Appendix 8G

Documentation of the Base G 2002 Base Year, 2009 and 2018, Emission Inventories for VISTAS

Documentation of the Base G 2002 Base Year, 2009 and 2018, Emission Inventories for VISTAS

	Prepared for:	
Visibility Improvement S	tate and Tribal As (VISTAS)	ssociation of the Southeast
	(1101710)	
	Prepared by:	
	MACTEC, Inc.	
William R. Barnard	•	Edward Sabo
Sr. Principal Scientist		Principal Scientist

Table of Contents

Introduction		1
1 0 2002 BASE	YEAR INVENTORY DEVELOPMENT	4
	NT SOURCES	
	Development of 2002 Point Source Inventory	
1.1.1 L 1.1.1.1	Data Sources	
1.1.1.1	Initial Data Evaluation	
1.1.1.3	PM Augmentation	
1.1.1.4	EGU Analysis	
1.1.1.5	QA Review of Base F Inventory	
1.1.1.6	Additional Base G Updates and Corrections	
1.1.1.7	Summary of Base G 2002 Inventory	
1.1.2 L	Development of Typical Year EGU inventory	
	A SOURCES	
	Development of a "typical" year fire inventory	
	Development of non-fire inventory	
	002 Base G inventory updates	
1.2.3.1	Changes resulting from State review and comment	
	Ammonia and paved road emissions	
	Global Changes Made for Base G	
	Quality Assurance steps	
-	BILE SOURCES	
	Development of on-road mobile source input files and VMT estimates	
1.3.1.1	Emissions from on-road mobile sources	
	Development of non-road emission estimates	
1.3.2.1	Emissions from NONROAD model sources	
1.3.2.2	Emissions from Commercial Marine Vessels, Locomotives, and Airplanes	
Base G Re	evisions:	
1.3.2.3	Emissions from NONROAD Model Sources in Illinois, Indiana, and Ohio	
1.3.3	Quality Assurance steps	
	ON INVENTORY DEVELOPMENT	
	NT SOURCES	
2.1.1 B	EGU Emission Projections	88
2.1.1.1	Chronology of the Development of EGU Projections	
2.1.1.2	VISTAS IPM runs for EGU sources	
2.1.1.3	Post-Processing of IPM Parsed Files	93
2.1.1.4	Eliminating Double Counting of EGU Units	95
2.1.1.5	Quality Assurance steps	96
2.1.1.6	S/L Adjustments to IPM Modeling Results for Base G Projections	
2.1.1.7	Summary of Base F and Base G 2009/2018 EGU Point Source Inventories	
	Von-EGU Emission Projections	
2.1.2.1	Growth assumptions for non-EGU sources	
2.1.2.2	Source Shutdowns	
2.1.2.3	Control Programs applied to non-EGU sources	114

2.1.	2.4	Quality Assurance steps	117
2.1.	2.5	Additional Base G Updates and Corrections	117
2.1.	2.6	Summary of Revised 2009/2018 non-EGU Point Source Inventories	117
2.2	AREA S	OURCES	123
2.2.1	Stati	onary area sources	123
2.2.	1.1	Stationary area source controls	125
2.2.	1.2	Stationary area source growth	
2.2.	1.3	Differences between 2009/2018	127
2.2.2	Agri	cultural area sources	128
2.2.	2.1	Control assumptions for agricultural area sources	128
2.2.2	2.2	Growth assumptions for agricultural area sources	
2.2.3	Cha	nges to Prescribed Fire for 2009/2018 Base G	133
2.2.4		lity Assurance steps	
2.3		E SOURCES	
2.3.1		elopment of on-road mobile source input files	
2.3.		Preparation of revised 2018 input data files	
2.3.	1.2	Preparation of initial 2009 input data files	
2.3.2	VMT	Г Data	
2.3.3		G Revisions	
2.3.4		elopment of non-road emission estimates	
2.3.4		NONROAD model sources	
2.3.4		Non-NONROAD model sources	
2.3.4		Emissions from NONROAD Model Sources in Illinois, Indiana, and Ohio	
2.3.4		Differences between 2009/2018	
2.3.5		lity Assurance steps	
4.3.3	Quu	!!! y Assuluiue sieps	109

Appendix A: State Emission Totals by Pollutant and Sector

Appendix B: State VMT totals

Appendix C: State Tier 1 Emission Totals

Appendix D: VISTAS Tier 1 Emission Totals

Appendix E: Aircraft PM Excerpt from 2001 Tucson Report

 $\textbf{Appendix} \ F\hbox{:} \quad \text{Comparison of Base F and Base G On-Road Mobile Emissions }$

List of Tables

Table I-1.	Inventory Version in Use by Year and Source Sector Through Base G - 2002
Table I-2.	Inventory Version in Use by Year and Source Sector Through Base G - 2009
Table I-3.	Inventory Version in Use by Year and Source Sector Through Base G - 2018
Table 1.1-1.	State Data Submittals Used for the Base F 2002 Point Source Inventory
Table 1.1-2.	Comparison of Particulate Matter Emissions from the S/L Data Submittals and the Base G 2002 VISTAS Point Source Inventory
Table 1.1-3.	Summary of Updates and Corrections to the Base F 2002 Inventory Incorporated into the 2002 Base G Inventory
Table 1.1-4.	Base G 2002 VISTAS Point Source Inventory for SO ₂ (tons/year)
Table 1.1-5.	Base G 2002 VISTAS Point Source Inventory for NO _x (tons/year)
Table 1.1-6.	Base G 2002 VISTAS Point Source Inventory for VOC (tons/year)
Table 1.1-7.	Base G 2002 VISTAS Point Source Inventory for CO (tons/year)
Table 1.1-8.	Base G 2002 VISTAS Point Source Inventory for PM ₁₀ -PRI (tons/year)
Table 1.1-9.	Base G 2002 VISTAS Point Source Inventory for PM _{2.5} -PRI (tons/year)
Table 1.1-10.	Base G 2002 VISTAS Point Source Inventory for NH ₃ (tons/year)
Table 1.1-11.	Comparison of SO ₂ and NO _x Emissions (tons/year) for EGUs from Base G Actual 2002 Inventory and Typical 2002 Inventory.
Table 1.2-1.	Emissions from Fires in the VISTAS Region – Comparison between Original Base Year 2002 (VISTAS 3.1), 2002 Actual and Typical Year Base G Emissions.
Table 1.2-2.	Summary of State Data Submittals for the 2002 VISTAS Area Source Base F Inventory
Table 1.2-3.	Data Source Codes and Data Sources for VISTAS 2002 Base F Area Source Emissions Inventory.
Table 1.3-1.	Representative day mapping for January episode
Table 1.3-2.	Summary of Base F NONROAD Modeling Revisions
Table 1.3-3.	Base F NONROAD Input File Sequence and Structural Revisions
Table 1.3-4.	Summary of Base G NONROAD Modeling Revisions
Table 1.3-5.	Spring 2006 NONROAD Input File Sequence and Structural Revisions
Table 1.3-6.	Initial 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions as Reported in February 2004 Pechan Report (annual tons)
Table 1.3-7.	PM-to-NO _x Ratios by Aircraft Type in Initial 2002 Base Year Inventory
Table 1.3-8.	Tucson, AZ PM-to-NO _x Ratios by Aircraft Type.
Table 1.3-9.	Non-Corresponding Aircraft Emissions Records
Table 1.3-10.	Initial 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions with Modified Aircraft PM Emission Rates (annual tons)
Table 1.3-11.	Change in Initial 2002 Base Year Emissions due to Aircraft PM Emission Rate Modifications
Table 1.3-12.	CERR Aircraft NO _x Records with No Corresponding PM Record.

i

List of Tables (continued)

List of Tables (continued)

Table 1.3-13.	Calculated Emission Ratios for VA.
Table 1.3-14.	Base F 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions (tons/year)
Table 1.3-15.	Change in 2002 Emissions, Base F Inventory Relative to Initial Inventory
Table 1.3-16.	Base F Comparison of Aircraft Emissions (Airports with Aircraft $NO_x > 200$ tons per year)
Table 1.3-17.	Base G VA Aircraft Records Updates
Table 1.3-18.	Calculated Base G Emission Ratios for VA
Table 1.3-19.	Base G-Revised 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions (tons/year)
Table 1.3-20.	Change in 2002 Emissions, Base G Inventory Relative to Base F Inventory
Table 1.3-21.	Base G Comparison of Aircraft Emissions (Airports with Aircraft $NO_x > 200$ tons per year)
Table 1.3-22.	Non-Default Files Used for MRPO Modeling
Table 2.1-1.	Adjustments to IPM Control Determinations Specified by S/L Agencies for the Base G 2009/2018 EGU Inventories.
Table 2.1-2.	Other Adjustments to IPM Results Specified by S/L Agencies for the Base G 2009/2018 EGU Inventories.
Table 2.1-3.	EGU Point Source SO ₂ Emission Comparison for 2002/2009/2018
Table 2.1-4.	EGU Point Source NO _x Emission Comparison for 2002/2009/2018
Table 2.1-5.	EGU Point Source VOC Emission Comparison for 2002/2009/2018
Table 2.1-6.	EGU Point Source CO Emission Comparison for 2002/2009/2018
Table 2.1-7.	EGU Point Source PM ₁₀ -PRI Emission Comparison for 2002/2009/2018
Table 2.1-8.	EGU Point Source PM _{2.5} -PRI Emission Comparison for 2002/2009/2018
Table 2.1-9.	EGU Point Source NH ₃ Emission Comparison for 2002/2009/2018
Table 2.1-10.	Summary of Source Shutdowns Incorporated in Base G Inventory
Table 2.1-11.	Non-EGU Point Source Control Programs Included in 2009/2018 Projection Inventories.
Table 2.1-12.	Summary of Updates and Corrections to the Base F 2009/2018 Inventories Incorporated into the Base G 2009/2018 Inventories
Table 2.1-13.	Non-EGU Point Source SO ₂ Emission Comparison for 2002/2009/2018
Table 2.1-14.	Non-EGU Point Source NO _x Emission Comparison for 2002/2009/2018
Table 2.1-15.	Non-EGU Point Source VOC Emission Comparison for 2002/2009/2018
Table 2.1-16.	Non-EGU Point Source CO Emission Comparison for 2002/2009/2018
Table 2.1-17.	Non-EGU Point Source PM ₁₀ -PRI Emission Comparison for 2002/2009/2018
Table 2.1-18.	Non-EGU Point Source PM _{2.5} -PRI Emission Comparison for 2002/2009/2018.
Table 2.1-19.	Non-EGU Point Source NH ₃ Emission Comparison for 2002/2009/2018

ii MACTEC, Inc.

Table 2.2-1	2002 Base Year Emissions and Percentage Difference for Base F and Base G
	(based on actual emissions).

- Table 2.2-2 2019 Projection Year Emissions & Percentage Difference for Base F & Base G
- Table 2.2-3 2018 Projection Year Emissions & Percentage Difference for Base F & Base G
- Table 2.2-4 Percentage Difference Between Base F and Base G Fire Emissions by State
- Table 2.3-1. 2002 versus 2018 VMT (million miles per year)
- Table 2.3-2. VMT and HDD Rule Estimates for North Carolina (million miles per year)
- Table 2.3-3. VMT and HDD Rule Estimates for South Carolina (million miles per year)
- Table 2.3-4. VMT and HDD Rule Estimates for Tennessee (million miles per year)
- Table 2.3-5. VMT and HDD Rule Estimates for Virginia (million miles per year)
- Table 2.3-6. Pre-Base F 2002 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons, as of the fall of 2004)
- Table 2.3-7. Locally Generated Growth Factors for North Carolina
- Table 2.3-8. Estimated Emission Reduction Impacts based on T-4 Rule
- Table 2.3-9. Estimated Emission Reduction Impacts Relative to VISTAS 2002 Base Year Values
- Table 2.3-10. Diesel CMV Adjustment Ratios for Palm Beach County, FL
- Table 2.3-11. Overall Adjustment Factors for Palm Beach County, FL
- Table 2.3-12. SO₂ Emissions for Diesel Rail in Autauga County, AL from the CAIR Projections
- Table 2.3-13 Growth Options based on CAIR Data
- Table 2.3-14. Base F 2009 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories
- Table 2.3-15. Base F 2018 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories
- Table 2.3-16. Change in Emissions between 2009 and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)
- Table 2.3-17. Change in Emissions between 2018 and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)
- Table 2.3-18. Base G 2002 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons)
- Table 2.3-19. Locally Generated Growth Factors for Kentucky
- Table 2.3-20. Base G 2009 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories
- Table 2.3-21. Base G 2018 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories
- Table 2.3-22. Change in Emissions between 2009 Base G and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)
- Table 2.3-23. Change in Emissions between 2018 Base G and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)

iii MACTEC, Inc.

List of Figures

- Figure 1.2-1. CO Emissions from Agricultural Burning for the Original Base Year, 2002 Actual Base G, and 2002 Typical Base G Inventories.
- Figure 1.2-2. CO Emissions from Land Clearing Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.
- Figure 1.2-3. CO Emissions from Prescribed Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.
- Figure 1.2-4. CO Emissions from Wildfire Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.
- Figure 2.2-1. Prescribed Fire Projection for Okeefenokee NWR for 2009
- Figure 2.3-1. Impacts of the Apparent CAIR Inventory Discrepancy
- Figure 2.3-2. Total Aircraft, Locomotive, and CMV CO Emissions (Base F)
- Figure 2.3-3. Locomotive CO Emissions (Base F)
- Figure 2.3-4. Total Aircraft, Locomotive, and CMV NO_x Emissions (Base F)
- Figure 2.3-5. Locomotive NO_x Emissions (Base F)
- Figure 2.3-6. Total Aircraft, Locomotive, and CMV PM₁₀ Emissions (Base F)
- Figure 2.3-7. Locomotive PM_{10} Emissions (Base F)
- Figure 2.3-8. Total Aircraft, Locomotive, and CMV PM_{2.5} Emissions (Base F)
- Figure 2.3-9. Locomotive PM_{2.5} Emissions (Base F)
- Figure 2.3-10. Total Aircraft, Locomotive, and CMV SO₂ Emissions (Base F)
- Figure 2.3-11. Locomotive SO₂ Emissions (Base F)
- Figure 2.3-12. Total Aircraft, Locomotive, and CMV VOC Emissions (Base F)
- Figure 2.3-13. Locomotive VOC Emissions (Base F)
- Figure 2.3-14. Total Aircraft, Locomotive, and CMV CO Emissions (Base G)
- Figure 2.3-15. Locomotive CO Emissions (Base G)
- Figure 2.3-16. Total Aircraft, Locomotive, and CMV NO_x Emissions (Base G)
- Figure 2.3-17. Locomotive NO_x Emissions (Base G)
- Figure 2.3-18. Total Aircraft, Locomotive, and CMV PM₁₀ Emissions (Base G)
- Figure 2.3-19. Locomotive PM₁₀ Emissions (Base G)
- Figure 2.3-20. Total Aircraft, Locomotive, and CMV PM_{2.5} Emissions (Base G)
- Figure 2.3-21. Locomotive PM_{2.5} Emissions (Base G)
- Figure 2.3-22. Total Aircraft, Locomotive, and CMV SO₂ Emissions (Base G)
- Figure 2.3-23. Locomotive SO₂ Emissions (Base G)
- Figure 2.3-24. Total Aircraft, Locomotive, and CMV VOC Emissions (Base G)
- Figure 2.3-25. Locomotive VOC Emissions (Base G)

iv MACTEC, Inc.

Acronyms and Abbreviations

AEO Annual Energy Outlook

AF&PA American Forest and Paper Association

APCD Air Pollution Control District
ATP Anti-Tampering Program

BLRID Boiler Identification (Boiler ID)

CAA Clean Air Act

CAIR Clean Air Interstate Rule

CEM Continuous Emissions Monitoring

CAMD Clean Air Markets Division

CERR Consolidated Emissions Reporting Rule

CMU Carnegie Mellon University
CMV commercial marine vessels

CE Control Efficiency
CO carbon monoxide

DENR North Carolina Department of Environment and Natural Resources
DHEC South Carolina Department of Health and Environmental Control

EDMS Emissions Data Management Systems

ESD Emissions Standards Division

EPA Environmental Protection Agency

EGU Electric Generating Unit ICF ICF International, Inc.

FIP Federal Implementation Plan

FLM Federal Land Manager
FTP File transfer protocol
FD Federal Positor

FR Federal Register
FS Forest Service

HDD Heavy Duty Diesel

HDD RULE Heavy Duty Diesel Rule ICF ICF International, Inc.

ID Identification

I/M Inspection and Maintenance IPM® Integrated Planning Model®

IAQTR Interstate Air Quality Transport Rule

LTO Landing and take off

MACT Maximum achievable control technology

V

Acronyms and Abbreviations (continued)

MACTEC Engineering and Consulting, Inc.

MOBILE 6 MOBILE emissions estimation model version 6

MRPO Midwest Regional Planning Organization

NH₃ Ammonia

NEI National Emission Inventory

NIF National Emission Inventory Format

NLEV National Low Emission Vehicle regulation

NMIM National Mobile Inventory Model

NONROAD no acronym (model name)

NO_x Oxides of nitrogen

NWR National Wildlife Refuge

OTB On the books
OTW On the way

ORIS Office of Regulatory Information Systems
OTAQ Office of Transportation and Air Quality

OTC Ozone Transport Commission

PFC Portable fuel containers

PM Particulate matter

PM₁₀-FIL Particulate matter less than or equal to 10 microns in diameter that can be

captured on a filter

PM₁₀-PRI Particulate matter less than or equal to 10 microns in diameter that includes

both the filterable and condensable components of particulate matter

PM_{2.5}-FIL Particulate matter less than or equal to 2.5 microns in diameter that can be

captured on a filter

PM_{2.5}-PRI Particulate matter less than or equal to 2.5 microns in diameter that includes

both the filterable and condensable components of particulate matter

PM-CON Particulate matter created by the condensation of hot materials to form

particulates, usually less than 2.5 microns in diameter

ppmW parts per million by weight

PRI Primary

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan
REMI Regional Economic Models, Inc.

RFG Reformulated gasoline RVP Reid Vapor Pressure

SCC Source Classification Code

vi MACTEC, Inc.

Acronyms and Abbreviations (continued)

SCR Selective Catalytic Reduction
SIP State Implementation Plan
SIWG Special Interest Workgroup

S/L/T State/Local/Tribal

SMOKE Sparse Matrix Operator Kernel Emissions Modeling System

S/L State and Local SO₂ Oxides of Sulfur

T4 Tier 4

VISTAS Visibility Improvement State and Tribal Association of the Southeast

VMT Vehicle Miles Traveled

VOC Volatile organic compounds

WRAP Western Regional Air Partnership

vii MACTEC, Inc.

Documentation of the Base G 2002 Base Year, 2009 and 2018, Emission Inventories for VISTAS

Introduction

History of VISTAS Base and Projection Year Emission Inventory Development

This section is provided to supply the history behind the development of the base and projection year inventories provided to VISTAS. Through the various iterations, the inventories that have been developed have typically had version numbers provided by the contractors who developed the inventories and to a certain extent these were also based on their purpose. Different components of the 2002 base year inventories have been supplied by E.H. Pechan and Associates, Inc. (Pechan), MACTEC Engineering and Consulting, Inc. (MACTEC), and by Alpine Geophysics, Inc.

The initial 2002 base year inventory was jointly developed by Pechan and MACTEC. Pechan developed the on-road and non-road mobile source components of the inventory while MACTEC developed the point and area source component of the inventory. This version of the inventory included updates to on-road mobile that incorporated information from the 1999 NEI Version 2 final along with updated information on VMT, fuel programs, and other inputs to the MOBILE6 model to produce a draft version of the 2002 inventory. For non-road sources, a similar approach was used. Updated State information on temperatures and fuel characteristics were obtained from VISTAS States and used with the NONROAD 2002 model to calculate 2002 emissions for NONROAD model sources. These estimates were coupled with data for commercial marine vessels, locomotives and airplanes projected to 2002 using appropriate growth surrogates. A draft version of these inventories was prepared in late 2003, with a final version in early 2004. An overview of the development of the on-road component can be found at: http://www.vistas-sesarm.org/documents/Pechan_drafton-roadinventory_082803.ppt while an overview of the non-road component can be found at:

http://www.vistas-sesarm.org/documents/Pechan_Non-roadInventory_082803.ppt.

Similarly, draft versions of the 2002 point and area source base year inventories were prepared by MACTEC in the same timeframe (late 2003 for the draft, final in early 2004). The point source component was based on data submitted by the VISTAS States or on the 1999 NEI. The data submitted by the States ranged from 1999 to 2001 and was all projected to 2002 using appropriate growth surrogates from Economic Growth

1

Analysis System (EGAS) version 4. Toxic Release Inventory (TRI) data were used to augment the inventory for NH₃. Continuous Emissions Monitor (CEM) data from the U.S. EPA's Clean Air Markets Division was used to supply emissions for electric generating utilities (EGUs). Particulate matter emissions were augmented (when missing) by using emission factor ratios. Details on all these calculations are discussed in Section 1.1.1.3 of this document.

The area source component of the 2002 draft base year emissions was prepared similarly to the point sources, using State submittals and the 1999 NEI Version 2 final as the basis for projecting emissions to 2002 using EGAS growth factors. For ammonia area sources the Carnegie Mellon University (CMU) ammonia model was used to calculate emissions. Finally, data on acreage burned on a fire by fire basis was solicited from State forestry agencies in order to calculate fire emissions on a fire by fire basis. Virtually all VISTAS State forestry agencies provided data for these calculations at least for wild and prescribed fires. An overview of the point and area source development methods can be found at:

http://www.vistas-sesarm.org/documents/MACTEC_draftpointareainventory_82803.ppt.

Three interim versions of the 2002 base year inventory were developed. The first was delivered in August of 2003, the second in April of 2004 and the final one in October of 2004. The August 2003 and April 2004 inventories were prepared by MACTEC and Pechan. A draft version of the revised 2002 base year inventory was released in June of 2004, with a final version released in October 2004. That 2002 base year inventory was solely prepared by MACTEC. The October 2004 inventory incorporated 2002 Consolidated Emissions Reporting Rule (CERR) data into the inventory along with some updated data from the VISTAS States. This inventory is typically referred to as version 3.1 of the VISTAS inventory

Closely following the version 3.1 2002 base year inventory, a "preliminary" 2018 projection inventory was developed. This "preliminary" 2018 inventory was developed in late 2004 (Oct/Nov) and was designed solely for use in modeling sensitivity runs to provide a quick and dirty assessment of what "on the books" and "on the way" controls could be expected to provide in terms of improvements to visibility and regional haze impairment. A brief overview of the history of the three versions of the 2002 base year and the 2018 preliminary inventory use can be found at: http://www.vistas-sesarm.org/documents/STAD1204/2002and2018Emissions14Dec2004.ppt.

Following preparation of the final 3.1 version of the 2002 base year inventory, States were asked to review and provide comments on that inventory to MACTEC for update

and revision. At the same time MACTEC prepared a revised draft version of the 2018 projection inventory (January 2005) and a draft version of a 2009 projection inventory (April 2005). All of these were known as version 3.1 and were provided to the VISTAS States for review and comment. Comments were received and updates to the inventories based on these comments were prepared. The revised inventories were provided to the VISTAS States. At that time to be consistent with the modeling nomenclature being used by AG in performing their modeling runs, the inventory became the Base F VISTAS inventory. The Base F inventory was delivered for review and comment in August of 2005. In addition, MACTEC delivered a report entitled *Documentation of the Revised 2002 Base Year, Revised 2018, and Initial 2009 Emission Inventories for VISTAS* on August 2, 2005 that described the methods used to develop the Base F inventories. For the Electric Generating Utilities (EGU) different versions of the Integrated Planning Model were used between Base D and Base F, resulting in different projections of future EGU emissions.

Over the period from August 2005 until June/July 2006 MACTEC received comments and updates to some categories from VISTAS States, particularly EGU. In addition, a new NONROAD model (NONROAD05) was released. Thus additional updates to the inventory were prepared based on the comments received along with revised NONROAD emission estimates from NONROAD05. The resultant inventory became the Base G inventory.

This document details the development of the Base G inventories for 2002, 2009 and 2018. The information that follows describes the development of the VISTAS inventory by sector from version 3.1 forward. Unless specific updates were made to an inventory sector, the methods used for version 3.1 were retained. Similarly unless specific changes were made to methods used for Base F, Base G methods were the same as Base F/version 3.1 (if unchanged in Base F).

Table I-1 through Table I-3 indicate roughly which version of the inventory is in use for each sector of the inventory as of Base G.

3

Table I-1: Inventory Version in Use by Year and Source Sector Through Base G - 2002

Source	AL	FL	GA	KY	MS	NC	SC	TN	VA	WV
EGU	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G
Non-EGU	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with	Base F with
Point	some source	some source	some source	some source	some source	some source	some source	some source	some source	some source
	specific	specific	specific	specific	specific	specific	specific	specific	specific	specific
	revisions in	revisions in	revisions in	revisions in	revisions in	revisions in	revisions in	revisions in	revisions in	revisions in
	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G
Area ¹	Base F for	Base F except	Base F	Base F	Base F	Base F for	Base F	Base F	Base F for	Base F
	ammonia	for some				ammonia			ammonia	
	sources	emissions				sources			Sources	
	(CMU	zeroed out				(CMU			(CMU	
	Model) and	(and records				Model) and			Model) and	
	for some area	removed) for some				for some area			for some area	
	sources, Base G for	some southern FL				sources, Base G for			sources, Base G for	
	selected	counties for				selected			selected	
	sources	Base G.				sources			sources	
	updated by	Base G.				updated by			updated by	
	the State with					the State with			the State with	
	State With					State			State	
	supplied data					supplied data.			supplied data.	
	supplied data					Some			зарриса чана.	
						corrections				
						applied by				
						MACTEC to				
						correct PM				
						values				
On-road	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G
Non-road	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all	Base G for all
	sources	sources	sources	sources	sources	sources	sources	sources	sources	sources
	included in	included in	included in	included in	included in	included in	included in	included in	included in	included in
	the	the	the	the	the	the	the	the	the	the
	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD
	model.	model.	model.	model.	model.	model. NC	model.	model.	model.	model.
						moved from				
	Base F for	Base F for	Base F for	Base F for	Base F for	Southern to	Base F for	Base F for	Base F for	Base F for
	non-	non-	non-	non-	non-	Mid-Atlantic	non-	non-	non-	non-
	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	State in	NONROAD	NONROAD	NONROAD	NONROAD
	model	model	model	model	model	seasonal	model	model	model	model
	sources, except	sources	sources	sources except for	sources	adjustment file.	sources	sources	sources, except for	sources
	aircraft and			aircraft in		ille.			aircraft	
	locomotives			Cincinnati/N.		Base F for			emissions	
	updated for			KY Int.		non-			which are	
	Base G.			Airport,		NONROAD			Base G.	
	Dase G.			which are		model			Dase G.	
				Base G.		sources				
Fires	Base F	Base F	Base F	Base G.	Base F	Base F	Base F	Base F	Base F	Base F
- 11 05	Typical	Typical	Typical	Typical	Typical	Typical	Typical	Typical	Typical	Typical
Notes:	1 J picui	1 J picui	1 J Picui	1 j picui	- J prom	1 J picui	1 J Picui	1) picui	1 J picui	1 J prour

Notes

Base G global Area Source changes that apply to ALL States: A) removal of Stage II refueling from area source file to non-road and on-road; B) modification of PM2.5 ratio for several fugitive dust sources per WRAP methodology; C) addition of portable fuel container (PFC) emissions to all States based on OTAQ report.

Table I-2: Inventory Version in Use by Year and Source Sector Through Base G - 2009

Source	AL	FL	GA	KY	MS	NC	SC	TN	VA	WV
EGU ¹	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G
Non-EGU	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F
Point ²	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology
	but with	but with	but with	but with	but with	but with	but with	but with	but with	but with
	revised	revised	revised	revised	revised	revised	revised	revised	revised	revised
	growth	growth	growth	growth	growth	growth	growth	growth	growth	growth
	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for	factors for
	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired
	sources in	sources in	sources in	sources in	sources in	sources in	sources in	sources in	sources in	sources in
Area	Base G Base F with	Base G Base F with	Base G Base F with	Base G Base F with	Base G Base F with	Base G Base F with	Base G Base F with	Base G Base F with	Base G Base F with	Base G Base F with
Alta	updated AEO growth factors for fuel fired sources. Agricultural ammonia sources from CMU model.	updated AEO growth factors for fuel fired sources. Agricultural ammonia sources from CMU model.	updated AEO growth factors for fuel fired sources. Agricultural ammonia sources from CMU model.	updated AEO growth factors for fuel fired sources. Agricultural ammonia sources from CMU model.	updated AEO growth factors for fuel fired sources. Agricultural ammonia sources from CMU model.	updated AEO growth factors for fuel fired sources. Agricultural ammonia sources from CMU model. Some specific source categories updated using State supplied file	updated AEO growth factors for fuel fired sources. Agricultural ammonia sources from CMU model.			
						to override projected				
						values.				
On-road	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G	Base G
Non-road	Base G for all sources included in the NONROAD model.	Base G for all sources included in the NONROAD model.	Base G for all sources included in the NONROAD model.	Base G for all sources included in the NONROAD model.	Base G for all sources included in the NONROAD model.	Base G for all sources included in the NONROAD model.	Base G for all sources included in the NONROAD model.	Base G for all sources included in the NONROAD model.	Base G for all sources included in the NONROAD model.	Base G for all sources included in the NONROAD model.
Eiroc	Base F projection methodology used for non- NONROAD model sources.	Base F projection methodology used for non- NONROAD model sources	Base F projection methodology used for non- NONROAD model sources	Base F projection methodology used for non- NONROAD model sources except for aircraft in Cincinnati/N. KY Int. Airport, which are Base G using State supplied growth factors.	Base F projection methodology used for non- NONROAD model sources	Base F projection methodology used for non- NONROAD model sources	Base F projection methodology used for non- NONROAD model sources	Base F projection methodology used for non- NONROAD model sources	Base F projection methodology used for non- NONROAD model sources	Base F projection methodology used for non- NONROAD model sources
Fires	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F	Base F
	typical except	typical	typical except	typical except	typical except	typical except	typical except	typical except	typical except	typical except
	for Rx fires	l	for Rx fires	for Rx fires	for Rx fires	for Rx fires	for Rx fires	for Rx fires	for Rx fires	for Rx fires

2

Notes:

- All EGU emissions updated with new IPM runs in Base G Revised growth factors from DOE AEO2006 fuel use projections 1.
- 2.

Table I-3: Inventory Version in Use by Year and Source Sector Through Base G - 2018

Source	AL	FL	GA	KY	MS	NC	SC	TN	VA	WV
EGU ¹	Base G	Base G	Base G	Base G	Base G					
Non-EGU	Base F	Base F	Base F	Base F	Base F					
Point ²	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology
	but with	but with	but with	but with	but with					
	revised	revised	revised	revised	revised	revised	revised	revised	revised	revised
	growth	growth	growth	growth	growth	growth	growth	growth	growth	growth
	factors for	factors for	factors for	factors for	factors for					
	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired					
	sources in	sources in	sources in	sources in	sources in					
	Base G	Base G	Base G	Base G	Base G					
Area	Base F with	Base F with	Base F with	Base F with	Base F with					
	updated AEO	updated AEO	updated AEO	updated AEO	updated AEO					
	growth	growth	growth	growth	growth	growth	growth	growth	growth	growth
	factors for	factors for	factors for	factors for	factors for					
	fuel fired	fuel fired	fuel fired	fuel fired	fuel fired					
	sources.	sources.	sources.	sources.	sources.	sources.	sources.	sources.	sources.	sources.
	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural	Agricultural
	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia	ammonia
	sources from	sources from	sources from	sources from	sources from					
	CMU model.	CMU model.	CMU model.	CMU model.	CMU model.					
						_				
						Some				
						specific				
						source				
						categories				
						updated				
						using State				
						supplied file				
						to override				
						projected values.				
On-road	Base G	Base G	Base G	Base G	Base G					
Non-road	Base G for	Base G for	Base G for	Base G for	Base G for					
11011-1044	all sources	all sources	all sources	all sources	all sources					
	included in	included in	included in	included in	included in					
	the	the	the	the	the	the	the	the	the	the
	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD
	model.	model.	model.	model.	model.	model.	model.	model.	model.	model.
	moden	moden	model.	model.	moden	moden.	moden.	moden	moden	model.
	Base F	Base F	Base F	Base F	Base F					
	projection	projection	projection	projection	projection	projection	projection	projection	projection	projection
	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology	methodology
	used for non-	used for non-	used for non-	used for non-	used for non-					
	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD	NONROAD
	model	model	model	model	model	model	model	model	model	model
	sources.	sources	sources	sources	sources	sources	sources	sources	sources	sources
				except for						
				aircraft in						
				Cincinnati/N.						
				KY Int.						
				Airport,						
				which are						
1				Base G using						
1				State						
ĺ				supplied						
1				growth						
				factors.						
Fires	Base F	Base F	Base F	Base F	Base F					
1	typical	typical	typical	typical	typical	typical	typical	typical	typical	typical
ĺ	except for Rx		except for Rx	except for Rx	except for Rx	except for Rx	except for Rx	except for Rx	except for Rx	except for Rx
	fires		fires	fires	fires	fires	fires	fires	fires	fires

3

Notes:

- All EGU emissions updated with new IPM runs in Base G Revised growth factors from DOE AEO2006 fuel use projections

1.0 2002 Base Year Inventory Development

1.1 Point Sources

This section details the development of the 2002 base year inventory for point sources. There were two major components to the development of the point source sector of the inventory. The first component was the incorporation of data submitted by the Visibility Improvement State and Tribal Association of he Southeast (VISTAS) States and local (S/L) agencies to the United States Environmental Protection Agency (EPA) as part of the Consolidated Emissions Reporting Rule (CERR) requirements Work on incorporating the CERR data into the revised base year involved: 1) obtaining the data from EPA or the S/L agency, 2) evaluating the emissions and pollutants reported in the CERR submittals, 3) augmenting CERR data with annual emission estimates for PM₁₀-PRI and PM_{2.5}-PRI; 4) evaluating the emissions from electric generating units, 5) completing quality assurance reviews for each component of the point source inventory, and 6) updating the database with corrections or new information from S/L agencies based on their review of the 2002 inventory. The processes used to perform those operations are described in the first portion of this section.

The second component was the development of a "typical" year inventory for electric generating units (EGUs). VISTAS determined that a typical year electric generating units (EGU) inventory was necessary to smooth out any anomalies in emissions from the EGU sector due to meteorology, economic, and outage factors in 2002. The typical year EGU inventory is intended to represent the five year (2000-2004) period that will be used to determine the regional haze reasonable progress goals. The second part of this section discusses the development of the typical year EGU inventory.

1.1.1 Development of 2002 Point Source Inventory

MACTEC developed a draft 2002 emission inventory in June 2004 (*Development of the Draft 2002 VISTAS Emission Inventory for Regional Haze Modeling – Point Sources*, MACTEC, June 18, 2004). The starting point for the draft 2002 emission inventory was EPA's 1999 National Emission Inventory (NEI), Version 2 Final (NEI99V2). For several states, we replaced the NEI99V2 data with more recent inventories for either calendar year 1999, 2000, or 2001 as submitted by the S/L agencies. We also performed several other updates, including updating emission estimates for selected large source of ammonia, incorporating 2002 Continuous Emissions Monitoring-(CEM)-based SO₂ and NO_x emissions for electric utilities, adding PM₁₀ and PM_{2.5} emissions when they were missing from an S/L submittal, and performing a variety of additional Quality assurance/Quality control (QA/QC) checks.

4

The next version of the 2002 inventory (referred to as Base F) was released in August 2005 (*Documentation of the Revised 2002 Base Year, Revised 2018, and Initial 2009 Emission Inventories for VISTAS*, MACTEC, August 2, 2005). The primary task in preparing the Base F 2002 base year inventory was the replacement of NEI99V2 data with data submitted by the VISTAS S/L agencies as part of the CERR submittal and included in EPA's 2002 NEI.

The current version of the 2002 inventory (referred to as Base G) was released in August 2006 and is documented in this report. The primary task in preparing the Base G 2002 base year inventory was the incorporation of corrections and new information as submitted by the S/L agencies based on their review of the Base F inventory. The following subsections document the data sources for the Base G inventory, the checks made on the CERR submittals, the process for augmenting the inventory with PM₁₀ and PM_{2.5} emissions, the evaluation of EGU emissions, other QA/QC checks, and other Base G updates. The final subsection summarizes the Base G 2002 inventory by state, pollutant, and sector (EGU and non-EGU).

1.1.1.1 Data Sources

Several data sources were used to compile the Base F point source inventory: 1) the inventories that the S/L submitted to EPA from May through July 2004 as required by the CERR; 2) supplemental data supplied by the S/L agencies that may have been revised or finalized after the CERR submittal to EPA, and 3) the draft VISTAS 2002 inventory in cases where S/L CERR data were not available. For the Base G inventory, we replaced data from Hamilton County, Tennessee, using data from Hamilton County's CERR submittal as contained in EPA's 2002 NEI inventory (in Base F, the inventory for Hamilton County was based on the draft VISTAS 2002 inventory, which in turn was based on the 1999 NEI).

Table 1.1-1 summarizes the data used as the starting point for the Base F 2002 inventory. Once all of the files were obtained, MACTEC ran the files through the EPA National Emission Inventory Format (NIF) Basic Format and Content checking tool to ensure that the files were submitted in standard NIF format and that there were no referential integrity issues with those files. In a couple of cases small errors were found. For example, in one case non-standard pollutant designations were used for particulate matter (PM) and ammonia emissions. MACTEC contacted each VISTAS State point source contact person to resolve the issues with the files and corrections were made. Once all corrections to the native files were made, MACTEC continued with the incorporation of the data into the VISTAS point source files. S/L agencies completed a detailed review of the Base F inventory. Additional updates and corrections to the Base F inventory were requested by S/L agencies and incorporated into the Base G inventory. The Base G changes are documented in more detail in Section 1.1.1.6.

Table 1.1-1. State Data Submittals Used for the Base F 2002 Point Source Inventory.

State / Local Program	Point Source Emissions Data Source
AL	С
FL	В
GA	В
KY	C
MS	В
NC	C
SC	C
TN	C
VA	В
WV	В
Davidson County, TN	В
Hamilton County, TN	D
Memphis/Shelby County, TN	В
Knox County, TN	В
Jefferson County, AL	В
Jefferson County, KY	В
Buncombe County, NC	В
Forsyth County, NC	В
Mecklenburg County, NC	В
Key	
A = Draft VISTAS 2002	
B = CERR Submittal from EPA's file	transfer protocol (FTP) site

C = Other (CERR or other submittal sent directly from S/L agency to MACTEC)

D = CERR Submittal from EPA's NEI 2002 Final Inventory

1.1.1.2 Initial Data Evaluation

For the Base F inventory, we conducted an initial review of the 2002 point source CERR data in accordance with the QA procedures specified in the Quality Assurance Project Plan (QAPP) for this project. The following evaluations were completed to identify potential data quality issues associated with the CERR data:

- Compared the number of sites in the CERR submittal to the number of sites in the
 VISTAS draft 2002 inventory; for all States, the number of sites in the CERR submittal
 was less than in the VISTAS draft 2002 inventory, since the CERR data was limited to
 major sources, while the VISTAS draft 2002 inventory contained data for both major and
 minor sources; verified with S/L contacts that minor sources not included in the CERR
 point source inventory were included in the CERR area source inventory.
- Checked for correct pollutant codes and corrected to make them NIF-compliant; for example, some S/L agencies reported ammonia emissions using the CAS Number or as "ammonia", rather than the NIF-compliant "NH₃" code.

- Checked for types of particulate matter codes reported (i.e., PM-FIL, PM-CON, PM-PRI, PM₁₀-PRI, PM10-FIL, PM_{2.5}-PRI, PM_{2.5}-FIL); corrected codes with obvious errors (i.e., changed PMPRI to PM-PRI). (The PM augmentation process for filling in missing PM pollutants is discussed later in Section 1.1.1.3)
- Converted all emission values that weren't in tons to tons to allow for preparation of emission summaries using consistent units.
- Checked start and end dates in the PE and EM tables to confirm consistency with the 2002 base year.
- Compared annual and daily emissions when daily emissions were reported; in some cases, the daily value was non-zero (but very small) but the annual value was zero. This was generally the result of rounding in an S/L agency's submittal.
- Compared ammonia emissions as reported in the CERR submittals and the 2002 Toxics Release Inventory; worked with S/L agencies to resolve any outstanding discrepancies.
- Compared SO₂ and NO_x emissions for EGUs to EPA's Clean Air Markets Division CEM database to identify any outstanding discrepancies. (A full discussion of the EGU emissions analysis is discussed later in Section 1.1.1.4)
- Prepared State-level emission summaries by pollutant for both the EGU and non-EGU sectors to allow S/L agencies to compare emissions as reported in the 1999 NEI Version 2, the VISTAS draft 2002 inventory, and the CERR submittals.
- Prepared facility-level emission summaries by pollutant to allow S/L agencies to review facility level emissions for reasonableness and accuracy.

We communicated the results of these analyses through email/telephone exchanges with the S/L point source contacts as well as through Excel summary spreadsheets. S/L agencies submitted corrections and updates as necessary to resolve any QA/QC issues from these checks.

1.1.1.3 PM Augmentation

Particulate matter emissions can be reported in many different forms, as follows:

PM Category	Description
PM-PRI	Primary PM (includes filterable and condensable)
PM-CON	Primary PM, condensable portion only (all less than 1 micron)
PM-FIL	Primary PM, filterable portion only

PM ₁₀ -PRI	Primary PM ₁₀ (includes filterable and condensable)
PM ₁₀ -FIL	Primary PM ₁₀ filterable portion only
PM _{2.5} -PRI	Primary PM _{2.5} (includes filterable and condensable)
PM _{2.5} -FIL	Primary PM _{2.5} filterable portion only

S/L agencies did not report PM emissions in a consistent manner. The State/local inventories submitted for VISTAS included emissions data for either PM-FIL, PM-PRI, PM₁₀-FIL, PM₁₀-FIL, PM₁₀-PRI, PM_{2.5} -PRI, and/or PM-CON. From any one of these pollutants, EPA has developed augmentation procedures to estimate PM₁₀-PRI, PM₁₀-FIL, PM_{2.5} -PRI, PM_{2.5} -FIL, and PM-CON. If not included in a State/local inventory, PM₁₀-PRI and PM_{2.5} -PRI were calculated by adding PM₁₀-FIL and PM-CON or PM_{2.5} -FIL and PM-CON, respectively.

The procedures for augmenting point source PM emissions are documented in detail in Appendix C of *Documentation for the Final 1999 National Emissions Inventory {Version 3} for Criteria Air Pollutants and Ammonia – Point Sources*, January 31, 2004). Briefly, the PM data augmentation procedure includes the following five steps:

- Step 1: Prepare S/L/T PM and PM₁₀ Emissions for Input to the PM Calculator
- Step 2: Develop and Apply Source-Specific Conversion Factors
- Step 3: Prepare Factors from PM Calculator
- Step 4: Develop and Apply Algorithms to Estimate Emissions from S/L/T Inventory Data
- Step 5: Review Results and Update the NEI with Emission Estimates and Control Information.

Please refer to the EPA documentation for a complete description of the PM augmentation procedures.

Table 1.1-2 compares the original PM emission estimates from the S/L CERR submittals and the revised 2002 VISTAS emissions estimates calculated using the above methodology. This table is intended to show that we took whatever States provided in the way of PM and filled in gaps to add in PM-CON where emissions were missing in order to calculate PM₁₀-PRI and PM_{2.5}-PRI for all processes to get a complete set of particulate data. We did not compare any other pollutants besides PM, since for other pollutants CERR emissions equal VISTAS emissions. As noted in Table 1.1-2, we made significant revisions to the PM emissions for Kentucky in the Base F inventory and for South Carolina in the Base G inventory.

Table 1.1-2. Comparison of Particulate Matter Emissions from the S/L Data Submittals and the Base G 2002 VISTAS Point Source Inventory

State	Database	PM-PRI	PM-FIL	PM-CON	PM ₁₀ -PRI	PM ₁₀ -FIL	PM _{2.5} -PRI	PM _{2.5} -FIL
AL	CERR	28,803	9,174	0	16,522	6,548	8,895	4,765
	VISTAS	43,368	33,336	10,129	32,791	22,661	23,290	13,328
FL	CERR	0	33,732	0	0	32,254	0	0
	VISTAS	61,728	37,325	24,403	57,243	32,840	46,147	21,744
GA	CERR	42,846	0	0	27,489	0	15,750	0
	VISTAS	44,835	37,088	7,799	33,202	25,403	22,777	15,085
KY	CERR	0	3,809	0	19,748	1,360	0	0
	VISTAS	27,719	22,349	5,329	21,326	15,963	14,173	8,749
MS	CERR	23,925	0	0	20,968	0	10,937	0
	VISTAS	23,928	17,632	6,296	21,089	14,793	11,044	5,739
NC	CERR	48,110	0	0	36,222	0	24,159	0
	VISTAS	48,114	41,407	6,708	36,992	30,284	27,512	21,113
SC	CERR	0	43,837	0	0	32,656	0	21,852
	VISTAS	43,844	38,633	5,210	34,799	29,588	26,418	21,207
TN	CERR	1,660	25,500	21,482	43,413	22,164	34,167	12,140
***************************************	VISTAS	56,797	32,085	24,715	50,937 26,269 41,442		16,774	
VA	CERR	0	0	0	17,065	0	12,000	0
	VISTAS	40,856	36,414	4,442	17,065	12,623	12,771	8,607
WV	CERR	0	29,277	0	0	14,778	0	8445
	VISTAS	36,188	29,392	6,795	22,053	15,258	15,523	8,733

- **Note 1:** CERR refers to data as submitted by S/L agencies; VISTAS refers to data calculated by MACTEC using the PM augmentation methodologies described in this document.
- **Note 2:** KY DEP's initial CERR submittal reported particulate matter emissions using only PM-PRI pollutant code. MACTEC used this pollutant code during the initial PM augmentation routine. In February 2005, KY DEP indicated that data reported using the PM-PRI code should actually have been reported using the PM₁₀-PRI code. MACTEC performed a subsequent PM augmentation in April 2005 using the PM₁₀-PRI code. These changes were reflected in the Base F emission inventory.
- Note 3: South Carolina Department of Health and Environmental Control (SC DHEC) initial CERR submittal reported particulate matter emissions using the PM-FIL, PM₁₀-FIL, and PM_{2.5}-FIL pollutant codes. MACTEC used these pollutant codes during the initial PM augmentation routine. In August 2005, SC DHEC indicated that data reported using the PM-FIL, PM₁₀-FIL, and PM_{2.5}-FIL pollutant codes should actually have been reported using the PM-PRI, PM₁₀-PRI, and PM_{2.5}-PRI codes. MACTEC performed a subsequent PM augmentation in April 2006 using the revised pollutant codes. These changes were reflected in the Base G emission inventory.
- **Note 4:** The emission values in the VISTAS emission rows above differ slightly from the final values in the Base G inventory. This is due to several corrections and updates to the 2002 inventory submitted by S/L agencies after the PM augmentation was performed as discussed in Section 1.1.1.6.

After the PM augmentation process was performed, we executed a series of checks to identify potential inconsistencies in the PM inventory. These checks included:

- PM-PRI less than PM₁₀-PRI, PM_{2.5} -PRI, PM₁₀-FIL, PM_{2.5} -FIL, or PM-CON;
- PM-FIL less than PM₁₀-FIL, PM_{2.5} -FIL;
- PM₁₀-PRI less than PM_{2.5} -PRI, PM₁₀-FIL, PM_{2.5} -FIL or PM-CON;
- PM_{10} -FIL less than $PM_{2.5}$ -FIL;
- PM25-PRI less than PM_{2.5} -FIL or PM-CON;
- The sum of PM₁₀-FIL and PM-CON not equal to PM₁₀-PRI; and
- The sum of $PM_{2.5}$ -FIL and PM-CON not equal to $PM_{2.5}$ -PRI.

S/L agencies were asked to review this information and provide corrections where the inconsistencies were significant. In general, corrections (or general directions) were provided in the case of the potential inconsistency issues. In other cases, the agency provided specific process level pollutant corrections.

Note that for the Base G inventory, only the PM₁₀-PRI and PM_{2.5} -PRI emission estimates were retained since they are the only two PM species that are included in the air quality modeling. Other PM species were removed from the Base G inventory to facilitate emissions modeling.

1.1.1.4 EGU Analysis

We made a comparison of the annual SO₂ and NO_x emissions for EGUs as reported in the S/L agencies CERR submittals and the data from EPA's Clean Air Markets Division (CAMD) CEM database to identify any outstanding discrepancies. Facilities report hourly CEM data to EPA for units that are subject to CEM reporting requirements of the NO_x State Implementation Plan (SIP) Call rule and Title IV of the Clean Air Act (CAA). EPA sums the hourly CEM emissions to the annual level, and we compared these annual CEM emissions to those in the S/L inventories. The 2002 CEM inventory containing NO_x and SO₂ emissions and heat input data were downloaded from the EPA CAMD web site (www.epa.gov/airmarkets). The data were provided by quarter and emission unit.

The first step in the EGU analysis involved preparing a crosswalk file to match facilities and units in the CAMD inventory to facilities and units in the S/L inventories. In the CAMD inventory, the Office of Regulatory Information Systems (ORIS) identification (ID) code identifies unique facilities and the unit ID identifies unique boilers and internal combustion engines (i.e., turbines and reciprocating engines). In the S/L inventories, the State and county FIPS and State facility ID together identify unique facilities and the emission unit ID identifies unique boilers or internal combustion engines. In most cases, there is a one-to-one correspondence between the CAMD identifiers and the S/L identifiers. However, in some of the S/L inventories, the emissions for multiple emission units are summed and reported under one

10

emission unit ID. We created an Excel spreadsheet that contained an initial crosswalk with the ORIS ID and unit ID in the CEM inventory matched to the State and county Federal Implementation Plan (FIPS), State facility ID, and emission unit ID in the S/L inventory. The initial crosswalk contained both the annual emissions summed from the CAMD database as well as the S/L emission estimate. It should be noted that the initial matching of the IDs in both inventories was based on previous crosswalks that had been developed for the preliminary VISTAS 2002 inventory and in-house information compiled by MACTEC and Alpine Geophysics. The matching at the facility level was nearly complete. In some cases, however, S/L agency or stakeholder assistance was needed to match some of the CEM units to emission units in the S/L inventories.

The second step in the EGU analysis was to prepare an Excel spreadsheet that compared the annual emissions from the hourly CAMD inventory to the annual emissions reported in the S/L inventory. The facility-level comparison of CEM to emission inventory NO_x and SO₂ emissions found that for most facilities, the annual emissions from the S/L inventory equaled the CAMD CEM emissions. Minor differences could be explained because the facility in the S/L inventory contained additional small or emergency units that were not included in the CAMD database.

The final step in the EGU analysis was to compare the SO₂ and NO_x emissions for select Southern Company units in the VISTAS region. Southern Company is a super-regional company that owns EGUs in four VISTAS States – Alabama, Florida, Georgia, and Mississippi – and participates in VISTAS as an industry stakeholder. Southern Company independently provided emission estimates for 2002 as part of the development of the preliminary VISTAS 2002 inventory. In most cases, these estimates were reviewed by the States and incorporated into the States CERR submittal. The exception to this was a decision made by Georgia's Department of Environmental Protection (GDEP) to utilize CEM-based emissions for the actual 2002 emissions inventory for sources within the State when Southern Company also provided data. There were no major inconsistencies between the Southern Company data, the CAMD data, and the S/L CERR data.

The minor inconsistencies found included small differences in emission estimates (<2 percent difference), exclusion/inclusion of small gas-fired units in the different databases, and grouping of emission units in S/L CERR submittals where CAMD listed each unit individually. We compared SO₂ and NO_x emissions on a unit by unit basis and did not find any major inconsistencies.

1.1.1.5 OA Review of Base F Inventory

QA checks were run on the Base F point source inventory data set to ensure that all corrections provided by the S/L agencies and stakeholders were correctly incorporated into the S/L

inventories and that there were no remaining QA issues. After exporting the inventory to ASCII text files in NIF 3.0, the EPA QA program was run on the ASCII files and the QA output was reviewed to verify that all QA issues that could be addressed were resolved

Throughout the inventory development process, QA steps were performed to ensure that no double counting of emissions occurred, and to ensure that a full and complete inventory was developed for VISTAS. QA was an important component to the inventory development process and MACTEC performed the following QA steps on the point source component of the VISTAS revised 2002 base year inventory:

- 1. Facility level emission summaries were prepared and evaluated to ensure that emissions were consistent and that there were no missing sources.
- 2. State-level EGU and non-EGU comparisons (by pollutant) were developed between the Base F 2002 base year inventory, the draft VISTAS 2002 inventory, and the 1999 NEI Version 2 inventory.
- 3. Data product summaries and raw NIF 3.0 data files were provided to the VISTAS Emission Inventory Technical Advisor and to the Point Source, EGU, and non-EGU Special Interest Work Group representatives for review and comment. Changes based on these comments were reviewed and approved by the S/L point source contact prior to implementing the changes in the files.
- 4. Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from Base F1 to Base F2.

1.1.1.6 Additional Base G Updates and Corrections

S/L agencies completed a detailed review of the Base F inventory. Table 1.1-3 summarizes the updates and corrections to the Base F inventory that were requested by S/L agencies and incorporated into the Base G inventory.

There was a discrepancy between the base year 2002 and 2009/2018 emissions for PM₁₀-PRI, PM_{2.5}-PRI, and NH₃. The 2002 emissions were provided directly by the S/L agencies and were estimated using a variety of techniques (i.e., EPA emission factors, S/L emission factors, site-specific emission factors, and source test data). The 2009/2018 emissions, on the other hand, were estimated by Pechan (see Section 2.1.1.3) using an emission factor file based solely on AP-42 emission factors. An adjustment was made for 2002 EGU PM and NH₃ emissions to reconcile these differences. The post-processed Integrated Planning Model[®] (IPM[®]) 2009/2018 output uses a set of PM and NH₃ emission factors that are "the most recent EPA approved uncontrolled emission factors" – these are most likely not the same emission factors used by States and emission inventory preparation contractors for estimating these emissions in 2002 for EGUs in the VISTAS domain. VISTAS performed a set of modifications to replace 2002 base

year PM and NH₃ emission estimates with estimates derived from the most recent EPA-approved emission factors. For further details of the methodology used to make this adjustment, see *EGU Emission Factors and Emission Factor Assignment*, memorandum from Greg Stella to VISTAS State Point Source Contacts and VISTAS EGU Special Interest Workgroup, June 13, 2005.

Table 1.1-3. Summary of Updates and Corrections to the Base F 2002 Inventory Incorporated into the 2002 Base G Inventory.

Affected State(s)	Nature of Update/Correction
TN, WV	The latitude and longitude values for TN (except the four local programs) and WV were truncated to two decimal places in the Base F inventory. MACTEC re-exported the NIF ER tables in a manner that so that the latitude and longitude were not truncated in the Base G inventory.
AL	Corrected the latitude and longitude for two facilities: Ergon Terminalling (Site ID: 01-073-010730167) and Southern Power Franklin (Site ID: 01-081-0036).
	Corrections to stack parameters at 10 facilities for stacks with parameters that do not appear to fall into the ranges typically termed "acceptable" for AQ modeling.
FL	Corrected emission values for the Miami Dade RRF facility (Site ID: 12-086-0250348).
GA	Hercules Incorporated (12-051-05100005) had an erroneous process id (#3) within emission unit id SB9 and was deleted. This removes about $6,000$ tons of SO_2 from the 2002 inventory.
	Provided a revised file of location coordinates at the stack level that was used to replace the location coordinated in the ER file.
NC	Made several changes to Base F inventory to correct the following errors:
	1. Corrected emissions at Hooker Furniture (Site ID: $37-081-08100910$), release point G-29, 9211.38 tons volatile organic compounds (VOC's) should be 212.2 tons, 529.58 tons PM_{10} should be 17.02 tons, 529.58 tons $PM_{2.5}$ should be 15.79 tons in 2002 inventory.
	2. Identified many stack parameters in the ER file that were unrealistic. Several have zero for height, diameter, gas velocity, and flow rate. NC used the procedures outlined in Section 8 of the document ""National Emission Inventory QA and Augmentation Report" to correct unrealistic stack parameters.
	3. Identified truncated latitude and longitude values in Base F inventory. NC updated all Title V facility latitude and longitude that was submitted to EPA for those facilities in 2004. Smaller facilities with only two decimal places were not corrected.
	4. Corrected emissions for International Paper (3709700045) Emission Unit ID, G-12, should be 1.8844 tons VOCs instead of 2819.19 tons in 2002
SC	Corrected PM species emission values. SC DHEC's initial CERR submittal reported particulate matter emissions using the PM-FIL, PM ₁₀ -FIL, and PM25-FIL pollutant codes. In August 2005, SC DHEC indicated that data reported using the PM-FIL, PM ₁₀ -FIL, and PM25-FIL pollutant codes should actually have been reported using the PM-PRI, PM ₁₀ -PRI, and PM25_PRI codes. MACTEC performed a subsequent PM augmentation in April 2006 using the revised pollutant codes. These changes were reflected in the Base G emission inventory.
TN	Identified six facilities that closed in 2000/2001 but had non-zero emissions in the 2002 Base F inventory. MACTEC changed emissions to zero for all pollutants in the Base G 2002 inventory.
	Supplied updated emission inventory for the Bowater facility (47-107-0012) based on the facility's updated 2002 emission inventory update.
	Replaced data from Hamilton County, Tennessee, using data from Hamilton County's CERR submittal as contained in EPA's 2002 NEI (in Base F, the inventory for Hamilton County was based on the draft VISTAS 2002 inventory, which in turn was based on the 1999 NEI).
	Updated emissions for PCS Nitrogen Fertilizer LP (Site ID: 47-157-00146)
WV	Updated emissions for Steel of West Virginia (Site ID: 54-011-0009)
	Made changes to several Site ID names due to changes in ownership
	Made corrections to latitude/longitude and stack parameters at a few facilities for stacks with parameters that do not appear to fall into the ranges typically termed "acceptable" for AQ modeling.

14

1.1.1.7 Summary of Base G 2002 Inventory

Tables 1.1-4 through 1.1-10 summarize the Base G 2002 base year inventory. All values are in tons. For the purposes of Tables 1.1-4 through 1.1-10, EGU emissions include the emissions from all processes with a Source Classification Code (SCC) of either 1-01-xxx-xx (External Combustion Boilers – Electric Generation) or 2-01-xxx-xx (Internal Combustion Engines – Electric Generation). Emissions for all other SCCs are included in the non-EGU column. Note that aggregating emissions into EGU and non-EGU sectors based on the above SCCs causes a minor inconsistency with the EGU emissions reported in EPA's CAMD database. The EGU emissions summarized in these tables may include emissions from some smaller electric generating units in the VISTAS inventory that are not in CAMD's 2002 CEM database or the IPM forecasted emissions. The minor inconsistencies result in a less than 2 percent difference between the summary tables below and the data from CAMD's CEM database.

Table 1.1-4. Base G 2002 VISTAS Point Source Inventory for SO₂ (tons/year).

State	All Point Sources	EGUs	Non-EGUs	
AL	544,309	447,828	96,481	
FL	518,721	453,631	65,090	
GA	568,731	514,952	53,778	
KY	518,086	484,057	34,029	
MS	103,388	67,429	35,960	
NC	522,113	477,990	44,123	
SC	259,916	206,399	53,518	
TN	413,755	334,151	79,604	
VA	305,106	241,204	63,903	
WV	570,153	516,084	54,070	
Total	4,324,278	3,743,725	580,556	

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

15

Table 1.1-5. Base G 2002 VISTAS Point Source Inventory for NO_x (tons/year).

State	All Point Sources	EGUs	Non-EGUs	
AL	244,348	161,038	83,310	
FL	302,834	257,677	45,156	
GA	196,767	147,517	49,251	
KY	237,209	198,817	38,392	
MS	104,661	43,135	61,526	
NC	196,782	151,854	44,928	
SC	130,394	88,241	42,153	
TN	221,652	157,307	64,344	
VA	147,300	86,886	60,415	
WV	277,589	230,977	46,612	
Total	2,059,536	1,523,449	536,087	

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

Table 1.1-6. Base G 2002 VISTAS Point Source Inventory for VOC (tons/year).

State	All Point Sources	EGUs	Non-EGUs	
AL	49,332	2,295	47,037	
FL	40,995	2,524	38,471	
GA	34,952	1,244	33,709	
KY	46,321	1,487	44,834	
MS	43,852	648	43,204	
NC	62,170	988	61,182	
SC	38,927	470	38,458	
TN	85,254	926	84,328	
VA	43,906	754	43,152	
WV	15,775	1,180	14,595	
Total	461,484	12,516	448,970	

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

Table 1.1-7. Base G 2002 VISTAS Point Source Inventory for CO (tons/year).

State	All Point Sources	EGUs	Non-EGUs	
AL	185,550	11,279	174,271	
FL	139,045	57,113	81,933	
GA	140,561	9,712	130,850	
KY	122,555	12,619	109,936	
MS	59,871	5,303	54,568	
NC	64,461	13,885	50,576	
SC	63,305	6,990	56,315	
TN	122,348	7,084	115,264	
VA	70,688	6,892	63,796	
WV	100,220	10,341	89,879	
Total	1,068,604	141,218	927,388	

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

Table 1.1-8. Base G 2002 VISTAS Point Source Inventory for PM₁₀-PRI (tons/year).

State	All Point Sources	EGUs	Non-EGUs	
AL	32,886	7,646	25,240	
FL	57,243	21,387	35,857	
GA	32,834	11,224	21,610	
KY	21,326	4,701	16,626	
MS	21,106	1,633	19,472	
NC	36,592	22,754	13,838	
SC	35,542	21,400	14,142	
TN	49,814	14,640	35,174	
VA	17,211	3,960	13,252	
WV	22,076	4,573	17,503	
Total	326,630	113,918	212,714	

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

Table 1.1-9. Base G 2002 VISTAS Point Source Inventory for PM_{2.5} -PRI (tons/year).

State	All Point Sources	EGUs	Non-EGUs	
AL	23,291	4,113	19,178	
FL	46,148	15,643	30,504	
GA	22,401	4,939	17,462	
KY	14,173	2,802	11,372	
MS	11,044	1,138	9,906	
NC	26,998	16,498	10,500	
SC	27,399	17,154	10,245	
TN	39,973	12,166	27,807	
VA	12,771	2,606	10,165	
WV	15,523	2,210	13,313	
Total	239,721	79,269	160,452	

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

Table 1.1-10. Base G 2002 VISTAS Point Source Inventory for NH₃ (tons/year).

State	All Point Sources	EGUs	Non-EGUs	
AL	2,200	317	1,883	
FL	1,657	234	1,423	
GA	3,697	83	3,613	
KY	1,000	326	674	
MS	1,359	190	1,169	
NC	1,234	54	1,180	
SC	1,553	142	1,411	
TN	1,817	204	1,613	
VA	3,230	127	3,104	
WV	453	121	332	
Total	18,200	1,798	16,402	

Note: EGU emissions include SCCs 1-01-xxx-xx and 2-01-xxx-xx; non-EGU has all other SCCs.

1.1.2 Development of Typical Year EGU inventory

VISTAS developed a typical year 2002 emission inventory for EGUs to avoid anomalies in emissions due to variability in meteorology, economic, and outage factors in 2002. The typical year inventory represents the five year (2000-2004) starting period that would be used to determine the regional haze reasonable progress goals.

Data from EPA's CAMD were used to develop normalization factors for producing a 2002 typical year inventory for EGUs. We used the ratio of the 2000-2004 average heat input and the 2002 actual heat input to normalize the 2002 actual emissions. MACTEC obtained data from EPA's CAMD for utilities regulated by the Acid Rain program. Annual data for the period 2000 to 2004 were obtained from the CAMD web site (www.epa.gov/airmarkets). The parameters available were the SO_2 and NO_x emission rates, heat input, and operating hours.

We used the actual 2002 heat input and the average heat input for the 5-year period from 2000-2004 as the normalization factor, as follows:

Normalization Factor: 2000-2004 average heat input 2002 actual heat input

If the unit did not operate for all five years, then the 2000-2004 average heat input was calculated for the one or two years in which the unit did operate. For example, if the unit operated only during 2002, then the normalization factor would be 1.0. The annual actual emissions were multiplied by the normalization factor to determine the typical emissions for 2002, as follows:

Typical Emissions = 2002 actual emissions x Normalization Factor

After applying the normalization factor, some adjustments were needed for special circumstances. For example, a unit may not have operated in 2002 and thus have zero emissions. If the unit had been permanently retired prior to 2002, then we used zero emissions for the typical year. If the unit had not been permanently retired and would normally operate in a typical year, then we used the 2001 (or 2000) heat input and emission rate to calculate the typical year emissions.

The Southern Company provided typical year data for their sources. Hourly emissions data for criteria pollutants were provided. MACTEC aggregated the hourly emissions into annual values. Further documentation of how Southern Company created the typical year inventory for their units can be found in *Developing Southern Company Emissions and Flue Gas Characteristics for VISTAS Regional Haze Modeling (April 2005, presented at 14th International Emission Inventory Conference http://www.epa.gov/ttn/chief/conference/ei14/session9/kandasamy.pdf). Since Southern Company only supplied filterable particulate emissions, we ran the PM₁₀/PM_{2.5} augmentation routine to calculate annual emission estimates for PM₁₀-PRI and PM_{2.5}-PRI.*

The Southern Company typical year data were used for Southern Company sources in Alabama, Florida, and Mississippi. Georgia EPD elected to use the typical year normalization factor derived from the CAMD data instead of the Southern Company typical year data (as was used in the Base F inventory).

The final step was to replace the 2002 actual emissions with the 2002 typical year data described above. MACTEC provided the raw data and results of the typical year calculations in a spreadsheet for S/L agency review and comment. Any comments made were incorporated into the Base G inventory.

Table 1.1-11 summarizes emissions by State and pollutant for the actual 2002 EGU inventory and the typical year EGU inventory. For the entire VISTAS region, actual 2002 SO₂ emissions were about 0.5 percent higher than the typical year emissions. The differences on a state-be-state basis ranged from actual emissions being 6.6 percent lower in Florida to 10.9 percent higher in Mississippi. For the entire VISTAS region, actual 2002 NO_x emissions were about 0.1 percent lower than the typical year emissions. The differences on a state-be-state basis ranged from actual emissions being 9.6 percent lower in Florida to 6.3 percent higher in Mississippi.

Table 1.1-11. Comparison of SO₂ and NO_x Emissions (tons/year) for EGUs from Base G Actual 2002 Inventory and Typical 2002 Inventory.

	SO ₂ E	missions (tons/year))	NO _x Emissions (tons/year)			
State	Actual 2002	Typical 2002	Percentage Difference	Actual 2002	Typical 2002	Percentage Difference	
AL	447,828	423,736	5.4	161,038	154,704	3.9	
FL	453,631	483,590	-6.6	257,677	282,507	-9.6	
GA	514,952	517,633	-0.5	147,517	148,126	-0.4	
KY	484,057	495,153	-2.3	198,817	201,928	-1.6	
MS	67,429	60,086	10.9	43,135	40,433	6.3	
NC	477,990	478,489	-0.1	151,854	148,812	2.0	
SC	206,399	210,272	-1.9	88,241	88,528	-0.3	
TN	334,151	320,146	4.2	157,307	152,137	3.3	
VA	241,204	233,691	3.1	86,886	85,081	2.1	
WV	516,084	500,381	3.0	230,977	222,437	3.7	
Total	3,743,725	3,723,177	0.5	1,523,449	1,524,693	-0.1	

1.2 Area Sources

This section details the development of the Base G 2002 base year inventory for area sources. There are three major components of the area source sector of the inventory. The first component is the "typical" year fire inventory. Version 3.1 of the VISTAS base year fire inventory provided actual 2002 emissions estimates. Since fire emissions are not easily grown or projected, in order

20

to effectively represent fires in both the base and future year inventories, VISTAS determined that a typical year fire inventory was necessary. Development of the "typical" year fire inventory covered wildfire, prescribed burning, agricultural fires and land clearing fires. The first part of this section of the report discusses the development of the typical year fire inventory. The methodology provided in that section is identical to the documentation provided for Base F since the "typical" year inventory was developed as part of the Base F development effort. The major change in Base G for the fire component of the inventory was the development of projection year inventories that represent alternatives to the "typical" year inventory. These alternative projections incorporated projected changes in the acreage burned for prescribed fires on Federal lands. These projections are an augmentation of the "typical" year inventory.

The second component of the area source inventory was the incorporation of data submitted by the VISTAS States to the United States Environmental Protection Agency (EPA) as part of the CERR. Work on incorporating the CERR data into the revised base year involved: 1) obtaining the data from EPA, 2) evaluating the emissions and pollutants reported in order to avoid double counting and 3) backfilling from the existing VISTAS 2002 base year inventory for missing sources/pollutants. The processes used to perform those operations are described in the second portion of this section. That work was performed as part of the Base F inventory effort. In general no changes to that method were made as part of the Base G inventory updates. The methods used for the Base F inventory development effort using the CERR submittals have been maintained in this document. Where necessary, additional documentation has been added to 1) reflect changes that resulted from VISTAS States review of the Base F inventory and the incorporation of those changes into Base G, 2) changes made to how certain sources were estimated or 3) addition of new sources not found in Base F.

The final component of the area source inventory was related to the development of NH₃ emission estimates for livestock and fertilizers and paved road PM emissions. For the NH₃ emission estimates for livestock and fertilizers we used version 3.6 of the Carnegie Mellon University (CMU) NH₃ model. For the paved road PM emissions, we used the most recent estimates developed by EPA as part of the National Emission Inventory (NEI) development effort. EPA had developed an improved methodology for estimating paved road emissions so those values were substituted directly into the inventory after receiving consensus from all of the VISTAS States to perform the replacement. Details on these methods are provided in the third portion of this section of the document. That section is virtually identical to that from the Base F inventory document as there were only a couple of changes to the ammonia portion of the inventory and some updates to all fugitive dust categories including paved roads on a global basis between Base F and Base G.

Finally, quality assurance steps for each component of the area source inventory are discussed.

1.2.1 Development of a "typical" year fire inventory

Typical year fire emissions were developed starting from the actual fire acreage data and emission calculated for each VISTAS State. The table below shows the data submitted by each State in the VISTAS region indicating what data was received from each State for the purposes of calculating actual fire emissions.

Fire Type	AL	FL	GA	KY	MS	NC	SC	TN	VA	WV
Land Clearing	✓	✓	✓				✓			
Ag Burning	✓	✓	✓				✓			
Wildfires	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Prescribed	✓	✓	✓	✓	✓	✓	✓	✓		✓

In order to effectively characterize fire emissions in the VISTAS region, a typical (as opposed to strictly 2002 year based inventory) was required. Development of a typical year fire inventory provided the capability of using a comparable data set for both the base year and future years. Thus fire emissions would remain the same for air quality and visibility modeling in both the base and any future years. MACTEC originally proposed five different methods for developing the typical fire year to the VISTAS Fire Special Interest Work Group (SIWG) and requested their feedback and preference for developing the final typical year inventory. The method that was selected by SIWG members was to use a method similar to that used to develop an early version of a 2018 projection inventory. For that early 2018 inventory, State level ratios of acres over a longer term record (three or more years) developed for each fire type relative to 2002. The 2002 acreage was then scaled up or down based on these ratios to develop a typical year inventory. For Base F and G, the decision of the VISTAS Fire SIWG was to base the ratio on county level data for States that supplied long term fire-by-fire acreage data rather than Statelevel ratios. Where States did not supply long term fire-by-fire acreage data, MACTEC reverted to using State-level ratios. With one broad exception (wildfires) this method was implemented for all fires. MACTEC solicited long term fire-by-fire acreage data by fire type from each VISTAS State. A minimum of three or more years of data were used to develop the ratios. Those data were then used to develop a ratio for each county based on the number of acres burned in each county for each fire type relative to 2002.

Thus if we had long term county prescribed fire data from a State, we developed a county acreage ratio of:

$$Ratio = \frac{\text{Long term average county level Rx acres}}{2002 \text{ actual county level Rx acreage}}$$

This ratio was then multiplied times the actual 2002 acreage to get a typical value (basically the long term average county level acres). Wherever possible this calculation was performed on a fire by fire basis. The acreage calculated using the ratio was then used with the fuel loading and emission factor values that we already had (and had been reviewed by the SIWG) to calculate emissions using the same method used for the 2002 actual values (which were previously documented). The following lists indicate which counties used the State ratios by fire type.

23

There were three exceptions to this method.

Exception 1: Use of State Ratios for Wildfires

The first exception was that wildfires estimates were developed using State ratios rather than county ratios. This change was made after initial quality assurance of the draft estimates revealed that some counties were showing unrealistic values created by very short term data records or missing data that created unrealistic ratios. In addition, exceptionally large and small fires were removed from the database since they were felt to be atypical. For example the Blackjack Complex fire in Georgia was removed from the dataset because the number of acres burned was "atypical" in that fire. We also removed all fires less than 0.1 acres from the dataset.

Exception 2: Correction for Blackened Acres on Forest Service Lands

Following discussions with the United States Forest Service (Forest Service) (memo from Cindy Huber and Bill Jackson, dated August 13, 2004), it was determined that the acres submitted by the Forest Service for wildfires and prescribed fires represented perimeter acres rather than "blackened" acres. Thus for wildfires and prescribed fires on Forest Service lands, a further correction was implemented to correct the perimeter acre values to blackened acres. The correction was made based on the size of the fire. For prescribed fires over 100 acres in size the acreage was adjusted to be 80 percent of the initial reported value. For prescribed fires of 100 acres or less the acreage values were maintained as reported. For wildfires, all reported acreage values were adjusted to be 66 percent of their initially reported values. These changes were made to all values reported for Forest Service managed lands.

Exception 3: Missing/Non-reported data

When we did not receive data from a VISTAS State for a particular fire type, a composite average for the entire VISTAS region was used to determine the typical value for that type fire. For example, if no agricultural burning long term acreage data was reported for a particular State, MACTEC determined an overall VISTAS regional average ratio that was used to multiply times the 2002 values to produce the "typical" values. This technique was applied to all fire types when data was missing.

In addition, for wildfires and prescribed burning, ratios were developed for "northern" and "southern" tier States within the VISTAS region and those ratios were applied to each State with missing data depending upon whether they were considered a "northern" or "southern" tier State. Development of "southern" and "northern" tier data was an attempt to account for a change from a predominantly pine/evergreen ecosystem (southern) to a pine/deciduous ecosystem (northern). States classified as "southern" included: AL, FL, GA, MS, and SC. States classified as "northern" included: KY, NC, TN, VA, and WV.

Finally for land clearing and agricultural fires, there are no NH₃ and SO₂ emissions. This is due to the lack of emission factors for these pollutants for these fire types.

Table 1.2-1 shows fire emissions from the original base year emission inventory (VISTAS 3.1), the actual 2002 emissions and the typical year emissions for the entire VISTAS region. The actual 2002 and typical fire emissions represent the Base F and Base G 2002 emissions. The typical emissions also represent the 2009 and 2018 emissions for all fire types with the exception of prescribed burning. Revisions made to the typical year prescribed fire emissions for 2009 and 2018 are detailed in the projection section. Also, State level Base G emissions from fires for all years can be found in the tables in Appendix A. Values for fires in those tables are "typical" year values.

Figures 1.2-1 through 1.2-4 show the State by State changes in emissions between the original 2002 base year fire inventories, the actual 2002 and the typical year inventories for carbon monoxide (CO) by fire type. Due to the relative magnitude of CO emissions compared to other criteria and PM pollutants from fires; this pollutant is normally chosen to represent the distribution of fires in the example plots.

Table 1.2-1. Emissions from Fires in the VISTAS Region – Comparison between Original Base Year 2002 (VISTAS 3.1), 2002 Actual and Typical Year Base G Emissions.

		CO	NH ₃	NO _X	PM ₁₀ -FIL	PM ₁₀ -PRI	PM _{2.5} -FIL	PM _{2.5} -PRI	SO ₂	VOC
Total LC	Actual (Base G)	492,409	0	14,568	62,146	62,146	62,146	62,146	0	33,799
	Typical (Base G)	675,838	0	19,995	80,598	80,598	80,598	80,598	0	46,389
	VISTAS 3.1	484,240	0	14,327	61,325	61,325	61,325	61,325	0	33,238
Total Ag	Actual (Base G)	164,273	0	903	30,958	30,958	30,385	30,385	0	21,946
	Typical (Base G)	161,667	0	903	30,465	30,465	29,892	29,892	0	21,595
	VISTAS 3.1	331,073	0	903	41,480	41,480	40,192	40,192	0	41,875
Total WF	Actual (Base G)	298,835	1,333	6,628	28,923	28,923	24,926	24,926	1,611	16,804
	Typical (Base G)	547,174	2,451	11,955	53,070	53,070	45,635	45,635	3,072	28,491
	VISTAS 3.1	275,766	1,230	6,133	26,680	26,680	23,002	23,002	1,476	15,718
Total RX	Actual (Base G)	1,678,216	7,616	36,561	168,938	168,938	145,175	145,175	9,839	78,988
	Typical (Base G)	1,635,776	7,425	35,650	164,811	164,811	141,636	141,636	9,590	76,990
	VISTAS 3.1	1,724,940	7,822	37,556	173,590	173,590	149,181	149,181	10,101	81,188

Key: LC = Land Clearing; Ag = Agricultural burning; WF = wildfires; RX = prescribed burning. Actual and Typical represent Base F and Base G (e.g., no change in methodology for Base F and Base G) for 2002.

Figure 1.2-1. CO Emissions from Agricultural Burning for the Original Base Year, 2002 Actual Base G, and 2002 Typical Base G Inventories.

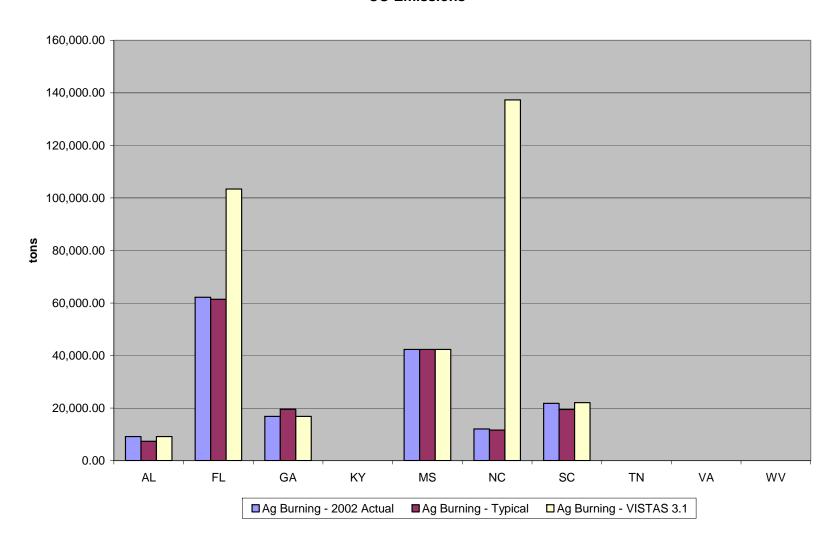
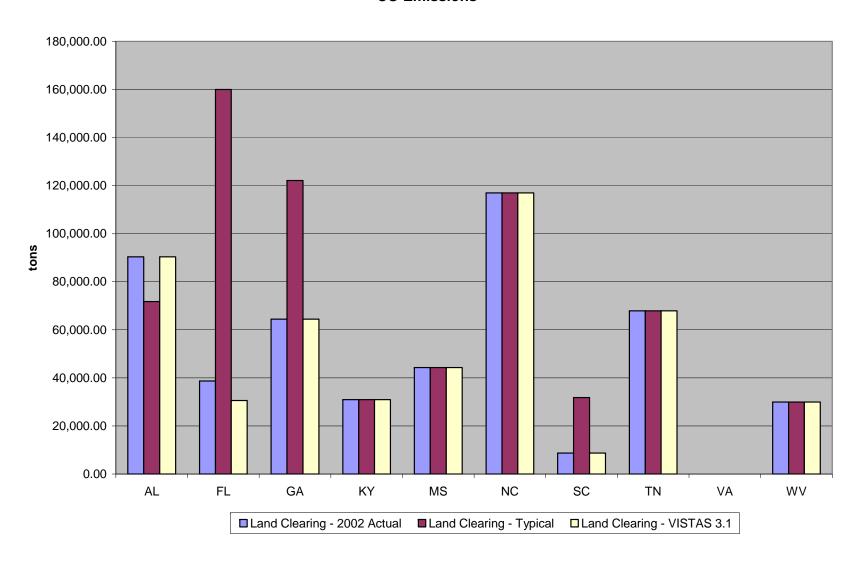



Figure 1.2-2. CO Emissions from Land Clearing Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.

28

Figure 1.2-3. CO Emissions from Prescribed Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.

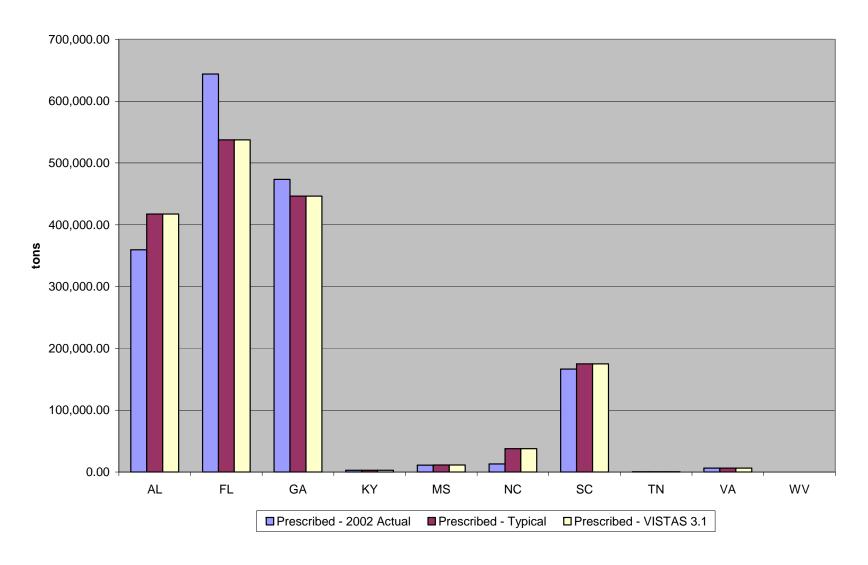
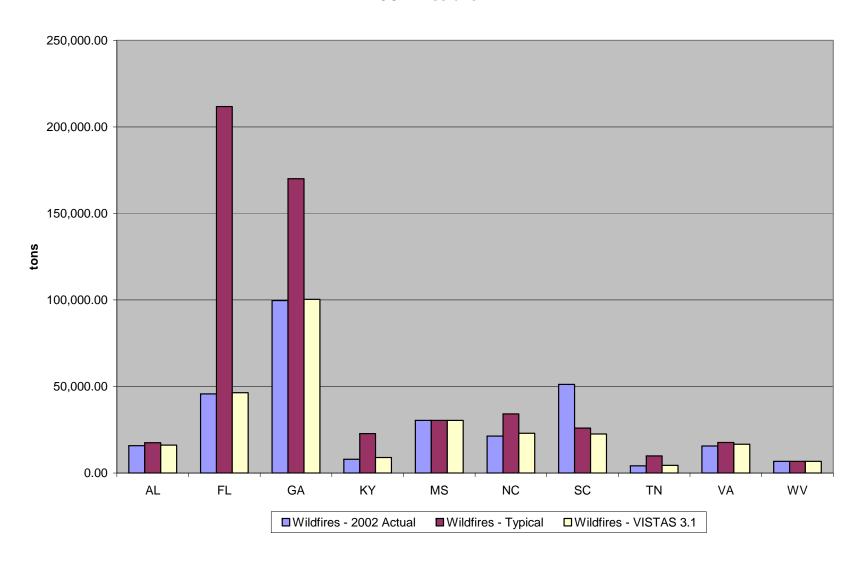



Figure 1.2-4. CO Emissions from Wildfire Burning for the Original Base Year, 2002 Actual Base G and 2002 Typical Base G Inventories.

1.2.2 Development of non-fire inventory

The second task in preparing the area source component of the Base F and Base G 2002 base year inventory was the incorporation of data submitted by the VISTAS States to the EPA as part of the CERR. With few exceptions, Base F and Base G inventories for this component of the inventory are identical. Modifications to the Base F methodology (described below) only resulted from modifications from the VISTAS States during review of the Base F inventory. The changes made to the inventory based on these reviews are described in the last portion of this section of the report. The information presented below describes the method used to incorporate CERR data as part of Base F.

Work on incorporating the CERR data into the 2002 Base F inventory involved: 1) obtaining the data from EPA, 2) evaluating the emissions and pollutants reported in order to avoid double counting and 3) backfilling from the earlier version of the VISTAS 2002 base year inventory for missing sources/pollutants. The processes used to perform those operations are described below. This work did not include any of the fire emission estimates described above. In addition it did not include emission estimates for ammonia from agricultural and fertilizer sources. Finally it did not include PM emissions from paved roads. Each of those categories was estimated separately.

Data on the CERR submittals was obtained from EPA's Draft NEI download file transfer protocol (FTP) site where the data are stored after they've been processed for review. The data submitted in National Emission Inventory Format (NIF) was downloaded from that site. Once all of the files were obtained, MACTEC ran the files through the EPA NIF Format and Content checking tool to ensure that the files were submitted in standard NIF format and that there were no issues with those files. In a couple of cases small errors were found. For example, in one case a county FIPs code that was no longer in use was found. MACTEC contacted each VISTAS State area source contact person to resolve the issues with the files and corrections were made. Once all corrections to the native files were completed, MACTEC continued with the incorporation of the data into the VISTAS area source files.

Our general assumption was that unless we determined otherwise, the CERR submittals represented full and complete inventories. Where a State submitted a complete inventory, our plan was to simply delete the previous 2002 base year data and replace it with the CERR submittal. Prior to this replacement however, we stripped out the following emissions:

- 1. All wildfire, prescribed burning, land clearing and agricultural burning emissions submitted to EPA by the States as part of the CERR process were removed since they were to be replaced with emissions estimated using methods described earlier.
- 2. All fertilizer and agricultural ammonia emission records submitted to EPA by the States as part of the CERR process were removed. These were replaced with the estimates developed using the CMU Ammonia model.

3. All emissions from paved roads submitted to EPA by the States as part of the CERR process were removed. These emissions were replaced with updated emissions developed by U.S. EPA as part of their 2002 NEI development effort.

This approach was used for most State and Local emission submittals to prepare the Base F inventory. There were a few cases where alternative data were used to prepare the Base F inventory. In general, these alternatives involved submittal of alternative files to the CERR data by S/L agencies. Table 1.2-2 below summarizes the data used to prepare the Base F inventory. In general the data were derived from one of the following sources:

- 1. CERR submittal obtained from EPA FTP site as directed by VISTAS States;
- 2. State submitted file (either revised from CERR submittal or separate format);
- 3. VISTAS original 2002 base year (VISTAS version 3.1 base year file); or
- 4. EPA's preliminary 2002 NEI.

Table 1.2-2. Summary of State Data Submittals for the 2002 VISTAS Area Source Base F Inventory

State / Local Program	Area Source Emissions Data Source
AL	В
FL	В
GA	C
KY	A
MS	В
NC	C
SC	В
TN	В
VA	В
WV	A/C
Davidson County, TN	В
Hamilton County, TN	C
Memphis/Shelby County, TN	A
Knox County, TN	В
Jefferson County, AL	* so B from State
Jefferson County, KY	В
Buncombe County, NC	* so C from State
Forsyth County, NC	* so C from State
Mecklenburg County, NC	* so C from State

A = VISTAS 2002 (version 3.1)

B = CERR Submittal from EPA's ftp site

C = Other (CERR or other submittal sent directly from State to MACTEC)

^{* =} No response

In order to track the sources of data in the final Base F and Base G NIF files, a field was added to the NIF format files developed for VISTAS to track each data source. A field named Data_Source was added to the EM table. A series of codes were added to this field to mark the source of each emissions value in the Base F and Base G inventories. Values in this field are detailed in Table 1.2-3.

Table 1.2-3: Data Source Codes and Data Sources for VISTAS 2002 Base F Area Source Emissions Inventory.

Data Source Codes	Data Source	
Base	F Codes	
CMU Model	CMU Ammonia model v 3.6	
E-02-X or E-99-F or L-02-X or S-02-X	EPA CERR submittal (from FTP site)	
EPA Paved	EPA Paved Road emissions estimates	
EPAPRE02NEI	EPA Preliminary 2002 NEI	
STATEFILE	State submitted file	
VISTBASYR31	VISTAS 2002 Base Year version 3.1	
VISTRATIO	Developed from VISTAS Ratios (used only for missing pollutants)	
Additional	Base G Codes	
ALBASEGFILE	Base G update file provided by AL	
NCBASEGFILE	Base G update file provided by NC	
OTAQRPT	Portable Fuel Container Emissions from OTAQ Report	
STELLA	Revised data provided by VISTAS EI Advisor Greg Stella	
VABASEGFILE	Base G update file provided by VA	
VAStateFile	Revisions/additions to Base G update file provided by VA	

Most States submitted complete inventories for Base F. Virginia's inventory required a two stage update. Virginia's CERR submittal only contained ozone precursor pollutants (including CO). For Virginia, MACTEC's original plan was to maintain the previous 2002 VISTAS base year emissions for non-ozone pollutants and then do a simple replacement for ozone pollutants. However during the QA phase of the work, MACTEC discovered that there were categories that had ozone precursor or CO emissions in the submittal that weren't in the original 2002 VISTAS base year inventory that should have PM or SO₂ emissions. For those records, MACTEC used an

33

emissions ratio to build records for emissions of these pollutants. Data for Virginia PM and SO_2 emissions were generated by developing SCC level ratios to NO_x from the VISTAS 2002 base year inventory (version 3.1) or from emission factors and then calculating the emissions based on that ratio.

1.2.3 2002 Base G inventory updates

After the Base F inventory was submitted and used for modeling, VISTAS States were provided an opportunity for further review and comment on the Base F inventory. As a result of this review and comment period, several VISTAS States provided revisions to the Base F inventory.

In addition to and as an outgrowth of some of the comments provided by the States during the review process, some of the changes made to the inventory were made globally across the entire VISTAS region. This section discusses the specific State changes followed by the global changes made to the area source component of the inventory for all VISTAS States.

1.2.3.1 Changes resulting from State review and comment

<u>Alabama</u>

Alabama suggested several changes and had questions concerning a few categories in the Base F inventory. The changes/questions were:

1. For Source Classification Code (SCC) 2102005000 (Industrial Boilers: Residual Oil) and SCC 2103007000 (Institutional/Commercial Heating: Liquefied Petroleum Gas) the Alabama noted that the Base F VISTAS inventory had values for NO_x , VOC and CO for the State, but no values for SO_2 , PM_{10} or $PM_{2.5}$.

MACTEC evaluated this information and found that there were actually emissions for two counties in AL for that SCC that had either SO₂ and/or PM emissions. The data used to develop the 2002 Base F inventory for AL came from the preliminary 2002 CERR submittals (see above) which should have included SO₂ and PM but did not except for two counties. According to MACTEC's protocol for use of these files, the files received from EPA were to be used "as is" unless the States provided comments during the Base F comment period to correct the CERR submittal. No comments were received from AL on the CERR submittal used for Base F. For 2002 Base G, AL provided an updated database file for these SCCs for all counties in the State that provided revised values for emissions and included SO₂ and PM. The revised file was used to update the Base F data for Base G.

2. AL noted that the Base F inventory included SCC 2401002000 (Solvent Utilization, Surface Coating, Architectural Coatings - Solvent-based, Total: All Solvent Types) and 2401003000 (Solvent Utilization, Surface Coating,

Architectural Coatings - Water-based, Total: All Solvent Types) as well as SCC 2401001000 (Solvent Utilization, Surface Coating, Architectural Coatings, Total: All Solvent Types). This resulted in double counting of the emissions for this category. AL suggested removal of the breakdown SCCs and use of the total SCC.

MACTEC deleted records for the breakdown SCCs and retained the total all solvents SCC emissions.

2	AL found the SCCs listed below missing from the Base F VISTAS inventory.
1	ALTOHIO THE SUL'S HSIEG DELOW MISSING FROM THE BASE E VISTAS INVENIORY
<i>J</i> .	THE TOURGE THE DECEMENTATION THE BUSET THE TITLE INVENTORY

	VOC		
SCC	Emissions	SCC Description	
2401025000	1139.91	Surface Coatings: Metal Furniture, all coating types	
2401030000	425.27	Surface Coatings: Paper, all coating types	
2401065000	344.08	Surface Coatings: Electronic and Other Electrical, all coating	
		types	
2430000000	504.29	Solvent Utilization, Rubber/Plastics, All Processes, Total: All	
		Solvent Types	
2440020000	3043.78	Solvent Utilization, Miscellaneous Industrial, Adhesive	
		(Industrial) Application, Total: All Solvent Types	
Total for AL	5457.32		

MACTEC found that the emissions for these SCCs were included in the Base F inventory, but with slightly different total emissions. AL provided an updated county-level emissions file for use in updating the Base G inventory. That file was used to update the NIF records for AL for those SCCs.

4. AL noted that emissions in the Base F inventory were found for SCC 2465000000 and SCCs 2465100000, 2465200000, 2465400000, 2465600000, and 2465800000. These last five SCCs represent a subset of the emissions in the 246500000 SCC resulting in potential double counting of emissions.

MACTEC deleted all emissions associated with the Total SCC 2465000000 and retained the subset SCCs for the Base G inventory.

Florida

Florida provided comments indicating that they felt that emissions from the following sources and counties were too high, especially for CO and PM and were likely zero:

- motor vehicle fire Palm Beach County
- woodstoves Miami Dade, Hillsborough, Orange, Polk, Ft Myers, Pasco and Sarasota Counties
- fireplaces Miami Dade and Hillsborough Counties

Emissions from these sources in the counties specified were set to zero by MACTEC for the Base G inventory.

North Carolina

North Carolina provided corrected emission files for 2002 Base F. A text file with emission values was provided and used to update the Base F emissions to Base G. The updated emissions were applied directly to the Base F NIF file. The file provided was similar to the "EM" NIF table. An update query was used to update the data supplied in the text file to the Access database NIF file. All changes were implemented.

South Carolina

South Carolina had two issues concerning the Base F inventory. These issues related to 1) additional SCCs that were in BASE F 2009 and 2018, but not in 2002 Base F and 2) SCCs that were in the U.S. EPA 2002 NEI inventory, but not in the VISTAS 2002, 2009, or 2018 Base F inventory.

MACTEC investigated the additional SCCs found in 2009 and 2018 Base F and found that the SCCs actually were not missing in the 2002 Base F inventory but only had emissions for PM. Thus the emissions were maintained as they were provided in Base F.

With respect to the SCCs that were found in the U.S. EPA 2002 NEI, MACTEC investigated and found that they were not included in the Base F inventory because they were not included in the 2002 CERR submittal used to produce the Base F updates. The SCCs were apparently added by EPA later in the NEI development process. In addition, MACTEC also evaluated whether or not the SCCs were found in other VISTAS States Base F inventories. MACTEC found that some States included them and some did not, there was no consistency between the States. MACTEC also found that typically emissions for these SCCs were low in emissions, generally with emissions of only a few tons to tens of tons per year. The decision was made with South Carolina concurrence not to add these SCCs to the Base G inventory. These SCCs were: 210205000, 2102011000, 2103007000, 2103011000, 2104007000, 2104011000, 2302002100, 2302002200, 2302003100, 2302003200, 2610000500, 2810001000, and 281001500.

Virginia

Virginia provided an updated 2002 base year emissions file. The data in that file were used to update the Base F inventory emission values to those for Base G. In addition, Virginia provided

information on several source categories that required controls for future year projections since the sources were located in counties/cities in northern Virginia and were subject to future year Ozone Transport Commission (OTC) regulations. MACTEC added in the base year control levels to the Base G inventory file for these categories so that they could be estimated correctly in future years. The controls added were for mobile equipment repair/refinishing sources, architectural and industrial maintenance coating sources, consumer products sources, and solvent metal cleaning sources. Minor errors were found in some entries for the initial file provided and VA provided a revised file with corrections and minor additions.

1.2.4 Ammonia and paved road emissions

The final component of the Base F inventory development was estimation of NH₃ emission estimates for livestock and fertilizers and paved road PM emissions. For the NH₃ emission estimates for livestock and fertilizers we used version 3.6 of the CMU NH₃ model (http://www.cmu.edu/ammonia/). Results from this model were used for all VISTAS States. The CMU model version 3.6 was used in large part because it had been just recently been updated to include the latest (2002) Census of Agriculture animal population statistics. Prior to inclusion of the CMU model estimates, MACTEC removed any ammonia records for agricultural livestock or fertilizer emissions from the VISTAS 2002 initial base year inventory. MACTEC also generated emissions from human perspiration and from wildlife using the CMU model and added those emissions for each State.

For the Base G ammonia inventory, MACTEC removed all wildlife and human perspiration emissions. VISTAS decided to remove these emissions from the inventory. Human perspiration was dropped due to a discrepancy in the units used for the emission factor that was not resolved prior to preparing the estimates and wildlife was dropped because VISTAS felt the activity data was too uncertain. Thus all emissions from these two categories were deleted in the Base G 2002 inventory.

For the paved road PM Base F emissions, we used the most recent estimates developed by EPA as part of the NEI development effort (Roy Huntley, U.S. EPA, email communication, 8/30/2004). EPA had developed an improved methodology for estimating paved road emissions for 2002 and had used that method to calculate emissions for that source category. MACTEC obtained those emissions from EPA and those values were substituted directly into the inventory after receiving consensus from all of the VISTAS States to perform the replacement. These files were obtained in March of 2005 in NIF format from the EPA FTP site.

For the Base G emissions, modifications were made to the emissions estimates based on changes suggested by work of the Western Regional Air Partnership and U.S. EPA. Details of these changes are provided below in the section on global changes made as part of the Base G inventory updates.

1.2.5 Global Changes Made for Base G

There were three global changes made between the Base F and the Base G inventory (beyond the removal of wildlife and human perspiration NH₃ emissions). These changes were:

- 1. Removal of Stage II emissions from the area source inventory and inclusion in the mobile sector of the inventory,
- 2. Adjustment of fugitive dust PM_{2.5} emissions, and
- 3. Addition of emissions from portable fuel containers.

As part of the Base F review process, several VISTAS States had expressed surprise that the Stage II refueling emission estimates were in the area source component of the inventory. This decision had been made with SIWG agreement early on in the inventory development process because 1) some States had included it in their CERR submittals and 2) because the non-road and on-road mobile estimates had differing activity factor units and could not be easily combined. However for Base G, the VISTAS States all agreed, especially in light of the different ways in which the emissions were reported in the CERR, to remove the Stage II refueling emissions from the area source inventory and include them in the non-road and on-road sectors. Thus all records related to Stage II refueling were removed from the area source component of the Base G inventory.

 $PM_{2.5}$ emissions from several fugitive dust sources were also updated for Base G. The Western Regional Air Partnership (WRAP) and U.S. EPA had been investigating overestimation of the $PM_{2.5}$ / PM_{10} ratio in several fugitive dust categories and U.S. EPA was in the process of making revisions to AP-42 for several categories during preparation of the Base G inventory. Based on data received from U.S. EPA, VISTAS decided to revise the $PM_{2.5}$ emissions from construction, paved roads and unpaved road sources. $PM_{2.5}$ emissions in Base F were multiplied by 0.67, 0.6, and 0.67 for construction, paved roads and unpaved roads respectively to produce the values found in Base G. No changes were made to PM_{10} , only to $PM_{2.5}$.

Finally, as part of Virginia's comments on the Base F inventory, emissions from portable fuel containers were mentioned as being absent from the inventory. MACTEC was tasked with developing a methodology that could be used to add these emissions to the Base G area source inventory. In investigating options for a method of estimating emissions, MACTEC found that the U.S. EPA had prepared a national inventory of emissions by State for portable fuel containers. Data on emissions from this source prepared by U.S. EPA were presented in, "Estimating Emissions Associated with Portable Fuel Containers (PFCs), Draft Report, Office of Transportation and Air Quality, United States Environmental Protection Agency, Report # EPA420-D-06-003, February 2006".

State-level emission estimates for 2005 derived from Appendix Table B-2 of the PFCs report were used as the starting point for developing 2002 county-level emissions estimates. State emissions were derived from that table by using all of the emission estimates in that table with the exception of values for vapor displacement and spillage from refueling operations. Those components of the State emissions were left out of the State-level emissions to avoid double counting refueling emissions in the non-road sector. For the purposes of 2002 emission estimates for Base G, the 2005 values were assumed equal to 2002 values.

The 2005 State-level estimates minus the refueling component from Appendix Table B-2 of the report were summed for each State and then allocated to the county-level. The county-level allocation was based on the fuel usage information obtained from the NONROAD 2005 model runs conducted as part of the Base G inventory development effort (see the 2002 base year Base G non-road section below). MACTEC used the spillage file from the NONROAD model (normally located in the DATA\EMSFAC directory in a standard installation of NONROAD) to determine the SCCs that used containers for refueling. The spillage file contains information by SCC and horsepower indicating whether or not the refueling occurs using a container or a pump. All SCC and horsepower classes using containers were extracted from the file and cross-referenced with the fuel usage by county for those SCC/horsepower combinations from the appropriate year model runs (2002, 2009 or 2018). Then the fuel usages by county from the NONROAD 2005 runs prepared for VISTAS were summed for those SCCs by county. The county level fuel use was then divided by the State total fuel use for the same SCCs to determine the fraction of total State fuel usage and that fraction was used to allocate the State-level emissions to the county.

1.2.6 Quality Assurance steps

Throughout the inventory development process, quality assurance steps were performed to ensure that no double counting of emissions occurred, and to ensure that a full and complete inventory was developed for VISTAS. Quality assurance was an important component to the inventory development process and MACTEC performed the following QA steps on the area source component of the 2002 Base F inventory:

- 1. All CERR and NIF format State supplied data submittals were run through EPA's Format and Content checking software.
- 2. SCC level emission summaries were prepared and evaluated to ensure that emissions were consistent and that there were no missing sources.
- 3. Tier comparisons (by pollutant) were developed between the revised 2002 base year inventory and the previous (version 3.1) base year inventory.

- 4. Fields were either added or used within each NIF data table to track the sources of data for each emission record.
- 5. Data product summaries were provided to both the VISTAS Emission Inventory Technical Advisor and to Area Source and Fires SIWG representatives for review and comment. Changes based on these comments were implemented in the files.
- 6. Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from 1.0 to 2.0. A minor change would cause a version number to go from 1.0 to 1.1. Minor changes resulting from largely editorial changes would result in a change from 1.00 to 1.01.

In addition, for the fires inventory, data related to fuel loading and fuel consumption was reviewed and approved by the VISTAS Fire SIWG to ensure that values used for each type of fire and each individual fire were appropriate. Members of the VISTAS Fire SIWG included representatives from most State Divisions of Forestry (or equivalent) as well as U.S. Forest Service and National Park Service personnel.

For Base G, similar QA steps to those outlined above for Base F were undertaken. In addition, all final NIF files were checked using the EPA Format and Content checking software and summary information by State and pollutant were prepared comparing the Base F and Base G inventories.

1.3 Mobile Sources

This section describes the revisions made to the initial 2002 VISTAS Base Year emission inventory on-road mobile source input files. For this work actual emission estimates were not made, rather data files consistent with Mobile Emissions Estimation Model Version 6 (MOBILE6) were developed and provided to the VISTAS modeling contractor. These input data files were then run during the VISTAS modeling to generate on-road mobile source emissions using episodic and meteorological specific conditions configured in the sparse matrix operator Kernel Emissions modeling system (SMOKE) emissions processor.

During initial discussions with the VISTAS Mobile Source SIWG, some States indicated a desire to use CERR mobile source emissions data in place of the VISTAS 2002 inventories generated by E.H. Pechan and Associates, Inc. (the initial VISTAS 2002 Base Year inventory files).

However, the CERR emissions data by itself were not sufficient for an inventory process that includes both base and future year inventories. MACTEC needed to be able to replicate the CERR data rather than simply obtain CERR emissions estimates. The reason for this is that only input files were being prepared to provide revised 2002 estimates during the VISTAS modeling process, rather than the actual emission estimates and that the 2002 input data files would be

used as a starting point for the projected emission estimates. This meant that the appropriate vehicle miles traveled (VMT), MOBILE6, and/or NONROAD model input data needed to be provided. If these data were provided with the CERR emissions estimates we used it as the starting point for revision of the 2002 Base Year inventory. However MACTEC did not have access to the on-road mobile CERR submissions from EPA, so re-submittal of these data directly to MACTEC was requested in order to begin compiling the appropriate input file data.

In those cases where States did not provide CERR on-road mobile source input data files, our default approach was to maintain the data input files and VMT estimates for the initial 2002 Base Year inventory prepared by Pechan.

1.3.1 Development of on-road mobile source input files and VMT estimates

Development of the 2002 on-road input files and VMT was a multi-step process depending upon what the State mobile source contacts instructed us to use as their data. Information provided below provides incremental revisions made to on-road mobile source inventories or inputs in series from one inventory version to the next. In general the process involved one of three steps from the original 2002 on-road mobile source data.

Base F Revisions

- 1. The first step was to evaluate the initial 2002 base year files and make any non-substantive changes (i.e., changes only to confirm that the files posted for 2002 by Pechan were executable and that all the necessary external files needed to run MOBILE6 were present). This approach was taken for AL, FL, GA, MS, SC, and WV. For these States the determination was made that the previous files would be okay to use as originally prepared. For SC, the VMT file was updated, but that did not affect the MOBILE6 input files.
- 2. For other States, modification to the input files was required. The information below indicates what changes were made for other States in the VISTAS region.

KY – For Kentucky, the Inspection and Maintenance (I/M) records in the input files for Jefferson County were updated in order to better reflect the actual I/M program in the Louisville metropolitan area.

NC - Substantial revisions were implemented to these input files based on input from the State. The modifications necessary to reflect the desires of the State led to complete replacement of the previous input files. Among the changes made were:

• The regrouping of counties (including the movement of some counties from one county group to another and the creation of new input files for previously grouped

counties). There were originally 32 input files; after the changes there were 49. The pointer file was corrected to reflect these changes.

- Travel speeds were updated in over 3000 scenarios.
- All I/M records were updated.
- All registration distributions were updated.
- I/M VMT fractions were updated (which only affected the pointer file).
- VMT estimates were updated (which has no direct effect on the MOBILE6 input files but does ultimately affect emissions).
- 3. VA and TN For these States, new input files were provided due to substantive changes that the State wanted to make relative to the 2002 initial base year input files. In addition, revised VMT data were developed for each State.

Base G Revisions

For the production of the VISTAS 2002 Base G inventory, VISTAS states reviewed the Base F inputs, and provided corrections, updates and supplemental data.

For all states modeled, the Base G updates include:

Adding Stage II refueling emissions calculations to the SMOKE processing.

Revised the HDD compliance for all states. (REBUILD EFFECTS = .1)

In addition to the global changes, individual VISTAS states made the following updates:

KY – updated VMT and M6 input values for selected counties.

NC – revised VMT and registration distributions.

TN - revised VMT and vehicle registration distributions for selected counties.

VA – revised winter RFG calculations in Mobile 6 inputs.

WV – revised VMT input data.

AL, FL, and GA did not provide updates for Base G and therefore the Base F inputs were used for these States.

1.3.1.1 Emissions from on-road mobile sources

The MOBILE6 module of the Sparse Matrix Operator Kernel Emissions (SMOKE) model was used to develop the on-road mobile source emissions estimates for CO, NO_X, NH₃, SO₂, PM, and

VOC emissions. The MOBILE6 parameters, vehicle fleet descriptions, and VMT estimates are combined with gridded, episode-specific temperature data to calculate the gridded, temporalized emission estimates. The MOBILE6 emissions factors are based on episode-specific temperatures predicted by the meteorological model. Further, the MOBILE6 emissions factors model accounts for the following:

- Hourly and daily minimum/maximum temperatures;
- Facility speeds;
- Locale-specific inspection/maintenance (I/M) control programs, if any;
- Adjustments for running losses;
- Splitting of evaporative and exhaust emissions into separate source categories;
- VMT, fleet turnover, and changes in fuel composition and Reid vapor pressure (RVP).

The primary input to MOBILE6 is the MOBILE shell file. The MOBILE shell contains the various options (e.g. type of inspection and maintenance program in effect, type of oxygenated fuel program in effect, alternative vehicle mix profiles, RVP of in-use fuel, operating mode) that direct the calculation of the MOBILE6 emissions factors. The shells used in these runs were based on VISTAS Base F modeling inputs as noted in the previous section.

For this analysis, the on-road mobile source emissions were produced using selected weeks (seven days) of each month and using these days as representative of the entire month. This selection criterion allows for the representation of day-of-the-week variability in the on-road motor vehicles, and models a representation of the meteorological variability in each month. The modeled weeks were selected from mid-month, avoiding inclusion of major holidays.

The parameters for the SMOKE runs are as follows:

Episodes:

2002 Initial Base Year, and

2009 and 2018 Future years, using 2009/2018 inventories and modeled using the same meteorology and episode days as 2002.

Episode represented by the following weeks per month:

January 15-21

February 12-18

March 12-18

April16-22

May 14-20

June 11-17

July 16-22

August 13-19

September 17-23

October 15-21

November 12-18

December 17-23

Days modeled as holidays for annual run:

New Year's Day - January 1

Good Friday - March 29

Memorial Day – May 27

July 4th

Labor Day – September 2

Thanksgiving Day – November 28, 29

Christmas Eve – December 24

Christmas Day – December 25

Output time zone:

Greenwich Mean Time (zone 0)

Projection:

Lambert Conformal with Alpha=33, Beta=45, Gamma=-97, and center at (-97, 40).

Domain:

36 Kilometer Grid: Origin at (-2736, -2088) kilometers with 148 rows by 112 columns and 36-km square grid cells.

12 Kilometer Grid: Origin at (108, -1620) kilometers with 168 rows by 177 columns and 12-km square grid cells.

CMAQ model species:

The CMAQ configuration was CB-IV with PM. The model species produced were: CO, NO, NO₂, ALD₂, ETH, FORM, ISOP, NR, OLE, PAR, TERPB, TOL, XYL, NH₃, SO₂, SULF, PEC, PMFINE, PNO₃, POA, PSO₄, and PMC.

Meteorology data:

Daily (25-hour). SMOKE requires the following five types of MCIP outputs: (1) Grid cross 2-d, (2) Grid cross 3-d, (3) Met cross 2-d, (4) Met cross 3-d, and (5), Met dot 3-d.

The reconstructed emissions based on the representative week run were calculated by mapping each day of week (Mon, Tue, Wed, etc.) from the modeled month to the same day of week generated in the representative week run. In the case of holidays, these days were mapped to representative week Sundays. An example of this mapping for the January episode is presented in Table 1.3-1 below. Note that although the emissions were generated for individual calendar years (2002, 2009 and 2018) the meteorology is based on 2002.

Table 1.3-1. Representative day mapping for January episode (Highlighted representative week).

Modeled	Representative	Modeled	Representative	Modeled	Representative
Date	Day	Date	Day	Date	Day
1/1/2002*	1/20/2002	1/11/2002	1/18/2002	1/22/2002	1/15/2002
1/2/2002	1/16/2002	1/12/2002	1/19/2002	1/23/2002	1/16/2002
1/3/2002	1/17/2002	1/13/2002	1/20/2002	1/24/2002	1/17/2002
1/4/2002	1/18/2002	1/14/2002	1/21/2002	1/25/2002	1/18/2002
1/5/2002	1/19/2002	1/15/2002	1/15/2002	1/26/2002	1/19/2002
1/6/2002	1/20/2002	1/16/2002	1/16/2002	1/27/2002	1/20/2002
1/7/2002	1/21/2002	1/17/2002	1/17/2002	1/28/2002	1/21/2002
1/8/2002	1/15/2002	1/18/2002	1/18/2002	1/29/2002	1/15/2002
1/9/2002	1/16/2002	1/19/2002	1/19/2002	1/30/2002	1/16/2002
1/10/2002	1/17/2002	1/20/2002	1/20/2002	1/31/2002	1/17/2002
		1/21/2002	1/21/2002		
* Modeled ho	liday				

1.3.2 Development of non-road emission estimates

Emissions from non-road sources were estimated in two steps. First, emissions for non-road sources that are included in the NONROAD model were developed. Second, emissions from sources not included in the NONROAD model were estimated. The sections below detail the procedures used for each group of sources.

1.3.2.1 Emissions from NONROAD model sources

An initial 2002 base year emissions inventory for non-road engines and equipment covered by the EPA NONROAD model was prepared for VISTAS in early 2004. The methods and assumptions used to develop the inventory are presented in a February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc. Except as otherwise stated below, all aspects of the preparation methodology documented in that report continue to apply to the revised NONROAD modeling discussed in this section.

Revisions to the initial 2002 NONROAD emissions inventory were implemented to ensure that the latest State and local data were considered, as well as to more accurately reflect gasoline sulfur contents for 2002 and correct other State-specific discrepancies. Those revisions comprise the Base F VISTAS non-road inventory. This section details the specific revisions made to the NONROAD model input files for the Base F and Base G VISTAS base year inventories, and provides insight into some key differences between the versions of the NONROAD model employed for the Base F and Base G inventories and the previous version employed for the initial 2002 base year inventory prepared by Pechan.

Revisions to the initial 2002 emissions inventory prepared by Pechan were actually implemented in two stages. An initial set of revisions was implemented in the fall of 2004. Those revisions resulted in the Base F inventory. These were followed by a second set of revisions in the spring of 2006. Those estimates produced the Base G base year inventory. To accurately document the combined effects of both sets of revisions, each set is discussed separately below. Unless otherwise indicated, all revisions implemented in Base F were carried directly into the Base G revision process without change. Thus, the inventories that resulted from the Base F revisions served as the starting point for the Base G revisions.

For Base F, three VISTAS States provided detailed data revisions for consideration in developing revised model inputs. These States were:

- 1. North Carolina
- 2. Tennessee (including a separate submission for Davidson County), and
- 3. Virginia.

The remaining seven VISTAS States indicated that the initial 2002 VISTAS input files prepared by Pechan continued to reflect the most recent data available. These States were:

- 1. Alabama.
- 2. Florida,
- 3. Georgia,
- 4. Kentucky,
- 5. Mississippi,
- 6. South Carolina, and
- 7. West Virginia.

However, it should be recognized that the NONROAD input files for *all* ten VISTAS States were updated to reflect gasoline sulfur content revisions for the Base F 2002 base year inventory (as discussed below). The original files prepared by Pechan are available on their FTP site in the /pub/VISTAS/MOB_0104/ directory.

Before presenting the specific implemented revisions, it is important to note that the Base F 2002 base year inventory utilized a newer release of the NONROAD model than was used for the initial 2002 base year inventory (prepared by Pechan). The Base F 2002 base year inventory, as developed in spring 2004, was based on the Draft NONROAD2004 model, which was released by the EPA in May of 2004. This model is no longer available on EPA's website. The initial 2002 base year inventory (prepared by Pechan) was based on the Draft NONROAD2002a version of the model (which is also no longer available on EPA's website). Key differences between the models are as follows:

- Draft NONROAD2004 included the effects of the Tier 4 non-road engine and equipment standards (this did not impact the Base F 2002 inventory estimates, but did affect Base F future year forecasts).
- Draft NONROAD2004 included the *exhaust* emission impacts of the large spark-ignition engine standards; the evaporative impacts of these standards are *not* incorporated (this does not impact 2002 inventory estimates, but does affect future year forecasts).
- Draft NONROAD2004 included revised equipment population estimates.
- The PM_{2.5} fraction for *diesel* equipment in Draft NONROAD2004 had been updated from 0.92 to 0.97.
- Draft NONROAD2004 included revisions to recreational marine activity, useful life, and emission rates.

To the extent that these revisions affect 2002 emissions estimates, they will be reflected as differentials between the initial and Base F 2002 VISTAS base year inventories. It is perhaps important to identify that, at the time of the Base F inventory revisions; the EPA recognized the Draft NONROAD2004 model as an appropriate mechanism for SIP development. Although the model was designated as a draft update, it reflected the latest and most accurate NONROAD planning data at that time, as evidenced by the EPA's use of that version for the Tier 4 Final Rulemaking.

Prior to the Base G inventory revisions implemented in 2006, the EPA released another updated version of the NONROAD model, designated as Final NONROAD2005 (which can be downloaded from: http://www.epa.gov/OMSWWW/nonrdmdl.htm#model). This version ostensibly represents the final version of the model, although certain components of it have been updated since its first release in December 2005. For the Base G inventory developed in the first half of 2006, all updates of the Final NONROAD2005 model through March 2006 are included. Key differences between Final NONROAD2005 and Draft NONROAD2004 are as follows:

Final NONROAD2005 reflects the latest basic emission rate and deterioration data.

- Final NONROAD2005 includes emission estimates for a range of evaporative emissions categories not included in Draft NONROAD2004 (tank and hose permeation, hot soak, and running loss emissions).
- Final NONROAD2005 includes a revised diurnal emissions algorithm.
- Final NONROAD2005 includes a revised equipment scrappage algorithm.
- Final NONROAD2005 includes revised state and county equipment allocation data.
- Final NONROAD2005 allows separate sulfur content inputs for marine and land-based diesel fuel.
- Final NONROAD2005 includes revised conversion factors for hydrocarbon emissions.
- Final NONROAD2005 includes the evaporative emission impacts of the large spark-ignition engine standards (this does not impact 2002 inventory estimates, but does affect future year forecasts).

Unfortunately, due to the extensive revisions associated with Final NONROAD2005, input files created for use with Draft NONROAD2004 (e.g., Base F input files) and earlier versions of the model cannot be used directly with Final NONROAD2005 (used for Base G). This created a rather significant impact in that the VISTAS NONROAD modeling process involves the consideration of over 200 unique sets of input data. To avoid creating new input files for each of these datasets, a conversion process was undertaken wherein each of the Draft NONROAD2004 (Base F) input data files were converted into the proper format required for proper execution in Final NONROAD2005 (Base G). This process consisted of the following steps:

 Revise the Draft NONROAD2004 (Base F) input files to include the following two line EPA-developed comment at the end of the input file header (this is a nonsubstantive change implemented solely for consistency with input files produced directly using Final NONROAD2005):

9/2005 epa: Add growth & tech years to OPTIONS packet and Counties & Retrofit files to RUNFILES packet.

¹ The necessary conversions where developed by comparing substantively identical input files created using the graphical user interfaces for both Draft NONROAD2004 and Final NONROAD2005. The differences between the input files indicated the specific revisions necessary to convert existing VISTAS input files into Final NONROAD2005 format.

• Revise the Draft NONROAD2004 (Base F) input files to include the following two command lines after the "Weekday or weekend" command in the PERIOD packet:

```
Year of growth calc:
Year of tech sel :
```

• Revise the Draft NONROAD2004 (Base F) input files to include the following command line after the "Diesel sulfur percent" command in the OPTIONS packet:

```
Marine Dsl sulfur %: 0.2638
```

Note that the value 0.2638 (2638 parts per million by weight [ppmW]) is applicable only for 2002 modeling and was accordingly revised (as described below) for both the 2009 and 2018 Base G forecast inventories. The 2638 ppmW sulfur value for 2002 marine diesel fuel was taken from the 48-State (excludes Alaska and Hawaii) tabulation presented in the April 27, 2004 EPA document "Diesel Fuel Sulfur Inputs for the Draft NONROAD2004 Model used in the 2004 Non-road Diesel Engine Final Rule." It should also be noted that this value differs by about 5 percent from the 2500 ppmW value previously used for the initial 2002 VISTAS modeling (performed by Pechan). Prior to Final NONROAD2005 (used for Base G), the NONROAD model allowed only a single diesel fuel sulfur input that was applied to both land-based and marine equipment. As documented in the February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc., a value of 2500 ppmW sulfur was used for all 2002 VISTAS NONROAD modeling. Given the ability of Final NONROAD2005 to distinguish a separate sulfur content for marine equipment and the existing EPA guidance document suggesting an appropriate marine sulfur value of 2638 ppmW for 2002, the existing modeling value of 2500 ppmW was modified (for marine equipment only).

• Replace the Draft NONROAD2004 (Base F) input files RUNFILES packet command line:

```
TECHNOLOGY : c:\non-road\data\tech\tech.dat
```

with the command lines:

```
EXH TECHNOLOGY : c:\non-road\data\tech\tech-exh.dat
EVP TECHNOLOGY : c:\non-road\data\tech\tech-evp.dat
```

• Revise the Draft NONROAD2004 (Base F) input files to include the following two command lines after the "EPS2 AMS" command in the RUNFILES packet:

```
US COUNTIES FIPS : c:\non-road\data\allocate\fips.dat
RETROFIT :
```

• Revise the Draft NONROAD2004 (Base F) input files to include the following command line after the "Rec marine outbrd" command in the ALLOC FILES packet:

```
Locomotive NOx : c:\non-road\data\allocate\XX_rail.alo
```

Where "XX" varies across input files. For any given file, "XX" is the two digit abbreviation of the state associated with the scenario being modeled (e.g., for Alabama modeling, XX=AL).

• Replace the Draft NONROAD2004 (Base F) input files EMFAC FILES packet command line:

```
Diurnal : c:\non-road\data\emsfac\diurnal.emf
```

with the eight command lines:

```
Diurnal : c:\non-road\data\emsfac\evdiu.emf

TANK PERM : c:\non-road\data\emsfac\evtank.emf

NON-RM HOSE PERM : c:\non-road\data\emsfac\evhose.emf

RM FILL NECK PERM : c:\non-road\data\emsfac\evneck.emf

RM SUPPLY/RETURN : c:\non-road\data\emsfac\evsupret.emf

RM VENT PERM : c:\non-road\data\emsfac\evvent.emf

HOT SOAKS : c:\non-road\data\emsfac\evventsk.emf

RUNINGLOSS : c:\non-road\data\emsfac\evvunls.emfEVP
```

• Revise the Draft NONROAD2004 (Base F) input files to include the following command line after the "PM exhaust" command in the DETERIORATE FILES packet:

```
Diurnal : c:\non-road\data\detfac\evdiu.det
```

Once revised in this format, the VISTAS non-road input files developed for use with Draft NONROAD2004 (Base F) were executable under the Final NONROAD2005 model (Base G).

The only additional revisions implemented to develop a Final NONROAD2005-based inventory (Base G) involved elimination of non-default equipment allocation files for North Carolina and West Virginia. Due to concerns about improper equipment allocation across counties under the Draft NONROAD2004 model (used for Base F), as well as for earlier versions of the NONROAD model, North Carolina had produced alternative allocation data files indicating the number of employees in air transportation by county, the number of wholesale establishments by county, and the number of employees in landscaping services by county. For the same reason, West Virginia had produced alternative equipment allocation files indicating the number of

employees in air transportation by county, the tonnage of underground coal production by county, the number of golf courses and country clubs by county, the number of wholesale establishments by county, the number of employees in logging operations by county, the number of employees in landscaping services by county, the number of employees in manufacturing operations by county, the number of employees in oil and gas drilling and extraction operations by county, and the number of recreational vehicle parks and campgrounds by county. These alternative equipment allocation files were used for all VISTAS inventory modeling conducted prior to the release of Final NONROAD2005 (i.e., through Base F). However, both North Carolina and West Virginia determined that the default allocation file revisions associated with the release of Final NONROAD2005 were appropriate to address the concerns that led to the development of the alternative allocation files. As a result, all alternative allocation file commands were removed from VISTAS NONROAD2005 (Base G) input files for North Carolina and West Virginia, so that the entire region under the Base G inventory is now modeled using the default allocation files provided with NONROAD2005.

In addition to the alternative equipment allocation files, North Carolina had previously developed an alternative seasonal adjustment file that was used for the Base F inventory in place of the default file provided with Draft NONROAD2004 (and earlier model versions). The alternative data file implemented a single change, namely reclassifying North Carolina as a southeastern state rather than a mid-Atlantic state (as identified in the default data file). Since Final NONROAD2005 continues to identify North Carolina as a mid-Atlantic state, North Carolina requested that the southeastern reclassification be continued for all NONROAD2005 modeling (Base G). To ensure that any other revisions associated with the seasonal adjustment file released with NONROAD2005 were not overlooked, the previously developed alternative seasonal adjustment file for North Carolina was scrapped and a new alternative file was created from the default seasonal adjustment file provided with Final NONROAD2005 for Base G inventory development. The alternative file, which was used for all North Carolina modeling, reclassifies North Carolina from a mid-Atlantic to a southeastern state. This represents the only non-default data file used for VISTAS NONROAD2005-based (Base G) modeling.

The remainder of this section documents all changes to the originally established VISTAS input file values as documented in the February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc. Unless specifically stated below, all values from that report continue to be used without change in the latest VISTAS modeling.

Base F Revisions:

For the initial 2002 base year inventory (developed by Pechan), all NONROAD modeling runs for VISTAS were performed utilizing a gasoline sulfur content of 339 ppmW and a diesel sulfur

content of 2,500 ppmW. Although the EPA-recommended non-road diesel fuel sulfur content for 2002 is 2,283 ppmW, the 2,500 ppmW sulfur content used for the initial 2002 base year VISTAS inventory was designed to remove the effect of lower non-road diesel fuel sulfur limits applicable only in California. (The EPA recommended inputs can be found in "Diesel Fuel Sulfur Inputs for the Draft NONROAD2004 Model used in the 2004 Non-road Diesel Engine Final Rule," EPA, April 27, 2004.) This correction is appropriate and was retained for the Base F 2002 inventory. Thus, the Base F inventory continued to assume a diesel fuel sulfur content of 2,500 ppmW across the VISTAS region.

However, 339 ppmW is not the EPA recommended 2002 gasoline sulfur content for either eastern conventional gasoline areas or Federal Reformulated Gasoline (RFG) areas. The recommended sulfur content for eastern conventional gasoline is 279 ppmW year-round, while the recommended sulfur content for RFG areas is 129 ppmW during the summer season and 279 ppmW during the winter season. (Conventional gasoline and RFG sulfur contents for 2002 can be found in "User's Guide to MOBILE6.1 and MOBILE6.2, Mobile Source Emission Factor Model," EPA420-R-03-010, U.S. EPA, August 2003 [pages 149-155] (available at link at http://www.epa.gov/otaq/m6.htm) and in the source code for MOBILE6.2 at Block Data BD05.) Given the differences in the EPA-recommended values and the value used to generate the initial 2002 base year inventory, the input files for Base F for all VISTAS areas were updated to reflect revised gasoline sulfur content assumptions.

Since the VISTAS NONROAD modeling is performed on a seasonal basis, and since gasoline sulfur content in RFG areas varies with the RFG season, seasonally-specific gasoline sulfur content values were estimated for use in RFG area modeling. In addition, 25 counties in Georgia are subject to a summertime gasoline sulfur limit of 150 ppmW, so that seasonal sulfur content estimates were also estimated for these counties. The initial 2002 base year NONROAD inventory (prepared by Pechan) for these Georgia counties was based on a year-round 339 ppmW gasoline sulfur content, but that oversight was corrected in the Base F 2002 base year inventory. Based on the seasonal definitions employed in the NONROAD model, monthly sulfur contents were averaged to estimate seasonal gasoline sulfur contents as follows:

Month/Season	RFG Areas	Conventional Gasoline Areas	Georgia Gasoline Control Areas
March	279 ppmW	279 ppmW	279 ppmW
April	279 ppmW	279 ppmW	279 ppmW
May	129 ppmW	279 ppmW	150 ppmW
Spring	229 ppmW	279 ppmW	236 ppmW
June	129 ppmW	279 ppmW	150 ppmW
July	129 ppmW	279 ppmW	150 ppmW

52

August	129 ppmW	279 ppmW	150 ppmW
Summer	129 ppmW	279 ppmW	150 ppmW
September	129 ppmW	279 ppmW	150 ppmW
October	279 ppmW	279 ppmW	279 ppmW
November	279 ppmW	279 ppmW	279 ppmW
Fall	229 ppmW	279 ppmW	236 ppmW
December	279 ppmW	279 ppmW	279 ppmW
January	279 ppmW	279 ppmW	279 ppmW
February	279 ppmW	279 ppmW	279 ppmW
Winter	279 ppmW	279 ppmW	279 ppmW

Note that the seasonal data are based on simple arithmetic averages and do not consider any monthly variation in activity (and fuel sales), and that the transition between summer and winter seasons is also not considered. Additionally, the summer fuel control season is treated as though it applies from May through September, while the summer RFG season actually ends on September 15 and the Georgia fuel control season does not officially begin until June 1. This treatment is consistent with the treatment of both fuel control programs in the VISTAS on-road vehicle modeling. Each of these influences will result in some error in the estimated sulfur content estimates, but it is expected that this error is small relative to the overall correction from a year-round sulfur content estimate of 339 ppmW.

All NONROAD modeling revisions made as part of the Base F inventory preparation process are presented in Table 1.3-2. Due to more involved updates in several areas, the number of NONROAD input files as well as sequence numbers used to represent these files was also updated in a few instances (as compared to the files used to create the initial 2002 VISTAS nonroad inventory, as documented in the February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc. These structural revisions are presented in Table 1.3-3, and are provided solely for the benefit of NONROAD modelers as the indicated revisions have no impact on generated emission estimates.

53

Table 1.3-2. Summary of Base F NONROAD Modeling Revisions

State	Revisions Implemented
AL	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
FL	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all seasons for conventional gasoline counties.
	(2) Gasoline sulfur content changed from 339 ppmW to 150 ppmW in the summer for all gasoline control counties.
GA	(3) Gasoline sulfur content changed from 339 ppmW to 236 ppmW in the spring and fall for all gasoline control counties.
GI I	(4) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in the winter for all gasoline control counties.
	Gasoline control counties: Barrow, Bartow, Butts, Carroll, Cherokee (a), Clayton (a), Cobb (a), Coweta (a), Dawson, De Kalb (a), Douglas (a), Fayette (a), Forsyth (a), Fulton (a), Gwinnett (a), Hall, Haralson, Henry (a), Jackson, Newton, Paulding (a), Pickens, Rockdale (a), Spalding, and Walton
	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all seasons for conventional gasoline counties.
	(2) Gasoline sulfur content changed from 339 ppmW to 129 ppmW in the summer for all gasoline control counties.
KY	(3) Gasoline sulfur content changed from 339 ppmW to 229 ppmW in the spring and fall for all gasoline control counties.
	(4) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in the winter for all gasoline control counties.
	Gasoline control counties: Boone, Bullitt (b), Campbell, Jefferson, Kenton, and Oldham (b)
MS	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
NC	(2) Utilize revised (i.e., local) allocation files for three equipment categories.
	(3) Utilize revised (i.e., local) seasonal activity data.
SC	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).
TN	(2) Gasoline Reid Vapor Pressure (RVP) values changed in accordance with local recommendations.
	(3) Temperature data changed in accordance with local recommendations.
	(4) Counties regrouped in accordance with local recommendations.

- continued -

Table 1.3-2. Summary of Base F NONROAD Modeling Revisions (continued)

State	Revisions Implemented			
	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all seasons for conventional gasoline counties.			
	(2) Gasoline sulfur content changed from 339 ppmW to 129 ppmW in the summer for all gasoline control counties.			
	(3) Gasoline sulfur content changed from 339 ppmW to 229 ppmW in the spring and fall for all gasoline control counties.			
	(4) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in the winter for all gasoline control counties.			
VA	(5) Gasoline RVP values changed in accordance with local recommendations.			
	(6) Counties regrouped in accordance with local recommendations.			
	(7) The control effectiveness for counties subject to Stage II controls revised to 77 percent in accordance with local recommendations.			
	Gasoline control counties: Arlington Co., Fairfax Co., Loudoun Co., Prince William Co., Stafford Co., Alexandria City, Fairfax City, Falls Church City, Manassas City, Manassas Park City, Chesterfield Co., Hanover Co., Henrico Co., Colonial Heights City, Hopewell City, Richmond City, James City, York Co., Chesapeake City, Hampton City, Newport News City, Norfolk City, Poquoson City, Portsmouth City, Suffolk City, Virginia Beach City, and Williamsburg City (c)			
WV	(1) Gasoline sulfur content changed from 339 ppmW to 279 ppmW in all counties and all seasons (all are conventional gasoline areas).			
	(2) Continue to utilize local allocation files for nine equipment categories.			

Notes:

- (a) County is subject to local control currently, but is scheduled to join the RFG program in January 2005.(b) Control area is a portion of the county, but modeling is performed as though the control applies countywide.
- (c) The EPA also lists Charles City County as an RFG area, but local planners indicate that Charles City County is a conventional gasoline area and it is modeled as such.

Table 1.3-3. Base F NONROAD Input File Sequence and Structural Revisions

State	Initial 2002 Base Year Inventory Input File Sequence Numbers	Revised 2002 Inventory Input File Sequence Numbers	Reason(s) for Change		Number of sed 2002 Inventory ROAD Input Files
AL	01-08	01-08	No Structural Changes	32	(at 8 per season)
FL	09-10	09-10	No Structural Changes	8	(at 2 per season)
GA	11-13	11-13	No Structural Changes	12	(at 3 per season)
KY	14-22	14-22	No Structural Changes	36	(at 9 per season)
MS	48	48	No Structural Changes	4	(at 1 per season)
NC	23-25	23-25	No Structural Changes	12	(at 3 per season)
SC	26-32	26-32	No Structural Changes	28	(at 7 per season)
TN	33-34	33-34, 49-52	Counties Regrouped	24	(at 6 per season)
VA	35-43	35-38, 40-43	Counties Regrouped	32	(at 8 per season)
WV	44-47	44-47	No Structural Changes	16	(at 4 per season)
All	01-48	01-38, 40-52		204	(at 51 per season)

Note:

- (1) All files include internal revisions to reflect the data changes summarized in Table 1.3-3 above. This table is intended to present structural revisions that are of interest in assembling the NONROAD model input files into a complete VISTAS region inventory. The indicated revisions do not (in and of themselves) result in emission estimate changes.
- (2) The NONROAD model imposes an eight digit input file name limit, so all input files for the revised 2002 base year inventory follow a modified naming convention to allow each to be distinguished from the input files for the initial 2002 base year inventory. For the initial 2002 base year inventory, the naming convention was:

ss02aaqq, ss = the two character State abbreviation, where:

aa = a two character season indicator as follows: AU = autumn,

WI = winter, SP = spring, and SU = summer, and

qq = the two digit sequence number indicated above.

For the revised 2002 inventory, the naming convention was modified to:

ss = the two character State abbreviation, ss02aFqq,

= a one character season indicator as follows: A = autumn,

W = winter, S = spring, and X = summer, and

qq = the two digit sequence number indicated above.

Base G Revisions:

As described above, the primary modeling revision implemented for the Base G 2002 inventory was the use of the Final NONROAD2005 model (in place of the Base F use of Draft NONROAD2004). However, there were other minor revisions implemented for 13 Georgia counties and somewhat more significant revisions implemented for Tennessee. In Georgia, Stage II refueling control was assumed for 13 counties that previously were modeled as having no refueling control under Base F. In addition, to accommodate this Stage II change as well as forecast year changes in gasoline vapor pressure, corresponding changes in the structure and sequence of Georgia NONROAD input files were made. With the exception of the minor Stage II impacts, these structural and sequence changes have no impact on 2002 emission estimates, but allow for consistency between 2002 and forecast year input file structure and sequence. In Tennessee, more significant changes were implemented to gasoline vapor pressure assumptions, as well as similar minor changes in Stage II refueling control assumptions.

In accordance with instructions from Georgia regulators, Stage II refueling control was assumed in the following 13 Georgia counties at a control efficiency value of 81 percent for the Base G inventory:

Cherokee, Clayton, Cobb, Coweta, DeKalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, Henry, Paulding, and Rockdale.

No Stage II control was assumed in these counties in prior inventories.

Tennessee regulators provided revised monthly values for gasoline vapor pressure. Based on the seasonal definitions employed in the NONROAD model, monthly vapor pressures were averaged to estimate seasonal vapor pressures as follows:

Month/Season	Nashville Area	Memphis Area	Remainder of Tennessee
March	13.5 psi	13.5 psi	13.5 psi
April	13.5 psi	13.5 psi	13.5 psi
May	9.0 psi	9.0 psi	9.0 psi
Spring	12.0 psi	12.0 psi	12.0 psi
June	7.8 psi	7.8 psi	9.0 psi
July	7.8 psi	7.8 psi	9.0 psi
August	7.8 psi	7.8 psi	9.0 psi
Summer	7.8 psi	7.8 psi	9.0 psi
September 1-15	7.8 psi	7.8 psi	9.0 psi
September 16-30	11.5 psi	11.5 psi	11.5 psi
October	13.5 psi	13.5 psi	13.5 psi
November	13.5 psi	13.5 psi	13.5 psi
Fall	12.2 psi	12.2 psi	12.4 psi
December	15.0 psi	15.0 psi	15.0 psi
January	15.0 psi	15.0 psi	15.0 psi
February	13.5 psi	13.5 psi	13.5 psi
Winter	14.5 psi	14.5 psi	14.5 psi

Note: The Nashville area consists of Davidson, Rutherford, Sumner, Williamson and Wilson counties, the Memphis area consists of Shelby County.

As with the Base F revisions, the seasonal data are based on simple arithmetic averages and do not consider any monthly variation in activity (and fuel sales), nor is the transition between summer and winter seasons considered. Additionally, a monthly average of the September 1-15 and September 16-30 data is calculated prior to averaging the September-November data to estimate a fall average vapor pressure, so that the month of September is weighted identically to the months of October and November.

Tennessee regulators also indicated that Stage II vapor recovery was not in effect in Shelby County, so the Base F NONROAD input files for the county (which assumed Stage II was in place) were revised accordingly.

All Base G NONROAD modeling revisions are presented in Table 1.3-4. As indicated above, the differentiation of inputs across previously grouped counties also required revision to the overall number and sequence of VISTAS NONROAD input files (as compared to the files used to create

both the initial VISTAS non-road inventory, as documented in the February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc., and the Base F revised inventory as documented above. These structural revisions are presented in Table 1.3-5, and are provided solely for the benefit of NONROAD modelers as the indicated revisions have no impact on generated emission estimates.

Table 1.3-4. Summary of Base G NONROAD Modeling Revisions

State	Revisions Implemented
AL	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
FL	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
GA	 Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons. Stage II refueling vapor recovery implemented in 13 counties at an efficiency of 81 percent. Counties regrouped to accommodate base and forecast year data differentiations. Stage II control counties: Cherokee, Clayton, Cobb, Coweta, De Kalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, Henry, Paulding, and Rockdale
KY	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
MS	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
NC	 (1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons. (2) Revert to default equipment allocation files for all equipment categories. (3) Utilize revised (i.e., local) seasonal activity data.
SC	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
TN	 Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons. Gasoline RVP values changed in accordance with local recommendations. Stage II vapor recovery eliminated from Shelby County modeling.
VA	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.
WV	(1) Marine diesel sulfur content changed from 2500 ppmW to 2638 ppmW in all counties and seasons.(2) Revert to default equipment allocation files for all equipment categories.

59

Table 1.3-5. Spring 2006 NONROAD Input File Sequence and Structural Revisions

State	2002 Inventory Input File Sequence Numbers (Fall 2004)	2002 Inventory Input File Sequence Numbers (Spring 2006)	Reason(s) for Change		Number of al 2002 Inventory ROAD Input Files
AL	01-08	01-08	No Structural Changes	32	(at 8 per season)
FL	09-10	09-10	No Structural Changes	8	(at 2 per season)
GA	11-13	11-13, 53-54	Counties Regrouped	20	(at 5 per season)
KY	14-22	14-22	No Structural Changes	36	(at 9 per season)
MS	48	48	No Structural Changes	4	(at 1 per season)
NC	23-25	23-25	No Structural Changes	12	(at 3 per season)
SC	26-32	26-32	No Structural Changes	28	(at 7 per season)
TN	33-34, 49-52	33-34, 49-52	No Structural Changes	24	(at 6 per season)
VA	35-38, 40-43	35-38, 40-43	No Structural Changes	32	(at 8 per season)
WV	44-47	44-47	No Structural Changes	16	(at 4 per season)
All	01-38, 40-52	01-38, 40-54		212	(at 53 per season)

Note: (1) All files include internal revisions to reflect the data changes summarized in Table 1.3-5 above. This table is intended to present structural revisions that are of interest in assembling the NONROAD model input files into a complete VISTAS region inventory. The indicated revisions do not (in and of themselves) result in emission estimate changes.

(2) The NONROAD model imposes an eight digit input file name limit, so all input files for the revised 2002 base year inventory follow a modified naming convention to allow each to be distinguished from the input files for the initial 2002 and fall 2004-revised 2002 base year inventory. For the initial 2002 base year inventory, the naming convention was:

ss02aaqq, where: ss = the two character State abbreviation,

aa = a two character season indicator as follows: AU = autumn,

WI = winter, SP = spring, and SU = summer, and

qq = the two digit sequence number indicated above.

For the fall 2004-revised 2002 inventory, the naming convention was modified to:

ss02aFqq, where: ss = the two character State abbreviation,

= a one character season indicator as follows: A = autumn,

W = winter, S = spring, and X = summer, and

qq = the two digit sequence number indicated above.

For the spring 2006-revised 2002 inventory, the naming convention was modified to:

ss02aCqq, where: ss = the two character State abbreviation,

a = a one character season indicator as follows: A = autumn,

W = winter, S = spring, and X = summer, and

 $qq\ =\ the\ two\ digit\ sequence\ number\ indicated\ above.$

1.3.2.2 Emissions from Commercial Marine Vessels, Locomotives, and Airplanes

An initial 2002 base year emissions inventory for aircraft, locomotives, and commercial marine vessels (CMV) was prepared for VISTAS in early 2004. The methods and data used to develop the inventory are presented in a February 9, 2004 report "Development of the VISTAS Draft 2002 Mobile Source Emission Inventory (February 2004 Version)" as prepared by E.H. Pechan & Associates, Inc. A summary of the initial 2002 base year emissions inventory is presented in Table 1.3-6. Except as otherwise stated below, all aspects of the preparation methodology continue to apply to the Base F and Base G emission inventories.

Revisions to the initial 2002 emissions inventory (prepared by Pechan) were implemented to ensure that the latest State and local data were incorporated as well as to correct an overestimation of PM emissions from aircraft. Revisions were actually implemented in two stages. An initial set of revisions was implemented in the fall of 2004. Those revisions constitute the Base F inventory. These were followed by a second set of revisions in 2006, which constitute the Base G inventory. To accurately document the combined effects of both sets of revisions, each set is discussed separately below. Unless otherwise indicated, all revisions implemented for Base F were carried directly into the Base G revision process without change. Thus, the inventories that resulted from the Base F revisions served as the starting point for the Base G revisions.

Base F Revisions:

Revisions to the initial 2002 base year emissions inventory were implemented to ensure that the latest State and local data were incorporated as well as to correct an overestimation of PM emissions from aircraft. Seven of the ten VISTAS States provided revised inventory data in the form of emissions reported to the EPA under the CERR. States providing CERR data were Alabama, Georgia, Mississippi, North Carolina, Tennessee (excluding Davidson, Hamilton, Knox, and Shelby Counties), Virginia, and West Virginia.

In many cases, the CERR data were only marginally different than the initial 2002 base year inventory data, but there were several instances where significant updates were evident. The remaining three VISTAS States (Florida, Kentucky, and South Carolina), plus Davidson, Hamilton, Knox, and Shelby counties in Tennessee, indicated that the initial 2002 VISTAS inventory continued to reflect the most recent data available. Florida did provide updated aircraft emissions data for one county (Miami-Dade) and these data were incorporated into the Base F 2002 inventory as described below.

Since several States recommended retaining the initial 2002 base year inventory data for Base F, the initial step toward revising the 2002 inventory consisted of modifying the estimated aircraft PM emissions of the initial inventory. The overestimation of aircraft PM became evident shortly

after the release of the initial 2002 base year inventory, when it was determined that VISTAS region airports would constitute the top seven, and 11 of the top 15, PM sources in the nation. Moreover, PM emissions for one airport (Miami International) were a full order of magnitude larger than *all* other modeled elemental carbon PM emission sources. In addition, unexpected relationships across airports were also observed, with emissions for Atlanta's Hartsfield International being substantially less than those of Miami International, even though Atlanta handles over twice as many aircraft operations annually. Given the pervasiveness of this problem, and since the CERR data submitted by States was based on the initial 2002 VISTAS inventory data, aircraft PM emissions for the entire VISTAS region were recalculated.

Table 1.3-6. Initial 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions as Reported in February 2004 Pechan Report (annual tons)

Source	State	CO	NO_x	PM_{10}	$PM_{2.5}$	SO_2	VOC
	AL	3,787	175	688	475	17	196
	FL	28,518	11,955	46,352	31,983	1,050	3,703
	GA	3,175	992	3,919	2,704	94	353
	KY	2,666	657	2,597	1,792	63	263
A	MS	1,593	140	553	381	13	96
Aircraft (2275)	NC	6,088	1,548	6,115	4,219	148	613
	SC	6,505	515	452	312	88	863
	TN	6,854	2,665	7,986	5,510	225	920
	VA	17,676	5,607	14,476	9,988	234	3,229
	WV	1,178	78	310	214	8	66
	Total	78,040	24,332	83,448	57,578	1,940	10,302
	AL	1,195	9,217	917	843	3,337	736
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,874	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,687	43,233	1,903	1,750	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
	TN	4,129	31,397	1,390	1,278	5,753	980
	VA	1,198	3,426	929	855	3,258	596
	WV	2,094	15,882	668	614	720	497
	Total	29,503	218,760	10,858	9,989	40,146	7,779
Military Marine	VA	136	387	28	26	30	59
(2283)	Total	136	387	28	26	30	59
	AL	3,490	26,339	592	533	1,446	1,354
	FL	1,006	9,969	247	222	605	404
	GA	2,654	26,733	664	598	1,622	1,059
	KY	2,166	21,811	542	488	1,321	867
Lagamativas	MS	2,302	23,267	578	520	1,429	899
Locomotives (2285)	NC	1,638	16,502	410	369	1,001	654
(=300)	SC	1,160	11,690	291	261	710	462
	TN	4,530	44,793	1,110	999	2,689	1,805
	VA	1,928	19,334	1,407	1,266	3,443	798
	WV	1,105	11,150	277	249	681	436
	Total	21,980	211,588	6,118	5,505	14,947	8,738
Grand Total		129,659	455,067	100,452	73,099	57,062	26,877

63

Aircraft do emit PM while operating. However, official EPA inventory procedures for aircraft generally do not include PM emission factors and, therefore, aircraft PM is generally erroneously reported as zero. In an effort to overcome this deficiency, the developers of the initial VISTAS 2002 base year aircraft inventory (Pechan) estimated PM emission rates for aircraft using estimated NO_x emissions and an unreported PM-to- NO_x ratio (i.e., $PM = NO_x$ times a PM-to- NO_x ratio). According to the initial 2002 base year inventory documentation, this approach was applied only to commercial aircraft NO_x , but a review of that inventory indicates that the technique was also applied to military, general aviation, and air taxi aircraft in many, but not all, instances. Although there is nothing inherently incorrect with this approach, the accuracy and inconsistent application of the assumed PM-to- NO_x ratio results in grossly overestimated aircraft PM.

Through examination of the initial 2002 base year aircraft inventory (prepared by E.H. Pechan and Associates, Inc.), it is apparent that the commercial aircraft PM-to-NO_x ratio used to generate PM emission estimates was approximately equal to 3.95 (i.e., PM = NO_x times 3.95). While the majority of observed commercial aircraft PM-to-NO_x ratios in that inventory are equal to 3.95, a few range as low as 3.00. If all aircraft estimates are included (i.e., commercial plus military, general aviation, and air taxi), observed PM-to-NO_x ratios range from 0 to 123.0, and average 3.43 as illustrated in Table 1.3-7

Table 1.3-7 PM-to-NO_x Ratios by Aircraft Type In Initial 2002 Base Year Inventory.

Aircraft Type	Average PM-to-NO _x	Range of PM-to-NO _x	Average PM _{2.5} / PM ₁₀	Range of PM _{2.5} / PM ₁₀
Undefined (1)	0.046	0-0.062	0.690	0.690-0.690
Military	0.073	0-92.3	0.688	0.333-1.000
Commercial	3.953	3.00-3.953	0.690	0.667-0.696
General Aviation	2.059	0-9.00	0.689	0.500-1.000
Air Taxi	2.734	0-123.0	0.690	0.500-1.000
Aggregate	3.427	0-123.0	0.690	0.333-1.000

Note: (1) Two counties report aircraft emissions as SCC 2275000000 "all aircraft."

As indicated, the aggregate PM-to- NO_x ratio is similar in magnitude to the ratio for commercial aircraft. This results from the dominant nature of commercial aircraft NO_x emissions relative to NO_x from other aircraft types. It is surmised that ratios that deviate from 3.95 are based on PM emission estimates generated by local planners, which were retained without change in the PM estimation process (although a considerable number of unexplained "zero PM" records also exist

64

in the initial 2002 base year inventory dataset). Regardless, based on previous statistical analyses performed in support of aircraft emissions inventory development outside the VISTAS region, a PM-to-NO_x ratio of 3.95 is too large by over an order of magnitude.

In analyses performed for the Tucson, Arizona planning area, PM-to-NO_x ratios for aircraft over a standard aircraft landing and takeoff (LTO) cycle are shown in Table 1.3-8. Data for this table is taken from "Emissions Inventories for the Tucson Air Planning Area, Volume I., Study Description and Results," prepared for the Pima Association of Governments, Tucson, AZ, November 2001. Pages 4-40 through 4-42 of that report, which document the statistical derivation of these ratios, are included in this report as Appendix E.

Table 1.3-8. Tucson, AZ PM-to-NO_x Ratios by Aircraft Type.

Aircraft Type	PM-to-NO _x
Commercial Aircraft	0.26
Military Aircraft	0.88
Air Taxi Aircraft	0.50
General Aviation Aircraft	1.90

Note:

on a 3000 foot mixing height).

The PM and NO_x emission estimates presented in the Tucson study are for local aircraft operating mode times. For this work, emission estimates for Tucson were recalculated for a standard LTO cycle, so that the ratios presented are applicable to the standard LTO cycle and not a Tucson-specific cycle. Thus, the ratios presented herein vary somewhat from those associated with the emission estimates presented in the Tucson study report.

In reviewing these data, it should be considered that they apply to a standard (i.e., EPA-defined) commercial aircraft LTO cycle. Aircraft PM-to- NO_x ratios vary with operating mode, so that aircraft at airports with mode times that differ from the standard cycle will exhibit varying ratios. However, conducting an airport-specific analysis for all airports in the VISTAS region was beyond the scope of this work. While local PM-to- NO_x ratios could vary somewhat from the indicated standard cycle ratios, any error due to this variation will be significantly less than the order of magnitude error associated with the 3.95 commercial aircraft ratio used for the initial 2002 base year inventory.

It should be recognized that while the Tucson area is far removed from the VISTAS region, the data analyzed to generate the PM-to-NO_x ratios is standard aircraft emission factor data routinely

² As defined in AP-42, Compilation of Air Pollutant Emission Factors, Volume II, Mobile Sources, a standard commercial aircraft LTO cycle consists of 4 minutes of approach time, 26 minutes of taxi (7 minutes in plus 19 minutes out), 0.7 minutes of takeoff, and 2.2 minutes of climbout time (approach and climbout times being based

employed for inventory purposes throughout the United States (as encoded in models such as the Federal Aviation Administration's Emissions Data Management Systems [EDMS]). With the exception of aircraft operating conditions, there are no inherent geographic implications associated with the use of data from the Tucson study. As indicated above, issues associated with local operating conditions have been eliminated by recalculating the Tucson study ratios for a standard LTO cycle.

To implement the revised PM-to-NO_x ratios in the Base F inventory, *all* aircraft PM records were removed from the initial 2002 base year inventory (prepared by Pechan). This includes records for which local planners may have estimated PM emissions. This approach was taken for two reasons. First, there is no way to distinguish which records may have been generated by local planners. Second, the data available to local planners may be no better than that used to generate the presented PM-to-NO_x ratio data, so the consistent application of these data to the entire VISTAS region was determined to be the most appropriate approach to generating consistent inventories throughout the region. In undertaking this removal, it became apparent that there was an imbalance in the aircraft NO_x and PM records in the initial 2002 base year inventory. Whereas there were 1,531 NO_x records in the NIF emission data sets for this source category, there were only 1,212 PM records. The imbalance was distributed between three States, South Carolina, Tennessee, and Virginia as follows:

Table 1.3-9 Non-Corresponding Aircraft Emissions Records

Aircraft NO_x records with no corresponding PM record:								
Aircraft Type	South Carolina	Virginia	Total					
Military Aircraft	8	100	108					
General Aviation Aircraft	14	94	108					
Air Taxi Aircraft	5	99	104					
Aggregate	27	293	320					
Aircraft PM records with n	o corresponding NO_x reco	ord:						
Aircraft Type	Tennessee		Total					
Air Taxi Aircraft	1		1					
Aggregate	1		1					

The unmatched PM record was for Hamilton County (Chattanooga), Tennessee and when removed, was not replaced since there was no corresponding NO_x record with which to estimate revised PM emissions. It is unclear how this orphaned record originated, but clearly there can be no air taxi PM emissions without other combustion-related emissions. Thus, the removal of the

 PM_{10} and $PM_{2.5}$ records for Hamilton County permanently reduced the overall size of the 2002 initial base year inventory database used as a starting point for Base F by two records.

Of the 320 unmatched NO_x records, 269 were records for which the reported emission rate was zero. Therefore, even though associated PM records were missing, the overall inventory was not affected. However, the 51 missing records for which NO_x emissions were non-zero, did impact PM estimates for the overall inventory.

Replacement PM_{10} records were calculated for all aircraft NO_x records using the PM-to- NO_x ratios presented above. Aircraft type-specific ratios were utilized in all cases, except for two counties where aircraft emissions were reported under the generic aircraft SCC 2275000000. For these counties (Palm Beach County, Florida and Davidson County, Tennessee), the commercial aircraft PM-to- NO_x ratio was applied since both contain commercial airports (Palm Beach International and Nashville International).

Replacement aircraft PM_{2.5} records were also developed. The initial 2002 base year inventory assumed that aircraft PM_{2.5} was 69 percent of aircraft PM₁₀. The origin of this fraction is not clear, but it is very low for combustion related PM. The majority of internal combustion engine related PM is typically 1 micron or smaller (PM_{1.0}), so that typical internal combustion engine PM_{2.5} fractions approach 100 percent. For example, the EPA NONROAD model assumes 92 percent for gasoline engine particulate and 97 percent for diesel engine particulate. Based on recent correspondence from the EPA, it appears that the agency is preparing to recommend a PM_{2.5} fraction of 98 percent for aircraft. (August 12, 2004 e-mail correspondence from U.S. EPA to Gregory Stella of Alpine Geophysics.) This is substantially more consistent with expectations based on emissions test data for other internal combustion engine sources and was used as the basis for the recalculated aircraft PM_{2.5} emission estimates in the Base F inventory.

Although a substantial portion of the initial 2002 base year inventory was ultimately replaced with data prepared by State and local planners under CERR requirements in developing the Base F inventory, it was necessary to first revise the initial 2002 base year aircraft inventory as described so that records extracted from the inventory for areas not supplying CERR data for the Base F update would be accurate. Therefore, in *no case* is the aggregated State data reported for the Base F inventory identical to that of the initial 2002 base year inventory. Even areas relying on the initial 2002 base year inventory will reflect updates in Base F due to changes in emissions of PM₁₀ and PM_{2.5} from aircraft.

Table 1.3-10 presents the updated initial 2002 base year inventory estimates. These estimates do not reflect any changes related to modifications made to incorporate the CERR data, but instead indicate the impacts associated solely with the recalculation of aircraft PM emissions alone to apply the more appropriate PM to NO_x ratios. Table 1.3-11 presents a summary of the net

impacts of these changes, where an over 90 percent reduction in aircraft PM is observed for all VISTAS areas except South Carolina and Virginia. The reasons for the lesser changes in these two States is that the overall aircraft NO_x inventories for both include a large share of military aircraft NO_x to which no (or very low) particulate estimates were assigned in the initial 2002 base year inventory. Since these operations are assigned non-zero PM emissions under the revised approach, the increase in military aircraft PM offsets a portion of the reduction in commercial aircraft PM. In Virginia, zero (or near zero) PM military operations were responsible for about 35 percent of total aircraft NO_x, while the corresponding fraction in South Carolina was almost 70 percent. As indicated, aggregate aircraft, locomotive, and commercial marine vessel PM is 70-75 percent lower in the updated 2002 base year inventory.

Table 1.3-10. Initial 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions with Modified Aircraft PM Emission Rates (annual tons)

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	3,787	175	64	62	17	196
	FL	28,518	11,955	3,193	3,129	1,050	3,703
	GA	3,175	992	269	264	94	353
	KY	2,666	657	179	175	63	263
A imamaft	MS	1,593	140	44	43	13	96
Aircraft (2275)	NC	6,088	1,548	419	411	148	613
	SC	6,505	515	409	401	88	863
	TN	6,854	2,665	707	692	225	920
	VA	17,676	5,607	2,722	2,667	234	3,229
	WV	1,178	78	25	24	8	66
	Total	78,040	24,332	8,030	7,870	1,940	10,302
	AL	1,195	9,217	917	843	3,337	736
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,874	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,687	43,233	1,903	1,750	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
	TN	4,129	31,397	1,390	1,278	5,753	980
	VA	1,198	3,426	929	855	3,258	596
	WV	2,094	15,882	668	614	720	497
	Total	29,503	218,760	10,858	9,989	40,146	7,779
Military Marine	VA	136	387	28	26	30	59
(2283)	Total	136	387	28	26	30	59
	AL	3,490	26,339	592	533	1,446	1,354
	FL	1,006	9,969	247	222	605	404
	GA	2,654	26,733	664	598	1,622	1,059
	KY	2,166	21,811	542	488	1,321	867
Locomotives	MS	2,302	23,267	578	520	1,429	899
(2285)	NC	1,638	16,502	410	369	1,001	654
(2203)	SC	1,160	11,690	291	261	710	462
	TN	4,530	44,793	1,110	999	2,689	1,805
	VA	1,928	19,334	1,407	1,266	3,443	798
	WV	1,105	11,150	277	249	681	436
	Total	21,980	211,588	6,118	5,505	14,947	8,738
Grand Total		129,659	455,067	25,034	23,390	57,062	26,877

Table 1.3-11. Change in Initial 2002 Base Year Emissions due to Aircraft PM Emission Rate Modifications.

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	0%	0%	-91%	-87%	0%	0%
	FL	0%	0%	-93%	-90%	0%	0%
	GA	0%	0%	-93%	-90%	0%	0%
	KY	0%	0%	-93%	-90%	0%	0%
A imamaft	MS	0%	0%	-92%	-89%	0%	0%
Aircraft (2275)	NC	0%	0%	-93%	-90%	0%	0%
	SC	0%	0%	-9%	+29%	0%	0%
	TN	0%	0%	-91%	-87%	0%	0%
	VA	0%	0%	-81%	-73%	0%	0%
	WV	0%	0%	-92%	-89%	0%	0%
	Total	0%	0%	-90%	-86%	0%	0%
	AL	0%	0%	0%	0%	0%	0%
	FL	0%	0%	0%	0%	0%	0%
	GA	0%	0%	0%	0%	0%	0%
	KY	0%	0%	0%	0%	0%	0%
Commercial	MS	0%	0%	0%	0%	0%	0%
Marine	NC	0%	0%	0%	0%	0%	0%
(2280)	SC	0%	0%	0%	0%	0%	0%
	TN	0%	0%	0%	0%	0%	0%
	VA	0%	0%	0%	0%	0%	0%
	WV	0%	0%	0%	0%	0%	0%
	Total	0%	0%	0%	0%	0%	0%
Military Marine	VA	0%	0%	0%	0%	0%	0%
(2283)	Total	0%	0%	0%	0%	0%	0%
	AL	0%	0%	0%	0%	0%	0%
	FL	0%	0%	0%	0%	0%	0%
	GA	0%	0%	0%	0%	0%	0%
	KY	0%	0%	0%	0%	0%	0%
Lagamativas	MS	0%	0%	0%	0%	0%	0%
Locomotives (2285)	NC	0%	0%	0%	0%	0%	0%
(2203)	SC	0%	0%	0%	0%	0%	0%
	TN	0%	0%	0%	0%	0%	0%
	VA	0%	0%	0%	0%	0%	0%
	WV	0%	0%	0%	0%	0%	0%
	Total	0%	0%	0%	0%	0%	0%
Grand Total		0%	0%	-75%	-68%	0%	0%

As indicated above, for the Base F 2002 base year inventory, data for all or portions of seven VISTAS States were replaced with corresponding data from recent (as of the fall of 2004) CERR submissions for 2002. Before replacing these data, however, an analysis of the CERR data was performed to ensure consistency with VISTAS inventory methods. It should perhaps also be noted that three of the CERR datasets provided for the Base F 2002 base year inventory (specifically those for Tennessee, Virginia, and West Virginia) included both annual and daily emissions data. Only the annual data were used. Daily values were removed.

Several important observations resulted from this analysis. First, it was clear that all of the CERR data continued to rely on the inaccurate aircraft PM estimation approach employed for the initial 2002 base year inventory. Therefore, an identical aircraft PM replacement procedure as described above for updating the initial 2002 base year inventory was undertaken for CERR supplied data. As a result, the CERR data for *all* VISTAS States has been modified for inclusion in the Base F 2002 VISTAS base year inventory due to PM replacement procedures.

As was the case with the initial VISTAS 2002 base year inventory, there were a substantial number of aircraft NO_x records without corresponding PM records, so that the number of recalculated PM records added to the CERR dataset is greater than the number of PM records removed. The aggregated CERR inventory data, reflecting data for all or parts of seven States, consisted of 13,656 records, of which 1,211 were aircraft NO_x records. However, the number of corresponding aircraft PM records was 662 (662 PM_{10} records and 662 $PM_{2.5}$ records). This imbalance was distributed as follows:

Table 1.3-12 CERR Aircraft NO_x Records with No Corresponding PM Record.

Aircraft Type	Georgia	Tennessee	Virginia	Total
Military Aircraft			136	136
Commercial Aircraft		4	136	140
General Aviation Aircraft	1		136	137
Air Taxi Aircraft			136	136
Aggregate	1	4	544	549

From this tabulation, it is clear that virtually the entire imbalance is associated with the Virginia CERR submission, with minor imbalances in Georgia and Tennessee. Of the 549 unmatched NO_x records, 461 were records for which the reported emission rate was zero. Therefore, even though the associated PM records were missing, the overall inventory was not affected. However, the 88 missing records for which NO_x emissions were non-zero do impact PM emission estimates for the overall inventory.

Replacement aircraft PM records (both PM₁₀ and PM_{2.5}) were generated for the CERR dataset using procedures identical to those described above for the updated initial 2002 base year inventory.

Further analysis revealed that the CERR data for Virginia included only VOC, CO, and NO_x emissions for all aircraft, locomotives, and non-recreational marine vessels. Since SO_2 , PM_{10} , and $PM_{2.5}$ records are included in the 2002 VISTAS inventory, an estimation method was developed for these emission species and applied to the Virginia CERR data. For PM, the

71

developed methodology was only employed for locomotive and marine vessel data since aircraft PM was estimated using the PM-to- NO_x ratio methodology described above.

Consideration was given to simply adding the Virginia SO₂ and non-aircraft PM records from the initial 2002 VISTAS inventory dataset, but it is very unlikely that either the source distribution or associated emission rates are identical across the CERR and initial VISTAS inventories. This was confirmed through a comparative analysis of dataset CO records. Therefore, an estimation methodology was developed using Virginia source-specific SO₂/CO, PM₁₀/CO, and PM_{2.5}/PM₁₀ ratios from the initial 2002 base year VISTAS inventory. The calculated ratios were then applied to the source-specific CERR CO emission estimates to derive associated source-specific SO₂, PM₁₀, and PM_{2.5} emissions for the Base F inventory.

Initially, the development of the emissions ratios from the initial 2002 base year inventory was performed at the State (i.e., Virginia), county, and SCC level of detail. However, it readily became clear that there were substantial inconsistencies in ratios for identical SCCs across counties. For example, in one county, the SO₂/CO ratio might be 0.2, while in the next county it would be 2.0. Since the sources in question are virtually identical (e.g., diesel locomotives) and since the fueling infrastructure for these large non-road equipment sources is regional as opposed to local in nature, such variations in emission rates are not realistic. Therefore, a more aggregated approach was employed in which SCC-specific emission ratios were developed for the State as a whole. Through this approach county-to-county variation in emission ratios is eliminated, but the underlying variation in CO emissions does continue to influence the resulting aggregate emission estimates. The applied emission ratios are as follows:

Table 1.3-13 Calculated Emission Ratios for VA.

Source	SCC	SO ₂ /CO	PM ₁₀ /CO	PM _{2.5} /CO	PM _{2.5} /PM ₁₀		
Military Aircraft	2275001000	0.0215					
Commercial Aircraft	2275020000	0.3292		Emissions estimated using			
General Aviation Aircraft	2275050000	0.0002		PM -to- NO_x ratios as described previously.			
Air Taxi Aircraft	2275060000	0.0015					
Aircraft Refueling	2275900000	0.0000	0.0000	0.0000			
Diesel Commercial Marine	2280002000	0.3697	0.3434	0.3157	0.92		
Residual Commercial Marine	2280003000	0.3697	0.3434	0.3157	0.92		
Diesel Military Marine	2283002000	0.2422	0.2248	0.2068	0.92		
Line Haul Locomotives	2285002005	3.2757	1.2999	1.1696	0.90		
Yard Locomotives	2285002010	2.2908	1.2461	1.1205	0.90		

72

It is important to recognize that the inconsistency of emissions ratios across Virginia counties for sources of virtually identical design, which utilize a regional rather than local fueling infrastructure, has potential implications for other VISTAS States. There is no immediately obvious reason to believe that such inconsistencies would be isolated to Virginia.

One final revision to the CERR dataset was undertaken as part of the Base F effort, and that was the removal of two records for unpaved airstrip particulate (SCC 2275085000) in Alabama. Otherwise identical records for these emissions were reported both in terms of filterable and primary particulate. The filterable particulate records were removed as all other particulate emissions in the VISTAS inventories are in terms of primary particulate. It is also perhaps worth noting that a series of aircraft refueling records (SCC 2275900000) for Virginia were left in place, even through typically such emissions would be reported under SCC 2501080XXX in the area source inventory. If additional VISTAS aircraft refueling emissions are reported under SCC 2501080XXX, then it may be desirable to recode these records.

Finally, data for areas of the VISTAS region not represented in the CERR dataset were added to the CERR data by extracting the appropriate records from the initial 2002 base year inventory (with revisions for aircraft PM to NO_x ratios). Specifically, records applicable to the States of Florida, Kentucky, South Carolina, and the Tennessee counties of Davidson, Hamilton, Knox, and Shelby were extracted from the revised initial 2002 inventory and added to the CERR dataset to establish the 2002 Base F inventory.

Following this aggregation, one last dataset revision was implemented to complete the development of the 2002 Base F inventory. As indicated in the introduction of this section, the initial 2002 base year emission estimates for Miami International Airport were determined to be excessive. Although the reason for this inaccuracy was not apparent, revised estimates for aircraft emissions in Miami-Dade County were obtained from Florida planners and used to overwrite the erroneous estimates. (Aircraft emission estimates were provided in an August 10, 2004 e-mail transmittal from Bruce Coward of Miami-Dade County to Martin Costello of the Florida Department of Environmental Protection.)

Table 1.3-14 presents a summary of the resulting Base F VISTAS 2002 base year inventory estimates for aircraft, locomotives, and non-recreational marine vessels. Table 1.3-15 provides a comparison of the Base F 2002 base year inventory estimates to those of the initial 2002 base year inventory. As indicated, total emissions for VOC, CO, NO_x, and SO₂ are generally within 10 percent, but final PM emissions are reduced by 70-80 percent due to the approximate 90 percent reductions in aircraft PM estimates. In addition, the significant changes in Georgia aircraft emissions are due to the CERR correction of Atlanta Hartsfield International Airport emissions, which were significantly underestimated in the initial 2002 base year inventory. The

reduction in Florida aircraft emissions due to the correction of Miami International estimates is also apparent.

Lastly, Table 1.3-16 provides a direct comparison of emission estimates from the initial and Base F 2002 base year inventories for all 16 VISTAS region airports with estimated annual aircraft NO_x emissions of 200 tons or greater (as identified at the conclusion of the Base F revisions).³ The table entries are sorted in order of decreasing NO_x and once again, the dramatic reduction in PM emissions is evident. However, in addition, the appropriate reversal of the relationship between Atlanta's Hartsfield and Miami International Airport is also depicted. As a rough method of quality assurance, Table 1.3-15 also includes a gross estimate of expected airport NO_x emissions using detailed NO_x estimates developed for Tucson International Airport in conjunction with the ratio of local to Tucson LTOs. (The Tucson NO_x estimates are revised to reflect a standard LTO cycle rather than the Tucson-specific LTO cycle. This should provide for a more realistic comparison to VISTAS estimates.) This is not meant to serve as anything other than a crude indicator of the propriety of the developed VISTAS estimates, and it is clear that the range of estimated-to-expected NO_x emissions has been substantially narrowed in the Base F 2002 base year inventory. Whereas estimated-to-expected ratios varied from about 0.2 to over 3.5 in the initial 2002 base year inventory, the range of variation is tightened on both ends, from about 0.5 to 1.75 for the Base F 2002 base year inventory. In effect, all estimates are now within a factor of two of the expected estimates, which is quite reasonable given likely variation in local and standard LTO cycles and variations in aircraft fleet mix across airports.

It is perhaps important to note that some shifting in county emissions assignments is evident between the initial and Base F 2002 base year aircraft inventories. For example, for the initial 2002 base year inventory, Atlanta Hartsfield estimates were assigned to Fulton County (FIP 13121), while they are assigned to Clayton County (FIP 13063) for the Base F 2002 base year inventory. Similarly, Dulles International Airport emissions were assigned solely to Fairfax County, Virginia (FIP 51059) in the initial 2002 base year inventory, but are split between Fairfax and Loudoun County (FIP 51107) for Base F. Such shifts reflect local planner decision-making and are not an artifact of the revisions described above.

³ Subsequent revisions performed for Base G result in the addition of the Cincinnati/Northern Kentucky International Airport to the group of airports with aircraft operations generating at least 200 tons of NO_x. These revisions are discussed below, including the addition of an appropriately modified version of the aircraft emissions table.

Table 1.3-14. Base F 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions (tons/year)

Source	State	CO	NO_x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	3,787	175	226	87	17	196
	FL	25,431	8,891	2,424	2,375	800	3,658
	GA	6,622	5,372	1,475	1,446	451	443
	KY	2,666	657	179	175	63	263
Aircraft	MS	1,593	140	44	43	13	96
Aircraft (2275)	NC	6,088	1,548	419	411	148	613
(2213)	SC	6,505	515	409	401	88	863
	TN	7,251	2,766	734	719	235	943
	VA	9,763	2,756	1,137	1,115	786	2,529
	WV	1,178	78	25	24	8	66
	Total	70,884	22,899	7,072	6,797	2,607	9,670
	AL	1,196	9,218	917	844	3,337	737
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,875	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,688	43,233	1,903	1,751	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
(2200)	TN	3,624	27,555	1,217	1,120	4,974	860
	VA	972	2,775	334	307	359	483
	WV	1,528	11,586	487	448	525	362
	Total	28,207	209,972	9,911	9,118	36,275	7,413
Military Marine	VA	110	313	25	23	27	48
(2283)	Total	110	313	25	23	27	48
	AL	3,490	26,339	592	533	1,446	1,354
	FL	1,006	9,969	247	222	605	404
	GA	2,725	27,453	682	614	1,667	1,086
	KY	2,166	21,811	542	488	1,321	867
Locomotives	MS	2,302	23,267	578	520	1,429	899
(2285)	NC	1,638	16,502	410	369	1,001	654
(2203)	SC	1,160	11,690	291	261	710	462
	TN	2,626	25,627	633	570	1,439	1,041
	VA	1,186	11,882	1,529	1,375	3,641	492
	WV	1,311	13,224	329	296	808	517
	Total	19,611	187,764	5,833	5,248	14,066	7,777
Grand Total		118,812	420,948	22,841	21,186	52,976	24,908

75

Table 1.3-15. Change in 2002 Emissions, Base F Inventory Relative to Initial Inventory

Source	State	CO	NO_x	PM_{10}	$PM_{2.5}$	SO_2	VOC
	AL	0%	0%	-67%	-82%	0%	0%
	FL	-11%	-26%	-95%	-93%	-24%	-1%
	GA	+109%	+442%	-62%	-47%	+379%	+26%
	KY	0%	0%	-93%	-90%	0%	0%
Aircraft	MS	0%	0%	-92%	-89%	0%	0%
(2275)	NC	0%	0%	-93%	-90%	0%	0%
(2273)	SC	0%	0%	-9%	+29%	0%	0%
	TN	+6%	+4%	-91%	-87%	+4%	+2%
	VA	-45%	-51%	-92%	-89%	+236%	-22%
	WV	0%	0%	-92%	-89%	0%	0%
	Total	-9%	-6%	-92%	-88%	+34%	-6%
	AL	+0%	+0%	+0%	+0%	+0%	+0%
	FL	0%	0%	0%	0%	0%	0%
	GA	+0%	+0%	+0%	+0%	+0%	+0%
	KY	0%	0%	0%	0%	0%	0%
Commercial	MS	+0%	+0%	+0%	+0%	+0%	+0%
Marine	NC	+0%	+0%	+0%	+0%	+0%	+0%
(2280)	SC	0%	0%	0%	0%	0%	0%
(2280)	TN	-12%	-12%	-12%	-12%	-14%	-12%
	VA	-19%	-19%	-64%	-64%	-89%	-19%
	WV	-27%	-27%	-27%	-27%	-27%	-27%
	Total	-4%	-4%	-9%	-9%	-10%	-5%
Military Marine	VA	-19%	-19%	-12%	-12%	-12%	-19%
(2283)	Total	-19%	-19%	-12%	-12%	-12%	-19%
	AL	0%	0%	0%	0%	0%	0%
	FL	0%	0%	0%	0%	0%	0%
	GA	+3%	+3%	+3%	+3%	+3%	+3%
	KY	0%	0%	0%	0%	0%	0%
Locomotives	MS	0%	0%	0%	0%	0%	0%
(2285)	NC	0%	0%	0%	0%	0%	0%
(2203)	SC	0%	0%	0%	0%	0%	0%
	TN	-42%	-43%	-43%	-43%	-46%	-42%
	VA	-38%	-39%	+9%	+9%	+6%	-38%
	WV	+19%	+19%	+19%	+19%	+19%	+19%
	Total	-11%	-11%	-5%	-5%	-6%	-11%
Grand Total		-8%	-7%	-77%	-71%	-7%	-7%

76

Table 1.3-16. Base F Comparison of Aircraft Emissions (Airports with Aircraft $NO_x > 200$ tons per year)

Airport	FIP	СО	NO _x	PM ₁₀	PM _{2.5}	SO_2	VOC	Approx. LTOs	Predicted NO _x	VISTAS to Predicted
			Initi	al 2002 I	Base Year	Invento	ry			
Miami	12086	9,757	5,997	23,706	16,357	525	1,641	150,000	1,680	3.57
Orlando	12095	3,456	2,170	8,578	5,919	204	642	150,000	1,680	1.29
Memphis	47157	3,462	1,934	7,645	5,275	185	603	125,000	1,400	1.38
Reagan	51013	3,892	1,806	7,138	4,925	164	302	100,000	1,120	1.61
Hampton	51650	2,690	1,705	0	0	0	611	Military		
Dulles	51059	2,032	1,330	5,246	3,620	0	272	75,000	840	1.58
Orlando-Sanford	12117	3,615	1,225	4,837	3,337	100	351			
Atlanta	13121	1,457	913	3,608	2,490	86	274	420,000	4,704	0.19
Fort Lauderdale	12011	1,930	809	3,196	2,206	75	257	75,000	840	0.96
Charlotte	37119	1,643	788	3,113	2,148	75	255	150,000	1,680	0.47
Tampa	12057	1,399	785	3,101	2,140	74	240	75,000	840	0.93
Nashville	47037	1,819	653	40	28	33	239	60,000	672	0.97
Raleigh	37183	1,584	592	2,338	1,613	56	204	75,000	840	0.70
Louisville	21111	1,073	468	1,851	1,277	45	155	60,000	672	0.70
Jacksonville	12031	871	325	1,284	886	31	112	30,000	336	0.97
Palm Beach	12099	1,156	226	0	0	1	132	30,000	336	0.67
Aggregate		41,836	21,724	75,682	52,220	1,655	6,290			0.19-3.57
			Base	F 2002	Base Yea	r Invento	ory			
Atlanta	13063	4,121	5,288	1,435	1,406	443	337	420,000	4,704	1.12
Miami	12086	6,670	2,933	805	789	274	1,596	150,000	1,680	1.75
Orlando	12095	3,456	2,170	568	556	204	642	150,000	1,680	1.29
Memphis	47157	3,462	1,934	506	495	185	603	125,000	1,400	1.38
Orlando-Sanford	12117	3,615	1,225	338	332	100	351			
Fort Lauderdale	12011	1,930	809	217	212	75	257	75,000	840	0.96
Charlotte	37119	1,643	788	206	202	75	255	150,000	1,680	0.47
Tampa	12057	1,399	785	206	202	74	240	75,000	840	0.93
Nashville	47037	1,819	653	170	166	33	239	60,000	672	0.97
Reagan	51013	1,269	635	171	168	193	97	100,000	1,120	0.57
Dulles 1	51107	1,807	595	164	161	252	153	37,500	420	1.42
Raleigh	37183	1,584	592	156	153	56	204	75,000	840	0.70
Dulles 2	51059	1,095	591	156	153	252	115	37,500	420	1.41
Hampton	51650	858	535	471	461	18	305	Military		
Louisville	21111	1,073	468	123	121	45	155	60,000	672	0.70
Jacksonville	12031	871	325	87	85	31	112	30,000	336	0.97
Palm Beach	12099	1,156	226	59	58	1	132	30,000	336	0.67
Aggregate		37,829	20,550	5,838	5,721	2,312	5,793			0.47-1.75
Net Change		-10%	-5%	-92%	-89%	+40%	-8%			

Note: For the Base F inventory, Dulles International Airport emissions are split between two Virginia counties.

Predicted NO_x is based on the ratio of airport LTOs to test airport (Tucson International Airport) LTOs and NO_x. This is not a rigorous comparison, but rather an approximate indicator of expected magnitude.

77

Base G Revisions:

Further revisions to the 2002 base year emissions inventory were implemented in response to additional state data submittals in the spring of 2006. The inventories developed through the Base F revision process (as described above) served as the starting point for the 2006 revisions. Thus, unless otherwise indicated below, all documented Base F revisions continue to apply to the Base G-revised 2002 base year inventory.

As part of the Base G review and update process, Virginia regulators provided 443 updated emission records for aircraft. These records reflected revisions to aircraft VOC, CO, and NO_x, and in a few cases SO₂, emissions records that were already in the Base F VISTAS 2002 inventory (as opposed to the addition of previously unreported data). The specific revisions broke down as follows:

Aircraft Type	VOC	CO	NO _x	SO_2	Total
Military Aircraft	9	9	9	1	28
Commercial Aircraft	12	12	12	17	53
General Aviation Aircraft	65	66	66	0	197
Air Taxi Aircraft	56	56	53	0	165
Aggregate	142	143	140	18	443

Table 1.3-17 Base G VA Aircraft Records Updates

Emissions values for each of the 443 records in the Base F 2002 VISTAS inventory were updated for Base G to reflect the revised data. However, as described above for the Base F revisions, all aircraft SO_2 , PM_{10} , and $PM_{2.5}$ emissions in Virginia are estimated on the basis of CO (in the case of SO_2) and NO_x emissions (in the cases of PM_{10} and $PM_{2.5}$). Therefore, since Virginia regulators did not provide updated SO_2 emissions for all updated CO emissions records, or updated PM_{10} or $PM_{2.5}$ emissions for all updated PM_{10} or $PM_{2.5}$ emissions for all updated PM_{10} or $PM_{2.5}$ emissions in all cases where updated PM_{10} or $PM_{2.5}$ emissions were provided for Base G (and explicit PM_{10} and $PM_{2.5}$ emissions were not).

The procedure used to estimate the SO₂, PM₁₀, and PM_{2.5} emissions revisions was identical to that described above for the Base F inventory revisions, except that revised SO₂-to-CO emissions ratios were calculated for commercial aircraft, where 12 pairs of revised CO and SO₂ emissions estimates were available. Although a single pair of revised CO and SO₂ emissions records was available for military aircraft, this was deemed an insufficient sample with which to replace the military aircraft SO₂-to-CO emissions ratios previously calculated in Base F. However, it is worth noting that the SO₂-to-CO emissions ratio for the revised military aircraft emissions pair

was within 16 percent of the previously calculated ratio, so any error associated with retention of the Base F ratio will be minor. Table 1.3-18 presents the emissions ratios.

Table 1.3-18 Calculated Base G Emission Ratios for VA.

Source	SCC	SO ₂ /CO (fall 2004)	SO ₂ /CO (spring 2006)	SO ₂ /CO (used in 2006)	PM ₁₀ /NO _x	PM _{2.5} /PM ₁₀
Military Aircraft	2275001000	0.0215	0.0180	0.0215	0.88	0.98
Commercial Aircraft	2275020000	0.3292	0.0696	0.0696	0.26	0.98
General Aviation Aircraft	2275050000	0.00016	n/a	0.00016	1.9	0.98
Air Taxi Aircraft	2275060000	0.0015	n/a	0.0015	0.5	0.98

Application of the SO_2 -to-CO emissions ratios to the 130 revised aircraft CO records, for which no corresponding SO_2 emission revisions were provided, resulted in an additional 130 aircraft SO_2 emission records updates for Virginia. Similarly, application of the PM_{10} -to- NO_x emissions ratios to the 140 revised aircraft NO_x records for which no corresponding PM_{10} emission revisions were provided, resulted in an additional 140 aircraft PM_{10} emission records updates for Virginia. Application of the $PM_{2.5}$ -to- PM_{10} emissions ratios to the 140 revised aircraft PM_{10} records resulted in an additional 140 aircraft $PM_{2.5}$ emission records updates for Virginia. Thus, in total, 853 (443+130+140+140) Virginia aircraft emissions records were updated for Base G.

Also as part of the Base G review and update process, Alabama regulators provided 178 updated PM emission records for aircraft (89 records for PM₁₀ and 89 records for PM_{2.5}), 42 additional emissions records for locomotives (14 records for VOC, 14 records for CO, and 14 records for NO_x), and 179 additional emission records for aircraft (30 records for VOC, 30 records for CO, 30 records for NO_x, 29 records for SO₂, 30 records for PM₁₀, and 30 records for PM_{2.5}). After review, it was determined that the 178 updated PM emission records for aircraft actually reflected the original (overestimated) aircraft PM data that was replaced universally throughout the VISTAS region for Base F. Implementing these latest revisions would, in effect, "undo" the Base F aircraft PM revisions. Following discussions with Alabama regulators, it was determined that the 178 aircraft PM records would not be updated for the Base G revisions.

The 42 additional emissions records for locomotives were determined to correspond exactly to existing SO_2 , PM_{10} , and $PM_{2.5}$ emissions records already in the Base F VISTAS 2002 inventory. It is not clear why these existing records contained no corresponding data for VOC, CO, and NO_x , but those data are now reflected through the additional 42 records that have now been added to the Base G 2002 VISTAS inventory for Alabama.

After examining the 179 additional aircraft emissions records in conjunction with Alabama regulators, it was determined that 17 of the records (commercial aircraft records in Dale,

Limestone, and Talladega counties) were erroneous and should be excluded from the update. The remaining 162 records reflected additional general aviation, air taxi, and military aircraft activity in 20 counties and were specifically comprised of 27 records each for VOC, CO, NO_x, SO₂, PM₁₀, and PM_{2.5}. There were no further issues with the VOC, CO, NO_x, and SO₂ records and these were added to the Base G 2002 VISTAS inventory without change. It was, however, apparent that the PM₁₀ and PM_{2.5} records reflected an overestimation of aircraft PM similar to that which was previously corrected throughout the VISTAS region for Base F (as documented above). To overcome this overestimation, the additional aircraft PM₁₀ and PM_{2.5} records provided by Alabama regulators were replaced with revised emission estimates developed on the basis of the PM₁₀-to-NO_x and PM_{2.5}-to-PM₁₀ ratios documented under the Base F revisions above. So although 27 aircraft PM₁₀ records and 27 aircraft PM_{2.5} records were added to the 2002 Alabama inventory, they reflected different emissions values than those provided directly by Alabama regulators.

In total, 204 additional emissions records (42 for locomotives and 162 for aircraft) were added to the Base G 2002 Alabama inventory.

Finally, as part of the Base G review and update process, Kentucky regulators provided 12 updated aircraft emission records for Boone County, to correct previously underestimated aircraft emissions associated with the Cincinnati/Northern Kentucky International Airport. VOC, CO, and NO_x emissions data were provided for military, commercial, general aviation, and air taxi aircraft. No associated updates for SO₂, PM₁₀, or PM_{2.5} emissions were provided. Corresponding PM₁₀ emission estimates were developed by applying the PM₁₀-to-NO_x ratios presented in Table 1.3-17 above to the updated NO_x emission estimates. PM_{2.5} emission estimates were developed by applying the PM_{2.5}-to-PM₁₀ ratios from that same table to the estimated PM₁₀ emissions. SO₂ emission estimates were developed by applying the SO₂-to-PM₁₀ ratios developed from the older data (i.e., the data being replaced) for Boone County aircraft to the updated PM₁₀ emissions. Thus, a total of 24 inventory records for Kentucky were updated (VOC, CO, NO_x, SO₂, PM₁₀, and PM_{2.5} for four aircraft types).

Upon implementation of the universe of updates, 877 existing emission records were revised (853 in Virginia and 24 in Kentucky) and 204 additional emission records (all in Alabama) were added to the 2002 VISTAS inventory. The total number of aircraft, locomotive, and commercial marine inventory records thus changed from 22,838 records in Base F to 23,042 records in Base G.

Table 1.3-19 presents a summary of the resulting Base G VISTAS 2002 base year inventory estimates for aircraft, locomotives, and non-recreational marine vessels. Table 1.3-20 provides a comparison of the Base G 2002 base year inventory estimates to those of the Base F 2002 base

year inventory. As indicated, total emissions for VOC, CO, NO_x, and SO₂ are generally within about 5 percent, with changes restricted to the states of Alabama, Kentucky, and Virginia.

Lastly, Table 1.3-21 provides an updated comparison of emission estimates from the Base F and Base G 2002 base year inventories for all 17 VISTAS region airports with estimated annual aircraft NO_x emissions of 200 tons or greater. As compared to Table 1.3-16, the table reflects the Base G addition of the Cincinnati/Northern Kentucky International Airport. Aircraft emission estimates for the other 16 airports are unchanged from their Base F values.

Table 1.3-19. Base G-Revised 2002 Base Year Aircraft, Locomotive, and Non-Recreational Marine Emissions (tons/year)

Source	State	CO	NO_x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	5,595	185	238	99	18	276
	FL	25,431	8,891	2,424	2,375	800	3,658
	GA	6,620	5,372	1,475	1,446	451	443
	KY	5,577	925	251	246	88	397
A :	MS	1,593	140	44	43	13	96
Aircraft (2275)	NC	6,088	1,548	419	411	148	613
(2273)	SC	6,505	515	409	401	88	863
	TN	7,251	2,766	734	719	235	943
	VA	11,873	3,885	2,010	1,970	272	2,825
	WV	1,178	78	25	24	8	66
	Total	77,712	24,305	8,029	7,734	2,121	10,179
	AL	1,196	9,218	917	844	3,337	737
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,875	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,688	43,233	1,903	1,751	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
	TN	3,624	27,555	1,217	1,120	4,974	860
	VA	972	2,775	334	307	359	483
	WV	1,528	11,586	487	448	525	362
	Total	28,207	209,972	9,911	9,118	36,275	7,413
Military Marine	VA	110	313	25	23	27	48
(2283)	Total	110	313	25	23	27	48
	AL	3,518	26,623	592	533	1,446	1,365
	FL	1,006	9,969	247	222	605	404
	GA	2,654	26,733	664	598	1,622	1,059
	KY	2,166	21,811	542	488	1,321	867
Locomotives	MS	2,302	23,267	578	520	1,429	899
(2285)	NC	1,638	16,502	410	369	1,001	654
(2283)	SC	1,160	11,690	291	261	710	462
	TN	2,626	25,627	633	570	1,439	1,041
	VA	1,186	11,882	1,529	1,375	3,641	492
	WV	1,311	13,224	329	296	808	517
	Total	19,568	187,328	5,815	5,232	14,022	7,761
Grand Total		125,597	421,918	23,780	22,107	52,444	25,401

82

Table 1.3-20. Change in 2002 Emissions, Base G Inventory
Relative to Base F Inventory

Source	State	CO	NO_x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	+48%	+6%	+5%	+14%	+7%	+41%
	FL	0%	0%	0%	0%	0%	0%
	GA	0%	0%	0%	0%	0%	0%
	KY	+109%	+41%	+40%	+40%	+41%	+51%
Aircraft	MS	0%	0%	0%	0%	0%	0%
(2275)	NC	0%	0%	0%	0%	0%	0%
(2213)	SC	0%	0%	0%	0%	0%	0%
	TN	0%	0%	0%	0%	0%	0%
	VA	+22%	+41%	+77%	+77%	-65%	+12%
	WV	0%	0%	0%	0%	0%	0%
	Total	+10%	+6%	+14%	+14%	-19%	+5%
	AL	0%	0%	0%	0%	0%	0%
	FL	0%	0%	0%	0%	0%	0%
	GA	0%	0%	0%	0%	0%	0%
	KY	0%	0%	0%	0%	0%	0%
Commercial	MS	0%	0%	0%	0%	0%	0%
Marine	NC	0%	0%	0%	0%	0%	0%
(2280)	SC	0%	0%	0%	0%	0%	0%
	TN	0%	0%	0%	0%	0%	0%
	VA	0%	0%	0%	0%	0%	0%
	WV	0%	0%	0%	0%	0%	0%
	Total	0%	0%	0%	0%	0%	0%
Military Marine	VA	0%	0%	0%	0%	0%	0%
(2283)	Total	0%	0%	0%	0%	0%	0%
	AL	+1%	+1%	0%	0%	0%	+1%
	FL	0%	0%	0%	0%	0%	0%
	GA	0%	0%	0%	0%	0%	0%
	KY	0%	0%	0%	0%	0%	0%
Lagamativas	MS	0%	0%	0%	0%	0%	0%
Locomotives (2285)	NC	0%	0%	0%	0%	0%	0%
	SC	0%	0%	0%	0%	0%	0%
	TN	0%	0%	0%	0%	0%	0%
	VA	0%	0%	0%	0%	0%	0%
	WV	0%	0%	0%	0%	0%	0%
	Total	+0%	+0%	0%	0%	0%	+0%
Grand Total		+6%	+0%	+4%	+4%	-1%	+2%

Table 1.3-21. Base G Comparison of Aircraft Emissions (Airports with Aircraft $NO_x > 200$ tons per year)

Airport	FIP	СО	NO _x	PM ₁₀	PM _{2.5}	SO_2	VOC	Approx. LTOs	Predicted NO _x	VISTAS to Predicted
	•		Base	F 2002	Base Yea	r Invento	ry			
Atlanta	13063	4,121	5,288	1,435	1,406	443	337	420,000	4,704	1.12
Miami	12086	6,670	2,933	805	789	274	1,596	150,000	1,680	1.75
Orlando	12095	3,456	2,170	568	556	204	642	150,000	1,680	1.29
Memphis	47157	3,462	1,934	506	495	185	603	125,000	1,400	1.38
Orlando-Sanford	12117	3,615	1,225	338	332	100	351			
Fort Lauderdale	12011	1,930	809	217	212	75	257	75,000	840	0.96
Charlotte	37119	1,643	788	206	202	75	255	150,000	1,680	0.47
Tampa	12057	1,399	785	206	202	74	240	75,000	840	0.93
Nashville	47037	1,819	653	170	166	33	239	60,000	672	0.97
Reagan	51013	1,269	635	171	168	193	97	100,000	1,120	0.57
Dulles 1	51107	1,807	595	164	161	252	153	37,500	420	1.42
Raleigh	37183	1,584	592	156	153	56	204	75,000	840	0.70
Dulles 2	51059	1,095	591	156	153	252	115	37,500	420	1.41
Hampton	51650	858	535	471	461	18	305	Military		
Louisville	21111	1,073	468	123	121	45	155	60,000	672	0.70
Jacksonville	12031	871	325	87	85	31	112	30,000	336	0.97
Palm Beach	12099	1,156	226	59	58	1	132	30,000	336	0.67
Cincinnati	21015	467	144	38	37	14	54	50,000	560	0.26
Aggregate		38,296	20,694	5,876	5,758	2,326	5,847			0.26-1.75
			Base	G 2002.	Base Yea	r Invento	ory			
Atlanta	13063	4,121	5,288	1,435	1,406	443	337	420,000	4,704	1.12
Miami	12086	6,670	2,933	805	789	274	1,596	150,000	1,680	1.75
Orlando	12095	3,456	2,170	568	556	204	642	150,000	1,680	1.29
Memphis	47157	3,462	1,934	506	495	185	603	125,000	1,400	1.38
Orlando-Sanford	12117	3,615	1,225	338	332	100	351			
Fort Lauderdale	12011	1,930	809	217	212	75	257	75,000	840	0.96
Charlotte	37119	1,643	788	206	202	75	255	150,000	1,680	0.47
Tampa	12057	1,399	785	206	202	74	240	75,000	840	0.93
Nashville	47037	1,819	653	170	166	33	239	60,000	672	0.97
Reagan	51013	1,269	635	171	168	193	97	100,000	1,120	0.57
Dulles 1	51107	1,807	595	164	161	252	153	37,500	420	1.42
Raleigh	37183	1,584	592	156	153	56	204	75,000	840	0.70
Dulles 2	51059	1,095	591	156	153	252	115	37,500	420	1.41
Hampton	51650	858	535	471	461	18	305	Military		
Louisville	21111	1,073	468	123	121	45	155	60,000	672	0.70
Cincinnati	21015	3,378	411	110	107	39	187	50,000	560	0.73
Jacksonville	12031	871	325	87	85	31	112	30,000	336	0.97
Palm Beach	12099	1,156	226	59	58	1	132	30,000	336	0.67
Aggregate		41,207	20,961	5,947	5,828	2,352	5,981			0.47-1.75
Net Change		+8%	+1%	+1%	+1%	+1%	+2%			

Note: For the revised inventory, Dulles International Airport emissions are split between two Virginia counties. Predicted NO_x is based on the ratio of airport LTOs to test airport (Tucson International Airport) LTOs and NO_x . This is not a rigorous comparison, but rather an approximate indicator of expected magnitude.

84

1.3.2.3 Emissions from NONROAD Model Sources in Illinois, Indiana, and Ohio

As part of the Base G update process, VISTAS requested that emissions estimates for 2002 be produced for the states of Illinois, Indiana, and Ohio. These estimates were to be produced at the same spatial (i.e., county level by SCC) and temporal resolution as estimates for the VISTAS region.

The requested estimates were produced by extracting a complete set of county-level input data applicable to each of the three states from the latest version of the EPA's NMIM (National Mobile Inventory Model) model. This included appropriate consideration of all non-default NMIM input files generated by the Midwest Regional Planning Organization (MRPO), as described below. These input data were then assembled into appropriate input files for the Final NONROAD2005 model and emission estimates were produced using the same procedure employed for the VISTAS region as part of the Base G updates.

A complete set of monthly input data was developed for each county in Illinois, Indiana, and Ohio by extracting data from the following NMIM database files (using the NMIM MySQL query browser):

county, countrynrfile, countyyear, countyyearmonth, countyyearmonthhour, gasoline, diesel, and natural gas

The database files:

countrynrfile, countyyear, countyyearmonth, and gasoline

were non-default database files provided to VISTAS by the MRPO, and are intended to reflect the latest planning data being used by MRPO modelers.

From these files, monthly data for gasoline vapor pressure, gasoline oxygen content, gasoline sulfur content, diesel sulfur content for land-based equipment, diesel sulfur content for marine-based equipment, natural gas sulfur content, minimum daily temperature, maximum daily temperature, and average daily temperature were developed. In addition, the altitude and Stage II refueling control status of each county, as well as the identity of the associated equipment population, activity, growth, allocation, and seasonal distribution files, was determined. These data were then assembled into Final NONROAD2005 input files on a seasonal basis, with monthly data being arithmetically averaged to produce seasonal equivalents as follows:

85

Winter = Average of December, January, and February

Spring = Average of March, April, and May Summer = Average of June, July, and August,

Fall = Average of September, October, and November

Unlike the VISTAS Base G approach, this approach results in the use of the following non-default data files during the Final NONROAD2005 modeling process:

Table 1.3-22 Non-Default Files Used for MRPO Modeling

Data File	Illinois	Indiana	Ohio			
Activity File	1700002.act	1800002.act	3900002.act			
Growth File	17000.grw	18000.grw	39000.grw			
Population File	17000.pop	18000.pop	39000.pop			
Season File	17000.sea	18000.sea	39000.sea			
Inboard Marine Allocation File	17000wib.alo	18000wib.alo	39000wib.alo			
Outboard Marine Allocation File	17000wob.alo 18000wob.alo 39000wob.alo					
Specific Fuel Consumption	MRPO-specific file provided by MRPO modelers (arbitrarily named "mrpoBSFC.emf" for this work)					

One compromise was made relative to the level of resolution that is available through the basic approach described above, that being the treatment of ambient temperature data. Because NMIM offers a unique temperature profile for every U.S. county -- developed by aggregating temperature data from included and surrounding weather stations on the basis of their distances from the county population centroid -- it is not possible to explicitly group counties with otherwise identical input streams. Ungrouped however, there would be 1,128 distinct input streams to be processed (102 Illinois counties plus 92 Indiana counties plus 88 Ohio counties at four seasons each), or over five times the number of files processed for the entire VISTAS region.

To surmount this problem and allow counties with similar temperature profiles to be grouped an approach was employed wherein counties were considered groupable if *all* temperature inputs⁴ are within \pm 2 °F of the corresponding group average. This criterion is quite stringent in that it results in less tolerant grouping than that employed for VISTAS modeling, which uses temperature data from the nearest meteorological station as opposed to "unique" meteorological

86

Non-road temperature inputs used for county grouping are: winter minimum, spring minimum, summer minimum, fall minimum, winter maximum, spring maximum, summer maximum, fall maximum, winter average, spring average, summer average, and fall average.

data for each county. Under this approach, the actual deviation for grouped counties is much less that ± 2 °F for the overwhelming majority of the 12 grouped temperature inputs.

In addition to the required temperature consistency, all other input data for counties to be grouped had to be identical for all four seasons. Using this criterion, Illinois emissions were modeled using 12 county groups, Indiana emissions were modeled using 9 county groups, and Ohio emissions were modeled using 10 county groups. Thus, 31 iterations of NONROAD2002 were required per season, as compared to the 53 iterations per season required for the VISTAS region.

It should be noted that a potential quality assurance issue was noted in assembling the NONROAD2005 input data for a number of Indiana counties. Specifically, the gasoline vapor pressure for most Indiana counties reflects a value of 9.0 psi in *all* spring, summer, fall, and winter months. This is likely to indicate a problem with the accuracy of the NMIM databases for these counties, but these data were used as defined for this work.

1.3.3 Quality Assurance steps

Throughout the inventory development process, quality assurance steps were performed to ensure that no double counting of emissions occurred, and to ensure that a full and complete inventory was developed for VISTAS. Quality assurance was an important component to the inventory development process and MACTEC performed the following QA steps on the area source component of the 2002 base year revised:

- 1. All CERR and NIF format State supplied data submittals were run through EPA's Format and Content checking software.
- 2. SCC level emission summaries were prepared and evaluated to ensure that emissions were consistent and that there were no missing sources.
- 3. Tier comparisons (by pollutant) were developed between the revised 2002 base year inventory and the initial base year inventory.
- 4. Data product summaries were provided to both the VISTAS Emission Inventory Technical Advisor and to Mobile Source SIWG representatives for review and comment. Changes based on these comments were implemented in the files.
- 5. Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from 1.0 to 2.0. A minor change would cause a version number to go from 1.0 to 1.1. Minor changes resulting from largely editorial changes would result in a change from 1.00 to 1.01.

87

2.0 Projection Inventory Development

2.1 Point Sources

We used different approaches for different sectors of the point source inventory:

- For the EGUs, VISTAS relied primarily on the Integrated Planning Model[®] (IPM[®]) to project future generation as well as to calculate the impact of future emission control programs. The IPM results were adjusted based on S/L agency knowledge of planned emission controls at specific EGUs.
- For non-EGUs, we used recently updated growth and control data consistent with the data used in EPA's CAIR analyses, and supplemented these data with available S/L agency input and updated fuel use forecast data for the U.S. Department of Energy.

For both sectors, we generated 2009 and 2018 inventories for a combined on-the-books (OTB) and on-the-way (OTW) control scenario. The OTB/OTW control scenario accounts for post-2002 emission reductions from promulgated and proposed federal, State, local, and site-specific control programs as of July 1, 2004. Section 2.1.1 discusses the EGU projection inventory development, while Section 2.1.2 discusses the non-EGU projection inventory development.

2.1.1 EGU Emission Projections

The following subsections discuss the following specific aspects of the development of the EGU projections. First, we present a chronology of the EGU development process and discuss key decisions in selecting the final methods for performing the emissions projections. Next, we describe the development of the final set of IPM runs that are included in the VISTAS Base G inventory. Next, we describe the process of transforming the IPM parsed files into NIF format. Fourth, we discuss the process for ensuring that units accounted for in IPM were not double-counted in the non-EGU inventory. Fifth, we describe the QA/QC checks that were made to ensure that the IPM results were properly incorporated into the VISTAS inventory. Sixth, we document the changes to the IPM results that S/L agencies specified they wanted included in the VISTAS inventory based on new information that was not accounted for in the IPM runs. Finally, we present summarize the Base G projected EGU emissions by year, state, and pollutant.

2.1.1.1 Chronology of the Development of EGU Projections

At the beginning of the EGU inventory development process, VISTAS considered three options for developing the VISTAS 2009 and 2018 projection inventories for EGUs:

Option 1 – Use the results of IPM modeling conducted in support of the proposed Clean
Air Interstate Rule (CAIR) base and control case analyses as the starting point and refine
the projections with readily available inputs from stakeholders; these IPM runs were

88

conducted for 2010 and 2015, which VISTAS would use to represent projected emissions in 2009 and 2018 respectively.

- Option 2 Use the VISTAS 2002 typical year as the starting point, apply growth factors from the Energy Information Administration, and refine future emission rates with stakeholder input regarding utilization rates, capacity, retirements, and new unit information.
- Option 3 Use the results of a new round of IPM modeling sponsored by VISTAS and the Midwest Regional Planning Organization (MRPO). These runs incorporated VISTAS specific unit and regulation modified parameters, and generate results for 2009 and 2018 explicitly.

An additional consideration for each of the three options was the inclusion of emission projections developed by the Southern Company specifically for their units. Southern Company is a super-regional company which owns EGUs in Alabama, Florida, Georgia, and Mississippi and participates in VISTAS as an industry stakeholder. Southern Company used their energy budget forecast to project net generation and heat input for every existing and future Southern Company EGU for the years 2009 and 2018. Further documentation of how Southern Company generated the 2009/2018 inventory for their units can be found in *Developing Southern Company Emissions and Flue Gas Characteristics for VISTAS Regional Haze Modeling (April 2005, presented at 14th International Emission Inventory Conference).*

Each of these three options and the Southern Company projections were discussed in a series of conference calls with the VISTAS EGU Special Interest Work Group (SIWG) during the fall of 2004. During a conference call on December 6, 2004, the VISTAS EGU SIWG approved the use of the latest VISTAS/MRPO sponsored IPM runs (Option 3) to represent the 2009 and 2018 EGU forecasts of emissions for the OTB and OTW cases. During the call, Alabama and Georgia specified that they did not wish to use Southern Company provided emissions forecasts of 2009 and 2018 to represent the sources in their States. Mississippi decided to utilize the Southern Company projections to represent activity at Southern Company facilities in Mississippi. After the call, Florida decided against using Southern Company provided emissions forecasts of 2009 and 2018 to represent the sources in their State. Thus, Southern Company data was used only for Southern Company units in Mississippi for both the Base F and Base G projections.

The Option 3 IPM modeling resulted from a joint agreement by VISTAS and MRPO to work together to develop future year utility emissions based on IPM modeling. The decision to use IPM modeling was based in part on a study of utility forecast methods by E.H. Pechan and Associates, Inc. (Pechan) for MRPO, which recommended IPM as a viable methodology (see *Electricity Generating Unit {EGU} Growth Modeling Method Task 2 Evaluation*, February 11,

2004). Although IPM results were available from EPA's modeling to support their rulemaking for the Clean Air Interstate Rule (CAIR), VISTAS stakeholders felt that certain model inputs needed to be improved. Thus, VISTAS and MRPO decided to hire contractors to conduct new IPM modeling and to post-process the IPM results. Southern Company projections in 2009 were roughly comparable with IPM. For 2018, Southern Company projections were generally less than IPM because of assumptions made by Southern Company on which units would be economical to control and incorrect data in the NEEDS database which feeds IPM.

In August 2004, VISTAS contracted with ICF International, Inc., to run IPM to provide utility forecasts for 2009 and 2018 under two future scenarios – Base Case and CAIR Case. The Base Case represents the current operation of the power system under currently known laws and regulations (as known at the time the run was made), including those that come into force in the study horizon. The CAIR Case is the Base Case with the proposed CAIR rule superimposed. The run results were parsed at the unit level for the 2009 and 2018 run years. Also in August 2004, MRPO contracted with E.H. Pechan to post-process the IPM outputs generated by ICF to provide model-ready emission files. The IPM output files were delivered by ICF to VISTAS in November (Future Year Electricity Generating Sector Emission Inventory Development Using the Integrated Planning Model (IPM®) in Support of Fine Particulate Mass and Visibility Modeling in the VISTAS and Midwest RPO Regions, January 2005), and the post-processed data files were delivered by Pechan to the MRPO in December 2004 (LADCO IPM Model Parsed File Post-Processing Methodology and File Preparation, February 8, 2005).

On March 10, 2005, EPA issued the final Clean Air Interstate Rule. VISTAS and MRPO, in conjunction with other RPOs, conducted another round of IPM modeling which reflected changes to control assumptions based on the final CAIR as well as additional changes to model inputs based on S/L agency and stakeholder comments. Several conference calls were conducted in the spring of 2005 to discuss and provide comments on IPM assumptions related to six main topics: power system operation, generating resources, emission control technologies, set-up parameters and rule, financial assumptions, and fuel assumptions. Based on these discussions, VISTAS sponsored a new set of IPM runs to reflect the final CAIR requirements as well as certain changes to IPM assumptions that were agreed to by the VISTAS states. This set of IPM runs is documented in *Future Year Electricity Generating Sector Emission Inventory Development Using the Integrated Planning Model (IPM®) in Support of Fine Particulate Mass and Visibility Modeling in the VISTAS and Midwest RPO Regions*, April 2005 (these runs are referred to as the VISTAS Phase I analysis).

Further refinements to the IPM inputs and assumptions were made by the RPOs, and ICF performed the following four runs using IPM during the summer of 2005 (these runs are referred to as the VISTAS/CENRAP Phase II analysis):

Base Case with EPA 2.1.9 coal, gas and oil price assumptions.

- Base Case with EPA 2.1.9 coal and gas supply curves adjusted for AEO 2005 reference case price and volume relationships.
- Strategy Case with EPA 2.1.9 coal, gas and oil price assumptions.
- Strategy Case with EPA 2.1.9 coal and gas supply curves adjusted for AEO 2005 reference case price and volume relationships.

The above runs were parsed for 2009 and 2018 run years. The above four runs were based on VISTAS Phase I and the EPA 2.1.9 assumptions. The changes that were implemented in the above four runs are summarized below:

- Unadjusted AEO 2005 electricity demand projections were incorporated in the above four runs.
- The gas supply curves were adjusted for AEO 2005 reference case price and volume relationships. The EPA 2.1.9 gas supply curves were scaled such that IPM will solve for AEO 2005 gas prices when the power sector gas demand in IPM is consistent with AEO 2005 power sector gas demand projections.
- The coal supply curves used in EPA 2.1.9 were scaled in such a manner that the average mine mouth coal prices that the IPM is solving in aggregated coal supply regions are comparable to AEO 2005. Due to the fact that the coal grades and supply regions between AEO 2005 and the EPA 2.1.9 are not directly comparable, this was an approximate approach and had to be performed in an iterative fashion. The coal transportation matrix was not updated with EIA assumptions due to significant differences between the EPA 2.1.9 and EIA AEO 2005 coal supply and coal demand region configurations.
- The cost and performance of new units were updated to AEO 2005 reference case levels in all of the above four funs.
- The run years 2008, 2009, 2012, 2015, 2018, 2020 and 2026 were modeled.
- The AEO 2005 life extension costs for fossil and nuclear units were incorporated in the above runs.
- The extensive NEEDS comments provided by VISTAS, MRPO, CENRAP and MANE-VU were incorporated into the VISTAS Phase I NEEDS.

91

- MANE-VU's comments in regards to the state regulations in the northeast were incorporated.
- Renewable Portfolio Standards (RPS) in the northeast was modeled based on the Regional Greenhouse Gas Initiative analysis. A single RPS cap was modeled for MA, RI, NY, NJ, MD and CT. These states could buy credits from NY, PJM and New England model regions.
- The investments required under the Illinois power, Mirant and First Energy NSR settlements were incorporated in the above runs.

For the VISTAS/CENRAP Phase II set of IPM runs, ICF generated two different parsed files. One file includes all fuel burning units (fossil, biomass, landfill gas) as well as non-fuel burning units (hydro, wind, etc.). The second file contains just the fossil-fuel burning units (e.g., emissions from biomass and landfill gas are omitted). The RPOs decided to use the fossil-only file for modeling to be consistent with EPA, since EPA used the fossil only results for CAIR analyses. For the 10 VISTAS states, non-fossil fuels accounted for only 0.13 percent of the NOx emissions and 0.04 percent of the SO₂ emissions in the 2009 IPM runs.

S/L agencies reviewed the results of the VISTAS/CENRAP Phase II set of IPM runs, which were incorporated into the VISTAS Base F inventory. S/L agencies primarily reviewed and commented on the IPM results with respect to IPM decisions on NO_x post-combustion controls and SO₂ scrubbers. S/L agencies provided the latest information on when and where new SO₂ and NO_x controls are planned to come online. S/L agencies also reviewed the IPM results to verify that existing controls and emission rates were properly reflected in the IPM runs. As directed by the S/L agencies, adjustments to the IPM results were made to specific units with any new information they had as part of the permitting process or other contact with the industry that indicates which units will install controls as a result of CAIR and when these new controls will come on-line. Mississippi decided to continue to use the Southern Company projections instead of the IPM projections to represent emissions at Southern Company facilities in Mississippi. The state-specified changes to the VISTAS/CENRAP Phase II set of IPM runs were used to create the Base G projection inventory (and are documented later in Section 2.1.1.6).

2.1.1.2 VISTAS IPM runs for EGU sources

The following general summary of the VISTAS IPM® modeling is based on ICF's documentation *Future Year Electricity Generating Sector Emission Inventory Development Using the IPM® in Support of Fine Particulate Mass and Visibility Modeling in the VISTAS and Midwest RPO Regions*, April 2005. The ICF documentation is to be used as an extension to EPA's proposed CAIR modeling runs documented in *Documentation Supplement for EPA Modeling Applications (V.2.1.6) Using the IPM*, EPA 430/R-03-007, July 2003.

92

IPM provides "forecasts of least-cost capacity expansion, electricity dispatch, and emission control strategies for meeting energy demand and environmental, transmission, dispatch, and reliability constraints." The underlying database in this modeling is U.S. EPA's National Electric Energy Data System (NEEDS) released with the CAIR Notice of Data Availability (NODA). The NEEDS database contains the existing and planned/committed unit data in EPA modeling applications of IPM. NEEDS includes basic geographic, operating, air emissions, and other data on these generating units. VISTAS States and stakeholders provided changes for:

- NO_x post-combustion control on existing units
- SO₂ scrubbers on existing units
- SO₂ emission limitations
- PM controls on existing units
- Summer net dependable capacity
- Heat rate for existing units
- SO₂ and NO_x control plans based on State rules or enforcement settlements

The years 2009 and 2018 were explicitly modeled.

2.1.1.3 Post-Processing of IPM Parsed Files

The following summary of the VISTAS/Midwest Regional Planning Organization (MRPO) IPM modeling is based on Pechan's documentation *LADCO IPM Model Parsed File Post-Processing Methodology and File Preparation*, February 8, 2005. The essence of the IPM model post-processing methodology is to take an initial IPM model output file and transform it into air quality model input files. ICF via VISTAS/MRPO provides an initial spreadsheet file containing unit-level records of both

- (1) "existing" units and
- (2) committed or new generic aggregates.

All records have unit and fuel type data; existing, retrofit (for SO₂ and NO_x), and separate NO_x control information; annual SO₂ and NO_x emissions and heat input; summer season (May-September) NO_x and heat input; July day NO_x and heat input; coal heat input by coal type; nameplate capacity megawatt (MW), and State FIPS code. Existing units also have county FIPS code, a unique plant identifier (ORISPL) and unit ID (also called boiler ID) (BLRID); generic units do not have these data. The processing includes estimating various types of emissions and adding in control efficiencies, stack parameters, latitude-longitude coordinates, and State identifiers (plant ID, point ID, stack ID, process ID). Additionally, the generic units are sited in a county and given appropriate IDs. This processing is described in more detail below.

The data are prepared by transforming the generic aggregates into units similar to the existing units in terms of the available data. The generic aggregates are split into smaller generic units based on their unit types and capacity, are provided a dummy ORIS unique plant and boiler ID, and are given a county FIPS code based on an algorithm that sites each generic by assigning a sister plant that is in a county based on its attainment/nonattainment status. Within a State, plants (in county then ORIS plant code order) in attainment counties are used first as sister sites to generic units, followed by plants in PM nonattainment counties, followed by plants in 8-hour ozone nonattainment counties. Note that no LADCO or VISTAS States provided blackout counties that would not be considered when siting generics, so this process is identical to the one used for EPA IPM post-processing.

SCCs were assigned for all units; unit/fuel/firing/bottom type data were used for existing units' assignments, while only unit and fuel type were used for generic units' assignments. Latitude-longitude coordinates were assigned, first using the EPA-provided data files, secondly using the September 17, 2004 Pechan in-house latitude-longitude file, and lastly using county centroids. These data were only used when the data were not provided in the 2002 NIF files. Stack parameters were attached, first using the EPA-provided data files, secondly using a March 9, 2004 Pechan in-house stack parameter file based on previous EIA-767 data, and lastly using an EPA June 2003 SCC-based default stack parameter file. These data were only used when the data were not provided in the 2002 NIF files.

Additional data were required for estimating VOC, CO, filterable primary PM₁₀ and PM2.5, PM condensable, and NH₃ emissions for all units. Thus, ash and sulfur contents were assigned by first using 2002 EIA-767 values for existing units or SCC-based defaults; filterable PM10 and PM2.5 efficiencies were obtained from the 2002 EGU NEI that were based on 2002 EIA-767 control data and the PM Calculator program (a default of 99.2 percent is used for coal units if necessary); fuel use was back calculated from the given heat input and a default SCC-based heat content; and emission factors were obtained from an EPA-approved October 7, 2004 Pechan emission factor file based on AP-42 emission factors. Note that this updated file is not the one used for estimating emissions for previous EPA post-processed IPM files. Emissions for 28 temporal-pollutant combinations were estimated since there are seven pollutants (VOC, CO, primary PM₁₀ and PM_{2.5}, NH₃, SO₂ and NO_x) and four temporal periods (annual, summer season, winter season, July day).

The next step was to match the IPM unit IDs with the identifiers in VISTAS 2002 inventory. A crosswalk file was used to obtain FIPS State and county, plant ID (within State and county), and point ID. If the FIPS State and county, plant ID and point ID are in the 2002 VISTAS NIF tables, then the process ID and stack ID are obtained from the NIF; otherwise, defaults, described above, were used.

Pechan provided the post-processed files in NIF 3.0 format. Two sets of tables were developed: "NIF files" for IPM units that have a crosswalk match and are in the 2002 VISTAS inventory, and "NoNIF files" for IPM units that are not in the 2002 VISTAS inventory (which includes existing units with or without a crosswalk match as well as generic units).

For Base F and Base G projections, VISTAS reviewed the PM and NH₃ emissions from EGUs as provided by Pechan and identified significantly higher emissions in 2009/2018 than in 2002. VISTAS determined that Pechan used a set of PM and NH₃ emission factors that are "the most recent EPA approved uncontrolled emission factors" for estimating 2009/2018 emissions. These factors are most likely not the same emission factors used by States for estimating these emissions in 2002 for EGUs in the VISTAS domain. Thus, the emission increase from 2002 to 2009/2018 was simply an artifact of the change in emission factor, not anything to do with changes in activity or control technology application. Also, VISTAS identified an inconsistent use of SCCs for determining emission factors between the base and future years.

VISTAS resolution of the PM and NH₃ problem is fully documented in *EGU Emission Factors* and *Emission Factor Assignment*, memorandum from Greg Stella to VISTAS State Point Source Contacts and VISTAS EGU Special Interest Workgroup, June 13, 2005. The first step was the adjustment of the 2002 base year emissions inventory. Using the latest "EPA-approved" uncontrolled emission factors by SCC, Alpine Geophysics utilized CERR or VISTAS reported annual heat input, fuel throughput, heat, ash and sulfur content to estimate annual uncontrolled emissions for units identified as output by IPM. This step was conducted for non-CEM pollutants (CO, VOC, PM, and NH₃) only. For PM emissions, the condensable component of emissions was calculated and added to the resulting PM primary estimations. The resulting emissions were then adjusted by any control efficiency factors reported in the CERR or VISTAS data collection effort. The second adjustment was to the future year inventories. Alpine Geophysics updated the SCCs in the future year inventory to assign the same base year SCC. Using the same methods as described for the 2002 revisions, those non-IPM generated pollutants were estimated using IPM predicted fuel characteristics and base year 2002 SCC assignments.

2.1.1.4 Eliminating Double Counting of EGU Units

The following procedures were used to avoid double counting of EGU emissions in the 2009/2018 point source inventory. The 2002 VISTAS point source emission inventory contains both EGUs and non-EGUs. Since this file contains both EGUs and non-EGU point sources, and EGU emissions are projected using the IPM, it was necessary to split the 2002 point source file into two components. The first component contains those emission units accounted for in the IPM forecasts. The second component contains all other point sources not accounted for in IPM.

As described in the previous section, Pechan developed 2009/2018 NIF files for EGUs from the IPM parsed files. All IPM matched units were initially removed from the 2009/2018 point source

inventory to create the non-EGU inventory (which was projected to 2009/2018 using the non-EGU growth and control factors described in Section 2.1.2). This was done on a unit-by-unit basis based on a cross-reference table that matches IPM emission unit identifiers (ORISPL plant code and BLRID emission unit code) to VISTAS NIF emission unit identifiers (FIPSST state code, FIPSCNTY county code, State Plant ID, State Point ID). When there was a match between the IPM ORISPL/BLRID and the VISTAS emission unit ID, the unit was assigned to the EGU inventory; all other emission units were assigned to the non-EGU inventory.

If an emission unit was contained in the NIF files created by Pechan from the IPM output, the corresponding unit was removed from the initial 2009/2018 point source inventory. The NIF 2009/2018 EGU files from the IPM parsed files were then merged with the non-EGU 2009/2018 files to create the 2009/2018 Base F point source files.

Next, we prepared several ad-hoc QA/QC queries to verify that there was no double-counting of emissions in the EGU and non-EGU inventories:

- We reviewed the IPM parsed files {VISTASII_PC_1f_AllUnits_2009 (To Client).xls and VISTASII_PC_1f_AllUnits_2018 (To Client).xls} to identify EGUs accounted for in IPM. We compared this list of emission units to the non-EGU inventory derived from the VISTAS cross-reference table to verify that units accounted for in IPM were not double-counted in the non-EGU inventory. As a result of this comparison, we made a few adjustments in the cross-reference table to add emission units for four plants to ensure these units accounted for in IPM were moved to the EGU inventory.
- We reviewed the non-EGU inventory to identify remaining emission units with an Standard Industrial Classification (SIC) code of "4911 Electrical Services" or Source Classification Code of "1-01-xxx-xx External Combustion Boiler, Electric Generation".
 We compared the list of sources meeting these selection criteria to the IPM parsed file to ensure that these units were not double-counted.

S/L agencies also reviewed the 2009/2018 point source inventory to verify whether there was any double counting of EGU emissions. In two instances, S/L agencies provided corrections where an emission unit was double counted.

2.1.1.5 Quality Assurance steps

Quality assurance was an important component to the inventory development process and MACTEC performed the following QA steps on the EGU component of the VISTAS revised 2009/2018 EGU inventory:

96

- 1. Provided parsed files (i.e., Excel spreadsheets that provide unit-level results derived from the model plant projections obtained by the IPM) to the VISTAS EGU SIWG for review and comment.
- 2. Provided facility level emission summaries for 2009/2018 for both the base case and CAIR case to the VISTAS EGU SIWG to ensure that emissions were consistent and that there were no missing sources.
- 3. Compared, at the State-level, emissions from the IPM parsed files and the post-processed NIF files to verify that the post-processed NIF files were consistent with the IPM parsed file results.

VISTAS requested S/L review of these files – the changes specified by states as a result of this review are documented in the following subsection.

2.1.1.6 S/L Adjustments to IPM Modeling Results for Base G Projections

After S/L agency review of the final set of IPM runs (as incorporated into the Base F inventory), S/L agencies specified a number of changes to the IPM results to better reflect current information on when and where future controls would occur. These changes to the IPM results primarily involved S/L agency addition or subtraction future emission controls based on the best available data from state rules, enforcement agreements, compliance plans, permits, and discussions/commitments from individual companies.

For example, Dominion Virginia Power released their company-wide plan to reduce emission to meet the requirements of CAIR and other programs. This plan varies substantially from the IPM results both in terms current and future controls and timing of these controls. As a result, VA DEQ developed their best estimates of future controls on EGUs in Virginia. Also, Duke Energy and Progress Energy have updated their plans for complying with North Carolina's Clean Smokestack Act. These plans vary substantially from the IPM results both in terms current and future controls and timing of these controls. As a result, NC DENR replaced the IPM emission projections for 2009 with projections from the Duke Energy and Progress Energy compliance plan. NC DENR elected to use the IPM results for 2018.

Some S/L agencies specified changes to the controls assigned by IPM to reflect their best estimates of emission controls. The changes specified by the S/L agencies are summarized in Table 2.1-1. These changes involved either 1) adding selective catalytic reduction (SCR) or scrubber controls to units where IPM did not predict SCR or scrubber controls, or 2) removing IPM-assigned SCR or scrubber controls at units where the S/L agency indicated their were no firm plans for controls at those units. We used a scrubber control efficiency of 90 percent when adding or removing SO₂ scrubber controls. We used a control efficiency of 90 percent when adding or removing NO_x SCR controls at coal-fired plants, 80 percent when adding or removing

 NO_x SCR controls at gas-fired plants, and 35 percent when adding or removing NO_x SNCR controls.

In addition to the changes to the IPM-assigned controls, the S/L agencies also specified other types of changes to the IPM results. These other specific changes to the IPM results are summarized in Table 2.1-2.

S/L agencies provided information and/or comment on changes in stack parameters from the 2002 inventory for 2009/2018 inventory. Changes to stack parameters were also made in cases where new controls are scheduled to be installed. In cases where an emission unit projected to have a SO₂ scrubber in either 2009 or 2018, some states were able to provide revised stack parameters for some units based on design features for the new control system. Other units projected to install scrubbers by 2009 or 2018 are not far enough along in the design process to have specific design details. For those units, the VISTAS EGU SIWG made the following assumptions: 1) the scrubber is a wet scrubber; 2) keep the current stack height the same; 3) keep the current flow rate the same, and 4) change the stack exit temperature to 169 degrees F (this is the virtual temperature derived from a wet temperature of 130 degrees F). VISTAS determined that exit temperature (wet) of 130 degrees F +/- 5 degrees F is representative of different size units and wet scrubber technology.

2.1.1.7 Summary of Base F and Base G 2009/2018 EGU Point Source Inventories

Tables 2.1-3 through 2.1-9 compare the Base G 2002 base year inventory to the Base F4 and Base G 2009/2018 projection inventories. The Base F4 projections rely primarily on the results of the IPM, while the Base G projections include the adjustments to the IPM results specified by the S/L agencies in the previous section.

98

Table 2.1-1 Adjustments to IPM Control Determinations Specified by S/L Agencies for the Base G 2009/2018 EGU Inventories.

				NO _x Emissi	on Controls			SO ₂ Emissi	ion Controls	
State	Plant Name and ID	Unit	20	09	20)18	20	009	20	018
			IPM	State	IPM	State	IPM	State	IPM	State
AL	James H. Miller ORISID=6002	1 & 2	SCR during ozone season	SCR probable year round due to CAIR	SCR during ozone season	SCR probable year round due to CAIR	None	None	None	Scrubber
		3 & 4	SCR during ozone season	SCR year round from Consent Decree	SCR during ozone season	SCR year round from Consent Decree	None	None	None	Scrubber
	Barry	1, 2, 3	None	SNCR	SCR	SNCR	None	None	None	None
	ORISID=3	4	None	SNCR	SCR	SNCR	None	None	Scrubber	Scrubber
		5	None	None	SCR	SCR	None	None	Scrubber	Scrubber
	E C Gaston	1 - 4	SCR	None	SCR	None	None	None	Scrubber	Scrubber
	ORISID=26	5	SCR	SCR	SCR	SCR	Scrubber	None	Scrubber	Scrubber
	Gorgas	6&7	None	None	None	None	None	None	None	None
	ORISID=8	8 & 9	None	None	None	None	None	Scrubber	None	Scrubber
		10	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
	Charles R. Lowman	1	None	None	None	None	None	Scrubber	None	Scrubber
	ORISID=56	2 & 3	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
GA	Bowen	1BLR	SCR	SCR	SCR	SCR	IPM had	None	Scrubber	Scrubber
	ORISID=703	2BLR	SCR	SCR	SCR	SCR	retrofit scrubbers	None	Scrubber	Scrubber
		3BLR	SCR	SCR	SCR	SCR	but little	Scrubber	Scrubber	Scrubber
		4BLR	SCR	SCR	SCR	SCR	emission reductions	Scrubber	Scrubber	Scrubber

Table 2.1-1 (continued)

				NO _x Emiss	ion Controls		SO ₂ Emission Controls			
State	Plant Name and ID	Unit	20)09	20)18	20	009	20)18
			IPM	State	IPM	State	IPM	State	IPM	State
GA	Wansley	1	SCR	SCR	SCR	SCR	IPM had	Scrubber	Scrubber	Scrubber
	ORISID=6052	2	SCR	SCR	SCR	SCR	retrofit scrubbers but little emission reductions	None	Scrubber	Scrubber
	Kraft	1, 2	None	None	None	None	None	None	None	None
	ORISID=733	3	None	None	SCR	None	None	None	None	None
	McIntosh ORISID=6124	1	None	None	SCR	None	None	None	None	None
	Yates	1	None	None	None	None	Scrubber	Scrubber	Scrubber	Scrubber
	ORISID=728	2, 3	None	None	None	None	None	None	None	None
		4 – 7	None	None	SCR	SCR	None	None	Scrubber	None
	Hammond	1	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
	ORISID=708	2	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
		3	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
		4	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
KY	Ghent	1	None	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
	ORISID=1356	2	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
		3, 4	None	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber
	Coleman	C1	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
	ORISID=1381	C2	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
		C3	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber
	HMP&L Station 2	H1	SCR	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber
		H2	None	SCR	SCR	SCR	Scrubber	Scrubber	Scrubber	Scrubber

Table 2.1-1 (continued)

			NO _x Emission Controls					SO ₂ Emission Controls			
State	Plant Name and ID	Unit	2009		2	2018		2009		2018	
			IPM	State	IPM	State	IPM	State	IPM	State	
KY	E W Brown	1	None	None	None	None	None	Scrubber	None	Scrubber	
	ORISID=1355	2	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber	
		3	None	None	SCR	SCR	None	Scrubber	Scrubber	Scrubber	
SC	Jeffries	3	SCR	None	SCR	None	None	None	None	None	
	ORISID=3319	4	None	None	None	None	None	None	None	None	
	Wateree	WAT1	SCR	SCR	SCR	SCR	None	Scrubber	None	Scrubber	
	ORISID=3297	WAT2	SCR	SCR	SCR	SCR	None	Scrubber	Scrubber	Scrubber	
	Canadys	CAN1	None	None	None	None	None	None	None	None	
	ORISID=3280	CAN2	None	None	None	None	None	None	None	None	
		CAN3	None	None	None	None	None	Scrubber	None	Scrubber	
	Rainey	CT1A	None	SCR	None	SCR	None	None	None	None	
	ORISID=7834	CT1B	None	SCR	None	SCR	None	None	None	None	
TN	Kingston	1 – 8	SCR	SCR	SCR	SCR	None	None	Scrubber	Scrubber	
	ORISID=3407	9	None	SCR	SCR	SCR	None	None	Scrubber	Scrubber	
	Johnsonville	1 – 10	SCR	None	SCR	SCR	None	None	None	None	
	ORISID=3406										
WV	Willow Island	2	SCR	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber	
	ORISID=3946										
	Kammer	1 -3	SCR	None	SCR	SCR	Scrubber	None	Scrubber	Scrubber	
	ORISID=3947										

Table 2.1-2. Other Adjustments to IPM Results Specified by S/L Agencies for the Base G 2009/2018 EGU Inventories.

State	Plant Name and ID	Unit	Nature of Update/Correction
FL	Central Power and Lime ORISID= 10333	GEN1	Central Power and Lime (ORIS10333) is a duplicate entry. This is point 18 in Florida Crushed Stone (12-053-0530021). Removed IPM emissions for Central Power and Lime.
	Cedar Bay Generating ORISID=10672	GEN1	FLDEP disagrees with IPM projections - no knowledge of expansion of this facility and the cogeneration facility should not grow faster than the underlying industry. Cedar Bay is connected to Stone Container (12-031-0310067). Replaced IPM emissions with 2002 emissions for Cedar Bay (12-031-0310337) times the growth factors for Stone Container.
	Indiantown Cogeneration ORISID=50976	GEN1	FLDEP disagrees with IPM projections - no knowledge of expansion of this facility and the cogeneration facility should not grow faster than the underlying industry. Indiantown is connected to Louis Dreyfus Citrus (12-085-0850002). Replaced IPM emissions with 2002 emissions for Indiantown (12-085-0850102) times the growth factors for Louis Drefus Citrus.
GA	Bowen ORISID=703	1BLR 2BLR 3BLR 4BLR	IPM indicated retrofit scrubbers on all 4 units in 2009, but the IPM emissions showed little reductions from 2002 levels. Changed emissions to reflect scrubbers on 3BLR and 4BLR by 2009.
	Wansley ORISID=6052	1, 2	IPM indicated retrofit scrubbers on both units in 2009, but the IPM emissions showed little reductions from 2002 levels. Changed emissions to reflect one scrubber on Unit 1 by 2009.
	Riverside ORISID=734	4	All of plant Riverside was retired from service June 1, 2005; emissions set to zero in 2009 and 2018.
	McIntosh ORISID=727	CT10A CT10B CT11A CT11B	The McIntosh Combined Cycle facility became commercial June 1, 2005. Added 346 tons of NO _x and 121 tons of SO ₂ per unit to the 2009 and 2018 inventories.
	Longleaf Energy Station	1, 2	Longleaf Energy Station is being proposed by LS Power Development, Inc. GA specified that the emissions from this proposed plant be included in the 2018 projections. Boilers 1 and 2 added 1,882 tons of NO _x and 3,227 tons of SO ₂ per unit to the 2018 inventory.
	Duke Murray (55382)	1	Corrected coordinates to 34.7189 and -84.9353
MS	R D Morrow ORISID=6061	1, 2	Revised the 2018 emissions to reflect controls not indicated by IPM. The SO_2 emissions are much lower than IPM, but their expected NO_x emissions are actually higher than IPM. The controls will be coming online 2009 or 2010, so the 2009 inventory did not change.
	Jack Watson (2049) Victor J Daniel (6073) Chevron Oil (2047)	All	MS DEQ specified that the emission projections provided by the Southern Company for their units in Mississippi were to be used instead of the IPM results.

Table 2.1-2 (continued)

State	Plant Name and ID	Unit	Nature of Update/Correction
NC	G G Allen (2718) Belews Creek (8042)1 Buck (2720) Cliffside (2721) Dan River (2723) Marshall (2727) Riverbend (2732)	All	Replaced all IPM 2009 results with emission projections from Duke Power's NC Clean Air Compliance Plan for 2006. Used IPM results for 2018
	Asheville (2706) Cape Fear (2708) Lee (2709) Mayo (6250) Roxboro (2712) Sutton (2713) Weatherspoon (2716)	All	Replaced all IPM 2009 results with emission projections from Progress Energy's NC Clean Smokestacks Act Calendar Year 2005 Progress Report. Used IPM results for 2018
	Dwayne Collier Battle Cogeneration Facility ORISID=10384	GEN1 GEN2	Dwayne Collier Battle is a duplicate entry. This is Cogentrix of Rocky Mount (37-065-3706500146, stacks G-26 and G-27). Duplicate entries were removed both the 2009 and 2018 inventories.
	Kannapolis Energy Partners ORISID=10626	GEN2 GEN3	Kannapolis Energy emissions are being used as credits for another facility. IPM emissions from this facility (37-025-ORIS10626) were removed from the EGU inventory for 2009 and 2018. Emissions from Kannapolis Energy (37-025-3702500113) were carried forward in the 2009/2018 inventory.
SC	Cross ORISID=130	1, 2	Unit 1: upgrade scrubber from 82 percent to 95 percent removal efficiency by June 30, 2006. Recalculate emissions based on upgrade in control efficiency. Unit 2: upgrade scrubber from 70 percent to 87 percent removal efficiency by June 30, 2006. Recalculate emissions based on upgrade in control efficiency.
	Winyah ORISID=6249	1 – 4	Unit 1: Install scrubber that meets 95 percent removal efficiency by Dec. 31, 2008; Upgrade ESP from 0.38 to 0.03 lb/mmBTU by Dec. 31, 2008
			Unit 2: Replace scrubber with one that meets 95 percent removal efficiency from 45 percent by Dec. 31, 2008; Upgrade ESP from 0.10 to 0.03 lb/mmBTU by Dec. 31, 2008
			Unit 3: Upgrade scrubber from 70 percent to 90 percent removal efficiency by Dec. 31, 2012; Upgrade ESP from 0.10 to 0.03 lb/mmBTU by Dec. 31, 2012
			Unit 4: Upgrade scrubber from 70 percent to 90 percent removal efficiency by Dec. 31, 2007; Upgrade ESP from 0.10 to 0.03 lb/mmBTU by Dec. 31, 2007
			Recalculated SO ₂ and PM emissions based on upgrade in control efficiencies.

Table 2.1-2 (continued)

State	Plant Name and ID	Unit	Nature of Update/Correction
SC	Dolphus Grainger ORISID=3317	1, 2	Unit 1: Upgrade ESP from 0.60 to 0.03 lb/mmBTU by Dec. 31, 2012. Reduced PM ₁₀ and PM25 emissions in 2018 by 95 percent based on change in allowable emission rate
			Unit 2: Install low NO _x burners that meet 0.46 lb/mmBTU from 0.9 by May 1, 2004. Recalculated NO _x emissions using 0.46/lbs/mmBtu and IPM heat input
			Unit 2: Upgrade ESP from 0.60 to 0.03 lb/mmBTU by Dec. 31, 2012. Reduced PM ₁₀ and PM25 emissions in 2018 by 95 percent based on change in allowable emission rate
SC	Jeffries ORISID=3319	3, 4	Unit 3: Upgrade ESP from 0.54 to 0.03 lb/mmBTU by Dec. 31, 2012. Reduced PM ₁₀ and PM25 emissions in 2018 by 94.44 percent based on change in allowable emission rate Unit 4: Upgrade ESP from 0.54 to 0.03 lb/mmBTU by Dec. 31, 2012. Reduced PM ₁₀ and PM25 emissions in 2018 by 94.44 percent based on change in allowable emission rate
	W S Lee ORISID=3264	1, 2	IPM does not indicate that these units are installing SOFA NO _x control technology by April 30, 2006 to meet 0.27 lb/mmBTU, down from 0.45 lb/mmBtu. Calculated NO _x emissions using IPM heat input and 0.27 lbs/mmBtu
	Generic Unit ORISID=900545	All	All predictions for generic units appear reasonable with the exception of Plant ID ORIS900545 Point ID GSC45 which was modeled in Georgetown County. It will be very difficult to add new generation this close to the Cape Romain Class I area. Santee Cooper has no plans for future generation in Georgetown County, but does have plans for new future generation in Florence County. This unit was moved to coordinates specified in Florence County.
VA	AEP Clinch River ORISID=3775	1, 2, 3	Used IPM results for 2009; replaced all 2018 IPM results with VADEQ's growth and control estimates (no SCR or scrubbers).
	AEP Glen Lyn ORISID=3776	51, 52, 6	Used 2009/2018 IPM results for units 51 and 52; used 2009 IPM for unit 6; replaced 2018 IPM for unit 6 with VADEQ's growth and control estimates (nor SCR or scrubber).
	Dominion Clover ORISID=7213	1, 2	Used 2009/2018 IPM results.
	Dominion Bremo ORISID=3796	3, 4	Used 2009/2018 IPM results.
	Dominion Chesterfield ORISID=3797	3, 4, 5, 6	Replaced all 2009/2018 IPM results using VADEQ's growth and control estimates.
	Dominion Yorktown ORISID=3809	1, 2, 3	Units 1, 2: Used 2009/2018 IPM results for NOx and used VADEQ's growth and control estimates for SO2. Unit 3: IPM predicts zero heat input for this 880 MW #6 oil fired unit. Dominion plans to continue to operate Unit 3. Replaced all 2009/2018 IPM results using VADEQ's growth and control estimates.

Table 2.1-2 (continued)

State	Plant Name and ID	Unit	Nature of Update/Correction
VA	Dominion Chesapeake ORISID=3803	1 – 4	Unit 1: Used 2009/2018 IPM for NOx; used 2009 IPM for SO2; used VADEQ's growth and control estimates for SO2 (added scrubber that IPM did not have)
			Unit 2: Used 2009/2018 IPM for NOx; used 2009 IPM for SO2; used VADEQ's growth and control estimates for SO2 (added scrubber that IPM did not have)
			Unit 3: Used VA DEQ's growth and control estimates for 2009 NOx (added SCR that IPM did not have); used IPM result for 2018 NOx; Used 2009/2018 IPM for SO2.
			Unit 4: Used VA DEQ's growth and control estimates for 2009 NOx (added SCR that IPM did not have); used IPM result for 2018 NOx; Used 2009/2018 IPM for SO2.
	Dominion Possum Point ORISID=3804	3 & 4 5 6	Unit 3&4: IPM had 137 tons of NO _x for these units in 2009 and 111 tons in 2018. VA DEQ specified that the permitted emission rates should be used, which equates to 3,066 tons in 2009 and 2018.
			Unit 5: IPM had zero heat input. Replaced all 2009/2018 IPM results using VADEQ's growth and control estimates. Unit 6: Replaced all 2009/2018 IPM results using VADEQ's growth and control estimates.
	Potomac River ORISID=3788	1 - 5	Units 1&2: IPM retired these units. Mirant has no plans at this time to retire any units. Replaced all 2009/2018 IPM results using VADEQ's growth and control estimates. Units 3, 4, 5: Replaced all 2009/2018 IPM results using
WV	Albright ORISID=3942	1, 2	VADEQ's growth and control estimates. IPM predicted early retirement for these units. AEP indicated there are no plans for early retirement. For 2009, used 2002 actual emissions as these units are not likely to retire by 2009. For 2018, used IPM prediction of retirement.
	Rivesville ORISID=3945	7, 8	IPM predicted early retirement for these units. AEP indicated there are no plans for early retirement. For 2009, used 2002 actual emissions as these units are not likely to retire by 2009. For 2018, used IPM prediction of retirement.
	Willow Island ORISID=3946	1, 2	Unit 1: IPM predicted early retirement for these units. AEP indicated there are no plans for early retirement. For 2009, used 2002 emissions as these units are not likely to retire by 2009. For 2018, used IPM prediction of retirement.
			Unit 2: IPM predicted SCR and scrubber for 2009. These controls will not be in place by 2009.
	North Branch Power Station ORISID=7537	1A, 1B	SO ₂ Permit Rate was corrected from 2.7 to 0.678 lb/MMBtu. Used SO ₂ Permit Rate of 0.678 lb/MMBtu and IPM predicted total fuel used to calculate SO ₂ emissions in 2009 and 2018
	Mt. Storm ORISID=3954	1, 2, 3	SO ₂ Permit Rate was corrected from 2.7 to 0.15 lb/MMBtu. Used SO ₂ Permit Rate of 0.15 lb/MMBtu and IPM predicted total fuel used to calculate SO ₂ emissions in 2009 and 2018

Table 2.1-3 EGU Point Source SO₂ Emission Comparison for 2002/2009/2018.

	2002	20	009	20	018
State	2002 VISTAS BaseG	Base F4 IPM Based	Base G IPM Based with S/L Adjustments	Base F4 IPM Based	Base G IPM Based with S/L Adjustments
AL	447,828	340,194	378,052	190,099	305,262
FL	453,631	195,790	186,055	141,551	132,177
GA	514,952	534,469	417,449	180,178	230,856
KY	484,057	371,944	290,193	229,603	226,062
MS	67,429	85,629	76,579	27,230	15,146
NC	477,990	205,018	242,286	110,382	108,492
SC	206,399	171,206	124,608	121,694	93,274
TN	334,151	255,400	255,410	112,662	112,672
VA	241,204	169,714	225,653	90,935	140,233
WV	516,084	226,127	277,489	124,466	115,324
Total	3,743,725	2,555,491	2,473,774	1,328,800	1,479,498

Table 2.1-4 EGU Point Source NO_x Emission Comparison for 2002/2009/2018.

	2002	2009		20	18
State	2002 VISTAS BaseG	Base F4 IPM Based	Base G IPM Based with S/L Adjustments	Base F4 IPM Based	Base G IPM Based with S/L Adjustments
AL	161,038	70,852	82,305	42,769	64,358
FL	257,677	89,610	86,165	77,080	73,125
GA	147,517	97,146	98,497	58,095	75,717
KY	198,817	107,890	92,021	64,378	64,378
MS	43,135	11,475	36,011	8,945	10,271
NC	151,854	66,431	66,522	60,914	62,353
SC	88,241	43,817	46,915	48,346	51,456
TN	157,307	41,767	66,405	31,725	31,715
VA	86,886	63,220	66,219	49,420	75,594
WV	230,977	63,510	86,328	51,241	51,241
Total	1,523,449	655,718	727,388	492,913	560,208

Note: Emission summaries above are based on SCCs 1-01-xxx-xx and 2-01-xxx-xx.

Table 2.1-5 EGU Point Source VOC Emission Comparison for 2002/2009/2018.

	2002	20	009	20	18
State	2002 VISTAS BaseG	Base F4 IPM Based	Base G IPM Based with S/L Adjustments	Base F4 IPM Based	Base G IPM Based with S/L Adjustments
AL	2,295	2,441	2,473	2,952	2,952
FL	2,524	1,867	1,910	2,324	2,376
GA	1,244	1,571	2,314	1,903	2,841
KY	1,487	1,369	1,369	1,426	1,426
MS	648	406	404	1,124	1,114
NC	988	974	954	1,272	1,345
SC	470	660	660	906	906
TN	926	932	932	977	976
VA	754	685	778	903	996
WV	1,180	1,342	1,361	1,387	1,387
Total	12,516	12,247	13,155	15,174	16,319

Table 2.1-6 EGU Point Source CO Emission Comparison for 2002/2009/2018.

	2002	2009		20	018
State	2002 VISTAS BaseG	Base F4 IPM Based	Base G IPM Based with S/L Adjustments	Base F4 IPM Based	Base G IPM Based with S/L Adjustments
AL	11,279	14,948	14,986	24,342	24,342
FL	57,113	45,391	35,928	63,673	53,772
GA	9,712	20,066	23,721	32,744	44,476
KY	12,619	15,812	15,812	17,144	17,144
MS	5,303	5,078	5,051	15,364	15,282
NC	13,885	15,141	14,942	19,612	20,223
SC	6,990	11,135	11,135	14,786	14,786
TN	7,084	7,221	7,213	7,733	7,723
VA	6,892	11,869	12,509	14,755	15,420
wv	10,341	11,328	11,493	11,961	11,961
Total	141,218	157,989	152,790	222,114	225,129

Note: Emission summaries above are based on SCCs 1-01-xxx-xx and 2-01-xxx-xx.

Table 2.1-7 EGU Point Source PM₁₀-PRI Emission Comparison for 2002/2009/2018.

	2002	20	009	20	18
State	2002 VISTAS BaseG	Base F4 IPM Based	Base G IPM Based with S/L Adjustments	Base F4 IPM Based	Base G IPM Based with S/L Adjustments
AL	7,646	6,959	6,969	7,822	7,822
FL	21,387	9,384	9,007	10,310	9,953
GA	11,224	17,088	17,891	18,329	20,909
KY	4,701	6,463	6,463	6,694	6,694
MS	1,633	5,487	4,957	7,624	7,187
NC	22,754	22,888	22,152	33,742	37,376
SC	21,400	28,650	19,395	37,864	28,826
TN	14,640	15,608	15,608	15,941	15,941
VA	3,960	4,479	5,508	12,744	13,775
WV	4,573	5,471	5,657	6,349	6,349
Total	113,918	122,477	113,607	157,419	154,832

Table 2.1-8 EGU Point Source PM_{2.5} -PRI Emission Comparison for 2002/2009/2018.

	2002	2009		20	18
State	2002 VISTAS BaseG	Base F4 IPM Based	Base G IPM Based with S/L Adjustments	Base F4 IPM Based	Base G IPM Based with S/L Adjustments
AL	4,113	3,916	3,921	4,768	4,768
FL	15,643	6,250	5,910	7,171	6,843
GA	4,939	10,104	10,907	11,403	13,983
KY	2,802	4,279	4,279	4,434	4,434
MS	1,138	5,310	4,777	7,469	7,033
NC	16,498	16,514	15,949	26,966	29,792
SC	17,154	23,366	16,042	32,180	25,032
TN	12,166	13,092	13,092	13,387	13,387
VA	2,606	3,194	4,067	11,101	11,976
WV	2,210	2,850	2,940	3,648	3,648
Total	79,269	88,875	81,884	122,527	120,896

Note: Emission summaries above are based on SCCs 1-01-xxx-xx and 2-01-xxx-xx.

Table 2.1-9 EGU Point Source NH₃ Emission Comparison for 2002/2009/2018.

	2002	2009		20)18
State	2002 VISTAS BaseG	Base F4 IPM Based	Base G IPM Based with S/L Adjustments	Base F4 IPM Based	Base G IPM Based with S/L Adjustments
AL	317	359	359	1,072	1,072
FL	234	1,659	1,631	3,004	2,976
GA	83	686	686	1,677	1,677
KY	326	400	400	476	476
MS	190	333	333	827	827
NC	54	423	445	691	663
SC	142	343	343	617	617
TN	204	227	227	241	241
VA	127	632	694	558	622
WV	121	330	330	180	180
Total	1,798	5,392	5,448	9,343	9,351

2.1.2 Non-EGU Emission Projections

The general approach for assembling future year data was to use growth and control data consistent with the data used in EPA's Clean Air Interstate Rule analyses, supplement these data with available stakeholder input, and provide the results for stakeholder review to ensure credibility. We used the revised 2002 VISTAS base year inventory, based on the 2002 CERR submittals as the starting point for the non-EGU projection inventories. As described in Section 2.1.1.4, we split the point source inventory into EGU and non-EGU components. MACTEC performed the following activities to apply growth and control factors to the 2002 inventory to generate the 2009 and 2018 projection inventories:

- Obtained, reviewed, and applied the most current growth factors developed by EPA, based on forecasts from an updated Regional Economic Models, Inc. (REMI) model (version 5.5) and the latest *Annual Energy Outlook* published by the Department of Energy (DOE);
- Obtained, reviewed, and applied any State-specific or sector-specific growth factors submitted by stakeholders;
- Obtained and incorporated information regarding sources that have shut down after 2002 and set the emissions to zero in the projection inventories;
- Obtained, reviewed, and applied control assumptions for programs "on-the-books" and "on-the-way";
- Provided data files in NIF3.0 format and emission summaries in EXCEL format for review and comment; and
- Updated the database with corrections or new information from S/L agencies based on their review of the Base F 2009/2018 inventories.

The following sections discuss each of these steps.

2.1.2.1 Growth assumptions for non-EGU sources

This section describes the growth factor data used in developing the Base F inventory for 2009 and 2018, as well as the changes to the growth factor data made for the Base G inventory.

The growth factor data used in developing the Base F inventory were consistent with EPA's analyses for the CAIR rulemaking. These growth factors are fully documented in the reports entitled *Development of Growth Factors for Future Year Modeling Inventories* (dated April 30, 2004) and *CAIR Emission Inventory Overview* (dated July 23, 2004). Three sources of data were used in developing the growth factors for the Base F inventory:

• State-specific growth rates from the Regional Economic Model, Inc. (REMI) Policy Insight® model, version 5.5 (being used in the development of the EGAS Version 5.0). The REMI socioeconomic data (output by industry sector, population, farm sector value

added, and gasoline and oil expenditures) are available by 4-digit SIC code at the State level.

- Energy consumption data from the DOE's Energy Information Administration's (EIA) Annual Energy Outlook 2004, with Projections through 2025 for use in generating growth factors for non-EGU fuel combustion sources. These data include regional or national fuel-use forecast data that were mapped to specific SCCs for the non-EGU fuel use sectors (e.g., commercial coal, industrial natural gas). Growth factors for the residential natural gas combustion category, for example, are based on residential natural gas consumption forecasts that are reported at the Census division level. These Census divisions represent a group of States (e.g., the South Atlantic division includes eight southeastern States and the District of Columbia). Although one would expect different growth rates in each of these States due to unique demographic and socioeconomic trends, EIA's projects all States within each division using the same growth rate.
- Specific changes for sectors (e.g., plastics, synthetic rubber, carbon black, cement
 manufacturing, primary metals, fabricated metals, motor vehicles and equipment) where
 the REMI-based rates were unrealistic or highly uncertain. Growth projections for these
 sectors were based on industry group forecasts, Bureau of Labor Statistics (BLS)
 projections and Bureau of Economic Analysis (BEA) historical growth from 1987-2002.

In addition to the growth data described above, we received two sets of growth projections from VISTAS stakeholders.

The American Forest and Paper Association (AF&PA) supplied growth projections for the pulp and paper sector, which were applied to SIC 26xx Paper and Allied Products. The AF&PA projection factors are for the U.S. industry and apply to all States equally. The numbers come from the 15-year forecast for world pulp and recovered paper prepared by Resource Information Systems Inc. (RISI).

SIC Code	Sector	AF&PA Gr	owth Factor
SIC Code	Sector	2002 to 2009	2002 to 2018
2611	Pulp Mills	1.067	1.169
2621	Paper Mills	1.067	1.169
2631	Paperboard Mills	1.067	1.169

For both the Base F and Base G inventories, we used the above AF&PA growth factors by SIC instead of the factors obtained from EPA's CAIR analysis.

For the Base F inventory, the NCDENR supplied recent projections for three key sectors in North Carolina where declining production was anticipated – SIC 22xx Textile Mill Products, 23xx Apparel and Other Fabrics, and 25xx Furniture and Fixtures. For the Base G inventory, NCDENR decided to use a growth factor of 1.0 for these SIC codes for both 2009 and 2018. Although NCDENR has data that shows a steady decline in these industries in NC, NCDENR wanted to maintain the emission levels at 2002 levels so the future emission reduction credits were available in the event that they are needed for nonattainment areas. The specific growth factors for these industrial sectors in North Carolina were:

NCDENR Growth Factors for Specific Industrial Sectors							
SIC Code	Industrial	2009		2018			
SIC Code	Sector	Base F	Base G	Base F	Base G		
22xx	Textile Mill Products	0.6239	1.00	0.2792	1.00		
23xx	Apparel and Other Fabrics	0.5867	1.00	0.2247	1.00		
25xx	Furniture and Fixtures	0.8970	1.00	0.7647	1.00		

For the Base G inventory, we made one additional change to the growth factors. The Base F inventory relied on DOE's AEO2004 forecasts for projecting emissions for fuel-burning SCCs (applies mainly to ICI boilers 1-02-xxx-xx and 1-03-xxx-xx, as well as in-process fuel use). We replaced the AEO2004 data with the more recent AEO2006 forecasts (released in February 2006) to reflect changes in the energy market and to improve the emissions growth factors produced. We obtained the corresponding AEO2006 projection tables from DOE's web site located at http://www.eia.doe.gov/oiaf/aeo/supplement/supref.html. We developed tables comparing the growth factors based on AEO2004 and AEO2006. These comparison tables were reviewed by the S/L agencies. Based on this review, VISTAS decided to use the AEO2006 growth factors for fuel burning SCCs.

We used the EPA's EGAS model and updated the corresponding AEO2006 projection tables to create growth factors by SCC. We applied the updated growth factors to 2002 actual emissions and replaced the 2009 and 2018 emissions in NIF EM tables for the affected SCCs.

2.1.2.2 Source Shutdowns

A few states indicated that significant source shutdowns have occurred since 2002 and that emissions from these sources should not be included in the future year inventories. These sources are identified in Table 2.1-10.

Table 2.1-10. Summary of Source Shutdowns Incorporated in Base G Inventory.

State	Description of Source Shutdowns
AL	None specified.
FL	The following facilities are shutdown and projected emissions were set to zero in 2009/2018. 0570075 CORONET INDUSTRIES, INC. 1050050 U S AGRI-CHEMICALS CORP. 1050051 U.S. AGRI-CHEMICALS CORPORATION These facilities emitted 2,417 tons of SO ₂ and 113 tons of NO _x in 2002.
GA	Georgia indicated that the former Blue Circle (now LaFarge) facility in downtown Atlanta will likely shut down before 2009. The facility has two cement kilns, one of which is already shut down. The second kiln will continue to operate until the new facility in Alabama has enough milling capacity, after which the entire Atlanta facility will be completely closed down. This facility emitted 1,617 tons of SO ₂ and 587 tons of NO _x in 2002.
KY	None specified.
MS	AF&PA indicated that the International Paper Natchez Mill (28-001-2800100010) has shut down. This facility emitted 1,398 tons of SO_2 and 1,773 tons of NO_x in 2002.
	The Magnolia Resources - Pachuta Harmony Gas Plant (28-023-00031) is out of business and no longer holds an air permit. This facility emitted 2,257 tons of SO ₂ and 134 tons of NO _x in 2002.
NC	In Base F, two paper mills were identified as being shut down in the 2018 inventory. NCDENR indicated that these mills are not expected to close. The two facilities are Ecusta Business Development (37-175-3717500056) and International Paper (37-083-00007). Their emissions were added back into the Base G 2018 inventory.
	BASF Corporation (37-021-724) in Buncombe County is currently operating but has plans to shut down in 2007. This facility emitted 461 tons of SO_2 and 266 tons of NO_x in 2002.
SC	South Carolina provided a list of facilities that were identified as closing down on or after Jan. 1, 2003. The emissions for these facilities were set to zero in the 2009 and 2018 projection inventories. Emissions from these plants in 2002 were: 6,195 tons of SO ₂ , 2,994 tons of NO _x , and 2,836 tons of VOC. Most of the emissions were from one facility – Celanese Acetate (45-091-2440-0010) in York County.
TN	Davidson County (Nashville) indicated that significant source shutdowns have occurred since data were submitted for the 2002 CERR. Source number 47-037-00002 (Dupont) shut down a portion of their facility, which was permanently taken out of service. Source 47-037-00050 (Nashville Thermal Transfer Corp.) shut down their municipal waste combustors and replaced them with natural gas fired boilers with propane stand by.
	Weyerhaeuser (AKA Willamette) Power Boiler 7 (47-163-0022, EU ID = 017) is being shut down. This emission unit emitted 4,297 tons of SO_2 and 1,443 tons of NO_x in 2002.
	Liberty Fibers (47-063-0197) in Hamblen County has recently shut down. This facility emitted $5,377$ tons of SO_2 ; $2,057$ tons of NO_x ; and $9,059$ tons of VOC in 2002 .
VA	Rock-Tenn (51-680-00097) received a permit dated $9/13/2003$ which required the shutdown of units 1 and 2 by $2/27/2004$. This permit was part of a netting exercise that allowed the installation of a new NG/DO boiler. These two units emitted 507 tons of SO ₂ and 276 tons of NO _x in 2002.
WV	None specified.

2.1.2.3 Control Programs applied to non-EGU sources

We used the same control programs for both the 2009 and 2018 non-EGU point inventory. Two control scenarios were developed: on-the-books (OTB) controls and on-the-way (OTW) controls. The OTB control scenario accounts for post-2002 emission reductions from promulgated federal, State, local, and site-specific control programs. The OTW control scenario accounts for proposed (but not final) control programs that are reasonably anticipated to result in post-2002 emission reductions. The methodologies used to account for the emission reductions associated with these emission control programs are discussed in the following sections.

Table 2.1-11. Non-EGU Point Source Control Programs Included in 2009/2018 Projection Inventories.

On-the-Books (Cut-off of July 1, 2004 for Base 1 adoption)

- Atlanta / Northern Kentucky / Birmingham 1-hr SIPs
- Industrial Boiler/Process Heater/RICE MACT
- NO_x RACT in 1-hr NAA SIPs
- NO_x SIP Call (Phase I- except where States have adopted II already e.g. NC)
- Petroleum Refinery Initiative (October 1, 2003 notice; MS & WV)
- RFP 3 percent Plans where in place for one hour plans
- VOC 2-, 4-, 7-, and 10-year maximum achievable control technology (MACT0 Standards
- Combustion Turbine MACT

On-the-Way

• NO_x SIP Call (Phase II – remaining States & IC engines)

2.1.2.3.1 OTB - NO_x SIP Call (Phase I)

Phase I of the NO_x SIP call applies to certain large non-EGUs, including large industrial boilers and turbines, and cement kilns. States in the VISTAS region affected by the NO_x SIP call have developed rules for the control of NO_x emissions that have been approved by EPA. We reviewed the available State rules and guidance documents to determine the affected sources and ozone season allowances. We also obtained and reviewed information in the EPA's CAMD NO_x Allowance Tracking System – Allowances Held Report. Since these controls are to be in effect by the year 2007, we capped the emissions for NO_x SIP call affected sources at 2007 levels and

carried forward the capped levels for the 2009/2018 future year inventories. Since the NO_x SIP call allowances are given in terms of tons per ozone season (5 month period from May to September), we calculated annual emissions by multiplying the 5-month allowances by a factor of 12 divided by 5.

2.1.2.3.2 OTB - Industrial Boiler/Process Heater MACT

EPA anticipates reductions in PM and SO₂ as a result of the Industrial Boiler/Process Heater MACT standard. The methods used to account for these reductions are the same as those used for the CAIR analysis. Reductions were included for existing units firing solid fuel (coal, wood, waste, biomass) which had a design capacity greater than 10 mmBtu/hr. EPA prepared a list of SCCs for solid fuel industrial and commercial/ institutional boilers and process heaters. We identified boilers greater than 10 mmBtu/hr using either the boiler capacity from the VISTAS 2002 inventory, or if the boiler capacity was missing, a default capacity based on a methodology developed by EPA for assigning default capacities based on SCC. The applied MACT control efficiencies were 4 percent for SO₂ and 40 for percent for PM₁₀ and PM2.5 to account for the cobenefit from installation of acid gas scrubbers and other control equipment to reduce HAPs.

2.1.2.3.3 OTB - 2, 4, 7, and 10-year MACT Standards

Maximum achievable control technology (MACT) requirements were also applied, as documented in the report entitled *Control Packet Development and Data Sources*, dated July 14, 2004. The point source MACTs and associated emission reductions were designed from Federal Register (FR) notices and discussions with EPA's Emission Standards Division (ESD) staff. We did not apply reductions for MACT standards with an initial compliance date of 2001 or earlier, assuming that the effects of these controls are already accounted for in the 2002 inventories supplied by the States. Emission reductions were applied only for MACT standards with an initial compliance date of 2002 or greater.

2.1.2.3.4 OTB Combustion Turbine MACT

The projection inventories do not include the NO_x co-benefit effects of the MACT regulations for Gas Turbines or stationary Reciprocating Internal Combustion Engines, which EPA estimates to be small compared to the overall inventory.

2.1.2.3.5 OTB - Petroleum Refinery Initiative (MS and WV)

Three refineries in the VISTAS region are affected by two October 2003 Clean Air Act settlements under the EPA Petroleum Refinery Initiative. The refineries are: (1) the Chevron refinery in Pascagoula, MS; (2) the Ergon refinery in Vicksburg, MS; and (3) the Ergon refinery in Newell, WV.

The first consent decree pertained to Chevron refineries in Richmond and El Segundo, CA; Pascagoula, MS; Salt Lake City, UT; and Kapolei, HI. Actions required under the Consent Decree will reduce annual emissions of NO_x by 3,300 tons and SO₂ by 6,300 tons. The consent decree requires a program to reduce NO_x emissions from refinery heaters and boilers through the installation of NO_x controls that meet at least an SNCR level of control. The refineries are to eliminate fuel oil burning in any combustion unit. The consent decree also requires reductions of NO_x and SO₂ from the fluid catalytic cracking unit and control of acid gas flaring incidents. The consent decree does not provide sufficient information to calculate emission reductions for the FCCU or flaring at the Pascagoula refinery. Therefore, we calculated a general percent reduction for NO_x and SO₂ by dividing the expected emission reductions at the five Chevron refineries by the total emissions from these five refineries (as reported in the 1999 NEI). This resulted in applying percent reductions of 45 percent for SO₂ and 28 percent for NO_x to FCCU and flaring emissions at the Chevron Pascagoula refinery.

The second consent decree pertained to the Ergon-West Virginia refinery in Newell, WV; and the Ergon Refining facility in Vicksburg, MS. The consent decree requires the two facilities to implement a 6-year program to reduce NO_x emission from all heaters and boilers greater than 40 mmBtu/hr, and to eliminate fuel oil burning in any combustion unit (except during periods of natural gas curtailment). Specifically, ultra low NO_x burners are required on Boilers A and B at Newell, a low NO_x-equivalent level of control for heater H-101 at Newell and heaters H-1 and H-3 at Vicksburg, and an ultra low NO_x burner level of control for heater H-451 at Vicksburg.

2.1.2.3.6 OTW - NO_x SIP Call (Phase II)

The final Phase II NO_x SIP call rule was finalized on April 21, 2004. States had until April 21, 2005, to submit SIPs meeting the Phase II NO_x budget requirements. The Phase II rule applies to large IC engines, which are primarily used in pipeline transmission service at compressor stations. We identified affected units using the same methodology as was used by EPA in the proposed Phase II rule (i.e., a large IC engine is one that emitted, on average, more than 1 ton per day during 2002). The final rule reflects a control level of 82 percent for natural gas-fired IC engines and 90 percent for diesel or dual fuel categories. As shown later in Table 2.1-12, several S/L agencies provided move specific information on the anticipated controls at the compressor stations. This information was used in the Base G inventory instead of the default approach used by EPA in the proposed Phase II rule.

2.1.2.3.7 Clean Air Interstate Rule

CAIR does not require or assume additional emission reductions from non-EGU boilers and turbines.

2.1.2.4 Quality Assurance steps

Final QA checks were run on the revised projection inventory data set to ensure that all corrections provided by the S/L agencies and stakeholders were correctly incorporated into the S/L inventories and that there were no remaining QA issues that could be addressed during the duration of the project. After exporting the inventory to ASCII text files in NIF 3.0, the EPA QA program was run on the ASCII files and the QA output was reviewed to verify that all QA issues that could be addressed were resolved

Throughout the inventory development process, quality assurance steps were performed to ensure that no double counting of emissions occurred, and to ensure that a full and complete inventory was developed for VISTAS. Quality assurance was an important component to the inventory development process and MACTEC performed the following QA steps on the point source component of the VISTAS revised 2002 base year inventory:

- 1. Facility level emission summaries were prepared and evaluated to ensure that emissions were consistent and reasonable. The summaries included base year 2002 emissions, 2009/2018 projected emissions accounting only for growth, 2009/2018 projected emissions accounting for both growth and emission reductions from OTB and OTW controls.
- 2. State-level non-EGU comparisons (by pollutant) were developed for the base year 2002 emissions, 2009/2018 projected emissions accounting only for growth, 2009/2018 projected emissions accounting for both growth and emission reductions from OTB and OTW controls.
- 3. Data product summaries and raw NIF 3.0 data files were provided to the VISTAS Emission Inventory Technical Advisor and to the Point Source, EGU, and non-EGU Special Interest Work Group representatives for review and comment. Changes based on these comments were reviewed and approved by the S/L point source contact prior to implementing the changes in the files.
- 4. Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from Base F1 to Base F2.

2.1.2.5 Additional Base G Updates and Corrections

Table 2.1-12 summarizes the updates and corrections to the Base F inventory that were requested by S/L agencies and incorporated into the Base G 2009/2018 inventories.

2.1.2.6 Summary of Revised 2009/2018 non-EGU Point Source Inventories

Tables 2.1-13 through 2.1-19 summarize the revised 2009/2018 non-EGU point source inventories. The "growth only" column does not include the shutdowns (section 2.1.2.2) or control factors (section 2.1.2.3), only the growth factors described in section 2.1.2.1.

Table 2.1-12. Summary of Updates and Corrections to the Base F 2009/2018 Inventories Incorporated into the Base G 2009/2018 Inventories.

State	Nature of Update/Correction					
AL	Corrected the latitude and longitude for two facilities: Ergon Terminalling (Site ID: 01-073-010730167) and Southern Power Franklin (Site ID: 01-081-0036).					
AL	Corrections to stack parameters at 10 facilities for stacks with parameters that do not appear to fall into the ranges typically termed "acceptable" for AQ modeling.					
FL	Corrected 2009/2018 emission values for the Miami Dade RRF facility (Site ID: 12-086-0250348) based on revised 2002 emissions and application of growth control factors for 2009/2018.					
GA	Hercules Incorporated (12-051-05100005) had an erroneous process id (#3) within emission unit id SB9 and was deleted. This removes about 6,000 tons of SO ₂ from the 2009/2018 inventories.					
	Provided a revised file of location coordinates at the stack level that was used to replace the location coordinated in the ER file.					
	There are several sources that have updated their emissions from their BART eligible units. most of these changes were for fairly small (<50 tpy) sources.					
NC	Made several changes to Base F inventory to correct the following errors:					
	1. Corrected emissions at Hooker Furniture (Site ID: 37-081-3708100910), release point G-29, to use the corrected values in 2002 and carry those same numbers through to 2009 and 2018 since NCDENR assumes zero growth for furniture industry.					
	2. Identified many stack parameters in the ER file that were unrealistic. Several have zero for height, diameter, gas velocity, and flow rate. NC used the procedures outlined in Section 8 of the document ""National Emission Inventory QA and Augmentation Report" to correct unrealistic stack parameters.					
	3. Identified truncated latitude and longitude values in Base F inventory. NC updated all Title V facility latitude and longitude that was submitted to EPA for those facilities in 2004. Smaller facilities with only two decimal places were not corrected.					
	4. Corrected 2018 VOC emissions for International Paper (3709700045) Emission Unit ID, G-12, to reflect changes to the 2002 inventory.					
	There are three Transcontinental Natural Gas Pipeline facilities in NC that are subject to the NO_x SIP call. NCDENR took 2004 emissions and grew them to 2009 & 2018 and capped those units that are subject to the NO_x SIP Call Rule. These facility IDs are 37-057-3705700300, 37-097-3709700225, and 37-157-3715700131.					
	NCDENR applied NO $_x$ RACT to a two facilities located in the Charlotte nonattainment area. NCDENR provided 2009 & 2018 emissions for Philip Morris USA (37-025-3702500048) and Norandal USA (37-159-3715900057).					
SC	Corrected PM species emission values. SC DHEC's initial CERR submittal reported particulate matter emissions using the PM-FIL, PM ₁₀ -FIL, and PM _{2.5} -FIL pollutant codes. In August 2005, SC DHEC indicated that data reported using the PM-FIL, PM ₁₀ -FIL, and PM _{2.5} -FIL pollutant codes should actually have been reported using the PM-PRI, PM ₁₀ -PRI, and PM _{2.5} -PRI codes. MACTEC performed a subsequent PM augmentation in April 2006 using the revised pollutant codes. These changes were reflected in the Base G 2009/2018 emission inventory.					
	Specified that the Bowater Inc. facility (45-091-2440-0005) in York County conducted an expansion in 2003/2004 and plans a future expansion. SC provided updated emissions for 2009 and 2018 for this facility.					

Table 2.1-12. Continued.

State	Nature of Update/Correction
TN	Updated 2009/2018 emissions for Eastman Chemical (47-163-0003) based on final (Feb. 2005) BART rule.
	Updated 2009/2018 emission inventory for the Bowater facility (47-107-0012) based on the facility's updated 2002 emission inventory update.
	Replaced 2009/2018 data from Hamilton County, Tennessee, using data from Hamilton County's CERR submittal as contained in EPA's 2002 NEI (in Base F, the inventory for Hamilton County was based on the draft VISTAS 2002 inventory, which in turn was based on the 1999 NEI); applied growth and control factors to revised 2002 inventory to generate emission projections for 2009/2018.
	Updated 2009/2018 emissions for PCS Nitrogen Fertilizer LP (Site ID: 47-157-00146) based on the facility's updated 2002 emission inventory update.
	The 2002 NEI correctly reports the actual emissions for CEMEX (47-093-0008) after the NO_x SIP call. There is no reason to suspect that that rate would change in 2008, 2009, or 2018. Emissions for 2009/2018 were set equal to 2002 emissions.
	In the Base F 2009/2018 inventories, NO _x controls were applied for two units at Columbia Gulf Transmission (47-111-0004). There are no plans for controls at these units, EO3 and EO4. The assumed control efficiency of 82 percent was backed out in the 2009/2018 inventories.
VA	VADEQ provided 2009/2018 NO_x emission estimates for NO_x Phase II gas transmission sources at three Transco facilities (51-011-00011, 51-137-00027, 51-143-00120) which were used to replace the default NO_x Phase II control assumptions for these facilities.
	VADEQ provided updated 2009/2018 NO_x and SO_2 emissions based on new controls required by a November 2005 permit modification and netting exercise. The entire power plant facility is limited to 213 tons of NO_x and 107 tons of SO_2 per year. The permit also allowed the installation of 3 new boilers, also under the 213 tons of NO_x /year cap.
WV	Updated 2009/2018 emissions for Steel of West Virginia (Site ID: 54-011-0009) based on the facility's updated 2002 emission inventory update.
	Made changes to several Site ID names due to changes in ownership
	Base F emissions were much too high for Weirton Steel (54-021-0029). WV believes that the source is very unlikely to emit the NO _x SIP Call budgeted amounts in 2009 or 2018. WV provided revised emission estimates based on EGAS for 2009/2018.
	Made corrections to latitude/longitude and stack parameters at a few facilities for stacks with parameters that do not appear to fall into the ranges typically termed "acceptable" for AQ modeling.

119

Table 2.1-13 Non-EGU Point Source SO₂ Emission Comparison for 2002/2009/2018.

	2002	2009		20	18
State	Base G	Base F4	Base G	Base F4	Base G
AL	96,481	100,744	101,246	112,703	113,224
FL	65,090	68,549	65,511	79,015	75,047
GA	53,778	61,535	53,987	68,409	59,349
KY	34,029	35,470	36,418	38,806	40,682
MS	35,960	27,488	25,564	40,195	39,221
NC	44,123	48,751	42,536	50,415	46,314
SC	53,518	55,975	48,324	56,968	53,577
TN	79,604	89,149	70,678	96,606	77,247
VA	63,903	63,075	62,560	69,776	68,909
WV	54,070	54,698	55,973	60,137	62,193
Total	580,556	605,434	562,797	673,030	635,763

Table 2.1-14 Non-EGU Point Source NO_x Emission Comparison for 2002/2009/2018.

	2002 2		2009)18
State	BaseG	Base F4	Base G	Base F4	BaseG
AL	83,310	69,676	69,409	79,101	78,318
FL	45,156	44,859	46,020	50,635	51,902
GA	49,251	51,556	50,353	57,323	55,824
KY	38,392	36,526	37,758	40,363	41,034
MS	61,526	55,877	56,397	62,132	61,533
NC	44,928	44,877	34,767	47,200	37,801
SC	42,153	42,501	40,019	44,480	44,021
TN	64,344	63,431	57,883	70,313	63,453
VA	60,415	51,335	51,046	56,876	55,945
WV	46,612	40,433	38,031	44,902	43,359
Total	536,087	501,071	481,683	553,325	533,190

Note: Emission summaries above include all SCCs except 1-01-xxx-xx and 2-01-xxx-xx.

120

Table 2.1-15 Non-EGU Point Source VOC Emission Comparison for 2002/2009/2018.

	2002	2009		20	018
State	Base G	Base F4	Base G	Base F4	Base G
AL	47,037	46,660	46,644	54,268	54,291
FL	38,471	36,675	36,880	42,787	42,811
GA	33,709	34,082	34,116	40,267	40,282
KY	44,834	47,648	47,785	55,564	55,861
MS	43,204	37,921	37,747	45,769	45,338
NC	61,182	70,464	61,925	76,027	70,875
SC	38,458	38,273	35,665	44,545	43,656
TN	84,328	89,380	74,089	111,608	93,266
VA	43,152	43,620	43,726	53,065	53,186
wv	14,595	14,012	13,810	16,632	16,565
Total	448,970	458,735	432,387	540,532	516,131

Table 2.1-16 Non-EGU Point Source CO Emission Comparison for 2002/2009/2018.

	2002	2009		20	018
State	Base G	Base F4	Base G	Base F4	Base G
AL	174,271	176,899	180,369	194,280	201,794
FL	81,933	83,937	87,037	96,642	96,819
GA	130,850	147,362	147,427	168,570	167,904
KY	109,936	121,727	122,024	139,121	139,437
MS	54,568	58,023	57,748	67,764	66,858
NC	50,576	53,955	53,744	61,127	62,197
SC	56,315	62,144	60,473	71,318	68,988
TN	115,264	123,844	119,665	146,407	140,942
VA	63,796	67,046	68,346	74,364	76,998
wv	89,879	100,248	100,045	119,318	119,332
Total	927,388	995,185	996,878	1,138,911	1,141,269

Note: Emission summaries above include all SCCs except 1-01-xxx-xx and 2-01-xxx-xx.

Table 2.1-17 Non-EGU Point Source PM₁₀-PRI Emission Comparison for 2002/2009/2018.

	2002	2009		20	018
State	Base G	Base F4	Base G	Base F4	Base G
AL	25,240	25,450	25,421	29,973	29,924
FL	35,857	39,363	39,872	46,573	46,456
GA	21,610	23,509	23,103	27,781	27,273
KY	16,626	17,164	17,174	20,142	20,153
MS	19,472	19,200	19,245	22,952	22,859
NC	13,838	14,738	13,910	15,816	15,737
SC	14,142	17,631	13,370	20,197	15,139
TN	35,174	37,040	34,833	45,168	42,280
VA	13,252	13,043	13,048	15,150	15,112
WV	17,503	17,723	17,090	21,699	21,735
Total	212,714	224,861	217,066	265,451	256,668

Table 2.1-18 Non-EGU Point Source PM25-PRI Emission Comparison for 2002/2009/2018.

	2002	2009		2018	
State	Base G	Base F4	Base G	Base F4	Base G
AL	19,178	19,256	19,230	22,628	22,598
FL	30,504	33,387	33,946	39,436	39,430
GA	17,462	19,361	18,982	22,882	22,416
KY	11,372	11,680	11,686	13,734	13,739
MS	9,906	9,144	9,199	10,768	10,739
NC	10,500	11,192	10,458	11,927	11,825
SC	10,245	13,101	9,390	14,947	11,086
TN	27,807	29,302	27,577	35,750	33,532
VA	10,165	9,980	9,988	11,604	11,594
WV	13,313	13,364	12,769	16,474	16,516
Total	160,452	169,767	163,225	200,150	193,475

Note: Emission summaries above include all SCCs except 1-01-xxx-xx and 2-01-xxx-xx.

122

Table 2.1-19 Non-EGU Point Source NH₃ Emission Comparison for 2002/2009/2018.

	2002	2009		2018	
State	Base G	Base F4	Base G	Base F4	Base G
AL	1,883	2,132	2,132	2,464	2,464
FL	1,423	1,544	1,544	1,829	1,829
GA	3,613	3,963	3,963	4,799	4,797
KY	674	733	760	839	901
MS	1,169	667	668	761	764
NC	1,180	1,288	1,285	1,422	1,466
SC	1,411	1,578	1,578	1,779	1,779
TN	1,613	1,861	1,841	2,240	2,214
VA	3,104	3,050	3,049	3,613	3,604
WV	332	341	341	416	413
Total	16,402	17,157	17,161	20,162	20,231

2.2 Area Sources

This section describes the methodology used to develop the 2009 and 2018 projection Base F and Base G projection inventories. This section describes two approaches to these projections. Separate methods for projecting emissions were used for non-agricultural (stationary area) and agricultural area sources (predominantly NH₃ emissions). The two methods used for these sectors are described in the sections that follow.

2.2.1 Stationary area sources

The general approach used to calculate Base F projected emissions for stationary area sources was as follows:

- 1. Use the VISTAS Base F 2002 base year inventory as the starting point for projections.
- 2. MACTEC then worked with the VISTAS States (via the Stationary Area Source SIWG) to obtain any State specific growth factors and/or future controls from the States to use in developing the projections.
- 3. MACTEC then back calculated uncontrolled emissions from the Base F 2002 base year inventory based on existing controls reported in the 2002 Base F base year inventory.
- 4. Controls (including control efficiency, rule effectiveness and rule penetration) provided by the States or originally developed for use in estimating projected emissions for U.S. EPA's Heavy Duty Diesel (HDD) rulemaking emission projections and used in the Clean

- Air Interstate Rule (CAIR) projections were then used to calculate controlled emissions. State submitted controls had precedence over the U.S. EPA developed controls.
- 5. Growth factors supplied from the States or the U.S. EPA's CAIR emission projections were then applied to project the controlled emissions to the appropriate year. In some cases EGAS Version 5 growth factors were used if no growth factor was available from either the States or the CAIR growth factor files. The use of EGAS Version 5 growth factors was on a case-by-case basis wherever State-supplied or CAIR factors were not available for SCCs found in the 2002 Base F inventory. Use of the EGAS factors was necessitated due to the CERR submittals used in constructing the Base F 2002 inventory. Use of the CERR data resulted in SCCs that were not found in the CAIR inventory and if no State-supplied growth factor was provided required the use of an EGAS growth factor.
- 6. MACTEC then provided the final draft Base F projection inventory for review and comment by the VISTAS States.

For Base F stationary area sources, no State-supplied growth or control factors were provided. Thus for all of the sources in this sector of the inventory, growth and controls for Base F were applied based on controls initially identified for the CAIR and growth factors identified for the CAIR projections.

For the Base G projections, the Base G 2002 base year inventory (see section 1.2.3) was used as a starting point. States provided some updated future controls but growth factors used were identical to those used for Base F. The revised controls for Base G were largely for new sources added as part of the 2002 Base F comments. The calculation of Base G projections was identical to the six steps outlined above with the exception of revisions made to prescribed fire for 2009 and 2018 and for the State of North Carolina. North Carolina provided 2009 and 2018 updated emission files used to update the emissions for each year for several source categories. However not all sources in the inventory were included in these NC updates. As a consequence, the final Base G 2009 and 2018 inventory for NC included emissions updated using the NC supplied files and emissions developed using growth and control factors as outlined above.

In a few cases, additional growth factors had to be added for source categories that had not initially been included in the Base F inventory. These growth factors were obtained from EGAS 5.0. Finally updates to growth factors from EGAS 5.0 were made for fuel fired emission sources. The updated growth factors reflected the most recent data from the Department of Energy's Annual Energy Outlook (AEO). These data were used to reflect changes in energy efficiency resulting from new or updated fuel firing technologies.

2.2.1.1 Stationary area source controls

The controls obtained by MACTEC for the HDD rulemaking were controls for the years 2007, 2020, and 2030. Since MACTEC was preparing 2009 and 2018 projections, control values for intermediate years were prepared using a straight line interpolation of control level between 2007 and 2020. The equation used to calculate the control level was as follows:

$$CE = (((2020 CE - 2007 CE)/13)*YRS) + 2007 CE$$

Where:

CE = Control Efficiency for either 2009 or 2018

2020 CE = HDD Control Efficiency value for 2020

2007 CE = HDD Control Efficiency value for 2007

= Number of years between 2020 and 2007

YRS = Number of years beyond 2007 to VISTAS Projection year

For 2009 the value of YRS would be two (2) and for 2018 the value would be eleven (11). Control efficiency values were determined for VOC, CO and PM. Rule penetration values for each year in the HDD controls tables obtained by MACTEC were always 100 percent so those values were maintained for the VISTAS projections.

Prior to performing the linear interpolation of the controls, MACTEC evaluated controls from the CAIR projections (NOTE: Initially the controls came from the IAQTR projections, however the controls used in CAIR were virtually identical to those in IAQTR). Those controls appeared to be identical to those used for the HDD rulemaking. In addition, MACTEC received some additional information on some controls for area source solvents (email from Jim Wilson, E.H. Pechan and Associates, Inc. to Gregory Stella, VISTAS Emission Inventory Technical Advisor, 3/5/04) that were used to check against the controls in the HDD rulemaking files. Where those controls proved to be more stringent than the HDD values, MACTEC updated the control file with those values (which were then used in the interpolation to develop 2009 and 2018 values). Finally, for VOC the HDD controls were initially provided at the State-county-SCC level. However, upon direction from the VISTAS Emission Inventory Technical advisor, the VOC controls were consolidated at the SCC level and applied across all counties within the VISTAS region (email from Gregory Stella, Alpine Geophysics, 3/3/2004) to ensure that no controls were missed due to changes in county FIPS codes and/or SCC designations between the time the HDD controls were developed and 2002.

125

The equation below indicates how VOC emissions were projected for stationary area sources.

$$VOC_{2018} = VOC_{2002} \ x \left(1 - \left(\frac{VOC \ CE_{2018}}{100} \right) \left(\frac{VOC \ RE_{2018}}{100} \right) \left(\frac{VOC \ RP_{2018}}{100} \right) \right)$$

Where:

 VOC_{2018} = VOC emissions for 2018

 VOC_{2002} = Uncontrolled VOC emissions for 2002

 VOC_CE_{2018} = Control Efficiency for VOC (in this example for 2018)

 VOC_RE_{2018} = Rule Effectiveness for VOC (in this example for 2018)

 VOC_RP_{2018} = Rule Penetration for VOC (in this example for 2018)

A similar equation could be constructed for either PM or CO. It should be noted that the control efficiencies calculated based on the HDD rulemaking were only applied if they were greater than any existing 2002 base year controls. No controls were found for SO₂ or NO_x area sources.

In the pre-Base F 2018 emission estimates, an energy efficiency factor was applied to energy related stationary area sources. The energy efficiency factor was applied along with the growth factor to account for both growth and changes in energy efficiency. That factor was not applied to the Base F projections since information supplied by U.S. EPA related to the CAIR growth factors indicated that growth values for those categories were derived from U.S. Department of Energy (DOE) and were felt to account for changes in growth and projected energy efficiency. For the Base G inventory, these energy efficiency factors were re-instituted and used in conjunction with EGAS 5.0 growth factors in a manner identical to that used for the pre-Base F inventories. The energy efficiency factors were derived from U.S. DOE's Annual Energy Outlook report.

One significant difference between the Base F and Base G control factors was for counties and independent cities in northern Virginia. Several counties and independent cities in northern Virginia are subject to Ozone Transport Commission rules. For these counties and independent cities, controls for portable fuel containers, mobile equipment repair/refinishing, consumer products, solvent metal cleaning, and the architectural and industrial maintenance rules were added. The counties/independent cities (FIPS code) included in the changes for Base G were: Alexandria City (51510), Arlington (51013), Fairfax City (51600), Fairfax (51059), Falls Church City (51610), Fredericksburg City (51630), Loudoun (51107), Manassas City (51683), Manassas Park City (51685), Prince William County (51153), Spotsylvania (51177), and Stafford (51179). Not all OTC rules applied to all counties/cities.

2.2.1.2 Stationary area source growth

As indicated above, growth factors for the Base F and Base G 2009 and 2018 inventories were obtained from the U.S. EPA and are linear interpolations of the growth factors used for the Clean Air Interstate Rule (CAIR) projections. The growth factors for the CAIR obtained by MACTEC were developed using a base year of 2001 and provided growth factors for 2010 and 2015. MACTEC used the TREND function in Microsoft ExcelTM to calculate 2002, 2009 and 2018 values from the 2001, 2010 and 2015 values. The TREND function provides a linear interpolation of intermediate values from a known series of data points (in this case the 2001, 2010 and 2015 values) based on the equation for a straight line. These values were calculated at the State and SCC level with the exception of paved road emissions (SCC = 2294000000). The growth factors for paved roads were available in the CAIR data set at the State, county and SCC level so they were applied at that level.

Prior to utilizing the growth factors from the CAIR projections, MACTEC confirmed that all SCCs found in the VISTAS 2002 base year inventory were in the CAIR file (for Base F the starting point was the version 3.1 2002 base year inventory, for Base G the starting point was the Base F 2002 base year inventory). Some SCCs were not found in the CAIR file. For those SCCs, the growth factors used were derived in one of five ways. First where possible, they were taken from a beta version of EGAS 5.0. In other cases, the growth factor was set to one (i.e., no growth). In other cases, a similar SCC that had a CAIR growth factor was used. In a few cases a growth factor based on an average CAIR growth at the 6 digit SCC level was calculated. Finally a number of records used population as the growth surrogate. For the Base G inventory, CAIR growth factors for fuel fired area sources were replaced with EGAS 5.0 growth factors (used in conjunction with AEO fuel efficiency factors). A comment field in the growth factor file was used to mark those records that were not taken directly from the CAIR projection growth factors.

2.2.1.3 Differences between 2009/2018

Methodologically, there was no difference in the way that 2009 and 2018 emissions were calculated for stationary area sources. The individual control and growth factors were different (due to the linear interpolation used to calculate the values) but the calculation methods were identical. This applies to both Base F and Base G.

The only exception to this is for the State of North Carolina for Base G. North Carolina provided an emissions update file used to override calculated projections for a number of area source categories. The values in these files (provided for both 2009 and 2018) were used to overwrite the calculated projected emissions in the final NIF file.

2.2.2 Agricultural area sources

The general approach used to calculate projected emissions for agricultural area sources (predominantly NH₃ emission sources) was as follows:

- 1. MACTEC used the version 3.1 2002 base year inventory data (which was based on the CMU ammonia model version 3.6).
- 2. MACTEC worked with the VISTAS States (via the Agricultural Sources SIWG) to obtain any State specific growth and/or future controls from the States for agricultural sources.
- 3. Since the base year emissions were uncontrolled, and no future controls for these sources were identified, MACTEC projected the agricultural emissions using State-specific growth if available, otherwise the U.S. EPA's Interstate Air Quality Transport Rule (IAQTR)/Ammonia inventory was used to develop the growth factors used to project the revised 2002 base year inventory to 2009 or 2018. Since the IAQTR inventory was only used to construct growth factors rather than using the emissions directly, no updated growth factors were prepared from the CAIR inventory values.
- 4. MACTEC then provided the final draft inventory for review and comment by the VISTAS States.

No change in the agricultural area source emission projections were made between Base F and Base G other than the removal of wild animal and human perspiration as a result of their removal from the 2002 base year file for Base G.

2.2.2.1 Control assumptions for agricultural area sources

No controls were identified either by the individual VISTAS States or in the information provided in the EPA's IAQTR or CAIR Ammonia inventory documents. Thus all projected emissions for agricultural area sources represent simple growth with no controls.

2.2.2.2 Growth assumptions for agricultural area sources

Growth for several agricultural area source livestock categories was developed using the actual emission estimates developed by the EPA as part of the NEI. That work included projections for the years 2002, 2010, 2015, 2020, and 2030. The actual emissions themselves were not used other than to develop growth factors since the 2002 NEI upon which the growth projections were based was prepared prior to the release of the 2002 Census of Agriculture data which was included in the CMU model (version 3.6) used to develop the Base F 2002 VISTAS base year inventory. Thus VISTAS Agricultural Sources SIWG decided to use the NEI ammonia inventory

projected emissions to develop the 2009 and revised 2018 growth factors used to project emission for VISTAS. Details on the NEI inventory and projections can be found at:

http://www.epa.gov/ttn/chief/ap42/ch09/related/nh3inventorydraft_jan2004.pdf. The actual data files for the projected emissions can be found at:

http://www.epa.gov/ttn/chief/ap42/ch09/related/nh3output01_23_04.zip.

In order to use the NEI projected emissions as growth factors, several steps were required. These steps were as follows:

- 1. NEI projected emissions were only available for the years 2002, 2010, 2015, 2020, and 2030, thus the first task was to calculate intermediate year emissions for 2009 and 2018. These values were calculated based on linear interpolation of the existing data.
- 2. Once the intermediate emissions were calculated, MACTEC developed emission ratios to provide growth factors for 2009 and 2018. Ratios of emissions were established relative to the 2002 NEI emissions.
- 3. Once the growth factors were established, MACTEC then evaluated whether or not all agricultural SCCs within the revised 2002 base year inventory had corresponding growth factors. MACTEC established that not all SCCs within the base year inventory had growth factors. These SCCs fell into one of two categories:
 - a. SCCs that had multiple entries in the NEI but only a single SCC in the 2002 VISTAS base year inventory. The NEI was established using a process model and for some categories of animals, emissions were calculated for several aspects of the process. The CMU model version 3.6 which was the basis for the VISTAS 2002 Base F inventory did not use a process model. As a consequence a mapping of SCCs in the NEI projections and corresponding SCCs in the CMU inventory was made and for those SCCs an average growth factor was calculated from the NEI projections for use with the corresponding SCC in the CMU based 2002 Base F inventory.
 - b. There were also State, county, SCC trios in the 2002 VISTAS Base F inventory which had no corresponding emissions in the NEI files. For these instances, MACTEC first developed State level average growth factors from the NEI projections for use in growing these records. Even after developing State level average growth factors there were still some State/SCC pairs that did not have matching growth. For these records, MACTEC developed VISTAS regional average growth factors at the SCC level from the NEI data.

4. Once all of the growth factors were developed, they were used to project the emissions to 2009 and 2018. Growth factors were first applied at the State, county and SCC level. Then remaining records were grown with the State/SCC specific growth factors. Finally, any remaining ungrown records were projected at the SCC level using the VISTAS regional growth factor.

For the livestock categories, the NEI emission projections only had data for beef and dairy cattle, poultry and swine. Thus for other livestock categories and for fertilizers alternative growth factors were required.

The growth factors for other livestock categories and fertilizers were obtained from growth factors used for the IAQTR projections made by the U.S. EPA. The methodology for these categories was identical to that used for dairy, beef, poultry and swine with the exception that State/SCC and VISTAS/SCC growth factors were not required for these categories since the IAQTR data contained State, county and SCC level growth factors. The IAQTR data provided growth factors for 1996, 2007, 2010, 2015 and 2020. Linear interpolation was used to develop the growth factors for the intermediate years 2009 and 2018 required for the VISTAS projections.

There were a few exceptions to the methods used for projecting agricultural sources for the VISTAS projections. These exceptions were:

- 1. All swine emissions for North Carolina were maintained at 2002 levels for each projection year to capture a moratorium on swine production in that State.
- 2. Ammonia growth factors for a few categories (mainly feedlots) were assigned to be the same as growth factors for PM emissions from the NEI projections. This assignment was made because the CMU model showed emissions from these categories but the NEI projections did not show ammonia emissions but did show PM emissions.
- 3. No growth factors were found for horse and pony emissions. These emissions were held constant at 2002 levels.

There was no change in this method between Base F and Base G. Thus Base F and Base G agricultural emissions are the same in each inventory. Future efforts on the agricultural emissions category should look at any changes made to the CMU model to reflect the model farm approach used by EPA in their inventory plus any updated growth factors that may be more recent than the EPA inventory used to develop growth estimates for Base F/G.

2.2.2.2.1 Differences between 2009/2018

Methodologically, there was no difference in the way that 2009 and 2018 emissions were calculated for agricultural area sources. The growth factors were different (due to the linear interpolation used to calculate the values) but the calculation methods were identical. In addition there was no difference between Base F and Base G for this category. Thus Base F and Base G agricultural emissions are the same in each inventory.

Tables 2.2-1 show the differences between Base F and Base G emissions for all area sources (including agricultural sources but excluding fires) for the 2002 base year and 2009 and 2018 by State and pollutant.

Table 2.2-1 2002 Base Year Emissions and Percentage Difference for Base F and Base G (based on actual emissions).

	Actual Area 2002 - Base G									
State	CO	NH3	NOX	PM10-PRI	PM25-PRI	SO2	VOC			
\mathbf{AL}	83,958	58,318	23,444	393,588	56,654	52,253	182,674			
FL	71,079	37,446	28,872	443,346	58,878	40,491	404,302			
GA	108,083	80,913	36,142	695,414	103,794	57,559	299,679			
KY	66,752	51,135	39,507	233,559	45,453	41,805	95,375			
MS	37,905	58,721	4,200	343,377	50,401	771	131,808			
NC	345,315	161,860	36,550	280,379	64,052	5,412	237,926			
SC	113,714	28,166	19,332	260,858	40,291	12,900	161,000			
TN	89,828	34,393	17,844	212,554	42,566	29,917	153,307			
VA	155,873	43,905	51,418	237,577	43,989	105,890	174,116			
$\mathbf{W}\mathbf{V}$	39,546	9,963	12,687	115,346	21,049	11,667	60,443			
				Base F						
\mathbf{AL}	83,958	59,486	23,444	393,093	73,352	47,074	196,538			
FL	105,849	44,902	29,477	446,821	81,341	40,537	439,019			
GA	107,889	84,230	36,105	695,320	133,542	57,555	309,411			
KY	66,752	51,097	39,507	233,559	52,765	41,805	100,174			
MS	37,905	59,262	4,200	343,377	63,135	771	135,106			
NC	373,585	164,467	48,730	303,492	69,663	7,096	346,060			
\mathbf{SC}	113,714	29,447	19,332	260,858	51,413	12,900	187,466			
TN	89,235	35,571	17,829	211,903	49,131	29,897	161,069			
VA	155,873	46,221	51,418	237,577	52,271	9,510	129,792			
WV	39,546	10,779	12,687	115,346	25,850	11,667	61,490			
					se G increased f					
\mathbf{AL}	0.00%	1.96%	0.00%	-0.13%	22.76%	-11.00%	7.05%			
FL	32.85%	16.61%	2.05%	0.78%	27.62%	0.12%	7.91%			
GA	-0.18%	3.94%	-0.10%	-0.01%	22.28%	-0.01%	3.15%			
KY	0.00%	-0.07%	0.00%	0.00%	13.86%	0.00%	4.79%			
MS	0.00%	0.91%	0.00%	0.00%	20.17%	0.00%	2.44%			
NC	7.57%	1.59%	24.99%	7.62%	8.05%	23.74%	31.25%			
SC	0.00%	4.35%	0.00%	0.00%	21.63%	0.00%	14.12%			
TN	-0.67%	3.31%	-0.09%	-0.31%	13.36%	-0.07%	4.82%			
VA	0.00%	5.01%	0.00%	0.00%	15.84%	-1013.45%	-34.15%			
$\mathbf{W}\mathbf{V}$	0.00%	7.57%	0.00%	0.00%	18.57%	0.00%	1.70%			

 $\begin{tabular}{ll} \textbf{Table 2.2-2 2009 Projection Year Emissions and Percentage Difference for Base F and Base G (based on actual emissions).} \end{tabular}$

	Actual Area 2009 - Base G									
State	CO	NH3	NOX	PM10-PRI	PM25-PRI	SO2	VOC			
\mathbf{AL}	66,654	64,268	23,930	413,020	58,699	48,228	143,454			
FL	57,011	38,616	28,187	503,230	64,589	36,699	420,172			
GA	94,130	89,212	37,729	776,411	112,001	57,696	272,315			
KY	57,887	53,005	42,088	242,177	46,243	43,087	94,042			
MS	27,184	63,708	4,249	356,324	51,661	753	124,977			
NC	301,163	170,314	39,954	292,443	69,457	5,751	187,769			
\mathbf{SC}	90,390	30,555	19,360	278,299	41,613	13,051	146,107			
TN	74,189	35,253	18,499	226,098	44,124	30,577	154,377			
VA	128,132	46,639	52,618	252,488	44,514	105,984	147,034			
$\mathbf{W}\mathbf{V}$	31,640	10,625	13,439	115,089	20,664	12,284	55,288			
				Base F						
\mathbf{AL}	68,882	65,441	26,482	411,614	76,248	17,818	157,405			
\mathbf{FL}	101,356	46,950	31,821	507,515	90,487	52,390	462,198			
GA	103,579	92,838	38,876	776,935	146,691	57,377	294,204			
KY	64,806	53,023	42,122	242,345	54,397	40,779	94,253			
MS	37,161	64,289	4,789	356,516	65,321	637	125,382			
NC	332,443	173,187	53,550	317,847	75,570	7,607	252,553			
\mathbf{SC}	95,826	31,966	20,852	278,852	54,230	12,945	176,104			
TN	82,196	36,578	19,148	225,650	51,753	29,787	160,265			
VA	133,738	49,173	53,344	252,924	54,587	10,619	120,022			
WV	37,704	11,461	13,816	115,410	25,835	12,156	57,082			
	U				se G increased					
\mathbf{AL}	3.24%	1.79%	9.64%	-0.34%	23.02%	-170.67%	8.86%			
FL	43.75%	17.75%	11.42%	0.84%	28.62%	29.95%	9.09%			
GA	9.12%	3.91%	2.95%	0.07%	23.65%	-0.56%	7.44%			
KY	10.68%	0.03%	0.08%	0.07%	14.99%	-5.66%	0.22%			
MS	26.85%	0.90%	11.27%	0.05%	20.91%	-18.10%	0.32%			
NC	9.41%	1.66%	25.39%	7.99%	8.09%	24.41%	25.65%			
SC	5.67%	4.41%	7.16%	0.20%	23.27%	-0.82%	17.03%			
TN	9.74%	3.62%	3.39%	-0.20%	14.74%	-2.65%	3.67%			
VA	4.19%	5.15%	1.36%	0.17%	18.45%	-898.09%	-22.51%			
$\mathbf{W}\mathbf{V}$	16.08%	7.29%	2.73%	0.28%	20.02%	-1.06%	3.14%			

Table 2.2-3 2018 Projection Year Emissions and Percentage Difference for Base F and Base G (based on actual emissions).

	Actual Area 2018 - Base G									
State	CO	NH3	NOX	PM10-PRI	PM25-PRI	SO2	VOC			
\mathbf{AL}	59,626	71,915	25,028	445,256	62,323	50,264	153,577			
FL	53,903	40,432	30,708	578,516	72,454	38,317	489,975			
GA	93,827	99,885	41,332	880,199	123,704	59,729	319,328			
KY	54,865	55,211	44,346	256,052	47,645	44,186	103,490			
MS	22,099	69,910	4,483	375,495	53,222	746	140,134			
NC	290,809	180,866	43,865	315,294	71,262	6,085	189,591			
SC	83,167	33,496	20,592	304,251	44,319	13,457	161,228			
TN	68,809	36,291	19,597	246,252	46,692	31,962	182,222			
VA	121,690	50,175	56,158	275,351	46,697	109,380	150,919			
$\mathbf{W}\mathbf{V}$	28,773	11,504	14,828	121,549	21,490	12,849	60,747			
				Base F						
\mathbf{AL}	63,773	73,346	28,754	445,168	82,449	49,975	168,507			
FL	100,952	49,889	35,047	582,832	101,872	59,413	533,141			
GA	105,059	103,911	42,260	880,800	163,925	61,155	342,661			
KY	65,297	55,356	45,597	256,544	57,110	42,326	102,117			
MS	36,425	70,565	5,230	375,931	68,338	831	139,419			
NC	327,871	184,167	60,073	345,275	85,018	8,273	234,207			
SC	89,343	35,082	22,467	304,940	58,441	13,517	196,946			
TN	81,242	37,812	20,928	245,893	55,712	31,047	188,977			
VA	129,037	53,023	56,668	275,790	58,141	11,479	128,160			
WV	36,809	12,390	15,079	121,964	27,088	13,450	62,164			
	0	Difference (negative va	lues means Bas		from Base F)				
\mathbf{AL}	6.50%	1.95%	12.96%	-0.02%	24.41%	-0.58%	8.86%			
FL	46.61%	18.96%	12.38%	0.74%	28.88%	35.51%	8.10%			
GA	10.69%	3.87%	2.20%	0.07%	24.54%	2.33%	6.81%			
KY	15.98%	0.26%	2.74%	0.19%	16.57%	-4.40%	-1.34%			
MS	39.33%	0.93%	14.28%	0.12%	22.12%	10.19%	-0.51%			
NC	11.30%	1.79%	26.98%	8.68%	16.18%	26.45%	19.05%			
SC	6.91%	4.52%	8.34%	0.23%	24.16%	0.44%	18.14%			
TN	15.30%	4.02%	6.36%	-0.15%	16.19%	-2.95%	3.57%			
VA	5.69%	5.37%	0.90%	0.16%	19.68%	-852.83%	-17.76%			
$\mathbf{W}\mathbf{V}$	21.83%	7.15%	1.66%	0.34%	20.66%	4.46%	2.28%			

2.2.3 Changes to Prescribed Fire for 2009/2018 Base G

Just prior to release of version 3.1 of the VISTAS inventory, several Federal agencies indicated that they had plans for increased prescribed fire burning in future years and that the "typical" fire inventory would likely not adequately capture those increases (memo from Bill Jackson and Cindy Huber, August 13, 2004). However data were not readily available to incorporate those changes up through the Base F inventory. As a consequence MACTEC worked with Federal Land Managers to acquire the data necessary to provide 2009 and 2018 specific projections for the prescribed fire component of the Base G fire inventory. The 2009 and 2018 projections developed using the method described below are being used by VISTAS as the 2009 and 2018

base case inventories for all States except FL. For FL the supplied data from the FLMs is not being used as FL felt that their data adequately reflected current and future prescribed burning practices. The "typical" fire projection is the 2002 base prescribed fire projection.

One of the biggest issues in preparing the projection was how best to incorporate the data. Two agencies submitted data: Fish and Wildlife Service (FWS) and Forest Service (FS). FWS submitted annual acreage data by National Wildlife Refuge (NWR) and county with estimates of acres burned per day for each NWR. FS provided fire-by-fire acreage estimates based on mapping projected burning acreage to current 2002 modeling days. However, FWS did not submit data for VISTAS original base year preparation process, thus there was no known FWS data in the 2002 actual or typical inventories. Thus MACTEC had to develop a method that could use the county level data submitted by FWS.

In addition, despite the fact that the FS submitted fire-by-fire data for the 2002 actual inventory and had mapped the projections to current burn days in the 2002 actual inventory, MACTEC could not do a simple replacement of those records with the 2009/2018 projections. This situation was created because several VISTAS States run a prescribed fire permitting program. To avoid double counting, only State data was used in those States for the 2002 actual inventory. Thus there were no Federal data in those States since the Federal data could have potentially duplicated State-supplied prescribed fire data. In VISTAS States without permit programs, the FS supplied data for 2002 was used and those records were marked in database. Thus for those States, the FS supplied 2009/2018 data could be directly substituted for the 2002 data.

The method used by MACTEC to include the FS data applied a county level data approach for FS data where a State had a prescribed fire permitting program and a fire-by-fire replacement for FS data in States without permit programs. MACTEC used a county level approach for all of the FWS data. The approach used for each data set is discussed below.

For the FWS data MACTEC summed the annual acres burned supplied by the FWS across all NWRs in a county. We then subtracted out 2002 acreage for that county from the FWS projected acreage annual total to avoid double counting. The remaining acreage was then multiplied by 0.8 to account for blackened acres instead of the total perimeter acres that were reported. The revised total additional FWS acreage was then added to the total county "typical" acreage to determine future acreage burned for either 2009 or 2018. MACTEC then allocated the increased acreage to current modeling days. The average daily acres burned data provided by FWS per NWR/county was used to allocate the acreage to the correct number of days required to burn all of the acres. Guidance supplied by FWS indicated that up to three times the average daily acres burned could potentially be allocated to any one day. Thus if the estimated acreage per day were 100 acres then up to 300 acres could actually be allocated to a particular day. This approach (use of up to three times the average daily acres burned) was used if there were an insufficient number of 2002

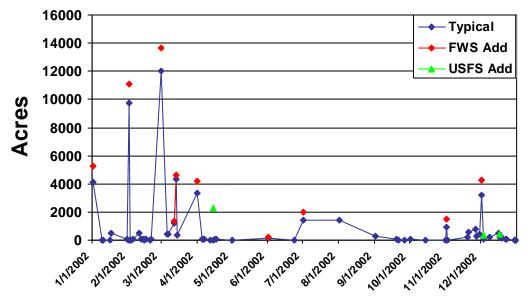
modeling days available to account for all of the acreage increase. MACTEC used an incremental approach to using the increase above the base average daily acres. First we used twice the average daily acreage if that was sufficient to completely allocate the increased acreage over the total number of days available. If that wasn't sufficient then we used three times the average daily acres burned to allocate the acreage. We applied the highest increases to days in the database that already had the highest acreage burned since we felt those days were most likely to represent days with representative conditions for conducting prescribed burns.

The approach used by MACTEC for the FS was slightly different. For States that had permit programs, we used similar approach to the FWS county level approach. First we summed the FS data at county level, we then added that value to the typical acreage and then we allocated the acres to current modeling days. The mapping to current modeling days was performed by Bill Jackson of the USFS and provided to MACTEC. For States that do not have a prescribed fire permit program, MACTEC simply replaced the current fire-by-fire records in the database with fire-by-fire records from the FS and recalculated emissions based on fuel model and fuel loading. We also applied the same 0.8 correction for blackened acres applied to all FS supplied acreage as the supplied values represented perimeter acres.

An additional problem with developing year-specific prescribed fire projections was how to adequately capture the temporal profile for those fires. In the 2002 actual fire inventory, fires occur on same days as state/FLM records. In the 2002 "typical" year inventory, fire acreage increased or decreased from acreage on the same fire days as were in the 2002 actual inventory, since the acres were simply increased for each day based on a multiplier used to convert from actual to typical.

When prescribed fires acreage was added to a future year, MACTEC added acreage to individual fire days proportional to the annual increase (if acreage on a day is 10 percent of annual, add 10 percent of projected increase to that same day).

The table below shows how the FWS data for Okefenokee NWR were allocated for 2009 for Clinch County (Okefenokee NWR is located in four different counties). You can see that the total additional acres for the Clinch County portion of Okefenokee NWR was 1,956 acres. Two hundred eighty (280) acres were the estimated average daily acres burned for that NWR/county combination. Thus to allocate the entire 1,956 acres would require almost 7 burn days (1,956 divided by 280). However only 5 burn days were found for Clinch County in the 2002 actual fire database. Thus we allocated twice the average acreage to the burn day with the most acres burned in the 2002 actual fire database (since our method allowed us to increase the average daily acres burned up to three times the recommended level). Thus the first burn day received 560 acres and all others received 280 except the final day which received 276 to make the total equal to the required 1,956 acres. The table also indicates that the increased acres burned


provided increases of from 10-48 percent in the acres burned on the individual burn days and an average of approximately 14 percent for the year as a whole.

							Total
CLINCH COUNTY	3/1/2002	4/1/2002	2/1/2002	1/1/2002	11/1/2002	12/1/2002	Annual
Acres (typical)	3,757	2,612	1,996	1,801	616	472	11,764
Add on FWS Projection	560	280	280	280	280	276	1,956
Total	4,316	2,891	2,276	2,080	895	747	13,720
Percent Increase	14.9%	10.7%	14.0%	15.6%	45.5%	58.5%	14.3%

The figure below shows the increases for prescribed burning in the four counties that comprise the Okefenokee NWR area (which also includes FS land). In this figure you can see the additional acreage added for the burn days from FWS and the individual day increases caused by projected increases in prescribed burning based on FS data. It should be noted that while the emissions represent 2009, all fire event dates listed are for 2002 to match up with the base year meteorology used in modeling exercises.

Table 2.2-4 shows the percentage difference between the 2009 and 2018 projections developed for Base F and Base G. Base G includes the revised prescribed burning estimates described above. Values are calculated using Base F as the basis for change, thus negative values imply an increase in emissions for Base G.

Figure 2.2-1 Prescribed Fire Projection for Okeefenokee NWR for 2009

Date of Fire Event

Table 2.2-4 Percentage Difference Between Base F and Base G Fire Emissions by State

State	СО	NH3	NOX	PM10-PRI	PM25-PRI	SO2	VOC	CO	NH3	NOX	PM10-PRI	PM25-PRI	SO2	VOC
2009 Fire	s Base G							2018 Fires	Base G					
AL	534,873	2,050	11,901	52,851	46,543	2,681	27,502	535,658	2,054	11,918	52,927	46,608	2,686	27,539
FL	923,310	3,157	19,791	98,470	88,756	4,129	51,527	923,310	3,157	19,791	98,470	88,756	4,129	51,527
GA	637,177	2,229	14,243	63,973	57,116	2,914	34,710	637,177	2,229	14,243	63,973	57,116	2,914	34,710
KY	31,810	143	682	3,093	2,653	187	1,497	33,296	150	714	3,237	2,777	196	1,567
MS	48,160	217	1,033	4,683	4,016	283	2,266	50,037	225	1,073	4,865	4,173	294	2,355
NC	96,258	433	2,065	9,359	8,027	566	4,530	111,266	501	2,387	10,819	9,279	655	5,236
SC	282,307	1,039	5,899	29,153	25,955	1,359	16,045	282,307	1,039	5,899	29,153	25,955	1,359	16,045
TN	17,372	78	373	1,689	1,449	102	817	18,860	85	405	1,834	1,573	111	888
VA	21,130	95	453	2,054	1,762	124	994	26,923	121	578	2,618	2,245	158	1,267
WV	3,949	18	85	384	329	23	186	5,013	23	108	487	418	29	236
2009 Fire	s Base F							2018 Fires 1	Base F					
AL	514,120	1,957	11,456	50,833	44,812	2,559	26,526	514,120	1,957	11,456	50,833	44,812	2,559	26,526
FL	923,310	3,157	19,791	98,470	88,756	4,129	51,527	923,310	3,157	19,791	98,470	88,756	4,129	51,527
GA	620,342	2,153	13,882	62,336	55,712	2,815	33,918	620,342	2,153	13,882	62,336	55,712	2,815	33,918
KY	56,686	110	1,460	6,667	6,310	136	3,338	56,686	110	1,460	6,667	6,310	136	3,338
MS	128,471	177	3,328	14,693	13,680	100	13,625	128,471	177	3,328	14,693	13,680	100	13,625
NC	200,564	324	5,005	20,488	19,491	423	12,499	200,564	324	5,005	20,488	19,491	423	12,499
SC	253,005	908	5,270	26,304	23,511	1,187	14,666	253,005	908	5,270	26,304	23,511	1,187	14,666
TN	78,370	46	2,232	8,875	8,730	59	5,153	78,370	46	2,232	8,875	8,730	59	5,153
VA	19,159	159	978	18,160	17,361	99	912	19,159	159	978	18,160	17,361	99	912
WV	32,656	12	944	3,276	3,239	16	2,184	32,656	12	944	3,276	3,239	16	2,184
Percentag	ge Difference	(negative num	iber means a	n increase in B	ase G emissions									
AL	-4.04%	-4.77%	-3.89%	-3.97%	-3.86%	-4.77%	-3.68%	-4.19%	-4.95%	-4.03%	-4.12%	-4.01%	-4.95%	-3.82%
FL	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
GA	-2.71%	-3.52%	-2.60%	-2.63%	-2.52%	-3.52%	-2.34%	-2.71%	-3.52%	-2.60%	-2.63%	-2.52%	-3.52%	-2.34%
KY	43.88%	-29.52%	53.25%	53.61%	57.96%	-37.90%	55.15%	41.26%	-35.57%	51.07%	51.44%	56.00%	-44.34%	53.06%
MS	62.51%	-22.07%	68.95%	68.13%	70.64%	-183.85%	83.37%	61.05%	-26.83%	67.74%	66.89%	69.50%	-194.91%	82.72%
NC	52.01%	-33.75%	58.74%	54.32%	58.82%	-33.75%	63.76%	44.52%	-54.60%	52.31%	47.19%	52.40%	-54.60%	58.11%
SC	-11.58%	-14.52%	-11.93%	-10.83%	-10.39%	-14.52%	-9.40%	-11.58%	-14.52%	-11.93%	-10.83%	-10.39%	-14.52%	-9.40%
TN	77.83%	-69.40%	83.30%	80.97%	83.41%	-74.42%	84.14%	75.93%	-83.92%	81.87%	79.34%	81.98%	-89.36%	82.78%
VA	-10.29%	40.36%	53.67%	88.69%	89.85%	-25.40%	-9.03%	-40.53%	24.00%	40.97%	85.59%	87.07%	-59.79%	-38.93%
WV	87.91%	-48.65%	91.03%	88.28%	89.83%	-49.46%	91.49%	84.65%	-88.70%	88.61%	85.12%	87.09%	-89.73%	89.20%

2.2.4 Quality Assurance steps

Throughout the inventory development process, quality assurance steps were performed to ensure that no double counting of emissions occurred, to ensure that a full and complete inventory was developed for VISTAS, and to make sure that projection calculations were working correctly. Quality assurance was an important component to the inventory development process and MACTEC performed the following QA steps on the stationary and agricultural area source components of the 2009 and revised 2018 projection inventories:

- 1. All final files were run through EPA's Format and Content checking software.
- 2. SCC level emission summaries were prepared and evaluated to ensure that emissions were consistent and that there were no missing sources.
- 3. Tier comparisons (by pollutant) were developed between the 2002 base year inventory and the 2009 and 2018 projection inventories. In addition, total VISTAS pollutant summaries were prepared to compare total emissions by pollutant between versions of the inventory (e.g., between Base F and Base G).
- 4. Data product summaries were provided to both the VISTAS Emission Inventory Technical Advisor and to the SIWG representatives for review and comment. Changes based on these comments were implemented in the files.
- 5. Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from 1.0 to 2.0. A minor change would cause a version number to go from 1.0 to 1.1. Minor changes resulting from largely editorial changes would result in a change from 1.00 to 1.01.

2.3 Mobile Sources

Our general approach for assembling data was to use as much existing data from the pre-Base F preliminary projections as possible for these inventories, supplement these data with easily available stakeholder input, and provide the results for stakeholder review to ensure credibility. To develop the "base case" projections, MACTEC originally assembled data to develop two 2009 and 2018 base case inventories: 1) an inventory that included all "on-the-books" control programs and 2) an "on-the-way" inventory that included controls that were likely to be "on-the-way". For the Base F and Base G emission forecasts to the mobile source sector, "on-the-books" and "on-the-way" are defined with the same strategies and therefore only a single projection scenario was developed for each forecast year.

To ensure consistency across evaluation years, the 2009 and 2018 base case inventories were developed, to the maximum extent practical, using methodologies identical to those employed in

developing the 2002 on-road portion of the revised 2002 VISTAS base year inventory. All modifications to the 2002 inventory methods were developed in consultation with the Mobile Source Special Interest Workgroup (MSSIWG). Generally, modifications were only made to properly account for actual changes expected in the intervening period (i.e., between 2002 and 2009 and between 2002 and 2018), but the underlying inventory development methodology was identical, except to the extent requested by VISTAS or the MSSIWG.

MACTEC developed a preliminary 2018 inventory in early 2004. That inventory was designed to 1) be used for modeling sensitivity evaluations and 2) help establish the methods that would be used for the final 2018 inventory and the initial 2009 inventory. Since that work took place prior to the revision of the 2002 base year inventory data files, MACTEC provided a review of the data and methods used to develop on-road mobile source input files for the initial 2002 base year inventory prior to developing the preliminary 2018 inventory. Through this review, MACTEC determined the following:

- On-road VMT. Most States provided local data for 2002 (or a neighboring year that
 was converted to 2002 using appropriate VMT growth surrogates such as population).
 Since these data were not applicable to 2018 due to intervening growth, input for
 2018 was solicited from the MSSIWG. At the same time we researched countyspecific growth rate data utilized for recent national rulemakings as a backstop
 approach to State supplied VMT projections.
- Modeling Temperatures. Actual 2002 temperatures were used for the initial 2002 base year inventory.
- Vehicle Registration Mix (age fractions by type of vehicle). A mix of State, local, and MOBILE6 default data were used for the 2002 initial base year inventory. Forecast data were solicited from the States, with a fallback position that we hold the fractions constant at their 2002 values.
- Vehicle Speed by Roadway Type. For the 2002 initial base year inventory, speeds varying by vehicle and road type were used.
- VMT Mixes (fraction of VMT by vehicle type). A mix of State, local, and quasi MOBILE6 default (i.e., MOBILE6 defaults normalized to better reflect local conditions) data were used for the 2002 initial base year inventory. Forecast data were solicited from the States.
- Diesel Sales Fractions. As with the VMT mix data, the diesel sales fraction data employed for the 2002 initial base year inventory represents a mix of State, local, and quasi MOBILE6 default data. The issues related to updating these data to 2018 are

also similar, but are complicated by the fact that MOBILE6 treats diesel sales fraction on a model year, rather than age specific basis. Therefore, diesel sales fractions generally cannot be held constant across time. Once again, we solicited any local projections, with a fallback position that we would keep the data for 2002 and earlier model years constant for the forecast inventory, supplemented with MOBILE6 default data for 2003 and newer model years.

- State/Local Fuel Standards. For the 2002 initial base year inventory, these data were based on appropriate local requirements and updated data for 2018 was only required if changes were expected between 2002 and 2018. There are some national changes in required fuel quality for both on-road and non-road fuels that are expected to occur between 2002 and 2018 and these would be reflected in the 2018 inventory in the absence of more stringent local fuel controls. Expected changes in local fuel control programs were solicited.
- Vehicle Standards. The 2002 initial base year inventory assumed NLEV applicability.
 This was altered to reflect Tier 2 for 2018, unless a State indicated a specific plan to
 adopt the California LEV II program. If so, we made the required changes to
 implement those plans for the preliminary 2018 inventory.
- Other Local Controls. This includes vehicle emissions inspection (i.e., I/M) programs, Stage II vapor recovery programs, anti tampering programs, etc. By nature, the assumptions used for the 2002 initial base year inventory vary across the VISTAS region, but our presumption is that these data accurately reflected each State's situation as it existed in 2002. If a State had no plans to change program requirements between 2002 and 2018, we proposed to maintain the 2002 program descriptions without change. However, if a State planned changes, we requested information on those plans. In the final implementation of the Base F and earlier inventories, Stage II controls were exercised in the area source component of the inventory, since the units used to develop Stage II refueling estimates are different between MOBILE6 and the NONROAD models. However, in the Base G inventories, Stage II refueling was moved to the on-road and non-road sectors.

Once the preliminary 2018 (pre-Base F) base case projection inventory data were compiled, MACTEC applied the data and methods selected and proceeded to develop the preliminary (pre-base F) base case 2018 projection inventories. The resulting inventories were provided to the MSSIWG in a user-friendly format for review. After stakeholder review and comment, the final preliminary 2018 base case inventories and input files were provided to VISTAS in formats identified by the VISTAS Technical Advisor (in this case, MOBILE input files and VMT, NONROAD input files and annual inventory files for NONROAD in NIF 3.0 format). Annual

inventory files for MOBILE were not developed as part of this work, only input files and VMT forecasts. MOBILE emissions were calculated by VISTAS air quality modeling contractor using the provided files.

2.3.1 Development of on-road mobile source input files

As indicated above, MACTEC prepared a preliminary version of the 2018 base case mobile inventory input data files. These files were then updated to provide a final set of 2018 base case inventory input data files as well as a set of input files for 2009. The information below describes the updates performed on the preliminary 2018 files and the development of the 2009 input data files for Base F emission estimation.

Our default approach to preparing the revised 2018 and initial 2009 projection inventories for onroad mobile sources was to estimate the emissions by using either:

- 1. the revised 2002 data provided by each State coupled with the projection methods employed for the preliminary 2018 inventory, or
- 2. the same data and methods used to generate the preliminary 2018 inventory.

We also investigated whether or not there was more recent VMT forecasting data available (e.g., from the CAIR and if appropriate revised the default VMT growth rates accordingly. This did not affect any State that provided local VMT forecasting data, but would alter the VMT estimates used for other areas.

Since no preliminary 2009 inventory was developed there did not exist an option (2) above for 2009. As a consequence, MACTEC crafted the 2009 initial inventory for on-road mobile sources using methods identical to those employed for the 2018 preliminary inventories coupled with any changes/revisions provided by the States during the review of the revised 2002 base year and the 2018 preliminary inventories. Therefore, as was the case for 2018, we obtained from the States any input data revisions, methodological revisions, and local control program specifications (to the extent that they differed from 2002/2018).

2.3.1.1 Preparation of revised 2018 input data files

Preparation of the revised 2018 inventories required the following updates:

- 1. The evaluation year was updated to 2018 in all files.
- 2. The diesel fuel sulfur content was revised from 500 ppm to 11 ppm, consistent with EPA data for 2018 in all files.
- 3. Since the input data is model year, rather than age, specific for diesel sales fractions (with data for the newest 25 model years required), we updated all files that included

diesel sales fractions. In the revised 2002 base year files, the data included applied to model years 1978-2002. For 2018, the data included would reflect model years 1994-2018. To forecast the 2002 data, MACTEC took the data for 1994-2002 from the 2002 files and added data for 2003-2018. To estimate the data for these years, we employed the assumption employed by "default" in MOBILE6 -- namely that diesel sales fractions for 1996 and later are constant. Therefore, we set the diesel sales fractions for 2003-2018 at the same value as 2002.

4. VMT mix fractions must be updated to reflect expected changes in sales patterns between 2002 and 2018. If explicit VMT mix fractions are not provided, these changes are handled internally by MOBILE6 or externally through absolute VMT distributions. However, files that include explicit VMT mix fractions override the default MOBILE6 update and may or may not be consistent with external VMT distributions. MACTEC updated the VMT mix in such files as follows:

First, we calculated the VMT fractions for LDV, LDT1, LDT2, HDV, and MC from the external VMT files for 2018. This calculation was performed in accordance with section 5.3.2 of the MOBILE6 Users Guide which indicates:

LDV = LDGV + LDDV LDT1 = LDGT1 + LDDT LDT2 = LDGT2 HDV = HDGV + HDDVMC = MC

The resulting five VMT fractions were then split into the 16 fractions required by MOBILE6 using the distributions for 2018 provided in Appendix D of the MOBILE6 Users Guide. This approach ensures that explicit input file VMT fractions are consistent with the absolute VMT distributions prepared by MACTEC. These changes were made to all files that included VMT mixes.

5. All other input data were retained at 2002 values, except as otherwise instructed by the States. This includes all control program descriptions (I/M, Anti-Tampering Program [ATP], Stage II, etc.), all other fuel qualities (RVP, oxy content, etc.), all other vehicle descriptive data (registrations age distributions, etc.), and all scenario descriptive data. The State-specific updates performed are described below.

Kentucky:

MACTEC revised the 2018 input files for the Louisville, Kentucky area (Louisville Air Pollution Control District [APCD]) based on comments received relative to several components of

MOBILE input data. Based on these comments, the input files for Jefferson County, Kentucky were updated accordingly as follows:

- a) I/M and tampering program definitions were removed since the program was discontinued at the end of 2003.
- b) The "Speed VMT", "Facility VMT" and "Registration Age Distribution" file pointers were updated to reflect revised 2002 files provided by the Louisville APCD.
- c) The "VMT Mix" data, which was previously based on the default approach of "growing" 2002 data, was replaced by 2018-specific data provided by the Louisville APCD.

North Carolina:

North Carolina provided a wide range of revised input data, including complete MOBILE6 input files for July modeling. MACTEC did not use the provided input files directly as they did not match the 2002 NC input files for critical elements such as temperature distributions and gasoline RVP (while they were close, they were slightly different). To maintain continuity between 2002 and 2018 modeling, MACTEC instead elected to revise the 2002 input files to reflect all control program and vehicle-related changes implied by the new 2018 files, while retaining the basic temperature and gasoline RVP assumptions at their 2002 values. Under this approach, the following changes were made:

- a) NC provided a county cross reference file specific to 2018 that differed from that used for 2002. We removed files that were referenced in the 2002 input data and replaced those files with those referenced in the 2018 data. In addition, since NC only provided 2018 input files for July, we estimated the basic data for these new files for the other months by cross referencing the target files for 2002 by county against the target files for 2018 by county.
- b) We then revised the 2002 version of each input file to reflect the 2018 "header" data included in the NC-provided 2018 files. These data are exclusively limited to I/M and ATP program descriptions, so that the 2002 I/M and ATP data were replaced with 2018 I/M and ATP data.
- c) We retained the registration age fractions at their 2002 "values" (external file pointers) as per NC instructions.
- d) We retained all scenario-specific data (i.e., temperatures, RVP, etc.) at 2002 values, which (as indicated above), were slightly different in most cases from data included in the 2018 files provided by NC. We believe these differences were due to small deviations between the data assembled to support VISTAS 2002 and the process used to generate the 2018 files provided by NC, and that revising the VISTAS 2002 data to

- reflect these variations was not appropriate given the resulting inconsistencies that would be reflected between VISTAS 2002 and VISTAS 2018.
- e) NC also provided non-I/M versions of the 2018 input files that would generally be used to model the non-I/M portion of VMT. While these files were retained they were not used for the 2018 input data preparation.

Finally, NC also provided a speed profile file and a speed profile cross reference file for 2018. We did not use these in our updates as they have no bearing on the MOBILE6 input files, but they were maintained in case they needed to be included in SMOKE control files for a future year control strategy scenario.

Virginia:

In accordance with instructions from VA, the input files that referenced an external I/M descriptive program file (VAIM02.IM) were revised to reference an alternative external file (VAIM05.IM). This change was to make the I/M program more relevant to the year 2018.

One additional important difference was made with respect to the revised 2018 and initial 2009 on-road mobile source input data files for all States. MACTEC developed updated SMOKE ready input files rather than MOBILE6 files so that the input data could be used directly by the VISTAS modeling contractor to estimate on-road mobile source emissions during modeling runs.

2.3.1.2 Preparation of initial 2009 input data files

The methodology used to develop the 2009 on-road input files was based on forecasting the previously developed revised 2002 base year input files and is identical to that previously described for the revised 2018 methodology except as follows:

- 1. The evaluation year was updated to 2009.
- 2. Diesel fuel sulfur content was revised from 500 ppm to 29 ppm. The 29 ppm value was derived from an EPA report entitled "Summary and Analysis of the Highway Diesel Fuel 2003 Pre-compliance Reports" (EPA420-R-03-013, October 2003), which includes the Agency's estimates for the year-to-year fuel volumes associated with the transition from 500 ppm to 15 ppm diesel fuel. According to Table 2 of the report, there will be 2,922,284 barrels per day of 15 ppm diesel distributed in 2009 along with 110,488 barrels per day of 500 ppm diesel. Treating the 15 ppm diesel as 11 ppm on average (consistent with EPA assumptions and assumptions employed for the 2018 input files) and sales weighting the two sulfur content fuels results in an average 2009 diesel fuel sulfur content estimate of 29 ppm.

- 3. Diesel sales fractions were updated identically to 2018 except that the diesel sales fractions for 2003-2009 were set at the same value as those for 2002 (rather than 2003-2018).
- 4. VMT mix fractions were updated to 2009 using an identical method to that described for 2018.
- 5. All other input data were retained at 2002 values, except as otherwise instructed by individual States (see below). This includes all control program descriptions (I/M, ATP, Stage II, etc.), all other fuel qualities (RVP, oxy content, etc.), all other vehicle descriptive data (registration age distributions, etc.), and all scenario descriptive data.

In addition to the updates described above that were applied to all VISTAS-region inputs, the following additional State-specific updates were performed:

- **KY** Identical changes to those made for 2018 (but specific to 2009) were made for the 2009 input files.
- **NC** Identical changes to those made for 2018 (but specific to 2009) were made for the 2009 input files.
- **VA** Identical changes to those made for 2018 were made for 2009.

2.3.2 *VMT Data*

The basic methodology used to generate the 2009 and 2018 VMT for use in estimating on-road mobile source emissions was as follows:

- 1. All estimates start from the final VMT estimates used for the 2002 revised base year inventory.
- 2. Initial 2009 and 2018 VMT estimates were based on linear growth rates for each State, county, and vehicle type as derived from the VMT data assembled by the U.S. EPA for their most recent HDD (heavy duty diesel) rulemaking. The methodology used to derive the growth factors is identical to that employed for the preliminary 2018 VMT estimates (which is described in the next section).
- 3. For States that provided no independent forecast data, the estimates derived in step 2 are also the final estimates. These States are: Alabama, Florida, Georgia, Kentucky, Mississippi, and West Virginia. For States that provided forecast data, the provided data were used to either replace or augment the forecast data based on the HDD rule. These States, and the specific approaches employed, are detailed following the growth method description.

The steps involved in performing the growth estimates for VMT were as follows:

- 1. Linear growth estimates were used (although MACTEC investigated the potential use of nonlinear factors and presented that information to the MSSIWG, the decision was made to use linear growth factors instead of nonlinear).
- 2. Estimates were developed at the vehicle class (i.e., LDGV, LDGT1, LDGT2, etc.) level of detail since the base year 2002 estimates were presented at that level of resolution. In effect, the county and vehicle class specific growth factors were applied to the 2002 VMT estimates for each vehicle and road class.
- 3. Overall county-specific VMT estimates for each year (developed by summing the vehicle and road class specific forecasts) were then compared to overall county-specific growth. Since overall county growth is a more appropriate controlling factor as it includes the combined impacts of all vehicle classes, the initial year-specific vehicle and road class VMT forecasts were normalized so that they matched the overall county VMT growth. Mathematically, this process is as follows:

$$(Est_rv_f) = (Est_rv_i) * (C_20XX / Sum(Est_rv_i))$$

where:

Est_rv_f = the final road/vehicle class-specific estimates,

Est_rv_i = the initial road/vehicle class-specific estimates, and

C_20XX = the county-specific growth target for year 20XX.

Table 2.3-1 presents a basic summary of the forecasts for the preliminary 2018 inventory for illustrative purposes:

Table 2.3-1 2002 versus 2018 VMT (million miles per year)

State	2002	2018	Growth Factor
Alabama	55,723	72,966	1.309
Florida	178,681	258,191	1.445
Georgia	106,785	148,269	1.388
Kentucky	51,020	66,300	1.299
Mississippi	36,278	46,996	1.295
North Carolina	80,166	110,365	1.377
South Carolina	47,074	63,880	1.357
Tennessee	68,316	91,647	1.342
Virginia	76,566	102,971	1.345
West Virginia	19,544	24,891	1.274

The following States provided some types of forecast data for VMT. The information presented below indicates how those data were processed by MACTEC for use in the VISTAS projection inventories.

Kentucky:

Revised 2009 and 2018 VMT mix data were provided by the Louisville APCD. Therefore, the distribution of Jefferson County VMT by vehicle type within the KY VMT file was revised to reflect the provided mix. This did not affect the total forecasted VMT for either Jefferson County or the State, but does alter the fraction of that VMT accumulated by each of the eight vehicle types reflected in the VMT file. The following procedure was employed to make the VMT estimates consistent with the provided 2009/2018 VMT mix:

- a) The 16 MOBILE6 VMT mix fractions were aggregated into the following five vehicle types: LDV, LDT1, LDT2, HDV, and MC.
- b) The 8 VMT mileage classes were aggregated into the same five vehicle types (across all roadway types) and converted to fractions by normalizing against the total Jefferson County VMT.
- c) The ratio of the "desired" VMT fraction (i.e., that provided in the Louisville APCD VMT mix) to the "forecasted" VMT fraction (i.e., that calculated on the basis of the forecasted VMT data) was calculated for each of the five vehicle classes.
- d) All forecasted VMT data for Jefferson County were multiplied by the applicable ratio from step c as follows:

```
new LDGV = old LDGV * LDV ratio

new LDGT1 = old LDGT1 * LDT1 ratio

new LDGT2 = old LDGT2 * LDT2 ratio

new HDGV = old HDGV * HDV ratio

new LDDV = old LDDV * LDV ratio

new LDDT = old LDDT * LDT1 ratio

new HDDV = old HDDV * HDV ratio

new MC = old MC * MC ratio
```

The total forecasted VMT for Jefferson County was then checked to ensure that it was unchanged.

North Carolina:

North Carolina provided both VMT and VMT mix data by county and roadway type for 2018. Therefore, these data replaced the data developed for North Carolina using HDD rule growth

rates in their entirety. Similar data were submitted for 2009. Table 2.3-2 presents the resulting VMT estimates which differ from the "default" HDD rule estimates as follows:

Table 2.3-2 VMT and HDD Rule Estimates for North Carolina (million miles per year)

North Carolina							
2002	106,795						
	State Data	HDD Data					
2009	123,396	124,626					
2018	129,552	146,989					

As indicated, there are substantial reductions in the State-provided forecast data relative to that derived from the HDD rule. The growth rates for both 2009 and 2018 are only about half that implied by the HDD data (1.15 versus 1.17 for 2009 and 1.21 versus 1.38 for 2018). The resulting growth rates are the lowest in the VISTAS region.

NC did not provide VMT mix data for 2009. Therefore, the VMT mix fractions estimated using the "default" HDD rule growth rates were applied to the State-provided VMT estimates to generate vehicle-specific VMT. Essentially, the default HDD methodology produces VMT estimates at the county-road type-vehicle type level of detail, and these data can be converted into VMT fractions at that same level of detail. Note that these are not HDD VMT fractions, but VMT fractions developed from 2002 NC data using HDD vehicle-specific growth rates. In effect, they are 2002 NC VMT fractions "grown" to 2009.

The default VMT mix fraction was applied to the State-provided VMT data at the county and road type level of detail to generate VMT data at the county-road type-vehicle type level of detail. The one exception was for county 063, road 110, for which no VMT data were included in the HDD rule. For this single county/road combination, State-aggregate VMT mix fractions (using the HDD growth methodology) were applied to the county/road VMT data. The difference between road 110 VMT fractions across all NC counties is minimal, so there is no effective difference in utilizing this more aggregate approach vis-à-vis the more resolved county/road approach.

South Carolina:

South Carolina provided county and roadway type-specific VMT data for several future years. Data for 2018 was included and was used directly. Data for 2009 was not included, but was linearly interpolated from data provided for 2007 and 2010. The data were disaggregated into vehicle type-specific VMT using the VMT mixes developed for South Carolina using the HDD rule VMT growth rates. Table 2.3-3 presents the resulting VMT estimates which differ from the "default" HDD rule estimates as follows:

Table 2.3-3 VMT and HDD Rule Estimates for South Carolina (million miles per year)

South Carolina							
2002	47,074						
	State Data	HDD Data					
2009	55,147	54,543					
2018	65,133	63,880					

Tennessee:

In general, Tennessee estimates are based on the HDD rule growth rate as described in step two. However, Knox County provided independent VMT estimates for 2018 and these were used in place of the HDD rule-derived estimates. The Knox County estimates were total county VMT data only, so these were disaggregated into roadway and vehicle-type VMT using the distributions developed for Knox County in step two using the HDD rule VMT growth rates. No data for Knox County were provided for 2009, so the estimates derived using the HDD rule growth factors were adjusted by the ratio of "Knox County provided 2018 VMT" to "Knox County HDD Rule-derived 2018 VMT." Table 2.3-4 presents the resulting VMT estimates which differ from the "default" HDD rule estimates as follows:

Table 2.3-4 VMT and HDD Rule Estimates for Tennessee (million miles per year)

Tennessee								
2002	68,316							
	State Data	HDD Data						
2009	78,615	78,813						
2018	91,417	91,647						

Virginia:

Virginia provided county and roadway type-specific annual VMT growth rates and these data were applied to Virginia -provided VMT data for 2002 to estimate VMT in both 2009 and 2018. Virginia provided VMT mix data for 2002, but not 2009 or 2018. Therefore, the estimated VMT data for both 2009 and 2018 were disaggregated into vehicle type-specific VMT using the VMT mixes developed for VA using the HDD rule VMT growth rates. Table 2.3-5 presents the resulting VMT estimates which differ from the "default" HDD rule estimates as follows:

Table 2.3-5 VMT and HDD Rule Estimates for Virginia (million miles per year)

Virginia							
2002	77,472						
	State Data	HDD Data					
2009	88,419	89,196					
2018	104,944	104,164					

2.3.3 Base G Revisions

For the development of the VISTAS 2009 and 2018 Base G inventories and input files, VISTAS states reviewed the Base F inputs, and provided corrections, updates and supplemental data as noted below.

For all states modeled, the Base G updates include:

- Adding Stage II refueling emissions calculations to the SMOKE processing.
- Revised the HDD compliance. (REBUILD EFFECTS = .1)
- Revised Diesel sulfur values in 2009 to 43 ppm and 2018 to 11 ppm

In addition to the global changes, individual VISTAS states made the following updates:

KY – updated VMT and M6 input values for selected counties

NC – revised VMT estimates, speeds and vehicle distributions and updated registration distributions for Mobile 6.

TN - revised VMT and vehicle registration distributions for selected counties.

WV – revised VMT input data

AL, FL, and GA and VA did not provide updates for 2009/2018 Base G, and the Base F inputs were used for these States.

2.3.4 Development of non-road emission estimates

The sections that follow describe the projection process used to develop 2009 and 2018 non-road projection estimates, as revised through the spring of 2006, for sources found in the NONROAD model and those sources estimated outside of the model (locomotives, airplanes and commercial marine vessels).

2.3.4.1 NONROAD model sources

NONROAD model input files were prepared in both the fall of 2004 (Base F) and the spring of 2006 (Base G) based on the corresponding 2002 base year inventory input files available at the time the forecasts were developed, with appropriate updates for the projection years. Generally, this means that the Base F 2002 base year input files (as updated through the fall of 2004) were used as the basis for Base F projection year input file development and Base G 2002 base year input files as updated through the spring of 2006 were used as the basis for Base G projection year input file development. Thus, all base year revisions are inherently incorporated into the associated projection year revisions. Other specific updates for the projection years for NONROAD model sources consist of:

- 1. Revise the emission inventory year in the model (as well as various output file naming commands) to be reflective of the projection year.
- 2. Revise the fuel sulfur content for gasoline and diesel powered equipment.
- 3. Implement a limited number of local control program charges (national control program changes are handled internally within the NONROAD model, so explicit input file changes are not required).

All equipment population growth and fleet turnover impacts are also handled internally within the NONROAD model, so that explicit changes input file changes are not required.

Base F Input File Changes:

To correctly account for diesel fuel sulfur content differences between the base and projection years, two sets of input and output files were prepared for each forecast year, one set for land-based equipment and one set for marine equipment. This two-step projection process was required for Base F, because diesel fuel sulfur contents varied between land-based and marine-based non-road equipment and the Draft NONROAD2004 used for Base F allowed only a single diesel fuel sulfur input. Thus, the model was executed separately for land-based and marine-based equipment for Base F, and the associated outputs subsequently combined. The specific diesel fuel sulfur contents modeled were as follows:

Diesel S (ppm)	2002	2009	2018
Land-Based	2500	348	11
Marine-Based	2500	408	56

As indicated, the Draft NONROAD2004 model was run with both sets of input files and the output file results were then combined to produce a single NONROAD output set.

To correctly account for the national reduction in gasoline sulfur content (a national control not explicitly handled by the NONROAD model), all NONROAD input files for both 2009 and 2018 were revised to reflect a gasoline fuel sulfur content of 30 ppmW.

Base G Input File Changes:

With the release of Final NONROAD2005 that was used for the Base G projection year inventory development, the NONROAD model is capable of handling separate diesel fuel sulfur inputs for land-based and marine-based non-road equipment in a single model execution. Therefore, the two step modeling process described above for Base F updates was no longer required. Instead, the differential diesel fuel sulfur values are assembled into a single NONROAD input file as follows:

Diesel S (ppm)	2002	2009	2018
Land-Based	2500	348	11
Marine-Based	2638	408	56

Additionally, revised gasoline vapor pressure data were provided by Georgia regulators for 20 counties⁵ where reduced volatility requirements were established in 2003. Since this requirement began after the 2002 base year, the vapor pressure values in the base year input files for these counties are not correct for either the 2009 or 2018 forecast years. Therefore, to correctly forecast emissions in these counties, the forecast year gasoline vapor pressure inputs were revised to:

Gasoline RVP (psi)	2002	2009	2018
Spring	9.87	9.2	9.2
Summer	9.0	7.0	7.0
Fall	9.87	9.2	9.2
Winter	12.5	12.5	12.5

The summer vapor pressure was simply set equal to the 2003 control value, while the spring and fall vapor pressures were adjusted to reflect a single month of the reduced volatility limit. The winter volatility was assumed to be unaffected by the summertime control requirement.

2.3.4.1.1 Differences between 2009/2018

Other than diesel fuel sulfur content and the year of the projections, there are no differences in the methodology used to estimate emissions from NONROAD model sources. As indicated above, however the Base F 2009/2018 projections were developed using Draft NONROAD2004, while the Base G 2009/2018 projections were made using Final NONROAD2005.

⁵ The specific counties are: Banks, Chattooga, Clarke, Floyd, Gordon, Heard, Jasper, Jones, Lamar, Lumpkin, Madison, Meriwether, Monroe, Morgan, Oconee, Pike, Polk, Putnam, Troup, and Upson.

2.3.4.2 Non-NONROAD model sources

Using the 2002 base year emissions inventory for aircraft, locomotives, and commercial marine vessels (CMV) prepared as described earlier in this document, corresponding emission projections for 2009 and 2018 were developed in both the fall of 2004 (Base F) and the spring of 2006 (Base G). This section describes the procedures employed in developing those inventories. The information presented is intended to build off of that presented in the section describing the 2002 Base F base year inventory. It should be recognized that for both the Base F and Base G inventories, the base year inventory used to develop the emission forecasts was the latest available at the time of forecast development. Generally, this means that the 2002 base year inventory as updated through the fall of 2004 was used as the basis for the Base F projection year inventory development, and the Base F 2002 base year inventory was used as the basis for Base G projection year inventory development. Thus, all base year revisions (as described earlier in this document) are inherently incorporated into the associated projection year revisions.

Base F Revisions:

Table 2.3-6 shows the 2002 base year emissions for each State in the VISTAS region for aircraft, locomotives and CMV (as they existed prior to Base F development).

Table 2.3-6. Pre-Base F 2002 Aircraft, Locomotive, and Non-Recreational Marine Emissions
(annual tons, as of the fall of 2004)

Source	State	СО	NO_x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	3,787	175	226	87	17	196
	FL	25,431	8,891	2,424	2,375	800	3,658
	GA	6,620	5,372	1,475	1,446	451	443
	KY	2,666	657	179	175	63	263
	MS	1,593	140	44	43	13	96
Aircraft (2275)	NC	6,088	1,548	419	411	148	613
(2213)	SC	6,505	515	409	401	88	863
	TN	7,251	2,766	734	719	235	943
	VA	9,763	2,756	1,137	1,115	786	2,529
	WV	1,178	78	25	24	8	66
	Total	70,882	22,899	7,072	6,797	2,607	9,670
	AL	1,196	9,218	917	844	3,337	737
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,875	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,688	43,233	1,903	1,751	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
	TN	3,624	27,555	1,217	1,120	4,974	860
	VA	972	2,775	334	307	359	483
	WV	1,528	11,586	487	448	525	362
	Total	28,207	209,972	9,911	9,118	36,275	7,413
Military Marine	VA	110	313	25	23	27	48
(2283)	Total	110	313	25	23	27	48
	AL	3,490	26,339	592	533	1,446	1,354
	FL	1,006	9,969	247	222	605	404
	GA	2,654	26,733	664	598	1,622	1,059
	KY	2,166	21,811	542	488	1,321	867
.	MS	2,302	23,267	578	520	1,429	899
Locomotives (2285)	NC	1,638	16,502	410	369	1,001	654
(2203)	SC	1,160	11,690	291	261	710	462
	TN	2,626	25,627	633	570	1,439	1,041
	VA	1,186	11,882	1,529	1,375	3,641	492
	WV	1,311	13,224	329	296	808	517
	Total	19,540	187,044	5,815	5,232	14,022	7,750
Grand Total		118,739	420,228	22,823	21,170	52,931	24,881

Although some of the data utilized was updated, the methodology used to develop the Base F 2009 and 2018 emissions forecasts for aircraft, locomotives, and CMV is identical to that used earlier to develop preliminary 2018 Base 1 ("On the Books") and 2018 Base 2 ("On the Way") inventories. Briefly, the methodology relies on growth and control factors developed from inventories used in support of recent EPA rulemakings, and consists of the following steps:

- (a) Begin with the 2002 base year emission estimates for aircraft, locomotive, and CMV as described above (at the State-county-SCC-pollutant level of detail).
- (b) Detailed inventory data (both before and after controls) for these same emission sources for 1996, 2010, 2015, and 2020 were obtained from the EPA's Clean Air Interstate Rule (CAIR) Technical Support Document (which can be found at http://www.epa.gov/cair/pdfs/finaltech01.pdf). Using these data, combined growth and control factors for the period 2002-2009 and 2002-2018 were estimated using straight line interpolation between 1996 and 2010 (for 2009) and 2015 and 2020 (for 2018). This is done at the State-county-SCC-pollutant level of detail.
- (c) The EPA growth and control data are matched against the 2002 VISTAS base year data using State-county-SCC-pollutant as the match key. Ideally, there would be a one-to-one match and the process would end at this point. Unfortunately, actual match results were not always ideal, so additional matching criteria were required. For subsequent reference, this initial (highest resolution) matching criterion is denoted as the "CAIR-Primary" criterion.
- (d) A second matching criterion is applied that utilizes a similar, but higher-level SCC (lower resolution) matching approach. For example, SCC 2275020000 (commercial aircraft) in the 2002 base year inventory data would be matched with SCC 2275000000 (all aircraft) in the CAIR data. This criterion is applied to records in the 2002 base year emissions file that are not matched using the "CAIR-Primary" criterion, and is also performed at the State-county-SCC-pollutant level of detail. For subsequent reference, this is denoted as the "CAIR-Secondary" criterion. At the end of this process, a number of unmatched records remained, so a third level matching criterion was required.
- (e) In the third matching step, the most frequently used SCC in the EPA CAIR files for each of the aircraft, locomotive, and commercial marine sectors was averaged at the State level to produce a "default" State and pollutant-specific growth and control factor for the sector. The resulting factor is used as a "default" growth factor for all unmatched county-SCC-pollutant level data in each State. In effect, State-specific growth data are applied to county level data for which an explicit match between the VISTAS 2002 base year data and EPA CAIR data could not be developed. The default growth and control

- SCCs are 2275020000 (commercial aircraft) for the aircraft sector, 2280002000 (commercial marine diesel total) for the CMV sector, and 2285002000 (railroad equipment diesel total) for the locomotive sector. Matches made using this criterion are denoted as "CAIR-Tertiary" matches.
- (f) According to EPA documentation, the CAIR baseline emissions include the impacts of the (then proposed) Tier 4 (T4) non-road diesel rulemaking, which implements a low sulfur fuel requirement that affects both future CMV and locomotive emissions. However, the impacts of this rule were originally intended to be excluded from the initial VISTAS 2018 forecast, which was to include only "on-the-books" controls. (The T4 rule was finalized subsequent to the development of the preliminary 2018 inventory in March of 2004.) Given its final status, T4 impacts were moved into the "on the books" inventory for non-road equipment. In addition, since there are no other proposed rules affecting the non-road sector between 2002 and 2018, there is no difference between the 2018 "on the books" and 2018 "on the way" inventories for the sector; so that only a single forecast inventory (for each evaluation year) was developed. Nevertheless, since the algorithms developed to produce the VISTAS forecasts were developed when there was a distinction between the "on the books" and "on the way" inventories, the distinct algorithms used to produce the two inventories have been maintained even though the conceptual distinctions have been lost. This approach was taken for two reasons. First, it allowed the previously developed algorithms to be utilized without change. Second, it allowed for separate treatment of the T4 emissions impact which was important as those impacts changed between the proposed and final T4 rules. Thus, previous EPA inventories that include the proposed T4 impacts would not be accurate. Therefore, the procedural discussion continues to reflect the distinctions between non-T4 and T4 emissions, as these distinctions continue to be intrinsically important to the forecasting process. Therefore, a second set of EPA CAIR files that excluded the Tier 4 diesel impacts was obtained and the same matching exercise described above in steps (b) through (e) was performed using these "No T4" files. It is important to note that the matching exercise described in steps (b) through (e) cannot simply be replaced because the "No T4" files obtained from the EPA include only those SCCs specifically affected by the T4 rule (i.e., diesel CMV and locomotives). So in effect, the matching exercise was augmented (rather than replaced) with an additional three criteria analogous to those described in steps (c) through (e), and these are denoted as the "No T4-Primary," "No T4-Secondary," and "No T4-Tertiary" criteria. Because they exclude the impacts of the proposed T4 rule, matches using the "No T4" criteria supersede matches made using the basic CAIR criteria (as described in steps (c) through (e) above).

(g) The CAIR matching criteria were overridden for any record for which States provided local growth data. Only North Carolina provided these forecasts, as that State has provided specific growth factors for airport emissions in four counties. Because the provided data were based on forecasted changes in landings and takeoffs at major North Carolina airports, the factors were applied only to commercial (SCC 2275020000) and air taxi (SCC 2275060000) emissions. Emissions forecasts for military and general aviation aircraft operations, as well as all aircraft operations in counties other than the four identified in the North Carolina growth factor submission, continued to utilize the growth factors developed according to steps (b) through (f) above. Table 2.3-7 presents the locally generated growth factors applied in North Carolina.

Table 2.3-7 Locally Generated Growth Factors for North Carolina

FIP	2009 Factor	2018 Factor
37067	0.71	0.84
37081	0.97	0.89
37119	1.15	1.01
37183	0.88	0.81

Note:

Growth factor = Year Emissions/2002 Emissions. Under CAIR approach, 2009 = 1.16 to 1.17 for all 4 counties. Under CAIR approach, 2018 = 1.36 to 1.37 for all 4 counties.

- (h) Using this approach, each State-county-SCC-pollutant was assigned a combined growth and control factor using the EPA CAIR forecast or locally provided data. The 22,838 data records for aircraft, locomotives, and CMV in the 2002 revised base year emissions file were assigned growth factors in accordance with the following breakdown:
 - 48 records matched State-provided growth factors,
 - 4,179 records matched using the CAIR-Primary criterion,
 - 240 records matched using the CAIR-Secondary criterion,
 - 7,463 records matched using the CAIR-Tertiary criterion,
 - 720 records matched using the No T4-Primary criterion,
 - 3,858 records matched using the No T4-Secondary criterion, and
 - 6,330 records matched using the No T4-Tertiary criterion.
- (i) Finally, the impacts of the T4 rule as adopted were applied to the grown "non T4" emission estimates. The actual T4 emission standards do not affect aircraft, locomotive, or CMV directly, but associated diesel fuel sulfur requirements do affect locomotives and CMV. Lower fuel sulfur content affects both SO₂ and PM emissions. Expected fuel sulfur

contents were obtained for each evaluation year from the EPA technical support document for the final T4 rule (*Final Regulatory Analysis: Control of Emissions from Non-road Diesel Engines*, EPA420-R-04-007, May 2004). According to that document, the average diesel fuel sulfur content for locomotives and CMV is expected to be 408 ppmW in 2009 and 56 ppmW in 2018. These compare to expected non-T4 fuel sulfur levels of 2599 ppmW in 2009 and 2336 ppmW in 2018. Table 2.3-8 uses calculated emissions estimates for base and T4 control scenarios to estimate emission reduction impacts.

Table 2.3-8 Estimated Emission Reduction Impacts based on T-4 Rule

				2009	2018
CMV SO ₂	=	Non-T4 SO ₂	×	0.1569	0.0241
Locomotive SO) ₂ =	Non-T4 SO ₂	×	0.1569	0.0241
CMV PM	=	Non-T4 PM	×	0.8962	0.8762
Locomotive PM	1 =	Non-T4 PM	×	0.8117	0.7734

However, since the diesel fuel sulfur content assumed for the 2002 VISTAS base year inventory, upon which both the 2009 and 2018 inventories were based, is 2500 ppmW, a small adjustment to the emission reduction multipliers calculated from the T4 rule is appropriate since they are measured relative to modestly different sulfur contents (2599 ppmW for 2009 and 2336 ppmW for 2018). Correcting for these modest differences produces the emission reduction impact estimates relative to forecasts based on the VISTAS 2002 inventory shown in Table 2.3-9.

Table 2.3-9 Estimated Emission Reduction Impacts Relative to VISTAS 2002 Base Year Values

				2009	2018
CMV SO ₂	=	Non-T4 SO ₂	×	0.1632	0.0225
Locomotive SO	$O_2 =$	Non-T4 SO ₂	×	0.1632	0.0225
CMV PM	=	Non-T4 PM	×	0.9004	0.8685
Locomotive Pl	M =	Non-T4 PM	×	0.8187	0.7610

These factors were applied directly to the non-T4 emission forecasts to produce the final VISTAS 2009 and 2018 emissions inventories for aircraft, locomotive, and CMV.

The only exception is for Palm Beach County, Florida, where CMV emissions are reported as "all fuels" rather than separately by residual and diesel fuel components. To estimate T4 impacts in Palm Beach County, the ratio of diesel CMV emissions to total

CMV emissions in the remainder of Florida was calculated and the T4 impact estimates for Palm Beach County were adjusted to reflect that ratio. Table 2.3-10 shows the calculated diesel CMV ratios.

Table 2.3-10 Diesel CMV Adjustment Ratios for Palm Beach County, FL

GROWTH BASIS	SO ₂	PM
2009 (1996, 2020 Growth Basis)	0.2410	0.7861
2009 (1996, 2010, 2015, and 2020 Growth Basis)	0.1279	0.7875
2018 (1996, 2020 Growth Basis)	0.2432	0.7925
2018 (1996, 2010, 2015, and 2020 Growth Basis)	0.2624	0.7918

The differences between the growth bases are discussed in detail below.

Combining these ratios with the T4 impact estimates for diesel engines, as presented above, yields the following impact adjustment factors for Palm Beach County:

Table 2.3-11 Overall Adjustment Factors for Palm Beach County, FL

GROWTH BASIS		
2009 SO ₂ (19, 20 Growth Basis)	0.7894	[0.1632×0.2410+(1-0.2410)]
2009 SO ₂ (96, 10, 15, and 20 Growth Basis)	0.8930	[0.1632×0.1279+(1-0.1279)]
2018 SO ₂ (96, 20 Growth Basis)	0.7623	[0.0225×0.2432+(1-0.2432)]
2018 SO ₂ (96, 10, 15, and 20 Growth Basis)	0.7436	[0.0225×0.2624+(1-0.2624)]
2009 PM (19, 20 Growth Basis)	0.9217	[0.9004×0.7861+(1-0.7861)]
2009 PM (96, 10, 15, and 20 Growth Basis)	0.9216	[0.9004×0.7875+(1-0.7875)]
2018 PM (96, 20 Growth Basis)	0.8958	[0.8685×0.7925+(1-0.7925)]
2018 PM (96, 10, 15, and 20 Growth Basis)	0.8959	[0.8685×0.7918+(1-0.7918)]

The differences between the growth bases are discussed in detail below.

Utilizing this approach, emission inventory forecasts for both 2009 and 2018 were developed. As indicated in step (b) above, basic growth factors were developed using EPA CAIR inventory data for 1996, 2010, 2015, and 2020. From these data, equivalent EPA CAIR inventories for 2002 and 2009 were developed through linear interpolation of the 1996 and 2010 inventories, while an equivalent CAIR inventory for 2018 was developed through linear interpolation of the 2015 and 2020 inventories. Growth factors for 2009 and 2018 were then estimated as the ratios of the CAIR 2009 and 2018 inventories to the CAIR 2002 inventory.

During the development of the preliminary 2018 VISTAS inventory in March 2004, this process yielded reasonable results and exhibited no particular systematic concerns. However, when the 2009 Base F inventory was developed, significant concerns related to SO₂ and PM were encountered. Essentially, what was revealed by the Base F 2009 forecast was a series of apparent inconsistencies in the CAIR 2010 and 2015 emission inventories (as compared to the 1996 and 2020 CAIR inventories) that were masked during the construction of the "longer-term" 2018 inventory.

The apparent inconsistencies are best illustrated by looking at the actual data extracted from the CAIR inventory files. Note that although a limited example is being presented, the same general issue applies throughout the CAIR files. For FIP 01001 (Autauga County, Alabama) and SCC 2285002000 (Diesel Rail), the CAIR inventories indicate SO₂ emission estimates as shown in Table 2.3-12.

Table 2.3-12 SO₂ Emissions for Diesel Rail in Autauga County, AL from the CAIR Projections

YEAR	TONS
1996:	15.3445
2010:	2.7271
2015:	2.8178
2020:	16.6232

Clearly, there is a major drop in emissions between 1996 and 2010, followed by a major increase in emissions between 2015 and 2020. Several observations regarding these changes are important. First, the CAIR data were reported to exclude the T4 rule, so that the drop in emissions should be related to something other than simply a change in diesel fuel sulfur content. Second, if the T4 rule impacts were "accidentally" included in the estimates, there should be a resultant 90 percent drop in diesel sulfur between 2010 and 2015; so such inclusion is unlikely. Third, the rate of growth between 2015 and 2020 (43 percent *per year* compound or 97 percent *per year* linear) is well beyond any reasonable expectations for rail service; and fuel sulfur content during this period is constant both with and without T4. In short, there appeared to be no rational explanation for the data, yet the same basic relations are observed for thousands of CAIR inventory records.

For the most part, the issue seems to be centered on SO_2 and PM records, which are those records primarily affected by the T4 rule. But, as noted above, there does not seem to be any pattern of consistency that would indicate that either inclusion or exclusion of T4 rule impacts is the underlying cause. Moreover, where they occur, the observed growth extremes generally affect both SO_2 and PM equally, while one would expect PM effects to be buffered if the T4 rule

was the underlying cause, since changes in diesel fuel sulfur content will only affect a fraction of PM (i.e., sulfate), while directly reducing SO₂.

The data presented in Figure 2.3-1 illustrates what this meant to the VISTAS forecasting process. Figure 2.3-1 depicts the same data presented above for Autauga County, Alabama, but normalized so that the interpolated 2002 CAIR emissions estimate equals unity. The "raw" CAIR data is depicted by the markers labeled A, B, C, and D. Interpolated data for 2002 and 2009, based on 1996 and 2010 CAIR data, is depicted by the markers labeled "i" and "ii." Interpolated data for 2018, based on 2015 and 2020 CAIR data is depicted by the marker labeled "iii." The relationship between marker "iii" and marker "i" is exactly the relationship used to construct the preliminary (e.g., pre-Base F) 2018 VISTAS inventory (i.e., a linear growth rate equal to 0.7 percent per year). Thus, it is easy to see that although there is a major "dip and rise" between 2002 and 2018, it is essentially masked unless data for intervening years are examined. Since no intervening year was examined for the preliminary 2018 inventory, the "dip and rise" was not discovered. However, upon the development of the 2009 inventory forecast, the issue became obvious, as the marker labeled "ii" readily illustrates. In effect, the 2009 inventory reflected very low negative "growth rates" for some SCCs and pollutants relative to the 2002 inventory, while the 2018 inventory reflected very high and positive growth rates for those same SCCs and pollutants. In effect, the path between 2002 and 2018 that previously looked like the dotted line connecting markers "i" and "iii," now looks like the solid line connecting markers "i", "ii," and "iii." For reference purposes, this path is hereafter referred to as the 1996, 2010, 2015, and 2020 growth basis, since all interpolated data is based on CAIR data for those four years.

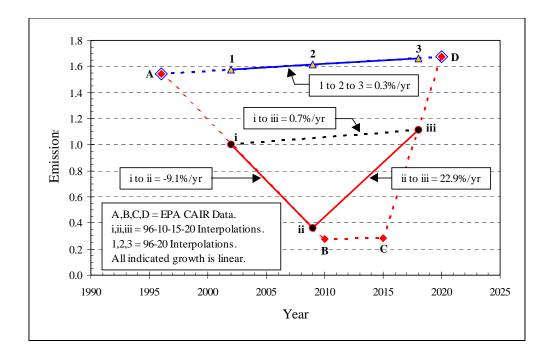


Figure 2.3-1. Impacts of the Apparent CAIR Inventory Discrepancy

In light of the apparent discrepancies inherent in the 1996, 2010, 2015, and 2020 growth basis data and the inconsistencies its use would impart into the 2009 and 2018 VISTAS inventories, a secondary forecasting method was developed. This second method relies on the apparent consistency between the 1996 and 2020 non-T4 CAIR inventories, interpolating equivalent 2002, 2009, and 2018 inventories solely from these two inventories. In effect, the CAIR inventories for 2010 and 2015 are ignored. In Figure 2.3-1, this secondary approach is depicted by the data points that lie along the lines connecting markers A and D. Markers A and D represent the 1996 and 2020 CAIR inventories, and the markers labeled 1, 2, and 3 represent the interpolated 2002, 2009, and 2018 CAIR equivalent inventories. The growth rate between 2009 and 2002 is then equal to the ratio of the 2009 and 2002 CAIR inventories, while that between 2018 and 2002 is equal to the ratio of the 2018 and 2002 CAIR inventories. For the example data, the resulting linear growth estimate is 0.3 percent per year. For reference purposes, this path is hereafter referred to as the 1996-2020 growth basis, since all interpolated data are based on CAIR data for only those two years.

It is perhaps worth noting that the only elements of Figure 2.3-1 that have any bearing on the VISTAS inventories are the growth rates. The absolute CAIR data are of importance only in determining those rates, as all VISTAS inventories were developed on the basis of the VISTAS 2002 base year inventory, not any of the CAIR inventories. So referring to Figure 2.3-1, the two growth options are summarized in Table 2.3-13.

 GROWTH BASIS
 PERCENT PER YEAR

 1996, 2010, 2015, 2020 Growth Basis:
 -9.1% per year (linear) between 2002 and 2009

 1996-2020 Growth Basis:
 +0.3% per year (linear) between 2002 and 2009

 1996, 2010, 2015, 2020 Growth Basis:
 +22.9% per year (linear) between 2009 and 2018

 1996-2020 Growth Basis:
 +0.3% per year (linear) between 2002 and 2018

 1996-2020 Growth Basis:
 +0.7% per year (linear) between 2002 and 2018

 1996-2020 Growth Basis:
 +0.3% per year (linear) between 2002 and 2018

Table 2.3-13 Growth Options based on CAIR Data

Of course, these specific rates are applicable only to the example case (i.e., diesel rail SO_2 in Autauga County, Alabama), but there are thousands of additional CAIR records that are virtually identical from a growth viewpoint.

While forecast inventories for aircraft, locomotives, and CMV were developed for 2009 and 2018 using both growth methods, it was ultimately decided to utilize the 1996-2020 growth basis for Base F since it provided more reasonable growth rates for 2009. Tables 2.3-14 and 2.3-15 present a summary of each Base F inventory, while Tables 2.3-16 and 2.3-17 present the associated change in emissions for each Base F forecast inventory relative to the Base F 2002

base year VISTAS inventory. The larger reduction in CMV SO₂ emissions in 2009 and 2018 (relative to 2002) for Virginia and West Virginia is notable relative to the other VISTAS States, but this has been checked and is attributable to a high diesel contribution to total CMV SO₂ in the 2002 inventories for these two States.

Figures 2.3-2 through 2.3-13 graphically depict the relationships between the various Base F inventories and preliminary 2002 and 2018 projections prepared prior to Base F. There are two figures for each pollutant, the first of which presents a comparison of total VISTAS regional emission estimates for aircraft, locomotives, and CMV, and the second of which presents total VISTAS region emission estimates for locomotives only. This two figure approach is intended to provide a more robust illustration of the differences between the various inventories, as some of the differences are less distinct when viewed through overall aggregate emissions totals. All of the figures include the following emissions estimates:

- The 2002 Base F base year VISTAS emissions inventory (labeled as "2002"),
- The 2002 pre-Base F base year VISTAS emissions inventory (labeled as "2002 Prelim"),
- The Base F 2009 VISTAS emissions inventory developed using growth rates derived from 1996 and 2020 EPA CAIR data (labeled as "2009"),
- The Base F 2018 VISTAS emissions inventory developed using growth rates derived from 1996 and 2020 EPA CAIR data (labeled as "2018"), and
- The pre-Base F 2018 VISTAS emissions inventory estimates as developed using growth rates derived from 1996, 2010, 2015, and 2020 EPA CAIR data (labeled as "2018 Prelim").

All 12 figures generally illustrate a reduction in emissions estimates between the 2002 pre-Base F emission estimates published in February 2004 (the initial 2002 VISTAS inventory) and the 2002 Base F emission estimates. This reduction generally results from emission updates reflected in the State 2002 CERR submittals used to develop the Base F 2002 base year inventory, although the major differences in aggregate PM emission estimates are driven to a greater extent by modifications in the methodology used to estimate aircraft PM in the Base F 2002 base year inventory (as documented under the base year inventory section of this report).

Table 2.3-14. Base F 2009 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	4,178	202	278	102	19	217
	FL	29,258	10,316	2,812	2,756	928	4,235
	GA	7,635	6,233	1,712	1,678	523	512
	KY	3,075	762	207	203	73	304
	MS	1,765	162	51	50	16	108
Aircraft (2275)	NC	6,551	1,601	436	427	153	644
(2213)	SC	7,372	559	446	437	98	975
	TN	8,020	3,096	824	807	268	1,050
	VA	10,994	3,094	1,239	1,214	907	2,892
	WV	1,312	91	28	28	9	74
	Total	80,159	26,116	8,033	7,704	2,993	11,011
	AL	1,280	8,888	872	802	2,753	768
	FL	6,236	43,198	1,838	1,691	5,864	1,467
	GA	1,097	7,599	317	291	974	256
	KY	7,087	48,039	2,158	1,985	8,350	1,649
Commercial	MS	6,074	41,437	1,821	1,676	6,587	1,415
Marine	NC	634	4,386	184	169	584	148
(2280)	SC	1,133	7,796	326	300	1,012	264
	TN	3,887	26,333	1,168	1,074	4,512	904
	VA	1,042	2,662	312	286	61	506
	WV	1,638	11,073	455	419	89	381
	Total	30,109	201,412	9,450	8,693	30,786	7,759
Military Marine	VA	118	299	23	21	5	50
(2283)	Total	118	299	23	21	5	50
	AL	3,648	23,529	452	406	242	1,279
	FL	1,052	8,905	189	170	101	382
	GA	2,769	24,398	507	456	271	1,003
	KY	2,264	19,597	415	374	221	819
Locomotives	MS	2,406	20,785	441	397	239	849
(2285)	NC	1,712	14,741	313	282	167	618
(2200)	SC	1,213	10,443	222	200	119	437
	TN	2,745	23,924	483	435	240	984
	VA	1,236	11,134	1,167	1,050	608	467
	WV	1,369	12,177	251	226	135	489
	Total	20,412	169,635	4,440	3,995	2,343	7,328
Grand Total		130,798	397,462	21,946	20,413	36,126	26,148

Table 2.3-15. Base F 2018 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	4,681	236	345	122	23	245
	FL	34,178	12,147	3,312	3,246	1,093	4,976
	GA	8,939	7,340	2,016	1,976	616	601
	KY	3,602	898	244	239	86	357
A *	MS	1,986	190	60	58	18	122
Aircraft (2275)	NC	6,728	1,454	400	392	139	615
(2213)	SC	8,487	616	493	484	112	1,119
	TN	9,009	3,519	939	921	309	1,187
	VA	12,578	3,528	1,370	1,342	1,063	3,358
	WV	1,484	106	33	33	10	85
	Total	91,670	30,035	9,213	8,814	3,468	12,666
	AL	1,388	8,464	880	809	2,715	809
	FL	6,684	41,117	1,853	1,705	6,248	1,543
	GA	1,174	7,246	319	293	976	269
	KY	7,703	45,174	2,199	2,023	8,383	1,752
Commercial	MS	6,571	39,129	1,850	1,702	6,556	1,498
Marine	NC	679	4,179	185	170	596	155
(2280)	SC	1,217	7,406	329	303	1,027	278
	TN	4,225	24,763	1,190	1,095	4,808	960
	VA	1,133	2,517	314	289	9	537
	WV	1,781	10,412	459	422	13	404
	Total	32,554	190,407	9,578	8,811	31,330	8,205
Military Marine	VA	128	282	23	21	1	53
(2283)	Total	128	282	23	21	1	53
	AL	3,850	19,917	381	343	34	1,183
	FL	1,110	7,538	159	143	14	353
	GA	2,917	21,395	427	385	38	932
	KY	2,389	16,751	352	317	31	757
Lagamativas	MS	2,540	17,594	372	335	34	785
Locomotives (2285)	NC	1,807	12,478	264	237	24	571
(====)	SC	1,280	8,840	187	168	17	404
	TN	2,897	21,735	407	367	34	910
	VA	1,300	10,173	983	885	86	436
	WV	1,444	10,831	212	190	19	453
	Total	21,534	147,252	3,744	3,368	333	6,785
Grand Total		145,885	367,975	22,557	21,015	35,132	27,709

Table 2.3-16. Change in Emissions between 2009 and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	+10%	+15%	+23%	+18%	+16%	+11%
	FL	+15%	+16%	+16%	+16%	+16%	+16%
	GA	+15%	+16%	+16%	+16%	+16%	+16%
	KY	+15%	+16%	+16%	+16%	+16%	+16%
A	MS	+11%	+16%	+15%	+15%	+16%	+12%
Aircraft (2275)	NC	+8%	+3%	+4%	+4%	+3%	+5%
(2213)	SC	+13%	+9%	+9%	+9%	+12%	+13%
	TN	+11%	+12%	+12%	+12%	+14%	+11%
	VA	+13%	+12%	+9%	+9%	+15%	+14%
	WV	+11%	+16%	+15%	+15%	+16%	+12%
	Total	+13%	+14%	+14%	+13%	+15%	+14%
	AL	+7%	-4%	-5%	-5%	-18%	+4%
	FL	+6%	-4%	-5%	-5%	-12%	+4%
	GA	+6%	-3%	-5%	-5%	-17%	+4%
	KY	+7%	-4%	-4%	-4%	-13%	+5%
Commercial	MS	+7%	-4%	-4%	-4%	-15%	+5%
Marine	NC	+6%	-4%	-5%	-5%	-15%	+4%
(2280)	SC	+6%	-4%	-5%	-5%	-16%	+4%
	TN	+7%	-4%	-4%	-4%	-9%	+5%
	VA	+7%	-4%	-7%	-7%	-83%	+5%
	WV	+7%	-4%	-7%	-7%	-83%	+5%
	Total	+7%	-4%	-5%	-5%	-15%	+5%
Military Marine	VA	+7%	-4%	-7%	-7%	-83%	+5%
(2283)	Total	+7%	-4%	-7%	-7%	-83%	+5%
	AL	+5%	-11%	-24%	-24%	-83%	-6%
	FL	+5%	-11%	-24%	-24%	-83%	-6%
	GA	+4%	-9%	-24%	-24%	-83%	-5%
	KY	+5%	-10%	-23%	-23%	-83%	-6%
Lagamativas	MS	+5%	-11%	-24%	-24%	-83%	-6%
Locomotives (2285)	NC	+5%	-11%	-24%	-24%	-83%	-6%
(2203)	SC	+5%	-11%	-24%	-24%	-83%	-6%
	TN	+5%	-7%	-24%	-24%	-83%	-6%
	VA	+4%	-6%	-24%	-24%	-83%	-5%
	WV	+4%	-8%	-24%	-24%	-83%	-5%
	Total	+4%	-9%	-24%	-24%	-83%	-5%
Grand Total		+10%	-5%	-4%	-4%	-32%	+5%

Table 2.3-17. Change in Emissions between 2018 and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)

Source	State	СО	NO _x	PM_{10}	PM _{2.5}	SO ₂	VOC
	AL	+24%	+35%	+53%	+41%	+36%	+25%
	FL	+34%	+37%	+37%	+37%	+37%	+36%
	GA	+35%	+37%	+37%	+37%	+37%	+36%
	KY	+35%	+37%	+37%	+37%	+37%	+36%
	MS	+25%	+36%	+35%	+35%	+36%	+27%
Aircraft (2275)	NC	+10%	-6%	-5%	-5%	-6%	0%
(2213)	SC	+30%	+20%	+21%	+21%	+27%	+30%
	TN	+24%	+27%	+28%	+28%	+31%	+26%
	VA	+29%	+28%	+20%	+20%	+35%	+33%
	WV	+26%	+36%	+35%	+35%	+36%	+28%
	Total	+29%	+31%	+30%	+30%	+33%	+31%
	AL	+16%	-8%	-4%	-4%	-19%	+10%
	FL	+14%	-8%	-4%	-4%	-7%	+9%
	GA	+13%	-8%	-5%	-5%	-17%	+9%
	KY	+17%	-10%	-2%	-2%	-13%	+12%
Commercial	MS	+16%	-9%	-3%	-3%	-15%	+11%
Marine	NC	+13%	-8%	-4%	-4%	-14%	+9%
(2280)	SC	+14%	-9%	-4%	-4%	-15%	+10%
	TN	+17%	-10%	-2%	-2%	-3%	+12%
	VA	+17%	-9%	-6%	-6%	-98%	+11%
	WV	+17%	-10%	-6%	-6%	-98%	+12%
	Total	+15%	-9%	-3%	-3%	-14%	+11%
Military Marine	VA	+17%	-10%	-6%	-6%	-98%	+12%
(2283)	Total	+17%	-10%	-6%	-6%	-98%	+12%
	AL	+10%	-24%	-36%	-36%	-98%	-13%
	FL	+10%	-24%	-36%	-36%	-98%	-13%
	GA	+10%	-20%	-36%	-36%	-98%	-12%
	KY	+10%	-23%	-35%	-35%	-98%	-13%
Lagamativas	MS	+10%	-24%	-36%	-36%	-98%	-13%
Locomotives (2285)	NC	+10%	-24%	-36%	-36%	-98%	-13%
(=300)	SC	+10%	-24%	-36%	-36%	-98%	-13%
	TN	+10%	-15%	-36%	-36%	-98%	-13%
	VA	+10%	-14%	-36%	-36%	-98%	-11%
	WV	+10%	-18%	-36%	-36%	-98%	-12%
	Total	+10%	-21%	-36%	-36%	-98%	-12%
Grand Total		+23%	-12%	-1%	-1%	-34%	+11%

Figure 2.3-2. Total Aircraft, Locomotive, and CMV CO Emissions (Base F)

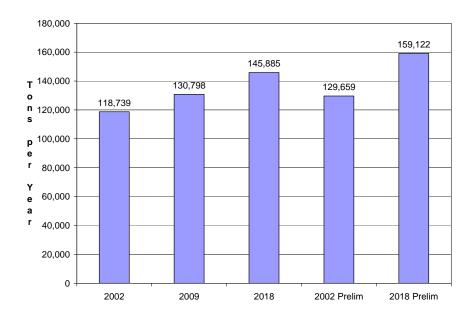


Figure 2.3-3. Locomotive CO Emissions (Base F)

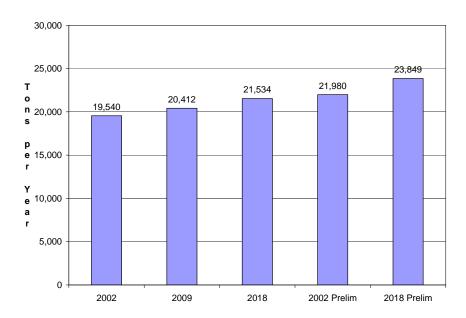


Figure 2.3-4. Total Aircraft, Locomotive, and CMV NO_x Emissions (Base F)

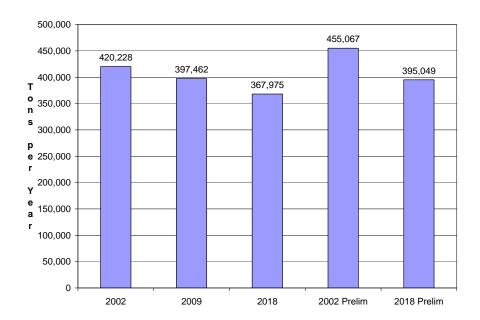


Figure 2.3-5. Locomotive NO_x Emissions (Base F)

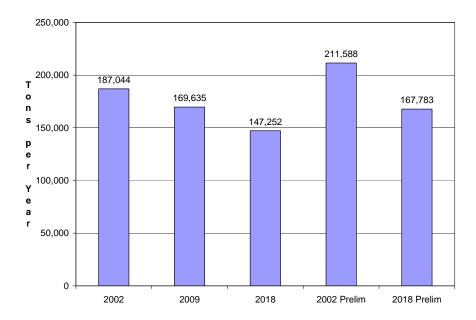


Figure 2.3-6. Total Aircraft, Locomotive, and CMV PM₁₀ Emissions (Base F)

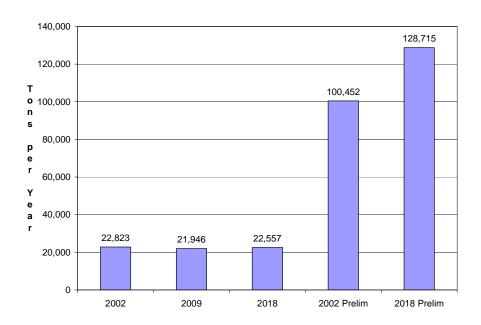


Figure 2.3-7. Locomotive PM₁₀ Emissions (Base F)

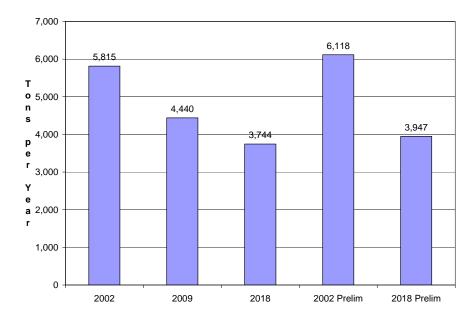


Figure 2.3-8. Total Aircraft, Locomotive, and CMV PM_{2.5} Emissions (Base F)

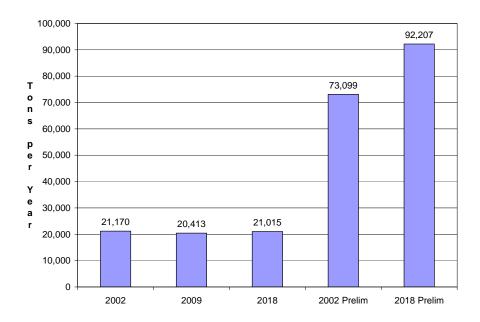


Figure 2.3-9. Locomotive PM_{2.5} Emissions (Base F)

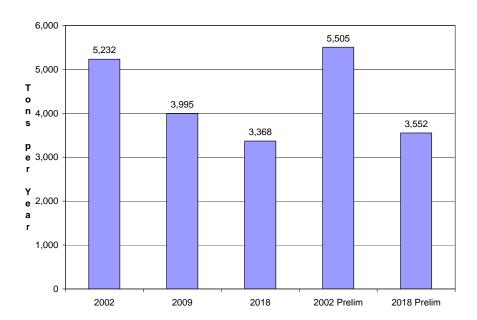


Figure 2.3-10. Total Aircraft, Locomotive, and CMV SO₂ Emissions (Base F)

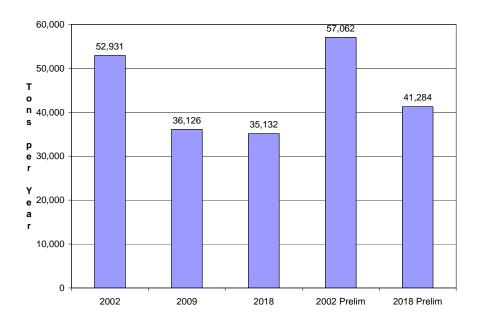


Figure 2.3-11. Locomotive SO₂ Emissions (Base F)

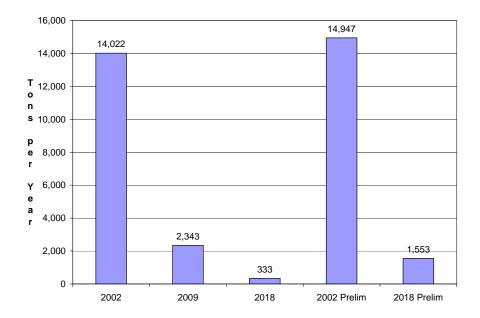


Figure 2.3-12. Total Aircraft, Locomotive, and CMV VOC Emissions (Base F)

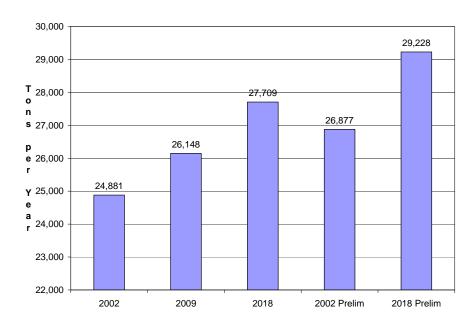
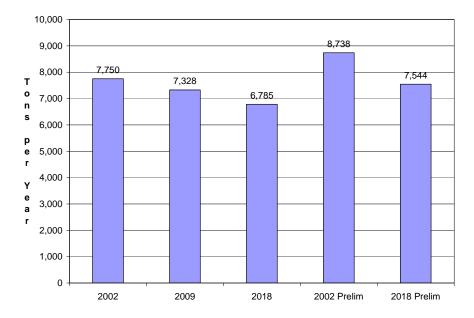



Figure 2.3-13. Locomotive VOC Emissions (Base F)

Base G Revisions:

Table 2.3-18 shows the Base G 2002 base year emissions for each State in the VISTAS region for aircraft, locomotives and CMV. Although some of these data are updated relative to those used as the basis of the Base F emissions forecasts, the methodology used to develop 2009 and 2018 emissions forecasts for aircraft, locomotives, and CMV for Base G is identical to that used for Base F (as documented above). The only exceptions are as follows:

(a) As indicated in the discussion of the Base F forecasts, the CAIR (growth rate) matching criteria were overridden for any record for which States provided local growth data. For Base F, only North Carolina provided such data. However, for Base G, Kentucky regulators provided growth data for aircraft emissions associated with Cincinnati/Northern Kentucky International Airport (located in Boone County, Kentucky). These data were applied to all pollutants and all aircraft types (i.e., military aircraft (SCC 2275001000), commercial aircraft (SCC 2275020000), general aviation aircraft (SCC 2275050000), and air taxi aircraft (SCC 2275060000)). Emissions forecasts for all aircraft operations in counties other than Boone continued to utilize the growth factors developed according to the CAIR matching criteria. Table 2.3-19 presents the locally generated growth factors applied in Kentucky. It should be recognized that although the locally provided growth factors presented in the table are significantly greater than those that would apply under the CAIR matching criteria, this is to be expected as local regulators noted a very significant decline in activity at the Cincinnati/Northern Kentucky International Airport in 2002 (relative to activity in preceding years). Moreover, this downward spike seems to have been alleviated since 2002, so that the provided growth factors represent not only "routine" growth expected between 2002 and the two forecast years, but growth required to offset the temporary decline observed in 2002.

Table 2.3-18. Base G 2002 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons)

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	5,595	185	238	99	18	276
	FL	25,431	8,891	2,424	2,375	800	3,658
	GA	6,620	5,372	1,475	1,446	451	443
	KY	5,577	925	251	246	88	397
	MS	1,593	140	44	43	13	96
Aircraft (2275)	NC	6,088	1,548	419	411	148	613
(2213)	SC	6,505	515	409	401	88	863
	TN	7,251	2,766	734	719	235	943
	VA	11,873	3,885	2,010	1,970	272	2,825
	WV	1,178	78	25	24	8	66
	Total	77,712	24,305	8,029	7,734	2,121	10,179
	AL	1,196	9,218	917	844	3,337	737
	FL	5,888	44,817	1,936	1,781	6,683	1,409
	GA	1,038	7,875	334	307	1,173	246
	KY	6,607	50,267	2,246	2,066	9,608	1,569
Commercial	MS	5,688	43,233	1,903	1,751	7,719	1,351
Marine	NC	599	4,547	193	178	690	142
(2280)	SC	1,067	8,100	343	316	1,205	253
	TN	3,624	27,555	1,217	1,120	4,974	860
	VA	972	2,775	334	307	359	483
	WV	1,528	11,586	487	448	525	362
	Total	28,207	209,972	9,911	9,118	36,275	7,413
Military Marine	VA	110	313	25	23	27	48
(2283)	Total	110	313	25	23	27	48
	AL	3,518	26,623	592	533	1,446	1,365
	FL	1,006	9,969	247	222	605	404
	GA	2,654	26,733	664	598	1,622	1,059
	KY	2,166	21,811	542	488	1,321	867
Locomotives	MS	2,302	23,267	578	520	1,429	899
(2285)	NC	1,638	16,502	410	369	1,001	654
(195)	SC	1,160	11,690	291	261	710	462
	TN	2,626	25,627	633	570	1,439	1,041
	VA	1,186	11,882	1,529	1,375	3,641	492
	WV	1,311	13,224	329	296	808	517
	Total	19,568	187,328	5,815	5,232	14,022	7,761
Grand Total		125,597	421,918	23,780	22,107	52,444	25,401

Table 2.3-19 Locally Generated Growth Factors for Kentucky

FIP	2009 Factor	2018 Factor		
21015	1.31	1.81		

Note:

Growth factor = Year Emissions/2002 Emissions. Under CAIR approach, 2009 = 0.99 to 1.17. Under CAIR approach, 2018 = 0.97 to 1.40.

(b) Because of the additional emissions records added in Alabama, as discussed in the Base G 2002 base year inventory section of this report, the total number of emissions records in the Base G 2009 and 2018 forecasts increased to 23,042 (as compared to 22,838 for Base F). The 23,042 data records for aircraft, locomotives, and CMV were assigned growth factors in accordance with the following breakdown:

72 records matched State-provided growth factors,

4,287 records matched using the CAIR-Primary criterion,

240 records matched using the CAIR-Secondary criterion,

7,511 records matched using the CAIR-Tertiary criterion,

720 records matched using the No T4-Primary criterion,

3,858 records matched using the No T4-Secondary criterion, and

6,354 records matched using the No T4-Tertiary criterion.

Tables 2.3-20 and 2.3-21 present a summary of the resulting Base G 2009 and 2018 inventories, while Tables 2.3-22 and 2.3-23 present the associated change in emissions for each forecast inventory relative to the Base G 2002 base year VISTAS. As was the case with Base F, the larger reduction in CMV SO₂ emissions in 2009 and 2018 (relative to 2002) for Virginia and West Virginia is notable relative to the other VISTAS States, but is attributable to a high diesel contribution to total CMV SO₂ in the 2002 inventories for these two States.

Figures 2.3-14 through 2.3-25 graphically depict the relationships between the various inventories, as revised through Base G. There are two figures for each pollutant, the first of which presents a comparison of total VISTAS regional emission estimates for aircraft, locomotives, and CMV, and the second of which presents total VISTAS region emission estimates for locomotives only. This two figure approach is intended to provide a more robust illustration of the differences between the various inventories, as some of the differences are less distinct when viewed through overall aggregate emissions totals. All of the figures include the following emissions estimates:

176

- The Base G 2002 base year VISTAS emissions inventory (labeled as "2002"),
- The pre-Base F 2002 base year VISTAS emissions inventory (labeled as "2002 Prelim"),
- The Base G 2009 VISTAS emissions inventory developed using growth rates derived from 1996 and 2020 EPA CAIR data (labeled as "2009"),
- The Base G 2018 VISTAS emissions inventory developed using growth rates derived from 1996 and 2020 EPA CAIR data (labeled as "2018"), and
- The pre-Base F 2018 VISTAS emissions inventory estimates developed using growth rates derived from 1996, 2010, 2015, and 2020 EPA CAIR data (labeled as "2018 Prelim").

All 12 figures generally illustrate a reduction in emissions estimates between the pre-Base F 2002 emission estimates published in February 2004 and the Base G 2002 base year emission estimates. This reduction generally results from emission updates reflected in the Base F State CERR submittals, although the major differences in aggregate PM emission estimates are driven to a greater extent by modifications in the methodology used to estimate aircraft PM in the Base F revisions to the 2002 Base F base year inventory (as documented under the base year inventory section of this report).

Table 2.3-20. Base G 2009 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	6,265	213	292	116	21	309
	FL	29,258	10,316	2,812	2,756	928	4,235
	GA	7,635	6,233	1,712	1,678	523	512
	KY	6,959	1,135	307	301	108	487
A *	MS	1,765	162	51	50	16	108
Aircraft (2275)	NC	6,991	1,795	486	477	171	709
(2213)	SC	7,372	559	446	437	98	975
	TN	8,020	3,096	824	807	268	1,050
	VA	13,141	4,244	2,124	2,082	306	3,153
	WV	1,312	91	28	28	9	74
	Total	88,716	27,844	9,083	8,732	2,447	11,612
	AL	1,280	8,888	872	802	2,753	768
	FL	6,236	43,198	1,838	1,691	5,864	1,467
	GA	1,097	7,599	317	291	974	256
	KY	7,087	48,039	2,158	1,985	8,350	1,649
Commercial	MS	6,074	41,437	1,821	1,676	6,587	1,415
Marine	NC	634	4,386	184	169	584	148
(2280)	SC	1,133	7,796	326	300	1,012	264
	TN	3,887	26,333	1,168	1,074	4,512	904
	VA	1,042	2,662	312	286	61	506
	WV	1,638	11,073	455	419	89	381
	Total	30,108	201,412	9,450	8,693	30,786	7,759
Military Marine	VA	118	299	23	21	5	50
(2283)	Total	118	299	23	21	5	50
	AL	3,677	23,783	452	406	242	1,289
	FL	1,052	8,905	189	170	101	382
	GA	2,769	24,398	507	456	271	1,003
	KY	2,264	19,597	415	374	221	819
Lagamativas	MS	2,406	20,785	441	397	239	849
Locomotives (2285)	NC	1,690	14,662	311	279	165	613
(==00)	SC	1,213	10,443	222	200	119	437
	TN	2,745	23,924	483	435	240	984
	VA	1,236	11,134	1,167	1,050	608	467
	WV	1,369	12,177	251	226	135	489
_	Total	20,420	169,808	4,437	3,993	2,341	7,333
Grand Total		139,362	399,364	22,994	21,440	35,578	26,754

178

Table 2.3-21. Base G 2018 Aircraft, Locomotive, and Non-Recreational Marine Emissions (annual tons) -- Based on Growth Using 1996 and 2020 EPA Inventories

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	7,126	249	361	139	24	352
	FL	34,178	12,147	3,312	3,246	1,093	4,976
	GA	8,939	7,340	2,016	1,976	616	601
	KY	9,078	1,446	391	383	138	623
A *	MS	1,986	190	60	58	18	122
Aircraft (2275)	NC	8,150	2,114	572	561	202	831
(2213)	SC	8,487	616	493	484	112	1,119
	TN	9,009	3,519	939	921	309	1,187
	VA	14,770	4,706	2,271	2,226	349	3,574
	WV	1,484	106	33	33	10	85
	Total	103,206	32,435	10,450	10,027	2,871	13,472
	AL	1,388	8,464	880	809	2,715	809
	FL	6,684	41,117	1,853	1,705	6,248	1,543
	GA	1,174	7,246	319	293	976	269
	KY	7,703	45,174	2,199	2,023	8,383	1,752
Commercial	MS	6,571	39,129	1,850	1,702	6,556	1,498
Marine	NC	678	4,179	185	170	596	155
(2280)	SC	1,217	7,406	329	303	1,027	278
	TN	4,225	24,763	1,190	1,095	4,808	960
	VA	1,133	2,517	314	289	9	537
	WV	1,781	10,412	459	422	13	404
	Total	32,554	190,407	9,578	8,811	31,330	8,205
Military Marine	VA	128	282	23	21	1	53
(2283)	Total	128	282	23	21	1	53
	AL	3,881	20,131	381	343	34	1,192
	FL	1,110	7,538	159	143	14	353
	GA	2,917	21,395	427	385	38	932
	KY	2,389	16,751	352	317	31	757
Laaamatiyaa	MS	2,540	17,594	372	335	34	785
Locomotives (2285)	NC	1,782	12,539	263	237	23	570
(====)	SC	1,280	8,840	187	168	17	404
	TN	2,897	21,735	407	367	34	910
	VA	1,300	10,173	983	885	86	436
	WV	1,444	10,831	212	190	19	453
	Total	21,539	147,527	3,743	3,368	332	6,792
Grand Total		157,427	370,651	23,794	22,227	34,534	28,522

179

Table 2.3-22. Change in Emissions between 2009 Base G and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	+12%	+15%	+23%	+18%	+16%	+12%
	FL	+15%	+16%	+16%	+16%	+16%	+16%
	GA	+15%	+16%	+16%	+16%	+16%	+16%
	KY	+25%	+23%	+23%	+23%	+23%	+23%
	MS	+11%	+16%	+15%	+15%	+16%	+12%
Aircraft (2275)	NC	+15%	+16%	+16%	+16%	+16%	+16%
(2213)	SC	+13%	+9%	+9%	+9%	+12%	+13%
	TN	+11%	+12%	+12%	+12%	+14%	+11%
	VA	+11%	+9%	+6%	+6%	+12%	+12%
	WV	+11%	+16%	+15%	+15%	+16%	+12%
	Total	+14%	+15%	+13%	+13%	+15%	+14%
	AL	+7%	-4%	-5%	-5%	-18%	+4%
	FL	+6%	-4%	-5%	-5%	-12%	+4%
	GA	+6%	-3%	-5%	-5%	-17%	+4%
	KY	+7%	-4%	-4%	-4%	-13%	+5%
Commercial	MS	+7%	-4%	-4%	-4%	-15%	+5%
Marine	NC	+6%	-4%	-5%	-5%	-15%	+4%
(2280)	SC	+6%	-4%	-5%	-5%	-16%	+4%
	TN	+7%	-4%	-4%	-4%	-9%	+5%
	VA	+7%	-4%	-7%	-7%	-83%	+5%
	WV	+7%	-4%	-7%	-7%	-83%	+5%
	Total	+7%	-4%	-5%	-5%	-15%	+5%
Military Marine	VA	+7%	-4%	-7%	-7%	-83%	+5%
(2283)	Total	+7%	-4%	-7%	-7%	-83%	+5%
	AL	+5%	-11%	-24%	-24%	-83%	-6%
	FL	+5%	-11%	-24%	-24%	-83%	-6%
	GA	+4%	-9%	-24%	-24%	-83%	-5%
	KY	+5%	-10%	-23%	-23%	-83%	-6%
T	MS	+5%	-11%	-24%	-24%	-83%	-6%
Locomotives (2285)	NC	+3%	-11%	-24%	-24%	-83%	-6%
(2203)	SC	+5%	-11%	-24%	-24%	-83%	-6%
	TN	+5%	-7%	-24%	-24%	-83%	-6%
	VA	+4%	-6%	-24%	-24%	-83%	-5%
	WV	+4%	-8%	-24%	-24%	-83%	-5%
	Total	+4%	-9%	-24%	-24%	-83%	-6%
Grand Total		+11%	-5%	-3%	-3%	-32%	+5%

Table 2.3-23. Change in Emissions between 2018 Base G and 2002 Base F Inventories (Based on Growth Using 1996 and 2020 EPA Inventories)

Source	State	CO	NO _x	PM_{10}	PM _{2.5}	SO_2	VOC
	AL	+27%	+35%	+52%	+41%	+36%	+28%
	FL	+34%	+37%	+37%	+37%	+37%	+36%
	GA	+35%	+37%	+37%	+37%	+37%	+36%
	KY	+63%	+56%	+56%	+56%	+56%	+57%
A *	MS	+25%	+36%	+35%	+35%	+36%	+27%
Aircraft (2275)	NC	+34%	+37%	+36%	+36%	+37%	+36%
(2213)	SC	+30%	+20%	+21%	+21%	+27%	+30%
	TN	+24%	+27%	+28%	+28%	+31%	+26%
	VA	+24%	+21%	+13%	+13%	+28%	+27%
	WV	+26%	+36%	+35%	+35%	+36%	+28%
	Total	+33%	+33%	+30%	+30%	+35%	+32%
	AL	+16%	-8%	-4%	-4%	-19%	+10%
	FL	+14%	-8%	-4%	-4%	-7%	+9%
	GA	+13%	-8%	-5%	-5%	-17%	+9%
	KY	+17%	-10%	-2%	-2%	-13%	+12%
Commercial	MS	+16%	-9%	-3%	-3%	-15%	+11%
Marine	NC	+13%	-8%	-4%	-4%	-14%	+9%
(2280)	SC	+14%	-9%	-4%	-4%	-15%	+10%
	TN	+17%	-10%	-2%	-2%	-3%	+12%
	VA	+17%	-9%	-6%	-6%	-98%	+11%
	WV	+17%	-10%	-6%	-6%	-98%	+12%
	Total	+15%	-9%	-3%	-3%	-14%	+11%
Military Marine	VA	+17%	-10%	-6%	-6%	-98%	+12%
(2283)	Total	+17%	-10%	-6%	-6%	-98%	+12%
	AL	+10%	-24%	-36%	-36%	-98%	-13%
	FL	+10%	-24%	-36%	-36%	-98%	-13%
	GA	+10%	-20%	-36%	-36%	-98%	-12%
	KY	+10%	-23%	-35%	-35%	-98%	-13%
T	MS	+10%	-24%	-36%	-36%	-98%	-13%
Locomotives (2285)	NC	+9%	-24%	-36%	-36%	-98%	-13%
()	SC	+10%	-24%	-36%	-36%	-98%	-13%
	TN	+10%	-15%	-36%	-36%	-98%	-13%
	VA	+10%	-14%	-36%	-36%	-98%	-11%
	WV	+10%	-18%	-36%	-36%	-98%	-12%
	Total	+10%	-21%	-36%	-36%	-98%	-12%
Grand Total		+25%	-12%	+0%	+1%	-34%	+12%

181

Figure 2.3-14. Total Aircraft, Locomotive, and CMV CO Emissions (Base G)

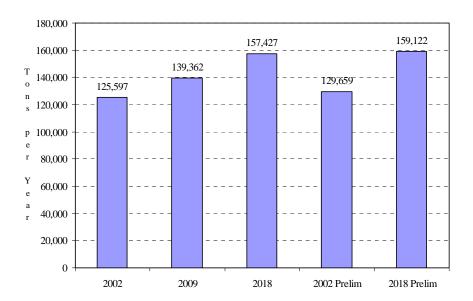


Figure 2.3-15. Locomotive CO Emissions (Base G)

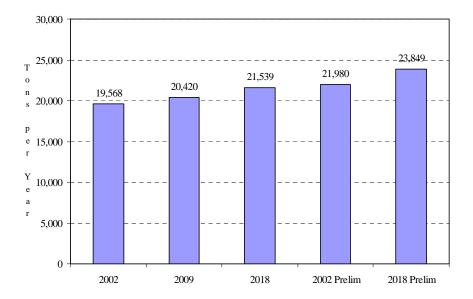


Figure 2.3-16. Total Aircraft, Locomotive, and CMV NO_x Emissions (Base G)

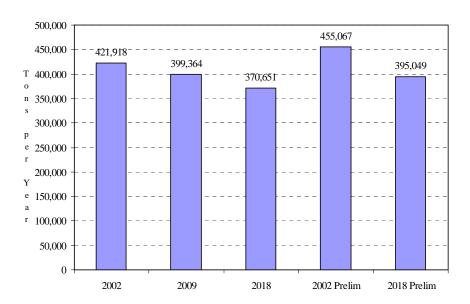


Figure 2.3-17. Locomotive NO_x Emissions (Base G)

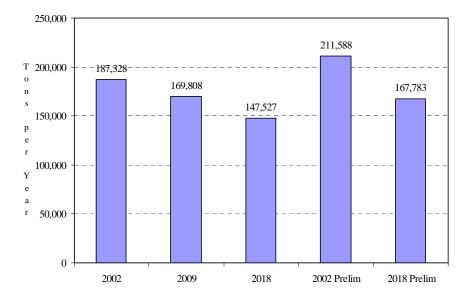


Figure 2.3-18. Total Aircraft, Locomotive, and CMV PM₁₀ Emissions (Base G)

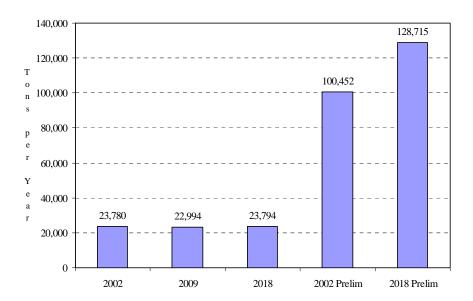


Figure 2.3-19. Locomotive PM₁₀ Emissions (Base G)

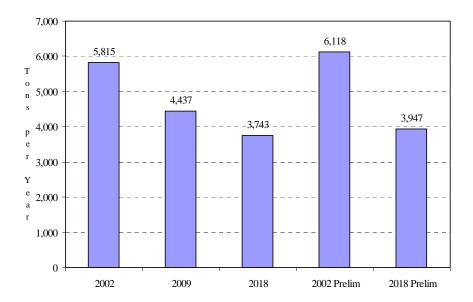


Figure 2.3-20. Total Aircraft, Locomotive, and CMV PM_{2.5} Emissions (Base G)

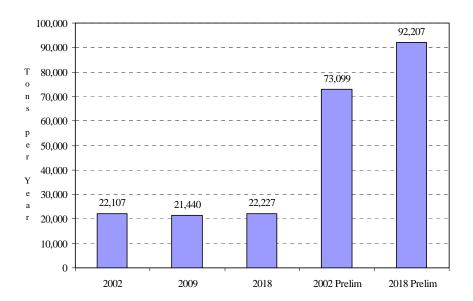


Figure 2.3-21. Locomotive PM_{2.5} Emissions (Base G)

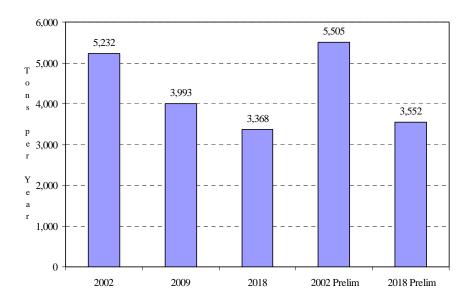


Figure 2.3-22. Total Aircraft, Locomotive, and CMV SO₂ Emissions (Base G)

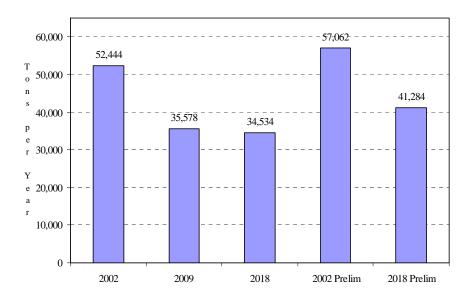


Figure 2.3-23. Locomotive SO₂ Emissions (Base G)

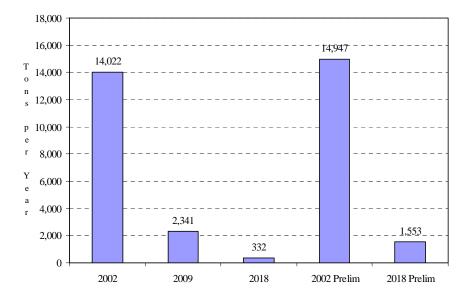


Figure 2.3-24. Total Aircraft, Locomotive, and CMV VOC Emissions (Base G)

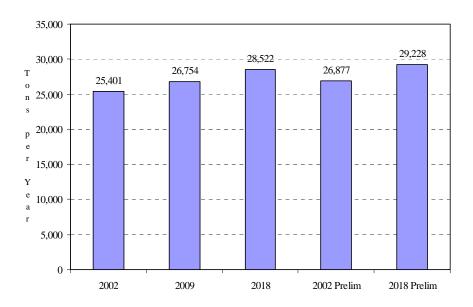
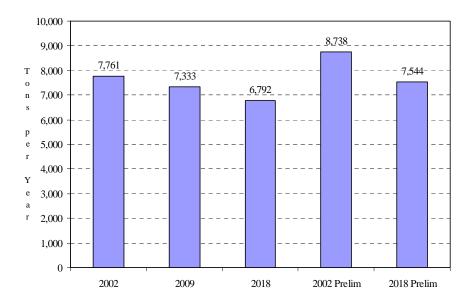



Figure 2.3-25. Locomotive VOC Emissions (Base G)

2.3.4.3 Emissions from NONROAD Model Sources in Illinois, Indiana, and Ohio

Base G projection inventories for 2009 and 2018 for NONROAD model sources in the states of Illinois, Indiana, and Ohio were produced using a methodology identical to that employed to develop a Base G 2002 base year inventory for the same states (as documented earlier in this report). This method consists of the extraction of a complete set of county-level input data applicable to each of the three states (in each of the two projection years) from the latest version of the EPA's NMIM model. This includes appropriate consideration of all non-default NMIM input files generated by the Midwest Regional Planning Organization as documented earlier in the discussion of the Base G 2002 base year inventory. These input data were then assembled into appropriate input files for the Final NONROAD2005 model and emission estimates were produced using the same procedure employed for the VISTAS region.

Changes noted between the base year (2002) and forecast year (2009 and 2018) input data extracted from NMIM include differences in gasoline vapor pressure, gasoline sulfur content, and diesel sulfur content in most counties. All temperature data (minimum, maximum, and average daily temperatures) was constant across years.

As described in the discussion of the Base G 2002 base year inventory, counties in the three states were grouped for modeling purposes using a temperature aggregation scheme that allowed for county-specific temperature variations of no more that 2 °F from group average temperatures (for all temperature inputs). The same grouping scheme was applied to projection year modeling, so that Illinois emissions were modeled using 12 county groups, Indiana emissions were modeled using 9 county groups, and Ohio emissions were modeled using 10 county groups. Thus, 31 iterations of NONROAD2002 were required per season per projection year, as compared to the 53 iterations per season per projection year required for the VISTAS region.

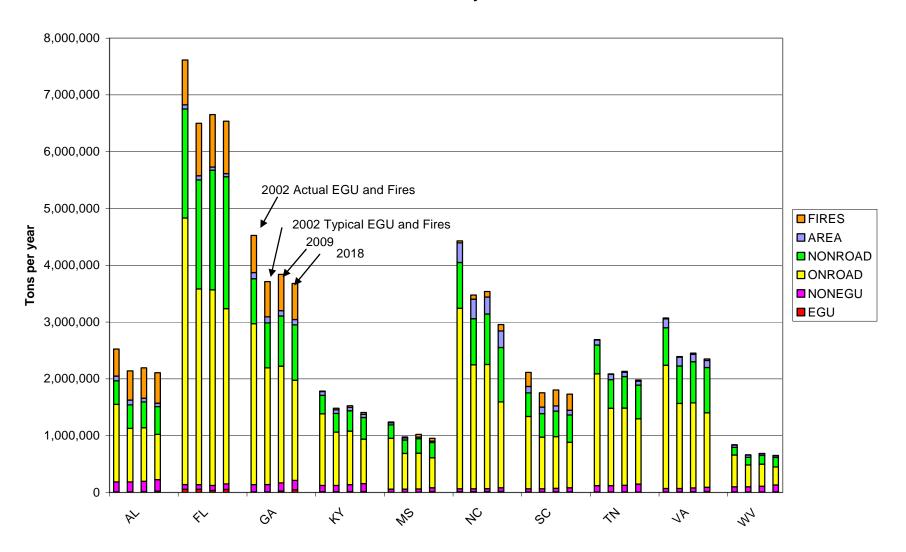
As was also described in the discussion of the Base G 2002 base year inventory, several non-default equipment population, growth, activity, seasonal distribution, and county allocation files are assigned by NMIM model inputs for these counties. As was the case for the base year inventory development, these same non-default assignments were retained for both projection inventories.

2.3.4.4 Differences between 2009/2018

Methodologically, there was no difference in the way that 2009 and 2018 emissions were calculated for non-road mobile sources. The actual value of the growth factors were different for each type of mobile source considered, but the calculation methods were identical.

2.3.5 Quality Assurance steps

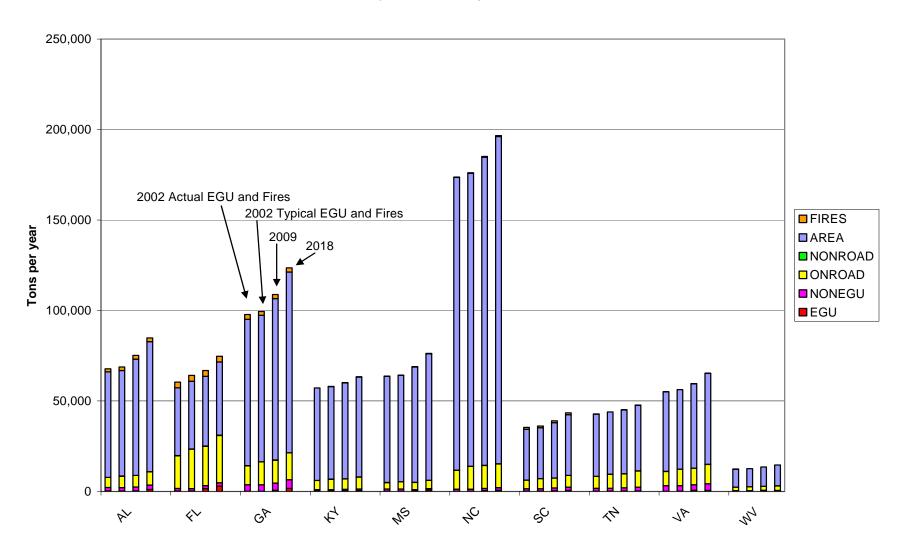
Throughout the inventory development process, quality assurance steps were performed to ensure that no double counting of emissions occurred, to ensure that a full and complete inventory was developed for VISTAS, and to make sure that projection calculations were working correctly. Quality assurance was an important component to the inventory development process and MACTEC performed the following QA steps on mobile source components of the 2009 and revised 2018 projection inventories:


- All final files (NONROAD only) were run through EPA's Format and Content checking software. Input data files for MOBILE and VMT growth estimates were reviewed by the corresponding SIWG and by the VISTAS Emission Inventory Technical Advisor.
- 2. SCC level emission summaries were prepared and evaluated to ensure that emissions were consistent and that there were no missing sources (NONROAD only).
- 3. Tier comparisons (by pollutant) were developed between the 2002 base year inventory and the 2009 and 2018 projection inventories (NONROAD only). Total VISTAS level summaries by pollutant were developed for these sources to compare Base F and Base G emission levels.
- 4. Data product summaries were provided to both the VISTAS Emission Inventory Technical Advisor and to the SIWG representatives for review and comment. Changes based on these comments were implemented in the files.
- 5. Version numbering was used for all inventory files developed. The version numbering process used a decimal system to track major and minor changes. For example, a major change would result in a version going from 1.0 to 2.0. A minor change would cause a version number to go from 1.0 to 1.1. Minor changes resulting from largely editorial changes would result in a change from 1.00 to 1.01.

APPENDIX A:

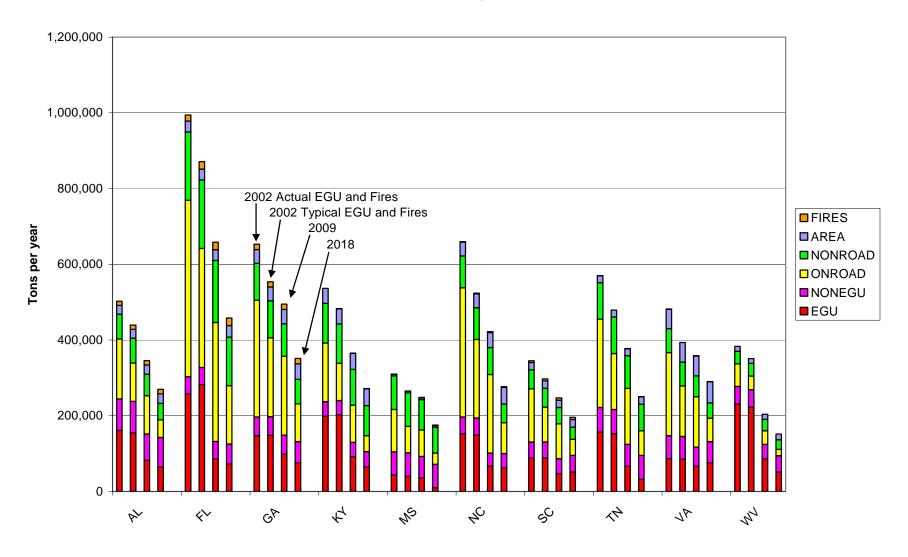
STATE EMISSION TOTALS BY POLLUTANT AND SECTOR

190


Annual CO Emissions by Source Sector

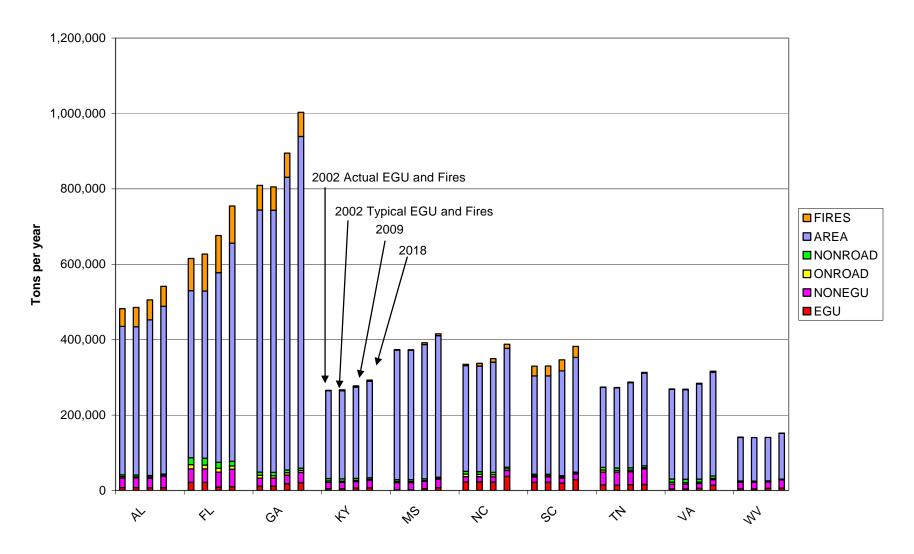
Annual CO Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	11,279	174,271	1,366,056	414,385	83,958	474,959	2002 Actual
	11,460	174,260	942,793	414,385	83,958	514,120	2002 Typical
AL	14,986	180,369	942,793	454,686	66,654	534,873	2009
	24,342	201,794	797,966	488,924	59,626	535,658	2018
	57,113	81,933	4,693,893	1,920,729	71,079	790,620	2002 Actual
	55,899	81,928	3,446,095	1,920,729	71,079	923,310	2002 Typical
FL	35,928	87,037	3,446,095	2,104,920	57,011	923,310	2009
	53,772	96,819	3,086,330	2,323,327	53,903	923,310	2018
	9,712	130,656	2,833,468	791,158	108,083	654,411	2002 Actual
	9,650	130,656	2,053,694	791,158	108,083	620,342	2002 Typical
GA	23,721	147,215	2,053,694	882,970	94,130	637,177	2009
	44,476	167,644	1,765,020	973,872	93,827	637,177	2018
		, , ,					
	12,619	109,936	1,260,682	325,993	66,752	8,703	2002 Actual
	12,607	109,937	942,350	325,993	66,752	24,900	2002 Typical
KY	15,812	122,024	942,350	357,800	57,887	31,810	2009
	17,144	139,437	782,423	381,215	54,865	33,296	2018
	5,303	54,568	894,639	236,752	37,905	13,209	2002 Actual
	5,219	54,567	628,151	236,752	37,905	14,353	2002 Typical
MS	5,051	57,748	628,151	257,453	27,184	48,160	2009
	15,282	66,858	528,898	270,726	22,099	50,037	2018
	13,885	50,531	3,176,811	808,231	345,315	34,515	2002 Actual
	14,074	50,531	2,184,901	808,231	345,315	71,970	2002 Typical
NC	14,942	53,696	2,184,901	887,605	301,163	96,258	2009
	20,223	62,145	1,510,848	960,709	290,809	111,266	2018
	6,990	56,315	1,275,161	413,964	113,714	248,341	2002 Actual
~~	6,969	56,315	912,280	413,964	113,714	253,005	2002 Typical
SC	11,135	60,473	912,280	448,625	90,390	282,307	2009
	14,786	68,988	800,619	481,332	83,167	282,307	2018
	7,084	114,681	1,967,658	505,163	89,828	4,302	2002 Actual
	6,787	114,681	1,361,408	505,163	89,828	10,124	2002 Actual 2002 Typical
TN	7,214	119,039	1,361,408	554,121	74,189	17,372	2002 Typicai 2009
111	7,214	140,138	1,150,516	593,100	68,809	18,860	2018
	1,123	140,136	1,130,310	393,100	00,009	10,000	2010
	6,892	63,796	2,170,508	660,105	155,873	15,625	2002 Actual
	6,797	63,784	1,495,771	660,105	155,873	12,611	2002 Actual
VA	12,509	68,346	1,495,771	726,815	128,132	21,130	2002 Typicar 2009
V / L	15,420	76,998	1,310,698	797,683	121,690	26,923	2018
	10,120	.0,220	1,010,000	. , , , , , , ,	121,000	20,723	
	10,341	89,879	560,717	133,113	39,546	6,738	2002 Actual
	10,117	89,878	385,994	133,113	39,546	2,652	2002 Typical
WV	11,493	100,045	385,994	152,862	31,640	3,949	2009
	11,961	119,332	319,030	167,424	28,773	5,013	2018


Annual NH₃ Emissions by Source Sector

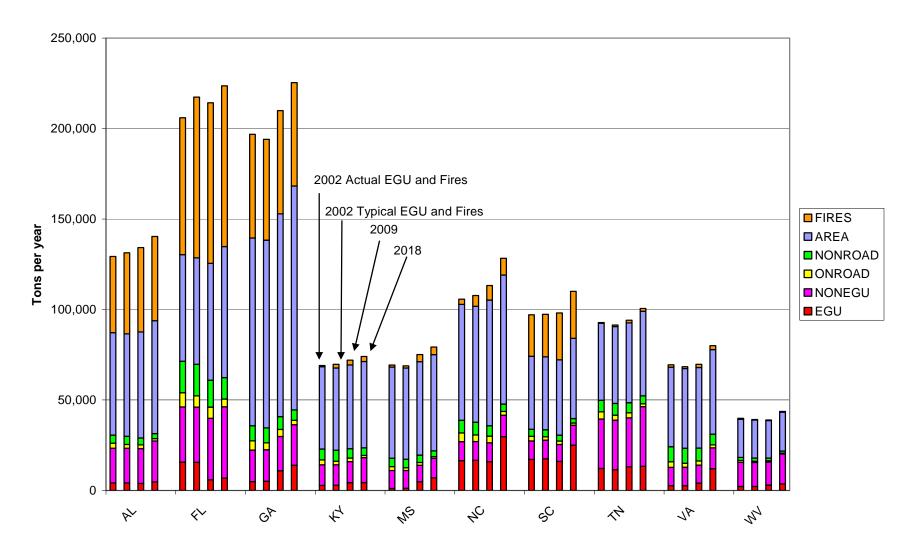
Annual NH₃ Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	317	1,883	5,576	33	58,318	1,689	2002 Actual
	239	1,883	6,350	33	58,318	1,957	2002 Typical
AL	359	2,132	6,350	36	64,268	2,050	2009
	1,072	2,464	7,296	42	71,915	2,054	2018
	234	1,423	18,078	134	37,446	3,102	2002 Actual
	222	1,423	21,737	134	37,446	3,157	2002 Typical
FL	1,631	1,544	21,737	148	38,616	3,157	2009
	2,976	1,829	26,154	171	40,432	3,157	2018
	83	3,613	10,524	60	80,913	2,578	2002 Actual
	86	3,613	12,660	60	80,913	2,153	2002 Typical
GA	686	3,963	12,660	68	89,212	2,229	2009
	1,677	4,797	14,871	79	99,885	2,229	2018
	326	674	5,044	31	51,135	39	2002 Actual
	321	674	5,795	31	51,135	112	2002 Typical
KY	400	760	5,795	34	53,005	143	2009
	476	901	6,584	40	55,211	150	2018
	190	1,169	3,577	23	58,721	59	2002 Actual
	198	1,169	4,026	23	58,721	65	2002 Typical
MS	334	668	4,026	25	63,708	217	2009
	827	764	4,565	29	69,910	225	2018
	54	1,179	10,455	65	161,860	155	2002 Actual
	55	1,179	12,637	65	161,860	324	2002 Typical
NC	445	1,285	12,637	72	170,314	433	2009
	663	1,465	13,077	83	180,866	501	2018
	1.10		1		20.155		2002
	142	1,411	4,684	33	28,166	980	2002 Actual
~~	141	1,411	5,510	33	28,166	908	2002 Typical
SC	343	1,578	5,510	36	30,555	1,039	2009
	617	1,779	6,472	41	33,496	1,039	2018
	20.1	1.510		40	24.202	10	2002 1 . 1
	204	1,542	6,616	43	34,393	19	2002 Actual
	197	1,542	7,738	43	34,393	46	2002 Typical
TN	227	1,764	7,738	48	35,253	78 85	2009
	241	2,115	8,962	55	36,291	83	2018
	107	2 104	7 927	40	42.005	70	2002 A atual
	127 130	3,104 3,104	7,837 9,066	48 48	43,905 43,905	70 57	2002 Actual 2002 Typical
VA	694	3,104	9,066	48 53	45,905	95	2002 Typical 2009
V A	622	3,604	10,757	61	50,175	121	2018
	022	3,004	10,/5/	01	30,173	121	2018
	121	332	1,933	9	9,963	30	2002 Actual
	121	332	2,183	9	9,963	12	2002 Actual 2002 Typical
WV	330	341	2,183	11	10,625	18	2002 Typicai 2009
VV V	180	413	2,183	13	11,504	23	2018
	100	413	2,404	13	11,504	23	2010


Annual NOx Emissions by Source Sector

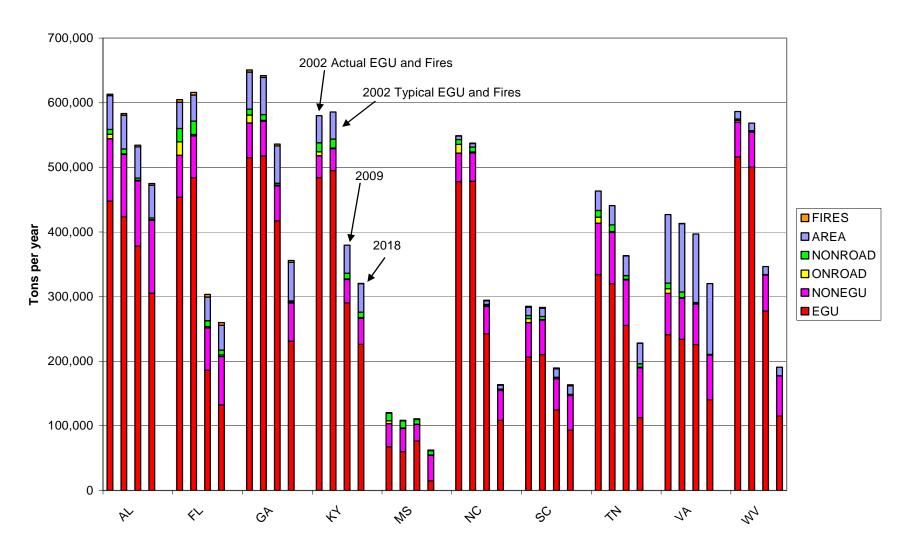
Annual NO_x Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	161,038	83,310	158,423	65,366	23,444	10,728	2002 Actual
	154,704	83,302	101,323	65,366	23,444	11,456	2002 Typical
AL	82,305	69,409	101,323	56,862	23,930	11,901	2009
	64,358	78,318	46,222	43,799	25,028	11,918	2018
					·		
	257,677	45,156	466,098	180,627	28,872	15,942	2002 Actual
	282,507	45,150	314,307	180,627	28,872	19,791	2002 Typical
FL	86,165	46,020	314,307	163,794	28,187	19,791	2009
	73,125	51,902	154,611	127,885	30,708	19,791	2018
				•			**************************************
	147,517	49,214	308,013	97,961	36,142	14,203	2002 Actual
	148,126	49,214	208,393	97,961	36,142	13,882	2002 Typical
GA	98,497	50,312	208,393	85,733	37,729	14,243	2009
	75,717	55,775	99,821	64,579	41,332	14,243	2018
				7			
	198,817	38,392	154,899	104,571	39,507	187	2002 Actual
	201,928	38,434	97,912	104,571	39,507	534	2002 Typical
KY	92,021	37,758	97,912	94,752	42,088	682	2009
	64,378	41,034	42,104	79,392	44,346	714	2018
				,			
	43,135	61,526	111,791	88,787	4,200	283	2002 Actual
	40,433	61,553	69,949	88,787	4,200	308	2002 Typical
MS	36,011	56,398	69,949	80,567	4,249	1,033	2009
	10,271	61,533	29,717	68,252	4,483	1,073	2018
	151,850	44,881	341,198	84,284	36,550	740	2002 Actual
	148,809	44,881	207,648	84,284	36,550	1,544	2002 Typical
NC	66,517	34,719	207,648	70,997	39,954	2,065	2009
	62,346	37,750	81,706	49,046	43,865	2,387	2018
	i				,		i i
	88,241	42,153	140,428	50,249	19,332	4,932	2002 Actual
	88,528	42,153	91,696	50,249	19,332	5,270	2002 Typical
SC	46,915	40,019	91,696	43,235	19,360	5,899	2009
~ ~	51,456	44,021	42,354	31,758	20,592	5,899	2018
	7 7 7	7	7				
	157,307	64,331	233,324	96,827	17,844	92	2002 Actual
	152,137	64,331	147,757	96,827	17,844	217	2002 Typical
TN	66,405	57,869	147,757	86,641	18,499	373	2009
	31,715	63,435	65,242	70,226	19,597	405	2018
		/					
	86,886	60,415	219,602	63,219	51,418	335	2002 Actual
	85,081	60,390	133,170	63,219	51,418	271	2002 Typical
VA	66,219	51,046	133,170	54,993	52,618	453	2009
	75,594	55,945	61,881	40,393	56,158	578	2018
			,	,			
	230,977	46,612	59,612	33,239	12,687	145	2002 Actual
	222,437	46,618	36,049	33,239	12,687	57	2002 Typical
WV	86,328	38,031	36,049	30,133	13,439	85	2009
	51,241	43,359	16,274	25,710	14,828	108	2018
			· · · · · · · · · · · · · · · · · · ·	,, i	., ;		A


Annual PM₁₀ Emissions by Source Sector

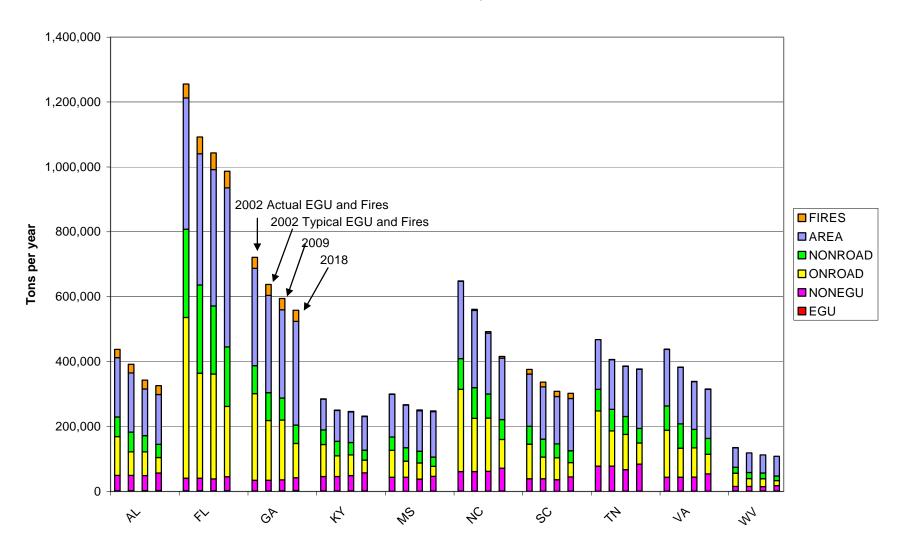
Annual PM_{10} Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	7,646	25,240	3,898	4,787	393,588	47,237	2002 Actual
	7,845	25,239	3,188	4,787	393,588	50,833	2002 Typical
AL	6,969	25,421	3,188	4,027	413,020	52,851	2009
	7,822	29,924	2,488	3,041	445,256	52,927	2018
	21,387	35,857	11,253	18,281	443,346	85,263	2002 Actual
	21,391	35,856	9,953	18,281	443,346	98,470	2002 Typical
FL	9,007	39,872	9,953	15,613	503,230	98,470	2009
	9,953	46,456	8,489	12,497	578,516	98,470	2018
	11,224	21,516	7,236	8,618	695,414	65,227	2002 Actual
	11,467	21,516	6,103	8,618	695,414	62,336	2002 Typical
GA	17,891	22,997	6,103	7,521	776,411	63,973	2009
	20,909	27,143	4,995	6,015	880,199	63,973	2018
	4,701	16,626	3,720	6,425	233,559	846	2002 Actual
	4,795	16,626	3,002	6,425	233,559	2,421	2002 Typical
KY	6,463	17,174	3,002	5,544	242,177	3,093	2009
	6,694	20,153	2,283	4,556	256,052	3,237	2018
	1,633	19,472	2,856	5,010	343,377	1,284	2002 Actual
	1,706	19,469	2,290	5,010	343,377	1,396	2002 Typical
MS	4,957	19,245	2,290	4,270	356,324	4,683	2009
	7,187	22,859	1,688	3,452	375,495	4,865	2018
	22,754	13,785	6,905	7,348	280,379	3,356	2002 Actual
	22,994	13,785	5,861	7,348	280,379	6,998	2002 Typical
NC	22,152	13,855	5,861	6,055	292,443	9,359	2009
	37,376	15,678	4,299	4,298	315,294	10,819	2018
	21,400	14,142	3,446	4,152	260,858	25,968	2002 Actual
	21,827	14,142	2,878	4,152	260,858	26,304	2002 Typical
SC	19,395	13,370	2,878	3,471	278,299	29,153	2009
	28,826	15,139	2,258	2,617	304,251	29,153	2018
	14,640	34,534	5,338	6,819	212,554	418	2002 Actual
	13,866	34,534	4,238	6,819	212,554	984	2002 Typical
TN	15,608	34,145	4,238	5,877	226,098	1,689	2009
	15,941	41,397	3,199	4,672	246,252	1,834	2018
	3,960	13,252	4,537	8,728	237,577	1,519	2002 Actual
	3,892	13,252	3,760	8,728	237,577	1,226	2002 Typical
VA	5,508	13,048	3,760	7,510	252,488	2,054	2009
	13,775	15,112	3,343	6,208	275,351	2,618	2018
		15 50		10-0	11501-		2002
	4,573	17,503	1,395	1,850	115,346	655	2002 Actual
	4,472	17,503	1,096	1,850	115,346	258	2002 Typical
WV	5,657	17,090	1,096	1,640	115,089	384	2009
	6,349	21,735	844	1,292	121,549	487	2018


Annual PM_{2.5} Emissions by Source Sector

Annual $PM_{2.5}$ Emissions by Source Sector

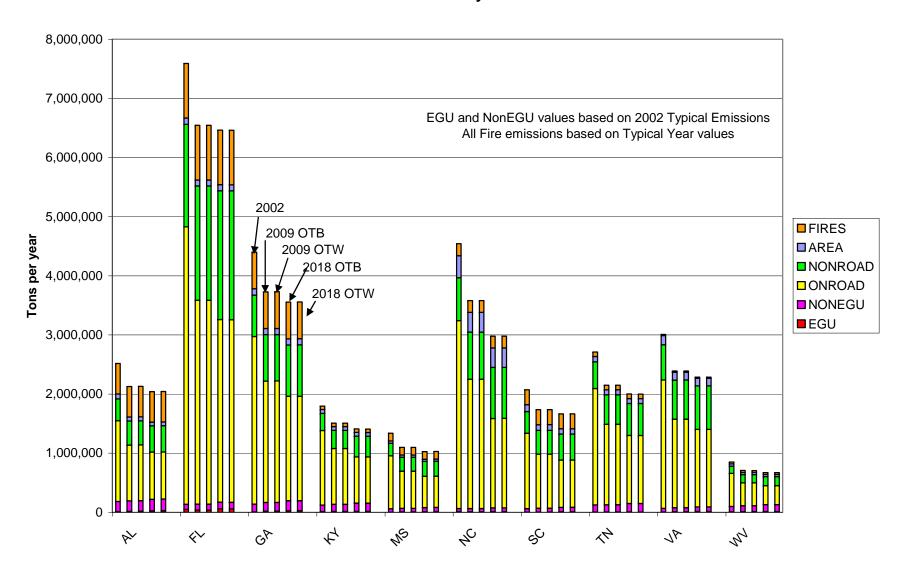
Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	4,113	19,178	2,794	4,502	56,654	42,041	2002 Actual
	4,176	19,177	2,049	4,502	56,654	44,812	2002 Typical
AL	3,921	19,230	2,049	3,776	58,699	46,543	2009
	4,768	22,598	1,262	2,835	62,323	46,608	2018
	15,643	30,504	7,852	17,415	58,878	75,717	2002 Actual
	15,575	30,504	6,216	17,415	58,878	88,756	2002 Typical
FL	5,910	33,946	6,216	14,866	64,589	88,756	2009
	6,843	39,430	4,242	11,868	72,454	88,756	2018
	4,939	17,394	5,158	8,226	103,794	57,293	2002 Actual
	5,070	17,394	3,869	8,226	103,794	55,712	2002 Typical
GA	10,907	18,906	3,869	7,175	112,001	57,116	2009
	13,983	22,323	2,517	5,730	123,704	57,116	2018
	,,						
	2,802	11,372	2,693	6,046	45,453	726	2002 Actual
	2,847	11,372	1.941	6,046	45,453	2,076	2002 Typical
KY	4,279	11,686	1,941	5,203	46,243	2,653	2009
111	4,434	13,739	1,160	4,256	47,645	2,777	2018
	1,151	15,757	1,100	1,230	17,015	2,777	
	1,138	9,906	2,109	4,690	50,401	1,102	2002 Actual
	1,147	9,902	1,522	4,690	50,401	1,197	2002 Typical
MS	4,777	9,199	1,522	3,985	51,661	4,016	2002 Typicar 2009
	7,033	10,739	876	3,203	53,222	4,173	2018
	7,055	10,737	070	3,203	33,222	7,173	2010
	16,498	10,455	4,816	7,005	64,052	2,878	2002 Actual
	16,623	10,455	3,643	7,005	64,052	6,002	2002 Typical
NC	15,949	10,433	3,643	5,760	69,457	8,027	2002 Typicar 2009
110	29,791	11,775	2,158	4,069	71,262	9,279	2018
	20,701	11,775	2,130	7,007	71,202	7,217	2010
	17,154	10,245	2,496	3,945	40,291	22,953	2002 Actual
	17,521	10,245	1,870	3,945	40,291	23,511	2002 Typical
SC	16,042	9,390	1,870	3,294	41,613	25,955	2002 Typicar 2009
SC	25,032	11,086	1,154	2,474	44,319	25,955	2018
	23,032	11,000	1,134	2,777	77,317	23,733	2010
	12,166	27,345	3,919	6,458	42,566	359	2002 Actual
	11,491	27,345	2,782	6,458	42,566	844	2002 Actual
TN	13,092	27,079	2,782	5,557	44,124	1,449	2002 Typicai 2009
II	13,387	32,893	1,643	4,403	46,692	1,573	2018
	13,367	32,673	1,043	7,703	40,072	1,373	2010
	2,606	10,165	3,090	8,288	43,989	1,303	2002 Actual
	2,650	10,165	2,254	8,288	43,989	1,052	2002 Actual
VA	4,067	9,988	2,254	7,136	44,514	1,762	'2009
V /A	11,976	11,594	1,641	5,891	46,697	2,245	2018
	11,770	11,554	1,041	3,071	70,077	2,243	2010
	2,210	13,313	1,003	1,728	21,049	562	2002 Actual
	2,210	13,313	703	1,728	21,049	221	2002 Actual
WV	2,103	12,769	703	1,728	20,664	329	2002 Typicai 2009
VV V	3,648	16,516	428	1,198	21,490	418	2018
	3,048	10,510	440	1,170	41,490	410	2010


Annual SO₂ Emissions by Source Sector

Annual SO₂ Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	447,828	96,481	6,885	7,584	52,253	2,208	2002 Actual
	423,736	96,481	635	7,584	52,253	2,559	2002 Typical
AL	378,052	101,246	635	3,471	48,228	2,681	2009
	305,262	113,224	720	2,818	50,264	2,686	2018
		-	÷		· · · · · · · · · · · · · · · · · · ·		·
	453,631	65,090	20,872	20,614	40,491	4,057	2002 Actual
	483,590	65,090	2,120	20,614	40,491	4,129	2002 Typical
FL	186,055	65,511	2,120	8,967	36,699	4,129	2009
	132,177	75,047	2,533	7,536	38,317	4,129	2018
	514,952	53,774	12,155	9,005	57,559	3,372	2002 Actual
	517,633	53,774	1,254	9,005	57,559	2,815	2002 Typical
GA	417,449	53,983	1,254	2,725	57,696	2,914	2009
	230,856	59,343	1,458	1,709	59,729	2,914	2018
			<u> </u>	7			
	484,057	34,029	5,974	14,043	41,805	51	2002 Actual
	495,153	34,029	585	14,043	41,805	146	2002 Typical
KY	290,193	36,418	585	9,180	43,087	187	2009
111	226,062	40,682	651	8,592	44,186	196	2018
	220,002	10,002	001	0,572	11,100	170	2010
	67,429	35,960	4,604	11,315	771	78	2002 Actual
	60,086	35,954	397	11,315	771	84	2002 Typical
MS	76,579	25,564	397	7,191	753	283	2002 Typicai 2009
1710	15,146	39,221	441	6,638	746	294	2018
	13,140	37,221		0,030	740	274	2010
	477,990	44,103	13,343	7,693	5,412	203	2002 Actual
	478,488	44,103	1,311	7,693	5,412	423	2002 Typical
NC	242,286	42,516	1,311	1,892	5,751	566	2002 Typicai 2009
	108,492	46,292	1,323	905	6,085	655	2018
	100,472	70,272	1,323	705	0,003	033	2010
	206,399	53,518	5,958	4,866	12,900	1,281	2002 Actual
	210,272	53,518	556	4,866	12,900	1,187	2002 Typical
SC	124,608	48,325	556	1,701	13,051	1,359	2002 Typicai 2009
BC	93,274	53,577	643	1,198	13,457	1,359	2018
	73,217	33,377		1,170	13,437	1,337	2010
	334,151	79,584	9,184	10,441	29,917	25	2002 Actual
	320,146	79,584	831	10,441	29,917	60	2002 Actual
TN	255,410	79,384	831	5,651	30,577	102	2002 Typicai 2009
111	112,672	77,219	944	5,207	31,962	111	2018
	112,072	77,217	777	3,207	31,702	111	2010
	241,204	63,903	7,218	8,663	105,890	92	2002 Actual
	233,691	63,900	900	8,663	105,890	74	2002 Actual
VA	225,653	62,560	900	1,707	105,890	124	2002 Typicai 2009
v A	140,233	68,909	1,059	507	103,984	158	2018
	140,233	08,909	1,039	307	109,360	138	2010
	516,084	54,070	2,489	2,112	11,667	40	2002 Actual
		54,070	2,489	2,112	11,667	16	}
XX/X/	500,381			ċ			2002 Typical 2009
WV	277,489	55,973	227	359	12,284	23	å
	115,324	62,193	255	56	12,849	29	2018

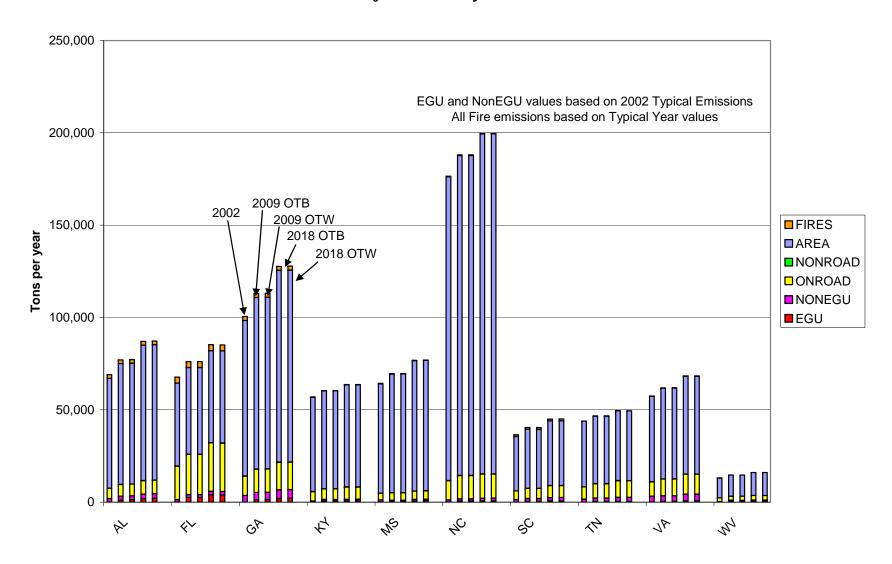
Annual VOC Emissions by Source Sector



203

Annual VOC Emissions by Source Sector

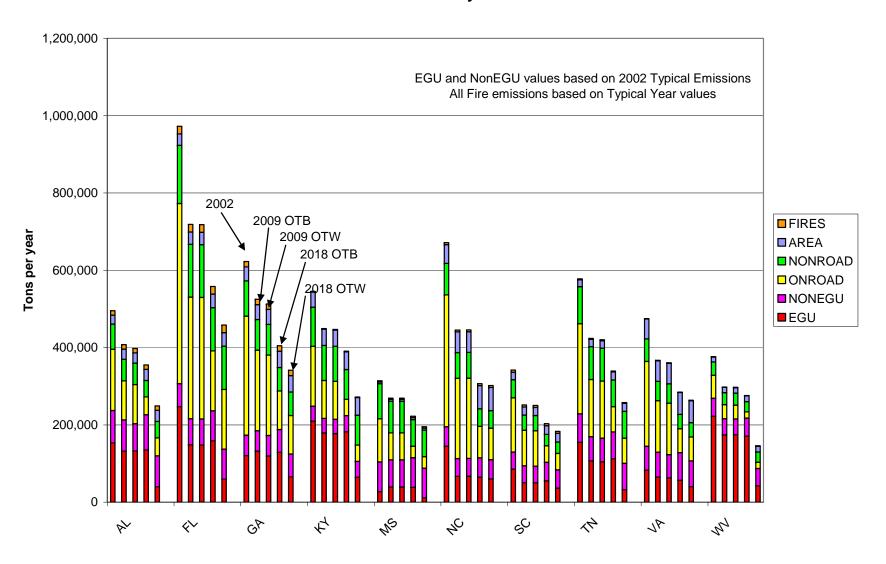
Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR
	2,295	47,037	119,790	60,487	182,674	25,278	2002 Actual
	2,288	47,035	72,848	60,487	182,674	26,526	2002 Typical
AL	2,473	46,644	72,848	50,249	143,454	27,502	2009
710	2,952	54,291	47,296	40,407	153,577	27,539	2018
	2,732	34,271	47,270	40,407	133,377	21,337	2010
	2,524	38,471	495,225	272,072	404,302	42,724	2002 Actual
	2,531	38,471	323,290	272,072	404,302	51,527	2002 Typical
FL	1,910	36,880	323,290	209,543	420,172	51,527	2009
	2,376	42,811	216,620	183,452	489,975	51,527	2018
	1,244	33,157	267,378	85,965	299,679	33,979	2002 Actual
	1,256	33,157	184,239	85,965	299,679	33,918	2002 Typical
GA	2,314	33,444	184,239	67,686	272,315	34,710	2009
	2,841	39,485	105,507	56,761	319,328	34,710	2018
	1 407	44.924	09.211	44.905	05 275	410	2002 4 -41
	1,487	44,834	98,311	44,805	95,375	410	2002 Actual
T737	1,481	44,834	63,258	44,805	95,375	1,172	2002 Typical
KY	1,369	47,786	63,258	38,558	94,042	1,497	2009
	1,426	55,861	39,084	30,920	103,490	1,567	2018
	648	43,204	82,810	41,081	131,808	622	2002 Actual
	629	43,203	49,670	41,081	131,808	675	2002 Typical
MS	404	37,747	49,670	36,197	124,977	2,266	2009
1112	1,114	45,338	30,734	28,842	140,134	2,355	2018
		,					
	988	60,496	253,374	94,480	237,926	1,624	2002 Actual
	986	60,496	163,803	94,480	237,926	3,387	2002 Typical
NC	954	61,207	163,803	74,056	187,769	4,530	2009
	1,345	70,100	88,620	61,327	189,591	5,236	2018
	470	38,458	106,792	55,016	161,000	14,202	2002 Actual
	470	38,458	67,281	55,016	161,000	14,666	2002 Typical
SC	660	35,665	67,281	43,061	146,107	16,045	2009
	906	43,656	44,700	36,131	161,228	16,045	2018
	926	77,304	169,914	66,450	153,307	202	2002 Actual
	890	77,304	108,200	66,450	153,307	476	2002 Typical
TN	932	66,538	108,200	55,358	154,377	817	2009
111	976	83,573	64,665	45,084	182,222	888	2018
		,		· ·			
	754	43,152	144,684	74,866	174,116	735	2002 Actual
	747	43,152	89,678	74,866	174,116	593	2002 Typical
VA	778	43,726	89,678	57,009	147,034	994	2009
	997	53,186	60,454	49,052	150,919	1,267	2018
							2002 1 -
	1,180	14,595	40,066	18,566	60,443	317	2002 Actual
	1,140	14,595	23,907	18,566	60,443	125	2002 Typical
WV	1,361	13,810	23,907	18,069	55,288	186	2009
	1,387	16,565	15,463	14,086	60,747	236	2018


Annual CO Emissions by Source Sector

Annual CO Emissions by Source Sector

Name	AREA	EGU	FIRES	NONEGU	NONROAD	ONROAD	YEAR	Basis
ranit	83,958	10,812	514,120	174,306	367,038	1,366,056	2002	OTB - Typical 2002
	68,882	16,494	514,120	177,145	408,424	942,793	2002	OTB - Typical 2002
AL	68,882	19,205	514,120	177,145	408,424	942,793	2009	OTW - Typical 2002
AL	63,773	26,600	514,120	194,801	443,100	797,966	2018	OTB - Typical 2002
	63,773	29,893	514,120	194,801	443,100	797,966	2018	OTW - Typical 2002
	03,773	29,693	314,120	194,001	443,100	797,900	2016	01 w - Typicai 2002
	105,849	51,165	923,310	84,920	1,731,519	4,693,893	2002	OTB - Typical 2002
	101,356	40,642	923,310	98,325	1,934,550	3,446,095	2009	OTB - Typical 2002
FL	101,356	40,641	923,310	98,325	1,934,550	3,446,095	2009	OTW - Typical 2002
	100,952	59,793	923,310	113,923	2,179,296	3,086,330	2018	OTB - Typical 2002
	100,952	57,759	923,310	113,923	2,179,296	3,086,330	2018	OTW - Typical 2002
				- 7-	,,	.,,		31
	107,889	8,098	620,342	131,417	700,427	2,833,468	2002	OTB - Typical 2002
	103,579	19,170	620,342	147,835	783,990	2,053,694	2009	OTB - Typical 2002
GA	103,579	20,024	620,342	147,835	783,990	2,053,694	2009	OTW - Typical 2002
	105,059	27,152	620,342	169,156	868,018	1,765,020	2018	OTB - Typical 2002
	105,059	28,895	620,342	169,156	868,018	1,765,020	2018	OTW - Typical 2002
	2.7.2.2	10.000	#	440.44	200 - 000	1.000 -000	2000	OMD # 1 1221
	66,752	12,888	56,686	110,141	289,967	1,260,682	2002	OTB - Typical 2002
7777	64,806	15,273	56,686	121,981	306,884	942,350	2009	OTB - Typical 2002
KY	64,806	15,119	56,686	121,981	306,884	942,350	2009	OTW - Typical 2002
	65,297	16,974	56,686	139,395	349,285	782,423	2018	OTB - Typical 2002
	65,297	14,954	56,686	139,395	349,285	782,423	2018	OTW - Typical 2002
	37,905	3,831	128,471	57,711	213,779	894,639	2002	OTB - Typical 2002
	37,161	6,714	128,471	60,709	237,297	628,151	2009	OTB - Typical 2002
MS	37,161	6,954	128,471	60,709	237,297	628,151	2009	OTW - Typical 2002
IVIS	36,425	10,553	128,471	70,454	252,658	528,898	2018	OTB - Typical 2002
	36,425	12,928	128,471	70,454	252,658	528,898	2018	OTW - Typical 2002
	30,423	12,720	120,471	70,434	232,036	320,070	2010	01 W - Typicai 2002
	373,585	12,027	200,564	52,542	725,734	3,176,811	2002	OTB - Typical 2002
	332,443	11,091	200,564	54,791	797,360	2,184,901	2009	OTB - Typical 2002
NC	332,443	11,170	200,564	54,791	797,360	2,184,901	2009	OTW - Typical 2002
	327,871	13,482	200,564	63,699	863,536	1,510,848	2018	OTB - Typical 2002
	327,871	13,777	200,564	63,699	863,536	1,510,848	2018	OTW - Typical 2002
	113,714	3,675	253,005	59,605	367,575	1,275,161	2002	OTB - Typical 2002
	95,826	6,316	253,005	65,612	402,871	912,280	2009	OTB - Typical 2002
SC	95,826	6,526	253,005	65,612	402,871	912,280	2009	OTW - Typical 2002
	89,343	10,175	253,005	75,209	438,027	800,619	2018	OTB - Typical 2002
	89,343	10,671	253,005	75,209	438,027	800,619	2018	OTW - Typical 2002
	00.225	6.220	70.270	110 107	451 400	1.067.650	2002	OFFD F : 12002
	89,235	6,339	78,370	119,405	451,480	1,967,658	2002	OTB - Typical 2002
m) i	82,196	6,750	78,370	121,420	500,186	1,361,408	2009	OTB - Typical 2002
TN	82,196	6,651	78,370	121,420	500,186	1,361,408	2009	OTW - Typical 2002
	81,242	7,074	78,370	143,845	540,143	1,150,516	2018	OTB - Typical 2002
	81,242	6,509	78,370	143,845	540,143	1,150,516	2018	OTW - Typical 2002
	155,873	5,958	19,159	62,534	595,311	2,170,508	2002	OTB - Typical 2002
	133,738	9,811	19,159	69,822	661,295	1,495,771	2002	OTB - Typical 2002
VA	133,738	10,245	19,159	69,822	661,295	1,495,771	2009	OTW - Typical 2002
,,,	129,037	14,788	19,159	77,590	734,294	1,310,698	2018	OTB - Typical 2002
	129,037	14,839	19,159	77,590	734,294	1,310,698	2018	OTW - Typical 2002
	,	,	,	. , •	. ,	, 1,11	-	J1
	39,546	9,927	32,656	89,928	119,089	560,717	2002	OTB - Typical 2002
	37,704	12,622	32,656	100,292	138,999	385,994	2009	OTB - Typical 2002
WV	37,704	12,328	32,656	100,292	138,999	385,994	2009	OTW - Typical 2002
	36,809	13,064	32,656	119,367	152,932	319,030	2018	OTB - Typical 2002
	36,809	12,992	32,656	119,367	152,932	319,030	2018	OTW - Typical 2002

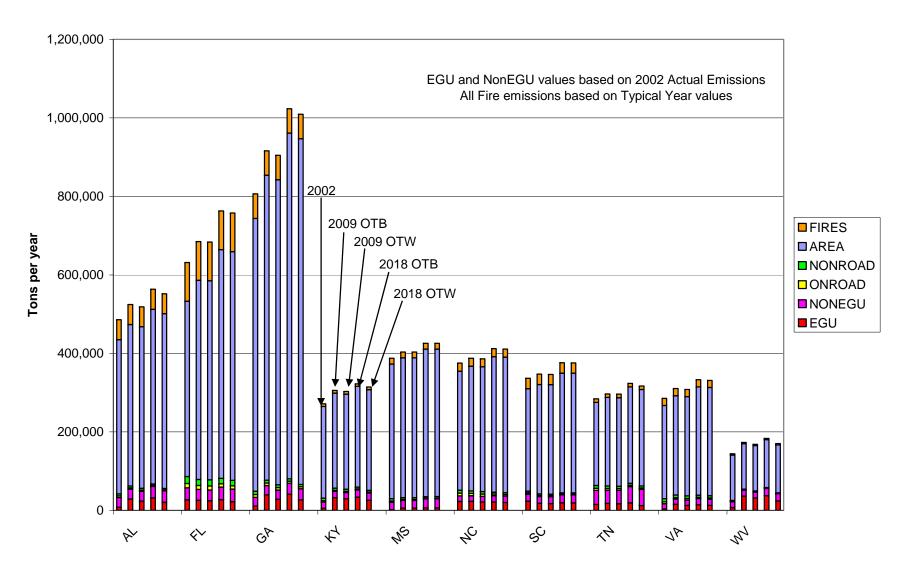
Annual NH₃ Emissions by Source Sector



207

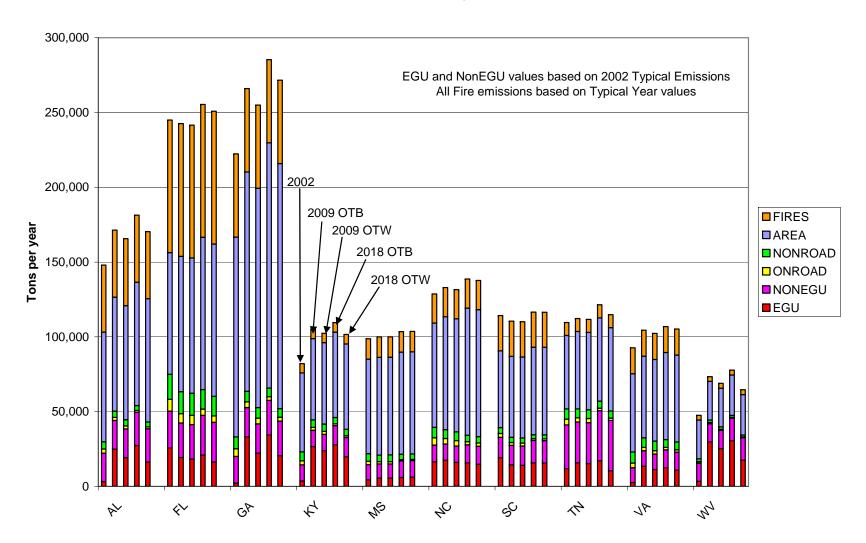
Annual NH₃ Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR	Basis
	89	1,883	5,576	32	59,486	1,957	2002	OTB - Typical 2002
	1,128	2,112	6,350	35	65,441	1,957	2009	OTB - Typical 2002
AL	1,344	2,112	6,350	35	65,441	1,957	2009	OTW - Typical 2002
	1,909	2,456	7,296	40	73,346	1,957	2018	OTB - Typical 2002
	2,173	2,456	7,296	40	73,346	1,957	2018	OTW - Typical 2002
	2,170	2,.50	7,270		72,210	1,507	2010	5111 1yp.our 2002
	53	1,383	18,078	108	44,902	3,157	2002	OTB - Typical 2002
	2,524	1,605	21,737	119	46,950	3,157	2009	OTB - Typical 2002
FL	2,524	1,605	21,737	119	46,950	3,157	2009	OTW - Typical 2002
	4,022	1,905	26,154	138	49,889	3,157	2018	OTB - Typical 2002
	3,865	1,905	26,154	138	49,889	3,157	2018	OTW - Typical 2002
	5	3,613	10,524	54	84,230	2,153	2002	OTB - Typical 2002
	1,305	3,963	12,660	60	92,838	2,153	2009	OTB - Typical 2002
GA	1,376	3,963	12,660	60	92,838	2,153	2009	OTW - Typical 2002
071	1,912	4,799	14,871	71	103,911	2,153	2018	OTB - Typical 2002
	2,057	4,799	14,871	71	103,911	2,153	2018	OTW - Typical 2002
	2,037	7,777	14,071	7.1	103,711	2,133	2010	01 w - Typicai 2002
	0	674	5,044	28	51,097	110	2002	OTB - Typical 2002
	717	733	5,795	30	53,023	110	2009	OTB - Typical 2002
KY	710	733	5,795	30	53,023	110	2009	OTW - Typical 2002
	763	839	6,584	36	55,356	110	2018	OTB - Typical 2002
	771	839	6,584	36	55,356	110	2018	OTW - Typical 2002
			.,		,	-		j
	97	1,169	3,577	23	59,262	177	2002	OTB - Typical 2002
	388	667	4,026	26	64,289	177	2009	OTB - Typical 2002
MS	407	667	4,026	26	64,289	177	2009	OTW - Typical 2002
	686	761	4,565	30	70,565	177	2018	OTB - Typical 2002
	872	761	4,565	30	70,565	177	2018	OTW - Typical 2002
	35	1,171	10,455	61	164,467	324	2002	OTB - Typical 2002
	577	1,171	12,637	61	173,187	324	2002	
NC	574	-	12,637		173,187	324	2009	OTB - Typical 2002
NC	740	1,255		68	-			OTW - Typical 2002
		1,412	13,077	79	184,167	324	2018	OTB - Typical 2002
	781	1,412	13,077	79	184,167	324	2018	OTW - Typical 2002
	0	1,411	4,684	29	29,447	908	2002	OTB - Typical 2002
	409	1,578	5,510	32	31,966	908	2009	OTB - Typical 2002
SC	422	1,578	5,510	32	31,966	908	2009	OTW - Typical 2002
	702	1,779	6,472	37	35,082	908	2018	OTB - Typical 2002
	742	1,779	6,472	37	35,082	908	2018	OTW - Typical 2002
								,
	0	1,620	6,616	41	35,571	46	2002	OTB - Typical 2002
	406	1,861	7,738	45	36,578	46	2009	OTB - Typical 2002
TN	400	1,861	7,738	45	36,578	46	2009	OTW - Typical 2002
	427	2,240	8,962	53	37,812	46	2018	OTB - Typical 2002
	394	2,240	8,962	53	37,812	46	2018	OTW - Typical 2002
	100	2.007	7.027	4.4	46 221	150	2002	OED T : 12002
-	122	3,097	7,837	44	46,221	159	2002	OTB - Typical 2002
T 7 A	396	3,057	9,066	48	49,173	159	2009	OTB - Typical 2002
VA	439 759	3,057 3,620	9,066	48	49,173 53,023	159 159	2009	OTW - Typical 2002
			10,757	57		159	2018	OTB - Typical 2002
	783	3,620	10,757	57	53,023	139	2018	OTW - Typical 2002
	12	331	1,933	10	10,779	12	2002	OTB - Typical 2002
	691	342	2,183	11	11,461	12	2009	OTB - Typical 2002
WV	673	342	2,183	11	11,461	12	2009	OTW - Typical 2002
	722	416	2,484	13	12,390	12	2018	OTB - Typical 2002
	719	416	2,484	13	12,390	12	2018	OTW - Typical 2002


Annual NOx Emissions by Source Sector

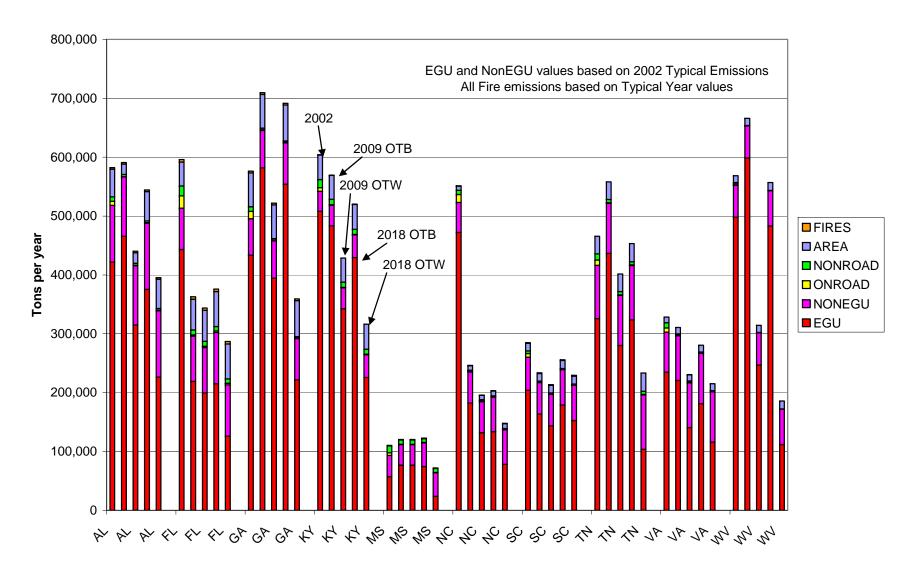
Annual NO_x Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR	Basis
	153,349	83,868	158,423	64,891	23,444	11,456	2002	OTB - Typical 2002
	131,988	80,738	101,323	55,494	26,482	11,456	2009	OTB - Typical 2002
AL	132,323	70,644	101,323	55,494	26,482	11,456	2009	OTW - Typical 2002
	135,010	91,052	46,222	42,573	28,754	11,456	2018	OTB - Typical 2002
	39,942	80,031	46,222	42,573	28,754	11,456	2018	OTW - Typical 2002
	35,512	00,031	10,222	12,373	20,731	11,150	2010	OT W Typical 2002
	247,099	59,517	466,098	150,519	29,477	19,791	2002	OTB - Typical 2002
	148,522	67,533	314,307	136,851	31,821	19,791	2009	OTB - Typical 2002
FL	147,801	67,533	314,307	136,851	31,821	19,791	2009	OTW - Typical 2002
	159,004	77,551	154,611	111,959	35,047	19,791	2018	OTB - Typical 2002
	59,446	77,551	154,611	111,959	35,047	19,791	2018	OTW - Typical 2002
	120,785	52,425	308,013	91,386	36,105	13,882	2002	OTB - Typical 2002
	131,901	53,008	208,393	79,049	38,876	13,882	2009	OTB - Typical 2002
GA	119,425	53,008	208,393	79,049	38,876	13,882	2009	OTW - Typical 2002
	128,938	59,005	99,821	60,650	42,260	13,882	2018	OTB - Typical 2002
	65,559	59,005	99,821	60,650	42,260	13,882	2018	OTW - Typical 2002
	200 902	29.460	154.899	101 261	20.507	1.460	2002	OTD Typical 2002
	209,802	38,460	- ,	101,261	39,507	1,460	2002	OTB - Typical 2002 OTB - Typical 2002
7737	178,930	37,960	97,912	90,803	42,122	1,460	2009	J1
KY	177,272	37,201	97,912	90,803	42,122	1,460	2009	OTW - Typical 2002
	182,192	41,776	42,104	77,295	45,597	1,460	2018	OTB - Typical 2002
	64,674	40,948	42,104	77,295	45,597	1,460	2018	OTW - Typical 2002
	27,254	76,906	111,791	90,686	4,200	3,328	2002	OTB - Typical 2002
	38,911	70,463	69,949	81,780	4,789	3,328	2002	OTB - Typical 2002
MS	38,978	70,463	69,949	81,780	4,789	3,328	2009	OTW - Typical 2002
IVIS	38,355	76,738	29,717	68,781	5,230	3,328	2018	OTW - Typical 2002 OTB - Typical 2002
	11,206	76,738	29,717	68,781	5,230	3,328	2018	OTW - Typical 2002
	11,200	70,738	29,717	06,761	3,230	3,326	2016	01 w - Typicai 2002
	144,730	50,393	341,198	81,448	48,730	5,005	2002	OTB - Typical 2002
	66,598	46,242	207,648	66,382	53,550	5,005	2009	OTB - Typical 2002
NC	67,051	46,242	207,648	66,382	53,550	5,005	2009	OTW - Typical 2002
	64,537	50,044	81,706	45,146	60,073	5,005	2018	OTB - Typical 2002
	59,917	50,044	81,706	45,146	60,073	5,005	2018	OTW - Typical 2002
			,,,,,,	- , -		,,,,,,,		J.
	85,555	44,123	140,428	46,789	19,332	5,270	2002	OTB - Typical 2002
	50,433	43,799	91,696	39,544	20,852	5,270	2009	OTB - Typical 2002
SC	50,128	42,944	91,696	39,544	20,852	5,270	2009	OTW - Typical 2002
	55,103	48,314	42,354	29,512	22,467	5,270	2018	OTB - Typical 2002
	36,264	47,403	42,354	29,512	22,467	5,270	2018	OTW - Typical 2002
	155,028	73,384	233,324	95,968	17,829	2,232	2002	OTB - Typical 2002
	106,979	62,435	147,757	85,084	19,148	2,232	2009	OTB - Typical 2002
TN	104,528	61,176	147,757	85,084	19,148	2,232	2009	OTW - Typical 2002
	112,411	69,374	65,242	69,093	20,928	2,232	2018	OTB - Typical 2002
	32,411	67,999	65,242	69,093	20,928	2,232	2018	OTW - Typical 2002
	82,911	61,528	219,602	58,524	51,418	978	2002	OTB - Typical 2002
	64,950	64,298	133,170	50,120	53,344	978	2009	OTB - Typical 2002
VA	62,810	60,027	133,170	50,120	53,344	978	2009	OTW - Typical 2002
	56,716	71,480	61,881	36,970	56,668	978	2018	OTB - Typical 2002
	40,045	66,931	61,881	36,970	56,668	978	2018	OTW - Typical 2002
	222 000	AC 715	50.612	24 442	12 (97	044	2002	OTD Typical 2002
	222,090	46,715	59,612	34,442	12,687	944	2002	OTB - Typical 2002
****	173,977	42,140	36,049	31,148	13,816	944	2009	OTB - Typical 2002
WV	174,572	40,469	36,049	31,148	13,816	944	2009	OTW - Typical 2002
	170,522	46,846	16,274	26,279	15,079	944	2018	OTB - Typical 2002
	42,227	44,944	16,274	26,279	15,079	944	2018	OTW - Typical 2002


Annual PM₁₀ Emissions by Source Sector

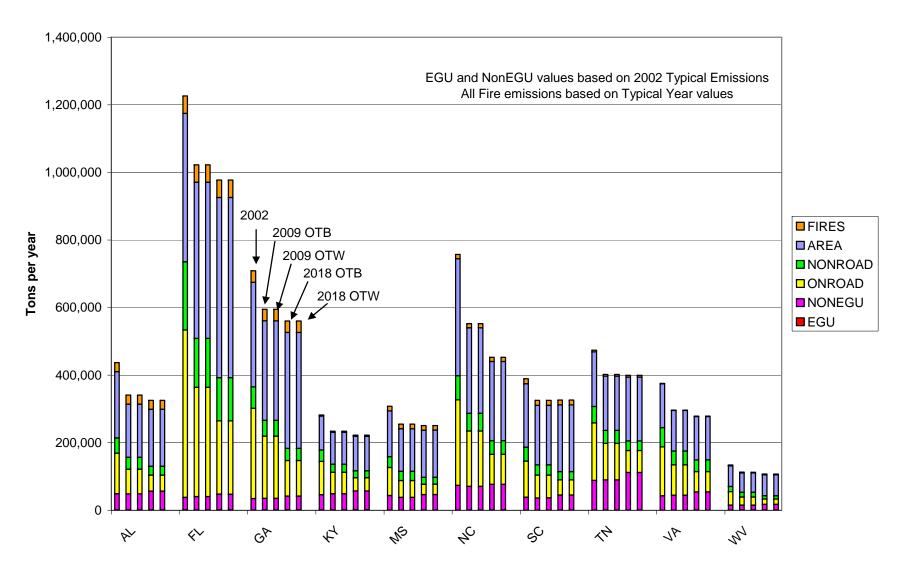
Annual PM_{10} Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR	Basis
	5,737	24,957	3,898	5,331	393,093	50,833	2002	OTB - Typical 2002
	29,053	25,161	3,188	4,597	411,614	50,833	2009	OTB - Typical 2002
AL	23,250	25,161	3,188	4,597	411,614	50,833	2009	OTW - Typical 2002
	31,815	29,278	2,488	3,690	445,168	50,833	2018	OTB - Typical 2002
	20,450	29,278	2,488	3,690	445,168	50,833	2018	OTW - Typical 2002
	33,182	28,882	11,253	17,692	446,821	98,470	2002	OTB - Typical 2002
	25,779	27,531	9,953	15,630	507,515	98,470	2009	OTB - Typical 2002
FL	24,493	27,531	9,953	15,630	507,515	98,470	2009	OTW - Typical 2002
	27,320	31,890	8,489	13,827	582,832	98,470	2018	OTB - Typical 2002
	22,204	31,890	8,489	13,827	582,832	98,470	2018	OTW - Typical 2002
	5,447	22,058	7,236	8,295	695,320	62,336	2002	OTB - Typical 2002
	39,580	23,861	6,103	7,368	776,935	62,336	2009	OTB - Typical 2002
GA	28,118	23,861	6,103	7,368	776,935	62,336	2009	OTW - Typical 2002
	41,221	28,177	4,995	6,068	880,800	62,336	2018	OTB - Typical 2002
	26,905	28,177	4,995	6,068	880,800	62,336	2018	OTW - Typical 2002
	6,000	15,613	2 720	6,389	233,559	6 667	2002	OTP Typical 2002
	32,406	15,858	3,720 3,002	5,312	242,345	6,667 6,667	2002	OTB - Typical 2002 OTB - Typical 2002
KY	29,606	15,858	3,002	5,312	242,345	6,667	2009	OTW - Typical 2002
K I	33,784		2,283		-		2009	
	25,733	18,587		4,602 4,602	256,544 256,544	6,667	2018	OTB - Typical 2002
	23,733	18,587	2,283	4,002	230,344	6,667	2018	OTW - Typical 2002
	4,783	19,680	2,856	5,551	343,377	14,693	2002	OTB - Typical 2002
	5,864	19,439	2,290	4,754	356,516	14,693	2009	OTB - Typical 2002
MS	5,883	19,439	2,290	4,754	356,516	14,693	2009	OTW - Typical 2002
	6,268	23,145	1,688	3,873	375,931	14,693	2018	OTB - Typical 2002
	6,459	23,145	1,688	3,873	375,931	14,693	2018	OTW - Typical 2002
	22,689	14,507	6,905	7,449	303,492	20,488	2002	OTB - Typical 2002
	23,028	14,301	5,861	6,210	317,847	20,488	2009	OTB - Typical 2002
NC	21,459	14,301	5,861	6,210	317,847	20,488	2009	OTW - Typical 2002
110	21,417	16,002	4,299	4,474	345,275	20,488	2018	OTB - Typical 2002
	20,258	16,002	4,299	4,474	345,275	20,488	2018	OTW - Typical 2002
	23,492	18,149	3,446	4,211	260,858	26,304	2002	OTB - Typical 2002
	18,023	17,368	2,878	3,593	278,852	26,304	2009	OTB - Typical 2002
SC	17,493	17,368	2,878	3,593	278,852	26,304	2009	OTW - Typical 2002
	19,290	20,272	2,258	2,889	304,940	26,304	2018	OTB - Typical 2002
	19,182	20,272	2,258	2,889	304,940	26,304	2018	OTW - Typical 2002
	14,537	35,982	5,338	7,145	211,903	8,875	2002	OTB - Typical 2002
	17,735	33,838	4,238	6,218	225,650	8,875	2009	OTB - Typical 2002
TN	17,159	33,838	4,238	6,218	225,650	8,875	2009	OTW - Typical 2002
	19,103	41,466	3,199	5,019	245,893	8,875	2018	OTB - Typical 2002
	12,432	41,466	3,199	5,019	245,893	8,875	2018	OTW - Typical 2002
	2 700	12.700	4 527	7.020	227 577	10.170	2002	OTD Tymi1 2002
	3,790	12,799	4,537	7,928	237,577	18,160	2002	OTB - Typical 2002
17 A	15,343	13,470	3,760	6,763	252,924	18,160	2009	OTB - Typical 2002
VA	12,804	13,470	3,760	6,763 5,564	252,924	18,160	2009	OTW - Typical 2002
	14,390 12,653	15,661 15,661	3,343 3,343	5,564 5,564	275,790 275,790	18,160 18,160	2018 2018	OTB - Typical 2002 OTW - Typical 2002
	12,033	13,001	5,5-5	3,304	213,170	10,100	2010	5111 Typicui 2002
	7,145	14,866	1,395	2,072	115,346	3,276	2002	OTB - Typical 2002
	36,442	14,926	1,096	1,819	115,410	3,276	2009	OTB - Typical 2002
WV	31,780	14,926	1,096	1,819	115,410	3,276	2009	OTW - Typical 2002
	37,425	18,433	844	1,381	121,964	3,276	2018	OTB - Typical 2002
	24,253	18,433	844	1,381	121,964	3,276	2018	OTW - Typical 2002


Annual PM_{2.5} Emissions by Source Sector

Annual $PM_{2.5}$ Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR	Basis
	3,131	19,016	2,794	4,877	73,352	44,812	2002	OTB - Typical 2002
	24,875	19,184	2,049	4,144	76,248	44,812	2009	OTB - Typical 2002
AL	19,190	19,184	2,049	4,144	76,248	44,812	2009	OTW - Typical 2002
	27,280	22,268	1,262	3,231	82,449	44,812	2018	OTB - Typical 2002
	16,279	22,268	1,262	3,231	82,449	44,812	2018	OTW - Typical 2002
	10,275	22,200	1,202	3,231	02,115	11,012	2010	OT W Typical 2002
	25,761	24,569	7,852	16,739	81,341	88,756	2002	OTB - Typical 2002
	19,307	23,063	6,216	14,786	90,487	88,756	2009	OTB - Typical 2002
FL	18,186	23,063	6,216	14,786	90,487	88,756	2009	OTW - Typical 2002
	20,848	26,622	4,242	13,044	101,872	88,756	2018	OTB - Typical 2002
	16,278	26,622	4,242	13,044	101,872	88,756	2018	OTW - Typical 2002
	1,11		,		7.7			J1
	2,137	17,893	5,158	7,899	133,542	55,712	2002	OTB - Typical 2002
	33,111	19,562	3,869	7,014	146,691	55,712	2009	OTB - Typical 2002
GA	22,163	19,562	3,869	7,014	146,691	55,712	2009	OTW - Typical 2002
	34,361	23,110	2,517	5,769	163,925	55,712	2018	OTB - Typical 2002
	20,549	23,110	2,517	5,769	163,925	55,712	2018	OTW - Typical 2002
	1,7	- , - ,	,-	- 7,		,-		JI
	3,605	10,729	2,693	5,998	52,765	6,310	2002	OTB - Typical 2002
	26,640	10,837	1,941	4,978	54,397	6,310	2009	OTB - Typical 2002
ΚΥ	23,915	10,837	1,941	4,978	54,397	6,310	2009	OTW - Typical 2002
	27,857	12,738	1,160	4,289	57,110	6,310	2018	OTB - Typical 2002
	19,915	12,738	1,160	4,289	57,110	6,310	2018	OTW - Typical 2002
	1,,,10	12,730	1,100	.,205	57,110	0,510	2010	
	4,384	10,187	2,109	5,200	63,135	13,680	2002	OTB - Typical 2002
	5,511	9,459	1,522	4,440	65,321	13,680	2009	OTB - Typical 2002
ЛS	5,530	9,459	1,522	4,440	65,321	13,680	2009	OTW - Typical 2002
	5,919	11,068	876	3,597	68,338	13,680	2018	OTB - Typical 2002
	6,110	11,068	876	3,597	68,338	13,680	2018	OTW - Typical 2002
		,,,,,,				,		January Springer
	16,428	11,204	4,816	7,079	69,663	19,491	2002	OTB - Typical 2002
	17,449	10,888	3,643	5,889	75,570	19,491	2009	OTB - Typical 2002
VC	16,034	10,888	3,643	5,889	75,570	19,491	2009	OTW - Typical 2002
	15,636	12,136	2,158	4,215	85,018	19,491	2018	OTB - Typical 2002
	14,702	12,136	2,158	4,215	85,018	19,491	2018	OTW - Typical 2002
	- 1,1.0	,		.,===		,		January Springer
	19,238	13,565	2,496	3,985	51,413	23,511	2002	OTB - Typical 2002
	14,471	12,977	1,870	3,396	54,230	23,511	2009	OTB - Typical 2002
SC	14,079	12,977	1,870	3,396	54,230	23,511	2009	OTW - Typical 2002
,	15,601	15,092	1,154	2,718	58,441	23,511	2018	OTB - Typical 2002
	15,509	15,092	1,154	2,718	58,441	23,511	2018	OTW - Typical 2002
	13,305	15,072	1,15	2,710	50,111	23,311	2010	OT W Typical 2002
	11,918	29,130	3,919	6,756	49,131	8,730	2002	OTB - Typical 2002
	15,770	27,313	2,782	5,873	51,753	8,730	2009	OTB - Typical 2002
ΪN	15,228	27,313	2,782	5,873	51,753	8,730	2009	OTW - Typical 2002
	17,103	33,502	1,643	4,724	55,712	8,730	2018	OTB - Typical 2002
	10,514	33,502	1,643	4,724	55,712	8,730	2018	OTW - Typical 2002
	10,514	33,302	1,043	7,727	33,712	0,730	2010	OTW Typical 2002
	2,559	9,868	3,090	7,486	52,271	17,361	2002	OTB - Typical 2002
	13,451	10,368	2,254	6,388	54,587	17,361	2009	OTB - Typical 2002
/A	11,237	10,368	2,254	6,388	54,587	17,361	2009	OTW - Typical 2002
	12,366	12,062	1,641	5,241	58,141	17,361	2018	OTB - Typical 2002
	10,755	12,062	1,641	5,241	58,141	17,361	2018	OTW - Typical 2002
	10,733	12,002	1,041	3,241	30,141	17,301	2010	Ji ii Typicai 2002
	3,356	12,154	1,003	1,941	25,850	3,239	2002	OTB - Typical 2002
	29,773	12,138	703	1,699	25,835	3,239	2002	OTB - Typical 2002
WV	25,251	12,138	703	1,699	25,835	3,239	2009	OTW - Typical 2002
77 Y								OTB - Typical 2002
	30,628 17,548	15,045 15,045	428 428	1,284 1,284	27,088 27,088	3,239 3,239	2018 2018	OTB - Typical OTW - Typica


Annual SO₂ Emissions by Source Sector

Annual SO₂ Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR	Basis
AL	421,734	96,447	6,885	7,539	47,074	2,559	2002	OTB - Typical 2002
AL	465,576	100,845	635	3,463	17,818	2,559	2009	OTB - Typical 2002
AL	314,841	100,845	635	3,463	17,818	2,559	2009	OTW - Typical 2002
AL	375,305	112,771	720	2,815	49,975	2,559	2018	OTB - Typical 2002
AL	226,506	112,771	720	2,815	49,975	2,559	2018	OTW - Typical 2002
	-							, , , , , , , , , , , , , , , , , , ,
FL	443,152	70,165	20,872	17,023	40,537	4,129	2002	OTB - Typical 2002
FL	219,072	76,851	2,120	8,380	52,390	4,129	2009	OTB - Typical 2002
FL	199,834	76,851	2,120	8,380	52,390	4,129	2009	OTW - Typical 2002
FL	215,177	87,065	2,533	7,511	59,413	4,129	2018	OTB - Typical 2002
FL	126,280	87,065	2,533	7,511	59,413	4,129	2018	OTW - Typical 2002
GA	433,513	62,032	12,155	8,145	57,555	2,815	2002	OTB - Typical 2002
GA	582,078	63,348	1,254	2,588	57,377	2,815	2009	OTB - Typical 2002
GA	394,425	63,348	1,254	2,588	57,377	2,815	2009	OTW - Typical 2002
GA	554,013	70,386	1,458	1,702	61,155	2,815	2018	OTB - Typical 2002
GA	221,615	70,386	1,458	1,702	61,155	2,815	2018	OTW - Typical 2002
	700.100	21.025		12.720	11.005	12.5	2002	OTTD TO 1 10000
KY	508,139	34,026	5,974	13,739	41,805	136	2002	OTB - Typical 2002
KY	483,235	35,479	585	9,092	40,779	136	2009	OTB - Typical 2002
KY	342,670	35,479	585	9,092	40,779	136	2009	OTW - Typical 2002
KY	429,418	38,816	651	8,536	42,326	136	2018	OTB - Typical 2002
KY	225,772	38,816	651	8,536	42,326	136	2018	OTW - Typical 2002
MS	57,263	36,071	4,604	11,551	771	100	2002	OTB - Typical 2002
MS	76,855	35,028	397	7,232	637	100	2009	OTB - Typical 2002
MS	76,855	35,028	397	7,232	637	100	2009	OTW - Typical 2002
MS	74,505	40,318	441	6,638	831	100	2018	OTB - Typical 2002
MS	23,768	40,318	441	6,638	831	100	2018	OTW - Typical 2002
NC	472,192	51,049	13,343	7,207	7,096	423	2002	OTB - Typical 2002
NC	182,356	52,693	1,311	1,798	7,607	423	2002	
NC NC	132,054	52,693		1,798	-	423	2009	OTB - Typical 2002
NC NC	-		1,311		7,607			OTW - Typical 2002
	133,691	58,671	1,323	838	8,273	423	2018	OTB - Typical 2002
NC	78,205	58,671	1,323	838	8,273	423	2018	OTW - Typical 2002
SC	203,978	56,329	5,958	4,449	12,900	1,187	2002	OTB - Typical 2002
SC	163,560	53,746	556	1,633	12,945	1,187	2009	OTB - Typical 2002
SC	143,492	53,746	556	1,633	12,945	1,187	2009	OTW - Typical 2002
SC	178,938	60,300	643	1,195	13,517	1,187	2018	OTB - Typical 2002
SC	152,457	60,300	643	1,195	13,517	1,187	2018	OTW - Typical 2002
TN	325,779	90,374	9,184	10,413	29,897	59	2002	OTB - Typical 2002
TN	436,453	85,275	831	5,649	29,787	59	2009	OTB - Typical 2002
TN	279,931	85,275	831	5,649	29,787	59	2009	OTW - Typical 2002
TN	323,654	92,396	944	5,205	31,047	59	2018	OTB - Typical 2002
TN	103,602	92,396	944	5,205	31,047	59	2018	OTW - Typical 2002
VA	234,714	68,038	7,218	8,796	9,510	99	2002	OTB - Typical 2002
VA	220,686	76,081	900	2,248	10,619	99	2009	OTB - Typical 2002
VA	140,665	76,081	900	2,248	10,619	99	2009	OTW - Typical 2002
VA	181,338	85,351	1,059	1,217	11,479	99	2018	OTB - Typical 2002
VA	115,987	85,351	1,059	1,217	11,479	99	2018	OTW - Typical 2002
	40= ===				44		2005	
WV	497,991	54,045	2,489	2,305	11,667	16	2002	OTB - Typical 2002
WV	598,555	54,701	227	392	12,156	16	2009	OTB - Typical 2002
WV	246,851	54,701	227	392	12,156	16	2009	OTW - Typical 2002
WV	482,959	60,141	255	56	13,450	16	2018	OTB - Typical 2002
WV	111,937	60,141	255	56	13,450	16	2018	OTW - Typical 2002

Annual VOC Emissions by Source Sector

Annual VOC Emissions by Source Sector

Name	EGU	NONEGU	ONROAD	NONROAD	AREA	FIRES	YEAR	Basis
	1,501	47,893	119,790	44,978	196,538	26,526	2002	OTB - Typical 2002
	1,261	47,600	72,848	35,498	157,405	26,526	2009	OTB - Typical 2002
AL	1,312	47,600	72,848	35,498	157,405	26,526	2009	OTW - Typical 2002
7113	1,574	55,373	47,296	26,338	168,507	26,526	2018	OTB - Typical 2002
	1,612	55,373	47,296	26,338	168,507	26,526	2018	OTW - Typical 2002
	1,012	33,373	17,250	20,330	100,507	20,520	2010	OTW Typical 2002
	2,362	36,301	495,225	201,960	439,019	51,527	2002	OTB - Typical 2002
	1,562	39,255	323,290	144,749	462,198	51,527	2009	OTB - Typical 2002
FL	1,559	39,255	323,290	144,749	462,198	51,527	2009	OTW - Typical 2002
	2,052	46,049	216,620	128,131	533,141	51,527	2018	OTB - Typical 2002
	1,988	46,049	216,620	128,131	533,141	51,527	2018	OTW - Typical 2002
	984	33,753	267,378	63,337	309,411	33,918	2002	OTB - Typical 2002
	1,497	34,153	184,239	46,722	294,204	33,918	2009	OTB - Typical 2002
GA	1,499	34,153	184,239	46,722	294,204	33,918	2009	OTW - Typical 2002
	1,794	40,354	105,507	36,014	342,661	33,918	2018	OTB - Typical 2002
	1,790	40,354	105,507	36,014	342,661	33,918	2018	OTW - Typical 2002
	1,518	44,854	98,311	34,156	100,174	3,338	2002	OTB - Typical 2002
	1,516	47,733	63,258	23,980	94,253	3,338	2002	OTB - Typical 2002
KY	1,580	47,733	63,258	23,980	94,253	3,338	2009	OTW - Typical 2002
13.1	1,635	55,729	39,084	20,795	102,117	3,338	2018	OTB - Typical 2002
	1,616	55,729	39,084	20,795	102,117	3,338	2018	OTW - Typical 2002
	1,010	33,723	33,001	20,733	102,117	3,330	2010	OTW Typical 2002
	696	43,401	82,810	32,401	135,106	13,625	2002	OTB - Typical 2002
	584	38,119	49,670	27,650	125,382	13,625	2009	OTB - Typical 2002
MS	590	38,119	49,670	27,650	125,382	13,625	2009	OTW - Typical 2002
	766	45,966	30,734	20,576	139,419	13,625	2018	OTB - Typical 2002
	827	45,966	30,734	20,576	139,419	13,625	2018	OTW - Typical 2002
	1,043	72,856	253,374	71,378	346,060	12,499	2002	OTB - Typical 2002
	1,100	70,146	163,803	52,430	252,553	12,499	2009	OTB - Typical 2002
NC	1,093	70,146	163,803	52,430	252,553	12,499	2009	OTW - Typical 2002
	1,183	75,985	88,620	40,576	234,207	12,499	2018	OTB - Typical 2002
	1,172	75,985	88,620	40,576	234,207	12,499	2018	OTW - Typical 2002
	429	29.402	106 702	41 274	197.466	14.666	2002	OTD T:1 2002
	438	38,493 36,410	106,792	41,374	187,466	14,666	2002	OTB - Typical 2002
CC C	601	36,410	67,281 67,281	30,531 30,531	176,104 176,104	14,666 14,666	2009	OTB - Typical 2002
SC	745	44,586	44,700	24,989	176,104	14,666	2018	OTW - Typical 2002 OTB - Typical 2002
	754	44,586	44,700	24,989	196,946	14,666	2018	OTW - Typical 2002
	134	74,500	++,700	24,707	170,940	17,000	2010	01 W - Typicai 2002
	819	87,975	169,914	49,056	161,069	5,153	2002	OTB - Typical 2002
	866	89,128	108,200	38,686	160,265	5,153	2009	OTB - Typical 2002
TN	854	89,128	108,200	38,686	160,265	5,153	2009	OTW - Typical 2002
	899	111,372	64,665	28,667	188,977	5,153	2018	OTB - Typical 2002
	826	111,372	64,665	28,667	188,977	5,153	2018	OTW - Typical 2002
	672	42,589	144,684	57,050	129,792	912	2002	OTB - Typical 2002
	546	44,359	89,678	40,897	120,022	912	2009	OTB - Typical 2002
VA	503	44,359	89,678	40,897	120,022	912	2009	OTW - Typical 2002
	694	53,968	60,454	34,412	128,160	912	2018	OTB - Typical 2002
	674	53,968	60,454	34,412	128,160	912	2018	OTW - Typical 2002
	1,128	14,599	40,066	14,805	61,490	2,184	2002	OTB - Typical 2002
	1,442	14,015	23,907	14,249	57,082	2,184	2002	OTB - Typical 2002
WV	1,397	14,015	23,907	14,249	57,082	2,184	2009	OTW - Typical 2002
	1,471	16,636	15,463	9,500	62,164	2,184	2018	OTB - Typical 2002
	-,	16,636	15,463	9,500	62,164	2,184	2018	OTW - Typical 2002

APPENDIX B:

STATE VMT TOTALS

State VMT Totals

				Million Mil	les Per Year	•			
2002	LDGV	LDGT1	LDGT2	HDDV	LDDV	LDDT	HDDV	MC	TOTAL
AI		12,728	4,347	1,630	63	69	4,709	196	55,723
FI		40,835	13,945	5,079	206	220	12,465	591	178,681
GA	,	24,394	8,331	3,103	121	132	8,673	371	106,785
KY		12,189	3,366	1,606	55	55	4,827	171	51,020
MS		6,724	439	1,025	330	125	3,610	92	36,278
NC		30,339	10,787	4,119	230	230	9,440	461	106,795
SC		10,750	3,671	1,395	52	58	4,306	171	47,074
TN		20,272	6,922	2,943	52	111	6,810	397	68,316
VA		24,784	8,667	2,148	61	139	4,969	369	77,472
WV		5,931	2,028	732	25	37	1,664	117	19,544
2009	LDGV	LDGT1	LDGT2	HDDV	LDDV	LDDT	HDDV	MC	TOTAL
AI	30,638	18,598	5,511	2,069	65	72	5,976	249	63,178
FI		62,449	18,697	6,820	215	230	16,743	794	213,590
G.A		36,641	10,933	4,077	126	137	11,374	487	125,343
KY	28,006	16,984	4,428	1,983	58	57	5,983	231	57,729
MS		10,131	573	1,341	356	135	4,719	120	41,017
NC		43,484	15,122	4,576	40	224	10,928	527	123,396
SC	26,451	16,119	4,796	1,824	55	61	5,617	223	55,147
TN	28,775	28,650	8,521	3,627	52	111	8,391	490	78,615
VA	33,663	34,814	10,597	2,624	61	137	6,073	451	88,419
WV	8,128	8,205	2,427	878	25	37	1,995	140	21,835
2018	LDGV	LDGT1	LDGT2	HDDV	LDDV	LDDT	HDDV	MC	TOTAL
AI		23,562	6,990	2,634	EDD (84	7,607	317	72,966
FI		83,385	24,996	9,156	221	301	22,491	1,066	258,191
GA		47,687	14,245	5,332	129	171	14,853	637	148,269
KY		21,058	5,558	2,463	60	66	7,454	288	66,300
MS		12,984	736	1,727	372	159	6,076	155	46,996
NC		51,568	18,260	4,985	279	279	11,396	553	129,566
SC		20,880	6,220	2,375	57	75	7,306	290	65,133
TN		35,702	10,629	4,538	52	130	10,500	613	91,417
VA		44,438	13,543	3,358	62	164	7,770	578	104,944
WV		10,025	2,969	1,078	25	41	2,451	172	24,891

APPENDIX C:

STATE TIER 1 EMISSION TOTALS

State	Year	TIER1	TIER 1 NAME	CO	NH3	NOX	PM10	PM2.5	SO2	VOC
AL	2002	01	FUEL COMB. ELEC. UTIL.	11,460	239	154,704	7,845	4,176	423,736	2,288
AL	2002	02	FUEL COMB. INDUSTRIAL	67,121	234	51,527	6,729	3,791	40,918	2,237
AL	2002	03	FUEL COMB. OTHER	70,498	169	19,237	6,411	5,528	39,606	56,120
AL	2002	04	CHEMICAL & ALLIED PRODUCT	5,721	35	2,032	1,220	888	12,770	7,273
AL	2002	05	METALS PROCESSING	38,247	376	6,011	9,107	7,803	14,039	3,299
AL	2002	06	PETROLEUM & RELATED	13,606	0	878	194	155	22,991	4,024
AL	2002	07	OTHER INDUSTRIAL PROCESSES	47,676	1,468	25,252	22,689	9,516	17,904	25,304
AL	2002	08	SOLVENT UTILIZATION	216	0	226	149	126	3	108,437
AL	2002	09	STORAGE & TRANSPORT	174	0	230	1,086	636	13	16,522
AL	2002	10	WASTE DISPOSAL & RECYCLING	86,302	10	3,465	13,960	13,073	489	11,334
AL	2002	11	HIGHWAY VEHICLES	1,366,056	5,576	158,423	3,898	2,794	6,885	119,790
AL	2002	12	OFF-HIGHWAY	414,385	33	65,366	4,787	4,502	7,584	60,487
AL	2002	14	MISCELLANEOUS	442,778	59,864	9,343	408,115	79,127	2,559	21,686
	2002 Total			2,564,239	68,005	496,695	486,190	132,115	589,499	438,800
AL	2009	01	FUEL COMB. ELEC. UTIL.	14,986	359	82,305	6,969	3,921	378,052	2,473
AL	2009	02	FUEL COMB. INDUSTRIAL	68,146	274	36,301	6,140	3,438	40,651	2,191
AL	2009	03	FUEL COMB. OTHER	52,256	158	19,514	5,904	5,104	36,048	31,403
AL	2009	04	CHEMICAL & ALLIED PRODUCT	6,118	38	2,273	1,257	912	13,660	6,613
AL	2009	05	METALS PROCESSING	38,969	500	6,021	9,062	7,756	16,629	3,305
AL	2009	06	PETROLEUM & RELATED	13,241	0	858	221	177	22,495	3,336
AL	2009	07	OTHER INDUSTRIAL PROCESSES	52,004	1,571	26,340	24,196	10,197	19,383	26,519
AL	2009	08	SOLVENT UTILIZATION	247	0	257	165	139	4	92,631
AL	2009	09	STORAGE & TRANSPORT	192	0	253	1,146	584	14	17,738
AL	2009	10	WASTE DISPOSAL & RECYCLING	87,225	11	3,634	14,504	13,485	590	11,207
AL	2009	11	HIGHWAY VEHICLES	942,793	6,350	101,323	3,188	2,049	635	72,848
AL	2009	12	OFF-HIGHWAY	454,686	36	56,862	4,027	3,776	3,471	50,249
AL	2009	14	MISCELLANEOUS	463,498	65,899	9,788	428,698	82,679	2,681	22,657
	2009 Total			2,194,361	75,195	345,729	505,475	134,217	534,314	343,169
AL	2018	01	FUEL COMB. ELEC. UTIL.	24,342	1,072	64,358	7,822	4,768	305,262	2,952
AL	2018	02	FUEL COMB. INDUSTRIAL	69,198	275	38,781	6,462	3,613	43,170	2,295
AL	2018	03	FUEL COMB. OTHER	43,744	164	20,185	5,641	4,818	37,162	21,215
AL	2018	04	CHEMICAL & ALLIED PRODUCT	7,384	46	2,804	1,523	1,106	16,509	8,040
AL	2018	05	METALS PROCESSING	49,770	674	7,519	11,036	9,423	21,824	4,234
AL	2018	06	PETROLEUM & RELATED	13,002	0	848	258	207	22,242	3,421
AL	2018	07	OTHER INDUSTRIAL PROCESSES	60,452	1,732	30,831	27,727	11,812	21,843	30,267
AL	2018	08	SOLVENT UTILIZATION	301	0	317	200	169	4	112,412
AL	2018	09	STORAGE & TRANSPORT	234	0	307	1,366	699	17	18,900
AL	2018	10	WASTE DISPOSAL & RECYCLING	88,758	13	3,867	15,343	14,143	718	11,938
AL	2018	11	HIGHWAY VEHICLES	797,966	7,296	46,222	2,488	1,262	720	47,296
AL	2018	12	OFF-HIGHWAY	488,924	42	43,799	3,041	2,835	2,818	40,407
AL	2018	14	MISCELLANEOUS	464,235	73,529	9,803	458,551	85,538	2,686	22,686
	2018 Total			2,108,311	84,843	269,643	541,458	140,394	474,974	326,063

State	Year	TIER1	TIER 1 NAME	СО	NH3	NOX	PM10	PM2.5	SO2	VOC
FL	2002	01	FUEL COMB. ELEC. UTIL.	55,899	222	282,507	21,391	15,575	483,590	2,531
FL	2002	02	FUEL COMB. INDUSTRIAL	64,794	131	45,153	20,442	18,547	42,524	4,219
FL	2002	03	FUEL COMB. OTHER	49,230	99	11,593	8,464	8,074	20,031	16,123
FL	2002	04	CHEMICAL & ALLIED PRODUCT	745	1,101	2,221	1,868	1,488	34,462	3,542
FL	2002	05	METALS PROCESSING	1,404	1	194	449	334	882	82
FL	2002	06	PETROLEUM & RELATED	1,070	0	560	259	129	470	724
FL	2002	07	OTHER INDUSTRIAL PROCESSES	18,586	19	12,325	23,419	11,844	6,515	27,024
FL	2002	08	SOLVENT UTILIZATION	0	0	1	128	110	0	304,582
FL	2002	09	STORAGE & TRANSPORT	161	0	561	1,645	720	38	79,281
FL	2002	10	WASTE DISPOSAL & RECYCLING	175,989	351	6,123	22,142	21,604	659	17,449
FL	2002	11	HIGHWAY VEHICLES	4,693,893	18,078	466,098	11,253	7,852	20,872	495,225
FL	2002	12	OFF-HIGHWAY	1,920,729	134	180,627	18,281	17,415	20,614	272,072
FL	2002	14	MISCELLANEOUS	764,337	40,324	15,083	498,855	115,287	4,129	41,274
	2002 Total			7,746,839	60,460	1,023,045	628,597	218,979	634,786	1,264,128
FL	2009	01	FUEL COMB. ELEC. UTIL.	35,928	1,631	86,165	9,007	5,910	186,055	1,910
FL	2009	02	FUEL COMB. INDUSTRIAL	69,972	146	44,480	16,265	14,827	38,225	4,473
FL	2009	03	FUEL COMB. OTHER	33,014	100	10,800	7,555	7,174	19,882	10,907
FL	2009	04	CHEMICAL & ALLIED PRODUCT	901	1,231	2,461	1,908	1,526	34,961	3,821
FL	2009	05	METALS PROCESSING	1,545	1	176	361	251	993	82
FL	2009	06	PETROLEUM & RELATED	1,190	0	612	304	156	519	748
FL	2009	07	OTHER INDUSTRIAL PROCESSES	18,593	26	13,521	33,084	19,357	6,881	26,413
FL	2009	08	SOLVENT UTILIZATION	0	0	1	132	113	0	319,723
FL	2009	09	STORAGE & TRANSPORT	187	0	621	1,661	727	50	83,880
FL	2009	10	WASTE DISPOSAL & RECYCLING	177,953	342	6,251	22,971	22,364	698	17,241
FL	2009	11	HIGHWAY VEHICLES	3,446,095	21,737	314,307	9,953	6,216	2,120	323,290
FL	2009	12	OFF-HIGHWAY	2,104,920	148	163,794	15,613	14,866	8,967	209,543
FL	2009	14	MISCELLANEOUS	764,004	41,471	15,075	557,331	120,796	4,129	41,290
	2009 Total			6,654,301	66,833	658,265	676,145	214,282	303,479	1,043,321
FL	2018	01	FUEL COMB. ELEC. UTIL.	53,772	2,976	73,125	9,953	6,843	132,177	2,376
FL	2018	02	FUEL COMB. INDUSTRIAL	76,847	156	47,835	17,808	16,255	40,443	4,892
FL	2018	03	FUEL COMB. OTHER	27,094	110	12,344	7,254	6,852	20,975	8,878
FL	2018	04	CHEMICAL & ALLIED PRODUCT	1,200	1,448	3,119	2,367	1,907	41,395	4,739
FL	2018	05	METALS PROCESSING	1,973	2	225	466	323	1,325	106
FL	2018	06	PETROLEUM & RELATED	1,513	0	778	387	198	659	918
FL	2018	07	OTHER INDUSTRIAL PROCESSES	20,748	35	15,855	39,871	23,301	7,741	29.716
FL	2018	08	SOLVENT UTILIZATION	0	0	1	158	135	0	387,657
FL	2018	09	STORAGE & TRANSPORT	226	0	690	2,008	879	58	87,732
FL	2018	10	WASTE DISPOSAL & RECYCLING	180,730	418	6,486	24,140	23,427	769	18,335
FL	2018	11	HIGHWAY VEHICLES	3,086,330	26,154	154,611	8,489	4,242	2,533	216,620
FL	2018	12	OFF-HIGHWAY	2,323,327	171	127,885	12,497	11,868	7,536	183,452
FL	2018	14	MISCELLANEOUS	763,701	43,251	15,068	628,984	127,364	4,129	41,338
	2018									
	Total			6,537,461	74,720	458,023	754,381	223,592	259,739	986,760

State	Year	TIER1	TIER 1 NAME	CO	NH3	NOX	PM10	PM2.5	SO2	VOC
GA	2002	01	FUEL COMB. ELEC. UTIL.	9,650	86	148,126	11,467	5,070	517,633	1,256
GA	2002	02	FUEL COMB. INDUSTRIAL	59,492	27	53,039	12,037	7,886	88,791	3,956
GA	2002	03	FUEL COMB. OTHER	63,314	17	14,465	10,142	10,057	10,740	27,226
GA	2002	04	CHEMICAL & ALLIED PRODUCT	5,387	920	2,277	391	305	2,721	2,668
GA	2002	05	METALS PROCESSING	330	0	60	147	94	0	70
GA	2002	06	PETROLEUM & RELATED	41	0	3	69	44	68	175
GA	2002	07	OTHER INDUSTRIAL PROCESSES	27,960	2,666	12,215	39,630	13,073	8,701	26,999
GA	2002	08	SOLVENT UTILIZATION	4	0	22	13	13	0	234,744
GA	2002	09	STORAGE & TRANSPORT	39	0	6	583	360	0	26,334
GA	2002	10	WASTE DISPOSAL & RECYCLING	203,892	16	6,872	29,227	28,311	312	18,964
GA	2002	11	HIGHWAY VEHICLES	2,833,468	10,524	308,013	7,236	5,158	12,155	267,378
GA	2002	12	OFF-HIGHWAY	791,158	60	97,961	8,618	8,226	9,005	85,965
GA	2002	14	MISCELLANEOUS	498,622	83,032	10,279	687,028	116,756	2,815	25,618
	2002 Total			4,493,357	97,349	653,338	806,587	195,354	652,942	721,352
GA	2009	01	FUEL COMB. ELEC. UTIL.	23,721	686	98,497	17,891	10,907	417,449	2,314
GA	2009	02	FUEL COMB. INDUSTRIAL	63,067	28	53,726	11,206	7,390	89,850	4,163
GA	2009	03	FUEL COMB. OTHER	45,184	17	15,347	8,496	8,400	10,981	15,683
GA	2009	04	CHEMICAL & ALLIED PRODUCT	6,044	1,032	2,531	436	341	2,743	2,814
GA	2009	05	METALS PROCESSING	363	0	61	159	100	0	47
GA	2009	06	PETROLEUM & RELATED	50	0	4	83	54	82	154
GA	2009	07	OTHER INDUSTRIAL PROCESSES	29,976	2,902	12,528	45,339	14,758	7,662	28,441
GA	2009	08	SOLVENT UTILIZATION	4	0	25	14	14	0	216,248
GA	2009	09	STORAGE & TRANSPORT	45	0	7	649	401	0	27,821
GA	2009	10	WASTE DISPOSAL & RECYCLING	218,460	18	7,419	31,955	30,900	360	18,711
GA	2009	11	HIGHWAY VEHICLES	2,053,694	12,660	208,393	6,103	3,869	1,254	184,239
GA	2009	12	OFF-HIGHWAY	882,970	68	85,733	7,521	7,175	2,725	67,686
GA	2009	14	MISCELLANEOUS	515,329	91,406	10,637	765,043	125,665	2,914	26,388
	2009 Total			3,838,907	108,817	494,908	894,896	209,973	536,020	594,708
GA	2018	01	FUEL COMB. ELEC. UTIL.	44,476	1,677	75,717	20,909	13,983	230,856	2,841
GA	2018	02	FUEL COMB. INDUSTRIAL	67,067	30	57,232	11,755	7,769	94,403	4,424
GA	2018	03	FUEL COMB. OTHER	39,440	17	17,801	7,722	7,622	11,958	11,482
GA	2018	04	CHEMICAL & ALLIED PRODUCT	7,076	1,208	2,982	517	405	3,436	3,524
GA	2018	05	METALS PROCESSING	421	0	76	185	118	0	55
GA	2018	06	PETROLEUM & RELATED	63	0	5	105	68	104	191
GA	2018	07	OTHER INDUSTRIAL PROCESSES	33,611	3,559	14,460	55,130	17,899	8,748	33,333
GA	2018	08	SOLVENT UTILIZATION	5	0	30	22	22	0	264,326
GA	2018	09	STORAGE & TRANSPORT	54	0	9	764	470	0	29,409
GA	2018	10	WASTE DISPOSAL & RECYCLING	235,690	22	8,120	35,280	34,038	423	20,411
GA	2018	11	HIGHWAY VEHICLES	1,765,020	14,871	99,821	4,995	2,517	1,458	105,507
GA	2018	12	OFF-HIGHWAY	973,872	79	64,579	6,015	5,730	1,709	56,761
GA	2018	14	MISCELLANEOUS	515,220	102,075	10,635	859,835	134,730	2,914	26,368
	2018 Total			3,682,015	123,537	351,467	1,003,235	225,372	356,010	558,631

State	Year	TIER1	TIER 1 NAME	CO	NH3	NOX	PM10	PM2.5	SO2	VOC
KY	2002	01	FUEL COMB. ELEC. UTIL.	12,607	321	201,928	4,795	2,847	495,153	1,481
KY	2002	02	FUEL COMB. INDUSTRIAL	14,110	182	60,716	2,155	1,463	41,825	1,566
KY	2002	03	FUEL COMB. OTHER	40,806	55	4,997	7,679	7,352	9,647	12,711
KY	2002	04	CHEMICAL & ALLIED PRODUCT	176	214	296	774	581	2,345	3,462
KY	2002	05	METALS PROCESSING	89,197	6	1,082	3,396	2,720	12,328	1,508
KY	2002	06	PETROLEUM & RELATED	4,304	335	2,519	308	205	5,747	2,895
KY	2002	07	OTHER INDUSTRIAL PROCESSES	6,493	78	6,518	31,429	10,394	3,333	25,388
KY	2002	08	SOLVENT UTILIZATION	0	10	9	317	241	1	61,834
KY	2002	09	STORAGE & TRANSPORT	33	8	15	1,920	1,177	3	18,853
KY	2002	10	WASTE DISPOSAL & RECYCLING	20,622	8	1,768	7,229	6,476	606	7,927
KY	2002	11	HIGHWAY VEHICLES	1,260,682	5,044	154,899	3,720	2,693	5,974	98,311
KY	2002	12	OFF-HIGHWAY	325,993	31	104,571	6,425	6,046	14,043	44,805
KY	2002	14	MISCELLANEOUS	25,849	51,026	556	197,402	28,291	146	5,238
	2002 Total			1,800,871	57,318	539,873	267,547	70,486	591,151	285,977
KY	2009	01	FUEL COMB. ELEC. UTIL.	15,812	400	92,021	6,463	4,279	290,193	1,369
KY	2009	02	FUEL COMB. INDUSTRIAL	14,986	195	61,683	2,105	1,456	42,433	1,476
KY	2009	03	FUEL COMB. OTHER	30,045	54	5,178	7,035	6,725	10,123	9,148
KY	2009	04	CHEMICAL & ALLIED PRODUCT	179	249	300	851	633	2,384	3,635
KY	2009	05	METALS PROCESSING	99,428	7	1,156	3,246	2,550	13,735	1,772
KY	2009	06	PETROLEUM & RELATED	4,818	377	2,828	344	230	6,460	3,052
KY	2009	07	OTHER INDUSTRIAL PROCESSES	7,212	84	6,674	32,194	10,912	3,634	27,548
KY	2009	08	SOLVENT UTILIZATION	0	10	11	371	283	1	62,595
KY	2009	09	STORAGE & TRANSPORT	38	9	18	2,064	1,268	3	20,038
KY	2009	10	WASTE DISPOSAL & RECYCLING	22,388	9	1,979	7,770	6,925	733	7,725
KY	2009	11	HIGHWAY VEHICLES	942,350	5,795	97,912	3,002	1,941	585	63,258
KY	2009	12	OFF-HIGHWAY	357,800	34	94,752	5,544	5,203	9,180	38,558
KY	2009	14	MISCELLANEOUS	32,627	52,915	702	206,463	29,601	187	6,335
	2009 Total			1,527,684	60,137	365,214	277,453	72,006	379,651	246,509
KY	2018	01	FUEL COMB. ELEC. UTIL.	17,144	476	64,378	6,694	4,434	226,062	1,426
KY	2018	02	FUEL COMB. INDUSTRIAL	15,692	205	64,533	2,203	1,528	43,772	1,555
KY	2018	03	FUEL COMB. OTHER	24,764	53	5,550	6,469	6,169	9,947	7,479
KY	2018	04	CHEMICAL & ALLIED PRODUCT	219	317	367	1,054	781	2,884	4,384
KY	2018	05	METALS PROCESSING	114,470	9	1,508	3,898	3,065	15,800	2,343
KY	2018	06	PETROLEUM & RELATED	5,495	434	3,244	392	262	7,426	3,394
KY	2018	07	OTHER INDUSTRIAL PROCESSES	8,303	93	7,872	35,349	12,377	4,141	31,394
KY	2018	08	SOLVENT UTILIZATION	0	12	14	464	352	1	73,525
KY	2018	09	STORAGE & TRANSPORT	44	10	21	2,408	1,481	4	21,196
KY	2018	10	WASTE DISPOSAL & RECYCLING	24,677	11	2,256	8,481	7,518	894	8,392
KY	2018	11	HIGHWAY VEHICLES	782,423	6,584	42,104	2,283	1,160	651	39,084
KY	2018	12	OFF-HIGHWAY	381,215	40	79,392	4,556	4,256	8,592	30,920
KY	2018	14	MISCELLANEOUS	33,931	55,118	729	218,725	30,626	196	7,254
	2018									
	Total			1,408,378	63,361	271,967	292,975	74,010	320,369	232,347

State	Year	TIER1	TIER 1 NAME	CO	NH3	NOX	PM10	PM2.5	SO2	VOC
MS	2002	01	FUEL COMB. ELEC. UTIL.	5,219	198	40,433	1,706	1,147	60,086	629
MS	2002	02	FUEL COMB. INDUSTRIAL	22,710	28	48,726	5,007	3,634	9,740	8,023
MS	2002	03	FUEL COMB. OTHER	36,752	34	4,502	5,445	5,414	789	22,923
MS	2002	04	CHEMICAL & ALLIED PRODUCT	15,410	361	1,725	849	440	1,663	2,375
MS	2002	05	METALS PROCESSING	1,031	0	115	122	58	36	371
MS	2002	06	PETROLEUM & RELATED	975	20	1,187	790	335	15,560	20,788
MS	2002	07	OTHER INDUSTRIAL PROCESSES	13,884	747	9,219	27,617	8,051	8,866	15,525
MS	2002	08	SOLVENT UTILIZATION	45	7	105	219	178	1	80,760
MS	2002	09	STORAGE & TRANSPORT	74	0	80	124	38	40	23,327
MS	2002	10	WASTE DISPOSAL & RECYCLING	1,414	9	89	447	324	31	886
MS	2002	11	HIGHWAY VEHICLES	894,639	3,577	111,791	2,856	2,109	4,604	82,810
MS	2002	12	OFF-HIGHWAY	236,752	23	88,787	5,010	4,690	11,315	41,081
MS	2002	14	MISCELLANEOUS	14,529	58,746	312	323,622	43,028	84	708
	2002			1,243,435	63,753	307,072	373,815	69,446	112,814	300,206
MC	Total	0.1	EHEL COMP. ELEC LIZH		,					
MS	2009	01	FUEL COMB. ELEC. UTIL.	5,051	334	36,011	4,957	4,777	76,579	404
MS	2009	02	FUEL COMB. INDUSTRIAL	24,607	30	44,095	3,728	2,787	7,388	8,007
MS	2009	03	FUEL COMB. OTHER	26,023	33	4,514	5,278	5,245	751	17,445
MS	2009	04	CHEMICAL & ALLIED PRODUCT	16,141	405	1,955	941	488	1,880	2,614
MS	2009	05 06	METALS PROCESSING PETROLEUM & RELATED	1,098	0	128	129	62	37	402
MS	2009			1,101	23	1,262	894	379	7,926	13,317
MS	2009	07	OTHER INDUSTRIAL PROCESSES	14,181	197	8,376	31,381	8,629	8,254	16,282
MS	2009	08	SOLVENT UTILIZATION	50	8	118	239	194	1	80,393
MS	2009	09	STORAGE & TRANSPORT	92	0	100	172	59	49	23,494
MS	2009	10	WASTE DISPOSAL & RECYCLING	1,486	10	95	473	339	32	743
MS	2009	11	HIGHWAY VEHICLES	628,151	4,026	69,949	2,290	1,522	397	49,670
MS	2009	12	OFF-HIGHWAY	257,453	25	80,567	4,270	3,985	7,191	36,197
MS	2009	14	MISCELLANEOUS	48,314	63,886	1,037	337,018	46,695	283	2,295
	2009 Total			1,023,747	68,978	248,207	391,770	75,160	110,767	251,261
MS	2018	01	FUEL COMB. ELEC. UTIL.	15,282	827	10,271	7,187	7,033	15,146	1,114
MS	2018	02	FUEL COMB. INDUSTRIAL	27,056	33	46,929	4,093	3,058	8,169	8,559
MS	2018	03	FUEL COMB. OTHER	20,900	32	4,767	4,964	4,928	726	14,670
MS	2018	04	CHEMICAL & ALLIED PRODUCT	20,175	475	2,337	1,132	588	2,242	3,290
MS	2018	05	METALS PROCESSING	1,357	0	167	160	79	48	461
MS	2018	06	PETROLEUM & RELATED	1,267	26	1,438	1,010	430	19,028	14,407
MS	2018	07	OTHER INDUSTRIAL PROCESSES	16,267	216	9,996	38,494	10,494	9,657	20,301
MS	2018	08	SOLVENT UTILIZATION	60	9	141	301	244	1	98,354
MS	2018	09	STORAGE & TRANSPORT	115	0	124	210	73	62	24,537
MS	2018	10	WASTE DISPOSAL & RECYCLING	1,638	12	114	533	372	34	870
MS	2018	11	HIGHWAY VEHICLES	528,898	4,565	29,717	1,688	876	441	30,734
MS	2018	12	OFF-HIGHWAY	270,726	29	68,252	3,452	3,203	6,638	28,842
MS	2018	14	MISCELLANEOUS	50,160	70,096	1,076	352,321	47,869	294	2,377
	2018									
	Total			953,900	76,320	175,329	415,546	79,246	62,486	248,517

State	Year	TIER1	TIER 1 NAME	CO	NH3	NOX	PM10	PM2.5	SO2	VOC
NC	2002	01	FUEL COMB. ELEC. UTIL.	14,074	55	148,809	22,994	16,623	478,488	986
NC	2002	02	FUEL COMB. INDUSTRIAL	23,578	301	48,590	5,596	4,334	33,395	2,540
NC	2002	03	FUEL COMB. OTHER	217,008	2,318	16,460	31,777	26,746	3,971	87,985
NC	2002	04	CHEMICAL & ALLIED PRODUCT	13,952	535	859	866	538	5,736	4,313
NC	2002	05	METALS PROCESSING	5,876	60	201	564	467	1,010	2,512
NC	2002	06	PETROLEUM & RELATED	461	0	174	104	52	283	140
NC	2002	07	OTHER INDUSTRIAL PROCESSES	8,552	480	7,380	25,328	8,924	3,426	18,025
NC	2002	08	SOLVENT UTILIZATION	130	307	229	524	484	26	151,383
NC	2002	09	STORAGE & TRANSPORT	66	46	53	639	354	1	16,120
NC	2002	10	WASTE DISPOSAL & RECYCLING	125,528	247	7,482	2,239	2,218	1,666	15,568
NC	2002	11	HIGHWAY VEHICLES	3,176,811	10,455	341,198	6,905	4,816	13,343	253,374
NC	2002	12	OFF-HIGHWAY	808,231	65	84,284	7,348	7,005	7,693	94,480
NC	2002	14	MISCELLANEOUS	72,673	159,069	1,561	233,551	36,414	423	3,528
	2002 Total			4,466,940	173,937	657,279	338,434	108,975	549,463	650,954
NC	2009	01	FUEL COMB. ELEC. UTIL.	14,942	445	66,517	22,152	15,949	242,286	954
NC	2009	02	FUEL COMB. INDUSTRIAL	24,871	312	38.160	5,159	3,871	30,788	2,509
NC	2009	03	FUEL COMB. OTHER	158,837	2,723	18,441	25,334	19,467	4,060	49,819
NC	2009	04	CHEMICAL & ALLIED PRODUCT	14,732	599	933	981	607	6,286	4,925
NC	2009	05	METALS PROCESSING	6,358	67	207	627	528	1,130	2,790
NC	2009	06	PETROLEUM & RELATED	556	0	212	127	64	349	162
NC	2009	07	OTHER INDUSTRIAL PROCESSES	9,211	507	8,061	28,524	9.788	3,712	18,144
NC	2009	08	SOLVENT UTILIZATION	142	335	246	549	506	28	136,114
NC	2009	09	STORAGE & TRANSPORT	75	51	55	696	380	1	17,367
NC	2009	10	WASTE DISPOSAL & RECYCLING	139,518	307	8,354	2,774	2,750	1,913	17,331
NC	2009	11	HIGHWAY VEHICLES	2,184,901	12,637	207,648	5,861	3,643	1,311	163,803
NC	2009	12	OFF-HIGHWAY	887,605	72	70,997	6,055	5,760	1,892	74,056
NC	2009	14	MISCELLANEOUS	96,825	167,131	2,080	250,912	49,956	566	4,648
	2009 Total			3,538,573	185,185	421,913	349,750	113,268	294,321	492,624
NC	2018	01	FUEL COMB. ELEC. UTIL.	20,223	663	62,346	37,376	29,791	108,492	1,345
NC	2018	02	FUEL COMB. INDUSTRIAL	26,872	341	40,897	5,594	4,222	32,507	2,702
NC	2018	03	FUEL COMB. OTHER	131,365	2,857	20,027	21.847	16,231	4,050	34,104
NC	2018	04	CHEMICAL & ALLIED PRODUCT	18,463	702	1,105	1,175	726	7,414	6,113
NC	2018	05	METALS PROCESSING	7,576	76	255	771	657	1,335	3,516
NC	2018	06	PETROLEUM & RELATED	7,370	0	272	162	82	448	207
NC	2018	07	OTHER INDUSTRIAL PROCESSES	10,675	559	9,259	34,339	11.601	4,357	20,978
NC	2018	08	SOLVENT UTILIZATION	169	375	277	588	540	31	152,979
NC	2018	09	STORAGE & TRANSPORT	91	59	67	808	430	2	19,511
NC	2018	10	WASTE DISPOSAL & RECYCLING	156,599	387	9,456	3,502	3,474	2,234	19,789
NC	2018	11	HIGHWAY VEHICLES	1,510,848	13,077	81,706	4,299	2,158	1,323	88,620
NC	2018	12	OFF-HIGHWAY	960,709	83	49,046	4,298	4,069	905	61,327
NC	2018	14	MISCELLANEOUS	111,705	177,474	2,399	273,030	54,376	655	5,333
110	2018	17	MISCELLI II LOOD							
	Total			2,956,008	196,655	277,112	387,788	128,356	163,752	416,523

State	Year	TIER1	TIER 1 NAME	СО	NH3	NOX	PM10	PM2.5	SO2	VOC
SC	2002	01	FUEL COMB. ELEC. UTIL.	6,969	141	88,528	21,827	17,521	210,272	470
SC	2002	02	FUEL COMB. INDUSTRIAL	31,771	97	38,081	5,308	3,641	44,958	1,338
SC	2002	03	FUEL COMB. OTHER	75,800	65	4,367	6,261	6,166	4,318	49,171
SC	2002	04	CHEMICAL & ALLIED PRODUCT	2,526	173	25	501	318	59	8,784
SC	2002	05	METALS PROCESSING	13,833	0	450	639	408	4,160	660
SC	2002	06	PETROLEUM & RELATED	248	0	283	120	71	170	114
SC	2002	07	OTHER INDUSTRIAL PROCESSES	9,502	1,237	15,145	15,224	6,981	12,128	16,342
SC	2002	08	SOLVENT UTILIZATION	0	1	1	78	60	0	88,878
SC	2002	09	STORAGE & TRANSPORT	10	0	4	1,025	626	0	21,009
SC	2002	10	WASTE DISPOSAL & RECYCLING	67,908	10	4,063	9,172	8,641	625	15,291
SC	2002	11	HIGHWAY VEHICLES	1,275,161	4,684	140,428	3,446	2,496	5,958	106,792
SC	2002	12	OFF-HIGHWAY	413,964	33	50,249	4,152	3,945	4,866	55,016
SC	2002	14	MISCELLANEOUS	221,436	28,903	4,335	262,974	47,136	1,187	12,535
	2002			2,119,129	35,343	345,960	330,728	98,009	288,701	276 401
	Total			2,119,129	33,343	343,900	330,728	90,009	200,701	376,401
SC	2009	01	FUEL COMB. ELEC. UTIL.	11,135	343	46,915	19,395	16,042	124,608	660
SC	2009	02	FUEL COMB. INDUSTRIAL	33,201	105	35,660	3,307	2,370	37,792	1,414
SC	2009	03	FUEL COMB. OTHER	49,914	63	4,551	5,264	5,183	4,359	25,073
SC	2009	04	CHEMICAL & ALLIED PRODUCT	2,798	173	26	543	345	60	7,409
SC	2009	05	METALS PROCESSING	15,632	0	449	631	378	4,856	663
SC	2009	06	PETROLEUM & RELATED	302	0	340	145	86	200	131
SC	2009	07	OTHER INDUSTRIAL PROCESSES	10,241	1,403	15,069	18,267	8,045	13,443	15,697
SC	2009	08	SOLVENT UTILIZATION	1	1	1	90	69	0	95,538
SC	2009	09	STORAGE & TRANSPORT	13	0	5	569	352	0	21,989
SC	2009	10	WASTE DISPOSAL & RECYCLING	70,379	11	4,215	9,526	8,977	666	15,998
SC	2009	11	HIGHWAY VEHICLES	912,280	5,510	91,696	2,878	1,870	556	67,281
SC	2009	12	OFF-HIGHWAY	448,625	36	43,235	3,471	3,294	1,701	43,061
SC	2009	14	MISCELLANEOUS	250,690	31,416	4,962	282,480	51,151	1,359	13,906
	2009 Total			1,805,210	39,061	247,124	346,565	98,163	189,601	308,820
SC	2018	01	FUEL COMB. ELEC. UTIL.	14,786	617	51,456	28,826	25,032	93,274	906
SC	2018	02	FUEL COMB. INDUSTRIAL	36,105	113	37,333	4,037	2,855	39,714	1,525
SC	2018	03	FUEL COMB. OTHER	39,627	65	5,135	4,791	4,711	4,469	16,391
SC	2018	04	CHEMICAL & ALLIED PRODUCT	3,296	212	32	664	423	74	9,107
SC	2018	05	METALS PROCESSING	18,853	0	587	773	476	5,920	868
SC	2018	06	PETROLEUM & RELATED	389	0	438	186	110	258	166
SC	2018	07	OTHER INDUSTRIAL PROCESSES	12,136	1,566	17,507	20,215	9,044	15,863	18,636
SC	2018	08	SOLVENT UTILIZATION	12,130	1,500	1	116	89	0	120,433
SC	2018	09	STORAGE & TRANSPORT	16	0	6	1,380	842	0	22,742
SC	2018	10	WASTE DISPOSAL & RECYCLING	73,403	13	4,512	10,038	9,443	735	17,167
SC	2018	11	HIGHWAY VEHICLES	800,619	6,472	42,354	2,258	1,154	643	44,700
SC	2018	12	OFF-HIGHWAY	481,332	41	31,758	2,617	2,474	1,198	36,131
SC	2018	14	MISCELLANEOUS	250,637	34,345	4,961	306,342	53,367	1,359	13,896
	2018									
	Total			1,731,198	43,446	196,081	382,244	110,019	163,509	302,665

State	Year	TIER1	TIER 1 NAME	CO	NH3	NOX	PM10	PM2.5	SO2	VOC
TN	2002	01	FUEL COMB. ELEC. UTIL.	6,787	197	152,137	13,866	11,491	320,146	890
TN	2002	02	FUEL COMB. INDUSTRIAL	15,257	6	44,510	8,015	6,649	74,146	2,021
TN	2002	03	FUEL COMB. OTHER	77,857	25	15,568	7,967	7,549	16,253	18,346
TN	2002	04	CHEMICAL & ALLIED PRODUCT	36,920	1,518	1,772	3,246	2,201	6,516	24,047
TN	2002	05	METALS PROCESSING	41,371	14	1,182	7,620	7,030	5,818	6,898
TN	2002	06	PETROLEUM & RELATED	543	0	331	314	243	383	1,850
TN	2002	07	OTHER INDUSTRIAL PROCESSES	9,420	44	11,794	30,484	12,867	5,845	27,336
TN	2002	08	SOLVENT UTILIZATION	275	1	5,066	2,103	1,818	58	110,872
TN	2002	09	STORAGE & TRANSPORT	22	24	105	1,249	736	134	21,962
TN	2002	10	WASTE DISPOSAL & RECYCLING	22,143	31	1,839	7,068	6,469	349	15,505
TN	2002	11	HIGHWAY VEHICLES	1,967,658	6,616	233,324	5,338	3,919	9,184	169,914
TN	2002	12	OFF-HIGHWAY	505,163	43	96,827	6,819	6,458	10,441	66,450
TN	2002	14	MISCELLANEOUS	10,824	34,318	225	180,006	25,193	60	2,252
	2002			2,694,242	42,836	564,680	274,095	92,622	449,332	468,342
	Total			2,094,242	42,030	304,000	274,093	92,022	449,332	400,342
TN	2009	01	FUEL COMB. ELEC. UTIL.	7,214	227	66,405	15,608	13,092	255,410	932
TN	2009	02	FUEL COMB. INDUSTRIAL	15,943	7	37,369	7,195	6,004	63,511	1,915
TN	2009	03	FUEL COMB. OTHER	61,443	27	14,793	7,134	6,786	16,955	12,781
TN	2009	04	CHEMICAL & ALLIED PRODUCT	35,440	1,719	1,958	3,519	2,400	7,056	15,594
TN	2009	05	METALS PROCESSING	45,183	15	1,245	7,337	6,823	6,537	7,676
TN	2009	06	PETROLEUM & RELATED	615	0	373	356	276	435	1,433
TN	2009	07	OTHER INDUSTRIAL PROCESSES	9,911	62	12,635	32,661	13,737	6,240	28,598
TN	2009	08	SOLVENT UTILIZATION	309	1	5,984	2,431	2,095	65	112,312
TN	2009	09	STORAGE & TRANSPORT	26	31	12	1,218	733	42	23,687
TN	2009	10	WASTE DISPOSAL & RECYCLING	23,810	35	1,993	7,618	6,968	393	14,922
TN	2009	11	HIGHWAY VEHICLES	1,361,408	7,738	147,757	4,238	2,782	831	108,200
TN	2009	12	OFF-HIGHWAY	554,121	48	86,641	5,877	5,557	5,651	55,358
TN	2009	14	MISCELLANEOUS	17,921	35,200	379	192,464	26,830	102	2,814
	2009 Total			2,133,342	45,108	377,545	287,655	94,083	363,228	386,222
TN	2018	01	FUEL COMB. ELEC. UTIL.	7,723	241	31,715	15,941	13,387	112,672	976
TN	2018	02	FUEL COMB. INDUSTRIAL	17,038	7	38,908	7,693	6,447	65,823	2,054
TN	2018	03	FUEL COMB. OTHER	54,486	30	15,503	6,757	6,412	18,091	10,269
TN	2018	04	CHEMICAL & ALLIED PRODUCT	45,455	2,053	2,424	4,443	3,044	9,088	20,071
TN	2018	05	METALS PROCESSING	52,834	17	1,589	9,579	8,953	7,790	9,956
TN	2018	06	PETROLEUM & RELATED	715	0	430	416	324	508	1,636
TN	2018	07	OTHER INDUSTRIAL PROCESSES	10,946	88	14,157	38,250	16,286	7,286	35,587
TN	2018	08	SOLVENT UTILIZATION	380	1	7,675	3,155	2,718	79	140,793
TN	2018	09	STORAGE & TRANSPORT	33	41	14	1,572	939	49	25,493
TN	2018	10	WASTE DISPOSAL & RECYCLING	26,712	42	2,326	8,562	7,828	468	17,530
TN	2018	11	HIGHWAY VEHICLES	1,150,516	8,962	65,242	3,199	1,643	944	64,665
TN	2018	12	OFF-HIGHWAY	593,100	55	70,226	4,672	4,403	5,207	45,084
TN	2018	14	MISCELLANEOUS	19,210	36,213	408	209,058	28,209	111	3,293
	2018									
	Total			1,979,148	47,749	250,619	313,294	100,592	228,116	377,408

State	Year	TIER1	TIER 1 NAME	CO	NH3	NOX	PM10	PM2.5	SO2	VOC
VA	2002	01	FUEL COMB. ELEC. UTIL.	6,797	130	85,081	3,892	2,650	233,691	747
VA	2002	02	FUEL COMB. INDUSTRIAL	64,386	100	75,807	18,480	8,453	137,448	5,332
VA	2002	03	FUEL COMB. OTHER	98,788	13	15,648	11,572	11,236	5,508	54,496
VA	2002	04	CHEMICAL & ALLIED PRODUCT	321	2,158	8,062	449	393	2,126	1,530
VA	2002	05	METALS PROCESSING	3,580	0	937	1,575	1,349	5,251	513
VA	2002	06	PETROLEUM & RELATED	23,384	0	182	255	153	170	501
VA	2002	07	OTHER INDUSTRIAL PROCESSES	12,002	726	9,279	33,409	9,795	17,702	13,086
VA	2002	08	SOLVENT UTILIZATION	0	4	0	225	210	2	111,511
VA	2002	09	STORAGE & TRANSPORT	16	7	11	745	505	0	26,121
VA	2002	10	WASTE DISPOSAL & RECYCLING	16,566	109	1,866	3,152	1,277	1,581	4,065
VA	2002	11	HIGHWAY VEHICLES	2,170,508	7,837	219,602	4,537	3,090	7,218	144,684
VA	2002	12	OFF-HIGHWAY	660,105	48	63,219	8,728	8,288	8,663	74,866
VA	2002	14	MISCELLANEOUS	13,225	43,948	285	182,193	21,835	74	706
	2002 Total			3,069,678	55,080	479,980	269,212	69,233	419,436	438,158
VA	2009	01	FUEL COMB. ELEC. UTIL.	12,509	694	66,219	5,508	4,067	225,653	778
VA	2009	02	FUEL COMB. INDUSTRIAL	67,422	105	67,263	18,346	8,345	135.612	5,483
VA	2009	03	FUEL COMB. OTHER	66,037	14	15,966	10,062	9,742	5,258	28,063
VA	2009	04	CHEMICAL & ALLIED PRODUCT	286	2,082	7,790	477	413	1,996	1,419
VA	2009	05	METALS PROCESSING	3,397	0	827	1.563	1,332	4,813	390
VA	2009	06	PETROLEUM & RELATED	26,288	0	197	275	169	187	557
VA	2009	07	OTHER INDUSTRIAL PROCESSES	12,471	733	9,425	33,961	9,984	18,871	13,394
VA	2009	08	SOLVENT UTILIZATION	0	5	0	248	231	3	110,127
VA	2009	09	STORAGE & TRANSPORT	17	7	12	797	544	0	26,456
VA	2009	10	WASTE DISPOSAL & RECYCLING	20,109	119	2,174	3,823	1,515	1,805	4,789
VA	2009	11	HIGHWAY VEHICLES	1,495,771	9,066	133,170	3,760	2,254	900	89,678
VA	2009	12	OFF-HIGHWAY	726,815	53	54,993	7,510	7,136	1,707	57,009
VA	2009	14	MISCELLANEOUS	21,582	46,719	464	198,040	23,990	124	1,077
	2009 Total			2,452,703	59,596	358,500	284,369	69,721	396,929	339,219
VA	2018	01	FUEL COMB. ELEC. UTIL.	15,420	622	75,594	13,775	11,976	140,233	997
VA	2018	02	FUEL COMB. INDUSTRIAL	72,218	114	70,343	19,248	8,892	140,995	5,861
VA	2018	03	FUEL COMB. OTHER	53,171	14	17,852	9,427	9,086	5,369	18,603
VA	2018	04	CHEMICAL & ALLIED PRODUCT	338	2,462	9,211	579	502	2,291	1,708
VA	2018	05	METALS PROCESSING	4,034	0	1,017	1,861	1,592	5,948	469
VA	2018	06	PETROLEUM & RELATED	30,284	0	228	315	194	217	642
VA	2018	07	OTHER INDUSTRIAL PROCESSES	14,029	877	10,836	37,553	11,276	21,294	15,636
VA	2018	08	SOLVENT UTILIZATION	0	6	0	314	293	3	127,953
VA	2018	09	STORAGE & TRANSPORT	21	8	15	949	648	0	27,357
VA	2018	10	WASTE DISPOSAL & RECYCLING	24,293	141	2,595	4,694	1,828	2,171	5,821
VA	2018	11	HIGHWAY VEHICLES	1,310,698	10,757	61,881	3,343	1,641	1,059	60,454
VA	2018	12	OFF-HIGHWAY	797,683	61	40,393	6,208	5,891	507	49,052
VA	2018	14	MISCELLANEOUS	27,223	50,279	584	218,141	26,225	158	1,322
	2018									
	Total			2,349,413	65,342	290,549	316,406	80,044	320,246	315,875

State	Year	TIER1	TIER 1 NAME	СО	NH3	NOX	PM10	PM2.5	SO2	VOC
WV	2002	01	FUEL COMB. ELEC. UTIL.	10,117	121	222,437	4,472	2,163	500,381	1,140
WV	2002	02	FUEL COMB. INDUSTRIAL	8,685	97	33,831	1,583	1,332	37,118	1,097
WV	2002	03	FUEL COMB. OTHER	29,480	13	15,220	3,814	3,683	3,990	9,275
wv	2002	04	CHEMICAL & ALLIED PRODUCT MFG	50,835	80	1,627	950	831	9,052	5,755
WV	2002	05	METALS PROCESSING	28,837	143	1,570	8,749	7,515	5,619	1,393
wv	2002	06	PETROLEUM & RELATED INDUSTRIES	1	0	1,086	475	475	7,550	2,163
WV	2002	07	OTHER INDUSTRIAL PROCESSES	2,003	56	5,347	18,751	5,567	2,316	1,803
WV	2002	08	SOLVENT UTILIZATION	15	0	18	49	44	0	35,989
WV	2002	09	STORAGE & TRANSPORT	15	0	3	1,952	947	0	12,432
WV	2002	10	WASTE DISPOSAL & RECYCLING	9,395	8	599	4,153	3,731	100	5,098
WV	2002	11	HIGHWAY VEHICLES	560,717	1,933	59,612	1,395	1,003	2,489	40,066
WV	2002	12	OFF-HIGHWAY	133,113	9	33,239	1,850	1,728	2,112	18,566
WV	2002	14	MISCELLANEOUS	2,811	9,909	61	92,633	10,458	16	157
	2002 Total			836,024	12,371	374,650	140,825	39,478	570,742	134,936
WV	2009	01	FUEL COMB. ELEC. UTIL.	11,493	330	86,328	5,657	2,940	277,489	1,361
WV	2009	02	FUEL COMB. INDUSTRIAL	9,296	104	27,094	1,415	1,220	36,912	998
WV	2009	03	FUEL COMB. OTHER	21,558	13	14,229	3,351	3,216	4,047	6,824
wv	2009	04	CHEMICAL & ALLIED PRODUCT MFG	58,271	82	1,804	987	864	10,166	5,426
WV	2009	05	METALS PROCESSING	30,939	142	1,517	7,985	6,724	5,971	1,380
WV	2009	06	PETROLEUM & RELATED INDUSTRIES	1	0	1,221	535	535	8,495	2,172
WV	2009	07	OTHER INDUSTRIAL PROCESSES	2,288	59	4,995	19,228	5,899	2,570	2,064
WV	2009	08	SOLVENT UTILIZATION	17	0	20	52	47	0	32,305
WV	2009	09	STORAGE & TRANSPORT	17	0	3	2,062	1,003	0	12,997
WV	2009	10	WASTE DISPOSAL & RECYCLING	9,131	8	583	4,050	3,632	97	4,898
WV	2009	11	HIGHWAY VEHICLES	385,994	2,183	36,049	1,096	703	227	23,907
WV	2009	12	OFF-HIGHWAY	152,862	11	30,133	1,640	1,528	359	18,069
WV	2009	14	MISCELLANEOUS	4,116	10,574	89	92,900	10,624	23	219
	2009 Total			685,983	13,508	204,064	140,956	38,933	346,356	112,621
WV	2018	01	FUEL COMB. ELEC. UTIL.	11,961	180	51,241	6,349	3,648	115,324	1,387
WV	2018	02	FUEL COMB. INDUSTRIAL	9,917	111	28,710	1,493	1,290	38,531	1,072
WV	2018	03	FUEL COMB. OTHER	18,891	16	17,254	3,160	3,024	4,065	6,270
WV	2018	04	CHEMICAL & ALLIED PRODUCT MFG	70,252	99	2,183	1,188	1,041	12,280	6,560
WV	2018	05	METALS PROCESSING	36,850	183	2,061	10,944	9,372	7,182	1,790
WV	2018	06	PETROLEUM & RELATED INDUSTRIES	1	0	1,407	616	616	9,786	2,338
WV	2018	07	OTHER INDUSTRIAL PROCESSES	2,756	68	5,949	21,347	6,794	3,101	2,561
WV	2018	08	SOLVENT UTILIZATION	20	0	24	61	55	0	38,023
WV	2018	09	STORAGE & TRANSPORT	19	0	4	2,522	1,225	0	13,394
WV	2018	10	WASTE DISPOSAL & RECYCLING	9,237	10	592	4,134	3,692	98	5,272
WV	2018	11	HIGHWAY VEHICLES	319,030	2,484	16,274	844	428	255	15,463
WV	2018	12	OFF-HIGHWAY	167,424	13	25,710	1,292	1,198	56	14,086
WV	2018	14	MISCELLANEOUS	5,175	11,453	112	98,307	11,316	29	268
	2018 Total			651,532	14,617	151,521	152,256	43,699	190,706	108,484

		CO	NH3	NOX	PM10	PM2.5	SO2	VOC
VISTAS	2002 Total	31,034,756	666,451	5,442,572	3,916,030	1,094,698	4,858,865	5,079,254
VISTAS	2009 Total	25,854,812	722,418	3,721,469	4,155,033	1,119,806	3,454,666	4,118,474
VISTAS	2018 Total	24,357,364	790,588	2,692,309	4,559,582	1,205,324	2,539,907	3,873,273

APPENDIX D:

VISTAS TIER 1 EMISSION TOTALS

VISTAS Tier 1 Emission Totals

Year	TIER1	TIER 1 NAME	СО	NH3	NOX	PM10	PM2.5	SO2	voc
2002	01	FUEL COMB. ELEC. UTIL.	139,579	1,710	1,524,690	114,256	79,263	3,723,175	12,417
2002	02	FUEL COMB. INDUSTRIAL	371,905	1,204	499,981	85,353	59,731	550,864	32,330
2002	03	FUEL COMB. OTHER	759,534	2,810	122,058	99,532	91,805	114,852	354,375
2002	04	CHEMICAL & ALLIED PRODUCT MFG	131,993	7,093	20,896	11,114	7,982	77,450	63,748
2002	05	METALS PROCESSING	223,705	601	11,801	32,367	27,778	49,143	17,306
2002	06	PETROLEUM & RELATED INDUSTRIES	44,633	355	7,204	2,887	1,863	53,392	33,374
2002	07	OTHER INDUSTRIAL PROCESSES	156,077	7,520	114,474	267,980	97,013	86,736	196,831
2002	08	SOLVENT UTILIZATION	687	331	5,677	3,805	3,284	90	1,288,990
2002	09	STORAGE & TRANSPORT	610	85	1,069	10,968	6,100	230	261,959
2002	10	WASTE DISPOSAL & RECYCLING	729,760	801	34,165	98,788	92,125	6,418	112,088
2002	11	HIGHWAY VEHICLES	20,199,593	74,325	2,193,387	50,584	35,929	88,684	1,778,345
2002	12	OFF-HIGHWAY	6,209,596	477	865,130	72,019	68,302	96,336	813,788
2002	14	MISCELLANEOUS	2,067,084	569,139	42,039	3,066,378	523,524	11,494	113,703
2002 Total			31,034,756	666,451	5,442,572	3,916,030	1,094,698	4,858,865	5,079,254
2009	01	FUEL COMB. ELEC. UTIL.	152,790	5,449	727,384	113,607	81,884	2,473,773	13,155
2009	02	FUEL COMB. INDUSTRIAL	391,510	1,305	445,832	74,864	51,709	523,163	32,629
2009	03	FUEL COMB. OTHER	544,310	3,201	123,331	85,412	77,042	112,463	207,146
2009	04	CHEMICAL & ALLIED PRODUCT MFG	140,910	7,611	22,031	11,898	8,528	81,191	54,270
2009	05	METALS PROCESSING	242,911	732	11,788	31,098	26,505	54,700	18,507
2009	06	PETROLEUM & RELATED INDUSTRIES	48,161	399	7,908	3,283	2,124	47,147	25,061
2009	07	OTHER INDUSTRIAL PROCESSES	166,088	7,545	117,625	298,836	111,304	90,649	203,100
2009	08	SOLVENT UTILIZATION	771	360	6,662	4,290	3,690	100	1,257,986
2009	09	STORAGE & TRANSPORT	702	98	1,087	11,035	6,051	160	275,466
2009	10	WASTE DISPOSAL & RECYCLING	770,459	869	36,697	105,463	97,855	7,287	113,566
2009	11	HIGHWAY VEHICLES	14,353,436	87,703	1,408,206	42,370	26,848	8,817	1,146,174
2009	12	OFF-HIGHWAY	6,827,857	530	767,707	61,528	58,279	42,845	649,786
2009	14	MISCELLANEOUS	2,214,906	606,617	45,212	3,311,350	567,986	12,370	121,629
2009 Total			25,854,812	722,418	3,721,469	4,155,033	1,119,806	3,454,666	4,118,474
2018	01	FUEL COMB. ELEC. UTIL.	225,129	9,351	560,200	154,832	120,895	1,479,499	16,318
2018	02	FUEL COMB. INDUSTRIAL	418,010	1,384	471,501	80,386	55,928	547,527	34,938
2018	03	FUEL COMB. OTHER	453,482	3,358	136,418	78,031	69,853	116,812	149,363
2018	04	CHEMICAL & ALLIED PRODUCT MFG	173,857	9,023	26,564	14,641	10,522	97,612	67,534
2018	05	METALS PROCESSING	288,138	961	15,006	39,673	34,058	67,170	23,798
2018	06	PETROLEUM & RELATED INDUSTRIES	53,442	460	9,088	3,846	2,491	60,676	27,321
2018	07	OTHER INDUSTRIAL PROCESSES	189,922	8,793	136,722	348,275	130,883	104,030	238,409
2018	08	SOLVENT UTILIZATION	936	404	8,480	5,378	4,618	119	1,516,454
2018	09	STORAGE & TRANSPORT	855	119	1,258	13,988	7,686	192	290,271
2018	10	WASTE DISPOSAL & RECYCLING	821,737	1,068	40,324	114,708	105,763	8,545	125,525
2018	11	HIGHWAY VEHICLES	12,052,347	101,223	639,931	33,884	17,080	10,027	713,143
2018	12	OFF-HIGHWAY	7,438,312	612	601,040	48,648	45,927	35,166	546,062
2018	14	MISCELLANEOUS	2,241,196	653,831	45,776	3,623,293	599,620	12,532	124,137
2018 Total			24,357,364	790,588	2,692,309	4,559,582	1,205,324	2,539,907	3,873,273

APPENDIX E:

AIRCRAFT PM EXCERPT FROM 2001 TUCSON REPORT

Final Report

EMISSIONS INVENTORIES FOR THE TUCSON AIR PLANNING AREA

VOLUME I. STUDY DESCRIPTION AND RESULTS

Prepared for

Pima Association of Governments 177 N. Church Avenue, Suite 405 Tucson, AZ 85701

Prepared by

Marianne Causley Rumla, Inc. 3243 Gloria Terrace Lafayette, CA 94549

Daniel Meszler
Energy and Environmental Analysis, Inc.
1655 North Fort Myer Drive
Arlington, VA 22209

Russell Jones Stratus Consulting, Inc. P.O. Box 4059 Boulder, CO 80306-4059

Steven Reynolds Envair 12 Palm Avenue San Rafael, CA 94901

November 2001

ACKNOWLEDGEMENTS

The authors extend their appreciation to the many individuals that contributed to this study. Particular thanks go to the staff of the Pima Association of Governments. Darcy Anderson was instrumental in providing definition at the outset of the study. Lee Comrie and Natalie Barnes provided considerable assistance with the emissions surveys, made many thoughtful suggestions and contributions throughout the study, and provided helpful comments on the draft final report. Kwame Agyare, Wayne Byrd and Bill Maxwell of the Pima County Department of Environmental Quality offered valuable assistance in providing socioeconomic and PDEQ permit data and in sharing their knowledge of emissions sources in the Tucson Air Planning Area. Dan Catlin of the Arizona Department of Environmental Quality provided insightful comments during the course of the study and reviewed the draft final report.

Many individuals in the Tucson area participated in the annual and day-specific emissions surveys conducted as part of this study. The information they provided is sincerely appreciated.

We also wish to acknowledge Patricia El-Gasseir and Helen Fugate of Rumla, Inc. for their dedicated efforts in building the facilities database.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
LIST OF TABLES	viii
LIST OF FIGURES	xiii
ABBREVIATIONS AND ACRONYMS	xiv
EXECUTIVE SUMMARY	ES-1
1 BACKGROUND	1-1
1.1 Current Air Quality Status of the Tucson Area	1-1
1.1.1 Ozone	1-1
1.1.2 Carbon Monoxide	1-3
1.1.3 Particulate Matter	1-3
1.2 Overview of the Emissions Inventories	1-4
1.3 Emissions Support for Photochemical Modeling in Tucson	1-6
1.4 Organization of This Report	1-7
2 POINT SOURCES	2-1
2.1 Identification of Sources	2-1
2.2 Data Collection	2-2
2.3 Data Entry	2-4
2.4 Calculation Methodologies	2-5
2.4.1 Emissions Based on 2000 Actual Data	2-6
2.4.2 Emissions Based on Adjustment of 1999 Data	2-7
2.4.3 Emissions Based on General Activity Data	2-7
2.4.4 Emissions Based on Evaporative Processes	2-8
2.5 Data Quality and Completeness	2-9
2.6 Future Year Estimations	2-11
2.7 Point Source Emissions Summary	2-12
2.8 Temporal Activity Data	2-13
2.8.1 Point Source TAF Comparison	2-15
2.8.2 Point and Area TAF Comparison	2-16
3 STATIONARY AREA SOURCES	3-1
3.1 Architectural Coating	3-4
3.1.1 Methodology	3-4
3.1.2 Calculations	3-5
3.2 Asphalt Paving	3-6
3.2.1 Methodology	3-6
3.2.2 Calculations	3-7

TABLE OF CONTENTS (Continued)

3.3	Au	tomobile Refinishing	3-7
3.3	3.1	Methodology	3-7
3.3	3.2	Calculations	3-8
3.4	Co	mmercial Bakeries	3-9
3.4	4.1	Methodology	3-9
3.4	4.2	Calculations	3-9
3.5	Co	nsumer Solvent Usage	3-10
3.5	5.1	Methodology	3-10
3.5	5.2	Calculations	3-10
3.6	Dr	y Cleaning	3-11
3.6	5.1	Methodology	3-11
3.6	5.2	Calculations	3-12
3.7	For	rest Fires and Prescribed Burnings	3-13
3.	7.1	Methodology	3-13
3.7	7.2	Calculations	3-13
3.8	Ga	soline Distribution	3-15
3.8	3.1	Methodology	3-15
3.8	3.2	Calculations	3-17
3.9	Gra	aphic Arts	3-18
3.9	9.1	Methodology	3-18
3.9	9.2	Calculations	3-18
3.10	Ind	lustrial Surface Coating	3-18
3.	10.1	Methodology	3-19
3.	10.2	Calculations	3-19
3.11	Mi	sc. Residential/Commercial Fuel Combustion	3-20
3.	11.1	Methodology	3-20
3.	11.2	Calculations	3-21
3.12		sticide Application	3-23
3.		Methodology	3-24
		Calculations	3-25
3.13		sidential Wood Combustion	3-25
3.	13.1	Methodology	3-26
		Calculations	3-26

TABLE OF CONTENTS (Continued)

	3.14	4 Solv	vent Cleaning
		3.14.1	Methodology
		3.14.2	Calculations
	3.15		acture and Vehicle Fires
			Methodology
			Calculations
	3.16		ffic Markings
		3.16.1	Methodology
		3.16.2	Calculations
	3.17	7 Are	a Source Annual Emissions Summaries
	3.18	B Day	y-specific Area Source Emissions Summaries
4	NON	NROAL	MOBILE SOURCES
	4.1	Int	roduction
	4.2	Ge	neral Use Nonroad Equipment
		4.2.1	Basic Inventory Methodology
		4.2.2	NONROAD Model Inputs
		4.2.3	Emission Estimates for Calendar Year 2000
		4.2.4	Emissions Estimates for Tuesday August 22, 2000
		4.2.5	Emissions Estimates for Sunday September 10, 2000
		4.2.6	Emissions Estimates for Saturday April 14, 2001
		4.2.7	Emissions Estimates for Tuesday April 24, 2001
		4.2.8	Emissions Estimates for Calendar Year 2005
		4.2.9	Emissions Estimates for Calendar Year 2010
	4.2		Temporal Allocation Factors for General Use Nonroad Equipment.
	4.3	4.3.1	ft Operations
		4.3.1	Commercial Air Carrier APU Emission Estimates for
		7.3.2	Calendar Year 2000
		4.3.3	Other Aircraft Emissions for Calendar Year 2000
		4.3.4	Other Potential Aircraft Emissions Sources Not Currently Considered
		4.3.5	Aircraft Emissions Estimates for Tuesday August 22, 2000
		4.3.6	Aircraft Emissions Estimates for Sunday September 10, 2000
		4.3.7	Aircraft Emissions Estimates for Saturday April 14, 2001
		4.3.8	Aircraft Emissions Estimates for Tuesday April 24, 2001
		4.3.9	Aircraft Emissions Estimates for Calendar Year 2005
		4.3.10	Aircraft Emissions Estimates for Calendar Year 2010
		4.3.11	Day-Specific and Forecast Aircraft Emission Estimates for TIA
		4 3 12	Temporal Allocation Factors for Aircraft Emissions

TABLE OF CONTENTS (Continued)

4.	4	Aircra	ft Ground Support Equipment 4-88					
		4.4.1	GSE Emissions Estimates for Calendar Year 2000	4-94				
		4.4.2	GSE Emissions Estimates for Tuesday August 22, 2000	4-102				
		4.4.3	GSE Emissions Estimates for Sunday September 10, 2000	4-104				
		4.4.4	GSE Emissions Estimates for Saturday April 14, 2001	4-104				
		4.4.5	GSE Emissions Estimates for Tuesday April 24, 2001	4-108				
		4.4.6	GSE Emissions Estimates for Calendar Year 2005	4-108				
		4.4.7	GSE Emissions Estimates for Calendar Year 2010	4-108				
		4.4.8	Temporal Allocation Factors for GSE Emissions	4-108				
	4.5		nercial Marine Operations	4-113				
			notive Operations	4-113				
		4.6.1		4-114				
		4.6.2						
			Calendar Year 2000.	4-124				
		4.6.3	Day-Specific Locomotive Emission Estimates for					
		1.0.5	Calendar Year 2001	4-125				
		4.6.4		. 120				
			Calendar Years 2005 and 2010	4-125				
		4.6.5	Temporal Allocation Factors for Locomotive Emissions	4-125				
5	MC	DEL I	NVENTORY PREPARATION	5-1				
_			iew	5-1				
	0.1	5.1.1		5-2				
		5.1.2	_	5-2				
		5.1.3	Chemical Resolution of Emissions	5-3				
	5.2		ory Preparation	5-3				
	3.2	5.2.1	Emission Data	5-6				
		5.2.2	Spatial Allocation	5-6				
		5.2.3	Temporal Allocation	5-11				
		5.2.4	Chemical Speciation.	5-11				
	5 3		ion Processing System	5-12				
	0.5		Output Formats	5-12				
	5.4		pary of Modeling Inventories	5-14				
6	DA	TA OU	JALITY REVIEW	6-1				
			Sources	6-1				
			Sources	6-3				
		5.3 Nonroad Mobile Sources						
			chemical Air Quality Model Input Files	6-4 6-5				
			nal Review	6-6				
			Il Comments on the Inventories	6-9				
7	RE	FEREN	ICES	7-1				

TABLE OF CONTENTS (Concluded)

APPENDIX 2A. LIST OF PAG MAJOR AND MINOR FACILITIES	
CONTACTED DURING SURVEY ACTIVITIES	2A-1
APPENDIX 2B. REVISED ANNUAL SURVEY FORM FOR MAJOR FACILITIES	2B-1
APPENDIX 2C. REVISED ANNUAL SURVEY FORMS FOR MINOR FACILITIES	2C-1
APPENDIX 2D. PAG 2000 TOTAL EMISSIONS BY FACILITY	2D-1
APPENDIX 3A. ASC SPATIAL ALLOCATION SURROGATE ASSIGNMENT	3A-1
APPENDIX 4A. NONROAD MOBILE SOURCE EMISSIONS BY SCC	4A-1
APPENDIX 4B. NONROAD MOBILE SOURCE TEMPORAL ALLOCATION FACTORS	4B-1
APPENDIX 5A. NATIONAL EMISSION INVENTORY (NEI) RECORD FORMATS	5A-1
APPENDIX 5B. SPATIAL ALLOCATION OF EMISSIONS USING GIS	5B-1
APPENDIX 5C. EDBsys EMISSION OUTPUT FORMATS	5C-1

LIST OF TABLES

Table 1-1.	Inventories for the Tucson Air Planning Area	1-2
Table 2-1.	PDEQ Permitted Facilities Flagged as a Major Point Source	2-2
	PAG Survey Response Rates	2-4
	NEI Record Elements for the PAG Inventory	2-5
	2000 Emission Estimates Adjustments from Surveys	2-7
	Resolution of Survey Data Issues and Possible Inventory Effect	2-9
	Ranges of EGAS Growth Factors from 2000 Baseline	2-12
	Annual Emissions Estimates for Major and Minor Point Sources	2-12
	Day-specific Criteria Pollutant Totals (tons per day)	2-13
	Survey Responses for Temporal Activity Profile Information	2-14
Table 3-1.	TAPA Inventory Area Source Categories	3-1
Table 3-2.	Socioeconomic Parameters Applied to 2000 and Projected Year Emission Estimations	3-3
Table 3-3	Projection Factors for the 2005 and 2010 Emission Estimates	3-3
	Allocation Adjustment Factors	3-3
	Architectural Coatings Gallons Per Capita Calculations	3-5
	TAPA Annual Architectural Coating VOC Emission Estimates	3-6
	Growth Factors for the Automobile Refinishing Employment	5 0
14010 5 7.	in the Tucson Area	3-8
Table 3-8.	TAPA Annual Automobile Refinishing VOC Emissions	3-8
	Commercial Bakery Process Emission Factors	3-10
	O. TAPA Bakeries VOC Emission Estimates	3-10
	. TAPA Consumer Product Per Capita Factors and	
	Emission Estimates (tons)	3-11
Table 3-12	2. Dry Cleaning Telephone Survey Responses	3-12
	5. Pima County Acres Burned During 2000	3-13
	Emission Factors for Estimation of Forest Fire and Prescribed Burnings	3-14
	5. TAPA 2000 Emissions from Forest Fires and Prescribed Burnings (tons)	3-14
	5. TAPA 2005 and 2010 Emissions from Forest Fires and Prescribed	
	Burnings (tons/year)	3-15
Table 3-17	Y. Year 2000 Gasoline Tax Sales (gallons)	3-16
	3. TAPA VOC Emissions from Gasoline Marketing Activities (tons)	3-17
	P. TAPA VOC Emissions from Graphic Arts (tons)	3-18
	2. ZIP Codes Included for Dun & Bradstreet Extraction	3-19
	. TAPA VOC Emission Estimates for Industrial Surface Coating (tons) .	3-20
	2. Natural Gas and LPG Emission Factors	3-21
Table 3-23	5. 2000 Natural Gas and LPG Sales for the Tucson Area	3-22
	TAPA 2000 Emissions from Miscellaneous Combustion (tons/year)	3-22
	5. TAPA 2005 Emissions from Miscellaneous Combustion (tons/year)	3-23
	5. TAPA 2010 Emissions from Miscellaneous Combustion (tons/year)	3-23

LIST OF TABLES (Continued)

Table 3-27. Identified Survey Contacts and Responses for the Source
Category Pesticide Application
Table 3-28. Growth Factors for the Dwelling Units in the Tucson Area
Table 3-29. Tons of Wood Burned by Type
Table 3-30. Residential Wood Burning Emission Factors (lbs/ton burned)
Table 3-31. Annual Emissions from Residential Wood Burning by Device (tons)
Table 3-32. TAPA Annual VOC Emission Estimates from Solvent Cleaning (tons)
Table 3-33. 2000 Fire Incident Counts for Structural and Vehicle Fires
Table 3-34. Emission Factors for Structural and Vehicular Fires
Table 3-35. Annual TAPA Emissions from Structure and Vehicle Fires (tons)
Table 3-36. TAPA Emissions from Traffic Markings
Table 3-37. TAPA Inventory Area Source Categories Estimation Methods
Table 3-38. TAPA 2000 Annual Area Source Emissions by Source Category (tons)
Table 3-39. TAPA 2005 Annual Area Source Emissions by Source Category (tons)
Table 3-40. TAPA 2010 Annual Area Source Emissions by Source Category (tons)
Table 3-41. TAPA August 22, 2000 Area Source Emissions by Source Category
Table 3-42. TAPA September 10, 2000 Area Source Emissions by Source Category
Table 3-43. TAPA April 24, 2001 Area Source Emissions by Source Category
Table 4-1. Nonroad Mobile Source Equipment Categories
Table 4-2. NONROAD Model Equipment Allocation Parameters
Table 4-3. Retail Fuel Test Data for 2000.
Table 4-4. NONROAD Model Fuel Input Parameters
Table 4-5. NONROAD Model Temperature Input Parameters
Table 4-6. TAPA General Use Nonroad Equipment Emission Inventory
for 2000 (tons per year)
Table 4-7. Allocation Factors used to Convert County to TAPA Emission Estimates
Table 4-8. NONROAD Model Input Parameters for Day-Specific Inventories
Table 4-9. TAPA General Use Nonroad Equipment Emission Inventory for
Tuesday August 22, 2000 (tons per day)
Table 4-10. NONROAD Model Monthly Activity Allocation Factors
Table 4-11. NONROAD Model Day-of-Week Activity Allocation Factors
Table 4-12. TAPA General Use Nonroad Equipment Emission Inventory for
Sunday September 10, 2000 (tons per day)
Table 4-13. TAPA General Use Nonroad Equipment Emission Inventory for
Saturday April 14, 2001 (tons per day)
Table 4-14. TAPA General Use Nonroad Equipment Emission Inventory for
Tuesday April 24, 2001 (tons per day)
Table 4-15. NONROAD Model Fuel Input Parameters for 2005 and 2010
Table 4-16. TAPA General Use Nonroad Equipment Emission Inventory for
2005 (tons per year)

LIST OF TABLES (Continued)

Table 4-17.	TAPA General Use Nonroad Equipment Emission Inventory for
	2010 (tons per year)
Table 4-18.	1999 FAA Commercial Air Carrier Data for TIA
	1999 Aircraft Operations Data Reported by TIA
Table 4-20.	2000 Aircraft Operations Data for TIA
Table 4-21.	TIA Taxi Time Data as Reported by U.S. DOT (minutes)
Table 4-22.	TIA Mixing Height Data
Table 4-23.	Statistics for Aircraft and APU PM Relations
Table 4-24.	TIA Emission Inventory for 2000 (tons per year)
Table 4-25.	APU Usage Rates at TIA
Table 4-26.	Aircraft Activity Other Than Commercial Air Carriers in 2000
	National Distribution of General Aviation and Air Taxi Aircraft
Table 4-28.	Comparison of LTO-Specific Emission Rates for General Aviation
	and Air Taxi Aircraft (pounds per LTO)
Table 4-29.	Local Distribution of General Aviation and Air Taxi Aircraft
Table 4-30.	EPA Default TIM Data for General Aviation and Air Taxi Aircraft
	(minutes per LTO)
Table 4-31.	Methodology Used to Develop Taxi/Idle Times for Local General
	Aviation and Air Taxi Aircraft
Table 4-32.	Local Taxi/Idle TIM Data for General Aviation and Air Taxi Aircraft
	(minutes per LTO)
Table 4-33.	Local TIM Data for General Aviation and Air Taxi Aircraft
	(minutes per LTO)
Table 4-34.	Based General Aviation and Air Taxi Aircraft in 2000
Table 4-35.	Local Taxi/Idle TIM Data for General Aviation and Air Taxi Aircraft
	(minutes per LTO)
Table 4-36.	Military Aircraft Distributions for 2000
Table 4-37.	EPA Default TIM Data for Military Aircraft (minutes per LTO)
Table 4-38.	Local and TIM Data for Military Aircraft (minutes per LTO)
Table 4-39.	Aircraft Emissions for Operations other than Commercial Air
	Carriers in 2000 (tons per year)
Table 4-40.	Total Aircraft and APU Emissions in 2000 by Airport (tons per year)
Table 4-41.	Total Aircraft and APU Emissions in 2000 by Aircraft Type
	(tons per year)
Table 4-42.	Other Potential Aircraft Activity Locations
Table 4-43.	Day-of-Week Allocation Factors for Aircraft
Table 4-44.	Aircraft Emissions for Operations other than Commercial Air Carriers
	On Tuesday August 22, 2000 (tons per day)
Table 4-45.	Total Aircraft and APU Emissions on Tuesday August 22, 2000 by
	Airport (tons per day)
Table 4-46.	Total Aircraft and APU Emissions on Tuesday August 22, 2000 by
	Aircraft Type (tons per day)

LIST OF TABLES (Continued)

Table 4-47.	Aircraft Emissions for Operations other than Commercial Air Carriers On Sunday September 10, 2000 (tons per day)
Table 4-48	Total Aircraft and APU Emissions on Sunday September 10, 2000
14016 + 40.	By Airport (tons per day)
Table 4-49	Total Aircraft and APU Emissions on Sunday September 10, 2000
14010 1 17.	By Aircraft Type (tons per day)
Table 4-50	Aircraft Emissions for Operations other than Commercial Air Carriers
14010 1 50.	On Saturday April 14, 2001 (tons per day)
Table 4-51	Total Aircraft and APU Emissions on Saturday April 14, 2001 by
14010 1 51.	Airport (tons per day)
Table 4-52	Total Aircraft and APU Emissions on Saturday April 14, 2001 by
14010 + 32.	Aircraft Type (tons per day)
Table 4-53	Aircraft Emissions for Operations other than Commercial Air Carriers
14010 1 55.	On Tuesday April 24, 2001 (tons per day)
Table 4-54	Total Aircraft and APU Emissions on Tuesday April 24, 2001 by
14010 1 5 1.	Airport (tons per day)
Table 4-55	Total Aircraft and APU Emissions on Tuesday April 24, 2001 by
14010 1 33.	Aircraft Type (tons per day)
Table 4-56	Aircraft Operational Growth Ratios (Forecast Year/2000 Activity)
	Aircraft Operations Summary
	Based Aircraft Summary
	Aircraft Emissions for Operations other than Commercial Air Carriers
14010 1 37.	in 2005 (tons per year)
Table 4-60	Total Aircraft and APU Emissions in 2005 by Airport (tons per year)
	Total Aircraft and APU Emissions in 2005 by Aircraft Type
14010 + 01.	(tons per year)
Table 4-62	Aircraft Emissions for Operations other than Commercial Air Carriers
14010 1 02.	in 2010 (tons per year)
Table 4-63	Total Aircraft and APU Emissions in 2010 by Airport (tons per year)
	Total Aircraft and APU Emissions in 2010 by Aircraft Type
14010 1 0 1.	(tons per year)
Table 4-65	TIA Emission Inventory for Tuesday August 22, 2000 (tons per day)
	TIA Emission Inventory for Sunday September 10, 2000
14010 1 00.	(tons per day)
Table 4-67	TIA Emission Inventory for Saturday April 14, 2001 (tons per day)
	TIA Emission Inventory for Tuesday April 24, 2001 (tons per day)
	TIA Emission Inventory for 2005 (tons per year)
	TIA Emission Inventory for 2010 (tons per year)
	Aircraft Ground Support Equipment Reported by TIA
	Aircraft Ground Support Equipment Reported by DM
	Summary of Reported and Additional GSE Types
	Summary (Average) GSE Statistics for TIA
	J \

LIST OF TABLES (Concluded)

Table 4-75.	Summary (Average) GSE Statistics for DM	4-101
Table 4-76.	GSE Model LTO, Fuel, Temperature, and Humidity Input Parameters.	4-102
Table 4-77.	GSE Emission Inventories for Calendar Year 2000 (tons per year)	4-103
Table 4-78.	GSE Emission Inventories for Tuesday August 22, 2000	
	(tons per day)	4-105
Table 4-79.	GSE Emission Inventories for Sunday September 10, 2000	
	(tons per day)	4-106
Table 4-80.	GSE Emission Inventories for Saturday April 14, 2001 (tons per day)	4-109
Table 4-81.	GSE Emission Inventories for Tuesday April 24, 2001 (tons per day)	4-110
Table 4-82.	GSE Emission Inventories for Calendar Year 2005 (tons per year)	4-111
Table 4-83.	GSE Emission Inventories for Calendar Year 2010 (tons per year)	4-112
Table 4-84.	Fuel Consumption Indices for Union Pacific Railroad	4-115
Table 4-85.	Union Pacific Railroad Gross Ton Miles for Pima County Track	
	Segments	4-117
Table 4-86.	Union Pacific Railroad Fuel Consumption in the TAPA	4-118
Table 4-87.	Forecasted Union Pacific Railroad Fuel Consumption in the TAPA	4-121
Table 4-88.	Locomotive Emission Control Impacts on Fleetwide Emission Rates	
	For Union Pacific Railroad	4-121
Table 4-89.	Locomotive Emission Factors for Union Pacific Railroad	
	(pounds per gallon of fuel consumed)	4-123
Table 4-90.	Annual Locomotive Emission Estimates for the TAPA (tons per year).	4-124
Table 4-91.	Day-Specific Locomotive Emission Estimates for the TAPA	
	(tons per year)	4-126

LIST OF FIGURES

Figure 2-1.	Total Hours of Operation by Day of Week	2-14
Figure 2-2.	PAG 190 Hourly Activity Profiles	2-16
Figure 2-3.	PAG 095 Hourly Activity Profiles	2-17
	PAG 095 Day-of-Week Activity Profiles	2-17
	PAG 095 Monthly Activity Profiles	2-18
Figure 3-1.	TAPA 2000 VOC Emissions	3-34
Figure 3-2.	TAPA 2000 NOx Emissions	3-34
Figure 3-3.	TAPA August 22, 2000 Area Source VOC Emissions	3-49
Figure 3-4.	TAPA August 22, 2000 Area Source NOx Emissions	3-49
Figure 3-5.	TAPA September 10, 2000 Area Source VOC Emissions	3-50
	TAPA September 10, 2000 Area Source NOx Emissions	3-50
Figure 3-7.	TAPA April 24, 2001 Area Source VOC Emissions	3-51
	TAPA April 24, 2001 Area Source NOx Emissions	3-51
Figure 4-1.	Relationship Used to Estimate Aircraft PM Emission Rates	4-42
Figure 4-2.	Class I Railroad Freight Movement Since 1970	4-119
Figure 4-3.	Class I Railroad Energy Intensity Since 1970	4-120
Figure 4-4.	Fleetwide Locomotive Emission Reductions	4-122
Figure 5-1.	Episodic Day Inventories for the Tucson Air Planning Area	5-4
Figure 5-2.	Modeling Inventory Processing Input Data	5-5
Figure 5-3.	Spatial Allocation Factor Surrogate Definition for the TAPA	5-7
Figure 5-4.	Carbon-bond Mechanism Species Gram Molecular Weights	
	for Reporting	5-15
Figure 5-5.	Modeling Input Emissions Totals for the August 22 nd	
	Typical Summer Day (tons/day)	5-15
Figure 5-6.	Day-specific Modeling Input Emissions Totals (tons)	5-16
Figure 6-1.	Diurnal Variation of Stationary Area Source NO Emissions	
	(g-mole/hour) in Grid Cell (105,120) from the Typical	
	Summer Day 2000 UAM Input File	6-7
Figure 6-2.	Gridded Stationary Area Source Paraffin Emissions (g-mole/hour)	
	at 1 PM from the Typical Summer Day 2000 UAM Input File	6-8

ABBREVIATIONS AND ACRONYMS

ADEQ Arizona Department of Environmental Quality

ADWM Arizona Department of Weights and Measures

ALD2 High Molecular Weight Aldehydes (RCHO, R≠H)

AML Arc Macro Language

AQM Air Quality Model

APU Aircraft Power Unit

ARB California Air Resources Board

ASC Area Source Category Code

AT Air Taxi

CNG Compressed Natural Gas

CO Carbon Monoxide

CSF Chemical Speciation Factor

DM Davis-Monthan Air Force Base

DOT Department of Transportation

EDMS Emissions Dispersion Modeling System

EEA Energy & Environmental Analysis, Inc.

EIPP Emission Inventory Preparation Plan

EPA The U.S. Environmental Protection Agency

ETH Ethene $(CH_2=CH_2)$

FAA Federal Aviation Administration

FAEED FAA Aircraft Engine Emission Database

FIPS Federal Information Processing System

FIRE EPA's Factor Information REtrieval Data System

FORM Formaldehyde (CH₂=O)

GA General Aviation

GIS Geographical Information System

GSE Ground Support Equipment

ICAO International Civil Aviation Organization

ABBREVIATIONS AND ACRONYMS

ISOP Isoprene

LPG Liquid Petroleum Gas
LTO Landing and TakeOff

NAD27 North American Datum - 1927 NCDC National Climatic Data Center

NEI US EPA National Emission Inventory

NEVES Nonroad Engine and Vehicle Emission Study

NG Natural Gas NO Nitric Oxide

NO₂ Nitrogen Dioxide NO_X Oxides of Nitrogen

OLE Olefinic Carbon Bond (C=C)

ORNL Oak Ridge National Laboratory

PAG Pima Association of Governments

PAR Paraffinic Carbon Bond (C—C)

PDEQ Pima County Department of Environmental Quality

PM Particulate Matter

PM_{2.5} Particulate Matter less than 2.5 microns

PM₁₀ Particulate Matter less than 10 microns

RASP Regional Aviation System Plan

RVP Reid Vapor Pressure

SAF Spatial Allocation Factor

SCC Source Category Code

SCF Standard Cubic Foot

SIC Standard Industrial Classification

SIP State Implementation Plan

SO₂ Sulfur Dioxide

SO_X Oxides of Sulfur

TAF Temporal Allocation Factor

ABBREVIATIONS AND ACRONYMS

TAPA Tucson Air Planning Area

TAZ Transportation Analysis Zone

THC Total Hydrocarbon

TIA Tucson International Airport

TIM Time-In-Mode

TOL Tolulene (C₆H₅—CH₃)

TTN EPA Technology Transfer Network

UAM Urban Airshed Model

UP Union Pacific Railroad

VOC Volatile Organic Compounds as defined by the 1990 Clean Air

Act Amendments

XYL Xylene $(C_6H_6-(CH_3)_2)$

(Prior material unrelated to VISTAS modeling is intentionally omitted)

While emission rates for HC, CO, and NO_x are routinely measured from (new) commercial air carrier engines under the emissions certification component of International Civil Aviation Organization (ICAO) regulations, measurement of PM emissions is not required. As a result, almost all aircraft engine PM emission rate data have been collected under special studies. Currently, such data exists for only about 20 aircraft engines, with a considerable portion of these data collected by the U.S. Air Force for military aircraft engines. While emission factors for these engines are included in the AP-42 database upon which the FAEED and EDMS emission inventory models were developed, they have not been included in either model due to their limited applicability. To date, it has been standard EPA practice not to estimate PM emissions for aircraft engines. However, since the emissions models maintain a placekeeper for PM emission rates and include PM emission estimates for GSE, it can appear to the uninformed user that aircraft PM emission rates are zero. As a result, aircraft are often incorrectly considered to be insignificant PM sources even though those engines tested for PM have demonstrated significant emission rates. This policy of exclusion by omission is not appropriate in developing an accurate modeling inventory, even in the absence of a large emissions database. While a precise emissions estimate cannot be made with available data, it is clear that a zero emission rate is far from accurate.

As an alternative for this study, measured emissions data for aircraft engines that have been tested for PM were statistically analyzed to determine whether or not a relationship to other measured emissions parameters could be established. Intuitively, it was hoped that an inverse relationship with NO_x might be demonstrated, as such a relationship is theoretically attractive. While the level of sophistication of the statistical analysis is constrained by the quantity of data available, simple direct and indirect linear relationships can be examined. Because data are not available for each test engine in each of the four LTO cycle modes and because relationships might be expected to vary by operating mode (due to significant changes in engine and combustion efficiency), all statistical analysis was performed for each operating mode individually.

Statistically significant relationships were found for the direct linear analysis for three of the four LTO cycle modes. Significant in this context means that coefficient t-statistics for one or more of the other measured pollutants (HC, CO, or NO_x) indicated a direct relationship with measured PM (at a confidence level exceeding 95 percent). In all cases, correlation coefficients were poor (as expected), suggesting a high level of variability and poor predictability of PM emissions for any given engine. Nevertheless, statistics were unbiased and should provide an accurate mechanism to initially assess PM emissions on a aggregate basis (i.e., over a range of aircraft engine models such as those associated with an analysis for an entire set of airport operations). Only at idle was no significant relation found, which is not surprising given relative engine inefficiency in this mode.

The indirect linear analysis revealed a consistent and significant inverse relationship between PM and NO_x based on calculated t-statistics. Correlation coefficients continue to be poor, but t-statistics are generally improved over those of the direct linear analysis (all developed inverse relations, including idle, were significant at the 99 percent confidence level). In selecting the most appropriate relationship for estimation of PM emission rates for non-tested aircraft engines, the statistical analysis that produced the best combination of a significant t-statistic, a relatively low root mean square error, and an intuitive engineering basis was identified. This was the inverse NO_x relationship for the takeoff (i.e., full throttle) mode of operation. Figure 4-1 illustrates the selected statistical relationship.

With this relationship established, PM emission rate data for the other aircraft operating modes (i.e., the approach, taxi, and climbout modes) was statistically analyzed against observed PM emission rate data for the takeoff mode. Statistically significant relations were developed for all three modes. Table 4-23 presents the coefficients developed for these PM-to-PM regressions as well as the statistics for the PM-to-NO_x regression developed for the takeoff mode. These four relations were used to develop a set of fleetwide PM emission factors based on measured takeoff NO_x emission rates. These emission factors were then input into the EEA aircraft emissions model and used to generate PM emission estimates for TIA aircraft operations.

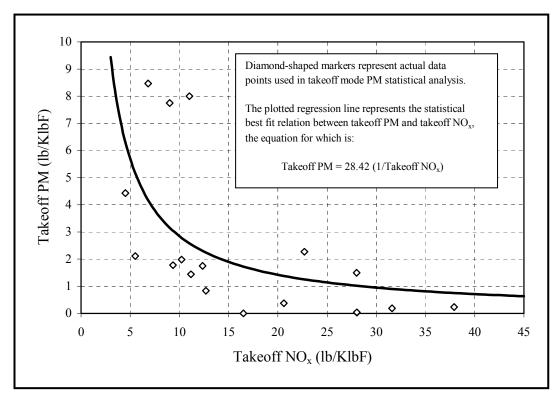
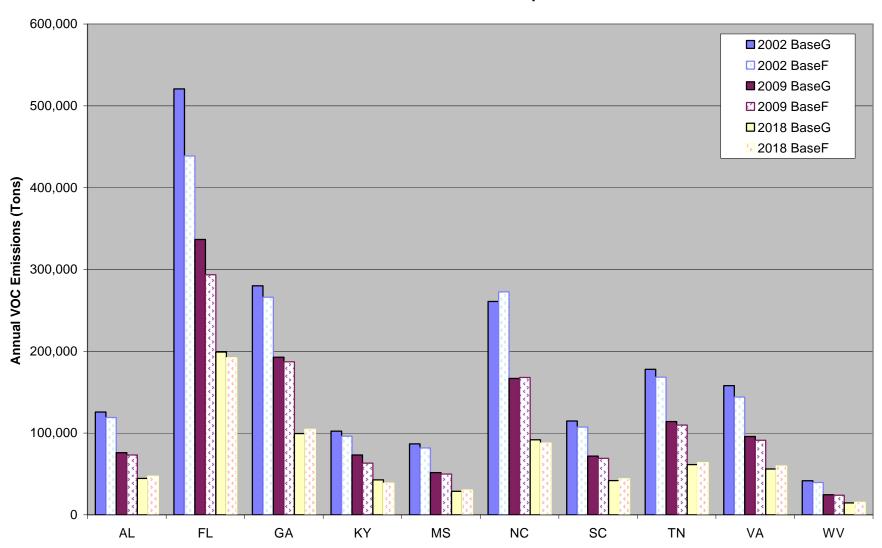
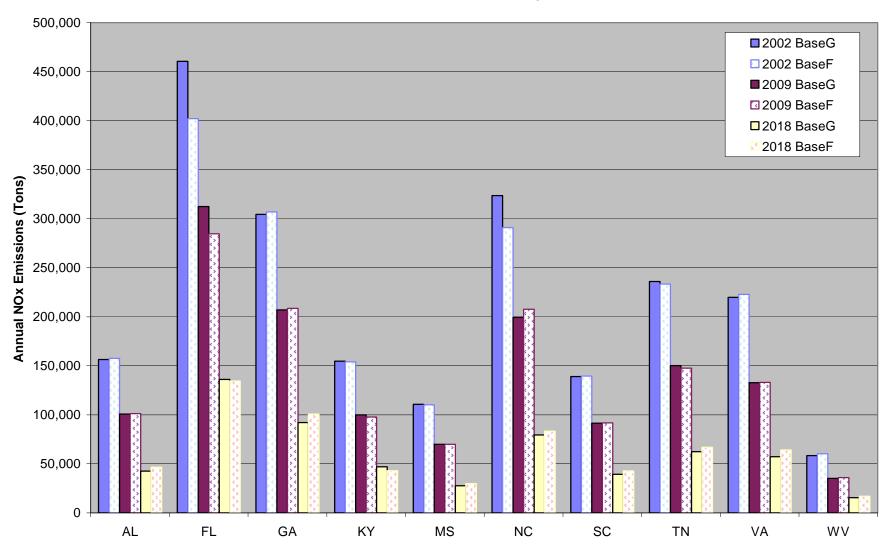
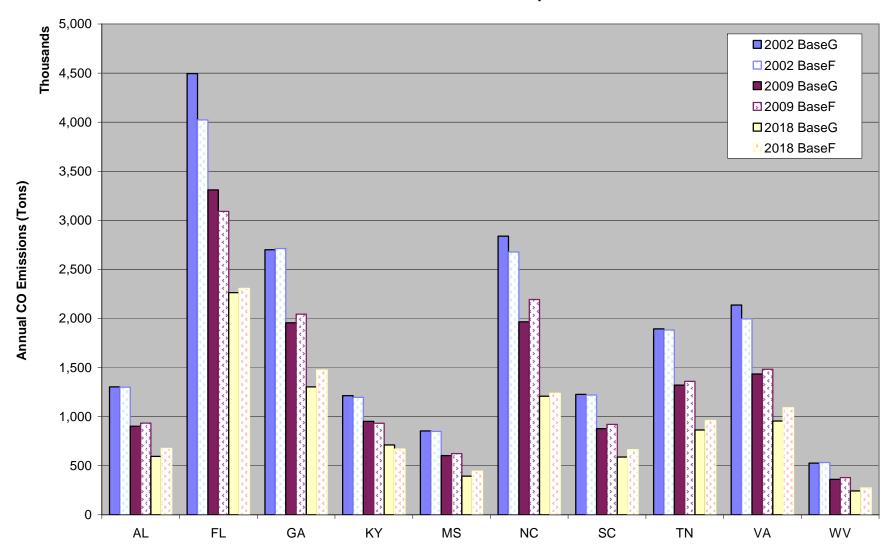


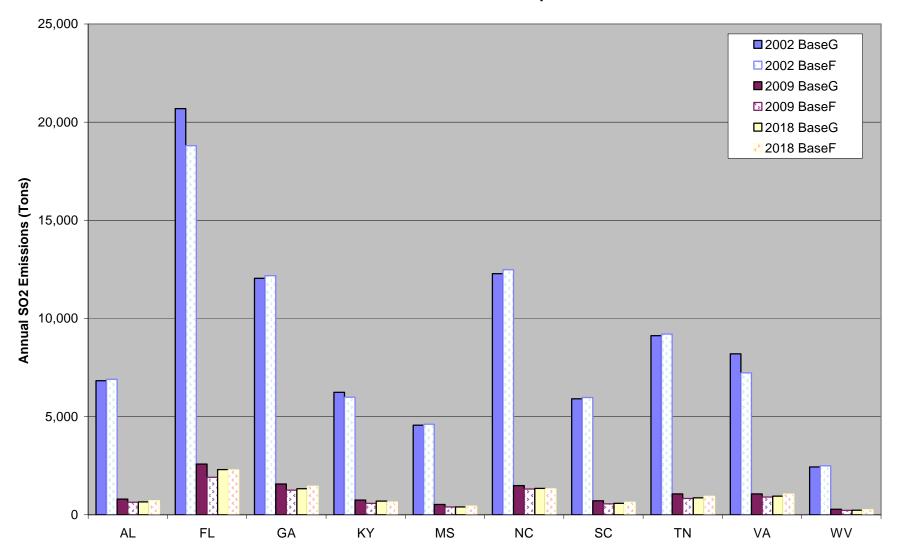
FIGURE 4-1. Relationship Used to Estimate Aircraft PM Emission Rates

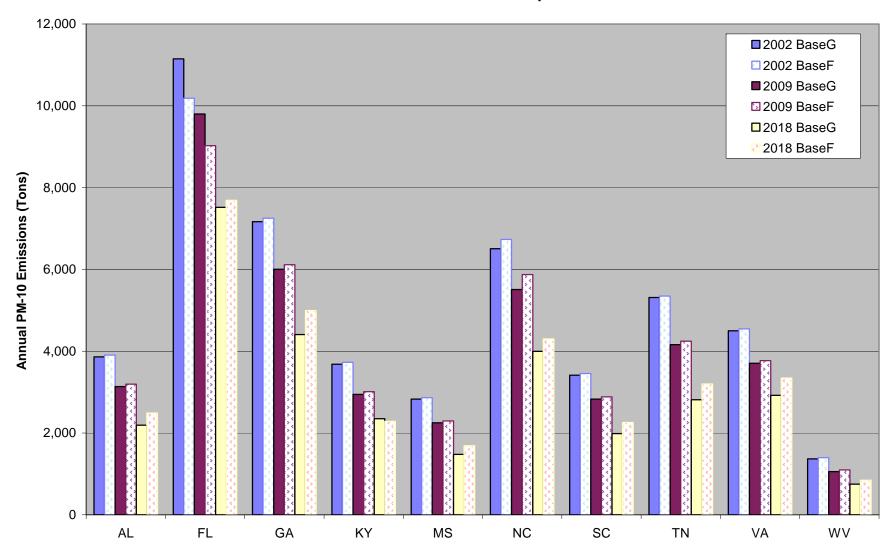
TABLE 4-23. Statistics for Aircraft and APU PM Relations

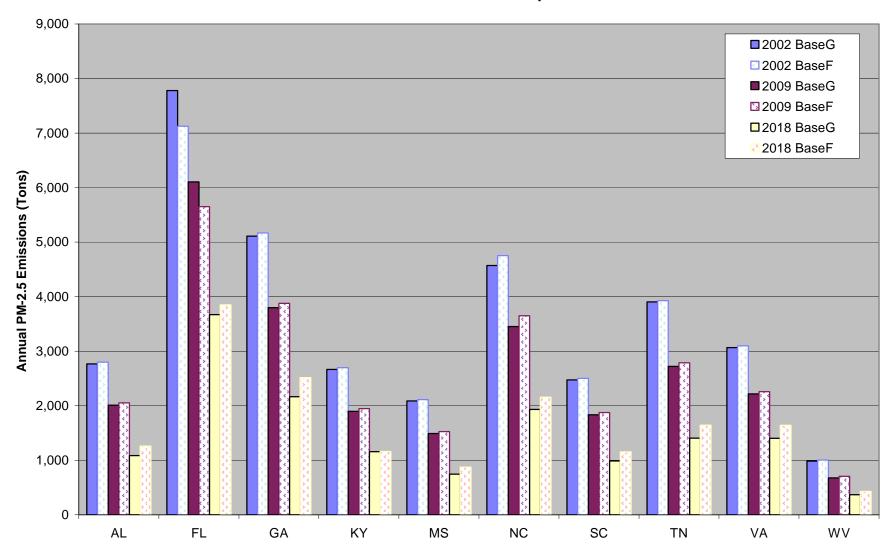

Statistical Parameter	Takeoff PM	Climbout PM	Approach PM	Taxi PM
Predictive Parameter	1/Takeoff NO _x	Takeoff PM	Takeoff PM	Takeoff PM
Coefficient	28.42	1.42	1.53	3.10
Coefficient t-statistic	5.1	11.8	14.9	5.7
Correlation Coefficient	0.30	0.84	0.91	0.56
F-statistic	7.4	86.1	135.7	21.9
Number of Observations	18	17	15	18

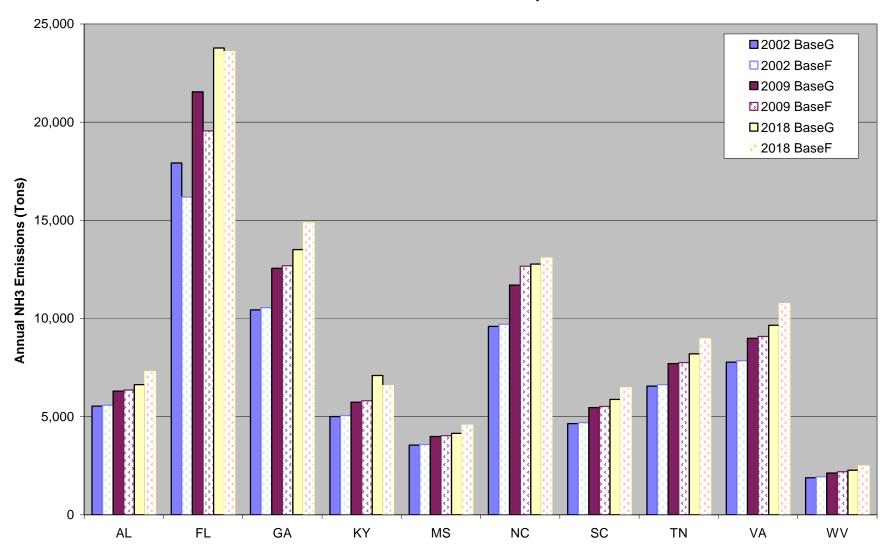

(Subsequent material unrelated to VISTAS modeling is intentionally omitted)


APPENDIX F:


COMPARISON OF BASE F AND BASE G ON-ROAD MOBILE EMISSIONS


Base G Ornoval Mobile Emissions (Annual Torus) 1007	Page		Onroad Moh	nile Emissic	ns (Annii	al Tons)																	
## Fig. 1	PREST 2000 3000 3911 2000 2000 2011 2000 2000 2011 2000 2000 2011 2000 2000 2011 2000 2000 2011 2000 2000 2011 2000 2000 2011 2000 2000 2011 2000 2000 2011 2000		Jili Gad Wick		Allina (Allina	ai ions)	NOx			CO			SO2			PM-10			PM-2.5			NH3	
The Section	## 500.725 350.707 194.000 465.00 315.201 194.001 446.00 350.005 265.00 265	FIPSST		2009			2009			2009			2009		2002	2009			2009			2009	
Color Colo	Property 1977 1946 1947 1946 2916 1947 1946 194																						
Fig. 20 This This This Show This	EVEN 193-26																						
Dec	## 18 ## 18																						
Dec	ROC 200,000 100,044 91,720 32,000 199,281 79,032 2589,280 199,280 12,000 199, 120,000 12,000 12,000 199, 120,000 12,000 199, 120,000 12,000 199, 120																						
The color The	The color of the																						
Vision V	157.98 156.96 55.96 25.96																						
## 14.000 24.000 600.000 20.000	Value Valu																						
See F Ornord Mobile (Annual Tons)	Sept Compare																						
Base F Orroad Mobile (Annual Tons) NOT CO STORY Fig. 1 Not CO STORY	Base F Ornad Mobile (Annual Tons)	VVV	41,703	24,370	14,032	30,340	33,234	15,550	320,041	300,003	243,003	2,430	270	231	1,300	1,037	747	304	070	309	1,009	2,120	2,200
FPST 2002 2009 2018 2009 2018 2002	PRST 2002 2009 2018	VISTAS	1,869,063	1,203,208	680,096	2,163,168	1,398,879	599,336	19,187,613	13,682,570	9,124,656	88,316	10,844	9,348	49,780	41,400	30,403	35,411	26,200	14,922	72,902	86,118	93,932
First Store 2009 2018 2002 2009 2018	PRST 2002 2009 2018																						
First 2002 2009 2018	FPST 2002 2009 2018 2009 2018 2002 2009 2018 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018	Base F C	Onroad Mob	ile (Annual	Tons)																		
AL 118,978 73,137 47,151 157,068 101,299 46,598 1,300.751 934,421 075,900 0.888 637 720 3,000 3,195 2,488 2,798 2,050 3,040 10,181 2,286 2,788 2,789 2,050 3,040 10,181 2,050 2,050 2,050 3,050 1,191 2,298 1,185 2,000	No. 118,078 73,178 47,151 157,028 101,298 46,568 130,0784 30,00745 30,008 307 720 3,008 33,196 2,488 2798 2,005 1,202 5,568 3,92 7,208 7,0			voc			NOx		L	СО			SO2		· · · · · ·	PM-10		-	PM-2.5			NH3	
Fig. 438,761 293,423 192,009 402,009 294,737 134,465 4,022,000 3,004,48] 2,206,759 16,002 1,911 2,209 1,0165 0,207 7,7691 7,126 5,655 3,848 16,183 10,553 23,956 1,010	Fig. 488/76 298/423 192/096 402/096 284/37 134/466 4022/000 309/473 143/466 4022/000 309/473 143/466 4022/000 309/473 143/466 4022/000 309/473 143/466 4022/000 309/473 143/466 4022/000 309/473 143/466 4022/000 309/473 143/466 4022/000 309/473 143/466 4022/000 309/473 143/466 4022/000 309/473 143/466 4022/000 309/473 143/466 4022/000 309/473 143/466 4022/000 4022/	FIPSST																					
GA 265,972 [197,102] (104,678] 306,968] 208,658] 100,707 [2,712,473] 2,044,169] 1,147,009] 12,182] 1,269] 1,458] 7,252 [6,116] 4,965] 5,169] 3,877 [2,517] 10,545 [12,685] 12,078 [13,685] 14,	CA 286.972 197.021 104.878 300.988 208.888 100.797 2.2718.479 2.044.169 1.474.009 12.188 1.288 1.458 7.252 6.116 4.1985 5.168 3.877 2.577 10.545 12.888 14.170 1.074 1	AL																					
RY 98,202 (8,210) 38,814 [154,003] 97,731 [43,104] 1]96,508 [932,296] 694,907 [5,085] 5,380 [37,78] 3,728 [3,000] 2,280 [1,160] 1,505 [7,07] 5,585 [4,07] 5,000 [1,160] 1,575 [1,160] 1,	RY 96,202 53,210 38,814 194,033 97,731 43,914 1195,656 932,296 969,891 5,986 697 691 37,728 3,008 2,283 2,899 1,946 1,105 5,056 5,807 6,934 1,057 1,058 1,058	FL GA																					
No.	NS																						
NC 272,594 167,094 097,718 290,073 007,070 83,399 2,077,118 2,192,275 1238,002 12,462 1,314 1,323 6,733 5,874 4,298 4,754 3,651 2,158 9,711 12,663 13,077 13,077 13,077 13,093 10,0716 63,916 233,324 147,591 66,879 1,881,893 13,958,890 891,929 9,702 633 544 5,349 4,247 3,199 3,927 2,788 1,643 6,629 7,753 8,962 1,741 12,663 13,078 13,078 13,079 1	NC 272,594 167,894 87,718 200,873 207,870 83,390 2,671,118 2192,553 1238,800 12,482 1,341 1,323 6,733 5,774 4,299 4,759 3,651 2,158 9,711 12,663 13,774 1,77																						4,565
TN 168,398 109,716 62,916 233,324 147,931 66,679 1,881,893 1,359,880 961,329 9,202 833 944 5,349 4,447 3,199 3,927 2,788 1,643 6,629 7,753 8,902 10,99 4,546 3,786 3,449 3,097 2,256 1,641 7,782 9,000 10,757 WV 39,581 23,914 15,375 63,355 36,000 16,940 533,258 379,272 273,900 2,495 228 255 1,399 1,099 844 1,005 705 428 1,393 2,188 2,484 VISTAS 1,733,382 1,128,638 683,942 2,077,822 1,378,416 628,551 18,389,312 13,361,764 9,801,505 85,868 8,622 9,783 49,414 41,513 33,086 35,191 26,330 16,687 71,778 85,652 98,664 Emissions Change (Base C - Base F, Annual Tons) - Positive Value Indicates Increase from Base F WC	TN	NC	272,594	167,894	87,718	290,873	207,670	83,399	2,677,118	2,192,253	1,238,802	12,482	1,314	1,323	6,733	5,874	4,299	4,754	3,651	2,158	9,711	12,663	13,077
Vistas 1,733,382 1,128,638 683,942 2,077,822 1,378,416 628,551 18,389,312 13,361,764 9,801,505 85,868 8,622 9,783 49,414 41,513 33,086 35,191 26,330 16,687 71,778 85,652 98,664 71,778 71,77	Vision V																						
VISTAS 1,733,382 1,28,638 683,942 2,077,822 1,378,416 628,551 18,389,312 13,961,764 9,801,905 85,868 8,622 9,783 49,414 41,513 33,086 35,191 26,330 16,667 71,776 85,652 96,664	VISTAS 1,733,382 1,128,638 683,942 2,077,822 1,378,416 628,551 18,389,312 13,961,764 9,801,505 85,866 8,622 9,788 49,414 41,513 33,086 35,191 26,330 16,687 71,778 85,652 98,664																						
WISTAS	Voc																						
Emissions Change (Base G - Base F, Annual Tons) Positive Value Indicates Increase from Base F NOX CO FIPSST 2002 2009 2018 2020 2020 2018 2020 2021 2021 2022 2020 2021 2021 2022 2022 2022 2023 2024 2023 2024 2025 2020 2021 2022 2022 2023 2024 2023 2024 2025 2025 2025 2025 2026 2021 2025 2026 2021 2025 2026 2021 2025 2026 2021 2026 2021 2022 2022 2023 2024 2025 2020 2021 2020 2021 2022 2023 2024 2023 2024 2025 2020 2021 2025 2026 2021 2025 2026 2026 2021 2021 2022 2022 2023 2024 2023 2024 2023 2024 2025 2025 2025 2025 2026 2025 2026	Emissions Change (Base G - Base F, Annual Tons) - Positive Value Indicates Increase from Base F VOC NOX CO SO2 PM-10 PM-25 NH3	***					·					·											,
FIFSST 2002 2009 2018	FIPST 2002 2009 2018	VISTAS	1,733,382	1,128,638	683,942	2,077,822	1,378,416	628,551	18,389,312	13,961,764	9,801,505	85,868	8,622	9,783	49,414	41,513	33,086	35,191	26,330	16,687	71,778	85,652	98,664
FIFSST 2002 2009 2018	FIPST 2002 2009 2018																						
FIFSST 2002 2009 2018	FIPST 2002 2009 2018							-							-	-							
FIPSST 2002 2009 2018	Fighst 2002 2009 2018	Emission	ns Change	(Base G - B	ase F An	nual Tons) Positive	e Value Ind	icates Incre	ase from B	aso F												
FL	FL 81.997 43.284 6.985 68.404 27.854 1.575 471.820 218.420 -43.589 1.885 672 14 963 774 1.75 653 451 1.77 1.738 1.996 183	Emissio	ns Change (ase F, An	nual Tons		e Value Ind	icates Incre		ase F		SO2			PM-10			PM-2.5			NH3	
SA	GA 14,003 5.671 -5,214 -2,689 -1,544 -8,594 1-12,823 -87,906 1-170,500 -1-39 312 -1-33 -86 1-111 -589 -59 -80 -362 -1-09 -1-31 1-1-39			voc			NOx	2018		CO		2002		2018	2002		2018	2002		2018	2002		2018
KY 6,160 9,933 3,996 541 2,294 3,979 18,534 18,615 41,319 250 164 43 -46 -65 65 -32 -47 -2 -52 -70 512	Female F	FIPSST AL	2002 6,789	VOC 2009 2,928	2018 -2,647	2002 -1,166	NOx 2009 -606	2018 -3,977	2002 2,754	2009 -31,973	2018 -81,178	-71	2009 165	-66	-45	2009 -58	-295	-31	2009 -43	-178	-56	2009 -63	-666
MS	NS	FIPSST AL FL	2002 6,789 81,997	VOC 2009 2,928 43,284	2018 -2,647 6,955	2002 -1,166 58,404	NOx 2009 -606 27,584	2018 -3,977 1,575	2002 2,754 471,820	2009 -31,973 218,420	2018 -81,178 -43,569	-71 1,885	2009 165 672	-66 14	-45 963	2009 -58 774	-295 -175	-31 653	2009 -43 451	-178 -177	-56 1,738	-63 1,996	-666 183
NC -11,699 -1,049 -4,001 32,734 -8,389 -3,966 162,165 -226,057 -31,411 -196 174 23 -228 -364 -304 -183 -198 -226 -111 -961 -302 -30	NC -11,699 -1,049	FIPSST AL FL GA	2002 6,789 81,997 14,003	VOC 2009 2,928 43,284 5,671	2018 -2,647 6,955 -5,214	2002 -1,166 58,404 -2,689	NOx 2009 -606 27,584 -1,544	2018 -3,977 1,575 -8,594	2002 2,754 471,820 -12,823	2009 -31,973 218,420 -87,906	2018 -81,178 -43,569 -170,500	-71 1,885 -139	2009 165 672 312	-66 14 -133	-45 963 -86	2009 -58 774 -111	-295 -175 -589	-31 653 -59	2009 -43 451 -80	-178 -177 -352	-56 1,738 -109	2009 -63 1,996 -131	-666 183 -1,359
TN 9.554 4.316 -2.577 2.545 2.589 -4.433 11.811 -39.318 -98.246 -75 222 -82 -37 -87 -386 -22 -68 -238 -73 -52 -766	TN 9.554 4.316 2.577 2.545 2.589 4.433 11.811 39.318 98.246 75 232 8.82 37 487 385 22 6.8 2.38 7.73 5.52 7.68 14.000 4.464 3.744 2.295 3.40 6.887 140.001 47.766 1.37.084 962 165 110 47 62 4.20 30 4.2 2.37 8.3 9.4 1.10 4.10 1.40 1.40 1.47 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	FIPSST AL FL GA KY	2002 6,789 81,997 14,003 6,160	VOC 2009 2,928 43,284 5,671 9,933	2018 -2,647 6,955 -5,214 3,996	2002 -1,166 58,404 -2,689 541	NOx 2009 -606 27,584 -1,544	2018 -3,977 1,575 -8,594 3,979	2002 2,754 471,820 -12,823 18,534	2009 -31,973 218,420 -87,906 18,615	2018 -81,178 -43,569 -170,500 41,319	-71 1,885 -139 250	2009 165 672 312 164	-66 14 -133 43	-45 963 -86 -46	2009 -58 774 -111 -65	-295 -175 -589 65	-31 653 -59 -32	2009 -43 451 -80 -47	-178 -177 -352 -2	-56 1,738 -109 -52	2009 -63 1,996 -131 -70	-666 183 -1,359 512
VA 14,020 4,484 3,744 2,995 340 6,887 140,001 47,766 -137,084 962 165 -110 47 62 420 -30 42 237 83 -94 -1,104 WV 2,122 656 -723 -1,995 -766 -1,410 -6,416 -18,407 -30,217 -57 49 -24 -32 42 -97 -22 -29 -59 -49 -62 -217 VISTAS 135,680 74,570 -3,846 85,346 20,462 -29,215 798,301 -279,194 -676,850 2,448 2,222 -435 367 -114 -2,683 219 -130 -1,764 1,123 466 -4,732 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	VA	FIPSST AL FL GA KY MS	2002 6,789 81,997 14,003 6,160 5,110	VOC 2009 2,928 43,284 5,671 9,933 1,613	2018 -2,647 6,955 -5,214 3,996 -1,638	2002 -1,166 58,404 -2,689 541 430	NOx 2009 -606 27,584 -1,544 2,294	2018 -3,977 1,575 -8,594 3,979 -2,209	2002 2,754 471,820 -12,823 18,534 4,724	2009 -31,973 218,420 -87,906 18,615 -22,319	2018 -81,178 -43,569 -170,500 41,319 -50,903	-71 1,885 -139 250 -48	2009 165 672 312 164 134	-66 14 -133 43 -41	-45 963 -86 -46 -35	-58 774 -111 -65 -46	-295 -175 -589 65 -209	-31 653 -59 -32 -25	2009 -43 451 -80 -47 -34	-178 -177 -352 -2 -130	-56 1,738 -109 -52 -35	2009 -63 1,996 -131 -70 -40	-666 183 -1,359 512 -419
VISTAS 135,680 74,570 -3,846 85,346 20,462 -29,215 798,301 -279,194 -676,850 2,448 2,222 -435 367 -114 -2,683 219 -130 -1,764 1,123 466 -4,732 -4,	Vistas 135,680 74,570 -3,846 85,346 20,462 -29,215 798,301 -279,194 -676,850 2,448 2,222 -435 367 -114 -2,683 219 -130 -1,764 1,123 466 -4,732 -4,	FIPSST AL FL GA KY MS NC SC	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255	2002 -1,166 58,404 -2,689 541 430 32,734 -462	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731	2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061	-71 1,885 -139 250 -48 -196 -63	2009 165 672 312 164 134 174	-66 14 -133 43 -41 23 -59	-45 963 -86 -46 -35 -228	2009 -58 774 -111 -65 -46 -364 -53	-295 -175 -589 65 -209 -304 -272	-31 653 -59 -32 -25 -183 -29	2009 -43 451 -80 -47 -34 -198 -40	-178 -177 -352 -2 -130 -226 -166	-56 1,738 -109 -52 -35 -111 -48	2009 -63 1,996 -131 -70 -40 -961 -56	-666 183 -1,359 512 -419 -302 -594
VISTAS 135,680 74,570 -3,846 85,346 20,462 -29,215 798,301 -279,194 -676,850 2,448 2,222 -435 367 -114 -2,683 219 -130 -1,764 1,123 466 -4,732 Emissions Change (Base G - Base F/Base F, Annual %) Positive Value Indicates Increase from Base F VOC	VISTAS 135,680 74,570 -3,846 85,346 20,462 -29,215 798,301 -279,194 -676,850 2,448 2,222 -435 367 -114 -2,683 219 -130 -1,764 1,123 466 -4,732	FIPSST AL FL GA KY MS NC SC TN	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811	2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246	-71 1,885 -139 250 -48 -196 -63 -75	2009 165 672 312 164 134 174 156 232	-66 14 -133 43 -41 23 -59 -82	-45 963 -86 -46 -35 -228 -40	2009 -58 774 -111 -65 -46 -364 -53 -87	-295 -175 -589 65 -209 -304 -272 -385	-31 653 -59 -32 -25 -183 -29 -22	2009 -43 451 -80 -47 -34 -198 -40 -68	-178 -177 -352 -2 -130 -226 -166 -238	-56 1,738 -109 -52 -35 -111 -48 -73	2009 -63 1,996 -131 -70 -40 -961 -56 -52	-666 183 -1,359 512 -419 -302 -594 -766
Emissions Change (Base G - Base F/Base F, Annual %) Positive Value Indicates Increase from Base F VOC NOX CO SO2 PM-10 PM-2.5 NH3 PISST 2002 2009 2018 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 20	Emissions Change (Base G - Base F/Base F, Annual %) Positive Value Indicates Increase from Base F VOC NOx CO SO2 PM-10 PM-2.5 NH3	FIPSST AL FL GA KY MS NC SC TN VA	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001	2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084	-71 1,885 -139 250 -48 -196 -63 -75	2009 165 672 312 164 134 174 156 232	-66 14 -133 43 -41 23 -59 -82 -110	-45 963 -86 -46 -35 -228 -40 -37 -47	2009 -58 774 -111 -65 -46 -364 -53 -87 -62	-295 -175 -589 65 -209 -304 -272 -385 -420	-31 653 -59 -32 -25 -183 -29 -22 -30	2009 -43 451 -80 -47 -34 -198 -40 -68	-178 -177 -352 -2 -130 -226 -166 -238 -237	-56 1,738 -109 -52 -35 -111 -48 -73 -83	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94	-666 183 -1,359 512 -419 -302 -594 -766 -1,104
FIPSST 2002 2009 2018	FIPSST 2002 2009 2018 2009 2018 2002 2009 2018 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009	FIPSST AL FL GA KY MS NC SC TN VA	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001	2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084	-71 1,885 -139 250 -48 -196 -63 -75	2009 165 672 312 164 134 174 156 232 165 49	-66 14 -133 43 -41 23 -59 -82 -110	-45 963 -86 -46 -35 -228 -40 -37 -47	2009 -58 774 -111 -65 -46 -364 -53 -87 -62	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97	-31 653 -59 -32 -25 -183 -29 -22 -30	2009 -43 451 -80 -47 -34 -198 -40 -68	-178 -177 -352 -2 -130 -226 -166 -238 -237	-56 1,738 -109 -52 -35 -111 -48 -73 -83	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94	-666 183 -1,359 512 -419 -302 -594 -766 -1,104
FIPST 2002 2009 2018	FIPSST 2002 2009 2018 2009 2018 2002 2009 2018 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009 2018 2002 2009	FIPSST AL FL GA KY MS NC SC TN VA	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766	2018 -3,977 1,575 -6,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416	2009 -31,973 -218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217	-71 1,885 -139 250 -48 -196 -63 -75 962 -57	2009 165 672 312 164 134 174 156 232 165 49	-66 14 -133 43 -41 23 -59 -82 -110	-45 963 -86 -46 -35 -228 -40 -37 -47 -32	2009 -58 774 -111 -65 -46 -364 -53 -87 -62 -42	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97	-31 653 -59 -32 -25 -183 -29 -22 -30 -22	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217
FIPSST 2002 2009 2018 2009 2018 2002	FIRST 2002 2009 2018 2009 2018 2002	FIPSST AL FL GA KY MS NC SC TN VA	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766	2018 -3,977 1,575 -6,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416	2009 -31,973 -218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217	-71 1,885 -139 250 -48 -196 -63 -75 962 -57	2009 165 672 312 164 134 174 156 232 165 49	-66 14 -133 43 -41 23 -59 -82 -110	-45 963 -86 -46 -35 -228 -40 -37 -47 -32	2009 -58 774 -111 -65 -46 -364 -53 -87 -62 -42	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97	-31 653 -59 -32 -25 -183 -29 -22 -30 -22	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217
AL 6% 4% -6% -1% -1% -9% 0% -3% -12% -1% 26% -9% -1% -2% -12% -1% -2% -14% -1% -1% -9% 6 FL 19% 15% 4% 15% 10% 1% 12% 7% -2% 10% 35% 19 9% 9% -2% 9% 8% -5% 11% 10% 19% GA 5% 3% -5% -11% -1% -9% 0% -4% -12% -11% 25% -9% -11% -2% -12% -10% -2% -12% -1% -2% -14% -1.% -1% -1% -9% KY 6% 16% 10% 0% 2% 9% 2% 2% 6% 4% 28% 7% -1% -2% 3% -1% -2% 10% -2% -10% -2% 3% -1% -2% 10% -1% -1% -1% -9% MS 6% 3% -5% 0% 0% -7% 11% -4% -11% -11% 34% -9% -11% -2% -12% -11% -2% -15% -11% -1% -9% NC -4% -196 5% 11% -4% -5% 6% -10% -3% -2% 13% 296 -3% -6% -7% -4% -5% -10% -19 -8% -2% SC 7% 4% -5% 0% 0% -8% 0% -5% -11% -1% -1% 28% -9% -11% -2% -12% -1% -2% -14% -11% -1% -9% -2% SC 7% 4% -5% 0% 0% -8% 0% -5% -11% -1% -1% 28% -9% -11% -2% -12% -19 -2% -14% -11% -1% -1% -9% -10% -10% -10% -10% -10% -10% -10% -10	AL 6% 4% -6% -1% -1% -9% 0% -3% -12% -1% 26% -9% -1% -2% -12% -1% -2% -14% -1% -1% -9% 6% -1% -1% -1% -9% 6% -1% -1% -1% -9% 6% -1% -1% -1% -9% 6% -1% -1% -2% -1% -2% -14% -1% -1% -1% -9% 6% -1% -1% -1% -1% -1% -1% -1% -1% -1% -1	FIPSST AL FL GA KY MS NC SC TN VA WV	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B	2018 -2,647 -6,955 -5,214 -3,996 -1,638 -4,001 -2,255 -2,577 -3,744 -723 -3,846	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -1,995 -1,995	NOx 2009 -6066 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416	CO 2009 -31,973 218,420 -87,906 -18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217	-71 1,885 -139 250 -48 -196 -63 -75 962 -57	2009 165 672 312 164 134 174 156 232 165 49	-66 14 -133 43 -41 23 -59 -82 -110	-45 963 -86 -46 -35 -228 -40 -37 -47 -32	2009 -58 -774 -111 -65 -46 -364 -53 -87 -62 -42 -114	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97	-31 653 -59 -32 -25 -183 -29 -22 -30 -22	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217
FL 19% 15% 4% 15% 10% 11% 12% 7% -2% 10% 35% 11% 9% 9% -2% 9% 8% -5% 111% 10% 11% GA 5% 3% -5% -11% -1% -9% 0% -4% -12% -11% 25% -9% -11% -2% -11% -2% -11% -2% -11% -2% -11% -2% -11% -2% -11% -1% -9% MS 6% 16% 10% 0% 2% 9% 2% 2% 6% 4% 28% 7% -11% -2% 3% -11% -2% -11% -2% -11% -2% -11% -2% -11% -2% -11% -2% -11% -2% -15% -10% -1% -9% MS 6% 3% -5% 0% 0% -7% 11% -4% -11% -11% -11% 34% -9% -11% -2% -12% -11% -2% -15% -15% -11% -1% -9% MS 5C 7% 4% -5% 0% 0% -8% 0% -5% 6% -10% -3% -2% 13% 22% -3% -6% -7% -4% -5% -10% -10% -18% -2% SC 7% 4% -5% 0% 0% -8% 0% -5% -11% -11% -1% 28% -9% -11% -2% -12% -11% -2% -14% -11% -11% -19% -9% SC 7% 4% -4% 11% 2% -7% 11% -3% 1-10% -11% 28% -9% -11% -2% -12% -11% -2% -14% -11% -11% -19% -9% -11% -2% -12% -11% -2% -14% -11% -11% -9% -9% -11% -2% -12% -11% -2% -14% -11% -11% -19% -9% -11% -11% -11% -11%	FL 19% 15% 4% 15% 10% 11% 12% 7% -2% 10% 35% 11% 9% 9% -2% 9% 8% -5% 111% 10% 11% GA 5% 3% -5% -11% -1% -9% 0% -4% -12% -1% 25% -9% -11% -2% -12% -1% -2% -14% -1% -1% -9% MS -5% 10% 0% -4% -12% -1% -12% -1% -2% -1% -2% -14% -1% -1% -9% MS -5% 0% 0% -7% 11% -4% -11% -1% 34% -9% -1% -2% -12% -1% -2% -15% -1% -1% -1% -9% MS -5% 0% 0% -7% 11% -4% -11% -1% 34% -9% -1% -2% -12% -1% -2% -15% -1% -1% -1% -9% MS -2% 11% -2% 11% -1% -1% -1% -1% -1% -1% -1% -1% -1	FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301	CO 2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850	-71 1,885 -139 250 -48 -196 -63 -75 962 -57	2009 165 672 312 164 134 174 156 232 165 49 2,222	-66 14 -133 43 -41 23 -59 -82 -110 -24	-45 963 -86 -46 -35 -228 -40 -37 -47 -32	2009 -58 -774 -111 -65 -46 -364 -53 -87 -62 -42 -114	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97	-31 653 -59 -32 -25 -183 -29 -22 -30 -22	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29 -130	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 466	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732
GA 5% 3% -5% -1% -1% -9% 0% -4% -12% -1% 25% -9% -1% -2% -12% -1% -2% -14% -1% -1% -9% KY 6% 16% 10% 0% 2% 9% 2% 2% 6% 4% 28% 7% -1% -2% 3% -1% -2% 0% -1% -1% 8% MS 6% 3% -5% 0% 0% -7% 1% -4% -11% -1% 34% -9% -19 -2% -12% -19 -2% -15% -15% -1% -1% -9% NC -4% -1% 5% 11% -4% -5% 6% -10% -3% -2% 13% 2% -3% -6% -7% -4% -5% -10% -1% -1% -9% TN 6% 4% -4% 19 2% -7% 11% -3% -10% -10% -1% 28% -9% -1% -2% -12% -1% -2% -14% -1% -1% -1% -9% TN 6% 4% -4% 19 2% -7% 11% -3% -10% -10% -1% 28% -9% -1% -2% -12% -1% -2% -14% -1% -1% -1% -9%	GA 5% 3% -5% -1% -1% -9% 0% -4% -12% -1% 25% -9% -1% -2% -12% -1% -2% -14% -1% -1% -9% KY 6% 16% 10% 0% 2% 9% 2% 2% 6% 4% 28% 7% -1% -2% 3% -1% -2% 0% -1% -2% 0% -1% -1% 8% MS 6% 3% -5% 0% 0% -7% 11% -4% -111% -1% 34% -9% -11% -2% 12% -1% -2% -12% -1% -2% 15% -11% -1% 8% NC -4% -11% 5% 111% -4% -5% 6% -10% -3% -2% 13% 22% -3% -6% -7% -4% -5% -10% -1% -1% -1% -1% -1% -1% -1% -1% 15% 11% -1% -1% -1% -1% -1% -1% -1% -1% -1	FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 as Change (VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B VOC 2009	2018 -2,647 -6,955 -5,214 -3,996 -1,638 -4,001 -2,255 -2,577 -3,744 -723 -3,846 -3886 -3886 -3886 -3886	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346	NOx 2009 -606 27,584 -1,544 2,294 -3 -8,389 -362 2,589 -340 -766 20,462 al %) Pos NOx 2009	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301	CO 2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 Increase fro CO 2009	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448	2009 165 672 312 164 134 174 156 232 165 49 2,222	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435	-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367	2009 -58 -774 -1111 -65 -46 -364 -53 -87 -62 -42 -114 PM-10 2009	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -219	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29 -130 -130	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 1,123	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 -466	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732
KY 6% 16% 10% 0% 2% 9% 2% 2% 6% 4% 28% 7% -1% -2% 3% -1% -2% 0% -1% -1% -1% 8% MS 6% 3% -5% 0% 0% -7% 1% -4% -11% 1% 34% -9% -1% -2% -15% -1% -1% -9% NC -4% -1% 5% 11% -4% -5% 6% -10% -3% -2% 13% 2% -3% -6% -7% -1% -1% -9% -9% -1% -2% -1% -5% -10% -1% -9% -1% -2% -1% -2% -10% -1% -1% -9% -9% -1% -2% -1% -5% -10% -1% -2% -1% -2% -1% -2% -14% -1% -1% -1% -2% -1% -1% <td>KY 6% 16% 10% 0% 2% 9% 2% 6% 4% 28% 7% -1% -2% 3% -1% -2% 0% -1% -1% 8% MS 6% 3% -5% 0% 0% -7% 1% -4% -11% -1% 34% -9% -1% -2% -15% -1% -2% -15% -1% -2% -15% -1% -1% -9% NC -4% -1% 5% 6% -10% -3% -2% 13% 2% -3% -6% -1% -2% -15% -1% -1% -9% NC -4% 1% 5% 6% -10% -3% -2% 13% 2% -3% -6% -7% -4% -5% -1% -2% -14% -1% -2% -14% -1% -2% -14% -1% -2% -14% -1% -1% -1% -9%</td> <td>FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emission FIPSST AL</td> <td>2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 as Change (</td> <td>VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B VOC 2009 4%</td> <td>2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 2018 -6%</td> <td>2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346</td> <td>NOx 2009 -606 -27,584 -1,544 -2,294 -3 -8,389 -362 -2,589 -340 -766 -20,462</td> <td>2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9%</td> <td>2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301</td> <td>CO 2009 -31,973 218,420 -87,906 -88,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194</td> <td>2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -78,246 -137,084 -30,217 -676,850 m Base F 2018 -12%</td> <td>-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448</td> <td>2009 165 672 312 164 134 174 156 232 165 49 2,222</td> <td>-66 14 -133 43 -41 23 -59 -82 -110 -24 -435</td> <td>-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367</td> <td>2009 -58 774 -111 -65 -46 -364 -53 -87 -62 -42 -114 -114</td> <td>-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683</td> <td>-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -219</td> <td>2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29 -130 PM-2.5 2009 -2%</td> <td>-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764</td> <td>-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123</td> <td>2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 466 NH3 2009 -1%</td> <td>-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732</td>	KY 6% 16% 10% 0% 2% 9% 2% 6% 4% 28% 7% -1% -2% 3% -1% -2% 0% -1% -1% 8% MS 6% 3% -5% 0% 0% -7% 1% -4% -11% -1% 34% -9% -1% -2% -15% -1% -2% -15% -1% -2% -15% -1% -1% -9% NC -4% -1% 5% 6% -10% -3% -2% 13% 2% -3% -6% -1% -2% -15% -1% -1% -9% NC -4% 1% 5% 6% -10% -3% -2% 13% 2% -3% -6% -7% -4% -5% -1% -2% -14% -1% -2% -14% -1% -2% -14% -1% -2% -14% -1% -1% -1% -9%	FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emission FIPSST AL	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 as Change (VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B VOC 2009 4%	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 2018 -6%	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346	NOx 2009 -606 -27,584 -1,544 -2,294 -3 -8,389 -362 -2,589 -340 -766 -20,462	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301	CO 2009 -31,973 218,420 -87,906 -88,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -78,246 -137,084 -30,217 -676,850 m Base F 2018 -12%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448	2009 165 672 312 164 134 174 156 232 165 49 2,222	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435	-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367	2009 -58 774 -111 -65 -46 -364 -53 -87 -62 -42 -114 -114	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -219	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29 -130 PM-2.5 2009 -2%	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 466 NH3 2009 -1%	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732
MS 6% 3% -5% 0% 0% -7% 1% -4% -11% -1% 34% -9% -1% -2% -12% -1% -2% -15% -1% -1% -9% NC -4% -1% 5% 11% -4% -5% 6% -10% -3% -2% 13% 2% -3% -6% -7% -4% -5% -10% -1% -8% -2% SC -7% 44% -5% 0% 0% -8% 0% -5% -11% -1% 14% 28% -9% -11% -2% -12% -1% -2% -14% -1% -1% -1% -9% TN 6% 4% -4% 19% 2% -7% 11% -3% -10% -1% 28% -9% -1% -2% 1-2% -12% -1% -2% -14% -1% -1% -9%	MS 6% 3% -5% 0% 0% -7% 1% -4% -11% 1% 34% -9% -1% -2% -12% -1% -2% -15% -1% -1% -9% NC -4% -16 5% 11% -4% -5% 6% -10% -3% -2% 13% 29 -3% -6% -7% -4% -5% -10% -1% -8% -2% 5% -10% -1% -8% -2% 5% -10% -1% -2% -12% -1% -2% -14% -1% -1% -1% -1% -1% -9% TN 6% 4% -4% 11% 2% -7% 11% -3% -10% -11% 28% -9% -11% -2% -12% -12% -1% -2% -14% -1% -1% -1% -9% VA 10% 5% -6% -19% 0% -11% 7% -3% -13% 13% 18% -10% -19% -2% -13% -19% -2% -14% -1% -3% -19% -19% -9% -1% -2% -4% -14% -1% -3% -1% -9% -1% -2% -14% -1% -3% -1% -9% -1% -2% -14% -1% -3% -1% -9% -1% -2% -14% -1% -1% -1% -1% -1% -9% -1% -2% -14% -1% -1% -1% -1% -1% -1% -1% -1% -1% -1	FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emission FIPSST AL FL	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 ms Change (VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B VOC 2009 4%	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -3,744 -723 -3,846 ase F/Bas 2018 -6% 4%	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346 se F, Annu 2002 -1% 15%	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462 al %) Pos NOx 2009 1% -1% -10%	2018 -3,977 1,575 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9% 1%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 e Indicates I	CO 2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 Increase fro CO 2009 -3% -7%	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -2%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448 2002 -1%	2009 165 672 312 164 134 174 156 232 165 49 2,222 SO2 2009 26% 35%	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435	-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367 -2002 -1% 9%	2009 -58 -774 -111 -65 -46 -364 -53 -87 -62 -42 -114 -114	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -219 219	2009 -43 451 -80 -47 -344 -198 -40 -68 -42 -29 -130 PM-2.5 2009 -2% -8%	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 1,123	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 466 NH3 2009 -1% 10%	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732 2018 -9%
SC 7% 4% -5% 0% 0% -8% 0% -5% -11% -1% 28% -9% -1% -2% -12% -1% -2% -14% -1% -9% -1% TN 6% 4% -4% 1% 2% -7% 1% -3% -10% -1% 28% -9% -1% -2% -12% -1% -2% -14% -1% -1% -9% -1% -9% -1% -2% -12% -1% -2% -14% -1% -1% -9% -1% -1% -1% -1% -1% -1% -1% -1% -1% -1	SC 7% 4% -5% 0% 0% -8% 0% -5% -11% -1% 28% -9% -1% -2% -12% -14% -1% -1% -9% TN 6% 4% -4% 19 2% -7% 1% 3% -10% -1% 28% -9% -1% -2% -12% -14% -1% -1% -9% VA 10% 5% -6% -1% 0% -11% 7% -3% -13% 13% 18% -10% -1% -2% -14% -1% <	FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emission FIPSST AL FL GA	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 ans Change (VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B VOC 2009 4% 15% 3%	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 2018 -6% 4% -5%	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346 8e F, Annu 2002 -1% 15%	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462 all %) Pos NOx 2009 -1% 10% -1%	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 2018 -9%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2002 0% 12% 0%	CO 2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 Increase fro CO 2009 -3% -7% -4%	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -2% -12%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448 2002 -1% 10%	2009 165 672 312 164 134 174 156 232 165 49 2,222 SO2 2009 26% 35% 25%	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435 -435 -9% 1% -9%	-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367 -47 -32 -92 -98 -98 -98	2009 -58 -774 -111 -65 -46 -364 -53 -87 -62 -42 -114 PM-10 2009 -2% 9% 9%	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -2018 -12% -2% -12%	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -219 219 2002 -1% 9%	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29 -130 PM-2.5 2009 -2% -8% -8%	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 -1,764	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123 -202 -1% -1%	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 466 NH3 2009 -1% 10%	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732 -4,732 -9% 1% -9%
TN 6% 4% -4% 1% 2% -7% 1% -3% -10% -1% 28% -9% -1% -2% -12% -1% -2% -14% -1% -1% -9%	TN 6% 4% -4% 1% 2% -7% 1% -3% -10% -1% 28% -9% -1% -2% -12% -1% -2% -14% -1% -1% -9% VA 10% 5% -6% -19% 0% -11% 7% -3% 13% 13% 18% -10% -19 -2% -13% 19 -2% -14% -1% -1% -1% -1% -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emission FIPSST AL FL GA KY MS	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 as Change (VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B VOC 2009 4% 15% 3% 16% 3%	2018 -2,647 6,955 -5,214 -3,996 -1,638 -4,001 -2,255 -3,744 -723 -3,846 -3,846 -3,846 -4,001 -2,255 -3,744 -723 -3,846 -5,00 -5,00 -5,00 -5,00	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346 86 F, Annu 2002 -1% -15% -1% 0%	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462 all %) Pos NOx 2009 -1% -1% -1% -1% -2% -0%	2018 -3,977 -1,575 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 -29,215 -2018 -9% -9% -9% -9% -9% -9% -7%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2002 0% 12% 0% 2% 0%	CO 2009 -31,973 218,420 -87,906 -87,906 -87,906 -42,483 -39,318 -47,766 -18,407 -279,194 -279,194 -2009 -3% -7% -4% -4% -4% -4%	2018 -81,178 -43,569 -170,500 -170,500 -170,500 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -2% -12% -6% -11%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448 -1% -1%	2009 165 672 312 164 134 174 156 232 165 49 2,222 2009 26% 35% 25% 28%	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435 -435 -9% 1% -9% 7%	-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367 -32 -367 -32 -367 -32 -367 -37 -47 -32 -36 -37 -47 -32 -36 -37 -47 -32 -36 -37 -47 -37 -47 -32 -36 -36 -37 -37 -47 -37 -37 -47 -37 -37 -47 -37 -37 -47 -37 -37 -47 -37 -37 -37 -37 -37 -37 -37 -3	2009 -58 -774 -111 -65 -46 -364 -53 -87 -62 -42 -114 -114	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -2018 -12% -2% -12% -3% -12% -12% -12% -12% -12% -12% -12% -12	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -219 219 2002 -1% -9% -11% -11%	2009 -43 451 -80 -47 -344 -198 -40 -68 -42 -29 -130 PM-2.5 2009 -2% -2% -2% -2%	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 2018 -14% -5% -14% -5% -14% -5% -15%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 466 NH3 2009 -1% -1% -1% -1%	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732 2018 -9% 1% -9% 8% -9%
	VA 10% 5% -6% -1% 0% -11% 7% -3% -13% 13% 18% -10% -1% -2% -13% -1% -2% -14% -1% -1% -10% -10% -1% -2% -13% -1% -2% -14% -1% -1% -1% -10% -1% -1% -1% -1% -1% -1% -1% -1% -1% -1	FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emission FIPSST AL FL GA KY MS NC	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 14,020 2,122 135,680 19,554 14,020 2,122 19,554 19,5	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B VOC 2009 4% 15% 3% 16% 3% -1%	2018 -2,647 -6,955 -5,214 -3,996 -1,638 -4,001 -2,255 -2,577 -3,744 -723 -3,846 2018 -6% -4% -5% -10% -5% -5% -5%	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346 ee F, Annu 2002 -1% 0% 0% 0%	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462 20,462 NOx 2009 -1% -1% -1% -2% -0% -4%	2018 -3,977 1,575 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9% -9% -9% -9% -9% -7% -5%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2002 0% 12% 0% 2% 1% 6%	CO 2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 -279,194 -246,057 -42,483 -47,466 -18,407 -279,194 -279,194 -279,194 -279,194 -1076 -4% -4% -4% -4% -4% -10%	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -6% -12% -6% -1% -12% -6% -1% -3%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448 2002 -1% -1% -4% -1% -4%	2009 165 672 312 164 134 174 156 232 165 49 2,222 SO2 2009 26% 35% 25% 28% 34% 34%	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435 -24 -435 -9% -9% -7% -9% -9% -9% -9% -9% -9% -9% -9% -9% -9	-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367 -2002 -1% -1% -1% -1% -1% -1%	2009 -58 -774 -111 -65 -46 -364 -53 -87 -62 -42 -114 PM-10 2009 -2% -2% -2% -2% -66%	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -12% -2018 -12% -3% -12% -3% -12% -12% -3% -12% -12% -12% -12% -12% -12% -12% -12	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -19 2002 -1% -9% -1% -1% -1% -1% -4%	2009 -43 451 -80 -47 -34 -198 -40 -42 -29 -130 PM-2.5 2009 -2% -8% -2% -2% -2% -2% -2% -5%	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 2018 -14% -5% -0% -15% -15% -10%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123 -2002 -1% -1% -1% -1% -1% -1% -1%	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 -466 NH3 2009 -1% -1% -1% -1% -1% -8%	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732 2018 -9% 1% 8% -9% 8% -9%
[VIX 10/0] 5/0] -0/0] -1/0] 0/0] -1/0] 0/0] -1/0] 1/0] 1/0] -1/0	WV 5% 3% -5% -3% -2% -8% -1% -5% -11% -2% 21% -9% -2% -4% -12% -2% -4% -14% -3% -3% -9%	FIPSST AL Emission FIPSST AL FL GA WV FIPSST AL FL GA KY MS NC FIPSST AL FL GA KY MS NC SC	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 19% 6% 6% 6% 6% 6% 6%	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B VOC 2009 4% 15% 3% 16% 3% 16% 3% -1% -1% -1%	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 2018 -6% 4% -5% 5% 5% 5%	2002 -1,166 58,404 -2,689 541 430 32,734 -462 -2,545 -2,995 -1,995 85,346 6e F, Annu 2002 -1% -1% -1% -0% -0% -0% -0%	NOx 2009 -606 -27,584 -1,544 -1,544 -3,-8,389 -362 -2,589 -340 -766 -20,462	2018 -3,977 1,575 -8,594 3,979 -2,209 -3,966 -3,966 -6,887 -1,410 -29,215 sitive Value 2018 -9% 1% -9% -9% -9% -9% -9% -9% -9% -8%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2002 0% 12% 0% 12% 0% 6% 6%	CO 2009 -31,973 218,420 -87,906 -18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 -279,194 -279,194 -279,194 -279,194 -4% -4% -4% -10% -5%	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -2% -12% -12% -11% -3% -11%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448 -1% -1% -1% -1%	2009 165 672 312 164 134 174 156 232 165 49 2,222 SO2 2009 26% 35% 28% 34% 28%	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435 2018 -9% 1% -9% -9% -9% -9% -9% -9%	-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367 -1% -1% -1% -1% -1% -1% -1%	2009 -58 -774 -111 -65 -46 -364 -53 -87 -62 -42 -114 PM-10 2009 -2% 9% -2% -2% -2% -6% -6% -6%	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -2018 -12% -2% -12% -12% -12% -77 -77 -77	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -19 -19 -11% -11% -19% -4% -11%	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29 -130 -130 -130 -130 -130 -130 -130 -130	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 2018 -14% -5% -14% -0% -15% -10% -14%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 1,123 -116 -116 -116 -116 -116 -116 -116 -11	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 -94 -61 -10% -10% -10% -10% -10% -10% -10% -10	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732 -4,732 -9% 1% -9% -9% -9% -9% -9%
WV 5% 3% -5% -3% -2% -8% -1% -5% -11% -2% 21% -9% -2% -4% -12% -2% -4% -12% -3% -3% -3% -9%		FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emission FIPSST AL FL GA KY MS NC SC TN NC SC TN	2002 6,789 81,997 14,003 14,003 14,003 7,625 9,554 14,020 2,122 135,680 135,680 19% 6% 6% 6% 6% 6%	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B VOC 2009 4% 15% 3% 16% 3% 16% 4% 4%	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 2018 -6% 4% -5% 5% -5% -5% -5% -4%	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346 6e F, Annu 2002 -1% 0% 0% 0% 11% 0%	NOx 2009 -606 27,584 -1,544 -2,294 -3 -8,389 -362 -2,589 -340 -766 20,462 al %) Pos NOx 2009 -1% -1% -1% -2% -4% -4% -4% -6% -6% -6% -6% -6% -6% -6% -6% -6% -6	2018 -3,977 1,575 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9% -9% -9% -9% -7% -5% -8% -7%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2002 0% 12% 0% 2% 6% 0% 1%	CO 2009 -31,973 218,420 -87,906 -87,906 -18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 -279,194 -279,194 -279,194 -279,194 -4% -4% -4% -4% -4% -4% -5% -3%	2018 -81,178 -43,569 -170,500 -170,500 -170,500 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -2% -12% -6% -11% -3% -11% -3% -11% -10%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448 -1% -1% -2% -1% -2% -1%	2009 165 672 312 164 134 174 156 232 165 49 2,222 SO2 2009 26% 35% 25% 25% 34% 13% 28% 28%	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435 2018 -9% 1% -9% -9% -9% -9% -9% -9% -9% -9%	-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367 -32 -1% -1% -1% -1% -1%	2009 -58 -774 -111 -65 -46 -364 -53 -87 -62 -42 -114 -114	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -2,683 -2,683 -2,683 -12% -12% -12% -12% -12% -12% -12% -12%	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -219 2002 -11% -9% -11% -4% -11% -4% -11%	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29 -130 PM-2.5 2009 -2% -8% -2% -5% -2% -5% -2% -2%	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 2018 -14% -5% -14% -15% -10% -14% -14% -14%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 466 NH3 2009 -1% -10% -11% -18% -18% -11% -18% -11% -17%	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732 2018 -9% 1% -9% 8% -9% -9% -9% -9% -9% -9% -9% -9%
		FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emission FIPSST AL FL GA KY MS NC SC TN VA VISTAS	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 198 608 6% 6% 6% 6% 6% 6% 6% 6% 6% 6%	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B VOC 2009 4% 15% 3% 16% 3% 16% 3% -1% 4% 4% 4% 5%	2018 -2,647 -6,955 -5,214 -3,996 -1,638 -4,001 -2,255 -3,744 -723 -3,846 2018 -6% -6% -5% -5% -5% -5% -6%	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346 2002 -1% 0% 0% 0% 11% 0% 11% 0% -1%	NOx 2009 -606 27,584 -1,544 2,294 3 -8,389 -362 2,589 -340 -766 20,462 al %) Pos NOx 2009 -1% -1% -2% -4% -0% -4% -0% -2% -0% -0%	2018 -3,977 -1,575 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9% -9% -9% -7% -5% -8% -7% -11%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2002 0% 12% 0% 2% 0% 12% 0% 12% 0% 12% 0%	CO 2009 -31,973 218,420 -87,906 18,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194 -279,194 -246,657 -446,657 -446,657 -486 -10% -5% -3% -3%	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -6% -11% -3% -11% -3% -11% -10% -10% -13%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448 -1% -1% -1% -1% -1% -1% -1% -1% -1% -1%	2009 165 672 312 164 134 174 156 232 165 49 2,222 2009 26% 25% 28% 28% 28% 28% 28%	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435 2018 -9% 1% -9% -9% -9% -9% -9% -10%	-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367 -367 -1% -1% -1% -1% -1% -1% -1%	2009 -58 -774 -111 -65 -46 -364 -53 -87 -62 -42 -114 PM-10 2009 -2% -2% -2% -6% -2% -6% -2% -2% -2% -2%	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -2,683 -2,683 -12% -12% -12% -12% -12% -12% -12% -12%	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -219 219 2002 -1% -9% -1% -1% -1% -1% -1% -1% -1% -1% -1% -1	2009 -43 451 -80 -47 -34 -198 -40 -42 -29 -130 PM-2.5 2009 -2% -2% -2% -2% -2% -2% -2%	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 2018 -14% -5% -14% -10% -14% -14% -14% -14%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 -62 -70 -70 -70 -70 -70 -70 -70 -70 -70 -70	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732 2018 -9% -1% -9% -9% -9% -9% -9% -10%
	VISTAS 8% 7% -1% 4% 1% -5% 4% -2% -7% 3% 26% -4% 1% 0% -8% 1% 0% -11% 2% 1% -5%	FIPSST AL FL GA KY MS NC SC TN VA WV VISTAS Emission FIPSST AL FL GA KY MS NC SC TN VA VISTAS	2002 6,789 81,997 14,003 6,160 5,110 -11,699 7,625 9,554 14,020 2,122 135,680 135,680 19% 6% 6% 6% 6% 6% 6% 6% 6% 6%	VOC 2009 2,928 43,284 5,671 9,933 1,613 -1,049 2,755 4,316 4,464 656 74,570 (Base G - B VOC 2009 4% 15% 3% 16% 3% -1% 4% 4% 5% 3% -1% 4% 4% 5% 3%	2018 -2,647 6,955 -5,214 3,996 -1,638 4,001 -2,255 -2,577 -3,744 -723 -3,846 2018 -6% 4% -5% 5% -5% -5% -4% -6% -5%	2002 -1,166 58,404 -2,689 541 430 32,734 -462 2,545 -2,995 -1,995 85,346 86 F, Annu 2002 -1% 0% 0% 0% 11% 0% 0% 14% 0% 14% 0% 15% 0% 14% 0% 14% 0% 14% 0% 14% 14% 14% 14% 14% 14% 14% 14	NOx 2009 -606 27,584 -1,544 -2,294 -3 -8,389 -362 -2,589 -340 -766 20,462 al %) Pos NOx 2009 -1% -1% -1% -2% -0% -4% -0% -2% -0% -2%	2018 -3,977 1,575 -8,594 -8,594 -3,979 -2,209 -3,966 -3,293 -4,433 -6,887 -1,410 -29,215 sitive Value 2018 -9% -1% -9% -9% -7% -5% -8% -7% -11% -8%	2002 2,754 471,820 -12,823 18,534 4,724 162,165 5,731 11,811 140,001 -6,416 798,301 2002 0% 12% 0% 12% 0% 12% 0% 12% 0% 12% 0% 12% 0% 12% 0% 12% 0% 12% 0% 12% 14,724 15,734 17,745 17,7	CO 2009 -31,973 218,420 -87,906 -87,906 -88,615 -22,319 -226,057 -42,483 -39,318 -47,766 -18,407 -279,194	2018 -81,178 -43,569 -170,500 41,319 -50,903 -31,411 -75,061 -98,246 -137,084 -30,217 -676,850 m Base F 2018 -12% -2% -12% -11% -3% -11% -10% -11% -13% -11%	-71 1,885 -139 250 -48 -196 -63 -75 962 -57 2,448 -1% -1% -1% -1% -1% -1% -1% -1% -1% -2%	2009 165 672 312 164 134 177 156 232 165 49 2,222 SO2 2009 26% 35% 25% 28% 34% 13% 28% 28% 28% 28%	-66 14 -133 43 -41 23 -59 -82 -110 -24 -435 2018 -9% 1% -9% -9% -9% -9% -9% -9% -9%	-45 963 -86 -46 -35 -228 -40 -37 -47 -32 -367 -32 -1% -1% -1% -1% -1% -1% -1% -1%	2009 -58 -774 -111 -65 -46 -364 -53 -87 -62 -42 -114 PM-10 2009 -2% -9% -2% -2% -2% -2% -2% -2% -4%	-295 -175 -589 -65 -209 -304 -272 -385 -420 -97 -2,683 -2,683 -2,683 -2,683 -12% -12% -12% -12% -12% -12% -12% -12%	-31 653 -59 -32 -25 -183 -29 -22 -30 -22 -19 2002 -1% -9% -1% -1% -1% -1% -1% -1% -1% -1% -1% -1	2009 -43 451 -80 -47 -34 -198 -40 -68 -42 -29 -130 PM-2.5 2009 -2% -8% -2% -2% -2% -2% -2% -2% -2% -4%	-178 -177 -352 -2 -130 -226 -166 -238 -237 -59 -1,764 2018 -14% -5% -14% -10% -14% -14% -14% -14%	-56 1,738 -109 -52 -35 -111 -48 -73 -83 -49 -1,123 -1,123 -1,123 -1,16 -	2009 -63 1,996 -131 -70 -40 -961 -56 -52 -94 -62 -62 -18 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	-666 183 -1,359 512 -419 -302 -594 -766 -1,104 -217 -4,732 2018 -9% -9% -9% -9% -9% -9% -9% -9% -9%





242

243