KILLINGLY	10/14/200	2 GASOLINE	1.00	6.26	0.00	0.00
KILLINGLY	12/22/200	2 GASOLINE	2.00	6.26	0.01	0.00
KILLINGLY	10/14/200	2 GASOLINE	2.00	6.26	0.01	0.00
KILLINGLY	4/5/200	2 GASOLINE	2.00	6.26	0.01	0.00
KILLINGLY	6/23/200	2 GASOLINE	5.00	6.26	0.02	0.34
PLAINFIELD	1/18/200	2 GASOLINE	3.00	6.26	0.01	0.00
PLAINFIELD	8/11/200	2 GASOLINE	5.00	6.26	0.02	0.34
POMFRET	11/15/200	2 GASOLINE	13.94	6.26	0.04	0.00
PUTNAM	4/19/200	2 GASOLINE	1.00	6.26	0.00	0.00
PUTNAM	4/11/200	2 GASOLINE	1.00	6.26	0.00	0.00
PUTNAM	5/13/200	2 GASOLINE	1.00	6.26	0.00	0.00
PUTNAM	10/6/200	2 GASOLINE	7.00	6.26	0.02	0.00
PUTNAM	6/7/200	2 GASOLINE	13.94	6.26	0.04	0.95
SCOTLAND	12/12/200	2 GASOLINE	3.00	6.26	0.01	0.00
SCOTLAND	8/17/200	2 GASOLINE	5.00	6.26	0.02	0.34
THOMPSON	9/1/200	2 GASOLINE	10.00	6.26	0.03	0.00
WINDHAM	7/20/200	2 GASOLINE	1.00	6.26	0.00	0.07
WINDHAM	4/25/200	2 GASOLINE	1.00	6.26	0.00	0.00
WINDHAM	1/16/200	2 GASOLINE	1.00	6.26	0.00	0.00
WINDHAM	4/30/200	2 GASOLINE	1.00	6.26	0.00	0.00
WINDHAM	12/19/200	2 GASOLINE	2.00	6.26	0.01	0.00
WINDHAM	1/16/200	2 GASOLINE	2.00	6.26	0.01	0.00
WINDHAM	3/3/200	2 GASOLINE	5.00	6.26	0.02	0.00
WINDHAM	8/26/200	2 GASOLINE	5.00	6.26	0.02	0.34
WINDHAM	12/4/200	2 GASOLINE	10.00	6.26	0.03	0.00
WINDHAM	12/4/200	2 GASOLINE	12.00	6.26	0.04	0.00
WINDHAM	7/2/200	2 GASOLINE	13.00	6.26	0.04	0.88
WINDHAM	7/25/200	2 GASOLINE	13.94	6.26	0.04	0.95
WOODSTOCK	7/12/200	2 GASOLINE	5.00	6.26	0.02	0.34
WINDHAM	5/6/200	2 HERBICIDE	10.00	7.20	0.04	0.00
BROOKLYN	4/8/200	2 PETROLEUM	13.40	6.26	0.04	0.00
PLAINFIELD	4/8/200	2 PETROLEUM	13.40	6.26	0.04	0.00
PUTNAM	9/16/200	2 PETROLEUM	13.40	6.26	0.04	0.00
CHAPLIN	5/21/200	2 SOLVENT	5.00	7.00	0.02	0.00
EASTFORD	2/10/200	2 SOLVENT	74.29	7.00	0.26	0.00
PLAINFIELD	10/8/200	2 SOLVENT	74.29	7.00	0.26	0.00
SCOTLAND	4/14/200	2 SOLVENT	74.29	7.00	0.26	0.00
WINDHAM	8/6/200	2 SOLVENT	74.29	7.00	0.26	5.65
KILLINGLY	6/27/200	2 UNKNOWN	31.81	7.00	0.11	2.42
PLAINFIELD	9/13/200	2 UNKNOWN	31.81	7.00	0.11	0.00
STERLING	10/30/200	2 UNKNOWN	31.81	7.00	0.11	0.00
		County Total:	640.44		2.16	13.57
		State Total:	65,639.22		222.75	821.53

				Amount On Site
County	Town	Facility Name	Chemical	(lbs)
Middlesex	Middletown	MIDDLESEX HOSPITAL	#6063	500,000
Hartford	Berlin	STANCHEM, INC.	1 METHOXY 2	50,000
Fairfield	Bridgeport	GENERAL ELECTRIC COMPANY	1,12 -TRICHLORO -1,2,2	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	1,2,4-TRIMETHYL	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	1,2-BENZENEDICARBOXY	50,000
New Haven	Waterbury	PFALTZ AND BAUER INC	1,3 DICHLORO - 2-	50
Fairfield	Norwalk	KING INDUSTRIES, INC.	1,4-CYCLOHEXANEDIMET	50,000
New Haven	New Haven	VON ROLL ISOLA USA, INC	18906A INSULATING	5,000
Litchfield	Plymouth	PHOENIX PRODUCTS CO	1-BROMO, 3 CHLORO, 5	5,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	1-DODECENE	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	1-HEXADECENE	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	1-METHOXY-2-PROPANO	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	1-METHOXY-2-PROPANO	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	1-METHOXY-2-PROPYL	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	1-METHYL-2-PYRROLIDO	5,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	1-PROPANOL	50,000
Hartford	Berlin	STANCHEM, INC.	2 ETHYL HEXYL	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	2,4-PENTANEDIONE	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	2,6-DIMETHYL-4-HEPTAN	50,000
Hartford	Bristol	ARETT SALES CORP	2-2	50
Hartford	Bristol	ARETT SALES CORP	2-2	50
New Haven	North	TRUGREEN CHEMLAWN	2500B	5,000
New Haven	Waterbury	COYNE TEXTILE SERVICES	2-BUTOXYETHANOL:	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	2-ETHYL HEXOIC ACID	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	2-ETHYL-1-HEXANOL	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	2-METHYL-1,5-PENTANE	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	2-METHYL-2,4-PENTANE	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	2-OXEPANONE	50,000
New Haven	New Haven	VON ROLL ISOLA USA, INC	3048 XYLOL	5,000
New Haven	New Haven	VON ROLL ISOLA USA, INC	3407 METHYL ETHYL	5,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	4,4-DIMETHYL	5,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	4,6-DIMETHYL-2-HEPTAN	5,000
Hartford	Bristol	FIRESTONE BUILDING	4-4 Diphenylmethane	500,000
Fairfield	Bethel	VANDERBILT CHEMICAL	648 ACID/	5,000
Hartford	South Windsor	NEYRA INDUSTRIES INC	ABSOURF AA - 22	50,000
New Haven	Waterbury	PFALTZ AND BAUER INC	ACETIC ACID, GLACIAL	50,000
Hartford	East Windsor	CROP PRODUCTION SERVICES	ACETOCHLOR	5,000
Middlesex	Chester	PURIFICATION TECHNOLOGIES,	ACETONITRILE	500,000
New Haven	Meriden	BRAND-NU LABORATORIES, INC.	ACETONITRILE	50,000
New Haven	Naugatuck	INDUSTRIAL GAS AND SUPPLY	ACETYLENE	500
Hartford	Berlin	THE BERLIN STEEL	ACETYLENE	5,000
Hartford	Manchester	DYNAMIC GUNVER	Acetylene	50
Hartford	Manchester	DYNAMIC EADDEL CODDODATION	Acetylene	50
New Haven	Ansonia	FARREL CORPORATION	ACETYLENE	5,000
New Haven	Waterbury	NASCO, INC.	ACETYLENE	500
Hartford	Manchester	DYNAMIC GUNVER	Acetylene	500
New Haven	Cheshire	BUVANU INDUSTRIES, INC.	ACETYLENE	50
Hartford	Nanchester	DINAMIC GUNVEK	Acetylene	500
naruora New Heres	South Windsor	AMIN WELDING, DIV. OF DMC	ACETI LENE BLACK	50
New Haven	wateroury	AUME STEEL KULE DIE	ACETTER BLACK	50
new naven	wanngiora	DIA-UNENIE USA INU. SANDI ADDED EADDICS	ACIDIC ESTEK OF A LUNG	50,000
Now Hover	Watarbury	DEALTZ AND DALIED DAC	ACREACID CLACIAL	5,000
new naven	w aterbury	FFALIZ AND DAUEK INC	ACKLIC ACID, ULACIAL	30,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	ACRONAL \$504	50.000
New Haven	Waterbury	PFALTZ AND BAUER INC	ACRYLAMIDE	500
New Haven	New Haven	YALE UNIVERSITY OFFICE OF	ACRYLAMIDE	500
Windham	Plainfield	ATLANTIC COAST POLYMERS	ACRYLAMIDE AOUEOUS	50,000
Fairfield	Stamford	THE STAMFORD CORPORATION I	ACRYLAMIDE (52%)	50,000
Fairfield	Stamford	THE STAMFORD CORPORATION I	ACRYLIC ACID	50,000
New Haven	Wallingford	CYRO INDUSTRIES	ACRYLONITRILE	500,000
Hartford	Berlin	STANCHEM INC	ACRYLONITRILE	5 000
Hartford	Farmington	POLYMER RESOURCES LTD	ACRYLONITRILE-BUTADI	500,000
Litchfield	Canaan	AMERICAN STONE-MIX INC	AGGREGATES	500,000
Hartford	South Windsor	NEYRA INDUSTRIES INC	AIACK BLACK 7054	50,000
New Haven	Waterbury	TRUELOVE & MACLEAN INC	AL BAVIS P 50-600	50,000
New Haven	Meriden	BRAND-NUL ABORATORIES INC	ALCOHOL	5 000
Middlesex	Clinton	UNII EVER HOME AND	ALCOHOL	5,000
Middlesex	Old Saybrook	R R DONNELLEY	ALCOHOL	50,000
Hartford	Newington	FIVE STAR GROUP	ALCOHOL	50,000
New Haven	New Haven	ACCUSTANDARD INC	ALCOHOL	50,000
Fairfield	Norwalk	KING INDUSTRIES INC		50,000
Hartford	Borlin	STANCHEM INC	ALIPHATIC PETROLEUM	50,000
Now Hoven	Denni	CUDTIS SCREW CO INC /	Aliphatic Patroloum	50,000
Hortford	Fiospect East Hartford	DUD A FLEV INCORDODATED	ALKYL C 12 C 13	5 000
Litabfield	Watertown	DOR-A-FLEA, INCORFORATED	ALKIL C-12-C-15	5,000
Entrineld	Normalla	VING INDUSTRIES INC	ALKIL OLICIDIL EIHEK	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	ALKIL NAFHIHALENE	50,000
Middlesov	Clinton	LINU EVED HOME AND	ALKILAIED AKOMAIIC	5 000
Windham	Disinfield	ATLANTIC COAST DOLYMEDS	ALMEO SURFACIANI AMINOMETHVI ATED	500,000
W munam Foirfield	Dombumu	ATLANTIC COAST FOLTMERS,	AMINOMETRILATED	50,000
Fairfield	Danbury Dristol	SANDLAPPER FADRICS	AMIREZ OAC	500,000
Faitfield	Diistoi	PIRESTONE DUILDING		500,000
Fairfield	Danbury South Windson	KSA CORPORATION	ANION DESIN	50,000
Fairfield	Donhum	TEVNICOLCUTS		50,000
	Danoury	DDC ADCIUTECTUDAL EINIGUES	ANTICODITE	50.000
Litchileid	Watertown	TRUELOVE & MACLEAN INC	ANTIGORITE	50,000
New Haven	Waterbury	I RUELUVE & MACLEAN, INC.	AQUAEASE SL 917	50,000
New Haven	New Haven	CONNECTICUT FREEZERS	ARH I DRUUS AMMONIA	5,000
	Betnel	VANDERBILT CHEMICAL	ARISTONIC ACID E	5,000
Litchfield	Plymouth	PHOENIX PRODUCTS CO	AROMATIC DISTILLATE	5,000
	Watertown	PPG ARCHITECTURAL FINISHES,		50,000
Hartford	Berlin	INDALEX INC.	AROMATIC ISOCYANATE	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	AROMATIC NAPHIHA	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	AROMATIC PETROLEUM	50,000
Fairfield	Danbury	ADVANCED TECHNOLOGY	AKSINE	500
Middlesex	Old Saybrook	K.K. DUNNELLEY	AUTO BLANKET WASH	50,000
Hartford	East Windsor	CROP PRODUCTION SERVICES	AZINPHOS-METHYL	50
Hartford	South Windsor	NEYRA INDUSTRIES INC	BALL CLAY IB#3 AND	50,000
Litchfield	Torrington	FRANKLIN PRODUCTS INC.	BASF-ELASIOFLEX	5,000
Hartford	Bristol	ARE I I SALES CORP	BENEFIN	50
Hartford	windsor	THE TAYLOR & FENN COMPANY	BENIONITE DENTENTE OVVDIG	5,000
Hartford	Berlin	STANCHEM, INC.	BENZENE, UXYBIS,	5,000
New Haven	waterbury	MACDERMID INC.	BENZUI KIAZULE	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	BENZYL ALCOHOL	5,000
Hartford	East Hartford	DUR-A-FLEX, INCORPORATED	BENZYL ALCOHOL	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	BENZYL ALCOHOL	50,000
Hartford	Enfield	ANOCOIL CORPORATION	BENZYL ALCOHOL	5,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
county	10001			(105)
Fairfield	Danbury	RSA CORPORATION	BENZYL CHLORIDE	5,000
New Haven	North Haven	PRATT & WHITNEY	BISMUTH	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	BISMUTH CARBOXYLATE	50,000
Fairfield	Danbury	MILLER-STEPHENSON	BISPHENOLA/EPICHLORO	50,000
Fairfield	Monroe	AMERICAN HEAT TREATING INC	BLACK MAGIC INFUSION	500
Middlesev	Old Saybrook	R R DONNELLEY	BLANKED WASH HAND	5 000
Hartford	Hartford	THE HARTEORD COURANT	BLANKET WASH	5,000
Hartford	Now Pritoin	OVAVINDUSTDIES INC	DLANKET WASH	5,000
Windham	Disinfield	AUSTIN DOWDED COMDANY	DLASUCUI 400 SIRONO	500.000
W Inditalii		AUSTIN FOWDER COMPANY	DLASTING AGENT	500,000
Fairfield	Betnel	VANDERBILT CHEMICAL	BLE-25	5,000
New Haven	Naugatuck	TECH AIR OF NAUGATUCK	BOREN TRIFLUORIDE	500
Middlesex	Middlefield	DYNO NOBEL INC	BULK EMULSION	50,000
Hartford	Newington	FIVE STAR GROUP	BUTANE	5,000
Hartford	Bristol	ARETT SALES CORP	Butane	500
Hartford	Berlin	STANCHEM, INC.	BUTANOL	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	BUTOXYETHANOL	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	BUTYL 8	5,000
Hartford	Berlin	STANCHEM. INC.	BUTYL ACETATE	5,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	BUTYL ACETATE	50,000
New Haven	Waterbury	ACME STEEL RULE DIE	BUTYL ACETATE	50
Fairfield	Rethel	VANDERBILT CHEMICAL	BUTYL ACID PHOSPHATE	5 000
Hartford	Berlin	STANCHEM INC	BUTYL ACRYLATE	5,000
Now Hoven	Wallingford	BVK CHEMIE USA INC	BUTVI PENZVI	50,000
New Haven	Waterheim	DIN-CHEMIE USA INC.	DUTIL DENZIL	5,000
New Haven	Waterbury	MACDERMID INC.	BUTYL METHACDYL ATE	5,000
New Haven	wallingford	BIK-CHEMIE USA INC.	BUTYL METHACKYLATE	5,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	BUTYL OLEATE	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	BUTYL TUADS	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	BUTYL ZIMATE SG	5,000
New Haven	New Haven	WILLIAMS TERMINALS	C14-30 ALKYLAROMATIC	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	C36 DIBASIC CARBOXYLIC	50,000
Hartford	Hartford	AIRGAS EAST	CALORINE	500
New Haven	Waterbury	MACDERMID INC.	CALSOFT F 90	500
Hartford	Bristol	ARETT SALES CORP	Captan	50
Hartford	Bristol	ARETT SALES CORP	Captan	50
Fairfield	Norwalk	KING INDUSTRIES, INC.	CARBAMIC ACID ESTER	50,000
Hartford	Bristol	ARETT SALES CORP	CARBARYL	500
Hartford	Bristol	ARETT SALES CORP	CARBARYL	5,000
Hartford	Bristol	ARETT SALES CORP	CARBARYL	500
Hartford	Bristol	ARETT SALES CORP	CARBARYL	500
Hartford	Bristol	ARETT SALES CORP	CARBARYL	50
Hartford	East Windsor	CROP PRODUCTION SERVICES	CARBOFURAN FURADAN	50
New Haven	Guilford	ARKWRIGHT INC	CARBOWAX 1/50	5 000
New Haven	Waterbury	MACDERMID INC	CARBOWAX MPEG 2000	50,000
Foirfield	Pridaenort	DELIDCEDORT ENERGY	CATAL VZED HVDDAZINE	500
Fairfend	South Window	DRIDUEFURI ENERUI LIS ELLTED/DOL VMETDICS INC	CATALIZED HIDRAZINE	50.000
Hartford	South windsor	US FILTER/PULTWIETRICS INC	CELLULOSE	50,000
Hartford	Manchester	V YNCOLII NORTH AMERICA,	CELLULOSE	50,000
Hartford	Manchester	KUGEKS CUKPUKATION -	Cellulose	50,000
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	CELVOL 165	50,000
New Haven	Guilford	ARKWRIGHT, INC	CELVOL 523S, POLYVINYL	5,000
Middlesex	Clinton	UNILEVER HOME AND	CETYL/STEARYL	500
Fairfield	Bridgeport	MARTIN MARIETTA MAGNESIA	CH-22 (HM)	50,000
Windham	Killingly	FRITO-LAY INC.	CHARGE 800 (SODIUM	5,000
Hartford	Windsor	THE TAYLOR & FENN COMPANY	CHEMREZ 286 (FURFURYL	500

				Amount On Site
County	Town	Facility Name	Chemical	(lbs)
New Haven	Meriden	BRAND-NU LABORATORIES, INC.	CHLOROFORM	5,000
Fairfield	Danbury	RSA CORPORATION	CHLOROFORM	500
New Haven	New Haven	YALE UNIVERSITY OFFICE OF	CHLOROFORM	500
Fairfield	Norwalk	BEIERSDORF INC	CHLOROFORM	50
New Haven	New Haven	ACCUSTANDARD, INC	CHLOROFORM	50
New Haven	North Haven	UNITED STATES SURGICAL	CHLOROTETRAFLUOROE	50,000
Hartford	East Windsor	CROP PRODUCTION SERVICES	CHLORPYRIFOS, LORSBAM	5,000
Hartford	Berlin	CORBIN RUSSWIN 007001	Cil Cut 570M	5,000
Hartford	Berlin	CORBIN RUSSWIN 007001	Cil Cut B-5	5,000
Hartford	New Britain	OKAY INDUSTRIES, INC.	CINDOL 3103	50
Windham	Plainfield	AUSTIN POWDER COMPANY	CLASS A EXPLOSIVES	500,000
Hartford	New Britain	OKAY INDUSTRIES, INC.	CLOVER SILICON CARBIDE	50
New Haven	Guilford	ARKWRIGHT, INC	CNA	5,000
Fairfield	Fairfield	FAIRPRENE, INC.	COATING CEMENTS AND	5,000
New Haven	New Haven	URETEK INC	COATING COMPOUNDS	50,000
Hartford	Manchester	LINE STREET STORAGE AREA	COLECALCIFEROL	50,000
Fairfield	Bridgeport	OWENS-ILLINOIS PLASTICS	COLOR CONCENTRATES	5,000
New Haven	Seymour	VERNIER METAL FABRICATING,	COMBUSTIBLE PAINTS	5,000
New Haven	Waterbury	DEVIVO INDUSTRIES	COMBUSTIBLE PARA	5,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	CONFORM 4 LP	5,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	COOL BLUE	5,000
Hartford	New Britain	OKAY INDUSTRIES, INC.	COOL TOOL II	50
Hartford	East Granby	ROCKBESTOS-SURPRENANT	CPE COMPOUND -	5,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	CPE COMPOUND KXL-500	5,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	CPE COMPOUND KXL-610	5,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	CPE COMPOUND	5,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	CPE COMPOUND	50,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	CPE COMPOUND KXL-800	5,000
Hartford	Manchester	LINE STREET STORAGE AREA	CRYOFLUORAN	500,000
Windham	Windham	UNITED ABRASIVES, INC.	CRYOLITE (SODIUM	50,000
New Haven	West Haven	ENTHONE INC.	CUBATH VIAFORM	50,000
Hartford	New Britain	MACRISTY INDUSTRIES	CU-MAC	50
Hartford	New Britain	OKAY INDUSTRIES, INC.	CUT-MAX 570	50
Hartford	New Britain	OKAY INDUSTRIES, INC.	CUTMAX 670	500
Hartford	Newington	FIVE STAR GROUP	CYCLOHEXANE	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	CYCLOHEXANONE	500
Hartford	Hartford	THE HARTFORD	CYCLOHEXLAMINE	50
New Haven	New Haven	YALE UNIVERSITY OFFICE OF	CYCLOHEXYLAMINE	500
New Haven	Waterbury	MACDERMID INC.	D.R.1200 ADDITIVE	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	DARVAN 3	5,000
Middlesex	Clinton	UNILEVER HOME AND	DC 245 / GE SF 1202	500
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	DE-AIREX 8024	5,000
Windham	Killingly	PLASTICS COLOR &	DECABROMODIPHENYL	500
New Haven	Waterbury	NASCO, INC.	DENATURED ALCOHOL	50
New Haven	Milford	CAAP CO, INC.	DESODUR I	500
Middlesex	Middlefield	DYNO NOBEL INC	DETONATING CORD	500
Hartford	Bristol	FIRESTONE BUILDING	Di(diethylene glycol)	500,000
Hartford	Manchester	VYNCOLIT NORTH AMERICA,	DIALLYL PHTHALATE	50,000
Hartford	Bristol	ARETT SALES CORP	DIAMMONIUM	500
Fairfield	Bethel	VANDERBILT CHEMICAL	DIBUTYL MALEATE	5,000
New Haven	New Haven	EDSAN CHEMICAL CO., INC	DIBUTYL PHTHALTE	500
New Haven	Wallingford	BYK-CHEMIE USA INC.	DIBUTYLAMINOETHANO	5,000
Hartford	Bloomfield	JACOBS VEHICLE SYSTEMS, INC.	DICHLOROMETHANE	5,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
Fairfield	Bridgeport	PARALLAX POWER	DICHLOROMETHANE	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	DIETHANOLAMINE	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	DIETHYLAMINE	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	DIETHYLETHANOLAMIN	5,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	DIISONONYLNAPHTHALE	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	DIISONONYLNAPHTHALE	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	DIISOPROPANOL AMINE	50.000
Fairfield	Danbury	RSA CORPORATION	DIMEHTYL GLUTARATE	5.000
Fairfield	Stamford	LESCO. INC #440	DIMETHOATE	500
Fairfield	Norwalk	KING INDUSTRIES, INC.	DIMETHYL GLUTARATE	50.000
Fairfield	Danbury	RSA CORPORATION	DIMETHYL SULFATE	5.000
New Haven	Waterbury	PFALTZ AND BAUER INC	DIMETHYL SULFATE	500
Fairfield	Bethel	VANDERBILT CHEMICAL	DIMETHYLAMINE 40%	50.000
Windham	Plainfield	ATLANTIC COAST POLYMERS	DIMETHYLAMINE	50,000
Fairfield	Danbury	SEALED AIR CORPORATION	DIMETHYL AMINOETHOX	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC	DIMETHYLCYCLOHEXYL	5 000
Fairfield	Danbury	RSA CORPORATION	DIMETHYL -P-TOLUIDINE	5,000
Fairfield	Bethel	VANDERBII T CHEMICAI	DI-N-BUTYI AMINE	50,000
Fairfield	Norwalk	KING INDUSTRIES INC	DINONYI	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC	DINONYI NAPHTHAI ENE	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC	DINONVI NAPHTHALENE	500,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	DINONVI NAPHTHAI ENE	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	DINONVI NA DUTUAI ENE	50,000
Hartford	Dorlin	STANCHEM INC.	DIOCTVI MALEATE	50,000
Fairfield	Dellill Dethal	VANDEDDII T CHEMICAI	DIOCT IL MALEATE	5,000
Fairford	Deulei	VANDERBILT CHEMICAL STANCHEM INC	DIDENTAEDVTUDITOI	50,000
	Weterbury	DEALTZ AND DALIED INC	DIPENTAERTIRKITOL	50,000
New Haven	Nawington	FFALIZ AND DAUER INC	DIPROPYLENE CLYCOL	50,000
	Weterheim		DIPROPTLENE GLICOL	50,000
New Haven	waterbury	HUBBARD-HALL, INC.	DIPROPTLENE GLTCOL	500
Hartiora	Hartiord	METAL MANAGEMENT	DISODIUM DISODIUM	50,000
New Haven	Wallin afand	MACDERMID INC.	DISSOL VINE H-88A	50,000
New Haven	Wallingford	BY K-CHEMIE USA INC.	DISTILLATES	50,000
New Haven	Wallingford	BY K-CHEMIE USA INC.	DISTILLATES,	50,000
Hartford	Bristol	ARETT GALES CORP	DISULFUTON	50
Hartford	Bristol	ARETT SALES CORP	DISULFOTON/DISYSTON	50
Hartford	Bristol	ARETT SALES CORP	DISULFOTON/DISYSTON	50
Hartford	Bristol	ARETT GALES CORP	DISULFOION/DISYSTON	500
Hartford	Bristol	ARETT SALES CORP	DISULFOION/DISYSION	50
Hartford	Bristol	ARETT SALES CORP	DISULFOTON/DISYSTON	500
Fairfield	Bethel	VANDERBILT CHEMICAL	DITRIDECYLAMINE	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	DODECENYL SUCCINIC	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	DODECYL SUCCINIC	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	DODECYLANILINE	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	DODECYLBENZENE	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	DODECYLBENZENE	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	DODECYLBENZENE	50,000
Litchfield	Torrington	FRANKLIN PRODUCTS INC.	DOW/FLEXIBLE	5,000
New Haven	New Haven	NEW HAVEN STATION-BUCKEYE	DRAGA REDUCING AGENT	50,000
New London	Montville	RAND-WHITNEY	DUBOIS CHEMICAL SURE	50,000
New London	Montville	RAND-WHITNEY	DUBOIS CHEMICAL	50,000
New London	Montville	RAND-WHITNEY	DUBOIS DUSTRYPP II	50,000
New London	Montville	RAND-WHITNEY	DUBOIS FELT BRITE 10	50,000
New London	Montville	RAND-WHITNEY	DUBOIS WSM-220	5,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
Fairfield	Danbury	RSA CORPORATION	DYNAX 5011 (NO CAS	5.000
Fairfield	Danbury	RSA CORPORATION	DYNAX 5013 (NO CASE	5.000
Fairfield	Danbury	RSA CORPORATION	DYNAX 5013-100 (NO CAS	5,000
New Haven	Guilford	ARKWRIGHT INC	FBERPINE	5,000
New Haven	East Haven	FUCHS LUBRICANTS CO	ECOCOOL 350 NE	5,000
New Haven	East Haven	EUCUS LUDDICANTS CO.	ECOCOOL AD 71 & AD	5,000
New Haven	East Haven	EUCUS LUDDICANTS CO.	ECOCOOL & 71 & AF	50,000
New Haven	East Haven	FUCHS LUDRICANTS CO.	ECOCUT EMC 517	50,000
New Haven		TOURS LUDRICANTS CO.	ECOEODM (75 TM	50,000
New London	Waterbury Montaillo	I KUELUVE & MACLEAN, INC.	ECOLOZINE PROWN DVE	50,000
New London	Wontvine		ECOLOZINE BROWN DIE	50,000
New Haven	waterbury	MACDERMID INC.	EDIA	5,000
Hartford	New Britain	E.M. LITTLE CO., INC.	EE-357 CLEANER	50,000
New Haven	East Haven	TEK-MOTIVE, INC	ELASTOMER	500
New Haven	East Haven	TEK-MOTIVE, INC	ELASTOMER	5,000
Hartford	Windsor Locks	THE HERTZ CORPORATION	EMKAROX RL 118 D	50
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	EMULSION LATEX E-940	50,000
Hartford	East Windsor	CROP PRODUCTION SERVICES	ENDOSULFAN 3 EC	50
Hartford	East Windsor	CROP PRODUCTION SERVICES	ENDOSULFAN 50WSB	50
New Haven	Branford	AUTOMOTIVE CONTROLS	EPOXY	50,000
Hartford	East Hartford	DUR-A-FLEX, INCORPORATED	EPOXY RESIN	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	EPOXY RESIN	50,000
New Haven	Branford	AUTOMOTIVE CONTROLS	EPOXY RESIN (EP809A	50,000
Hartford	Manchester	VYNCOLIT NORTH AMERICA,	EPOXY RESINS	50,000
Hartford	Manchester	VYNCOLIT NORTH AMERICA,	EPOXY RESINS	50,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	EPR COMPOUND KR-451	5,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	EPR COMPOUND KR-475	5,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	EPR COMPOUND KRA 100	500
Hartford	New Britain	E.M. LITTLE CO., INC.	ES-365 CLEANER	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	ESTER/AMIDE/CARBOXYL	50,000
Fairfield	Danbury	RSA CORPORATION	ETHANOL	5,000
Fairfield	Norwalk	BEIERSDORF INC	ETHANOL	500
Hartford	Windsor	SCAPA TAPES NORTH AMERICA	ETHANOL (DENATURED	500
New Haven	Wallingford	BYK-CHEMIE USA INC.	ETHOXYLATED	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	ETHOXYLATED C-13	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	ETHOXYLATED C-15	50,000
New Haven	Waterbury	HUBBARD-HALL, INC.	ETHYL ACETATE	500
New Haven	Meriden	BRAND-NU LABORATORIES, INC.	ETHYL ACETATE	50,000
Fairfield	Danbury	RSA CORPORATION	ETHYL ACETATE	5,000
Hartford	Windsor	SCAPA TAPES NORTH AMERICA	ETHYL ACETATE	500
New Haven	North Haven	UNITED STATES SURGICAL	ETHYL ACETATE	5,000
Hartford	Berlin	STANCHEM. INC.	ETHYL ACRYLATE	50,000
New Haven	Wallingford	CYRO INDUSTRIES	ETHYL ACRYLATE	50,000
New Haven	Waterbury	HUBBARD-HALL, INC.	ETHYL ALCOHOL	500
Hartford	Newington	FIVE STAR GROUP	ETHYL ALCOHOL	50,000
Fairfield	Danbury	RSA CORPORATION	ETHYL CELLULOSE	5.000
Fairfield	Bethel	VANDERBILT CHEMICAL	ETHYL TELLURAC	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	ETHYLBENZENE	50,000
Fairfield	Norwalk	KING INDUSTRIES INC	ETHYLBENZENE	50,000
New Haven	Waterbury	MACDERMID INC.	ETHYLENE DIAMINE	5 000
Hartford	East Hartford	MOTIVA ENTERPRISES LLC -	ETHYLENE GLYCOL	5 000
Hartford	Berlin	STANCHEM INC	ETHYLENE GLYCOL	50,000
Fairfield	Norwalk	KING INDUSTRIES INC	ETHYLENE GLYCOL	50,000
New Haven	North Haven	UNITED STATES SURGICAL	ETHYLENE OXIDE	5.000
				2,200

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
New Haven	New Haven	YAI E-NEW HAVEN HOSPITAI	FTHYLENE OXIDE	500
Fairfield	Danbury	RSA CORPORATION	ETHYLENE OXIDE	5 000
Nau Hayan	Watarbury	MACDERMID INC	ETHVI ENE OVIDE	5,000
New naven	Waterbury	MACDERMID INC.	ETHYLENEDIAMDE	5,000
Hartford	west Hartford	NUTMEG CHROME CORP		500
Hartford	West Hartford	HAR-CONN CHROME COMPANY	ETHYLENEDIAMINE	5,000
Hartford	Bristol	METAL FINISHING	ETHYLENEDIAMINE	5,000
Fairfield	Danbury	RSA CORPORATION	ETHYLENEDIAMINE	5,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	ETHYLHEXANEDIOL	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	EVANSTAB 18/	50,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	EXANE COMPOUNDS	50,000
Hartford	East Hartford	G & K SERVICES	EXPRESS LIQUID	5,000
Hartford	New Britain	OKAY INDUSTRIES, INC.	EXTREME DUTY	50
Middlesex	Clinton	UNILEVER HOME AND	FATTY ACID AMIDO	5,000
Middlesex	Clinton	UNILEVER HOME AND	FATTY ACID ESTER	500
Fairfield	Norwalk	KING INDUSTRIES, INC.	FATTY ACIDS,	50,000
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	FC 280	50,000
Hartford	Bloomfield	ROLLPRINT PACKAGING	FLAMMABLE ADHESIVES.	5.000
New Haven	New Haven	SAINT-GOBAIN PERFORMANCE	FLAMMABLE LIQUID	50.000
New Haven	Waterbury	MACDERMID INC	FLUBORIC ACID	5 000
New Haven	New Haven	H KREVIT & CO INC	FLUOROSILICIC ACID 23%	50,000
Hartford	Manchester	VVNCOLIT NORTH AMERICA	FORMAL DEHVDE	50,000
Hartford	Borlin	STANCHEM INC	FORMALDEHTDE	500
Talland	Stafford	TVCO DDINTED CIDCUIT CDOUD	Formaldabuda	500
Tonanu Nasa Hasaa	Starioru Narth Hassar	THE MADI IN EIDEADMS		500
New Haven	North Haven	THE MARLIN FIREARMS	FORMALDEHYDE	5,000
Hartiord	Manchester	VINCOLII NORTH AMERICA,	FORMALDEHYDE	500
New Haven	Waterbury	HUBBARD-HALL, INC.	FORMALDEHYDE	5,000
Hartford	Manchester	ROGERS CORPORATION -	Formaldehyde	500
Hartford	Manchester	ROGERS CORPORATION -	Formaldehyde	500
Tolland	Stafford	CUNO INC	FORMALDEHYDE	5,000
Hartford	New Britain	GILBERT & JONES CO. INC.	FORMALDEHYDE	5,000
New Haven	New Haven	YALE UNIVERSITY OFFICE OF	FORMALDEHYDE	500
New Haven	East Haven	TEK-MOTIVE, INC	FORMALDEHYDE	50
New Haven	Meriden	BRAND-NU LABORATORIES, INC.	FORMALDEHYDE	500
New London	Franklin	FRANKLIN FARMS, INC.	FORMALDEHYDE	500
Fairfield	Stratford	THE EMBALMERS' SUPPLY	FORMALDEHYDE	5,000
New London	Stonington	MEDTRONIC XOMED, INC	FORMALDEHYDE	500
New Haven	Waterbury	MACDERMID INC.	FORMALDEHYDE	50,000
New Haven	Meriden	BRAND-NU LABORATORIES, INC.	FORMALDEHYDE	500
Hartford	Bloomfield	ITW CONVERTED PRODUCTS	FORMALDEHYDE	50
New Haven	East Haven	TEK-MOTIVE, INC	FORMALDEHYDE (MAY	50
Fairfield	Danbury	TEKNICRICUITS,	FORMALDEHYDE 35%	500
Windham	Plainfield	ATLANTIC COAST POLYMERS,	FORMALDEHYDE	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	FORMALDEHYDE	5,000
New Haven	New Haven	HOSPITAL OF SAINT RAPHAEL	FORMALDEHYDE	50
New Haven	West Haven	ENTHONE INC.	FORMIC ACID 90%	5.000
Middlesex	Old Savbrook	R.R. DONNELLEY	FOUNTAIN SOLUTION	50.000
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	FREEPEL 96	5 000
Hartford	Bristol	CI FAN HARRORS OF	Fulfuric Acid	50,000
New Haven	Fast Haven	FUCHS LUBRICANTS CO	GFAR CMPD 90W	50,000
Hartford	Windsor Looka	AHI STROM WINDSOD LOCKS	GEN EI O 3060	50,000
Middlesov	Clinton		CENETDON 141D	5 000
Now Lovon	Waterbury	MACDERMID INC		5,000
Middlesser	Clinton	MACDERIMID INC.	CLYCEDINE LISD	5,000
maaiesex	Clinton	UNILEVEK HOWE AND	OLI CEKINE USP	5,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
New Haven	Waterbury	HUBBARD-HALL, INC.	GLYCOL ETHER (DB)	50.000
New Haven	Waterbury	HUBBARD-HALL, INC.	GLYCOL ETHER ACETATE	50,000
Middlesex	Clinton	UNILEVER HOME AND	GLYCOL STEARATE AND	500
New Haven	Wallingford	BYK-CHEMIE USA INC	GLYCOL POLYETHYLENE	50,000
Middlesex	Clinton	UNILEVER HOME AND	GLYCOLIC ACID 70% CG	500
Hartford	South Windsor	THE NUWAY TOBACCO CO	GLYOXAL 40%	5 000
New Haven	Waterbury	TRUELOVE & MACLEAN, INC.	GRIT-O-COBS	50,000
Hartford	Bristol	ARETT SALES CORP	Halofenozide	50
New Haven	Waterbury	TRUELOVE & MACLEAN INC	HAMIDRAW 1828-A	5 000
New Haven	Waterbury	TRUELOVE & MACLEAN, INC.	HAMIDRAW 1828-DS	5,000
New Haven	Waterbury	TRUELOVE & MACLEAN INC	HAMIDRAW 1828-LC	50,000
Fairfield	Bethel	VANDERBII T CHEMICAL	HATCOL-2970	5,000
New Haven	New Haven	URETEK INC	HAZARDOUS WASTE	5,000
Fairfield	Norwalk	KING INDUSTRIES INC	HEPTANE	500,000
Hartford	Newington	FIVE STAR GROUP	HEPTANE	50,000
Hartford	Windsor	SCAPA TAPES NORTH AMERICA	HEPTANE	500
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	HERCON 70 SIZING	500
New London	Montville	RAND-WHITNEY	HERCULES-BETZ	50,000
New London	Montville	RAND-WHITNEY	HERCULES BETZ	50,000
New Haven	Waterbury	PFALTZ AND BALIER INC	HEXACHI OROCYCL OPEN	500
Fairfield	Stratford	FLOW POLYMERS INC	HEXAMETHYI ENETETRA	50,000
Hartford	Newington	FIVE STAR GROUP	HEXANE	50,000
New Haven	Meriden	BRAND-NULABORATORIES INC	HEXANE	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES	HEXANE-1 6-DI-ISOCYAN	50,000
Tolland	Ellington	COUNTRY PURE FOODS	HEXYLENE GLYCOL	50,000
Hartford	Manchester	VYNCOLIT NORTH AMERICA	HEXYMETHYLENE	5 000
New Haven	Wallingford	TECH CIRCUITS INC	HI SPEED ETCH STARTER	500
New Haven	Wallingford	TECH CIRCUITS INC	HI SPEED HUB ETCH	500
Hartford	New Britain	OKAY INDUSTRIES INC	HIGH TEMPERATURE	50
Hartford	New Britain	OKAY INDUSTRIES INC	HOOFMARK PARTS	50
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	HOT MELT ADHESIVE	50.000
Hartford	New Britain	OKAY INDUSTRIES, INC.	HOUGHTO-DRAW PF-61	50
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	HYCAR EMULSIONS	50.000
Hartford	New Britain	OKAY INDUSTRIES. INC.	HYDRO-DRIVE HP-200	50
New Haven	Sevmour	THE KERITE COMPANY	HYDROTREATED HEAVY	50,000
Litchfield	Watertown	THE TORRINGTON CO	HYDROTREATED HEAVY	50,000
Litchfield	Watertown	THE TORRINGTON CO	HYDROTREATED HEAVY	50,000
New Haven	North Haven	UNITED STATES SURGICAL	HYDROXYACETIC ACID	50,000
New Haven	Waterbury	MACDERMID INC.	HYDROXYACETIC ACID	50,000
Fairfield	Stamford	THE STAMFORD CORPORATION I	HYDROXYETHYL	50,000
Fairfield	Stamford	THE STAMFORD CORPORATION I	HYDROXYETHYLMETHA	5,000
New Haven	Waterbury	MACDERMID INC.	HYDROXYLAMINE	5,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	HYPALON COMPOUND	50,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	HYPALON COMPOUND	5,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	HYPALON COMPOUND	5,000
Hartford	Bristol	ARETT SALES CORP	IMIDACLOPRID	50
New Haven	Waterbury	MACDERMID INC.	IMPORT HYPO STOCK	50,000
Fairfield	Danbury	SANDLAPPER FABRICS	IMPRIMENT GREEN	5,000
Fairfield	Danbury	SANDLAPPER FABRICS	IMPRIMENT RED	500
Fairfield	Danbury	SANDLAPPER FABRICS	IMPRIMENT SCARLET	500
Fairfield	Bethel	VANDERBILT CHEMICAL	INDUSTRENE B/EMERY	50,000
Hartford	Bloomfield	ROLLPRINT PACKAGING	INK	5,000
New Haven	Meriden	ATLAS CONTAINER, LLC	INK	50,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
New Haven	North Haven	PRATT & WHITNFY	INK	500.000
New Haven	Meriden	RECORD-IOURNAL INC	INK	5 000
Hartford	Manchester	ALLIED PRINTING SERVICES INC	INK	50,000
Hartford	Manchester	FLINT INK NORTH AMERICA	INK	50,000
New London	New London	THE DAV PUBLISHING	INK	50,000
Hortford	Windsor Locks	A HI STROM WINDSOR LOCKS	INK	50,000
Hartford	Willusof Locks	THE HADTEODD COUDANT	INK	50,000
Hartford	Hartford	THE HARTFORD COURANT		50,000
Middlesov	Old Saubrook			500,000
Windhom	Did Saybiook	K.K. DOININELLE I INTEDNATIONAL DADED		50,000
W munam Foirfield	Futilalli	THE NEWS TIMES		50,000
Fairfield	Danbury	THE NEWS-TIMES	INK	50,000
Hartford	East Hartford	MUTIVA ENTERPRISES LLC -	INTERUX CHP-HA-M 2	50,000
New Haven	wallingford	BYK-CHEMIE USA INC.	ISUALKANES	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	ISOBUTANOL	50,000
Hartford	Bloomfield	II W CONVERTED PRODUCTS	ISOPHORONE	500
Fairfield	Norwalk	KING INDUSTRIES, INC.	ISOPHORONE	5,000
Hartford	East Hartford	DUR-A-FLEX, INCORPORATED	ISOPHORONEDIAMINE	50,000
Tolland	Ellington	COUNTRY PURE FOODS	ISOPROPANOL	50
Fairfield	Norwalk	KING INDUSTRIES, INC.	ISOPROPANOL	500,000
Fairfield	Danbury	RSA CORPORATION	ISOPROPANOL	5,000
Hartford	Windsor	SCAPA TAPES NORTH AMERICA	ISOPROPANOL	500
Fairfield	Stamford	THE STAMFORD CORPORATION I	ISOPROPANOL	50,000
Hartford	South Windsor	AMK WELDING, DIV. OF DMC	ISOPROPANOL (UN1219	50
New Haven	West Haven	DEITSCH PLASTIC CO. INC	ISOPROPYL ALCHOL	5,000
New Haven	Waterbury	HUBBARD-HALL, INC.	ISOPROPYL ALCOHOL	500
New Haven	North Haven	UNITED STATES SURGICAL	ISOPROPYL ALCOHOL	50,000
New Haven	Meriden	BRAND-NU LABORATORIES, INC.	ISOPROPYL ALCOHOL	50,000
Hartford	South Windsor	THE NUWAY TOBACCO CO	ISOPROPYL ALCOHOL	5,000
New Haven	West Haven	PHOENIX DIVINA PRODUCTS	ISOPROPYL ALCOHOL	50,000
Hartford	Manchester	DYNAMIC GUNVER	Isopropyl Alcohol	50
New Haven	Meriden	BRAND-NU LABORATORIES, INC.	ISOPROPYL ALCOHOL	5,000
Hartford	Newington	FIVE STAR GROUP	ISOPROPYL ALCOHOL	50,000
Hartford	Manchester	DYNAMIC GUNVER	Isopropyl Alcohol	50
Hartford	Manchester	DYNAMIC	Isopropyl Alcohol	50
Hartford	Manchester	DYNAMIC GUNVER	Isopropyl Alcohol	500
Middlesex	Clinton	UNILEVER HOME AND	ISOPROPYL MYRISTATE	500
Hartford	Bristol	ARETT SALES CORP	ISOPROPYLAMIN SALT OF	5,000
Hartford	Manchester	DYNAMIC GUNVER	Isopryopyl Alocohol	50
Litchfield	Winchester	BOMAR SPECIALTIES COMPANY	ISPHORONE	500
Hartford	Newington	FIVE STAR GROUP	KAOLIN	50,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	KENDEX 0888	5,000
Hartford	West Hartford	SBC SNET	KEROSEN	50,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	KINNEY HYD KV 100	50,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	KRP-165 COMPOUND	5,000
Hartford	New Britain	OKAY INDUSTRIES, INC.	KURE-N-SEAL	50
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	KYMENE	5,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	KZH-210J COMPOUND	5,000
New Haven	Waterbury	MACDERMID INC.	LACTIC ACID	50,000
Hartford	Newington	FIVE STAR GROUP	LIGHT AROMATIC	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	LIGHT AROMATIC	50.000
Fairfield	Monroe	AMERICAN HEAT TREATING INC	LIOUID ACID	500
Hartford	Hartford	HARTFORD HOSPITAL	LIQUID ENHANCE	5.000
Fairfield	Norwalk	KING INDUSTRIES, INC.	LITHIUM	50,000
		'		,

				Amount On Site
County	Town	Facility Name	Chemical	(lbs)
Windham	Plainfield	ATLANTIC COAST POLYMERS,	LPA-ZIO	5,000
Hartford	New Britain	OKAY INDUSTRIES, INC.	LUBRIPLATE	50
Hartford	West Hartford	ABBOTT BALL	LURAY 100	5,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	LUSOL 96 A UNDYED	50,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	LUSOL CLEANER	5,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	LUSOL WD 7F	5,000
New Haven	Waterbury	NAUGATUCK MANUFACTURING	LUSTERCLEAN 35 AF	50
Hartford	New Britain	MACRISTY INDUSTRIES	LUSTER-ON 895 ACID	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	MACKADET 277	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	MAGNESIUM	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	MAGNESIUM	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	MALEIC ANHYDRIDE	50,000
New Haven	Waterbury	MACDERMID INC.	MALIC ACID	5,000
New Haven	Waterbury	MACDERMID INC.	MAPHOS 56	5.000
Hartford	Berlin	THE BERLIN STEEL	MAPP	50
New Haven	Naugatuck	THE YOFARM COMPANY	MATRIXX. ECOCARE660 /	50
Tolland	Stafford	TYCO PRINTED CIRCUIT GROUP.	Max Etch 20 ET 1405	50.000
New Haven	New Haven	HOSPITAL OF SAINT RAPHAEL	MEDIFUME	50
Fairfield	Norwalk	KING INDUSTRIES, INC.	MEDIUM ALIPHATIC	50.000
Hartford	Berlin	STANCHEM, INC.	MELAMINE	50.000
New Haven	East Haven	FUCHS LUBRICANTS CO.	MELCHEM AK 3	5.000
New Haven	East Haven	FUCHS LUBRICANTS CO.	MELCHEM S 29	5.000
New Haven	East Haven	FUCHS LUBRICANTS CO.	MELCHEM S 44	50.000
New Haven	East Haven	FUCHS LUBRICANTS CO	MELSOL SUPERSOL BLUE	50,000
Hartford	Bristol	ARETT SALES CORP	Metaldehyde	500
New Haven	East Haven	FUCHS LUBRICANTS CO	METALITE SUPER 844	50,000
New Haven	East Haven	FUCHS LUBRICANTS CO	METALUB 3349	5 000
Hartford	East Windsor	CROP PRODUCTION SERVICES	METAM-SODIUM VAPAM	5,000
New Haven	Waterbury	MACDERMID INC	METHANE SULFONIC	5,000
New Haven	Waterbury	HUBBARD-HALL INC	METHANE SULFONIC	5,000
New Haven	West Haven	ENTHONE INC	METHANE SULFONIC	50,000
Fairfield	Norwalk	KING INDUSTRIES INC	METHANOL	50,000
New Haven	Meriden	BRAND-NUL ABORATORIES INC	METHANOI	50,000
New Haven	Waterbury	HUBBARD-HALL INC	METHANOL	5 000
New Haven	Wallingford	BYK-CHEMIE USA INC	METHANOL	5,000
Windham	Hampton	AMERIGAS FAGI E PROPANE I P	METHANOL	5,000
Fairfield	Danbury	RSA CORPORATION	METHANOL	5,000
Windham	Plainfield	AMERIGAS EAGLE PROPANE LP	METHANOL	50
Hartford	Windsor	STANADYNE CORPORATION	METHANOL	50,000
Middlesex	Chester	PURIFICATION TECHNOLOGIES	METHANOL	5 000
Hartford	Southington	SUPREME LAKE MEG INC	METHI VENE CHI ORIDE	5,000
New Haven	Guilford	ARKWRIGHT INC	METHOCEL E15	5,000
Hartford	Bristol	ARETT SALES CORP	METHOXYCHLOR	50
Hartford	Bristol	ARETT SALES CORP	METHOXYCHLOR	50
Hartford	Bristol	ARETT SALES CORP	METHOXYCHLOR	50
New Haven	Wallingford	RVK CHEMIE USA INC	METHOX I CHLOK	50,000
Foirfield	Rothol	VANDEDRILT CHEMICAL	METHOX I METHICETHO	5 000
Fairfield	Deulei	VANDERDILI CHEMICAL	METHUL ACID METHUL ACIVI ATE	50,000
Fairfield	Denhury	5ΤΑΝΟΠΕΝΙ, ΠΝΟ. ΤΗΕ ΒΑΡΠΕΝΙ CODDOD ΑΤΙΟΝ	METHUL AUCULATE	50,000
Now London	Waterford	$\mathbf{MEDICAS} = \mathbf{ACI} = \mathbf{DODANEID}$	METHYL ALCOHOL METHYL ALCOHOL	50,000
Foirfield	water10fu Dothol	AMENIOAS EAULE PROPANE LP	METIVI DISMATE	50,000
Fairfield	Bethal	VANDERDILI CHEMICAL	METHVI CUMATE	50,000
Lortford	Manahastar	VANDERDILI CHEMICAL	Mathul Ethul Vastana	50,000
nartiora	Manchester	DINAMIC GUNVEK	Methyl Ethnyl Keytone	50

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
Hartford	Bloomfield	ITW CONVERTED PRODUCTS	METHYL ETHYL KETONE	50.000
Hartford	Windsor	SCAPA TAPES NORTH AMERICA	METHYL ETHYL KETONE	5.000
Middlesex	Middletown	NAPA DISTRIBUTION CENTER	Methyl Ethyl Ketone	5.000
New Haven	Waterbury	HUBBARD-HALL, INC.	METHYL ETHYL KETONE	500
Fairfield	Fairfield	FAIRPRENE. INC.	METHYL ETHYL KETONE	5.000
Hartford	Berlin	STANCHEM. INC.	METHYL ETHYL KETONE	5.000
New Haven	Meriden	BRAND-NU LABORATORIES, INC.	METHYL ETHYL KETONE	5,000
Hartford	Manchester	DYNAMIC	Methyl Ethyl Keytone	50
Fairfield	Danbury	RSA CORPORATION	METHYL IODIDE	5,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	METHYL ISOBUTYL	50,000
New Haven	West Haven	DEITSCH PLASTIC CO. INC	METHYL ISOBUTYL	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	METHYL LEDATE	5,000
Hartford	Berlin	STANCHEM, INC.	METHYL	5,000
Hartford	East Hartford	DUR-A-FLEX, INCORPORATED	METHYL	50,000
New Haven	Wallingford	CYRO INDUSTRIES	METHYL	5,000,000
Fairfield	Bethel	VANDERBILT CHEMICAL	METHYL NICLATE	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	METHYL SELENAC	5,000
Middlesex	Clinton	PREFERRED FOAM PRODUCTS,	METHYLENEBIS (PHENYL	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	METHYLENE-BIS-(DIBUT	50,000
Windham	Woodstock	ROGERS CORPORATION - PORON	Methylene-Bis-Pheny-Isocya	50,000
New Haven	West Haven	DEITSCH PLASTIC CO. INC	METHYLETHYL KETONE	5,000
New Haven	New Haven	URETEK INC	METHYLETHYLKETONE	5,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	METHYLPROPANOL	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	MICROCEL E CSF/HISIL	5,000
Middlesex	Clinton	UNILEVER HOME AND	MIRASPEC MS-2HC	5,000
Hartford	Windsor	STANADYNE CORPORATION	MISCELLANEOUS	500,000
Litchfield	Torrington	ALLIANCE CARPET CUSHION -	MISTABOND H3154 - 20%	50,000
New Haven	Ansonia	ANSONIA COPPER & BRASS	MIXED DILUTE ACIDS	500,000
Hartford	New Britain	OKAY INDUSTRIES, INC.	MOBIL DTE 24	500
Hartford	New Britain	OKAY INDUSTRIES, INC.	MOBIL DTE 26	500
Hartford	New Britain	OKAY INDUSTRIES, INC.	MOBIL RARUS #427	50
Hartford	New Britain	OKAY INDUSTRIES, INC.	MOBIL VACUOLINE 1405	500
Hartford	New Britain	OKAY INDUSTRIES, INC.	MOBIL VELOCITE #10	50
Hartford	New Britain	OKAY INDUSTRIES, INC.	MOBIL VELOCITE #6	50
Hartford	New Britain	OKAY INDUSTRIES, INC.	MOBILFLUID 424	500
Hartford	New Britain	OKAY INDUSTRIES, INC.	MOBILGEAR 629	500
Hartford	New Britain	OKAY INDUSTRIES, INC.	MOBILGEAR 630	50
Fairfield	Bethel	INTERSURFACE DYNAMICS INC.	MODIFIED	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	MOLYVAN	50,000
Middlesex	Clinton	UNILEVER HOME AND	MONATERIC CAB	5,000
New Haven	Milford	CAAP CO, INC.	MONDUR TD-80	500
New Haven	Milford	CAAP CO, INC.	MONDUR TD-80,	500
New Haven	Waterbury	HUBBARD-HALL, INC.	MONOETHANOL AMINE	500
New Haven	Waterbury	MACDERMID INC.	MONOETHANOLAMINE	5,000
Middlesex	Chester	PURIFICATION TECHNOLOGIES,	MONOMETHYLAMINE	5,000
Hartford	New Britain	OKAY INDUSTRIES, INC.	MOREY`S STABILIZER	50
New Haven	Southbury	O&G INDUSTRIES, INC.	MOTOR SPIRIT	500
Litchfield	Torrington	O&G INDUSTRIES, INC.	MOTOR SPIRIT	500
New Haven	New Haven	URETEK INC	M-PYVOL	5,000
New Haven	North Haven	MORGANITE CRUCIBLE INC.	MULCOA	5,000
Hartford	Bristol	ARETT SALES CORP	N-(1-ETHYLPROPYL)-3,4-	500
Middlesex	Chester	PURIFICATION TECHNOLOGIES,	N,N-DIMETHYLFORMAMI	5,000
Hartford	East Hartford	CELLU TISSUE CORP.	NALCO 6400 SEVERELY	50,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
New Haven	Waterbury	HUBBARD-HALL, INC.	NAPHIHA	500
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	NAPHTHA	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	NAPHTHA, PETROLEUM,	5,000
Hartford	Bristol	ARETT SALES CORP	NAPHTHALENE	500
Fairfield	Norwalk	KING INDUSTRIES, INC.	NAPHTHALENE	500,000
Hartford	Bristol	ARETT SALES CORP	NAPHTHALENE	25,000,000
Fairfield	Stamford	O&G INDUSTRIES, INC.	NAPHTHALENE	500
Fairfield	Bridgeport	FREEMAN STREET SUBSTATION	NAPHTHENIC	5,000
New Haven	North Haven	PRATT & WHITNEY	NAPHTHENIC	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	N-BUTYL ACETATE	50,000
Hartford	Newington	FIVE STAR GROUP	N-BUTYL ALCOHOL	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	N-BUTYL ALCOHOL	50,000
Fairfield	Danbury	THE BARDEN CORPORATION	NEILCUT 400	5,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	NEOPRENE COMPOUND -	5,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	NEOPRENE COMPOUND	50,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	NEOPRENE COMPOUND	5,000
New Haven	Waterbury	PFALTZ AND BAUER INC	NICOTINE SULFATE	500
New Haven	Waterbury	OUTOKUMPA ADVANCED	NIOBIUM	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	NITRILOTRIETHANOL	5,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	NITROBENZENE	50,000
New London	Lebanon	THE SCOTTS COMPANY	NITROFORM	50,000
New Haven	Waterbury	MACDERMID INC.	NMP/M PYROL	5,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	NONENE	500,000
New Haven	Waterbury	COYNE TEXTILE SERVICES	NONYLPHENOL	5,000
Fairfield	Danbury	SANDLAPPER FABRICS	NONYLPHENOL	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	NONYLPHENOL	5,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	NONYLPHENOL.	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	N-PROPYL ALCOHOL	50,000
Fairfield	Danbury	PITNEY BOWES INC.	NYLON RESIN PELLETS	5,000
New Haven	Waterbury	MACDERMID INC.	0	5.000
Fairfield	Bethel	KANTHAL - BLDG. #1	OAKITE 131	50
Tolland	Ellington	COUNTRY PURE FOODS	O-BENZYL-P-CHLOROPHE	50
New Haven	Wallingford	BYK-CHEMIE USA INC.	OCTADECENAMINE	5.000
Hartford	East Granby	FEDERAL EXPRESS CORP-BDLR	OCTAGON-PROPYLENE	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	OCTOATE Z	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	OCTOATE Z SOLID	5,000
Hartford	Berlin	STANCHEM INC	OCTYLPHENOXYPOLYET	50,000
Hartford	New Britain	CREED MONARCH INC	OOWFROST PRPYLENEN	5 000
Tolland	Ellington	COUNTRY PURE FOODS	O-PHENYL PHENOL	50
Hartford	West Hartford	WEST HARTFORD FILTERS	ORTHOPHOSPHATES	50,000
New London	Lebanon	THE SCOTTS COMPANY	OSMOCOTE	5,000
Hartford	Ecounon Fast Windsor	CROP PRODUCTION SERVICES	OXAMLY VYDATE CLV	500
New Haven	Waterbury	MACDERMID INC	OXONE	50,000
Hartford	Berlin	STANCHEM INC	OXVBISETHANOI	50,000
Hartford	Berlin	STANCHEM, INC.	OXYBISPROPANOL	50,000
Middlesev	Middlefield	DVNO NOBEL INC	PACKAGED FMULSION	5,000
Middlesox	Middlafiald	DYNO NOBEL INC	PACKAGED EMULSION	50,000
Now Hoven	Hamden		I ACKAGED ENICLOION DAINT (CODDOSIVE)	50,000
Hortford	Borlin	I ORCELEN LID LLC	I AINT (CORROSIVE) DAINTS DDC (DUDACDON	50,000
Windham	Windhom		DADADINIC OLEDINIC	5 000
vy munam Logtford	Windham Foot Window		FARAPIINIC ULEEIINIC	5,000
naruora	East Windsor	ACCUSTANDADD INC	rakauuai Dadatuuon	500
New Haven	Inew Haven	ACCUSTANDAKD, INC	PAKATHIUN DC 101	50
New London	Lisbon	LAKE KUNUMUC WATER	PC - 101	50,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
Hartford	East Granby	ROCKBESTOS-SURPRENANT	PE COMPOUND KZH 638	5.000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	PE COMPOUND KZH-400	50,000
New Haven	North	TRUGREEN CHEMI AWN	PELMIN	5 000
Hartford	East Windsor	CROP PRODUCTION SERVICES	PENDIMETHALIN PROWL	5,000
Hartford	Bristol	FIRESTONE BUILDING	Pentamethyldiethylene	5,000
Hartford	Bristol	FIRESTONE BUILDING	Pentamethyldiethylenetriami	50,000
Hartford	New Britain	OKAY INDUSTRIES INC	PERMALUBE	50,000
Hartford	Bristol	ARETT SALES CORP	PERMETHRIN	50
Hartford	Bristol	ARETT SALES CORP	PERMETHRIN	50
Hartford	Bristol	ARETT SALES CORP	PERMETHRIN	50
Hartford	Enfield	ANOCOLL CORPORATION	PETRO I BA	50,000
Hartford	Newington	FIVE STAR GROUP	PETROLEUM ETHER	50,000
Hartford	Hartford	THE HARTEORD	PETROLEUM ETHER	500,000
New Haven	Guilford		PETROLEUM IT DRO	5,000
Fairfield	Bridgeport	OWENS II I INOIS PLASTICS	PETROLEUM PETROLEUM	500
Fairfield	Danbury	AMPHENOL RECORD	PETROLEUM PETROLEUM LUBRICANT	50,000
Fairfield	Stratford	DRESSER MEASUREMENT	PETROLEUM LUDRICANT	50,000
Middlesov	Doop River	SIL GAN DI ASTICS CODDODATION	DETROLEUM FRODUCT	50,000
Hartford	Monchoster	DOCEDS CODDOD ATION	Phanol	50,000
Hartford	Manchester	VVNCOLIT NORTH AMERICA	DHENOI	50,000
	Waterbury	VINCOLII NONIH AMERICA, DEALTZ AND DALIED INC	PHENOL	50,000
Hew Haven	Manahastar	VVNCOLIT NODTH AMEDICA	PHENOL	5 000
Haitioid	Disinguille	CENEDAL ELECTRIC COMPANY	PHENOL	5,000
Hartford	Manahastan	GENERAL ELECTRIC COMPANY	PHENOL	5,000
Hartford	Manchester	KUGERS CORPORATION -	Phenol	5,000
	Waterberry	VINCOLII NORIH AMERICA,	PHENOL	50,000
New Haven	Waterbury	FIBERCUTE INDUSTRIES, INC.	PHENOL	5,000
New Haven	New Haven	I ALE UNIVERSITI OFFICE OF	PHENOL	500
Fairfield	Bridgeport	GENERAL ELECTRIC COMPANY	PHENOL	5,000
Fairneid	Stratiord	THE EMBALMERS SUPPLY	PHENOL	500
I olland	Starrord	CUNUTINC DOCEDS CODDOD ATION	PHENOL	5,000
Hartiord	Manchester	RUGERS CORPORATION -		50,000
New Haven	East Haven	IEK-MUTIVE, INC	PHENOLIC RESIN	5,000
Windham	Windham	UNITED ABRASIVES, INC.	PHENOLIC RESIN LIQUID	50,000
Windham	Windham	UNITED ABRASIVES, INC.	PHENOLIC RESIN	500,000
Hartford	Manchester	VYNCOLII NORTH AMERICA,	PHENOLIC RESINS	50,000
New Haven	East Haven	IEK-MUTIVE, INC	PHENOLPH I HALEIN	50,000
Hartford	Manchester	V I NCOLII NORTH AMERICA,	PHENOLPHIHALEIN	50,000
Hartford	Manchester	VYNCOLII NORTH AMERICA,	PHENOLPHIHALEIN	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	PHENOX YETHANOL	50,000
Fairfield	Danbury	PITNEY BOWES INC.	PHENYLENE OXIDE RESIN	5,000
Hartford	East Windsor	CROP PRODUCTION SERVICES	PHORATE, THIMET 20G	50
New Haven	Bethany	CARBOLABS, INC.	PHOSGENE	500
Hartford	East Windsor	CROP PRODUCTION SERVICES	PHOSMET, IMIDAN 70WP	50
Windham	Plainfield	GRISWOLD RUBBER CO INC	PHTHALIC ANHYDRIDE	5,000
New Haven	Hamden	PORCELEN LTD LLC	PICLORAM	50,000
Hartford	Bristol	AKETT SALES CORP	PISULFUTUN/DISYSTON	50
New Haven	Waterbury	MACDERMID INC.	PMA (URETHANE GRADE)	5,000
New Haven	Wallingford	BY K-CHEMIE USA INC.	POLAR ACIDIC ESTER OF	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	POLYETHER ACRYLATE	5,000
Fairfield	Shelton	INLINE PLASTICS, INC	POLYETHEYLENE	500,000
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	POLYETHYLENE	50
Windham	Killingly	NEXTGEN FIBER OPTICS LLC	POLYETHYLENE	50,000
Windham	Windham	GENERAL CABLE CORPORATION	Polyethylene Compounds	500,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
Middlesex	Clinton	STANLEY FASTENING SYSTEMS.	POLYETHYLENE GLYCOL	5.000
New Haven	Wallingford	BYK-CHEMIE USA INC.	POLYETHYLENE GLYCOL	50,000
Hartford	Enfield	LEGO SYSTEMS DIRECT	POLYETHYLENE	5 000
Hartford	Enfield	LEGO SYSTEMS, DIRECT	POLYETHYLENE	500,000
Hartford	Berlin	INDALEX INC	POLYOL BLEND (SU 207	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC	POL VOXYETHANEDIVI	5 000
Hartford	Enfield	LEGO SYSTEMS DIRECT	POL VPHENVI ENE OXIDE	5,000
Hartford	Enfield	LEGO SYSTEMS, DIRECT	POL VPHENVI ENE OXIDE	50,000
Hartford	Berlin	STANCHEM INC	POLYPHOSPHORIC ACID	50,000
Windham	Killingly	COLTS PLASTICS CO_INC	POLYPROPYLENE	5 000
Hartford	Windsor Locks	AHI STROM WINDSOR LOCKS	POL VPROPYLENE	50,000
Fairfield	Bridgeport	OWENS-II LINOIS PLASTICS	POL VPROPYLENE	50,000
Hartford	Berlin	STANCHEM INC	POLVVINYL ACETATE	5 000
Hartford	Enfield	ANOCOIL CORPORATION	POLVVINVL ALOCHOL	5,000
Hartford	Bristol	EIDESTONE BUILDING	Potassium 2 Ethylhovanosta	50,000
New Haven	Waterbury	MACDERMID INC	POTASSIUM GI VCOLATE	5 000
Foirfield	Waterbury Shalton	MACDERNID INC.	POTASSIUM OL FOLATE	50,000
Fairfield	Weterhum	TRUELOVE & MACLEAN INC	POTASSIUM OLEATE	5 000
New navell	Rocky Hill	TRUELOVE & MACLEAN, INC.	POWERCLEAN 1920 D	5,000
Middlesser	KOCKY HIII Middlafiald	I KUUKEEN-UHEMILAWIN	PRE-IM 3.3 EC	5,000
Fridalesex	Middleffeld Dathal	D I NO NOBEL INC	PRILLED AMMONIUM	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	PRIMENE NA T	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	PRIMENE JM-1	5,000
Hartford	Enfield	INFINITI GRAPHICS	PRINTOP	50,000
Fairfield	Danbury	SANDLAPPER FABRICS	PRINTRITE	5,000
New Haven	wallingford	BY K-CHEMIE USA INC.	PROPANEDIOL	50,000
Middlesex	Clinton	PREFERRED FOAM PRODUCTS,	PROPOXYLATED	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	PROPYLENE CARBONATE	50,000
Fairfield	Fairfield	GENERAL ELECTRIC	PROPYLENE GLYCOL	50,000
New Haven	Naugatuck	PETER PAUL	PROPYLENE GLYCOL	50,000
Hartford	East Hartford	PRATT & WHITNEY EAST	PROPYLENE GLYCOL	50,000
Hartford	East Granby	SIGNATURE FLIGHT SUPPORT	PROPYLENE GLYCOL	500,000
New Haven	New Haven	YALE UNIVERSITY OFFICE OF	PROPYLENE GLYCOL	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	PROPYLENE GLYCOL	50,000
New Haven	Waterbury	MACDERMID INC.	PROPYLENE	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	PROPYLENE OXIDE	5,000
New Haven	East Haven	TWEED-NEW HAVEN AIRPORT	PROYLENE GLYCOL	50,000
Hartford	Manchester	VYNCOLIT NORTH AMERICA,	P-TERTIARY OCTYL	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	P-TOLUENE SULFONIC	50,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	P-TOLUENE SULFONIC	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	P-TOLUENESULFONIC	5,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	P-TOLUENESULFONIC	50,000
New Haven	East Haven	WILLIAMS TERMINALS	PURADD GAS ADDITIVE	50,000
New Haven	Orange	HARBISON WALKER	QUARTZ	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	QUARTZ	50,000
Hartford	Berlin	BODYCOTE THERMAL	QUENCH "1032"	50,000
Hartford	Hartford	THE STANLEY P. ROCKWELL CO	QUERCETIN	50,000
New Haven	Waterbury	TRUELOVE & MACLEAN, INC.	REM EB-223	50,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	RENEP WL SERIES	50,000
Hartford	New Britain	OKAY INDUSTRIES, INC.	RENOCUT 570	50
New Haven	East Haven	FUCHS LUBRICANTS CO.	RENODRAW 1905 L	50,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	RENODRAW 847	5,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	RENOFLUID DEXRON III	5,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	RENOKOOL 207	50,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
New Haven	East Haven	FUCHS LUBRICANTS CO.	RENOKOOL PT 85 BLUE	50,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	RENOLIN EP 680	5,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	RENOLIN ZAF 32 & ZAF 46	50,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	RENOQUENCH 1021	50,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	RENOSYN P236	50,000
Hartford	West Hartford	ABBOTT BALL	RENOUENCH 1021	5,000
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	REPEARL F-8025	500
Middlesex	Clinton	UNILEVER HOME AND	RHODASURF 050	500
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	RHOPLEX EMULSIONS	5.000
Fairfield	Bethel	VANDERBILT CHEMICAL	ROKON	5,000
Hartford	New Britain	OKAY INDUSTRIES, INC.	RUST VETO 377-HF	500
Hartford	New Britain	OKAY INDUSTRIES. INC.	RUST VETO 4214	50
Hartford	New Britain	OKAY INDUSTRIES. INC.	RUST VETO 4214-W	500
Hartford	Windsor Locks	THE HERTZ CORPORATION	SAFETY KLEEN	50
New Haven	Waterbury	MACDERMID INC.	SCRIPT SET 550	5.000
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	SEOUABOND FVAC	5.000
Fairfield	Danbury	SANDLAPPER FABRICS	SERVILOK MG	50
Hartford	Bristol	ARETT SALES CORP	S-ETHYL	50
Fairfield	Bethel	VANDERBILT CHEMICAL	SETSIT 055	50.000
Fairfield	Bethel	VANDERBILT CHEMICAL	SETSIT 104	50.000
Fairfield	Bethel	VANDERBILT CHEMICAL	SETSIT 5 9	5 000
Hartford	Bristol	ARETT SALES CORP	S-EYHYL	50
Hartford	Manchester	VYNCOLIT NORTH AMERICA	SILANE	5 000
New Haven	North Haven	MORGANITE CRUCIBLE INC	SIL-CO-SIL	500
Hartford	Windsor	THE TAYLOR & FENN COMPANY	SIL-MAG-1	500
Hartford	Southington	REM CHEMICALS INC	SIPONIC SK	5 000
Hartford	East Windsor	CROP PRODUCTION SERVICES	S-METOLACHOLR/ATRAZI	5,000
Hartford	Windsor Locks	BRADLEY INTERNATIONAL	SODIUM ACETATE	50,000
New Haven	Waterbury	MACDERMID INC	SODIUM ALLYL SULFATE	500
Hartford	Southington	REM CHEMICALS INC	SODIUM CITRATE	50,000
Fairfield	Norwalk	KING INDUSTRIES INC	SODIUM	5 000
Hartford	New Britain	GILBERT & JONES CO. INC	SODIUM DITHIONITE	5,000
New Haven	Waterbury	MACDERMID INC	SODIUM GLUCO	50,000
Hartford	Windsor	SCP DISTRIBUTORS LLC	Sodium hydrogen carbonate	5,000
Middlesex	Clinton	UNII EVER HOME AND	SODIUM LAURLY ETHER	5,000
Hartford	Bristol	CLEAN HARBORS OF	Sodium Metabisulfate	5,000
New Haven	Waterbury	MACDERMID INC	SODIUM MNB SULFONATE	500
Fairfield	Bridgeport	MARTIN MARIETTA MAGNESIA	SODIUM PETROLEUM	50,000
Middlesex	Clinton	UNILEVER HOME AND	SODIUM	50,000
Fairfield	Wilton	SFRVCO OIL INC	SOLVALL APC-30	50,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES	SOLVENT	50,000
Hartford	Bristol	ARETT SALES CORP	SOLVENT	50,000
Hartford	Bristol	ARETT SALES CORP	SOLVENT	5 000
New Haven	East Haven	TEK-MOTIVE INC	SOLVENT	500
New Haven	Waterbury	HUBBARD-HALL INC	SOLVENT	50,000
New Haven	Waterbury	WESSON INC	SOLVENT	5 000
Hartford	Bloomfield	ROLLPRINT PACKAGING	SOLVENT	5,000
New Haven	Ansonia	FARREL CORPORATION	SOLVENT	500
New Haven	Branford	BLAKESLEE ARPAIA CHAPMAN	SOLVENT	50,000
New Haven	Branford	BLAKESLEE ARPAIA CHAPMAN	SOLVENT	50,000
Hartford	East Granby	GALASSO MATERIALS LLC	SOLVENT	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC	SOLVENT	50,000
New Haven	Branford	BLAKESLEE ARPAIA CHAPMAN	SOLVENT	50,000
1,0,1, 110,011	Diamola			50,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
Fairfield	Newtown	WIRING DEVICE-KELLEMS.	SOLVENT	50.000
Hartford	West Hartford	GOODRICH PUMP & ENGINE	SOLVENT	50.000
New Haven	Wallingford	BYK-CHEMIE USA INC.	SOLVENT	5.000
New Haven	Wallingford	BYK-CHEMIE USA INC.	SOLVENT	500.000
Hartford	New Britain	OKAY INDUSTRIES INC	SOLVENT	50
Hartford	Windsor	STANADYNE CORPORATION	SOLVENT	5 000
Hartford	Windsor	SCAPA TAPES NORTH AMERICA	SOLVENT	50,000
Hartford	Newington	FIVE STAR GROUP	SOLVENT	500,000
Fairfield	Newtown	HOLCOMB FLIFL CO. INC	SOLVENT	500,000
Hartford	Avon	PMP CORPORATION	SOLVENT	5 000
New Haven	North Haven	PRATT & WHITNEY	SOLVENT	50,000
New Haven	North	FL FXCON COMPANY INC	SOLVENT	50,000
New Haven	Waterbury	NALIGATLICK MANUFACTURING	SOL VENT	50,000
New Haven	Waterbury	MACDERMID INC	SR 454/TMPEOTA	5 000
New London	Montville	RAND WHITNEY	STALOK 156 STARCH	50,000
New Haven	North Haven	MORGANITE CRUCIBLE INC	STAPRIDE CRUCIRI ES	5 000
New London	Montville	RAND WHITNEY	STEAMATE	50
Hartford	Manchester	VVNCOLIT NORTH AMERICA	STEADIC ACID	5 000
New Haven	Fast Haven	TEK MOTIVE INC	STEIN	50,000
Middlesov	Clinton	LINII EVED HOME AND	STEOL CA230 (11008010)	50,000
Middlesex	Clinton	UNILEVER HOME AND	STEDIC ACID	5 000
Now Hoven	Now Hoven	UNILEVER HOME AND HOSDITAL OF SAINT DADUAEL	STEDIS 20 STEDII ANT	5,000
New Haven	Wellingford	CVDO INDUSTDIES	STERIS 20 STERILANT STVDENE	500.000
New Haven	Wallingford	THEDMOSDAS INC	STILLE	50,000
New Haven	Porlin	THERMOSPAS, INC.	SI I KENE STVDENE	50,000
Windhom	Killinghy	COLTS DI ASTICS CO, INC.	STILLIL	5 000
W munam Eximinated	Shalton	LATEY FOAM INTEDNATIONAL	STIRENE STYDENE DUTADIENE	50,000
Now Hoven	Wallingford	LATEA FOAM INTERNATIONAL,	STIRENE DUIADIENE	5 000
New Haven	Wallingford	DIK-CHEMIE USA INC. THEDMOSDAS, INC.	STI I KENE MALEIC	50,000
New Haven	wannigioru Namualla	I HERMOSPAS, INC.	SII KEINE KESIIN	50,000
Now Hoven	Wotorbury	MACDEDMID INC.	SULFURIZED FATTI ACID	5 000
New Haven	Windson Looks	MACDERMID INC.	SINFAC 6116 (SULFAIED	5,000
Hartford	Windsof Locks	ALLSTROM WINDSOR LOCKS		5,000
Hartiora New Heyen	Weterbury	UKA I INDUSI KIES, INC.	TAMPAPUK IPU TECHTRIDE DC	50
New Haven	Waterbury	NAUGATUCK MANUFACTUKING		50
Hartford	Bristol West Heatford	SUPERIOR ELECTRIC HOLDING	TETRACHLOROETHYLEN	50
Hartiora New Heyen	West Hartford	HAR-CONN CHROME COMPANY	TETRACHLOROETHYLEN	5,000
New Haven	Themaster	H. KEVII & CO., INC.		50,000
	Domaston	QUALITY KULLING &		50,000
Fairfield	Danbury	MILLER-STEPHENSON	TETRAFLUOKUEIHANE	50,000
New Haven	Waterbury	MACDERMID INC.		500
Windham	Plainfield	GRISWOLD RUBBER CO INC	Thisses	5,000
Hartford	Bristol	ARETI SALES CORP		50 000
Fairfield	Danbury	THE BARDEN CORPORATION	THRICHLOROETHYLENE	50,000
New Haven	New Haven	URETEK INC	TOLNENE	5,000
New Haven	Waterbury	HUBBARD-HALL, INC.	TOLUENE	50,000
Middlesex	Middletown	NAPA DISTRIBUTION CENTER	TOLUENE	50,000
Ivitadiesex	Niidaletown	HABASH ABI, INC.	TOLUENE	50,000
raimield	Fairfield	FAIKPKENE, INU.	TOLUENE	5,000
INEW Haven		FLEACUN CUMPAN Y INC	TOLUENE	50,000
Hartiord	Bloomfield	II W CONVERTED PRODUCTS		5,000
INEW Haven	wallingford	UIKUINDUSIKIES DOMAD SPECIAL TIES COMPANY	TOLUENE	500,000
	winchester	BUWIAK SPECIAL HES CUMPANY	TOLUENE	500
Hartford	Windsor	SCAPA TAPES NORTH AMERICA	IOLUENE	5,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
Uartford	Dorlin	STANCHEM INC	TOLUENE	50.000
Fairfield	Stamford	STANCHEM, INC.	TOLUENE	50,000
Litabfield	Winchester	E.J. GAISSEK, INC DOMAD SDECIAL TIES COMDANY	TOLUENE	50,000
Litchileid	Winchester	BUMAR SPECIAL HES COMPANY	TOLUENE	500
New Haven	New Haven	SAIN I-GODAIN PERFORMANCE	TOLUENE	50,000
Hartford	Newington	FIVE STAK GROUP	TOLUENE	50,000
New Haven	West Haven	DELISCH PLASTIC CO. INC	TOLUNE	5,000
Hartford	Manchester	DYNAMIC GUNVER	louiene	50
Hartford	Manchester			50
Hartford	East Granby	ROCKBESTOS-SURPRENANT	TPE COMPOUND KP-300	50,000
Hartford	East Granby	ROCKBESTOS-SURPRENANT	TPE COMPOUND KP-510	5,000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES,	TREMOLITE	50,000
Fairfield	Danbury	TRUGREEN LAWNCARE	TRIAMENE II	5,000
Litchfield	Plymouth	PHOENIX PRODUCTS CO	TRICHLORD	5,000
Hartford	Bristol	ARETT SALES CORP	TRICHLORFON	50
Hartford	Bristol	ARETT SALES CORP	TRICHLORFON	50
New Haven	Wallingford	AMETEK, SPECIALTY METAL	TRICHLOROETHYLENE	50,000
Middlesex	Durham	DURHAM MANUFACTUIRNG	TRICHLOROETHYLENE	5,000
New Haven	Naugatuck	EXMET CORP	TRICHLOROETHYLENE	5,000
New Haven	Waterbury	EYELET DESIGN, INC	TRICHLOROETHYLENE	50,000
Hartford	East Windsor	ENGELAHRD CORPORATION	TRICHLOROETHYLENE	50,000
Hartford	East Windsor	ENGELHARD CORPORATION	TRICHLOROETHYLENE	50,000
New Haven	Southbury	ROMATIC MANUFACTURING	TRICHLOROETHYLENE	50,000
Fairfield	Bridgeport	BRIDGEPORT METAL GOODS	TRICHLOROETHYLENE	50,000
New Haven	Waterbury	HUBBARD-HALL, INC.	TRICHLOROETHYLENE	50,000
Hartford	Bristol	ENFLO CORPORATION	trichloroethylene hub-TRI	500
Hartford	Windsor	SCP DISTRIBUTORS, LLC.	Trichloro-s-triazinetrione	50,000
Hartford	Bristol	ARETT SALES CORP	TRICHLORTON	500
Hartford	Bristol	ARETT SALES CORP	TRICHLORTON	50
Hartford	Bristol	ARETT SALES CORP	TRICHLORTON	500
Fairfield	Bethel	INTERSURFACE DYNAMICS INC.	TRIETHANOLAMINE	5,000
Hartford	Southington	REM CHEMICALS, INC.	TRIETHANOLAMINE	5,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	TRIETHANOLAMINE	50.000
Fairfield	Danbury	RSA CORPORATION	TRIETHYL PHOSPHATE	5.000
New Haven	Wallingford	BYK-CHEMIE USA INC.	TRIETHYLENE GLYCOL	5.000
Hartford	Bristol	ARETT SALES CORP	TRIFLURALIN	50
Hartford	Bristol	ARETT SALES CORP	TRIFLURALIN	5.000
Hartford	Bristol	ARETT SALES CORP	TRIFLURALIN	50
Hartford	Bristol	ARETT SALES CORP	TRIFLURALIN	50
Fairfield	Bethel	VANDERBILT CHEMICAL	TRUSOOCTYL	5 000
New Haven	Waterbury	IACK SONLEA	TRIPOLI	50,000
Fairfield	Rethel	INTERSURFACE DYNAMICS INC	TRIPROPYLENEGLYCOL	5 000
Middlesex	Clinton	PREFERRED FOAM PRODUCTS	TRIS(MONOCHI OROPROP	5,000
New Haven	Waterbury	SYNAGRO NORTHFAST	TRUCK CI FANING	500
Hartford	Rocky Hill	TRUGREEN_CHEMI AWN	TRUPOWER SELECTIVE	5 000
Hartford	New Britain	OKAV INDUSTRIES INC	TUE DRAW 1010	50
Hartford	New Britain	OKAY INDUSTRIES, INC.	TUF DRAW 2806 M100	500
Hartford	Fast Hartford	COCA COLA BOTTI ING	LIN #1005 AMMONIA	5 000
Fairfield	Norwalk	HOCON GAS INC	UN 1075	500 000
New Hoven	Guilford	HOCON GAS OF CHILEODD LLC	UN1075	500,000
Livew Havell	Now Pritoin	AV INDUSTRIES INC	UNICI AZE COLODE #0000	50,000
Fairfield	Dothol	UANDEDDILT CHEMICAL	UNIULALE COLOKS #0000	50,000
Now Hover	Deulei East Usuan	VANDERDILI UTEVIIUAL		50,000
New Haven	East Haven	$\Gamma \cup \cup \Pi \cup L \cup D \cap U \cup A \cup I \cup D \cap U \cup A \cup I \cup A \cup A$	UNISALE 40 AD	50,000
new Haven	East Haven	GALEWAY IEKMINAL	ONISOL LIQUID R-20 DYE	5,000

				Amount
				On Site
County	Town	Facility Name	Chemical	(lbs)
Middlesex	Durham	DURHAM MANUFACTUIRNG	UNIVERSAL SCREEN WASH	50
Litchfield	Harwinton	O&G INDUSTRIES, INC.	USEMPAX AP	500
Litchfield	Torrington	O&G INDUSTRIES, INC.	USEMPAX AP	500
Hartford	Newington	FIVE STAR GROUP	V.M. & P. NAPHTHA	50,000
New Haven	Waterbury	BARTLEY MFG. CO. INC.	VACMUL 281 (3.33%)	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	VANCOR 081 HF	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	VANFRE AP-2,AP-2	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	VANFRE IL-2	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	VANLUBE 672	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	VANLUBE 727	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	VANLUBE 81/ AGERITE	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	VANLUBE 981	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	VANLUBES 601,	500,000
Fairfield	Bethel	VANDERBILT CHEMICAL	VANOX 1030, 1041	50,000
Fairfield	Bethel	VANDERBILT CHEMICAL	VANOX 898,904,931	50,000
New Haven	East Haven	FUCHS LUBRICANTS CO.	VELVESOL 96 ND	50,000
New Haven	Waterbury	MACDERMID INC.	VERSENE 100 EP	50,000
Hartford	Berlin	STANCHEM, INC.	VINYL ACETATE	50,000
Fairfield	Danbury	BOEHRINGER INGELHEIM	WASTE FLAMMABLE	5,000
New London	Norwich	AGIKLEARFOLD ATLANTIC PKG.	WC 3451RE576	5,000
Fairfield	Bethel	VANDERBILT CHEMICAL	WHITE OLEINE/EMERSOL	50,000
New Haven	Wallingford	CONNECTICUT STEEL	WIRE DRAWING	5,000
Middlesex	Clinton	STANLEY FASTENING SYSTEMS,	WITAMINA PP	50,000
New Haven	Waterbury	ALLEGHENY LUDLUM CORP.	WOCOSOL BTO - MIXED	50,000
New Haven	Seymour	VERNIER METAL FABRICATING,	XYLENE	5,000
Fairfield	Shelton	ANCO ENGINEERING, INC.	XYLENE	5,000
Hartford	Berlin	INDALEX INC.	XYLENE	5,000
Fairfield	Norwalk	KING INDUSTRIES, INC.	XYLENE	50,000
New Haven	New Haven	SAINT-GOBAIN PERFORMANCE	XYLENE	50,000
New Haven	Wallingford	BYK-CHEMIE USA INC.	XYLENE	500,000
New Haven	Waterbury	DEVIVO INDUSTRIES	XYLENE	5,000
Hartford	Berlin	STANCHEM, INC.	XYLENE	5,000
Hartford	Bristol	SUPERIOR ELECTRIC HOLDING	XYLENE	5,000
Hartford	Newington	FIVE STAR GROUP	XYLENE (MIXED	50,000
Hartford	Berlin	THE BERLIN STEEL	XYLENE (XYLOL)	500
Hartford	Windsor	SCAPA TAPES NORTH AMERICA	XYLENE-MIXED ISOMERS	5.000
Litchfield	Watertown	PPG ARCHITECTURAL FINISHES.	XYLENES	50,000
Hartford	Manchester	DYNAMIC GUNVER	Xvlenes Mixed	50
Hartford	Manchester	DYNAMIC	Xylenes Mixed	50
New Haven	Waterbury	HUBBARD-HALL. INC.	XYLOL	5.000
Hartford	Windsor Locks	AHLSTROM WINDSOR LOCKS	ZONYL RN	50
			State Total:	67,351,550

Facility Name	Chemical Name		Amount On Site (lbs)	Density (lbs/Gal)	Vapor Pressure (psi)	Molecular Weight (lb/lb-mole)	Tank Diameter (feet)
	Со	unty	Fairfield				
RSA CORPORATION	CHLOROFORM		500	12.48	5.165	119.3	2
BEIERSDORF INC	CHLOROFORM		50	12.48	5.165	119.3	1
VANDERBILT CHEMICAL	DIETHYLAMINE		50,000	5.906	6.132	73.14	11
BEIERSDORF INC	ETHANOL		500	6.61	1.683	46.07	2
RSA CORPORATION	ETHANOL		5,000	6.61	1.683	46.07	5
RSA CORPORATION	ETHYL ACETATE		5,000	7.551	2.515	88.1	5
KING INDUSTRIES, INC.	ISOBUTANOL		50,000	6.712	0.387	74.12	11
THE STAMFORD	ISOPROPANOL		50.000	6.573	1.297	60.09	11
KING INDUSTRIES, INC.	ISOPROPANOL		500.000	6.573	1.297	60.09	23
RSA CORPORATION	ISOPROPANOL		5.000	6.573	1.297	60.09	5
KING INDUSTRIES, INC.	METHANOL		50.000	6.63	3.463	32.04	11
RSA CORPORATION	METHANOL		5.000	6.63	3.463	32.04	5
THE BARDEN CORPORATION	METHYL ALCOHOL		50.000	6.63	3.463	32.04	11
FAIRPRENE, INC.	METHYL ETHYL KETONE		5.000	6.747	2.669	72.1	5
E.J. GAISSER, INC	TOLUENE		50.000	7.261	0.773	92.13	11
FAIRPRENE, INC.	TOLUENE		5.000	7.261	0.773	92.13	5
BRIDGEPORT METAL GOODS	TRICHLOROETHYLENE		50.000	12.27	2.031	131.4	9
	County		881,050				-
	Co	unty	Hartford				
		·	5 000		2.124	52.06	-
STANCHEM, INC.	ACRYLONITRILE		5,000	6.758	3.134	53.06	5
FIVE STAR GROUP	CYCLOHEXANE		50,000	6.522	2.611	84.16	11
SCAPA TAPES NORTH	ETHANOL (DENATURED		500	6.61	1.683	46.07	2
SCAPA TAPES NORTH	ETHYL ACETATE		500	7.551	2.515	88.1	2
STANCHEM, INC.	ETHYL ACRYLATE		50,000	7.75	1.123	100.1	10
FIVE STAR GROUP	ETHYL ALCOHOL		50,000	6.61	1.683	46.07	11
DYNAMIC GUNVER	Isopropyl Alcohol		500	6.573	1.297	60.09	2
DYNAMIC GUNVER	Isopropyl Alcohol		50	6.573	1.297	60.09	1
DYNAMIC	Isopropyl Alcohol		50	6.573	1.297	60.09	1
DYNAMIC GUNVER	Isopropyl Alcohol		50	6.573	1.297	60.09	1
FIVE STAR GROUP	ISOPROPYL ALCOHOL		50,000	6.573	1.297	60.09	11
THE NUWAY TOBACCO CO	ISOPROPYL ALCOHOL		5,000	6.573	1.297	60.09	5
DYNAMIC GUNVER	Isopryopyl Alocohol		50	6.573	1.297	60.09	1

		Amount		Vapor	Molecular	Tank
		On Site	Density	Pressure	Weight	Diameter
Facility Name	Chemical Name	(lbs)	(lbs/Gal)	(psi)	(lb/lb-mole)	(feet)
STANADYNE CORPORATION	METHANOL	50,000	6.63	3.463	32.04	11
STANCHEM, INC.	METHYL ACRYLATE	50,000	7.996	2.399	86.09	10
DYNAMIC GUNVER	Methyl Ethhyl Keytone	50	6.747	2.669	72.1	1
SCAPA TAPES NORTH	METHYL ETHYL KETONE	5,000	6.747	2.669	72.1	5
STANCHEM, INC.	METHYL ETHYL KETONE	5,000	6.747	2.669	72.1	5
ITW CONVERTED PRODUCTS	METHYL ETHYL KETONE	50,000	6.747	2.669	72.1	11
DYNAMIC	Methyl Ethyl Keytone	50	6.747	2.669	72.1	1
DUR-A-FLEX, INCORPORATED	METHYL METHACRYLATE	50,000	7.909	1.064	100.1	10
STANCHEM, INC.	METHYL METHACRYLATE	5,000	7.909	1.064	100.1	5
FIVE STAR GROUP	TOLUENE	50,000	7.261	0.773	92.13	11
ITW CONVERTED PRODUCTS	TOLUENE	5,000	7.261	0.773	92.13	5
STANCHEM, INC.	TOLUENE	50,000	7.261	0.773	92.13	11
SCAPA TAPES NORTH	TOLUENE	5,000	7.261	0.773	92.13	5
DYNAMIC GUNVER	Toulene	50	7.261	0.773	92.13	1
DYNAMIC	toulene	50	7.261	0.773	92.13	1
ENGELAHRD CORPORATION	TRICHLOROETHYLENE	50,000	12.27	2.031	131.4	9
ENGELHARD CORPORATION	TRICHLOROETHYLENE	50,000	12.27	2.031	131.4	9
STANCHEM, INC.	VINYL ACETATE	50,000	7.817	3.114	86.09	10
	County	686,900				
	C	County Litchfield				
BOMAR SPECIALTIES	TOLUENE	500	7 261	0 773	92.13	2
BOMAR SPECIALTIES	TOLUENE	500	7.261	0.773	92.13	2
	County	1,000				

Facility Name	Chemical Name	Amount On Site (lbs)	Density (lbs/Gal)	Vapor Pressure (psi)	Molecular Weight (lb/lb-mole)	Tank Diameter (feet)
	County	Middlesex				
PURIFICATION	ACETONITRILE	500.000	6.558	2.457	41.05	23
UNILEVER HOME AND	ALCOHOL	5.000	6.61	1.683	46.07	5
PURIFICATION	METHANOL	5.000	6.63	3.463	32.04	5
NAPA DISTRIBUTION CENTER	Methyl Ethyl Ketone	5.000	6.747	2.669	72.1	5
NAPA DISTRIBUTION CENTER	TOLUENE	50.000	7.261	0.773	92.13	11
HABASIT ABT. INC.	TOLUENE	50.000	7.261	0.773	92.13	11
DURHAM MANUFACTUIRNG	TRICHLOROETHYLENE	5,000	12.27	2.031	131.4	4
	County	620,000				
	County	v New Haven				
VON ROLL ISOLA USA. INC	18906A INSULATING VARNISH	5.000	7.261	0.773	92.13	5
VON ROLL ISOLA USA, INC	3407 METHYL ETHYL KETONE	5.000	6.747	2.669	72.1	5
BRAND-NU LABORATORIES.	ACETONITRILE	50,000	6.558	2.457	41.05	11
CYRO INDUSTRIES	ACRYLONITRILE	500.000	6.758	3.134	53.06	23
YALE UNIVERSITY OFFICE OF	CHLOROFORM	500	12.48	5.165	119.3	2
ACCUSTANDARD, INC	CHLOROFORM	50	12.48	5.165	119.3	- 1
BRAND-NULABORATORIES	CHLOROFORM	5 000	12.48	5 165	119.3	4
NASCO, INC.	DENATURED ALCOHOL	50	6.61	1.683	46.07	1
HUBBARD-HALL, INC.	ETHYL ACETATE	500	7.551	2.515	88.1	2
BRAND-NULABORATORIES	ETHYL ACETATE	50,000	7 551	2.515	88.1	10
UNITED STATES SURGICAL	ETHYL ACETATE	5.000	7.551	2.515	88.1	5
CYRO INDUSTRIES	ETHYL ACRYLATE	50,000	7.75	1.123	100.1	10
HUBBARD-HALL INC	ETHYL ALCOHOL	500	6.61	1 683	46.07	2
BRAND-NU LABORATORIES.	ISOPROPYL ALCOHOL	5.000	6.573	1.297	60.09	5
BRAND-NU LABORATORIES.	ISOPROPYL ALCOHOL	50,000	6.573	1.297	60.09	11
UNITED STATES SURGICAL	ISOPROPYL ALCOHOL	50,000	6.573	1.297	60.09	11
HUBBARD-HALL, INC.	ISOPROPYL ALCOHOL	500	6.573	1.297	60.09	2
PHOENIX DIVINA PRODUCTS	ISOPROPYL ALCOHOL	50.000	6.573	1.297	60.09	11
BRAND-NU LABORATORIES	METHANOL	50,000	6.63	3.463	32.04	11
BYK-CHEMIE USA INC.	METHANOL	5.000	6.63	3.463	32.04	5
HUBBARD-HALL, INC.	METHANOL	5,000	6.63	3.463	32.04	5

			Amount		Vapor	Molecular	Tank
			On Site	Density	Pressure	Weight	Diameter
Facility Name	Chemical Name		(lbs)	(lbs/Gal)	(psi)	(lb/lb-mole)	(feet)
HUBBARD-HALL, INC.	METHYL ETHYL KETONE		500	6.747	2.669	72.1	2
BRAND-NU LABORATORIES,	METHYL ETHYL KETONE		5,000	6.747	2.669	72.1	5
CYRO INDUSTRIES	METHYL METHACRYLATE		5,000,000	7.909	1.064	100.1	48
DEITSCH PLASTIC CO. INC	METHYLETHYL KETONE		5,000	6.747	2.669	72.1	5
URETEK INC	METHYLETHYLKETONE		5,000	6.747	2.669	72.1	5
BYK-CHEMIE USA INC.	METHYLPROPANOL		50,000	6.712	0.387	74.12	11
URETEK INC	TOLNENE		5,000	7.261	0.773	92.13	5
SAINT-GOBAIN PERFORMANCE	TOLUENE		50,000	7.261	0.773	92.13	11
HUBBARD-HALL, INC.	TOLUENE		50,000	7.261	0.773	92.13	11
FLEXCON COMPANY INC	TOLUENE		50,000	7.261	0.773	92.13	11
CYRO INDUSTRIES	TOLUENE		500,000	7.261	0.773	92.13	23
DEITSCH PLASTIC CO. INC	TOLUNE		5,000	7.261	0.773	92.13	5
EXMET CORP	TRICHLOROETHYLENE		5,000	12.27	2.031	131.4	4
EYELET DESIGN, INC	TRICHLOROETHYLENE		50,000	12.27	2.031	131.4	9
AMETEK, SPECIALTY METAL	TRICHLOROETHYLENE		50,000	12.27	2.031	131.4	9
ROMATIC MANUFACTURING	TRICHLOROETHYLENE		50,000	12.27	2.031	131.4	9
HUBBARD-HALL, INC.	TRICHLOROETHYLENE		50,000	12.27	2.031	131.4	9
	County		6,817,600				
	(County	New London				
AMERIGAS EAGLE PROPANE LP	METHYL ALCOHOL		50	6.63	3.463	32.04	1
	Country		50				
	County		50				
	(County	Tolland				
COUNTRY PURE FOODS	ISOPROPANOL		50	6.573	1.297	60.09	1
	County		50				

Facility Name	Chemical Name	Amount On Site (lbs)	Density (lbs/Gal)	Vapor Pressure (psi)	Molecular Weight (lb/lb-mole)	Tank Diameter (feet)
		County Windham				
AMERIGAS EAGLE PROPANE LP	METHANOL	5,000	6.63	3.463	32.04	5
AMERIGAS EAGLE PROPANE LP	METHANOL	50	6.63	3.463	32.04	1
	County	5,050				
	State Total:	9,011,700				

Town	Facility Name	Chemical Name	Breathing Losses (lbs/day)	Working Losses (lbs/day)	Annual Emissions (tons/year)	Daily Emissions (lbs/day)
		County Fairfield				
Donhury	ρς λ σορρορ λτιονι		0.00	0.02	0.02	0.11
Norwalk	REIERSDORE INC	CHLOROFORM	0.09	0.02	0.02	0.11
Rethel	VANDERBILT CHEMICAL	DIETHYI AMINE	5.86	2.97	1.61	8 84
Norwalk	BEIERSDORF INC	FTHANOI	0.01	0.00	0.00	0.04
Danbury	RSA CORPORATION	FTHANOL	0.01	0.00	0.00	0.01
Danbury	RSA CORPORATION	ETHANOL FTHYL ACETATE	0.02	0.03	0.02	0.14
Norwalk	KING INDUSTRIES INC	ISOBUTANOI	0.27	0.17	0.07	0.30
Stamford	THE STAMEORD	ISOPROPANOI	0.25	0.17	0.07	1 21
Norwalk	KING INDUSTRIES INC	ISOPROPANOL	1 29	0.40	0.22	1.21
Danbury	RSA CORPORATION	ISOPROPANOL	0.08	0.05	0.02	0.13
Norwalk	KING INDUSTRIES INC	METHANOL	1 29	0.65	0.35	1 94
Danbury	RSA CORPORATION	METHANOL	0.17	0.05	0.04	0.23
Danbury	THE BARDEN CORPORATION	METHYL ALCOHOL	1 29	0.65	0.35	1 94
Fairfield	FAIRPRENE, INC.	METHYL ETHYL KETONE	0.23	0.11	0.06	0.34
Stamford	E.I. GAISSER, INC	TOLUENE	0.59	0.38	0.18	0.98
Fairfield	FAIRPRENE, INC.	TOLUENE	0.06	0.04	0.02	0.10
Bridgeport	BRIDGEPORT METAL GOODS	TRICHLOROETHYLENE	1.52	0.85	0.43	2.37
8-1	Com	ntry Totale	12.92	6.62	2 7 2	20.44
	Cou		15.82	0.02	5.12	20.44
		County Hartford				
Berlin	STANCHEM, INC.	ACRYLONITRILE	0.23	0.10	0.06	0.32
Newington	FIVE STAR GROUP	CYCLOHEXANE	2.06	1.32	0.62	3.38
Windsor	SCAPA TAPES NORTH	ETHANOL (DENATURED	0.01	0.00	0.00	0.01
Windsor	SCAPA TAPES NORTH	ETHYL ACETATE	0.02	0.01	0.01	0.03
Berlin	STANCHEM, INC.	ETHYL ACRYLATE	0.76	0.57	0.24	1.33
Newington	FIVE STAR GROUP	ETHYL ALCOHOL	0.79	0.46	0.23	1.25
Manchester	DYNAMIC GUNVER	Isopropyl Alcohol	0.01	0.00	0.00	0.01
Manchester	DYNAMIC GUNVER	Isopropyl Alcohol	0.00	0.00	0.00	0.00
Manchester	DYNAMIC	Isopropyl Alcohol	0.00	0.00	0.00	0.00
Manchester	DYNAMIC GUNVER	Isopropyl Alcohol	0.00	0.00	0.00	0.00
Newington	FIVE STAR GROUP	ISOPROPYL ALCOHOL	0.75	0.46	0.22	1.21
South Windsor	THE NUWAY TOBACCO CO	ISOPROPYL ALCOHOL	0.08	0.05	0.02	0.13
Manchester	DYNAMIC GUNVER	Isopryopyl Alocohol	0.00	0.00	0.00	0.00

 Table 9

 Synthetic Organic Chemical Storage Tanks For Which Input Data Is Available

Town	Facility Name	Chemical Name	Breathing Losses (lbs/day)	Working Losses (lbs/day)	Annual Emissions (tons/year)	Daily Emissions (lbs/day)
	-					
Windsor	STANADYNE CORPORATION	METHANOL	1.29	0.65	0.35	1.94
Berlin	STANCHEM, INC.	METHYL ACRYLATE	1.60	1.01	0.48	2.61
Manchester	DYNAMIC GUNVER	Methyl Ethhyl Keytone	0.00	0.00	0.00	0.00
Windsor	SCAPA TAPES NORTH	METHYL ETHYL KETONE	0.23	0.11	0.06	0.34
Berlin	STANCHEM, INC.	METHYL ETHYL KETONE	0.23	0.11	0.06	0.34
Bloomfield	ITW CONVERTED PRODUCTS	METHYL ETHYL KETONE	1.89	1.12	0.55	3.00
Manchester	DYNAMIC	Methyl Ethyl Keytone	0.00	0.00	0.00	0.00
East Hartford	DUR-A-FLEX, INCORPORATED	METHYL METHACRYLATE	0.72	0.53	0.23	1.24
Berlin	STANCHEM, INC.	METHYL METHACRYLATE	0.10	0.05	0.03	0.15
Newington	FIVE STAR GROUP	TOLUENE	0.59	0.38	0.18	0.98
Bloomfield	ITW CONVERTED PRODUCTS	TOLUENE	0.06	0.04	0.02	0.10
Berlin	STANCHEM, INC.	TOLUENE	0.59	0.38	0.18	0.98
Windsor	SCAPA TAPES NORTH	TOLUENE	0.06	0.04	0.02	0.10
Manchester	DYNAMIC GUNVER	Toulene	0.00	0.00	0.00	0.00
Manchester	DYNAMIC	toulene	0.00	0.00	0.00	0.00
East Windsor	ENGELAHRD CORPORATION	TRICHLOROETHYLENE	1.52	0.85	0.43	2.37
East Windsor	ENGELHARD CORPORATION	TRICHLOROETHYLENE	1.52	0.85	0.43	2.37
Berlin	STANCHEM, INC.	VINYL ACETATE	2.37	1.34	0.68	3.71
	Cour	nty Total:	17.48	10.45	5.08	27.93
		County Litchfield				
		County Enterment				
Winchester	BOMAR SPECIALTIES	TOLUENE	0.00	0.00	0.00	0.01
Winchester	BOMAR SPECIALTIES	TOLUENE	0.00	0.00	0.00	0.01
	Cour	nty Total:	0.01	0.01	0.00	0.02

Town Facility Name		Chemical Name	Breathing Losses (lbs/day)	Working Losses (lbs/day)	Annual Emissions (tons/year)	Daily Emissions (lbs/day)
		County Middlesex				
Chester	PURIFICATION	ACETONITRII E	1 75	0.03	0.32	1 78
Clinton	LINIL EVER HOME AND	ALCOHOL	0.09	0.05	0.02	0.14
Chester	PURIFICATION	METHANOI	0.07	0.05	0.02	0.14
Middletown	NAPA DISTRIBUTION CENTER	Methyl Ethyl Ketone	0.23	0.07	0.04	0.25
Middletown	NAPA DISTRIBUTION CENTER	TOLUENE	0.59	0.11	0.00	0.04
Middletown	HABASIT ART INC	TOLUENE	0.59	0.38	0.18	0.98
Durham	DURHAM MANUFACTURNG	TRICHLOROFTHYLENE	0.16	0.58	0.18	0.98
Dumam	DOKITAM MANOFACTOIKING	TRICHLOROETHTLENE	0.10	0.09	0.05	0.23
	Coun	ity Total:	3.59	1.10	0.85	4.69
		County New Haven				
New Haven	VON ROLL ISOLA USA. INC	18906A INSULATING VARNISH	0.06	0.04	0.02	0.10
New Haven	VON ROLL ISOLA USA, INC	3407 METHYL ETHYL KETONE	0.23	0.11	0.06	0.34
Meriden	BRAND-NU LABORATORIES,	ACETONITRILE	1.00	0.60	0.29	1.60
Wallingford	CYRO INDUSTRIES	ACRYLONITRILE	2.97	0.03	0.54	2.99
New Haven	YALE UNIVERSITY OFFICE OF	CHLOROFORM	0.09	0.02	0.02	0.11
New Haven	ACCUSTANDARD. INC	CHLOROFORM	0.01	0.00	0.00	0.01
Meriden	BRAND-NU LABORATORIES.	CHLOROFORM	0.57	0.19	0.14	0.76
Waterbury	NASCO, INC.	DENATURED ALCOHOL	0.00	0.00	0.00	0.00
Waterbury	HUBBARD-HALL, INC.	ETHYL ACETATE	0.02	0.01	0.01	0.03
Meriden	BRAND-NU LABORATORIES.	ETHYL ACETATE	1.70	1.15	0.52	2.85
North Haven	UNITED STATES SURGICAL	ETHYL ACETATE	0.27	0.11	0.07	0.38
Wallingford	CYRO INDUSTRIES	ETHYL ACRYLATE	0.76	0.57	0.24	1.33
Waterbury	HUBBARD-HALL, INC.	ETHYL ALCOHOL	0.01	0.00	0.00	0.01
Meriden	BRAND-NU LABORATORIES.	ISOPROPYL ALCOHOL	0.08	0.05	0.02	0.13
Meriden	BRAND-NU LABORATORIES.	ISOPROPYL ALCOHOL	0.75	0.46	0.22	1.21
North Haven	UNITED STATES SURGICAL	ISOPROPYL ALCOHOL	0.75	0.46	0.22	1.21
Waterbury	HUBBARD-HALL, INC.	ISOPROPYL ALCOHOL	0.01	0.00	0.00	0.01
West Haven	PHOENIX DIVINA PRODUCTS	ISOPROPYL ALCOHOL	0.75	0.46	0.22	1.21
Meriden	BRAND-NULABORATORIES	METHANOL	1 29	0.65	0.35	1 94
Wallingford	BYK-CHEMIE USA INC.	METHANOL	0.17	0.07	0.04	0.23
Waterbury	HUBBARD-HALL, INC.	METHANOL	0.17	0.07	0.04	0.23
Waterbury	HUBBARD-HALL, INC	METHYL ETHYL KETONE	0.02	0.01	0.01	0.03
Meriden	BRAND-NU LABORATORIES.	METHYL ETHYL KETONE	0.23	0.11	0.06	0.34

Town	Facility Name	Chemical Name	Breathing Losses (lbs/day)	Working Losses (lbs/day)	Annual Emissions (tons/year)	Daily Emissions (lbs/day)
Wallingford	CYRO INDUSTRIES	METHYL METHACRYLATE	3.15	0.12	0.59	3.27
West Haven	DEITSCH PLASTIC CO. INC	METHYLETHYL KETONE	0.23	0.11	0.06	0.34
New Haven	URETEK INC	METHYLETHYLKETONE	0.23	0.11	0.06	0.34
Wallingford	BYK-CHEMIE USA INC.	METHYLPROPANOL	0.23	0.17	0.07	0.40
New Haven	URETEK INC	TOLNENE	0.06	0.04	0.02	0.10
New Haven	SAINT-GOBAIN PERFORMANCE	TOLUENE	0.59	0.38	0.18	0.98
Waterbury	HUBBARD-HALL, INC.	TOLUENE	0.59	0.38	0.18	0.98
North Branford	FLEXCON COMPANY INC	TOLUENE	0.59	0.38	0.18	0.98
Wallingford	CYRO INDUSTRIES	TOLUENE	1.16	0.03	0.22	1.19
West Haven	DEITSCH PLASTIC CO. INC	TOLUNE	0.06	0.04	0.02	0.10
Naugatuck	EXMET CORP	TRICHLOROETHYLENE	0.16	0.09	0.05	0.25
Waterbury	EYELET DESIGN, INC	TRICHLOROETHYLENE	1.52	0.85	0.43	2.37
Wallingford	AMETEK, SPECIALTY METAL	TRICHLOROETHYLENE	1.52	0.85	0.43	2.37
Southbury	ROMATIC MANUFACTURING	TRICHLOROETHYLENE	1.52	0.85	0.43	2.37
Waterbury	HUBBARD-HALL, INC.	TRICHLOROETHYLENE	1.52	0.85	0.43	2.37
	Cour	nty Total:	25.02	10.44	6.45	35.46
		County New Lor	ıdon			
Waterford	AMERIGAS EAGLE PROPANE	METHYL ALCOHOL	0.00	0.00	0.00	0.00
	Cour	nty Total:	0.00	0.00	0.00	0.00
		County Tolland				
Ell'actor	COLNTRY DURF FOODS		0.00	0.00	0.00	0.00
Ellington	COUNTRY PURE FOODS	ISOPROPANOL	0.00	0.00	0.00	0.00
	Cour	nty Total:	0.00	0.00	0.00	0.00
		County Windha	m			
Hampton	AMERIGAS EAGLE PROPANE	METHANOL	0.17	0.07	0.04	0.23
Plainfield	AMERIGAS EAGLE PROPANE	METHANOL	0.00	0.00	0.00	0.00
	Cour	ty Total:	0.17	0.07	0.04	0.23
	Sta	ate Total:	60.09	28.69	16.16	88.78

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS	
2.1	COMPLETENESS CHECKS - POINT SOURCES				
2.1.1	Does the inventory include point sources for VOC in the 10-25 tpy (actual) range?	X			
2.1.2	Are the following VOC point source categories represented among the 10-25 tpy plant listings?	X			
	- Graphic arts				
	- Commercial/institutional boilers	X			
	- Industrial boilers	X			
	- Gasoline bulk plants	X			
	- Degreasing operations	X			
	- Waste disposal/treatment	X			
2.1.3	Are the following broad source categories represented among the >25 tpy VOC plant listings? - Storage, transportation and marketing of petroleum products and volatile organic liquids	X			
	- Industrial processes	X			
	- Industrial surface coating	X			
2.1.4	Are the following CO and NO _X source categories represented among the plant listings? - Utility boilers	X			

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS	
	- Industrial boilers	X			
	- Commercial/institutional external fuel combustion	X			
	- Waste disposal/combustion	X			
2.2	PROCEDURES CHECKS - POINT SOURCES				
2.2.1	Does the inventory documentation describe the methodology used (i.e., survey, plant inspections, AFS, permit files, etc) to develop the point source inventory listing?	X			
2.2.2	Does the inventory documentation describe the methodology used to define the ozone season?	X			
2.2.3	Indicate which of the following basic options were used to submit data for point sources. - SAMS Version 3.1			CDX Transmition of NIF Version 3	
	- SAMS Version 4.0, or latest version	N/A			
	- AFS Batch Transaction Format	N/A			
	- Interactive direct entry to AFS	N/A			
2.2.4	Was the EPA's Surface Impoundment Modeling System (SIMS) used to estimate emissions from wastewater treatment/disposal sources?		X		
2.2.5	Was rule effectiveness applied to emission estimates for the following point source categories?	X			
	- Surface coating of metal coils	X			

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST						
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMM	IENTS		
	- Surface coating of fabric and vinyl	X					
	- Surface coating of paper products	X					
	- Coating of automobiles and light duty trucks in assembly plants	X					
	- Surface coating of metal furniture	X					
	- Surface coating of magnetic wire	X					
	- Tank truck gasoline loading terminals	X					
	- Bulk gasoline plants	Χ					
2.2.6	Was a rule effectiveness factor of 80 percent or a local category specific rule effectiveness factor used for all categories?	X					
2.2.7	Does the point source inventory documentation include the contact person(s) for referring questions?	X					
2.2.8	Select a subset which represents at least 10% of the listed point sources (in the > 25 TPY range) and determine if the following data are compiled and presented for each of these sources? (Note: Identify in the comments column the record numbers of those plants that were checked).	X		FacilityAFS PlantGulf Oil3388Motiva167Cyctec6527	<u>Sic#</u> 5171 5171 2821	TPY 210 255 723	
	- Plant name and location						
	- AFS point ID	X					
	- SIC code	X					
	- Operating schedule	X					

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS	
	- Applicable regulations	X			
	- Emission limitations (only if subject to SIP Reg)	X			
	- Compliance year (only if subject to SIP Reg)	X			
	- SCC code for process unit	X			
	- Daily process rate and units	Χ			
	- Control equipment	X			
	- Control efficiency	X			
	- Emission estimation method	X			
	- Emission factor	X			
	- Rule effectiveness	X			
	- Seasonal adjustment factor	X			
	- Ozone season daily emissions	X			
2.3	CONSISTENCY CHECKS - POINT SOURCES				
2.3.1	Does the sum of emission estimates from small VOC point sources (10-25 tpy) represent at least 5 percent of the total point source VOC contribution?		X	Very close @ 4.6%	
2.3.2	If point source VOC emissions are attributed to organic chemicals manufacture (SOCMI), are fugitive leaks also quantified? (Fugitive equipment leak emissions should be 1-10 times larger than emissions from vents, reactors, etc.)	X			

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST					
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS		
2.3.3	Are unadjusted annual emission estimates for VOC, CO and NO_X from point sources within 25% of the values reported in AFS?		X			
2.4	COMPLETENESS CHECKS - AREA SOURCES					
2.4.1	Does the inventory contain VOC area source emission estimates for the following source categories? -Gasoline distribution losses: tank truck unloading	X				
	vehicle refueling and tank breathing losses	X				
	tank trucks in transit	X				
	aircraft refueling	X				
	petroleum vessel loading/unloading		X			
	- Architectural coatings	X				
	- Auto refinishing	X				
	- Traffic markings	X				
	- Solvent metal cleaning-cold cleaners	X				
	- Dry cleaning-coin-operated	X				
	- Dry cleaning-commercial/industrial	X				
	- Graphic arts	X				
	- Cutback asphalt	X				

. .

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST					
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS		
	- Emulsified asphalt	X				
	- Consumer/commercial solvent use	X				
	- Municipal waste landfills	X				
2.4.1 cont'd	- Municipal wastewater treatment	X				
	- TSDF's		X			
	- Industrial wastewater treatment	X				
	- Pesticide application	X				
	- Stationary external combustion industrial	X				
	commercial	X				
	residential	X				
	- Structure fires	X				
	- Agricultural burning	X				
	- Slash/prescribed burning	X				
	- Forest fires	X				
	- Orchard heaters		X			
	- Synthetic organic chemical storage tanks	X				
APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST						
--	--	-----	----	----------	--	
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS		
	- Barge, tank, tank truck, rail car and drum cleaning		X			
	- Bakeries	X				
	- Breweries	X				
	- Wineries	X				
	- Distilleries		X			
	- Catastrophic/accidental releases		X			
	- On-site incineration		X			
	- Open burning	X				
	- Biogenic sources	X				
2.4.2	Does the inventory contain CO and NO _X area source emission estimates for the following stationary source categories? - Industrial boilers	X				
	- Commercial boilers	X				
	- Waste disposal combustion	X				
	- Open burning	X				
	- Stationary external combustion	X				
	- Structure fires	X				
	- Agricultural burning	X				

APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS
	- Forest fires	X		
	- Orchard heaters		X	
	- Slash/prescribed burning	X		
2.5	PROCEDURES CHECKS - AREA SOURCES			
2.5.1	Were area VOC emission estimates for the following categories developed using per capita or per employee emission factors? - Dry cleaning			Per Capita
	- Solvent metal cleaning-cold cleaners			Per Capita
	- Graphic arts			Per Capita
2.5.2	Were gasoline throughput values (for estimating VOC emissions from service stations) obtained from one of the following sources: state fuel tax offices, state or local transportation agencies, or the Federal Highway Administration publication Highway Statistics?			State Fuel Tax Office
2.5.3	If submerged filling or balance filling practices were assumed for tank truck unloading, was the prevalence of each filling technique derived based on local survey data?			Balance filling, regulation and survey rule effectiveness 1994 Study 96.8%
2.5.4	If truck unloading (Stage I) or vehicle refueling (Stage II) controls were assumed to be in place, was rule effectiveness applied in the emission calculations?	X		Stage I - 96.8%, Stage II Compliance Data
2.5.5	Were the estimates of the quantity of gasoline transported (for use in estimating VOC emissions from tank trucks in transit) based on 1.25 times the area-wide gasoline throughput?		X	

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST			
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS
2.5.6	Were VOC emission estimates from automobile refinishing derived using one of the following approaches: survey of local body shops or auto painting businesses, or use of employee counts in SIC 7531 and 7535?			Survey of auto body shops
2.5.7	Were VOC emission estimates for graphic arts corrected by subtracting point sources < 100 tpy?	X		
2.5.8	Were population data from the 1990 census used for emissions calculated with a per capita factor?	X		
2.5.9	Was area source fuel use (for external fuel consumption) estimated by subtracting total point source fuel use from area-wide total fuel use?	X		
2.5.10	Was information on cutback asphalt usage derived from one of the following sources: state or local highway department, highway contractors, or annual reports developed by the Asphalt Institute?			State DOT data and each town
2.5.11	Were the industrial wastewater flow estimates (used for estimating VOC emissions from POTW's) determined by one of the following methodologies: actual survey of industrial contribution to POTW flow, or use of the default value of 16 percent of total POTW flow?			DEP Bureau of Water Management provided end flow
2.5.12	Were VOC emission estimates from pesticide use based on information obtained from appropriate public agencies or private concerns?			EPA data
2.5.13	Was the EPA's Biogenic Emission Inventory System (BEIS) used to estimate VOC emissions from biogenic sources?	X		
2.5.14	If techniques other than PC-BEIS were used for making biogenic emission estimates, are they documented in enough detail to adequately evaluate them?	N/A	N/A	
2.5.15	Did the State document how they selected the day to model in PC-BEIS?	N/A	N/A	

D - 9

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS	
2.5.16	Do all counties within an inventory domain have the same date used in PC-BEIS?	N/A	N/A		
2.5.17	Did they follow the guidance in selecting the date to model?	N/A	N/A		
2.5.18	Are the meteorological inputs to PC-BEIS documented?	N/A	N/A		
2.5.19	Is a diskette with meteorological inputs included?	N/A	N/A		
2.5.20	Are the meteorological inputs reasonable?	N/A	N/A		
2.5.21	Did the State use the land use data provided in PC-BEIS, or were modifications made?	N/A	N/A		
2.5.22	If they modified land use data, is sufficient documentation available for evaluating the change and the source of the data?	N/A	N/A		
2.5.23	Was a rule effectiveness factor of 80 percent or a local category specific rule effectiveness factor used for all categories?		X	Category specific	
2.6	CONSISTENCY CHECKS - AREA SOURCES				
2.6.1	Are annual VOC emission estimates for tank truck unloading between 0.1 and 6.1 lbs/person?	X		0.26 lbs per person	
2.6.2	Are annual VOC emission estimates for vehicle refueling between 0.60 and 6.24 lbs/person?	X		0.82 lbs per person	
2.6.3	Are annual VOC emission estimates for tank trucks in transit between 0.011 and 0.017 lbs/person?		X	0.03 lbs per person	
2.6.4	Are annual VOC architectural coating emission estimates between 3.5 and 5.8 lbs/person?		X	3.3 lbs per person	

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS	
2.6.5	Are annual VOC emissions estimates for autobody refinishing between 1.7 and 2.9 lbs/person?		X	0.3 lbs per person	
2.6.6	Are annual VOC emission estimates for degreasing operations between 3.2 and 5.4 lbs/person?	X		4.8 lbs per person	
2.6.7	Are VOC emission estimates from perchloroethylene-based dry cleaners between 0.55 and 0.92 lbs/person?		X	Not a VOC, no estimate	
2.6.8	Are VOC emission estimates from petroleum-based dry cleaners between 0.82 and 1.38 lbs/person?		X	0.02 lbs per person	
2.6.9	Are VOC emissions from the graphic arts industry between 1.0 and 1.6 lbs/person?	X		1.1 lbs per person	
2.6.10	Are VOC emissions from cutback asphalt paving between 0.28 and 0.46 lbs/person?		Х		
2.6.11	Are annual VOC emission estimates from structure fires between 0.07 and 1.3 lb/person?		X	0.05 pounds per person	
2.6.12	Are annual VOC emission estimates from pesticide application greater than 0.4 lbs/year/person?	X		0.5 pounds per person	
2.7	COMPLETENESS CHECKS - AREA ON-ROAD MOBILE SOURCES				
2.7.1	Is information provided to document how each of the following MOBILE6.2 inputs were derived? - tampering rates	X			
	- vehicle miles traveled percentage by vehicle type	X		VMT Mix is provided for each road class.	
	 annual mileage accumulation rates and registration distribution by vehicle type and age 	X			

APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS
	- inspection and maintenance programs	X		
	- anti-tampering programs	X		
	- minimum and maximum daily temperature	X		
	- base Reid Vapor Pressure (RVP)	X		
	- in-use RVP and in-use start year	x		.Summer RVP was calculated but use of Fuel program input overrides summer Fuel input. RVP 2002 Winter RVP data was not available.1999 Winter RVP data was assumed
	- altitude region	X		Mobile 6.2 default used per EPA guidance.
	- calendar year	X		
	- speed	X		Speed VMT files provided for Freeway and Arterial Collectors.
2.7.1 cont'd	- ambient temperature	X		Design temperatures used per EPA Guidance.
	- operating modes	X		
2.7.2	Are estimates of vehicle miles traveled (VMT) provided that are:			
	- road-type specific?	X		
	- vehicle-type specific?	X		Vehicle specific VMT can be calculated from VMT Mix and the Mobile 6.2 road type specific VMT

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST					
CHECH	KLIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS		
2.7.3	Are methodology and calculations used to estimate VMT on the local functional system documented in the SIP?	X				
2.7.4	If an urban transportation planning model was used, have the boundaries of the transportation network been clearly defined in the documentation?	X				
2.7.5	If urban areas are sampled separately, does the HPMS-based SIP estimate include VMT on all of the following?			The DOT checks and calibrates their Travel Demand Model with Highway Performance Monitoring System (HPMS) measurements		
	-Each volume group within all sampled functional systems within the Federal Aid Urbanized Area (FAUA); -Interstates	X		(III MS) measurements.		
	-Other freeways/expressways	X				
	-Other principal arterials	X				
	-Minor arterials	X				
	-Collectors	X				
	-The local functional system within the FAUA;	X				
2.7.5 cont'd	-If the inventory area is larger than the FAUA, VMT on functional systems outside the FAUA but within the inventory area.	X		Federal Aid Urbanized Area (FAUA)		
2.8	PROCEDURES CHECKS - AREA ON-ROAD MOBILE SOURCES					
2.8.1	Were MOBILE6.2 defaults for tampering rates used?	X				
2.8.2	If alternative tampering rate values were used, did the EPA review and approve the survey on which the data were based?	N/A				

. .

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
СНЕСК	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS	
2.8.3	a. Were MOBILE6.2 annual mileage accumulation rates by age used (MYMRFG = 1 or 3)?	X		EPA supplied default mileage accumulation values were used.	
	b. Were calendar year 2002 area- or state-specific registration distributions by age used (MYMRFG = 3 or 4)?	X		State Specific Registration Age Distribution was developed for light duty vehicles from Department or Motor Vehicles Registration Data. Heavy Duty vehicle age distributions supplied by EPA were used, due to the national nature of interstate trucking	
2.8.4	Were the MOBILE6.2 default values used to define percent of VMT by operating mode?	X		Each Mobile 5 scenario had three operating modes. Mobile6 does not use operating mode and instead controls the effect of the engine starts using the SOAK DISTRIBUTION and STARTS PER DAY commands (Users Guide page 223).	
2.8.5	Were MOBILE6.2 basic emission rates used (NEWFLG=1)?		N/A	User Entry of Basic Exhaust Emission Rates (NEWFLG) is not included in Mobile 6.2, because it had no legitimate use in normal calculations (Mobile 6.2 Users Guide).	
2.8.6	What were the hydrocarbon (HC) emission factors used calculated as? -total HC (THC) (NMHFLG=1);		x	Command in Mobile 6.2 is EXPRESS HC AS THC (or NMHC, VOC, TOG, or NMOG).	
	-non-methane HC (NMHC) (NMHFLG=2);		X		
2.8.6 cont'd	-volatile organic compounds (VOC) (NMHFLG=3);	X		Mobile 6.2 defaults to express HC emissions in terms of volatile organic compounds.	
	-total organic gasses (TOG) (NMHFLG=4); or		X		
	-non-methane organic gasses (NMOG) (NMHFLG=5).		X		

APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECH	KLIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS
2.8.7	Where applicable, does the documentation describe how VMT estimates were developed if the transportation network input to the urban transportation model did not include rural and/or all urban roads in the inventory area?	X		
2.8.8	Is the inventory area larger than the FAUA?	X		
	If the answer to question 2.8.8 was "yes," how was VMT on roads outside the FAUA but inside the inventory area estimated? -Applied a state- or county-specific estimate of travel per mile of roadway to the mileage of roads outside the FAUA;		X	
	-Travel outside the FAUA is primarily rural. Applied VMT per roadway mile from other purely rural counties to estimate the VMT;		X	
	-Another method.	Х		CTDOT PERFORM Model was used and calibrated against HPMS observations.
2.8.9	Are the factors used to expand the HPMS segment data into FAUA VMT estimates by facility class/volume group listed in the SIP or is a reference given for the information?	X		HPMS data is used to calibrate the travel demand model and to ensure that forecasts are in line with observations.
2.8.10	Are the methods and factors used to adjust counts on sample segments for month, day-of-week, and/or hour-of-day documented in the SIP?	X		VMT by Hour input is provide for the model. Analyses are based on average weekday VMT. summer (Ozone), winter (CO) and annual (annual emissions).
.2.8.11	Are the methods and factors used to adjust counts on sample segments not actually counted in a given year documented in the SIP?	X		2000 data was used to adjust the PERFORM Model.
2.9	CONSISTENCY CHECKS - AREA ON-ROAD MOBILE SOURCES			
2.9.1	Was the average assumed speed between 2.5 and 65 mph?	X		

APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS
2.9.2	Was the urban area VMT by road type apportionment within the following ranges? - Interstate: Between 6.5 and 19.5 percent of total VMT?		X	These criteria were originally written for the 1990 Periodic Emissions Inventory and as such it is probable that the criteria is out dated. Never the less,
	- Other Freeway and Expressway: Between 0 and 9.0 percent of total VMT?		X	the response is provided and it is believed that the long standing DOT approach to VMT apportionment and estimation is sufficient and appropriate for the periodic emissions inventory. Urban Interstate 27.3%. Urban Other Principal Arterial 9.9%.
	- Other Principal Arterial: Between 7.85 and 23.55 percent of total VMT?	X		
	- Minor Arterial: Between 5.5 and 16.5 percent of total VMT?	X		
	- Collector: Between 2.45 and 7.35 percent of total VMT?	X		
	- Local: Between 4.6 and 13.8 percent of total VMT?	X		It should be noted that even with the EPA directed reapportionment of Local VMT to Arterial Collector VMT, Local VMT still met the apportionment stated for this criteria.
2.9.3	Is the calculated annual index of VMT/person within the 5,700 to 12,810 range?	X		8,600 miles per year per person estimated. 12,191 miles per year per vehicle estimated.
2.9.4	Is the calculated annual index of VMT/gal gasoline consumed, within the range of 14.6 to 24.4?	X		Value works out to approximately 19 miles per gallon.
2.10	COMPLETENESS CHECKS - AREA NON-ROAD MOBILE SOURCES			

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS	
2.10.1	Are emissions from all of the following classes of railroad included? a.Class I	X			
	b.Class II	X			
	c.Class III	X			
2.10.2	Are emissions reported for the two types of railroad operation? a.Line Haul	X			
	b.Yard	X			
2.10.3	Are emissions from the following types aircraft included in the inventory? a.Commercial aircraft.	X			
	b.General aviation aircraft and air taxis.	X			
	c.Military aircraft.	X			
2.11	PROCEDURES CHECKS - AREA NON-ROAD MOBILE SOURCES				
2.11.1	Did the EPA non-road study include the nonattainment area in question?	X		N/A – EPA NONROAD Model was used to estimate emissions for all Non Road Sources except Commercial Marine Vessels, Locomotives, and Aircraft.	
2.11.2	If so, was the EPA-supplied inventory for the area submitted without any modifications?	N/A			
2.11.3	How was the inventory submitted? -Averaged inventories A and B.	N/A			
	-Used Inventory A for some equipment types.	N/A			

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS	
2.11.3 cont'd	-Used Inventory B for some equipment types.	N/A			
2.11.4	If an EPA-supplied inventory was not used in its entirety, how was the inventory for the area compiled? -Modified the EPA-supplied inventory (complete questions 2.11.5 and 2.11.6)		N/A		
	-Adjustments to an EPA-supplied inventory for another area. (complete questions 2.11.7 to 2.11.9)		N/A		
	-Created a new inventory using the EPA non-road study methodology. (complete questions 2.11.10 to 2.11.14)		N/A		
	-Followed the 1989 version of Volume IV. This method is considered to be inferior to the other methods, and its use is discouraged. For Marginal and Moderate areas, applying a population adjustment to an inventory for another area is the preferred method. (complete questions 2.11.15 to 2.11.30)	Х	X	1989 Methodology used for Commercial Marine Vessels only.	
MODIFICAT	TIONS TO AN EPA-SUPPLIED INVENTORY				
2.11.5	If population estimates were modified, were estimates for each equipment category based on 2002 data?	N/A			
	If not, were equipment populations adjusted for growth to 2002?	N/A			
2.11.6	If emission factors were modified, are the new emission factors based on in-use emissions?	N/A			
ADJUSTME	NTS TO AN EPA-SUPPLIED INVENTORY FOR ANOTHER AREA				
2.11.7	Does the inventory report clearly state which area-specific EPA-supplied inventory was adjusted?	N/A			

APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS
2.11.8	Which inventory for the area was adjusted? -The average of inventories A and B.	N/A		
2.11.8 cont'd	-Inventory A for some equipment types.	N/A		
	-Inventory B for some equipment types.	N/A		
2.11.9	Is the population adjustment factor that was applied to that area's inventory listed in the inventory report?	N/A		
NEW INVE	NTORY USING THE EPA NON-ROAD STUDY METHODOLOGY			
2.11.10	Are emissions from all of the following non-road equipment categories included in the inventory? -Lawn and garden equipment	N/A		EPA NONROAD Model was used for all non-road sources except Commercials Marine Vessels (CMVs). Aircraft, and Locomotives. Per instructions only CMVs are in scope for this section, since aircraft and locomotive questions were addressed in 2.11.31 through 2.11.38.
	-Industrial equipment	N/A		
	-Airport service equipment	N/A		
	-Construction equipment	N/A		
	-Recreational equipment	N/A		
	-Agricultural equipment	N/A		
	-Recreational marine equipment	N/A		
	-Logging equipment	N/A		

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS	
	-Light commercial equipment	N/A			
	-Commercial marine vessels	N/A		1989 Document was used, for Commercial Marine Vessel emission estimation.	
2.11.11	For each equipment category, were population estimates based on data for 2002?	N/A		The NONROAD Model adjusted populations as needed. Commercial Marine Vessel estimates were based on 2002 data.	
	If not, were equipment populations adjusted for growth to 2002?	N/A		The NONROAD Model adjusted populations as needed.	
2.11.12	Were the equipment category emission factors based on in-use emissions?	N/A			
2.11.13	Are seasonal adjustment factors listed in the inventory report?	N/A			
2.11.14	Does the inventory report describe how seasonal adjustment factors were determined and justified?	N/A		NONROAD Model. Commercial Marine Vessel activity was assumed constant.	
NEW INVE	NTORY FROM 1989 VERSION OF VOLUME IV (method is discouraged)				
2.11.15	Was information on the population of agricultural equipment items within the inventory area collected using data from the <u>Census of Agriculture</u> ?	N/A			
2.11.16	Was the number of acres cultivated in each county in the inventory area used to apportion agricultural equipment fuel use?	N/A			
2.11.17	Were VOC, CO and NO _x emission estimates derived for the agricultural equipment category?	N/A			
2.11.18	Were emission calculations performed separately for the following equipment types? - Tracklaying tractors (diesel)	N/A			
	- Tracklaying loaders (diesel)	N/A			

. .

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS	
	- Motor graders (diesel and gas)	N/A			
	- Scrapers (diesel)	N/A			
	- Non-road trucks (diesel)	N/A			
2.11.18 cont'd	- Wheel loaders (diesel and gas)	N/A			
	- Wheel tractors (diesel and gas)	N/A			
	- Rollers (diesel and gas)	N/A			
	- Wheel dozers (diesel)	N/A			
	- Miscellaneous construction equipment (diesel and gas)	N/A			
2.11.19	Were local employment statistics for SIC codes 10-14, 20-39, and 50-51 used to estimate the number of industrial engines in use in the inventory area?	N/A			
2.11.20	Were VOC, CO and NO _X emission calculations performed for the following industrial engine categories? - Heavy duty diesel	N/A			
	- Heavy duty gasoline	N/A			
	- Light duty gasoline	N/A			
2.11.21	Were non-road motorcycle count estimates based on the number of motorcycles registered for on-road use?	N/A			
2.11.22	Were VOC, CO and NO_X emission calculations done for non-road motorcycle use?	N/A			

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS	
2.11.23	Was the <u>NEDS Fuel Use Report</u> used to estimate the amount of fuel used annually in lawn and garden equipment?	N/A			
2.11.24	Was lawn and garden fuel use apportioned by small engine type (2-cycle and 4-cycle)?	N/A			
2.11.25	Were VOC, CO and NO_X emissions calculated for each lawn and garden engine type?	N/A			
2.11.26	Were emission estimates from lawn and garden equipment adjusted to reflect seasonal activity levels?	N/A			
2.11.27	Was fuel consumed for recreational vehicles based on state boat registration data?	N/A			
2.11.28	Were the number of recreational boats (state-wide) apportioned to the inventory area level based on water surface area?	N/A			
2.11.29	Were emission estimates for commercial marine vessels based on quantity of fuel used as recorded in DOE's Energy Data Reports?	X			
2.11.30	Were statistics from <u>Waterborne Commerce of the US</u> used to apportion marine vessel activity by port location?	X			
2.11.31	Was the EPA's recommended methodology used to inventory locomotive emissions?	X			
2.11.32	If the EPA's recommended methodology was used, were either of the following EPA tailoring methods used? a. locomotive roster		X		
	b. duty cycle		X		

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST					
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS		
2.11.33	Was the FAA Aircraft Engine Emissions Database (FAEED) used to construct the inventory in whole or in part?	X		The EDMS program replaced FAEED, but was said to be consistent with FAEED except it had more modern airplanes (per EPA and FAA).		
2.11.34	Were the aircraft emission factors used in the inventory calculation: a. Pre-determined emission factors by landing and takeoff (LTO) based on default time-in-mode values?	X				
	b. Emission factors by LTO based on an evaluation (and possible adjustment) of each operational mode?		X	Default time in mode values were used.		
2.11.35	Were default times used for the operating modes in all LTO cycles? a. approach	X				
2.11.35 cont'd	b. takeoff	X				
	c. climbout	X				
	d. taxi/idle	X				
2.11.36	How were emissions from general aviation and air taxi aircraft determined? a. Used individual aircraft/engine combinations.	X		Where possible survey results indicating individual aircraft/engine combinations were used. Emission index		
	b. Used a single emission index made up of a representative fleet mix from the guidance document.	X		made up of a representative fleet mix from the guidance document were used, as well as some custom index values for aircraft types.		
	c. Other method.	X				
2.11.37	How was information on fleet make up and LTO's for military air bases obtained? a. Office of the Base Commander.	X		The FAA TAF data was used to fill in where survey data was not available. Survey data was completed by base		
	b. Centralized support office.	X		commanders, support offices and airport control personnel.		

. .

APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST				
CHECK	LIST ITEM NUMBER AND DESCRIPTION	YES	NO	COMMENTS
	c. Other method.	X		
2.11.38	For any aircraft or airport, were any of the following adjusted for daily or seasonal variations? a. Number of LTO's	X		
	b. Time in approach or climbout modes		X	
	c. Taxi/idle times		X	
2.12	CONSISTENCY CHECKS - AREA NON-ROAD MOBILE SOURCES			
2.12.1	Are annual emission estimates for agricultural equipment: - between 0.27 and 6.39 lbs VOC/person?	N/A		EPA NONROAD Model was used so checks were not performed.
2.12.1 cont'd	- between 5.14 and 122.80 lbs CO/person?	N/A		
	- between 0.69 and 15.70 lbs NO _X /person?	N/A		
2.12.2	Are annual emission estimates for non-road construction equipment: - between 1.12 and 5.35 lbs VOC/person?	N/A		
	- between 17.42 and 83.02 lbs CO/person?	N/A		
	- between 4.85 and 23.23 lbs NO _X /person?	N/A		
2.12.3	Are annual emission estimates for industrial machinery: - between 0.30 and 0.81 lbs VOC/person?	N/A		
	- between 7.7 and 19.7 lbs CO/person?	N/A		
	- between 0.85 and 2.15 lbs NO _X /person?	N/A		

	APPENDIX D - OZONE NONATTAINMENT INVENTORY REVIEW LEVEL II QUALITY REVIEW CHECKLIST					
СНЕСК	CHECKLIST ITEM NUMBER AND DESCRIPTION YES NO COMMENTS					
2.12.4	Are annual emission estimates for non-road motorcycles: - between 0.12 and 0.51 lbs VOC/person?	N/A				
	- between 0.45 and 1.88 lbs CO/person?	N/A				
	- between 0 and 0.012 lbs NO_X /person?	N/A				
2.12.5	Are annual emission estimates for lawn and garden equipment: - between 0.005 and 0.051 lbs VOC/person?	N/A				
	- between 0.047 and 0.479 lbs CO/person?	N/A				
	- between 0.001 and 0.005 lbs NO _X /person?	N/A				

. .

STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR MANAGEMENT COMPLIANCE ANALYSIS AND COORDINATION UNIT

Liquid Asphalt Reporting and Record Keeping Forms

Printed on recycled paper

Instructions for the Liquid Asphalt Reporting and Record Keeping Forms

Section 22a-174-20(k) of the Regulations of Connecticut State Agencies (RCSA) prohibits the storage, use, or application of cutback asphalt from June through September, unless five (5) percent or less of the total solvent within the asphalt evaporates at 500° F or lower, as determined by ASTM Method D-402.

Definitions

Class 8 Bituminous Concrete means the material specified in the most current version of the State of Connecticut, Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction.

Cutback Asphalt means asphalt which has been liquefied by blending with more than seven percent of petroleum distillates, by volume, as determined by The American Society for Testing and Materials, Distillation Test D-244.

Emulsified Asphalt means a type of liquid asphalt blended with water and an emulsifier, generally soaps or detergents.

Medium Curing Cutback Asphalt means the material which meets the specifications of the American Society for Testing and Material Designation D-2028.

Summer time means the months of June, July, August and September.

Tack Coat or Penetrating Prime Coat means an application of low-viscosity liquid asphalt to an absorbent surface (i.e., pre-existing roadway or gravel), to prepare an untreated base before the application of an asphalt surface.

Part I: Exemptions

The following are exempt from RCSA Section 22a-174-20(k) and may be used from June through September:

- Medium-curing cutback asphalt (which meets the specifications of ASTM Designation D-2028) used solely as a penetrating prime coat for aggregate bases prior to paving;
- Medium-curing cutback asphalt used for the manufacture of materials for long-term storage or stockpiling of patching mixes used in pavement maintenance; and
- Class 8 bituminous concrete used for crack filling, relief joints, minor leveling, pothole patching, and surface treatments with a depth of less than one inch.

Part II: Liquid Asphalt Reporting and Record Keeping Forms

Every three years, the Department of Environmental Protection (DEP) reports to the United States Environmental Protection Agency (EPA) on the air pollutant emission reductions attributable to RCSA Section 22a-174-20(k). The DEP has mailed these Reporting and Record Keeping Forms to collect information on liquid cutback asphalt and emulsified asphalt use during 2002. The information you provide will be used in the DEP's report to the EPA. If you have any questions about the Reporting or Record Keeping Forms, please call Dr. Ellen Pierce at 860-424-3027.

a. Reporting Form

Each municipality must complete the Reporting Form, even if it did not use liquid asphalt during 2002. You should be able to complete the Reporting Form in approximately 15 minutes. To complete the Reporting Form, you will need the following information:

- 1. The total amount of liquid asphalt used during 2002, both emulsified and cutback;
- 2. The total amount of liquid asphalt used from June through September, 2002;
- 3. The total amount of liquid cutback asphalt used as a tack coat or penetrating prime coat from June through September, 2002; and
- 4. Whether any liquid cutback asphalt used meets the standard for use from June through September.

Patching mixes purchased by the ton, regardless of whether they were made with liquid cutback or emulsified asphalt, should *not* be included on the Reporting Form.

By March 1, 2004, please submit the completed Reporting Form to:

COMPLIANCE ANALYSIS & COORDINATION UNIT BUREAU OF AIR MANAGEMENT DEPARTMENT OF ENVIRONMENTAL PROTECTION 79 ELM STREET, FIFTH FLOOR HARTFORD, CT 06106-5127 b. Record Keeping Form

Each municipality that used liquid cutback asphalt during 2002 must complete the Record Keeping Form. You must also keep the following records:

- 1. The name and address of all asphalt suppliers used by the municipality;
- 2. A record of the date, amount (in gallons), and formulation of all liquid cutback asphalt purchases;
- Test records or the supplier's certification confirming low solvent volatility, if applicable; and
- 4. A record of all liquid cutback asphalt used during from June through September, including the date of use, the formulation, the amount used (in gallons), and a brief description of the use.

Examples of liquid asphalt uses are:

Chip sealing Crack filling Leveling Manufacturing of patching mixes used for pavement repair Penetrating prime coat before paving Pothole patching Relief joints Sand sealing Tack coat for curbing or curb repair Tack coat for new paving

Emulsified liquid asphalt is not restricted and may be used anytime for any purpose. There are no record keeping requirements for emulsified liquid asphalt. Patching mixes purchased by the ton, regardless of whether they were made with liquid cutback or emulsified asphalt, should *not* be included on the Record Keeping Form.

The use of liquid cutback asphalt that meets the low volatility standard (less than 5% of the total solvent content evaporates at a temperature up to and including 500° F as determined by ASTM Method D-402) is not restricted. However, you must show that the liquid cutback asphalt meets the low volatility standard with a copy of the appropriate ASTM test as performed by the supplier or a certification from the supplier that the liquid cutback asphalt meets the low volatility standard. The municipality must record the purchase of liquid cutback asphalt that meets the low volatility standard on the Record Keeping Form and retain proof that it meets the low volatility standard.

Each municipality must complete and maintain Record Keeping Forms at the municipal offices for five (5) years. **Please do not mail Record Keeping Forms to the DEP, unless specifically requested.**

Worksheet

This worksheet includes most formulations of liquid cutback and emulsified asphalts; it may not include all formulations. The municipality has the responsibility to confirm asphalt content with its supplier.

a. If your municipality used *any* of the following formulations of liquid cutback asphalt during 2002, then you *must complete the entire* Reporting Form and the Record Keeping Form:

RC70;	RC80;	RC250;	RC3000;
MC30;	MC70;	MC250;	MC800;
MC3000;	SC70;	SC250;	SC800;
SC3000.			

b. If your municipality used *any* of the following formulations of emulsified asphalt during 2002, *and* did not use any liquid cutback asphalt, then you *must complete only* pages 1 and 2 of the Reporting Form:

MS-2h;	MS-1;	MS-2;	CRS-1;
CRS-2;	CMS-2;	CMS-2h;	CSS-1;
CSS-1h;	RS-1;	RS-2;	SS-1;
SS-1h.			

Liquid Asphalt Decision Tree

Liquid Asphalt Reporting Form

(TAD)		Town #
Part I: General Information		
Municipality:		
Mailing Address:		
City/Town:	State:	Zip Code:
Business Phone:	ext.	Fax:
Contact Person:	Title:	
Part IIA: Compliance Assurance		
Please answer the following questions, reporting controls and the ton.	only liquid asphalt, either em	ulsified or cutback. Do not include
1. Emulsified Liquid Asphalt Usage		
Did the municipality use, or have a contractor	or use, emulsified liquid asph	nalt during 2002?
🗌 Yes 🗌 No		
If yes, please provide the following:		
a. State the amount used during the month	is of June, July, August, and	September:
gallons		
b. State the amount used during all of 2002	2: gallons	
c. State the contractor's company name ar	nd telephone number:	
Contractor's Name:		
Business Phone:	ext.	Fax:
2. Liquid Cutback Asphalt Usage		
Did the Municipality use, or have a contracto	or use, liquid cutback asphal	t during 2002?
🗌 Yes 🗌 No		
If <i>no</i> , STOP . Please sign the certification in I the Record Keeping Form.	Part III below and return this	form. You do not have to complete
If yes, provide the information requested bel must complete the Record Keeping Form.	ow, complete Part IIB, and s	sign the certification in Part III. You
a. State the amount used during the month	is of June, July, August, and	I September:
gallons		
b. State the amount used during all of 2002	2: gallons	
c. State the contractor's company name ar	nd telephone number:	

Contractor's Name:

Part IIB: Compliance Assurance (continued)

Each municipality that used *liquid cutback asphalt* during 2002 must complete the following section.

1.	Please indicate the amount of liquid cutback asphalt that the municipality used or applied as a tack coat during June, July, August and September, 2002. Include any liquid cutback asphalt used as a tack coat for curb repair.
	Cutback used as tack coat gallons
2.	Liquid cutback asphalt that meets the low volatility standard (less than 5% of the total solvent contained evaporates at a temperature up to and including 500° F as determined by ASTM Method D-402) may be used from June through September.
	Does the municipality have a copy of the ASTM test results or a certification from the supplier that the liquid cutback asphalt used from June through September meets the low volatility standard?
	Yes No
3.	Liquid cutback asphalt that does not meet the low volatility standard (as stated in Part IIB, Item 2) may be used from June through September for the following purposes:
	a. Medium-curing cutback asphalt used as a penetrating prime coat (tack coat) for aggregate bases prior to paving (including curbs);
	b. Medium-curing cutback asphalt used for the manufacture of patching mixes; or
	c. Class 8 Bituminous Concrete used for crack filling, minor leveling, pothole patching or other surface treatments less than one inch.
	Did the municipality use liquid cutback asphalt that does not meet the low volatility standard for these purposes?
4.	Did the municipality have any liquid cutback asphalt in storage during June, July, August or September, 2002? Yes No
5.	Does the municipality have any liquid cutback asphalt in storage as of the date you completed this Reporting Form?
Mu ins	inicipalities that use liquid cutback asphalt must complete the Record Keeping Form. Please read the tructions before completing the Record Keeping Form.

Part III: Certification (must be signed by a municipal representative)

"I have personally examined and am familiar with the information submitted in this document and all attachments thereto, and I certify that based on reasonable investigation, including my inquiry of the individuals responsible for obtaining the information, the submitted information is true, accurate and complete to the best of my knowledge and belief.

I understand that a false statement in the submitted information may be punishable as a criminal offense, in accordance with Section 22a-6 of the General Statutes, pursuant to Section 53a-157b of the General Statutes, and in accordance with any other applicable statute.

I certify that this reporting form is on complete and accurate forms as prescribed by the commissioner without alteration of the text."

Signature

Date

Name (print or type)

Title (if applicable)

Liquid Asphalt Record Keeping Form

Town #

Part I: General Information

Municipality:		
Mailing Address:		
City/Town:	State:	Zip Code:
Business Phone:	ext.	Fax:
Contact Person:	Title:	

Part II: Asphalt Supplier Information

Please provide the name and address of the asphalt suppli-	er used by the mur	nicipality during 2002:								
Asphalt Supplier:										
Mailing Address:										
City/Town:	State:	Zip Code:								
Business Phone:	ext.	Fax:								
Contact Person: Title:										
Check here if the municipality used more than one asphalt supplier. If so, label and attach additional sheet(s) with the required information to this sheet.										

Part II: Liquid Cutback Asphalt Purchase Records

Please record the following information for all liquid cutback asphalt purchases made during 2002. If you do not know if the liquid cutback asphalt is **summer time compliant*** you must respond "No."

Check here if additional sheets are necessary, and label and attach them to this sheet.

Date of Purchase	Formulation of Cutback	Amount Purchased (gallons)	Is the cutback summer time compliant? Yes/No

• Summer time compliant means that less than five (5) percent of the total solvent contained within the cutback asphalt evaporates at a temperature up to and including 500° Fahrenheit. Copies of ASTM Method D-402 tests or the supplier's certification confirming such must be attached to this form.

Part III: Non-Summer Time Compliant Liquid Cutback Asphalt Use Records

Please record the following information for each use of **non-summer time compliant** liquid cutback asphalt during the months of June, July, August, and September, 2002. Do not record uses of summer time compliant liquid cutback asphalt or emulsified liquid asphalt.

Check here if additional sheets are necessary, and label and attach them to this sheet.

Date Used	Amount Used (gallons)	Formulation of Cutback	Brief Description of Use (i.e., leveling chip sealing, crack filling, tack coat)

Part IV: Certification (must be signed by a municipal representative)

"I have personally examined and am familiar with the information submitted in this document and all attachments thereto, and I certify that based on reasonable investigation, including my inquiry of the individuals responsible for obtaining the information, the submitted information is true, accurate and complete to the best of my knowledge and belief.

I understand that a false statement in the submitted information may be punishable as a criminal offense, in accordance with Section 22a-6 of the General Statutes, pursuant to Section 53a-157b of the General Statutes, and in accordance with any other applicable statute.

I certify that this record keeping form is on complete and accurate forms as prescribed by the commissioner without alteration of the text."

Signature

Date

Name (print or type)

Title (if applicable)

ATTACHMENT B1 Connecticut VMT by Hour

VMT BY HOUR
* CTHVMT.def ... March 2002
* Based on Connecticut ATR Counts (April 2001)
* Fraction of all vehicle miles traveled by hour of the day.
* First hour is 6 a.m.
*
0.0462 0.0669 0.0650 0.0524 0.0493 0.0519
0.0552 0.0558 0.0621 0.0725 0.0780 0.0789
0.0611 0.0447 0.0353 0.0296 0.0229 0.0169
0.0105 0.0070 0.0055 0.0057 0.0080 0.0186

ATTACHMENT B1 Connecticut VMT by Hour

THIS PAGE INTENTIONALLY BLANK IN SUPPORT OF DOUBLE SIDED PRINTING.

SPEED	VMT													
1 1	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.4385	.1752	.3863
1 2	.0000	.0000	.0112	.0112	.0112	.0112	.0112	.0112	.0112	.0000	.2415	.3982	.0880	.1940
1 3	.0000	.0000	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0000	.2472	.4391	.0973	.2147
1 4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0430	.4731	.1509	.3329
15	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.4639	.1672	.3689
16	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0430	.4793	.1490	.3287
1 7	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.1135	.4575	.1338	.2952
1 8	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.1405	.4489	.1281	.2825
1 9	.0000	.0000	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0000	.2188	.4604	.0995	.2195
1 10	.0000	.0000	.0270	.0270	.0270	.0270	.0270	.0270	.0270	.0000	.2616	.3291	.0688	.1517
1 11	.0000	.0000	.0321	.0321	.0321	.0321	.0321	.0321	.0321	.0000	.2844	.3160	.0546	.1204
1 12	.0000	.0000	.0321	.0321	.0321	.0321	.0321	.0321	.0321	.0000	.2844	.3160	.0546	.1204
1 13	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.1924	.4541	.1103	.2432
1 14	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	3813	1930	4257
1 15	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 16	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 17	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 18	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 19	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 20	0000	0000	.0000	.0000	0000	.0000	0000	0000	0000	0000	.0000	2980	2190	4830
1 21	0000	0000	.0000	.0000	0000	.0000	0000	0000	0000	0000	.0000	2980	2190	4830
1 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 24	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
2 1	.0000	0019	0018	0000	0235	.0000	1762	3172	3359	0226	0246	.2900	.2190	. 4030
2 1	.0000	.0019	0201	.0000	.0233	2125	1796	1775	1772	.0220	0144	.0000	.0000	.0000
2 2	.0000	.0421	.0381	.04/7	.0981	.2135	1720	.1766	1754	.0128	0144	.0000	.0000	.0000
2 3	.0000	.0447	.0407	.0402	.0975	1720	.1759	.1700	.1/34	.0120	.0144	.0000	.0000	.0000
2 7	.0000	.0098	.0095	.0102	0215	1251	1001	.2550	2022	.0191	.0199	.0000	.0000	.0000
2 5	.0000	.0050	.0049	.0090	.0315	1500	1075	.2002	.3023	.0199	.0237	.0000	.0000	.0000
20	.0000	.0082	.0079	.0102	.03/4	1956	1902	.2044	.2002	.0191	.0212	.0000	.0000	.0000
2 /	.0000	.0125	.0120	.0220	.0549	.1000	1700	.23//	.2562	.0177	.0193	.0000	.0000	.0000
2 0	.0000	.0126	.0122	.0233	.0557	.1002	.1/00	.2300	.2550	.01/1	.0193	.0000	.0000	.0000
2 9	.0000	.0250	.0247	.0201	1075	.2021	.1930	.1995	.2137	.0141	.0171	.0000	.0000	.0000
2 10	.0000	.0591	.0545	.0503	.1075	.21/4	.1/10	1260	1042	.0120	.0136	.0000	.0000	.0000
2 11	.0000	.0970	.0000	.0598	.0900	.2133	.1035	.1300	.1243	.0104	.0095	.0000	.0000	.0000
2 12	.0000	.1090	.0983	.0074	.0970	2069	1000	1969	.1108	.0112	.0079	.0000	.0000	.0000
2 13	.0000	.0308	.02/4	.0388	.0882	.2009	.1909	2006	2150	.0147	.0149	.0000	.0000	.0000
2 14	.0000	.0043	.0041	.0077	.0307	.1103	.1/31	.3000	.3139	.0210	.0237	.0000	.0000	.0000
2 15	.0000	.0000	.0000	.0004	.0077	.0266	.1033	.3/41	.41//	.0383	.0317	.0000	.0000	.0000
2 10	.0000	.0000	.0000	.0001	.0003	.0081	.0525	.3835	.4023	.0546	.0386	.0000	.0000	.0000
2 1/	.0000	.0000	.0000	.0000	.0000	.0002	.0044	.3855	.4//9	.0850	.0470	.0000	.0000	.0000
2 18	.0000	.0000	.0000	.0000	.0000	.0001	.0006	.3267	.4843	.1414	.0470	.0000	.0000	.0000
2 19	.0000	.0000	.0000	.0000	.0000	.0001	.0004	.3021	.4040	.2464	.0470	.0000	.0000	.0000
2 20	.0000	.0000	.0000	.0000	.0000	.0001	.0004	.3019	.3296	.3210	.0470	.0000	.0000	.0000
2 21 2 20	.0000	.0000	.0000	.0000	.0000	.0001	.0004	.3019	.3079	.3426	.0470	.0000	.0000	.0000
2 22	.0000	.0000	.0000	.0000	.0000	.0001	.0004	.3019	.3079	.3426	.0470	.0000	.0000	.0000
2 23	.0000	.0000	.0000	.0000	.0000	.0001	.0004	.3019	.3403	.3103	.0470	.0000	.0000	.0000
2 24	.0000	.0000	.0000	.0000	.0000	.0001	.0007	.3406	.4889	.1227	.0470	.0000	.0000	.0000
*ic,hou	ur, spee	ea>	1.0	1 -	0.0	0.5	2.0	25	10	4 5	= 0		C 0	65
^speed	; 2.5	5	TU	15	20	25	30	35	40	45	50	55	60	65+

* file 02sdvmt1.cty

* County 1 (Fairfield)

SPEED	VMT													
1 1	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0069	.3211	.2096	.4623
1 2	.0000	.0000	.0027	.0027	.0027	.0027	.0027	.0027	.0027	.0000	.0553	.3836	.1692	.3732
1 3	.0000	.0000	.0024	.0024	.0024	.0024	.0024	.0024	.0024	.0000	.0422	.3542	.1832	.4040
1 4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0165	.3308	.2036	.4491
15	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0134	.3258	.2062	.4547
16	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0165	.3308	.2036	.4491
1 7	.0000	.0000	.0004	.0004	.0004	.0004	.0004	.0004	.0004	.0000	.0219	.3338	.2002	.4414
1 8	.0000	.0000	.0010	.0010	.0010	.0010	.0010	.0010	.0010	.0000	.0218	.3333	.1990	.4389
19	.0000	.0000	.0024	.0024	.0024	.0024	.0024	.0024	.0024	.0000	.0368	.3551	.1846	.4070
1 10	.0000	.0000	.0050	.0050	.0050	.0050	.0050	.0050	.0050	.0000	.0585	.4364	.1466	.3233
1 11	.0000	.0000	.0082	.0082	.0082	.0082	.0082	.0082	.0082	.0000	.0892	.4324	.1314	.2898
1 12	.0000	.0000	.0082	.0082	.0082	.0082	.0082	.0082	.0082	.0000	.0892	.4247	.1338	.2951
1 13	.0000	.0000	.0010	.0010	.0010	.0010	.0010	.0010	.0010	.0000	.0282	.3579	.1893	.4176
1 14	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3153	.2136	.4711
1 15	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3009	.2181	.4810
1 16	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 17	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 18	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 19	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 20	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 21	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 23	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 24	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
2 1	.0000	.0016	.0012	.0029	.0095	.0547	.1367	.2420	.4541	.0435	.0539	.0000	.0000	.0000
2 2	.0000	.0251	.0243	.0301	.0844	.1955	.1946	.1487	.2435	.0302	.0236	.0000	.0000	.0000
2 3	.0000	.0260	.0252	.0313	.0865	.1946	.1937	.1468	.2422	.0300	.0236	.0000	.0000	.0000
2 4	.0000	.0052	.0049	.0065	.0365	.1158	.1816	.2081	.3597	.0362	.0455	.0000	.0000	.0000
2 5	.0000	.0028	.0025	.0039	.0214	.0859	.1552	.2249	.4133	.0393	.0508	.0000	.0000	.0000
2 6	.0000	.0049	.0045	.0033	.0312	.1104	.1626	.2157	.3830	.0386	.0457	.0000	.0000	.0000
2 7	.0000	.0068	.0062	.0092	.0397	.1358	.1840	.1948	.3465	.0385	.0384	.0000	.0000	.0000
2 8	.0000	.0070	.0064	.0116	.0381	.1375	.1867	.1934	.3437	.0371	.0384	.0000	.0000	.0000
2 9	.0000	.0140	.0134	.0222	.0655	.1742	.1800	.1724	.2900	.0356	.0328	.0000	.0000	.0000
2 10	.0000	.0339	.0325	.0441	.0969	.1976	.1917	.1359	.2163	.0309	.0202	.0000	.0000	.0000
2 11	.0000	.0601	.0564	.0490	.1179	.2176	.1681	.1172	.1738	.0222	.0177	.0000	.0000	.0000
2 12	.0000	.0724	.0676	.0583	.1150	.2192	.1651	.1089	.1595	.0182	.0159	.0000	.0000	.0000
2 13	.0000	.0181	.0175	.0237	.0776	.1817	.1925	.1611	.2641	.0326	.0309	.0000	.0000	.0000
2 14	.0000	.0018	.0014	.0053	.0148	.0750	.1414	.2347	.4333	.0417	.0508	.0000	.0000	.0000
2 15	.0000	.0002	.0000	.0000	.0028	.0118	.0627	.2713	.5358	.0512	.0644	.0000	.0000	.0000
2 16	.0000	.0000	.0000	.0000	.0000	.0032	.0222	.2742	.5709	.0613	.0682	.0000	.0000	.0000
2 17	.0000	.0000	.0000	.0000	.0000	.0002	.0052	.2460	.5879	.0915	.0691	.0000	.0000	.0000
2 18	.0000	.0000	.0000	.0000	.0000	.0000	.0003	.2203	.5659	.1444	.0691	.0000	.0000	.0000
2 19	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.2078	.4834	.2395	.0691	.0000	.0000	.0000
2 20	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.2076	.4416	.2815	.0691	.0000	.0000	.0000
2 21	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.2076	.4315	.2916	.0691	.0000	.0000	.0000
2 22	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.2076	.4315	.2916	.0691	.0000	.0000	.0000
2 23	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.2076	.4469	.2763	.0691	.0000	.0000	.0000
2 24	.0000	.0000	.0000	.0000	.0000	.0000	.0004	.2264	.5770	.1270	.0691	.0000	.0000	.0000
*fc,hou	ır, spee	ed>												
*speed:	2.5	5	10	15	20	25	30	35	40	45	50	55	60	65+
+ <u>-</u>	1 . 00-													001

* file 02sdvmt2.cty

* County 2 (Hartford)

SPEED	VMT													
1 1	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 3	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
15	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
16	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 7	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 8	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 9	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 10	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 11	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 12	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 13	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 14	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 15	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 16	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 17	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 18	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 19	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 20	0000	.0000	.0000	.0000	0000	.0000	0000	0000	0000	.0000	.0000	2980	2190	4830
1 21	0000	.0000	.0000	.0000	0000	.0000	0000	0000	0000	.0000	.0000	2980	2190	4830
1 22	0000	.0000	.0000	.0000	0000	.0000	0000	0000	0000	.0000	.0000	2980	2190	4830
1 22	0000	.0000	.0000	.0000	0000	.0000	0000	0000	0000	.0000	.0000	2980	2190	4830
1 24	0000	.0000	.0000	.0000	0000	.0000	0000	0000	0000	.0000	.0000	2980	2190	4830
2 1	0000	.0000	.0000	.0000	0024	0200	0339	0546	4320	1695	2876	.2000	0000	. 1050
2 1	0000	.0000	.0000	0045	0390	0676	1028	1025	3220	1337	2087	.0000	.0000	.0000
2 2	.0000	.0092	.0092	.0045	.0390	.0070	1020	1023	2220	1275	205/	.0000	.0000	.0000
2 3	.0000	.0095	.0095	.0052	.0399	0261	.1088	.1032	2059	1507	.2034	.0000	.0000	.0000
2 7	.0000	.0000	.0000	.0024	.0102	.0301	.0591	.0709	.3950	1672	.2008	.0000	.0000	.0000
2 5	.0000	.0000	.0000	0024	0160	0333	0527	0683	4040	1541	2691	.0000	.0000	.0000
2 0	.0000	.0000	.0000	0024	0175	.0333	0641	0764	3850	1623	2472	.0000	.0000	.0000
2 /	.0000	.0012	.0012	.0020	.0175	.0433	.0041	.0764	.3850	1600	.2472	.0000	.0000	.0000
2 0	.0000	.0012	.0012	.0020	.01/5	.0443	.0051	.0700	.3041	.1009	.24/2	.0000	.0000	.0000
2 9	.0000	.0022	.0022	.0140	.0215	.0592	.0000	.0903	.35/5	.1400	1056	.0000	.0000	.0000
2 10	.0000	.0113	.0113	.0008	.0512	.0701	1052	1252	.3103	1040	1901	.0000	.0000	.0000
2 11	.0000	.0140	.0140	.0204	.0340	1021	1046	1292	.2014	.1040	1755	.0000	.0000	.0000
2 12	.0000	.0203	.0203	.0229	.0407	.1031	.1040	.1209	2/20	1/05	.1/55	.0000	.0000	.0000
2 13	.0000	.0022	.0022	.01/2	.0303	.0598	.0802	.0931	.3408	1612	.2190	.0000	.0000	.0000
2 1 4 0 16	.0000	.0000	.0000	.0000	.0044	.0197	.0403	.0505	.4307	.1013	.2011	.0000	.0000	.0000
2 15	.0000	.0000	.0000	.0000	.0000	.0024	.0170	.02/1	.4303	.2214	. 2939	.0000	.0000	.0000
2 10	.0000	.0000	.0000	.0000	.0000	.0000	.0029	.0096	.4220	.2/10	. 2939	.0000	.0000	.0000
2 1/	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0024	.3583	.3454	. 2939	.0000	.0000	.0000
2 18	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3127	.3934	. 2939	.0000	.0000	.0000
2 19	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2698	.4303	. 2939	.0000	.0000	.0000
2 20	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.26/4	.4387	. 2939	.0000	.0000	.0000
2 21	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.26/4	.438/	. 2939	.0000	.0000	.0000
2 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2074	.4387	. 2939	.0000	.0000	.0000
2 23	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2074	.4387	. 2939	.0000	.0000	.0000
2 24 *== 1-	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0005	.3168	.3888	. 2939	.0000	.0000	.0000
^ic,nou	ur, spee	ea>	1.0	1 5	2.0	0.5	2.0	25	10	4 5	50		C 0	65
-speed	• 2.5	5	1U	15	20	25	30	35	40	45	50	55	60	65+

* file 02sdvmt3.cty

* County 3 (Litchfield)

SPEED	VMT													
1 1	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3351	.2074	.4575
1 3	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3234	.2111	.4655
1 4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
15	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
16	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 7	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 8	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3025	.2176	.4799
19	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3025	.2176	.4799
1 10	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0064	.4725	.1626	.3586
1 11	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0064	.5254	.1461	.3222
1 12	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0064	.5254	.1461	.3222
1 13	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3025	.2176	.4799
1 14	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 15	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 16	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 17	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 18	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 19	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 20	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 21	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 22	0000	.0000	.0000	.0000	0000	.0000	.0000	0000	0000	.0000	.0000	2980	2190	4830
1 23	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 2 2	0000	.0000	.0000	.0000	0000	.0000	.0000	0000	0000	.0000	.0000	2980	2190	4830
2 1	0000	.0000	.0000	.0000	0112	0166	0860	0786	4499	1057	2520	.2000	0000	0000
2 2	0000	0073	0073	0143	0554	1263	1169	1246	2863	.1057	1709	.0000	.0000	.0000
2 2	.0000	0097	0097	0138	0553	1205	1170	1299	2837	.0207	1693	.0000	.0000	.0000
2 2	.0000	.0007	.0000	0112	0081	0754	.1170	.1209	3974	.0090	2204	.0000	.0000	.0000
2 5	.0000	.0000	.0000	.0112	0142	0404	.0924	0853	4423	.0990	2201	.0000	.0000	0000
2 5	.0000	.0000	.0000	.0000	0088	0641	.0900	0899	4065	.0957	2291	.0000	.0000	0000
2 0	.0000	.0000	.0000	0112	0157	0826	1078	.0099	3773	.0903	2184	.0000	.0000	0000
2 7	.0000	.0000	.0000	0112	0157	.0020	1095	1006	27/2	.0900	2104	.0000	.0000	.0000
2 0	.0000	.0000	.0000	.0112	.0157	.0820	.1085	110/	2160	.0888	1026	.0000	.0000	.0000
2 9	.0000	.0001	.0001	.0070	.0303	1420	.1100	1202	.3102	.0875	1515	.0000	.0000	.0000
2 10	.0000	.0134	.0134	.0210	.0540	1265	.1103	.1393	.2390	.0940	1200	.0000	.0000	.0000
2 11	.0000	.0209	.0200	.0349	.0057	1270	1441	1400	.2202	.00//	1275	.0000	.0000	.0000
2 12	.0000	.0350	.0347	.0278	.0700	.1270	1171	1225	2040	.0703	1765	.0000	.0000	.0000
2 13	.0000	.0071	.0071	.0090	.0421	.1137	.11/1	.1225	.3049	.0973	.1705	.0000	.0000	.0000
2 14	.0000	.0000	.0000	.0000	.0112	.0279	.0919	.0785	.4559	1215	.24/9	.0000	.0000	.0000
2 15	.0000	.0000	.0000	.0000	.0000	.0056	.0203	.0000	.5090	.1315	.2000	.0000	.0000	.0000
2 10	.0000	.0000	.0000	.0000	.0000	.0000	.0056	.0491	. 5111	.1000	.2000	.0000	.0000	.0000
2 17	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0233	.4550	.2530	.2001	.0000	.0000	.0000
2 10	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.4076	. 3243	.2001	.0000	.0000	.0000
2 19	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3409	. 3909	.2001	.0000	.0000	.0000
2 20	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3245	.4073	.2081	.0000	.0000	.0000
2 21	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3245	.40/3	.2001	.0000	.0000	.0000
4 44	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3245	.4073	.2001	.0000	.0000	.0000
∠ ∠3 2 24	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3245	.40/3	.2001	.0000	.0000	.0000
2 24 *== b	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0009	.4316	.2994	.2001	.0000	.0000	.0000
* rrc, nou	ur, spee	=u> r	1.0	1 -	2.0	25	20	25	4.0	4 5	EO	F.F.	60	C F -
"speed	· 4.5	5	T0	TD	∠0	20	30	30	40	40	50	55	00	+ca

* file 02sdvmt4.cty

* County 4 (Middlesex)

SPEED	VMT													
1 1	.0000	.0000	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0000	.0024	.3612	.1980	.4366
1 2	.0000	.0000	.0075	.0075	.0075	.0075	.0075	.0075	.0075	.0000	.1046	.4126	.1343	.2963
1 3	.0000	.0000	.0021	.0021	.0021	.0021	.0021	.0021	.0021	.0000	.0953	.4219	.1460	.3220
1 4	.0000	.0000	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0000	.0100	.3963	.1847	.4073
15	.0000	.0000	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0000	.0024	.3710	.1949	.4298
16	.0000	.0000	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0000	.0100	.3963	.1847	.4073
1 7	.0000	.0000	.0004	.0004	.0004	.0004	.0004	.0004	.0004	.0000	.0362	.4416	.1620	.3574
1 8	.0000	.0000	.0006	.0006	.0006	.0006	.0006	.0006	.0006	.0000	.0538	4226	.1620	.3574
1 9	.0000	.0000	.0017	.0017	.0017	.0017	.0017	.0017	.0017	.0000	.0921	. 4261	.1466	.3234
1 10	.0000	.0000	.0116	.0116	.0116	.0116	.0116	.0116	.0116	.0000	.1819	.3635	.1165	.2569
1 11	.0000	.0000	.0177	.0177	.0177	.0177	.0177	.0177	.0177	.0000	.1572	.3702	.1087	.2398
1 12	.0000	.0000	.0174	.0174	.0174	.0174	.0174	.0174	.0174	.0000	.1547	.3726	.1095	.2415
1 13	.0000	.0000	.0006	.0006	.0006	.0006	.0006	.0006	.0006	.0000	.0918	.3960	.1585	.3495
1 14	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0018	3235	2105	4642
1 15	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2999	2184	4817
1 16	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2993	2186	4821
1 17	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 18	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 19	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 20	0000	.0000	.0000	.0000	0000	.0000	.0000	0000	0000	.0000	.0000	2980	2190	4830
1 21	0000	.0000	.0000	.0000	0000	.0000	.0000	0000	0000	.0000	.0000	2980	2190	4830
1 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 24	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
2 1	.0000	.0000	.0000	.0000	0114	.0000	1090	3189	3891	0348	0714	.2900	.2190	. 4030
2 1	.0000	0210	0215	.0023	.0114	1621	1969	2019	2140	0262	0479	.0000	.0000	.0000
2 2	.0000	.0219	.0215	.0427	.0733	1659	1976	2010	2115	.0202	.0478	.0000	.0000	.0000
2 3	.0000	.0235	.0231	.0404	.0751	1050	.1070	.2010	2104	.0202	.0478	.0000	.0000	.0000
2 1	.0000	.0041	.0041	.0090	.0300	.1059	1217	2030	2562	.0324	.0028	.0000	.0000	.0000
2 5	.0000	.0024	.0024	.0027	.0204	1112	1221	2969	.3303	.0337	.0085	.0000	.0000	.0000
2 0	.0000	.0053	.0053	0122	0473	1084	1574	2609	3033	0315	0597	.0000	.0000	0000
2 /	.0000	.0052	.0052	.0122	.0475	.1004	1520	.2099	.3033	.0315	.0597	.0000	.0000	.0000
2 0	.0000	.0055	.0055	.0117	.0495	.1100	.1530	.2094	.3027	.0315	.0597	.0000	.0000	.0000
2 9	.0000	.0130	.0132	.0224	.0009	19/0	.1766	1001	1070	.0295	.0550	.0000	.0000	.0000
2 10	.0000	.0307	.0357	.0300	1002	1020	1694	1502	1527	.0242	.0458	.0000	.0000	.0000
2 11	.0000	.0383	.0551	.0300	1002	.1939	1556	1520	1/10	.0249	.0357	.0000	.0000	.0000
2 12	.0000	.0713	.0079	.0390	.1093	1460	1907	.1520	.1410	.02/2	.0300	.0000	.0000	.0000
2 13	.0000	.0109	.0104	.0292	.0772	.1409	.1007	2120	.2310	.0300	.0500	.0000	.0000	.0000
2 1 4 2 16	.0000	.0017	.0017	.0021	.0139	.0732	.1100	.3130	.3721	.0341	.0098	.0000	.0000	.0000
2 15	.0000	.0000	.0000	.0007	.0023	.0130	.0407	.3550	.4000	.0420	.0701	.0000	.0000	.0000
2 10	.0000	.0000	.0000	.0000	.0007	.0030	.01/9	.3550	.4055	.0503	.0790	.0000	.0000	.0000
2 1/ 2 10	.0000	.0000	.0000	.0000	.0000	.0003	.0057	.3372	.4032	.0927	.0790	.0000	.0000	.0000
2 10	.0000	.0000	.0000	.0000	.0000	.0003	.0003	.3207	.4301	.141/	.0790	.0000	.0000	.0000
2 19	.0000	.0000	.0000	.0000	.0000	.0003	.0003	.3106	.3957	.2142	.0790	.0000	.0000	.0000
2 20	.0000	.0000	.0000	.0000	.0000	.0003	.0003	.3106	.3030	.2469	.0790	.0000	.0000	.0000
∠ ∠⊥ 2 22	.0000	.0000	.0000	.0000	.0000	.0003	.0003	.3100	.3554	. 2045	.0/90	.0000	.0000	.0000
∠ ∠∠ 2 22	.0000	.0000	.0000	.0000	.0000	.0003	.0003	.3100	.3054	. 2045	.0/90	.0000	.0000	.0000
∠ ∠3 0 04	.0000	.0000	.0000	.0000	.0000	.0003	.0003	.3106	.3055	. 2443	.0/90	.0000	.0000	.0000
2 24 *fa koo	.0000	.0000.	.0000	.0000	.0000	.0003	.0003	.3245	.4/04	.1255	.0/90	.0000	.0000	.0000
* rr	ur, spee • > -	=u> r	1.0	1 -	2.0	25	20	25	10	4 5	EO	F.F.	60	C F -
-speed	• 4.5		T0	TD	20	20	30	30	40	40	50	22	00	+ca

* file 02sdvmt5.cty

* County 5 (New Haven)

SPEED	VMT													
1 1	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0163	.4221	.1752	.3864
1 3	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0068	.4061	.1831	.4039
1 4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3094	.2154	.4751
15	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3028	.2175	.4797
1 6	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3094	.2154	.4751
1 7	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	3094	2154	4751
1 8	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	3343	2077	4580
1 9	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	4083	.1846	4071
1 10	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0583	4537	1523	3358
1 11	.0000	.0000	.0010	.0010	.0010	.0010	.0010	.0010	.0010	.0000	.1503	3787	1448	3193
1 12	.0000	.0000	.0010	.0010	.0010	.0010	.0010	.0010	.0010	.0000	1447	.3805	1460	3220
1 13	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	3950	.1888	.4163
1 14	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 15	0000	.0000	.0000	.0000	0000	0000	0000	.0000	0000	0000	.0000	2980	2190	4830
1 16	0000	.0000	.0000	.0000	0000	0000	0000	.0000	0000	0000	.0000	2980	2190	4830
1 17	0000	.0000	.0000	.0000	0000	0000	0000	.0000	0000	0000	.0000	2980	2190	4830
1 1 8	0000	.0000	.0000	.0000	0000	0000	0000	.0000	0000	0000	.0000	2980	2190	4830
1 10	0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 20	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 21	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 24	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
2 1	.0000	.0000	.0000	.0000	.0000	0455	1142	1326	5023	1062	0871	.2900	.2190	. 4030
2 1	.0000	.0007	.0007	.0010	.0099	1666	1716	1470	2766	0720	0454	.0000	.0000	.0000
2 2	.0000	.0217	.0217	0217	.0534	1716	1601	1462	.2700	0765	0416	.0000	.0000	.0000
2 3	.0000	.0224	.0224	.0217	.0340	.1/10	1296	1402	.2/42	.0705	0715	.0000	.0000	.0000
2 1	.0000	.0050	.0050	.0010	.0345	.0934	1265	1246	.4101	1012	.0715	.0000	.0000	.0000
2 5	.0000	.0007	.0007	.0100	0204	0734	1507	1328	4328	.1012	0723	.0000	.0000	.0000
20	.0000	0061	0040	0024	.0299	0984	1507	1467	3030	.0901	0692	.0000	.0000	.0000
2 /	.0000	.0001	.0001	.0072	.0333	1012	1407	.1407	.3934	.0095	.0092	.0000	.0000	.0000
20	.0000	.0001	.0001	.0141	.0282	1209	.1407	1200	2021	.0875	.0092	.0000	.0000	.0000
2 9	.0000	.0138	.0138	.01/1	.0430	10/7	.1755	1405	.3231	.0852	.0495	.0000	.0000	.0000
2 10	.0000	.0254	.0254	.0293	.0780	.104/	.1010	1220	.2530	.0043	.0377	.0000	.0000	.0000
2 11	.0000	.0447	.0407	.0342	.0857	.2038	1622	1247	1061	.0309	.0333	.0000	.0000	.0000
2 12	.0000	0170	0170	0159	0482	1603	1645	1440	3057	0800	0473	.0000	.0000	.0000
2 13	.0000	.0170	.0170	.0139	.0482	.1003	1227	1276	.3037	.0800	.0473	.0000	.0000	.0000
2 1 4 2 1E	.0000	.0007	.0007	.0004	.0105	.0455	.122/	.1370	.4030	.0979	.0003	.0000	.0000	.0000
2 15	.0000	.0000	.0000	.0000	.0013	.0100	.0533	.1130	.5020	1002	1254	.0000	.0000	.0000
2 10	.0000	.0000	.0000	.0000	.0000	.0013	.0123	.0919	.5000	.1003	.1254	.0000	.0000	.0000
2 1/ 2 10	.0000	.0000	.0000	.0000	.0000	.0000	.0013	.0325	.3042 E016	.2351	.1409	.0000	.0000	.0000
2 10	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0015	.5210	. 3230	.1533	.0000	.0000	.0000
2 19	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3999	.4400	.1533	.0000	.0000	.0000
2 20	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3706	.4/62	.1533	.0000	.0000	.0000
2 21	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	. 3 / 06	.4/62	.1533	.0000	.0000	.0000
2 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3/06	.4/62	.1533	.0000	.0000	.0000
2 23	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3/06	.4/62	.1533	.0000	.0000	.0000
2 24	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0065	.5460	.2942	.1533	.0000	.0000	.0000
^IC, no	ur, spee	ea>	1.0	1 5	0.0	0.5	2.0	25	10	4 5	50		60	65
-speed	· 2.5	5	1U	15	20	45	30	35	40	45	50	55	60	65+

* file 02sdvmt6.cty

* County 6 (New London)
ATTACHMENT C1 County Level Speed Distribution of VMT

SPEED	VMT													
1 1	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3055	.2167	.4779
1 3	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 5	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
16	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 7	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 8	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 9	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 10	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3338	.2078	.4584
1 11	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3728	.1957	.4315
1 12	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.3728	.1957	.4315
1 13	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 14	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 15	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 16	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 17	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 18	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 19	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	2980	2190	4830
1 20	0000	0000	.0000	.0000	0000	.0000	0000	0000	0000	.0000	.0000	2980	2190	4830
1 21	0000	0000	.0000	.0000	0000	.0000	0000	0000	0000	.0000	.0000	2980	2190	4830
1 22	0000	0000	.0000	.0000	0000	.0000	0000	0000	0000	.0000	.0000	2980	2190	4830
1 22	0000	0000	.0000	.0000	0000	.0000	0000	0000	0000	.0000	.0000	2980	2190	4830
1 24	0000	0000	.0000	.0000	0000	.0000	0000	0000	0000	.0000	.0000	2980	2190	4830
2 1	0000	0000	.0000	.0000	0000	0031	0661	1315	3250	1383	3361	.2000	0000	. 1050
2 1	.0000	0011	0011	0146	0331	1121	1597	1269	2234	1212	2068	.0000	.0000	.0000
2 2	.0000	0013	0013	0146	0331	1189	1616	1242	.2234	1149	2068	.0000	.0000	.0000
2 2	.0000	.0015	.0013	0000	0016	.1109	1066	1389	2050	1256	2866	.0000	.0000	.0000
2 5	.0000	.0000	.0000	.0000	.0010	0287	0765	1366	3141	1434	3007	.0000	.0000	.0000
2 5	.0000	.0000	.0000	.0000	.0000	0300	.0705	1347	3004	1354	2897	.0000	.0000	.0000
2 0	.0000	.0000	.0000	.0000	.0010	0608	1212	1383	2766	1310	2704	.0000	.0000	.0000
2 /	.0000	.0000	.0000	.0000	.0010	.0000	1025	1270	2751	1207	2704	.0000	.0000	.0000
20	.0000	.0000	.0000	.0000	.0099	.0525	1622	1246	2529	1106	.2704	.0000	.0000	.0000
2 9	.0000	.0000	.0000	.0010	.0291	1472	1756	1162	1060	1272	1750	.0000	.0000	.0000
2 10	.0000	.0013	.0013	.0231	.0339	1507	1047	1070	1765	1046	1517	.0000	.0000	.0000
2 11	.0000	.0143	.0143	.0140	.0033	1904	1961	1012	.1705	.1040	1422	.0000	.0000	.0000
2 12	.0000	.0200	.0200	0016	.0000	.1004	1646	1234	2444	1149	2221	.0000	.0000	.0000
2 1 2	.0000	.0005	.0005	.0010	.0555	0215	.1040	1344	3158	1404	3107	.0000	.0000	.0000
2 1 4 2 16	.0000	.0000	.0000	.0000	.0000	.0215	.0082	.1344	.3130	1520	.3197 2751	.0000	.0000	.0000
2 15	.0000	.0000	.0000	.0000	.0000	.0000	.0087	.0930	.3000	.1530	.3/51	.0000	.0000	.0000
2 10	.0000	.0000	.0000	.0000	.0000	.0000	.0010	.0465	.39/3	.1020	.3912	.0000	.0000	.0000
2 1/ 2 10	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0125	.3000	.2103	.3912	.0000	.0000	.0000
2 10	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0008	.3045	.3037	.3912	.0000	.0000	.0000
2 19	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.1933	.4155	.3912	.0000	.0000	.0000
∠ ∠∪ 2 21	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.1042	.4240	.3912	.0000	.0000	.0000
∠ ∠⊥ 2 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	1042	.4240	.3912	.0000	.0000	.0000
∠ ∠∠ 2 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	1042	.4240	.3912	.0000	.0000	.0000
∠ ∠3 2 24	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.1042	.4240	.3912	.0000	.0000	.0000
∠ ∠4 *fa b	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0010	.3384	.2694	.3912	.0000	.0000	.0000
°IC, NON	ur, spe • > r	ea>	1.0	1 5	2.0	25	20	25	10	4 5	ГO		C 0	с г.
-speed	· 2.5	C 7 ⊥	1U	TD	20	20	30	30	40	45	50	22	60	+cơ

* file 02sdvmt7.cty

* County 7 (Tolland)

ATTACHMENT C1 County Level Speed Distribution of VMT

SPEED	VMT													
1 1	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 3	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 5	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
16	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 7	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 8	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
19	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 10	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 11	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 12	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 13	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 14	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 15	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 16	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 17	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 18	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.2980	.2190	.4830
1 19	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	4830
1 20	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	.4830
1 21	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	.4830
1 22	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	.4830
1 23	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	.4830
1 2.4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	2980	2190	.4830
2 1	.0000	.0000	.0000	.0000	.0000	.0178	.0247	.1519	.2980	.1967	.3109	.0000	.0000	.0000
2 2	0000	0044	0044	0092	0178	0399	1464	1513	2546	1627	2094	0000	0000	0000
2 3	.0000	.0044	.0044	.0092	.0178	.0399	1472	1528	2533	1652	2058	.0000	.0000	.0000
2 4	.0000	.0000	.0000	.0000	.0125	.0235	.0440	1678	2839	1757	2925	.0000	.0000	.0000
2 5	.0000	.0000	.0000	.0000	.0045	.0187	.0425	1599	2868	1844	3032	.0000	.0000	.0000
2 6	.0000	.0000	.0000	.0000	.0080	.0250	0394	1680	2872	1744	2980	.0000	.0000	.0000
2 7	.0000	.0000	.0000	.0045	.0125	.0235	.0533	1702	2866	1803	2691	.0000	.0000	.0000
28	0000	0000	0000	0045	0125	0235	0542	1704	2860	1864	2626	0000	0000	0000
2 9	.0000	.0023	.0023	.0035	.0125	.0318	.0950	.1725	2687	.1711	2404	.0000	.0000	.0000
2 10	0000	0066	0066	0071	0159	0589	1605	1638	2346	1532	1926	0000	0000	0000
2 11	0000	0103	0103	0154	0211	0792	1896	1531	2203	1399	1607	0000	0000	0000
2 12	.0000	.0141	.0113	.0146	0264	1059	1918	1425	2158	1397	.1379	.0000	.0000	.0000
2 13	.0000	.0023	.0023	.0080	.0180	.0343	.0994	1666	2621	1747	2325	.0000	.0000	.0000
2 14	.0000	.0000	.0000	.0000	.0045	.0142	.0303	1700	2837	1922	.3050	.0000	.0000	.0000
2 15	0000	0000	0000	0000	0000	0000	0130	0710	3458	2505	3197	0000	0000	0000
2 16	0000	0000	0000	0000	0000	0000	0008	0328	3550	2882	3233	0000	0000	0000
2 17	0000	0000	0000	0000	0000	0000	0000	0052	2871	3843	3233	0000	0000	0000
2 18	0000	0000	0000	0000	0000	0000	0000	0000	2051	4716	3233	0000	0000	0000
2 19	0000	0000	0000	0000	0000	0000	0000	0000	0895	5872	3233	0000	0000	0000
2 20	0000	0000	0000	0000	0000	0000	0000	0000	0845	5922	3233	0000	0000	0000
2 20	0000	.0000	.0000	.0000	0000	.0000	.0000	.0000	0845	5922	3233	0000	.0000	.0000
2 22	0000	0000	0000	0000	0000	0000	0000	0000	0845	5922	2022	0000	0000	0000
2 22	0000	0000	0000	0000	0000	0000	0000	0000	0845	5922	2022	0000	0000	0000
2 22	0000	0000	0000	0000	0000	0000	0000	0008	2229	4430	2022	0000	0000	0000
*fc ho	ir ene	>	.0000	.0000	.0000	.0000	.0000	.0000	. 4349	.1130		.0000	.0000	.0000
*gpaad	. 2 5	5	10	15	20	25	20	25	40	45	50	55	60	65-
* - '	1 - 00-	 		10	20	20	50		10	15	50		00	0.5 F

* file 02sdvmt8.cty

* County 8 (Windham)

ATTACHMENT D1 Connecticut Vehicle Age Distribution

* SWP 12/07/2002: 2002 CT Registration Data provided by Klausmeier and ERG to * be processed via a VIN Decoder and matched to a light duty vehicle class. * Motorcycles were analyzed separately by the Connecticut Department of Environmental * Protection. Light duty vehicle results were specified to or modified to: * 1) exclude Model Year 2003 data; * 2) include all Model Year 2002 vehicles (no fraction was eliminated); * 3) include all pre-1972 data, as well as all other data excluded by ERG that could be matched up with a Mobile 6 vehicle type and model year; * Note that CT data were used for only LDV, LDT1, LDT2, LDT3, and LDT4 vehicles * and Motorcycles; all others age distributions used were MOBILE6 default values. * Calendar Year: 2002.000User-Input * This file contains some CT specific and some default MOBILE6 values for * the distribution of vehicles by age for July of any calendar year. Data was * pulled from the DMV Grand List 10/1/2002, but should correspond to July considering * that all the distribution excludes any model year 2003 vehicles. * There are sixteen (16) sets of values representing 16 combined gasoline/diesel vehicle * class distributions. These distributions are split for gasoline and diesel * using the separate input (or default) values for diesel sales fractions. * Each distribution contains 25 values, which represent the fraction of * all vehicles in that class (gasoline and diesel) of that age in July. * The first number is for age 1 (calendar year minus model year plus one) * and the last number is for age 25. The last age includes all vehicles * of age 25 or older. The first number in each distribution is an integer * which indicates which of the 16 vehicle classes are represented by the * distribution. The sixteen vehicle classes are: * 1 LDV Light-Duty Vehicles (Passenger Cars) Light-Duty Trucks 1 (0-6,000 lbs. GVWR, 0-3750 lbs. LVW) * LDT1 Light Duty Trucks 2 (0-6,001 lbs. GVWR, 3751-5750 lbs. LVW) 3 LDT2 * 4 LDT3 Light Duty Trucks 3 (6,001-8500 lbs. GVWR, 0-3750 lbs. LVW) * 5 LDT4 Light Duty Trucks 4 (6,001-8500 lbs. GVWR, 3751-5750 lbs. LVW) 6 HDV2B Class 2b Heavy Duty Vehicles (8501-10,000 lbs. GVWR) * 7 HDV3 Class 3 Heavy Duty Vehicles (10,001-14,000 lbs. GVWR) 8 HDV4 Class 4 Heavy Duty Vehicles (14,001-16,000 lbs. GVWR) * 9 HDV5 Class 5 Heavy Duty Vehicles (16,001-19,500 lbs. GVWR) * 10 HDV6 Class 6 Heavy Duty Vehicles (19,501-26,000 lbs. GVWR) * 11 HDV7 Class 7 Heavy Duty Vehicles (26,001-33,000 lbs. GVWR) * 12 HDV8A Class 8a Heavy Duty Vehicles (33,001-60,000 lbs. GVWR) * 13 HDV8B Class 8b Heavy Duty Vehicles (>60,000 lbs. GVWR) * 14 HDBS School Busses * 15 HDBT Transit and Urban Busses * 16 MC Motorcycles (All) * The 25 age values are arranged in two rows of 10 values followed by a row * with the last 5 values. Comments (such as this one) are indicated by * an asterisk in the first column. Empty rows are ignored. Values are * read "free format," meaning any number may appear in any row with as \ast many characters as needed (including a decimal) as long as 25 values * follow the initial integer value separated by a space. * If all 28 vehicle classes do not need to be altered from the default * values, then only the vehicle classes that need to be changed need to * be included in this file. The order in which the vehicle classes are * read does not matter, however each vehicle class set must contain 25 * values and be in the proper age order. REG DIST * RESULTING MOBILE6-BASED REGISTRATION FRACTIONS LDV, LDT1, LDT2, LDT3, LDT4 and MC CT Specific * MOBILE6 REGISTRATION FRACTIONS BY VEHICLE CLASS AND AGE * LDV - Connecticut Specific 2002 Combined Diesel and Gas Vehicle Data 1 0.0700 0.0803 0.0851 0.0757 0.0708 0.0714 0.0618 0.0705 0.0593 0.0569 0.0490 0.0427 0.0416 0.0396 0.0331 0.0280 0.0198 0.0131 0.0087 0.0047 $0.0027 \ 0.0021 \ 0.0016 \ 0.0023 \ 0.0092$ * LDT1 - Connecticut Specific 2002 Combined Diesel and Gas Vehicle Data $2 \hspace{0.1in} 0.0745 \hspace{0.1in} 0.0458 \hspace{0.1in} 0.0350 \hspace{0.1in} 0.0342 \hspace{0.1in} 0.0412 \hspace{0.1in} 0.0415 \hspace{0.1in} 0.0594 \hspace{0.1in} 0.0691 \hspace{0.1in} 0.0708 \hspace{0.1in} 0.0544$ 0.0404 0.0505 0.0555 0.0705 0.0639 0.0713 0.0489 0.0278 0.0169 0.0081 0.006 0.0053 0.0008 0.001 0.0072

ATTACHMENT D1 Connecticut Vehicle Age Distribution

* LDT2 - Connecticut Specific 2002 Combined Diesel and Gas Vehicle Data 3 0.1051 0.1115 0.1209 0.1029 0.1030 0.0930 0.0697 0.0677 0.0586 0.0453 0.0311 0.0218 0.0128 0.0144 0.0191 0.0053 0.0046 0.0033 0.0026 0.0018 0.0007 0.0006 0.0006 0.0009 0.0027 * LDT3 - Connecticut Specific 2002 Combined Diesel and Gas Vehicle Data 4 0.0824 0.0993 0.0875 0.0994 0.0632 0.0586 0.0497 0.0643 0.0526 0.0378 0.0273 0.0204 0.0280 0.0418 0.0451 0.0321 0.0269 0.0201 0.0128 0.0081 0.0036 0.0024 0.0019 0.0051 0.0296 * LDT4 - Connecticut Specific 2002 Combined Diesel and Gas Vehicle Data 5 0.1580 0.1399 0.1159 0.1244 0.0929 0.0778 0.0489 0.0589 0.0397 0.0181 0.0119 0.0071 0.0135 0.0113 0.0164 0.0098 0.0083 0.0077 0.0044 0.0022 $0.0017 \ 0.0005 \ 0.0002 \ 0.0069 \ 0.0236$ * HDV2B - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data 6 0.0503 0.0916 0.0833 0.0758 0.0690 0.0627 0.0571 0.0519 0.0472 0.0430 0.0391 0.0356 0.0324 0.0294 0.0268 0.0244 0.0222 0.0202 0.0184 0.0167 $0.0152 \ 0.0138 \ 0.0126 \ 0.0114 \ 0.0499$ * HDV3 - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data 7 0.0503 0.0916 0.0833 0.0758 0.0690 0.0627 0.0571 0.0519 0.0472 0.0430 0.0391 0.0356 0.0324 0.0294 0.0268 0.0244 0.0222 0.0202 0.0184 0.0167 0.0152 0.0138 0.0126 0.0114 0.0499 * HDV4 - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data 8 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 $0.0398 \ 0.0372 \ 0.0348 \ 0.0326 \ 0.0304 \ 0.0285 \ 0.0266 \ 0.0249 \ 0.0233 \ 0.0218$ 0.0204 0.0191 0.0178 0.0167 0.0797 * HDV5 - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data 9 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0797 * HDV6 - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data 10 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0797 * HDV7 - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data 11 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 $0.0398 \ 0.0372 \ 0.0348 \ 0.0326 \ 0.0304 \ 0.0285 \ 0.0266 \ 0.0249 \ 0.0233 \ 0.0218$ 0.0204 0.0191 0.0178 0.0167 0.0797 * HDV8a - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data 12 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0797 * HDV8b - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data 13 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 $0.0204 \ 0.0191 \ 0.0178 \ 0.0167 \ 0.0797$ * HDBS - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data 14 0.0393 0.0734 0.0686 0.0641 0.0599 0.0559 0.0522 0.0488 0.0456 0.0426 0.0398 0.0372 0.0347 0.0324 0.0303 0.0283 0.0264 0.0247 0.0231 0.0216 0.0201 0.0188 0.0176 0.0165 0.0781 * HDBT - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data 15 0.0307 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0613 $0.0611 \ 0.0607 \ 0.0595 \ 0.0568 \ 0.0511 \ 0.0406 \ 0.0254 \ 0.0121 \ 0.0099 \ 0.0081$ 0.0066 0.0054 0.0044 0.0037 0.0114 * Motorcycles - Connecticut Specific 2002 Data $16 \quad 0.0975 \ 0.0943 \ 0.0744 \ 0.0676 \ 0.0500 \ 0.0425 \ 0.0401 \ 0.0357 \ 0.0290 \ 0.0285$ 0.0215 0.0170 0.0182 0.0189 0.0181 0.0231 0.0308 0.0298 0.0217 0.0257 0.0351 0.0302 0.0263 0.0183 0.1057

		Average daily VMT (miles per day)					
County	Facility Type	Annual	Summer	Winter			
Fairfield	Expressway	9,452,778	10,164,280	8,895,600			
	Arterial/Collector	8,824,713	9,697,486	8,870,724			
	Local	1,775,497	2,053,734	1,883,694			
	Ramp	383,620	412,494	361,008			
Hartford	Expressway	9,415,914	10,124,630	8,873,387			
	Arterial/Collector	9,620,608	10,572,090	9,703,827			
	Local	1,732,174	1,993,811	1,831,368			
	Ramp	402,557	432,857	379,363			
Litchfield	Expressway	524,334	563,800	486,679			
	Arterial/Collector	3,055,999	3,358,242	2,957,226			
	Local	599,316	752,313	661,303			
	Ramp	20,146	21,662	18,699			
Middlesex	Expressway	2,479,859	2,666,515	2,306,368			
	Arterial/Collector	1,830,527	2,011,568	1,778,110			
	Local	385,159	469,241	412,431			
	Ramp	76,697	82,470	71,331			
New Haven	Expressway	9,165,656	9,855,545	8,619,257			
	Arterial/Collector	7,462,567	8,200,625	7,523,105			
	Local	1,468,564	1,680,820	1,534,183			
	Ramp	362,053	389,304	340,470			
New London	Expressway	3,626,845	3,899,832	3,396,135			
	Arterial/Collector	4,089,869	4,494,362	4,007,478			
	Local	594,894	723,293	649,964			
	Ramp	108,320	116,473	101,429			
Tolland	Expressway	1,792,299	1,927,204	1,659,167			
	Arterial/Collector	2,198,922	2,416,398	2,116,146			
	Local	357,379	444,267	387,494			
	Ramp	34,713	37,326	32,135			
Windham	Expressway	842,274	905,671	774,581			
	Arterial/Collector	1,979,016	2,174,743	1,869,975			
	Local	220,926	304,970	263,549			
	Ramp	36,010	38,720	33,116			

ATTACHMENT E1 Average Daily County Level VMT (miles per day)

ATTACHMENT F1 Sample Airport Cover Letter and Survey Sheet

June 20, 2007

«ContactPerson», «Title» «Airport» «Address» «Town», «State» «PostalCode»

Dear «ContactPerson»:

The Connecticut Department of Environmental Protection (DEP) Bureau of Air Management is conducting a survey of airports operating in the state to determine the impact of hydrocarbon, carbon monoxide, and nitrogen oxide emissions on the air quality in Connecticut. Aircraft operations are a small contributor to Connecticut ozone level but Federal guidelines maintain that states must include airport activity in state periodic emission inventories. The DEP requests your cooperation in providing the following information:

- Monthly and yearly Landing and Takeoff (LTO) cycles for the year 2002 (An aircraft landing then taking off would be one LTO).
- List of the predominant type(s) of aircraft using your runways (i.e., Beech 18, Cessna 150).
- List percentages of each type of aircraft.

The DEP is aware this data is usually not kept in detail, but rough estimates are acceptable here. Please keep in mind these aircraft related questions are for the entire year. The DEP would appreciate your response to the enclosed survey by <u>March 31, 2003</u> Your response to this survey will help in preparing the 2002 Ozone and Carbon Monoxide Emissions Inventory.

Your immediate response to this survey is very important. If you have any questions, I can be contacted at (860) 424-3385 or by E-mail at Steven.Potter@po.state.ct.us. Thank you in advance for your time and cooperation.

Sincerely,

Steven Potter Air Pollution Control Engineer II, Mobile Source Inventory

ATTACHMENT F1 Sample Airport Cover Letter and Survey Sheet

CT Department of Environmental Protection

79 Elm Street, 5th Floor ♦ Hartford, CT 06106 ♦ 860-424-3385 ♦ 860-424-4063

Please complete the following information and return by March 31, 2003

Airport Name	
Location of Airport/Heliport	
· · ·	

Connecticut Aircraft specific data for 2002

Aircraft (Make & Model)	Annual LTOs	Jun., Jul., and Aug. LTOs	Jan., Feb., and Dec. LTOs

Name (print)	Title

Telephone _____ Email _____

This information can be E-mailed to me at Steven.Potter@po.state.ct.us or faxed to 860-424-4063.