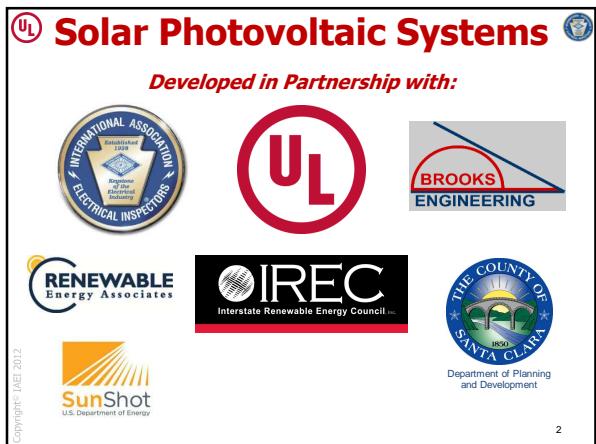


 Solar Photovoltaic Systems

Presented in Partnership by:

Copyright © IAEI 2012

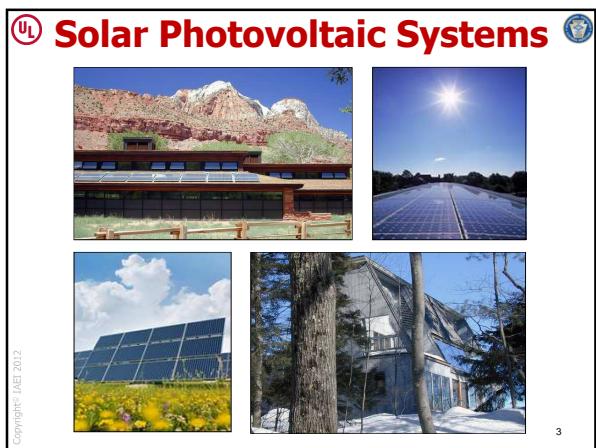
1



 Solar Photovoltaic Systems

Developed in Partnership with:

 2



 Solar Photovoltaic Systems

3

UL Solar Photovoltaic Systems

- What is PV?
- Where is it installed?
- Installation requirements

Copyright © IAEI 2012

4

UL What is PV?

- **Definition: Solar Photovoltaic System**
- The total components and subsystems that, in combination, convert solar energy into electrical energy suitable for connection to a utilization load

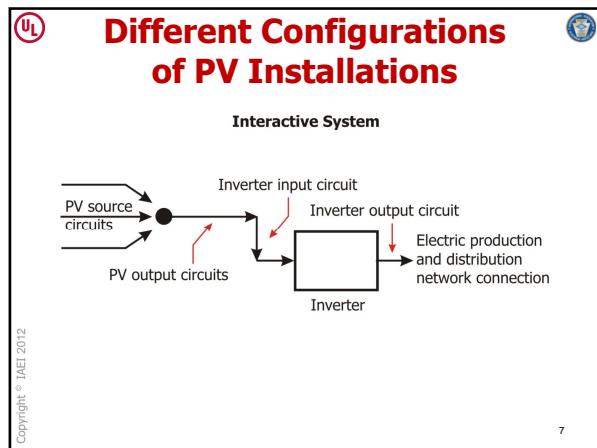
5

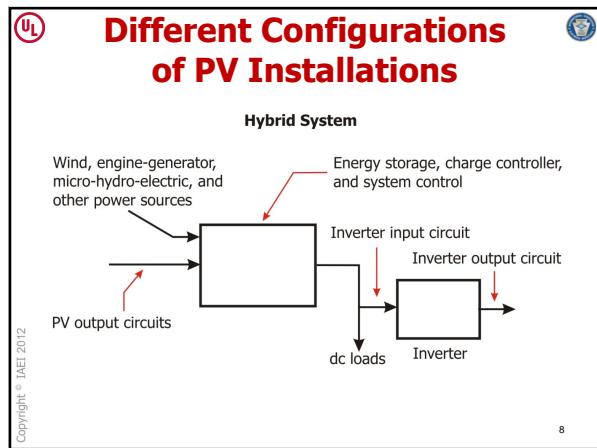
UL Basic Components of a Solar Photovoltaic System

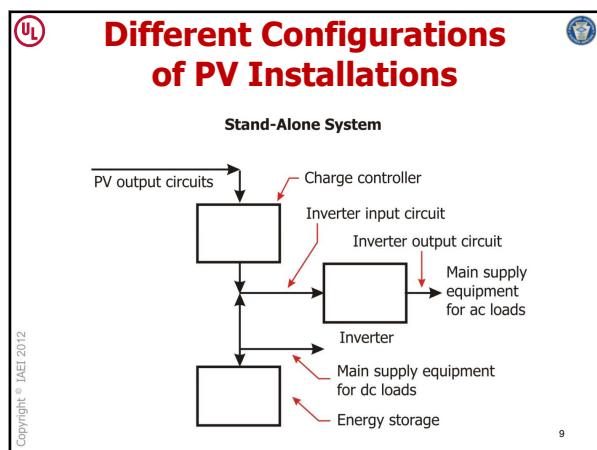
Copyright © IAEI 2012

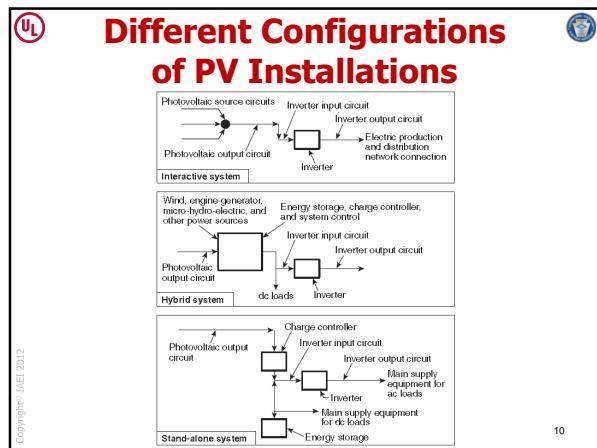
NEC Figure 690.1(A)

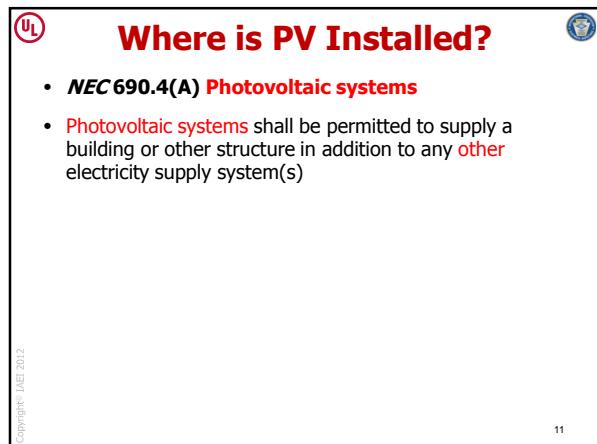
6











 Commercial Rooftops

Copyright © IAEI 2012

Photos courtesy of DOE/NREL

13

 Shade Structures

Copyright © IAEI 2012

Photos courtesy of DOE/NREL

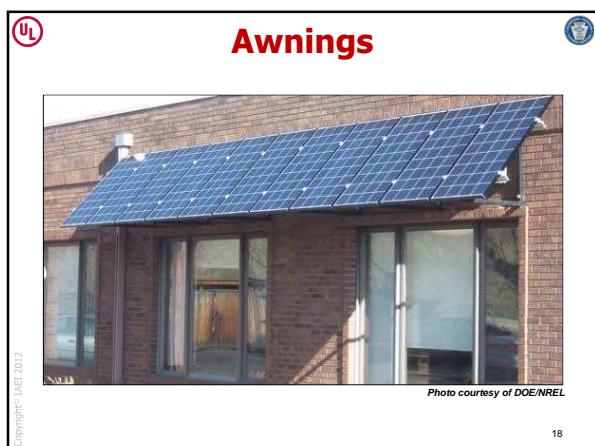
14

 Ground Mounted

Copyright © IAEI 2012

Photos courtesy of DOE/NREL

15



 Pole Top Mount

Copyright © IAEI 2012

Photos courtesy of DOE/NREL

19

 Solar Generating Plant

Copyright © IAEI 2012

Photo courtesy of DOE/NREL

20

 PV Installation Concerns

Copyright © IAEI 2012

- Utility compatibility and interaction
- Environment (e.g. *indoor, rainproof, corrosion resistant*)
- Maximum number of modules
- Fire exposure ratings
- Location on roof
- Effect on roof covering
- Wind and snow loading

21

Items needed to Inspect PV?

- Permits
- Plans
- Wiring
- Attachment
- Equipment

Copyright © IAEI 2012

22

Plans - Electrical

- **Electrical plan should be submitted that includes the following:**
 - Locations of main service or utility disconnect
 - Total number of modules, number of modules per string and the total number of strings
 - One-line diagram of system
 - Specify grounding/bonding, conductor type and size, conduit type and size and number of conductors in each section of conduit

Copyright © IAEI 2012

23

Plans - Electrical (cont.)

- **Electrical plan should be submitted that includes the following:**
 - Make and model of modules, inverter(s) and/or combiner box if used
 - If batteries are to be installed include them in the diagram and show there locations and venting
 - Equipment cut sheets including inverters, modules, AC and DC disconnects and combiners

Copyright © IAEI 2012

24

 Plans - Electrical (cont.)

Copyright © IAEI 2012

- Electrical plan should be submitted that includes the following:**
 - Labeling of equipment as required by Article 690 and Article 705
 - Site diagram showing the arrangement of modules on the roof or ground, north arrow, lot dimensions, and the distance from property lines to adjacent buildings/structures (*existing and proposed*)

25

 Plans - Structural

Copyright © IAEI 2012

- Structural plan identifying support information for roof mounted systems including the following:**
 - The type of roof covering and the number of roofing layers installed
 - Type of roof framing, size of members and spacing
 - Weight of modules, support locations and method of attachment

26

 Plans - Structural (cont.)

Copyright © IAEI 2012

- Structural plan identifying support information for roof mounted systems including the following:**
 - Framing plan and details for any work necessary to strengthen the existing roof structure
 - Any relevant calculations (*when required*)
 - Location of PV equipment on the building

27

Copyright © IAEI 2012
UL
Plans - Structural (cont.)
UL

- Structural plan identifying support information for roof mounted systems including the following:**
 - Where an approved racking system is used...
 - provide documentation showing the manufacturer of the rack system
 - maximum allowable weight the system can support
 - attachment method to the roof or ground
 - product evaluation information or structural design for the rack system

28

Copyright © IAEI 2012
UL
Plans - Code Requirements
UL

- Site Plan –**
NEC 80.21 (Annex H), IBC 107.2.5, IRC R106.2
- One-Line Diagram –**
NEC 215.5
- Attachment Details –**
NEC 110.3(B), IBC 107.2.1, IRC R106.1.2
- Equipment Specifications –**
NEC 690.4(D), IRC R905.16.1, IRC R905.16.3, IBC M2302.3, IBC M2302.4, IBC 1505.8, IBC 1507.17.1, IBC 1507.17.3, IBC 1509.7.2, IBC 1509.7.4

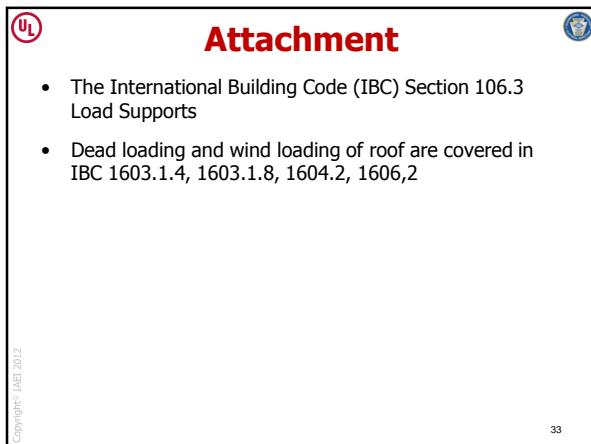
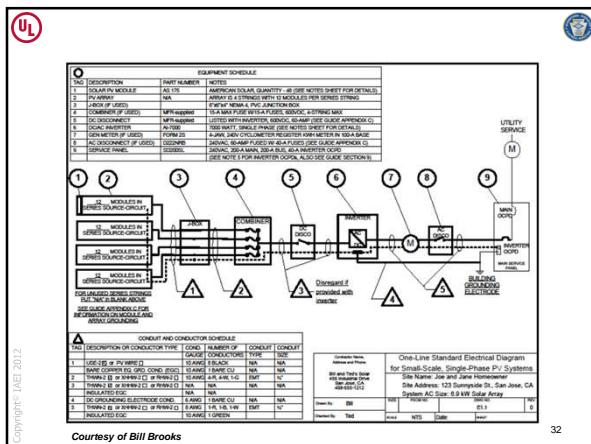
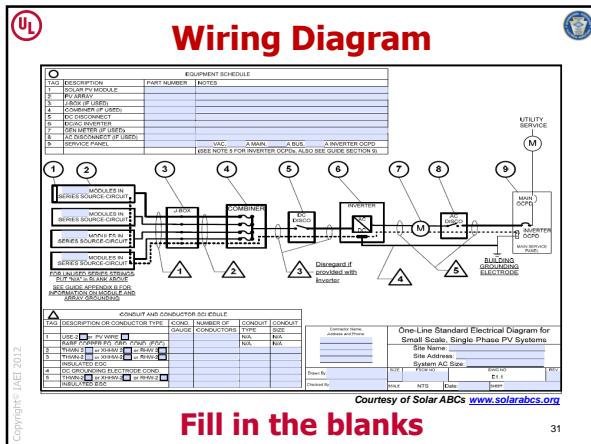
29

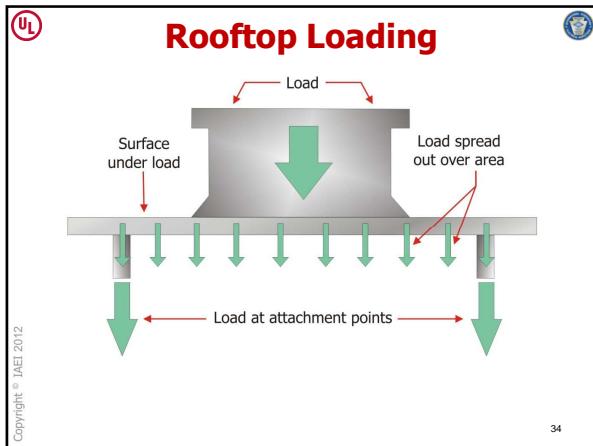
Copyright © IAEI 2012
UL
Site Plan
UL

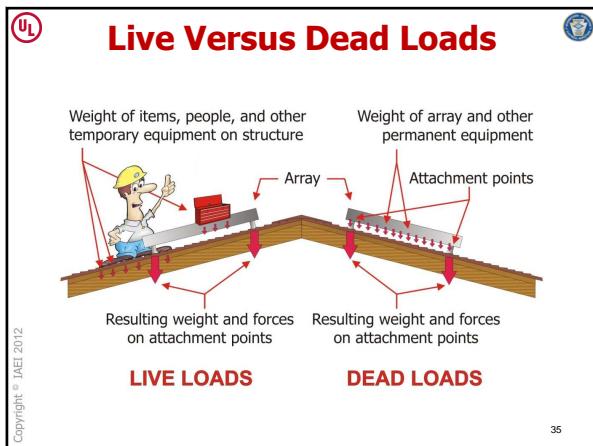
Site Plan
for Small Scale, Single Phase PV Systems

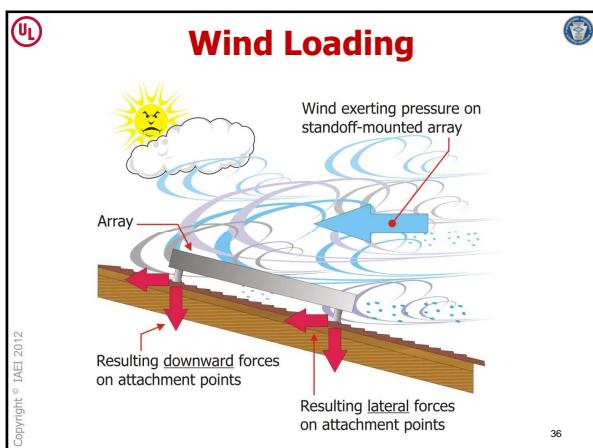
Site Name:	Joe and Jane Homeowner		
Site Address:	123 Main Street, San Jose, CA 95101		
Owner Name:	Joe and Jane Homeowner		
Owner Address:	123 Main Street, San Jose, CA 95101		
Owner City:	San Jose		
Owner State:	CA		
Owner Zip:	95101		
Owner Country:	USA		
Owner Phone:	408-555-1234		
Owner Email:	johndoe@example.com		
Owner Fax:			
Owner Extension:			
Owner Notes:			

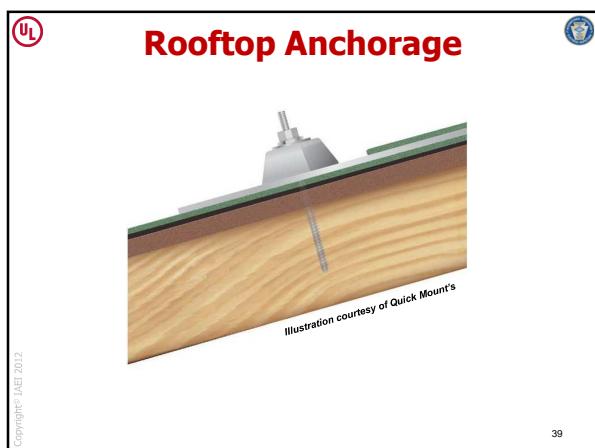
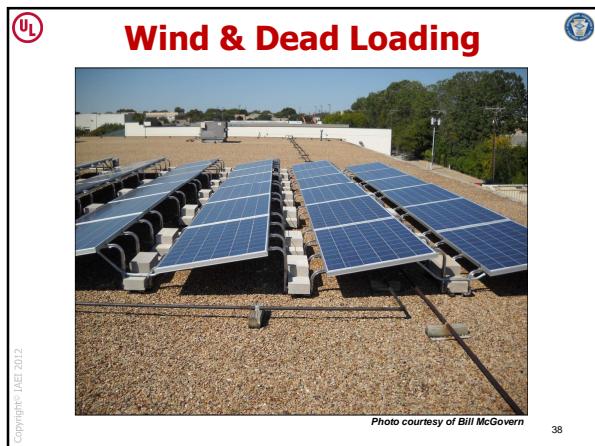
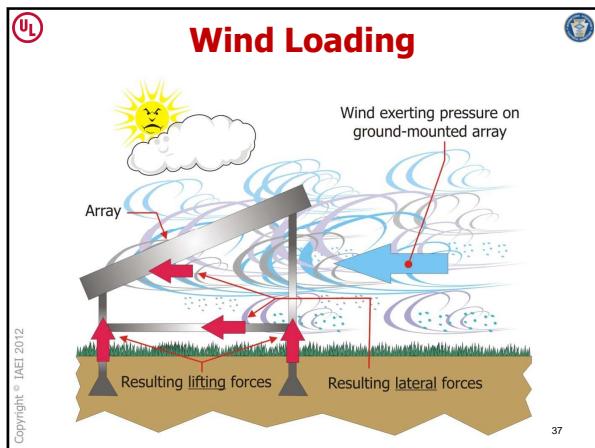
30

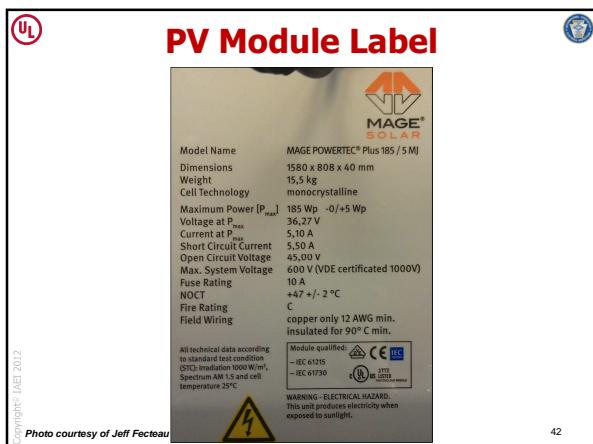
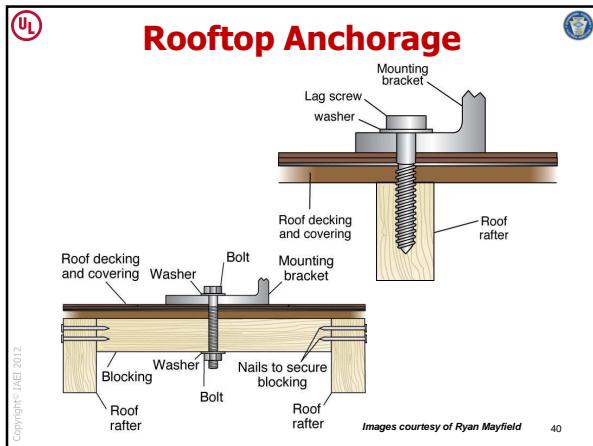










Inverter Details

Specifications

Inventory Technology	Real sine-wave, current source, high frequency PWM	DC Ripple Voltage	< 5%
AC Voltage	213.626 [240 V AC]	Power Consumption	0.25W nighttime
AC Frequency	59.3 - 60.5 Hz	Ambient Temperature Rating	> 7°W standby
	(50 Hz ± 0.5 Hz)	Enclosure	-45° to 45°
DC Input Voltage	250...600 V DC	Dimensions	NEHA AX-1000
Peak Power Tracking Voltage	234...480 V DC		Stainless Steel
VR Start Voltage	300...300 V DC	Weight	17.10W x 11.60H x 8.40D
Minimum DC Input Voltage	233...256 V DC		434W x 295H x 120D mm
dependent on available load		Weight	71 lb (32 kg)
Maximum AC Input Power	2600W [240V AC][DC95°C]	Compliance	United States
Maximum AC Power Output	2100W [240V AC]		UL 1741, E210376, UL 1998, IEEE 519, IEC 1000-3-2, ANSI C62.41 C1 & C3, FCC part 15 & A
Current THD	< 4%		International
Power Factor	94.8%	DIN EN605082 Part 1, 6000...52,000, 5001, 5004, 6005/5501 Part 2	DIN EN605082 Part 1, 6000...52,000, 5001, 5004, 6005/5501 Part 2
Peak Inverter Efficiency	94.8%		5501/Group 1 Class 8, 50719, 60146 Part 1-1
CEC Weighted Efficiency	93.0%		
Cooling	*Convection cooling (no fan)		
Maximum AC Output Current	12A		
Maximum DC Input Current	12A		
* Optional external fan (Sunny Breeze) available			
SMA America, Inc., 1243C Loma Rica Dr. Gross Valley, CA, 95945 Tel: 360.273.4895 Fax: 530.274.7271 www.sma-america.com			

Solar Today...
Energy Tomorrow

Courtesy of SMA

43

Equipment Details

1

Courtesy of Solar ABCs www.solarabcs.org

Fill in the blanks

4

11

Courtesy of Bill Brooks

45

Key Inspection Points

- Number of PV modules and PV model numbers match plans
- Array conductors and components are installed in a neat and workman like manner
- PV array is properly grounded
- Electrical boxes are accessible and connections are suitable for environment
- Array is fastened and sealed according to attachment detail
- Conductors ratings and sizes match plans

46

Copyright © IAEI 2012

Key Inspection Points (cont.)

- Appropriate signs are properly constructed, installed and displayed, including:
 - Sign identifying PV power source system attributes at dc disconnect
 - Sign identifying ac point of connection
 - Sign identifying switch for alternative power system

47

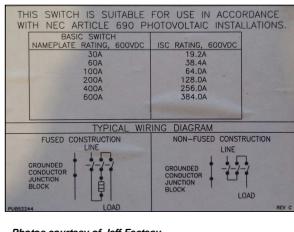
Copyright © IAEI 2012

Key Inspection Points (cont.)

- Equipment ratings are consistent with application and installed signs on the installation, including:
 - Inverter has a rating as high as max voltage on PV Power Source sign
 - DC-side OCPD's are DC rated at least as high as max voltage on sign
 - Switches and OCPDs are installed according to manufacturers specifications

48

Copyright © IAEI 2012



UL Key Inspection Points (cont.)

- Many 600 volt dc switches require passing through the switch poles twice in a specific way

Copyright © IEEE 2012

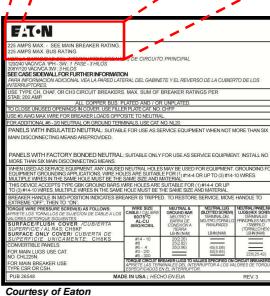
Photos courtesy of Jeff Fecteau

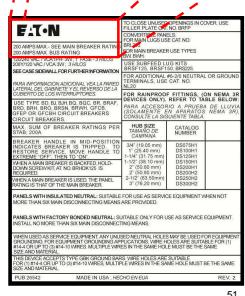
49

UL Key Inspection Points (cont.)

- Equipment ratings are consistent with application and installed signs on the installation, including:
 - Inverter is rated for the site ac voltage supplied and shown on the ac point of connection sign
 - OCPD connected to the ac output of the inverter is rated at least 125% of maximum current on sign, and is no larger than the maximum OCPD on the inverter listing label
 - Sum of the main OCPD and the inverter OCPD is rated for not more than 120% of the busbar rating

50


UL Key Inspection Points (cont.)


Copyright © IEEE 2012

Copyright © IEEE 2012

Copyright © IEEE 2012

Copyright © IEEE 2012

51

 NEC Article 690
Solar Photovoltaic (PV) Systems

Copyright © NFPA 2012

- Part I General
- Part II Circuit Requirements
- Part III Disconnecting Means
- Part IV Wiring Methods
- Part V Grounding
- Part VI Marking
- Part VII Connection to Other Sources
- Part VIII Storage Batteries
- Part IX Systems Over 600 Volts

52

 NEC Article 705
Interconnected Electric Power Production Sources

Copyright © NFPA 2012

- Part I General
- Part II Utility-Interactive Inverters
- Part III Generators

(see Article 705 slides later in presentation)

53

 Article 690 - Part I General

Copyright © NFPA 2012

Photos courtesy of DOE/NREL

54

NEC Article 690 - Definitions

- **Definitions:**

- Array
- Building Integrated Photovoltaics
- Interactive System
- Inverter
- Inverter Output Circuit
- Module
- Panel
- Photovoltaic Output Circuit
- Photovoltaic Source Circuit
- Stand-Alone System

Copyright © IAEI 2012

55

NEC Article 690 - Definitions

Array. A mechanically integrated assembly of modules or panels with a support structure and foundation, tracker, and other components, as required, to form a direct-current power-producing unit.

Copyright © IAEI 2012

Photos courtesy of DOE/NREL

56

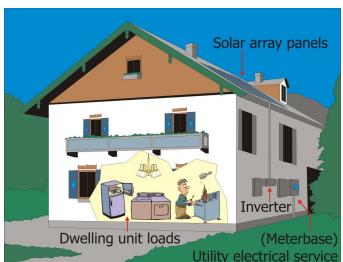
NEC Article 690 - Definitions

Building Integrated Photovoltaics. Photovoltaic cells, devices, modules, or modular materials that are integrated into the outer surface or structure of a building and serve as the outer protective surface of that building.

Copyright © IAEI 2012

Photos courtesy of DOE/NREL

57



 NEC Article 690 - Definitions

Interactive System. A solar photovoltaic system that operates in parallel with and may deliver power to an electrical production and distribution network. For the purpose of this definition, an energy storage subsystem

of a solar photovoltaic system, such as a battery, is not another electrical production source.

58

Copyright © IAEI 2012

 NEC Article 690 - Definitions

Inverter. Equipment that is used to change voltage level or waveform, or both, of electrical energy.

Commonly, an inverter [also known as a power conditioning unit (PCU) or power conversion system (PCS)] is a device that changes dc input to an ac output.

Inverters may also function as battery chargers that use alternating current from another source and convert it into direct current for charging batteries.

59

Copyright © IAEI 2012

UL NEC Article 690 - Definitions

Inverter. Equipment that is used to change voltage level or waveform, or both, of electrical energy.

60

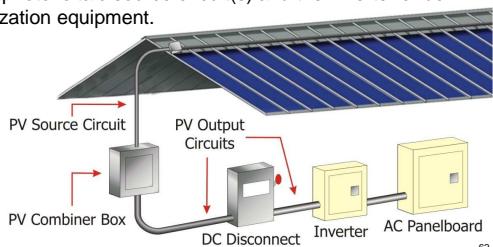
Copyright © IAFI 2012

UL NEC Article 690 - Definitions

Module. A complete, environmentally protected unit consisting of solar cells, optics, and other components, exclusive of tracker, designed to generate dc power when exposed to sunlight.

Copyright © IAEI 2012

61



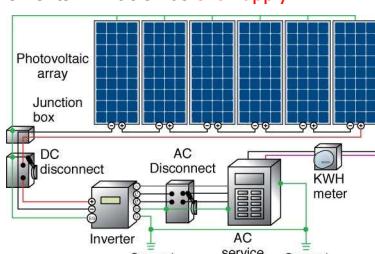
UL NEC Article 690 - Definitions

Photovoltaic Source Circuit. Circuits between modules and from modules to the common connection point(s) of the dc system.

Photovoltaic Output Circuit. Circuit conductors between the photovoltaic source circuit(s) and the inverter or dc utilization equipment.

Copyright © IAEI 2012

62



690.3 Other Articles

- Where the PV system is operated in parallel with a primary source(s) of electricity, the applicable requirements in Article 705 **shall apply**

Copyright © IAEI 2012

*Article 705 Interconnected Electric Power Production Sources

Image courtesy of Ryan Mayfield

63

UL 690.4(A) Photovoltaic Systems

- PV system(s) shall be permitted to supply a building or other structure in addition to any other electricity supply system(s)

Copyright © IAEI 2012

Photo courtesy of DOE/NREL

690.4(B) Identification & Grouping

- PV circuits (dc/ac) shall not be contained in the same raceway, cable tray, cable, outlet box, junction box, or similar fitting as conductors, feeders, or branch circuits of other non-PV systems, **unless the conductors of the different systems are separated by a partition**

Photo courtesy of Jeff Fecteau

690.4(B) Identification & Grouping

Photo courtesy of Bill McGovern

690.4(B) Identification & Grouping

(1) **PV Source Circuits.** ...shall be identified at all points of termination, connection, and splices

(2) **PV Output and Inverter Circuits.** ...shall be identified at all points of termination, connection, and splices

(3) **Conductors of Multiple Systems.** ...of more than one PV system occupy the same ... the conductors of each system shall be identified at all termination, connection, and splice points

(4) **Grouping.** ...of more than one PV system occupy the same junction box or raceway with a removable cover(s), the ac and dc conductors of each system shall be grouped separately by wire ties or similar means at least once, and then shall be grouped at intervals not to exceed 1.8 m (6 ft)

Copyright © IAEI 2012

67

690.4(D) Equipment

- Inverters, PV modules, combiners, charge controllers and ... shall be identified and listed for the application

68

Copyright © IAEI 2012

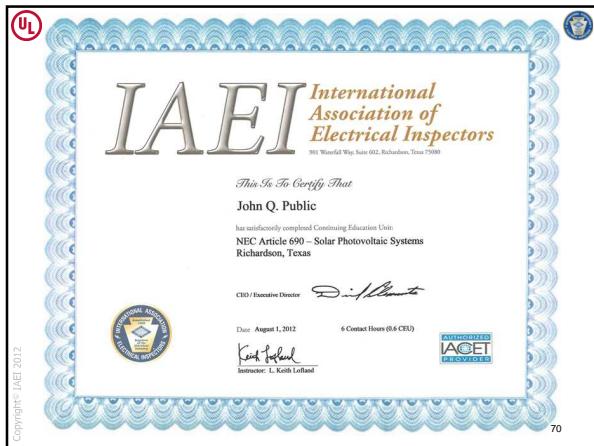
690.4(E) Wiring & Connections

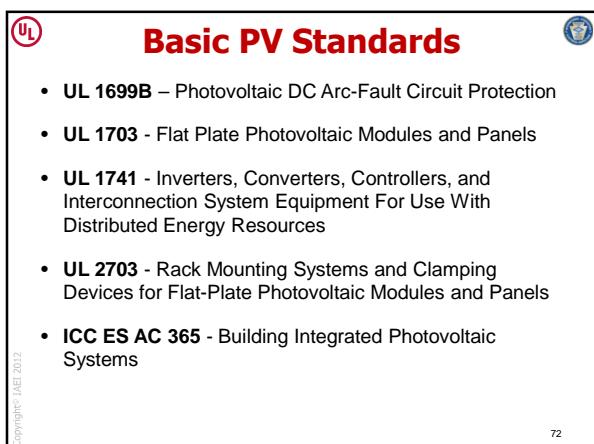
- "Qualified persons" are required to perform the described work on photovoltaic (PV) systems

69

- Qualified Person.** One who has skills and knowledge related to the construction and operation of the electrical equipment and installations and has received safety training to recognize and avoid the hazards involved

Copyright © IAEI 2012




Copyright IAEI 2012

70

Copyright © IAEI 2012

7

Copyright © IAEI 2012

72

690.4(F) Circuit Routing

- New requirements **were added for visibility and roof marking** of certain PV circuits
- Firefighting community has **expressed concern about the safety of ventilating roofs** where PV circuits are present
- Routing PV circuits along the **building structural members will lower probability** that the structural members will be compromised by the firefighting process during a fire
- When PV module system circuits are **integrated into the roof**, PV associated circuits **are to be clearly marked on the surface** of the roof as a visual aid for firefighters and other maintenance personnel

Copyright IAEI 2012

76

690.4(H) Multiple Inverters

- PV systems permitted to have multiple utility-interactive inverters installed in or on a single building or structure

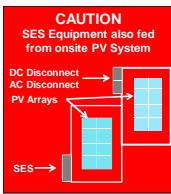


Photo courtesy of DOE/NREL

77

690.4(H) Multiple Inverters

- Where the inverters are remotely located from each other, a directory in accordance with 705.10 shall be installed at each dc PV system disconnecting means, at each ac disconnecting means, and at the main service disconnecting means showing the location of all ac and dc PV system disconnecting means in the building

Photo courtesy of DOE/NREL

8

UL 690.5 Ground-Fault Protection

- Grounded DC PV arrays shall be provided with dc ground-fault protection per 690.5(A) through (C) to reduce fire hazard

Not for personnel protection!

(That would be GFCI protection)

This unit contains DC-Ground Fault
Detector and Interrupter
ENCLOSURE Type 3R (IP54)
For more details and for tightening torque,
allowable wire size and type see the
Operator's Manual

UL **US LISTED**
Utility Interactive Inverter
LISTED UL 1741 30A

FCC **Test To-Carry**
With FCC Standard
FOR HOME OR OFFICE USE

Photo courtesy of Jeff Peticolas

79

Copyright © IAFI 2012

 Ground-Fault Protection

80

Copyright © IAEI 2012

 690.5(A) Ground-Fault

Section 505(b)(1) Ground Fault Detection and Interruption

- Permits automatic opening of the grounded conductor of the faulted circuit
- If the grounded conductor is opened, **all conductors** of the faulted circuit **shall be automatically and simultaneously opened**
- Manual operation of the PV dc disconnect **shall not** activate the GFP or result in the grounded conductors becoming ungrounded

Copyright © IAFI 2012

81

UL 1741 Overcurrent Protection

- 3.1.1 Inverters or charge controllers with direct photovoltaic inputs from a grounded photovoltaic array or arrays shall be provided with a ground-fault detector/interrupter (GFDI)
 - Exception No. 1: ac modules are not required to be provided with a GFDI*
 - Exception No. 2: Inverters or charge controllers without GFDI devices may be used when the unit includes the following markings*

Copyright © IAFI 2012

82

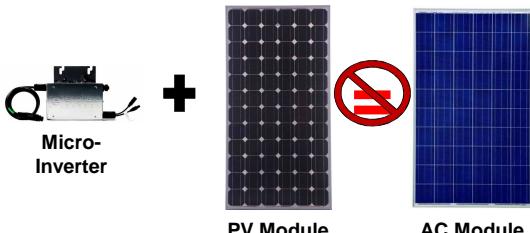
690.5(C) Labels and Markings

- A warning label shall appear on the utility-interactive inverter **or be applied by the installer** near the ground-fault indicator at a visible location, stating the following:

Copyright © IAEI 2012

83

690.6 Alternating-Current (ac) Modules


- **690.2 Definitions**
 - **Alternating-Current (ac) Module (Alternating-Current Photovoltaic Module).** A complete, environmentally protected unit consisting of solar cells, optics, inverter, and other components, exclusive of tracker, designed to generate ac power when exposed to sunlight.
 - An ac PV module consists of a **single integrated mechanical unit**
 - Because there is **no accessible, field-installed dc wiring** in this single unit, the dc PV source-circuit requirements in the *NEC* are not applicable to the dc wiring in an ac PV module

Copyright © IAFI 2012

84

Copyright © IAEI 2012

690.6 Alternating-Current (ac) Modules

Micro-Inverter + PV Module AC Module

85

Copyright © IAEI 2012

690.6 Alternating-Current (ac) Modules

Photo courtesy of Bill McGovern

86

Copyright © IAEI 2012

Article 690
Part II Circuit Requirements

Photo courtesy of Jeff Fecteau

87

UL

690.7 Maximum Voltage

- One- and Two-Family dwellings maximum is 600 volts
- Other occupancies is unlimited

Copyright © IAPD 2012

Photos courtesy of DOE/NREL

88

- One- and Two-Family dwellings maximum is 600 volts
- Other occupancies is unlimited

Photos courtesy of DOE/NREL

88

UL

690.7 Maximum Voltage

- When open-circuit voltage temperature coefficients are supplied in the instructions for listed PV modules, **they shall be used** to calculate the maximum photovoltaic system voltage as required by 110.3(B) instead of using Table 690.7
- These temperature coefficients provide a more accurate maximum system voltage and are required to be used instead of applying Table 690.7
- The *NEC* does not require temperature coefficient information to be included in the installation instructions

- When open-circuit voltage temperature coefficients are supplied in the instructions for **listed** PV modules, **they shall be used** to calculate the maximum photovoltaic system voltage as required by **110.3(B)** instead of using **Table 690.7**
- These temperature coefficients provide a more accurate maximum system voltage and are required to be used instead of applying Table 690.7
- The *NEC* does not require temperature coefficient information to be included in the installation instructions

Table 690.7 Voltage Correction Factors for Crystalline and Multicrystalline Silicon Modules (in part)

Correction Factors for Ambient Temperatures Below 25° C (77°F) (Multiply the rated open circuit voltage by the appropriate correction factor shown below)		
Ambient Temperature (°C)	Factor	Ambient Temperature (°F)
24 to 20	1.02	76 to 68
19 to 15	1.04	67 to 59
14 to 10	1.06	58 to 50
9 to 5	1.08	49 to 41
4 to 0	1.10	40 to 32
-1 to -5	1.12	31 to 23
-6 to -10	1.14	22 to 14
-11 to -15	1.16	13 to 5

Correction Factors for Ambient Temperatures Below 25° C (77°F)		
(Multiply the rated open circuit voltage by the appropriate correction factor shown below)		
Ambient Temperature (°C)	Factor	Ambient Temperature (°F)
24 to 20	1.02	76 to 68
19 to 15	1.04	67 to 59
14 to 10	1.06	58 to 50
9 to 5	1.08	49 to 41
4 to 0	1.10	40 to 32
-1 to -5	1.12	31 to 23
-6 to -10	1.14	22 to 14
-11 to -15	1.16	13 to 5

91

690.8(A) Circuit Sizing

- DC: The **maximum current** shall be the **sum of parallel module rated short-circuit currents** multiplied by 125%

5.5 X 1.25 = **6.875 A maximum current**

Maximum Power [P _{max}]	185 Wp -0/+5 Wp
Voltage at P _{max}	36,27 V
Current at P _{max}	5,10 A
Short Circuit Current	5,50 A
Open Circuit Voltage	45,00 V
Max. System Voltage	600 V (VDE certificated 1000V)
Fuse Rating	10 A
NOCT	+47 +/- 2 °C
Fire Rating	C
Field Wiring	copper only 12 AWG min. insulated for 90° C min.

Photo courtesy of Jeff Fecteau

Reason: PV output circuits can deliver output currents higher than the rated short-circuit currents for more than 3 hours near solar noon

91

690.8(A)(3) Circuit Sizing

- AC: The **maximum current** shall be the inverter **continuous output** current rating

Max. continuous output Power* **xxxxx Wac**

Operating voltage range (Vac)*	MIN XXX	NOMINAL XXX	MAX XXX
Operating frequency range (Hz)*	MIN XX.X	NOMINAL XX.X	MAX XX.X
Max. continuous output current*	xx Aac		

→

Nameplate courtesy of SMA

92

690.8(B)(1) Ampacity

- The circuit conductors and overcurrent devices shall be sized to carry not less than 125 percent of the **maximum currents** as calculated in 690.8(A)

690.8(A) Maximum Circuit Current

SSC 5.50 x 125 % = **6.875 Amps**

Maximum Power [P _{max}]	185 Wp -0/+5 Wp
Voltage at P _{max}	36,27 V
Current at P _{max}	5,10 A
Short Circuit Current	5,50 A
Open Circuit Voltage	45,00 V
Max. System Voltage	600 V (VDE certificated 1000V)
Fuse Rating	10 A
NOCT	+47 +/- 2 °C
Fire Rating	C
Field Wiring	copper only 12 AWG min. insulated for 90° C min.

Photo courtesy of Jeff Fecteau

690.8(B)(1) Conductor & OCPD Size

6.875 Amps x 125% = **8.59 Amps**

93

690.8 Circuit Sizing and Current

(D) Where a single overcurrent device is used to protect a set of two or more parallel-connected module circuits, the ampacity of each of the module interconnection conductors shall not be less than the sum of the rating of the single fuse plus 125 percent of the short-circuit current from the other parallel-connected modules

Photo courtesy of Jeff Fecteau

94

Copyright © IAEI 2012

690.9 OCPD for PV Array

- When modules are shaded, back feeding is possible from other parallel strings
 - Result - overheating of modules and wiring
 - Key - proper rated fuse, not exceeding modules' max. fuse rating

Photos courtesy of DOE/NREL and Jeff Fecteau

95

Combiner Box

Photos courtesy of DOE/NREL and Jeff Fecteau

96

Copyright © IAEI 2012

UL 690.9(D) Direct-Current Rating

- Overcurrent devices, either fuses or circuit breakers, used in any DC portion of a PV power system **shall be listed** for use in DC circuits

Copyright © IAEI 2012

97

UL 690.9(D) Direct-Current Rating

- DC fault currents are considerably harder to interrupt than AC fault currents
- Overcurrent devices **marked or listed only for AC use** **should not be used in DC circuits**
- Automotive and marine-type fuses, although used in DC systems, are not suitable for use in premise wiring of residential or commercial electrical power systems

Copyright © IAEI 2012

98

UL Category JDDZ

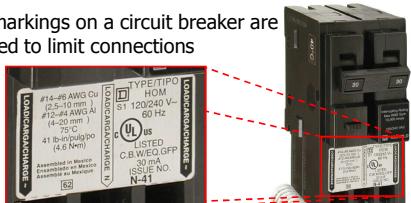
- These fuses are intended for use on **AC circuits only**, **unless also marked with a DC voltage rating**
- These fuses are suitable for branch circuit, feeder and service overcurrent protection in accordance with the *NEC*

Copyright © IAEI 2012

99

 690.10 Stand-Alone Systems

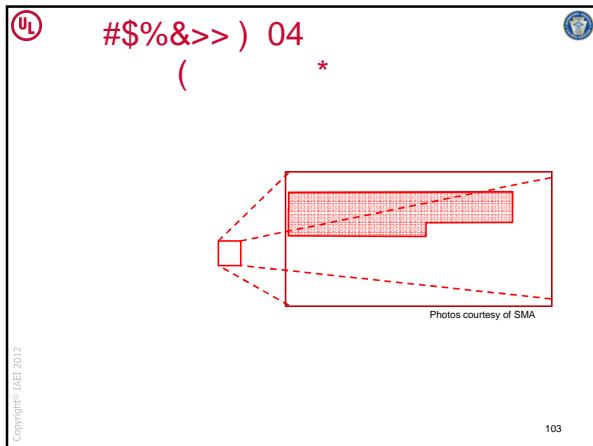
- **690.10(E) Back-fed Circuit Breakers.** Plug-in type back-fed circuit breakers connected to a stand-alone inverter output in either stand-alone or utility-interactive systems shall be secured in accordance with 408.36(D)



Photos courtesy of Jeff Simpson

100

- **690.10(E) Back-fed Circuit Breakers.** Circuit breakers that are marked "line" and "load" shall not be backfed
- **UL 489.** Line and load markings on a circuit breaker are intended to limit connections thereto as marked
- Load markings on a circuit breaker are intended to limit connections

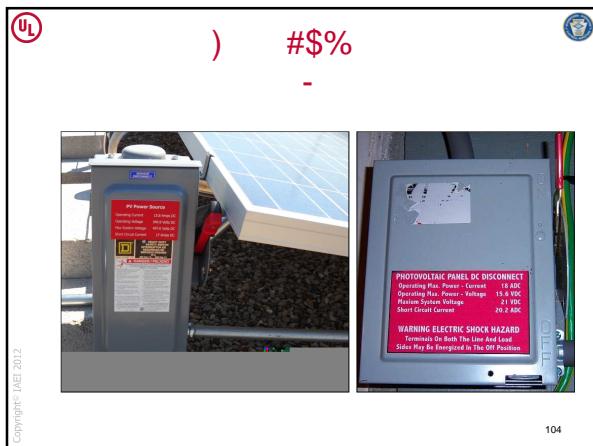

Photos courtesy of Schneider-Square D

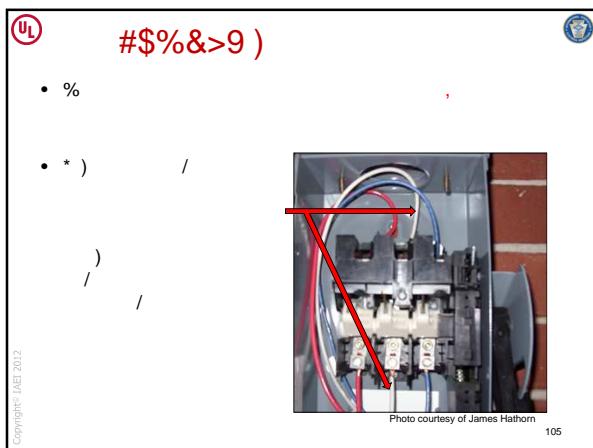
101

690.11 Arc-Fault Circuit Protection (Direct Current)

- **AFCI protection (dc)** shall be provided for PV systems with dc source circuits, dc output circuits, or both, on or penetrating a building **operating at a PV system maximum system voltage of 80 volts or greater**
- System shall detect and interrupt arcing faults in the dc PV source and output circuits
- System shall disable or disconnect inverters or charge controllers connected to the fault circuit or system components within the arcing circuit
- Disabled or disconnected equipment shall be manually restarted
- System to have an annunciator that provides a visual indication that the AFCI has operated
- Indication shall not reset automatically

102





- %
- "@&!&> *)
/ , ,
234\$6
,
234\$==
)
)
)
)
)
-

- %
- "@&!&? *)))
C =)
<)
A) &

#\$%&>'(* -

- Means shall be provided to disconnect all conductors in a building or other structure from the PV system conductors
- 1. ...shall be installed in a **readily accessible location**
... outside of a building or structure or inside nearest the point of entrance...not to be installed in bathrooms

#\$%&>'(* -

• Means shall be provided to disconnect all conductors in a building or other structure from the PV system conductors

2. Each PV system disconnecting means **shall be permanently marked** to identify it as a PV system disconnecting means

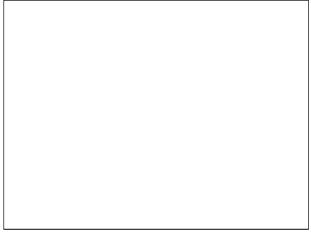


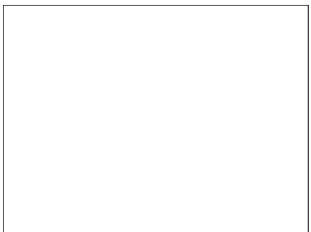
Photo courtesy of Bill McGovern

109

#\$%&>'(* -

• Means shall be provided to disconnect all conductors in a building or other structure from the PV system conductors

3. Each PV system disconnecting means **shall be suitable** for the prevailing conditions



110

#\$%&>'(* -

• Means shall be provided to disconnect all conductors in a building or other structure from the PV system conductors

4. PV disconnecting means **shall consist of not more than six** switches or six circuit breakers mounted in a single enclosure, in a group of separate enclosures, or in or on a switchboard

111

#\$%&>'(*

• Means shall be provided to disconnect all conductors in a building or other structure from the PV system conductors

5. PV disconnecting means **shall be grouped** with other disconnecting means for the system... **shall not be required** at the PV module or array location

112

Copyright © IAEI 2012

#\$%&>'(* < 0

- ! 0

+ 0) 3

• "

• &

) = BC

113

Copyright © IAEI 2012

#\$%&>'(* <0

• "

• &

•) = BC

(1) A direct-current PV disconnecting means **shall be mounted** within sight of or in the inverter

(2) An alternating-current disconnecting means **shall be mounted** within sight of or in the inverter

114

Copyright © IAEI 2012

#\$%&>'(* <0

• " , &

•) = B C

(1) A direct-current PV disconnecting means **shall be mounted** within sight of or in the inverter

(2) An alternating-current disconnecting means **shall be mounted** within sight of or in the inverter

...in the inverter

115

Copyright © IAEI 2012

#\$%&>'(* <0

• " , &

•) = B C

A

) 234\$=B 0 = 8

116

Copyright © IAEI 2012

#\$%&>'(* <0

• " , &

•) = B C

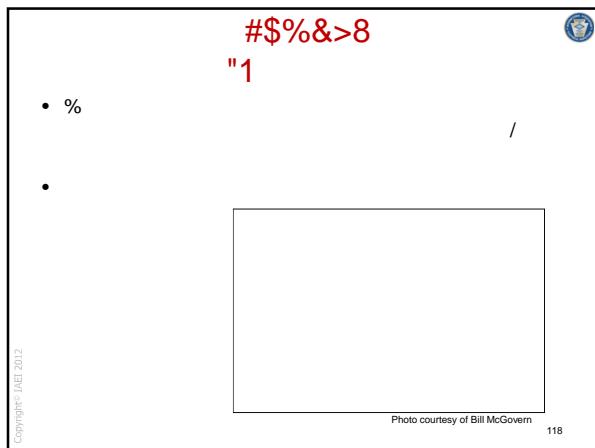
B *

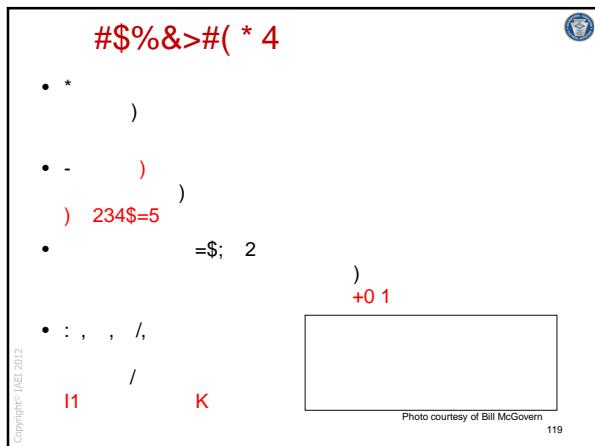
) 546\$=48
(**permanent plaque or directory** denoting all electric power sources...)

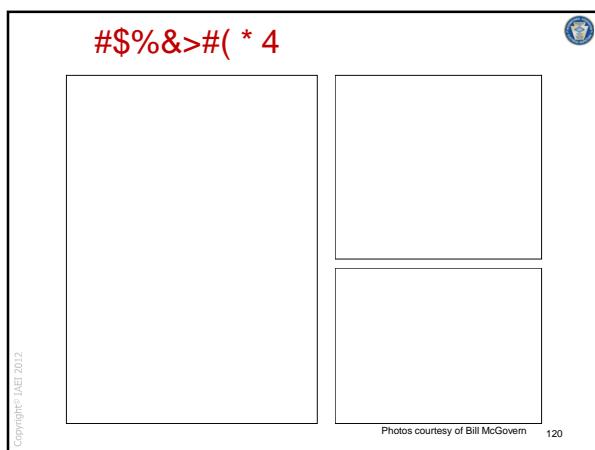
Photos courtesy of Jeff Fecteau

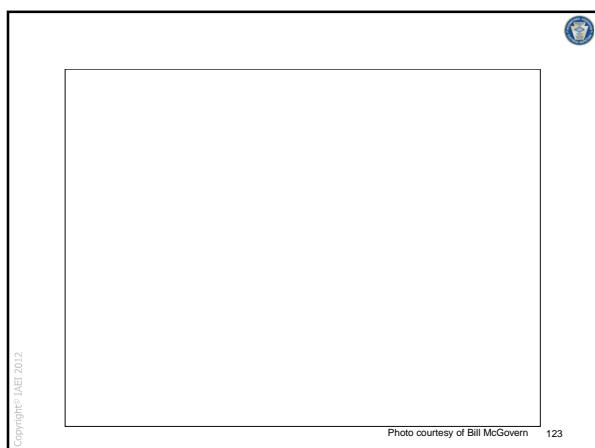
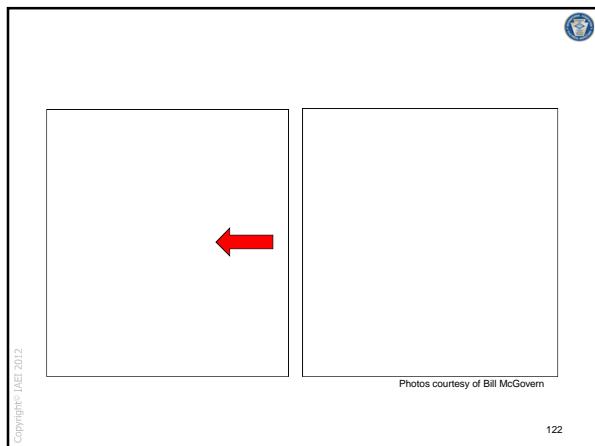
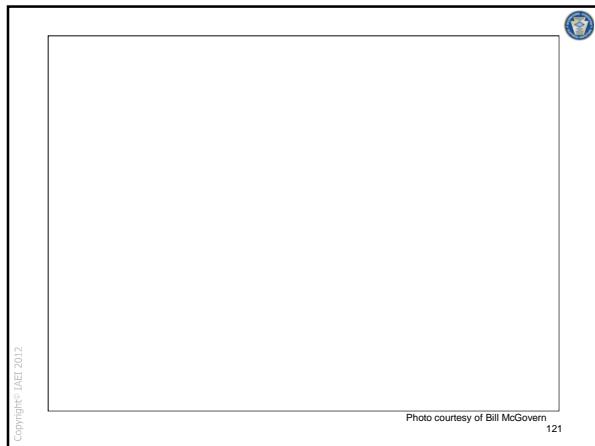
117

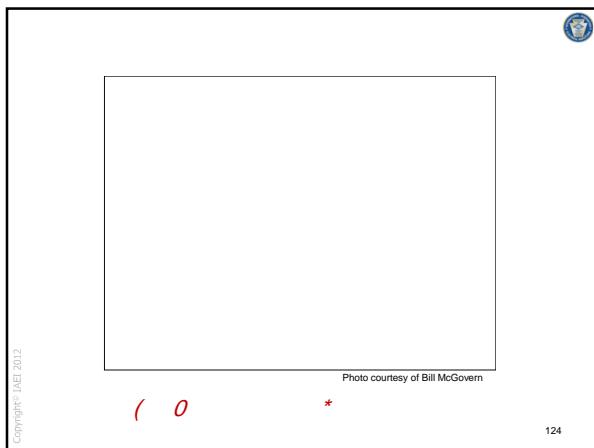
Copyright © IAEI 2012

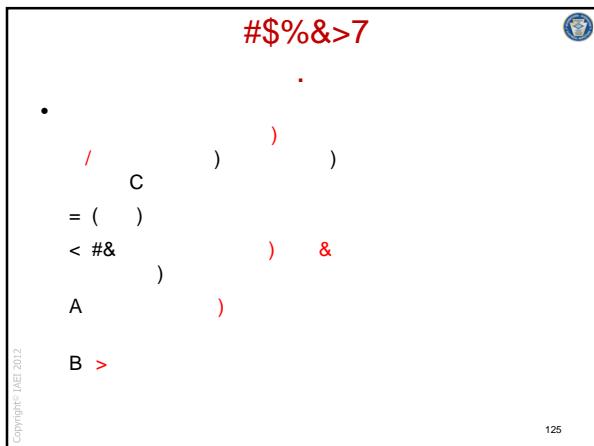


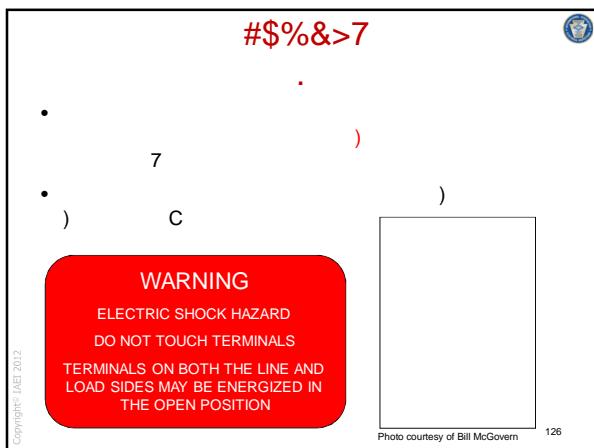


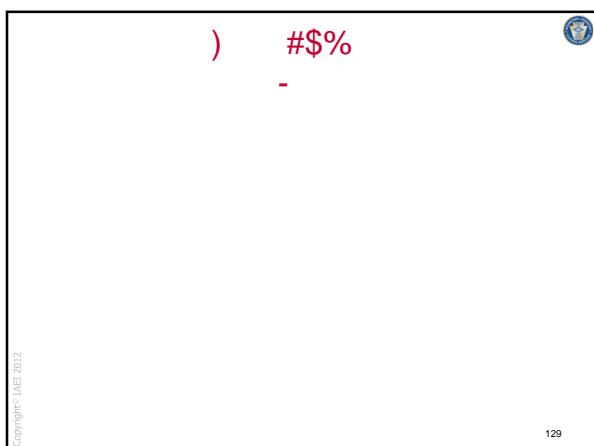
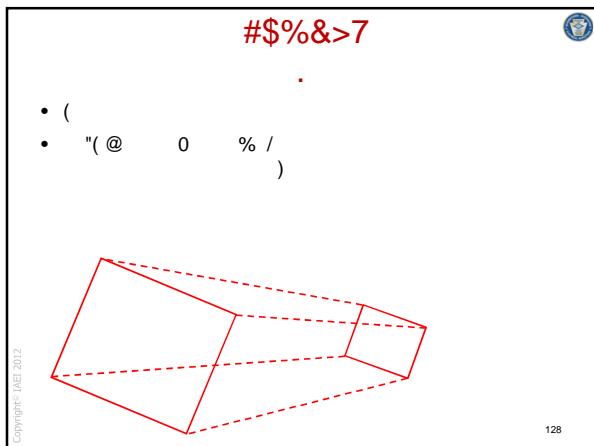


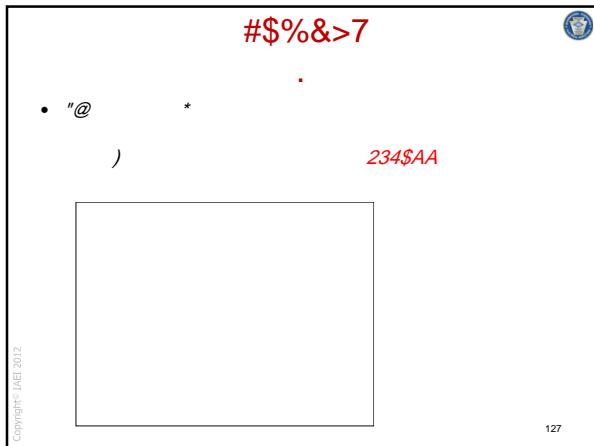












Copyright © JAEI 2012

#\$%&9>()*

• *))
:#0)

•) & !

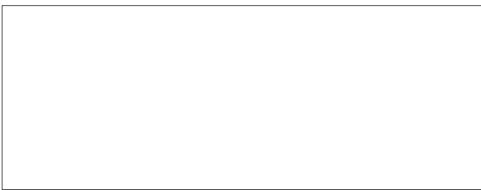


Photo courtesy of Bill McGovern

130

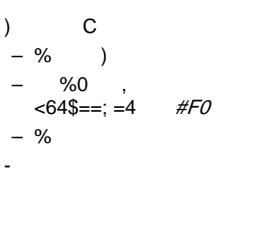
Copyright © JAEI 2012

#\$%&9>(*

0

• - ,) " -#,< ,
&)

131



Copyright © JAEI 2012

#\$%&9>(* 0

2

• ,))
- C)
- %)
- %0 ,)
<64\$==; =4 #FO
- %
- -

132

#\$%&9>("* 0
2

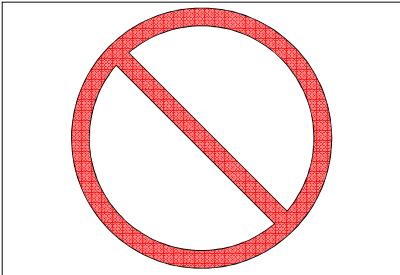


Photo courtesy of Jeff Simpson

Copyright © JAEI 2012

133

#\$%&9>("*(>* +

- Minimum 25 cm (10 in.) below roof decking
-) <6 =4 \$ / &))
- 0 \$) / <6 =4

Min. 25 cm (10 in.)

Photos courtesy of Bill McGovern

Copyright © JAEI 2012

134

#\$%&9>("*(?* 4 @ -

- '%0 %1 <= <6 = \$ 7)) E %0
-) & =\$; 2))

Photo courtesy of Jeff Simpson

Copyright © JAEI 2012

135

Copyright © JAEI 2012

#\$\$%&9>("*(9*

- . 3 + 1

-))
-)) |) - K
- & / C
- - = #&))
- - < 0 & 7
- &
- - A 0)

136

Copyright © JAEI 2012

#\$\$%&9>("*(1*

- . 3

- (/
-))
-)
- -) A / =4
- ()

137

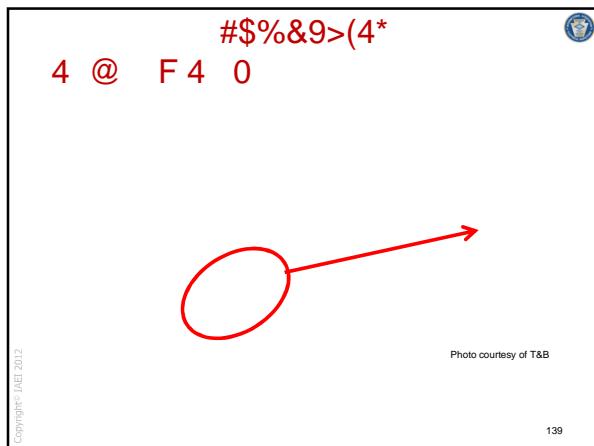
Copyright © JAEI 2012

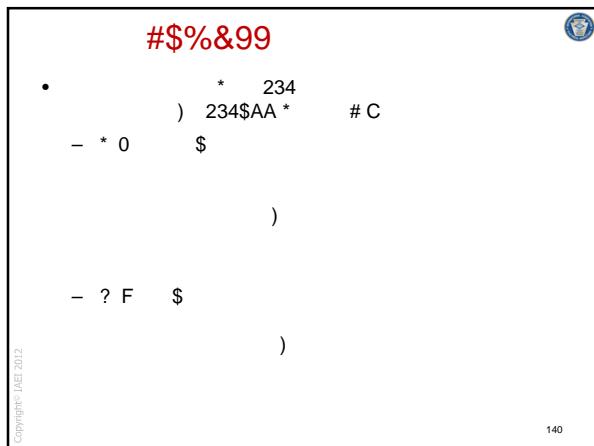
#\$\$%&9>(4*

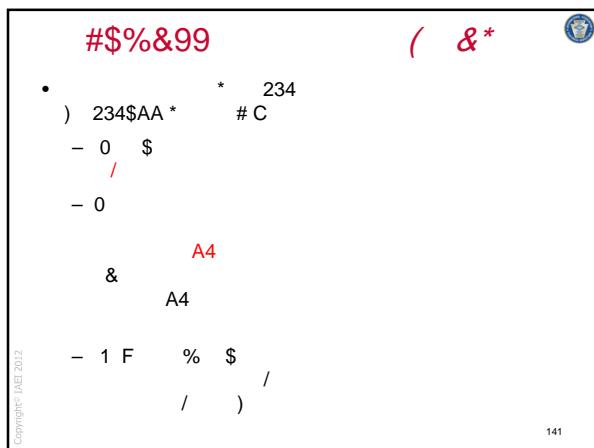
4 @ F 4 0

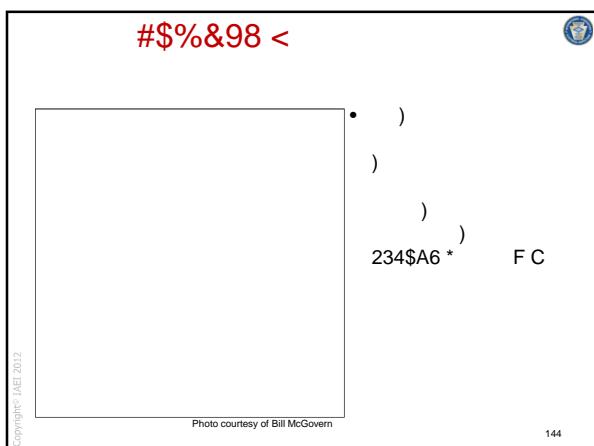
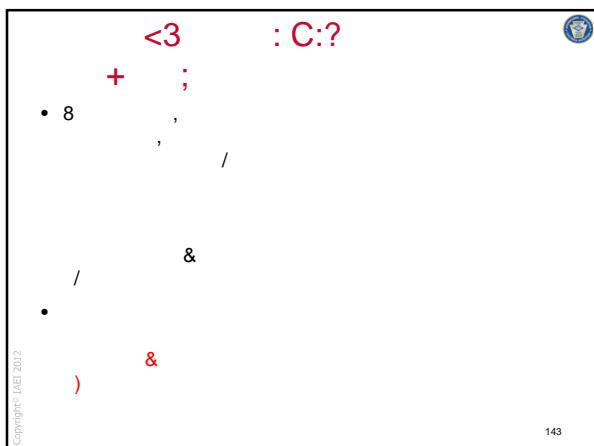
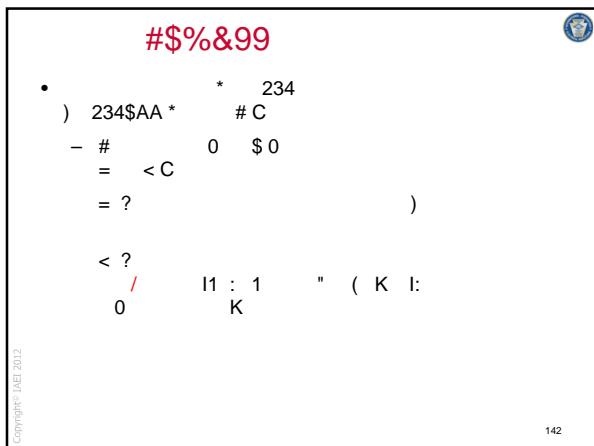
- ' & ,
-) ==4\$=B *

138

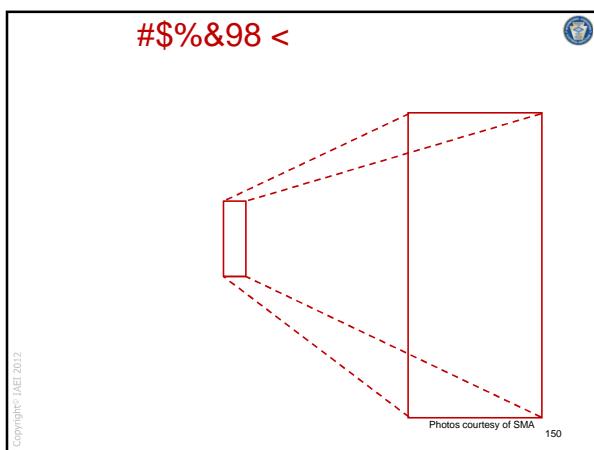
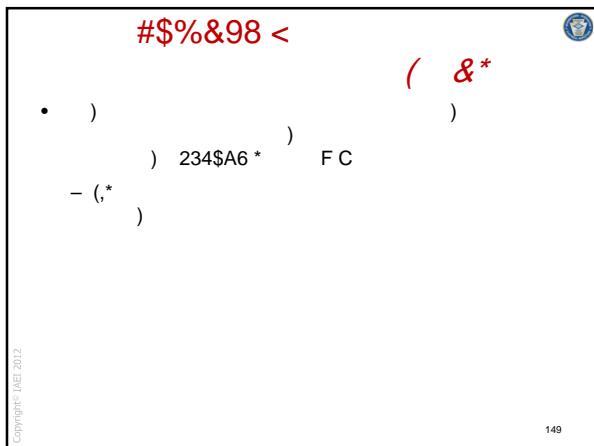
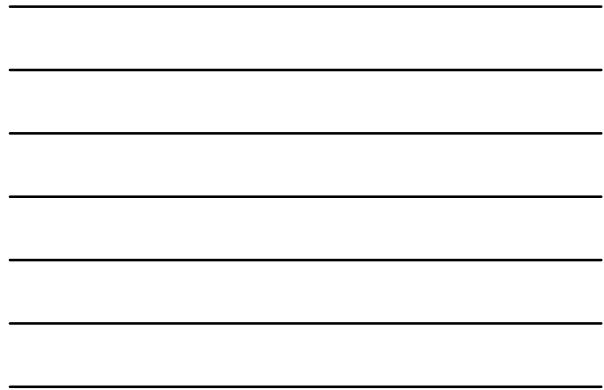
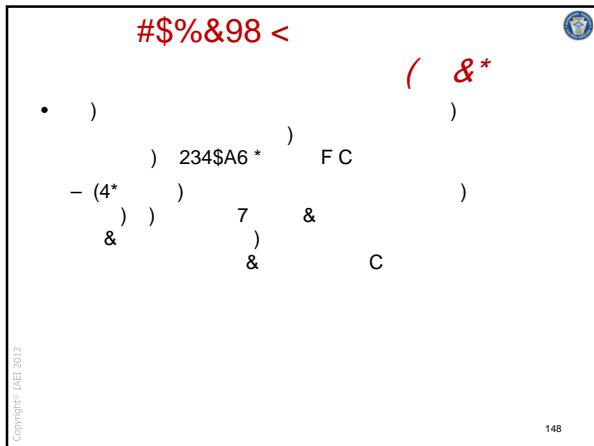


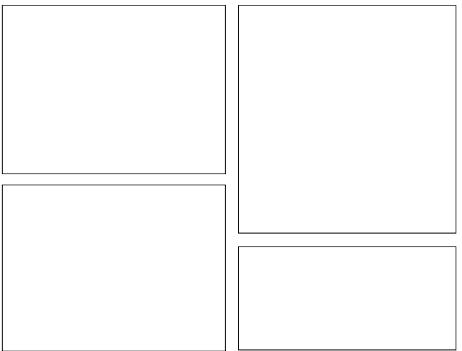




#\$%&98 < (&*
•))))
- (* , 04 & * ,
A C) = ,
= 1
&
A *
)


#\$%&98 < (&*
•)))
) 234\$A6 * F C
- (*) C
= : 7 /
< 0)
A 0 &

Copyright © IAEI 2012

) #\$/% 0 ,

151

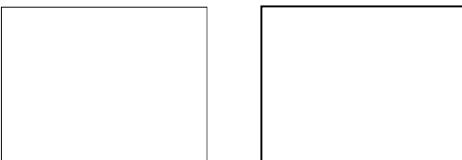
Copyright © IAEI 2012

#\$/%&?'

,

- 10
- Exception: Systems with a 690.5 GFP device shall be permitted to have the required grounded conductor-to-ground bond made at the GFP device
- This bond, where internal to the GFP equipment, shall not be duplicated with an external connection
- Note: Locating the grounding connection point as close as practicable to the PV source better protects the system from voltage surges due to lightning

152

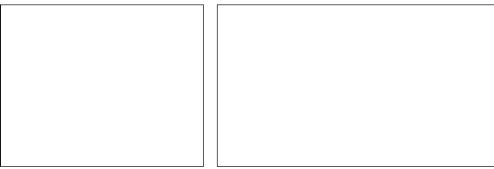

Copyright © IAEI 2012

#\$/%&'9 "1 ,

• #
) 234\$BA * 'C
 - ()* "1 , + 1 & #&
 9 ,
) <64\$=AB <64\$=A2 *

Photo courtesy of Bill McGovern

153



#\$%&'9 "1 ,

• #) 234\$BA * 'C
- (* "1 , + 1 &
*)
) <64\$==4

Copyright © JAEI 2012

Photos courtesy of Bill McGovern

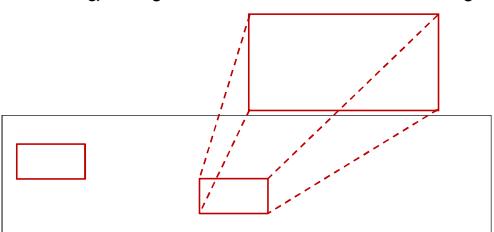
154

#\$%&'9 "1 ,

• #) 234\$BA * 'C
- (* "1 ,
& 1
&
- %
, 7
)

Copyright © JAEI 2012

155



#\$%&'9 "1 ,

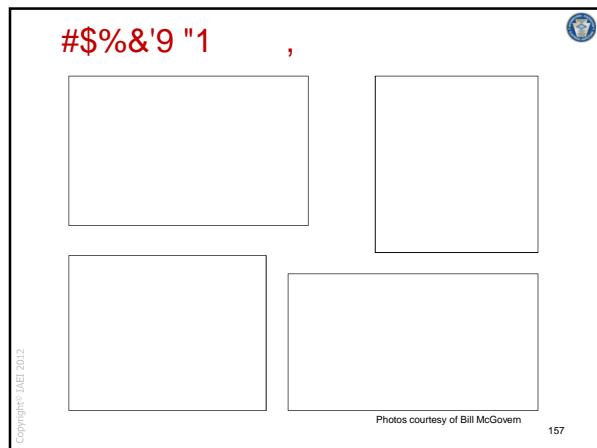
• #) 234\$BA * 'C
- (* "1 ,
& 8

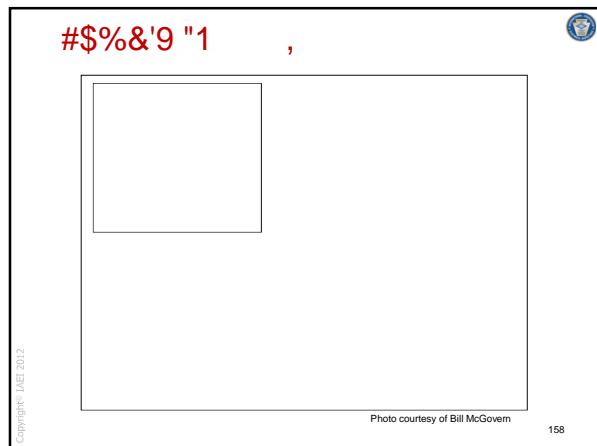
8

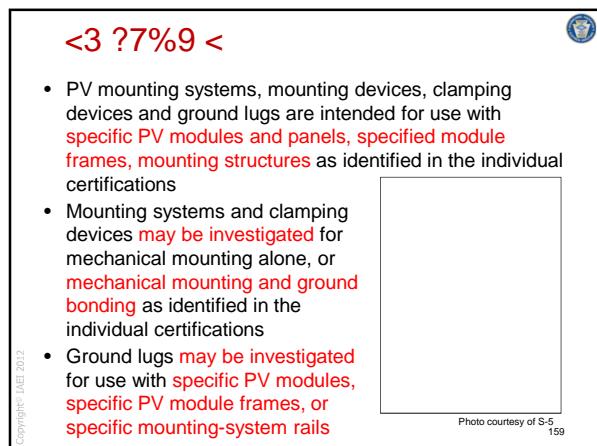
Copyright © JAEI 2012

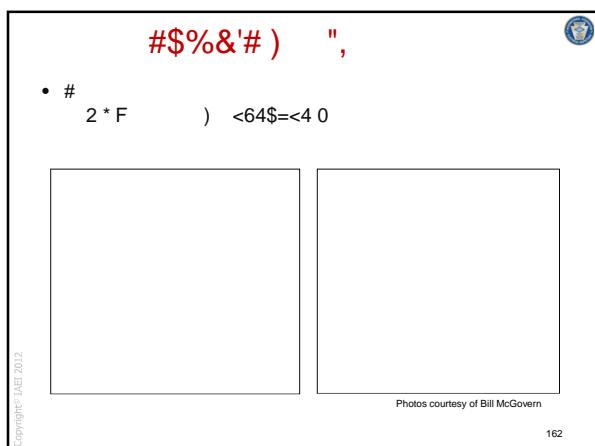
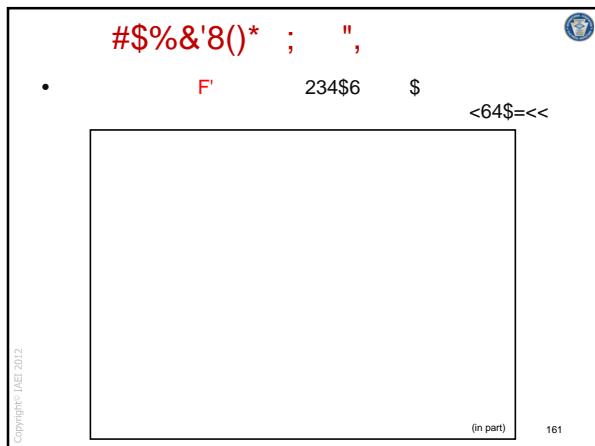
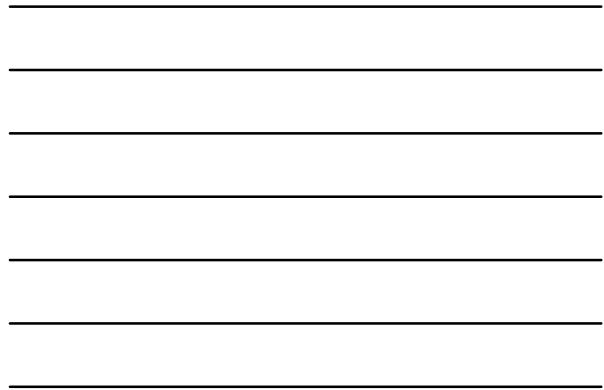
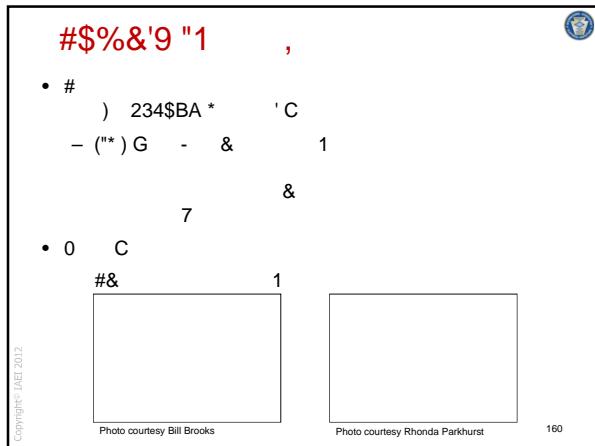
Photo courtesy of Bill McGovern

156







Copyright © JAEI 2012

#\$/%&'7(*

C

• (* ,) 0 0
 , +1 &

C

- = 1 ,0 F # -
 ? * ,0 F #

163

Copyright © JAEI 2012

#\$/%&'7(*

C

• (* ,) 0 0
 , +1 &

C

- < 0 1 ,0 * ,0
 F #

164

Copyright © JAEI 2012

#\$/%&'7(*

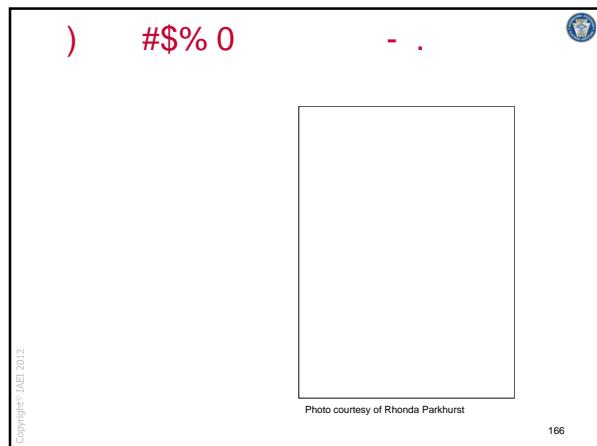
C

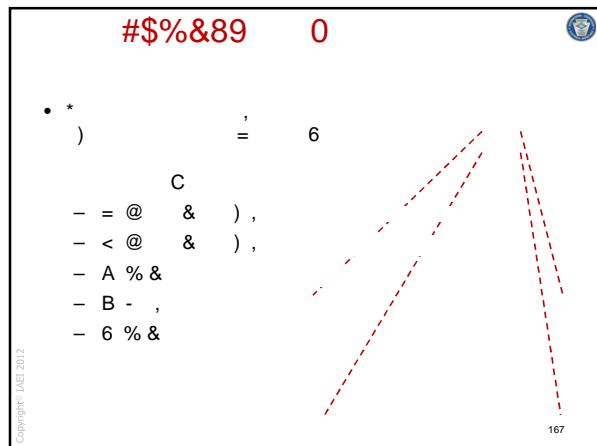
• (* ,) 0 0
 , +1 &

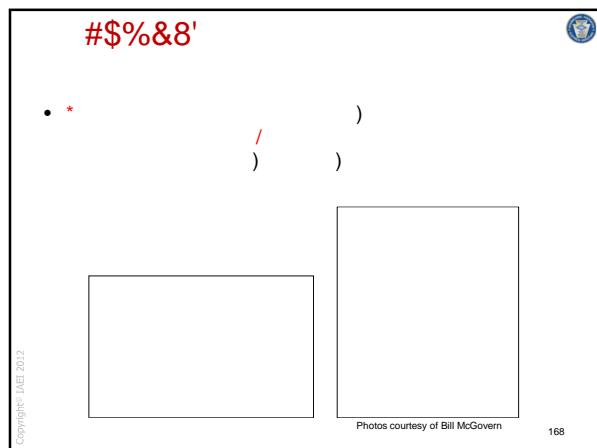
C

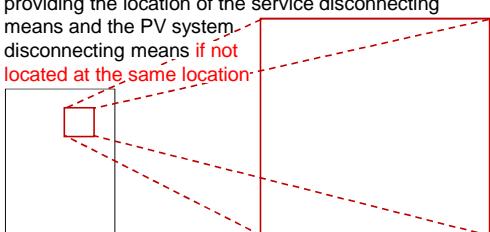
- A 0 1 ,0 F #
 0 * ,0 F #

165









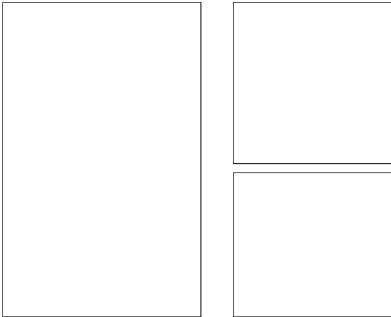
#\$%&8#

Copyright © IAEI 2012

- (B) Facilities with Utility Services and PV Systems
Buildings or structures with both utility service and a PV system **shall have a permanent plaque or directory** providing the location of the service disconnecting means and the PV system disconnecting means **if not located at the same location**

Photos courtesy of Rhonda Parkhurst

169



) **#\$% 0**

2

Copyright © IAEI 2012

170

#\$%&#'

Copyright © IAEI 2012

- 7%8&>? &
* ?) 0 1 C
- * -
- ? # -
- 0 F =44 /
- 1 " ,

) 546\$=<

171

Copyright: JAE 2012

!'') 7%8

• F
• "
• F

172

7%8&>?()*

• 7%8&>?
* ?) 0 1 C
- ()* & *)

<A4\$;< 2
- +0 1D &

173

7%8&>?(*

< 0
• 7%8&>?
* ?) 0 1 C
- (* < 0 & +
,

1 = , 1 5 C)

174

7%8&>?(*

< 0

- = #
- /
- <
-)
- & =<4E

Copyright © IAEI 2012

Photos courtesy of Jeff Fecteau

175

7%8&>?(*

< 0

- (3) The interconnection point shall be on the line side GFP
- (4) Equipment containing overcurrent devices in circuits supplying power to a busbar or conductor supplied from multiple sources shall be marked to indicate the presence of all sources

Copyright © IAEI 2012

176

7%8&>?(*

< 0

- 6 0 / /
- 2 (/ / , ,

B4;\$A2 1

Copyright © IAEI 2012

Photos courtesy of Jeff Fecteau and Eaton

177

Copyright © JAEI 2012

7%8&>?(*

< 0

- 5 8
- *)
-)) C

Photos courtesy of Bill McGovern

178

Copyright © JAEI 2012

<3 >7' <

- <3 >7' 0 F F
"1 <
" +
- &)
I , K
- * C
- - /)
- 0
-
- 1)

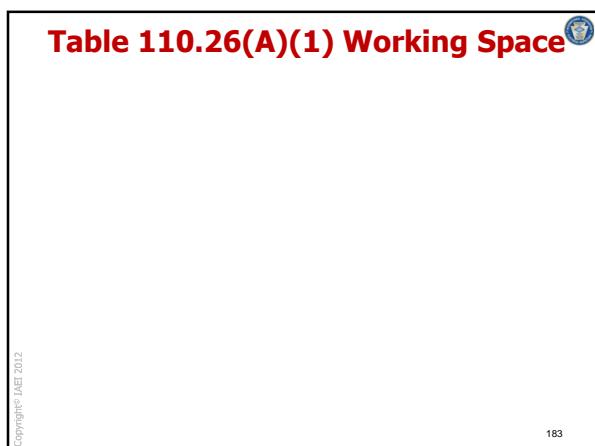
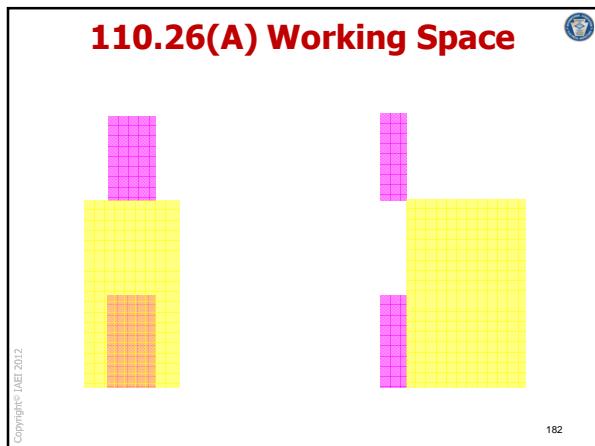
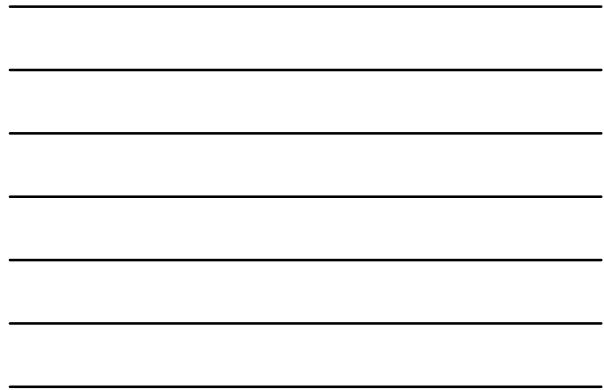
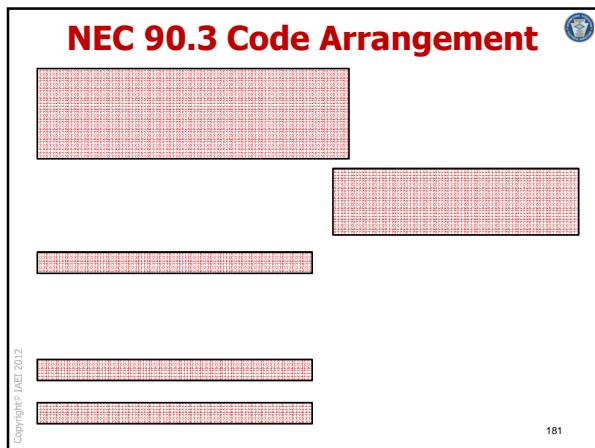
179

Copyright © JAEI 2012

!")

- * 234 :#0
- L) :#0
- - :#0 34\$A ' 34\$A

180

200.6(A)(6) Means of Identifying Grounded Conductors

• A single-conductor, sunlight-resistant, outdoor-rated cable used as a grounded conductor in photovoltaic power systems, as permitted by 690.31, in sizes 6 AWG and smaller shall be identified at the time of installation by distinctive white marking at all terminations

Copyright © NFPA 2012

250.97 Bonding for Over 250 Volts

• For circuits of over 250 volts to ground, where oversized concentric, or eccentric knockouts are encountered "Listed Fittings" are required to provide a reliable bonding connection

• Bonding jumpers shall be used around impaired connections, such as reducing washers or oversized, concentric, or eccentric knockouts at service equipment regardless of the voltage [see 250.92(B)]

185

Concentric and Eccentric Knockouts

Concentric knockouts
May be necessary to bond around concentric knockouts to ensure current-carrying capacity
Bonding jumpers required around impaired connections such as reducing washers, concentric or eccentric knockouts

Eccentric knockouts
Eccentric rings present the same obstacle to carrying fault current as concentric knockouts

186

 Other Code Requirements for PV Systems

Copyright © IAEI 2012

190

 2012 IFC - PV Systems

Copyright © IAEI 2012

- **601.2 Permits**
Permits shall be obtained for refrigeration systems, battery systems and PV power systems as set forth in Sections 105.6 and 105.7
- **605.11 Solar Photovoltaic Power Systems**
PV power systems shall be installed in accordance with Sections 605.11.1 through 605.11.4, the International Building Code and the *NEC*
 - **Exception:** Detached, nonhabitable Group U structures including, but not limited to, parking shade structures, carports, solar trellises and similar structures shall not be subject to the requirements of this section

191

 2012 IFC - PV Systems

Copyright © IAEI 2012

- **605.11.1 Marking**
 - Marking is required on interior and exterior DC conduit, enclosures, raceways, cable assemblies, junction boxes, combiner boxes and disconnects
- **605.11.1.1 Materials**
 - The materials used for marking shall be reflective, weather resistant and suitable for the environment
 - Marking as required in Sections 605.11.1.2 through 605.11.1.4 shall have all letters capitalized with a minimum height of 10 mm (3/8 in.) white on red background

Photos Courtesy of RLP & Associates 192

2012 IFC - PV Systems

- 605.11.1.2 Marking Content**
The marking shall contain the words "WARNING: PHOTOVOLTAIC POWER SOURCE"
- 605.11.1.3 Main Service Disconnect**
The marking shall be placed adjacent to the main service disconnect in a location clearly visible from the location where the disconnect is operated

Copyright © IAEI 2012

193

2012 IFC - PV Systems

- 605.11.1.4 Location of Marking**
Marking shall be placed on interior and exterior DC conduit, raceways, enclosures and cable assemblies every 3.0 m (10 ft), within 300 mm (1 ft) of turns or bends and within 30 mm (1 ft) above and below penetrations of roof/ceiling assemblies, walls or barriers

Copyright © IAEI 2012

194

2012 IFC - PV Systems

- 605.11.2 Locations of DC Conductors**
 - Conduit, wiring systems, and raceways for PV circuits shall be located as close as possible to the ridge or hip or valley and from the hip or valley as directly as possible to an outside wall to reduce trip hazards and maximize ventilation opportunities
 - Conduit runs between sub arrays and to DC combiner boxes shall be installed in a manner that minimizes the total amount of conduit on the roof by taking the shortest path from the array to the DC combiner box

Copyright © IAEI 2012

195

2012 IFC - PV Systems

• **605.11.2 Locations of DC Conductors (cont.)**

- The DC combiner boxes **shall be located** such that conduit runs are minimized in the pathways between arrays
- DC wiring **shall be installed** in metallic conduit or raceways when located within enclosed spaces in a building
- Conduit **shall run along the bottom** of load bearing members

Copyright © IAEI 2012

196

2012 IFC - PV Systems

• **605.11.3 Access and Pathways**

Roof access, pathways, and spacing requirements **shall be provided in accordance** with Sections 605.11.3.1 through 605.11.3.3.3

- **Exception No. 1.** Residential structures **shall be designed** so that each photovoltaic array is **no greater than 45 m (150 ft) by 45 m (150 ft) in either axis**
- **Exception No. 2.** Panels/modules **shall be permitted** to be located up to the roof ridge where an alternative ventilation method **approved by the fire chief** has been provided or where the fire chief has determined vertical ventilation techniques will not be employed

Photo courtesy of DOE/NREL

197

2012 IFC - PV Systems

• **605.11.3.1 Roof Access Points**

Roof access points **shall be located in areas** that do not require the placement of ground ladders over openings such as windows or doors, and located at strong points of building construction in locations where the access point does not conflict with overhead obstructions such as tree limbs, wires, or signs

Photo courtesy of DOE/NREL

198

2012 IFC - PV Systems

• **605.11.3.2 Residential Systems for One- and Two-Family Dwellings**
Access to residential systems for one- and two-family dwellings **shall be provided** in accordance with Sections 605.11.3.2.1 through 605.11.3.2.4

Photo courtesy of DOE/NREL

199

Copyright © IAEI 2012

2012 IFC - PV Systems

• **605.11.3.2.1 Residential Buildings with Hip Roof Layouts**

- PV panels/modules installed on residential buildings with hip roof layouts **shall be located** in a manner that provides a **900 mm (3 ft)** wide clear access pathway from the eave to the ridge on each roof slope where PV panels/modules are located
- The access pathway **shall be located** at a structurally strong location on the building capable of supporting the live load of fire fighters accessing the roof
- *Exception: These requirements **shall not apply** to roofs with slopes of two units vertical in 12 units horizontal (2:12) or less*

200

Copyright © IAEI 2012

2012 IFC - PV Systems

• Hip roofs need one a **900 mm (3 ft)** wide clear access pathway from the eave to the ridge on each roof slope where PV panels/modules are located

3 ft wide access required

Photo courtesy of DOE/NREL

201

Copyright © IAEI 2012

2012 IFC - PV Systems

- **605.11.3.2.2 Residential Buildings with a Single Ridge**
 - PV panels/modules installed on residential buildings with a single ridge **shall be located** in a manner that provides **two, 900 mm (3 ft) wide** access pathways from the eave to the ridge on each roof slope where PV panels/modules are located
 - *Exception: This requirement **shall not apply** to roofs with slopes of two units vertical in 12 units horizontal (2:12) or less*

2012 IFC - PV Systems

2012 IFC - PV Systems

• Residential buildings with PV panels placed on both sides of a hip or valley, they shall not be located closer than 450 mm (18 in.) to a hip or a valley

Photo courtesy of DOE/NREL

205

Copyright © IAEI 2012

2012 IFC - PV Systems

• Roofs with hips and valleys, with PV panels only one side of a hip or valley that is of equal length, the panels shall be permitted to be placed directly adjacent to the hip or valley

Photo courtesy of DOE/NREL

206

Copyright © IAEI 2012

2012 IFC - PV Systems

• **605.11.3.2.4 Residential Building Smoke Ventilation**

PV panels installed on residential buildings shall be located no higher than 900 mm (3 ft) below the ridge in order to allow for fire department smoke ventilation operations

Photo courtesy of DOE/NREL

207

Copyright © IAEI 2012

2012 IFC - PV Systems

UL **2012 IFC - PV Systems** **UL**

- 605.11.3.3.1 Access**
There shall be a minimum 1.8 m (6 ft) wide clear perimeter around the edges of the roof
 - Exception:* Where either axis of the building is 75 m (250 ft) or less, there shall be a minimum 1.2 m (4 ft) wide clear perimeter around the edges of the roof**

Photo courtesy of DOE/NREL

2012 IFC - PV Systems

2012 IFC - PV Systems

605.11.3.3.2 Pathways (cont.)

- The PV installation shall be designed to provide designated pathways
- The pathways shall meet the following requirements:
 - Shall be a straight line not less than 1.2 m (4 ft) clear to skylights or ventilation hatches
 - Shall be a straight line not less than 1.2 m (4 ft) clear to roof standpipes
 - Provide not less than 1.2 m (4 ft) clear around roof access hatch with at least one not less than 1.2 m (4 ft) clear pathway to parapet or roof edge

Copyright © IAEI 2012

211

2012 IFC - PV Systems

Photo courtesy of DOE/NREL

212

2012 IFC - PV Systems

605.11.3.3.3 Smoke Ventilation

- The PV installation shall be designed to meet the following requirements:
 - Arrays shall be no greater than 45 m (150 ft) by 45 m (150 ft) in distance in either axis in order to create opportunities for fire department smoke ventilation operations

Not greater than 150 ft by 150 ft

Photo courtesy of DOE/NREL

213

2012 IFC - PV Systems

• 605.11.3.3.3 Smoke Ventilation
The PV installation **shall be designed** to meet the following requirements:

- 2. Smoke ventilation options between array sections **shall be one of the following:**
- 2.1. A pathway **2.5 m (8 ft) or greater** in width
- 2.2. A **1.2 m (4 ft) or greater** in width pathway and bordering roof skylights or smoke and heat vents
- 2.3. A **1.2 m (4 ft) or greater** in width pathway and bordering **1.2 m (4 ft) by 2.5 m (8 ft)** "venting cutouts" every **6.0 m (20 ft)** on alternating sides of the pathway

Photo courtesy of DOE/NREL 214

Copyright © IAEI 2012

2012 IFC - PV Systems

• 605.11.4 Ground-Mounted PV Arrays

- Ground-mounted PV arrays shall comply with Sections 605.11 through 605.11.2 and this section
- Setback requirements shall not apply to ground-mounted, free-standing PV arrays
- A clear, brush-free area of **3.0 m (10 ft)** shall be **required** for ground-mounted PV arrays

Photos courtesy of DOE/NREL 215

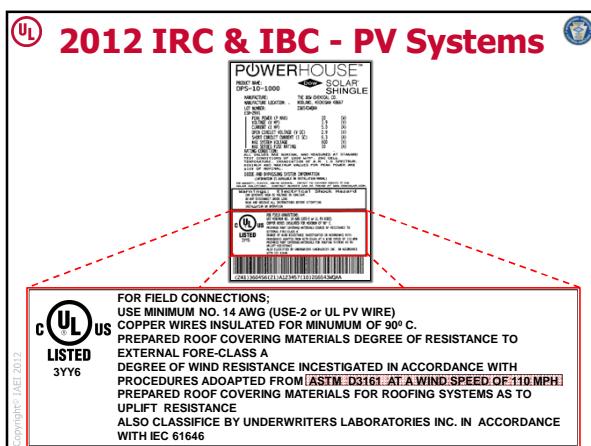
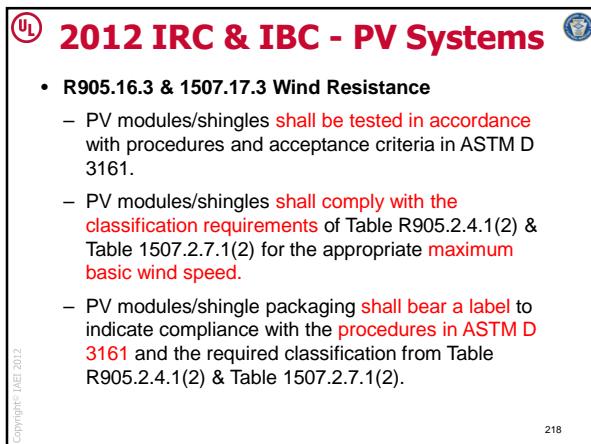
Copyright © IAEI 2012

2012 IRC & IBC- PV Systems

• R905.16 & 1507.17 Photovoltaic Modules/Shingles
The installation of PV modules/shingles **shall comply with the provisions of this section**

• R905.16.1 & 1507.17.1 Material Standards
Photovoltaic modules/shingles **shall be listed and labeled in accordance with UL 1703**

SHARP SOLAR MODULE NT-S5E1U



THE ELECTRICAL CHARACTERISTICS ARE WITHIN ± 10 PERCENT OF THE INDICATED VALUES OF I_{SC} , V_{OC} , AND P_{MAX} UNDER STANDARD TEST CONDITIONS (IRRADIANCE OF 1000W/m², AM1.5 SPECTRUM AND CELL TEMPERATURE OF 25°C)

MAXIMUM POWER VOLTAGE (V _{MAX})	165.0 W
MAXIMUM POWER CURRENT (I _{SC})	44.9 V
SHORT CIRCUIT CURRENT (I _{SC})	57.5 A
MAXIMUM POWER VOLTAGE (V _{MAX})	36.21 V
MAXIMUM POWER CURRENT (I _{SC})	5.1 A
MAXIMUM SYSTEM VOLTAGE	600 V
FUSE RATING	10 A
FIRE RATING CLASS C	
FIELD WIRING	COPPER ONLY 14 AWG MIN. INSULATED FOR 60°C MIN.
SERIAL No.	034090273

SHARP CORPORATION 33-1 HAKAM, SHILO-CHO, KITAKATSURAGI-GUN, NARA, 639-2198, JAPAN

216

Copyright © IAEI 2012

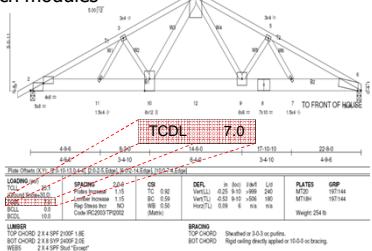
2012 IRC - PV Systems

- **M2302.2.1 Roof-Mounted Panels and Modules**

- Where PV panels and modules are installed on roofs, the roof **shall be constructed to support the loads imposed by such modules**
- Roof-mounted PV panels and modules that serve as roof covering shall conform to the requirements for roof coverings in Chapter 9
- Where mounted on or above the roof coverings, the PV panels and modules and supporting structure **shall be constructed of noncombustible materials or fire-retardant-treated wood equivalent to that required for the roof construction**

220

Copyright © IAEI 2012



2012 IRC - PV Systems

• M2302-2-1 Roof-Mounted Panels and Modules

Where PV panels and modules are installed on roofs, the roof **shall be constructed to support the loads imposed by such modules**.

* Top chord dead load is 7 psf for this engineered truss

221

Copyright © IAEI 2012

2012 IRC & IBC - PV Systems

• M2302 3 Photovoltaic Panels and Modules

M2302.3 Photovoltaic Panels and Modules
Photovoltaic panels and modules **shall be listed and labeled** in accordance with UL 1703

222

copyright © IAEI 2012

UL 2012 IRC - PV Systems

- M2302.4 Inverters**
 - Inverters **shall** be listed and labeled in accordance with UL 1741
 - Systems connected to the utility grid **shall use** inverters listed for utility interaction

UL **2012 IBC - PV Systems**

1505.8 Photovoltaic Systems

Rooftop installed photovoltaic systems that are adhered or attached to the roof covering or PV modules/shingles installed as roof coverings **shall be labeled** to identify their fire classification in accordance with the testing required in Section 1505.1

WARNING

HAZARDOUS ELECTRICITY CAN SHOCK, BURN OR CAUSE DEATH
DO NOT TOUCH TERMINALS.

PHOTOVOLTAIC MODULE

MODEL	KC80	CE	
SER. NO.	00691B0498	□	
DATE	2000. 6		
IRRADIANCE	1000W/m ²	RMS VOL.	600 V
TEMPERATURE	25 °C	ACROSS	47 °C
Phmax	8.6 A	55 W	
Vmax	16.73 V	SERIES FUSE	7 A
Imax	4.73 A	ROSS	
Voc	21.5 V	0.0	kg
Isc	4.97 A		

FIELD WIRING **CLASS 1**

UL **US** **LISTED** **ULR02** **10 - 16 AWG** **ISOLATED** **1000 VDC**

KYOCERA

UL

2012 IBC - PV Systems

- 1509.7 Photovoltaic Systems**
Rooftop mounted PV systems **shall be designed** in accordance with this section
- 1509.7.1 Wind Resistance**
Rooftop mounted PV systems **shall be designed** for wind loads for component and cladding in accordance with Chapter 16 using an effective wind area based on the dimensions of a single unit frame

2012 IBC - PV Systems

- 1509.7.2 Fire Classification**
Rooftop mounted PV systems shall have the same fire classification as the roof assembly required by Section 1505

WARNING
HAZARDOUS ELECTRICITY CAN SHOCK, BURN OR CAUSE DEATH. DO NOT TOUCH TERMINALS.

PHOTOVOLTAIC MODULE

MODEL	KC80	CE
SER. NO.	0065180492	
DATE	2000.6	

IRRADIANCE AND TEMPERATURE 1000W/m² AM 1.5 25 °C 800W/m² AM 1.5 47 °C MAX. SYS. VOLT. 600 V

Pmax	50 W	58 W	600 V
Vmax	16.0 V	15.8 V	7 A
Imax	4.73 A	3.83 A	MSS
Voc	21.5 V	---	8.0 kΩ
Isc	4.97 A	---	

FIELD WIRING
UL LISTED
GMP102
CLASS C
KYOCEERA
MADE IN JAPAN

Copyright © IAEI 2012

226

2012 IBC - PV Systems

- 1509.7.3 Installation**
Rooftop mounted PV systems shall be installed in accordance with the manufacturer's installation instructions
- 1509.7.4 Photovoltaic Panels and Modules**
PV panels and modules mounted on top of a roof shall be listed and labeled in accordance with UL 1703 and shall be installed in accordance with the manufacturer's installation instructions

Copyright © IAEI 2012

227

2012 IBC - PV Systems

- 1511.1 Solar photovoltaic Panels/Modules**
Solar PV panels/modules installed upon a roof or as an integral part of a roof assembly shall comply with the requirements of this code and the International Fire Code
- 1511.1.1 Structural Fire Resistance**
The structural frame and roof construction supporting the load imposed upon the roof by the PV panels/modules shall comply with the requirements of Table 601

Copyright © IAEI 2012

228

2012 IBC - PV Systems

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS)

BUILDING ELEMENT	TYPE I		TYPE II		TYPE III		TYPE IV		TYPE V	
	A	B	A ^d	B	A ^d	B	HT	A ^d	B	
Primary structural frame ^e (see Section 202)	3 ^b	2 ^b	1	0	1	0	HT	1	0	
Nonbearing walls										
Exterior ^c	3	2	1	0	2	2	2	1	0	
Interior	3 ^b	2 ^b	1	0	1	0	1/HT	1	0	
Nonbearing walls and partitions										
Exterior										
Nonbearing walls and partitions	0	0	0	0	0	0	See Section 602 4.6	0	0	
Interior										
Roof construction and associated secondary member (see Section 202)	2	2	1	0	1	0	HT	1	0	
Roof construction and associated secondary members (see Section 202)	1 ^b / ₂ ^b	1 ^b / ₂ ^b	1 ^b / ₂ ^b	0 ^b	1 ^b / ₂ ^b	0	HT	1 ^b / ₂ ^b	0	

See Table 602

Copyright © IAEI 2012

229

2012 IGCC - PV Systems

- 610.1 Renewable Energy Systems Requirements**
 - Buildings that consume energy **shall comply with this section**
 - Each building ... **shall be equipped with one or more renewable energy systems in accordance with this section**
 - Renewable energy systems shall comply with the requirements of **Section 610.2 for solar photovoltaic systems**, Section 610.3 for wind systems, or Section 610.4 for solar water heating systems, and Section 610.5 for performance monitoring and metering of these systems as approved by the Code Official
 - These systems **shall be commissioned in accordance with the requirements of Section 611**

Copyright © IAEI 2012

230

2012 IGCC - PV Systems

- 610.1.1 Building Performance-Based Compliance**
Buildings and surrounding property or building sites where there are multiple buildings on the building site...
 - that are designed and constructed in accordance with **Section 601.3.1, Performance-Based Compliance...**
 - shall be equipped with **one or more renewable energy systems** that have the capacity to provide **not less than 2 percent** of the total calculated annual energy use of the building, or collective buildings on the site

Copyright © IAEI 2012

231

2012 IGCC - PV Systems

UL 2012 IGCC - PV Systems

- **610.2 Solar Photovoltaic systems**
PV systems **shall be sized** to provide not less than 2 percent of the total estimated annual electric energy consumption of the building, or collective buildings on the building site in accordance with Section 610.1.1 or 610.1.2
- **610.2.1 Limitation**
PV systems **shall not be used** to comply with Section 610.1 where building sites have total global insolation levels lower than 2.00 kWh/m²/day as determined in accordance with NREL SERI TR-642-761

• **610.2.2 Requirements**
The installation, inspection, maintenance, repair and replacement of PV systems and system components **shall comply with the manufacturer's instructions**, Section 610.2.2.1, the International Fire Code, the International Building Code and NFPA 70 (*NEC*)

• **610.2.2.1 Performance Verification**

- PV systems **shall be tested on installation** to verify that the installed performance meets the design specifications
- A report of the tested performance **shall be provided** to the building owner

 2012 IECC - PV Systems

• **C402.2.1.1 Roof Solar Reflectance and Thermal Emittance**

Low-sloped roofs, with a slope less than 2 units vertical in 12 horizontal, directly above cooled conditioned spaces in Climate Zones 1, 2, and 3 **shall comply with** one or more of the options in Table C402.2.1.1

– **Exceptions:** The following roofs and portions of roofs are exempt from the requirements in Table C402.2.1.1:

1. Portions of roofs that include or are covered by:
 - 1.1. Photovoltaic systems or components
 - 1.2. Solar air or water heating systems or components
 - 1.3. Roof gardens or landscaped roofs
 - 1.4. Above-roof decks or walkways
 - 1.5. Skylights
 - 1.6. HVAC systems, components, and other opaque objects mounted above the roof

235

Copyright © IAEI 2012

 Solar Photovoltaic Systems

Thanks for Participating

Any Questions?

236

Copyright © IAEI 2012