■
 Exposing the Potential of Heavy Timber Construction

CT DCS Design and Trades Conference
Hartford, CT
May 28, 2015

Ricky McLain, MS, PE, SE
Technical Director, Architectural and Engineering Solutions
WoodWorks - Wood Products Council

Project Support and Technical Assistance

- Schools

- Mid-rise/multi-family
- Commercial
- Corporate
- Franchise
- Retail
- Institutional
- Recreational
- Healthcare

WoodWorks ${ }^{-}$

WOOD PRODUCTS COUNCIL

Resources For You

- Education Events WoodWorks
- Design Tools
- Case Studies
- Help Desk

Technkal support

Events
Design Toos
Design with Wood
Why Wood?
us Wood Desgn Awards Eoveation \& Publichions About WoodWorks

www.woodworks.org

WoodWorks ${ }^{-}$
WOOD PRODUCTS COUNCIL

Funding Partners

SOFTMVOOD
LUMBER BOARD

Canadà

US Wood Design Awards

Deadline: September 30, 2015

- Wood in Government Buildings
- Institutional Wood Design
- Wood in Educational Buildings
- Commercial Wood Design
- Multi-Story Wood Design
- Beauty of Wood
- Green Building with Wood

Wood in Educational Buildings Indian Mountain Student Arts \&

Innovation Center
Lakeville, CT
Architect: Flansburgh Architects
Engineer: Roome \& Guarracino
Photo: Robert Benson Photography

woodworks.org

"The Wood Products Council" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider \#G516.

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

Offering a mix of both the practical and inspirational, this presentation focuses on the use of heavy timber in applications such as offices and schools, as well as civic, industrial, mid-rise/multi-residential and other building types. Included will be a review of nonstructural provisions in the International Building Code and a discussion of structural component and connection methods available. Example projects ranging from typical to unique will be used to illustrate the range of modern timber design solutions available and their ability to provide unlimited aesthetic opportunities for almost any building type.

Learning Objectives

1. Identify opportunities available through nonstructural provisions of the International Building Code (IBC), including maximum height and area for exposed heavy timber-frame structures.
2. Discover the common design elements and connection options for heavy timber framing.
3. Examine the commonalities and differences of awardwinning heavy timber structures.
4. Become aware of non-traditional uses for heavy timber that offer unique design solutions.

Outline

- Heavy Timber Code Requirements
- Design Elements
- Unique Design Solutions
- Case Studies
- Technical Resources

Timber Frame Construction

- One of the oldest known forms of construction
- Post \& Beam or Timber Framed structures date back before the early Greeks.
- Increased interest because of the allowable height/area and fire resistance advantages.
- Offers innovative commercial building solutions

Butler Building Built in 1906

Benefits of Timber Framing

-Hand-crafted buildings that are known for their warmth, beauty and Intriguing Shapes.

Outline

- Heavy Timber Code Requirements

Type IV - Heavy Timber Code Requirements

Why is heavy timber in the code?

- Historical Practice
- Fire Resistance

Photos provided by:
Structural Wood Corporation

Type IV Construction - IBC 602.4

Exterior walls are of noncombustible materials and interior building elements are of solid or laminated wood without concealed spaces. FRT wood or Cross Laminated Timber*-2015 IBC is permitted in exterior walls, where 2 hr fire rating or less is required

*Exterior surface of CLT is protected by FRT sheathing or $1 / 2^{\prime \prime}$ gypsum

- Non combustible Exterior walls
- Interior walls-solid wood or 1 hour rated
- Fire Retardant Treated exterior walls or Cross laminated Timber (CLT)-2015 IBC are allowed if fire rating is 2 hr or less
- Heavy Timber

Heights and Areas - IBC Table 503

GROUP		TYPE OF CONSTRUCTION								
		TYPE I		TYPE II		TYPE III		TYPE IV	TYPE V	
		A	B	A	B	A	B	HT	A	B
	$\begin{gathered} \text { HEIGHT } \\ \text { (feet) } \end{gathered}$	UL	160	65	55	65	55	65	50	40
	$\begin{aligned} & \text { STORIES(S) } \\ & \text { AREA (A) } \end{aligned}$									
A-1	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \mathrm{UL} \\ & \mathrm{UL} \end{aligned}$	$\begin{aligned} & \hline 5 \\ & \text { UL } \end{aligned}$	$\frac{3}{15,500}$	$\begin{gathered} 2 \\ 8,500 \end{gathered}$	$\begin{gathered} 3 \\ 14,000 \end{gathered}$	$\begin{gathered} 2 \\ 8,500 \end{gathered}$	$\frac{3}{15,000}$	$\begin{gathered} 2 \\ 11,500 \end{gathered}$	$\begin{gathered} \hline 1 \\ 5,500 \end{gathered}$
A-2	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \text { UL } \\ & \text { UL } \end{aligned}$	$\begin{aligned} & \hline 11 \\ & \text { UL } \end{aligned}$	$15,500$	$\begin{gathered} 2 \\ 9,500 \end{gathered}$	$\begin{gathered} 3 \\ 14,000 \end{gathered}$	$\begin{gathered} 2 \\ 9,500 \end{gathered}$	$1{ }^{3}$	$\stackrel{2}{2}$	$\begin{gathered} 1 \\ 6,000 \end{gathered}$
A-3	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \text { UL } \\ & \text { UL } \end{aligned}$	$\begin{aligned} & \hline 11 \\ & \text { UL } \end{aligned}$	$\begin{gathered} 3 \\ 15,500 \end{gathered}$	$\begin{gathered} 2 \\ 9,500 \end{gathered}$	$\begin{gathered} 3 \\ 14,000 \end{gathered}$	$\begin{gathered} 2 \\ 9,500 \end{gathered}$	$\underbrace{3}_{15,000}$	$\stackrel{2}{2}$	$\begin{gathered} 1 \\ 6,000 \end{gathered}$
A-4	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \text { UL } \\ & \text { UL } \end{aligned}$	$\begin{aligned} & 11 \\ & \text { UL } \end{aligned}$	$\begin{gathered} 3 \\ 15,500 \\ \hline \end{gathered}$	$\stackrel{2}{9,500}$	$\begin{gathered} 3 \\ 14,000 \\ \hline \end{gathered}$	$\stackrel{2}{9,500}$	$\begin{gathered} 3 \\ 15,000 \\ \hline \end{gathered}$	$\stackrel{2}{2}$	$\begin{gathered} 1 \\ 6,000 \end{gathered}$
A-5	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \text { UL } \\ & \text { UL } \end{aligned}$	$\begin{aligned} & \hline \mathrm{UL} \\ & \mathrm{UL} \end{aligned}$	$\begin{aligned} & \hline \text { UL } \\ & \text { UL } \end{aligned}$	$\begin{aligned} & \hline \text { UL } \\ & \text { UL } \end{aligned}$	$\begin{aligned} & \hline \text { UL } \\ & \text { UL } \end{aligned}$	$\begin{aligned} & \hline \mathrm{UL} \\ & \mathrm{UL} \end{aligned}$	$\begin{aligned} & \hline \text { UL } \\ & \text { UL } \end{aligned}$	$\begin{aligned} & \hline \text { UL } \\ & \text { UL } \end{aligned}$	$\begin{aligned} & \hline \text { UL } \\ & \text { UL } \end{aligned}$
B	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \text { UL } \\ & \text { UL } \end{aligned}$	$\begin{aligned} & 11 \\ & \text { UL } \end{aligned}$	$\begin{gathered} 5 \\ 37,500 \end{gathered}$	$\begin{gathered} 3 \\ 23,000 \end{gathered}$	$\begin{gathered} 5 \\ 28,500 \end{gathered}$	$\begin{gathered} 3 \\ 19,000 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 36,000 \end{gathered}$	$\begin{gathered} 3 \\ 18,000 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 9,000 \end{gathered}$
E	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{UL} \\ & \mathrm{UL} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5 \\ \text { UL } \\ \hline \end{gathered}$	$\begin{array}{r} \hline 3 \\ 26.500 \\ \hline \end{array}$	$\stackrel{2}{2} 14.500$	$\begin{array}{r} 3 \\ 23.500 \\ \hline \end{array}$	$\begin{gathered} 2 \\ 14.500 \\ \hline \end{gathered}$	$\begin{array}{r} 3 \\ 25.500 \\ \hline \end{array}$	$\begin{gathered} 1 \\ 18.500 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 9.500 \\ \hline \end{gathered}$
M	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{UL} \\ & \mathrm{UL} \end{aligned}$	$\begin{aligned} & 11 \\ & \text { UL } \end{aligned}$	$\begin{gathered} 4 \\ 21,500 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 12,500 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \\ 18,500 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 12,500 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 20,500 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 14,000 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 9,000 \\ \hline \end{gathered}$

Height Modification - IBC 504

IBC 504.2 Where a building is equipped throughout with an approved sprinkler system... (NFPA 13)

- maximum height is increased by 20 feet
- maximum number of stories is increased by one.
- EXCEPT for I-2 occupancy of Type IIB, III and V construction and H occupancies or where sprinklers are used as substitution for 1 hr fire resistance.

Can be combined w/ frontage area increase - 506.2
Can be combined w/ sprinkler area increase - 506.3

Area Modification - IBC 506

(Equation 5-1)

$$
A_{a}=A_{t}+\left[A_{t} \times I_{f}\right]+\left[A_{t} \times I_{s}\right]
$$

$\mathrm{A}_{\mathrm{a}}=$ Allowable area per story (sq. ft.)
$\mathrm{A}_{\mathrm{t}}=$ Tabular area per story (sq. ft.)
$\mathrm{I}_{\mathrm{f}}=$ Area increase factor due to frontage (IBC 506.2)
$I_{s}=$ Area increase factor due to sprinkler protection (IBC 506.3)
Is=2 if 2 stories or more, Is=3 for 1 story

Sprinkler Increases

- Up to $3 x$ the tabulated area for building w/ more than one story
- Up to $4 x$ the tabulated area for a building no more than one story
- The larger increased area might allow excluding sprinklers in a project

Automatic Sprinkler Increase - 506.3

IBC 506.3 - Floor Areas in Table 503 is permitted to be increased by an additional :

- $\mathrm{I}_{\mathrm{s}}=2$ for buildings with more than one story above grade plane $\left[A_{a}=A_{t}+2 A_{t}+I_{f}\left(A_{t}\right)=3 A_{t}+I_{f}\left(A_{t}\right)\right]$
- $I_{s}=3$ for buildings with no more than one story above grade plane. [$\left.A_{a}=A_{t}+3 A_{t}+I_{f}\left(A_{t}\right)=4 A_{t}+I_{f}\left(A_{t}\right)\right]$
Can be combined with height and story increases-504.2.

Exception

- Not permitted for $\mathrm{H}-1, \mathrm{H}-2$, and $\mathrm{H}-3$ occupancies
- Not permitted where sprinklers substitute for 1 hr construction

Frontage Increase for Area- IBC 506.2

Allowable size of building may increase where open frontage is provided.

(Equation 5-2)
$I_{f}=[F / P-0.25] W / 30$
F = Building perimeter that fronts on a public way or open space having 20 feet open minimum width (feet).
$\mathbf{P}=$ Perimeter of entire building (feet).
$\mathbf{W}=$ Width of public way or open space, not to exceed 30 feet

Maximum Building Area - 506.4

Single Occupancy Area determination

- Two stories above grade: Max. overall allowable area $=A_{a} \times 2$
- Three stories or more above grade: Max. overall area $=A_{a} \times 3$
- No Story shall exceed A_{a}

Exceptions

- Unlimited area buildings
- Buildings with NFPA 13R sprinkler system

Opportunity for Office Occupancy (B)

Occupancy IIIA (ft²)* IV (ft²)*

B	$85,500+21,375$ (max frontage)	$108,000+27,000$ (max frontage)

*Areas reflect PER STORY max. Total building max may limit area further.
**ASCE7 12.2-1 limits wood shear wall seismic systems to 65^{\prime} in height in SDC D,E,F

Fire Resistance Rating -IBC Table 601

TABLE 601
FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (hours)

BUILDING ELEMENT	TYPE I		TYPE II		TYPE III		TYPE IV	TYPE V	
	A	B	$A^{\text {d }}$	B	$A^{\text {d }}$	B	HT	$A^{\text {d }}$	B
Primary structural frame ${ }^{9}$ (see Section 202)	$3^{\text {a }}$	2^{a}	1	0	1	0	HT	1	0
Bearing walls Exteriot ${ }^{\text {f. }} 9$ Interior	$\begin{array}{r} 3 \\ -\quad 3 \\ \hline \end{array}$	$\begin{gathered} 2 \\ 2^{a} \\ \hline \end{gathered}$					$\frac{1}{1 / H T}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	0
Nonbearing walls and partitions Exterior	See Table 602								
Nonbearing walls and partitions Interiol ${ }^{\text {e }}$	0	0	0	0	0	0	See Section 6024.6	0	0
Floor construction and secondary members (see Section 202)	2	2	1	0	1	0	HT	1	0
Roof construction and secondary members (see Section 202)	$1^{1} /{ }_{2}{ }^{\text {b }}$	$1^{\text {b,c }}$	$1^{\text {b,c }}$	$0^{\text {c }}$	$1^{\text {b,c }}$	0	HT	$1^{\text {b,c }}$	0

Outside of Type IV Construction

Heavy Timber Roofs can be used

- in ANY type of construction except IA

Exposed Wood Roofs can be used

- in Type IIB, IIIB and VB
- in Type IIA, IIIA, VA where roof is $>20^{\prime}$ from floor below
- or when sprinklers are substituted for 1 hr rated const. Exposed Wood Floors can be done
- in Type IIIB and VB
- or when sprinklers are substituted for 1 hr . rated const.

Table 601 Footnotes - "b"

Fire protection of structural members shall not be required, where every part of the roof construction is 20 feet or more above any floor immediately below.

- FRT wood allowed: For Type I, II, III, and V roof framing

Except in group $\mathrm{F}-1, \mathrm{H}$, M, and S-1 occupancies

Table 601 Footnotes - "c"

Heavy Timber roof can be used where fire rating is 1 hr or less

- Applies to any type of construction except Type IA.

TABLE 601
FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (hours)

BUILDING ELEMENT	TYPE I		TYPE II		TYPE III		TYPE IV HT	TYPE V	
	A	B	$A^{\text {d }}$	B	$A^{\text {d }}$	B		$A^{\text {d }}$	B
Roof construction and secondary members (see Section 202)	$1_{1}^{1 / \mathrm{b}}$	$1^{\text {b,c }}$	$1^{\mathrm{b}, \mathrm{c}}$	$0^{\text {c }}$	$1^{\text {b,c }}$	0	HT	$1^{\mathrm{b}, \mathrm{c}}$	0

Table 601 Footnotes - "d"

Sprinkler system can be substituted for a 1 hr fire rating - For Type IIA, IIIA, and VA

- Substitution can NOT be used
- if sprinkler is used for allowable height or area increase
- for exterior wall fire rating requirements.
- for required occupancy separation

Minimum Sizes - Floor Framing

IBC Section 602.4 (Table 602.4) address minimum sizes

Minimum Sizes - Roof Framing

Photo of Hoffstadt Bluff Visitor's Center

Minimum Sizes - Roof Framing

Often $7 / 16^{\prime \prime}$ sheathing may be applied over $2 x$ deck to increase diaphragm strength

Photo of Hoffstadt Bluff Visitor's Center

Arch Sprung From the Ground

Arches supporting roof loads from top of wall shall be $\geq 4 \times 6$

Timber Arches supporting roof loads and springing from floor $\geq \mathbf{6 x 8}$ at bottom \& $6 x 6$ at top

Equivalent Glued Laminated Net Size

Table 602.4
 Wood member Size Equivalents

Minimum Nominal Solid Sawn Size		Minimum Glued-laminated Net Size		Minimum Structural Composite Lumber Net Size	
Width, Inch	Depth, Inch	Width, Inch	Depth, Inch	Width, Inch	Depth, Inch
8	8	$63 / 4$	$83 / 4$	7	$71 / 2$
6	10	5	$101 / 2$	$51 / 4$	$91 / 2$
6	8	5	$81 / 4$	$51 / 4$	$71 / 2$
6	6	5	6	$51 / 4$	$51 / 2$
4	6	3	$67 / 8$	$31 / 2$	$51 / 2$

Structural Requirements

- Columns-IBC 2304.10.1
- Continuous or superimposed throughout all stories
- Intersecting beams shall be closely fitted to column faces
- Adjoining beams shall be cross tied to each other across joints
- Wood bolsters shall not be placed on tops of columns unless the columns support roof loads only

Bolster

Structural Requirements

- Floor framing-IBC 2304.10.2
- Approved wall plate boxes or hangers are required where beams, girders or trusses rest on masonry or concrete walls
- Intermediate beams supporting floors shall rest on the tops of girders or shall be supported by ledgers securely fastened to the girder or by approved metal hangers
- Roof framing-IBC 2304.10.3
- Every girder and at least every other alternate roof beam shall be anchored to its supporting member
- Anchors shall be steel or iron bolts of sufficient strength to resist vertical roof uplift loads

Structural Requirements

- Floor decking-IBC 2304.10.4
- A gap $\geqq 1 / 2$ " shall be provided between the decking and wall to allow for expansion of the decking.
- Molding attached to the wall shall cover the gap and shall not obstruct the movement of the decking
- Roof decking-IBC 2304.10.5
- Where roof decks are supported by walls, the decks shall be anchored to the walls to resist uplift forces per Chapter 16.
- Anchors shall be steel or iron bolts of sufficient strength to resist vertical roof uplift loads

Type IV - Heavy Timber-Fire Requirements

In a variety of ways the building code does recognize the ability for Heavy Timber to resist fires through charring.

Achieving One Hour Equivalency for Protected Construction

NDS Chapter 16
Fire Design of Wood Members

TR 10

Equations for Calculating Fire Endurance

-Assumptions

- Nominal assumed char rate=1.5"/hr.
- Uses ultimate strength for design check
- Reduced section checked for capacity vs. demand

Charring of Wood 3 sides

Key Component 1 - Char Rate

$$
\begin{aligned}
& \begin{array}{l}
\text { ACCOUNTS FOR } \\
\text { NON-CHARRED } \\
\text { STRENGTHRED'N }
\end{array} \\
& \beta_{\text {eff }}=\quad \begin{array}{l}
\text { Effective char rate (in/hr), adjusted } \\
\text { for exposure time, } \mathrm{t}
\end{array} \\
& \beta_{\mathrm{n}}=\begin{array}{l}
\text { Nominal char rate (in/hr), linear } \\
\mathrm{char} \text { rate based on a 1-hour exposure (1.5"/hr.) } \\
\text { Exposure time (hrs) }
\end{array}
\end{aligned}
$$

Protecting Steel Connections

TR 10 EXCERPTS

- 1 hr. Protection-1 1/2" wood, approved covering or coating

Outline

- Design Elements
-
-
-

Beams-Solid Sawn \& Engineered Lumber Products

Glued Laminated Beams

Available in:
Framing/Industrial Grades Intended for non-exposed conditions
Architectural Grade- Intended for exposed members.
Premium Grade also available

Columns-Solid Sawn \& Multi-Ply Sections

Multi-Ply Columns OK for unprotected Construction

- IBC section 602.4.3-Columns- solid sawn or glue-laminated members only.
- Nailed built-up columns in accordance with NDS Commentary section 15.3 are not allowed

Multi-Ply Nailed Columns \neq Solid Section

Heavy Timber Roof

Heavy timber framework at entries serve as focal points.

Photo by Universal Forest Products

Tongue and Groove Decking

Diaphragm Options

- Horizontally applied tongue and groove decking Low allowable diaphragm shear values, Aspect Ratio $(A / R)=2: 1$
- Diagonally applied tongue and groove decking

Single layer- moderate shear values, $A / R=3: 1$
Double layer- high shear values, $A / R=4: 1$

- Wood Structural Panel Sheathing Over Decking Acts as blocked diaphragm, high shear values, $A / R=4: 1$

Structural Panels Over Decking

Panel Installation Requirements

- Panel Edges must not coincide with decking joints
- Panel edges must be attached to common member
- Minimum fastener penetration must be provided
- Maximum 4:1 aspect ratio is allowed.
- A complete load path must be provided for forces

Additional information can also be found in:

- APA Form TT-097 Designing Diaphragms Over Existing Board Floors or Roofs
- ATC 7 Guidelines For The Design of Horizontal Wood Diaphragms

Large Roof With Structural Panels

Photo by Universal Forest Products

Timber Connections

- Steel Plate/Bolted Connections
- Split Rings
- Shear Plates
- Timber Rivets
- Modern Joinery
- Modern/innovative Heavy Timber Connections

Heavy Timber Standard Prescriptive Details

®-1)
IBC section 2304.10-Heavy Timber

Exposed Steel Plate/Bolted Connections

Solid sawn members w/ bolted steel plate members connections

- Avoid cross grain shrinkage by using slotted holes
- Provide drainage holes in bucket type connections

Steel Plate Connections

- Shop layout of entire assembly

- Use the steel plates as bolt hole templates

Split Rings-Wood to Wood Connections

- Act as large diameter bolts (bearing area)
- Split in ring allows for shrinkage
- Note-malleable iron washer for bolt to wood connection

Shear Plates-Steel to Wood Connections

- Act as large diameter bolts (bearing area)
- Commonly used in steel plated glue-lam trusses

Timber Rivets

- Oval shaped nails with narrow side parallel to grain
- Allows closer spacing of rivets-reduces splitting

Modern Joinery

- Computer program downloads cuts to saw
- Allows precision joints

Joinery

- Craftsmanship provides the true beauty of Timber frame structures

- Some joints still require handcrafting

Joinery-Typical Traditional Examples

HALF-LAP DOVETAIL COLLAR TIE

COMMON RAFTERS AT RIDGE

Modern Heavy Timber Connections

Competitiveness of a timber structure may be determined by the efficiency of the connections used.

Connections:

- Easy to design
- Aesthetically attractive
- Good serviceability (e.g., shrinkage, ductility, etc.)
- Cost-effective \& availability
- Fire resistant (as required)

Use of CNC Technology for Connections

- Computer Numerically Controlled (CNC) connections
- Ability to fabricate joints with precision

Innovative/Proprietary Connection Systems

\qquad

- Long self-tapping screws

- Embedded end connections

Innovative Lag Screw Bolt (LSB)
 Connection System

Developed in 1994 \& has been modified in various forms

Source: Komatsu/J apan
http://www.ewpa.com/Archive/2004/jun/Paper 083.pdf -(theory)
http://www.timberdesign.org.nz/files/00155\ Makoto\ Nakatani.pdf- (testing)

LagScrewBolt (LSB) System

Alternative System for Large Scale Timber Construction

LagScrewBolt (LSB) System

- Semi-rigid connections can also be achieved at the column base
- LSB allow installation of bolts in tight spaces

Source: Komatsu/J apan

Innovative Connection Systems

Outline

- Unique Design Solutions

Outline

- Unique Design Solutions
- Wood Podiums

Wood Podiums

All-wood Podiums in Mid-rise Construction
Michelle Kam-Biron, S.E. WoodWorks Newbury Park, CA

Abstract

 enimemernal rovind hme ine be hiling motity in

Mideie podian carrixtion, ceniding of two w fou

ALL-WOOD PODIUMS

Although a podium structure typically refers to wood-frame construction over concrete, a handful of designers have lowered their costs even further by designing the podium in wood. "When determining the cost of a structure, there are a lot variables, including most notably time, materials and labor," said Karyn Beebe, P.E, of APA. "Using wood instead of concrete lowers the mass of the building, which results in more economical podium shear walls and foundations. Using the same material for the entire structure may also mean lower design costs, and the construction team experiences sevings in the form of fewer trades on site, which mesns less mobilication time, greater effciency because framing is repested on all of the ievels, easier field modifications, and a faster schedule.
Architect Dan Withee, ALA, LEED AP, of Withee Malcolm Architects designed an 85 -unit wood podium project in San Diega. He estimated that a concrete podium can cost $\$ 15,000$ per perking space compared to 59,500 for wood podium.

- Multiple stories of wood construction over 1 or 2 story concrete podiums are common
- Code also allows the use of multiple stories of wood framing over a Type IV wood podium

Multi-Story Wood Construction
A cost-effective and sustainable solution for today's changing housing market Sponoment ly reThink Woot end Wasmeiks

\qquad

Parking Beneath Group R - IBC 510.4

Possibility of a Type IV podium where a number of stories starts above parking when:

- Occupancy above is R and below is $\mathrm{S}-2$
- Lower floor is open Type IV parking with grade entrance
- Horizontal assembly between $1^{\text {st }}$ and $2^{\text {nd }}$ floor shall be
- Type IV
- Have 1 hr . fire resistance rating when sprinklered
- Have 2 hr . fire resistance rating when not sprinklered
- overall height is still limited to occupancy

APA Case Study: All Wood Podiums N110

Galt Place

- Location: Galt, CA.
- Type VA
- 2 stories over all wood podium
- Architect: Michael Malinowski

Oceano at Warner Center

- Location: Woodland Hills, CA.
- Type VA
- Less massive than concrete
- 3 stories over all wood podium
- Enhanced constructability
- Architect: R C Alley III
- Cost savings

Outline

- Unique Design Solutions
- Gas Stations

Gas Station Canopies - IBC 406.7.2

Canopies - Shall be of noncombustible materials:

- Fire-retardant-treated wood
- Wood of Type IV sizes
- or, construction providing 1-hour fire resistance.

Combustible materials used in or on a canopy shall be:

- Shielded from the pumps by a noncombustible element of the canopy
- or, wood of Type IV sizes

Gas Stations

Outline

\qquad

- Heavy Timber Code Requirements
- Design Elements
- Unique Design Solutions
- Heavy Timber Braced Frames

Heavy Timber Braced Frames (HTBF)

Heavy timber braced frames are becoming a preferred alternative vertical/lateral resisting system due to cost, performance and aesthetics.

- $R=3$, le=1.25 for this project
- Over-strength, system=2.0, braces=2.5

- Overall effect $\longrightarrow R=1$ (remains elastic, no ductility)

Simpson Strong Tie Materials Demo Lab - $1^{\text {st }}$ approved HTBF approved under 2007 CBC and ASCE 7-05

Outline

\qquad
-
-

- Unique Design Solutions
- Post Frame Construction

Post Frame Construction

- Previously used in agricultural buildings
- Adapted and commonly used in commercial structures

Features

- Wood side wall posts

- Pitched Trusses
- Wide bay spacing (8ft to $12 \mathrm{ft}+$)
- Large clear spans (100 ft +)
- Embedded wood posts or concrete piers
- Walls, roof usually type V construction

Innovative Foundation

- Asphalt and polyethylene wrap
- Poured-in-place concrete pier
- Blow-molded plastic
- Pre-cast reinforce concrete columns
- HDPE plastic barrier
- Polyethylene post sleeve

More information:
www.postframeadvantage.com

Outline

\qquad

- Unique Design Solutions
- CLT-Mass Timber
-

CLT is part of a new class of product... "Mass"ive Timber

- CLT, LVL, LSL and glulam beams
- Plate elements of mass timber - less surface area to volume ratio
- Improved fire performance characteristics
- Efficient utilization of smaller diameter trees
- Mass Timber elements can be used for both vertical and lateral resisting system

The Brief Open Academy, Norfolk England Design Team: Sheppard Robson, Romboll uK Photo credit: KLH

What is Cross Laminated Timber (CLT)?

- 3 layers min. of solid sawn lams
- 90 deg. cross-lams
- Similar to pw. sht'g.

Photos provided by FPInnovations

Mass-"Timber"-Forte', Melbourne, Australia

- Tallest modern timber building - 10 stories total
- 9 stories of CLT over 1 story concrete podium
- Prefabricated CLT panels
- All CLT load-bearing walls, floor slabs, and elevator and stair shafts

Architect: Lendlease
Photo credit: Lendlease

Mass-"Timber"-Treet, Bergen, Norway

- Currently under construction
- Once complete will be tallest modern timber building
- 14 stories total, 173
feet tall
- Scheduled completion Autumn 2015
- Unique glulam and CLT module construction

Architect: Arco
Engineer: Sweco

Structural Flexibility

Office Buildings using CLT Construction

- Short construction time
- Similar to concrete tilt-up buildings

Case Study-CLT Milestone in Montana

The Long Hall

- First CLT project in the US, using a US CLT supplier.
- Type VB-CLT walls and floor, glue-lam roof beams and decking
- 2 stories, mixed use
- 5 days to erect, 3 months from foundation to occupancy
- Cost effectiveness- short construction time and keeping CLT panels as interior finish

Designer: Datum Design Drafting Engineer: CLT Solutions
Photo: gravityshots.com

Location: Whitefish, MT

Solid Timber Shaft Walls

- Eliminates using concrete or masonry
- Short construction time
- Saves money

Enhancing Structural Flexibility with CLT

Heavy Timber Frame Mid-rise Building, Quebec City

- Posts and beams support gravity loads
- Concrete cores resist lateral loads

CLT shafts could be substituted for the concrete cores

CLT floor and roof panels could be used as solid rigid diaphragm elements

6-storey glulam post-and-beam structure with reinforced concrete cores (CSN FondAction)

Is CLT recognized by the building Code?

2015 IBC? YES!
Section 602.4-Heavy Timber and section 2303.1.4.

Additional detailed information is available at www.woodworks.org

Fire Performance

- ASTM E119 Fire Endurance Test
-5-Ply CLT (6-7/8" thick)
- 5/8" Type X GWB each side
- 2 hour target
- Actual 3 hours 6 minutes

- 2015 NDS Chapter 16 includes char rates for CLT to achieve up to 2 hour fire rating

Product Standardization

US CLT Handbook

1. Introduction
10.Enclosure
2. Manufacturing
11.Environmental
3. Structural
4. Lifting
5. Lateral
6. Connections
7. DOL and Creep
8. Vibration
9. Fire
10. Sound
www.masstimber.com

Outline

\qquad
-
-
-

- Case Studies

Outline - Case Studies

- Commercial, Offices
- HealthCare
- Schools
- Apartments/Lodges
- Churches
- Performing Arts Centers
- Aquatic Centers/Arenas

Butler Brothers Building,1906-1908, 9 stories, 500,000 s.f.

Architect: Harry W. Jones Renovated 1974

- Atrium created to open the interior and provide natural lighting
- The Atrium was the key to marketability of the project

Case Study: Greenest Building in the World

Bullitt Center

- Location: Seattle, WA.
- Type IV construction
- 4 stories of wood over a 2 story concrete podium
- Net Zero Building
- Construction cost $\$ 360 / s f$.
- Goal- 250 year life expectancy

Architect: Miller Hull Partnership
Photo Credit: Miller Hull Partnership

Case Study: $1^{\text {st }}$ US Commercial Bldg. "w/ NA CLT"

Promega GMP Facility-client \& staff reception area

- Location: Madison, WI.
- Type IV construction
- 2 stories of heavy timber and CLT
- 52,000 sf. addition

Architect: Uihlein Wilson Architects

Case Study: Wood Innovation Design Center

Healthcare

Credit Valley Hospital, Ontario

Architect:
Tye Farrow of Farrow Partnership

- Main focus -create a serene atmosphere to the hospital
- Heavy timber achieved that goal

Case Study-Herrington Recovery Center

Architect: TWP Architecture
Photo: Curtis Waltzrington

- 3 story, 21,000 sf.
- Exposed glu-lam beams and decking
- Wood selected for its warmth, and healing effects

Photo: Tom Davenport

Case Study: CLT Framed School

Franklin Elementary School

- Location: Franklin, WV
- 2 stories-45,200 sf.
- Structure erected in less than 3 months
- $1^{\text {st }}$ CLT School in US
- Currently Under Construction Scheduled completion Winter 2015

Architect: MSES Architects

Case Study: Earth Sciences Building

Earth Sciences Building, University of British Columbia

- Location: Vancouver, BC
- 5 stories- 158,770 sf.
- Exposed CLT roof panel and glulam column exterior canopy
- Wood chevron braces are lateral frame

Case Study: Positive Learning Environment

Duke Lower \& Middle School

- Location: Durham, NC.
- Type VB
- 1 story - 79,204 sf.
- 5 new wood buildings, 4 existing

Architect: DTW Architects

- Glue-lam columns, girders, and arches
- exposed T\&G decking
- Reason for using exposed wood framing
- aesthetics
- How the warmth and beauty of wood could influence the students.

Case Study: Integrating Nature with Mass Timber

Burr \& Burton Academy -

 Mountain Campus- Location: Peru, VT
- 1 story - 4,000 sf.
- LEED Platinum (83 points)
- Net Zero
- Has won 3 Sustainable Design Awards

Case Study: Bridport House, London, UK

- Two blocks: 5 and 8 stories, 41 apartments total
- All CLT load-bearing walls, floor slabs, and elevator and stair shafts
- Light weight CLT structure accommodated existing storm sewer under site
- CLT construction time was 12 weeks: 50\% faster than with other materials
- Carbon benefit: each apartment stores more than 30 tons of CO2

Churches

- Heavy timber is a common theme in churches and religious centers
- Provides warmth and beauty and a harmony with nature
- Project shown is multi-ply metal plate trusses to achieve aesthetic of heavy timber

Project by Foreman Seeley Fountain Architects

Churches

Architect: CDH Partners, Inc. Engineer: KSI Structural Engineers

- Heavy timber trusses and wood decking
- Spire created unique skylight effect

Case Study - Oakland Cathedral

 Photo Credit: Timothy Hursley, Cesar Rubio, and John Blaustein

Case Study: Arena Stage at the Mead Center

Aquatic Centers

Percy Norman Aquatic Centre
 British Columbia
 Architect: Hughes Condon Marler
 Photo: natuallywood.com LEED Gold

- 66,500 sf. aquatic center
- $10 \frac{1}{2} 2^{\prime \prime} \times 41 \frac{1}{2} 2^{\prime \prime}$ glue-lams spanning 130 ft ., spaced at 12' oc.
- $21 / 2{ }^{\prime \prime}$ T\&G decking overlaid w / pw sheathing
- 130 ft . span, the glulam columns and beams had to be assembled on-site.

Aquatic Centers

University Laval Soccer Stadium, Quebec City

Richmond Olympic Oval, Richmond, B.C.

- Multi-purpose arena with 500,000 sf. floor area
- 330 ' clear span arches w/ 2 way curvature roof covering 6 acres
- Proprietary Woodwave panel roof system spanned between the composite glue-lam arches

Credit: naturallywood.com Design team: CannonDesign Owner: City of Richmond

Outline

\qquad
-

- Unique Design Solutions
-
- Technical Resources

WoodWorks - Resources for You

Technical Assistance

help@woodworks.org

- Code issues-H/A, fire protection
- Design assistance
- Wood design, use, and properties
- Product information

Case Studies

Wood Solutions Fairs Education and Design Tools

- On-line webinars
- Design guides and standards
- Design software
- CAD \& REVIT details
- On-line calculators
- Span Tables
...and more at woodworks.org

Other Resources

- American Wood Council - www.awc.org
- APA-Engineered Wood Associationwww.apawood.org
- www.timberframeengineeringcouncil.org/
- Timber Framers Guild- www.tfguild.org/
- Timber Frame Business Councilwww.timberframe.org

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.
© The Wood Products Council 2015

