

May 2, 2018

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Regarding:Notice of Exempt Modification – Equipment UpgradesProperty Address:36 Ritch Avenue West; Greenwich, CT 06830AT&T Site:CT5004 // FA# 10071045

Dear Ms. Bachman:

AT&T currently maintains a wireless telecommunications facility on an existing 77-foot monopine tower at the above-referenced address, latitude 41.00502222, longitude -73.64831389. Said monopine tower is owned by American Tower Corp., and the property is owned by 36 Ritch Avenue, LLC.

AT&T desires to modify its existing telecommunications facility by installing three (3) additional remote radio units as detailed in the enclosed plans by Centek. The centerline height of the existing antenna installation is and will remain at 67 feet.

Three administrative corrections to the AT&T leased / reserved loading are reflected in the Structural Analysis completed by American Tower on January 15, 2018, but other than the addition of the remote radio units as noted above, no physical work is proposed. Corrections are as follows: 1) Removal of (3) RRUS-11 as these particular units are not installed on the tower, but on the ground in AT&T's ground equipment area; 2) correction to the model number of the existing (6) TMAs; and 3) a correction to the size of existing cables and conduit.

Please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72 (b)(2). In accordance with R.C.S.A. §16-50j-73, a copy of this letter is being sent to The First Selectman of the Town of Greenwich, the Planning and Zoning Director, tower owner, American Tower Corp., and ground owner 36 Ritch Avenue, LLC.

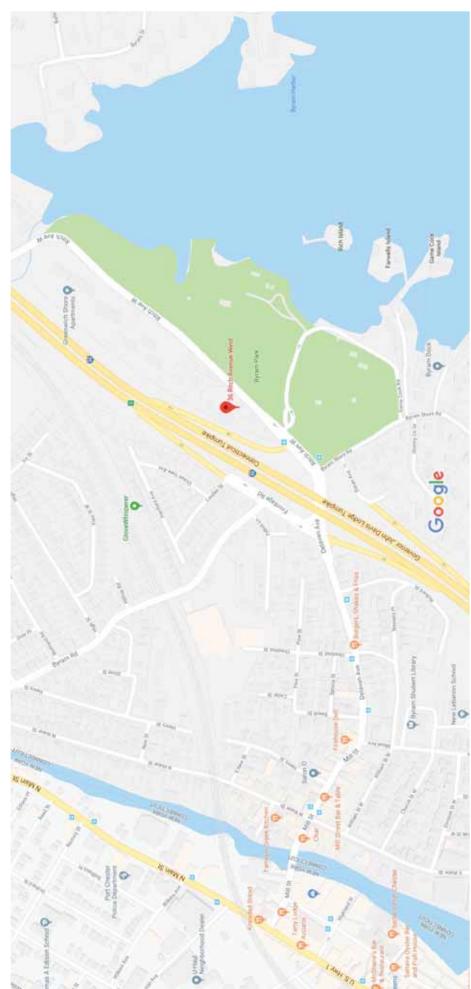
The planned modifications to AT&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72 (b)(2). Specifically:

1. The planned modification will not result in an increase in the height of the existing structure. The equipment to be added will be installed at the existing height of 67 feet on the 77-foot tower.

- 2. The proposed modifications will not involve any changes to ground-mounted equipment, and therefore will not require an extension of the site boundary.
- 3. The proposed modification will not increase the noise level at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above Federal Communications Commission (FCC) safety standard. An RF emissions calculation (enclosed) for AT&T's modified facility is herein provided.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support AT&T's proposed modifications (please see enclosed structural analysis completed by Tower Engineering Professionals dated January 15, 2018).

For the foregoing reasons, AT&T respectfully requests that the proposed installation be allowed within the exempt modifications under R.C.S.A. §16-50j-72 (b)(2).

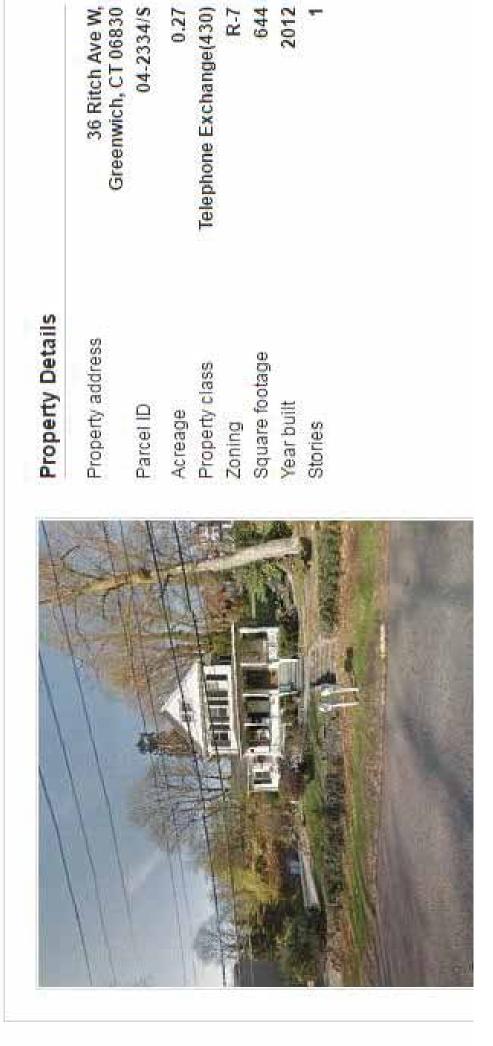
Sincerely, **Kristen White**


Kristen White Site Acquisition Specialist

Enclosures: Exhibit 1 - Property Card and GIS Map Exhibit 2 - Construction Drawings Exhibit 3 - RF Emissions Analysis Report Evaluation Exhibit 4 - Structural Analysis

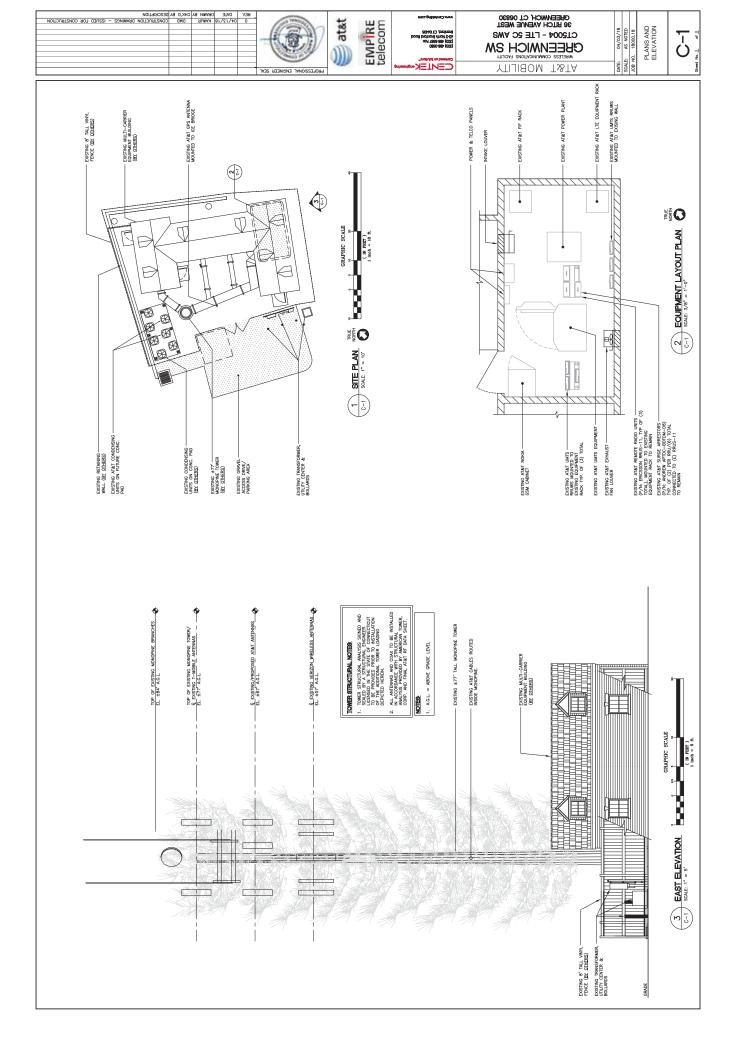
cc: Mr. Peter Tesei, First Selectman
 Ms. Katie DeLuca, AICP; Town Planner
 36 RITCH AVENUE, LLC, ground owner
 American Tower Corporation, tower owner & operator

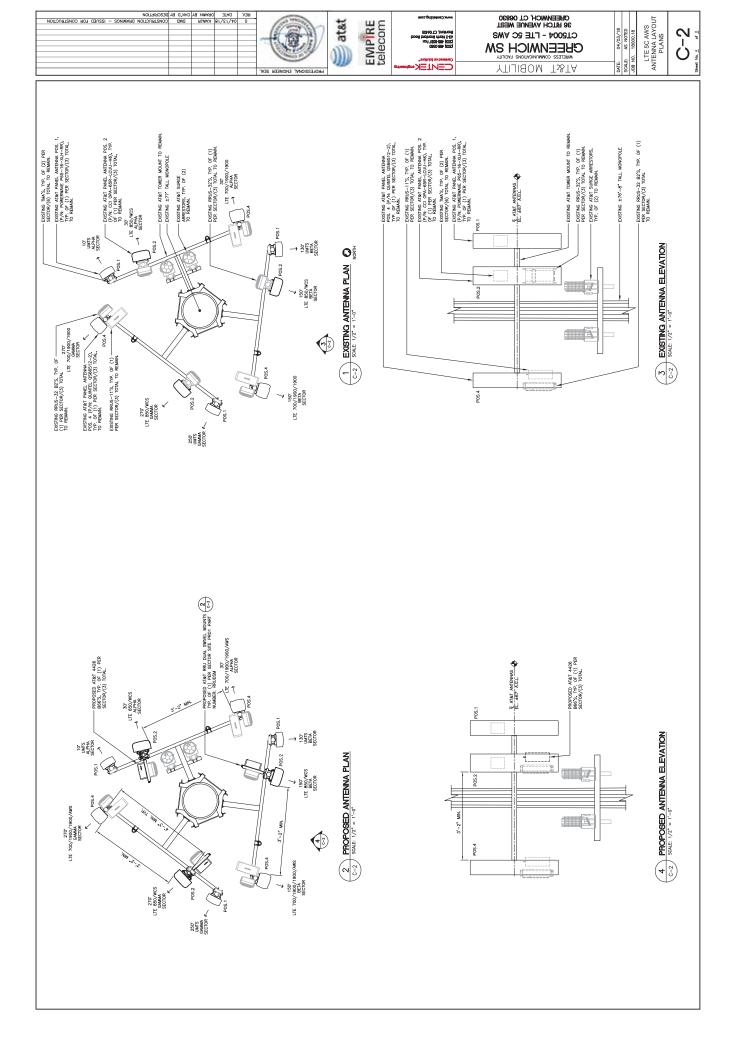
Exhibit 1

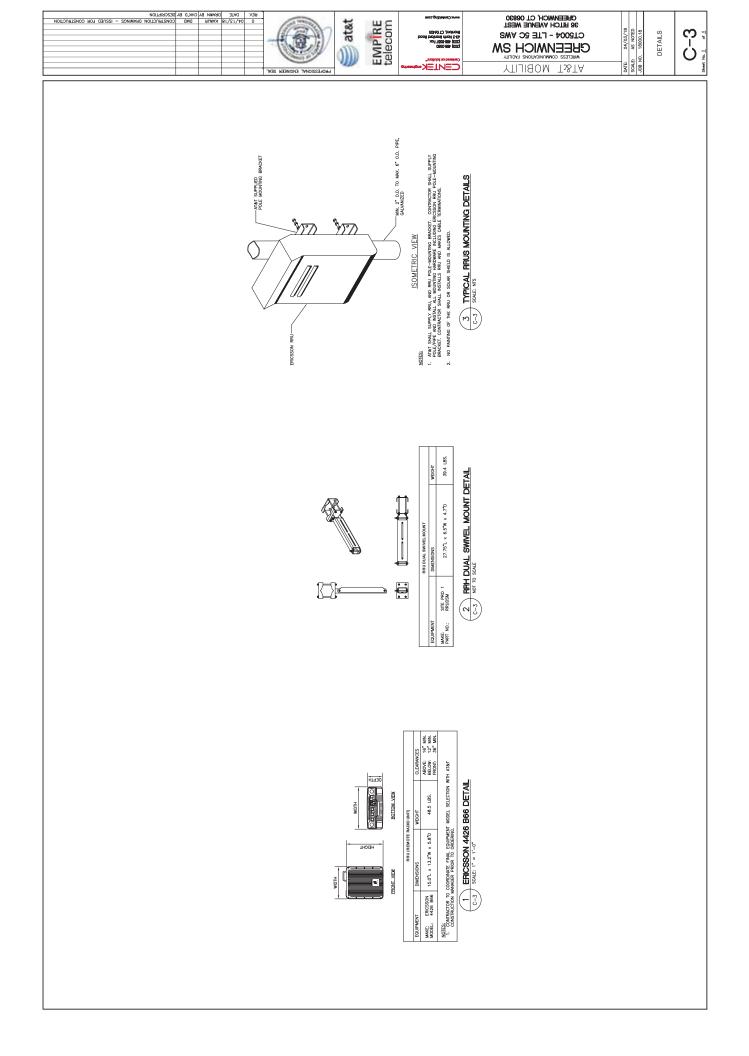


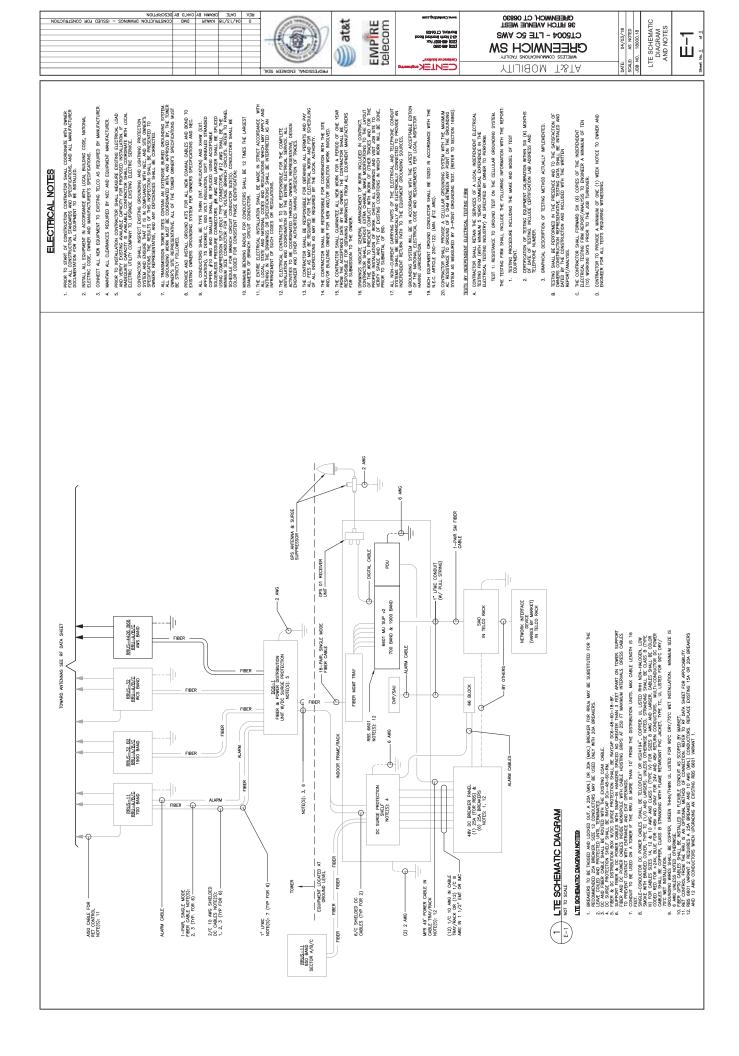
Map data ©2018 Google 200 ft ∟

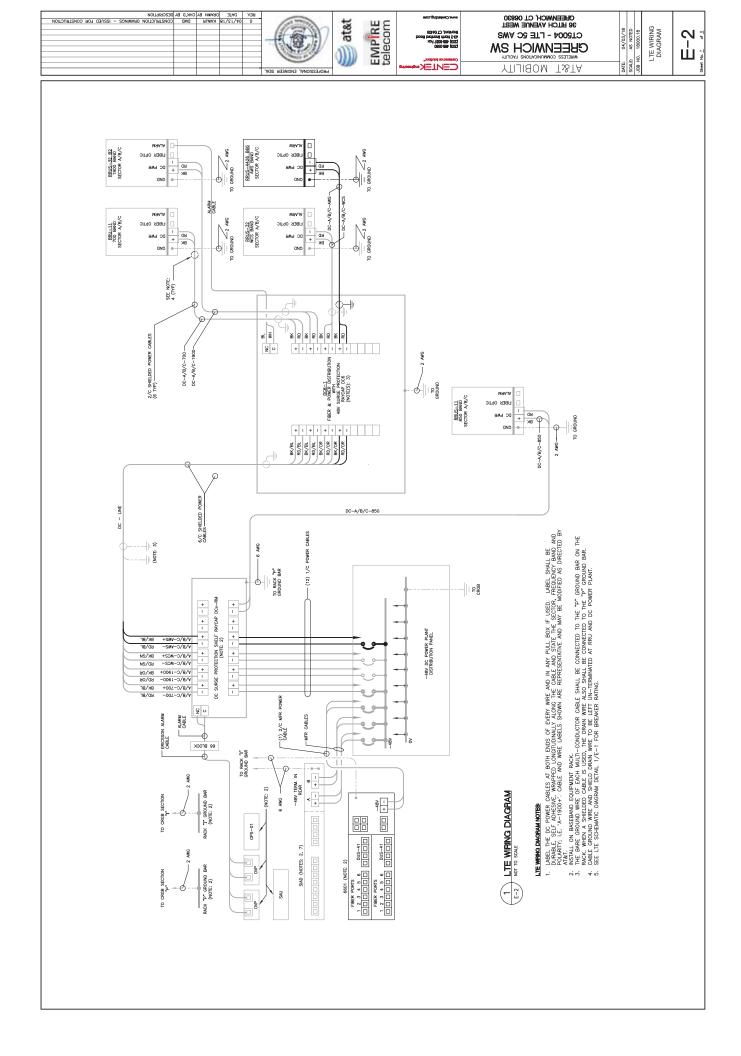
36 Ritch Ave W Greenwich, CT 06830






Exhibit 2


NOLLON Serion	BEN DATE DAVINE BAL (Arek.) BAL (Arek.) </th <th></th> <th></th> <th>AT&T COMPARTMENT CLEOON - LTE EC AWS CHEENWICH SW CHEENWICH COMMON CHEENWICH CLOSSO CHEENWICH CLOSSO CHEENWICH CLOSSO CHEENWICH CLOSSO</th> <th>DME: 04/01/18 Scale: 46 MORD as No. 18600.18 TTLLE SHEET TTLE SHEET</th>			AT&T COMPARTMENT CLEOON - LTE EC AWS CHEENWICH SW CHEENWICH COMMON CHEENWICH CLOSSO CHEENWICH CLOSSO CHEENWICH CLOSSO CHEENWICH CLOSSO	DME: 04/01/18 Scale: 46 MORD as No. 18600.18 TTLLE SHEET TTLE SHEET
		PROJECT SUMMARY THE REPARSES SCORE OF WORK CONSERS OF A MODIFICITION TO THE REQUESTION CONSERS OF A MODIFICITION TO THE REQUESTION OF A MODIFICITION OF A MITCHINA A ATTACHINA SECCESS A ATTACHINA SECCESS		Ariat PACE NUMBER. RECOR HIL, CI 06067 Ariat FA LOCATION CODE: 10/71/045 DIGMERE. EDITOR CODE: 10/71/045 BIGMERE. RESTORMENDIG. INC. EDITOR CODEMANTES EDITOR CODE - 12.47 N PROJECT CODEMANTES EDITOR - 12.42 N PROJECT E	IN-1 NOTES, SPECIFICATIONS AND ANTENNA SCHEDULE 0 CI-1 PLANS AND ELEMITION 0 C-2 IF SC MSS ANTENNA LUNCUT PLANS 0 C-3 BETMALS 0 C-1-3 BETMALS 0 C-2-3 BETMALS 0 C-3 BETMALS 0 C-1 LIF SC MARANTE UNCUT PLANS 0 E-1 LIF SC MARANTE UNCUT PLANS 0 E-1 LIF SC MARANTE UNCUT PLANS 0 E-1 LIF SC MEMARE UNCUT PLANS 0 E-2 TURNOL DOLORAM AND NOTES 0 E-3 THENOL LECTINOLL DEMARS 0 E-3 THEOLL LECTINOLL DEMARS 0
at&t	WIRELESS COMMUNICATIONS FACILITY CT5004 - LTE 5C AWS GREENWICH SW AMERICAN TOWER CORP. SITE NO.: 414240 36 RITCH AVENUE WEST GREENWICH, CT 06830	SITE DIRECTIONS	FROM: Store TO: Steremers Store <	VICINITY MAP SCALE: 1"= 1000 Q	
	WIRELESS COMI CT5004 GREI AMERICAN TOWEF 36 RITCH GRFFNV		 Dawness Indott The Minuku Statubers, Bull F ANY WORK SHOLD RE MONZTHO RE SUBSTAINED TO ANY WORK OWE, CORES TWIN TO RESUBSTAINED TO ANY WORK SHOLD RE MONZTHO DE SUBSTAINED TO ANY WORK STR UNK, CORESTIV N. 1000 DE SUBSTAINED TO ANY WORK STR WILL NO REPERTIV N. 1000 DE SUBSTAINED TO ORDER THAN THE IN ACCORPANIE WITH LOOK UTURY OLIVEN FROM THE IN ACCORPANIE WITH LOOK UTURY 1. 4.4. EQUINDERTI MON PRODUCTS INTERVISION AND BY COMMAN FEQURESCIPTS AND STROMESCIPATION AND COMMAN FEQURESCIPTS AND STROMESCIPATION AND COMMAN FEQURESCIPTS AND STROMESCIPATION AND BY COMMAN FEQURESCIPTS AND STROMESCIPATION AND STRUME TO AM ELEMONS TO ORDER AND FROMESCIPATION AND STRUMESCIPATION THESE TIPIES A THIS STROMESCIPATION AND STRUMESCIPATION AND STRUMESCIPATION TO BE REQUIRED TO THE ATTENTION OF THE AND CONSTRUCTION AND STRUMESCIPATION AND STRUME	Restance of the second seco	21. 20. 19.
		GENERAL NOTES	 ALL WORK SHALL RE IN ACCORDANCE WITH THE 2012 INTERNATIONAL DELANO CORF K. DONCED B. PHE TO STOR CONSTITUTION STEL, MICANO THESE MA22, STOR CONSTITUTION STORT BELLINDIG STEL, ANDANO THESE MA22, STORE AND AND ALLETINGAL STEL, ANDANO THE SAFETY CORE AND, WITHOWL ELETINGAL COLUCIDE THE SAFETY CORE AND, WITHOWL ELETINGAL START CONTRACTOR FROM THE START SHALE STORE AND ALL CORES THE SHALE AND AND TELETINGAL ELETINGAL START STORE AND AND TELETINGAL START START STORE AND AND TELETINGAL START START START STORE AND AND TELETINGAL START STAR	 Contraction Conduction Set To construction setup. Construction setup. Book Setup Resources Setup Set	 MEED VIG JAN REPORDE FRAM, LE CONTROT REAL TITE CONTROT REAL TO FORMINGS TO CONTRACTOR SHALL TENNERS IN A Carbon VIEW STATE TO FORMINGS TO CONTRACTOR SHALL TENNERS IN A Carbon VIEW STATE TO FORMING TO EXCLAIN OF FORMING VIEW STATE TO FORMINGS TANK DATE OF THE CONTROL OF THE PARKING TANK STATE TO FORMING CONTROLS FOR A CONTROL OF THE PARKING TANK STATE TO FORMING THE CONTROLF OF STALE TO FORMING TANK STATE TO FORMING THE CONTROLF OF STALE TO FORMING TANK STATE TO FORMING FORMING TANK TO FORMIT PARTS DEVICE AND TO FORMING FORMING TANK TO FORMER THE FORMING CONSTRUCTION FOR FORMING TO FORMING THE FORMING FORMING TO FORMING FOR FORMING TO FORMING THE FORMING FORMING TO FORMING TO FORMING THE FORMING TO FORMING TO FORMING TO FORMING TO FORMING TO FORMING TO FORMING TO FORMING FORMING TO FORMING TO FORMING TO FORMING TO FORMING TO FORMING TO FORMING TO FORMING TO FORMING TO FORMING FORMING TO FORMING FORMING TO FOR


		Alternative Obternative 00 06 07 07 07 07 07 07 07 07 08 07 07 07 07 07 08 07	MATE: 04/03/16 SOLE: A MOTES BAL: A MOTES BAL: A MOTES SPECIFICATIONS & SPECIFICATIONS & SCHEDULE	Sheet No. 2 of 8
Image: mark the stand of the stand	Inclure: Inclur	x 13.2 x 12.		
Image: mark the stand of the stand	ENSTING TONER STR PRIMER 7(2-6) WLE. TONE CAR WEST OR VIA. TONE CA	RRU RRUS-11 RRUS-32 RRUS-32 RRUS-32 RRUS-426 RRUS-426 RRUS-426 RRUS-426 RRUS-426 RRUS-426 RRUS-426 RRUS-426 RRUS-426 RRUS-410 RRU		
Image: manual stand	1913년 28 - 이 1912년 이 이 이 이 이 이 이 1912년 - 이 1912년 - 이 1912년 - 이 1912년 - 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	(<i>E,Y</i>) RAYOR (07) (<i>E,Y</i>) RAYOR CO-48-40-18-60 (0) RAYOR CO-48-40-18-60 (0) RAYOR CO-48-40-18-60		
OCIE			(1). (P) 4426 B66 (1) (1). (P) 4426 B66 (1)	
	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	BMD AITENNA SCHEDULE BMD AITENNA SCHEDULE BMD AITENNA SCHEDULE LIE AITENNA SCHEDULE UMD BMD ERC (ACCRE) MIDEND ERC (ACCRE) MIDENDO ERC (ACCRE) <	H65-1e-XLI-Ret T2X1286 ±67 130 (L) Promentation Processed (S40) (L) Oh-L65H-L02U-H6 ZX14.487.4 ±67 130 (C) CDMMBP79194012A. TWIN PCS W 700696496 (S40) (L) Oh-L65H-L02U-H6 ZX14.487.4 ±67 150 (C) CD T0MMBP79194012A. TWIN PCS W 700696496 (S40) (L) C666512-2 ZX14.287.4 ±67 150 (D) CO P65-16-XLIL-H6 ZX17286 ±67 Z27 (D) CO C) (D) (D)	

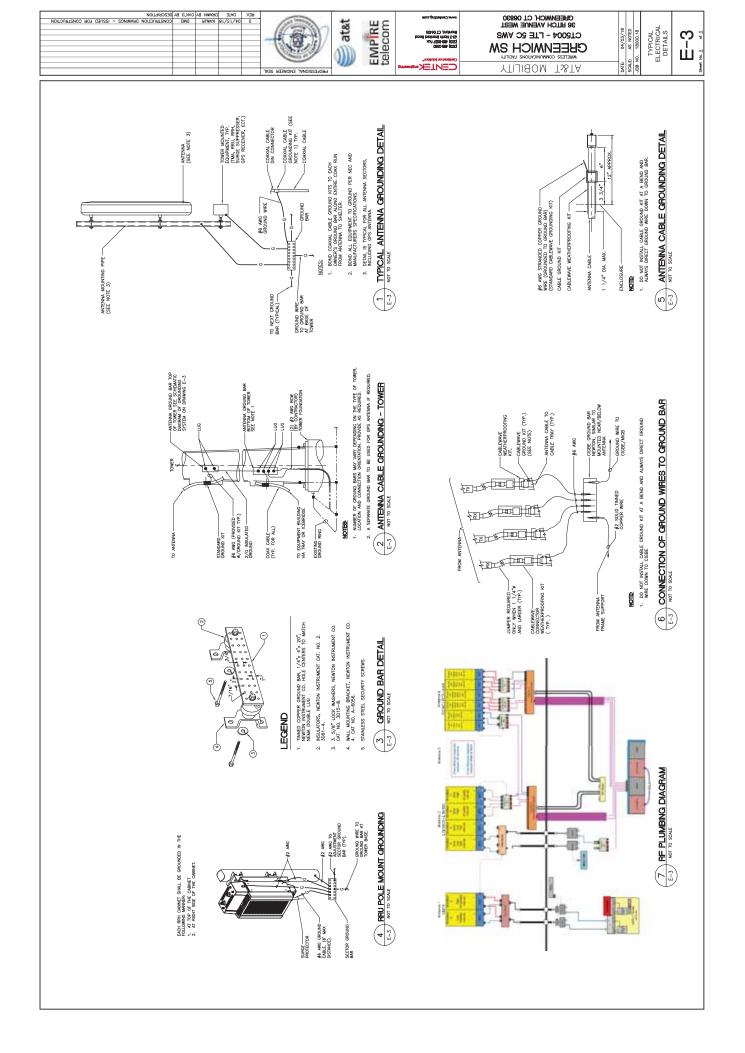


Exhibit 3

Radio Frequency Emissions Analysis Report

AT&T Existing Facility

Site ID: CT5004

Greenwich SW 36 Ritch Avenue West Greenwich, CT 6830

January 31, 2018

Centerline Communications Project Number: 950006-088

Site Complian	ce Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	53.37 %

January 31, 2018

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT5004 – Greenwich SW

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility located at **36 Ritch Avenue West, Greenwich, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT&T Wireless antenna facility located at **36 Ritch Avenue West, Greenwich, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
LTE	850 MHz	2	60
LTE	2300 MHz (WCS)	4	60
LTE	700 MHz	2	60
LTE	1900 MHz (PCS)	4	60
LTE	2100 MHz (AWS)	4	60

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz, 850 MHz, 1900 MHz (PCS), 2100 Mhz (AWS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

	A		Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	Powerwave P65-16-XLH-RR	67
А	2	CCI OPA-65R-LCUU-H6	67
А	3	Quintel QS66512-2	67
В	1	Powerwave P65-16-XLH-RR	67
В	2	CCI OPA-65R-LCUU-H6	67
В	3	Quintel QS66512-2	67
С	1	Powerwave P65-16-XLH-RR	67
С	2	CCI OPA-65R-LCUU-H6	67
С	3	Quintel QS66512-2	67

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

			Antenna Gain		Total TX		
Antenna	Antenna Make /		(dBd)		Power		
ID	Model	Frequency Bands		Channel Count	(W)	ERP (W)	MPE %
Antenna	Powerwave						
A1	P65-16-XLH-RR	850 MHz	13.4	2	60	1,312.66	2.24
Antenna	CCI	850 MHz /					
A2	OPA-65R-LCUU-H6	2300 MHz (WCS)	12.45 / 15.45	6	360	10,527.55	11.73
		700 MHz /					
Antenna		1900 MHz (PCS) /	10.85 / 13.85 /				
A3	Quintel QS66512-2	2100 MHz (AWS)	14.35	10	600	13,817.77	14.96
				Sec	tor A Comp	osite MPE%	28.92
Antenna	Powerwave						
B1	P65-16-XLH-RR	850 MHz	13.4	2	60	1,312.66	2.24
Antenna	CCI	850 MHz /					
B2	OPA-65R-LCUU-H6	2300 MHz (WCS)	12.45 / 15.45	6	360	10,527.55	11.73
		700 MHz /					
Antenna		1900 MHz (PCS) /	10.85 / 13.85 /				
B3	Quintel QS66512-2	2100 MHz (AWS)	14.35	10	600	13,817.77	14.96
				Sec	tor B Comp	osite MPE%	28.92
Antenna	Powerwave						
C1	P65-16-XLH-RR	850 MHz	13.4	2	60	1,312.66	2.24
Antenna	CCI	850 MHz /					
C2	OPA-65R-LCUU-H6	2300 MHz (WCS)	12.45 / 15.45	6	360	10,527.55	11.73
		700 MHz /					
Antenna		1900 MHz (PCS) /	10.85 / 13.85 /				
C3	Quintel QS66512-2	2100 MHz (AWS)	14.35	10	600	13,817.77	14.96
				Sec	tor C Comp	osite MPE%	28.92

Table 3: AT&T Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

Site Composite MPE%				
Carrier	MPE%			
AT&T – Max Sector Value	28.92 %			
T-Mobile	9.21 %			
Verizon Wireless	15.24 %			
Site Total MPE %:	53.37 %			

Table 4: All Carrier MPE Contributions

AT&T Sector A Total:	28.92 %
AT&T Sector B Total:	28.92 %
AT&T Sector C Total:	28.92 %
Site Total:	53.37 %

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

AT&T _ Frequency Band / Technology (All Sectors)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
AT&T 850 MHz UMTS	2	656.33	67	12.68	850 MHz	567	2.24%
AT&T 850 MHz LTE	2	1,054.75	67	20.38	850 MHz	567	3.59%
AT&T 2300 MHz (WCS) LTE	4	2,104.51	67	81.33	2300 MHz (WCS)	1000	8.13%
AT&T 700 MHz LTE	2	729.71	67	14.10	700 MHz	467	3.02%
AT&T 1900 MHz (PCS) LTE	4	1,455.97	67	56.27	1900 MHz (PCS)	1000	5.63%
AT&T 2100 MHz (AWS) LTE	4	1,633.62	67	63.13	2100 MHz (AWS)	1000	6.31%
						Total:	28.92%

Table 6: AT&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	28.92 %
Sector B:	28.92 %
Sector C:	28.92 %
AT&T Maximum Total (per sector):	28.92 %
Site Total:	53.37 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **53.37** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

/st All

Scott Heffernan RF Engineering Director Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767

Exhibit 4

Structural Analysis Report

Structure	:	76.7 ft Monopine
ATC Site Name	:	Byram Park CT, CT
ATC Site Number	:	414240
Engineering Number	:	OAA720743_C3_01
Proposed Carrier	•	AT&T Mobility
Carrier Site Name	:	CT004/CT 004/Byram
Carrier Site Number	:	CT5004
Site Location	:	48 Ritch Avenue West Greenwich, CT 06830-9992 41.005100,-73.648300
County	;	Fairfield
Date	:	January 15, 2018
Max Usage	:	38%
Result	:	Pass OF CONNECTION
Prepared By: Michael Dugan TEP Michael Quym		Reviewed By:

1

COA: PEC.0001553

Tower Engineering Professionals, Inc. - 326 Tryon Road - Raleigh, NC 27603 - 919-661-6351 Office - 919-661-6350 Fax - www.tepgroup.net

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2
Equipment to be Removed	. 2
Proposed Equipment	2
Structure Usages	
Foundations	3
Deflection, Twist, and Sway	3
Standard Conditions	. 4
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 76.7 ft monopole to reflect the change in loading by AT&T Mobility.

Supporting Documents

Tower Drawings	EEI Project #16733 Rev. 3, dated December 9, 2011	
Foundation Drawing	Centek Engineering Job #09129 Rev. 0, dated February 14, 2012	
Geotechnical Report	DET Job #2010.14, dated October 4, 2010	

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	93 mph (3-Second Gust, Vasd) / 120 mph (3-Second Gust, Vult)
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 3/4" radial ice concurrent
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	1
Exposure Category:	С
Topographic Category:	1
Crest Height:	0 ft
Spectral Response:	Ss = 0.26, S ₁ = 0.07
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevatio	on ¹ (ft)	0		200 - 112 -													
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier											
		3	Ericsson RRUS 32 w/ Solar Shield (52.9 lbs)														
		3	Ericsson RRUS 11 B12														
76.0	76.0	3	Commscope LNX-6512DS-A1M (28.7 lbs)	T-Arms	(2) 1 5/8" Fiber	T-Mobile											
		3	Ericsson AIR-32 B2A/B66Aa														
		3	RFS APX16DWV-16DWVS-E-A20 (60" Height)														
		2	Raycap DC6-48-60-18-8F(32.8 lbs)														
	67.0		3	Ericsson RRUS 32 B2													
		3	Ericsson RRUS-32 (77 lbs)	T-Arms		AT&T Mobility											
67.0		3	Ericsson RRUS-11		(12) 1 5/8" Coax												
		3	Powerwave P65-16-XLH-RR														
								1	3				3	3	Quintel QS66512-2		
		3	CCI OPA-65R-LCUU-H6														
		3	Alcatel-Lucent RRH 2X60-1900														
		3	Alcatel-Lucent RRH2x60 700														
		3	Alcatel-Lucent B66 RRH4x45														
	57.0	2	Commscope RC2DC-4750-PF-48		(18) 1 5/8" Coax	Verizon											
57.0	57.0	3	Antel BXA-171063-12CF	T-Arms	(1) 1 5/8" Fiber												
		2	Commscope SBNHH-1D65A		(1) 1 5/8" Hybriflex												
		4	Commscope SBNHH-1D45A														
		6	Antel LPA-80063-6CF-EDIN-X														
	56.0	1	VZW Unused Reserve: 14,138 sq in														

Equipment to be Removed

Elevatio	on ¹ (ft)	0	1. 2 21.1355047		10000	21.55 (19-17)
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier
67.0	6	6	Powerwave TT19-08BP111-001		(4) 0.63" Cable	
67.0	67.0	3	Ericsson RRUS-11		(2) 5/8" Hybriflex	AT&T Mobility

Proposed Equipment

Elevatio	on ¹ (ft)	0			1000000	2000 000 000
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier
A STATE OF		6	CCI DTMABP7819VG12A		(4) 0.78" 8 AWG 6	
67.0	67.0	3	Ericsson RRUS 4426 B66	T-Arms	(2) 0.39" Fiber Trunk (1) 2" Conduit	AT&T Mobility

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Install proposed coax inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	37%	Pass
Shaft	36%	Pass
Base Plate	38%	Pass

Foundations

Reaction Component	Original Design Reactions	Analysis Reactions	% of Design
Moment (Kips-Ft)	4,555.2	2,221.4	49%
Shear (Kips)	74.4	43.2	58%

The structure base reactions resulting from this analysis are acceptable when compared to those shown on the original structure drawings, therefore no modification or reinforcement of the foundation will be required.

Deflection and Sway*

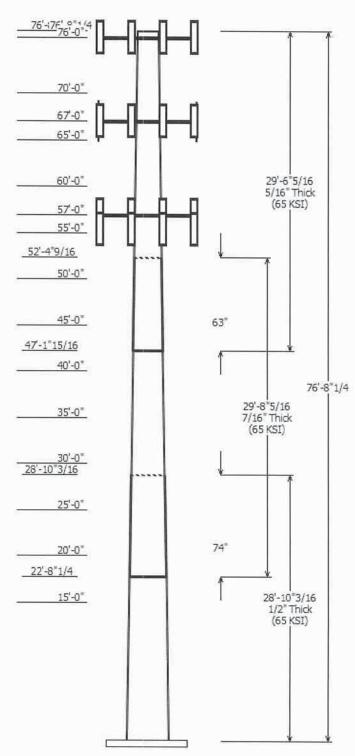
Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation)
67.0	CCI DTMABP7819VG12A	470744		
67.0	Ericsson RRUS 4426 B66	AT&T Mobility	0.200	0.291

*Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC


It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

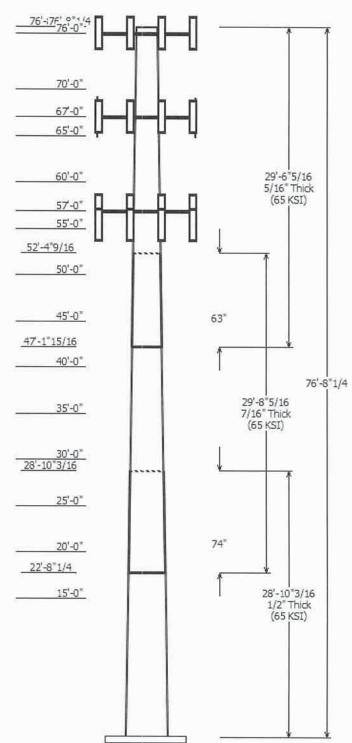
All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

© 2007 - 2018 by ATC IP LLC. All rights reserved.

Job Info	ormation
Pole : 414240	Code: ANSI/TIA-222-G
Location : Byram Park CT, CT	
Description : 77 ft monopine	
Client : AT&T MOBILITY	Struct Class : II
Shape : 18 Sides	Exposure : C
Height : 76.69 (ft)	Topo: 1
Base Elev (ft): 0.00	
Taper: 0.33579@in/ft)	


			Secti	ons P	roperties	<i>(</i> 1		
Shaft Section	Length (ft)		eter (in) ss Flats Bottom	Thick (in)	Joint Type	Overlap Length (in)	Shape	Steel Grade (ksi)
1	28.852	42.31	52.00	0.500		0.000	18 Sides	65
2	29.693	35.28	45.25	0.438	Slip Joint	73.969	18 Sides	65
3	29.529	27.75	37.66	0.313	Slip Joint	62.656	18 Sides	65

Attach Elev (ft)	Force Elev (ft)	Qty	Description
76.690	77.090	1	Pine Branches
76.000	76.000	3	Flat T-Arms
76.000	76.000	3	RFS APX16DWV-16DWVS-E-A20
76.000	76.000	3	Ericsson AIR-32 B2A/B66Aa
76.000	76.000	3	Commscope LNX-6512DS-A1M
76.000	76.000	3	Ericsson RRUS 11 B12
76.000	76.000	3	Ericsson RRUS 32 w/ Solar Shie
70.000	70.000	1	Pine Branches
67.000	67.000	3	Flat T-Arm
67.000	67.000	3	Ericsson RRUS 4426 B66
67.000	67.000	6	CCI DTMABP7819VG12A
67.000	67.000	3	Quintel QS66512-2
67.000	67.000	3	Ericsson RRUS-32 (77 lbs)
67.000	67.000	3	Powerwave Allgon P65-16-
67.000	67.000	3	Ericsson RRUS-11
67.000	67.000	2	Raycap DC6-48-60-18-8F(32.8 lb
67.000	67.000	3	CCI OPA-65R-LCUU-H6
67.000	67.000	3	Ericsson RRUS 32 B2
65.000	65.000	1	Pine Branches
60.000	60.000	1	Pine Branches
57.000	57.000	3	Alcatel-Lucent B66 RRH4x45
57.000	57.000	4	Commscope SBNHH-1D45A
57.000	57.000	2	Commscope SBNHH-1D65A
57.000	57.000	2	Commscope RC2DC-4750-PF-
57.000	57.000	3	Alcatel-Lucent RRH2x60 700
57.000	57.000	3	Alcatel-Lucent RRH 2X60-1900
57.000	57.000	6	Amphenol Antel LPA-80063-
57.000	57.000	3	Amphenol Antel BXA-171063-
57.000	56.000	1	VZW Unused Reserve: 14,138
57.000	57.000	3	Flat T-Arms
55.000	55.000	1	Pine Branches
50.000	50.000	1	Pine Branches
45.000	45.000	1	Pine Branches
40.000	40.000	1	Pine Branches
35.000	35.000	1	Pine Branches
30.000	30.000	1	Pine Branches
25.000	25.000	1	Pine Branches
20.000	20.000	1	Pine Branches
15.000	15.000	1	Pine Branches Pine Branches
191999	10.000		
		Line	ear Appurtenance

0.000	57.000	1 5/8" Coax	No	
0.000	57.000	1 5/8" Fiber	No	
0.000	57.000	1 5/8" Hybriflex	No	
0.000	67.000	0.39" Fiber Trunk	No	
0.000	67.000	0.78" 8 AWG 6	No	
0.000	67.000	1 5/8" Coax	No	
0.000	67.000	2" Conduit	No	
0.000	76.000	1 5/8" Fiber	No	
0.000	87.000	1/2" Coax	No	
0.000	87.000	7/8" Coax	No	

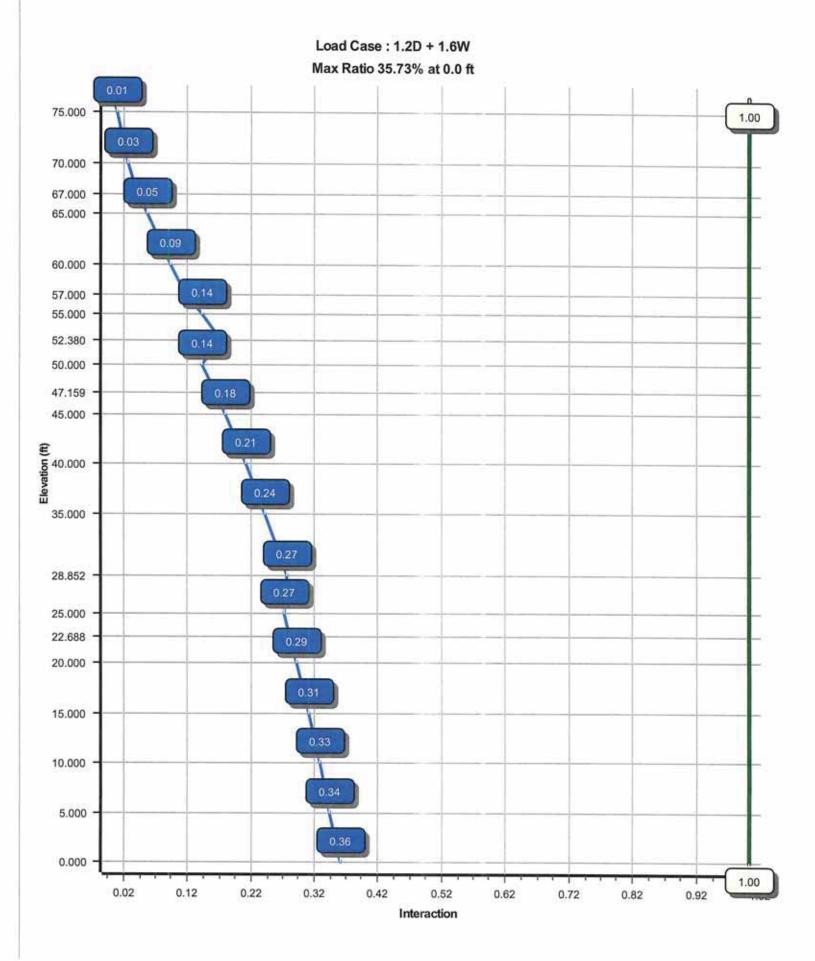
ſ

(1.2 + 0.2Sds) * DL + E ELFM (1.2 + 0.2Sds) * DL + E EMAM

	Load Cases				
1.2D + 1.6W	93 mph with No Ice				
0.9D + 1.6W	93 mph with No Ice (Reduced DL) 50 mph with 0.75 in Radial Ice				
1.2D + 1.0Di + 1.0Wi					
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent La	teral Force	s Method		
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Modal Analysis Method Seismic (Reduced DL) Equivalent Lateral Seismic (Reduced DL) Equivalent Modal Serviceability 60 mph				
(0.9 - 0.2Sds) * DL + E					
(0.9 - 0.2Sds) * DL + E					
1.0D + 1.0W					
	Reactions				
Load Case	Moment (kip-ft)	Shear (kip)	Axial (kip)		
1.2D + 1.6W	2221.39	43.18	40.21		
0.9D + 1.6W	2217.32	43.17	30.15		
1.2D + 1.0Di + 1.0Wi	635.48	12.47	CC 24		
The Trout Trout	000.40	12.47	66.34		

	0.00	0	.000	0.000
Load Case	Attach Elev (ft)		ection (in)	Rotation (deg)
D	ish Deflectio	ons		
1.0D + 1.0W	57	577.17 11.23		33.54
(0.9 - 0.2Sds) * DL + E EMAM	24	0.37	4.02	27.00
(0.9 - 0.2Sds) * DL + E ELFM	25	9.81	4.84	27.00
(Ind Vindous) DE CELINAI	24	1.00	4.02	40.17

260.44


241.00

4.84

4.02

40.17

40.17

Site Numbe Site Name: Customer:	er: 414240 Byram Pa AT&T MO		Enginee	Code: ANSI/TIA-222-G ring Number:OAA720743_C3_01	© 2007 - 2018 by ATC	IP LLC. All rights 1/16/2018 11:16		
			A	nalysis Parameters				
Location :		FAIRFIELD County, C	т	Height (ft) :	76.	.6875		
Code :		ANSI/TIA-222-G		Base Diameter (in) :	52.00			
Shape :		18 Sides		Top Diameter (in) :	27.75			
Pole Type :		Custom		Taper (in/ft) :	0.336			
Pole Manfacturer : EEI		EEI		Rotation (deg) :	0.00			
			lce	& Wind Parameters				
Structure Cla	ass:	Ш		Design Wind Speed Without Ice:	93	mph		
Exposure Category:		С		Design Wind Speed With Ice:	50 mph			
Topographic Category: Crest Height:		1		Operational Wind Speed: 60 mph			21	
		0 ft	Design Ice Thickness:			0.75 in		
			Se	eismic Parameters				
Analysis Me	thod:	Equivalent Modal Ana	lysis & Equ	ivalent Lateral Force Methods				
Site Class:		D - Stiff Soil						
Period Base	d on Rayleigh M	Method (sec):	0.68					
T _L (sec):	6		p:	1.3	C _s :	0.111		
S _s :	0.263		S ₁ :	0.071	C _s Max:	0.111		
F _a ;	1.590		F _v :	2.400	C _s Min:	0.030		
S _{ds} :	0.279		S _{d1} :	0.114				
);			Load Cases				
장님이 잘 못 걸었는 것 같아?	+ 1.0Wi) * DL + E ELFN) * DL + E EMA	93 mph 50 mph A Seismic	with 0.75 in	(Reduced DL)				

(1.2 + 0.2Sds) * DL + E EMAM (0.9 - 0.2Sds) * DL + E ELFM (0.9 - 0.2Sds) * DL + E EMAM

1.0D + 1.0W

Seismic Equivalent Modal Analysis Method Seismic (Reduced DL) Equivalent Lateral Forces Method Seismic (Reduced DL) Equivalent Modal Analysis Method Serviceability 60 mph

Site Number:	414240
--------------	--------

Site Name: Byram Park CT, CT

Customer: AT&T MOBILITY

Code: ANSI/TIA-222-G Engineering Number:OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved.

1/16/2018 11:16:43 AM

Shaft Section Properties

					Slip				Bo	ttom 🗕			-		—) I	ор 🗕			
Sect Info	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Joint Len (in)	Weight (Ib)	Dia (in)	Elev (ft)	Area (in ²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Taper (in/ft)
1-18	28.852	0.5000	65		0.00	7,269	52.00	0.00	81.73	27387.9	16.93	104.00	42.31	28.85	66.35	14656.9	13.51	84.63	0.335790
2-18	29.693	0.4375	65	Slip	73.97	5,589	45.25			15795.8									0.335790
3-18	29.529	0.3125	65	Slip	62.66	3,228	37.66	47.16	37.05	6530.8	19.84	120.53	27.75	76.69	27.21	2588.4	14.25	88.80	0.335790
			Sł	haft We	eight	16,086													100000000000000000000000000000000000000

Discrete Appurtenance Properties

Attach	Ì			- No Ic		territoria de la competitiva de la comp	- Ice		Distance	Vert
Elev (ft)	Description	Qty	Weight (Ib)	EPAa (sf)	Orientation Factor	Weight (Ib)	EPAa (sf)	Orientation Factor	From Face (ft)	Ecc (ft)
76.69	Pine Branches	1	600.00	45.000	1.00	991.67	74.376	1.00	0.000	0.400
76.00	Commscope LNX-6512DS-	3	28.70	5.090	0.69	159.31	6.008	0.69	0.000	0.000
76.00	Ericsson AIR-32 B2A/B66Aa	3	132.20	6.510	0.71	301.70	7.576	0.71	0.000	0.000
76.00	Ericsson RRUS 11 B12	3	50.70	2.790	0.67	130.19	3.421	0.67	0.000	0.000
76.00	Ericsson RRUS 32 w/ Solar	3	52.90	2.740	0.67	133.90	3.422	0.67	0.000	0.000
76.00	Flat T-Arms	3	250.00	12.900	0.67	445.61	20.554	0.67	0.000	0.000
76.00	RFS APX16DWV-16DWVS-E-	3	41.90	7.010	0.60	154.02	9.177	0.60	0.000	0.000
70.00	Pine Branches	1	600.00	45.000	1.00	987.28	74.046	1.00	0.000	0.000
67.00	CCI DTMABP7819VG12A	6	19.20	0.970	0.50	0.00	0.000	0.50	0.000	0.000
67.00	CCI OPA-65R-LCUU-H6	3	73.00	9.660	0.66	260.87	12.219	0.66	0.000	0.000
67.00	Ericsson RRUS 32 B2	3	53.00	2.740	0.67	132.64	3.412	0.67	0.000	0.000
67.00	Ericsson RRUS 4426 B66	3	48.40	1.650	0.50	0.00	0.000	0.50	0.000	0.000
67.00	Ericsson RRUS-11	3	55.00	3.790	0.67	137.87	4.975	0.67	0.000	0.000
67.00	Ericsson RRUS-32 (77 lbs)	3	77.00	3.310	0.67	166.77	4.494	0.67	0.000	0.000
67.00	Flat T-Arm	3	250.00		0.67	0.00	0.000	0.67	0.000	0.000
67.00	Powerwave Allgon P65-16-	3	53.00	8.130	0.67	205.04	10.702	0.67	0.000	0.000
67.00	Quintel QS66512-2	3	111.00	8.130	0.74	317.49	9.321	0.74	0.000	0.000
67.00	Raycap DC6-48-60-18-	2	32.80	1.280	1.00	89.75	1.841	1.00	0.000	0.000
65.00	Pine Branches	1	600.00		1.00	983.74	73.781	1.00	0.000	0.000
60.00	Pine Branches	1	600.00		1.00	981.21	73.591	1.00	0.000	0.000
57.00	Alcatel-Lucent B66 RRH4x45	3	67.00	2.580	0.67	142.67	3.210	0.67	0.000	0.000
57.00	Alcatel-Lucent RRH 2X60-	3	39.60	1.880	0.50	99.06	2.412	0.50	0.000	0.000
57.00	Alcatel-Lucent RRH2x60 700	3	56.70	2.150	0.67	128.80	2.711	0.67	0.000	0.000
57.00	Amphenol Antel BXA-171063-	- 3	12.80	4.800	0.72	99.75	6.947	0.72	0.000	0.000
57.00	Amphenol Antel LPA-80063-	6	27.00	9.730	0.75	263.95	12.217	0.75	0.000	0.000
57.00	Commscope RC2DC-4750-PF	- 2	26.00	3.780	0.67	138.48	4.518	0.67	0.000	0.000
57.00	Commscope SBNHH-1D45A	4	50.50	7.240	0.63	211.11	8.263	0.63	0.000	0.000
57.00	Commscope SBNHH-1D65A	2	33.50	5.880	0.69	174.20	6.847	0.69	0.000	0.000
57.00 57.00	Flat T-Arms	3	250.00		0.67	439.78	20.326	0.67	0.000	0.000
	VZW Unused Reserve:		1488.70		1.00	2,430.43		1.00	0.000	-1.000
55.00	Pine Branches	1	600.00		1.00	977.96	73.347	1.00	0.000	0.000
50.00 45.00	Pine Branches	1	600.00		1.00	974.19	73.064	1.00	0.000	0.000
40.00	Pine Branches Pine Branches	1	600.00		1.00	969.22	72.692	1.00	0.000	0.000
			600.00		1.00	964.63	72.347	1.00	0.000	0.000
35.00 30.00	Pine Branches	1	600.00		1.00	959.45	71.959	1.00	0.000	0.000
25.00	Pine Branches		600.00		1.00	955.90	71.692	1.00	0.000	0.000
20.00	Pine Branches Pine Branches	1	600.00		1.00	948.49	71.137	1.00	0.000	0.000
15.00	Pine Branches	1	600.00 600.00		1.00	937.87	70.341	1.00	0.000	0.000
15.00				45.000	1.00	926.69	69.502	1.00	0.000	0.000
	Totals	93	15061.20		28,58	8.15		Numbe	r of Loadings	: 39

Linear Appurtenance Properties

Elev	Elev	Coax	Coax	Projected		
From	То	Diameter		Width	Exposed	
(ft)	(ft) Qty De	scription (in)	(Ib/ft) Fla	at (in)	To Wind	Carrier

Site Nur Site Nar Custom	ne: B	14240 Iyram Park CT, CT T&T MOBILITY	En	gineerinç		de: ANSI/T ber:OAA72	IA-222-G 20743_C3_01	© 2007 - 2018 by ATC IP LLC. All rights reserved. 1/16/2018 11:16:43 AM
0.00	87.00	2 1/2" Coax	0.63	0.15	N	0.00	N	TOWN OF GREENWICH, CT
0.00	87.00	2 7/8" Coax	1.09	0.33	N	0.00	N	TOWN OF GREENWICH, CT
0.00	76.00	2 1 5/8" Fiber	1.63	1.61	N	0.00	N	T-Mobile
0.00	67.00	2 0.39" Fiber Trunk	0.39	0.06	Ν	0.00	N	AT&T Mobility
0.00	67.00	4 0.78" 8 AWG 6	0.78	0.59	N	0.00	N	AT&T Mobility
0.00	67.00	12 1 5/8" Coax	1.98	0.82	Ν	0.00	N	AT&T Mobility
0.00	67.00	1 2" Conduit	2.38	3.65	N	0.00	N	AT&T Mobility
0.00	57.00	18 1 5/8" Coax	1.98	0.82	N	0.00	N	Verizon
0.00	57.00	1 1 5/8" Fiber	1.63	1.61	N	0.00	N	Verizon
0.00	57.00	1 1 5/8" Hybriflex	1.98	1.30	Ν	0.00	N	Verizon

Site Name: Byram Park CT, CT

AT&T MOBILITY Customer:

Code: ANSI/TIA-222-G

© 2007 - 2018 by ATC IP LLC. All rights reserved.

Engineering Number: OAA720743_C3_01

1/16/2018 11:16:43 AM

Segment Properties (Max Len : 5.ft)

Seg T Elev (ft)	op Description	Thick (in)	Flat Dia (in)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	F'y (ksi)	S (in³)	Z (in³)	Weight (Ib)		
0.00		0.5000	52.001	81.729	27,387.9	16.93	104.00	81.5	1037.	0.0	0.0		
5.00		0.5000	50.322	79.065	24,795.7	16.34	100.64	82.2	970.5	0.0	1,367.9		
10.00		0.5000			22,372.5	15.74			905.9	0.0	1,322.5		
15.00		0.5000			20,112.5	15.15			843.5	0.0	1,277.2		
20.00		0.5000			18,010.1	14.56			783.3	0.0	1,231.9		
22.69	Bot - Section 2	0.5000			16,943.1	14.24			751.9	0.0	643.4		
25.00		0.5000		68.407		13.97			725.4	0.0	1,028.6		
28.85	Top - Section 1	0.4375			13,707.0	16.00			625.1	0.0	1,672.9		
30.00		0.4375			13,339.4	15.84			613.8	0.0	230.9		
35.00		0.4375		56.495		15.16			565.9	0.0			
40.00		0.4375			10,412.2	14.49			519.9	0.0			
45.00		0.4375		51.833	9,124.8	13.81			475.9	0.0			
47.16	Bot - Section 3	0.4375		50.826	8,603.4	13.52			457.5	0.0			
50.00		0.4375		49.501	7,948.1	13.13			433.8	0.0			
52.38	Top - Section 2	0.3125		35.309	5,653.7	18.85	114.92			0.0	685.6		
55.00		0.3125		34.437	5,244.8	18.36	112.10			0.0			
57.00		0.3125	34.361	33.771	4,946.3	17.98	109.95			0.0			
60.00		0.3125		32.771	4,520.2	17.41	106.73			0.0			
65.00		0.3125		31.106	3,865.5	16.46	101.36			0.0			
67.00		0.3125		30.440	3,622.5	16.08			230.1	0.0			
70.00		0.3125		29.441	3,277.4	15.51			215.2	0.0			
75.00		0.3125		27.776	2,752.1	14.57			191.4	0.0			
76.00		0.3125		27.443	2,654.3	14.38			186.8	0.0			
76.69		0.3125	21.150	27.214	2,588.4	14.25	88.80	82.6	183.7	0.0			
										1	6,086.4		

Site Number: 414240 Site Name: Byram Park CT, CT Customer: AT&T MOBILITY	Code: ANSI/TIA-222-G Engineering Number:OAA720743_C3_01	© 2007 - 2018 by ATC IP LLC. All rights reserved 1/16/2018 11:16:43 AM
Load Case: 1.2D + 1.6W	93 mph with No Ice	14 Iterations
Gust Response Factor :1.10 Dead Load Factor :1.20		Wind Importance Factor 1.00
Wind Load Factor :1.60		

		Shaft I	Forces		Discrete	Forces		Linear F	orces		Sum o	f Forces	
Seg Elev (ft)	Description	Wind FX (Ib)	Dead Load (Ib)	Wind FX (lb)	Torsion MY (Ib-ft)	Moment MZ (Ib-ft)	Dead Load (Ib)	Wind FX (Ib)	Dead Load (Ib)	Wind FX (lb)	Dead Load (Ib)	Torsion MY (lb-ft)	Moment MZ (Ib)
0.00		221.4	0.0					0.0	0.0	221.4	0.0	0.0	0.0
5.00		435.5	1,641.4					0.0	226.9	435.5	1,868.4	0.0	0.0
10.00		421.0	1,587.0					0.0	226.9	421.0	1.814.0	0.0	0.0
15.00	Appurtenance(s)	412.7	1,532.6	1,416.0	0.0	0.0	720.0	0.0	226.9	1,828.8	2,479.6		0.0
20.00	Appurtenance(s)	318.1	1,478.2	1,502.5	0.0	0.0	720.0	0.0	226.9	1,820.5	2,425.2	0.0	0.0
22.69	Bot - Section 2	211.0	772.1					0.0	122.0	211.0	894.0	0.0	0.0
25.00	Appurtenance(s)	263.9	1,234.4	1,574.7	0.0	0.0	720.0	0.0	105.0	1,838.6	2,059.3	0.0	0.0
28.85	Top - Section 1	214.2	2,007.4					0.0	174.8	214.2	2,182.2	0.0	0.0
30.00	Appurtenance(s)	262.6	277.1	1,636.4	0.0	0.0	720.0	0.0	52.1	1,898.9	1,049.2	0.0	0.0
35.00	Appurtenance(s)	424.5	1,177.2	1,690.3	0.0	0.0	720.0	0.0	226.9	2,114.8	2,124.2	0.0	0.0
40.00	Appurtenance(s)	418.8	1,129.6	1,738.5	0.0	0.0	720.0	0.0	226.9	2,157.4	2,076.6	0.0	0.0
45.00	Appurtenance(s)	296.1	1,082.0	1,782.2	0.0	0.0	720.0	0.0	226.9	2,078.3	2,029.0	0.0	0.0
47.16	Bot - Section 3	205.3	452.5					0.0	98.0	205.3	550.5	0.0	0.0
50.00	Appurtenance(s)	213.7	1,006.3	1,822.1	0.0	0.0	720.0	0.0	128.9	2,035.8	1,855.2	0.0	0.0
52.38	Top - Section 2	201.8	822.7					0.0	108.0	201.8	930.8	0.0	0.0
55.00	Appurtenance(s)	184.2	373.1	1,859.1	0.0	0.0	720.0	0.0	118.9	2,043.3	1,211.9	0.0	0.0
57.00	Appurtenance(s)	196.0	278.5	8,144.5	0.0	-4,074.8	3,900.0	0.0	90.8	8,340.5	4,269.3	0.0	0.0
60.00	Appurtenance(s)	306.7	407.6	1,893.4	0.0	0.0	720.0	0.0	72.5	2,200.1	1,200.1	0.0	0.0
65.00	Appurtenance(s)	263.7	652.1	1,925.6	0.0	0.0	720.0	0.0	120.9	2,189.4	1,493.0	0.0	0.0
67.00	Appurtenance(s)	182.9	251.3	3,636.4	0.0	0.0	2,810.4	0.0	48.4	3,819.3	3,110.1	0.0	0.0
70.00	Appurtenance(s)	284.4	366.8	1,955.9	0.0	0.0	720.0	0.0	15.0	2,240.3	1,101.8	0.0	0.0
75.00		209.7	584.1					0.0	25.1	209.7	609.2	0.0	0.0
76.00	Appurtenance(s)	57.5	112.7	2,563.0	0.0	0.0	2,003.0	0.0	5.0	2,620.5	2,120.8	0.0	0.0
76.69		23.3	76.7					0.0	0.8	23.3	77.5	0.0	0.0
								To	otals:	41,369.6	39,531.6	0.00	0.00

Site Num Site Nam Custome	e: Byı	2004 - 2004 - 2004 - 2004 - 2004 - 2004 - 2004 - 2004 - 2004 - 2004 - 2004 - 2004 - 2004 - 2004 - 2004 - 2004 -	CT, CT		Engin	Code eering Numbe	e: ANSI/TIA- er:OAA72074			018 by AT		All rights re 18 11:16:	
Gust Re Dea Win	Case: 1 esponse ad Load nd Load	Factor : Factor : Factor :	1.10 1.20		93	3 mph with No	Ice			Wind Im	iportanc	14 Itera e Factor :	
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips) (Mu MX ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Rati
0.00 5.00 10.00 15.00 20.00 22.69 25.00 35.00 40.00 45.00 47.16 50.00 52.38 55.00 57.00 60.00 67.00 70.00 75.00 76.	-40.21 -38.26 -36.37 -33.82 -31.35 -30.43 -28.34 -26.13 -25.07 -22.91 -20.82 -18.80 -18.23 -16.40 -15.46 -14.27 -10.15 -8.98 -7.53 -4.49 -3.43 -2.83 -0.76	-43.18 -42.82 -42.46 -40.68 -38.89 -38.70 -36.87 -36.66 -34.78 -32.67 -30.52 -28.43 -26.17 -25.96 -23.90 -15.49 -13.27 -11.06 -7.18 -4.92 -4.70 -2.03	0.00 0.00	-2,221.39 -2,005.47 -1,791.37 -1,579.06 -1,375.64 -1,271.12 -1,181.63 -1,039.60 -997.50 -823.62 -660.24 -507.65 -446.27 -366.07 -303.79 -235.78 -187.97 -141.51 -75.14 -53.03 -31.49 -6.90 -2.20	0.00 0.00	2,221.39 2,005.47 1,791.37 1,579.06 1,375.64 1,271.12 1,181.63 1,039.60 997.50 823.62 660.24 507.65 446.27 366.07 303.79 235.78 187.97 141.51 75.14 53.03 31.49 6.90 2.20	5,848.27 5,676.15 5,478.20 5,280.25 5,173.85 5,082.30 4,410.30 4,370.52 4,197.31 4,024.11 3,850.90 3,776.11 3,677.69 2,517.68 2,473.56 2,439.26 2,386.81 2,296.72 2,259.74 2,187.31 2,063.59	2,924.13 2,838.08 2,739.10 2,640.13 2,586.93 2,541.15 2,205.15 2,205.15 2,205.15 2,2098.66 2,012.05 1,925.45 1,838.85 1,258.84 1,236.78 1,219.63 1,193.40 1,148.36 1,129.87 1,093.66 1,031.80	12,661.4 11,946.7 11,200.5 10,429.0 9,685.11 9,296.61 8,968.69 7,729.02 7,589.51 6,996.92 6,428.42 5,884.00 5,656.38 5,363.67 3,679.50 3,524.91 3,408.20 3,235.34 2,953.55 2,843.16 2,660.79 2,366.82 2,310.09	5,982.25 5,608.58 5,222.28 4,849.75 4,655.22 4,491.01 3,870.25 3,800.39 3,503.66 3,218.99 2,946.37 2,832.40 2,685.82 1,842.48 1,765.07 1,706.63 1,620.08 1,620.08 1,478.97 1,423.69 1,332.37 1,185.17	0.00 0.06 0.24 0.52 0.92 1.18 1.43 1.90 2.05 2.76 3.58 4.48 4.90 5.46 5.95 6.51 6.95 7.61 8.761 8.761 9.23 9.94 11.13 11.37	0.00 -0.11 -0.22 -0.33 -0.43 -0.49 -0.53 -0.61 -0.63 -0.73 -0.82 -0.90 -0.93 -0.97 -1.00 -1.02 -1.05 -1.08 -1.11 -1.12 -1.13 -1.14	0.35 0.34 0.32 0.22 0.22 0.22 0.22 0.22 0.22 0.22

Site Name: Byram Park CT, CT

Customer:

: AT&T MOBILITY

Code: ANSI/TIA-222-G Engineering Number:OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved.

1/16/2018 11:16:46 AM

Load Case: 0.9D + 1.6W

Gust Response Factor :1.10

Dead Load Factor :0.90

Wind Load Factor :1.60

93 mph with No Ice (Reduced DL)

14 Iterations Wind Importance Factor 1.00

		Shaft	Forces		Discret	e Forces		Linear F	orces		Sum o	f Forces	
Seg Elev (ft)	Description	Wind FX (Ib)	Dead Load (Ib)	Wind FX (lb)	Torsion MY (Ib-ft)	Moment MZ (lb-ft)	Dead Load (Ib)	Wind FX (lb)	Dead Load (Ib)	Wind FX (lb)	Dead Load (Ib)	Torsion MY (lb-ft)	Moment MZ (Ib)
0.00		221.4	0.0	5				0.0	0.0	221.4	0.0	0.0	0.0
5.00		435.5	1,231.1					0.0	170.2	435.5	1,401.3	0.0	0.0
10.00		421.0	1,190.3					0.0	170.2	421.0	1,360.5	0.0	0.0
15.00	Appurtenance(s)	412.7	1,149.5	1,416.0	0.0	0.0	540.0	0.0	170.2	1,828.8	1,859.7	0.0	0.0
20.00	Appurtenance(s)	318.1	1,108.7	1,502.5	0.0	0.0	540.0	0.0	170.2	1,820.5	1,818.9	0.0	0.0
22.69	Bot - Section 2	211.0	579.1					0.0	91.5	211.0	670.5	0.0	0.0
25.00	Appurtenance(s)	263.9	925.8	1,574.7	0.0	0.0	540.0	0.0	78.7	1,838.6	1.544.5	0.0	0.0
28.85	Top - Section 1	214.2	1,505.6					0.0	131.1	214.2	1,636.7	0.0	0.0
30.00	Appurtenance(s)	262.6	207.8	1,636.4	0.0	0.0	540.0	0.0	39.1	1,898.9	786.9	0.0	0.0
35.00	Appurtenance(s)	424.5	882.9	1,690.3	0.0	0.0	540.0	0.0	170.2	2,114.8	1,593.1	0.0	0.0
40.00	Appurtenance(s)	418.8	847.2	1,738.5	0.0	0.0	540.0	0.0	170.2	2,157.4	1,557.4	0.0	0.0
45.00	Appurtenance(s)	296.1	811.5	1,782.2	0.0	0.0	540.0	0.0	170.2	2.078.3	1,521.7	0.0	0.0
47.16	Bot - Section 3	205.3	339.4	1				0.0	73.5	205.3	412.8	0.0	0.0
50.00	Appurtenance(s)	213.7	754.7	1,822.1	0.0	0.0	540.0	0.0	96.7	2,035.8	1,391,4	0.0	0.0
52.38	Top - Section 2	201.8	617.1					0.0	81.0	201.8	698.1	0.0	0.0
55.00	Appurtenance(s)	184.2	279.8	1,859.1	0.0	0.0	540.0	0.0	89.2	2,043.3	909.0	0.0	0.0
57.00	Appurtenance(s)	196.0	208.9	8,144.5	0.0	-4,074.8	2,925.0	0.0	68.1	8,340.5	3,202.0	0.0	0.0
60.00	Appurtenance(s)	306.7	305.7	1,893.4	0.0	0.0	540.0	0.0	54.4	2,200.1	900.1	0.0	0.0
65.00	Appurtenance(s)	263.7	489.1	1,925.6	0.0	0.0	540.0	0.0	90.7	2,189.4	1,119.7	0.0	0.0
67.00	Appurtenance(s)	182.9	188.5	3,636.4	0.0	0.0	2,107.8	0.0	36.3	3,819.3	2,332.6	0.0	0.0
70.00	Appurtenance(s)	284.4	275.1	1,955.9	0.0		540.0	0.0	11.3	2,240.3	826.4	0.0	0.0
75.00	17.54F 22.054	209.7	438.1	10.955.565	850.00	N 1972		0.0	18.8	209.7	456.9	0.0	0.0
76.00	Appurtenance(s)	57.5	84.6	2,563.0	0.0	0.0	1,502.3	0.0	3.8	2,620.5	1,590.6	0.0	0.0
76.69	1002	23.3	57.5					0.0	0.6	23.3	58.1	0.0	0.0
								To	tals:	41,369.6	29,648.7	0.00	0.00

Site Num Site Nam Custome	e: Byr		¢ CT, CT ILITY		Engin	Code eering Numbe	e: ANSI/TIA- er:OAA72074			018 by AT		All rights re	
Gust Re	esponse Id Load	.9D + 1.6 Factor : Factor : Factor :	1.10 0.90		93	mph with No	Ice (Reduce	ed DL)		Wind Im	portance	14 Itera e Factor :	
Calcula Seg Elev (ft)	Pu	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00 5.00 10.00 15.00 22.69 25.00 28.85 30.00 35.00 40.00 45.00 47.16 50.00 52.38 55.00 57.00 60.00 65.00 67.00 75.00 76.00	-30.15 -28.66 -27.22 -25.30 -23.44 -22.73 -21.17 -19.50 -18.70 -17.08 -15.50 -13.99 -13.56 -12.19 -11.48 -10.60 -7.54 -6.67 -5.59 -3.33 -2.55 -2.10 -0.56	-43.17 -42.79 -42.42 -40.63 -38.83 -38.63 -36.80 -36.59 -34.70 -32.60 -32.60 -32.60 -32.60 -25.89 -23.83 -15.44 -13.23 -11.02 -7.16 -4.90 -4.68 -2.03	0.00 0.00	-2,217.32 -2,001.45 -1,787.49 -1,575.40 -1,372.26 -1,267.92 -1,178.58 -1,036.84 -994.82 -821.31 -658.34 -506.14 -302.85 -235.02 -187.36 -141.03 -74.89 -52.85 -31.39 -6.88 -2.20	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2,217.32 2,001.45 1,787.49 1,575.40 1,372.26 1,267.92 1,178.58 1,036.84 994.82 821.31 658.34 506.14 444.94 364.96 302.85 235.02 187.36 141.03 74.89 52.85 31.39 6.88 2.20	5,848.27 5,676.15 5,478.20 5,280.25 5,173.85 5,082.30 4,410.30 4,410.30 4,370.52 4,197.31 4,024.11 3,850.90 3,776.11 3,677.69 2,517.68 2,473.56 2,439.26 2,386.81 2,296.72 2,259.74 2,187.31 2,063.59	2,924.13 2,838.08 2,739.10 2,640.13 2,586.93 2,541.15 2,205.15 2,205.15 2,205.15 2,098.66 2,012.05 1,925.45 1,838.85 1,258.84 1,236.78 1,219.63 1,193.40 1,148.36 1,129.87 1,093.66	12,661.4 11,946.7 11,200.5 10,429.0 9,685.11 9,296.61 8,968.69 7,729.02 7,589.51 6,996.92 6,428.42 5,884.00 5,656.38 5,363.67 3,679.50 3,524.91 3,408.20 3,235.34 2,953.55 2,843.16 2,660.79 2,366.82 2,361.00	5,982.25 5,608.58 5,222.28 4,849.75 4,655.22 4,491.01 3,870.25 3,800.39 3,503.66 3,218.99 2,946.37 2,832.40 2,685.82 1,842.48 1,765.07 1,706.63 1,620.08 1,478.97 1,423.69 1,332.37 1,185.17	0.00 0.06 0.24 0.52 0.92 1.18 1.43 1.89 2.04 2.76 3.57 4.89 5.45 5.94 6.50 6.93 7.60 8.74 9.21 9.91 11.10 11.34	0.00 -0.11 -0.22 -0.33 -0.43 -0.49 -0.53 -0.61 -0.63 -0.73 -0.82 -0.90 -0.93 -0.97 -1.00 -1.02 -1.05 -1.07 -1.01 -1.12 -1.13 -1.13 -1.14	0.35 0.34 0.32 0.27 0.26 0.27 0.26 0.23 0.23 0.23 0.17 0.16 0.13 0.16 0.13 0.16 0.13 0.11 0.09 0.05 0.03 0.02 0.00

Site Name: Byram Park CT, CT

Customer:

AT&T MOBILITY

Code: ANSI/TIA-222-G Engineering Number: OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved.

1/16/2018 11:16:49 AM

Load Case: 1.2D + 1.0Di + 1.0Wi

50 mph with 0.75 in Radial Ice

Gust Response Factor :1.10

Ice Dead Load Factor 1.00

13 Iterations Wind Importance Factor :1.00

Dead Load Factor :1.20 Wind Load Factor :1.00

Ice Importance Factor :1.00

		Shaft I	Forces		Discrete	Forces		Linear F	orces		Sum of	f Forces	
Seg Elev (ft)	Description	Wind FX (Ib)	Dead Load (Ib)	Wind FX (lb)	Torsion MY (Ib-ft)	Moment MZ (Ib-ft)	Dead Load (Ib)	Wind FX (Ib)	Dead Load (Ib)	Wind FX (Ib)	Dead Load (Ib)	Torsion MY (lb-ft)	Moment MZ (Ib)
0.00		77.1	0.0					0.0	0.0	77.1	0.0	0.0	0.0
5.00		152.2	2,015.2					0.0	226.9	152.2	2,242.1	0.0	0.0
10.00		147.9	1,991.6					0.0	226.9	147.9	2,218.6	0.0	0.0
15.00	Appurtenance(s)	145.7	1,944.7	395.1	0.0	0.0	1,646.7	0.0	226.9	540.8	3,818.3	0.0	0.0
20.00	Appurtenance(s)	112.6	1,890.0	424.3	0.0	0.0	1,657.9	0.0	226.9	536.8	3,774.8	0.0	0.0
22.69	Bot - Section 2	74.8	993.6					0.0	122.0	74.8	1,115.6	0.0	0.0
25.00	Appurtenance(s)	93.8	1,427.6	449.7	0.0	0.0	1,668.5	0.0	105.0	543.5	3.201.0	0.0	0.0
28.85	Top - Section 1	76.2	2,324.1					0.0	174.8	76.2	2,498.9	0.0	0.0
30.00	Appurtenance(s)	93.7	371.6	471.0	0.0	0.0	1,675.9	0.0	52.1	564.7	2,099.6	0.0	0.0
35.00	Appurtenance(s)	151.8	1,577.1	488.3	0.0	0.0	1,679.5	0.0	226.9	640.1	3,483.4	0.0	0.0
40.00	Appurtenance(s)	150.4	1,519.4	504.9	0.0	0.0	1,684.6	0.0	226.9	655.3	3,431.0	0.0	0.0
45.00	Appurtenance(s)	106.6	1,460.7	520.1	0.0	0.0	1,689.2	0.0	226.9	626.7	3,376.9	0.0	0.0
47.16	Bot - Section 3	74.1	614.3					0.0	98.0	74.1	712.3	0.0	0.0
50.00	Appurtenance(s)	77.2	1,218.6	534.5	0.0	0.0	1,694.2	0.0	128.9	611.7	3,041.8	0.0	0.0
52.38	Top - Section 2	73.1	997.9					0.0	108.0	73.1	1,105.9	0.0	0.0
55.00	Appurtenance(s)	66.9	562.2	547.4	0.0	0.0	1,698.0	0.0	118.9	614.3	2,379.1	0.0	0.0
57.00	Appurtenance(s)	71.4	420.9	2,146.6	0.0	-1,201.8	6,965.7	0.0	90.8	2,217.9	7,477.4	0.0	0.0
60.00	Appurtenance(s)	112.0	616.1	559.4	0.0	0.0	1,701.2	0.0	72.5	671.4	2,389.9	0.0	0.0
65.00	Appurtenance(s)	96.6	985.2	570.4	0.0	0.0	1,703.7	0.0	120.9	667.0	2,809.9	0.0	0.0
67.00	Appurtenance(s)	67.3	382.6	882.4	0.0	0.0	5,525.8	0.0	48.4	949.7	5,956.8	0.0	0.0
70.00	Appurtenance(s)	105.1	558.4	581.4	0.0	0.0	1,707.3	0.0	15.0	686.5	2,280.7	0.0	0.0
75.00		77.7	888.3					0.0	25.1	77.7	913.4	0.0	0.0
76.00	Appurtenance(s)	21.4	173.2	623.6	0.0	0.0	4,009.4	0.0	5.0	645.0	4,187.6	0.0	0.0
76.69		8.7	118.0		ē			0.0	0.8	8.7	118.8	0.0	0.0
								Тс	otals:	11,933.1	64,633.6	0.00	0.00

Site Nam Custome	200 - 10 14 0 11-1	am Park &T MOB	CT, CT		Engin	eering Number	:OAA72074	43_C3_01		2018 by AT		18 11:16:	
Load	Case: 1	.2D + 1.()Di + 1.0V	Vi	50	mph with 0.75	5 in Radial I	се				13 Itera	tions
Dea	esponse ad Load nd Load	Factor :	1.20	Ice [Dead Load	Factor :1.00						e Factor : e Factor :	
Calcula	ted Fo	rces											
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Rati
0.00 5.00 10.00 15.00 20.00 22.69 25.00 28.85 30.00 35.00 40.00 45.00 47.16	-66.34 -64.09 -61.87 -58.04 -54.27 -53.15 -49.94 -47.44 -45.34 -41.86 -38.42 -35.05 -34.34	-12.47 -12.35 -12.24 -11.72 -11.20 -11.13 -10.60 -10.53 -9.97 -9.34 -8.68 -8.05 -7.98	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-635.48 -573.13 -511.37 -450.19 -391.59 -361.50 -335.75 -294.93 -282.84 -233.00 -186.32 -142.91 -125.52	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	635.48 573.13 511.37 450.19 391.59 361.50 335.75 294.93 282.84 233.00 186.32 142.91 125.52	5,848.27 5,676.15 5,478.20 5,280.25 5,173.85 5,082.30 4,410.30 4,370.52 4,197.31 4,024.11 3,850.90	2,924.13 2,838.08 2,739.10 2,640.13 2,586.93 2,541.15 2,205.15 2,185.26 2,098.66 2,012.05 1,925.45	12,661.4 11,946.7 11,200.5 10,429.0 9,685.11 9,296.61 8,968.69 7,729.02 7,589.51 6,996.92 6,428.42 5,884.00 5,656.38	5,982.25 5,608.58 5,222.28 4,849.75 4,655.22 4,491.01 3,870.25 3,800.39 3,503.66 3,218.99 2,946.37	0.00 0.02 0.07 0.15 0.26 0.34 0.41 0.54 0.58 0.79 1.02 1.28 1.40	0.00 -0.03 -0.06 -0.09 -0.12 -0.14 -0.15 -0.17 -0.18 -0.21 -0.23 -0.26 -0.26	0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50.00 52.38 55.00 57.00 60.00 65.00 67.00 70.00	-31.30 -30.19 -27.81 -20.35 -17.96 -15.15 -9.20 -6.92	-7.36 -7.29 -6.66 -4.41 -3.73 -3.05 -2.06 -1.37	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-102.85 -85.33 -66.25 -52.92 -39.70 -21.06 -14.97 -8.77	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	102.85 85.33 66.25 52.92 39.70 21.06 14.97 8.77	3,677.69 2,517.68 2,473.56 2,439.26 2,386.81 2,296.72 2,259.74	1,838.85 1,258.84 1,236.78 1,219.63 1,193.40 1,148.36 1,129.87	5,363.67 3,679.50 3,524.91 3,408.20 3,235.34 2,953.55 2,843.16 2,660.79	2,685.82 1,842.48 1,765.07 1,706.63 1,620.08 1,478.97 1,423.69	1.40 1.56 1.70 1.85 1.98 2.17 2.49 2.63 2.83	-0.28 -0.28 -0.29 -0.30 -0.31 -0.31 -0.32 -0.32	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-1.37 -1.28

-0.61

-0.60

-6.01 -1.83

0.00

75.00

76.00

76.69

0.00 0.00

0.00

0.00

-8.77 -1.95

-0.66

-0.24

0.00

0.00

0.00

1.95

0.66 0.24

2,187.31 1,093.66 2,660.79 1,332.37 2,063.59 1,031.80 2,366.82 1,185.17 2,038.85 1,019.42 2,310.09 1,156.76 2,021.84 1,010.92 2,271.49 1,137.43

-0.32 -0.32

-0.32 -0.32

3.16

3.23 3.28

0.010 0.005

0.001

0.000

Site Name: Byram Park CT, CT

AT&T MOBILITY Customer:

Code: ANSI/TIA-222-G Engineering Number: OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved. 1/16/2018 11:16:53 AM

Load Case: 1.0D + 1.0W

Gust Response Factor :1.10

Serviceability 60 mph

13 Iterations Wind Importance Factor :1.00

Dead Load Factor :1.00

Wind Load Factor :1.00

		Shaft Forces			Discrete	e Forces		Linear F	orces	Sum of Forces			
Seg Elev (ft)	Description	Wind FX (lb)	Dead Load (Ib)	Wind FX (lb)		Moment MZ (Ib-ft)	Dead Load (Ib)	Wind FX (Ib)	Dead Load (Ib)	Wind FX (Ib)	Dead Load (Ib)	Torsion MY (lb-ft)	Moment MZ (Ib)
0.00		57.6	0.0).				0.0	0.0	57.6	0.0	0.0	0.0
5.00		113.3	1,367.9					0.0	189.1	113.3	1,557.0	0.0	0.0
10.00		109.5	1,322.5					0.0	189.1	109.5	1,511.6	0.0	0.0
15.00	Appurtenance(s)	107.4	1,277.2	368.4	0.0	0.0	600.0	0.0	189.1	475.7	2,066.3	0.0	0.0
20.00	Appurtenance(s)	82.7	1,231.9	390.9	0.0	0.0	600.0	0.0	189.1	473.6	2,021.0	0.0	0.0
22.69	Bot - Section 2	54.9	643.4					0.0	101.6	54.9	745.0	0.0	0.0
25.00	Appurtenance(s)	68.7	1,028.6	409.7	0.0	0.0	600.0	0.0	87.5	478.3	1,716.1	0.0	0.0
28.85	Top - Section 1	55.7	1,672.9		100000	n)#.o v .		0.0	145.7	55.7	1,818.5	0.0	0.0
30.00	Appurtenance(s)	68.3	230.9	425.7	0.0	0.0	600.0	0.0	43.4	494.0	874.4	0.0	0.0
35.00	Appurtenance(s)	110.4	981.0	439.7	0.0		600.0	0.0	189.1	550.2	1,770.1	0.0	0.0
40.00	Appurtenance(s)	109.0	941.4	452.3	0.0	0.0	600.0	0.0	189.1	561.2	1,730.5	0.0	0.0
45.00	Appurtenance(s)	77.0	901.7	463.6	0.0	0.0	600.0	0.0	189.1	540.7	1,690.8	0.0	0.0
47.16	Bot - Section 3	53.4	377.1		>			0.0	81.6	53.4	458.7	0.0	0.0
50.00	Appurtenance(s)	55.6	838.6	474.0	0.0	0.0	600.0	0.0	107.5	529.6	1,546.0	0.0	0.0
52.38	Top - Section 2	52.5	685.6			n: cartas	(107-74-107).	0.0	90.0		775.6	0.0	0.0
55.00	Appurtenance(s)	47.9	310.9	483.6	0.0	0.0	600.0	0.0	99.1	531.5	1,010.0	0.0	0.0
57.00	Appurtenance(s)	51.0	232.1	2,118.8	0.0	-1,060.0	3,250.0	0.0	75.6	2,169.8	3,557.7	0.0	0.0
60.00	Appurtenance(s)	79.8	339.6	492.6	0.0		600.0	0.0	60.5	572.3	1,000.1	0.0	0.0
65.00	Appurtenance(s)	68.6	543.4	500.9	0.0	0.0	600.0	0.0	100.8	569.6	1,244.2	0.0	0.0
67.00	Appurtenance(s)	47.6	209.4	946.0	0.0		2,342.0	0.0	40.3		2,591.7	0.0	0.0
70.00	Appurtenance(s)	74.0	305.6	508.8	0.0		600.0	0.0	12.5		918.2	0.0	0.0
75.00	4840 OS	54.6	486.7	0000			1000	0.0	20.9	N. 2010 (1996)	507.6	0.0	0.0
76.00	Appurtenance(s)	15.0	93.9	666.8	0.0	0.0	1,669.2	0.0	4.2	681.7	1,767.3	0.0	0.0
76.69		6.1	63.9					0.0	0.7	6.1	64.6	0.0	0.0
								Тс	otals:	10,762.1	32,943.0	0.00	0.00

Site Numb Site Name Customer	e: Byr		¢ CT, CT ILITY		Engin	Code eering Numbe	e: ANSI/TIA-2 er:OAA72074			2018 by AT		All rights re	
Load C Gust Re					Se	erviceability 6	0 mph)A/in at Inc			tions
Dea	d Load	Factor : Factor :	1.00							wind In	portance	e Factor :	1.00
Calculat	ed Fo	rces											0
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)		Rotation (deg)	Ratio
	-33.54 -31.98 -30.46 -28.39 -26.37	-11.23 -11.13 -11.04 -10.57 -10.11	0.00 0.00 0.00 0.00 0.00	-577.17 -521.01 -465.35 -410.15 -357.29	0.00 0.00 0.00 0.00 0.00	577.17 521.01 465.35 410.15 357.29	5,848.27 5,676.15 5,478.20	2,924.13 2,838.08 2,739.10	12,661.4 11,946.7 11,200.5 10,429.0	5,982.25 5,608.58 5,222.28	0.00 0.02 0.06 0.14	0.00 -0.03 -0.06 -0.08	0.097 0.093 0.088 0.084
22.69 25.00 28.85 30.00	-25.62 -23.90 -22.08 -21.21	-10.06 -9.58 -9.52 -9.03	0.00 0.00 0.00 0.00	-330.13 -306.87 -269.98 -259.04	0.00 0.00 0.00 0.00	330.13 306.87 269.98 259.04	5,173.85 5,082.30 4,410.30 4,370.52	2,586.93 2,541.15 2,205.15 2,185.26	9,685.11 9,296.61 8,968.69 7,729.02 7,589.51	4,655.22 4,491.01 3,870.25 3,800.39	0.24 0.31 0.37 0.49 0.53	-0.11 -0.13 -0.14 -0.16 -0.16	0.07 0.07 0.07 0.07
35.00	-19.43	-8.49	0.00	-213.87	0.00	213.87			6,996.92	3,503.66	0.72	-0.19	0.0

-7.93

-7.38

-7.33

-6.80

-6.74

-6.21

-4.02

-3.45

-2.87

-1.86

-1.28

-1.22

-0.53

-0.53

40.00

45.00

47.16

50.00

52.38

55.00

57.00

60.00

65.00

67.00

70.00

75.00

76.00

76.69

-17.70

-16.01

-15.55

-14.01

-13.23

-12.22

-8.67

-7.68

-6.44

-3.85

-2.93

-2.43

-0.66

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-171.44

-131.81

-115.87

-95.05

-78.87

-61.21

-48.80

-36.73

-19.51

-13.77

-8.17

-1.79

-0.57

-0.21

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

171.44

131.81

115.87

95.05

78.87

61.21

48.80

36.73

19.51

13.77

8.17

1.79

0.57

0.21

0.93

1.16

1.27

1.42

1.55

1.69

1.80

1.98

2.28

2.40

2.58

2.89

2.95

2.99

4,024.11 2,012.05 6,428.42 3,218.99

3,850.90 1,925.45 5,884.00 2,946.37

3,776.11 1,888.06 5,656.38 2,832.40

3,677.69 1,838.85 5,363.67 2,685.82

2,517.68 1,258.84 3,679.50 1,842.48

2,473.56 1,236.78 3,524.91 1,765.07

2,439.26 1,219.63 3,408.20 1,706.63

2,386.81 1,193.40 3,235.34 1,620.08

2,296.72 1,148.36 2,953.55 1,478.97

2,259.74 1,129.87 2,843.16 1,423.69

2,187.31 1,093.66 2,660.79 1,332.37

2,063.59 1,031.80 2,366.82 1,185.17

2,038.85 1,019.42 2,310.09 1,156.76

2,021.84 1,010.92 2,271.49 1,137.43

-0.21

-0.23

-0.24

-0.25

-0.26

-0.27

-0.27

-0.28

-0.29

-0.29

-0.29

-0.30

-0.30

-0.30

0.058

0.049

0.045

0.039

0.048

0.040

0.032

0.026

0.016

0.011

0.007

0.003 0.001

0.000

Site Number: 414240 Site Name: Byram Park CT, CT

Code: ANSI/TIA-222-G Engineering Number: OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved.

1/16/2018 11:16:56 AM

Customer: AT&T MOBILITY

Equivalent Lateral Forces Method Analysis

(Based on ASCE7-10 Chapters 11, 12, 15)

Spectral Response Acceleration for Short Period (S s):	0.26
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.07
Long-Period Transition Period (T L):	6
Importance Factor (I E):	1.00
Site Coefficient F a:	1.59
Site Coefficcient F v:	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S ds):	0.28
Design Spectral Response Acceleration at 1.0 Second Period (S d1):	0.11
Seismic Response Coefficient (C s):	0.11
Upper Limit C _s	0.11
Lower Limit C s	0.03
Period based on Rayleigh Method (sec):	0.68
Redundancy Factor (p):	1.30
Seismic Force Distribution Exponent (k):	1.09
Total Unfactored Dead Load:	33.54 k
Seismic Base Shear (E):	4.85 k

Load Case (1.2 + 0.2Sds) * DL + E ELFM

Seismic Equivalent Lateral Forces Method

	Height Above Base	Weight	W z		Horizontal Force	Vertical Force
Segment	(ft)	(Ib)	(lb-ft)	C _{vx}	(Ib)	(Ib)
23	76.34	65	7	0.004	18	81
22 21	75.50	98	11	0.005	27	123
21	72.50	508	54	0.027	132	637
20	68.50	318	32	0.016	78	400
19	66.00	250	24	0.012	58	314
18	62.50	644	59	0.029	142	809
17	58.50	400	34	0.017	82	502
16	56.00	308	25	0.012	60	386
15	53.69	410	32	0.016	77	515
14	51.19	776	57	0.028	138	974
13	48.58	946	65	0.033	159	1,188
12	46.08	459	30	0.015	73	576
11	42.50	1,091	65	0.033	158	1,370
10	37.50	1,130	59	0.029	143	1,420
9 8	32.50	1,170	52	0.026	126	1,469
8	29.43	274	11	0.005	27	345
7	26.93	1,819	66	0.033	160	2,284
6	23.84	1,116	35	0.018	86	1,402
5	21.34	745	21	0.011	51	936
4	17.50	1,421	32	0.016	78	
3	12.50	1,466	23	0.012	56	1,784
2	7.50	1,512	14	0.007		1,841
1	2.50	1,557	4	0.002	33 10	1,898 1,955

Customer:

Site Name: Byram Park CT, CT

AT&T MOBILITY

Code: ANSI/TIA-222-G Engineering Number:OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved.

1/16/2018 11:16:56 AM

Pine Branches	76.69	600	68	0.034	165	750
Ericsson RRUS 32 w/	76.00	159	18	0.009	43	753
Ericsson RRUS 11 B12	76.00	152	17	0.009	43	199
Commscope LNX-6512DS	76.00	86	10	0.005	24	191 108
Ericsson AIR-32 B2A/	76.00	397	45	0.022	108	
RFS APX16DWV-16DWVS-	76.00	126	14	0.007	34	498
Flat T-Arms	76.00	750	84	0.042	205	158
Pine Branches	70.00	600	62	0.031	150	942
CCI DTMABP7819VG12A	67.00	115	11	0.006		753
Raycap DC6-48-60-18-	67.00	66	6	0.008	27	145
Ericsson RRUS 4426 B	67.00	145	14	0.007	16	82
Ericsson RRUS 32 B2	67.00	159	14	0.007	35	182
Ericsson RRUS-32 (77	67.00	231	23	0.011	38	200
Ericsson RRUS-11	67.00	165	00000		55	290
Powerwave Allgon P65	67.00	159	16	0.008	39	207
Quintel QS66512-2	67.00	333	16	0.008	38	200
CCI OPA-65R-LCUU-H6	67.00	219	33	0.016 0.011	79	418
Flat T-Arm	67.00	750	21		52	275
Pine Branches	65.00	600	74	0.037	178	942
Pine Branches	60.00		57	0.028	138	753
Alcatel-Lucent RRH 2	57.00	600 119	52	0.026	127	753
Alcatel-Lucent RRH2x	57.00	170	10	0.005	24	149
Alcatel-Lucent B66 R	57.00		14	0.007	34	214
Commscope RC2DC-4750	57.00	201 52	17	0.008	40	252
Amphenol Antel BXA-1	57.00		4	0.002	10	65
Commscope SBNHH-1D65	57.00	38 67	3	0.002	8	48
Commscope SBNHH-1D45	57.00		6	0.003	13	84
Amphenol Antel LPA-8		202	17	0.008	40	254
Flat T-Arms	57.00	162	13	0.007	32	203
VZW Unused Reserve:	57.00	750	62	0.031	150	942
Pine Branches	57.00 55.00	1,489	122	0.061	297	1,869
Pine Branches		600	47	0.024	115	753
Pine Branches	50.00	600	43	0.021	104	753
Pine Branches	45.00	600	38	0.019	92	753
Pine Branches	40.00	600	34	0.017	81	753
Pine Branches	35.00	600	29	0.015	70	753
Pine Branches Pine Branches	30.00	600	24	0.012	59	753
Pine Branches Pine Branches	25.00	600	20	0.010	49	753
. 이 것 같은 것	20.00	600	16	0.008	38	753
Pine Branches	15.00	600	12	0.006	28	753
		33,543	1,998	1.000	4,848	42,121

Load Case (0.9 - 0.2Sds) * DL + E ELFM

Seismic (Reduced DL) Equivalent Lateral Forces Method

	Height Above Base	Weight	Wz		Horizontal Force	Vertical Force
Segment	(ft)	(lb)	(Ib-ft)	C vx	(Ib)	(lb)
23	76.34	65	7	0.004	18	55
22 21 20 19 18 17	75.50	98	11	0.005	27	83
21	72.50	508	54	0.027	132	429
20	68.50	318	32	0.016	78	269
19	66.00	250	24	0.012	58	211
18	62.50	644	59	0.029	142	544
	58.50	400	34	0.017	82	338
16	56.00	308	25	0.012	60	260
15	53.69	410	32	0.016	77	346
14	51.19	776	57	0.028	138	655
13 12	48.58	946	65	0.033	159	799
12	46.08	459	30	0.015	73	387
11	42.50	1,091	65	0.033	158	921
10	37.50	1,130	59	0.029	143	954
9	32.50	1,170	52	0.026	126	988

Site Number: 414240		Co	de: ANSI/TIA-22	2-G © 2007 -	2018 by ATC IP LLC. All	rights reserved
Site Name: Byram Park CT, CT		Engineering Numb	per:OAA720743_	_C3_01	1/16/2018	11:16:56 AM
Customer: AT&T MOBILITY						
8	29.43	274	11	0.005	27	232
7	26.93	1,819	66	0.033	160	1,535
6 5	23.84	1,116	35	0.018	86	942
	21.34	745	21	0.011	51	629
4	17.50	1,421	32	0.016	78	1,200
3	12.50	1,466	23	0.012	56	1,238
2	7.50	1,512	14	0.007	33	1,276
1	2.50	1,557	4	0.002	10	1,314
Pine Branches	76.69	600	68	0.034	165	507
Ericsson RRUS 32 w/	76.00	159	18	0.009	43	134
Ericsson RRUS 11 B12	76.00	152	17	0.009	42	128
Commscope LNX-6512DS	76.00	86	10	0.005	24	73
Ericsson AIR-32 B2A/	76.00	397	45	0.022	108	335
RFS APX16DWV-16DWVS-	76.00	126	14	0.007	34	106
Flat T-Arms	76.00	750	84	0.042	205	633
Pine Branches	70.00	600	62	0.031	150	507
CCI DTMABP7819VG12A	67.00	115	11	0.006	27	97
Raycap DC6-48-60-18-	67.00	66	6	0.003	16	55
Ericsson RRUS 4426 B	67.00	145	14	0.007	35	123
Ericsson RRUS 32 B2	67.00	159	16	0.008	38	134
Ericsson RRUS-32 (77	67.00	231	23	0.011	55	195
Ericsson RRUS-11	67.00	165	16	0.008	39	139
Powerwave Allgon P65	67.00	159	16	0.008	38	134
Quintel QS66512-2	67.00	333	33	0.016	79	281
CCI OPA-65R-LCUU-H6	67.00	219	21	0.011	52	185
Flat T-Arm	67.00	750	74	0.037	178	633
Pine Branches	65.00	600	57	0.028	138	507
Pine Branches	60.00	600	52	0.026	127	507
Alcatel-Lucent RRH 2	57.00	119	10	0.005	24	100
Alcatel-Lucent RRH2x	57.00	170	14	0.007	34	144
Alcatel-Lucent B66 R	57.00	201	17	0.008	40	170
Commscope RC2DC-4750	57.00	52	4	0.002	10	44
Amphenol Antel BXA-1	57.00	38	3	0.002	8	32
Commscope SBNHH-1D65	57.00	67	6	0.003	13	57
Commscope SBNHH-1D45	57.00	202	17	0.008	40	171
Amphenol Antel LPA-8	57.00	162	13	0.007	32	137
Flat T-Arms	57.00	750	62	0.031	150	633
VZW Unused Reserve:	57.00	1,489	122	0.061	297	1,257
Pine Branches	55.00	600	47	0.024	115	507
Pine Branches	50.00	600	43	0.021	104	507
Pine Branches	45.00	600	38	0.019	92	507
Pine Branches	40.00	600	34	0.017	81	507
Pine Branches Pine Branches	35.00	600	29	0.015	70	507
Pine Branches Pine Branches	30.00	600	24	0.012	59	507
가 같은 것 같은	25.00 20.00	600	20	0.010	49	507
Pine Branches Pine Branches		600	16	0.008	38	507
Fine Branches	15.00	600	12	0.006	28	507
		33,543	1,998	1.000	4,848	28,319

Site Name: Byram Park CT, CT Customer: AT&T MOBILITY Code: ANSI/TIA-222-G Engineering Number:OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved.

1/16/2018 11:16:56 AM

Load Case (1.2 + 0.2Sds) * DL + E ELFM

Seismic Equivalent Lateral Forces Method

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-40.17	-4.84	0.00	-260.44	0.00	260.44	5,994,12	2.997.06	12,661.4	6 340 12	0.00	0.00	0.048
5.00	-38.27	-4.82	0.00	-236.23	0.00	236.23			11,946.7		0.01	-0.01	0.048
10.00	-36.42	-4.77	0.00	-212.15		212.15			11,200.5		0.03	-0.03	0.044
15.00	-33.89	-4.67	0.00	-188.30	0.00	188.30	5,478.20	2,739.10	10,429.0	5.222.28	0.06	-0.04	0.042
20.00	-32.20	-4.58	0.00	-164.96	0.00	164.96			9,685.11		0.11	-0.05	0.040
22.69	-30.79	-4.50	0.00	-152.64	: <u></u>	152.64			9,296.61		0.14	-0.06	0.039
25.00	-27.76	-4.29	0.00	-142.23		142.23			8,968.69		0.17	-0.06	0.037
28.85	-27.41	-4.27	0.00	-125.70		125.70			7,729.02		0.22	-0.07	0.039
30.00	-25.19	-4.08	0.00	-120.80		120.80	4,370.52	2,185.26	7,589.51	3,800.39	0.24	-0.08	0.038
35.00	-23.01	-3.87	0.00	-100.40	0100	100.40	4,197.31	2,098.66	6,996.92	3,503.66	0.33	-0.09	0.034
40.00	-20.89	-3.63	0.00	-81.05	0.00	81.05	4,024.11	2,012.05	6,428.42	3,218.99	0.43	-0.10	0.030
45.00	-19.56	-3.47	0.00	-62.89	0.00	62.89			5,884.00		0.53	-0.11	0.026
47.16	-18.37	-3.31	0.00	-55.41	0.00	55.41			5,656.38		0.58	-0.11	0.024
50.00	-16.65	-3.06	0.00	-46.01	0.00	46.01	3,677.69	1,838.85	5,363.67	2,685.82	0.65	-0.12	0.022
52.38	-16.13	-2.99	0.00	-38.72		38.72	2,517.68	1,258.84	3,679.50	1,842.48	0.71	-0.12	0.027
55.00	-14.99	-2.81	0.00	-30.90		30.90			3,524.91		0.78	-0.12	0.024
57.00	-10.41	-2.07	0.00	-25.28	0.00	25.28	2,439.26	1,219.63	3,408.20	1,706.63	0.83	-0.13	0.019
60.00	-8.85	-1.80	0.00	-19.07	0.00	19.07	2,386.81	1,193.40	3,235.34	1,620.08	0.91	-0.13	0.015
65.00	-7.78	-1.60	0.00	-10.08	100000000000000000000000000000000000000	10.08			2,953.55		1.05	-0.14	0.010
67.00	-4.44	-0.96	0.00	-6.88		6.88	2,259.74	1,129.87	2,843.16	1,423.69	1.11	-0.14	0.007
70.00	-3.05	-0.67	0.00	-4.01	0.00	4.01			2,660.79		1.19	-0.14	0.004
75.00	-2.93	-0.65	0.00	-0.65	1 CONSTAN	0.65			2,366.82		1.34	-0.14	0.002
76.00	0.00	0.00	0.00	0.00		0.00			2,310.09		1.37	-0.14	0.000
10.09	0.00	0.00	0.00	0.00	0.00	0.00	2,021.84	1,010.92	2,271.49	1,137.43	1.39	-0.14	0.000

Site Name: Byram Park CT, CT

Customer: AT&T MOBILITY

Code: ANSI/TIA-222-G Engineering Number:OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved.

1/16/2018 11:16:56 AM

Load Case (0.9 - 0.2Sds) * DL + E ELFM

Seismic (Reduced DL) Equivalent Lateral Forces Method

1	Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)		phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)		Rotation (deg)	Ratio
	0.00	-27.00	-4.84	0.00	-259.81	0.00	259.81	5	,994.12	2,997.06	12,661.4	6.340.12	0.00	0.00	0.045
	5.00	-25.73	-4.81	0.00	-235.61	0.00	235.61	5	,848.27	2,924.13	11,946.7	5,982.25	0.01	-0.01	0.044
	10.00	-24.49	-4.76	0.00	-211.54	V	211.54	5	,676.15	2,838.08	11,200.5	5,608.58	0.03	-0.03	0.042
	15.00	-22.78	-4.66	0.00	-187.73		187.73	5	,478.20	2,739.10	10,429.0	5,222.28	0.06	-0.04	0.040
	20.00	-21.64	-4.57	0.00	-164.43		164.43	5	,280.25	2,640.13	9,685.11	4,849.75	0.11	-0.05	0.038
	22.69	-20.70	-4.49	0.00	-152.14		152.14	5	,173.85	2,586.93	9,296.61	4,655.22	0.14	-0.06	0.037
	25.00	-18.66	-4.28	0.00	-141.76	1 0.000 TATO	141.76				8,968.69		0.17	-0.06	0.035
	28.85	-18.43	-4.26	0.00	-125.27	0.00	125.27	4	,410.30	2,205.15	7,729.02	3,870.25	0.22	-0.07	0.037
	30.00	-16.93	-4.07	0.00	-120.39		120.39				7,589.51		0.24	-0.08	0.036
	35.00	-15.47	-3.86	0.00	-100.04		100.04	4	,197.31	2,098.66	6,996.92	3,503.66	0.33	-0.09	0.032
	40.00	-14.04	-3.62	0.00	-80.75		80.75				6,428.42		0.42	-0.10	0.029
	45.00	-13.15	-3.45	0.00	-62.66		62.66				5,884.00		0.53	-0.11	0.025
	47.16	-12.35	-3.29	0.00	-55.20	5. 515	55.20				5,656.38		0.58	-0.11	0.023
	50.00	-11.19	-3.05	0.00	-45.84	1.0000000000000000000000000000000000000	45.84				5,363.67		0.65	-0.12	0.020
	52.38	-10.84	-2.98	0.00	-38.58		38.58	2	,517.68	1,258.84	3,679.50	1,842.48	0.71	-0.12	0.025
	55.00	-10.08	-2.80	0.00	-30.78	264 (FAD)	30.78				3,524.91		0.78	-0.12	0.022
	57.00 60.00	-7.00 -5.95	-2.06	0.00	-25.19	1 10.7577-0704	25.19	2	,439.26	1,219.63	3,408.20	1,706.63	0.83	-0.13	0.018
	65.00	-5.95	-1.79	0.00	-19.00		19.00				3,235.34		0.91	-0.13	0.014
	67.00	-5.23	101000	0.00	-10.04	1. This 2. The	10.04				2,953.55		1.05	-0.13	0.009
	70.00	-2.99	-0.95 -0.67	0.00	-6.86 -3.99		6.86	2	,259.74	1,129.87	2,843.16	1,423.69	1.10	-0.14	0.006
	75.00	-1.97	-0.64	0.00	-3.99		3.99				2,660.79		1.19	-0.14	0.004
	76.00	0.00	0.00			1 10 10 10 10 10 10 10 10 10 10 10 10 10	0.64				2,366.82		1.34	-0.14	0.001
	76.69	0.00	0.00	0.00 0.00	0.00 0.00		0.00 0.00	2	,038.85 ,021.84	1,019.42	2,310.09 2,271.49	1,156.76	1.36 1.38	-0.14 -0.14	0.000

Site Number: 414240 Site Name: Byram Park CT, CT Customer: AT&T MOBILITY

Code: ANSI/TIA-222-G Engineering Number:OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved. 1/16/2018 11:16:56 AM

Equivalent Modal Forces Analysis

(Based on ASCE7-10 Chapters 11, 12 & 15 and ANSI/TIA-G, section 2.7)

Spectral Response Acceleration for Short Period (S s):	0.26
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.07
Importance Factor (I E):	1.00
Site Coefficient F a:	1.59
Site Coefficient F v	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S $_{ds}$):	0.28
Desing Spectral Response Acceleration at 1.0 Second Period (S $_{d1}$):	0.11
Period Based on Rayleigh Method (sec):	0.68
Redundancy Factor (p):	1.30

Load Case (1.2 + 0.2Sds) * DL + E EMAM

Seismic Equivalent Modal Analysis Method

Segment	Height Above Base (ft)	Weight (Ib)	а	b	С	Saz	Horizontal Force (Ib)	Vertical Force (lb)
oogmone	(14)	(15)	u.	5	2	562	(10)	(10)
22	70.04	05	1.070	1 000	1.108	0.500		
23 22	76.34 75.50	65 98	1.873 1.832	1.892 1.688	1.033	0.590 0.554	33 47	81
21	72.50	508	1.689	1.082	0.798	0.554	192	123 637
20	68.50	318	1.508	0.521	0.552	0.310	85	400
19	66.00	250	1.400	0.321	0.432	0.246		
					0.298		53	314
18 17	62.50	644	1.255	0.063	0.298	0.176	98	809
	58.50	400	1.100	-0.070	0.187	0.122	42	502
16	56.00	308	1.008	-0.108		0.100	27	386
15	53.69	410	0.926	-0.121	0.098 0.067	0.087	31	515
14	51.19	776	0.842	-0.118		0.078	53	974
13	48.58	946	0.758	-0.103	0.043	0.074	61	1,188
12	46.08	459	0.682	-0.081	0.027	0.073	29	576
11	42.50	1,091	0.580	-0.046	0.013	0.074	70	1,370
10	37.50	1,130	0.452	0.001	0.006	0.075	74	1,420
9	32.50	1,170	0.339	0.036	0.009	0.072	73	1,469
8	29.43	274	0.278	0.050	0.014	0.068	16	345
7	26.93	1,819	0.233	0.058	0.019	0.064	101	2,284
6	23.84	1,116	0.183	0.065	0.026	0.059	57	1,402
5	21.34	745	0.146	0.068	0.031	0.054	35	936
4	17.50	1,421	0.098	0.071	0.037	0.047	58	1,784
3	12.50	1,466	0.050	0.071	0.042	0.039	50	1,841
2	7.50	1,512	0.018	0.063	0.037	0.031	40	1,898
1	2.50	1,557	0.002	0.032	0.018	0.015	20	1,955
Pine Branches	76.69	600	1.890	1.981	1.140	0.605	315	753
Ericsson RRUS 32 w/	76.00	159	1.856	1.807	1.077	0.575	79	199
Ericsson RRUS 11 B12	76.00	152	1.856	1.807	1.077	0.575	76	191
Commscope LNX-	76.00	86	1.856	1.807	1.077	0.575	43	108
Ericsson AIR-32 B2A/	76.00	397	1.856	1.807	1.077	0.575	198	498
RFS APX16DWV-	76.00	126	1.856	1.807	1.077	0.575	63	158
Flat T-Arms	76.00	750	1.856	1.807	1.077	0.575	374	942
Pine Branches	70.00	600	1.575	0.702	0.636	0.354	184	753
CCI DTMABP7819VG12A	67.00	115	1.443	0.370	0.477	0.270	27	145
Raycap DC6-48-60-18-	67.00	66	1.443	0.370	0.477	0.270	15	82
Ericsson RRUS 4426 B	67.00	145	1.443	0.370	0.477	0.270	34	182

Site Number: 414240				Code: A	NSI/TIA-222	2-G © 200	07 - 2018 by ATC IP LLC	C. All rights reserve	
Site Name: Byram Par	k CT, CT		Engineering N	lumber:0	AA720743_	1/16/2018 11:16:56 AM			
Customer: AT&T MOE	BILITY								
Ericsson RRUS 32 B2	67.00	159	1.443	0.370	0.477	0.270	37	200	
Ericsson RRUS-32 (77	67.00	231	1.443	0.370	0.477	0.270	54	290	
Ericsson RRUS-11	67.00	165	1.443	0.370	0.477	0.270	39	207	
Powerwave Allgon P65 Quintel QS66512-2	67.00 67.00	159 333	1.443	0.370 0.370	0.477 0.477	0.270	37	200	
CCI OPA-65R-LCUU-H6	67.00	219	1.443 1.443	0.370	0.477	0.270 0.270	78	418	
Flat T-Arm	67.00	750	1.443	0.370	0.477	0.270	51 176	275 942	
Pine Branches	65.00	600	1.358	0.209	0.390	0.224	116	753	
Pine Branches	60.00	600	1.157	-0.032	0.224	0.140	73	753	
Alcatel-Lucent RRH 2	57.00	119	1.044	-0.096	0.154	0.108	11	149	
Alcatel-Lucent RRH2x	57.00	170	1.044	-0.096	0.154	0.108	16	214	
Alcatel-Lucent B66 R	57.00	201	1.044	-0.096	0.154	0.108	19	252	
Commscope RC2DC-	57.00	52	1.044	-0.096	0.154	0.108	5	65	
Amphenol Antel BXA-1	57.00	38	1.044	-0.096	0.154	0.108	4	48	
Commscope SBNHH-	57.00 57.00	67 202	1.044	-0.096	0.154	0.108	6	84	
Commscope SBNHH- Amphenol Antel LPA-8	57.00	162	1.044 1.044	-0.096 -0.096	0.154 0.154	0.108 0.108	19 15	254 203	
Flat T-Arms	57.00	750	1.044	-0.096	0.154	0.108	70	942	
VZW Unused Reserve:	57.00	1,489	1.044	-0.096	0.154	0.108	139	1,869	
Pine Branches	55.00	600	0.972	-0.116	0.118	0.094	49	753	
Pine Branches	50.00	600	0.803	-0.113	0.055	0.076	39	753	
Pine Branches	45.00	600	0.651	-0.071	0.021	0.073	38	753	
Pine Branches	40.00	600	0.514	-0.021	0.008	0.075	39	753	
Pine Branches	35.00	600	0.394	0.020	0.007	0.074	39	753	
Pine Branches	30.00	600	0.289	0.048	0.013	0.069	36	753	
Pine Branches	25.00	600	0.201	0.063	0.023	0.061	32	753	
Dise Dresslage					0.033	0.051	27	753	
Pine Branches	20.00	600	0.129			0.042	22		
Pine Branches Pine Branches	15.00	600	0.072	0.072	0.040	0.043	22	753	
						0.043 12.620	22 4,040		
Pine Branches	15.00	600 33,543	0.072 63.266	0.072 21.782	0.040 20.515	12.620		753	
Pine Branches	15.00 ds) * DL + E Height	600 33,543	0.072 63.266	0.072 21.782	0.040 20.515	12.620	4,040	753	
Pine Branches	15.00 ds) * DL + E Height Above	600 33,543 E EMAM	0.072 63.266	0.072 21.782	0.040 20.515	12.620	4,040 Analysis Method Horizontal	753	
Pine Branches .oad Case (0.9 - 0.2Se	15.00 ds) * DL + E Height Above Base	600 33,543 <u>E EMAM</u> Weight	0.072 63.266 Seismic (Re	0.072 21.782 educed D	0.040 20.515 L) Equival	12.620 ent Modal /	4,040 Analysis Method Horizontal Force	753 42,121	
Pine Branches	15.00 ds) * DL + E Height Above	600 33,543 E EMAM	0.072 63.266	0.072 21.782	0.040 20.515	12.620	4,040 Analysis Method Horizontal	753 42,121 Vertical	
Pine Branches .oad Case (0.9 - 0.2Se	15.00 ds) * DL + E Height Above Base	600 33,543 <u>E EMAM</u> Weight	0.072 63.266 Seismic (Re	0.072 21.782 educed D	0.040 20.515 L) Equival	12.620 ent Modal /	4,040 Analysis Method Horizontal Force (Ib)	753 42,121 Vertical Force (Ib)	
Pine Branches	15.00 ds) * DL + E Height Above Base (ft)	600 33,543 E EMAM Weight (Ib)	0.072 63.266 Seismic (Re	0.072 21.782 educed D b	0.040 20.515 L) Equival c	12.620 ent Modal <i>i</i> Saz	4,040 Analysis Method Horizontal Force	753 42,121 Vertical Force	
Pine Branches Load Case (0.9 - 0.250 Segment	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50	600 33,543 E EMAM Weight (Ib) 65 98 508	0.072 63.266 Seismic (Re a 1.873 1.832 1.689	0.072 21.782 educed D b 1.892 1.688 1.082	0.040 20.515 L) Equival c 1.108 1.033 0.798	12.620 ent Modal Saz 0.590 0.554 0.437	4,040 Analysis Method Horizontal Force (Ib) 33	753 42,121 Vertical Force (Ib) 55	
Pine Branches .oad Case (0.9 - 0.25c Segment 23 22 21 20	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50	600 33,543 <u>E EMAM</u> Weight (Ib) 65 98 508 318	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508	0.072 21.782 educed D b 1.892 1.688 1.082 0.521	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552	12.620 ent Modal Saz 0.590 0.554 0.437 0.310	4,040 Analysis Method Horizontal Force (Ib) 33 47 192 85	753 42,121 Vertical Force (Ib) 55 83 429 269	
Pine Branches .oad Case (0.9 - 0.250 Segment 23 22 21 20 19	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00	600 33,543 <u>E EMAM</u> Weight (Ib) 65 98 508 318 250	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400	0.072 21.782 educed D b 1.892 1.688 1.688 1.682 0.521 0.284	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432	12.620 ent Modal Saz 0.590 0.554 0.437 0.310 0.246	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53	753 42,121 Vertical Force (Ib) 55 83 429 269 211	
Pine Branches <u>Load Case</u> (0.9 - 0.256 Segment 23 22 21 20 19 18	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 68.50 66.00 62.50	600 33,543 <u>E EMAM</u> Weight (Ib) 65 98 508 318 250 644	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298	12.620 ent Modal Saz 0.590 0.554 0.310 0.310 0.246 0.176	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98	753 42,121 Vertical Force (Ib) 55 83 429 269 211 544	
Pine Branches <u>Load Case</u> (0.9 - 0.256 Segment 23 22 21 20 19 18 17	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 68.50 66.00 62.50 58.50	600 33,543 E EMAM Weight (Ib) 65 98 508 318 250 644 400	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.070	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187	12.620 ent Modal Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42	753 42,121 Vertical Force (Ib) 55 83 429 269 211 544 338	
Pine Branches Load Case (0.9 - 0.250 Segment 23 22 21 20 19 18 17 16	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 56.00	600 33,543 E EMAM (Ib) 65 98 318 250 644 400 308	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.070 -0.108	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135	12.620 ent Modal Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100	4,040 Analysis Method Horizontal Force (Ib) 33 47 192 85 53 98 42 27	753 42,121 Vertical Force (Ib) 55 83 429 269 211 544 338 260	
Pine Branches Load Case (0.9 - 0.250 Segment 23 22 21 20 19 18 17 16 15	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 58.50 56.00 53.69	600 33,543 E EMAM (Ib) 65 98 508 318 250 644 400 308 410	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.070 -0.108 -0.121	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098	12.620 ent Modal <i>J</i> Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087	4,040 Analysis Method Horizontal Force (Ib) 33 47 192 85 53 98 42 27 31	753 42,121 Vertical Force (Ib) 55 83 429 269 211 544 338 260 346	
Pine Branches Load Case (0.9 - 0.250 Segment 23 22 21 20 19 18 17 16 15 14	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 58.50 58.00 53.69 51.19	600 33,543 E EMAM Weight (Ib) 65 98 508 318 250 644 400 308 410 776	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.070 -0.108 -0.121 -0.118	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135	12.620 ent Modal <i>J</i> Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087 0.078	4,040 Analysis Method Horizontal Force (Ib) 33 47 192 85 53 98 42 27 31 53	753 42,121 Vertical Force (lb) 55 83 429 269 211 544 338 260 346 655	
Pine Branches Load Case (0.9 - 0.250 Segment 23 22 21 20 19 18 17 16 15	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 58.50 56.00 53.69	600 33,543 E EMAM (Ib) 65 98 508 318 250 644 400 308 410	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.070 -0.108 -0.121	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.067	12.620 ent Modal <i>J</i> Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087	4,040 Analysis Method Horizontal Force (Ib) 33 47 192 85 53 98 42 27 31	753 42,121 Vertical Force (lb) 55 83 429 269 211 544 338 260 346	
Pine Branches .oad Case (0.9 - 0.25c) Segment 23 22 21 20 19 18 17 16 15 14 13 12 11	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 56.00 53.69 51.19 48.58 46.08 42.50	600 33,543 E EMAM Weight (Ib) 65 98 508 318 250 644 400 308 410 776 946 459 1,091	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842 0.758 0.682 0.580	0.072 21.782 educed D b 1.892 1.688 1.688 1.682 0.521 0.284 0.63 -0.70 -0.108 -0.121 -0.118 -0.103 -0.081 -0.046	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.067 0.043 0.027 0.013	12.620 ent Modal , Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087 0.078 0.078 0.074 0.073 0.074	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42 27 31 53 61 29 70	753 42,121 Vertical Force (Ib) 55 83 429 269 211 544 338 260 346 655 799 387 921	
Pine Branches .oad Case (0.9 - 0.250 Segment 23 22 21 20 19 18 17 16 15 14 13 12 11 10	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 56.00 53.69 51.19 48.58 46.08 42.50 37.50	600 33,543 E EMAM Weight (Ib) 65 98 508 318 250 644 400 308 410 776 946 459 1,091 1,130	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842 0.758 0.682 0.580 0.452	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.108 -0.121 -0.108 -0.121 -0.118 -0.103 -0.081 -0.046 0.001	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.067 0.043 0.027 0.043 0.027 0.013 0.006	12.620 ent Modal , Saz 0.590 0.554 0.310 0.246 0.176 0.122 0.100 0.087 0.078 0.078 0.074 0.073 0.074 0.075	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42 27 31 53 61 29 70 74	753 42,121 Vertical Force (lb) 55 83 429 269 211 544 338 260 346 655 799 387 921 954	
Pine Branches .oad Case (0.9 - 0.250 Segment 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 56.00 53.69 51.19 48.58 46.08 42.50 37.50 32.50	600 33,543 E EMAM Weight (Ib) 65 98 508 318 250 644 400 308 410 776 946 459 1,091 1,130 1,170	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842 0.758 0.682 0.580 0.452 0.339	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.284 0.063 -0.108 -0.121 -0.108 -0.121 -0.118 -0.103 -0.081 -0.004 0.001 0.036	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.087 0.043 0.027 0.043 0.027 0.013 0.006 0.009	12.620 ent Modal , Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087 0.078 0.078 0.074 0.073 0.074 0.075 0.072	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42 27 31 53 98 42 27 31 53 61 29 70 74 73	753 42,121 Vertical Force (lb) 55 83 429 269 211 544 338 260 346 655 799 387 921 954 988	
Pine Branches Load Case (0.9 - 0.250 Segment 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 56.00 53.69 51.19 48.58 46.08 42.50 37.50 32.50 29.43	600 33,543 E EMAM Weight (Ib) 65 98 508 318 250 644 400 308 410 776 946 459 1,091 1,130 1,170 274	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842 0.758 0.682 0.580 0.452 0.580 0.452 0.339 0.278	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.070 -0.108 -0.121 -0.118 -0.103 -0.081 -0.081 -0.046 0.001 0.036 0.050	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.067 0.043 0.027 0.013 0.027 0.013 0.006 0.009 0.014	12.620 ent Modal , Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087 0.078 0.078 0.078 0.074 0.073 0.074 0.075 0.072 0.068	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42 27 31 53 61 29 70 74 73 16	753 42,121 Vertical Force (lb) 55 83 429 269 211 544 338 260 346 655 799 387 921 954 988 232	
Pine Branches Load Case (0.9 - 0.250 Segment 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 56.00 53.69 51.19 48.58 46.08 42.50 37.50 32.50 29.43 26.93	600 33,543 E EMAM Weight (lb) 65 98 508 318 250 644 400 308 410 776 946 459 1,091 1,130 1,170 274 1,819	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842 0.758 0.682 0.580 0.452 0.339 0.278 0.233	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.070 -0.108 -0.121 -0.118 -0.103 -0.081 -0.046 0.001 0.036 0.050 0.058	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.067 0.043 0.027 0.013 0.006 0.009 0.014 0.019	12.620 ent Modal , Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087 0.078 0.078 0.074 0.073 0.074 0.073 0.074 0.075 0.072 0.068 0.064	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42 27 31 53 61 29 70 74 73 16 101	753 42,121 Vertical Force (lb) 55 83 429 269 211 544 338 260 346 655 799 387 921 954 988 232 1,535	
Pine Branches Load Case (0.9 - 0.250 Segment 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 56.00 53.69 51.19 48.58 46.08 42.50 37.50 32.50 29.43 26.93 23.84	600 33,543 E EMAM Weight (lb) 65 98 508 318 250 644 400 308 410 776 946 459 1,091 1,130 1,170 274 1,819 1,116	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842 0.758 0.682 0.580 0.452 0.580 0.452 0.339 0.278 0.233 0.183	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.070 -0.108 -0.121 -0.118 -0.103 -0.081 0.001 0.001 0.001 0.036 0.050 0.058 0.065	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.067 0.043 0.027 0.043 0.027 0.013 0.006 0.009 0.014 0.019 0.026	12.620 ent Modal , Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087 0.078 0.074 0.073 0.074 0.073 0.074 0.075 0.072 0.068 0.064 0.059	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42 27 31 53 61 29 70 74 73 16 101 57	753 42,121 Vertical Force (lb) 55 83 429 269 211 544 338 260 346 655 799 387 921 954 988 232 1,535 942	
Pine Branches Load Case (0.9 - 0.250 Segment 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 66.00 62.50 58.50 56.00 53.69 51.19 48.58 46.08 42.50 37.50 32.50 29.43 26.93 23.84 21.34	600 33,543 E EMAM Weight (lb) 65 98 508 318 250 644 400 308 410 776 946 459 1,091 1,130 1,170 274 1,819 1,116 745	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842 0.758 0.682 0.580 0.452 0.339 0.278 0.233 0.183 0.146	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.070 -0.108 -0.108 -0.103 -0.108 -0.103 -0.081 -0.046 0.001 0.036 0.050 0.058 0.065 0.068	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.067 0.043 0.027 0.013 0.006 0.009 0.014 0.009 0.014 0.019 0.026 0.031	12.620 ent Modal <i>J</i> Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087 0.078 0.078 0.074 0.073 0.074 0.073 0.074 0.075 0.072 0.068 0.064 0.059 0.054	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42 27 31 53 61 29 70 74 73 16 101 57 35	753 42,121 Vertical Force (Ib) 55 83 429 269 211 544 338 260 346 655 799 387 921 954 988 232 1,535 942 629	
Pine Branches <u>Load Case</u> (0.9 - 0.25) Segment 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 56.00 53.69 51.19 48.58 46.08 42.50 37.50 32.50 29.43 26.93 23.84 21.34 17.50	600 33,543 E EMAM Weight (lb) 65 98 508 318 250 644 400 308 410 776 946 459 1,091 1,130 1,170 274 1,819 1,116 745 1,421	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842 0.758 0.682 0.580 0.452 0.339 0.278 0.233 0.233 0.233 0.146 0.098	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.700 -0.108 -0.108 -0.103 -0.108 -0.103 -0.108 -0.103 -0.081 -0.046 0.050 0.058 0.055 0.068 0.071	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.067 0.043 0.027 0.013 0.006 0.009 0.014 0.009 0.014 0.019 0.026 0.031 0.037	12.620 ent Modal Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087 0.078 0.074 0.078 0.074 0.073 0.074 0.075 0.072 0.068 0.064 0.059 0.054 0.059	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42 27 31 53 61 29 70 74 73 16 101 57 35 58	753 42,121 Vertical Force (lb) 55 83 429 269 211 544 338 260 346 655 799 387 921 954 954 988 232 1,535 942 629 1,200	
Pine Branches <u>Load Case</u> (0.9 - 0.25) Segment 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 66.00 62.50 58.50 56.00 53.69 51.19 48.58 46.08 42.50 37.50 32.50 29.43 26.93 23.84 21.34	600 33,543 E EMAM Weight (lb) 65 98 508 318 250 644 400 308 410 776 946 459 1,091 1,130 1,170 274 1,819 1,116 745 1,421 1,466	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842 0.758 0.682 0.580 0.452 0.339 0.278 0.233 0.183 0.146	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.070 -0.108 -0.108 -0.103 -0.108 -0.103 -0.081 -0.046 0.001 0.036 0.050 0.058 0.065 0.068	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.067 0.043 0.027 0.013 0.006 0.009 0.014 0.009 0.014 0.019 0.026 0.031	12.620 ent Modal <i>J</i> Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087 0.078 0.078 0.074 0.073 0.074 0.073 0.074 0.075 0.072 0.068 0.064 0.059 0.054	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42 27 31 53 61 29 70 74 73 16 101 57 35	753 42,121 Vertical Force (Ib) 55 83 429 269 211 544 338 260 346 655 799 387 921 954 988 232 1,535 942 629 1,200 1,238	
Pine Branches Load Case (0.9 - 0.250 Segment 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 56.00 53.69 51.19 48.58 46.08 42.50 37.50 32.50 29.43 26.93 23.84 21.34 17.50 12.50	600 33,543 E EMAM Weight (lb) 65 98 508 318 250 644 400 308 410 776 946 459 1,091 1,130 1,170 274 1,819 1,116 745 1,421	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842 0.758 0.682 0.580 0.452 0.339 0.278 0.233 0.183 0.233 0.146 0.098 0.050	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.063 -0.700 -0.108 -0.121 -0.118 -0.103 -0.081 -0.046 0.001 0.058 0.058 0.058 0.065 0.065 0.065	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.67 0.043 0.027 0.043 0.027 0.013 0.006 0.009 0.014 0.019 0.026 0.031 0.037 0.042	12.620 ent Modal , Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087 0.078 0.074 0.073 0.074 0.073 0.074 0.075 0.072 0.068 0.064 0.059 0.054 0.047 0.039	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42 27 31 53 61 29 70 74 73 16 101 57 35 58 50	753 42,121 Vertical Force (lb) 55 83 429 269 211 544 338 260 346 655 799 387 921 954 988 232 1,535 942 629 1,200 1,238 1,276	
Pine Branches Load Case (0.9 - 0.25) Segment 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	15.00 ds) * DL + E Height Above Base (ft) 76.34 75.50 72.50 68.50 66.00 62.50 58.50 56.00 53.69 51.19 48.58 46.08 42.50 37.50 32.50 29.43 26.93 23.84 21.34 17.50 12.50 7.50	600 33,543 E EMAM Weight (Ib) 65 98 508 318 250 644 400 308 410 776 946 459 1,091 1,130 1,170 274 1,819 1,116 745 1,421 1,466 1,512	0.072 63.266 Seismic (Re a 1.873 1.832 1.689 1.508 1.400 1.255 1.100 1.008 0.926 0.842 0.758 0.682 0.580 0.452 0.339 0.278 0.233 0.183 0.278 0.233 0.183 0.146 0.098 0.050 0.018	0.072 21.782 educed D b 1.892 1.688 1.082 0.521 0.284 0.63 -0.70 -0.108 -0.121 -0.118 -0.103 -0.121 -0.118 -0.046 0.001 0.036 0.058 0.065 0.065 0.065 0.065 0.065	0.040 20.515 L) Equival c 1.108 1.033 0.798 0.552 0.432 0.298 0.187 0.135 0.098 0.67 0.043 0.027 0.013 0.006 7 0.043 0.027 0.013 0.006 0.009 0.014 0.019 0.026 0.031 0.037 0.042 0.037	12.620 ent Modal , Saz 0.590 0.554 0.437 0.310 0.246 0.176 0.122 0.100 0.087 0.078 0.074 0.073 0.074 0.073 0.074 0.075 0.072 0.068 0.064 0.059 0.054 0.059 0.054 0.047 0.039 0.031	4,040 Analysis Method Horizontal Force (lb) 33 47 192 85 53 98 42 27 31 53 61 29 70 74 73 16 101 57 35 58 50 40	753 42,121 Vertical Force (lb) 55 83 429 269 211 544 338 260 346 655 799 387 921 954 988 232 1,535 942 629 1,200 1,238	

Site Number: 414240 Site Name: Byram Park Customer: AT&T MOBII		E	ingineering I		NSI/TIA-222 AA720743_			LC. All rights reserved /2018 11:16:56 AN
Ericsson RRUS 11 B12	76.00	152	1.856	1.807	1.077	0.575	76	128
Commscope LNX-	76.00	86	1.856	1.807	1.077	0.575	43	73
Ericsson AIR-32 B2A/	76.00	397	1.856	1.807	1.077	0.575	198	335
RFS APX16DWV-	76.00	126	1.856	1.807	1.077	0.575	63	106
Flat T-Arms	76.00	750	1.856	1.807	1.077	0.575	374	633
Pine Branches	70.00	600	1.575	0.702	0.636	0.354	184	507
CCI DTMABP7819VG12A	67.00	115	1.443	0.370	0.477	0.270	27	97
Raycap DC6-48-60-18-	67.00	66	1.443	0.370	0.477	0.270	15	55
Ericsson RRUS 4426 B	67.00	145	1.443	0.370	0.477	0.270	34	123
Ericsson RRUS 32 B2	67.00	159	1.443	0.370	0.477	0.270	37	134
Ericsson RRUS-32 (77	67.00	231	1.443	0.370	0.477	0.270	54	195
Ericsson RRUS-11	67.00	165	1.443	0.370	0.477	0.270	39	139
Powerwave Allgon P65	67.00	159	1.443	0.370	0.477	0.270	37	134
Quintel QS66512-2	67.00	333	1.443	0.370	0.477	0.270	78	281
CCI OPA-65R-LCUU-H6	67.00	219	1.443	0.370	0.477	0.270	51	185
Flat T-Arm	67.00	750	1.443	0.370	0.477	0.270	176	633
Pine Branches	65.00	600	1.358	0.209	0.390	0.224	116	507
Pine Branches	60.00	600	1.157	-0.032	0.224	0.140	73	507
Alcatel-Lucent RRH 2	57.00	119	1.044	-0.096	0.154	0.108	11	100
Alcatel-Lucent RRH2x	57.00	170	1.044	-0.096	0.154	0.108	16	144
Alcatel-Lucent B66 R	57.00	201	1.044	-0.096	0.154	0.108	19	170
Commscope RC2DC-	57.00	52	1.044	-0.096	0.154	0.108	5	44
Amphenol Antel BXA-1	57.00	38	1.044	-0.096	0.154	0.108	4	32
Commscope SBNHH-	57.00	67	1.044	-0.096	0.154	0.108	6	57
Commscope SBNHH-	57.00	202	1.044	-0.096	0.154	0.108	19	171
Amphenol Antel LPA-8	57.00	162	1.044	-0.096	0.154	0.108	15	137
Flat T-Arms	57.00	750	1.044	-0.096	0.154	0.108	70	633
VZW Unused Reserve:	57.00	1,489	1.044	-0.096	0.154	0.108	139	1,257
Pine Branches	55.00	600	0.972	-0.116	0.118	0.094	49	507
Pine Branches	50.00	600	0.803	-0.113	0.055	0.076	39	507
Pine Branches	45.00	600	0.651	-0.071	0.021	0.073	38	507
Pine Branches	40.00	600	0.514	-0.021	0.008	0.075	39	507
Pine Branches	35.00	600	0.394	0.020	0.007	0.074	39	507
Pine Branches	30.00	600	0.289	0.048	0.013	0.069	36	507
Pine Branches	25.00	600	0.201	0.063	0.023	0.061	32	507
Pine Branches Pine Branches	20.00 15.00	600 600	0.129 0.072	0.069 0.072	0.033 0.040	0.051 0.043	27 22	507 507
		33,543	63.266	21.782	20.515	12.620	4,040	28,319

Site Name: Byram Park CT, CT

Code: ANSI/TIA-222-G Engineering Number:OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved.

1/16/2018 11:16:56 AM

Customer: AT&T MOBILITY

Load Case (1.2 + 0.2Sds) * DL + E EMAM Seismic Equivalent Modal Analysis Method

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect ((in)	Rotation (deg)	Ratio
0.00	-40.17	-4.02	0.00	-241.00		241.00	5,994.12 2	2,997.06	12,661.4	6,340.12	0.00	0.00	0.045
5.00	-38.27	-3.99	0.00	-220.88	0.00	220.88	5,848.27 2	2,924.13	11,946.7	5,982.25	0.01	-0.01	0.043
10.00	-36.42	-3.95	0.00	-200.92	1 1.7.4 7.77	200.92	5,676.15 2	2,838.08	11,200.5	5,608.58	0.03	-0.02	0.042
15.00	-33.89	-3.87	0.00	-181.18	0.00	181.18	5,478.20 2	2,739.10	10,429.0	5,222.28	0.06	-0.04	0.041
20.00	-32.20	-3.82	0.00	-161.81	0.00	161.81	5,280.25 2	2,640.13	9,685.11	4,849.75	0.10	-0.05	0.039
22.69	-30.79	-3.76	0.00	-151.55	0.00	151.55	5,173.85 2	2,586.93	9,296.61	4,655.22	0.13	-0.06	0.039
25.00	-27.76	-3.63	0.00	-142.86	0.00	142.86	5,082.30 2	2,541.15	8,968.69	4,491.01	0.16	-0.06	0.037
28.85	-27.41	-3.62	0.00	-128.88	0.00	128.88	4,410.30	2,205.15	7,729.02	3,870.25	0.21	-0.07	0.040
30.00	-25.19	-3.51	0.00	-124.72	0.00	124.72	4,370.52	2,185.26	7,589.51	3,800.39	0.23	-0.07	0.039
35.00	-23.02	-3.40	0.00	-107.19	0.00	107.19	4,197.31	2,098.66	6,996.92	3,503.66	0.31	-0.09	0.036
40.00	-20.89	-3.29	0.00	-90.20		90.20	4,024.11				0.41	-0.10	0.033
45.00	-19.56	-3.22	0.00	-73.76	0.00	73.76	3,850.90				0.52	-0.11	0.030
47.16	-18.37	-3.16	0.00	-66.81	0.00	66.81	3,776.11		TOTAL PARTY AND A	김 사람이 다 아파는 것이 같아.	0.57	-0.11	0.028
50.00	-16.65	-3.07	0.00	-57.83		57.83	3,677.69				0.64	-0.12	0.026
52.38	-16.13	-3.04	0.00	-50.53	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	50.53	2,517.68				0.70	-0.12	0.034
55.00	-14.99	-2.96	0.00	-42.58		42.58	2,473.56				0.77	-0.13	0.030
57.00	-10.41	-2.60		-36.66		36.66	2,439.26				0.82	-0.13	0.026
60.00	-8.85	-2.43	0.00	-28.86		28.86	2,386.81				0.91	-0.14	0.022
65.00	-7.78	-2.26		-16.71		16.71	2,296.72	Service of the Constant of Con-		Sect. 4. 1966 States (1978) (1966)	1.06	-0.15	0.015
67.00	-4.44	-1.61	0.00	-12.20		12.20			2,843.16		1.12	-0.15	0.011
70.00	-3.05	-1.23		-7.36		7.36			2,660.79		1.21	-0.15	0.007
75.00	-2.93	-1.19	0.00	-1.19		1.19	2,063.59				1.37	-0.15	0.002
76.00	0.00	0.00		0.00	N	0.00			2,310.09		1.40	-0.15	0.000
76.69	0.00	0.00	0.00	0.00	0.00	0.00	2,021.84	1,010.92	2,271.49	1,137.43	1.42	-0.15	0.000

Byram Park CT, CT Site Name:

AT&T MOBILITY Customer:

Code: ANSI/TIA-222-G Engineering Number: OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved.

1/16/2018 11:16:56 AM

(0.9 - 0.2Sds) * DL + E EMAM Seismic (Reduced DL) Equivalent Modal Analysis Method Load Case

Seg Ele (ft)		Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	È	ohi Pn ips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)		Rotation (deg)	Ratio
0.0		-4.02		-240.37		240.37	5,99	4.12	2,997.06	12,661.4	6,340.12	0.00	0.00	0.042
5.0		-3.99	0.00	-220.26	6	220.26	5,84	3.27	2,924.13	11,946.7	5,982.25	0.01	-0.01	0.041
10.0		-3.94	0.00	-200.32	0.00	200.32				11,200.5		0.03	-0.02	0.040
15.0		-3.87	0.00	-180.61	0.00	180.61				10,429.0		0.06	-0.04	0.039
20.0		-3.81	0.00	-161.28	0.00	161.28	5,280	0.25	2,640.13	9,685.11	4,849.75	0.10	-0.05	0.037
22.6		-3.75	0.00	-151.05	0.00	151.05				9,296.61		0.13	-0.05	0.036
25.0		-3.62	0.00	-142.38	0.00	142.38	5,082	2.30	2,541.15	8,968.69	4,491.01	0.16	-0.06	0.035
28.8		-3.60	0.00	-128.44	0.00	128.44				7,729.02		0.21	-0.07	0.037
30.0		-3.50	0.00	-124.30	0.00	124.30				7,589.51		0.23	-0.07	0.037
35.0		-3.38	0.00	-106.82	0.00	106.82				6,996.92		0.31	-0.08	0.034
40.0		-3.28	0.00	-89.90		89.90				6,428.42		0.41	-0.10	0.031
45.0		-3.21	0.00	-73.52		73.52				5,884.00		0.52	-0.11	0.028
47.1	지수는 요즘 것 것 것 것 것 같아. 것 같아.	-3.15	0.00	-66.59	0.00	66.59	3,770	5.11	1,888.06	5,656.38	2,832.40	0.57	-0.11	0.027
50.0	55 NO. 100 NO. 10 TO	-3.05	0.00	-57.65	0.00	57.65	3,67	7.69	1,838.85	5,363.67	2,685.82	0.63	-0.12	0.025
52.3		-3.02	0.00	-50.38		50.38				3,679.50		0.69	-0.12	0.032
55.0		-2.95	0.00	-42.46	0.00	42.46				3,524.91		0.76	-0.13	0.028
57.0		-2.59	0.00	-36.56		36.56	2,439	9.26	1,219.63	3,408.20	1,706.63	0.82	-0.13	0.024
60.0		-2.42	0.00	-28.78		28.78	2,386	5.81	1,193.40	3,235.34	1,620.08	0.90	-0.14	0.020
65.0	10 OT.9707	-2.25	0.00	-16.67		16.67	2,296	5.72	1,148.36	2,953.55	1,478.97	1.05	-0.14	0.014
67.0		-1.61	0.00	-12.17		12.17	2,259	9.74	1,129.87	2,843.16	1,423.69	1.11	-0.15	0.010
70.0	285 Sec. 295 Sec. 295 Sec. 275	-1.23	0.00	-7.34	1 S. S.L.	7.34	2,18	7.31	1,093.66	2,660.79	1,332.37	1.21	-0.15	0.006
75.0	E	-1.18	0.00	-1.18	C	1.18				2,366.82		1.36	-0.15	0.002
76.0		0.00	0.00	0.00		0.00	2,038	3.85	1,019.42	2,310.09	1,156.76	1.40	-0.15	0.000
76.6	9 0.00	0.00	0.00	0.00	0.00	0.00	2,02	1.84	1,010.92	2,271.49	1,137.43	1.42	-0.15	0.000

Site Number: 414240 Site Name: Byram Park CT, CT Customer: AT&T MOBILITY

Code: ANSI/TIA-222-G Engineering Number:OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved. 1/16/2018 11:16:56 AM

Analysis Summary

			- Rea	actions -			Max	Usage
Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	1	nteraction Ratio
1.2D + 1.6W	43.18	0.00	40.21	0.00	0.00	2221.39	0.00	0.36
0.9D + 1.6W	43.17	0.00	30.15	0.00	0.00	2217.32	0.00	0.35
1.2D + 1.0Di + 1.0Wi	12.47	0.00	66.34	0.00	0.00	635.48	0.00	0.11
(1.2 + 0.2Sds) * DL + E ELFM	4.84	0.00	40.17	0.00	0.00	260.44	0.00	0.05
(1.2 + 0.2Sds) * DL + E EMAM	4.02	0.00	40.17	0.00	0.00	241.00	0.00	0.04
(0.9 - 0.2Sds) * DL + E ELFM	4.84	0.00	27.00	0.00	0.00	259.81	0.00	0.05
(0.9 - 0.2Sds) * DL + E EMAM	4.02	0.00	27.00	0.00	0.00	240.37	0.00	0.04
1.0D + 1.0W	11.23	0.00	33.54	0.00	0.00	577.17	0.00	0.10

Site Name: Byram Park CT, CT Customer: AT&T MOBILITY

Code: ANSI/TIA-222-G Engineering Number:OAA720743_C3_01

© 2007 - 2018 by ATC IP LLC. All rights reserved. 1/16/2018 11:16:56 AM

Base Summary

Reactions

60.00

20

2.25" 18J

2.25

75.00

100.00

Moment (kip-ft)		ial S	Shear (kip)	Momen (kip-ft)	t A			Moment Design %							
4,555.20	0 3	8.30	74.40	2,221.39	9 6	6.34	43.18	48.77							
Base Pla	ate														
Yield (ksi)	Thick (in)	Width (in)		Style	Poly Sides	Clip Len (in)	Effective Len (in)		Phi M (kip-i			Rati	0		
50.0	2.750	66.000	ł	Round	0	0.00	8.252	265.43	702.0	09		0.38	3		
Anchor	Bolts														
Bolt Circle	Num Bolts	Bolt T	уре	Bolt Dia (in)	Yield (ksi)	Ultimate (ksi)	Arrange	Cluster Dist (in)	Start Angle (deg)	Force (kip)	ompressi Allow (kip)	on Ratio	Force (kip)	Tension Allow (kip)	Ratio

0.00

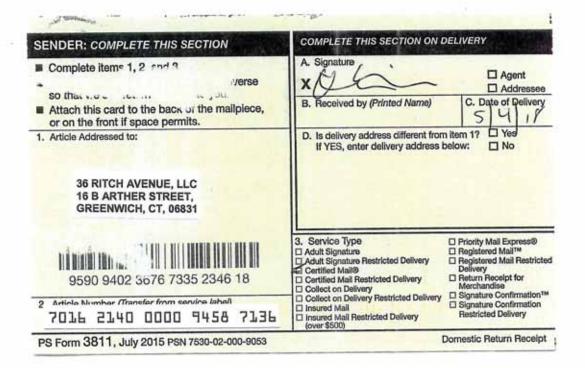
0.0

92.17

260.00


0.37

85.54


260.00

0.35

Radial

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DEL	IVERY
 Complete items 1, 2, and 3. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 	A. Signature	Addressee C. Date of Delivery
1. Article Addressed to: Mr. Peter Tesei, First Selectman Greenwich Town Hall, First Floor 101 Field Point Road Greenwich, CT 06830	D. Is delivery address different from ite If YES, enter delivery address belo	
9590 9402 3676 7335 2345 95 Addate Mumber (Transfer from service label) 7016 3010 0000 7829 1421	Adult Signature Adult Signature Restricted Delivery Certified Mail® Certified Mail® Collect on Delivery Collect on Delivery Restricted Delivery Collect on Delivery Restricted Delivery Insured Mail	Priority Mail Express® Registered Mail™ Registered Mail Restricted Jelivery Return Receipt for Merchandise Signature Confirmation Restricted Delivery
PS Form 3811, July 2015 PSN 7530-02-000-9053	and a second	estic Return Receipt

FAQs > (http://faq.usps.com/?articleId=220900)

Track Another Package +

Tracking Number: 70162140000094587143

Expected Delivery by

FRIDAY

4 MAY 2018 (1) by 8:00pm (1)

May 4, 2018 at 11:46 am Delivered, Left with Individual WOBURN, MA 01801

Get Updates 🗸

Text & Email Updates	\sim
Tracking History	\checkmark
Product Information	\checkmark

See Less A

Can't find what you're looking for?

Go to our FAQs section to find answers to your tracking questions.

Remove X

USPS Tracking[®]

FAQs (http://faq.usps.com/?articleId=220900)

The easiest tracking number is the one you don't have to know.

With Informed Delivery[®], you never have to type in another tracking number. Sign up to:

- See images* of incoming mail.
- Automatically track the packages you're expecting.
- Set up email and text alerts so you don't need to enter tracking numbers.
- Enter USPS Delivery Instructions[™] for your mail carrier.

Sign Up

(https://reg.usps.com/entreg/RegistrationAction_input?

*NOTE: Black and white (grayscale) images show the outside, front of letter-sized envelopes and mailpieces that are processed and the states of the states o