

DiBlasi Associates, P.C

DAS Office of Education and Data Management

Part 1: Risk Categories and Structural Design Criteria	DiBlasi Associates, PC Structural Engineers
Risk Categories	
Risk Category IV	
 Buildings and other structures designated as essential Group I-2 with surgery or emergency treatment facilities Fire, rescue, ambulance and police stations; emergency vehice Designated earthquake, hurricane or other emergency shelter Designated emergency preparedness/communications/operations Power generating stations and other public utility facilities re 	facilities cle garages rs tions quired as
emergency back-up for Risk Category IV structures Buildings containing highly toxic materials exceeding cited li are sufficient to pose a threat to the public if released Aviation control towers	mits that
 Critical national defense functions Water storage facilities and pump structures required to main pressure for fire suppression 	ntain
	9

Г

Part 1: Risk Categories and Structural Design Criteria

DiBlasi

11

Risk Categories

Why are they important?

Used to establish Importance Factors

Risk Category	Snow	Earthquake
I	0.80	1.00
II	1.00	1.00
Ш	1.10	1.25
IV	1.20	1.50

Part 1: Risk Cate	gories and Structu	ıral Design Criteri	a	Structural Engineers
<u>Risk Ca</u>	ategories			
Why are ∙ Used to ≻Impo	they importan establish Des rtance factors fo	t? sign Wind Spe r wind embedde	eeds ed in wind speed	maps
	Risk Category	Hartford	New London	
	I	115 mph	125 mph	
	н	125 mph	135 mph	
	III/IV	125 mph	145 mph	
• IBC 201	8: Separate v	vind speed m	aps for RC III a	and RC IV

Part 1: Risk Categories and Structural Design Criteria		Struct	DiBlasi Associates, PC		
<u>Structural Design Criteria</u>					
1603.1.2 Roof Live Load					
• Section 1607.1					
Ordinary Roofs (Non-Occupied)	Roof	Tributa	ary Area		
>20 pst per Table 1604.5; modified for slope and area per §1607.12.2.1	Pitch	≤ 200 s.f.	≥ 600 s.f.		
Occupiable Roofs	≤ 4:12	20 psf	12 psf		
100 psf per Table 1604.5 for Assembly and Roof Gardens	≥ 12:12	12 psf	12 psf		
 Fabric Awnings and Canopies > 5 psf per Table 1604.5 					
			19		

Part 1: Risk Categories and Structural Design Criteria	Associates, PC Structural Engineers
Structural Design Criteria	
1603.1.3 Roof Snow Load Data	
 Ground Snow Load, p_g 	
 Flat Roof Snow Load, p_f 	
 Snow Exposure Factor, C_e 	
 Snow Load Importance Factor, I_s 	
• Thermal Factor, C _t	
 Drift Surcharge Loads, p_d 	
 Width of Snow Drifts, w 	
Existing Roofs (CT)	
	20

<u>1603.1.3 Roof Snow Load D</u>	<u>ata</u>					
 Ground Snow Load, p_g 						
• Flat Roof Snow Load, p _f						
Snow Exposure Factor, C _e	Terrain	Exposure of Roof				
► ASCE 7, Table 7-2	Category	Fully	Fully Partially Shelt			
 Snow Load Importance Factor, I_s 		Exposed	Exposed			
• Thermal Factor, C _t	В	0.9	1.0	1.2		
• Drift Surcharge Loads, p _d	С	0.91.01.10.80.91.0				
Width of Snow Drifts, w	D					
Existing Roofs (CT)						

Part 1: Risk Categories and Structural Design Criteria		Structural Engineers
<u>Structural Design Criteria</u>		
1603.1.3 Roof Snow Load Data		
 Ground Snow Load, p_g 		
 Flat Roof Snow Load, p_f 	Risk	
• Snow Exposure Factor, C _e	Category	I _s
 Snow Load Importance Factor, I_s 		0.00
> ASCE 7, Table 1.5-1		0.80
Thermal Factor. C.		1.00
Drift Surcharge Loads, p.	III	1.10
Width of Snow Drifts, w	IV	1.20
Existing Roofs (CT)		
		24

rt 1: Risk Categories and Structural D	esign Criteria		3 S s, P
Structural Design C	<u>riteria</u>		
1603.1.3 Roof Snow Loa	d Data		
 Ground Snow Load, p_g Flat Roof Snow Load, p_f 	Thermal Condition	C _t	
• Snow Exposure Factor, C _e	All structures not listed below	1.0	
 Snow Load Importance Factor, I_s Thermal Factor, C_t 	Structures kept just above freezing and those with cold, ventilated roofs	1.1	
>ASCE 7, Table 7-3	Unheated and open-air structures	1.2	
 Drift Surcharge Loads, p_d Width of Snow Drifts, w 	Structures intentionally kept below freezing	1.3	
• Existing Roofs (CT)	Continuously heated greenhouses	0.85	
		25	

Part 1: Risk Categories and Structural Design Criteria							Struc			
<u>Structural Design Criteria</u>										
1603.1.4 Wind Design Data										
 Ultimate Design Wind Speed, V_{ult}, and 										
Nominal Design Wind Speed, V _{asd} > Appendix N	pality	າow Load f)	M Spe Accele	CE ctral eration	Ult Win	imate D Id Spee (mph)	esign ds, V _{alt}	Nom Wind	ninal De Speed (mph)	sign s,V _{as}
 2018 IBC Nomenclature Changes V_{ult} → V - Basic Design Wind Speed 	Munici	Ground Sr (ps	Ss	S1	Risk Cat.l	Risk Cat.II	Risk Cat III-IV	Risk Cat. I	Risk Cat. II	Ri: Ca III-
 V_{asd} – Allowable Stress Design Wind Speed 	Andover	30	0.176	0.063	120	130	140	93	101	1(
Risk Category	Ansonia Ashford Avon	30 35 35	0.195	0.064	115 120 110	125 130 120	135 140 130	89 93 85	97 101 93	10
Wind Exposure	Beacon Falls	40 30	0.177	0.065	110	120	125	85 89	93 97 97	9
Applicable Internal Pressure Coefficient	Bethany	30	0.183	0.063	115	125	135	89	97	10
• Design Wind Pressures for Exterior Component and Cladding Materials										
-									31	

Part 1: Risk Categories and Structural Design Criteria		DiBlasi Associates, PC
<u>Structural Design Criteria</u>		
1603.1.4 Wind Design Data		
 Ultimate Design Wind Speed, V_{ult}, and Nominal Design Wind Speed, V_{asd} 		Velocity
Risk Category	Exposure	Fressure
Wind Exposure	Category	Coefficient
• IBC §1609.4	0 /	at 33'
 Surface Roughness Definitions 		(K _z)
 Exposure Categories B, C or D 	В	0.72
Applicable Internal Pressure Coefficient	С	1.00
 Design Wind Pressures for Exterior Component and Cladding Materials 	D	1.18
		32

DiBlasi

Part 1: Risk Categories and Structural Design Criteria

<u>Surface Roughness B</u> Urban and suburban areas, wooded areas and other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger.

Part 1: Risk Categories and Structural Design Criteria		DiBlasi Associates, PC
<u>Structural Design Criteria</u>		
1603.1.4 Wind Design Data		
 Ultimate Design Wind Speed, V_{ult}, and Nominal Design Wind Speed, V_{asd} Risk Category Wind Exposure 	Exposure Classification	GC _{pi}
Applicable Internal Pressure Coefficient	Open	0.00
 Open, Partially Enclosed and Enclosed Buildings 	Partially Enclosed	± 0.55
> ASCE 7 – Table 26.11-1 > 2018 IBC – Partially Open Buildings Added	Enclosed	± 0.18
 Design Wind Pressures for Exterior Component and Cladding Materials 		
		40

Part 1: Risk Categories and Structural Design Criteria	Associates, PC structural Engineers
<u>Structural Design Criteria</u>	
 1603.1.5 Earthquake Design Data Risk Category Seismic Importance Factor, I_e Spectral Response Acceleration Parameters, S_s and S₁ Site Class Design Spectral Response Acceleration Parameters, S_{DS} and S_{D1} Seismic Design Category Basic Seismic Force-Resisting System(s) Design Base Shear(s) Seismic Response Coefficient, C_s Response Modification Coefficient(s), R Analysis Procedure Used 	
	42

Part 1: Risk Categories and Structural Design Criteria		DiBlasi Associates, PC
Structural Design Criteria		
1603.1.5 Earthquake Design Data Risk Category 		
 Seismic Importance Factor, I_e > ASCE 7, Table 1.5-1 Spectral Response Acceleration Parameters, S_s and S₁ Site Class 	Risk Category	I _e
Design Spectral Response Acceleration Parameters, S and S	l I	1.00
Seismic Design Category	Ш	1.00
 Basic Seismic Force-Resisting System(s) Design Base Shear(s) 	111	1.25
 Seismic Response Coefficient, C_s Response Modification Coefficient(s), R Analysis Procedure Used 	IV	1.50
		43

Structural Design Criteria				
1603.1.5 Earthquake Design Data				
 Risk Category Seismic Importance Factor, I_e 	ality	w Load	M Spe Accele	CE ctral eration s
 Spectral Response Acceleration 	cipi	Sno psf)	(%	g)
Parameters, S _s and S ₁ > Appendix N	Muni	Ground :	S₅	S1
Site Class	Andrean	20	0.470	0.000
Design Spectral Response Acceleration Parameters.	Andover	30	0.176	0.063
S and S	Ashford	35	0.173	0.063
Solomia Dasian Catagony	Avon	35	0.181	0.064
	Barkhamsted	40	0.177	0.065
 Basic Seismic Force-Resisting System(s) 	Beacon Falls	30	0.192	0.064
 Design Base Shear(s) 	Bethany	30	0.183	0.063
Seismic Response Coefficient, C.	Bethel	30	0.215	0.066
Besponse Modification Coefficient(s) R	Bethlehem	35	0.190	0.065
Response mounication obeinclend(s), R	Bloomfield	35	0.180	0.064

Part 1: Risk Categories and Structural Design Criteria	DiBlasi Associates, PC Structural Engineers
Structural Design Criteria	
 1603.1.5 Earthquake Design Data Risk Category Seismic Importance Factor, I_e Spectral Response Acceleration Parameters, S_s and S₁ Site Classs ASCE 7 – Chapter 20 Site Classes A to F Default Site Class D per IBC §1613.3.2 Design Spectral Response Acceleration Parameters, S_{DS} and S_{D1} Seismic Design Category Basic Seismic Force-Resisting System(s) Design Base Shear(s) Seismic Response Coefficient, C_s Response Modification Coefficient(s), R Analysis Procedure Used 	
	45

Part 1: Risk Categories and Structural Design Criteri	a		Structu	DiBlasi Associates, PC
<u>Structural Design Criteria</u>				
1603.1.5 Earthquake Design Data • Risk Category		Ris	sk Catego	ory
 Seismic Importance Factor, I_e Spectral Response Acceleration Parameters, S_s and S₁ Site Class 	S _{DS}	I II	ш	IV
 Design Spectral Response Acceleration Parameters, S_{DS} and S_{D1} Seismic Design Category 	< 0.167g	A	Α	Α
 Function of Risk Category, S_{DS} and S_{D1} Established from IBC Tables 1613.3.5(1) and (2) 	≥ 0.167g < 0.33g	В	В	С
 SDC from A to D in Connecticut Basic Seismic Force-Resisting System(s) Posponso Modification Coefficient(s) P 	≥ 0.33g < 0.50g	С	С	D
 Response mounication coefficient, C_s Seismic Response Coefficient, C_s Design Base Shear(s) 	≥ 0.50g	D	D	D
Analysis Procedure Used		Table 161	3.3.5(1)	47

Part 1: Risk Categories and Structural Design Criteria

Structural Design Criteria

1603.1.5 Earthquake Design Data

- Risk Category
- Seismic Importance Factor, I_e
- Spectral Response Acceleration Parameters, S_s and S₁
- Site Class
- Design Spectral Response Acceleration Parameters, S_{DS} and S_{D1}
- Seismic Design Category
- Basic Seismic Force-Resisting System(s)
 - >ASCE 7 Table 12.2-1

> Height limitations and design parameters

- Response Modification Coefficient(s), R
- Seismic Response Coefficient, C_s
- Design Base Shear(s)
- Analysis Procedure Used

Table 12.2-1 Design Coefficients and Factors for Seismic Force-Resisting System

		ASCE 7 Socion Where Response Detailing Modification Requirements Coefficient, Overstrength A Requirements Coefficient, Overstrength A	Response			St	.imital ructur:	ions I al Heig Limite	ncludii ht. h,	ig (ft)			
			Detailing	Detailing Modification	Modification	Deflection			Deflection	Seismic Design Category			
	Seismic Force-Resisting System		Factor, C _d ^a	в	С	\mathbf{D}^d	${\rm E}^{\rm i}$	\mathbf{P}'					
Α.	BEARING WALL SYSTEMS									_			
1	Special reinforced concrete shear walls ^{i =}	14.2	5	2½	5	NL	NL	160	160	100			
2	Ordinary reinforced concrete shear walls'	14.2	4	21/2	4	NL	NL	NP	NP	NP			
3.	Detailed plain concrete shear walls'	14.2	2	21/2	2	NL	NP	NP	NP	NP			
4	Ordinary plain concrete shear walls'	14.2	1½	2½	1%	NL	NP	NP	NP	NP			
5.	Intermediate precast shear walls 1	14.2	4	21/2	4	NL	NL	-40^{2}	40^{i}	40°			
6	Ordinary precast shear walls'	14.2	3	21/2	3	NL	NP	NP	NP	NP			
7.	Special reinforced masonry shear walls	14.4	5	2½	31/2	NL	NL	160	160	100			
8	Intermediate reinforced masonry shear walls	14.4	31/2	21/2	2%	NL	NL	NP	NP	NP			
9	Ordinary reinforced masonry shear walls	14.4	2	21/2	1%	NL	160	NP	NP	NP			
10	Detailed plain masonry shear walls	14.4	2	2½	1%	NL	NP	NP	NP	NP			
11.	Ordinary plain masonry shear walls	14.4	1½	2½	154	NL	NP	NP	NP	NP			
12	Prestressed masonry shear walls	14.4	11/2	21/2	1%	NL	NP	NP	NP	NP			
13	Ordinary reinforced AAC masonry shear walls	14.4	2	21/2	2	NL	35	NP	NP	NP			
14	Ordinary plain AAC masonry shear walls	14.4	1½	$2V_{2}$	1%	NL	NP	NP	NP	NP			
15	Light-frame (wood) walls sheathed with wood structural panels rated for shear resistance or steel sheets	14.1 and 14.5	6½	3	4	NL	NL	65	65	65			
16.	Light-frame (cold-formed steel) walls sheathed with wood structural panels rated for shear resistance or steel sheets	14.1	61/2	3	4	NL	NL	65	65	65			
17	Light-frame walls with shear panels of all other materials	14.1 and 14.5	2	21/2	2	NL	NL	35	NP	NP			
18	Light-frame (cold-formed steel) wall systems using flat strap bracing	14.1	4	2	31/2	NL	NL	65	65	65			
в.	BUILDING FRAME SYSTEMS												
1	Steel eccentrically braced frames	14.1	8	2	4	NL	NL	160	160	100			
2	Steel special concentrically braced frames	14.1	6	2	5	NL	NL	160	160	100			
3	Steel ordinary concentrically braced frames	14.1	3%	2	3%	NL	NL	35	35	NP			
							4	8					

Part 1: Risk Categories and Structural Design Criteria	a Struc	DiBlasi Associates, PC tural Engineers
<u>1603.1.5 Earthquake Design Data</u>	Steel Building Frame S	ystems
 Risk Category Seismic Importance Factor, I_e Spectral Response Acceleration Parameters, S_s and S₁ Site Class 	Seismic Force- Resisting System	R
 Site Class Design Spectral Response Acceleration Parameters, S_{DS} and S₋ 	Unreinforced Masonry Shear Walls	1½
 Seismic Design Category Basic Seismic Force-Resisting System(s) 	Intermediate Reinforced Masonry Shear Walls	4
Response Modification Coefficient(s), R	Steel Special Concentrically Braced Frames*	6
 > ASCE / - TADIE 12.2-1 • Seismic Response Coefficient, C_s > Design Design Obser(a) 	Steel Eccentrically Braced Frames*	8
 Design Base Snear(s) Analysis Procedure Used 	Steel Systems Without Special Seismic Detailing	3

Part 1: Risk Categories and Structural Design Criteria	DiBlasi Associates, PC
<u>Structural Design Criteria</u>	
<u>1603.1.5 Earthquake Design Data</u>	
 Risk Category Seismic Importance Factor, I_e Spectral Response Acceleration Parameters, S_s and S₁ Site Class Design Spectral Response Acceleration Parameters, S_{DS} and S_{D1} Seismic Design Category Basic Seismic Force-Resisting System(s) Response Modification Coefficient(s), R 	
 Seismic Response Coefficient, C_s Derived per ASCE 7 Function of S_{DS}, S_{D1}, R, I_e, and the fundamental period of vibration of the structure Design Base Shear(s) Analysis Procedure Used 	n
	50

TERISK Categories and Structural Design Criteria	Struc	Associate
<u>Structural Design Criteria</u>		
1603.1.5 Earthquake Design Data		
Risk Category		
Seismic Importance Factor, I _e		
 Spectral Response Acceleration Parameters, S_s and S₁ 		
Site Class		
Design Spectral Response Acceleration Parameters, S _{DS} and S _{D1}		
Seismic Design Category		
Basic Seismic Force-Resisting System(s)		
Response Modification Coefficient(s), R		
Seismic Response Coefficient, C _s		
Design Base Shear(s)	$\mathbf{v} = \mathbf{C}_{s} \mathbf{v} \mathbf{v}$	
Total seismic force at base of structure	[Eq. 12.8-1]	
Derived per ASCE 7		
Analysis Procedure Used		

Part 1: Risk Categories and Structural Design Criteria	DiBlasi Associates, PC Structural Engineers
Structural Design Criteria	
1603.1.5 Earthquake Design Data	
Risk Category	
Seismic Importance Factor, I _e	
 Spectral Response Acceleration Parameters, S_s and S₁ Site Class 	
 Design Spectral Response Acceleration Parameters, S_{DS} and S_{D1} 	
Seismic Design Category	
 Basic Seismic Force-Resisting System(s) 	
 Response Modification Coefficient(s), R 	
 Seismic Response Coefficient, C_s 	
Design Base Shear(s)	
 Analysis Procedure Used 	
≻ASCE 7:	
Equivalent Lateral Force Analysis (§12.8)	
 Modal Response Spectrum Analysis (§12.9) 	
 Seismic Response History Analysis (Chapter 16) 	
	52

art 1: Risk Categories and Stru	ctural Design Criteria				
<u>Structural Design Criteria</u>					
 <u>1603.1.7 Flood Design</u> Flood Design Class Critical Elevations ➢ Referenced to FEMA 	i <u>gn Data</u> A Flood Insurance Rate Map (FIRM)				
Flood Hazard Classification	Elevation				
Coastal High Hazard Area and Coastal A Zones	Proposed elevation of the lowest horizontal structural member of the lowest floor (incl. basement)				
Other Flood Hazard Areas	Elevation of the proposed lowest floor (incl. basement) Elevation to which non-residential buildings will be dry floodproofed				
	56				

Structural Engineering Concepts

DISCRETE COMPONENT BRACING

- · Inhibits buckling of components with slender cross-sections
- Reduces unbraced length of compression flange
- Allows for use of deeper, lighter-weight components
- Permits the use of higher allowable bending stresses
- Reduces material
- Saves \$\$\$
- Elements that receive discrete component bracing include:
 - Rigid Frames
 - >Purlins
 - **≻ Girts**

DEDM- Spring 2019 Career Development

DiBlasi

78

Part 2: Metal Building Systems

Structural Engineering Concepts

DISCRETE COMPONENT BRACINGHow important are the flange braces?

<text><section-header><section-header><list-item><list-item><list-item><section-header><section-header>

Part 2: Metal Building Systems

Problems

- Blurred Lines of Responsibility
 - Metal Building System engineer is <u>NOT</u> the Engineer of Record MBMA Systems Manual: "The manufacturer is responsible only for the structural design of the MBS it sells... Neither the manufacturer nor the manufacturer's engineer is the ... engineer of record for the construction project. The manufacturer is not responsible for the design of any component or materials not sold by it or their interface and connection with MBS..."

Design criteria used by the Metal Building System engineer are provided by others, oftentimes the metal building franchiseholders who are frequently not design professionals

- No familiarity with the project site
 - Wind exposure
 - Adjacent buildings

DEDM- Spring 2019 Career Development

DiBlasi

86

DiBlasi

87

Part 2: Metal Building Systems

Problems

Blurred Lines of Responsibility

- > Who coordinates the design with other components?
 - "The building provided by XXXX may create a condition that could cause a snow drift load on an adjacent, lower structure. It is the responsibility of the Buyer/ Contractor and/or End Owner of any existing structure to have it analyzed..."
 - "The steel deck is provided as a form only for the placement of the concrete slab... the concrete and its reinforcement must be capable of supporting the design loads ... It is the responsibility of the Buyer/ Contractor and/or End Owner of any existing structure to have the design performed by a registered design professional."
 - "Excessive ice and snow should be removed from the roof immediately to prevent damage to roof and possible collapse..."

<section-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header><image>

Use of OEDM Training Materials

Use of Office of Education and Data Management (OEDM) training materials must be approved in writing by the State of Connecticut, Department of Administrative Services' Office of Communications. In approving of such use, the State of Connecticut assumes no liability associated with such use, including, but not limited to, the user's dissemination of any inaccurate information or interpretation in connection with its use of these training materials. Use of the training materials is at the sole risk of the user, and the State's approval of the use does not constitute an endorsement of the user or its intended use.

