

Objectives:

- Review of Table 402.4.1.1 in the Residential 2015 IECC
 - Special Focus

Common, overlooked, and high impact items

Table 402.4.1.1– The Air Barrier & Air Sealing Table

For builders, understanding and following this table is the difference between passing the Blower Door Test and *failing*: *Delays Costly repairs*

Air Sealing and Air Barriers are Important

Top Plates in Perspective

Total lineal footage of top plate to drywall • 188 + (188*2) = 564ft

Total in^2 = Total footage x gap • 564 x (1/8) = 70.5in²

Total ft² = Total in² x (1/12) • 70.5/12 = 5.8ft²

This house has a **5.8ft² hole in the attic**, just in top plates - before attic hatches, lights, HVAC boots, chases, etc.

Narrow Cavities

<section-header><section-header><text><text><text>

Air Sealing and Air Barriers

Additional illustrations, guidance, and resources are available

- 2015 IECC Residential Requirments (DOE)
- Energy Star v.3 TERC Guidebook

Questions and Discussion

Thank you

Practical Whole House Ventilation Assessment

Chris Larkum

NorthEast Building Science Institute

Objectives:

- Whole House Ventilation
 - · Benefits and Requirement
 - Special Focus on Compliance Assessment

Indoor Air Quality (IAQ) and Whole-House Mechanical Ventilation

What is the goal of Whole-House Mechanical Ventilation?

Deliver predictable fresh air to the living space · Predictably exhaust stale air and contaminates from the living space

What are contaminates?

- VOCs and other Pollutants Associated with New Construction
- Water Vapor
 - Building Materials
 - General Household Use
 Building Assembly Failure
- · Poor or Poorly Used Local Ventilation · Dust Mites, Pet and Pest Dander, Pollen
- CO, CO₂, and CO₃
- Stored Household Chemicals
- Geologic Pollutants
 - Radon
 Lead
 PCBs

Indoor Air Quality (IAQ) and Whole-House Mechanical Ventilation

What are some of the Benefits of Healthy IAQ?

- Respiratory Health
 Quality of Life
 - Lower Health Care Costs
 - Less Lost Time at Work due to Respiratory Illness
- CO₂ Balance
 - Studies in Commercial Settings
 - Cognitive Scores are 62-101% higher in spaces with healthy IAQ than conventional spaces
- Environment that Promotes Healthy Sleeping Habits

Prescriptive requirement for Whole-House Mechanical Ventilation

2015 IECC Sec. R402.4 and R402.1.2

- Air Leakage and Testing
- R402.4 Air Leakage (Mandatory)
- R402.4.1.2 Testing (Blower Door Test)
 3 Air Changes per Hour at 50 Pascals (3ACH50)

*Pro tip - 3ACH50 = Volume/20 CFM

2015 IRC Sec. R303.4 Mechanical Ventilation

Dwelling Units with infiltration rates (air leakage) under 5ACH50 requires whole-house mechanical ventilation in accordance with 2015 IMC Sec. M1507.3

Example Ventilation Requirement Plans Courtesy of South Coast Architecture – Dartmouth, MA

Use of Office of Education and Data Management (OEDM) training materials must be approved in writing by the State of Connecticut, Department of Administrative Services' Office of Communications.

PERMIT SET

Types of Ventilation Exhaust Only Ventilation

Exhaust Only Ventilation uses an Exhaust Fan for Ventilation Compliance

- Fans operate continuously or controls operate intermittently
- Typically performed by fan intended for local ventilation
- Depressurizes living space
- Pulls fresh air through breaks in the Thermal Envelope
- Most common method of Whole-House Ventilation

Exhaust Only Ventilation

Pros

- Most Economical Input Method for Compliance
 Typically Low Operational Cost
- Multiple Options Readily Available in the Marketplace
- Available Options able to be Installed with Minimal Additional Training

Cons

- Makeup Air is Unfiltered
- May not Deliver Fresh Air to most Desired Areas
- Potential Combustion Safety Concerns

Examples of Exhaust Only Ventilation Continuous Run Fans

Continuous Run Fans are Typically Dual-Purpose Designed -Typically Use DC Motors to Modulate CFM and Fan Speed

- Panasonic Whisper Green Select (FV05-11-VKS1) Bath Fan
 "Optional Timer" has 30-100CFM settings in 10CFM increments
 - Recommendations for Electricians
 Beview wiring details
- Review wiring details
 Search video sites (YouTube) for "Panasonic Whisper Green Select Wiring"
 Delta Breeze (SIG80-110D) Bath Fan
- Built-in controller has continuous 0, 30, 50, 60, and 80 CFM settings
- NuTone Ultra Green (ZN110L) Bath Fan
- Built-in rheostat controls CFM between 30 and 110
- Air King ECQ and ECV Series Range Hood
 - Built-in controls allow for continuous 30, 50, 70, and 90 CFM settings

Examples of Exhaust Only Ventilation External Controls

External Controls are Economic Methods of Ventilation Compliance for New Construction without Designed Systems and Retrofit in Existing Homes

- AirCycler SmartExhaust switch
 - Intermittent minutes/hr setting for predictable fan operation
 "Fan Only" wiring option available for separate Fan/Light Function
- Broan 82W switch/sensor
 - RH Sensor operates fan when RH exceeds set humidity
 - Intermittent minutes/hr setting for predictable fan operation
 - "Fan Only" wiring option available for separate Fan/Light Function

Pros

- Opportunity to Filter Fresh Air Supply
- · Opportunity for HVAC Equipment to Address Temperature Change

Atmospheric Fuel-Fired Appliance Safety

Cons

- Design/Function Complexity
- Operational Costs esp. using HVAC Integrated Method Additional heating fuel consumption
 HVAC blower motor – higher electrical consumption
- Possible Condensation Issues

Examples of Supply Only Ventilation **Products**

HVAC Integrated Options use a Controllable Damper and Fresh Air Duct Installed into the HVAC Return Independent Systems use a Dedicated Fan and Duct Work to Supply Fresh Air to the Living Space

- Honeywell Y8150 and W8150/W8150A (Integrated)
 - Low Voltage Controlled Damper Supplies Fresh Air to HVAC Return
 - Controls Allow for Easy to Set Compliance
 Damper Limits Air Intake and Run Time Based on Setting
- AirCycler VS (Integrated)
 - Low Voltage Controlled Damper Supplies Fresh Air to HVAC Return
- Control Setting Option to Synch with HVAC Blower Motor Run Time
 Air King FAS (Independent)

 - 40-120 CFM Speeds at 10 CFM Increments
 - Air Filter Included in Unit Lower Electrical Consumption Compared to HVAC Blower Motor .

Types of Ventilation Combination (Balanced)

Combination or Balanced Ventilation Controls both Supply and Exhaust Ventilation Air through Designed Mechanical Systems

• HRV/ERV are the most common Equipment for Balanced Ventilation

Best Practices and Recommendations

- Use Largest Available Duct Size
- Use Rigid Duct or Install Flex Duct to Manufacturer's Instructions
- · Exhaust Fans as Directly as Possible

Pros

- Occupant Satisfaction
- · Fan and System Performs more Efficiently
- Quieter System Operation

Cons

- Possibly Higher Installation Cost
- Typically Requires Competent Installer

Above Code Programs and Existing Home Calculation ASHRAE 62.2

ASHRAE 62.2

- 2015 IECC R102.1.1 (N1101.4) Above Code Programs such as LEED, Energy Star for Homes, and PassiveHouse Require Ventilation Meet the ASHRAE 62.2 Standard
- The ASHRAE Requirement will probably be lower than the IMC Requirement
- The ASHRAE Standard is also a Good Tool to Assess the Ventilation Requirements of Existing Homes

Questions and Discussion

Thank you