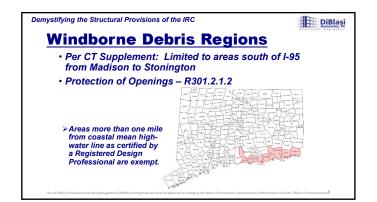
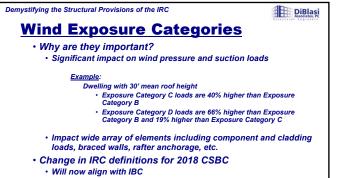
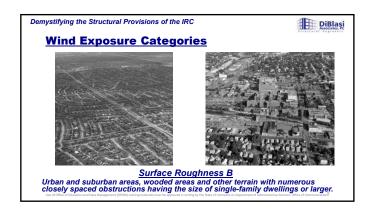


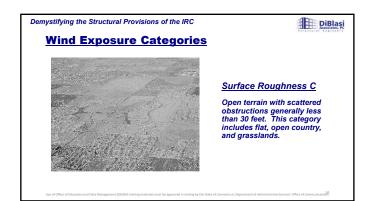
Demystifying the Structural Provisions of the IRC DiBlasi **Ultimate vs. Nominal Wind Speeds** 115 120 100 130 105 125 135 110 140 2012 IRC 2015 IRC Ultimate Wind Speeds (V_{ult}) **Basic Wind Speeds** Nominal Wind Speeds (V_{asd})

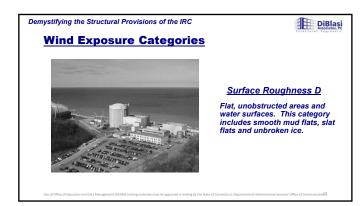

· Prefabricated Wood Truss Bracing

<u>Ultim</u>	ate vs. Nominal	Wind Sp	eeds
Why th	e Change?		
	ng into alignment with		
	Inconsistencies with recu		
	Ultimate loads were used	for seismic	design
	<u>2012 IRC</u>		<u>2015 IRC</u>
LRFD:	<u>2012 IRC</u> 1.2D + f ₁ L + 1.6W	LRFD:	<u>2015 IRC</u> 1.2D + f ₁ L + <mark>1.0</mark> W
LRFD:		LRFD:	
LRFD: ASD:	$1.2D + f_1L + 1.6W$	LRFD: ASD:	$1.2D + f_1L + 1.0W$

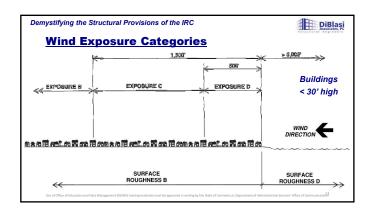


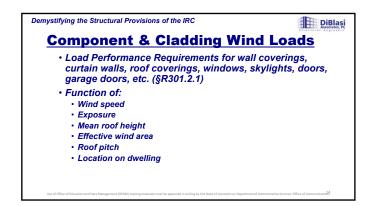

Vhat is t	he impact?				
		IRC	2015	IRC 2012	1
	Location	V 🚓	V and	¥	1
	Storington	140	108	105	1
	New Haven	125	37	1.60	1
	Greenwich	120	\$3	100	
	Salisbury	115	89	90	1
	Entield	125	97	100	
	Thompson	130	101	100	1

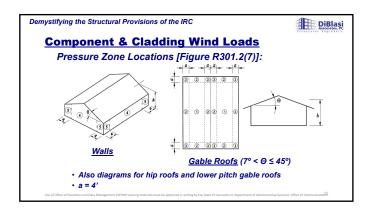


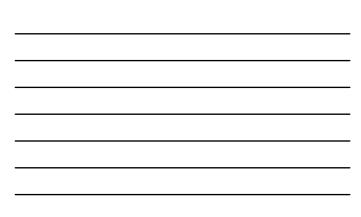

2

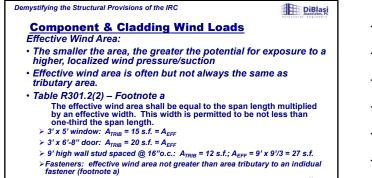
emystifying the Structural Provisions of the IRC			H	
Windborne Debris F	Regions			
Protection of Openings – R301.2. Glazed Openings: Must meet required of ASTM E 1996 and ASTM E1886		e Mi	issile	Test
 Glazing in garage doors must meet standard or ANSI/DASMA 115. 	approved impa	ct-re	sistir	ng
 In lieu of impact-rated glazing, woo used for opening protection. 		els I	- C	e
Panels must be pre-cut	WINDBORNE DEBRIS SCHEDULE FOR WOOD	STRUCTU	RAL PANEL	S*. 6. 6. 6
Panels must be pre-drilled	WINDBORNE DEBRIS	STRUCTU		S*. 6. 6. 6
 Panels must be pre-drilled Anchors must be corrosion- resistant 	WINDBORNE DÉBRIS SCHEDULE FOR WOOD FASTENER TYPE No. 8 wood screw based anchor with 2-inch embedment	FASTER Panel span 5	RAL PANEL ER SPACING 4 feet < panel span	(inches) ^{s, s} 6 feel < panel span
 Panels must be pre-drilled Anchors must be corrosion- 	WINDBORNE DÉBRIS SCHEDULE FOR WOOD FASTENER TYPE No. 8 wood screw based	STRUCTU PASTER Panel span ≤ 4 feot	RAL PANEL ER SPACING 4 feet < panel span ≤ 6 feet	(inches) ^{s, s} 6 feel < panel span

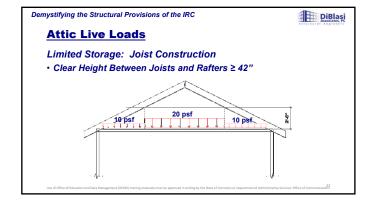




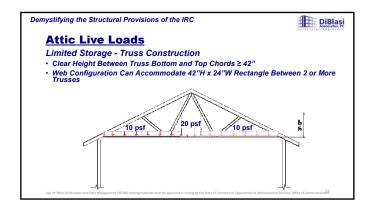


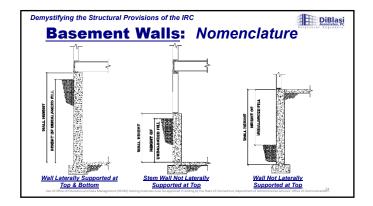

mystifying the Structural Provisions of the IRC
Wind Exposure Categories
Exposure B
 For buildings with mean roof height up to 30', Surface Roughness B prevails in the upwind direction for a distance of at least 1,500' (2,600' for mean roof height > 30').
Exposure C
• Applies where Exposures B and D do not apply
Exposure D
 For buildings where Surface Roughness D prevails in the upwind direction for a distance of at least 5,000'. Also applies upwind of the site a distance of 600' or 20 times the building height from the Exposure D condition.
Use of Office of Education and Data Management (DEDM) training materials must be approved in writing by the State of Connecticut. Department of Administrative Services' Office of Communication

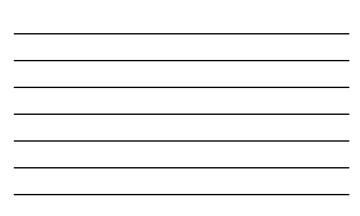

4

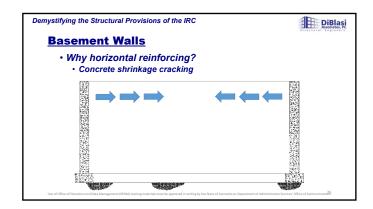

_					au	all	19	W		u L	.0	au	2			
Drc		ire an	d e		tio	n In	ad	tał	Juu	atic	ne	IT	ahl	o R	30	1 2
													~~·	• • •		
1	30 F	ligh – E	xμ	osu	re	Þ				R301.	2(2)					
				CO		IGHT C	ND C	LADDI	NG LC	ADS F	OR A			ITH A	MEAN	
Г	1	EFFECTIVE		NU		ioni c	JF 30							(psi)		-
	ZONE	WIND AREA (feet ²)		110	1	15	1	20	1	30	1	40	1	50	1	60
	1	10	10.0	-13.0	10.0	-14.0	10.0	-15.0	10.0	-18.0	10.0	-21.0	9.9	-24.0	11.2	-27.0
	1	20	10.0	-12.0	10.0	-13.0	10.0	-15.0	10.0	-17.0	10.0	-20.0	9.2	-23.0	10.6	-26.0
	1	50	10.0	-12.0	10.0	-13.0	10.0	-14.0	10.0	-17.0	10.0	-19.0	8.5	-22.0	10.0	-26.0
8	1	100	10.0	-11.0	10.0	-13.0	10.0	-14.0	10.0	-16.0	10.0	-19.0	7.8	-22.0	10.0	-25.0
degre	2	10	10.0	-21.0	10.0	-23.0	10.0	-26.0	10.0	-30.0	10.0	-35.0	9.9	-40.0	11.2	-46.0
1	2	20	10.0	-19.0	10.0	-21.0	10.0	-23.0	10.0	-27.0	10.0	-31.0	9.2	-36.0	10.6	-41.0
6	2	50	10.0	-16.0	10.0	-18.0	10.0	+19.0	10.0	-23.0	10.0	-26.0	8.5	-30.0	10.0	-34.0
Roof	2	100	10.0	-14.0	10.0	-15.0	10.0	-16.0	10.0	-19.0	10.0	-22.0	7.8	-26.0	10.0	-30.0
ĕ	3	10	10.0	-33.0	10.0	-36.0	10.0	-39.0	10.0	-46.0	10.0	-53.0	9.9	-61.0	11.2	-69.0
	3	20	10.0	-27.0	10.0	-29.0	10.0	-32.0	10.0	-38.0	10.0	-44.0	9.2	-50.0	10.6	-57.0
	3	50	10.0	-19.0	10.0	-21.0	10.0	-23.0	10.0	-27.0	10.0	-32.0	8.5	-36.0	10.0	-41.0
	3	100	10.0	-14.0	10.0	-15.0	10.0	-16.0	10.0	-19.0	10.0	-22.0	7.8	-26.0	10.0	-30

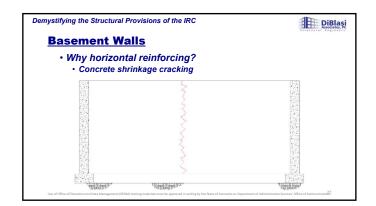
mponei		covision			/ind	Loa	<u>ds</u>			DiBla
essure a 30' High – V _{ULT} = 130 Roof with	Expo mph	sure E	3	d tabu	ılatio	ns [T	able	R301	.2(2)	1
Effective					Zo	ne				
Effective Wind Area		1		2	Zo	ne 3		4		5
Wind	10.0	1	10.0	2 -30.0	Zo 10.0	ne 3 -46.0	18.2	4 -19.0	18.2	5
Wind Area	10.0 10.0	1 -18.0 -17.0	10.0 10.0	2 -30.0 -27.0		3	18.2 17.4	4 -19.0 -19.0	18.2 17.4	5 -24.0 -22.0
Wind Area 10 s.f.					10.0	3 -46.0				

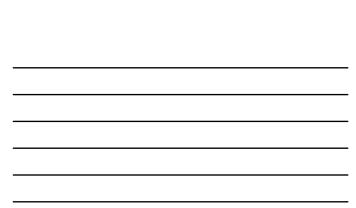

sarying a	he Structural Pro		-		Associ
Comp	onent &	<u>Cladding</u>	Wind Loa	<u>ds</u>	
	ssure and s I exposure [factors for h	eight
	MEAN ROOF		EXPOSURE		
	HEIGHT	В	С	D	
	15	1.00	1.21	1.47	
	20	1.00	1.29	1.55	
	25	1.00	1.35	1.61	
	30	1.00	1.40	1.66	
	35	1.05	1.45	1.70	
	40	1.09	1.49	1.74	
	45	1.12	1.53	1.78	

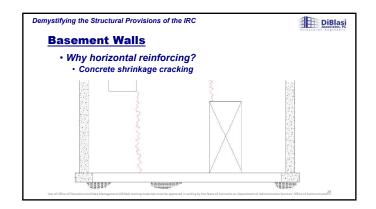

mystifying the Structural Provisions of the IRC	Associates, PC
Attic Live Loads	-
Table R301.5	
Habitable Attics and Attics with Fixed Stairs:	30 psf
• Uninhabitable Attics with Limited Storage: 20	psf
Uninhabitable Attics with No Storage: 10 psf (not concurrent with other live loads)	-
What differentiates Uninhabitable Attics with Lin from those with No Storage? For Limited Stora	ge:
20"x30" access opening at point of minimum 30" c	lear height required
 Slope of joists or truss bottom chords ≤ 2V:12H Required insulation depth < joist or truss bottom c. 	hord depth
Height/opening limitations	-



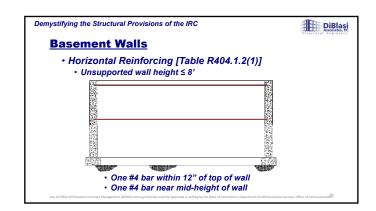


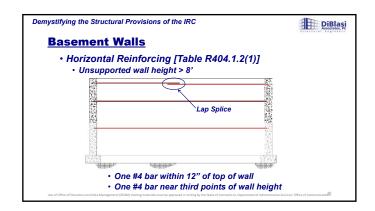


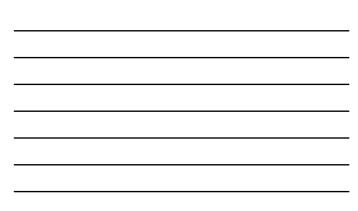


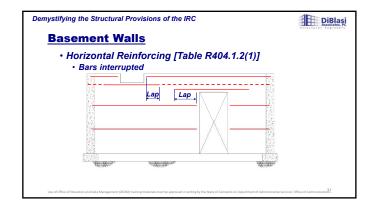


Demystifying the Structural Provisions of the IRC Basement Walls • When is reinforcing required? • Horizontal Reinforcing: Required in all basement walls • Vertical Reinforcing: Function of: • Unsupported Wall Height • Unbalanced Backfill Height • Soil Type • Wall Thickness

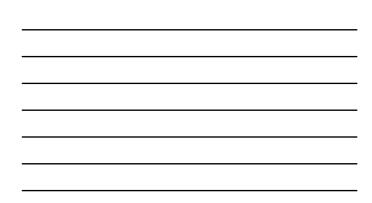


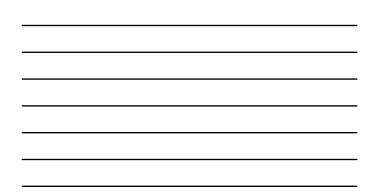


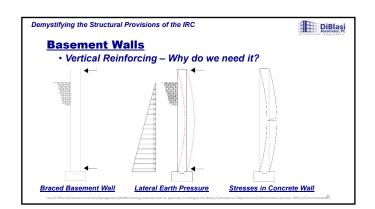




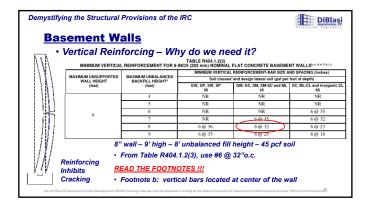




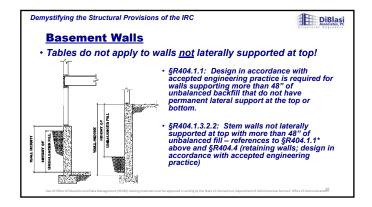


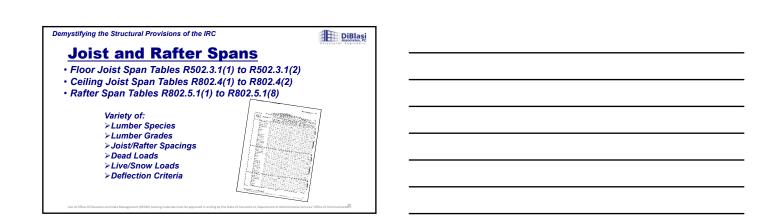


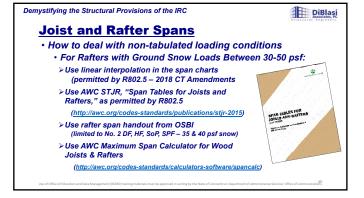
ying t	he Structur	al Provisions of the IRC			
sei	nent V	<u>Valls</u>			
Ver	tical Rei	inforcing			
• 5	Soil Types	- USCS – Table R405.1			
	PROPERTIES	TABLE R405.1 S OF SOILS CLASSIFIED ACCORDING TO THE UNIFIE	D SOIL CLASSIFIC	ATION SYSTE	м
SOIL GROUP	UNIFIED SOIL CLASSIFICATION SYSTEM SYMBOL	SOIL DESCRIPTION	DRAINAGE CHARACTERISTICS*	FROST HEAVE POTENTIAL	VOLUME CHANGE POTENTIAL EXPANSION®
	GW	Well-graded gravels, gravel sand mixtures, little or no fines	Good	Low	Low
	GP	Poorly graded gravels or gravel sand mixtures, little or no fines	Good	Low	Low
Group I	SW	Well-graded sands, gravelly sands, little or no fines	Good	Low	Low
	SP	Poorly graded sands or gravelly sands, little or no fines	Good	Low	Low
	GM	Silty gravels, gravel-sand-silt mixtures	Good	Medium	Low
	SM	Silty sand, sand-silt mixtures	Good	Medium	Low
	GC	Clayey gravels, gravel-sand-clay mixtures	Medium	Medium	Low
	SC	Clayey sands, sand-clay mixture	Medium	Medium	Low
Group II	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	Medium	High	Low
	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium	Medium	Medium to Low

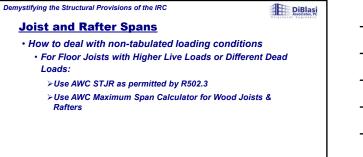


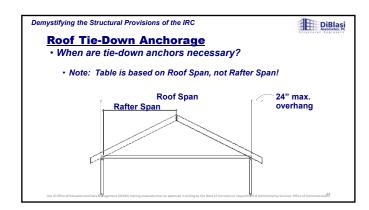
Baseme	ent Walls		
	al Reinforcing Types – USCS	1	
Г	DESIGN LATE	RAL SOIL PRESSURES	人電
	BASED	ON SOIL CLASS	A T
	Soil Class	Lateral Soil Pressure	
	GW, GP, SW, SP	30 psf/foot of depth	
	GM, GC, SM SM-SC, ML	45 psf/foot of depth	
Γ	SC, ML-CL Inorganic CL	60 psf/foot of depth	





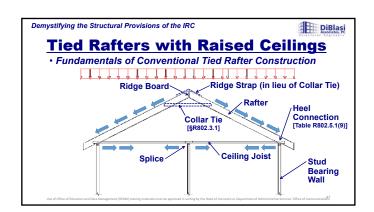


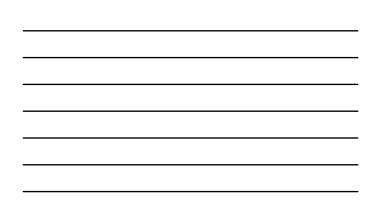

Ba	sem	ent V	Na	ls											
•	Vertic	al Re	info	orcii	ng										_
A VA	• Fla	t Base	men	t Wa	ills (6" to	o 12'	' Thi	ck						l.
		Tables I footnote	e b):	#6`@	32"	requ	IIRE R404	per p	revio	ous e	xamp	ole			
		MAXIMUM			MIND		ICAL REIN					iches)			Ì
ΙΨ	MAXIMUM WALL HEIGHT	UNBALANCED BACKFILL HEIGHT [®]		GW, GP		Soli cia	sses" and GN	Jesign late I, GC, SM, S 4				ML-CL an	d inorgani i0	e CL	
	(feet)	(feet)					Minimum	nominal wa	all thicknes	ss (inches	; ;				1
			6 NR	8 NR	10 NB	12 NR	6	8 NR	10 NR	12 NR	6 NR	8 NR	10 NR	12 NB	[
1111		4	NR	NK	NR	NR	NR 4 @ 35	NR ¹	NR	NR	5 @ 40	NR	NK	NR	
1 1 1 1 1		6	4.00.34	NR ¹	NR	NR	6 @ 48	NR	NR	NR	6 @ 36	6.68.39	NR ¹	NR	
1111	9	7	5.00.36	NR	NR	NR	6@34	5.62.37	NR	NR	6 @ 33	6 @ 38	5 @ 37	NR ¹	- 1 1
1111		8	6 @ 38	5 @ 41	NR	NR	6 6 6 33	6 @ 38	50 37	NR'	6 @ 24	6 69 29	6 @ 39	4 @ 48"	- 1 #
1111		9	6 @ 34	6 @ 46	NR	NR	6 @ 26	0.07.30	6@41	NR	6 @ 19	6 @ 23	6 @ 30	6 @ 39	12
		· ·	0.01.01	0.68.10			0.01.00	0.61.00	0.00 11		0.00.15	0.61.80	0.68.000	0.00.00	- UF

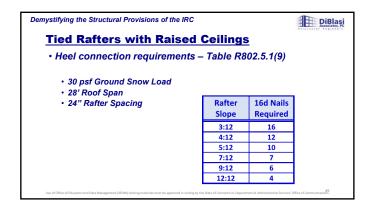


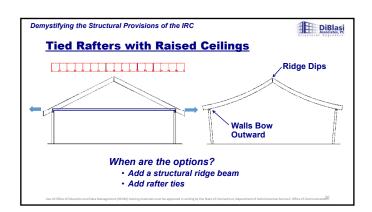
loist :	and Rafter Sp	and		Tratteral Tagina
			-	
• How t	o deal with non-ta	abula	ated loading con	ditions
• AW	C Maximum Span	Calcu	Ilator Example:	
Species	_	•	The Maximum Horizont	al Span is:
Size	2x8		13 ft. 8 in.	
Grade	No. 2	•	with a minimum bearing	length of 0 49 in
Member Type	Rafters (Snow Load)	•	required at each end of t	
Deflection Limit	L/240	•	Property	Value
Spacing (in)	16	•	Species	Douglas Fir-Larch
	Wet service conditions?	_	Grade	No. 2
Exterior Exposure	No Incised lumber?	•	Size	2x8
	No	•	Modulus of Elasticity (E)	1600000 psi
Snow Load (psf)	35		Bending Strength (F _b)	1428.3 psi
Dead Load (psf)	15	•	Bearing Strength (Fcp)	625 psi
		_	Shear Strength (F _v)	207 psi

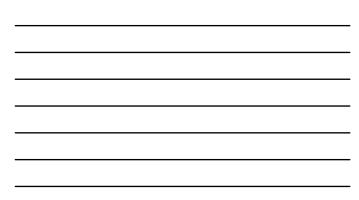
Demystifying the Structural Provisions of the IRC
Roof Tie-Down Anchorage
When are tie-down anchors necessary? SR802 11: Eastening per Table R602 3(1) (toe nails) in

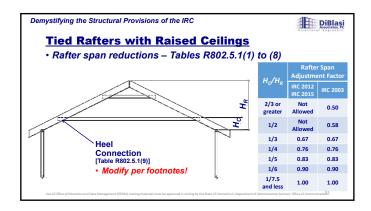

	RAFTER	ROOF SPAN (feet)				Ultima	te Design Wi	nd Speed V _{cc}	, (mph)				
Table R802.11	OR TRUSS SPACING		1	10	1	15	1	20	1	30	14	10	
	SPACING		Roof	Pitch	Roof	Pitch	Roof	Pitch	Roof	Pitch	Roof Pitch		
			< 5:12	≥ 5:12	< 5:12	≥ 5:12	< 5:12	≥ 5:12	< 5:12	≥ 5:12	< 5:12	≥ 5:12	
		12	126	117	146	136	168	157	214	201	263	247	
Uplift Connx.		18	161	148	188	174	217	201	277	259	342	322	
		24	197	181	230	213	266	246	340	318	422	396	
Conny	16" o.c.	28	221	202	259	238	299	277	384	358	476	446	
	10 o.c.	32	245	223	287	265	331	307	427	398	529	496	
Forces		36	269	246	315	291	364	338	469	438	583	547	
	1 1	42	305	279	358	330	415	384	535	499	664	622	
	1 1	48	340	311	402	370	464	430	599	559	745	697	

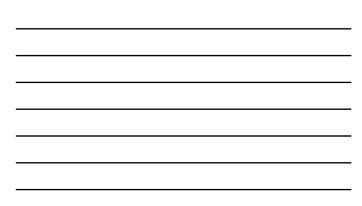

mystifying the Structural Provisions of the IRC	DiBlasi Associates, PC
Roof Tie-Down Anchorage	
Table R802.11 – Read the Footnotes!!!	
 Tables are based on Exposures B & C. For Exposure D, us next highest tabulated value in Exposure C (e.g. for 130 mj Exposure D, use values from 140 mph Exposure C) 	
 Table not valid for roof overhangs greater than 24" 	
 Table not valid for mean roof height > 33' 	
 For connections more than 8' from building corners, uplift forces can be reduced by multiplying by 0.75 	
 For connections at hip roofs with pitch ≥ 5:12, uplift forces can be reduced by multiplying by 0.70 	\$

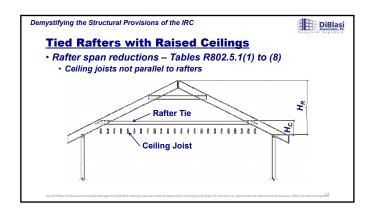

Demystifying the Struc	tural Prov	isions of	the IRC			DiBlasi
Roof Tie-D	Jown	Anch	orage			
 Example 						
• Given: Ti	usses/R	afters si	paced @	24"o.c.:	overhar	a ≤ 24″
• Find: The connection	allowat	le roof s	span for			-
	Wind Secol	Nonf Place	×1.	navalul n Rosch S	şıkm	
	serior above	Manager (* Dates)	Expessive B	Espective %	Exposure 2	
	are	< 3872	28447	e e	¢	
	91 8 mpix	3 3922	88 5 -47	¢	ę	
	1788 million	4 222	207-6F	6	0	
	NASS CAUSAG	2 201	37-57	0	0	
	125 0000	< 232	\$348P	\$	0	
	wan nefeos	12 (98)(2)	154-369	e	0	
	150 main	< \$32	19-6	n	8	
	visio entere	2 822	13°C	¢	0	
	USE marin	< <u>1992</u>	٩	ė	¢	
	waa eedere	2 3302	ø	٠	Ý	
	040 erain	43,3922	6	۵	â	
		2:2002	۵	0	0	
Use of Office of Education and Data Mana			uncleased and second of a proved in writing by the		Department of Administ	trative Services' Office of Communications.

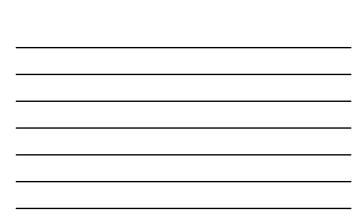


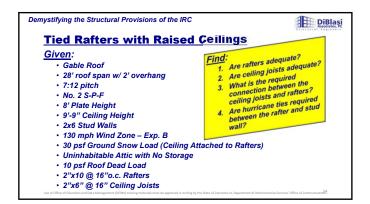

	ifte						-	-	~	. il		-					
		3	W	U		EI	Se	a	6	eII		gs					
ല ററ	nnec	tin	n r	'n	uir	om	on	te	_ 7	ah	lo	R	02	5 1	1/9)	
							TABLE	R802	5.1(9)					· · ·	10	·	
		-		RAFTE	R/CEILI	ING JO	IST HE					c, d, e, f, h					
		-	GROUND SNOW LOAD (psf) 20 st 30 50 70														
RAFTER	RAFTER	Roof span (feet)											-				
SLOPE	SPACING (inches)	12	20	28	36	12	20	28	36	12	20	28	36	12	20	28	36
			Required number of 16d common nails* * per heel joint splices* 4.4.1														
	12	4	6	8	10	4	6	8	-11	5	8	12	15	6	11	15	20
3:12	16	5	8	10	13	5	8	11	14	6	11	15	20	8	14	20	26
	24	7	11	15	19	7	11	16	21	9	16	23	30	12	21	30	39
4:12	12	3	5	6	8	3	5	6	8	4	6	9	11	5	8	12	15
4:12	16	4	6	8	10	4	6	8	11	5	8	12	15 22	6	11	15 23	20 29
	12	3	4	12	6	3	4	5	7	3	5	7	9	4	7	43	12
5:12	16	3	5	6	8	3	5	7	9	4	2	9	12	5	9	12	16
	24	4	7	9	12	4	7	10	13	6	10	14	18	7	13	18	23
	12	3	4	4	5	3	3	4	5	3	4	5	7	3	5	7	9
7:12	16	3	4	5	6	3	4	5	6	3	5	7	9	4	6	9	11
1.14	24	3	5	2	0	3	5	2	0	4	2	10	13	5	0	13	17

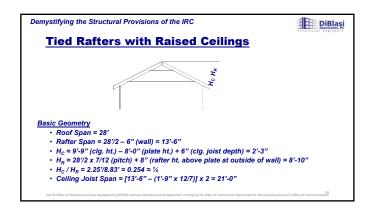











Rafter/Ceiling Joist Heel Connections – Tab	le R80	2 5 1(9)
ootnotes	10 1100	2.0.1(0)
. Where rafter ties are sub wited for ceiling		
joists, the heel joint rep interview of the shall be taken a set of the set heel joint connection reprint for two-thirds of the actual rafter skow of the set of	H _c /H _R	Heel Joist Connection Adjustment Factor
actual faiter stope	1/3	1.5
Tabulated heel joint connections assume that	1/4	1.33
ceiling joists or rafter ties are located at the bottom of the attic space. Where ceiling joists or rafter ties are located higher in the attic, heel	1/5	1.25
or rafter ties are located higher in the attic heel	1/6	1.2
joint connection requirements shall be increased by the following factors.	1/10 or less	1.11

Dem	stifying the Structural Provisions of the IRC	DiBlasi
	Tied Rafters with Raised Ceilings	
	 Are Rafters Adequate? Table R802.5.1(5): Allowable span for 2"x10" @ 16"o.c. rafters (No. 30 psf snow load, 10 psf dead load and attached ceiling = 18"-5". From footnote "a", Rafter Span Adjustment Factor for H_c/H_R of ¼ = 0. Modified Allowable Rafter Span = 0.76 x 18"-5" = 14'-0" > 13"-6" actu 	0.76.
	> Rafters are O.K. 2. Are Ceiling Joists Adequate?	
	 Table R802.4(1): Allowable span for 2"x6" @ 16"o.c. ceiling joists (i with 10 psf live load (no storage) = 16'.11" < 21'-0" actual ceiling joist > 2"x6" ceiling joists are N.G. > Use 2"x8" ceiling joists instead – allowable span = 22'-4" 	

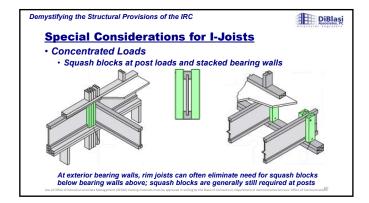
Demystifying the Structural Provisions of the IRC

DiBlasi

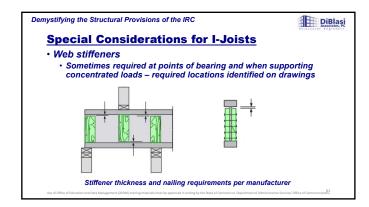
Tied Rafters with Raised Ceilings

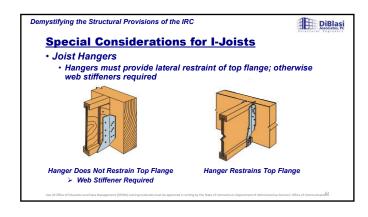
- 3. What is the Required Connection Between the Ceiling Joists and the Rafters?
 - Table R802.5.1(9): For a roof span of 28', ground snow load of 30 psf, rafter slope of 7:12 and rafter spacing of 16"o.c., five (5) 16d nails are required at the rafter/ceiling heel joint connection.
 - From footnote "h", a Heel Joint Connection Adjustment Factor is to be applied when the ceiling joists are located above the wall plate. For $H_C/H_R = 1/4$, this adjustment factor is 1.33.
 - Number of nails required = 1.33 x 5 = 6.7
 - > Use seven (7) 16d nails at the rafter/ceiling heel joint connection

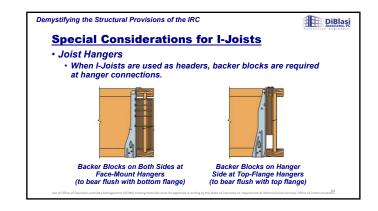
Demystifying the Structural Provisions of the IRC

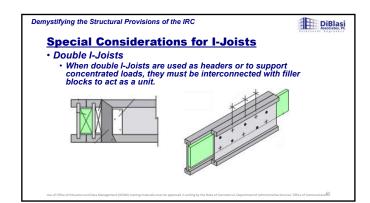

DiBlasi

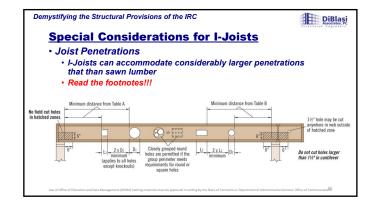
Tied Rafters with Raised Ceilings

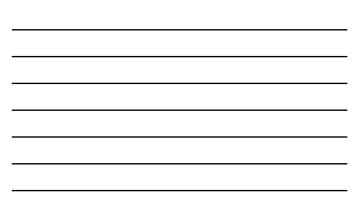

- Are Hurricane Anchors Required Between the Rafter and Stud Wall?
 Table R802.11: For a 130 wind speed in Exposure B with rafters spaced @ 16"o.c., a roof span of 28' with a 24" overhang and a 7:12 roof pitch, the rafter uplift connection force = 203#.
 - > As the connection force exceeds 200#, the standard toe-nailed connections in the Fastening Schedule are not permissible and a hurricane anchor (or acceptable alternative connection) would be required.
 - Per footnote "d", the tabulated connection forces at locations more than 8'-0" from the building corners may be multiplied by 0.70. The design connection force in these areas would be 0.70 x 203# = 142#; toe-nailed connections in accordance with Table R602.3(1) would be permissible in these locations.

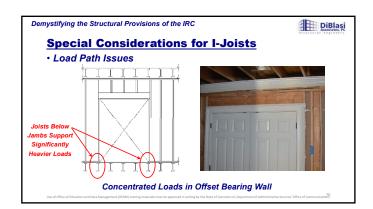












			1-30	bist	5			
Joist Penetrations		Ci	OSEST C	Distanc	E TO SU	PPORT		
	Joist	Joist Circular Hole Diameter				er		
≻Example Based on	Depth	2″	3″	4″	5″	6″	7″	8″
LPI 42Plus Joists	9½"	1'-3"	2'-3"	3'-4"	4'-4"	5'-5"	-	-
	11%"	3'-2"	3'-10"	4'-7"	5'-3"	6'-0"	6'-9"	7'-8″
	14″	4'-5"	5'-0"	5'-7"	6'-1"	6'-8"	7'-3″	8'-0"
	16"	5'-4"	5'-10"	6'-4"	6'-10"	7'-4"	7'-10"	8'-6"
		c	CLOSEST	DISTAN	ICE TO S			
	Joist		ctangu	-	_	imum	Dimens	_
	Depth	2″	3″	4"	5″	6″	7"	aon 8″
	Depth 9½"	2" 5'-8"	3" 6'-6"	4" 7'-4"	5″ 8'-2″	6" 9'-3"	7″ 9'-7"	8″ 9'-11
	Depth 9½" 11%"	2" 5'-8" 7'-2"	3" 6'-6" 8'-0"	4" 7'-4" 9'-0"	5" 8'-2" 10'-0"	6" 9'-3" 10'-11"	7" 9'-7" 12'-1"	8" 9'-11
	Depth 9½"	2" 5'-8"	3" 6'-6"	4" 7'-4"	5″ 8'-2″	6" 9'-3"	7" 9'-7" 12'-1"	_

Demystifying the Structural Provisions of the IRC Special Considerations for I-Joists Joist Penetrations These web hole tables are valid for simple and continuous spans with <u>uniform loads only</u>, as sized from tables contained in LP's current I-Joist product guides. Larger holes and non-uniform loading conditions and/or closer proximity to supports may be possible, <u>but require further analysis</u> using LP's design software.

