
Appendix D

Preliminary Remedial Action Plan

Hartford-Brainard Airport

233 Maxim Road & Lindbergh Drive Hartford, CT

Preliminary Remedial Action Plan

Prepared for

BFJ Planning

September 27, 2023

Tighe&Bond

12-5182-001

September 27, 2023

Thomas Madden, AICP Associate Principal BFJ Planning 115 Fifth Avenue, 3rd Fl. New York, NY 10003

Re: Preliminary Remedial Action Plan Hartford-Brainard Airport

233 Maxim Road/Lindbergh Drive

Hartford, CT

Dear Mr. Madden:

Please find enclosed the Preliminary Remedial Action Plan (RAP) for the Hartford-Brainard Airport property located at 233 Maxim Road/Lindbergh Drive in Hartford, Connecticut.

We appreciate the opportunity to provide our services. If you have any questions or comments, please reach out to Jim Olsen at (860) 704-4761 or JTOlsen@tighebond.com.

Very truly yours,

TIGHE & BOND, INC.

Mark E. Paulsson

Project Environmental Scientist

James T. Olsen, PG, LEP

Vice President

Section 1 Introduction

Section 2	2 Site Background	
2.1	Site Description	2-1
2.2	Site Operations and History	2-1
	2.2.1 Past Activities	2-1
2.3	Surrounding Land Use	2-2
2.4	Local Environment	2-2
	2.4.1 Topography	2-2
	2.4.2 Soil Information	
	2.4.3 Geology	
	2.4.4 Groundwater and Surface Water	
	2.4.5 Flood Plain, Wetland, Aquifer Protection Area, and Natura Information	
	2.4.6 Water Supply	2-4
Section 3	3 Previous Environmental Assessments/Investigat	ions
Section 4	Regulatory Program and Remedial Criteria	
4.1	Regulatory Program Summary	4-1
4.2	Soil Remediation Criteria	4-1
4.3	Groundwater Remediation Criteria	4-3
4.4	Additional Polluting Substances	4-4
Section 5	Conceptual Site Model	
5.1	Areas of Concern & Confirmed Release Areas	5-2
5.2	Groundwater Conditions	5-17
5.3	Release Areas Requiring Remediation	5-19
Section 6	S Remedial Strategies	
6.1	Proposed Remedial Activity	6-1
6.2	Compliance Approach	6-1
	6.2.1 Compliance with DEC	6-2
	6.2.2 Compliance with PMC	6-2
	6.2.3 Compliance with GWPC, SWPC and GWVC	6-3
Section 7	Remedial Action Implementation	
7.1	Health & Safety Plan	7-1
7.2	Utility Clearance	7-1
7.3	Notifications	7-1
	7.3.1 RSRs	7-1
	7.3.2 Local Governmental Agencies	7-2

Table of Contents Tighe&Bond

7.4	Contractor Work Plan	7-2						
7.5	Site Controls	7-2						
7.6	Soil Excavation, Handling/Staging, and Disposal	7-3						
7.7	Equipment Decontamination	7-7						
7.8	Site Restoration							
7.9	Remedial Documentation	7-7						
Section 8	Compliance Groundwater Monitoring Plan							
8.1 Gr	roundwater Monitoring Network	8-1						
8.2 Cd	ompliance Groundwater Monitoring	8-1						
Appendice	es							
Appendix A	Figures							
	Figure 1 Site Location Map							
	Figure 2 Orthophotograph							
	Figure 3 Site Plan							
	Figure 3-1 Site Plan - Detail 1							
	Figure 3-2 Site Plan – Detail 2							
	Figure 4 Sample Location Plan							
	Figure 4-1 Sample Location Plan - Detail 1							
	Figure 4-2 Sample Location Plan - Detail 2							
	Figure 5 Groundwater Contour Map (June 20, 2023)							
	Figure 6 Release Areas and RSR Exceedances							
	Figure 6-1 Release Areas and RSR Exceedances – Detail 1							
	Figure 6-2 Release Areas and RSR Exceedances – Detail 2							
	Figure 7 Soil Excavation Plan							
	Figure 7-1 Soil Excavation Plan							
	Figure 7-2 Soil Excavation Plan							
Appendix B	Tables							
	T.I. 1.C I . M .: W II.C: 0.Fl .: .							

Table 1 Groundwater Monitoring Well Construction & Elevation Summary

Table 2 Summary of Soil Analytical Data

Table 3 Summary of Groundwater Analytical Data

Section 1 Introduction

Tighe & Bond, Inc. (Tighe & Bond) has prepared this Preliminary Remedial Action Plan (RAP) on behalf of BFJ Planning (the "Client") for the Hartford-Brainard Airport located at 233 Maxim Road/Lindbergh Drive in Hartford, Connecticut (the "Site"). The Site is comprised 200 acres of land, bounded by commercial/industrial properties to the north, south, and west. The Clark Dike, which is associated with the Connecticut River, abuts the Site to the east. The Site is currently leased by the State of Connecticut to several tenants predominantly for aircraft use. The Site was first developed as an airport in 1921. The location of the Site is shown in Figure 1, an orthophotograph of the Site is provided as Figure 2, and a site plan is provided as Figures 3, 3-1, and 3-2 (Appendix A).

Site investigations were previously completed as part of an assessment of the current and potential alternative uses of the Site. As documented in Tighe & Bond's Phase II/III Environmental Site Assessment (ESA) dated September 2023, environmental impacts were identified that would require remediation if the Site, or portions thereof, were redeveloped.

This Preliminary RAP includes remediation strategies for the Site to address impacted soil associated within identified releases. The goal of this Preliminary RAP is to outline remediation methods to bring the Site into compliance with the Connecticut Department of Energy and Environmental Protection (CTDEEP) Remediation Standard Regulations (RSRs) as part of the assessment of potential alternative uses of the Site.

Section 2 Site Background

2.1 Site Description

The Site consists of one parcel identified by the City Hartford Tax Assessor as Map 333/Block 77/Lot 003 with an address of 233 Maxim Road/Lindbergh Drive in Hartford, CT. The Site is also associated with the addresses of 251 Maxim Road, 233-299 Maxim Road, and Lindbergh Drive. The Site is approximately 200-acres in size and currently owned by the State of Connecticut Airport Division – Aeronautics. The Site and surrounding area are zoned as "ID-1" for industrial use but overlays the Connecticut River District "CT R".

The Site limits are generally defined by Maxim Road to the north; Lindbergh Drive, Brainard Road, and industrial/commercial properties to the west, the Metropolitan District Commission (MDC) wastewater treatment plant property to the south, and the Clark Dike to the east.

The Site is currently improved with 20 structures located along the northern and western property boundaries. The airport structures generally consist of maintenance garages, the Federal Aviation Authority (FAA) control tower, various offices, classrooms, and two fuel farms. Each structure is surrounded by paved parking/tarmacs and vehicle access or turf areas. The main helicopter pad is located east of building H1 (20 Lindbergh Drive). A smaller helicopter pad is located east of building H4. The Site includes three aircraft runways identified as 2-20, runway 11-29, and a turf runway. Each runway is surrounded by turf and limited paved access roadways/taxiways. A chain-link fence encompasses the entire Site at the property boundaries.

2.2 Site Operations and History

The Site was historically utilized as cow pasture prior to development as the Hartford-Brainard Airport in 1921. The Site, known as Brainard Field, was dedicated as the first municipal "flying field" in New England. The Site is historically known as the first landing spot after Charles Lindbergh's first transatlantic flight. The Connecticut National Guard also utilized the Site for pilot training from 1923 until post World War II.

Historically, the Site has been prone to severe flooding due to the proximity of the Connecticut River. Following significant flooding in 1936 and 1938, the US Army Corps of Engineers constructed the Clark Dike that abuts the eastern property boundary to prevent future events.

2.2.1 Past Activities

During the Site's operation as an airport, various airport and aircraft maintenance operations were completed, predominantly out of past and present hangars and other maintenance buildings. Former underground storage tanks (USTs), current/former aboveground storage tanks (ASTs), as well as drums/containers containing petroleum products or other hazardous substances are utilized as part of these activities. Releases associated with airport related activities, including from tanks have been previously identified.

2.3 Surrounding Land Use

The Site and surrounding area are zoned as "ID-1" for industrial use but overlays the Connecticut River District "CT R". The Site was abutted by the following properties during completion of the Phase I ESA in April 2023:

	Adjoining Properties						
North	300 Maxim Road – MIRA (trash to energy plant)						
South	231 Brainard Road – MDC wastewater treatment plant						
East	Clark Dike and the Connecticut River						
West	Lindbergh Drive flowed by the following addresses: 195 Maxim Road – Central Auto & Transport, LLC 50 Murphy Road – Rent-A-Car 70 Murphy Road – Northeast Electrical Distributors 96 Murphy Road – Cintas Facility Services (janitorial equipment supplier) 110 Murphy Road – Lennox Stores (parts plus, heating equipment supplier), Granite City Electric Supply, and Carrier Enterprise (heating equipment supplier) 120 Murphy Road – Tommy's Garage (auto repair shop) 132/134 Murphy Road – FleetPride (truck parts supplier) 206 Murphy Road – Sid Harvey's (wholesaler of heating, HVAC, and refrigeration) 208 Murphy Road – International Brotherhood of Electrical Workers Local 35 (labor union) 210 Murphy Road – Dumpster Rental Champs 218 Murphy Road – ProSource of Hartford (home improvement store) 220 Murphy Road – Pilkington North America Inc. (auto machine shop) 222 Murphy Road – Mikes Golf Outlet 230 Murphy Road – Fastenal Fulfillment Center – Limited Hours (building materials store) 234 Murphy Road – The Belknap White Group (flooring distributor) 244 Murphy Road – Dalene Flooring Outlet (flooring supplier) 250 Murphy Road – Metropolitan District Employees Credit Union 260-262 Murphy Road – O&G Showroom & Mason Supply Store 270 Murphy Road – GQ Associates LLC (clothing store) 280-320 – Multiple Tenant Building (Elite Flooring, Hilti, Topcon Solutions, PPG Paint, Club Champion, LawnPro, KE Distribution, Tee's & More, Phantom Brewery, Restaurant Supply, Beer & Wine Makers Warehouse, and Wholesale Club 340 Murphy Road – Airgas (welding supply store) 160 Brainard Road – Connecticut Lighting Center 185 Brainard Road – Appears to be a vacant hotel						

The above abutting property uses currently appear to remain the same.

2.4 Local Environment

2.4.1 Topography

According to Connecticut Environmental Conditions Online (CTECO), the surface elevation of the Site is approximately 13 to 16 feet above the National Geodetic Vertical Datum

(NGVD). Topography across the Site is generally flat sloping gently to the east toward the man-made Clark Dike, which is along the eastern Site property boundary. The elevation of the Dike is reported to be 32 feet above the NGVD. Regional topography around the Site is similarly flat and developed with buildings, roads, and associated paved surfaces (i.e., parking).

2.4.2 Soil Information

According to the National Resources Conservation Service (NRCS) Web Soil Survey (WSS) for the State of Connecticut (NRCS Webpage, 2009), soil on the eastern portion of the Site is mapped as Winooski silt loam. The remainder of the Site is mapped as Urban Land.

2.4.3 Geology

According to the Surficial Materials Map of Connecticut (U.S. Geological Survey, 1992), the Site is underlain by alluvium overlying fines. Alluvium is characterized as a floodplain material of which areas along large river systems, like the Connecticut River, can be upwards of 25 feet thick. Previous investigations indicate that subsurface soils consist of reddish-brown sand, gravel, and silt overlying greyish-brown/reddish-brown clay. Portions of the Site may also contain urban fill or dumped materials due to the historical industry in the area.

During the completion of Phase II/III ESA, a combination of brown fine to medium sand and silt of varying depths overlying a silt/clayey silt were generally observed throughout much of the Site. Urban debris consisting of asphalt, brick, and concrete were noted in several borings.

According to the Bedrock Geologic Map of Connecticut (U.S. Geological Survey, 1985), the Site is underlain by the Portland Arkose (JP) formation. The formation is characteristically reddish-brown arkose, also known as sandstone. Bedrock was not encountered in the top 20 feet of soil during all known Site investigation activities.

2.4.4 Groundwater and Surface Water

Groundwater at the Site is classified by the CTDEEP Bureau Water Protection and Land Reuse as "GB". GB classified groundwaters are groundwater resources that are presumed to be degraded and not suitable for human consumption. The site is not located within an aquifer protection area. Based on topography of the Site and the proximity of the Connecticut River, which flows from north to south, shallow overburden groundwater was inferred to flow generally south to southeast towards the Connecticut River.

During the completion of Phase II/III investigation activities, groundwater was encountered between approximately 6.09 and 11.39-feet below ground surface (bgs) during groundwater gauging events. Table 1 (Appendix B) includes a summary of groundwater gauging data. Based on the gauging data in combination with relative well elevation survey data (see Section 5.2), the shallow groundwater at the Site flows in a south/southwesterly direction. A shallow overburden groundwater contour map is provided as Figure 5.

The closest surface water body is the Connecticut River, that generally flows along the east/south property boundary on the opposite side of the Clark Dike. An unnamed pond is also approximately 400 feet north of the Site at 300 Maxim Road. The Connecticut River is classified by CTDEEP as Class "SB". CTDEEP indicates that Class SB designated uses are habitat for marine fish, aquatic life, and wildlife, commercial shellfish harvesting, recreation, industrial water supply, and navigation.

Based on groundwater flow direction, Folly Brook and Wethersfield Cove may also be downgradient waterbodies. Wethersfield Cove is also a Class SB waterbody. Folly Brook north of Wethersfield Cover is classified by the CTDEEP as Class "A". CTDEEP indicates that Class A designated uses are habitat for fish and other aquatic life and wildlife, potential drinking water supplies, recreation, navigation, and water supply for industry and agriculture.

2.4.5 Flood Plain, Wetland, Aquifer Protection Area, and Natural Diversity Information

A review of the Federal Emergency Management Agency (FEMA) Flood Insurance Map of the area indicates the Site is located in an area with a reduced flood risk due to a levee along the east property boundary (Clark Dike). The Connecticut River located on the other side of the Clark Dike is a special flood hazard area.

The northern, eastern, and southern portions of the Site are located within a CTDEEP Natural Diversity Database Area (NDDB). NDDB maps represent approximate locations of endangered, threatened, and special concern species and significant natural communities in Connecticut. During Tighe & Bond's April 2023 Phase I ESA site visit, a bald eagle was spotted while touring the Clark Dike.

According to the National Wetland Inventory, wetlands are not located on the Site. The closest mapped wetlands are a freshwater forested/shrub wetland located east of the Clark Dike. During the Site reconnaissance, a small detention area with phragmites was observed northwest of the engine test cell building associated with the CT Aero Tech School.

According to the CTDEEP GIS data, the Site is not located within an Aquifer Protection Area (APA).

2.4.6 Water Supply

Although a formal water supply well receptor survey was not completed for the area surrounding the Site, the Site is located within a dense urban area within the City of Hartford and public water supply is provided to the Site.

Section 3 Previous Environmental Assessments/Investigations

Tighe & Bond completed a Phase I ESA for the Site on April 21, 2023 that included a review of several previous environmental assessment reports, including:

- Hartford Brainard Airport Master Plan Study, Final Draft Technical Report, Hoyle, Tanner, & Associates, Inc., November 1986
- Connecticut Army National Guard, Underground Storage Tank Program, CONNDPW Project No. BI-2B-760, CONN Military Department Project No. MD-94-Z, Tank Removal Report, Brainard Field Armory, Hartford, Connecticut, December 1993
- Task 210 Preliminary Site Evaluation Assessor's Map 232, Block 3, Lot 1, 233
 Maxim Road/Lindbergh Drive Ramp Reconstruction, Brainard Airport Central Portion, Hartford, Connecticut, Storch Associates, May 1997
- Task 210 Subsurface Site Investigation Report, Brainard Airport Maintenance and ARFF Facility, Hartford, Connecticut, July 29, 2011
- Phase I Environmental Site Assessment, TRC Environmental Corporation, September 4, 2012
- UST Closure Letter Report, Zuvic, Carr, and Associates Consulting Engineers, May 16, 2019
- Various Hazardous Building Material Assessment reports

The information obtained from these reports was used, in part, to develop a preliminary Conceptual Site Model for the Site. During the Phase I ESA, Tighe & Bond identified 5 Recognized Environmental Conditions (RECs) and 23 Areas of Concern (AOCs) for the Site. Off-site AOCs were also identified in the surrounding properties. During the completion of Tighe & Bond's Phase II/III ESA for the Site, one additional AOC was identified. The RECs/AOCs are listed below:

- REC-1: Historical Releases (throughout developed portions of the Site)
- AOC-1: Historical Hangar Operations (two locations)
- AOC-2/REC-2: Underground Storage Tanks (twenty-eight locations)
- AOC-3: Aboveground Storage Tanks (twelve locations)
- AOC-4: Former Hazardous Waste Storage Container
- AOC-5/REC-3: Former Fuel Distribution Boxes and Product Delivery Line
- AOC-6: Oil/Water Separators (eight locations)
- AOC-7: Airport Maintenance Facilities (three locations)
- AOC-8: Aircraft Maintenance and Repair Facilities (five locations)
- AOC-9: Aircraft Deicing
- AOC-10: Fuel Truck Parking (three locations)
- AOC-11: T-Hangar Buildings (five adjacent locations)
- AOC-12: CT Aero Tech School

- AOC-13/REC-4: Soil and Groundwater Impacts from Historical Airport Activities and/or Historical Fill Utilized at the Site
- AOC-14: Electrical Transformers (multiple locations)
- AOC-15: Diesel Generators (four locations)
- AOC-16: Dumpsters (seven locations)
- AOC-17: Main Regional Jet Fuel Supply Line
- AOC-18: Soil Pile
- AOC-19: Potential Surficial Impacts from Hazardous Building Materials (past and present building envelopes)
- AOC-20: Aqueous Film-Forming Foam (six locations)
- AOC-21/REC-5: Aircraft Accidents
- AOC-22: Former Police Firing Range
- AOC-23: Outfalls at Connecticut River (two locations)
- AOC-24: Potential Airborne Deposition of Impact (site-wide)
- Off-Site AOC: Potentially Impacted Groundwater Migrating to the Site from Off-Site Sources

Based on the information obtained during the Phase I ESA, the Site appears to meet the definition of an "Establishment" due to multiple generations of hazardous waste (EPA waste code D001 for Ignitable Waste) over 100 Kg in one month and the identification of vehicle (aircraft) body repair facilities. Tighe & Bond recommends that legal counsel be consulted for a definitive determination if the Transfer Act is applicable to the Site. See Tighe & Bond's April 21, 2023 Phase I ESA for additional information.

Tighe & Bond's Phase II/III ESA was completed to evaluate potential environmental impacts at the Site. Most AOCs/RECs were either directly or indirectly investigated as part of this assessment. The soil and groundwater investigation data are summarized in Tables 2 and 3, respectively (Appendix B). As documented in the Phase II/III ESA, 30 release areas (RAs) were identified, which are shown in Figures 6, 6-1, and 6-2:

- RA-1: Historical Release of Aviation Gasoline
- RA-2: CAA Maintenance Shop Former Gasoline and Diesel USTs and Dispenser Island
- RA-3: Hangar H1 Former 10,000-Gal. UST
- RA-4: Hangar H2 Potential Former Three 4,000-Gal. USTs and Hydrant Dispenser
- RA-5: Hangar H4 Potential Former Three 4,000-Gal. USTs and Hydrant Dispenser
- RA-6: Hangar H4 Potential Former Fuel Farm
- RA-7: Hangar H1 Former Waste Oil AST
- RA-8: CAA Fuel Farm
- RA-9: Former Fuel Box 1
- RA-10: Hangar H4
- RA-11: T-Hangars
- RA-12: Fill Material (site-wide)

- RA-13: Historical Application of Pesticides (site-wide)
- RA-14: CAA Maintenance Shop Pole-Mounted Transformer
- RA-15: State Police Hangar Pole- and Pad-Mounted Transformers
- RA-16: Soil Pile
- RA-17: Building Envelope State Police Abandoned Building
- RA-18: Building Envelope State Police Hangar
- RA-19: Building Envelope CAA Administration Building
- RA-20: Building Envelope CAA Maintenance Garage
- RA-21: Building Envelope CAA Maintenance Shop
- RA-22: Building Envelope Hangar H1
- RA-23: Building Envelope Office/Restaurant
- RA-24: Building Envelope FAA Control Tower
- RA-25: Building Envelope CT Aero Tech School
- RA-26: Building Envelope Engine Test Room
- RA-27: Building Envelope T-Hangar (240 Lindbergh Drive)
- RA-28: Building Envelope T-Hangar (1-10)
- RA-29: Former Police Firing Range
- RA-30: Airborne Deposition of Impact (site-wide)

Although full characterization of the Site in accordance with the Site Characterization Guidance Document (SCGD) was not completed, the data obtained during the Phase II/III ESA was sufficient to assess the environmental condition of the Site with respect to the development of likely remedial scenarios as part of the evaluation of potential future alternative uses. Prior to completion of the final RAP, the Phase III ESA should be completed to define the full extent of impacts at the AOCs and RAs.

Section 4 Regulatory Program and Remedial Criteria

4.1 Regulatory Program Summary

The Site appears to meet the definition of an "Establishment" under the Connecticut Transfer Act. Although potential alternative uses of the Site are being considered, including potential transfer of ownership, the Site is not subject to the provisions of the Transfer Act at this time.

Connecticut's Remediation Standard Regulations (RSRs) provide detailed guidance and standards that may be used at any site to determine whether or not remediation of contamination is necessary to protect human health and the environment. Generally, the RSRs apply to any action taken to remediate polluted soil, surface water, or a groundwater plume at or emanating from a release area, provided the remedial action is required pursuant to Chapter 445 or 446k of the CGS, or Section 22a-208a(c)(2) of the CGS.

The RSRs are incorporated in Sections 22a-133k-1 through 22a-133k-3 of the RCSA, adopted January 1, 1996 and amended on June 27, 2013 and February 16, 2021. The RSRs contain criteria for the remediation of soil and groundwater. The plan for remediation of a polluted property must consider the criteria for both these environmental media. Factors that may affect the degree of remediation at a polluted site include the groundwater quality classification of the site, the land use of the site, and proximity of sensitive receptors to the contamination.

Under specific circumstances, an Environmental Use Restriction (EUR) (Section 22a-133q-1 through 22a-133q-9 of the RCSA) may be considered as an alternative to remediating contamination to a concentration that is consistent with specific criteria of the RSRs. The purpose of an EUR is to prevent certain types of uses of a property, or to limit or require specific activities on a contaminated property, or to minimize the risk of exposure to the pollutants. There are two types of EURs, an Environmental Land Use Restriction (ELUR) and a Notice of Activity and Use Limitation (NAUL). Both EURs are recorded on the municipal land records.

Below is a summary of soil and groundwater RSRs under RSCA Sections 22a-133k-1 through 22a-133k-3 that are applicable to the site.

4.2 Soil Remediation Criteria

The CTDEEP soil remediation criteria integrate two risk-based goals:

- Direct Exposure Criteria (DEC) to protect human health and the environment from risks associated with direct exposure (ingestion) to contaminated soil.
- Pollutant Mobility Criteria (PMC) to protect groundwater quality from contaminants that migrate or leach from the soil to groundwater.

Soils to which both criteria apply must be remediated to a level, which is equal to the more stringent criteria.

Direct Exposure Criteria

Specific numeric exposure criteria for a broad range of contaminants in soil have been established by the CTDEEP, based on exposure assumptions relative to incidental ingestion of and dermal contact with contaminants in soils. The DEC applies to accessible soil to a depth of 15 feet. The DEC for substances other than PCBs does not apply to inaccessible soil at a release area provided that, if such inaccessible soil is less than 15 feet below the ground surface, an EUR is in effect with respect to the subject release area. For PCBs, a maximum concentration of 10 milligrams per kilogram (mg/Kg) can remain in soils considered inaccessible. Inaccessible soil generally means polluted soil, which is the following:

- More than 4 feet below the ground surface;
- More than 2 feet below a paved surface comprised of a minimum of three inches of bituminous pavement or concrete;
- Beneath a paved surface comprised of a minimum of three inches of bituminous concrete or concrete polluted only with concentrations of semi-volatile substances or petroleum hydrocarbons, normal constituents of bituminous concrete, in excess of applicable DEC and metals concentrations that are less than two times the applicable DEC;
- Beneath an existing building;
- Beneath another permanent structure(s) approved by the CTDEEP Commissioner;
 or
- Buildings can be constructed and/or clean fill can be placed over contaminated soils rendering them inaccessible.

The CTDEEP has established two sets of DEC using exposure assumptions appropriate for residential land use (RES DEC) or for industrial and certain commercial land use (I/C DEC). In general, all sites are required to be remediated to the residential criteria. If the industrial/commercial land use criteria are applicable and used, an EUR notification is required in accordance with the RSRs.

Pollutant Mobility Criteria

The PMC that apply to remediation of a site depends on the groundwater classification of the site. The purpose of these criteria is to prevent contamination to groundwater in "GA" classified areas, and to prevent unacceptable further degradation to groundwater in "GB" classified areas.

The applicable PMC for the Site is the PMC for a "GB" classified area. The PMC generally applies to all soil within the unsaturated zone, which represents the soil located from the ground surface to the seasonal high-water table in "GB" classified areas. The criteria do not apply to environmentally isolated soils that are polluted with substances other than VOCs provided an EUR is recorded for the release area which ensures that such soils will not be exposed (unless approved in writing by the CTDEEP Commissioner). Environmentally isolated soils are defined as certain contaminated soils, which are above the seasonal high-water table, beneath an existing building and not a source of on-going contamination. An EUR must be recorded for the site, which ensures that such soils will not be exposed by building demolition or other activities. Buildings can be constructed over contaminated soils rendering them environmentally isolated.

Remediation based upon the listed PMC requires that a substance, other than an inorganic substance or PCB, in soil be remediated to at least that concentration at which the results of a mass analysis of soil for such substances does not exceed the PMC applicable to the groundwater classification (i.e., GB) of the area in which the soil is located (default PMC). An inorganic substance (metals) or PCBs in soil must be remediated to at least that concentration at which the analytical results of leachate produced from either the Toxicity Characteristic Leaching Procedure (TCLP) or the Synthetic Precipitation Leaching Procedure (SPLP) does not exceed the PMC applicable to the groundwater classification of the area in which the soil is located.

In addition, the RSRs provide an alternate method for compliance with the PMC. For polluted soils within a GB Groundwater area, a SPLP or TCLP concentration of a substance in soil may be remediated to ten-times the groundwater protection criteria provided that non-aqueous phase liquid (NAPL) is present in soils as defined in the calculation provided in the RSRs.

4.3 Groundwater Remediation Criteria

Groundwater remediation requirements are dependent upon the groundwater classification of the site. The objectives of these standards are the following:

- Protect and preserve groundwater in "GA" areas as a natural resource
- Protect existing use of groundwater regardless of the area's groundwater classification
- Prevent further degradation of groundwater quality
- Prevent degradation of surface water from discharges of impacted groundwater
- Protect human health and the environment.

Portions of the RSRs governing groundwater regulate remediation of groundwater based on each substance present within the plume and by each distinct plume of impact. Several factors influence the remediation goal at a given site, including background water quality, the groundwater classification, the proximity of nearby surface water, existing groundwater uses, and the presence of buildings and their usage. When assessing general groundwater remediation requirements, these factors must be considered.

Since the site is situated within a "GB" classified area, the following criteria apply to the site:

- Surface Water Protection Criteria (SWPC)
- Groundwater Volatilization Criteria (GWVC)

Surface Water Protection Criteria

The SWPC apply to all groundwater that discharges to a surface water; and therefore, applies to the site. The SWPC ensures that groundwater contamination resulting from onsite sources, which exceed background concentrations, is remediated to levels that adequately protect surface water quality. In general, compliance with the SWPC is achieved when the compound in groundwater directly upgradient from the discharge point emanating from a site is equal to or less than the SWPC established by the CTDEEP. Compliance with the SWPC can also be achieved when the 95% Upper Confidence Limit

of the arithmetic mean of all sample results from a groundwater plume are equal or less than the established SWPC. Additionally, site-specific alternative SWPC can be established in accordance with the RSRs.

Groundwater Volatilization Criteria

The GWVC apply to all groundwater contaminated with a VOC within 15 feet of the ground surface or a building. According to the regulations, the VOC of concern will be remediated to a concentration that is equal to or less than the applicable residential volatilization criterion for groundwater (RES GWVC). If groundwater contaminated with a VOC is below a building used solely for industrial or commercial activity, groundwater may be remediated such that the concentration of the substance is equal to or less than the applicable industrial/commercial volatilization criteria for groundwater (I/C GWVC) in lieu of the RES GWVC for groundwater, provided that an EUR is in effect with respect to the parcel (or portion of the parcel covered by the building). The EUR must also ensure that the parcel (or portion thereof beneath the building) will not be used for any residential purpose in the future and that future use is limited to industrial or commercial activity.

4.4 Additional Polluting Substances

The RSRs, sections 22a-133k-1 through 22a-133k-3 of the Regulations of Connecticut State Agencies, contain numeric cleanup standards for 88 substances. When a contaminant at a site is not one of the 88 substances listed in the RSRs, numeric criteria must be requested and approved by the Commissioner in order to complete cleanup at the site under the RSRs, unless background concentrations are met. In accordance with CGS Sections 22a-133k-2 through 133k-3, the Commissioner may approve the use of site-specific cleanup criteria for Additional Polluting Substances (APS) and certain Alternative Criteria for soil and groundwater. Criteria for the APSs detected at the Site that are listed in the data summary tables of this report were obtained from "Table 10: DEEP Recommended Criteria Values for Common Additional Polluting Substances and Alternative Criteria Requests, dated September 2018".

A CSM is a representation of an environmental system that is used as a tool for understanding and explaining the basis and rationale for site investigation and conclusions drawn about the environmental conditions at a site. A CSM describes, explains, and provides an understanding of the nature and distribution of contaminants necessary to evaluate potential risks to human health and the environment. A CSM includes but may not be limited to information regarding potential AOCs, release areas, pathways for contaminant migration, potential receptors, and exposure risk. The CSM is refined throughout the site characterization and remediation process as new data are acquired. The number of iterations and the quantity and quality of information that is necessary is a function of the complexity of site conditions and the data quality objectives established for site characterization. A final CSM will fully define the environmental system at a site and validate the hypotheses regarding the environmental fate of released contaminants. The current CSM for the site is summarized as follows:

Description of Site, Environments and AOCs

A description of the Site environmental setting, history, site operations, receptors, AOCs, and constituents of concern (COCs) is provided in Sections 2 and 3.

Potential Release Mechanisms

Potential release mechanisms for the site vary by AOC but generally include the following potential release mechanisms:

- Potential releases directly to the ground surface or subsurface from leaks, spills, or overfills from tanks, piping, equipment, and/or human failure.
- Potential releases directly to the subsurface due to leach fields, dry wells, or similar features designed to drain to the subsurface.
- Potential releases due to leaching from hazardous building materials such as caulking found along windows, doors, and other building features.
- Potential releases associated with current or historical placement of polluted fill directly onto the ground surface.
- Potential airborne deposition to surficial soils.

Migration Pathways

Migration pathways for the Site also vary by AOC but generally include the following:

- Migration pathways associated with spills, leaks, or deposition at or below the
 ground surface with vertical migration through soil to the overburden or bedrock
 water table, then horizontally and/or vertically with groundwater. Contaminants
 released onto concrete or asphalt may have the potential to be transported through
 cracks or joints or through the porous concrete itself. Asphalt-paved parking areas,
 tarmacs, taxiways, and runways are located throughout the Site.
- Migration pathways associated with contaminant transport through overland flow at the ground surface.

5.1 Areas of Concern & Confirmed Release Areas

AOCs are defined in the CTDEEP SCGD as "locations or areas where regulated substances have been or may have been used, stored, treated, handled, disposed, spilled, and/or released to the environment." During the completion of the Phase I ESA, RECs were also identified, which are defined as "(1) the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property due to a release to the environment; (2) the likely presence of hazardous substances or petroleum products in, on, or at the subject property due to a release or likely release to the environment; or (3) the presence of hazardous substances or petroleum products in, on, or at the subject property under conditions that pose a material threat of a future release to the environment."

The CTDEEP SCGD defines Release Areas (RAs) as "the area at and beneath which polluted soil is located as a result of a release."

Based on the findings of the Site investigations, a total of 1 REC and 24 AOCs and/or RECs were identified by Tighe & Bond.

All RECs/AOCs were either directly or indirectly investigated, except for the following:

- AOC-2/REC-2 (5): Former UST at State Police Hangar
- AOC-2/REC-2 (10): Former 2,000-Gallon Heating Oil UST north of CAA Maintenance Shop
- AOC-2/REC-2 (11): Former Gasoline UST northwest of CAA Maintenance Shop
- AOC-6 (6): Oil/Water Separator north of Hangar H4
- AOC-7 (3): CAA ARFF
- AOC-23: Outfalls at Connecticut River

Investigations of these RECs/AOCs was not completed due to being outside the apparent current Site boundary or due to utility conflicts.

In addition, full investigation in accordance with the SCGD was not completed for the following RECs/AOCs:

- REC-1: Historical Releases (throughout developed portions of the Site)
- AOC-1: Historical Hangar Operations (two locations)
- AOC-2/REC-2: Underground Storage Tanks (twenty-five locations)
- AOC-7: Airport Maintenance Facilities (two locations)
- AOC-8: Aircraft Maintenance and Repair Facilities (five locations)
- AOC-11: T-Hangar Buildings (five adjacent locations)
- AOC-12: CT Aero Tech School
- AOC-13/REC-4: Soil and Groundwater Impacts from Historical Airport Activities and/or Historical Fill Utilized at the Site
- AOC-20: Aqueous Film-Forming Foam (six locations)
- AOC-21/REC-5: Aircraft Accidents

Given the size of the Site, limited documentation regarding the locations of USTs and aircraft accidents, and/or restricted drilling access to most hangars/buildings, these AOCs/RECs were investigated by assessing the vadose zone in the general vicinity of each REC/AOC or through the collection of groundwater samples from downgradient monitoring

wells. Sampling locations are shown in Figures 4, 4-1, and 4-2. The soil and groundwater investigation data are summarized in Tables 2 and 3, respectively.

Based on Phase II/III ESA activities conducted to date, 30 RAs have been identified. The following table summarizes the CSM, including the AOCs investigated and the RAs identified.

REC/AOC	Description	COCs1	Potential Release Mechanisms	Phase II/II ESA Testing Summary	RAs Identified	Release Details
REC-1	Historical Releases (throughout developed portions of the Site)	ETPH, VOCs, PAHs, Metals, PCBs	Reported releases associated with fueling operations, tank overfills, LUSTs, hose/equipment failures, etc.	Documentation regarding release locations was limited. Only one spill record pertaining to a release of aviation gasoline was identified that indicated a location, a turf island east of Hangar H1. Soil and groundwater testing was completed at this location.	RA-1: Historical Release of Aviation Gasoline ETPH in Soil < RSRs	Records indicate that the release was excavated. Residual ETPH impact was identified below RSRs. Groundwater monitoring completed at this location did not identify groundwater impacts.
AOC-1	Historical Hangar Operations (two locations)	ETPH, VOCs, SVOCs, Metals	Potential releases from material handling and potential former tanks at historical hangar locations.	Soil and groundwater investigations were completed throughout the AOC, mostly as part of other AOCs/RECs.	None	Due to overlapping nature of AOCs/RECs, no releases were identified that were directly attributed to this AOC.
AOC-2/REC-2	Underground Storage Tanks (twenty-eight locations)	ETPH, VOCs, SVOCs, Metals, PCBs	Potential releases from material handling, leaking tanks, piping, and/or dispensers.	Soil and/or groundwater investigations were completed at most known former UST locations, except for AOC-2/REC-2 locations (5), (10), and (11), which appear to be outside the Site boundary or were not investigated due to utility conflicts. In addition, certain former UST locations could not be directly investigated due to limited location documentation.	RA-2: CAA Maintenance Shop – Former Gasoline and Diesel USTs and Dispenser Island VOCs in Soil > RSRs VOCs in GW < RSRs RA-3: Hangar H1 – Former 10,000-Gal. UST VOCs in Soil < RSRs RA-4: Hangar H2 – Potential Former Three 4,000-Gal. USTs and Hydrant Dispenser VOCs in Soil < RSRs RA-5: Hangar H4 – Potential Former Three 4,000-Gal. USTs and Hydrant Dispenser VOCs in Soil < RSRs RA-6: Hangar H3 – Potential Former Fuel Farm VOCs in Soil < RSRs	RA-2 VOC impact was identified above RSRs. Based on the sampling completed in the vicinity, this release is mostly delineated. RA-3 through RA-6 VOC impact was identified below RSRs at each of these RAs. Based on the sampling completed in the vicinities, these releases are mostly delineated.

REC/AOC	Description	COCs1	Potential Release Mechanisms	Phase II/II ESA Testing Summary	RAs Identified	Release Details
AOC-3	Aboveground Storage Tanks (twelve locations)	ETPH, VOCs, SVOCs, Metals, PCBs	Potential releases from material handling, leaking tanks, piping, and/or dispensers.	Soil and/or groundwater investigations were completed throughout identified current and former AST locations.	RA-7: Hangar H1 – Former Waste Oil AST ETPH in Soil > RSRs VOCs in Soil > RSRs PAHs in Soil > RSRs RA-8: CAA Fuel Farm ETPH in Soil > RSRs VOCs in Soil > RSRs	RA-7 ETPH, VOC, and PAH impact was identified above RSRs at the former waste oil AST location off the northwest corner of Hangar H1. RA-8 ETPH and VOC impact was identified above RSRs in the grass-landscaping adjacent to the CAA Fuel Farm. Given the good condition of the associated tank, the release is likely attributed to fueling operations at this location.
AOC-4	Former Hazardous Waste Storage Container	ETPH, VOCs, SVOCs, Metals, PCBs	Potential releases from material handling.	Soil investigation was complete at this AOC.	None	Not Applicable
AOC-5/REC-3	Former Fuel Distribution Boxes and Product Delivery Line	ETPH, VOCs, PAHs, Lead	Reported release at former fuel distribution box. Potential releases from material handling and piping run.	Soil and groundwater investigations were completed at this AOC/REC.	RA-9: Former Fuel Box 1 No Detections	Low-level petroleum impacts below RSR criteria were previously reported at this AOC/REC. Phase II/III testing of the soil and groundwater did not identify detections of COCs above laboratory reporting limits.
AOC-6	Oil/Water Separators (eight locations)	ETPH, VOCs, 1,4- Dioxane, SVOCs, PCBs	Potential releases from oil/water separators and associated piping.	Soil and/or groundwater investigations were completed throughout identified current and former oil/water separator locations. However, the Hangar H4 oil/water separator was not directly investigated due to utility conflicts.	None	Not Applicable
AOC-7	Airport Maintenance Facilities (three locations)	ETPH, VOCs, SVOCs, Metals, PCBs, PFAS	Potential releases from material handling, tanks, drums, and containers.	Soil sampling within airport maintenance facilities was not permitted. CAA Maintenance Shop and CAA Maintenance Garage assessed by downgradient soil sampling and groundwater monitoring.	None	Not Applicable
AOC-8	Aircraft Maintenance and Repair Facilities (five locations)	ETPH, VOCs, SVOCs, Metals, PCBs	Potential releases from material handling, tanks, drums, and containers.	Soil sampling within airport maintenance facilities was not permitted. CAA Maintenance Shop and CAA Maintenance Garage assessed by downgradient soil sampling and groundwater monitoring.	RA-10: Hangar H4 ETPH in Soil > RSRs PAHs in Soil > RSRs Elevated Vanadium < RSRs	RA-10 ETPH and PAH impact above RSR criteria and elevated vanadium below RSR criteria was identified east of the Hangar H4 bay door within the shallow 1-2' interval. Hangar H2 Although not considered a release by definition, a low-level concentration of the VOC cis-1,2-dichloroethene was detected in the groundwater sample collected from monitoring well TMW-7, downgradient of Hangar H2, indicating a potential release at this location.

REC/AOC	Description	COCs1	Potential Release Mechanisms	Phase II/II ESA Testing Summary	RAs Identified	Release Details
AOC-9	Aircraft Deicing	1,4- Dioxane, Glycols	Potential impacts associated with the deicing of aircraft.	Soil and groundwater investigations were completed throughout the Site.	None	Not Applicable
AOC-10	Fuel Truck Parking (three locations)	ETPH, VOCs, PAHs, Lead	Potential releases from fuel trucks.	Soil and/or groundwater investigations were completed at this AOC.	None	Not Applicable
AOC-11	T-Hangar Buildings (five adjacent locations)	ETPH, VOCs, PAHs, Metals, PCBs	Potential releases from material handling associated with aircraft maintenance and repairs.	Limited soil and groundwater investigations were completed at this AOC.	RA-11: T-Hangars VOCs < RSRs	Low-level VOC impact below RSRs was identified south of T-Hangars 21-30.
AOC-12	CT Aero Tech School	ETPH, VOCs, SVOCs, Metals, PCBs	Potential releases from material handling, drums, containers, and paint booth operations.	Due to utility conflicts, only downgradient soil and groundwater sampling was completed.	None	Not Applicable
AOC-13/REC-4	Soil and Groundwater Impacts from Historical Airport Activities and/or Historical Fill Utilized at the Site	ETPH, VOCs, SVOCs, Metals, PCBs, PFAS, Pesticides, Herbicides	Releases associated with the longstanding operation of the airport, including placement of potentially polluted urban fill material.	Soil and groundwater investigations were completed throughout this AOC/REC, mostly as part of other AOCs/RECs.	RA-12: Fill Material (sitewide) ETPH in Soil > RSRs Elevated Metals in Soil < RSRs Metals in GW > RSRs PAHs in Soil > RSRs PAHs in GW > RSRs RA-13: Historical Application of Pesticides (site-wide) Pesticides < RSRs	RA-12 Elevated concentrations of certain metals below RSR criteria and ETPH and several individual PAHs above and below RSR criteria were identified sporadically throughout the Site. In addition, apparent fill-related impact was identified at deeper intervals at certain former UST locations, indicative of potentially impacted backfill or comingled fill material. RA-13 A few pesticides were detected below criteria along tarmacs and the turf runway.
AOC-14	Electrical Transformers (seven locations)	ETPH, PCBs	Potential release of dielectric fluid from leaking transformer equipment.	Soil investigations were completed at this AOC.	RA-14: CAA Maintenance Shop – Pole-Mounted Transformer ETPH in Soil > RSRs RA-15: State Police Hangar – Pole- and Pad-Mounted Transformers ETPH in Soil > RSRs	RA-14 ETPH impact above RSRs was identified beneath the location of a pole-mounted transformer. RA-15 ETPH impact above RSRs was identified beneath and adjacent to pole- and pad-mounted transformers, respectively. PCBs were not detected.
AOC-15	Diesel Generators (four locations)	ЕТРН	Potential releases from material handling, tank, piping, and generator equipment.	Soil investigations were completed at this AOC.	None	Not Applicable

REC/AOC	Description	COCs1	Potential Release Mechanisms	Phase II/II ESA Testing Summary	RAs Identified	Release Details
AOC-16	Dumpsters (seven locations)	ETPH, VOCs, PAHs	Potential releases associated with the wrongful placement of hazardous substances and petroleum products in dumpsters.	Soil investigations were completed at this AOC.	None	Not Applicable
AOC-17	Main Regional Jet Fuel Supply Line	ETPH, VOCs, PAHs, Lead, PCBs	Potential releases from jet fuel supply line that transects through the eastern portion of the Site.	Soil and groundwater investigations were completed along this AOC.	None	Not Applicable
AOC-18	Soil Pile	ETPH, VOCs, SVOCs, Metals, PCBs, Pesticides	Soil pile from unknown source may contain impacts. Empty drums were observed that may have releases hazardous substances or petroleum products.	Soil investigation was completed at this AOC.	RA-16: Soil Pile Elevated Lead < RSRs PAHs in Soil > RSRs	Elevated lead below RSR criteria and PAHs above and below RSR criteria were detected in soil samples collected from the soil pile.
AOC-19	Potential Surficial Impacts from Hazardous Building Materials and Application of Pesticides (past and present building envelopes)	Lead, PCBs, Pesticides	Peeling and chipping lead-based paint, potential leaching of PCBs from caulks/sealant to surficial soil surrounding vintage Site structures. Potential application of pesticides along building exteriors.	Soil investigation was completed at this AOC.	RA-17: Building Envelope - State Police Abandoned Building Elevated Lead < RSRs Pesticides < RSRs RA-18: Building Envelope - State Police Hangar Elevated Lead < RSRs Pesticides < RSRs RA-19: Building Envelope - CAA Administration Building Lead > RSRs RA-20: Building Envelope - CAA Maintenance Garage Elevated Lead < RSRs Pesticides < RSRs RA-21: Building Envelope - CAA Maintenance Shop Elevated Lead < RSRs Pesticides < RSRs Pesticides < RSRs	Elevated lead, including lead above RSR criteria at the CAA Administration Building, and/or pesticides below RSR criteria were identified along the building envelopes of several structures. PCBs attributed to leaching of PCB-containing exterior building components was identified at the FAA Control Tower.

REC/AOC	Description	COCs1	Potential Release Mechanisms	Phase II/II ESA Testing Summary	RAs Identified	Release Details
AOC-19 (cont.)	Potential Surficial Impacts from Hazardous Building Materials and Application of Pesticides (past and present building envelopes)	Lead, PCBs, Pesticides	Peeling and chipping lead-based paint, potential leaching of PCBs from caulks/sealant to surficial soil surrounding vintage Site structures. Potential application of pesticides along building exteriors.	Soil investigation was completed at this AOC.	RA-22: Building Envelope - Hangar H1 Pesticides < RSRs RA-23: Building Envelope - Office/Restaurant Pesticides < RSRs RA-24: Building Envelope - FAA Control Tower PCBs < RSRs Pesticides < RSRs RA-25: Building Envelope - CT Aero Tech School Pesticides < RSRs RA-26: Building Envelope - Engine Test Room Pesticides < RSRs RA-27: Building Envelope - T-Hangar (240 Lindbergh Drive) Pesticides < RSRs RA-28: Building Envelope - T-Hangar (1-10) Pesticides < RSRs	Elevated lead, including lead above RSR criteria at the CAA Administration Building, and/or pesticides below RSR criteria were identified along the building envelopes of several structures. PCBs attributed to leaching of PCB-containing exterior building components was identified at the FAA Control Tower.
AOC-20	Aqueous Film-Forming Foam (six locations)	PFAS	Potential release from material handling, tanks, and piping. PFAS was identified at the CAA Maintenance Shop (two locations), CAA Maintenance Garage, CT Aero Tech School, and CAA ARFF. In addition, AFFF could have been used throughout the Site (see AOC-21/REC-5).	Limited soil and groundwater investigations were completed at this AOC.	No direct releases identified. However, PFAS were detected in all soil samples and most groundwater samples analyzed.	Although not considered a release by definition, groundwater sampling completed in certain target downgradient monitoring wells identified concentrations of PFAS that may be attributed to releases from this AOC.

Tighe&Bond **Section 5 Conceptual Site Model**

REC/AOC	Description	COCs1	Potential Release Mechanisms	Phase II/II ESA Testing Summary	RAs Identified	Release Details
AOC-21/REC-5	Aircraft Accidents	ETPH, VOCs, SVOCs, PFAS	Releases associated with aircraft accidents. Potential use of PFAS- containing AFFF for fire suppression.	Limited soil investigation was completed at this AOC.	No direct releases identified. However, PFAS that may be attributed to the use of AFFF were detected in all soil samples and most groundwater samples analyzed.	Although not considered a release by definition, an elevated concentration of PFAS was identified in the groundwater sample collected from TMW-18, located within the southeast corner of the Site. Based on the apparent groundwater flow direction at the Site, a PFAS release area(s) may be in the vicinity of the runways that was associated with this AOC/REC. Additional limited sampling completed in the vicinity of runways and tarmacs (where aircraft accidents are presumed likely) did not appear to identify a release associated with this AOC.
AOC-22	Former Police Firing Range	Metals, PAHs	Potential lead and PAH impacts from the former use of a firing range at the Site.	Soil investigation was completed at this AOC.	RA-29: Former Police Firing Range Lead > RSRs	Elevated concentrations of lead, including lead above RSR criteria, was identified at this AOC and attributed to the former firing range.
AOC-23	Outfalls at Connecticut River	ETPH, VOCs, 1,4- Dioxane, SVOCs, Metals, PCBs, Pesticides, Herbicides, PFAS	Potentially impacted runoff migrating to the Site drainage system and ultimately discharging out of the two outfalls at the Connecticut River, which are outside the Site boundary.	None	Not Applicable	Not Applicable
AOC-24	Potential Airborne Deposition of Impact	ETPH, PAHs, Metals, PFAS	Potential deposition of airborne pollutants to surficial soils at the Site from potential Site and off-Site sources.	Soil investigation was completed at this AOC.	RA-30: Airborne Deposition of Impact (sitewide) ETPH in Soil > RSRs Elevated Metals in Soil < RSRs PAHs in Soil > RSRs PFAS in Soil > RSRs	Elevated concentrations of certain metals below RSR criteria and ETPH and several individual PAHs above and below RSR criteria were identified sporadically throughout the Site in the shallow soil. In addition, PFAS was identified in all shallow samples analyzed with one sample collected near the abutting MDC property containing a concentration above the GB PMC. Although these detections could be attributed to AOC-13/REC-4 (fill material), AOC-20, and/or AOC-21, the potential exists for the impact to be attributed to airborne deposition.

Notes:

1 = Giving the grouping of certain AOCs/RECs, not all COCs listed are applicable. Certain sub-AOCs have different sets of COCs (e.g., USTs of different contents).

The following is a summary of the identified RAs, which are also identified on Figures 6, 6-1, and 6-2:

RA-1: Historical Release of Aviation Gasoline [REC-1]

A release occurred in April 2005 of approximately 300-gallons of aviation gasoline. The release encompassed an eight foot by 30-foot area east of the fuel truck parking within the turf island. Approximately 51.38 tons of impacted soil was excavated and disposed of off-site. Based on the tonnage and excavation area, it is likely that the excavation was advanced to a depth of approximately 4 feet bgs. Groundwater was not assessed.

During the Phase II/III ESA, soil borings B-1 and B-2 were advanced to assess REC-1. Soil samples were collected from each boring from the 4-5' depth interval. ETPH was detected in soil sample B-2 (4-5') at 250 mg/Kg, which is below RSR criteria. The ETPH detection is attributed to residual impact from the 2005 release.

RA-2: CAA Maintenance Shop – Former Gasoline and Diesel USTs and Dispenser Island [AOC-2/REC-2 (12)]

The USTs and dispenser island at the CAA Maintenance Shop were removed in 2019 from the asphalt lot southwest of the building. PAHs were detected above RSR criteria in soil collected below the diesel dispenser. Soil was excavated from the area, resampled, and found to contain concentrations of PAHs below RSR criteria. A total of 13.77 tons of impacted soil was excavated for off-site disposal. ETPH was detected at low concentrations below RSR criteria. ETPH and total xylenes were detected in groundwater at low concentrations but above the SWPC. PAHs were detected in groundwater at concentrations below RSR criteria. Based on the results, the excavation was backfilled and paved.

During the Phase II/III ESA, soil borings B-19 through B-22 were advanced to assess AOC-2/REC-2 (12). Soil samples were collected from the presumed bottom depth of the former USTs, the depth just above the identified water table, and/or depth of apparent impact (if identified). VOCs were detected in soil samples B-19 (13-15') and B-20 (6-8') with concentrations of ethylbenzene, n-propylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and total xylenes above the GB PMC in soil sample B-19 (13-15'). Groundwater monitoring well TMW-5 was installed in boring B-18. The VOC xylene was detected below RSR criteria in the groundwater sample collected from this monitoring well. The detections of VOCs in the soil and groundwater at this location are attributed to a release from the former gasoline UST.

RA-3: Hangar H1 - Former 10,000-Gal. UST [AOC-2/REC-2 (18)]

The former 10,000-gallon UST (noted only as gasoline) was installed in either 1950 or 1973 and removed in 1983. The UST was identified with "Parcel F" of the Site. A UST closure report or sampling data was not observed during the completion of the Phase I ESA.

During the Phase II/III ESA, soil borings B-34 and B-35 were advanced to assess AOC-2/RE-2 (18). Soil samples were collected from the presumed bottom depth of the former USTs, the depth just above the identified water table, and/or depth of apparent impact (if identified). The VOC n-propylbenzene was detected in soil sample B-35 (11-13') and its duplicate DUP-6 at concentrations below RSR criteria. Sampling completed in the area, including at other AOCs/RECs, indicate that the VOC detections are limited to the vicinity of soil boring B-35. The VOC detections are attributed to a release from the former 10,000-Gal. UST.

RA-4: Hangar H2 – Potential Former Three 4,000-Gal. USTs and Hydrant Dispenser [AOC-2/REC-2 (26)]

The former location of at least three 4,000-gallon gasoline USTs and hydrant dispenser were identified south of Hangar H3. UST closure reports or sampling data were not observed during the completion of the Phase I ESA.

During the Phase II/III ESA, soil borings B-66 through B-70 were advanced to assess AOC-2/REC-2 (26). Soil samples were collected from the presumed bottom depth of the former USTs, the depth just above the identified water table, and/or depth of apparent impact (if identified, see Appendix C). Several individual VOCs were detected in soil sample B-68 (8-10') at low concentrations below RSR criteria. Sampling completed in the areas indicate that the VOC detections are limited to the vicinity of boring B-68. The VOC detections are attributed to a release from the former USTs.

RA-5: Hangar H4 – Potential Former Three 4,000-Gal. USTs and Hydrant Dispenser [AOC-2/REC-2 (27)]

The area northeast of the building is the potential location of another three 4,000-gallon gasoline USTs and hydrant dispenser. UST closure reports or sampling data were not observed during the completion of the Phase I ESA.

During the Phase II/III ESA, soil borings B-71 through B-76 were advanced to assess AOC-2/REC-2 (27). Soil samples were collected from the presumed bottom depth of the former USTs, the depth just above the identified water table, and/or depth of apparent impact (if identified, see Appendix C). The VOCs n-propylbenzene and/or isopropylbenzene were detected in soil sample B-75 (5-7') and its duplicate DUP-11 at a concentrations below RSR criteria. Sampling completed in the area indicate that the VOC detections are generally limited to the vicinity of soil boring B-75; however, sampling was not completed south or east of this location. The VOC detections are attributed to a release from the former USTs.

RA-6: Hangar H4 - Potential Former Fuel Farm [AOC-2/REC-2 (28)]

The area east of H3 was identified on a historical figure depicting "fuel farm". UST closure reports or sampling data were not observed during the completion of the Phase I ESA.

During the Phase II/III ESA, soil borings B-77 through B-81 were advanced to assess AOC-2/REC-2 (28). Soil samples were collected from the presumed bottom depth of the former USTs, the depth just above the identified water table, and/or depth of apparent impact (if identified, see Appendix C). Several individual VOCs were detected in soil sample B-78 (9-10') at low concentrations below RSR criteria. Sampling completed in the area indicate that the VOCs detected are generally limited to the vicinity of soil boring B-78; however, sampling was not completed north or west of this location. The VOC detections are attributed to a release from the former USTs.

RA-7: Hangar H1 - Former Waste Oil AST [AOC-3 (6)]

A former 250-gallon waste oil AST (history unknown) was reportedly located northwest of the FBO Hangar H1.

During the Phase II/III ESA, soil borings B-44 and B-45 were advanced to assess AOC-3 (6), AOC-3 (7), and a portion of AOC-2/REC-2 (22). Soil samples were collected from the shallow interval (representative of beneath the former AST location), the presumed bottom depth of the former USTs (for AOC-2/REC-2), the depth just above the identified water table, and/or depth of apparent impact (if identified, see Appendix C). ETPH was detected in soil sample B-44 (3-5') and its duplicate DUP-5 at concentrations of 7,500 mg/Kg and 8,400 mg/Kg, respectively, which are above the RES DEC of 500 mg/Kg, the

I/C DEC of 2,500 mg/Kg, and the GB PMC of 2,500 mg/Kg. ETPH was also detected in soil sample B-45 (6-8') at a concentration below RSR criteria. Several individual VOCs were detected in in soil sample B-44 (3-5'), DUP-5, and B-44 (10-12'). Concentrations of the VOCs 4-isopropytoluene, n-propylbenzene, and/or 1,2,4-trimethylbenzene were above their respective GB PMC in soil samples B-44 (3-5') and DUP-5. In addition, the PAH compounds 2-methylnaphthalene and naphthalene were detected in these samples with concentrations 2-methylnaphthalene above the GB PMC. The ETPH, VOCs, and PAHs detected at this location are attributed to a release from the former waste oil AST.

RA-8: CAA Fuel Farm [AOC-3 (10)]

One compartmentalized double-walled steel/concrete AST was located south of the CAA ARFF and northeast of the FBO Fuel Farm. The tanks and dispensers were installed around 2013.

During the Phase II/III ESA, soil boring B-91 was advanced downgradient of the AST within a grass-landscaped area. ETPH was detected in soil sample B-91 (3-5') at a concentration of 5,100 mg/Kg, which is above the RES DEC of 500 mg/Kg, the I/C DEC of 2,500 mg/Kg, and the GB PMC of 2,500 mg/Kg. In addition, a few individual VOCs were detected with concentrations of benzene and naphthalene above the GB PMC. Given the good condition of the AST, the ETPH and VOC impact is attributed to a release at this location from fueling operations.

RA-9: Former Fuel Box 1 [AOC-5/REC-3]

A former fuel line was depicted south-southeast of the State Police Hangar. In 1990, fuel box (1) was noted as the origination of a leak. Based on soil analytical results collected on September 14, 17, and 19, 1990, low level petroleum impacts remained in place below RSR criteria. Groundwater was not assessed at the time of the incident.

During the Phase II/III ESA, soil borings B-94 through B-98 were advanced to assess AOC-5/REC-3. Soil samples were collected from the interval believed to be below the former fuel line. COCs were not detected at concentrations above the laboratory reporting limits in any of the samples analyzed. Groundwater monitoring well TMW-10 was installed in boring B-94. COCs were not detected at concentrations above the laboratory reporting limits in the groundwater sample collected from this well.

RA-10: Hangar H4 [AOC-8 (5)]

During the completion of the Phase I ESA, Hangar H4 was used for the storage of aircraft. However, given the longstanding history of the Site, aircraft maintenance and repair may have occurred within this hangar.

During the Phase II/III ESA, soil boring B-108 was advanced down/cross-gradient of Hangar H1, adjacent to the bay door. ETPH was detected in soil sample B-108 (1-2') at a concentration of 620 mg/Kg, which is above the RES DEC of 500 mg/Kg but below the I/C DEC and GB PMC. In addition, elevated concentrations of PAHs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, carbazole, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected above their respective RES DEC, I/C DEC, and GB PMC. The concentration of benzo(b)fluoranthene was also above the SEH threshold notification limit; however, as this sample was collected beneath the asphalt tarmac, notification to CTDEEP is not required. An elevated concentration of the metal vanadium below RSR criteria was also detected in this sample. Groundwater monitoring well TMW-12 was installed in boring B-108. COCs attributed to a release from this AOC were not detected above the laboratory reporting limits. Based on the sampling location and elevated concentrations of certain

COCs that are unique to this sample, the ETPH, PAHs, and vanadium impact are attributed to a release from Hangar H4.

RA-11: T-Hangars [AOC-11]

T-Hangars are used by private individuals for the storage of their aircraft. Although restricted, minor maintenance or repair, washing, and deicing activities may have occurred. The T-Hangars are located south of H4. Minor black staining was observed to the concrete in both Unit 9 and Unit 14 in the 240 Lindbergh T-Hangar observed during the Site reconnaissance. Minor quantities of various petroleum products, paints, solvents, etc. were also observed.

During the Phase II/III ESA, soil borings B-118 through B-126 and B-143 through B-146 were advanced among the five T-Hangars. Soil samples were collected from either the shallow interval within hangar spaces or adjacent to bay doors (to assess surficial releases), the depth just above the identified water table, and/or depth of apparent impact (if identified, see Appendix C). A few individual VOCs were detected in soil sample B-121 (9-10') at concentrations below RSR criteria. Groundwater monitoring wells TMW13 and TMW-14 were installed in borings B-199 and B-126, respectively. COCs attributed to a release from this AOC were not detected above the laboratory reporting limits. The VOC detections are attributed to a release associated with the maintenance and repair of aircraft at the T-Hangars.

RA-12: Fill Material [AOC-13/REC-4]

The Site is located within the City of Hartford and surrounded by current and former industrial/commercial properties. Given the setting of the Site, there is potential for historical urban fill or dumped materials to be present at the Site. These materials often contain elevated concentrations of ETPH, PAHs, metals, as well as other related COCs. Previous testing completed in the northwest portion of the Site (as part of a Task 210) identified low-level concentrations typical of urban fill.

During the Phase II/III ESA, numerous soil samples were collected from the apparent fill layer, including from backfill at former UST graves. During the sampling, urban debris including asphalt, brick, and concrete were noted in several borings. Coal tar was not observed in any boring advanced at the Site. Samples collected from the fill layers exhibited concentrations of ETPH, PAHs, and elevated metals that did not appear to be associated with a specific release but instead likely attributed to apparent fill-related impacts. Fill-related impacts were generally noted in the following samples:

- B-3 (0-2'): elevated zinc below RSR criteria
- B-4 (8-10'): PAHs below RSR criteria
- B-16 (8-10'): PAHs below RSR criteria
- B-20 (6-8')/DUP-1: PAHs below RSR criteria
- B-21 (8-10'): PAHs below RSR criteria
- B-43 (13-15'): PAHs above RSR criteria and elevated lead below RSR criteria
- B-93 (1-2.5'): PAHs below RSR criteria
- B-105 (3-5')/DUP-3: PAHs above RSR criteria and ETPH below criteria
- B-112 (0-2'): PAHs above RSR criteria elevated lead below RSR criteria
- B-117 (0.25-2.25'): PAHs below RSR criteria
- B-118 (0-2'): PAHs and ETPH above RSR criteria
- B-120 (0-2'): PAHs and ETPH above RSR criteria
- B-123 (0-2'): PAHs below RSR criteria

- B-125 (0-2')/DUP-12: PAHs above RSR criteria
- B-132 (0-2'): PAHs above RSR criteria
- B-135 (0-2'): PAHs above RSR criteria
- B-145 (0.5-1'): elevated zinc below RSR criteria
- HA-1 (0-0.5'): PAHs, ETPH, and elevated lead below RSR criteria
- HA-2 (0-0.5'): PAHs below RSR criteria
- HA-3 (0-0.5'): PAHs above RSR criteria
- HA-4 (0-0.5'): PAHs and ETPH above RSR criteria
- HA-5 (0-0.5'): PAHs above RSR criteria and elevated lead below RSR criteria
- HA-7 (0-0.5'): PAHs below RSR criteria
- HA-9 (0-0.5'): PAHs and elevated lead below RSR criteria
- HA-10 (0-0.5'): elevated lead below RSR criteria
- HA-16 (0-0.5'): ETPH below RSR criteria
- HA-20 (0-0.5'): ETPH below RSR criteria
- HA-21 (0-0.5'): PAHs above RSR criteria
- HA-22 (0-0.5'): PAHs above RSR criteria and ETPH below RSR criteria
- HA-23 (0-0.5'): PAHs and ETPH below RSR criteria
- HA-43 (0-0.5'): PAHs below RSR criteria
- HA-45 (0-0.5'): PAHs below RSR criteria
- HA-46 (0-0.5'): PAHs above RSR criteria
- HA-47 (0-0.5'): PAHs above RSR criteria
- HA-49 (0-0.5'): elevated lead below RSR criteria
- HA-51 (0-0.5'): PAHs below RSR criteria
- HA-52 (0-0.5'): ETPH below RSR criteria
- HA-53 (0-0.5'): PAHs below RSR criteria
- HA-54 (0-0.5'): PAHs and elevated lead below RSR criteria
- HA-56 (0-0.5'): PAHs and elevated lead below RSR criteria
- HA-57 (0-0.5'): PAHs and ETPH below RSR criteria
- HA-58 (0-0.5'): PAHs below RSR criteria
- HA-59 (0-0.5')/DUP081023: PAHs and ETPH below RSR criteria

Given the active use of the airport, the industrial setting (including the former MIRA to the north and MDC to the south), and shallow sampling intervals of numerous samples, the impact identified in the above samples could be attributed in whole or part to airborne deposition (RA-30).

Groundwater monitoring completed at the Site also identified concentrations arsenic or acenaphthylene above the SWPC in groundwater samples collected from monitoring wells TMW-4, TMW-7, TMW-12, TMW-19, TMW-23, and TMW-25 which are attributed to fill-related impacts.

RA-13: Historical Application of Pesticides [AOC-13/REC-4]

Pesticides, which may have contained lead and arsenic, are known to have been used at the Site. Pesticides were observed to be stored at a few locations at the Site during the Phase I ESA. It is also possible that herbicides were used at the Site to maintain the turf runway.

During the Phase II/III ESA, various soil samples were collected from the shallow interval to assess the historical application of pesticides and herbicides throughout the Site

(excluding building envelope samples which are part of AOC-19). Pesticides were detected along taxiways and the turf runway in soil samples HA-4 (0-0.5'), HA-5 (0-0.5'), and the duplicate for HA-10 (0-0.5') at concentrations below RSR criteria.

RA-14: CAA Maintenance Shop – Pole-Mounted Transformer [AOC-14 (1)]

A pole-mounted transformer containing dielectric fluid was noted off the northeast corner of the CAA Maintenance Shop during the Phase I ESA. PCB labeling was not observed.

During the Phase II/III ESA, soil sample HA-11 (0-0.5') was collected beneath the pole-mounted transformer. ETPH was detected in this sample at a concentration of 3,600 mg/Kg, which is above the RES DEC of 500 mg/Kg, the I/C DEC of 2,500 mg/Kg, and the GB PMC of 2,500 mg/Kg. PCBs, which are another COC, were not detected at concentrations above the laboratory reporting limits.

RA-15: State Police Hangar - Pole- and Pad-Mounted Transformers [AOC-14 (2)]

Pole- and pad-mounted transformers containing dielectric fluids were noted east of the State Police Hangar in close proximity to each other. PCB labeling was not observed on any of the units.

During the Phase II/III ESA, soil samples HA-12A (0-0.5') and HA-12B (0-0.5') were collected beneath and adjacent to the pole- and pad-mounted transformers, respectively. ETPH was detected in each sample at concentrations of 700 mg/Kg and 1,200 mg/Kg, respectively, which are above the RES DEC of 500 mg/Kg but below the I/C DEC and GB PMC. PCBs, which are another COC, were not detected at concentrations above the laboratory reporting limits.

RA-16: Soil Pile [AOC-18]

A soil pile is located east of the State Police abandoned structure. The source of the soil pile is unknown. Various wood debris was observed around the pile. Several empty metal drums were observed near the pile at the northeast corner of the fence.

During the Phase II/III ESA, soil samples HA-24 (0-2') and HA-25 (0-2') were collected from the soil pile. Several individual PAHs were detected in soil sample HA-24 (0-2') at concentrations above RSR criteria. An elevated concentration of lead was also detected in this sample. A few individual PAHs were detected in soil sample HA-25 (0-2') at concentrations below RSR criteria.

RA-17 through RA-28: Building Envelope Releases [AOC-19]

Multiple Hazardous Building Material Assessment (HBMA) reports were observed for the Site documenting the presence of lead, ACM, and PCB materials at some of the northern structures, including the razed former Fire Rescue Office located off the southwest corner of the CAA Maintenance Garage. Leaching or deterioration of hazardous building materials (HBM) can directly impact surrounding soils. In addition, pesticides could have been applied along foundations. Demolition of former buildings could have released hazardous building materials.

During the Phase II/III ESA, the building envelope of each building was assessed for impacts associated with HBM and/or application of pesticides. Several releases were noted, as follows:

RA-17: Building Envelope - State Police Abandoned Building

Soil sample HA-26 (0-0.5') was collected from within the building envelope of the abandoned State Police building. An elevated concentration of lead below RSR

criteria was detected indicating potential lead impacts from exterior building components. In addition, pesticides were detected below RSR criteria.

RA-18: Building Envelope - State Police Hangar

Soil samples HA-28 (0-0.5') and HA-29 (0-0.5') were collected from within the building envelope of the State Police Hangar. Elevated concentrations of lead below RSR criteria were detected in both samples indicating potential lead impacts from exterior building components. In addition, pesticides were detected below RSR criteria in soil sample HA-28 (0-0.5').

RA-19: Building Envelope - CAA Administration Building

Soil sample HA-30 (0-0.5') was collected from within the building envelope of the CAA Administration Building. Lead was detected at a concentration of 521 mg/Kg, which is above the RES DEC of 400 mg/Kg but below the I/C DEC of 1,000 mg/Kg, indicating potential lead impacts from exterior building components.

RA-20: Building Envelope - CAA Maintenance Garage

Soil sample HA-31 (0-0.5') was collected from within the building envelope of the CAA Maintenance Garage. An elevated concentration of lead below RSR criteria was detected indicating potential lead impacts from exterior building components. In addition, pesticides were detected below RSR criteria.

RA-21: Building Envelope - CAA Maintenance Shop

Soil sample HA-32 (0-0.5') was collected from within the building envelope of the CAA Maintenance Shop. An elevated concentration of lead below RSR criteria was detected indicating potential lead impacts from exterior building components. In addition, pesticides were detected below RSR criteria.

RA-22: Building Envelope - Hangar H1

Soil sample HA-34 (0.25-0.5') was collected from within the building envelope of Hangar H1. Pesticides were detected below RSR criteria.

RA-23: Building Envelope - Office/Restaurant

Soil sample HA-35 (0.25-0.5') was collected from within the building envelope of Hangar H1. Pesticides were detected below RSR criteria.

RA-24: Building Envelope - FAA Control Tower

Soil sample HA-39 (0-0.5') was collected from within the building envelope of the FAA Control Tower. PCBs were detected at a concentration of 0.53 mg/Kg, which is below the RES DEC of 1 mg/Kg and the I/C DEC of 10 mg/Kg. In addition, pesticides were detected below RSR criteria.

RA-25: Building Envelope - CT Aero Tech School

Soil sample HA-40 (0-0.5') was collected from within the building envelope of the CT Aero Tech School. Pesticides were detected below RSR criteria.

RA-26: Building Envelope - Engine Test Room

Soil sample HA-41 (0-0.5') was collected from within the building envelope of the CT Aero Tech School Engine Test Room. Pesticides were detected below RSR criteria.

RA-27: Building Envelope – T-Hangar (240 Lindbergh Drive)

Soil sample B-118 (0-2') was collected from within the building envelope of the 240 Lindbergh Drive T-Hangar. Pesticides were detected below RSR criteria.

RA-28: Building Envelope – T-Hangar (1-10)

Soil sample B-125 (0-2') was collected from within the building envelope of T-Hangars 1-10. Pesticides were detected below RSR criteria.

RA-29: Former Police Firing Range [AOC-22]

A former police pistol range was depicted in a 1936 figure in the southern portion of the property when the airport.

During the Phase II/III ESA, soil samples HA-43 (0-0.5'), HA-44 (0-0.5'), HA-45 (0-0.5'), HA-46 (0-0.5'), HA-47 (0-0.5'), B-135 (0-2') were collected from this AOC. Elevated concentrations of lead was detected in soil samples HA-46 (0-0.5') at 406 mg/Kg, HA-47 (0-0.5') at 387 mg/Kg, and B-135 (0-2') at 250 mg/Kg. The concentration of lead in soil sample HA-46 (0-0.5') was above the RES DEC of 400 mg/Kg but below the I/C DEC of 1,000 mg/Kg.

RA-30: Airborne Deposition of Impact [AOC-24]

The Site is located in an industrial setting and bordered to the north by the former MIRA property and to the south by the MDC. Further, the Site has been in operation as an airport for approximately 100 years. As such, there is a potential for impact associated with emissions from nearby industrial properties and aircraft to impact the surficial soil at the Site.

During the Phase II/III ESA, numerous soil samples were collected from the shallow soil (within 2 feet of the ground surface) with the purpose of investigating other AOCs/RECs that were identified at the Site. ETPH, PAH, and elevated metals were detected in the shallow soil that could be attributed in whole or part to this RA, as indicated under the RA-12 discussion. In addition, PFAS were detected in all surficial soil samples analyzed. Although an emergent contaminant of concern with limited information regarding background conditions, PFAS are known to be prevalent in the environment and the detections in the soil are likely attributed to airborne deposition rather than a direct release at the Site. One sample, which was collected near the MDC, contained a concentration of total PFAS above the GB PMC. This exceedance may be attributed to emissions from the MDC as wastewater treatment plants are known to be a concentration point for PFAS compounds.

5.2 Groundwater Conditions

Groundwater samples were collected from monitoring wells located throughout the Site and were used to evaluate groundwater conditions at the Site, including groundwater migrating from off-Site properties of concern. The following conditions and COCs have been identified in groundwater based on sampling conducted to date:

- Depth to groundwater ranges from approximately 6.09 to 11.39 feet below ground surface.
- Shallow groundwater flow was in a south/southwesterly direction, as shown in Figure 5.
- Non-aqueous phase liquid (NAPL)/free product was not identified in any of the groundwater monitoring wells sampled.
- The VOC m,p-xylene was detected at a concentration below RSR criteria in the groundwater sample collected from monitoring well TMW-5. Monitoring well TMW-5 is located downgradient of former gasoline and diesel USTs at the CAA Maintenance Shop. This data is indicative of a release from the former gasoline UST at this location.
- The VOC cis-1,2-dichloroethene was detected at a concentration below RSR criteria in the groundwater sample collected from monitoring well TMW-7. Monitoring well TMW-5 is located east and downgradient of Hangar H2. This data is indicative of a potential release associated with this hangar.
- PAHs including acenaphthene, acenaphthylene, benzo(a)anthracene, phenanthrene, and/or pyrene were generally detected below RSR criteria in groundwater samples collected from monitoring wells TMW-14, TMW-18, and TMW-23. The detection of acenaphthylene in the groundwater sample collected from monitoring well TMW-23 was above the SWPC. Given the PAHs detected and the locations of these monitoring wells at the Site, the source of the impact is likely attributed to impacted fill material.
- Metals were detected in each groundwater sample collected from the Site and generally appeared to be indicative of naturally occurring concentrations. However, arsenic was detected at concentrations above the SWPC in groundwater samples collected from monitoring wells TMW-4, TMW-7, TMW-12, TMW-19, TMW-25. In addition, elevated concentrations of barium below RSR criteria was detected in groundwater samples collected from monitoring wells TMW-4, and MW-2. An elevated concentration of chromium below RSR criteria was detected in the groundwater sample collected from monitoring well MW-1. Given the locations of these monitoring wells at the Site, the source of the impact is likely attributed to impacted fill material.
- PFAS were detected in groundwater samples collected from monitoring wells TMW-3, TMW-6, TMW-15, TMW-18, TMW-23, and TMW-25. There are no applicable, established groundwater criteria for PFAS. Given the prevalence of PFAS in the environment, there could be multiple sources for the identified impact. However, it is possible that the PFAS impact is attributed to on-Site sources as it was observed at the CAA Maintenance Shop, CAA Maintenance Garage, CT Aero Tech School, and the CAA ARFF during the Phase I ESA site assessment. In addition, multiple aircraft accidents have been associated with the airport and there is a potential that firefighting foam containing PFAS was used. The groundwater sample collected from monitoring well TMW-18, which is a downgradient monitoring well, contained a concentration of PFAS that was more than 12 times the next highest concentration. This is indicative of a release in the vicinity of the runways or potentially from lagoons associated with the MDC surcharging groundwater that are located near this monitoring well.

The acenaphthylene and arsenic impact above RSR criteria is likely attributed to fill impacts and compliance could be demonstrated using downgradient monitoring wells

(upgradient of the ultimate surface water discharge) and/or the calculation of an alternative SWPC. There are no established criteria for PFAS at a GB groundwater area.

5.3 Release Areas Requiring Remediation

Based on Phase II/III ESA activities conducted to date, COCs identified in soil and/or groundwater include ETPH, VOCs, SVOCs (mostly PAHs), metals, PCBs, and/or pesticides.

A total of 30 RAs were identified among 12 AOCs/RECs. The detected concentrations of ETPH, VOCs, several individual SVOCs, lead, and PFAS within RA-2, RA-7, RA-8, RA-10, RA-12, RA-14, RA-15, RA-16, RA-19, RA-29, and RA-30 were above the RES DEC, I/C DEC, and/or GB PMC and therefore, some form of remediation would be necessary under a potential redevelopment scenario. The detected concentrations of COCs within the remaining RAs were below established RSR criteria.

Groundwater monitoring of target monitoring wells have not identified significant impacts above RSR criteria. However, arsenic and the PAH acenaphthylene were detected above the SWPC in groundwater samples collected from certain monitoring wells that are indicative of potential fill related impacts and/or background conditions. As compliance could be demonstrated using downgradient monitoring wells and/or calculation of an alternative SWPC, remediation to address groundwater impacts is not necessary at this time.

Section 6 Remedial Strategies

6.1 Proposed Remedial Activity

Tighe & Bond has evaluated remedial techniques that could be used at the Site to achieve compliance with the RSRs. As the Site is only moderately impacted based on the data obtained and to provide flexibility in evaluating potential alternative uses, removal and off-Site disposal of impacts above RSR criteria was selected as the remedial approach for all impact above the high water table. Remediation is not required for impact below the high water table for GB PMC exceedances. For DEC exceedances below the high water table, remediation is impracticable; however, the soil could be rendered inaccessible with an EUR. Further, should the Site be redeveloped, and new buildings constructed, certain polluted materials throughout the Site could be excavated, consolidated, and capped under a Licensed Environmental Professional (LEP) certified Engineered Control (EC) and/or made inaccessible in accordance with the RSRs to address DEC exceedances. Under these EC methods, filing of an EUR would be necessary. Based on the data obtained, residential restrictions under an EUR are not prudent at this time as both residential and industrial/commercial criteria was exceeded in most samples. The use of an EC or other restrictions could be evaluated as part of the proposed redevelopment of the Site.

Following completion of remedial activities, compliance groundwater monitoring would be completed to comply with the CTDEEP RSRs.

Figures 7, 7-1, and 7-2 show Preliminary Remedial Action Plan details as described above.

6.2 Compliance Approach

Based upon investigations completed to date and the current CSM, release areas requiring remediation include the following:

- RA-7: Hangar H1 Former Waste Oil AST
- RA-8: CAA Fuel Farm
- RA-10: Hangar H4
- RA-12: Fill Material (site-wide)
- RA-14: CAA Maintenance Shop Pole Mounted Transformer
- RA-15: State Police Hangar Pole- and Pad-Mounted Transformers
- RA-16: Soil Pile
- RA-19: Building Envelope CAA Administration Building
- RA-29: Former Police Firing Range
- RA-30: Airborne Deposition of Impact (site-wide)

For RA-2 (CAA Maintenance Shop – Former Gasoline and Diesel USTs and Dispenser Island) and one location with RA-12 (fill material – B-43 sampling location), remediation is not proposed for associated impacts as they were identified below the high water table where remediation is either not required (for GB PMC) or is not practicable. The impact above DEC could remain in place with an EUR that renders it inaccessible (minimum of four feet of soil cover).

The objective of the proposed remediation and compliance measures is to adequately reduce the potential risk of exposure to human health and the environment by complying

with the CTDEEP RSRs. Compliance with applicable CTDEEP RSR criteria is further described as follows.

6.2.1 Compliance with DEC

To achieve compliance with the RES and I/C-DEC, impacted soil at the Site will be excavated from the proposed excavation areas shown in Figures 7, 7-1, and 7-2 and disposed of off-Site at a licensed disposal facility. Following the excavation of impacted soils, confirmation soil sampling will be conducted to identify remedial end points and demonstrate compliance with the DEC. Confirmation soil sampling is further described in Section 7.6.

For DEC impact below the high groundwater table, compliance could be achieved by rendering this impact inaccessible in accordance with the RSRs, including the recording of an EUR that prohibits exposure to the inaccessible soil.

6.2.2 Compliance with PMC

To achieve compliance with the GB PMC, impacted soil at the Site will be excavated from the proposed excavation areas shown in Figures 7, 7-1, and 7-2 and disposed of off-Site at a licensed disposal facility. Following the excavation of impacted soils, confirmation soil sampling will be conducted to identify remedial end points and demonstrate compliance with the GB PMC. Confirmation soil sampling is further described in Section 7.6.

Further, polluted materials associated with AOC-13/REC-4 (RA-12) may be exempt from the GB PMC in accordance with Section 22a-133k-2(c)(5)(B) of the CTDEEP RSRs provided the following conditions are met.

- (I) The pollutant mobility criteria in such polluted material is exceeded solely as a result of the presence of coal ash, wood ash, coal fragments, coal slag, coal clinkers, asphalt paving fragments, or any combination thereof;
- (II) Such polluted material is not polluted with any volatile organic substances that exceed the applicable pollutant mobility criteria;
- (III) Such polluted material does not exceed the applicable soil vapor volatilization criteria, or if it does, all such polluted material is under a building in accordance with section 22a-133k-3(c)(3) of the RSRs, a permanent structure approved in writing by the commissioner, or an engineered control in compliance with subsection (f)(2)(B) of this section;
- (IV) Such polluted material has achieved compliance with the direct exposure criteria in section 22a-133k-2(b) of the RSRs;
- (V) Such polluted material is not affecting and will not affect the quality of an existing use of groundwater, including, but not limited to, a potential public water supply resource or an aquifer protection area;
- (VI) A public water supply distribution system is available within two hundred (200) feet of the parcel on which polluted material is located and within two hundred (200) feet of all parcels adjacent thereto; and
- (VII) The placement of the polluted material used as fill was not prohibited by law at the time of placement

Following the completion of soil remediation, a compliance groundwater monitoring plan will be implemented as required by the RSRs. The proposed compliance groundwater monitoring program is further described in Section 8.2.

6.2.3 Compliance with GWPC, SWPC and GWVC

Based on the data collected to date, groundwater quality at the Site does not appear to be significantly impacted. Although arsenic and acenaphthylene have been detected above the SWPC in groundwater samples collected from certain monitoring wells, the detections are attributed to potential impacted fill material and/or background. However, remedial activities conducted to comply with the PMC will require completion of compliance groundwater monitoring pursuant to the CTDEEP RSRs. The purpose of compliance groundwater monitoring will be to demonstrate the effectiveness of soil remediation to prevent the pollution of groundwater by substances from the release area. The compliance groundwater monitoring program will be implemented to achieve compliance with the SWPC and GWVC. The proposed compliance groundwater monitoring program is further described in Section 8.2.

Section 7 Remedial Action Implementation

The primary remedial action tasks associated with the Preliminary RAP are summarized below in the following subsections.

7.1 Health & Safety Plan

In accordance with 29 CFR 1910.120, a Health and Safety Plan (HASP) should be prepared by the selected remediation contractor and environmental consultant for use during remediation activities. The HASP will include responsibilities of on-site personnel, training requirements, site control, emergency contact information, personal protective equipment, exposure monitoring, and decontamination procedures.

7.2 Utility Clearance

Prior to remediation activities, the proposed excavation areas and the Site should be marked-out by the selected remedial contractor. The selected remedial contractor will be responsible for notifying the Connecticut Call Before You Dig (CBYD) service to locate publicly owned utilities at least three business days prior to excavation. The contractor is responsible for the verification of the location and the configuration of all on-site utilities. Additionally, a private utility locating contractor may be used to locate subsurface utilities. The remedial contractor is responsible for maintaining CBYD mark-outs through the course of the project in accordance with CBYD guidance.

7.3 Notifications

7.3.1 RSRs

As the Site would be subject to the Connecticut Transfer Act if a qualifying transfer of ownership were to take place, public notice prior to the start of remediation activities would be required.

In accordance with RCSA Section 22a-133-k-1(d)(1) public notice of the remediation will include:

- An announcement in a newspaper having substantial circulation in the municipality in which the remediation will occur, and
- Submission of notice to the commissioner and to the chief elected municipal official and the Director of Health of the municipality where the Site is located, and
- Choosing one of the following options: 1) Erecting and maintaining, for at least thirty days, a sign not less than six feet by four feet on the Site, which is clearly visible from the public highway, including the words "ENVIRONMENTAL CLEAN-UP IN PROGRESS AT THIS SITE. FOR FURTHER INFORMATION, CONTACT:" and including a telephone number for interested persons to obtain additional information about the remediation, OR 2) mailing notice of the remediation to the owners of each abutting property.

7.3.2 Local Governmental Agencies

The selected remedial contractor would be required to abide by the requirements of state and local permits/approvals as well as project specifications.

7.4 Contractor Work Plan

The selected remedial contractor would be required to prepare a contractor work plan specifying the sequencing, means and methods, and a schedule of Site remediation activities in accordance with the Preliminary RAP and project specifications (once developed based on the selected redevelopment scenario for the Site). This would include but not limited to: safety procedures; Site controls (access and erosion and sedimentation; agency notifications, excavation methods; soil handling, stockpiling, and loading areas, dust and odor control methods; traffic controls, list of selected disposal facilities; waste shipment and disposal procedures; backfill/compaction procedures, and Site restoration. The contractor work plan submittals will be required to be submitted and approved by Tighe & Bond and Client prior to mobilization and commencing any remedial work.

7.5 Site Controls

The selected remedial contractor would be responsible for installation and maintenance of temporary site controls that are required for remedial actions at the Site. Temporary controls such as site access and sedimentation & erosion controls will be established prior to commencing the remedial activities. Temporary controls would be detailed in the specifications prepared by the remedial contractor. Summaries of the temporary controls are provided below.

Site Access Controls

Access to the remedial areas would be controlled by the temporary construction fencing and/or other alternatives erected by the remediation contractor prior to the start of excavation or during the process of the excavation.

Sedimentation & Erosion Controls

The selected remediation contractor would implement best management practices relative to soil erosion and sedimentation control, which may include installation of hay bales and/or silt fence around the excavation and soil handling/stockpiling areas. An anti-tracking pad would also be constructed to prevent tracking and spreading of Site soil by vehicles beyond the footprint of the Site.

Dust Suppression Controls

The selected remediation contractor would be required to implement dust suppression measures during all aspects of the work to prevent off-site migration of particulate matter. The generation of dust could be controlled by utilizing good work practices and, if necessary, by misting soil surfaces with water.

Traffic Controls

The selected remedial contractor would provide a traffic control plan to address construction equipment access to the Site. The contractor would take measures during the remedial work to maintain unobstructed street right-of ways and maintaining the two-way flow of traffic on Maxim Road, Lindbergh Drive, and any associated roads. Traffic

controls would be implemented in accordance with state and local agencies with jurisdiction in the project area. The remedial contractor would place barricades along the limit of construction/work areas to protect the traveling public.

7.6 Soil Excavation, Handling/Staging, and Disposal

The release areas requiring excavation and off-Site disposal include RA-7, RA-8, RA-10, RA-12, RA-14, RA-15, RA-16, RA-19, RA-29, and RA-30. Details associated with release area remedial design sampling, soil waste characterization, excavation, handling/staging, disposal, and confirmation soil sampling are further described below in the sections that follow.

Remedial Design Investigation

The Phase III ESA would be completed prior to remediation to delineate the full extent of impacts. Additionally, remedial design sampling would be practical prior to the finalization of the RAP. This would include collection of pre-confirmation soil samples from each release area requiring excavation. At one location where impact above the DEC is below the high water table (B-43), shallow soil samples would be collected to confirm suitable soil cover to render this impact inaccessible in accordance with the RSRs. Further, resampling of certain prior sampling locations would be completed to collect samples for leachability analysis and determine if compliance with the PMC could be demonstrated. Sampling would be accomplished by using direct push drilling techniques in combination with hand sampling methods.

The additional data obtained would be used to refine the limits of each excavation. In addition, for site-wide fill material impacts and/or airborne deposition impacts (RA-12 and RA-30, respectively), the data could be evaluated for compliance using statistical analysis (i.e., calculation of the 95% upper confidence limit). It may be possible to excavate only a few areas of elevated impact to achieve compliance. However, as this cannot be determined at this time, the approach to remove the entirety of the impact above the high water table is the most prudent remedial approach at this time.

In-situ Waste Characterization, Soil Handling, Loading, and Disposal

Prior to soil excavation, representative in-situ waste characterization samples would be obtained for laboratory analysis. Sampling would be accomplished using direct push drilling techniques and/or hand sampling methods. Soil samples collected for waste characterization purposes would be analyzed for typical parameters required by soil disposal facilities including but not limited to ETPH, VOCs, SVOCs, PCBs, pesticides, metals, pH, conductivity, flash point, reactivity, and paint filter test. Select parameters may also be further analyzed for leachable characteristics using TCLP depending on the requirements of the selected receiving facility.

The selected remediation contractor would obtain disposal facility pre-approval for the contaminated materials utilizing the in-situ waste characterization analytical results prior to initiating remedial excavation. Pre-approval would allow the contractor to excavate and load the material into trucks for transportation directly to the disposal facility. Excavation and direct shipment would minimize or eliminate the need to stockpile the material on-Site and will be the most cost-effective and timely approach to completing the remediation work. However as needed, soils may be temporarily stockpiled on the Site. Any stockpile created would be placed on and covered with polyethylene sheeting and secured in-place with sandbags or an appropriate equivalent.

The contractor would be required to use licensed and properly permitted treatment and/or disposal facilities for contaminated soils and other media, subject to review and approval by Tighe & Bond and the Client.

Site Preparation

Prior to remedial activities, each remedial area would be pre-located in the field. The selected remedial contractor would complete the required Call-Before-You-Dig. Sediment & erosion controls would be installed and fencing staged to secure the area upon completion of excavation activities.

Soil Excavation

As shown in Figures 7, 7-1, and 7-2, the following release areas will be excavated to the assumed limits (refined during the remedial design investigation):

RA-7 Excavation (Hangar H1 - Former Waste Oil AST)

Excavation of an approximately 20 foot by 20 foot area to a depth of 8 feet or the water table where ETPH was above the RES DEC, I/C DEC, and GB PMC and certain VOCs and 2-methylnaphthalene were above the GB PMC in soil sample B-44 (3-5').

RA-8 Excavation (CAA Fuel Farm)

Excavation of an approximately 20 foot by 20 foot area to a depth of 7 feet or the water table where ETPH was above the RES DEC, I/C DEC, and GB PMC and certain VOCs were above the GB PMC in soil sample B-91 (3-5').

RA-10 Excavation (Hangar H4)

Excavation of an approximately 20 foot by 20 foot area to a depth of 4 feet bgs where ETPH was above the RES DEC and several SVOCs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample B-108 (1-2').

RA-12(1) Excavation (Fill Material – B-105)

Excavation of an approximately 20 foot by 20 foot area to a depth of 6 feet bgs where several individual PAHs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample B-105 (3-5').

RA-12(2) Excavation (Fill Material - B-112)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where indeno(1,2,3-cd)pyrene was above the RES DEC and GB PMC in soil sample B-112 (0-2').

RA-12(3) Excavation (Fill Material – B-118)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where ETPH was above the RES DEC and several individual PAHs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample B-118 (0-2').

RA-12(4) Excavation (Fill Material - B-120)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where ETPH was above the RES DEC and several individual PAHs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample B-120 (0-2').

RA-12(5) Excavation (Fill Material – B-125)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where several individual PAHs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample B-125 (0-2').

RA-12(6) Excavation (Fill Material - B-132)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where several individual PAHs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample B-132 (0-2').

RA-12(7) Excavation (Fill Material – B-135)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where several individual PAHs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample B-135 (0-2').

RA-12(8) Excavation (Fill Material – HA-3)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where several individual PAHs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample HA-3 (0-0.5').

RA-12(9) Excavation (Fill Material - HA-4)

Excavation of an approximately 20 feet by 20 foot area to a depth of 2 feet bgs where ETPH was above the RES DEC and several individual PAHs were detected above the RES DEC, I/C DEC, and/or GB PMC in soil sample HA-4 (0-0.5').

RA-12(10) Excavation (Fill Material - HA-5)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where several individual PAHs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample HA-5 (0-0.5').

RA-12(11) Excavation (Fill Material – HA-21)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where several individual PAHs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample HA-21 (0-0.5').

RA-12(12) Excavation (Fill Material – HA-22)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where several individual PAHs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample HA-22 (0-0.5').

RA-12(13) Excavation (Fill Material – HA-47)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where several individual PAHs were above the RES DEC, I/C DEC, and/or GB PMC in soil sample HA-47 (0-0.5').

RA-14 Excavation (CAA Maintenance Shop – Pole-Mounted Transformer)

Excavation of an approximately 10 foot by 10 foot area to a depth of 2 feet bgs where ETPH was detected above the RES DEC, I/C DEC, and GB PMC in soil sample $HA-11\ (0-0.5')$.

RA-15(1) Excavation (State Police Hangar - Pole-Mounted Transformer)

Excavation of an approximately 10 foot by 10 foot area to a depth of 2 feet bgs where ETPH was detected above the RES DEC in soil sample HA-12A (0-0.5').

RA-15(2) Excavation (State Police Hangar – Pad-Mounted Transformer)

Excavation of an approximately 10 foot by 10 foot area to a depth of 2 feet bgs where ETPH was detected above the RES DEC in soil sample HA-12B (0-0.5').

RA-16 Excavation (Soil Pile)

Excavation of an approximately 900 cubic yard soil pile where several individual PAHs were detected above the RES DEC, I/C DEC, and/or GB PMC in soil sample HA-24 (0-2').

RA-19 Excavation (Building Envelope - CAA Administration Building)

Excavation of the building envelope measuring approximately 800 square-feet to a depth of 2 feet bgs where lead was detected above the RES DEC in soil sample HA-30 (0-0.5')

RA-29 Excavation (Former Police Firing Range)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where lead was detected above the RES DEC in soil sample HA-46 (0-0.5').

RA-30 Excavation (Airborne Deposition of Impact)

Excavation of an approximately 20 foot by 20 foot area to a depth of 2 feet bgs where PFAS was detected above the GB PMC in soil sample HA-49 (0-0.5').

The remediation excavation areas, depth, and soil volume estimates will be determined following completion of the Phase III ESA and remedial design investigation.

Confirmation Soil Sampling

During excavation, confirmation soil samples would be collected along sidewalls and bottoms of excavations of each remedial area and will be periodically screened with a photoionization detector (PID) for the potential presence of volatiles as the work progresses. The excavation would be advanced to pre-defined limits and/or beyond indications of impact (e.g., staining, odors, elevated PID readings, presence of urban debris, etc.).

The frequency of confirmation soil samples will be vary based upon excavation dimensions but will generally range from 10 to 20 linear feet along side walls, in two-foot depth intervals along the excavation sidewalls and 10- to 20-foot grid along the base of excavations.

Confirmation soil samples would be analyzed for one or more of the following parameters: ETPH, VOCs, SVOCs (PAHs), PFAS, and/or one or more metals based on the AOC/RA being remediated. Select confirmation samples/analytes would also evaluated for leachability and analyzed via the SPLP to demonstrate PMC compliance. All samples will be analyzed using the CTDEEP Reasonable Confidence Protocol (RCP) methods.

The excavations would remain open until the results of the confirmation samples are obtained from the laboratory and are further determined to comply with the remedial goals. If adverse weather conditions are anticipated, polyethylene sheeting would be

placed within the excavation areas and temporarily backfilled with non-polluted fill material as approved by the Client and discussed further below.

If one or more COCs exceed the RSR criteria, the excavation may be extended at the location(s) of sidewall or bottom confirmation samples containing COCs exceeding the RSR criteria. Additional sidewall and bottom confirmation samples would then be obtained from the extended portion(s) of the excavation to confirm removal of the contaminated soil.

In addition to the confirmation samples described above, QA/QC samples would be collected for laboratory analysis. Field duplicate samples would be collected at a frequency of one for each analytical parameter for every 20-confirmation soil samples.

7.7 Equipment Decontamination

All moveable equipment, tools, and sampling equipment that contacts contaminated soil would be decontaminated prior to leaving the site by dry methods (i.e., removing soil from machines with a broom and/or shovel). Wet methods may be employed if dry methods do not result in an acceptable level of decontamination as approved by Tighe & Bond. Decontamination wastewaters, if generated, would be required to be contained and shipped to an approved disposal facility.

7.8 Site Restoration

With approval from the Client, clean fill can be imported from off-site and used for backfilling remedial excavations. The selected contractor would be required to provide a certificate of clean fill including analytical testing from the source of the imported clean fill. No import of fill/backfill shall be used prior to approval.

Remedial excavations would be backfilled in accordance with project specifications and compacted with vibratory equipment to the specified density.

7.9 Remedial Documentation

The work of this Preliminary RAP will be documented via oversight by qualified environmental personnel and would be overseen by a CT Licensed Environmental Professional (LEP).

Section 8 Compliance Groundwater Monitoring Plan

Compliance groundwater monitoring will be conducted at the Site to comply with applicable sections of the RSRs. The purpose of groundwater monitoring will be to confirm the effectiveness of the soil remediation and to demonstrate compliance with the SWPC and GWVC.

8.1 Groundwater Monitoring Network

The existing monitoring well network for the Site includes 27 monitoring wells; however, a few of the existing monitoring wells may be removed/destroyed during remedial activities. If a monitoring well that was identified for compliance monitoring sampling is removed/destroyed, the monitoring well may be re-installed in a new but sufficiently similar location, to be determined as part of the site-wide well re-evaluation following Site remediation to determine the adequacy of the monitoring well network for the purpose of compliance groundwater monitoring.

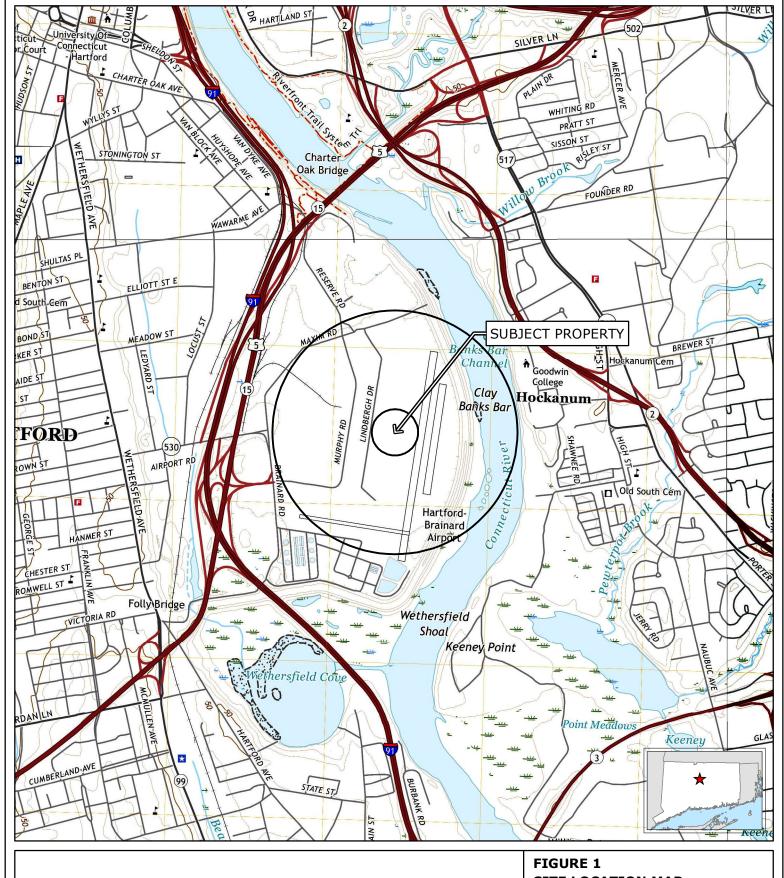
As needed, any new monitoring wells would be installed to bisect the groundwater table that is located from approximately 6 to 11 feet bgs across the Site dependent upon location. Monitoring wells will be constructed using 1.5-inch or 2-inch diameter PVC and will be constructed with a 0.010-inch machine slotted, PVC well screen that is 10-feet in length and PVC riser to the ground surface. The monitoring wells would be constructed using standard monitoring well construction methods and materials including a sand filter pack and bentonite seal. Each monitoring well would be sealed with a locking, expandable cap. The monitoring wells would be finished flush-mounted road boxes that are installed within a concrete pad.

Following installation, each newly installed monitoring well would be gauged with a water level meter and then developed using a combination of surging and pumping to remove sediments within the monitoring well and establish a connection with the groundwater aquifer.

The replacement and/or newly installed monitoring wells would be surveyed for location and elevation and tied into the existing Site survey.

8.2 Compliance Groundwater Monitoring

Compliance groundwater monitoring would consist of sampling representative monitoring wells located in proximity to and downgradient of the identified release areas. Compliance is achieved when a minimum of four sampling events have been completed which reflect seasonal variability on a quarterly basis, provided that all sampling events used to demonstrate compliance are performed within two years prior to the most current sampling event used to determine compliance and all laboratory analytical results for such substances at all sampling locations comply with the SWPC and GWVC.


Groundwater samples would be collected from the wells using low-flow sampling techniques in general accordance with *EPA Region 1 Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Well,* July 30, 1996 and revised on September 19, 2017. Groundwater level measurements

Section 8 Schedule Tighe&Bond

would be collected prior to sampling. Groundwater elevation data would be used to determine groundwater flow direction during each sampling event.

Groundwater samples would be placed into an ice-filled cooler and maintained under chain-of-custody until they are delivered to a CTDPH-certified environmental laboratory. At this time groundwater samples are anticipated to be analyzed for ETPH, VOCs, SVOCs (PAHs), Metals, and PFAS.

APPENDIX A

Tighe&Bond

Based on USGS Topographic Map for Hartford South, CT Revised 2021. Hartford North, CT Revised 2021. Manchester, CT Revised 2021. Glastonbury, CT Revised 2021. Contour Interval Equals 10 ft. Circles indicate 500-foot and half-mile radii

1:24,000 1.000 2,000 Feet

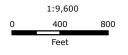
SITE LOCATION MAP

Hartford-Brainard Airport 20 Lindbergh Drive Hartford, Connecticut

June 2023

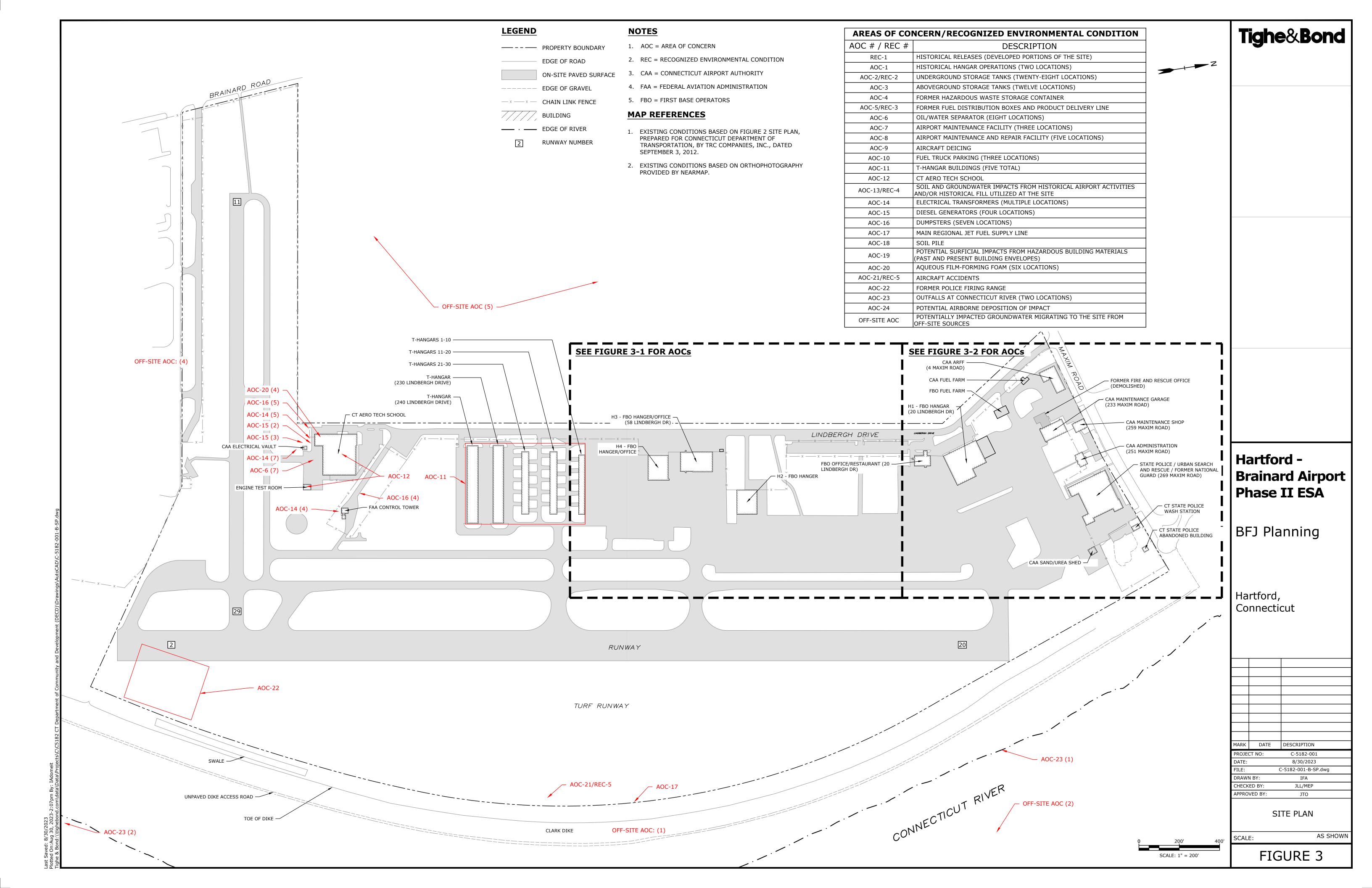
LEGEND

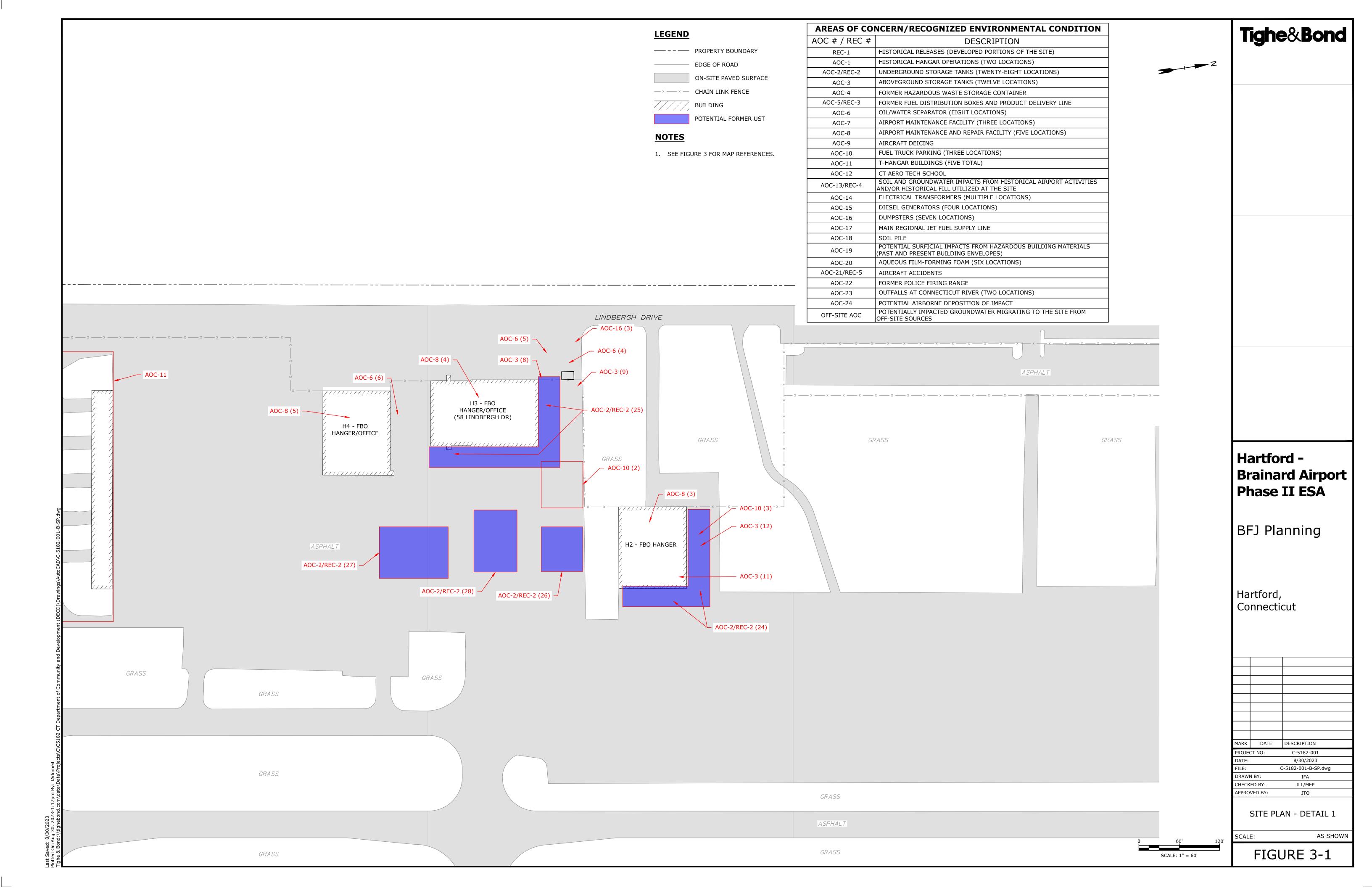
Subject Property

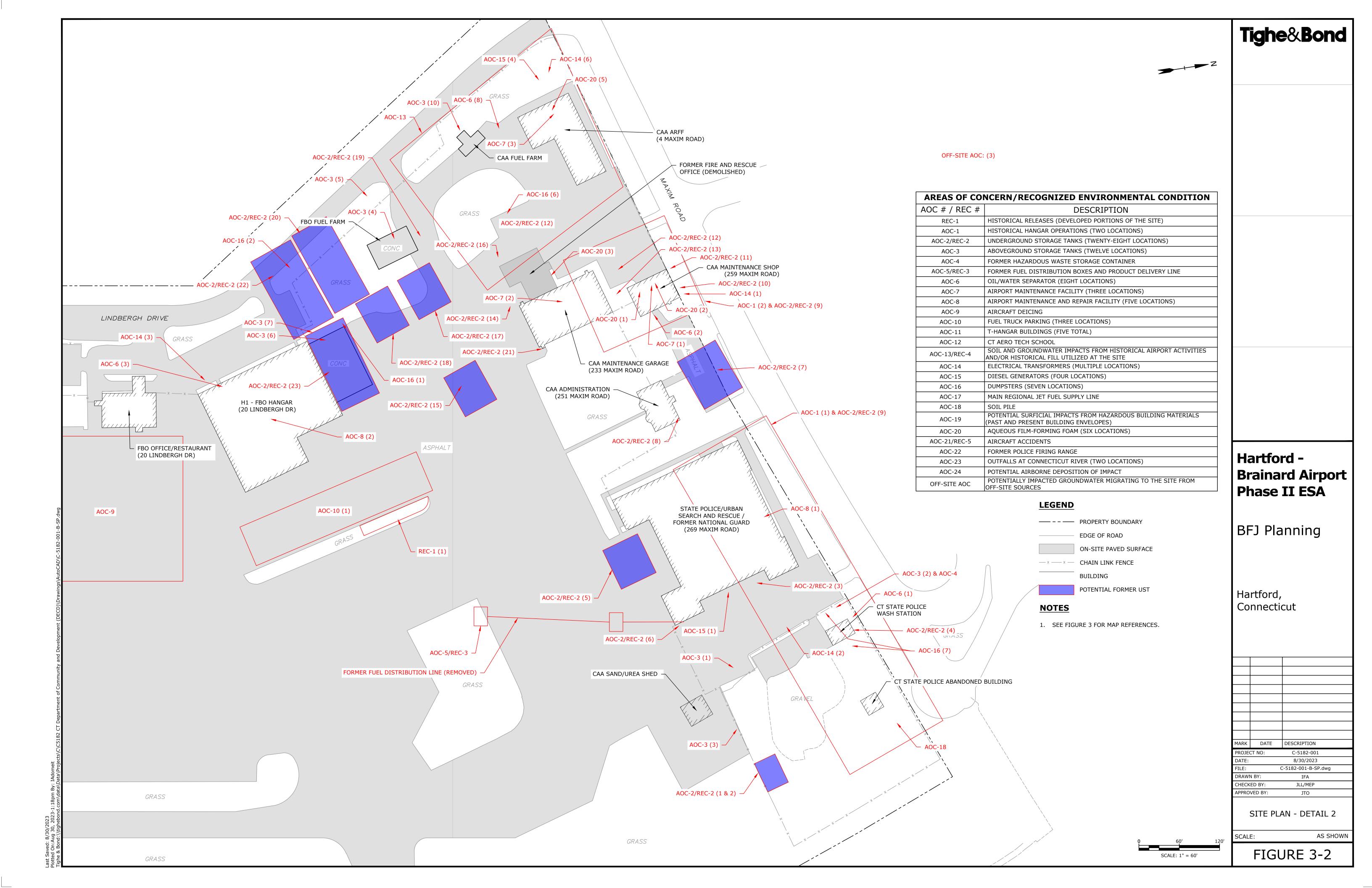


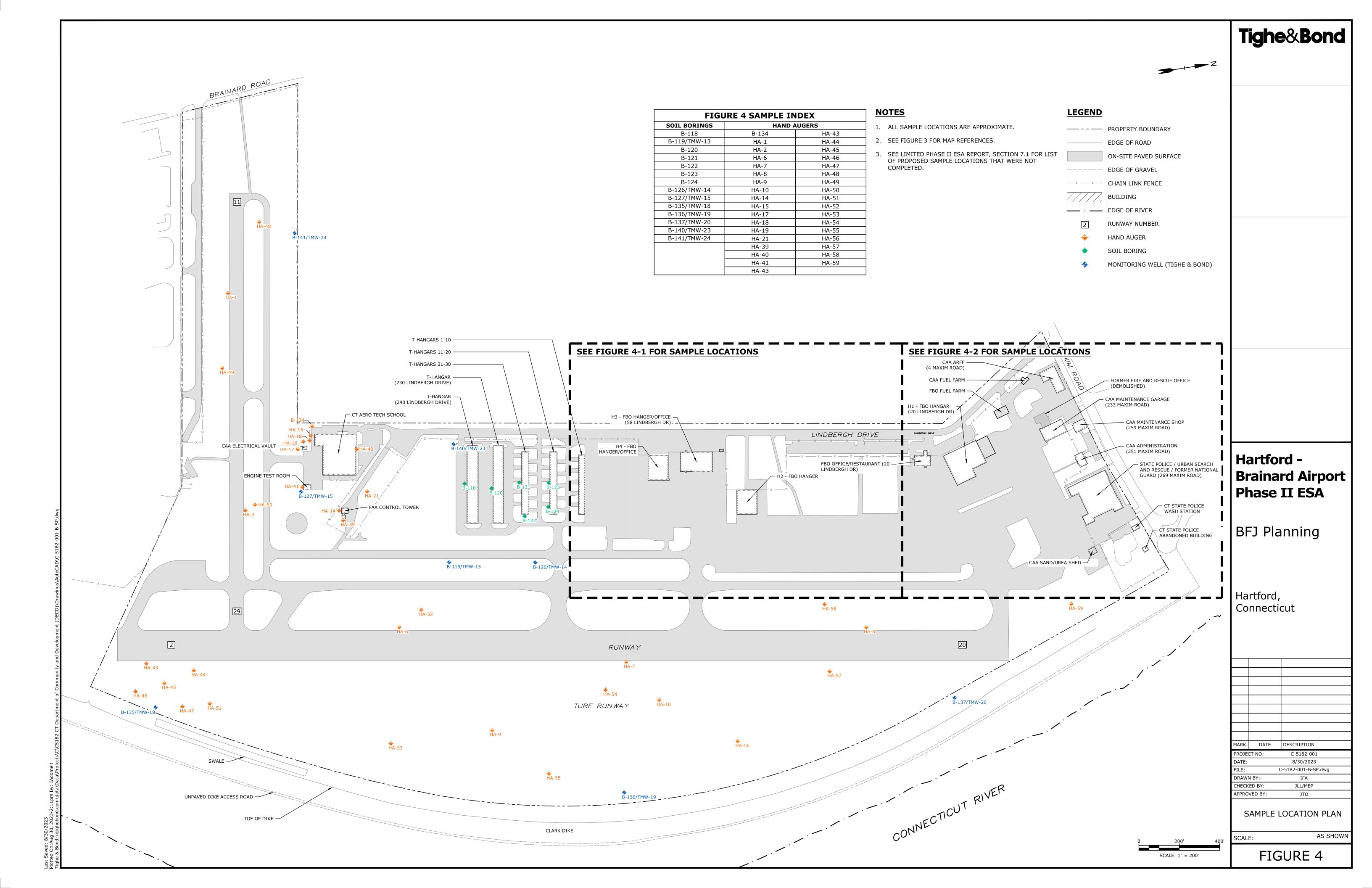
Approximate Parcel Boundary

CT Municipal Boundary

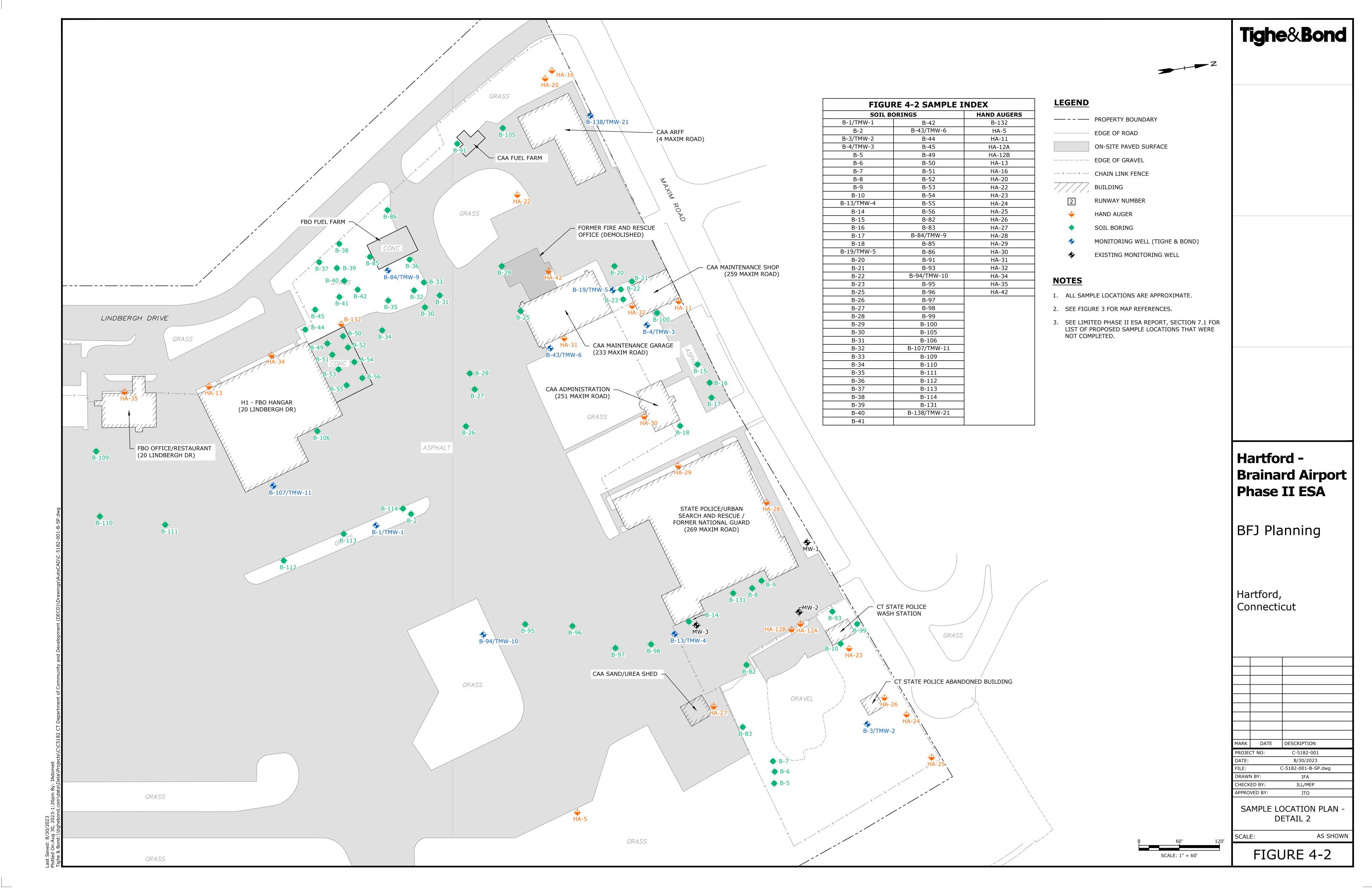


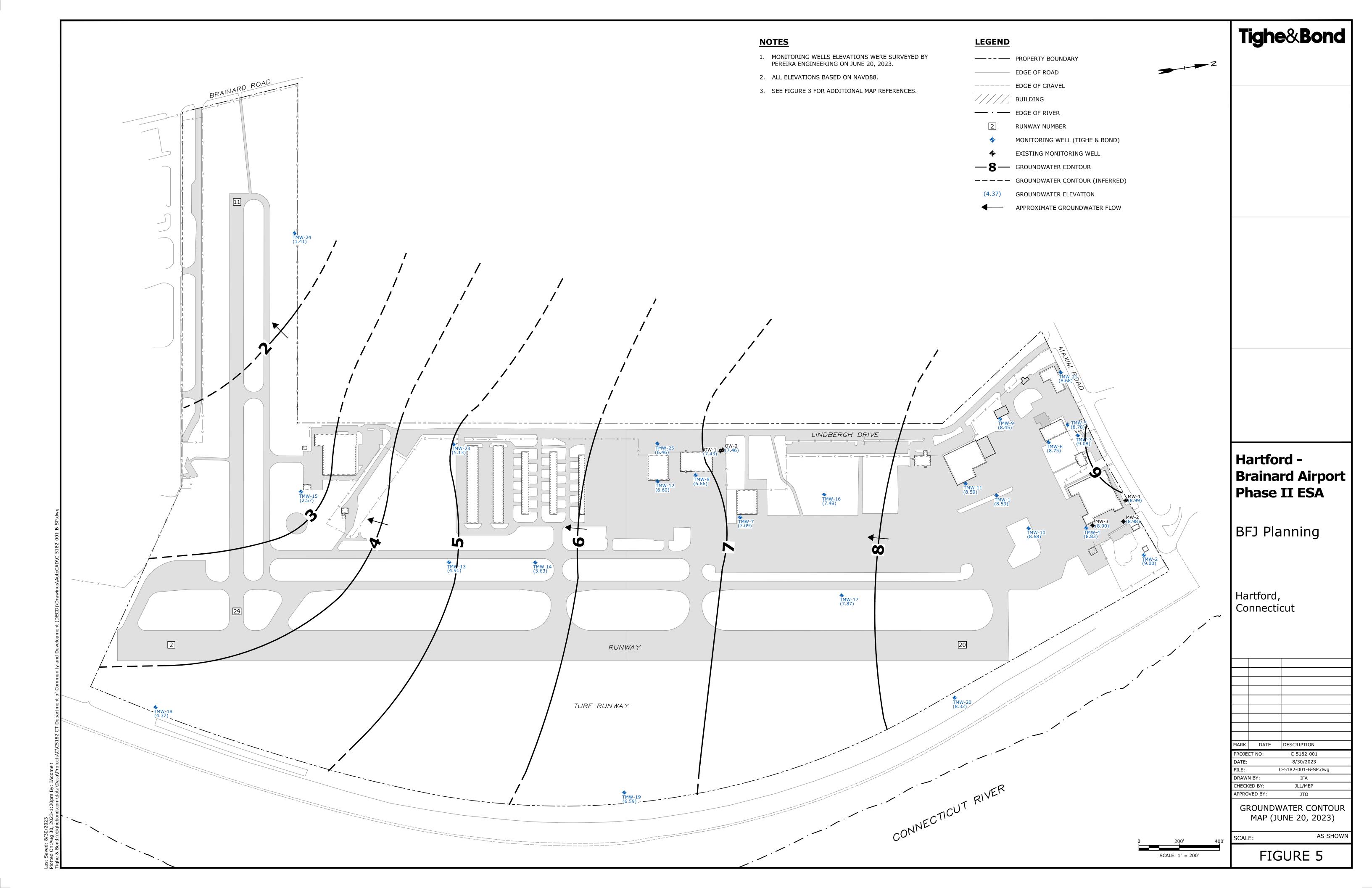


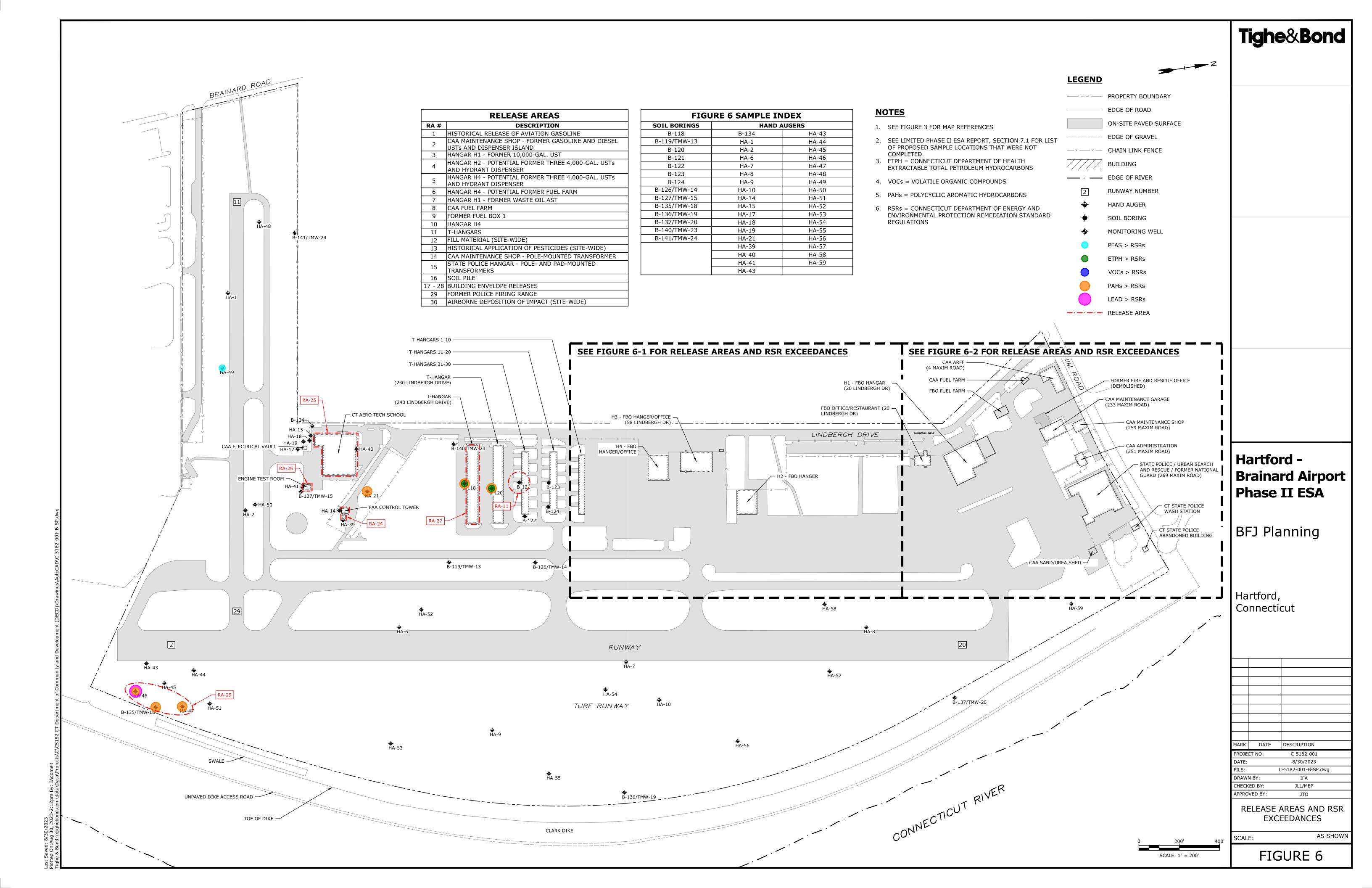

FIGURE 2 **ORTHOPHOTOGRAPH**

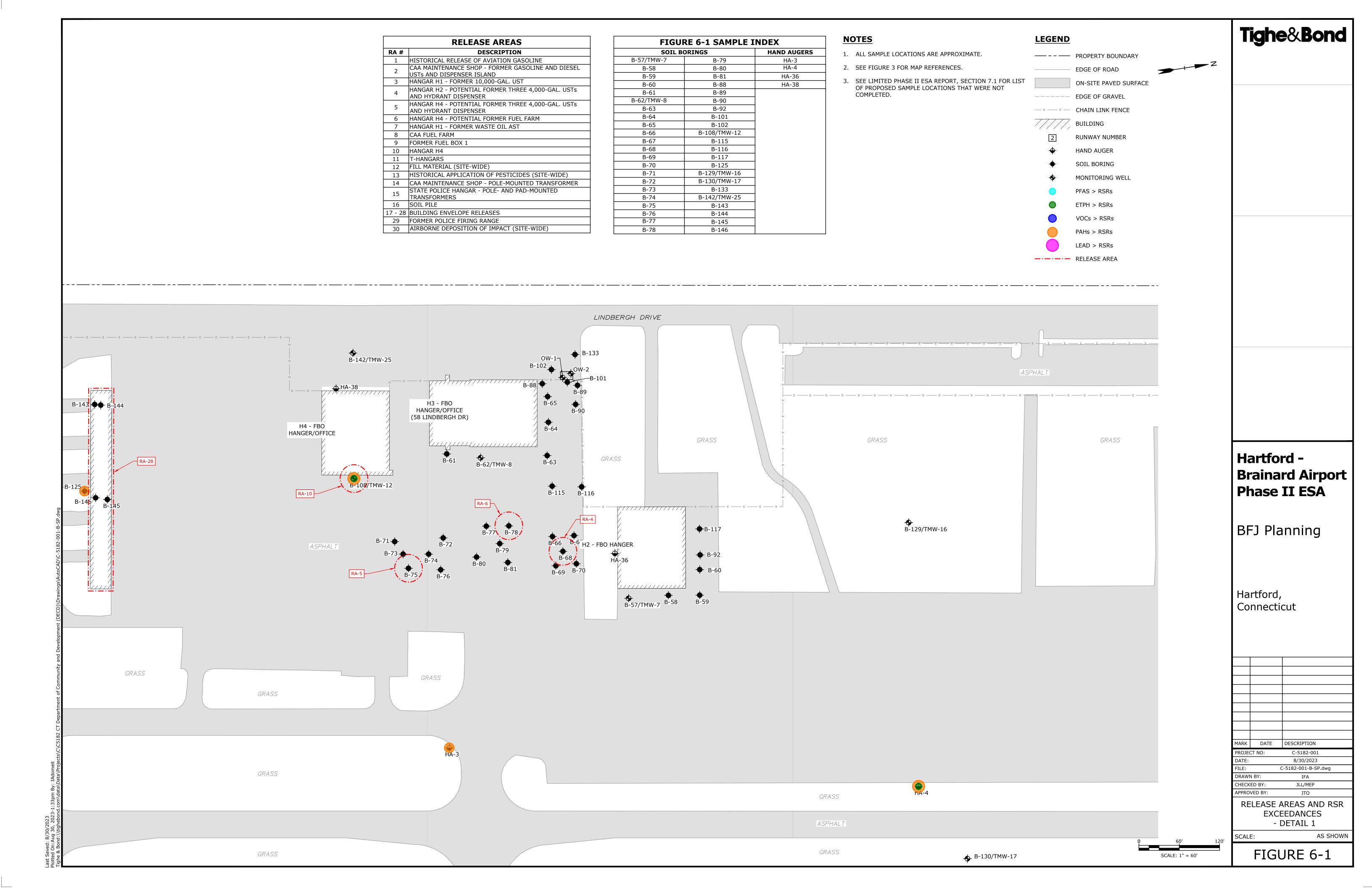

Hartford-Brainard Airport 20 Lindbergh Drive Hartford, Connecticut

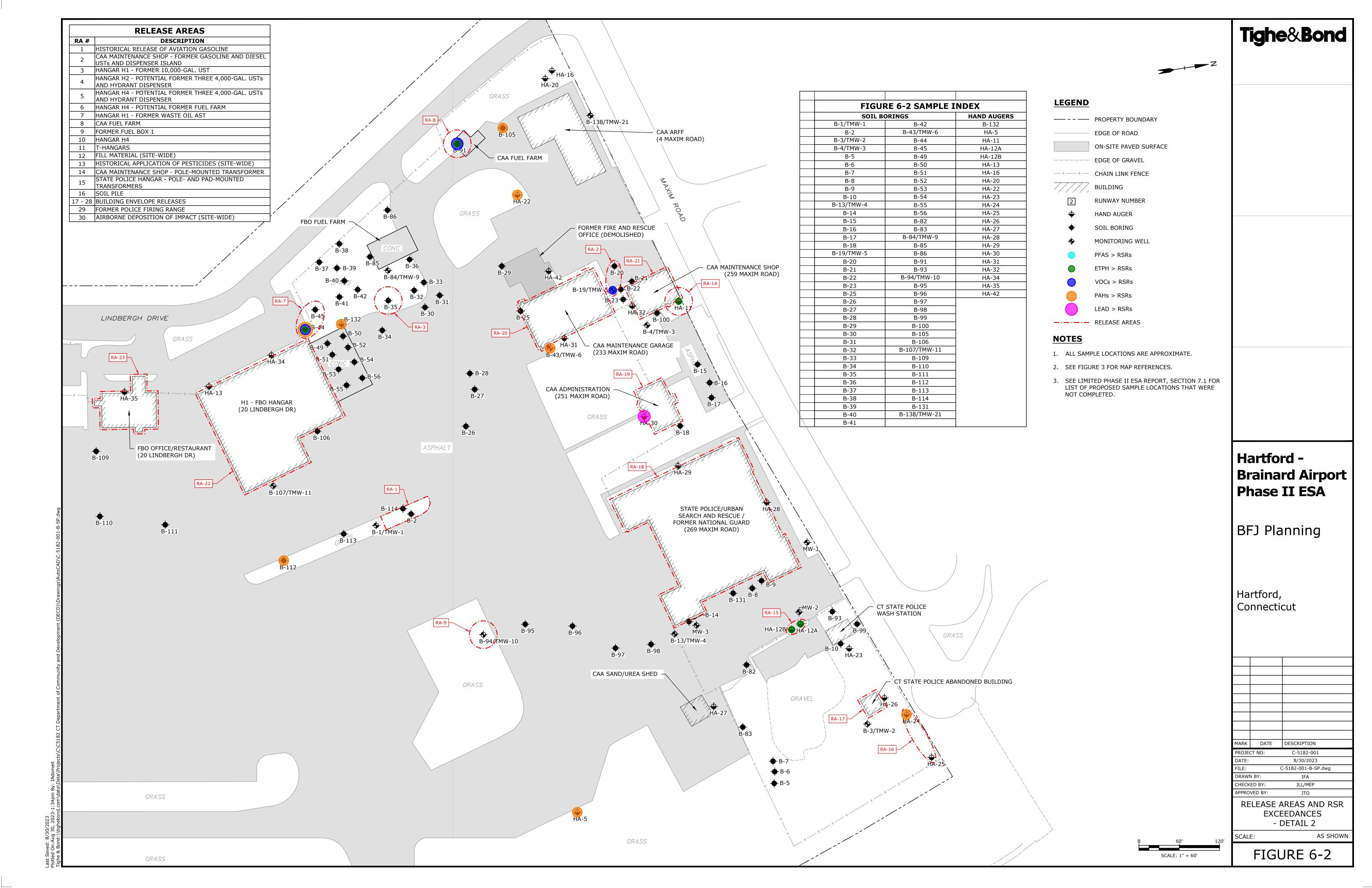
June 2023

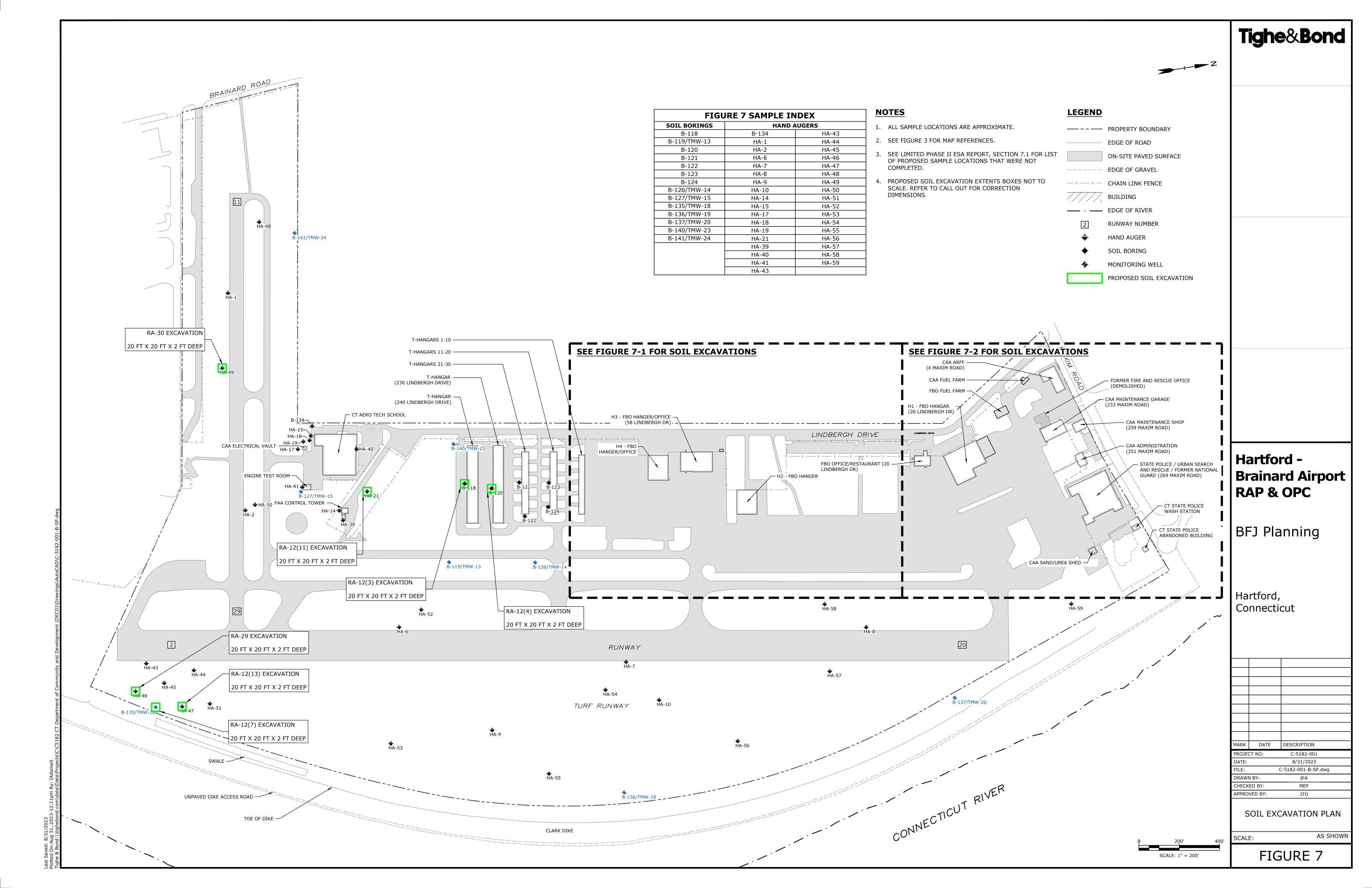


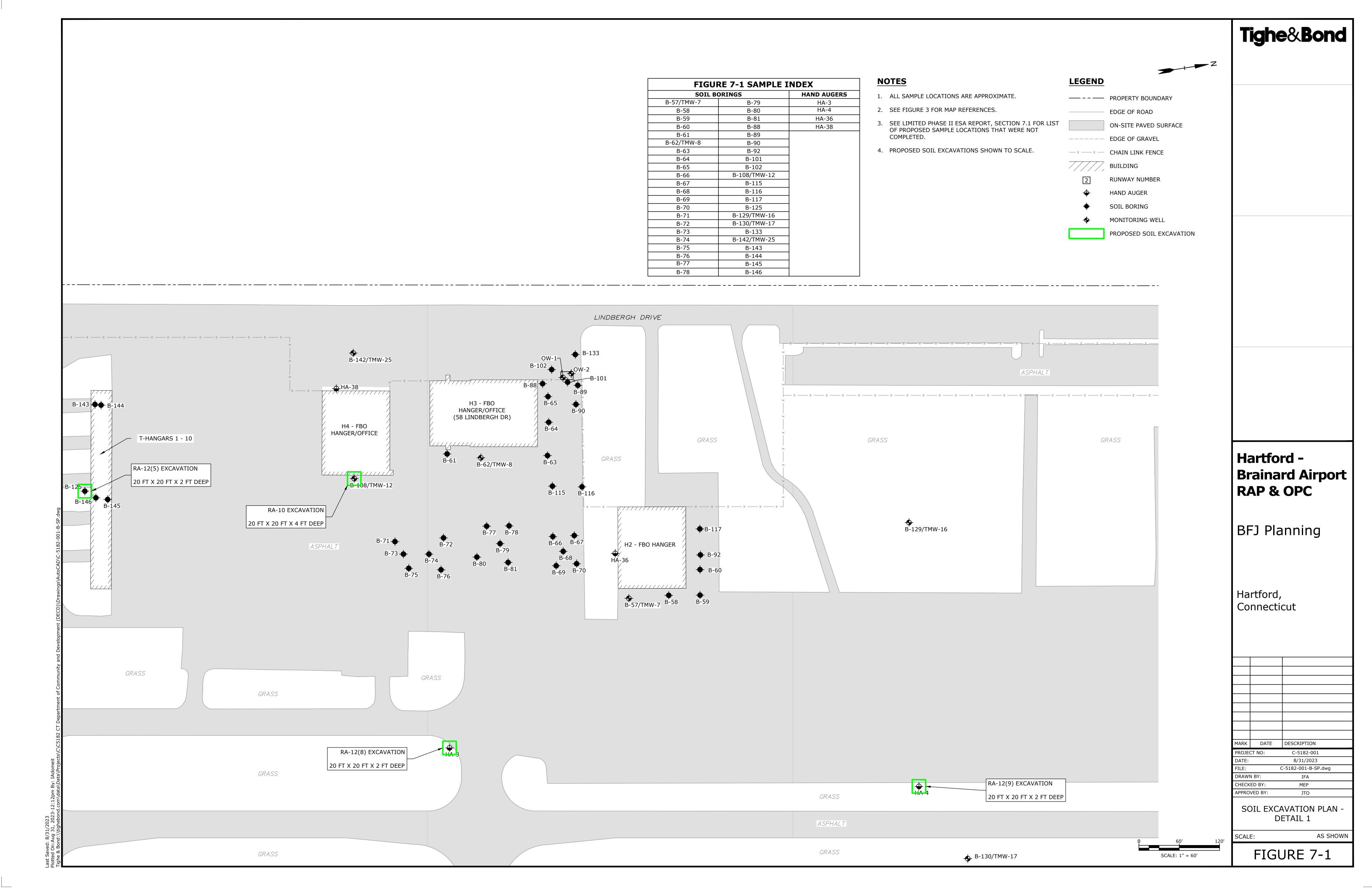


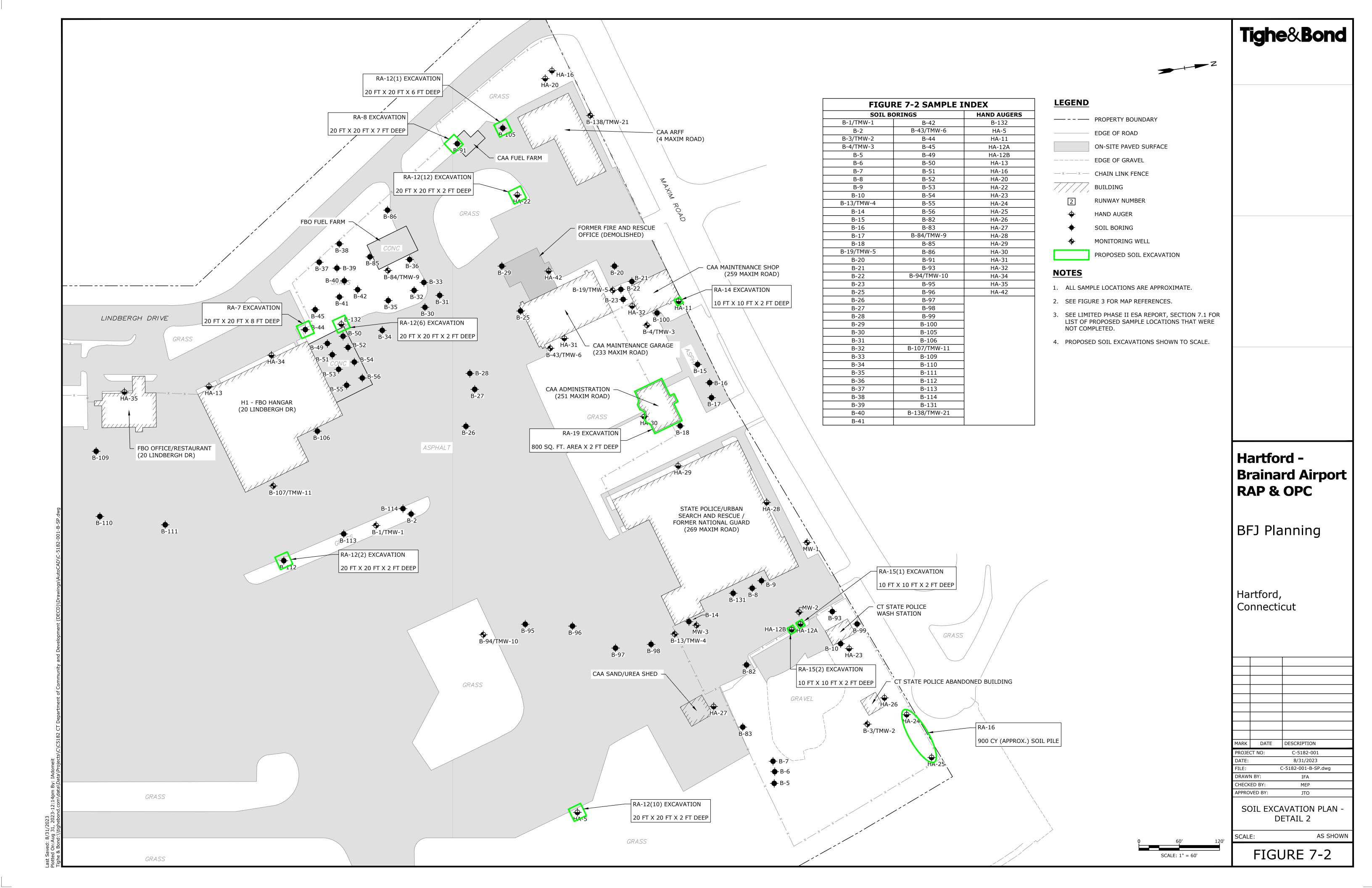












APPENDIX B

TABLE 1Monitoring Well Construction and Groundwater Elevation Summary Brainard Airport
Hartford, Connecticut

				Top of PVC		Consti	uction		June 2	0, 2023
Well ID	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Depth to Bottom (ftbTOC)	Screen Interval (ftba)	Casing Material	Well Installation Date	Depth to Groundwater (ftbg)	Groundwater Elevation (ft
TMW-1	831,751.73	1,027,289.47	16.37	16.25	14.54	5 - 15	1.5" PVC	4/27/23	7.78	8.59
TMW-2	832,402.85	1,027,701.40	18.68	18.39	12.49	3 - 13	1.5" PVC	4/28/23	9.68	9.00
TMW-3	832,190.43	1,027,074.20	18.22	17.77	14.63	5 - 15	1.5" PVC	5/1/23	9.14	9.08
TMW-4	832,160.12	1,027,516.11	17.56	17.18	13.39	5 - 15	1.5" PVC	4/27/23	8.73	8.83
TMW-5	832,147.50	1,026,989.16	19.81	19.46	14.75	5 - 15	1.5" PVC	5/1/23	11.03	8.78
TMW-6	832,055.03	1,027,064.25	17.66	17.42	14.61	5 - 15	1.5" PVC	5/1/23	8.91	8.75
TMW-7	830,472.73	1,027,199.22	16.46	16.25	14.48	5 - 15	1.5" PVC	5/17/23	9.37	7.09
TMW-8	830,289.54	1,026,958.56	15.20	14.87	14.34	5 - 15	1.5" PVC	5/18/23	8.54	6.66
TMW-9	831,821.51	1,026,919.38	17.10	16.76	14.52	5 - 15	1.5" PVC	5/4/23	8.65	8.45
TMW-10	831,887.62	1,027,479.54	16.71	16.55	11.75	2 - 12	1.5" PVC	4/27/23	8.03	8.68
TMW-11	831,599.97	1,027,201.29	17.16	16.97	14.61	5 - 15	1.5" PVC	5/4/23	8.57	8.59
TMW-12	830,099.87	1,026,963.55	15.19	14.81	14.46	5 - 15	1.5" PVC	5/18/23	8.59	6.60
TMW-13	829,026.81	1,027,197.75	13.48	13.22	14.46	5 - 15	1.5" PVC	5/19/23	8.57	4.91
TMW-14	829,440.09	1,027,260.73	14.39	14.09	14.51	5 - 15	1.5" PVC	5/19/23	8.76	5.63
TMW-15	828,351.50	1,026,741.19	11.47	11.06	14.48	5 - 15	1.5" PVC	5/19/23	8.90	2.57
TMW-16	830,909.29	1,027,147.97	15.80	15.49	14.61	5 - 15	1.5" PVC	5/17/23	8.31	7.49
TMW-17	830,912.82	1,027,657.94	16.18	15.83	14.49	5 - 15	1.5" PVC	5/22/23	8.31	7.87
TMW-18	827,468.01	1,027,671.90	11.43	11.05	14.33	5 - 15	1.5" PVC	5/22/23	7.06	4.37
TMW-19	829,702.65	1,028,465.13	12.68	12.42	14.50	5 - 15	1.5" PVC	5/22/23	6.09	6.59
TMW-20	831,387.90	1,028,241.57	16.34	16.00	14.50	5 - 15	1.5" PVC	5/22/23	8.02	8.32
TMW-21	832,156.09	1,026,740.32	18.54	18.22	14.56	5 - 15	1.5" PVC	5/1/23	9.86	8.68
TMW-23	829,128.75	1,026,622.11	13.60	13.20	14.46	5 - 15	1.5" PVC	5/19/23	8.47	5.13
TMW-24	828,512.49	1,025,466.00	12.24	11.91	14.37	5 - 15	1.5" PVC	5/19/23	10.83	1.41
TMW-25	830,125.01	1,026,777.65	13.85	13.57	14.48	5 - 15	1.5" PVC	5/17/23	7.39	6.46
MW-1	832,372.94	1,027,419.50	20.38	20.20	15.12	Unknown	2" PVC	Unknown	11.39	8.99
MW-2	832,343.45	1,027,512.89	18.53	18.29	13.02	Unknown	2" PVC	Unknown	9.55	8.98
MW-3	832,189.72	1,027,507.95	17.55	17.28	12.27	Unknown	2" PVC	Unknown	8.65	8.90
OW-1	830,427.31	1,026,853.98	15.05	14.90	10.61	Unknown	4" PVC	Unknown	7.62	7.43
OW-2	830,441.82	1,026,848.91	15.12	14.97	10.09	Unknown	4" PVC	Unknown	7.66	7.46

ftbg = Feet below grade

ftbTOC = Feet below top of PVC Casing

Vertical Datum = NAVD88

Horizontal Datum = NAD83

Depth to bottom measured from top of PVC casing

Monitoring well locations were surveyed by Pereira Engineering

on June 20, 2023

TABLE 2

Summary of Soil Analytical Results Brainard Airport

20 Lindbergh Drive Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson)

Last Updated: 8/29/2023 (J. Jackso	n)																								
Sample Name		CTDEE	P RSR		B-1	B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-9	B-10	DUP-1	B-13	B-14	B-15	B-16	B-17	B-18	B-19	B-20	DUP-2	B-21
Sample Depth		Crite	eria		4 - 5 ft	4 - 5 ft	0 - 2 ft	8 - 10 ft	6 - 8 ft	8 - 10 ft	7 - 9 ft	8 - 10 ft	13 - 15 ft	6 - 8 ft	6 - 8 ft	8 - 10 ft									
Sample Date					4/27/2023						4/28/2023				4/28/2023								5/1/2023	5/1/2023	5/1/2023
Lab Sample ID	RES	I/C	GB	GWPC	CN92786	CN92787	CN93805	CN94953	CN93806	CN93807	CN93808	CN93809	CN93810	CN93811	CN93812	CN92796	CN93813	CN93814	CN93815	CN93816		CN94954	CN94955	CN94956	CN94957
Lab Report ID	DEC	DEC	PMC	x10	GCN92786	GCN92786	GCN93805	GCN94953	GCN93805	GCN93805	GCN93805	GCN93805	GCN93805	GCN93805	GCN93805	GCN92786	GCN93805	GCN93805	GCN93805	GCN93805	GCN93805	GCN94953	GCN94953		GCN94953
Parent Sample ID															CN93811									CN94955	
CTETPH 8015D (mg/Kg)	500	2,500	2,500	NA	<65	250	<53	<60	<66	<55	<64	<68	<52	<67	<69	<65	<61	<55	<61	<60	<63	<63	<52	<51	<54
PFAS CT DEEP (mg/Kg)																									
Perfluorohexanesulfonic Acid (PFHxs	S NE	NE	NE	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Perfluorooctanesulfonic Acid (PFOS)		NE	NE	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Perfluorooctanoic Acid (PFOA)	NE	NE	NE	NA																					
					_																				
PFAS5 (Total)	1.35	41	0.014	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS CT DEEP (ng/L)																									
PFAS (Total)	NA	NA	NA	NA																					
PFAS (TOLAI)	IVA	NA	NA	IVA	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals 6010D (mg/Kg)																									
	27	8,200	NA	NA]		-2 F	-20						<4.5	<4.8										
Antimony					_	-	< 3.5	<3.8	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
Arsenic	10	10	NA	NA	-	-	2.27	1.51	-	-	-	-	-	2.26	2.04	-	-	-	-	-	-	-	-	-	-
Barium	4,700	140,000		NA	-	-	32.2	22.2	-	-	-	-	-	51.7	52.9	-	-	-	-	-	-	-	-	-	-
Beryllium	2	2	NA	NA	-	-	< 0.28	< 0.30	-	-	-	-	-	< 0.36	< 0.39	-	-	-	-	-	-	-	-	-	-
Cadmium	34	1,000	NA	NA	-	-	1.71	0.4	-	-	-	-	-	< 0.45	< 0.48	-	-	-	-	-	-	-	-	-	-
Chromium (Total)	NE	NE	NA	NA	-	-	13.2	10.2	-	-	-	-	-	19.1	18.6	-	-	-	-	-	-	-	-	-	-
Copper	2,500	76,000	NA	NA	-	-	13.1	10.2	-	-	-	-	-	15.1	15	-	-	-	-	-	-	-	-	-	-
Lead	400	1,000	NA	NA	-	7.68	19.4	7.34	6.29	9.84	_	-	_	4.15	4	5.1	-	8.38	19.3	-	_	-	7.02	12.7	13
Mercury (7471B)	20	610	NA	NA	_	_	0.05	0.12	_	_	_	_	_	< 0.01	< 0.01	_	_	_	_	_	_	_	_	_	_
Nickel	1,400	7,500	NA	NA	_	_	12.4	11.5	_	_	_	_	_	17.5	17.3	_	_	_	_	_	_	_	_	_	_
Selenium	340	10,000	NA	NA			<1.4	<1.5						<1.8	<1.9										
	340	10,000	NA	NA	_		<0.35	<0.38						<0.45	<0.48										
Silver			NA		_	-			-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
Thallium	5.4	160		NA	-	-	<3.2	<3.4	-	-	-	-	-	<4.1	<4.3	-	-	-	-	-	-	-	-	-	-
Vanadium	470	14,000	NA	NA	-	-	16	11.6	-	-	-	-	-	22.4	21.8	-	-	-	-	-	-	-	-	-	-
Zinc	20,000	610,000	NA	NA	-	-	126	35.2	-	-	-	-	-	42.5	41.2	-	-	-	-	-	-	-	-	-	-
aninu i 1 aaaan (
SPLP Metals 6010D (mg/L)																									
Barium	NA	NA	10	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	NA	NA	0.04	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (Total)	NA	NA	0.5	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	NA	NA	13	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	NA	NA	0.15	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	NA	NA	0.02	NA	_	-	_	-	_	-	_	-	_	-	-	_	-	_	-	-	_	_	-	-	_
Nickel	NA	NA	1	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Vanadium	NA	NA	0.5	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Zinc	NA	NA	50	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Zilie	147 (1471	30	1471																					
Pesticides 8081B (mg/Kg)																									
Chlordane	0.49	2.2	0.066	0.066	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
DDE, 4,4-	NE	NE	NE	NE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
DDT, 4,4-	NE	NE	NE	NE																					
					_																				
DDT (Total)	1.8	17	0.02	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dieldrin	0.038	0.36	0.007	0.007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SDLD Docticidos 9091P (ug/L)	NA	NA	NA	Varios																					
SPLP Pesticides 8081B (ug/L)	INA	IVA	NA	Varies	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCBs 8082A (mg/Kg)																									
Aroclor-1260	NE	NE	NA	NA	_	_		_					_	< 0.44	< 0.47	_		_				_			-
	1	10	NA	NA	_	-	-	-	-	-	_	-	-	ND	ND	-	-	-	-	-	-	-	-	-	-
PCBs (Total)	1	10	NA	NA	_	-	-	-	-	-	-	-	-	ND	ND	-	-	-	-	-	-	-	-	-	-
Herbicides 8151A (mg/Kg)	Varios	Varies	Varion	NA																					
CTDEED DCD- Compatibility Dansati	varies	varies	varies	IVA		II. shamb Mabili		-																	

CTDEEP RSRs - Connecticut Department of Energy and

Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable <xx indicates compound was not reported above</p>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg) PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC

Bold values indicate exceedances of I/C DEC Gray shaded values indicate exceedance of GB PMC

TABLE 2 Summary of Soil Analytical Results Brainard Airport 20 Lindbergh Drive Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson)

Sample Name	11)	CTDEEF	PRSR		B-1	B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-9	B-10	DUP-1	B-13	B-14	B-15	B-16	B-17	B-18	B-19	B-20	DUP-2	B-21
Sample Depth		Crite	ria		4 - 5 ft	4 - 5 ft	0 - 2 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	6 - 8 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	7 - 9 ft	8 - 10 ft	13 - 15 ft	6 - 8 ft	6 - 8 ft	8 - 10 ft
Sample Date					4/27/2023	4/27/2023	4/28/2023	5/1/2023	4/28/2023	4/28/2023	4/28/2023	4/28/2023	4/28/2023	4/28/2023	4/28/2023	4/27/2023	4/28/2023	4/28/2023	4/28/2023	4/28/2023	4/28/2023	5/1/2023	5/1/2023	5/1/2023	5/1/2023
Lab Sample ID	RES	I/C	GB	GWPC	CN92786	CN92787	CN93805	CN94953	CN93806	CN93807	CN93808	CN93809	CN93810	CN93811	CN93812	CN92796	CN93813	CN93814	CN93815	CN93816	CN93817	CN94954	CN94955	CN94956	CN94957
Lab Report ID	DEC	DEC	PMC	x10	GCN92786				GCN93805		GCN93805	GCN93805	GCN93805	GCN93805	GCN93805		GCN93805	GCN93805	GCN93805	GCN93805		GCN94953		GCN94953	GCN94953
Parent Sample ID	520	520		7120	00.132700	00.132700	00.13000	00.13 .303	00.130005	00.135005	00.13000	00.130005	00.130005	00.13000	CN93811	00.132700	00.135005	00.135005	00.135005	00.135005	00.130005	00.13 1300	00.13 .333	CN94955	00.13 .303
Dioxane 8270D (mg/Kg)															CHISSOII									C113 1333	
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Dioxane, 1, 1	0.1	3,	0.0	1471																					
Glycol 8015D (mg/Kg)																									
Ethylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Propylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VOCs 8260C (mg/Kg)																									
Benzene	21	200	0.2	NA	< 0.0054	< 0.0056	< 0.0053	<0.0058	< 0.011	<0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	< 0.34	< 0.0052	< 0.0056	< 0.0046
Butylbenzene, n-	500	1,000	70	NA	< 0.0054	< 0.0056	< 0.0053	< 0.0058	< 0.011	<0.0045	< 0.0071	-	-	< 0.0072	<0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	3.5	< 0.0052	< 0.0056	< 0.0046
Butylbenzene, sec-	500	1,000	70	NA	< 0.0054	< 0.0056	< 0.0053	<0.0058	< 0.011	<0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	1.5	< 0.0052	< 0.0056	< 0.0046
Carbon disulfide	500	1,000	8	NA	<0.0054	<0.0056	< 0.0053	<0.0058	< 0.011	<0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	< 0.0054	<0.0055	< 0.0052	< 0.0053	-	<3.4	0.0066	<0.0056	< 0.0046
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA		- 0.055	- 0053	-	- 0.11	- 0.0045	- 0.071	-	-		-	-	- 0.0054	- 0.0055	- 0.053	- 0.0053	-	- 45	- 0.0053	- 0.055	-
Ethylbenzene	500	1,000	10.1	NA	< 0.0054	< 0.0056	< 0.0053	< 0.0058	< 0.011	<0.0045	< 0.0071	-	-	< 0.0072	<0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	45	<0.0052	< 0.0056	< 0.0046
Isopropylbenzene (cumene)	500	1,000	5	NA	< 0.0054	<0.0056	< 0.0053	< 0.0058	< 0.011	<0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	4.4	< 0.0052	< 0.0056	< 0.0046
Isopropyltoluene, 2- (o-Cymene)	500	1,000	5	NA	<0.0054	<0.0056	< 0.0053	<0.0058	< 0.011	<0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	<3.4	< 0.0052	< 0.0056	<0.0046
Isopropyltoluene, 4- (p-Cymene)	500	1,000	5	NA	< 0.0054	< 0.0056	< 0.0053	<0.0058	< 0.011	<0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	<3.4	< 0.0052	< 0.0056	<0.0046
Naphthalene	1,000	2,500	56	NA	< 0.0054	< 0.0056	< 0.0053	<0.0058	< 0.011	<0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	23	<0.0052	< 0.0056	< 0.0046
Propylbenzene, n-	500	1,000	10	NA	<0.0054	<0.0056	< 0.0053	<0.0058	< 0.011	< 0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	< 0.0054	< 0.0055	<0.0052	< 0.0053	-	20	<0.0052	< 0.0056	< 0.0046
Tetrahydrofuran 	61	570	0.8	NA	< 0.011	< 0.011	< 0.011	< 0.012	<0.022	<0.0089	< 0.014	-	-	< 0.014	<0.058	< 0.012	< 0.011	< 0.011	< 0.01	< 0.011	-	<1.7	< 0.01	< 0.011	< 0.0092
Toluene	500	1,000	67	NA	< 0.0054	< 0.0056	< 0.0053	< 0.0058	< 0.011	<0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	1.5	<0.0052	< 0.0056	< 0.0046
Trimethylbenzene, 1,2,4-	500	1,000	28	NA	< 0.0054	< 0.0056	< 0.0053	< 0.0058	< 0.011	<0.0045	< 0.0071	-	-	< 0.0072	<0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	130	<0.0052	< 0.0056	< 0.0046
Trimethylbenzene, 1,3,5-	500	1,000	28	NA	< 0.0054	< 0.0056	< 0.0053	< 0.0058	< 0.011	< 0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	37	<0.0052	< 0.0056	< 0.0046
Xylene (Total)	500	1,000	19.5	NA	< 0.0054	< 0.0056	< 0.0053	< 0.0058	< 0.011	< 0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	170	<0.0052	< 0.0056	< 0.0046
Xylene, m,p-	NE	NE	NE	NA	< 0.0054	< 0.0056	< 0.0053	< 0.0058	< 0.011	< 0.0045	< 0.0071	-	-	< 0.0072	<0.029	< 0.006	< 0.0054	< 0.0055	< 0.0052	< 0.0053	-	140	< 0.0052	< 0.0056	< 0.0046
Xylene, o-	NE	NE	NE	NA NA	<0.0054	<0.0056	<0.0053	<0.0058	< 0.011	< 0.0045	< 0.0071	-	-	< 0.0072	< 0.029	< 0.006	<0.0054	<0.0055	<0.0052	< 0.0053	-	30	< 0.0052	<0.0056	< 0.0046
SVOCs 8270D (mg/Kg)				NA																					
Acenaphthene	1.000	2,500	84	NA	_	< 0.31	< 0.25	< 0.27	< 0.31	<0.25	_	< 0.32	< 0.24	< 0.31	< 0.32	< 0.3	_	< 0.26	<0.28	_	< 0.29	< 0.29	< 0.24	< 0.24	< 0.25
Acenaphthylene	1,000	2,500	84	NA	_	< 0.31	< 0.25	<0.27	< 0.31	<0.25	_	< 0.32	<0.24	< 0.31	< 0.32	<0.3	_	<0.26	<0.28	_	<0.29	<0.29	< 0.24	<0.24	<0.25
Anthracene	1,000	2,500	400	NA	_	< 0.31	<0.25	<0.27	< 0.31	<0.25	_	< 0.32	<0.24	< 0.31	< 0.32	<0.3	_	<0.26	<0.28	_	< 0.29	< 0.29	<0.24	<0.24	<0.25
Benzo(a)anthracene	1	7.8	1	NA	_	< 0.31	<0.25	0.47	< 0.31	<0.25	_	< 0.32	<0.24	< 0.31	< 0.32	<0.3	_	<0.26	<0.28	_	<0.29	<0.29	0.33	<0.24	<0.25
Benzo(a)pyrene	1	1	1	NA	_	< 0.31	<0.25	0.51	< 0.31	<0.25	_	< 0.32	<0.24	< 0.31	< 0.32	<0.3	_	<0.26	0.35	-	<0.29	< 0.29	0.43	0.31	<0.25
Benzo(b)fluoranthene	1	7.8	1	NA	_	< 0.31	<0.25	0.52	< 0.31	<0.25	_	< 0.32	<0.24	< 0.31	< 0.32	<0.3	_	<0.26	0.38	_	<0.29	< 0.29	0.55	0.38	0.26
Benzo(g,h,i)perylene	8.4	7.0 78	1	NA	_	< 0.31	<0.25	0.3	< 0.31	<0.25	_	< 0.32	<0.24	< 0.31	< 0.32	<0.3	_	<0.26	<0.28	-	<0.29	< 0.29	0.29	< 0.24	<0.25
Benzo(k)fluoranthene	8.4	78	1	NA	-	< 0.31	< 0.25	< 0.27	< 0.31	<0.25	_	< 0.32	< 0.24	< 0.31	< 0.32	<0.3	_	<0.26	<0.28	-	< 0.29	< 0.29	< 0.24	<0.24	< 0.25
bis(2-Ethylhexyl)phthalate	44	410	11	NA	-	-	< 0.36	< 0.39	-	-	_	-	-	< 0.45	< 0.45	-	_	-	-	-	-	-	-	-	-
Carbazole	31	290	1	NA	-	-	< 0.36	< 0.39	-	-	-	-	-	< 0.45	< 0.45	-	-	-	-	-	-	-	-	-	-
Chrysene	84	780	1	NA	-	< 0.31	< 0.25	0.45	< 0.31	< 0.25	_	< 0.32	< 0.24	< 0.31	< 0.32	< 0.3	-	< 0.26	< 0.28	-	< 0.29	< 0.29	0.37	0.27	< 0.25
Dibenz(a,h)anthracene	1	1	1	NA	-	< 0.31	< 0.25	< 0.27	< 0.31	< 0.25	_	< 0.32	< 0.24	< 0.31	< 0.32	< 0.3	-	< 0.26	< 0.28	-	< 0.29	< 0.29	< 0.24	< 0.24	< 0.25
Fluoranthene	1,000	2,500	56	NA	-	< 0.31	< 0.25	0.95	< 0.31	<0.25	-	< 0.32	<0.24	< 0.31	< 0.32	< 0.3	-	<0.26	0.34	-	<0.29	< 0.29	0.55	0.4	0.33
Fluorene	1,000	2,500	56	NA	-	< 0.31	< 0.25	< 0.27	< 0.31	< 0.25	-	< 0.32	< 0.24	< 0.31	< 0.32	< 0.3	-	< 0.26	< 0.28	-	< 0.29	< 0.29	< 0.24	< 0.24	< 0.25
Indeno(1,2,3-cd)pyrene	1	7.8	1	NA	-	< 0.31	< 0.25	0.3	< 0.31	<0.25	-	< 0.32	<0.24	< 0.31	< 0.32	<0.3	-	<0.26	<0.28	-	< 0.29	< 0.29	0.29	<0.24	<0.25
Methylnaphthalene, 2-	270	1,000	5.6	NA	-	< 0.31	<0.25	<0.27	< 0.31	<0.25	-	< 0.32	< 0.24	< 0.31	< 0.32	< 0.3	-	<0.26	<0.28	-	< 0.29	< 0.29	< 0.24	<0.24	< 0.25
Naphthalene	1,000	2,500	56	NA	-	< 0.31	<0.25	<0.27	< 0.31	<0.25	-	< 0.32	< 0.24	< 0.31	< 0.32	<0.3	-	<0.26	<0.28	-	< 0.29	< 0.29	< 0.24	<0.24	< 0.25
Phenanthrene	1,000	2,500	40	NA	-	< 0.31	< 0.25	0.76	< 0.31	<0.25	-	< 0.32	< 0.24	< 0.31	< 0.32	< 0.3	-	<0.26	<0.28	-	< 0.29	< 0.29	< 0.24	<0.24	<0.25
Pyrene	1,000	2,500	40	NA	-	< 0.31	<0.25	0.83	< 0.31	<0.25	_	< 0.32	<0.24	< 0.31	< 0.32	<0.3	_	<0.26	0.36	-	<0.29	<0.29	0.52	0.36	0.34
CTDEED DCDs Compactions Department	-/***	= 2,500				U bank Makili			datau auaa	.0.20		-0.02	-0.2	-0.01	.0.02	-0.0		.0.20	0.00		.0.25	-0.25	0.02	0.00	0.0.

NE - Not established; NA - Not Applicable

Gray shaded values indicate exceedance of GB PMC

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018) Boxed values indicate exceedances of I/C DEC Bold values indicate exceedances of I/C DEC

CT ETPH - Connecticut Department of Public Health Extractable Total Petroleum Hydrocarbons

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

TABLE 2 Summary of Soil Analytical Results Brainard Airport 20 Lindbergh Drive

Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson)

Last Updated: 8/29/2023 (J. Jackso Sample Name Sample Depth Sample Date	n)	CTDEE Crit			B-22 8 - 10 ft 5/1/2023	B-23 8 - 10 ft 5/1/2023	B-25 6 - 8 ft 5/1/2023	B-26 8 - 10 ft 5/1/2023	B-27 10 - 12 ft 5/1/2023	B-28 10 - 12 ft 5/1/2023	B-29 8 - 10 ft 5/1/2023	B-30 13 - 15 ft 5/4/2023		B-31 12 - 14 ft 5/4/2023	B-32 10 - 12 ft 5/5/2023	B-33 10 - 12 ft 5/5/2023	B-34 10 - 12 ft 5/4/2023	B-35 11 - 13 ft 5/5/2023	DUP-6 11 - 13 ft 5/5/2023	B-36 10 - 12 ft 5/5/2023	B-37 10 - 12 ft 5/5/2023	B-38 10 - 12 ft 5/5/2023	B-39 10 - 12 ft 5/5/2023	B-40 5 - 7 ft 5/5/2023	B-40 10 - 12 ft 5/5/2023
Lab Sample ID Lab Report ID Parent Sample ID	RES DEC	I/C DEC	GB PMC	GWPC x10		CN94959	CN94960	CN94961	CN94962	CN94963	CN94964 GCN94953	CN97920	CN97921	CN97922	CN98857 GCN98846	CN98858	CN97923	CN98846	CN98847	CN98848 GCN98846	CN98849	CN98850	CN98851	CN98852	
CTETPH 8015D (mg/Kg)	500	2,500	2,500	NA	<75	<68	<56	<56	<63	<72	<74	<62	<62	<69	<70	<71	<64	<56	<61	<86	<83	<69	<88	-	<66
PFAS CT DEEP (mg/Kg) Perfluorohexanesulfonic Acid (PFHxS	S NE	NE	NE	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Perfluorooctanesulfonic Acid (PFOS)		NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS5 (Total)	1.35	41	0.014	· NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS CT DEEP (ng/L) PFAS (Total)	NA	NA	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals 6010D (mg/Kg)																									
Antimony	27	8,200	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	10	10	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Barium Beryllium	4,700 2	140,000 2	NA NA	NA NA	_	-	-	-	_	-	_	-	_	-	_	-	_	-	-	-	_	_	_	_	-
Cadmium	34	1,000	NA	NA	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chromium (Total)	NE	NE	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	2,500	76,000		NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	400	1,000	NA	NA	6.72	-	-	8.2	2.87	-	-	2.55	3.13	-	6.13	-	3.6	-	-	5.3	5.27	3.36	3.55	-	4.74
Mercury (7471B) Nickel	20 1,400	610 7,500	NA NA	NA NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	340	10,000		NA	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Silver	340	10,000		NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thallium	5.4	160	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	470	14,000		NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	20,000	610,000	NA NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPLP Metals 6010D (mg/L)																									
Barium	NA	NA	10	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	NA NA	NA NA	0.04		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (Total) Copper	NA	NA NA	0.5 13	NA NA	_	-	-	_	-	_	-	-	-	-	-	_	-	_	-	-	-	-	-	-	_
Lead	NA	NA	0.15		-	-	-	_	_	_	_	_	-	-	_	_	_	_	-	_	-	_	_	-	_
Mercury	NA	NA	0.02	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	NA	NA	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	NA NA	NA NA	0.5 50	NA NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	IVA	NA	30	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides 8081B (mg/Kg)																									
Chlordane	0.49	2.2	0.066		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDE, 4,4- DDT, 4,4-	NE NE	NE NE	NE NE	NE NE	_	-	-	-	-	_	-	_	-	-	-	-	_	-	-	-	-	-	_	-	-
DDT (Total)	1.8	17	0.02		-	-	-	-	_	_	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-
Dieldrin	0.038	0.36	0.007		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPLP Pesticides 8081B (ug/L)	NA	NA	NA	Varies	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCBs 8082A (mg/Kg)																									
Aroclor-1260	NE	NE	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCBs (Total)	1	10	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Herbicides 8151A (mg/Kg)	Varios	Varies	Varies	NA NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CTDEEP RSRs - Connecticut Denartr) IN/A	CR DMC Do	Ilutant Mobil	itv Criteria in	a GB group	dwater area	_		_		_	_	_		_	_	_	_				

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable <xx indicates compound was not reported above</p>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg) PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC Bold values indicate exceedances of I/C DEC

Gray shaded values indicate exceedance of GB PMC

TABLE 2 Summary of Soil Analytical Results Brainard Airport 20 Lindbergh Drive Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson)

Last Updated: 8/29/2023 (J. Jackson	1	CTDEE	D DCD		B 22	D 22	D 25	D 26	D 37	D 20	B 20	D 20	DUD 4	D 21	D 22	D 22	D 24	D 25	DUD 6	D 26	D 27	D 20	D 20	D 40	
Sample Name					B-22	B-23	B-25	B-26	B-27	B-28	B-29	B-30	DUP-4	B-31	B-32	B-33	B-34	B-35	DUP-6	B-36	B-37	B-38	B-39	B-40	B-40
Sample Depth		Crite	егіа		8 - 10 ft	8 - 10 ft	6 - 8 ft	8 - 10 ft	10 - 12 ft	10 - 12 ft	8 - 10 ft	13 - 15 ft	13 - 15 ft	12 - 14 ft	10 - 12 ft	10 - 12 ft	10 - 12 ft	11 - 13 ft	11 - 13 ft	10 - 12 ft	5 - 7 ft	10 - 12 ft			
Sample Date					5/1/2023	5/1/2023	5/1/2023	5/1/2023	5/1/2023	5/1/2023	5/1/2023	5/4/2023	5/4/2023	5/4/2023	5/5/2023	5/5/2023	5/4/2023	5/5/2023	5/5/2023	5/5/2023	5/5/2023	5/5/2023	5/5/2023	5/5/2023	5/5/2023
Lab Sample ID	RES	I/C	GB	GWPC	CN94958	CN94959	CN94960	CN94961	CN94962	CN94963	CN94964	CN97920	CN97921	CN97922	CN98857	CN98858	CN97923	CN98846	CN98847	CN98848	CN98849	CN98850	CN98851	CN98852	CN98853
Lab Report ID	DEC	DEC	PMC	x10	GCN94953	GCN94953	GCN94953	GCN94953	GCN94953	GCN94953	GCN94953	GCN97920	GCN97920	GCN97920	GCN98846	GCN98846	GCN97920	GCN98846		GCN98846	GCN98846	GCN98846	GCN98846	GCN98846	GCN98846
Parent Sample ID													CN97920						CN98846						
Dioxane 8270D (mg/Kg)																									
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Glycol 8015D (mg/Kg)																									
Ethylene glycol	1,000	2,500	200	NA	_																				
	1,000	2,500	200	NA																					
Propylene glycol	1,000	2,300	200	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VOCs 8260C (mg/Kg)																									
Benzene	21	200	0.2	NA	< 0.0066	-	-	< 0.0049	< 0.0056	< 0.0066	-	< 0.0052	< 0.0056	< 0.0061	< 0.0066	< 0.0064	< 0.008	< 0.2	< 0.2	< 0.0061	< 0.0061	< 0.006	< 0.0098	< 0.0059	-
Butylbenzene, n-	500	1,000	70	NA	< 0.0066	-	-	< 0.0049	< 0.0056	< 0.0066	-	< 0.0052	< 0.0056	< 0.0061	< 0.0066	< 0.0064	< 0.008	< 0.24	< 0.31	< 0.0061	< 0.0061	< 0.006	< 0.0098	< 0.0059	-
Butylbenzene, sec-	500	1,000	70	NA	< 0.0066	-	-	< 0.0049	< 0.0056	< 0.0066	-	< 0.0052	< 0.0056	< 0.0061	< 0.0066	< 0.0064	<0.008	<0.24	< 0.31	< 0.0061	< 0.0061	< 0.006	<0.0098	< 0.0059	-
Carbon disulfide	500	1,000	8	NA	< 0.0066	-	-	< 0.0049	< 0.0056	< 0.0066	-	< 0.0052	< 0.0056	< 0.0061	< 0.0066	< 0.0064	<0.008	<0.24	< 0.31	< 0.0061	< 0.0061	< 0.006	<0.0098	< 0.0059	-
Dioxane, 1,4-	6.1	57	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
Ethylbenzene	500	1,000	10.1	NA	< 0.0066	-	-	< 0.0049	< 0.0056	< 0.0066	-	< 0.0052	< 0.0056	< 0.0061	< 0.0066	< 0.0064	< 0.008	< 0.24	< 0.31	< 0.0061	< 0.0061	< 0.006	< 0.0098	< 0.0059	-
Isopropylbenzene (cumene)	500	1,000	5	NA	< 0.0066	-	-	< 0.0049	< 0.0056	< 0.0066	-	< 0.0052	< 0.0056	< 0.0061	< 0.0066	< 0.0064	< 0.008	< 0.24	< 0.31	< 0.0061	< 0.0061	< 0.006	< 0.0098	< 0.0059	-
Isopropyltoluene, 2- (o-Cymene)	500	1,000	5	NA	< 0.0066	-	-	< 0.0049	< 0.0056	< 0.0066	-	< 0.0052	< 0.0056	< 0.0061	< 0.0066	< 0.0064	< 0.008	< 0.24	< 0.31	< 0.0061	< 0.0061	< 0.006	< 0.0098	< 0.0059	-
Isopropyltoluene, 4- (p-Cymene)	500	1,000	5	NA	< 0.0066	-	-	< 0.0049	< 0.0056	< 0.0066	-	< 0.0052	< 0.0056	< 0.0061	< 0.0066	< 0.0064	<0.008	< 0.24	< 0.31	< 0.0061	< 0.0061	< 0.006	< 0.0098	< 0.0059	-
Naphthalene	1,000	2,500	56	NA	< 0.0066	_	_	< 0.0049	< 0.0056	< 0.0066	_	< 0.0052	< 0.0056	< 0.0061	< 0.0066	< 0.0064	< 0.008	< 0.24	< 0.31	< 0.0061	< 0.0061	< 0.006	< 0.0098	< 0.0059	_
Propylbenzene, n-	500	1,000	10	NA	<0.0066	_	_	< 0.0049	< 0.0056	<0.0066	_	< 0.0052	<0.0056	< 0.0061	< 0.0066	< 0.0064	<0.008	0.2	0.17	<0.0061	< 0.0061	<0.006	< 0.0098	< 0.0059	_
Tetrahydrofuran	61	570	0.8	NA	< 0.013	_	_	< 0.0098	< 0.011	< 0.013	_	< 0.01	< 0.011	< 0.012	< 0.013	< 0.013	< 0.016	< 0.48	< 0.61	< 0.012	< 0.012	< 0.012	< 0.02	0.012	_
Toluene	500	1,000	67	NA	< 0.0066	_	_	< 0.0049	< 0.0056	<0.0066	_	< 0.0052	<0.0056	< 0.0061	< 0.0066	< 0.0064	<0.008	<0.24	< 0.31	< 0.0061	< 0.0061	<0.006	< 0.0098	< 0.0059	_
Trimethylbenzene, 1,2,4-	500	1,000	28	NA	< 0.0066	_	_	< 0.0049	<0.0056	< 0.0066	_	< 0.0052	<0.0056	<0.0061	<0.0066	< 0.0064	<0.008	<0.24	< 0.31	< 0.0061	< 0.0061	<0.006	<0.0098	< 0.0059	_
Trimethylbenzene, 1,3,5-	500	1,000	28	NA	<0.0066	_	_	< 0.0049	<0.0056	<0.0066	_	< 0.0052	<0.0056	<0.0061	<0.0066	< 0.0064	<0.008	<0.24	< 0.31	< 0.0061	< 0.0061	<0.006	<0.0098	< 0.0059	_
Xylene (Total)	500	1,000	19.5	NA	<0.0066	_	_	< 0.0049	< 0.0056	<0.0066	_	< 0.0052	<0.0056	<0.0061	<0.0066	< 0.0064	< 0.008	<0.24	< 0.31	< 0.0061	< 0.0061	<0.006	<0.0098	< 0.0059	_
Xylene, m,p-	NE	NE	NE	NA	<0.0066	_	_	< 0.0049	<0.0056	<0.0066	_	< 0.0052	<0.0056	<0.0061	<0.0066	< 0.0064	<0.008	<0.24	< 0.31	< 0.0061	< 0.0061	<0.006	<0.0098	< 0.0059	_
Xylene, o-	NE	NE	NE	NA	< 0.0066	_	_	< 0.0049	<0.0056	<0.0066	_	< 0.0052	<0.0056	< 0.0061	< 0.0066	< 0.0064	<0.008	<0.24	< 0.31	< 0.0061	< 0.0061	< 0.006	<0.0098	< 0.0059	_
Aylene, o	/	/*-	742	NA	10.0000			10.0013	10.0050	10.0000		10.0032	10.0050	(0.0001	10.0000	(0.0001	10.000	10121	10.51	10.0001	10.0001	10.000	10.0050	10.0033	
SVOCs 8270D (mg/Kg)				NA																					
Acenaphthene	1,000	2,500	84	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
Acenaphthylene	1,000	2,500	84	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
Anthracene	1,000	2,500	400	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
Benzo(a)anthracene	1	7.8	1	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
Benzo(a)pyrene	1	1	1	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
Benzo(b)fluoranthene	1	7.8	1	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
Benzo(g,h,i)perylene	8.4	<i>78</i>	1	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
Benzo(k)fluoranthene	8.4	78	1	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
bis(2-Ethylhexyl)phthalate	44	410	11	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole	31	290	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	84	780	1	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
Dibenz(a,h)anthracene	1	1	1	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
Fluoranthene	1,000	2,500	56	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
Fluorene	1,000	2,500	56	NA	< 0.34	-	< 0.26	< 0.26	< 0.29	-	< 0.35	< 0.29	< 0.29	-	< 0.32	-	< 0.3	-	-	< 0.33	< 0.31	< 0.32	< 0.33	-	< 0.31
Indeno(1,2,3-cd)pyrene	1	7.8	1	NA	< 0.34	_	<0.26	<0.26	<0.29	_	< 0.35	<0.29	< 0.29	-	< 0.32	_	<0.3	_	_	< 0.33	< 0.31	< 0.32	<0.33	_	< 0.31
Methylnaphthalene, 2-	270	1,000	5.6	NA	< 0.34	_	< 0.26	<0.26	<0.29	_	< 0.35	< 0.29	< 0.29	-	< 0.32	_	<0.3	_	_	< 0.33	< 0.31	< 0.32	< 0.33	_	< 0.31
Naphthalene	1,000	2,500	56	NA	< 0.34	_	<0.26	<0.26	<0.29	_	< 0.35	<0.29	< 0.29	-	< 0.32	_	<0.3	_	_	< 0.33	< 0.31	< 0.32	<0.33	_	< 0.31
Phenanthrene	1,000	2,500	40	NA	< 0.34	_	< 0.26	<0.26	<0.29	_	< 0.35	< 0.29	< 0.29	-	< 0.32	_	<0.3	_	_	< 0.33	< 0.31	< 0.32	< 0.33	_	< 0.31
Pyrene	1.000	2,500	40	NA	< 0.34	_	< 0.26	< 0.26	< 0.29	_	< 0.35	< 0.29	< 0.29	_	< 0.32	_	< 0.3	_	_	< 0.33	< 0.31	< 0.32	< 0.33	_	< 0.31
CTDEED DCDa Commentions Department	-/	,	70	INA	CD DMC Da	_				_	\U.JJ	~∪.∠ ∂	<u> </u>	_	\U.J ∠	_	\U.J	_	_	~0.55	70.51	\U.JZ	70.55	_	/U.JI

NE - Not established; NA - Not Applicable

Gray shaded values indicate exceedance of GB PMC

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018) Boxed values indicate exceedances of I/C DEC Bold values indicate exceedances of I/C DEC

CT ETPH - Connecticut Department of Public Health Extractable Total Petroleum Hydrocarbons

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

TABLE 2 Summary of Soil Analytical Results Brainard Airport

20 Lindbergh Drive Hartford, Connecticut

Last Updated: 8/29/2023 (1, lackson)

Last Updated: 8/29/2023 (J. Jackson	n)																								
Sample Name		CTDEE	P RSR		B-41	B-41	B-42	B-43	B-43	B-44	DUP-5	B-44	B-45	B-49	B-50	B-51	B-52	B-53	B-54	B-55	B-56	B-57	B-58	B-59	DUP-7
Sample Depth		Crite	eria		5 - 7 ft	10 - 12 ft	8 - 10 ft	6 - 8 ft	13 - 15 ft	3 - 5 ft	3 - 5 ft	10 - 12 ft	6 - 8 ft	10 - 12 ft	10 - 12 ft	10 - 12 ft	8 - 10 ft	10 - 12 ft	8 - 10 ft	10 - 12 ft	10 - 12 ft				
Sample Date					5/5/2023	5/5/2023	5/4/2023	5/1/2023	5/1/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023			5/17/2023	
Lab Sample ID	RES	I/C	GB	GWPC	CN98854	CN98855	CN97924	CN94965	CN94966	CN97925	CN97926	CN97927	CN97928	CN97931	CN97932	CN97933	CN97934	CN97935	CN97936		CN97938	CO08002	CO08003	CO08004	CO08005
Lab Report ID	DEC	DEC	PMC	x10		GCN98846							GCN97920				GCN97920			GCN97920					
	DLC	DLC	FINC	XIO	GCN30040	GCN30040	GCN97920	CCN94933	CCN94933	GCN97 920	CN97925	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	0000002	0000002	0000002	
Parent Sample ID																									CO08004
CTETPH 8015D (mg/Kg)	500	2,500	2,500	NA NA	-	<66	<64	-	<290	7,500	8,400	<64	78	<67	<71	< 70	<68	<68	<69	<71	<68	<69	<63	<67	<65
PFAS CT DEEP (mg/Kg)																									
Perfluorohexanesulfonic Acid (PFHxS		NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanesulfonic Acid (PFOS)		NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS5 (Total)	1.35	41	0.014	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS CT DEEP (ng/L)																									
PFAS (Total)	NA	NA	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals 6010D (mg/Kg)																									
Antimony	27	8,200	NA	NA	-	-	-	-	<4.0	<4.3	<4.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	10	10	NA	NA	-	-	-	-	3.53	2.65	2.73	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Barium	4,700			NA	-	_	-	-	53.5	53.1	54.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	2	2	NA	NA	_	_	_	_	< 0.32	< 0.34	0.35	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Cadmium	34	1,000	NA	NA	_	_	_	_	0.43	< 0.43	0.43	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chromium (Total)	NE	NE	NA	NA	_	_	_	_	32.1	21.3	22	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Copper	2,500		NA	NA		_	_	_	23.9	16.4	16.7	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Lead	400	1,000	NA	NA		6.5	3.27		47	8.52	8.51	3.43		3.04		3.41		2		2.81		6.38	6.52	6.11	5.43
					_	0.5	3.27	-				3.43	-	3.04	-	3.41	-	3	-	2.01	-	0.30	0.52	0.11	5.43
Mercury (7471B)	20	610	NA	NA	_	-	-	-	0.57	< 0.03	< 0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	1,400	7,500	NA	NA	-	-	-	-	12	20.9	21.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	340	10,000	NA	NA	-	-	-	-	<1.6	<1.7	<1.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver	340	10,000	NA	NA	-	-	-	-	< 0.40	< 0.43	< 0.40	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thallium	5.4	160	NA	NA	-	-	-	-	<3.6	<3.9	<3.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	470	14,000	NA	NA	-	-	-	-	15.4	25.8	26.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	20,000	610,000	NA	NA	-	-	-	-	35.9	50.1	51.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPLP Metals 6010D (mg/L)																									
Barium	NA	NA	10	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	NA	NA	0.04	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (Total)	NA	NA	0.5	NA	-	_	-	-	< 0.010	-	-	_	-	-	-	_	_	-	-	-	-	-	-	_	-
Copper	NA	NA	13	NA	_	_	-	-	-	-	-	_	_	-	-	_	_	_	-	_	_	-	-	_	-
Lead	NA	NA	0.15		_	_	_	_	< 0.010	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mercury	NA	NA	0.02		_	_	_	_	< 0.0005	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Nickel	NA	NA	1	NA					<0.0005																
	NA	NA	0.5	NA																					
Vanadium					_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	NA	NA	50	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Destisides 2021B (mg//g)																									
Pesticides 8081B (mg/Kg)	0.40	2.2	0.000																						
Chlordane	0.49	2.2	0.066		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDE, 4,4-	NE	NE	NE	NE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDT, 4,4-	NE	NE	NE	NE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDT (Total)	1.8	17	0.02	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dieldrin	0.038	0.36	0.007	0.007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPLP Pesticides 8081B (ug/L)	NA	NA	NA	Varies	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCBs 8082A (mg/Kg)																									
Aroclor-1260	NE	NE	NA	NA	-	_	-	-	< 0.38	< 0.4	< 0.41	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCBs (Total)	1	10	NA	NA	_	_	_	-	ND	ND	ND	-	_	_	_	_	_	_	_	_	_	_	_	_	_
()	1 -																								
Herbicides 8151A (mg/Kg)	Varies	Varies	Varies	s NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

CTDEEP RSRs - Connecticut Department of Energy and

Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable <xx indicates compound was not reported above</pre>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC

Bold values indicate exceedances of I/C DEC Gray shaded values indicate exceedance of GB PMC

TABLE 2 Summary of Soil Analytical Results Brainard Airport 20 Lindbergh Drive Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson)

Sample Name	1)	CTDEE	D DCD		B-41	B-41	B-42	B-43	B-43	B-44	DUP-5	B-44	B-45	B-49	B-50	B-51	B-52	B-53	B-54	B-55	B-56	B-57	B-58	B-59	DUP-7
•																									
Sample Depth		Crite	er id		5 - 7 ft	10 - 12 ft	8 - 10 ft	6 - 8 ft	13 - 15 ft	3 - 5 ft	3 - 5 ft	10 - 12 ft	6 - 8 ft	10 - 12 ft	10 - 12 ft	10 - 12 ft	8 - 10 ft	10 - 12 ft	8 - 10 ft	10 - 12 ft	10 - 12				
Sample Date	D.F.C	* 10	60	CHIPC	5/5/2023	5/5/2023	5/4/2023	5/1/2023	5/1/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/4/2023	5/17/2023	5/17/2023		
Lab Sample ID	RES	I/C	GB	GWPC	CN98854	CN98855	CN97924	CN94965	CN94966	CN97925	CN97926	CN97927	CN97928	CN97931	CN97932	CN97933	CN97934	CN97935	CN97936	CN97937	CN97938	CO08002	CO08003	CO08004	CO0800
ab Report ID	DEC	DEC	PMC	x10	GCN98846	GCN98846	GCN97920	GCN94953	GCN94953	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GCN97920	GC008002	GC008002	GC008002	
Parent Sample ID											CN97925														CO0800
Dioxane 8270D (mg/Kg)																									
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Glycol 8015D (mg/Kg)																									
Ethylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Propylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VOCs 8260C (mg/Kg)																									
Benzene	21	200	0.2	NA	< 0.2	_	< 0.0061	< 0.0055	_	< 0.71	< 0.7	< 0.0053	< 0.2	< 0.0057	< 0.0078	< 0.0058	< 0.0055	< 0.0063	< 0.0057	< 0.0056	< 0.0059	< 0.0095	< 0.0066	< 0.0075	<0.007
Butylbenzene, n-	500	1,000	70	NA	< 0.35	_	< 0.0061	< 0.0055	_	14	12	0.024	< 0.29	<0.0057	<0.0078	<0.0058	<0.0055	< 0.0063	<0.0057	< 0.0056	< 0.0059	<0.0095	<0.0066	< 0.0075	< 0.007
Butylbenzene, sec-	500	1,000	70	NA	< 0.35	_	< 0.0061	< 0.0055	_	11	10	0.019	<0.29	< 0.0057	< 0.0078	< 0.0058	<0.0055	< 0.0063	<0.0057	< 0.0056	< 0.0059	< 0.0095	<0.0066	< 0.0075	< 0.007
Carbon disulfide	500	1,000	8	NA	< 0.35	_	< 0.0061	< 0.0055	_	<7.1	<7	< 0.0053	< 0.29	< 0.0057	<0.0078	< 0.0058	< 0.0055	< 0.0063	< 0.0057	< 0.0056	< 0.0059	< 0.0095	< 0.0066	< 0.0075	< 0.007
Dioxane, 1,4-	6.1	57	0.6	NA		_	-	-	_		-	-		-	-	-	-	-	-	-	-	-	-	-	
Ethylbenzene	500	1,000	10.1	NA	< 0.35	_	< 0.0061	< 0.0055	_	5.9	5.3	< 0.0053	< 0.29	< 0.0057	< 0.0078	< 0.0058	<0.0055	< 0.0063	<0.0057	< 0.0056	< 0.0059	< 0.0095	< 0.0066	< 0.0075	< 0.007
(sopropylbenzene (cumene)	500	1,000	5	NA	< 0.35	_	< 0.0061	< 0.0055	_	4.4	4.2	0.012	<0.29	< 0.0057	<0.0078	<0.0058	< 0.0055	< 0.0063	< 0.0057	<0.0056	< 0.0059	< 0.0095	< 0.0066	< 0.0075	< 0.007
sopropyltoluene, 2- (o-Cymene)	500	1,000	5	NA	< 0.35	_	<0.0061	< 0.0055	_	<7.1	<7	0.0046	<0.29	<0.0057	<0.0078	<0.0058	<0.0055	<0.0063	<0.0057	<0.0056	< 0.0059	<0.0095	<0.0066	< 0.0075	< 0.007
	500	1,000	5	NA	<0.35			< 0.0055		8.3		0.0040	<0.29	< 0.0057	<0.0078	<0.0058	<0.0055	<0.0063	<0.0057	<0.0056	< 0.0059	<0.0095	<0.0066	< 0.0075	< 0.007
sopropyltoluene, 4- (p-Cymene)			-			-	< 0.0061		-		7.4														
Naphthalene	1,000	2,500	56	NA	< 0.35	-	< 0.0061	< 0.0055	-	42	38	0.088	<0.29	< 0.0057	<0.0078	<0.0058	< 0.0055	< 0.0063	< 0.0057	< 0.0056	< 0.0059	< 0.0095	< 0.0066	< 0.0075	< 0.007
ropylbenzene, n-	500	1,000	10	NA	< 0.35	-	< 0.0061	< 0.0055	-	11	9.6	0.026	<0.29	< 0.0057	<0.0078	<0.0058	<0.0055	< 0.0063	< 0.0057	<0.0056	< 0.0059	<0.0095	<0.0066	<0.0075	< 0.007
etrahydrofuran	61	570	0.8	NA	< 0.71	-	< 0.012	< 0.011	-	<3.6	<3.5	< 0.011	< 0.59	< 0.011	< 0.016	< 0.012	< 0.011	< 0.013	< 0.011	< 0.011	< 0.012	< 0.019	< 0.013	< 0.015	< 0.016
oluene	500	1,000	67	NA	< 0.35	-	< 0.0061	<0.0055	-	<7.1	<7	<0.0053	< 0.29	< 0.0057	<0.0078	<0.0058	<0.0055	< 0.0063	< 0.0057	< 0.0056	< 0.0059	< 0.0095	<0.0066	< 0.0075	< 0.007
Frimethylbenzene, 1,2,4-	500	1,000	28	NA	< 0.35	-	< 0.0061	< 0.0055	-	62	56	0.16	< 0.29	< 0.0057	< 0.0078	<0.0058	< 0.0055	< 0.0063	< 0.0057	< 0.0056	< 0.0059	< 0.0095	< 0.0066	< 0.0075	< 0.007
Frimethylbenzene, 1,3,5-	500	1,000	28	NA	< 0.35	-	< 0.0061	< 0.0055	-	23	21	0.015	< 0.29	< 0.0057	< 0.0078	<0.0058	< 0.0055	< 0.0063	< 0.0057	< 0.0056	< 0.0059	< 0.0095	< 0.0066	< 0.0075	< 0.007
(ylene (Total)	500	1,000	19.5	NA	< 0.35	-	< 0.0061	< 0.0055	-	14	12	0.0046	< 0.29	< 0.0057	< 0.0078	<0.0058	< 0.0055	< 0.0063	< 0.0057	< 0.0056	< 0.0059	< 0.0095	< 0.0066	< 0.0075	< 0.007
Xylene, m,p-	NE	NE	NE	NA	< 0.35	-	< 0.0061	< 0.0055	-	14	12	0.0046	< 0.29	< 0.0057	< 0.0078	<0.0058	< 0.0055	< 0.0063	< 0.0057	< 0.0056	< 0.0059	< 0.0095	< 0.0066	< 0.0075	< 0.007
Kylene, o-	NE	NE	NE	NA NA	< 0.35	-	<0.0061	<0.0055	-	<7.1	<7	<0.0053	< 0.29	<0.0057	<0.0078	<0.0058	<0.0055	< 0.0063	<0.0057	< 0.0056	< 0.0059	<0.0095	<0.0066	< 0.0075	< 0.007
SVOCs 8270D (mg/Kg)				NA NA																					
Acenaphthene	1,000	2,500	84	NA	_	< 0.31	< 0.3	_	0.45	<1.4	<1.4	< 0.29	_	< 0.31	_	< 0.33	_	< 0.32	_	< 0.32	_	< 0.33	< 0.29	< 0.31	< 0.3
Acenaphthylene	1,000	2,500	84	NA	_	< 0.31	< 0.3	_	1.1	<1.4	<1.4	< 0.29	_	< 0.31	_	< 0.33	_	< 0.32	_	< 0.32	-	< 0.33	< 0.29	< 0.31	< 0.3
Anthracene	1,000	2,500	400	NA	_	< 0.31	< 0.3	_	1.8	<1.4	<1.4	< 0.29	_	< 0.31	_	< 0.33	_	< 0.32	_	< 0.32	_	< 0.33	< 0.29	< 0.31	< 0.3
Benzo(a)anthracene	1	7.8	1	NA	_	< 0.31	<0.3	_	3	<1	<1	< 0.29	_	< 0.31	_	< 0.33	_	< 0.32	_	< 0.32	_	< 0.33	< 0.29	< 0.31	< 0.3
Benzo(a)pyrene	1	1	1	NA	_	< 0.31	<0.3	_	2.1	<1	<1	< 0.29	_	< 0.31	_	< 0.33	_	< 0.32	_	< 0.32	_	< 0.33	< 0.29	< 0.31	<0.3
Benzo(b)fluoranthene	1	7.8	1	NA	_	< 0.31	<0.3	_	2.7	<1	<1	<0.29	_	< 0.31	_	< 0.33	_	< 0.32	_	< 0.32	_	< 0.33	<0.29	< 0.31	<0.3
Benzo(g,h,i)perylene	8.4	7.0 78	1	NA		< 0.31	<0.3		0.97	<1	<1	<0.29		< 0.31		<0.33		< 0.32		< 0.32		<0.33	<0.29	< 0.31	<0.3
Benzo(k)fluoranthene	8.4	78	1	NA		< 0.31	<0.3		1.1	<1	<1	<0.29						< 0.32				<0.33	<0.29	< 0.31	<0.3
` '	44		11		_	<0.51	<0.5	-					-	< 0.31	-	< 0.33	-	<0.32	-	< 0.32	-	<0.55	<0.29	<0.31	<0.5
ois(2-Ethylhexyl)phthalate		410	11	NA	-	-	-	-	< 0.39	<2	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole	31	290	1	NA	-	-	-	-	<0.39	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	84	780	1	NA	-	< 0.31	< 0.3	-	3	<1	<1	< 0.29	-	< 0.31	-	< 0.33	-	< 0.32	-	< 0.32	-	< 0.33	< 0.29	< 0.31	< 0.3
Dibenz(a,h)anthracene	1	1	1	NA	-	< 0.31	< 0.3	-	0.34	<1	<1	<0.29	-	< 0.31	-	< 0.33	-	< 0.32	-	< 0.32	-	< 0.33	< 0.29	< 0.31	< 0.3
luoranthene	1,000	2,500	56	NA	-	< 0.31	< 0.3	-	6.5	<1.4	<1.4	< 0.29	-	< 0.31	-	< 0.33	-	< 0.32	-	< 0.32	-	< 0.33	< 0.29	< 0.31	< 0.3
luorene	1,000	2,500	56	NA	-	< 0.31	< 0.3	-	1.9	<1.4	<1.4	< 0.29	-	< 0.31	-	< 0.33	-	< 0.32	-	< 0.32	-	< 0.33	< 0.29	< 0.31	< 0.3
ndeno(1,2,3-cd)pyrene	1	7.8	1	NA	-	< 0.31	< 0.3	-	1.1	<1	<1	< 0.29	-	< 0.31	-	< 0.33	-	< 0.32	-	< 0.32	-	< 0.33	< 0.29	< 0.31	< 0.3
lethylnaphthalene, 2-	270	1,000	5.6	NA	-	< 0.31	< 0.3	-	0.34	44	45	< 0.29	-	< 0.31	-	< 0.33	-	< 0.32	-	< 0.32	-	< 0.33	< 0.29	< 0.31	< 0.3
laphthalene .	1,000	2,500	56	NA	-	< 0.31	< 0.3	-	0.67	17	18	<0.29	-	< 0.31	-	< 0.33	-	< 0.32	-	< 0.32	-	< 0.33	< 0.29	< 0.31	< 0.3
•	1,000	2,500	40	NA	_	< 0.31	< 0.3	_	1.1	<1.4	<1.4	< 0.29	_	< 0.31	_	< 0.33	_	< 0.32	_	< 0.32	-	< 0.33	< 0.29	< 0.31	<0.3
Phenanthrene			70																						

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018) Boxed values indicate exceedances of I/C DEC Bold values indicate exceedances of I/C DEC CT ETPH - Connecticut Department of Public Health Extractable

Total Petroleum Hydrocarbons NE - Not established; NA - Not Applicable

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg) PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

TABLE 2

Summary of Soil Analytical Results

Brainard Airport

20 Lindbergh Drive

Hartford, Connecticut
Last Updated: 8/29/2023 (J. Jackson)

Last Updated: 8/29/2023 (J. Jackson	n)																								
Sample Name		CTDEE	P RSR		B-60	B-61	B-62	B-63	B-64	B-65	B-66	B-67	DUP-10	B-68	B-69	B-70	B-71	B-72	B-73	B-74	B-75	DUP-11	B-76	B-77	B-78
Sample Depth		Crite	eria		10 - 12 ft		10 - 11 ft	10 - 12 ft	10 - 12 ft		9 - 10 ft	7 - 9 ft	7 - 9 ft	8 - 10 ft	5 - 7 ft	5 - 7 ft	8 - 10 ft	10 - 12 ft	9 - 10 ft						
Sample Date						5/18/2023									5/18/2023						5/18/2023		5/18/2023		
Lab Sample ID	RES	I/C	GB	GWPC	CO08007	CO09163	CO09164	CO08006	CO08008	CO08009	CO09165	CO09166	CO09182	CO09167	CO09168	CO09169	CO09170	CO09171	CO09172		CO09174	CO09183			CO09177
		DEC	PMC																						
Lab Report ID	DEC	DEC	PMC	x10	GC008002	GC009163	GCO09163	GC008002	GC008002	GC008002	GC009103	GC009103		GC009103	GC009163	GC009163	GCO09163	GC009103	GC009163	GC009163	GC009163		GC009163	GC009103	GC009103
Parent Sample ID													CO09166									CO09174			
CTETPH 8015D (mg/Kg)	500	2,500	2,500	NA	<320	<62	<62	<60	<76	<65	<54	<63	<64	<66	<65	<65	<65	<65	<65	<65	<66	<66	<66	<63	<69
PFAS CT DEEP (mg/Kg)																									
Perfluorohexanesulfonic Acid (PFHxS		NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanesulfonic Acid (PFOS)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS5 (Total)	1.35	41	0.014	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS CT DEEP (ng/L)																									
PFAS (Total)	NA	NA	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
, ,																									
Metals 6010D (mg/Kg)																									
Antimony	27	8,200	NA	NA	-	-	-	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_
Arsenic	10	10	NA	NA	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Barium	4,700			NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Beryllium	2	2	NA	NA																					
Cadmium	34	1,000	NA	NA																					
	NE		NA	NA	_	-	-	_	-	-	-	-	-	-	-	_	_	-	-	-	_	-	-	-	-
Chromium (Total)		NE 76.000			_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	2,500		NA	NA	-	-	-	-	-	-	-	-	-	-				-	-		-	-	-	-	-
Lead	400	1,000	NA	NA	-	5.28	-	2.98	-	3.89	5.08	-	-	12.4	7.16	7.32	7.09	-	6.15	7.53	11.3	11.9	-	6.52	-
Mercury (7471B)	20	610	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	1,400		NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	340	10,000	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver	340	10,000	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thallium	5.4	160	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	470	14,000	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	20,000	610,000	NA	NA	-	-	-	_	-	-	-	-	-	-	_	_	_	-	_	_	_	-	_	-	-
	, ·	•																							
SPLP Metals 6010D (mg/L)																									
Barium	NA	NA	10	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Beryllium	NA	NA	0.04	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chromium (Total)	NA	NA	0.5	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Copper	NA	NA	13	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	NA	NA		NA	_																				
Lead			0.15		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	NA	NA	0.02	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	NA	NA	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	NA	NA	0.5	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	NA	NA	50	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides 8081B (mg/Kg)																									
Chlordane	0.49	2.2	0.066		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDE, 4,4-	NE	NE	NE	NE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDT, 4,4-	NE	NE	NE	NE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDT (Total)	1.8	17	0.02	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dieldrin	0.038	0.36	0.007	0.007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPLP Pesticides 8081B (ug/L)	NA	NA	NA	Varies	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
, ,					1																				
PCBs 8082A (mg/Kg)					1																				
Aroclor-1260	NE	NE	NA	NA	-	-	-	-	-	-	-	-	-	-	_	_	-	-	_	_	-	-	_	-	-
PCBs (Total)	1	10	NA	NA	-	-	_	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_
()	1 -		. *** *	. ** *	ĺ																				
Herbicides 8151A (mg/Kg)	Varies	Varies	Varies	NA	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_

CTDEEP RSRs - Connecticut Department of Energy and

Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable <xx indicates compound was not reported above</p>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC

Bold values indicate exceedances of I/C DEC Gray shaded values indicate exceedance of GB PMC

TABLE 2 Summary of Soil Analytical Results Brainard Airport 20 Lindbergh Drive

Hartford, Connecticut Last Updated: 8/29/2023 (J. Jackson)

Last Updated: 8/29/2023 (J. Jackso	n)	CTDEE	D DCD		D 60	D 64	D 63	D 63	D 64	D. 65	D 66	D 67	DUD 10	D 60	D 60	D 70	D 74	D 72	D 70	D 74	D 75	DUD 44	D 76		D 70
Sample Name		CTDEE			B-60	B-61	B-62	B-63	B-64	B-65	B-66	B-67	DUP-10	B-68	B-69	B-70	B-71	B-72	B-73	B-74	B-75	DUP-11	B-76	B-77	B-78
Sample Depth		Crite	егіа		10 - 12 ft	10 - 12 ft	10 - 11 ft	10 - 12 ft	10 - 12 ft	10 - 12 ft	9 - 10 ft	7 - 9 ft	7 - 9 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	5 - 7 ft	5 - 7 ft	8 - 10 ft	10 - 12 ft	9 - 10 ft
Sample Date	550	7.10	0.0	CIMPO	5/17/2023	5/18/2023	5/18/2023	5/17/2023	5/17/2023	5/17/2023	5/18/2023	5/18/2023	5/18/2023	5/18/2023	5/18/2023		5/18/2023	5/18/2023	5/18/2023	5/18/2023	5/18/2023	5/18/2023	5/18/2023	5/18/2023	5/18/2023
Lab Sample ID	RES	I/C	GB	GWPC	CO08007	CO09163	CO09164	CO08006	CO08008	CO08009	CO09165	CO09166	CO09182	CO09167	CO09168	CO09169	CO09170	CO09171	CO09172	CO09173	CO09174	CO09183	CO09175	CO09176	CO09177
Lab Report ID	DEC	DEC	PMC	x10	GC008002	GC009163	GC009163	GC008002	GC008002	GC008002	GCO09163	GC009163	GC009163	GC009163	GC009163	GC009163	GC009163	GC009163	GC009163	GCO09163	GC009163		GC009163	GC009163	GC009163
Parent Sample ID													CO09166									CO09174			
Dioxane 8270D (mg/Kg)			0.6																						
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Glycol 8015D (mg/Kg)																									
Ethylene glycol	1,000	2,500	200	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Propylene glycol	1,000	2,500	200	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Tropylene grycor	1,000	2,300	200	IVA																					
VOCs 8260C (mg/Kg)																									
Benzene	21	200	0.2	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.2	< 0.2	< 0.2	< 0.0055	< 0.0053	< 0.0061	<0.0058	< 0.011	< 0.0057	< 0.2	< 0.2	< 0.0058	< 0.0055	< 0.2
Butylbenzene, n-	500	1,000	70	NA	<0.006	<0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	<0.38	< 0.0055	<0.0053	<0.0061	<0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	< 0.44
Butylbenzene, sec-	500	1,000	70	NA	<0.006	<0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	<0.38	< 0.0055	< 0.0053	< 0.0061	<0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	<0.44
Carbon disulfide	500	1,000	8	NA	<0.006	<0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	<0.47	<0.38	< 0.0055	< 0.0053	<0.0061	<0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	<0.44
Dioxane, 1,4-	6.1	57	0.6	NA	-	-	-	-	-	-	-			-	-	-	-	-		-		-	-	-	-
Ethylbenzene	500	1,000	10.1	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	< 0.38	< 0.0055	< 0.0053	< 0.0061	< 0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	< 0.44
Isopropylbenzene (cumene)	500	1,000	5	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	< 0.38	<0.0055	< 0.0053	< 0.0061	< 0.0058	< 0.011	< 0.0057	< 0.41	0.31	< 0.0058	< 0.0055	< 0.44
Isopropyltoluene, 2- (o-Cymene)	500	1,000	5	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	< 0.38	< 0.0055	< 0.0053	< 0.0061	< 0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	< 0.44
Isopropyltoluene, 4- (p-Cymene)	500	1,000	5	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	< 0.38	<0.0055	< 0.0053	< 0.0061	< 0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	< 0.44
Naphthalene	1,000	2,500	56	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	< 0.38	<0.0055	< 0.0053	< 0.0061	<0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	< 0.44
Propylbenzene, n-	500	1,000	10	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	0.78	< 0.0055	< 0.0053	< 0.0061	< 0.0058	< 0.011	< 0.0057	0.26	0.61	< 0.0058	< 0.0055	< 0.44
Tetrahydrofuran	61	570	0.8	NA	< 0.012	< 0.012	< 0.012	< 0.01	< 0.013	< 0.015	< 0.011	< 0.8	< 0.8	< 0.77	< 0.011	< 0.011	< 0.012	< 0.012	< 0.021	< 0.011	< 0.8	< 0.8	< 0.012	< 0.011	< 0.8
Toluene	500	1,000	67	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	< 0.38	< 0.0055	< 0.0053	< 0.0061	< 0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	< 0.44
Trimethylbenzene, 1,2,4-	500	1,000	28	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	2.2	< 0.0055	< 0.0053	< 0.0061	< 0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	0.45
Trimethylbenzene, 1,3,5-	500	1,000	28	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	0.81	< 0.0055	< 0.0053	< 0.0061	< 0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	0.19
Xylene (Total)	500	1,000	19.5	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	5.7	< 0.0055	< 0.0053	< 0.0061	< 0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	0.62
Xylene, m,p-	NE	NE	NE	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	5.7	< 0.0055	< 0.0053	< 0.0061	<0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	<0.0058	< 0.0055	0.62
Xylene, o-	NE	NE	NE	NA	< 0.006	< 0.0058	< 0.0059	< 0.0052	< 0.0064	< 0.0074	< 0.0056	< 0.42	< 0.47	< 0.38	< 0.0055	< 0.0053	< 0.0061	<0.0058	< 0.011	< 0.0057	< 0.41	< 0.46	< 0.0058	< 0.0055	< 0.44
				NA																					
SVOCs 8270D (mg/Kg)				NA																					
Acenaphthene	1,000	2,500	84	NA	-	< 0.3	-	<0.28	-	< 0.3	< 0.25	-	-	< 0.31	< 0.3	< 0.3	< 0.3	-	< 0.3	< 0.3	< 0.31	< 0.3	-	< 0.29	-
Acenaphthylene	1,000		84	NA	-	< 0.3	-	<0.28	-	< 0.3	<0.25	-	-	< 0.31	< 0.3	<0.3	< 0.3	-	< 0.3	<0.3	< 0.31	< 0.3	-	<0.29	-
Anthracene	1,000	2,500	400	NA	-	<0.3	-	<0.28	-	< 0.3	<0.25	-	-	< 0.31	< 0.3	< 0.3	<0.3	-	< 0.3	<0.3	< 0.31	< 0.3	-	<0.29	-
Benzo(a)anthracene	1	7.8	1	NA	-	<0.3	-	<0.28	-	< 0.3	< 0.25	-	-	< 0.31	< 0.3	<0.3	<0.3	-	< 0.3	<0.3	< 0.31	< 0.3	-	< 0.29	-
Benzo(a)pyrene	1	1	1	NA	-	<0.3	-	<0.28	-	< 0.3	<0.25	-	-	< 0.31	< 0.3	<0.3	<0.3	-	< 0.3	<0.3	< 0.31	< 0.3	-	<0.29	-
Benzo(b)fluoranthene	1	7.8	1	NA	-	<0.3	-	<0.28	-	< 0.3	< 0.25	-	-	< 0.31	< 0.3	<0.3	<0.3	-	< 0.3	<0.3	< 0.31	< 0.3	-	< 0.29	-
Benzo(g,h,i)perylene	8.4	<i>78</i>	1	NA	-	<0.3	-	<0.28	-	< 0.3	<0.25	-	-	< 0.31	< 0.3	<0.3	< 0.3	-	<0.3	<0.3	< 0.31	<0.3	-	<0.29	-
Benzo(k)fluoranthene	8.4	78	1	NA	-	< 0.3	-	<0.28	-	<0.3	<0.25	-	-	< 0.31	< 0.3	< 0.3	< 0.3	-	< 0.3	< 0.3	< 0.31	< 0.3	-	<0.29	-
bis(2-Ethylhexyl)phthalate	44 31	410	11 1	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole		290 780	1	NA	_	- 0.2	-	-0.20	-	<0.3	- <0.25	-	-	-0.21	-0.2	-0.3	-0.2	-	-0.2	<0.3	-0.21	-0.2	-	<0.20	-
Chrysene	84	/0U 1	1	NA NA	_	<0.3 <0.3	_	<0.28 <0.28	-	< 0.3	<0.25	_	-	<0.31 <0.31	<0.3 <0.3	<0.3 <0.3	<0.3 <0.3	-	<0.3 <0.3	<0.3	<0.31 <0.31	<0.3 <0.3	-	<0.29 <0.29	_
Dibenz(a,h)anthracene Fluoranthene	1,000	2,500	56	NA NA	_	<0.3	_	<0.28	_	< 0.3	<0.25	_	_	< 0.31	< 0.3	<0.3	< 0.3	-	<0.3	<0.3	<0.31	<0.3	_	<0.29	_
Fluorene	1,000		56	NA	_	<0.3	_	<0.28	_	<0.3	<0.25	_	_	< 0.31	< 0.3	<0.3	<0.3	_	<0.3	<0.3	<0.31	<0.3	_	<0.29	_
	1,000	2,500 <i>7.8</i>	50 1	NA NA	_	<0.3	_	<0.28	-	<0.3	<0.25	_	-	< 0.31	< 0.3	<0.3	< 0.3	-	<0.3	<0.3	<0.31	<0.3	-	<0.29	_
Indeno(1,2,3-cd)pyrene Methylnaphthalene, 2-	270	7.8 1,000	5.6		_	<0.3	-		-	<0.3	<0.25 <0.25	-	-	<0.31	< 0.3	<0.3	< 0.3	-	<0.3	<0.3 <0.3	<0.31	<0.3	-	<0.29	-
Naphthalene	1,000		5.6 56	NA NA	_	<0.3	_	<0.28 <0.28	-	<0.3	<0.25	_	-	< 0.31	< 0.3	<0.3	< 0.3	-	<0.3	<0.3	<0.31	<0.3	-	<0.29	_
Phenanthrene	1,000	,	40	NA NA	_	<0.3	_	<0.28	_	<0.3	<0.25	_	_	< 0.31	< 0.3	<0.3	< 0.3	-	<0.3	<0.3	<0.31	<0.3	_	<0.29	_
	1,000	,	40 40	NA NA	_	< 0.3	-	<0.28	-	< 0.3	<0.25	-	-	< 0.31	< 0.3	< 0.3	< 0.3	-	< 0.3	< 0.3	< 0.31	< 0.3	-	<0.29	-
Pyrene	1,000	∠,500	40	IVA	-	< 0.3	-	<0.28	-	< 0.3	<0.25	-	-	<0.31	< 0.3	< 0.3	< 0.3	-	<0.3	< 0.3	<0.31	< U.3	-	<0.29	-

CTDEEP RSRs - Connecticut Department of Energy and Environmental GB PMC- Pollutant Mobility Criteria in a GB groundwater area

Protection Remediation Standard Regulations (February 16, 2021)
and CTDEEP Additional Polluting Substances (September 20, 2018)
Boxed values indicate exceedances of I/C DEC
Bold values indicate exceedances of I/C DEC

CT ETPH - Connecticut Department of Public Health Extractable

Total Petroleum Hydrocarbons NE - Not established; NA - Not Applicable

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

TABLE 2 Summary of Soil Analytical Results

Brainard Airport 20 Lindbergh Drive

Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson	n)																								
Sample Name		CTDEE	P RSR		B-79	B-80	B-81	B-82	B-83	B-84	B-85	B-86	B-88	DUP-8	B-89	B-89	B-90	B-91	B-92	B-92	B-93	B-94	B-95	B-96	B-97
Sample Depth		Crite	eria		11 - 12 ft	10 - 11 ft	10 - 11 ft	1 - 3 ft	0.5 - 2.5 ft	0 - 2 ft	3 - 5 ft	0 - 2 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	8 - 10 ft	0.5 - 2.5 ft	3 - 5 ft	2 - 4 ft	8 - 10 ft	1 - 2.5 ft	3 - 5 ft	3 - 5 ft	3 - 5 ft	3 - 5 ft
Sample Date									4/28/2023	5/4/2023	5/5/2023	5/5/2023	5/17/2023	5/17/2023	5/17/2023		5/17/2023		5/17/2023	5/17/2023			4/27/2023	4/27/2023	4/27/2023
Lab Sample ID	RES	I/C	GB	GWPC	CO09178	CO09179	CO09180	CN93818	CN93819	CN97939	CN98859	CN98856	CO08010	CO08011	CO08013	CO08014	CO08015	CN94967	CO08016	CO08017	CN93820	CN92788	CN92789	CN92790	CN92791
Lab Report ID	DEC	DEC	PMC	x10					GCN93805											GC008002					
Parent Sample ID														CO08010											
CTETPH 8015D (mg/Kg)	500	2,500	2,500	NA	<69	<68	<64	<56	<56	<58	<65	<61	<66	<64	<65	<71	<60	5,100	<66	<66	<59	<65	<62	<59	<55
0.1 00102 (g, 1.g)	300	2,500	2,500		103	100		100	100	100	100	101	100		100	***	100	5/255	100	100	133	100	102	133	100
PFAS CT DEEP (mg/Kg)																									
Perfluorohexanesulfonic Acid (PFHxS	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanesulfonic Acid (PFOS)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS5 (Total)	1.35	41	0.014	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS CT DEEP (ng/L)																									
PFAS (Total)	NA	NA	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals 6010D (mg/Kg)																									
Antimony	27	8,200	NA	NA	-	-	-	<3.9	<4.1	-	-	<4.2	<4.5	<4.0	<4.4	< 5.1	<3.7	-	<4.1	-	<4.1	-	-	-	-
Arsenic	10	10	NA	NA	-	-	-	2.65	2.26	-	-	3.62	4.27	4.3	3.26	2.6	3.93	-	4	-	3.37	-	-	-	-
Barium	4,700	140,000		NA	-	-	-	51.7	58.6	-	-	67.4	83.3	83	60.9	62.9	93.4	-	89.1	-	57	-	-	-	-
Beryllium	2	2	NA	NA	-	-	-	0.33	< 0.33	-	-	0.45	0.55	0.55	0.44	< 0.41	0.51	-	0.56	-	0.35	-	-	-	-
Cadmium	34	1,000	NA	NA	-	-	-	< 0.39	< 0.41	-	-	1.42	0.68	0.67	0.45	< 0.51	0.56	-	0.64	-	< 0.41	-	-	-	-
Chromium (Total)	NE 2.F00	NE 76.000	NA	NA	-	-	-	19.8	18.4	-	-	26.9	30.6	30.9	24.7	22.9	23.3	-	32	-	20.3	-	-	-	-
Copper	2,500	76,000	NA	NA	0.10	- 7.22	-	18.1	17.5	-	- - 04	24.1	23.6	24.2	19.1	16.4	22.4	-	25.1	-	30.7	4.70	4.03	-	2.01
Lead	400	1,000	NA	NA	8.18	7.32	-	9.81	6.68	13.1	5.84	12.3	8.24	8.78	5.44	5.09	15.9	-	8.16	6.12	39.1	4.79	4.93	4.74	3.01
Mercury (7471B)	20	610	NA	NA	-	-	-	< 0.03	0.04	-	-	0.07	< 0.03	< 0.03	< 0.03	< 0.01	0.04	-	< 0.03	-	0.09	-	-	-	-
Nickel Selenium	1,400 340	7,500 10,000	NA NA	NA NA	_	-	-	18.2 <1.6	18.8	-	-	24.8	29 <1.8	29.3 <1.6	23.8 <1.8	20.4 <2.0	22.4 <1.5	-	30.9 <1.6	-	18.4 <1.6	-	-	-	-
Silver	340	10,000	NA	NA	_	-	-	<0.39	<1.6 <0.41	-	-	<1.7 <0.42	<0.45	<0.40	<0.44	<0.51	<0.37	_	<0.41	-	<0.41	-	-	_	-
Thallium	5.4	160	NA	NA	_	_	_	<3.5	<3.7	_	_	<3.8	<4.1	<3.6	<4.0	<4.6	<3.3	_	<3.7	_	<3.7	_	_	_	_
Vanadium	470	14,000	NA	NA		_	_	23.8	22.3	_		30.8	35.3	35.6	29.2	27	33.7		36.5	_	24.5	_		_	
Zinc		610,000		NA	_	_	_	47	44.7	_	_	61.5	70.7	71.4	56.8	52	55.9	_	74.6	_	75.2	_	_	_	_
	, , , , , ,	,																							
SPLP Metals 6010D (mg/L)																									
Barium	NA	NA	10	NA	-	-	-	-	-	-	-	-	0.011	0.013	-	-	0.015	-	0.025	-	-	-	-	-	-
Beryllium	NA	NA	0.04	NA	-	-	-	-	-	-	-	-	< 0.001	< 0.001	-	-	-	-	< 0.001	-	-	-	-	-	-
Chromium (Total)	NA	NA	0.5	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.010	-	-	-	-	-	-
Copper	NA	NA	13	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	NA	NA	0.15	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	NA	NA	0.02	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	NA	NA	1	NA	-	-	-	-	-	-	-	-	< 0.010	< 0.010	-	-	-	-	< 0.010	-	-	-	-	-	-
Vanadium	NA	NA	0.5	NA	-	-	-	-	-	-	-	-	< 0.010	< 0.010	-	-	-	-	< 0.010	-	-	-	-	-	-
Zinc	NA	NA	50	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides 8081B (mg/Kg)																									
Chlordane	0.49	2.2	0.066	0.066	-	_	-	-	_	-	_	_	-	-	_	-	_	-	_	-	_	_	_	-	-
DDE, 4,4-	NE	NE	NE	NE	_	_	-	_	_	_	_	-	-	-	_	_	_	_	_	_	_	_	_	-	_
DDT, 4,4-	NE	NE	NE	NE	-	-	_	-	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	-
DDT (Total)	1.8	17	0.02	0.02	-	-	-	-	-	-	_	_	_	-	-	_	-	_	-	-	-	-	_	_	_
Dieldrin	0.038	0.36	0.007	0.007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPLP Pesticides 8081B (ug/L)	NA	NA	NA	Varies	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DCD - 00024 (** - ***)																									
PCBs 8082A (mg/Kg)	NIE	NIE	D.I.O.	D.I.O.				.0.20	.0.20			.0.41	.0.44	.0.44	.0.44	.0.7	.0.4		.0.44		.0.20				
Aroclor-1260	NE	NE 10	NA	NA	-	-	-	<0.38	<0.38	-	-	<0.41	<0.44	<0.44	<0.44	< 0.7	<0.4	-	< 0.44	-	< 0.39	-	-	-	-
PCBs (Total)	1	10	NA	NA	-	-	-	ND	ND	-	-	ND	ND	ND	ND	ND	ND	-	ND	-	ND	-	-	-	-
Herbicides 8151A (mg/Kg)	Varies	Varies	Varies	NA	-	-	-	_	-	-	_	_	-	-	-	_	-	_	-	-	-	-	-	_	-

CTDEEP RSRs - Connecticut Department of Energy and

Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable <xx indicates compound was not reported above</p>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC

Bold values indicate exceedances of I/C DEC Gray shaded values indicate exceedance of GB PMC

J:\C\C5182 CT Department of Community and Development (DECD)\Reports\2023_Phase II-III ESA\Report\Appendix B - Tables\Table 2 - Soil Summary.xlsx

TABLE 2 Summary of Soil Analytical Results Brainard Airport 20 Lindbergh Drive Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson)

Sample Name	1)	CTDEEF	D DCD		B-79	B-80	B-81	B-82	B-83	B-84	B-85	B-86	B-88	DUP-8	B-89	B-89	B-90	B-91	B-92	B-92	B-93	B-94	B-95	B-96	B-97
Sample Name Sample Depth		Crite			11 - 12 ft	10 - 11 ft	10 - 11 ft	1 - 3 ft	0.5 - 2.5 ft	0 - 2 ft	3 - 5 ft	0 - 2 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	8 - 10 ft		3 - 5 ft	2 - 4 ft	8 - 10 ft	1 - 2.5 ft	3 - 5 ft	3 - 5 ft	3 - 5 ft	3 - 5 ft
·		Crite	i ia																						
Sample Date	DEC	1.00	CD	CMIDC	5/18/2023	5/18/2023	5/18/2023	4/28/2023	4/28/2023	5/4/2023	5/5/2023	5/5/2023	5/17/2023	5/17/2023		5/17/2023	5/17/2023	5/1/2023	5/17/2023	5/17/2023	4/28/2023	4/27/2023	4/27/2023	4/27/2023	4/27/2023
Lab Sample ID	RES	I/C	GB PMC	GWPC	CO09178	CO09179	CO09180	CN93818	CN93819	CN97939	CN98859	CN98856	CO08010	CO08011	CO08013	CO08014	CO08015	CN94967	CO08016	CO08017	CN93820	CN92788	CN92789	CN92790	CN92791
Lab Report ID	DEC	DEC	PMC	×10	GCO09163	GC009163	GC009163	GCN93805	GCN93805	GCN97920	GCN98846	GCN98846	GC008002	GC008002	GC008002	GC008002	GC008002	GCN94953	GC008002	GC008002	GCN93805	GCN92786	GCN92786	GCN92786	GCN92786
Parent Sample ID														CO08010											
Dioxane 8270D (mg/Kg)																									
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Glycol 8015D (mg/Kg)																									
Ethylene glycol	1,000	2,500	200	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Propylene glycol	1,000	2,500	200	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Propylene grycol	1,000	2,300	200	IVA																					
VOCs 8260C (mg/Kg)																									
Benzene	21	200	0.2	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	0.23	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Butylbenzene, n-	500	1,000	70	NA	< 0.0063	<0.006	< 0.0049	< 0.0053	< 0.0052	<0.0057	< 0.0064	< 0.0051	<0.0083	< 0.0059	<0.006	< 0.0071	< 0.0059	<0.73	< 0.0054	< 0.0054	<0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Butvlbenzene, sec-	500	1,000	70	NA	< 0.0063	<0.006	<0.0049	< 0.0053	< 0.0052	<0.0057	< 0.0064	< 0.0051	<0.0083	< 0.0059	<0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Carbon disulfide	500	1,000	8	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Dioxane, 1,4-	6.1	57	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	500	1,000	10.1	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Isopropylbenzene (cumene)	500	1,000	5	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Isopropyltoluene, 2- (o-Cymene)	500	1,000	5	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Isopropyltoluene, 4- (p-Cymene)	500	1,000	5	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Naphthalene	1,000	2,500	56	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	77	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Propylbenzene, n-	500	1,000	10	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Tetrahydrofuran	61	<i>570</i>	0.8	NA	< 0.013	< 0.012	< 0.0099	< 0.011	< 0.01	< 0.011	< 0.013	< 0.01	< 0.017	< 0.012	< 0.012	< 0.014	< 0.012	< 0.8	< 0.011	< 0.011	< 0.01	< 0.014	< 0.011	0.012	< 0.01
Toluene	500	1,000	67	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Trimethylbenzene, 1,2,4-	500	1,000	28	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	1.3	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Trimethylbenzene, 1,3,5-	500	1,000	28	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Xylene (Total)	500	1,000	19.5	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Xylene, m,p-	NE	NE	NE	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	< 0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
Xylene, o-	NE	NE	NE	NA	< 0.0063	< 0.006	< 0.0049	< 0.0053	< 0.0052	< 0.0057	< 0.0064	< 0.0051	<0.0083	< 0.0059	< 0.006	< 0.0071	< 0.0059	< 0.73	< 0.0054	< 0.0054	< 0.0052	< 0.0071	< 0.0054	< 0.0061	< 0.0051
				NA																					
SVOCs 8270D (mg/Kg)				NA																					
Acenaphthene	1,000	2,500	84	NA	< 0.33	< 0.31	-	< 0.26	< 0.27	< 0.27	< 0.31	< 0.29	< 0.31	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	< 0.27	< 0.3	< 0.29	< 0.27	< 0.26
Acenaphthylene	1,000	2,500	84	NA	< 0.33	< 0.31	-	< 0.26	< 0.27	< 0.27	< 0.31	< 0.29	< 0.31	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	< 0.27	< 0.3	< 0.29	< 0.27	< 0.26
Anthracene	1,000	2,500	400	NA	< 0.33	< 0.31	-	< 0.26	< 0.27	< 0.27	< 0.31	< 0.29	< 0.31	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	< 0.27	< 0.3	< 0.29	< 0.27	< 0.26
Benzo(a)anthracene	1	7.8	1	NA	< 0.33	< 0.31	-	< 0.26	< 0.27	<0.27	< 0.31	<0.29	< 0.31	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	0.39	< 0.3	< 0.29	< 0.27	< 0.26
Benzo(a)pyrene	1	1	1	NA	< 0.33	< 0.31	-	<0.26	<0.27	<0.27	< 0.31	<0.29	< 0.31	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	0.46	< 0.3	<0.29	< 0.27	<0.26
Benzo(b)fluoranthene	1	7.8	1	NA	< 0.33	< 0.31	-	<0.26	<0.27	<0.27	< 0.31	<0.29	< 0.31	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	0.54	< 0.3	<0.29	< 0.27	<0.26
Benzo(g,h,i)perylene	8.4	<i>78</i>	1	NA	< 0.33	< 0.31	-	<0.26	< 0.27	<0.27	< 0.31	<0.29	< 0.7	<0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	0.31	< 0.3	< 0.29	< 0.27	< 0.26
Benzo(k)fluoranthene	8.4	78	1	NA	< 0.33	< 0.31	-	<0.26	< 0.27	<0.27	< 0.31	<0.29	< 0.31	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	< 0.27	< 0.3	< 0.29	<0.27	< 0.26
bis(2-Ethylhexyl)phthalate	44	410	11	NA	-	-	-	<0.38	< 0.38	-	-	< 0.42	< 0.44	< 0.43	< 0.44	< 0.47	< 0.4	-	< 0.44	-	< 0.39	-	-	-	-
Carbazole	31	290	1	NA	_	-	-	<0.38	<0.38	-	-	< 0.42	< 0.44	< 0.43	< 0.44	< 0.47	< 0.4	-	< 0.44	-	< 0.39		-	-	-
Chrysene	84	780	1	NA	< 0.33	< 0.31	-	<0.26	< 0.27	< 0.27	< 0.31	<0.29	< 0.31	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	0.42	< 0.3	< 0.29	< 0.27	<0.26
Dibenz(a,h)anthracene	1	1	1	NA	< 0.33	< 0.31	-	<0.26	< 0.27	< 0.27	< 0.31	<0.29	< 0.7	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	< 0.27	< 0.3	< 0.29	< 0.27	< 0.26
Fluoranthene	1,000	2,500	56	NA	< 0.33	< 0.31	-	< 0.26	<0.27	< 0.27	< 0.31	<0.29	< 0.31	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	0.64	<0.3	<0.29	< 0.27	<0.26
Fluorene	1,000	2,500	56	NA	< 0.33	< 0.31	-	<0.26	<0.27	<0.27	< 0.31	<0.29	< 0.31	<0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	< 0.27	< 0.3	< 0.29	<0.27	< 0.26
Indeno(1,2,3-cd)pyrene	1	7.8	1	NA	< 0.33	< 0.31	-	<0.26	<0.27	<0.27	< 0.31	<0.29	< 0.7	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	0.3	< 0.3	< 0.29	< 0.27	< 0.26
Methylnaphthalene, 2-	270	1,000	5.6	NA	< 0.33	< 0.31	-	<0.26	<0.27	<0.27	< 0.31	<0.29	< 0.31	<0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	< 0.27	< 0.3	< 0.29	<0.27	< 0.26
Naphthalene	1,000	2,500	56	NA	< 0.33	< 0.31	-	<0.26	<0.27	<0.27	< 0.31	<0.29	< 0.31	<0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	< 0.27	< 0.3	< 0.29	<0.27	< 0.26
Phenanthrene	1,000	2,500	40	NA	< 0.33	< 0.31	-	<0.26	<0.27	<0.27	< 0.31	<0.29	< 0.31	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	< 0.27	< 0.3	< 0.29	<0.27	< 0.26
Pyrene	1,000	2,500	40	NA	< 0.33	<0.31	-	<0.26	<0.27	< 0.27	< 0.31	<0.29	< 0.31	< 0.3	< 0.31	< 0.33	<0.28	-	< 0.31	< 0.31	0.65	< 0.3	<0.29	< 0.27	<0.26

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018) Boxed values indicate exceedances of I/C DEC Bold values indicate exceedances of I/C DEC

NE - Not established; NA - Not Applicable

CT ETPH - Connecticut Department of Public Health Extractable Total Petroleum Hydrocarbons

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

TABLE 2

Summary of Soil Analytical Results Brainard Airport

20 Lindbergh Drive Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson)

Sample Depth					3 - 5 ft	5 - 6 ft	8 - 10 ft	8 - 10 ft	8 - 10 ft	3 - 5 ft	3 - 5 ft	2 - 4 ft	0.5 - 2.5 ft	1 - 2 ft	1 - 3 ft	3 - 5 ft	2 - 4 ft	0 - 2 ft	2 - 4 ft	0 - 2 ft	1 - 3 ft	1 - 3 ft	0.25 - 2.25 ft	t 8 - 10 ft	B-118 0 - 2 ft
		Crite			4/27/2023						5/1/2023	5/5/2023		5/18/2023	5/5/2023	5/5/2023						5/17/2023	5/17/2023	5/17/2023	
Sample Date Lab Sample ID	RES	I/C	GB	GWPC	CN92795	CN93821	CN93822	CO08012	CO08018	CN94968	CN94969	CN98860		CO09181	CN98861	CN98862	CN98863	CN92792	CN92793	CN92794	CO08019	CO08020	CO08021	CO08022	
Lab Report ID	DEC	DEC	PMC	x10			GCN93805										GCN98846					GC008002			
Parent Sample ID	DLC	DLC	FINC	X10	GCN92700	GCN93003	GCN93003	0000002	0000002	CCN94933	CN94968	GCN90040	GCN97920	00009103	GCN30040	GCN 90040	GCN90040	GCN92700	GCN32700	GCN92700	0000002	0000002	0000002	0000002	0001027
CTETPH 8015D (mg/Kg)	500	2 500	2,500	NA	<59	<60	-62	<73	-66	110	110	-E6	-60	620	<58	-62	<63	<62	<63	<53	<62	<62	<64	<64	770
CIEIPH 8015D (mg/kg)	500	2,500	2,500	NA	< 39	<00	<63	3</td <td><66</td> <td>110</td> <td>110</td> <td><56</td> <td><60</td> <td>620</td> <td>< 58</td> <td><63</td> <td>< 0.3</td> <td><02</td> <td>< 0.3</td> <td><53</td> <td><02</td> <td><02</td> <td>< 04</td> <td>< 04</td> <td>//0</td>	<66	110	110	<56	<60	620	< 58	<63	< 0.3	<02	< 0.3	<53	<02	<02	< 04	< 04	//0
PFAS CT DEEP (mg/Kg)																									
Perfluorohexanesulfonic Acid (PFHxS		NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanesulfonic Acid (PFOS)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS5 (Total)	1.35	41	0.014	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS CT DEEP (ng/L) PFAS (Total)	NA	NA	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals 6010D (mg/Kg)																									
Antimony	27	8,200	NA	NA	-	-	-	-	-	-	-	<3.9	-	<3.2	-	-	-	-	-	-	-	-	-	-	-
Arsenic	10	10	NA	NA	-	-	-	-	-	-	-	1.81	3.36	0.89	-	-	-	-	-	-	-	-	-	-	2.36
		140,000	NA	NA	-	-	-	-	-	-	-	35.3	60	33.2	-	-	-	-	-	-	-	-	-	-	62.6
Beryllium	2	2	NA	NA	-	-	-	-	-	-	-	< 0.32	-	< 0.26	-	-	-	-	-	-	-	-	-	-	-
Cadmium	34	1,000	NA	NA	-	-	-	-	-	-	-	0.8	0.4	0.38	-	-	-	-	-	-	-	-	-	-	0.9
Chromium (Total)	NE	NE	NA	NA	_	_	-	_	-	-	_	15.6	23	9.86	_	-	_	-	-	-	_	-	_	-	13.2
		76,000	NA	NA	_	_	_	_	_	_	_	10.6	_	47	_	_	_	_	_	_	_	-	_	_	_
Lead	400	1,000	NA	NA	3.82	_	_	_	_	_	_	2.58	5.34	7.95	3.48	16.8	7.97	40.7	7.55	7.46	6.9	19.4	24.6	5.25	22.3
Mercury (7471B)	20	610	NA	NA	-	_	_	_	_	_	_	< 0.03	< 0.03	0.1	-	-	-	-	-	-	-	-		-	< 0.03
Nickel	1,400	7,500	NA	NA	_	_	_	_	_	_	_	15.2	-	13.4	_	_	_	_	_	_	_	_	_	_	-
Selenium	340	10,000	NA	NA	_	_	_	_	_	_	_	<1.6	<1.6	<1.3	_	_	_	_	_	_	_	_	_	_	<1.4
Silver	340	10,000	NA	NA	_	_	_	_	_	_	_	< 0.39	< 0.40	<0.32	_	_	_	_	_	_	_	_	_	_	<0.34
Thallium	5.4	160	NA	NA	_	_	_	_	_	_	_	<3.6	-	<2.9	_	_	_	_	_	_	_	_	_	_	
Vanadium	470	14,000	NA	NA								19.6	_	64.7											
		610,000		NA	_	-	-	_	-	-	_	37.1	-	39.3	-	-	-	-	-	-	-	-	-	-	-
CDI D Matala CO10D (mag (L)																									
SPLP Metals 6010D (mg/L)	D.I.A	D.I.A.	10	D.I.A																					
Barium	NA	NA	10	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	NA	NA	0.04	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (Total)	NA	NA	0.5	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	NA	NA	13	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	NA	NA	0.15	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	NA	NA	0.02	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	NA	NA	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	NA	NA	0.5	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	NA	NA	50	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides 8081B (mg/Kg)																									
Chlordane	0.49	2.2	0.066		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.1
DDE, 4,4-	NE	NE	NE	NE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0073
DDT, 4,4-	NE	NE	NE	NE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.0073
DDT (Total)	1.8	17	0.02	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND
Dieldrin	0.038	0.36	0.007	0.007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.025
SPLP Pesticides 8081B (ug/L)	NA	NA	NA	Varies	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCBs 8082A (mg/Kg)																									
Aroclor-1260	NE	NE	NA	NA	-	< 0.41	< 0.42	< 0.69	< 0.92	-	-	< 0.38	-	< 0.35	-	-	-	-	-	-	-	-	-	-	< 0.36
PCBs (Total)	1	10	NA	NA	_	ND	ND	ND	ND	-	-	ND	-	ND	-	-	-	-	-	-	-	-	-	-	ND
r CD3 (Total)	-																								

CTDEEP RSRs - Connecticut Department of Energy and

Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable <xx indicates compound was not reported above</p>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg) PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC

Bold values indicate exceedances of I/C DEC

TABLE 2 Summary of Soil Analytical Results Brainard Airport 20 Lindbergh Drive Hartford, Connecticut

Last U	pdated:	8/29	/2023	(J.	Jackson)

Sample Name Sample Depth		CTDEEF Crite			B-98 3 - 5 ft	B-99 5 - 6 ft	B-100 8 - 10 ft	B-101 8 - 10 ft	B-102 8 - 10 ft	B-105 3 - 5 ft	DUP-3 3 - 5 ft	B-106 2 - 4 ft	B-107 0.5 - 2.5 ft	B-108 1 - 2 ft	B-109 1 - 3 ft	B-110 3 - 5 ft	B-111 2 - 4 ft	B-112 0 - 2 ft	B-113 2 - 4 ft	B-114 0 - 2 ft	B-115 1 - 3 ft	B-116 1 - 3 ft	B-117 0.25 - 2.25 ft	B-117 8 - 10 ft	B-118 0 - 2 ft
Sample Depth Sample Date		Crite	si ia		4/27/2023	4/28/2023	4/28/2023	5/17/2023	5/17/2023	5/1/2023	5/1/2023	5/5/2023	5/4/2023	5/18/2023	5/5/2023	5/5/2023	5/5/2023	4/27/2023	4/27/2023			5/17/2023	5/17/2023	5/17/2023	5/19/2023
Lab Sample ID	RES	I/C	GB	GWPC	CN92795	CN93821	CN93822	CO08012	CO08018	CN94968	CN94969	CN98860	CN97940	CO09181	CN98861	CN98862	CN98863	CN92792	CN92793	CN92794	CO08019	CO08020	CO08021	CO08022	CO10275
Lab Report ID	DEC	DEC	PMC	x10			GCN93805				GCN94953		GCN97920		GCN98846			GCN92786	GCN92786				GC008021	GC008022	
Parent Sample ID	DLC	DLC	FINC	XIU	GCN92700	GCN93003	GCN93003	0000002	0000002	GCN94933	CN94968	GCN90040	GCN97920	00009103	GCN30040	GCN 90040	GCN90040	GCN32700	GCN92700	GCN92700	0000002	0000002	0000002	0000002	00010273
Dioxane 8270D (mg/Kg)											CN34300														
Dioxane, 1,4-	6.1	57	0.6	NA	-	-	-	-	-	-	-	-	-	-	<0.079	<0.083	<0.086	-	-	-	-	-	-	-	-
Glycol 8015D (mg/Kg)																									
Ethylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	<13	<16	-	-	-	-	-	-	-	-	-
Propylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	<13	<16	-	-	-	-	-	-	-	-	-
VOCs 8260C (mg/Kg)																									
Benzene	21	200	0.2	NA	<0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	-	<0.0081	-	-	-	< 0.0056	<0.0058	< 0.0046	< 0.0044	< 0.0054	< 0.0067	< 0.0063	<0.0048
Butylbenzene, n-	500	1,000	70	NA	< 0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	-	<0.0081	-	-	-	< 0.0056	< 0.0058	<0.0046	< 0.0044	< 0.0054	< 0.0067	< 0.0063	< 0.31
Butylbenzene, sec-	500	1,000	70 8	NA	< 0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	-	< 0.0081	-	-	-	< 0.0056	< 0.0058	<0.0046	< 0.0044	< 0.0054	< 0.0067	< 0.0063	< 0.31
Carbon disulfide Dioxane, 1,4-	500 6.1	1,000 57	0.6	NA NA	< 0.006	<0.0052 <0.078	<0.0064 <0.096	<0.0069 <0.1	<0.0066 <0.098	<0.0047 <0.07	<0.0044 <0.066	< 0.0057	_	<0.0081	_	-	_	<0.0056	<0.0058	<0.0046	<0.0044	<0.0054	<0.0067	<0.0063	<0.0048
Ethylbenzene	500	1,000	10.1	NA	<0.006	<0.0052	<0.0064	<0.0069	<0.0066	<0.0047	< 0.0044	<0.0057	_	< 0.0081	_	_	_	<0.0056	<0.0058	<0.0046	<0.0044	< 0.0054	< 0.0067	< 0.0063	<0.0048
Isopropylbenzene (cumene)	500	1,000	5	NA	<0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	_	< 0.0081	_	_	_	< 0.0056	<0.0058	<0.0046	< 0.0044	< 0.0054	< 0.0067	<0.0063	< 0.31
Isopropyltoluene, 2- (o-Cymene)	500	1,000	5	NA	<0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	_	< 0.0081	_	_	_	< 0.0056	<0.0058	< 0.0046	< 0.0044	< 0.0054	< 0.0067	< 0.0063	< 0.31
Isopropyltoluene, 4- (p-Cymene)	500	1,000	5	NA	<0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	<0.0057	_	< 0.0081	_	_	_	<0.0056	<0.0058	<0.0046	<0.0044	< 0.0054	< 0.0067	< 0.0063	< 0.31
Naphthalene	1,000	2,500	56	NA	< 0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	_	< 0.0081	_	_	_	< 0.0056	<0.0058	< 0.0046	< 0.0044	< 0.0054	< 0.0067	< 0.0063	< 0.31
Propylbenzene, n-	500	1,000	10	NA	<0.006	< 0.0052	<0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	_	< 0.0081	_	_	_	<0.0056	<0.0058	< 0.0046	<0.0044	< 0.0054	< 0.0067	< 0.0063	< 0.31
Tetrahydrofuran	61	570	0.8	NA	< 0.012	< 0.01	< 0.013	< 0.014	< 0.013	< 0.0094	<0.0088	< 0.011	_	< 0.016	_	_	_	< 0.011	< 0.012	0.012	< 0.0089	< 0.011	< 0.013	< 0.013	< 0.0097
Toluene	500	1,000	67	NA	< 0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	-	< 0.0081	-	_	_	< 0.0056	< 0.0058	< 0.0046	< 0.0044	< 0.0054	< 0.0067	< 0.0063	<0.0048
Trimethylbenzene, 1,2,4-	500	1,000	28	NA	< 0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	-	< 0.0081	-	-	_	< 0.0056	< 0.0058	< 0.0046	< 0.0044	< 0.0054	< 0.0067	< 0.0063	< 0.31
Trimethylbenzene, 1,3,5-	500	1,000	28	NA	< 0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	-	< 0.0081	-	-	-	< 0.0056	< 0.0058	< 0.0046	< 0.0044	< 0.0054	< 0.0067	< 0.0063	< 0.31
Xylene (Total)	500	1,000	19.5	NA	< 0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	-	< 0.0081	-	-	-	< 0.0056	< 0.0058	< 0.0046	< 0.0044	< 0.0054	< 0.0067	< 0.0063	< 0.0048
Xylene, m,p-	NE	NE	NE	NA	< 0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	-	< 0.0081	-	-	-	< 0.0056	< 0.0058	< 0.0046	< 0.0044	< 0.0054	< 0.0067	< 0.0063	< 0.0048
Xylene, o-	NE	NE	NE	NA	< 0.006	< 0.0052	< 0.0064	< 0.0069	< 0.0066	< 0.0047	< 0.0044	< 0.0057	-	< 0.0081	-	-	-	< 0.0056	< 0.0058	< 0.0046	< 0.0044	< 0.0054	< 0.0067	< 0.0063	< 0.0048
SVOCs 8270D (mg/Kg)				NA NA																					
Acenaphthene	1,000	2,500	84	NA	< 0.27	<0.28	< 0.3	< 0.34	< 0.31	< 0.25	< 0.25	< 0.26	<0.28	0.61	_	_	_	< 0.29	< 0.3	< 0.25	< 0.29	< 0.29	< 0.3	< 0.3	<2.5
Acenaphthylene	1,000	2,500	84	NA	<0.27	<0.28	<0.3	< 0.34	< 0.31	0.36	0.55	<0.26	<0.28	<0.25	_	_	_	<0.29	<0.3	<0.25	<0.29	<0.29	<0.3	<0.3	<2.5
Anthracene	1,000	2,500	400	NA	< 0.27	<0.28	<0.3	< 0.34	< 0.31	0.25	0.4	<0.26	<0.28	1.3	_	_	_	< 0.29	<0.3	<0.25	< 0.29	<0.29	<0.3	<0.3	<2.5
Benzo(a)anthracene	1	7.8	1	NA	< 0.27	<0.28	< 0.3	< 0.34	< 0.31	1.1	2	<0.26	<0.28	10	-	_	_	0.66	< 0.3	<0.25	< 0.29	<0.29	<0.3	< 0.3	5
Benzo(a)pyrene	1	1	1	NA	< 0.27	< 0.28	< 0.3	< 0.34	< 0.31	1.3	2.1	< 0.26	< 0.28	12	-	-	_	0.94	< 0.3	< 0.25	< 0.29	< 0.29	0.3	< 0.3	7.9
Benzo(b)fluoranthene	1	7.8	1	NA	< 0.27	< 0.28	< 0.3	< 0.34	< 0.31	1.7	2.7	< 0.26	< 0.28	16	-	-	-	0.78	< 0.3	< 0.25	< 0.29	< 0.29	0.3	< 0.3	9.2
Benzo(g,h,i)perylene	8.4	<i>78</i>	1	NA	< 0.27	< 0.28	< 0.3	< 0.34	< 0.31	0.61	1.1	< 0.26	< 0.28	6.2	-	-	-	0.98	< 0.3	< 0.25	< 0.29	< 0.29	< 0.3	< 0.3	6.8
Benzo(k)fluoranthene	8.4	78	1	NA	< 0.27	< 0.28	< 0.3	< 0.34	< 0.31	0.61	1	< 0.26	< 0.28	4.9	-	-	-	0.68	< 0.3	< 0.25	< 0.29	< 0.29	< 0.3	< 0.3	3.3
bis(2-Ethylhexyl)phthalate	44	410	11	NA	-	< 0.41	< 0.42	< 0.48	< 0.44	< 0.35	< 0.35	< 0.37	-	0.35	-	-	-	-	-	-	-	-	-	-	-
Carbazole	31	290	1	NA	-	< 0.41	< 0.42	< 0.48	< 0.44	< 0.35	< 0.35	< 0.37	-	1.3	-	-	-	-	-	-	-	-	-	-	
Chrysene	84	780	1	NA	< 0.27	<0.28	< 0.3	< 0.34	< 0.31	1.2	2.2	<0.26	<0.28	12	-	-	-	0.79	< 0.3	< 0.25	< 0.29	< 0.29	< 0.3	< 0.3	6.1
Dibenz(a,h)anthracene	1	1	1	NA	< 0.27	<0.28	< 0.3	< 0.34	< 0.31	< 0.25	0.3	<0.26	<0.28	1.6	-	-	-	< 0.29	< 0.3	< 0.25	< 0.29	< 0.29	< 0.3	< 0.3	1.4
Fluoranthene	1,000	2,500	56	NA	< 0.27	<0.28	< 0.3	< 0.34	< 0.31	1.9	3.7	< 0.26	<0.28	29	-	-	-	1.2	< 0.3	< 0.25	< 0.29	< 0.29	< 0.3	< 0.3	8.4
Fluorene	1,000	2,500	56	NA	< 0.27	<0.28	< 0.3	< 0.34	< 0.31	< 0.25	0.26	<0.26	<0.28	0.66	-	-	-	<0.29	< 0.3	< 0.25	< 0.29	< 0.29	< 0.3	< 0.3	<2.5
Indeno(1,2,3-cd)pyrene	1	7.8	1	NA	< 0.27	<0.28	< 0.3	< 0.34	< 0.31	0.7	1.2	<0.26	<0.28	6.7	-	-	-	1.1	< 0.3	< 0.25	< 0.29	< 0.29	< 0.3	< 0.3	6.3
Methylnaphthalene, 2-	270	1,000	5.6	NA	< 0.27	<0.28	< 0.3	< 0.34	< 0.31	< 0.25	< 0.25	< 0.26	<0.28	< 0.25	-	-	-	< 0.29	< 0.3	< 0.25	< 0.29	< 0.29	< 0.3	< 0.3	<2.5
Naphthalene	1,000	2,500	56	NA	<0.27	<0.28	< 0.3	< 0.34	< 0.31	< 0.25	< 0.25	< 0.26	<0.28	< 0.25	-	-	-	< 0.29	< 0.3	< 0.25	< 0.29	< 0.29	< 0.3	< 0.3	<2.5
Phenanthrene	1,000	2,500	40	NA	<0.27	<0.28	< 0.3	< 0.34	< 0.31	0.92	1.4	<0.26	<0.28	12	-	-	-	0.42	< 0.3	< 0.25	< 0.29	< 0.29	<0.3	< 0.3	<2.5
Pyrene CTDEEP RSRs - Connecticut Department	1,000	2,500	40	NA	< 0.27	<0.28	< 0.3	< 0.34	< 0.31	1.8	3.4	<0.26	<0.28	21	-	-	-	1.2	< 0.3	<0.25	< 0.29	<0.29	<0.3	< 0.3	8.5

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018) Boxed values indicate exceedances of I/C DEC Bold values indicate exceedances of I/C DEC

CT ETPH - Connecticut Department of Public Health Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

TABLE 2 Summary of Soil Analytical Results Brainard Airport 20 Lindbergh Drive

Hartford, Connecticut Last Updated: 8/29/2023 (1, lackson)

Last Updated: 8/29/2023 (J. Jackson	1)																								
Sample Name		CTDEE	P RSR		B-120	B-121	B-122	B-123	B-124	B-125	DUP-12	B-127	B-131	B-132	B-133	DUP-9	B-134	B-135	B-143	B-144	B-145	B-146	HA-1	HA-2	HA-3
Sample Depth		Crite	eria		0 - 2 ft	9 - 10 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	1 - 3 ft	0 - 2 ft	1 - 3 ft	1 - 3 ft	0 - 2 ft	0 - 2 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
Sample Date								5/19/2023			5/19/2023					5/17/2023		5/22/2023		5/22/2023				5/8/2023	5/22/2023
Lab Sample ID	RES	I/C	GB	GWPC	CO10276	CO10277	CO10278	CO10279	CO10280	CO10281	CO10283	CO10282	CN93823	CN97570		CO08024		CO11308	CO11309	CO11310	CO11311	CO11312	CO00632	CO00633	CO11313
Lab Report ID	DEC	DEC	PMC	x10			GCO10275						GCN93805		GC0080023			GCO11308							
•	DLC	DLC	FINC	XIU	GC010273	GC010273	GC0102/3	GC010273	GC010273	GC010273		GC010273	GCN93603	GCN97307	GC008002		GC000032	GC011308	GC011308	GC011308	GC011308	GC011308	GC000032	GC000032	GC011306
Parent Sample ID											CO10281					CO08023									
CTETPH 8015D (mg/Kg)	500	2,500	2,500	NA	1,200	<69	<62	<57	<56	<270	<260	<57	<59	<290	<57	<58	<260	<320	<62	<60	<62	<66	70	<310	<290
PFAS CT DEEP (mg/Kg)																									
Perfluorohexanesulfonic Acid (PFHxS		NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanesulfonic Acid (PFOS)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS5 (Total)	1.35	41	0.014	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS CT DEEP (ng/L)																									
PFAS (Total)	NA	NA	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals 6010D (mg/Kg)																									
Antimony	27	8,200	NA	NA	-	_	_	_	-	_	-	<3.8	-	-	-	-	-	_	<3.7	-	<4.2	-	_	-	-
Arsenic	10	10	NA	NA	6.89	_	3.96	3.95	_	2.81	2.55	4.45	_	_	_	_	_	1.45	3.31	_	3.51	_	2.99	3.4	2.78
Barium	4,700			NA	69.9	_	84.7	84.7	_	49.4	52.9	77.1	_	_	_	_	_	81	72.6	_	78.7	_	-	-	-
Beryllium	2	2	NA	NA	-	_	-	-	_	-	52.5	0.5	_	_	_	_	_	-	0.51	_	0.5	_	_	_	_
Cadmium	34	1,000	NA	NA	1.21	_	1.5	1.42		1.15	1.13	1.35						2.05	1.14	_	1.47	_			
Chromium (Total)	NE	NE	NA	NA	18.8	_	33	30.3		21.5	20.5	31.8						33.2	29.9	_	31.4	_			
` ,					10.0	_	33	30.3	-	21.5	20.5		-	-	-	-	-	33.2		_		_	-	-	-
Copper	2,500		NA	NA	47.0		-		-	-		42.5	-	-	-	-	-	250	35.4		41.2		- 440	-	- 7
Lead	400	1,000	NA	NA	17.3	-	16.9	21.5	-	31.2	30.8	33.4	-	-	-	-	-	250	10.7	14.3	16.6	21.8	149	32.3	28.7
Mercury (7471B)	20	610	NA	NA	< 0.03	-	0.16	0.42	-	0.23	0.37	0.16	-	-	-	-	-	0.4	0.06	-	0.1	-	-	-	-
Nickel	1,400	7,500	NA	NA	-	-	-	-	-	-	-	29.6	-	-	-	-	-	-	27.4	-	27.6	-	-	-	-
Selenium	340	10,000	NA	NA	<1.4	-	<1.6	<1.5	-	<1.3	<1.4	<1.5	-	-	-	-	-	<1.9	<1.5	-	<1.7	-	-	-	-
Silver	340	10,000	NA	NA	< 0.35	-	< 0.41	< 0.37	-	< 0.33	< 0.36	< 0.38	-	-	-	-	-	1.58	< 0.37	-	< 0.42	-	-	-	-
Thallium	5.4	160	NA	NA	-	-	-	-	-	-	-	<3.4	-	-	-	-	-	-	<3.3	-	<3.7	-	-	-	-
Vanadium	470	14,000	NA	NA	-	-	-	-	-	-	-	34	-	-	-	-	-	-	34.7	-	35.3	-	-	-	-
Zinc	20,000	610,000	NA	NA	-	-	-	-	-	-	-	91.7	-	-	-	-	-	-	72	-	134	-	-	-	-
		•																							
SPLP Metals 6010D (mg/L)																									
Barium	NA	NA	10	NA	_	_	< 0.010	0.011	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Beryllium	NA	NA	0.04	NA	_	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chromium (Total)	NA	NA	0.5	NA	_	_	< 0.010	_	_	_	_	< 0.010	_	_	_	_	_	< 0.010	_	_	_	_	_	_	_
` '	NA	NA	13	NA			<0.010					0.013						-			0.015				
Copper					_	_	_	_	_	_	_	0.013	-	-	-	_	_		_	_	0.015	_	-0.010	_	-
Lead	NA	NA	0.15	NA	-	-	-		-	-	-	-	-	-	-	-	-	0.111	-	-	-	-	< 0.010	-	-
Mercury	NA	NA	0.02	NA	-	-	-	< 0.0005	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	-	-	-	-
Nickel	NA	NA	1	NA	-	-	-	-	-	-	-	< 0.010	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	NA	NA	0.5	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	NA	NA	50	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.018	-	-	-	-
Pesticides 8081B (mg/Kg)																									
Chlordane	0.49	2.2	0.066	0.066	-	-	-	<0.038	-	< 0.035	< 0.036	-	-	-	-	-	-	-	-	-	-	-	< 0.039	< 0.04	< 0.039
DDE, 4,4-	NE	NE	NE	NE	-	-	-	< 0.0076	-	0.0076	< 0.0071	-	-	-	-	-	-	-	-	-	-	-	< 0.0078	<0.008	< 0.0077
DDT, 4,4-	NE	NE	NE	NE	-	-	-	< 0.0076	-	0.0084	< 0.0071	-	-	-	-	-	-	-	-	-	-	-	< 0.0078	<0.008	< 0.0077
DDT (Total)	1.8	17	0.02	0.02	-	-	-	ND	-	0.016	ND	-	-	-	-	-	-	-	-	-	-	-	ND	ND	ND
Dieldrin	0.038	0.36	0.007	0.007	-	-	-	< 0.0038	-	< 0.0035	< 0.0036	-	-	-	-	-	-	-	-	-	-	-	< 0.0039	< 0.004	< 0.0039
SPLP Pesticides 8081B (ug/L)	NA	NA	NA	Varies	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCBs 8082A (mg/Kg)																									
Aroclor-1260	NE	NE	NA	NA	-	-	-	< 0.38	-	< 0.35	< 0.36	< 0.38	-	-	-	-	-	< 0.43	-	-	-	-	_	-	-
PCBs (Total)	1	10	NA	NA	_	_	-	ND	_	ND	ND	ND	_	_	_	_	_	ND	-	_	_	-	_	_	-
()	1 -		. *** *	. *** *																					
Herbicides 8151A (mg/Kg)	Varies	Varies	Varies	NA	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	BRL	BRL	-
																									

CTDEEP RSRs - Connecticut Department of Energy and

Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons NE - Not established; NA - Not Applicable

<xx indicates compound was not reported above</p>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC

Bold values indicate exceedances of I/C DEC Gray shaded values indicate exceedance of GB PMC

TABLE 2 Summary of Soil Analytical Results Brainard Airport 20 Lindbergh Drive Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson)

Sample Name	1	CTDEE	P RSR		B-120	B-121	B-122	B-123	B-124	B-125	DUP-12	B-127	B-131	B-132	B-133	DUP-9	B-134	B-135	B-143	B-144	B-145	B-146	HA-1	HA-2	HA-3
Sample Depth		Crite	eria		0 - 2 ft	9 - 10 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	1 - 3 ft	0 - 2 ft	1 - 3 ft	1 - 3 ft	0 - 2 ft	0 - 2 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
Sample Date					5/19/2023	5/19/2023	5/19/2023	5/19/2023	5/19/2023	5/19/2023	5/19/2023	5/19/2023	4/28/2023	5/3/2023	5/17/2023	5/17/2023	5/8/2023	5/22/2023	5/22/2023	5/22/2023	5/22/2023	5/22/2023	5/8/2023	5/8/2023	5/22/2023
Lab Sample ID	RES	I/C	GB	GWPC	CO10276	CO10277	CO10278	CO10279	CO10280	CO10281	CO10283	CO10282	CN93823	CN97570	CO08023	CO08024	CO00648	CO11308	CO11309	CO11310	CO11311	CO11312	CO00632	CO00633	CO11313
Lab Report ID	DEC	DEC	PMC	x10	GCO10275		GCO10275							GCN97567		GC008002		GCO11308						GC000632	
Parent Sample ID											CO10281					CO08023									
Dioxane 8270D (mg/Kg)											0010201					0000023									
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Glycol 8015D (mg/Kg)	1 000	2 500	200	D.I.O.																					
Ethylene glycol	1,000	2,500	200	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Propylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VOCs 8260C (mg/Kg)																									
Benzene	21	200	0.2	NA	< 0.0051	< 0.0057	< 0.0053	< 0.0049	-	< 0.0039	< 0.0054	< 0.0053	-	< 0.0045	< 0.0047	< 0.0048	< 0.0042	< 0.006	< 0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	< 0.0057	< 0.0056
Butylbenzene, n-	500	1,000	70	NA	< 0.34	< 0.0057	< 0.0053	< 0.0049	-	< 0.0039	< 0.0054	< 0.0053	-	< 0.0045	< 0.0047	< 0.0048	< 0.0042	< 0.44	< 0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	< 0.0057	< 0.0056
Butylbenzene, sec-	500	1,000	70	NA	< 0.34	< 0.0057	< 0.0053	< 0.0049	-	< 0.0039	< 0.0054	< 0.0053	-	< 0.0045	< 0.0047	< 0.0048	< 0.0042	< 0.44	< 0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	< 0.0057	< 0.0056
Carbon disulfide	500	1,000	8	NA	< 0.0051	< 0.0057	< 0.0053	< 0.0049	-	< 0.0039	< 0.0054	< 0.0053	-	< 0.0045	< 0.0047	< 0.0048	< 0.0042	< 0.006	< 0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	< 0.0057	< 0.0056
Dioxane, 1,4-	6.1	57	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.084
Ethylbenzene	500	1,000	10.1	NA	< 0.0051	< 0.0057	< 0.0053	< 0.0049	-	< 0.0039	< 0.0054	< 0.0053	-	< 0.0045	< 0.0047	< 0.0048	< 0.0042	< 0.006	< 0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	< 0.0057	< 0.0056
Isopropylbenzene (cumene)	500	1,000	5	NA	< 0.34	< 0.0057	< 0.0053	< 0.0049	-	< 0.0039	< 0.0054	< 0.0053	-	< 0.0045	< 0.0047	< 0.0048	< 0.0042	< 0.44	< 0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	< 0.0057	< 0.0056
Isopropyltoluene, 2- (o-Cymene)	500	1,000	5	NA	< 0.34	< 0.0057	< 0.0053	< 0.0049	-	< 0.0039	< 0.0054	< 0.0053	-	< 0.0045	< 0.0047	< 0.0048	< 0.0042	< 0.44	< 0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	< 0.0057	< 0.0056
Isopropyltoluene, 4- (p-Cymene)	500	1,000	5	NA	< 0.34	< 0.0057	< 0.0053	< 0.0049	-	< 0.0039	< 0.0054	< 0.0053	_	< 0.0045	< 0.0047	< 0.0048	< 0.0042	< 0.44	< 0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	< 0.0057	< 0.0056
Naphthalene	1,000	2,500	56	NA	< 0.34	0.38	< 0.0053	< 0.0049	_	< 0.0039	< 0.0054	< 0.0053	-	< 0.0045	< 0.0047	<0.0048	< 0.0042	< 0.44	< 0.0052	< 0.0055	<0.0047	< 0.0054	<0.0067	<0.0057	< 0.0056
Propylbenzene, n-	500	1,000	10	NA	< 0.34	< 0.0057	< 0.0053	< 0.0049	_	< 0.0039	< 0.0054	< 0.0053	-	< 0.0045	< 0.0047	<0.0048	<0.0042	< 0.44	<0.0052	< 0.0055	<0.0047	< 0.0054	<0.0067	<0.0057	< 0.0056
Tetrahvdrofuran	61	570	0.8	NA	< 0.01	< 0.011	< 0.011	< 0.0099	_	< 0.0077	< 0.011	< 0.011	_	< 0.0091	< 0.0094	<0.0095	< 0.0085	< 0.012	< 0.01	< 0.011	< 0.0095	< 0.011	<0.013	< 0.011	< 0.011
Toluene	500	1,000	67	NA	<0.0051	< 0.0057	< 0.0053	< 0.0049	_	< 0.0039	< 0.0054	< 0.0053	_	< 0.0045	< 0.0047	<0.0048	< 0.0042	< 0.006	< 0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	< 0.0057	< 0.0056
Trimethylbenzene, 1,2,4-	500	1,000	28	NA	< 0.34	0.0088	< 0.0053	< 0.0049	_	< 0.0039	< 0.0054	< 0.0053	_	< 0.0045	< 0.0047	< 0.0048	< 0.0042	< 0.44	< 0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	< 0.0057	< 0.0056
Trimethylbenzene, 1,3,5-	500	1,000	28	NA	< 0.34	0.01	< 0.0053	< 0.0049	_	< 0.0039	< 0.0054	< 0.0053	_	< 0.0045	<0.0047	<0.0048	< 0.0042	< 0.44	< 0.0052	< 0.0055	<0.0047	< 0.0054	< 0.0067	< 0.0057	< 0.0056
Xylene (Total)	500	1,000	19.5	NA	< 0.0051	< 0.0057	<0.0053	< 0.0049	_	< 0.0039	< 0.0054	<0.0053	_	< 0.0045	<0.0047	<0.0048	< 0.0042	< 0.006	<0.0052	< 0.0055	<0.0047	< 0.0054	<0.0067	<0.0057	< 0.0056
Xylene, m,p-	NE	NE	NE	NA	< 0.0051	< 0.0057	< 0.0053	< 0.0049	_	< 0.0039	< 0.0054	< 0.0053	_	< 0.0045	< 0.0047	< 0.0048	< 0.0042	< 0.006	<0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	<0.0057	< 0.0056
Xylene, o-	NE	NE	NE	NA	< 0.0051	< 0.0057	< 0.0053	< 0.0049	_	< 0.0039	< 0.0054	< 0.0053	_	< 0.0045	< 0.0047	< 0.0048	< 0.0042	< 0.006	<0.0052	< 0.0055	< 0.0047	< 0.0054	< 0.0067	<0.0057	< 0.0056
Aylene, 0-	IVL	IVL	IVL	NA	<0.0031	<0.0057	<0.0055	₹0.0049		<0.0039	<0.0054	<0.0055		\0.00 - 5	<0.0047	<0.0040	<0.0042	<0.000	<0.003Z	<0.0055	<0.0047	<0.0054	<0.0007	<0.0037	<0.0050
SVOCs 8270D (mg/Kg)				NA																					
Acenaphthene	1,000	2,500	84	NA	<2.6	-	< 0.29	< 0.26	-	< 0.25	< 0.25	< 0.27	-	< 0.27	< 0.27	< 0.28	< 0.24	<1.5	< 0.29	< 0.28	< 0.29	< 0.31	< 0.27	< 0.28	< 0.27
Acenaphthylene	1,000	2,500	84	NA	<2.6	-	< 0.29	< 0.26	-	0.94	1.4	< 0.27	-	< 0.27	< 0.27	< 0.28	< 0.24	<1.5	< 0.29	< 0.28	< 0.29	< 0.31	< 0.27	< 0.28	< 0.27
Anthracene	1,000	2,500	400	NA	<2.6	-	< 0.29	< 0.26	-	0.31	0.49	< 0.27	-	< 0.27	< 0.27	< 0.28	< 0.24	<1.5	< 0.29	< 0.28	< 0.29	< 0.31	< 0.27	< 0.28	< 0.27
Benzo(a)anthracene	1	7.8	1	NA	3.3	-	< 0.29	0.65	-	2.5	3.3	< 0.27	-	1.4	< 0.27	< 0.28	< 0.24	2	< 0.29	< 0.28	< 0.29	< 0.31	< 0.27	< 0.28	1
Benzo(a)pyrene	1	1	1	NA	3.6	-	< 0.29	0.88	-	3.8	4.9	< 0.27	-	2	< 0.27	< 0.28	< 0.24	2.5	< 0.29	< 0.28	< 0.29	< 0.31	< 0.27	< 0.28	1.5
Benzo(b)fluoranthene	1	7.8	1	NA	4.2	-	< 0.29	0.87	-	3.9	5	< 0.27	-	3.2	< 0.27	< 0.28	< 0.24	3.2	< 0.29	< 0.28	< 0.29	< 0.31	< 0.27	0.3	2.4
Benzo(g,h,i)perylene	8.4	78	1	NA	3.3	-	< 0.29	0.51	-	1.8	2.6	<0.27	_	1.6	< 0.27	< 0.28	< 0.24	2.2	< 0.29	< 0.28	< 0.29	< 0.31	< 0.27	< 0.28	1
Benzo(k)fluoranthene	8.4	78	1	NA	1.7	_	< 0.29	0.29	_	1.4	1.7	< 0.27	_	1	< 0.27	< 0.28	< 0.24	1.2	< 0.29	< 0.28	< 0.29	< 0.31	< 0.27	< 0.28	0.89
bis(2-Ethylhexyl)phthalate	44	410	11	NA	-		-	-	_	-	-	<0.38	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole	31	290	1	NA	_	_	_	_	_	_	_	< 0.38	_	_	_	_	_	_	_	-	_	-	_	_	_
Chrysene	84	780	1	NA	3.4	-	< 0.29	0.65	_	2.6	3.4	<0.27	-	2.3	< 0.27	< 0.28	< 0.24	2.3	< 0.29	< 0.28	< 0.29	< 0.31	< 0.27	< 0.28	1.8
Dibenz(a,h)anthracene	1	1	1	NA	<1		<0.29	<0.26	_	0.35	0.5	<0.27	_	0.38	<0.27	<0.28	<0.24	<1	<0.29	<0.28	<0.29	< 0.31	<0.27	<0.28	<0.27
Fluoranthene	1,000	2,500	56	NA	6.2	_	<0.29	1	_	4.3	5.9	<0.27	_	3.5	<0.27	<0.28	<0.24	3.7	< 0.29	<0.28	<0.29	< 0.31	0.3	0.39	2.7
Fluorene	1,000	2,500	56	NA	<2.6	_	<0.29	< 0.26	_	< 0.25	< 0.25	<0.27	_	< 0.27	<0.27	<0.28	<0.24	<1.5	<0.29	<0.28	<0.29	< 0.31	<0.27	<0.28	< 0.27
indeno(1,2,3-cd)pyrene	1,000	2,300 7.8	J0 1	NA	3.1	1 -	<0.29	0.49	_	1.8	2.6	<0.27	_	1.6	<0.27	<0.28	<0.24	2.1	<0.29	<0.28	<0.29	< 0.31	<0.27	<0.28	1.1
Methylnaphthalene, 2-	270	1,000	5.6	NA	<2.6		<0.29	< 0.49	_	<0.25	<0.25	<0.27	_	<0.27	<0.27	<0.28	<0.24	<1.5	<0.29	<0.28	<0.29	<0.31	<0.27	<0.28	<0.27
, ,	1,000		5.6 56	NA NA		-	<0.29	< 0.26	_	0.42	0.63		-		<0.27					<0.28	<0.29			<0.28	<0.27
Naphthalene Phonanthrone		2,500	40	NA	<2.6 4	-			-		0.63	< 0.27	-	<0.27		<0.28	< 0.24	<1.5	<0.29			< 0.31	<0.27		
Phenanthrene	1,000	2,500				-	< 0.29	< 0.26	-	<0.25		< 0.27	-	1.2	< 0.27	< 0.28	< 0.24	1.8	< 0.29	< 0.28	< 0.29	< 0.31	< 0.27	< 0.28	0.97
Pyrene	1,000	2,500	40	NA	6.1	-	< 0.29	1.3	-	5.7	6.4	< 0.27	-	2.7	< 0.27	<0.28	< 0.24	3.2	< 0.29	<0.28	< 0.29	< 0.31	0.29	0.37	2.3

CTDEEP RSRs - Connecticut Department of Energy and Environmental GB PMC- Pollutant Mobility Criteria in a GB groundwater area

Protection Remediation Standard Regulations (February 16, 2021)
and CTDEEP Additional Polluting Substances (September 20, 2018)
Boxed values indicate exceedances of I/C DEC
Bold values indicate exceedances of I/C DEC CT ETPH - Connecticut Department of Public Health Extractable

Total Petroleum Hydrocarbons NE - Not established; NA - Not Applicable

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

TABLE 2

Summary of Soil Analytical Results

Brainard Airport

20 Lindbergh Drive

Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson	1)																								
Sample Name		CTDEE			HA-4	HA-5	HA-6	HA-7	HA-8	HA-9	HA-10	HA-11	DUP-13	HA-12A	HA-12B	HA-13	HA-14	HA-15	HA-16	HA-17	HA-18	HA-19	HA-20	HA-21	HA-22
Sample Depth		Crite	eria		0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
Sample Date	DEC	T/C	CB	CMBC	5/22/2023		5/22/2023	5/8/2023	5/22/2023	5/8/2023	5/8/2023	5/22/2023		5/9/2023	5/9/2023	5/22/2023		5/8/2023	5/3/2023	5/8/2023	5/8/2023	5/8/2023	5/3/2023	5/8/2023	5/3/2023
Lab Sample ID Lab Report ID	RES DEC	I/C DEC	GB PMC	GWPC x10	CO11314	CO00634	CO11315	CO00635	CO11316	CO00636	CO00637	CO11317	CO11323 GCO11308	CO01217	CO01218	CO11318	CO00649	CO00638	CN97567	CO00639	CO00640 GCO00632	CO00641 GCO00632	CN97568	CO00650	CN97569 GCN97567
Parent Sample ID	DLC	DLC	FINC	XIO	00011300	0000032	00011300	0000032	00011300	0000032	0000032	00011300	CO11300	0001217	0001217	00011300	0000032	0000032	GCN97307	00000032	00000032	00000032	GCN97507	00000032	GCN97307
CTETPH 8015D (mg/Kg)	500	2,500	2,500	NA	650	<300	<320	<290	<310	<63	<64	3,600	1,800	700	1,200	<300	<310	<58	220	<61	<58	<60	190	<320	190
													•			-									
PFAS CT DEEP (mg/Kg)																									
Perfluorohexanesulfonic Acid (PFHxS Perfluorooctanesulfonic Acid (PFOS)		NE NE	NE NE	NA NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NE	NE	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PFAS5 (Total)	1.35	41	0.014	NA	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
PFAS CT DEEP (ng/L) PFAS (Total)	NA	NA	NA	NA																					
PIAS (Total)	IVA	IVA	IVA	IVA	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Metals 6010D (mg/Kg)																									
Antimony	27	8,200	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	10	10	NA	NA	2.98	4	3.64	2.86	2.68	4.83	5.42	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Barium	4,700	140,000	NA NA	NA NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium Cadmium	2 34	2 1,000	NA	NA	_	_	_	_	_	_	-	_	-	_	_	_	-	_	-	_	_	_	_	_	_
Chromium (Total)	NE	NE	NA	NA	-	_	_	-	-	-	-	_	-	_	_	-	_	-	-	-	_	_	_	-	-
Copper	2,500	76,000	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	400	1,000	NA	NA	19.6	63	33.1	30.7	31.4	41.4	51.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury (7471B)	20	610	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	1,400	7,500	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium Silver	340 340	10,000 10,000	NA NA	NA NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thallium	5.4	160	NA	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Vanadium	470	14,000	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	20,000	610,000	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CDI D Matala CO10D (mag/1)																									
SPLP Metals 6010D (mg/L) Barium	NA	NA	10	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Beryllium	NA	NA	0.04	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chromium (Total)	NA	NA	0.5	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	NA	NA	13	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	NA	NA	0.15	NA	-	< 0.010	-	-	-	< 0.010	< 0.010	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	NA	NA	0.02	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel Vanadium	NA NA	NA NA	1 0.5	NA NA	_	_	_	_	-	_	-	_	-	-	_	-	-	_	-	-	_	_	_	-	-
Zinc	NA	NA	50	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pesticides 8081B (mg/Kg)																									
Chlordane	0.49 NE	2.2 NE	0.066 NE		< 0.04	<0.04 0.015	<0.043 <0.0086	<0.038 <0.0077	<0.041 <0.0081	<0.042 <0.0085	<0.043 <0.0086	-	<0.038 0.18	-	-	-	-	-	-	-	-	-	-	-	-
DDE, 4,4- DDT, 4,4-	NE	NE	NE	NE NE	<0.008 0.009	0.015	<0.0086	<0.0077	<0.0081	<0.0085	<0.0086	-	0.18	-	_	-	-	_	-	-	_	_	-	_	-
DDT (Total)	1.8	17	0.02	0.02	0.009	0.025	ND	ND	ND	ND	ND	-	0.8	_	_	-	_	-	-	-	_	_	-	_	-
Dieldrin	0.038	0.36	0.007	0.007	< 0.004	<0.004	< 0.0043	<0.0038	< 0.0041	< 0.0042	< 0.0043	-	<0.0038	-	-	-	-	-	-	-	-	-	-	-	-
SPLP Pesticides 8081B (ug/L)	NA	NA	NA	Varies									BRL												
	NA	IVA	INA	varies	_	-	-	-	-	-	-	-	DKL	-	-	-	-	-	-	-	-	-	-	-	-
PCBs 8082A (mg/Kg)																									
Aroclor-1260	NE	NE	NA	NA	-	-	-	-	-	-	-	< 0.37	-	< 0.35	<0.41	< 0.39	< 0.41	<0.38	< 0.43	<0.4	-	-	-	-	-
PCBs (Total)	1	10	NA	NA	-	-	-	-	-	-	-	ND	-	ND	-	-	-	-	-						
Herbicides 8151A (mg/Kg)	Varies	Varies	Varies	NA	BRL	-	BRL	BRL	BRL	BRL	BRL	-	-	-	-	-	-	-	-	-	-	-	-	-	_

CTDEEP RSRs - Connecticut Department of Energy and

Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable <xx indicates compound was not reported above</p>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC

Bold values indicate exceedances of I/C DEC Gray shaded values indicate exceedance of GB PMC

TABLE 2 Summary of Soil Analytical Results Brainard Airport 20 Lindbergh Drive

Hartford, Connecticut Last Updated: 8/29/2023 (J. Jackson)

Sample Name Sample Deth		CTDEE! Crite			HA-4 0 - 0.5 ft	HA-5 0 - 0.5 ft	HA-6 0 - 0.5 ft	HA-7 0 - 0.5 ft	HA-8 0 - 0.5 ft	HA-9 0 - 0.5 ft	HA-10 0 - 0.5 ft	HA-11 0 - 0.5 ft	DUP-13 0 - 0.5 ft	HA-12A 0 - 0.5 ft	HA-12B 0 - 0.5 ft	HA-13 0 - 0.5 ft	HA-14 0 - 0.5 ft	HA-15 0 - 0.5 ft	HA-16 0 - 0.5 ft	HA-17 0 - 0.5 ft	HA-18 0 - 0.5 ft	HA-19 0 - 0.5 ft	HA-20 0 - 0.5 ft	HA-21 0 - 0.5 ft	HA-22 0 - 0.5 ft
Sample Date Lab Sample ID	RES	I/C	GB	GWPC	5/22/2023 CO11314	5/8/2023 CO00634	5/22/2023 CO11315	5/8/2023 CO00635	5/22/2023 CO11316	5/8/2023 CO00636	5/8/2023 CO00637	5/22/2023 CO11317	5/22/2023 CO11323	5/9/2023 CO01217	5/9/2023 CO01218	5/22/2023 CO11318	5/8/2023 CO00649	5/8/2023 CO00638	5/3/2023 CN97567	5/8/2023 CO00639	5/8/2023 CO00640	5/8/2023 CO00641	5/3/2023 CN97568	5/8/2023 CO00650	5/3/2023 CN97569
Lab Report ID	DEC	DEC	PMC	x10	GC011314						GCO00632						GC000632	GC000632		GCO00632		GC000632		GCO00632	
Parent Sample ID	DLC	DLC	FINC	XIU	00011300	0000032	00011300	00000032	00011300	00000032	00000032	00011300	CO11317	0001217	0001217	00011300	00000032	00000032	GCN97307	00000032	00000032	00000032	GCN97307	0000032	GCN9730
Dioxane 8270D (mg/Kg)	+												CO11317												
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA																					
Dioxarie, 1,4-	0.1	37	0.0	IVA		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Glycol 8015D (mg/Kg)																									
Ethylene glycol	1,000	2,500	200	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	-	_
Propylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	_
,, ,,,	1	,																							
VOCs 8260C (mg/Kg)																									
Benzene	21	200	0.2	NA	< 0.0059	< 0.0078	< 0.0063	< 0.0069	< 0.0059	< 0.0065	< 0.011	-	-	-	_	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Butylbenzene, n-	500	1,000	70	NA	< 0.44	< 0.0078	< 0.4	< 0.0069	< 0.58	< 0.0065	< 0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Butylbenzene, sec-	500	1,000	70	NA	< 0.44	< 0.0078	< 0.4	< 0.0069	< 0.58	< 0.0065	< 0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Carbon disulfide	500	1,000	8	NA	< 0.0059	< 0.0078	< 0.0063	< 0.0069	< 0.0059	< 0.0065	< 0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA	<0.088	< 0.12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	500	1,000	10.1	NA	< 0.0059	< 0.0078	< 0.0063	< 0.0069	< 0.0059	< 0.0065	< 0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Isopropylbenzene (cumene)	500	1,000	5	NA	< 0.44	< 0.0078	< 0.4	< 0.0069	< 0.58	< 0.0065	< 0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Isopropyltoluene, 2- (o-Cymene)	500	1,000	5	NA	< 0.44	<0.0078	< 0.4	< 0.0069	< 0.58	< 0.0065	< 0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Isopropyltoluene, 4- (p-Cymene)	500	1,000	5	NA	< 0.44	< 0.0078	< 0.4	< 0.0069	< 0.58	< 0.0065	< 0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Naphthalene	1,000	2,500	56	NA	< 0.44	< 0.0078	< 0.4	< 0.0069	< 0.58	< 0.0065	< 0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Propylbenzene, n-	500	1,000	10	NA	< 0.44	<0.0078	< 0.4	< 0.0069	< 0.58	< 0.0065	< 0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Tetrahydrofuran	61	570	0.8	NA	< 0.012	< 0.016	< 0.013	< 0.014	< 0.012	< 0.013	<0.022	-	-	-	-	-	-	-	-	-	-	-	-	< 0.012	< 0.013
Toluene	500	1,000	67	NA	<0.0059	<0.0078	< 0.0063	< 0.0069	<0.0059	<0.0065	< 0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Trimethylbenzene, 1,2,4-	500	1,000	28	NA	< 0.44	<0.0078	< 0.4	< 0.0069	< 0.58	<0.0065	< 0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	< 0.0066
Trimethylbenzene, 1,3,5-	<i>500</i> 500	1,000 1,000	<i>28</i> 19.5	NA NA	<0.44 <0.0059	<0.0078 <0.0078	<0.4 <0.0063	<0.0069 <0.0069	<0.58 <0.0059	<0.0065 <0.0065	<0.011 <0.011	-	-	-	-	-	-	-	-	-	-	-	-	<0.006 <0.006	<0.0066
Xylene (Total) Xylene, m,p-	NE	1,000 NE	19.5 <i>NE</i>	NA	<0.0059	<0.0078	<0.0063	<0.0069	<0.0059	<0.0065	<0.011	-	-	-	-	-	-	-	-	-	-	-	-	< 0.006	<0.0066
Xylene, o-	NE	NE	NE	NA	< 0.0059	<0.0078	<0.0063	<0.0069	<0.0059	< 0.0065	< 0.011	_	_	_	_	_	_	_	_	_	_	_	_	< 0.006	<0.0066
Aylene, o-	IVL	IVL	IVL	NA	<0.0059	<0.0076	<0.0005	<0.0009	<0.0059	<0.0005	<0.011													<0.000	<0.0000
SVOCs 8270D (mg/Kg)				NA																					
Acenaphthene	1,000	2,500	84	NA	<1.4	< 0.28	_	< 0.27	_	< 0.3	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.3	< 0.3
Acenaphthylene	1,000	2,500	84	NA	<1.4	< 0.28	_	< 0.27	_	<0.3	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.3	0.86
Anthracene	1,000	2,500	400	NA	<1.4	0.33	_	< 0.27	_	< 0.3	_	_	_	_	_	_	_	_	-	_	_	_	-	< 0.3	0.63
Benzo(a)anthracene	1	7.8	1	NA	1.9	2.1	-	< 0.27	-	0.39	_	-	-	-	_	-	-	-	-	-	-	-	-	1.2	2.4
Benzo(a)pyrene	1	1	1	NA	3.3	3	-	0.31	-	0.52	-	-	-	-	-	-	-	-	-	-	-	-	-	2.1	3
Benzo(b)fluoranthene	1	7.8	1	NA	5.1	5	-	0.4	-	0.57	-	-	-	-	-	-	-	-	-	-	-	-	-	2.4	4.2
Benzo(g,h,i)perylene	8.4	<i>78</i>	1	NA	2.3	2	-	0.3	-	0.37	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	1.8
Benzo(k)fluoranthene	8.4	78	1	NA	1.8	1.4	-	< 0.27	-	< 0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	0.82	1.3
bis(2-Ethylhexyl)phthalate	44	410	11	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole	31	290	1	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-
Chrysene	84	780	1	NA	3.4	3.3	-	0.32	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	1.3	3
Dibenz(a,h)anthracene	1	1	1	NA	<1	0.45	-	< 0.27	-	< 0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	0.38	0.52
Fluoranthene	1,000	2,500	56	NA	4.8	6.2	-	0.53	-	0.72	-	-	-	-	-	-	-	-	-	-	-	-	-	1.9	4.2
Fluorene	1,000	2,500	56	NA	<1.4	<0.28	-	<0.27	-	< 0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.3	< 0.3
Indeno(1,2,3-cd)pyrene	1	7.8	1	NA	2.3	2.1	-	< 0.27	-	0.34	-	-	-	-	-	-	-	-	-	-	-	-	-	1.6	1.9
Methylnaphthalene, 2-	270	1,000	5.6	NA	<1.4	<0.28	-	< 0.27	-	< 0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.3	< 0.3
Naphthalene	1,000	2,500	56	NA	<1.4	<0.28	-	< 0.27	-	< 0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.3	< 0.3
Phenanthrene	1,000	2,500	40	NA	1.5	1.9	-	< 0.27	-	< 0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.3	1.8
Pyrene	1,000	2,500	40	NA	3.8	4.8	-	0.63	-	0.86	-	-	-	-	-	-	-	-	-	-	-	-	-	1.7	3.6

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018) Boxed values indicate exceedances of I/C DEC Bold values indicate exceedances of I/C DEC CT ETPH - Connecticut Department of Public Health Extractable

Total Petroleum Hydrocarbons NE - Not established; NA - Not Applicable

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

TABLE 2 Summary of Soil Analytical Results Brainard Airport

20 Lindbergh Drive

Hartford, Connecticut
Last Updated: 8/29/2023 (J. Jackson)

Last Updated: 8/29/2023 (J. Jackso	n)																								
Sample Name		CTDEE	P RSR		HA-23	HA-24	HA-25	HA-26	HA-27	HA-28	HA-29	HA-30	HA-31	HA-32	HA-34	HA-35	HA-36	HA-38	HA-39	HA-40	HA-41	HA-42	Field Blank	HA-43	HA-44
Sample Depth		Crite	eria		0 - 0.5 ft	0 - 2 ft	0 - 2 ft	0 - 0.5 ft	0.25 - 0.5 ft	0.25 - 0.5 ft	0 - 0.5 ft	0.25 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	-		0 - 0.5 ft	0 - 0.5 ft						
Sample Date					5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/22/2023	5/22/2023	5/3/2023	5/22/2023	5/8/2023	5/22/2023	5/8/2023	6/20/2023	6/20/2023	5/8/2023	5/8/2023
Lab Sample ID	RES	I/C	GB	GWPC	CO01219	CO01220	CO01221	CO01222	CO01223	CO01224	CO01225	CO01226	CO01227	CO01228	CO11319	CO11320	CN97571	CO11321	CO00651	CO11322	CO00642	CO32465		CO00643	CO00644
Lab Report ID	DEC	DEC	PMC	x10	GC001217		GC001217								GCO11308	GCO11308		GCO11308		GCO11308			GC032465		GC000632
Parent Sample ID																									
CTETPH 8015D (mg/Kg)	500	2,500	2,500	NA	410	<58	<57	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
,		•	•																						
PFAS CT DEEP (mg/Kg)																									
Perfluorohexanesulfonic Acid (PFHxs		NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.000243	-	-	-
Perfluorooctanesulfonic Acid (PFOS)		NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00176	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.000243	-	-	-
PFAS5 (Total)	1.35	41	0.014	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00176	-	-	-
PFAS CT DEEP (ng/L)																									
PFAS (Total)	NA	NA	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.89	-	-
Metals 6010D (mg/Kg) Antimony	27	8,200	NA	NA		<3.9	<3.7												<3.4						
•	10	8,200 10	NA	NA	_	3.76	2.95	_	_	-	-	_	-	_	_	_	_	_	1.83	-	-	_	_	-	_
Arsenic			NA		_			-	-	-	-	-	-	-	_	-	-	-		-	-	-	-	-	-
Barium	4,700	140,000 2		NA NA		61.2	52.3	-	-	-	-	-	-	-	-	-	-	-	49.2	-	-	-	-	-	-
Beryllium	2	_	NA		-	0.41	0.36	-	-	-	-	-	-	-	-	-	-	-	0.34	-	-	-	-	-	-
Cadmium	34 NE	1,000	NA NA	NA NA	_	1.15	1.16	-	-	-	-	-	-	-	-	-	-	-	1.35	-	-	-	-	-	-
Chromium (Total)		NE 7C 000			_	24	20.9	-	-	-	-	-	-	-	-	-	-	-	15	-	-	-	-	-	-
Copper	2,500	76,000	NA	NA	-	51.4	30.7	221	-	122	100		70.4	122	-	-	27.0	-	23	-	-	-	-	25.1	20.7
Lead	400	1,000	NA	NA	-	50.8	28.4	231	-	123	108	521	78.4	123	-	-	37.8	-	11.9	-	-	-	-	25.1	39.7
Mercury (7471B)	20	610	NA	NA	-	0.38	0.08	-	-	-	-	-	-	-	-	-	-	-	< 0.03	-	-	-	-	-	-
Nickel	1,400	7,500	NA	NA	-	21.8	22	-	-	-	-	-	-	-	-	-	-	-	15.7	-	-	-	-	-	-
Selenium	340	10,000	NA	NA	-	<1.6	<1.5	-	-	-	-	-	-	-	-	-	-	-	<1.3	-	-	-	-	-	-
Silver	340	10,000	NA	NA	-	< 0.39	< 0.37	-	-	-	-	-	-	-	-	-	-	-	< 0.34	-	-	-	-	-	-
Thallium	5.4	160	NA	NA	-	<3.5	<3.3	-	-	-	-	-	-	-	-	-	-	-	<3.0	-	-	-	-	-	-
Vanadium 	470	14,000	NA	NA	-	30.2	34.6	-	-	-	-	-	-	-	-	-	-	-	35.8	-	-	-	-	-	-
Zinc	20,000	610,000	NA	NA	-	98.9	99.3	-	-	-	-	-	-	-	-	-	-	-	86.4	-	-	-	-	-	-
SPLP Metals 6010D (mg/L)																									
Barium	NA	NA	10	NA	-	-	_	-	_	-	_	_	-	-	_	-	_	-	_	-	_	-	-	_	-
Beryllium	NA	NA	0.04	NA	-	-	_	-	_	-	_	_	-	-	_	-	_	-	_	-	_	-	-	_	-
Chromium (Total)	NA	NA	0.5	NA	-	-	_	-	_	-	_	_	-	-	_	-	_	-	_	-	_	-	-	_	-
Copper	NA	NA	13	NA	-	-	_	-	_	-	_	_	-	-	_	-	_	-	_	-	_	-	-	_	-
Lead	NA	NA	0.15	NA	-	-	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	< 0.010
Mercury	NA	NA	0.02	NA	-	-	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	-
Nickel	NA	NA	1	NA	-	-	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	-
Vanadium	NA	NA	0.5	NA	-	-	_	_	_	-	_	_	_	_	_	_	_	-	< 0.010	_	_	_	_	_	-
Zinc	NA	NA	50	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides 8081B (mg/Kg)																									
Chlordane	0.49	2.2	0.066	0.066	_	<0.038	_	< 0.066	< 0.034	< 0.039	_	< 0.04	< 0.039	< 0.038	0.15	< 0.047	< 0.042	< 0.039	< 0.037	0.17	< 0.035	_	_	_	_
DDE, 4,4-	NE	NE	NE	NE	_	<0.038	_	0.42	<0.0068	0.039	_	<0.04	0.012	0.13	0.079	0.027	<0.042	< 0.0077	<0.037	0.17	0.011	_	_	_	_
	NE		NE	NE	_		-	0.42	<0.0068		-	<0.008	0.012		0.079		<0.0083	<0.0077		0.077		-	-	-	-
DDT, 4,4-		NE 17	0.02		_	< 0.02	-			0.066				0.11		0.027	ND	<0.0077 ND	<0.0073 ND		0.0095		-	-	-
DDT (Total)	1.8			0.02		ND		1.3	ND	0.104	-	ND	0.077	0.25	0.2	0.054				0.158	0.021	-	-	-	-
Dieldrin	0.038	0.36	0.007	0.007	-	<0.0038	-	<0.029	<0.0034	<0.0039	-	<0.004	<0.0039	<0.0038	0.015	0.0084	<0.0042	<0.0039	0.011	0.03	0.0043	-	-	-	-
SPLP Pesticides 8081B (ug/L)	NA	NA	NA	Varies	-	-	-	-	-	-	-	-	-	-	BRL	-	-	-	-	BRL	-	-	-	-	-
PCBs 8082A (mg/Kg)																									
Aroclor-1260	NE	NE	NA	NA	-	< 0.38	-	< 0.36	-	< 0.39	< 0.38	< 0.4	< 0.39	< 0.38	-	-	< 0.42	-	0.53	-	-	-	-	-	-
PCBs (Total)	1	10	NA	NA	-	ND	-	ND	-	ND	ND	ND	ND	ND	-	-	ND	-	0.53	-	-	-	-	-	-
Herbicides 8151A (mg/Kg)	Varies	Varies	Varies	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

CTDEEP RSRs - Connecticut Department of Energy and

Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable <xx indicates compound was not reported above</p>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC

Bold values indicate exceedances of I/C DEC Gray shaded values indicate exceedance of GB PMC

TABLE 2 Summary of Soil Analytical Results Brainard Airport 20 Lindbergh Drive

Hartford, Connecticut

Last Updated: 8/29/2023 (1, lackson)

Last Updated: 8/29/2023 (J. Jackson	n)																								
Sample Name		CTDEE			HA-23	HA-24	HA-25	HA-26	HA-27	HA-28	HA-29	HA-30	HA-31	HA-32	HA-34	HA-35	HA-36	HA-38	HA-39	HA-40	HA-41	HA-42	Field Blank		HA-44
Sample Depth		Crite	eria		0 - 0.5 ft	0 - 2 ft	0 - 2 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0.25 - 0.5 ft	0.25 - 0.5 ft	0 - 0.5 ft	0.25 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	-		0 - 0.5 ft	0 - 0.5 ft
Sample Date					5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/9/2023	5/22/2023	5/22/2023	5/3/2023	5/22/2023	5/8/2023	5/22/2023	5/8/2023	6/20/2023	6/20/2023	5/8/2023	5/8/2023
Lab Sample ID	RES	I/C	GB	GWPC	CO01219	CO01220	CO01221	CO01222	CO01223	CO01224	CO01225	CO01226	CO01227	CO01228	CO11319	CO11320	CN97571	CO11321	CO00651	CO11322	CO00642	CO32465	CO32466	CO00643	CO00644
Lab Report ID	DEC	DEC	PMC	x10	GC001217	GC001217	GC001217	GC001217	GC001217	GC001217	GCO01217	GC001217	GC001217	GC001217	GCO11308	GCO11308	GCN97567	GCO11308	GC000632	GCO11308	GC000632	GCO32465	GCO32465	GCO00632	GCO00632
Parent Sample ID																									
Dioxane 8270D (mg/Kg)																									
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Glycol 8015D (mg/Kg)																									
Ethylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Propylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VOCs 8260C (mg/Kg)																									
Benzene	21	200	0.2	NA	< 0.0051	< 0.0064	< 0.0086	-	-	_	_	_	-	-	-	-	-	-	_	-	-	-	_	-	_
Butylbenzene, n-	500	1,000	70	NA	< 0.34	< 0.0064	< 0.0086	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, sec-	500	1,000	70	NA	< 0.34	< 0.0064	< 0.0086	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon disulfide	500	1,000	8	NA	< 0.0051	< 0.0064	< 0.0086	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Dioxane, 1,4-	6.1	57	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	500	1,000	10.1	NA	< 0.0051	< 0.0064	< 0.0086	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene (cumene)	500	1,000	5	NA	< 0.34	< 0.0064	< 0.0086	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isopropyltoluene, 2- (o-Cymene)	500	1,000	5	NA	< 0.34	< 0.0064	< 0.0086	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isopropyltoluene, 4- (p-Cymene)	500	1,000	5	NA	< 0.34	< 0.0064	< 0.0086	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	1,000	2,500	56	NA	< 0.34	< 0.0064	< 0.0086	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Propylbenzene, n-	500	1,000	10	NA	< 0.34	< 0.0064	< 0.0086	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrahydrofuran	61	570	0.8	NA	< 0.01	< 0.013	< 0.017	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	500	1,000	67	NA	< 0.0051	< 0.0064	< 0.0086	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Trimethylbenzene, 1,2,4-	500	1,000	28	NA	< 0.34	< 0.0064	< 0.0086	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Trimethylbenzene, 1,3,5-	500	1,000	28	NA	< 0.34	< 0.0064	< 0.0086	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylene (Total)	500	1,000	19.5	NA	< 0.0051	< 0.0064	< 0.0086	-	-	-	-	_	-	-	_	-	-	-	-	-	_	-	-	-	-
Xylene, m,p-	NE	NE	NE	NA	< 0.0051	< 0.0064	< 0.0086	-	-	-	-	_	-	-	_	-	-	-	-	-	_	-	-	-	-
Xylene, o-	NE	NE	NE	NA	< 0.0051	< 0.0064	< 0.0086	-	-	-	-	_	-	-	_	-	-	-	-	-	_	-	-	-	-
,, -				NA																					
SVOCs 8270D (mg/Kg)				NA																					
Acenaphthene	1,000	2,500	84	NA	< 0.25	< 0.27	< 0.26	-	-	-	-	_	-	-	_	_	-	-	-	-	_	_	-	< 0.29	< 0.3
Acenaphthylene	1,000	2,500	84	NA	< 0.25	0.35	< 0.26	-	-	-	-	_	-	-	_	_	-	-	-	-	_	_	-	0.38	< 0.3
Anthracene	1,000	2,500	400	NA	< 0.25	< 0.27	< 0.26	-	-	_	-	_	-	-	_	_	-	-	-	-	_	_	-	< 0.29	< 0.3
Benzo(a)anthracene	1	7.8	1	NA	0.45	1.1	< 0.26	-	-	_	-	_	-	-	_	_	-	-	-	-	_	_	-	0.33	< 0.3
Benzo(a)pyrene	1	1	1	NA	0.61	1.2	< 0.26	-	-	_	-	_	-	-	_	_	-	-	-	-	_	_	-	0.42	< 0.3
Benzo(b)fluoranthene	1	7.8	1	NA	0.92	1.3	< 0.26	-	-	_	-	_	-	-	_	_	-	-	-	-	_	_	-	0.41	< 0.3
Benzo(g,h,i)perylene	8.4	78	1	NA	0.63	0.61	<0.26	_	_	_	_	-	-	-	-	-	-	-	_	_	-	_	_	0.36	< 0.3
Benzo(k)fluoranthene	8.4	78	1	NA	0.29	0.46	<0.26	_	_	_	_	-	-	-	-	-	-	-	_	_	-	_	_	< 0.29	< 0.3
bis(2-Ethylhexyl)phthalate	44	410	11	NA	-	< 0.38	< 0.38	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-
Carbazole	31	290	1	NA	_	< 0.38	< 0.38	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chrysene	84	780	1	NA	0.56	1.1	<0.26	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.35	< 0.3
Dibenz(a,h)anthracene	1	1	1	NA	<0.25	<0.27	<0.26	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.29	<0.3
Fluoranthene	1,000	_	56	NA	1.2	1.5	0.29	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.53	<0.3
Fluorene	1,000	2,500	56	NA	<0.25	< 0.27	< 0.26	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.29	<0.3
Indeno(1,2,3-cd)pyrene	1,000	7.8	1	NA	0.64	0.64	<0.26	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.3	<0.3
Methylnaphthalene, 2-	270	1,000	5.6	NA	<0.25	< 0.27	<0.26	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<0.29	<0.3
Naphthalene	1,000		56	NA	<0.25	<0.27	<0.26	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<0.29	<0.3
Phenanthrene	1,000		40	NA	0.65	0.64	<0.26	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<0.29	<0.3
Pyrene	1,000		40	NA	1	1.5	0.27	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.66	<0.3
CTDEEP RSRs - Connecticut Departr					CP DMC Da	llutant Mobili		a CD anaumal		_				_			_	_	_	_			_	0.00	70.5

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) Boxed values indicate exceedances of RES DEC

and CTDEEP Additional Polluting Substances (September 20, 2018) Bold values indicate exceedances of I/C DEC CT ETPH - Connecticut Department of Public Health Extractable

Total Petroleum Hydrocarbons NE - Not established; NA - Not Applicable

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

TABLE 2

Summary of Soil Analytical Results

Brainard Airport

20 Lindbergh Drive

Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson)

Last Updated: 8/29/2023 (J. Jackso Sample Name Sample Depth Sample Date	n)	CTDEE! Crite			HA-45 0 - 0.5 ft 5/8/2023	HA-46 0 - 0.5 ft 5/8/2023	HA-47 0 - 0.5 ft 5/8/2023	HA-48 0 - 0.5 ft 8/10/2023	HA-49 0 - 0.5 ft 8/10/2023	HA-50 0 - 0.5 ft 8/10/2023	HA-51 0 - 0.5 ft 8/10/2023	HA-52 0 - 0.5 ft 8/10/2023	HA-53 0 - 0.5 ft 8/10/2023	HA-54 0 - 0.5 ft 8/10/2023	HA-55 0 - 0.5 ft 8/10/2023	HA-56 0 - 0.5 ft 8/10/2023	HA-57 0 - 0.5 ft 8/10/2023	HA-58 0 - 0.5 ft 8/10/2023	HA-59 0 - 0.5 ft 8/10/2023	8/10/2023	Equipment Blank 8/10/2023	4/27/2023	4/27/2023	4/28/2023
Lab Sample ID Lab Report ID Parent Sample ID	RES DEC	I/C DEC	GB PMC	GWPC x10	CO00645 GCO00632	CO00646 GCO00632	CO00647 GCO00632	CO71457 GCO71457	CO71458 GCO71457	CO71459 GCO71457	CO71460 GCO71457	CO71461 GCO71457	CO71462 GCO71457	CO71463 GCO71457	CO71464 GCO71457	CO71465 GCO71457	CO71466 GCO71457	CO71467 GCO71457		CO71469 GCO71457	CO71471 GCO71457	CN92798 GCN92786	CN92797 GCN92786	CN93825 GCN93805
CTETPH 8015D (mg/Kg)	500	2,500	2,500	NA	-	-	-	<60	<61	<63	<340	97	<63	<66	<66	<63	99	<57	93	<290	-	-	-	-
PFAS CT DEEP (mg/Kg) Perfluorohexanesulfonic Acid (PFHxs Perfluorooctanesulfonic Acid (PFOS) Perfluorooctanoic Acid (PFOA) PFAS5 (Total)	5 NE	NE NE NE 41	NE NE NE 0.014	NA NA NA	- - - -	- - -	- - -	<0.000298 0.00114 <0.000298	0.00204 0.0386	<0.000288 0.00184 <0.000288		<0.000305 0.00295 <0.000305 0.00295	<0.000299 0.0018			<0.000305 0.00166	<0.000310 0.00263	<0.000297 0.00075	<0.000289 0.00111	<0.000294 0.00139 <0.000294 0.00139	- - -	- - -	- - -	- - - -
PFAS CT DEEP (ng/L) PFAS (Total)	NA	NA	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2.00	-	-	-
Metals 6010D (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium	27 10 4,700 2 34	8,200 10 140,000 2 1,000	NA NA NA NA	NA NA NA NA	- - - -	- - - -	- - - -	- 2.34 - -	- 2.95 - - -	- 4.55 - - -	3.05 - - -	- 4.22 - - -	- 4.12 - - -	- 5.56 - - -	3.39 - - -	- 5.23 - - -	- <0.76 - -	3.69 - - -	- 3.28 - - -	3.26 - - -	- - - -	- - - -	- - - -	- - - -
Chromium (Total) Copper Lead Mercury (7471B) Nickel	NE 2,500 400 20 1,400	NE 76,000 1,000 610 7,500	NA NA NA NA	NA NA NA NA	- 30.4 - -	- - 406 - -	- - 387 - -	- - 20.7 - -	- - 43.7 - -	- - 36.6 - -	- - 37.1 - -	- - 35.0 - -	- - 39.8 - -	- - 52.4 - -	- 30.8 - -	- - 55.4 - -	- - <0.38 - -	- 31.4 -	30.4	31.6	- - - -	- - - -	- - - -	- - - -
Selenium Silver Thallium Vanadium Zinc	340 340 5.4 470 20,000	10,000 10,000 160 14,000 610,000	NA NA NA NA	NA NA NA NA	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -
SPLP Metals 6010D (mg/L) Barium Beryllium Chromium (Total) Copper Lead Mercury Nickel Vanadium Zinc	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	10 0.04 0.5 13 0.15 0.02 1 0.5 50	NA NA NA NA NA NA NA	- - - - - - -	0.114	- - - 0.062 - - -	- - - - - - -	- - - - - - -	- - - - - - -	- - - - - - -	- - - - - -	- - - - - - -	- - - - - -	-	-	- - - - - - -							
Pesticides 8081B (mg/Kg) Chlordane DDE, 4,4- DDT, 4,4- DDT (Total) Dieldrin	0.49 NE NE 1.8 0.038	2.2 NE NE 17 0.36	0.066 NE NE 0.02 0.007	NE NE 0.02	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - - -	- - - - -	- - - -	-	- - - -	- - - -
SPLP Pesticides 8081B (ug/L) PCBs 8082A (mg/Kg) Aroclor-1260 PCBs (Total)	NA NE 1	NA NE 10	NA NA NA	Varies NA NA	-	- -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
Herbicides 8151A (mg/Kg) CTDEEP RSRs - Connecticut Departs		Varies		NA	- CP DMC Do	- Ilutant Mohilit	-	- - CP ground	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable

<xx indicates compound was not reported above</p>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg) PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC Bold values indicate exceedances of I/C DEC

TABLE 2

Summary of Soil Analytical Results Brainard Airport

20 Lindbergh Drive

Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson)

Last Updated: 8/29/2023 (J. Jackson Sample Name	JH)	CTDEE	D DCD		HA-45	HA-46	HA-47	HA-48	HA-49	HA-50	HA-51	HA-52	HA-53	HA-54	HA-55	HA-56	HA-57	HA-58	HA-59	DUDOSTOSS	Equipment Blank	TB042723H	TB042723L	TD0/2022U
Sample Depth		Crite			0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	D0F061023	Equipment Blank	1004272311	10042723L	1004202311							
		Crite	i ia		5/8/2023	5/8/2023		8/10/2023		8/10/2023	8/10/2023		8/10/2023	8/10/2023	8/10/2023	8/10/2023	8/10/2023	8/10/2023	8/10/2023	8/10/2023	0/10/2022	4/27/2022	4/27/2022	4/20/2022
Sample Date	DEC	1.00	CB	CMIDC			5/8/2023		8/10/2023	-, -, -	-, -, -	-, -, -	-, -, -	-, -, -	-, -, -	-, -, -	-, -, -	-, -, -			8/10/2023	4/27/2023	4/27/2023	4/28/2023
Lab Sample ID	RES	I/C	GB	GWPC	CO00645	CO00646	CO00647	CO71457	CO71458	CO71459	CO71460	CO71461	CO71462	CO71463	CO71464	CO71465	CO71466	CO71467	CO71468	CO71469	CO71471	CN92798	CN92797	CN93825
Lab Report ID	DEC	DEC	PMC	x10	GC000632	GC000632	GC000632	GCU/145/	GCU/145/	GCU/145/	GCU/145/	GC071457	GCU/145/	GC071457	GC071457	GCN92786	GCN92786	GCN93805						
Parent Sample ID																								
Dioxane 8270D (mg/Kg)																								
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Glycol 8015D (mg/Kg)																								
Ethylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Propylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VOCs 8260C (mg/Kg) Benzene	21	200	0.2	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	< 0.2	< 0.005	<0.2
Butylbenzene, n-	500	1,000	70	NA		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<0.25	<0.005	<0.25
Butylberizerie, 11- Butylbenzene, sec-	500	1,000	70 70	NA	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	<0.25	<0.005	<0.25
	500	1,000	70 8	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Carbon disulfide Dioxane, 1,4-	6.1	1,000 57	8 0.6	NA NA	_	-	_	-	-	-	_	-	-	-	-	_	_	-	-	_	-	<0.25	<0.005	<0.25
Ethylbenzene	500	1,000	10.1	NA NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	<0.005	<0.25
Etrylberizerie Isopropylbenzene (cumene)	500	1,000	5	NA	_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	<0.25	<0.005	<0.25
, , , , , , , , , , , , , , , , , ,		1,000	5 5		_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-			
Isopropyltoluene, 2- (o-Cymene)	500		-	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	<0.005	<0.25
Isopropyltoluene, 4- (p-Cymene)	500	1,000	5	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	<0.005	<0.25
Naphthalene	1,000	2,500	56	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	< 0.005	<0.25
Propylbenzene, n-	500	1,000	10	NA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	< 0.005	<0.25
Tetrahydrofuran 	61	570	0.8	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.5	0.011	<0.5
Toluene	500	1,000	67	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	< 0.005	<0.25
Trimethylbenzene, 1,2,4-	500	1,000	28	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	< 0.005	<0.25
Trimethylbenzene, 1,3,5-	500	1,000	28	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	< 0.005	<0.25
Xylene (Total)	500	1,000	19.5	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	< 0.005	<0.25
Xylene, m,p-	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	< 0.005	<0.25
Xylene, o-	NE	NE	NE	NA NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.25	<0.005	<0.25
SVOCs 8270D (mg/Kg)				NA																				
Acenaphthene	1,000	2,500	84	NA	< 0.29	< 0.25	0.7	< 0.28	< 0.29	< 0.3	< 0.32	< 0.3	< 0.3	< 0.31	< 0.3	< 0.3	< 0.28	< 0.27	< 0.27	< 0.28	_	-	-	_
Acenaphthylene	1,000	2,500	84	NA	< 0.29	0.8	0.76	<0.28	< 0.29	< 0.3	< 0.32	<0.3	< 0.3	< 0.31	< 0.3	< 0.3	<0.28	<0.27	< 0.27	<0.28	_	-	-	-
Anthracene	1,000	2,500	400	NA	< 0.29	0.63	1.9	< 0.28	< 0.29	< 0.3	< 0.32	< 0.3	< 0.3	< 0.31	< 0.3	< 0.3	< 0.28	< 0.27	< 0.27	< 0.28	_	_	-	_
Benzo(a)anthracene	1	7.8	1	NA	< 0.29	1.8	4.1	<0.28	< 0.29	< 0.3	0.54	< 0.3	0.3	< 0.31	< 0.3	0.31	0.48	< 0.27	0.27	0.34	-	_	-	-
Benzo(a)pyrene	1	1	1	NA	< 0.29	2.4	4.6	<0.28	< 0.29	< 0.3	0.6	< 0.3	0.33	0.31	< 0.3	0.35	0.59	< 0.27	0.33	0.45	-	_	-	_
Benzo(b)fluoranthene	1	7.8	1	NA	< 0.29	3	5.5	<0.28	< 0.29	< 0.3	0.63	< 0.3	0.33	0.39	< 0.3	0.4	0.63	<0.27	0.39	0.49	_	-	-	-
Benzo(g,h,i)perylene	8.4	78	1	NA	< 0.29	1.8	2.8	<0.28	< 0.29	<0.3	0.4	< 0.3	< 0.3	< 0.31	< 0.3	< 0.3	<0.28	< 0.27	<0.27	0.33	_	-	-	-
Benzo(k)fluoranthene	8.4	78	1	NA	< 0.29	0.9	1.5	<0.28	< 0.29	<0.3	< 0.32	< 0.3	< 0.3	< 0.31	< 0.3	< 0.3	<0.28	< 0.27	< 0.27	<0.28	_	-	-	_
bis(2-Ethylhexyl)phthalate	44	410	11	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	_
Carbazole	31	290	1	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chrysene	84	780	1	NA	< 0.29	1.8	4.2	<0.28	< 0.29	< 0.3	0.59	< 0.3	< 0.3	< 0.31	< 0.3	< 0.3	0.45	< 0.27	0.28	0.34	_	_	_	_
Dibenz(a,h)anthracene	1	1	1	NA	<0.29	0.35	0.58	<0.28	<0.29	<0.3	<0.32	<0.3	<0.3	<0.31	<0.3	<0.3	<0.28	<0.27	<0.27	<0.28	_	_	_	_
Fluoranthene	1,000	2,500	56	NA	0.35	5.1	10	<0.28	<0.29	<0.3	0.89	<0.3	0.42	0.37	<0.3	0.46	0.75	<0.27	0.49	0.28	_	_	_	_
Fluorene	1,000	2,500	56	NA	<0.29	<0.25	0.64	<0.28	<0.29	<0.3	< 0.32	<0.3	<0.3	< 0.31	<0.3	<0.3	<0.28	<0.27	< 0.27	<0.28	_	_	_	_
indeno(1,2,3-cd)pyrene	1,000	2,300 7.8	1	NA	<0.29	1.8	2.8	<0.28	<0.29	<0.3	0.36	<0.3	<0.3	< 0.31	< 0.3	<0.3	0.3	<0.27	<0.27	0.31	_	_	_	_
Methylnaphthalene, 2-	270	1,000	5.6	NA	<0.29	<0.25	<0.27	<0.28	<0.29	<0.3	< 0.30	<0.3	<0.3	<0.31	<0.3	<0.3	<0.28	<0.27	<0.27	<0.28	_	_	_	_
Naphthalene	1,000	2,500	56	NA	<0.29	<0.25	0.28	<0.28	<0.29	<0.3	<0.32	<0.3	<0.3	< 0.31	<0.3	<0.3	<0.28	<0.27	<0.27	<0.28	-	-	_	_
Phenanthrene	1,000	2,500	40	NA	<0.29	2	10	<0.28	<0.29	<0.3	0.64	<0.3	<0.3	< 0.31	<0.3	<0.3	<0.28	<0.27	<0.27	<0.28	-	-	_	-
Pyrene	1,000	2,500	40	NA	0.34	4.4	8.8	<0.28	<0.29	< 0.3	1.3	< 0.3	0.41	0.39	< 0.3	0.48	0.79	0.28	0.48	0.28	-	-	-	-
CTDEEP RSRs - Connecticut Depart									vater area	\U.S	1.3	<u.3< td=""><td>0.41</td><td>0.39</td><td>\U.3</td><td>0.40</td><td>0.79</td><td>0.20</td><td>0.40</td><td>0.20</td><td>_</td><td>_</td><td></td><td></td></u.3<>	0.41	0.39	\U.3	0.40	0.79	0.20	0.40	0.20	_	_		

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018) Boxed values indicate exceedances of I/C DEC Bold values indicate exceedances of I/C DEC

CT ETPH - Connecticut Department of Public Health Extractable

Total Petroleum Hydrocarbons NE - Not established; NA - Not Applicable

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

TABLE 2

Summary of Soil Analytical Results

Brainard Airport

20 Lindbergh Drive

Hartford, Connecticut
Last Updated: 8/29/2023 (J. Jackson)

Last Updated: 8/29/2023 (J. Jackson	n)																		
Sample Name		CTDEE	P RSR		TB042823L	TB050123H	TB050123L	TB HL	TB LL	TB050422H	TB050422L	TB050523H	TB050523L	TB050823H	TB050823L	TB050923H	TB050923L	TB051723H	TB051723L
Sample Depth		Crite	eria																
Sample Date					4/28/2023	5/1/2023	5/1/2023	5/3/2023	5/3/2023	5/4/2023	5/4/2023	5/5/2023	5/5/2023	5/8/2023	5/8/2023	5/9/2023	5/9/2023	5/17/2023	5/17/2023
Lab Sample ID	RES	I/C	GB	GWPC	CN93824	CN94971	CN94970	CN97664	CN97663	CN97930	CN97929	CN98867	CN98866	CO00653	CO00652	CO01230	CO01229	CO08026	CO08025
Lab Report ID	DEC	DEC	PMC	x10	GCN93805	GCN94953	GCN94953	GCN97567			GCN97920	GCN98846	GCN98846	GC000632	GC000632	GC001217	GC001217	GC008002	GC008002
Parent Sample ID	DLC	DLC		XIO	001133003	001171733	001131333	001137307	001137307	001137320	001137320	001130010	001130010	00000052	00000032	GCGGIZI7	GCGGIZI7	0000002	0000002
	500	2 500	2,500	NA	_	_													
CTETPH 8015D (mg/Kg)	500	2,500	2,500	IVA	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS CT DEEP (mg/Kg)																			
	NE.	NE	NE	NA															
Perfluorohexanesulfonic Acid (PFHxS		NE	NE	NA	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanesulfonic Acid (PFOS)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NE	NE	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS5 (Total)	1.35	41	0.014	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PFAS CT DEEP (ng/L)																			
PFAS (Total)	NA	NA	NA	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
() ()																			
Metals 6010D (mg/Kg)																			
Antimony	27	8,200	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	10	10	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Barium	4,700			NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	2	2	NA	NA	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_
Cadmium	34	1,000	NA	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chromium (Total)	NE	NE	NA	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Copper	2,500		NA	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Lead	400	1,000	NA	NA	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	20	610	NA	NA															
Mercury (7471B)			NA		_	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	1,400			NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	340	10,000	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver	340	10,000	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thallium	5.4	160	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	470	14,000	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	20,000	610,000	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPLP Metals 6010D (mg/L)																			
Barium	NA	NA	10	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	NA	NA	0.04	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (Total)	NA	NA	0.5	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	NA	NA	13	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	NA	NA	0.15	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	NA	NA	0.02	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	NA	NA	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	NA	NA	0.5	NA	-	-	-	_	-	_	_	_	_	-	_	_	_	-	-
Zinc	NA	NA	50	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides 8081B (mg/Kg)																			
Chlordane	0.49	2.2	0.066		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDE, 4,4-	NE	NE	NE	NE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDT, 4,4-	NE	NE	NE	NE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDT (Total)	1.8	17	0.02	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dieldrin	0.038	0.36	0.007	0.007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPLP Pesticides 8081B (ug/L)	NA	NA	NA	Varies	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCBs 8082A (mg/Kg)																			
Aroclor-1260	NE	NE	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCBs (Total)	1	10	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Harbida of Ed. (may 1915)	\ /!	\	1/	D.I.O.															
Herbicides 8151A (mg/Kg)	Varies	Varies	Varies	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

CTDEEP RSRs - Connecticut Department of Energy and

Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting

Substances (September 20, 2018) CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable

<xx indicates compound was not reported above</p>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are

summarized above

Results presented in milligrams per kilogram (mg/kg) PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC

Bold values indicate exceedances of I/C DEC

TABLE 2

Summary of Soil Analytical Results

Brainard Airport

20 Lindbergh Drive

Hartford, Connecticut
Last Updated: 8/29/2023 (J. Jackson)

Last Updated: 8/29/2023 (J. Jackso	on)																		
Sample Name		CTDEE	P RSR		TB042823L	TB050123H	TB050123L	TB HL	TB LL	TB050422H	TB050422L	TB050523H	TB050523L	TB050823H	TB050823L	TB050923H	TB050923L	TB051723H	TB051723L
Sample Depth		Crit	eria																
Sample Date					4/28/2023	5/1/2023	5/1/2023	5/3/2023	5/3/2023	5/4/2023	5/4/2023	5/5/2023	5/5/2023	5/8/2023	5/8/2023	5/9/2023	5/9/2023	5/17/2023	5/17/2023
Lab Sample ID	RES	I/C	GB	GWPC	CN93824	CN94971	CN94970	CN97664	CN97663	CN97930	CN97929	CN98867	CN98866	CO00653	CO00652	CO01230	CO01229	CO08026	CO08025
Lab Report ID	DEC	DEC	PMC	x10	GCN93805	GCN94953	GCN94953	GCN97567	GCN97567	GCN97920	GCN97920	GCN98846	GCN98846	GCO00632	GCO00632	GCO01217	GC001217	GCO08002	GC008002
Parent Sample ID																			
Dioxane 8270D (mg/Kg)																			
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Glycol 8015D (mg/Kg)																			
Ethylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Propylene glycol	1,000	2,500	200	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VOCs 8260C (mg/Kg)																			
Benzene	21	200	0.2	NA	< 0.005	< 0.2	< 0.005	< 0.2	< 0.005	< 0.2	< 0.005	< 0.2	< 0.005	< 0.2	< 0.005	< 0.2	< 0.005	< 0.2	< 0.005
Butylbenzene, n-	500	1,000	70	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Butylbenzene, sec-	500	1,000	70	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Carbon disulfide	500	1,000	8	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Dioxane, 1,4-	6.1	<i>57</i>	0.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	500	1,000	10.1	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Isopropylbenzene (cumene)	500	1,000	5	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Isopropyltoluene, 2- (o-Cymene)	500	1,000	5	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Isopropyltoluene, 4- (p-Cymene)	500	1,000	5	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Naphthalene	1,000	2,500	56	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Propylbenzene, n-	500	1,000	10	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Tetrahydrofuran	61	570	0.8	NA	0.011	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
Toluene	500	1,000	67	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Trimethylbenzene, 1,2,4-	500	1,000	28	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Trimethylbenzene, 1,3,5-	500	1,000	28	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Xylene (Total)	500	1,000	19.5	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Xylene, m,p-	NE	NE	NE	NA	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005	< 0.25	< 0.005
Xylene, o-	NE	NE	NE	NA NA	<0.005	<0.25	<0.005	<0.25	<0.005	<0.25	<0.005	<0.25	<0.005	<0.25	<0.005	<0.25	< 0.005	<0.25	<0.005
SVOCs 8270D (mg/Kg)				NA															
Acenaphthene	1,000	2,500	84	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	1,000	2,500	84	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	1,000	2,500	400	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)anthracene	1	7.8	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	1	1	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	1	7.8	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(g,h,i)perylene	8.4	<i>78</i>	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	8.4	78	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
bis(2-Ethylhexyl)phthalate	44	410	11	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole	31	290	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	84	780	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene	1	1	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	1,000	2,500	56	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	1,000	2,500	56	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	1	7.8	1	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methylnaphthalene, 2-	270	1,000	5.6	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	1,000	2,500	56	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	1,000	2,500	40	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	1,000	2,500	40	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Gray shaded values indicate exceedance of GB PMC

I/C DEC - Industrial/Commercial Direct Exposure Criteria

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018) Bold values indicate exceedances of I/C DEC Bold values indicate exceedances of I/C DEC

CT ETPH - Connecticut Department of Public Health Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

TABLE 2

Summary of Soil Analytical Results Brainard Airport

20 Lindbergh Drive

Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson	1)									
Sample Name		CTDEEF	RSR		ТВ-Н	TB-LL	TB HL	TB LL	TB-HL	TB-LL
Sample Depth		Crite	ria							
Sample Date					5/18/2023	5/18/2023	5/19/2023	5/19/2023	5/22/2023	5/22/2023
Lab Sample ID	RES	I/C	GB	GWPC	CO09184	CO09185	CO10284	CO10285	CO11324	CO11325
Lab Report ID	DEC	DEC	PMC	x10	GC009163	GC009163	GCO10275	GCO10275	GCO11308	GCO11308
Parent Sample ID										
CTETPH 8015D (mg/Kg)	500	2,500	2,500	NA	-	-	-	-	-	-
PFAS CT DEEP (mg/Kg)										
Perfluorohexanesulfonic Acid (PFHxS		NE	NE	NA	-	-	-	-	-	-
Perfluorooctanesulfonic Acid (PFOS)	NE	NE	NE	NA	-	-	-	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NE	NE	NA	-	-	-	-	-	-
PFAS5 (Total)	1.35	41	0.014	NA	-	-	-	-	-	-
PFAS CT DEEP (ng/L)										
PFAS (Total)	NA	NA	NA	NA	_	_	_	_	_	_
() ()										
Metals 6010D (mg/Kg)										
Antimony	27	8,200	NA	NA	-	-	-	-	-	-
Arsenic	10	10	NA	NA	-	-	-	-	-	-
Barium	4,700	140,000	NA	NA	-	-	-	-	-	-
Beryllium	2	2	NA	NA	-	-	-	-	-	-
Cadmium	34	1,000	NA	NA	-	-	-	-	-	-
Chromium (Total)	NE	NE	NA	NA	-	-	-	-	-	-
Copper	2,500	76,000	NA	NA	-	-	-	-	-	-
Lead	400	1,000	NA	NA	-	-	-	-	-	-
Mercury (7471B)	20	610	NA	NA	-	-	-	-	-	-
Nickel	1,400	7,500	NA	NA	-	-	-	-	-	-
Selenium	340	10,000	NA	NA	-	-	-	-	-	-
Silver	340	10,000	NA	NA	-	-	-	-	-	-
Thallium	5.4	160	NA	NA	-	-	-	-	-	-
Vanadium	470	14,000	NA	NA	-	-	-	-	-	-
Zinc	20,000	610,000	NA	NA	-	-	-	-	-	-
SPLP Metals 6010D (mg/L)										
Barium	NA	NA	10	NA	_	_	_	_	_	_
Beryllium	NA	NA	0.04	NA	_	_	_	_	_	_
Chromium (Total)	NA	NA	0.5	NA	_	_	_	_	_	_
Copper	NA	NA	13	NA	_	_	_	_	_	_
Lead	NA	NA	0.15	NA	_	_	_	_	_	_
Mercury	NA	NA	0.02	NA	_	_	_	_	_	_
Nickel	NA	NA	1	NA	_	_	_	_	_	_
Vanadium	NA	NA	0.5	NA	_	_	_	_	_	_
Zinc	NA	NA	50	NA	-	-	_	_	_	_
Pesticides 8081B (mg/Kg)										
Chlordane	0.49	2.2	0.066	0.066	-	-	-	-	-	-
DDE, 4,4-	NE	NE	NE	NE	-	-	-	-	-	-
DDT, 4,4-	NE	NE	NE	NE	-	-	-	-	-	-
DDT (Total)	1.8	17	0.02	0.02	-	-	-	-	-	-
Dieldrin	0.038	0.36	0.007	0.007	-	-	-	-	-	-
SPLP Pesticides 8081B (ug/L)	NA	NA	NA	Varies	-	-	-	-	-	-
PCBs 8082A (mg/Kg)										
Aroclor-1260	NE	NE	NA	NA	-	-	-	-	-	-
PCBs (Total)	1	10	NA	NA	-	-	-	-	-	-
Herbicides 8151A (mg/Kg)	Varies	Varies	Varies	NA	_	_	_	_	_	_
CTDEED DCDs Connecticut Departm	varies	varies	varies	NМ	CP DMC Dol	lutant Mahilit		- CP ground		-

CTDEEP RSRs - Connecticut Department of Energy and

Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

CT ETPH - Connecticut Department of Public Health

Extractable Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable <xx indicates compound was not reported above</p>

laboratory limits.
"-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds
VOCs - Volatile Organic Compounds
RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GB PMC- Pollutant Mobility Criteria in a GB groundwater area Boxed values indicate exceedances of RES DEC

Bold values indicate exceedances of I/C DEC Gray shaded values indicate exceedance of GB PMC Tighe&Bond

TABLE 2 Summary of Soil Analytical Results

Brainard Airport 20 Lindbergh Drive Hartford, Connecticut

Last Updated: 8/29/2023 (J. Jackson)

Sample Name
Sample Date Lab Sample ID DEC DEC PMC VIO CO09163 CO09163 CO09163 CO10245 CO10285 CO11324 CO11328 CO11328 CO10328 CO10285 CO10285 CO11324 CO11308 CO09163
Lab Sample ID Dick RES I/C DEC PMC X10 GC009183 GC019185 GC110285 GC110285 GC11324 GC011325 GC011328 G
Bene Report ID
Bene Report ID
Parent Sample ID
Dioxane 1,4- Dioxane 1,000 Dioxane 1,00
Dioxane, 1,4- Color Colo
Citycle 8015D (mg/kg) Ethylene glycol 1,000 2,500 200 NA - - - - - - - - -
Ethylpeng glycol
Ethylpeng glycol
Propylene glycol
VOCs 8260C (mg/Kg) Benzene 21 200 0.2 NA < 0.2 < 0.005 < 0.2 < 0.005 Butylbenzene, n- 500 1,000 70 NA < 0.25
Benzene
Benzene
Butylbenzene, n-
Buylbenzene, sec- Carbon disulfide 500 1,000 8 NA 40.25 <0.005 <0.25 <0.005 <0.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <0.005 50.25 <
Carbon disulfide 500 1,000 8
Dioxane, 1,4- Ethylbenzene 500 1,000 10.1 NA <0.25 <0.005 <0.05 <0.05 <0.05 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0
Ethylbenzene 500 1,000 10.1 NA <0.25 <0.005 <0.25 <0.005 <0.25 <0.005
Isopropylbenzene (cumene)
Isopropy toluene, 2- (o-Cymene) 500 1,000 5
Isopropyltoluene, 4- (p-Cymene) 500 1,000 5 NA <0.25 <0.005 <0.25 <0.005 <0.25 <0.005 <0.25 <0.005 <0.005 <0.25 <0.005 <0.005 <0.25 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0
Naphthalene
Propylbenzene, n-Tetrahydrofuran 500 1,000 10 NA <0.25 <0.005 <0.25 <0.005 <0.01 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Tetrahydrofuran 61 570 0.8 NA Co.5 Co.01 Co.5 Co.01 Toluene 500 1,000 67 NA Co.25 Co.005 Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,3,5- Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,3,5- Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,2,2- T
Toluene
Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,3,5- Trimethylbenzene, 1,3,5- Trimethylbenzene, 1,3,5- Xylene (Total) Xylene, m,p- Xylene, o- NE NE NE NE NE NE NA
Trimethylbenzene, 1,3,5- Xylene (Total) Xylene (Total) Xylene, m,p- Xylene, o- NE NE NE NE NE NE NA CO.25 CO.005 CO.005 CO.25 CO.005 CO.005 CO.25 CO.005 CO.005 CO.25 CO.005 CO.005 CO.25 CO.005 CO.25 CO.005 CO.25 CO.005 CO.25 CO.005
Xylene (Total) 500 1,000 19.5 NA <0.25 <0.005 <0.25 <0.005 <0.25 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Xylene, m,p- NE NE NE NE NA <0.25 <0.005 <0.25 <0.005 <0.25 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
NE
SVOCs 8270D (mg/Kg) Acenaphthene 1,000 2,500 84 NA -
SVOCs 8270D (mg/Kg) Acenaphthene 1,000 2,500 84 NA -
Acenaphthene 1,000 2,500 84 NA -
Acenaphthylene 1,000 2,500 84 NA - </td
Anthracene 1,000 2,500 400 NA -
Anthracene 1,000 2,500 400 NA -
Benzo(a)anthracene 1 7.8 1 NA -
Benzo(a)pyrene 1 1 1 NA -
Benzo(b)fluoranthene 1 7.8 1 NA -
Benzo(g,h,i)perylene 8.4 78 1 NA -
Benzo(k)fluoranthene 8.4 78 1 NA
Carbazole 31 290 1 NA
Chrysene 84 780 1 NA
Dibenz(a,h)anthracene 1 1 1 1 NA
Fluoranthene 1,000 2,500 56 NA
Fluorene 1,000 2,500 56 NA
Indeno(1,2,3-cd)pyrene
Methylnaphthalene, 2- 270 1,000 5.6 NA
Naphthalene 1,000 2,500 56 NA
Pyrene 1,000 2,500 40 NA

Total Petroleum Hydrocarbons NE - Not established; NA - Not Applicable

PCBs - Polychlorinated Biphenyls SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018) Boxed values indicate exceedances of I/C DEC Bold values indicate exceedances of I/C DEC Gray shaded values indicate exceedance of GB PMC

J:\C\C5182 CT Department of Community and Development (DECD)\Reports\2023_Phase II-III ESA\Report\Appendix B - Tables\Table 2 - Soil Summary.xlsx

Tighe&Bond

CT ETPH - Connecticut Department of Public Health Extractable

<xx indicates compound was not reported above laboratory limits.</p>

[&]quot;-" - Sample not analyzed

Only parameters reported above reporting limits are summarized above

Results presented in milligrams per kilogram (mg/kg)

TABLE 3 Summary of Groundwater Analytical Results Brainard Airport 20 Lindbergh Drive Hartford, Connecticut

Last Updated: 6/27/2023 (I. Adomeit)		DEEP RSR		TMN4/ 4	TMM 2	TMM 2	TMW-4	DUP-5	TM34/ F	TMN4/ C	DUD 1	TMW-7	TMM O	TMM	DUD 4
Sample Name	CI			TMW-1	TMW-2	TMW-3			TMW-5	TMW-6	DUP-1		TMW-8	TMW-9	DUP-4
Sample Date		Criteria	T/C	6/7/2023	6/6/2023	6/1/2023	6/7/2023	6/7/2023	6/7/2023	6/1/2023	6/1/2023	6/6/2023	6/6/2023	6/7/2023	6/7/2023
Lab Sample ID	SWPC	RES	I/C	CO21852	CO20484	CO18107	CO21853	CO21860	CO21854	CO18108	CO18115	CO20485	CO20486	CO21855	CO21859
Lab Report ID		GWVC	GWVC	GCO21852	GCO20484	GCO18107	GCO21852	GCO21852	GCO21852	GCO18107	GCO18107	GCO20484	GCO20484	GCO21852	
Parent Sample								CO21853			CO18108				CO21855
CTETPH 8015D (µg/L)	250	250	250	<66	<67	<66	<67	-	<66	<67	-	<66	<66	<66	<67
PFAS CT 537M List (μg/L)															
Perfluoroheptanoic Acid (PFHpA)	NE	NA	NA	-	-	< 0.00192	-	-	-	0.00718	0.00686	-	-	-	-
Perfluorohexanesulfonic Acid (PFHxS)	NE	NA	NA	-	-	0.00219	-	-	-	0.0215	0.021	-	-	-	-
Perfluorononanoic Acid (PFNA)	NE	NA	NA	-	-	< 0.00192	-	-	-	< 0.00192	0.00193	-	-	-	-
Perfluorooctanesulfonic acid (PFOS)	NE	NA	NA	-	-	< 0.00192	-	-	-	0.0259	0.0254	-	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NA	NA	-	-	< 0.00192	-	-	-	0.0096	0.00775	-	-	-	-
Total Regulated PFAS	NE	NA	NA	-	-	0.00219	-	-	-	0.0642	0.0629	-	-	-	-
Total Metals 6010D (µg/L)															
Antimony	86,000	NA	NA	-	<5	<5	<5	<5	-	<5	-	<5	<5	<5	<5
Arsenic	4	NA	NA	-	<4	<4	12	12	<4	<4	-	55	<4	<4	<4
Barium	2,200	NA	NA	-	61	87	286	287	75	114	-	69	18	15	15
Beryllium	, 4	NA	NA	-	<1	<1	<1	<1	-	<1	-	<1	<1	<1	<1
Cadmium	6	NA	NA	-	<1	<1	<1	2	<1	<1	-	<1	<1	<1	<1
Chromium (Total)	NE	NA	NA	-	<1	1	<1	<1	<1	<1	-	1	<1	<1	<1
Copper	48	NA	NA	-	<5	<5	<5	<5	_	<5	-	<5	<5	<5	<5
Lead	13	NA	NA	<1	<1	<1	2	3	<1	<1	_	3	<1	<1	<1
Mercury (7470A)	0.4	NA	NA	_	< 0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	_	< 0.2	<0.2	< 0.2	<0.2
Nickel	880	NA	NA	_	4	<1	10	9	-	1	_	2	2	6	6
Selenium	50	NA	NA	_	<10	<10	<10	<10	<10	<10	_	<10	<10	<10	<10
Silver	12	NA	NA	_	<1	<1	<1	<1	<1	<1	_	<1	<1	<1	<1
Thallium (6020B)	63	NA	NA	_	<0.5	<0.5	<0.5	<0.5	_	<0.5	_	<0.5	<0.5	<0.5	<0.5
Vanadium	270	NA	NA	_	<2	2	<2	<2	_	2	_	<2	<2	<2	<2
Zinc	123	NA	NA	-	<4	<4	10	12	-	8	-	8	<4	<4	<4
DCD- 90924 (/I.)															
PCBs 8082A (µg/L) PCBs (Total)	0.5	NA	NA	-	ND	ND	ND	-	-	ND	-	ND	ND	ND	ND
SVOCs 8270D (SIM) (µg/L)															
Acenaphthene	150	30,500	50,000	< 0.47	< 0.47	< 0.49	< 0.47	_	< 0.47	< 0.49	_	< 0.49	< 0.49	< 0.48	< 0.48
Acenaphthylene	0.3	30,300 NE	30,000 NE	<0.47	<0.47	<0.49	<0.47	_	<0.47	<0.49	_	<0.49	<0.49	<0.46	<0.46
• •								_			_				
Benzo(a)anthracene	0.3 <i>960</i>	NE NE	NE NE	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05
Dioxane, 1,4-								-			-				
Phenanthrene	14	NE	NE	< 0.06	< 0.06	< 0.06	< 0.06		< 0.06	< 0.06		< 0.06	< 0.06	< 0.06	< 0.06
Pyrene	110,000	NE	NE	<0.47	<0.47	< 0.49	<0.47	-	<0.47	<0.49	-	< 0.49	<0.49	<0.48	<0.48
SVOCs 8270D (μg/L)	Varies	Varies	Varies	BRL	-	BRL	BRL	-	-	BRL	-	BRL	BRL	BRL	BRL
VOCs 8260C (μg/L)															
Dichloroethene, cis-1,2-	6,200	NE	NE	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	-	2.9	<1.0	<1.0	-
Dioxane, 1,4-	960	NE	NE	<100	-	-	-	-	-	-	-	-	<40	-	-
Xylene (Total)	270	21,300	50,000	<1.0	<1.0	<1.0	<1.0	-	1.7	<1.0	-	<1.0	<1.0	<1.0	-
Xylene, m,p-	NE	NE	NE	<1.0	<1.0	<1.0	<1.0	-	1.7	<1.0	-	<1.0	<1.0	<1.0	-

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

RES GWVC - Residential Groundwater Volatilization Criteria

I/C GWVC - Industrial/Commercial Groundwater Volatilization Criteria

Boxed Values indicate exceedances of RES VC

Bold values indicate exceedances of I/C VC

CT ETPH - Connecticut Department of Public Health Extractable

Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable; "-" - Sample not analyzed;

BRL - Below Reporting Limit <xx indicates compound was not reported above laboratory limits.</p>

Only parameters reported above reporting limits are summarized above

Results presented in micrograms per liter (µg/L)

PCBs - Polychlorinated Biphenyls

PFAS - Per- and Polyfluorinated Substances

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

SWPC - Surface Water Protection Criteria

TABLE 3Summary of Groundwater Analytical Results
Brainard Airport
20 Lindbergh Drive

Last Updated: 6/27/2023 (I. Adomeit)

Hartford, Connecticut

Sample Name	C1	TDEEP RSR		TMW-10	DUP-2	TMW-11	TMW-12	DUP-3	TMW-13	TMW-14	TMW-15	TMW-16	TMW-17	TMW-18	TMW-19	TMW-20	TMW-21
Sample Date		Criteria		6/6/2023	6/6/2023	6/7/2023	6/6/2023	6/6/2023	6/5/2023	6/5/2023	6/1/2023	6/6/2023	6/5/2023	6/1/2023	6/1/2023	6/5/2023	6/7/2023
Lab Sample ID	CIMPO	RES	I/C	CO20487	CO20492	CO21856	CO20488	CO20493	CO19489	CO19490	CO18109	CO20489	CO19491	CO18110	CO18111	CO19492	CO21857
Lab Report ID	SWPC	GWVC	GWVC	GCO20484	GCO20484	GCO21852	GCO20484	GC020484	GCO19489	GCO19489	GCO18107	GC020484	GCO19489	GCO18107	GCO18107	GCO19489	GCO2185
Parent Sample					CO20487			CO20488									
CTETPH 8015D (µg/L)	250	250	250	<70	<66	<66	<66	-	<67	<66	<69	<66	<67	<66	<66	<66	<66
PFAS CT 537M List (µg/L)																	
Perfluoroheptanoic Acid (PFHpA)	NE	NA	NA	-	-	-	-	-	-	-	0.00246	-	-	0.0371	< 0.00192	-	-
Perfluorohexanesulfonic Acid (PFHxS)	NE	NA	NA	-	-	-	-	-	-	-	< 0.00185	-	-	0.172	< 0.00192	-	-
Perfluorononanoic Acid (PFNA)	NE	NA	NA	-	-	-	-	-	-	-	< 0.00185	-	-	0.00627	< 0.00192	-	-
Perfluorooctanesulfonic acid (PFOS)	NE	NA	NA	-	-	-	-	_	-	-	< 0.00185	-	-	0.501	< 0.00192	-	-
Perfluorooctanoic Acid (PFOA)	NE	NA	NA	-	_	_	-	_	_	-	0.00201	-	-	0.0848	< 0.00192	_	-
Total Regulated PFAS	NE	NA	NA	-	-	-	-	-	-	-	0.00447	-	-	0.801	< 0.00192	-	-
Total Metals 6010D (µg/L)																	
Antimony	86,000	NA	NA	-	-	<5	<5	-	-	-	<5	-	-	<5	<5	<5	-
Arsenic	4	NA	NA	-	-	<4	9	-	<4	<4	<4	<4	<4	<4	5	<4	<4
Barium	2,200	NA	NA	-	-	26	87	-	29	25	14	21	16	67	57	28	63
Beryllium	4	NA	NA	-	-	<1	<1	-	-	-	<1	-	-	<1	<1	<1	-
Cadmium	6	NA	NA	-	-	<1	<1	_	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium (Total)	NE	NA	NA	-	_	3	<1	_	<1	<1	<1	1	<1	<1	<1	<1	<1
Copper	48	NA	NA	-	_	<5	<5	_	-	_	<5	-	-	<5	<5	<5	-
Lead	13	NA	NA	1	_	<1	3	_	<1	<1	<1	2	<1	<1	1	<1	<1
Mercury (7470A)	0.4	NA	NA	_	_	<0.2	<0.2	_	<0.2	< 0.2	< 0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2
Nickel	880	NA	NA	_	_	2	6	_	_	_	2	_	_	<1	1	1	_
Selenium	50	NA	NA	_	_	<10	<10	_	<10	<10	<10	<10	<10	<10	<10	<10	<10
Silver	12	NA	NA	_	_	<1	<1	_	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium (6020B)	63	NA	NA	_	_	<0.5	< 0.5	_	-	_	<0.5	_	_	< 0.5	< 0.5	< 0.5	_
Vanadium	270	NA	NA	_	_	<2	<2	_	_	_	<2	_	_	3	<2	<2	_
Zinc	123	NA	NA	-	-	<4	7	-	-	-	<4	-	-	8	8	<4	-
PCBs 8082A (µg/L)																	
PCBs (Total)	0.5	NA	NA	-	-	ND	ND	-	-	-	ND	ND	-	ND	ND	ND	ND
SVOCs 8270D (SIM) (µg/L)																	
Acenaphthene	150	30,500	50,000	< 0.49	< 0.47	< 0.47	< 0.49	-	< 0.47	< 0.49	< 0.47	< 0.49	< 0.48	< 0.49	< 0.47	< 0.47	-
Acenaphthylene	0.3	NE	NE	< 0.29	< 0.28	< 0.28	< 0.29	-	< 0.28	< 0.29	< 0.28	< 0.29	< 0.29	< 0.29	< 0.28	< 0.28	-
Benzo(a)anthracene	0.3	NE	NE	< 0.05	< 0.05	< 0.05	< 0.05	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07	< 0.05	< 0.05	-
Dioxane, 1,4-	960	NE	NE	-	-	-	-	-	-	-	< 0.20	-	-	-	-	-	-
Phenanthrene	14	NE	NE	< 0.06	< 0.06	< 0.06	< 0.06	-	< 0.06	0.09	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	-
Pyrene	110,000	NE	NE	<0.49	<0.47	< 0.47	< 0.49	-	< 0.47	< 0.49	< 0.47	< 0.49	<0.48	0.5	< 0.47	< 0.47	-
SVOCs 8270D (μg/L)	Varies	Varies	Varies	-	-	BRL	BRL	-	-	-	BRL	-	-	BRL	BRL	BRL	-
VOCs 8260C (μg/L)																	
Dichloroethene, cis-1,2-	6,200	NE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dioxane, 1,4-	960	NE	NE	-	-	-	<40	<40	<40	<40	-	<40	<40	-	-	-	-
Xylene (Total)	270	21,300	50,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Xylene, m,p-	NE	NE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

RES GWVC - Residential Groundwater Volatilization Criteria

I/C GWVC - Industrial/Commercial Groundwater Volatilization Criteria

Boxed Values indicate exceedances of RES VC

Bold values indicate exceedances of I/C VC

CT ETPH - Connecticut Department of Public Health Extractable

Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable; "-" - Sample not analyzed;

BRL - Below Reporting Limit

<xx indicates compound was not reported above laboratory limits.</p>

Only parameters reported above reporting limits are summarized above

Results presented in micrograms per liter $(\mu g/L)$

PCBs - Polychlorinated Biphenyls

PFAS - Per- and Polyfluorinated Substances

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

SWPC - Surface Water Protection Criteria

TABLE 3

Summary of Groundwater Analytical Results Brainard Airport

20 Lindbergh Drive

Hartford, Connecticut

Last Updated: 6/27/2023 (I. Adomeit)

Last Updated: 6/27/2023 (I. Adomeit) Sample Name	C.	TDEEP RSR		TMW-23	TMW-24	TMW-25	MW-1	MW-2	OW-1	Equipment Blank	Field Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank
Sample Date		Criteria		6/1/2023	6/5/2023	6/1/2023	6/7/2023	6/6/2023	6/6/2023	6/1/2023	6/1/2023	6/1/2023	6/5/2023	6/6/2023	6/7/2023
Lab Sample ID		RES	I/C	CO18112	CO19493	CO18113	CO21858	CO20490	CO20491	CO18117	CO18116	CO18114	CO19494	CO20494	CO21861
Lab Report ID	SWPC	GWVC	GWVC	GCO18107	GCO19489	GCO18107	GC021852	GCO20484	GCO20484	GCO18107	GCO18107	GCO18107	GCO19489	GCO20484	GCO21852
Parent Sample		circ	0	00010107	00017107	00010107	GCGZIGGZ	00020101	00020101	00010107	00010107	00010107	00013103	00020101	00021032
CTETPH 8015D (µg/L)	250	250	250	<69	<67	<66	<68	<66	<66	-	-	-	-	_	_
(-3, -)															
PFAS CT 537M List (µg/L)															
Perfluoroheptanoic Acid (PFHpA)	NE	NA	NA	0.00199	-	0.015	-	-	-	< 0.00192	< 0.00192	-	-	-	-
Perfluorohexanesulfonic Acid (PFHxS)	NE	NA	NA	< 0.00185	-	< 0.00192	-	-	-	< 0.00192	< 0.00192	-	-	-	-
Perfluorononanoic Acid (PFNA)	NE	NA	NA	< 0.00185	-	0.00685	-	-	-	< 0.00192	< 0.00192	-	-	-	-
Perfluorooctanesulfonic acid (PFOS)	NE	NA	NA	0.00247	-	0.00209	-	-	-	< 0.00192	< 0.00192	-	-	-	-
Perfluorooctanoic Acid (PFOA)	NE	NA	NA	0.00252	-	0.0111	-	-	-	< 0.00192	< 0.00192	-	-	-	-
Total Regulated PFAS	NE	NA	NA	0.00698	-	0.0350	-	-	-	<0.00192	<0.00192	-	-	-	-
Total Metals 6010D (µg/L)															
Antimony	86,000	NA	NA	-	-	-	<5	<5	<5	-	-	-	-	-	-
Arsenic	4	NA	NA	<4	<4	10	<4	<4	<4	-	-	-	-	-	-
Barium	2,200	NA	NA	35	109	40	21	714	2	-	-	-	-	-	-
Beryllium	4	NA	NA	-	-	-	<1	<1	<1	-	-	-	-	-	-
Cadmium	6	NA	NA	<1	2	<1	<1	1	<1	-	-	-	-	-	-
Chromium (Total)	NE	NA	NA	<1	<1	<1	12	2	<1	-	_	_	-	_	_
Copper	48	NA	NA	_	_	_	<5	<5	<5	_	_	_	_	_	_
Lead	13	NA	NA	2	2	<1	<1	<1	4	_	_	_	_	_	_
Mercury (7470A)	0.4	NA	NA	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	_	_	_	_	_	_
Nickel	880	NA	NA	-	-	-	<1	7	<1		_	_	_	_	_
Selenium	50	NA	NA	<10	<10	<10	<10	<10	<10		_	_	_	_	_
Silver	12	NA	NA	<1	<1	<1	<1	<1	<1		_	_	_	_	_
Thallium (6020B)	63	NA	NA	~1	~1	_	<0.5	<0.5	<0.5						
	270			_	_				2	-	_	_	_	-	_
Vanadium		NA	NA	_	-	-	<2	<2		-	-	-	-	-	-
Zinc	123	NA	NA	-	-	-	<4	5	<4	-	-	-	-	-	-
PCBs 8082A (μg/L)															
PCBs (Total)	0.5	NA	NA	-	-	-	ND	ND	ND	-	-	-	-	-	-
SVOCs 8270D (SIM) (µg/L)															
Acenaphthene	150	30,500	50,000	0.53	< 0.48	< 0.49	< 0.49	< 0.47	< 0.48	-	-	-	-	-	-
Acenaphthylene	0.3	NE	NE	0.39	< 0.29	< 0.29	< 0.29	< 0.28	< 0.29	-	-	-	-	-	-
Benzo(a)anthracene	0.3	NE	NE	0.09	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	-	-
Dioxane, 1,4-	960	NE	NE	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	14	NE	NE	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	-	_	_	-	_	-
Pyrene	110,000	NE	NE	< 0.51	<0.48	< 0.49	< 0.49	< 0.47	<0.48	-	-	-	-	-	-
SVOCs 8270D (µg/L)	Varies	Varies	Varies	-	-	-	BRL	BRL	BRL	-	-	-	-	-	-
VOCs 8260C (μg/L)															
Dichloroethene, cis-1,2-	6,200	NE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	_	_	<1.0	<1.0	<1.0	<1.0
Dioxane, 1,4-	960	NE	NE	-	-	-	-	-	<40	_	_	-	-	-	-
Xylene (Total)	270	21,300	50,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	_	_	<1.0	<1.0	<1.0	<1.0
· · · ·	NE	21,300 NE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0
Xylene, m,p-	INE	INE	INE	<1.0	<t.u< td=""><td><1.U</td><td><1.U</td><td>< I.U</td><td><1.U</td><td></td><td></td><td><1.∪</td><td><t.u< td=""><td><1.U</td><td><1.U</td></t.u<></td></t.u<>	<1.U	<1.U	< I.U	<1.U			<1.∪	<t.u< td=""><td><1.U</td><td><1.U</td></t.u<>	<1.U	<1.U

CTDEEP RSRs - Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021)

RES GWVC - Residential Groundwater Volatilization Criteria

I/C GWVC - Industrial/Commercial Groundwater Volatilization Criteria

Boxed Values indicate exceedances of RES VC

Bold values indicate exceedances of I/C VC

and CTDEEP Additional Polluting Substances (September 20, 2018) CT ETPH - Connecticut Department of Public Health Extractable

Total Petroleum Hydrocarbons

NE - Not established; NA - Not Applicable; "-" - Sample not analyzed;

BRL - Below Reporting Limit

<xx indicates compound was not reported above laboratory limits.</p> Only parameters reported above reporting limits are summarized above

Results presented in micrograms per liter (µg/L)

PCBs - Polychlorinated Biphenyls

PFAS - Per- and Polyfluorinated Substances

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

SWPC - Surface Water Protection Criteria