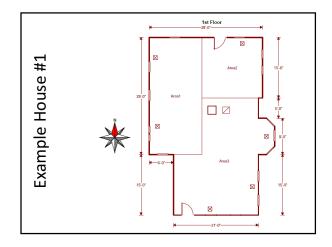
Understanding Residential HVAC Equipment Sizing

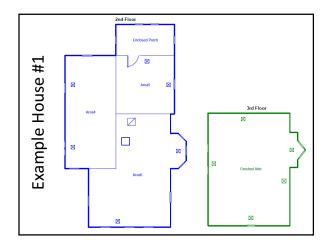
Code Requirements for Manual S (2012 IRC, IMC, IECC)

Objectives

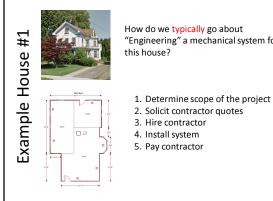

- Participants shall understand the current and upcoming CT code requirements for residential mechanical equipment engineering (Manual J, S & D)
- Participants shall understand the relationship between Manual J load calculations and Manual S Equipment Selection
- Participants shall understand the need for Manual S equipment sizing (in accordance with the 2012 ICC code)

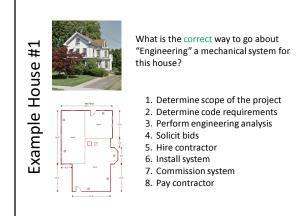

Topics

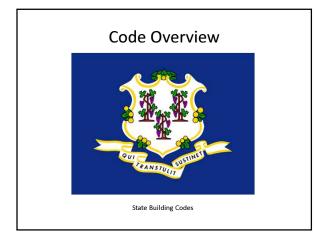
- 1. "Limited" Code Overview
- 2. Design Process Overview
- 3. Manual S (Equipment Selection)
- 4. Review & Examples


Handouts

- Copy of this presentation
- 2012 Connecticut Code Summary
- Design FAQ
- CT Code QIV Comparison
- CT Municipal Design Table 2015
- Example OEM Engineering Data
- Example OEM Capacity Report
- Example Manual J-S Report
- Manual-S Demo Interpolation Spreadsheet









How do we typically go about "Engineering" a mechanical system for

2005 Connecticut Code Summary (with 2009 Amendments)

2003 International Building Code. (IBC) 2003 International Existing Building Code (IEBC) 2003 International Plumbing Code. (IPC) 2003 International Mechanical Code. (IMC) 2009 International Energy Conservation Code (IECC) 2009 International Residential Code. (IRC) 2011 National Electrical Code (NFPA-70) (NEC)

2012 Connecticut Code Summary (Proposed Adoption Fall 2015)

2012 International Building Code. (IBC)

2012 International Existing Building Code (IEBC)

2012 International Plumbing Code. (IPC)

- 2012 International Mechanical Code. (IMC)
- 2012 International Energy Conservation Code (IECC)

2012 International Residential Code. (IRC) 2014 National Electrical Code (NFPA-70) (NEC)

2011 Connecticut Amendment

Effective: Oct 6, 2011

SECTION 29-252-1d Amended....

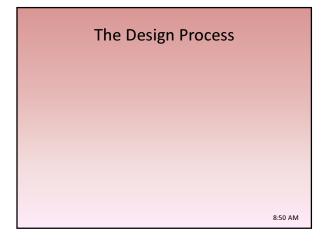
DELETE 2006 IECC, substitute with 2009 IECC Amendments: 403.2.1.1 Duct Insulation Values prescribed must be Installed values. 403.2.3 No building cavities may be used as supply or return "ducts". (2003 IMC/IRC allowed returns)

403.6 Equipment Sizing (*Mandatory*). Heating and cooling equipment shall be sized in accordance with ACCA Manual S, based on building loads calculated in accordance with ACCA Manual J (or other approved methods – none listed).

Referenced Standard: ACCA Manual J-02, 8th edition (not 7) Referenced Standard: ACCA Manual S-04

2012 International Residential Code 2012 International Energy Conservation Code

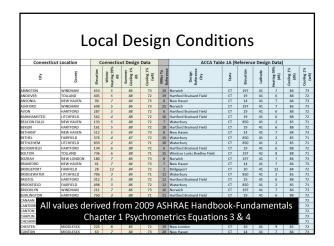
N1103.6 (R403.6) Equipment sizing (Mandatory) & M1401.3 Sizing. R403.6 Equipment Sizing (Mandatory).


"Heating and cooling equipment shall be sized in accordance with ACCA Manual S based on building loads calculated in accordance with ACCA Manual J or other *approved* heating and cooling calculation methodologies."

	Со	de Compa	rison	
ACCA Standard 5 (Quality Install)	Component	2005 Connecticut Code (2019, 2013 & 2013 Amendments)	2012 Connecticut Code	Energy Star (Homes 3.0 / Quality Installation)
ANSI,ACCA 2 Manual J - 2011 J-8 (version 2) (Block - Room-by-room)	Manual J (Load calculations)	IRC 2009: M1401.3 ACCA Manual J8-02 IECC 2009: 403.6 CT 2011 Amend: (Mandatory) Load Cakulation ACCA Manual J-8 (version 2)	IRC 2012: #1401.3 ACCA Manual 38-11 IECC 2012: 403.6 (Mandatory) ACCA Manual 3	J-8 Required: (Room-by-room)
ANSI/ACCA 1 Manual D - 2009 (None - Complete)	Manual D (Duct design)	IRC 2009 : M1601.1, M1602.2 ACCA Manual D-09	IRC 2012: #1602.2 ACCA Manual D-09 IMC 2012: 603.2 ACCA Manual D	Required (Complete)
ANSI/ACCA 3 Manual S - 2004 (2nd Edition - 2014)	Manual S (Equipment/component selection)	IRC 2009: #1401.3 ACCA Manual S-2004 IECC 2009: 403.6 CT 2011 Amend: (Mandatony) Equipment Stating ACCA Manual S	IRC 2012: #1401.3 ACCA Manual S IECC 2012: 403.6 (Mandatory) ACCA Manual S	S-2004 Required
Estimated, recommended, or per code for new construction	Building Infiltration (Testing with Blower Door)	IECC 2009: Option 402.4.2.1	IECC 2012: R402.4.1.2 3 ACH ₁₀	Required
Required: New: 6% Total, Exist: 20% of design cfm, or 50% reduction	Duct Leakage (Testing with Duct Blaster)	IECC 2009: 403.2.2 Sealing (Mandatory) 8-12cfm/100ff	IRC 2012: #1103.2.2 Sealing (Mandatory), 3-4cm/100ff IECC 2012: 403.2.2 Sealing (Mandatory), 3-4cm/100ff	Required: 6c/ny/1001
Required	Airflow Testing (Balancing / Total / Static)	Not Cited	Not Cited	Required
Required	Commissioning (Charge, electrical, airflow testing & documentation)	Not Cited	Not Cited	Required







What is Manual J?

- 1. "Modeling" the peak building loads at local climatic conditions
 - 1. Do NOT change outdoor or indoor design conditions. (This will create psychrometric errors)
- Manual J (when performed aggressively) will still over-estimate actual loads by 10% to 40%


What is Manual S?

- 1. Iterative process using the "initial" loads from Manual J to select candidate equipment
- 2. Candidate equipment capacity is then adjusted based on:
 - 1. available CFM settings of air handler,
 - 2. altitude,
 - 3. outdoor air design temperature,
 - 4. return air entering conditions and,
 - 5. any line-set adjustments due to lifts or lengths

What is Manual D?

- 1. The process to design a ducted distribution system based on the CFM requirements determined by the Manual J and Manual S process.
- Although re-engineering existing duct systems is not required – the designer/mechanic better be able to recognize the very common problems of insufficient return duct, grille and filter sizing.
- 3. If installing a hydronic only system, many of the Manual J software suites will help size baseboard lengths for the project.

Acceptable Software Tools/Methods

Manual J is too complex to perform by hand or with a spreadsheet! The design practitioner MUST use approved software.
 There are currently 6 software packages available for load calculations. They are NOT equal in their capabilities.

Software Not ACCA Approved

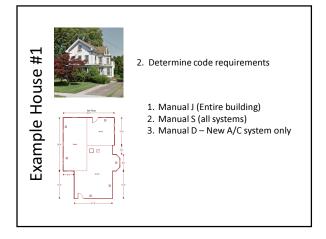
MrHVAC.com HVAC-Calc Fire Dragon Net O'Brien Quick Loads Pro Qwickload Loadcalc.net

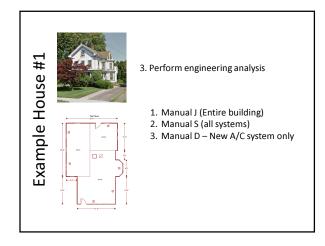
Code Officials Note: None of these packages will calculate duct loads or air-conditioning loads correctly. They may be close enough for hydronic heating loads, but they are not vetted by ACCA for either.

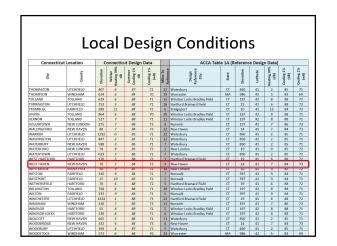
Acceptable Software Tools/Methods

- Manual S requires Psychrometric calculations and detailed OEM performance data. It can be preformed with charts and tables, however there are a lot of numbers involved and is easy to miss-read or transcribe numbers from OEM charts. It is better to use OEM software and either Psychrometric software, or other tool (including Manual J software) to perform the calculations when possible.
 - NONE of the current Manual J software suites does this perfectly or at all in some cases!

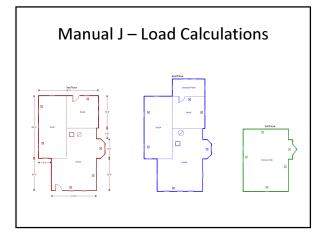

	Libron	- on the p		75			- 85			55			105
L NEEDVILLAND	CFM	EMB	Capacity	MERUPH	Total System	Capacity	NEWAY	Total	Capacit	MBINH	Total	Cepacity	MBAR
A TRUSPACE -	Crist.	1.770	Total	Senal	KM**	Total	Seea)	KW**	Total	Sees)	KW**	Total	See
A state of the sta							24	AN 87 85539 C	Subborn See	HAY WOLFER	AN BOOS MICH	or Section -	High 81
1 Real and a second second second		72	59.40	22.76	3.48	55.70	25.24	8.77	01.04	25.70	4.08	-812	25.1
A CALL CONTRACTOR CONTRACTOR		87	55.40	35.17	3.43	45.57	33.57	8.75	46.43	31.95	3.97	-205	83.4
ALL	1290	52	49.50	23.95	3.39	45.97	32.35	3.55	42.63	30.76	3.90	09.54	22.11
12 Manual and a subscription of the			47.99	+2.50	2.97	44.92	28.85	2.63	41.01	27.21	2.68	38.25	25.5
1 March 2 Charles	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	57	44.41	44.41	2.95	42.02	43.02	2.59	20.59	22.52	2.62	37.12	\$2.1
A MARTINE ROOM STORE	THE T	72	41.59	31.59	257	52.42	29.99	2.82	52.62	28.00	4.11	49.57	21.6
Allowed the section of the section of the		87	55.37	37.80	3.12	87.70	36.23	3.60	48.00	34.58	4.07	44.24	32.9
	1430	- 53	51.02	35.52	3.48	47.55	34.85	8.75	44.07	33.20	4.00	40.52	21.5
		- 52	49.79	4412	3.47	45.41	42.39	873	43.02	41.65	3.95	09.62	35.0
	1.00	57	47.04	47.24	0.44	44.64	44.64	3.23	42.00	42.00	5.96	30.50	33.5
A AND CONTRACTOR AND CONTRACTOR		72	42.50	3210	2.61	58.17	20.57	2.54	54.09	28.97	4.90	49.67	17.8
Construction of the second s		- 07	55.90	22.72	256	52.19	22.11	2.64	40.42	25.45	4.11	44.59	23.7
And a second	1479	- 62	51.52	37.27	2.55	48.01	25.49	2.79	-00.45	54.01	4.04	40.94	22.2
alor were													

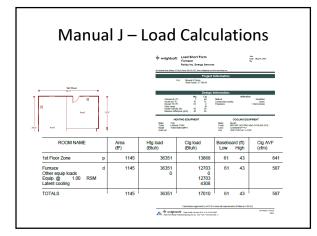

Acceptable Software Tools/Methods Manual D can be performed on paper and spreadsheet by someone familiar with the steps, however we highly recommend using the duct design calculators that are available in or as part of a design suite (Manual J)

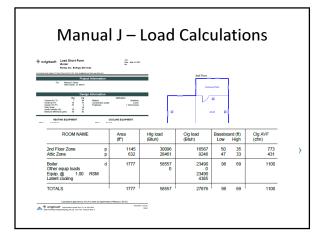



Design Summary

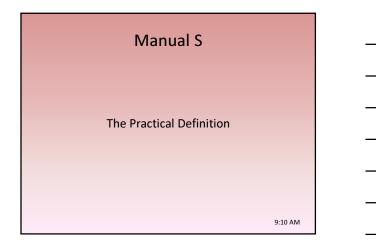
- Manual J
 - Determine local conditions
- Manual S
 - Select equipment with capacity adjusted for local conditions
- Manual D
 - Based on design CFM requirements

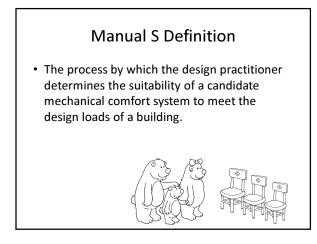


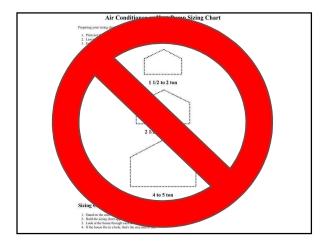


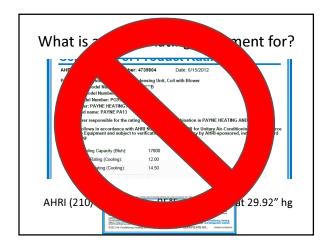


1	+ wrightsof	P-ales			-	w: May 01, 2015		
		L.	Design	Inform	ation			
Outside db (°F) Inside db (°F) Design TD (°F) Daily range Inside humidity (%) Moisture difference (g	7 6 5	tg 7 0 3 - 0 8	Clg 84 75 9 M 50 40	Method Constru Firepla	uction quality	Infiltrat		Simplified Loose ami-loose)
	Inside humid Moisture diffe	ty (%) srence (grifb)	50 50 48 40					
-	HE Make n/a Trade n/a Model n/a AHRI ref n/a Efficiency Heating input	ATING EQU	IPMENT n/a	Make Trade Coll AHRI Effici Sens	nta nta nta nta	nta 0 Buh		
ROOM NAME	Ar (ft ²	ea)	Htg k (Btuh		Clg load (Btuh)	Basebo Low	ard (ft) High	Clg AVF (cfm)
loiler Tumace	d d	1777 1145		58557 36351	23490 12703	98 61	69 43	1100 587
intire House Other equip loads Equip. @ 1.00 RSM atent cooling	d	2922		94909 0	36195 0 36195 8693	158	112	1845
OTALS		2922		94909	44888	158	112	1845
-	the wright	off:	ons approved by		ownaan equirements of Manual J 8th Ex	L. 2015-May-J	n 1938-20 Page 1	



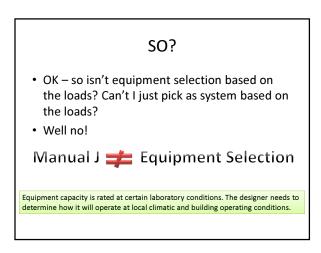






What is an AHRI Rating Document for? DOE requires it. It only tells us what it can do in a lab – for comparison to other systems at the same conditions. It does NOT predict how it will perform on our project!

Manual S Procedure

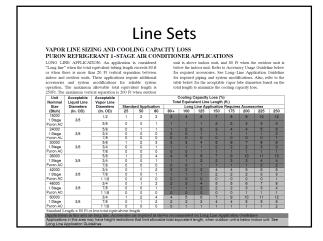

- Adjust capacity for the following effects/factors:
 - 1. Altitude
 - 2. Entering coil air conditions
 - 1. Adjusted for Duct gains/losses (leakage, R-values)
 - 2. Ventilation
 - 3. CFM Settings
 - 1. Airflow set for Sensible Heat Ratio (Cooling)
 - 4. Line-Sets

WHY?

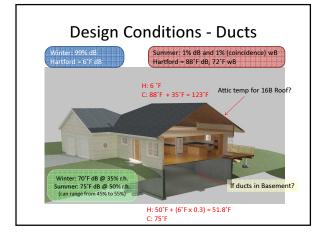
- Why do we need to do a load calculation (Manual J) and equipment selection (Manual S) on an existing house?
 - Can't I just use the same size as what was already there before if the customer isn't complaining?

BECAUSE

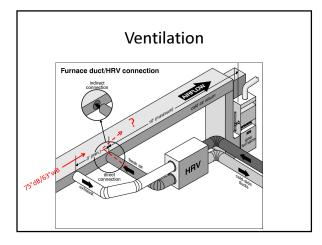
- The original system was MOST likely not properly engineered to begin with,
- Buildings change over time:
 - Weatherization
 - Improvements: Insulation, windows, etcetera...
 - Additional space: additions, finished basements, attics, etcetera.
- Modern equipment doesn't necessarily work the same as the system that is being replaced.

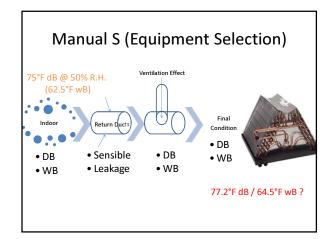

AHRI Rating – Cooling (& HP's)

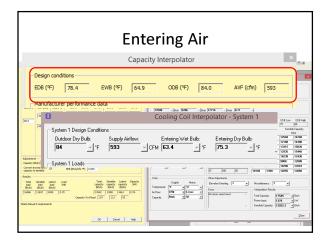
- Doesn't include affects of:
 - Altitude
 - Duct thermal gains/losses
 - Duct static pressures
 - Affects fan power and heat
 - Affects airflow and actual Sensible Heat Ratio
 - Outdoor air temperature (difference)
 - Line-sets
 - Charge adjustments to compensate for length, lifts, size

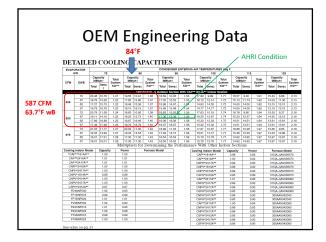

AHRI Rating – Heating (Combustion)

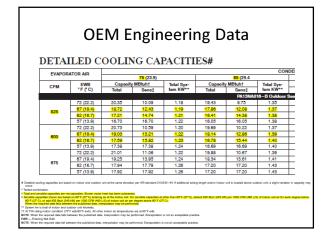
- Doesn't include affects of:
 - Altitude
 - Duct thermal gains/losses (not significant)
 - Duct static pressures
 - Affects fan power and heat (not significant)

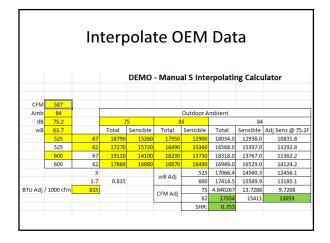


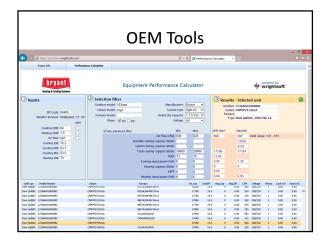


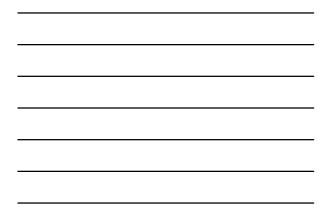


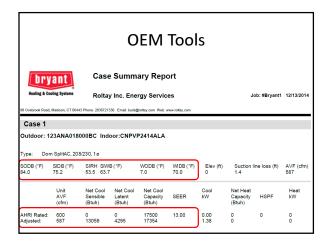












		O	EM Tools			
() Inputs		3 Results - S		9		
ZIP Code:	06405		3ANA018000BC IPVP2414ALA		anufacturer: lystem type:	
Weather location:	Bridgepor	Type: Do	om SplitAC, 208/230, 1ø		Voltage:	
Cooling ODB: Heating ODB:		AHRI rated Ac	justed		Min	Max
Air flow: Cooling IDB:	587		87 Valid range: 525 - 67 3059		cfm): 500 stuh):	625
Cooling IWB: Cooling IRH:	63.7 53.5		295 7354		stuh): Stuh): 16000 SEER: 13	20000
Heating IDB:	70	0 0	.38		(kW): 0 3tuh): 0	0
		0.00	.00		HSPF: 0 (kw): 0	0

Using 3rd party coils

- Manual S requires extended performance rating data.
- OEM must provide tools or custom calculations to meet the requirements for Manual S.

- Many 3rd party coils do not currently provide such tools, or
- 3rd party coils instructs designer to use OEM data for their products!

	NOMINAL	1	1	BTUH (1	000) AT EN	TERING	VATER		
UNIT	COOLING	HEAT	GPM HTG		TÉMPERA	0) AT ENTERING WAT			
model	BTUH	or m		120°F	130°F	140°F	180°F		
		800		26.1	31.2	36.5	57.3		
24EVBO	18,000 /	700	3.5	24.0	28.8	33.6	52.8		
ZHEYBU	24,000	24,000	600	3.5	21.8	26.2	30.5	48.0	
				500		19.4	23.2	27.1	42.6
	30,000 / 36,000	1200		34.0	40.7	47.5	74.7		
36EVBQ			1050	3.5	31.2	37.4	43.7	68.6	
SOFABO			36,000	36,000	36,000	900	3.5	28.5	34.2
		750	1	25.5	30.6	35.7	56.1		
		1600		48.3	57.9	67.6	106.2		
48EVBQ	42,000 /	1400	3.5	44.6	53.5	62.4	98.1		
40EABO	48,000	1200	3.5	40.2	48.2	56.3	88.4		
		1000	1	35.9	43.0	50.2	78.9		

~ ~ ~	nat Abou	t neath	181
Table 18	8 – Altitude Dera	te Multiplier f	or U.S.A.
ALTI	TUDE	PERCENT	DERATE
FT.	м	DERATE	FACTOR*
0-2000	0-610	0	1.00
2001-3000	610-914	4-6	0.95
3001-4000	914-1219	6-8	0.93
4001-5000	1219-1524	8-10	0.91
5001-6000	1524-1829	10-12	0.89
6001-7000	1829-2134	12-14	0.87
7001-8000	2134-2438	14-16	0.85
8001-9000	2438-2743	16-18	0.83
9001-10,000	2743-3048	18-20	0.81

			Wh	at	Abo	ut	Hea	tin	g?		
			E 11 - ORIFICE TED DATA BASE	D ON 20		GH-HEA	T / 13,000 BT	UHLOW			
L1	ALTITUDE AVG. GAS SPECIFIC GRAVITY OF NATURAL GAS										
Ш	RANGE HEAT VALUE			0.58		0.60 0.62			0.64		
Ш	AT ALTITUDE		AT ALTITUDE	Orifice	Mnfld Press	Orifice	Mnfld Press	Orifice	Mnfld Press	Orifice	Mnfld Press
Ш		(ft)	(Btu/cu ft)	No.	High/Low	No.	High/Low	No.	High/Low	No.	High/Low
Ш			900	43	3.5 / 1.5	43	3.6 / 1.5	43	3.8 / 1.6	42	3.2 / 1.3
Ш			925	44	3.8 / 1.6	43	3.5 / 1.5	43	3.6 / 1.5	43	3.7 / 1.6
ш	J.S.A. and Canada	0	950	44	3.6 / 1.5	44	3.8 / 1.6	43	3.4 / 1.4	43	3.5 / 1.5
ш	Car		975	44	3.4 / 1.5	44	3.6 / 1.5	44	3.7 / 1.6	44	3.8 / 1.6
ш	P	to	1000	44	3.3 / 1.4	44	3.4 / 1.4	44	3.5 / 1.5	44	3.6 / 1.5
ш	8		1025	45	3.8 / 1.6	44	3.2 / 1.4	44	3.3 / 1.4	44	3.4 / 1.5
ш	ŝ	2000	1050	45	3.6 / 1.5	45	3.7 / 1.6	45	3.8 / 1.6	44	3.3 / 1.4
ш	>		1075	45	3.4 / 1.4	45	3.5 / 1.5	45	3.7 / 1.5	45	3.8 / 1.6
П			1100	45	3.3 / 1.4	45	3.4 / 1.4	45	3.5 / 1.5	45	3.6 / 1.5
Ĺ			This is an	exam	ple for 94%	6 AFUI	E Natural (Gas Fu	rnace		

Sizing Goals

ACCA's summary page of sizing parameters.

There are important footnotes for differences between wet climate zones and dry climate zones as well as cold winters and not so cold winter zones.

Sizing Factors for Connecticut

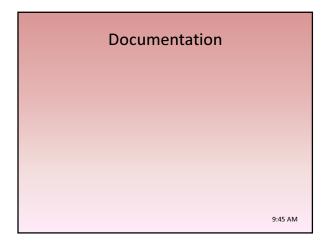
Equipment Tested	Single Speed	Multi/Variable	GWHP
and Rated by AHRI	Compressors	Speed	
		Compressors	
Total Maximum		1.20 (multi),	1.25(single),
sizing factor	1.15	1.30 (variable)	1.30(multi),
		1.50 (Variable)	1.35(variable)
Latent	Minimum = 1.0 (m	ay go to 1.50 or highe	r if needed to meet
		sensible minimum)	
Sensible		Minimum = 0.90	
General Heating Ca	pacity Factors		
Minimum		1.0	
Maximum		1.4 (up to 2.0 allowed)

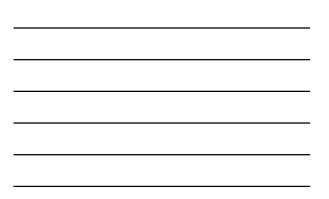
ANSI/ACCA 3 Manual S – 2014 summary page of sizing parameters – boiled down for Connecticut.

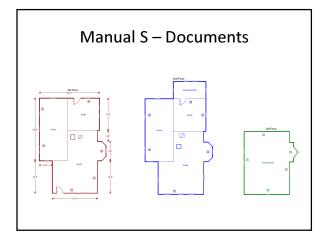
Sizing Heat Pumps

- Heat Pumps are sized to the COOLING load only.
- The balance of any heating that cannot be met by the compressors shall be provided by a supplemental system (stage)
 - Electric resistance
 - Hot water coil
 - Baseboard
 - Radiant

A/C Sizing Exceptions

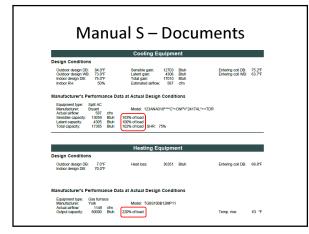

- For cooling multi / variable speed systems usually come only in 1-ton increments. The latest Manual S addresses this with the higher sizing factors, however you may still end up over the maximum on smaller houses (loads).
 - Sizing factors are static and make it more difficult for smaller loads (smaller houses have a penalty versus larger houses).
 - Base/old sizing factor is 1.15, now up to 1.3 for high-end variable refrigerant flow systems


Sizing Boilers

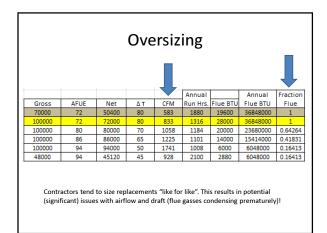

- For heating with boilers that also serve DHW, an additional water load sizing should be considered given that peak heating loads usually occur just before dawn, and it is possible that occupants may be using showers at the same time.
 - Newest Manual S tries to address this with upper limit factor of 2.0 (base/old limit is 1.4).
 - Better addressed by adding storage tank (60 gal +) and sizing boiler within 1.4 factor, or
 - Use Tankless water heater!

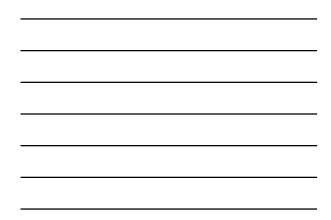
Newer Variable Capacity Systems

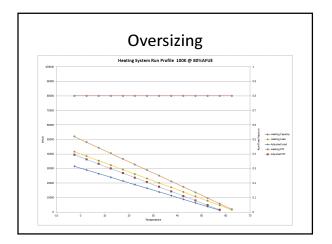
- Allowed to oversize by 30% (1.3 sizing factor)
- · Heat Pumps are sized to COOLING load
- High-End Heat Pumps
 - Use higher capacity compressor (digital or DC drive), and
 - May have capacity controls to limit system capacity
- A/C units (some examples):
 - Mini-splits (not all)
 - Lennox XC-25
 - Maytag iQ Drive series
 - Waterfurnace 7-series

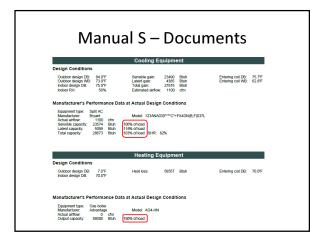


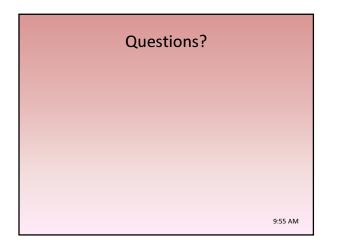
		Ma	nua	al S D)ocu	mer	nts		
bry	ant	Case	e Summ	ary Repo	ort				
Heating & Co	oling Systems	Rolta	y Inc. Ene	rgy Servic	es		Jo	ob: #Bryant1	12/13/2014
98 Ovebrook Road,	Madison, CT 0644	13 Phone: 20367213	130 Email: buck(groltay.com Web: w	ww.roltay.com				
Case 1									
	23ANA018	000BC Inde	oor:CNPV	P2414ALA					
Outdoor: 1	23ANA018 n SplitAC, 202		oor:CNPV	P2414ALA					
Outdoor: 1			B (°F)	WODB (°F) 7.0	WIDB (°F) 70.0	Elev (ft) 0	Suction li 1.4	ne loss (ft)	AVF (cfm) 587
Outdoor: 1: Type: Don SODB (°F)	n SplitAC, 20 SIDB (°F)	B/230, 1ø SIRH SIWI	B (°F)	WODB (°F)				ne loss (ft) HSPF	

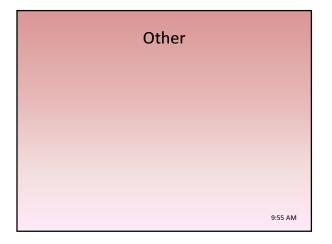


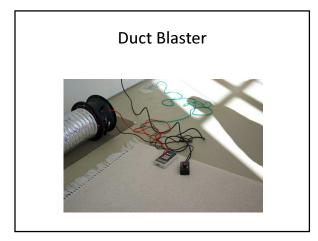

	want		Documents	
Boiler	S Compliance Report	Anto Datas May 01,2010 Ny	n ^{je} wrightsoft: Manual S Compliance Report Formace Rotay Inc. lineny Services	Jah Dala: Nay (1,310) Ny
I Debte feel value, if the flow at et-			W Lemma has baken (11 Ma) free 201011-100, find backgroup on the weeking on	
For Man Ted	Project Information at 5 Demo Howel, CT 0816		Project Information For: Manual 8 Dense Intel Haves, CT 06516	
Design Conditions	Cooling Equipment		Cooling Equipment Design Consistents	
Outcour design DB: 54.07 Datcour design INE: 73.07 Indoor design DE: 75.07 Indoor Rox: 50%	Sensitie gain: 23400 Bith Labert gain: chills Bita Total gain: 27175 Bita Bitanaed airtiae: 1150 chil	Driving col D8 73.77 Entworp col WK 62.87	Cubbox design DB: 64.97 Sevenitir quint: 12203 Blub Cubbox design NB: 13.97 Latert gant: 4008 Blub Holdox design DB: 53.97 Total gain: 12413 Blub Holdox RH: 50% Estimated airbar: 587 Che	Ethering col 5% 23
Norvalacturer's Performance D	ta at Actual Design Conditions		Menufacturer's Performance Data at Actual Design Conditions	
Equipment type: Split AC Manufacture: Bryant Antual antities: 1100 dim Seekitas-capacity: 23574 Bits Latent capacity: 20673 Bits Total capacity: 20673 Bits	Model 1234N4000***C*+TX40N80.F80 100% of lead 111% of lead 100% of lead 100% of lead 100% of lead	ı	Ecoloment Iook Sell AG Mindukture: Drawt Model: 123Aelecter=**C*-DR**2HTRL***TDR Anaularbac NRT dis Investig capacity 13508 Bits 155% of cap Later capacity 13508 Bits 155% of cap Later capacity 13508 Bits 155% of cap Test capacity 13508 Bits 155% of cap 54% T5%	
Devian Conditions	Heating Equipment		Heating Equipment	
Outloar design D8: 7.579 Indoor design D8: 73.579	Heal Xess	Entering col DB: 7E/07	Outing Concentrations Outloor design OS: 10.97 Head loss: 36355 Stuh Indoor design OS: 35.97	Entering coll DB: 58
Manufacturer's Performance D	fa et Actuel Design Conditions		Manufacturer's Performance Data at Actual Design Conditions	
Equipment type: Gas bolier Mensfecture: Advantage Actual artifex: 0 ofm Culput capacity: 8000 inter Culput capacity: 8000 inter	Model: AG42N 150N of laad		Rougiment bare, Gala Amade Mandadozer, Ywr, Moost, TOE/H0012MPH Acutal anthon, 1140, chr. Oxfox Lapacity, 80000, Billah, 220% of Gald	Temp. Dat. 12
	contance with ACCA Manual S.		The above equipment was selected in accordance with ACCA Minut 8.	











- <u>www.ct.gov/dcs/</u>
- publicecodes.cyberregs.com/icod/index.htm
- <u>www.acca.org</u>
- <u>www.hvac-quality.com</u>

28

Duct Sealing Note

• Seal Duct system correctly – these are examples of thoughtlessness!

Duct Sealing Note

• Ducts get sealed first, then insulated. — In this case, these ducts are lined.

Infiltration Testing

- IECC 2009: Optional
- IECC 2012: 3 Air Changes per Hour at 50 pascals aka 3 ACH₅₀ (0.2 i.w.c.)

Infiltration Comparison

Type of Treatment	ACH50	ACHnat*
2012 Connecticut Code	3.0	0.17 - 0.23
New home with special airtight construction and a controlled ventilation system	1.5 - 2.5	0.10 - 0.17
Energy efficient home with continuous air barrier system	4.0 - 6.0	0.27 - 0.41
Standard new home	7.0 - 15.0	0.47 - 1.01
Standard existing home	10.0 - 25.0	0.68 - 1.69
Older, leaky home	20.0 - 50.0	1.35 - 3.38

Infiltration & Duct Leakage

- Both affect heat loss/gain and comfort.
- Both can cause unwanted effects to combustion appliances.
- Both affect the sizing of the A/C system and CFM requirements – which can affect duct sizing.
- Duct leakage can drive (or induce) building infiltration.

Thank you

Buck Taylor

Roltay Inc. Energy Services 98 Overbrook Road Madison, CT 06443 (203) 672-1330 buck@roltay.com

10:00 AM