

107 Selden Street, Berlin, CT 06037 P.O. Box 270, Hartford, CT 06141-0270

Christopher R. Bernard Manager-Regulatory Policy & Strategy, CT

(860) 665-5967 Christopher.Bernard@eversource.com

March 1, 2021

Ms. Melanie Bachman Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

Re: CL&P dba Eversource Energy Forecast of Loads & Resources for the Period 2021-2030

Dear Ms. Bachman:

The Connecticut Light and Power Company dba Eversource Energy (the "Company") submits herewith 15 copies of the Company's 2021 Forecast of Loads and Resources, as required by Connecticut General Statute 16-50r.

Please do not hesitate to contact me if you have any questions regarding this filing.

Sincerely,

Christopher R. Bernard Manager, Regulatory Policy & Strategy – CT As Agent for The Connecticut Light & Power Company dba Eversource Energy

Enclosure



# 2021 Forecast of Loads and Resources

for the Period 2021-2030

March 1, 2021

#### List of Acronyms

| "ACEEE"    | American Council for an Energy Efficiency Economy                                                              |
|------------|----------------------------------------------------------------------------------------------------------------|
| "C&LM"     | Conservation and Load Management                                                                               |
| "CAGR"     | Compound Annual Growth Rate                                                                                    |
| "CEAB"     | Connecticut Energy AdvisoryBoard                                                                               |
| "CSC"      | Connecticut Siting Council                                                                                     |
| "CMEEC"    | Connecticut Municipal Electric Energy Cooperative, Inc.                                                        |
| "DEEP"     | Department of Energy and Environmental Protection                                                              |
| "EE"       | Energy Efficiency                                                                                              |
| "EEB"      | Energy Efficiency Board                                                                                        |
| "EDC"      | Electric Distribution Company                                                                                  |
| "EV"       | Electric Vehicles                                                                                              |
| "FCA"      | ISO-NE Forward Capacity Auction                                                                                |
| "FCM"      | ISO-NE Forward Capacity Market                                                                                 |
| "FERC"     | Federal Energy Regulatory Commission                                                                           |
| "FLR"      | Forecast of Loads and Resources                                                                                |
| "IRP"      | Integrated Resource Plan                                                                                       |
| "ISD"      | In-Service Date                                                                                                |
| "ISO-NE"   | Independent System Operator – New England                                                                      |
| "kV"       | Kilovolt or 1,000 Volts                                                                                        |
| "kW"       | Kilowatt or 1,000 Watts                                                                                        |
| "kW-Month" | Kilowatt month                                                                                                 |
| "LREC"     | Low Emission Renewable Energy Credits                                                                          |
| "MW"       | Megawatt or 1,000,000 Watts                                                                                    |
| "NERC"     | North American Electric Reliability Corporation                                                                |
| "NPCC"     | Northeast Power Coordinating Council                                                                           |
| "NTA"      | Non-Transmission Alternative                                                                                   |
| "PA 11-80" | Public Act 11-80, An Act Concerning the Establishment of the Department of Energy and Environmental Protection |
| "PAC"      | Planning Advisory Committee                                                                                    |
| "PV"       | Photovoltaic                                                                                                   |
| "PURA"     | Public Utilities RegulatoryAuthority                                                                           |
| "RFP"      | Request for Proposal                                                                                           |
| "RGGI"     | Regional Greenhouse Gas Initiative                                                                             |

#### List of Acronyms, Continued

- "ROFR" Right of First Refusal
- "RSP" ISO-NE's Regional System Plan
- "TO" Transmission Owner
- "ZREC" Zero Emission Renewable Energy Credit

# Contents

| Chapte | er 1: INTRODUCTION                                                   | 5  |
|--------|----------------------------------------------------------------------|----|
| 1.1    | Overview of Eversource's 2021 Forecast of Loads and Resources Report | 5  |
| 1.2    | Energy and Peak Demand Forecasts                                     | 5  |
| 1.3    | Evolving Load and Resource Influences                                | 5  |
| Chapte | er 2: FORECAST OF LOADS AND RESOURCES                                | 7  |
| 2.1    | Electric Energy and Peak Demand Forecast                             | 7  |
| 2.1    | I.1 Uncertainty in the Reference Plan Forecast                       | 8  |
| 2.1    | I.2 Forecast Scenarios                                               | 9  |
| 2.1    | I.3 ISO-NE Demand Forecasts                                          | 11 |
| 2.2    | ISO-NE Wholesale Electric Markets                                    | 13 |
| Chapte | er 3: ENERGY EFFICIENCY                                              | 15 |
| 3.1    | Connecticut's Energy Efficiency Programs Ten-Year C&LM Forecast      | 15 |
| 3.2    | Legislative History                                                  | 15 |
| 3.3    | Conservation & Load Management Plans                                 | 16 |
| 3.4    | Ten-Year C&LM Forecast                                               | 17 |
| Chapte | er 4: TRANSMISSION PLANNING AND SYSTEM NEEDS                         | 19 |
| 4.1    | Transmission is planned and built for the long term                  | 19 |
| 4.2    | Transmission Planning and National Reliability Standards             | 19 |
| 4.3    | Transmission Planning Process                                        | 19 |
| 4.4    | Connecticut's Transmission System and Serving Load                   | 20 |
| 4.5    | Assessment of Transmission Needs in Connecticut's Sub-areas          | 20 |
| 4.6    | Incorporation of Renewables Through Transmission, Including Outlook  | 27 |

#### Chapter 1: INTRODUCTION

#### 1.1 Overview of Eversource's 2020 Forecast of Loads and Resources Report

The Connecticut Light & Power Company doing business as Eversource Energy ("Eversource" or the "Company") is a company engaged in electric distribution and transmission services in Connecticut, as defined in Conn. Gen. Stat. §16-1. As such, Eversource has prepared this Ten-Year FLR pursuant to Conn. Gen. Stat. §16-50r. Eversource has provided an annual FLR to the CSC for over forty years. This 2020 FLR includes the following information<sup>1</sup>:

- 1. A tabulation of the peak loads, resources, and margins for each of the next ten years, using CL&P's 50/50 financial forecasting methodology.
- 2. Data on energy use and peak loads for the five preceding calendar years, including data on the energy savings provided by Eversource's energy efficiency programs during that period.
- 3. A list of planned transmission lines on which proposed route reviews are being undertaken or for which certificate applications have already been filed.

#### 1.2 Energy and Peak Demand Forecasts

There is uncertainty in any forecast, and weather can especially have a large impact on the realization of any forecast. Eversource's electric energy usage is expected to remain flat with a weather-normalized CAGR of 0.0% per year, but peak demand is expected to increase by a weather-normalized CAGR of 0.3% per year over the 10- year forecast period from 2021 through 2030.

While Eversource is providing this forecast, which was developed for financial forecasting purposes, Eversource uses ISO-NE's load forecast for transmission planning purposes. Further discussion of Eversource's forecast is provided in Chapter 2.

#### 1.3 Evolving Load and Resource Influences

As part of the state's restructuring of the electric industry, which began in 1998, Eversource sold its generation assets, while remaining a Connecticut electric distribution and transmission company. Since that time, the state has enacted a number of policies and programs which affect the developing wholesale electric market in the region.

#### State-Mandated Integrated Resource Planning

In 2007, the Connecticut legislature passed PA 07-242, *An Act Concerning Electricity and Energy Efficiency,* directing the annual development of an IRP for Connecticut. In 2011, the Connecticut legislature passed PA 11-80, *An Act Concerning the Establishment of the Department of Energy and Environmental Protection and Planning for Connecticut's Energy Future.* PA 11-80 calls for DEEP to create an IRP by January 1, 2012 and biennially thereafter, in consultation with the CEAB<sup>2</sup> and the EDCs.

On March 17, 2015, DEEP issued its 2014 IRP for Connecticut presenting a comprehensive plan for improving Connecticut's electric energy future. DEEP is currently developing its latest IRP and has yet to issue a draft for comment.

<sup>&</sup>lt;sup>1</sup> Pursuant to discussions with CSC staff, Eversource has removed the previously provided Table 2-3: Existing Customer Owned Facilities 1 MW and Above Providing Generation to the Eversource System from this filing.

<sup>&</sup>lt;sup>2</sup> The CEAB was dissolved as of June 6, 2014. See General Statutes § 16a-3, repealed by Public Act 14-94, § 82.

#### **ISO-NE Wholesale Electric Markets**

Section 2.2 of this report discusses the results of the most recent FCA in the ISO-NE wholesale electricity market.

#### **Energy Efficiency Programs**

For over 20 years, Eversource has worked strategically with other Connecticut electric and natural gas utilities to deliver, develop, and implement nationally-recognized energy efficiency programs for Connecticut's businesses, residential customers and government entities to help them control their energy usage, save money and reduce overall electric consumption in the state. These successful programs are funded by three-mill systems benefit charge on customer bills, a Conservation Adjustment Mechanism ("CAM") less gross receipts tax assessed on customer electric bills, and contributions from natural gas customers through a natural gas CAM. In addition, energy efficiency revenues are received from Regional Greenhouse Gas Initiative ("RGGI") auctions and revenue from the ISO-NE Forward Capacity Market ("FCM").

Further discussion of Eversource's energy efficiency program forecast can be found in Chapter 3.

#### **Transmission Planning**

Eversource plans, builds and operates transmission infrastructure with a goal of safely and reliably delivering power to its customers under a wide variety of supply and demand conditions. A discussion of Eversource's transmission forecast can be found in Chapter 4. The key topics include:

Eversource's transmission facilities are part of the New England regional grid and must be designed, operated and maintained to ensure compliance with mandatory NERC, the NPCC, ISO-NE and Eversource reliability standards and criteria.

- Eversource is proposing new 115-kV transmission projects to strengthen the Connecticut transmission system.
- The New England transmission system is an important enabler of competitive markets and the region's efforts to meet environmental objectives and mandates.
- Eversource Transmission Line Department is continuing to improve the reliability of the transmission system. Inspections have found degradation of many overhead wood transmission structures. Replacing these structures over the next several years resolves multiple structural/hardware issues and supports safe and reliable operation.

#### **Chapter Highlights**

- Electric energy usage is expected to remain flat over the 10-year forecast period; however, peak demand is expected to increase by 0.3% per year during this time.
- While Eversource uses its own Reference Plan Forecast for financial forecasting, it uses ISO-NE's load forecast for transmission planning purposes.

#### **Electric Energy and Peak Demand Forecast**

The energy and peak demand forecasts contained in this chapter are based on the Company's budget forecast, which was prepared in the Fall/Winter of 2020, and are based on Eversource's total franchise area. The base case or 50/50<sup>3</sup> case is also referred to as the Reference Plan Forecast. Eversource's Reference Plan *Energy* Forecast is based on the results of econometric models, adjusted for Eversource's forecasted energy efficiency programs, projected reductions resulting from solar installations, expected additions due to electric vehicles (EVs) and the electrification of heating systems.

The Reference Plan *Peak Demand* Forecast is also based on an econometric model, adjusted for energy efficiency, solar, expected large customer additions and EVs. The Reference Plan Forecast is used for Eversource's financial planning and distribution system planning, but is not used for transmission system planning. As ISO-NE is responsible for regional transmission planning and reliability, it independently develops its own forecast which the Company utilizes to plan and construct its transmission system. Section 2.1.3 discusses ISO-NE's forecast in general terms and how it conceptually compares to Eversource's forecast.

The Reference Plan *Energy* Forecast projects flat growth in the weather-normalized CAGR for total electrical energy output requirements of 0.0% for Eversource from 2020- 2030. Without the Company's energy efficiency programs, solar installations, or electric vehicles or heating electrification, the forecasted energy growth rate is also projected to be flat with a weather-normalized CAGR of 0.0%.

The weather-normalized CAGR for summer peak demand in the Reference Plan *Peak Demand* Forecast is forecasted to increase by 0.3% over the ten-year forecast period. Similarly, if Eversource's energy efficiency, solar installations, EVs and our large customer additions were excluded, the increase in the CAGR for forecasted peak demand would be 0.2%.

Table 2-1 provides historic output and summer peaks, actual and normalized for weather, for the 2016-2020 period, and forecast output and peaks for the 2021-2030 periods. The sum of the budgeted class sales for each year, increased for losses, is the annual forecast of system electrical energy requirements or output. This is the amount of energy that must be supplied by generating plants to serve the loads on the distribution system.

<sup>&</sup>lt;sup>3</sup> A "50/50 forecast" is a forecast that is developed such that the probability that actual demand is higher or lower than the forecasted amount is 50%.

The Reference Plan Forecast is a *50/50* forecast that assumes normal weather throughout the year, with normal peak-producing weather episodes in each season. The forecasted 24-hour mean daily temperature for the summer peak day is 84° F and is based on the average peak day temperatures from 2011-2020. The Reference Plan Forecast's summer peak day is assumed to occur in July, since this is the most common month of occurrence historically. It should be noted, however, that the summer peak has occurred in June, August and September in some years.

#### 2.1.1 Uncertainty in the Reference Plan Forecast

There is uncertainty in any long-run forecast, because assumptions that are used in the forecast are selected at a point in time. The point of time chosen is generally insignificant, unless the forecast drivers are at a turning point. Outlined below are eight areas of uncertainty that are inherent to this forecast:

- The Economy The Reference Plan Forecast is based on an economic forecast that was developed in August 2020, which reflects the recent downturn triggered by the global pandemic. Business cycles represent normal economic fluctuations which are typically not reflected in long-run trend forecasts because recovery eventually follows recession, although it is difficult to pinpoint when. So, while the level of energy or peak demand that is forecasted for any given year of the forecast may be attained a little earlier or later than projected, the underlying trend is still likely to occur at some point and needs to be planned for.
- Global Pandemic Electrical energy output requirements will be favorably impacted in 2021 compared to 2020 primarily due to the rebound in the commercial sector following the 3-month economic shutdown from April to June 2020. Eversource does not believe the Global Pandemic had a material impact on the actual 2020 summer peak as the higher loads in the residential sector were essentially offset by declines in the commercial sector. The Company does not expect the Global pandemic to impact the peak demand forecast.
- Solar Installations This forecast includes explicit reductions to electrical energy output requirements due to solar installations stemming from the currently active LREC/ZREC program and the Connecticut Green Bank residential program.
- Energy Efficiency This forecast includes explicit reductions to electrical energy output and peak demand due to company sponsored energy efficiency based on the most recent 3-year plan.
- Electric Vehicles This forecast includes explicit additions to electrical energy output requirements and peak demand due to EVs. The EV forecast starts with historical actuals and builds a projection based on national and local market information such as new EV model release plans, state rebate programs and state planned infrastructure investments.
- Large Customers The peak demand forecast includes explicit adjustments for large customer additions with expected demands greater than 0.25 MW's.
- Heating Electrification This forecast includes explicit additions to electrical energy output
  requirements in the winter months due increasing installations of cold-climate heat pumps.
  It does not include additions to the peak forecast since the peak occurs in July and there are
  no heating loads at that time.

 Weather - The Reference Plan Peak Demand Forecast assumes normal weather based on a ten-year average (2011 - 2020). The historical peak day 24- hour mean temperatures range from 79° F to 89° F, with deviations from the average peak day temperatures being random, recurring and unpredictable occurrences. For example, the lowest peak day mean temperature occurred in 2017, while the highest occurred in 2011. This variability of peakproducing weather means that over the forecast period, there will be years when the actual peaks will be significantly above or below the forecasted peaks.

Despite the inherent risks outlined above, the Company believes its current forecast to be the most reasonable, given the information available today.

#### 2.1.2 Forecast Scenarios

Table 2-1 contains scenarios demonstrating the variability of peak load around the 50/50 peak forecast due to weather. The table shows that weather has a significant impact on the peak load forecast with variability of approximately 8%, or 390 MWs, above and below Eversource's 50/50 forecast, which is based on normal weather. To illustrate, the 2030 summer peak forecast reflecting average peak-producing weather is 5,245 MWs.

However, either extremely mild or extremely hot weather could result in a range of potential peak loads from 4,869 MWs to 5,647 MWs. This 775 MWs of variation, which is a band of approximately plus or minus 8% around the average, demonstrates the potential impact of weather alone on forecasted summer peak demand.

The Extreme Hot Weather scenario roughly corresponds conceptually to ISO-NE's 90/10 forecast, described in Section 2.1.3.

#### Table 2-1: Eversource 2021 Reference Plan Forecast

|           | Net Electric        | al Energy     |             |               |         |             |               |          |             |               |             |
|-----------|---------------------|---------------|-------------|---------------|---------|-------------|---------------|----------|-------------|---------------|-------------|
|           | Output Requirements |               | Net Ele     | ctrical Peak  | Loads   |             |               |          |             |               |             |
|           |                     | Annual        |             | <u>Annual</u> | Load    |             | <u>Annual</u> | Load     |             | Annual        |             |
| Year      | <u>Output</u>       | <u>Change</u> | <u>Peak</u> | <u>Change</u> | Factor  | <u>Peak</u> | <u>Change</u> | _ Factor | <u>Peak</u> | <u>Change</u> | Load Factor |
|           | GWh (1)             | (%)           | MW          | (%)           | (2)     | MW          | (%)           | (2)      | MW          | (%)           | (2)         |
| HISTORY   |                     |               |             |               |         |             |               |          |             |               |             |
| 2016      | 22460               |               | 4948        |               | 0.517   |             |               |          |             |               |             |
| 2017      | 21686               | -3.4%         | 4721        | -4.6%         | 0.524   |             |               |          |             |               |             |
| 2018      | 22236               | 2.5%          | 5045        | 6.8%          | 0.503   |             |               |          |             |               |             |
| 2019      | 21274               | -4.3%         | 4763        | -5.6%         | 0.510   |             |               |          |             |               |             |
| 2020      | 20635               | -3.0%         | 4802        | 0.8%          | 0.489   |             |               |          |             |               |             |
| Compoun   | d Rates of G        | rowth (2016-2 | 2020)       |               |         |             |               |          |             |               |             |
|           | -2.1%               |               | -0.7%       |               |         |             |               |          |             |               |             |
| HISTORY   | NORMALIZE           | D FOR WEAT    | HER         |               |         |             |               |          |             |               |             |
| 2016      | 22242               |               | 4953        |               | 0.511   |             |               |          |             |               |             |
| 2017      | 21755               | -2.2%         | 5098        | 2.9%          | 0.487   |             |               |          |             |               |             |
| 2018      | 21657               | -0.4%         | 4989        | -2.1%         | 0.496   |             |               |          |             |               |             |
| 2019      | 21047               | -2.8%         | 4462        | -10.6%        | 0.538   |             |               |          |             |               |             |
| 2020      | 20585               | -2.2%         | 5090        | 14.1%         | 0.460   |             |               |          |             |               |             |
| Compoun   | d Rates of G        | rowth (2016-2 | 2020)       |               |         |             |               |          |             |               |             |
|           | -1.9%               |               | 0.7%        |               |         |             |               |          |             |               |             |
| FORECAS   | <u>5T</u>           |               | Reference   | e Plan (50/5  | 0 Case) | Extr        | eme Hot Sce   | enario   | Extr        | eme Cool      | Scenario    |
| 2021      | 20876               | 1.4%          | 4972        | -2.3%         | 0.479   | 5365        | 5.4%          | 0.444    | 4619        | -9.3%         | 0.516       |
| 2022      | 20741               | -0.6%         | 5014        | 0.8%          | 0.472   | 5405        | 0.7%          | 0.438    | 4658        | 0.9%          | 0.508       |
| 2023      | 20698               | -0.2%         | 5045        | 0.6%          | 0.468   | 5435        | 0.6%          | 0.435    | 4687        | 0.6%          | 0.504       |
| 2024      | 20761               | 0.3%          | 5060        | 0.3%          | 0.467   | 5453        | 0.3%          | 0.433    | 4700        | 0.3%          | 0.503       |
| 2025      | 20599               | -0.8%         | 5091        | 0.6%          | 0.462   | 5486        | 0.6%          | 0.429    | 4728        | 0.6%          | 0.497       |
| 2026      | 20555               | -0.2%         | 5116        | 0.5%          | 0.459   | 5512        | 0.5%          | 0.426    | 4751        | 0.5%          | 0.494       |
| 2027      | 20529               | -0.1%         | 5142        | 0.5%          | 0.456   | 5540        | 0.5%          | 0.423    | 4774        | 0.5%          | 0.491       |
| 2028      | 20562               | 0.2%          | 5173        | 0.6%          | 0.452   | 5573        | 0.6%          | 0.420    | 4803        | 0.6%          | 0.487       |
| 2029      | 20521               | -0.2%         | 5207        | 0.6%          | 0.450   | 5607        | 0.6%          | 0.418    | 4834        | 0.6%          | 0.485       |
| 2030      | 20546               | 0.1%          | 5245        | 0.7%          | 0.447   | 5647        | 0.7%          | 0.415    | 4869        | 0.7%          | 0.482       |
| Compoun   | d Rates of G        | rowth (2020-2 | 2030)       |               |         |             |               |          |             |               |             |
|           | 0.0%                |               | 0.9%        |               |         | 1.6%        |               |          | 0.1%        |               |             |
| Normalize | d Compound          | Rates of Gro  | owth (2020  | -2030)        |         |             |               |          |             |               |             |
|           | 0.0%                |               | 0.3%        |               |         | 1.0%        |               |          | -0.4%       |               |             |

1. Sales plus losses.

2. Load Factor = Output (MWh) / (8760 Hours X Season Peak (MW)).

Forecasted Reference Plan Peaks are based on normal peak day weather (84° mean daily temperature). Forecasted High Peaks are based on the weather that occurred on the 2011 peak day (89° mean daily temperature). Forecasted Low Peaks are based on the weather that occurred on the 2017 peak day (79° mean daily temperature).

#### 2.1.3 ISO-NE Demand Forecasts

The CSC's <u>2008 Review of the Ten-Year Forecast of Loads and Resources</u> provides a concise description of the ISO-NE's "90/10" forecast used by Eversource for transmission planning purposes. A relevant excerpt is provided below.

Called the "90/10" forecast, it is separate from the normal weather (50/50) forecasts offered by the Connecticut utilities. However, it is the one used by both ISO-NE and by the Connecticut utilities for utility infrastructure planning, including transmission and generation.

The 90/10 forecast is a plausible worst-case hot weather scenario. It means there is only a 10 percent chance that the projected peak load would be exceeded in a given year, while the odds are 90 percent that it would not be exceeded in a given year. Put another way, the forecast would be exceeded, on average, only once every ten years. While this projection is extremely conservative, it is reasonable for facility planning because of the potentially severe disruptive consequences of inadequate facilities: brownouts, blackouts, damage to equipment, and other failures. State utility planners must be conservative in estimating risk because they cannot afford the alternative.

Just as bank planners should ensure the health of the financial system by maintaining sufficient collateral to meet worst-case liquidity risks, load forecasters must ensure the reliability of the electric system by maintaining adequate facilities to meet peak loads in worst-case weather conditions. While over-forecasting can have economic penalties due to excessive and/or unnecessary expenditures on infrastructure, the consequences of under-forecasting can be much more serious. Accordingly, the Council will base its analysis in this review on the ISO-NE 90/10 forecast.

As Eversource has reported in the past, there is one other major difference between the Eversource and ISO-NE forecasts, aside from the difference between the 50/50 forecast methodology used by Eversource and the 90/10 forecast methodology used by ISO-NE. The Eversource peak demand forecasts include explicit reductions for the Company's EE programs, solar resources and explicit large customer additions, while the ISO-NE demand forecasts do not include these adjustments; instead, ISO-NE considers EE and large scale solar to be supply resources in their capacity forecast. ISO-NE has developed a new PV forecast such that small scale solar is calculated and explicitly reduces the ISO-NE demand forecast. ISO-NE publishes the PV forecast annually as part of their load forecast documentation.

Table 2-2 shows Eversource's Reference Plan Forecast with savings from Eversource's EE programs, solar and large customer additions added back in to make it easier to compare Eversource's forecast with ISO-NE's forecast.

| -           | Net Electrical Energy Output Requirements (GWH) |              |                                               |                          |                 |                 |                 |               |  |
|-------------|-------------------------------------------------|--------------|-----------------------------------------------|--------------------------|-----------------|-----------------|-----------------|---------------|--|
|             |                                                 |              | Company                                       | Large                    |                 |                 |                 | Annual        |  |
|             | <u>Unadjusted</u>                               |              | Energy                                        | Customer                 | Heating         | Electric        | Adjusted        | Change        |  |
| Year        | Output                                          | <u>Solar</u> | Efficiency                                    | Additions                | Electrification | <u>Vehicles</u> | Output          | <u>(%)</u>    |  |
| HISTOR)     | <u>Y NORMALIZED</u>                             | FOR WE       | <u>ATHER</u>                                  |                          |                 |                 |                 |               |  |
| 2020        |                                                 |              |                                               |                          |                 |                 | 20,585          |               |  |
| FORECA      | <u>ST</u>                                       |              |                                               |                          |                 |                 |                 |               |  |
| 2021        | 20,975                                          | (83)         | (16)                                          | -                        | 11              | 6               | 20,876          | 1.4%          |  |
| 2022        | 20,909                                          | (142)        | (26)                                          | -                        | 17              | 16              | 20,741          | -0.6%         |  |
| 2023        | 20,930                                          | (200)        | (33)                                          | -                        | 24              | 25              | 20,698          | -0.2%         |  |
| 2024        | 21,037                                          | (239)        | (37)                                          | -                        | 31              | 35              | 20,761          | 0.3%          |  |
| 2025        | 20,888                                          | (250)        | (39)                                          | -                        | 40              | 52              | 20,599          | -0.8%         |  |
| 2026        | 20,855                                          | (262)        | (39)                                          | -                        | 49              | 79              | 20,555          | -0.2%         |  |
| 2027        | 20,840                                          | (273)        | (39)                                          | -                        | 59              | 109             | 20,529          | -0.1%         |  |
| 2028        | 20,885                                          | (284)        | (39)                                          | -                        | 70              | 138             | 20,562          | 0.2%          |  |
| 2029        | 20,855                                          | (295)        | (39)                                          | -                        | 83              | 173             | 20,521          | -0.2%         |  |
| 2030        | 20,891                                          | (307)        | (39)                                          | -                        | 96              | 219             | 20,546          | 0.1%          |  |
| Normaliz    | ed Compound                                     | Rates of (   | Growth (2020                                  | )-2030)                  |                 |                 | 0.0%            |               |  |
|             | 0.170                                           |              | 50/50 R                                       | afaranca Plar            | - (N/I\A/)      |                 | 0.070           |               |  |
|             |                                                 |              | Company                                       |                          |                 |                 |                 | Annual        |  |
|             | Unadjusted                                      |              | Energy                                        | <u>Larye</u><br>Customer | Heating         | Electric        | Adjusted        | Change        |  |
| Year        | Peak                                            | Solar        | Efficiency                                    | Additions                | Flectrification | Vehicles        | Peak            | (%)           |  |
| HISTOR      |                                                 | FOR WE       | ATHER                                         | <u>/ laaliono</u>        |                 | <u>venielee</u> | <u>r our</u>    | <u>(707</u>   |  |
| 2020        |                                                 |              | <u>, , , , , , , , , , , , , , , , , , , </u> |                          |                 |                 | 5,090           |               |  |
| FORECA      | ST                                              |              |                                               |                          |                 |                 | 0,000           |               |  |
| 2021        | 4.960                                           | (20)         | (62)                                          | 91                       | -               | 2               | 4.972           | -2.3%         |  |
| 2022        | 5,002                                           | (25)         | (62)                                          | 94                       | -               | 4               | 5,014           | 0.8%          |  |
| 2023        | 5.037                                           | (30)         | (62)                                          | 94                       | -               | 6               | 5.045           | 0.6%          |  |
| 2024        | 5.052                                           | (33)         | (62)                                          | 94                       | -               | 9               | 5.060           | 0.3%          |  |
| 2025        | 5,071                                           | (33)         | (62)                                          | 102                      | -               | 13              | 5,091           | 0.6%          |  |
| 2026        | 5,088                                           | (33)         | (62)                                          | 102                      | -               | 20              | 5,116           | 0.5%          |  |
| 2027        | 5,105                                           | (33)         | (62)                                          | 102                      | -               | 30              | 5,142           | 0.5%          |  |
| 2028        | 5,126                                           | (33)         | (62)                                          | 102                      | -               | 40              | 5,173           | 0.6%          |  |
| 2029        | 5,147                                           | (33)         | (62)                                          | 102                      | -               | 53              | 5,207           | 0.6%          |  |
| 2030        | 5,168                                           | (33)         | (62)                                          | 102                      | -               | 69              | 5,245           | 0.7%          |  |
| Normaliz    | ed Compound                                     | Rates of (   | Growth (2020                                  | )-2030)                  |                 |                 |                 |               |  |
|             | 0.2%                                            |              |                                               |                          |                 |                 | 0.3%            |               |  |
|             |                                                 |              | Extreme Hot                                   | Weather Sce              | enario (MW)     |                 |                 |               |  |
|             |                                                 |              | <u>Company</u>                                | Large                    |                 | <b></b>         |                 | <u>Annual</u> |  |
|             | <u>Unadjusted</u>                               |              | Energy                                        | Customer                 | Heating         | <u>Electric</u> | <u>Adjusted</u> | Change        |  |
| <u>Year</u> | Peak                                            | <u>Solar</u> | Efficiency                                    | Additions                | Electrification | Vehicles        | <u>Peak</u>     | <u>(%)</u>    |  |
| HISTORY     | <u>r NORMALIZED</u>                             | FOR WE       | ATHER                                         |                          |                 |                 | F 000           |               |  |
| FORFCA      | ST                                              |              |                                               |                          |                 |                 | 5,090           |               |  |
| 2021        | 5.356                                           | (20)         | (62)                                          | 91                       | _               | 2               | 5 365           | 5.4%          |  |
| 2021        | 5 398                                           | (25)         | (62)                                          | 94                       | _               | 4               | 5 405           | 0.7%          |  |
| 2022        | 5,030                                           | (20)         | (62)                                          | 04<br>Q/                 |                 | +<br>6          | 5 435           | 0.7%          |  |
| 2023        | 5 454                                           | (33)         | (62)                                          | 94                       | _               | q               | 5 453           | 0.0%          |  |
| 2024        | 5,478                                           | (33)         | (62)                                          | 102                      |                 | 13              | 5 486           | 0.5%          |  |
| 2020        | 5,505                                           | (33)         | (62)                                          | 102                      | _               | 20              | 5 512           | 0.5%          |  |
| 2020        | 5,505                                           | (33)         | (62)                                          | 102                      | -               | 20<br>20        | 5,512           | 0.5%          |  |
| 2028        | 5 566                                           | (33)         | (62)                                          | 102                      | -               | ٥0<br>۸۱        | 5 573           | 0.0%          |  |
| 2020        | 5,600                                           | (33)         | (62)                                          | 102                      | -               | -+0<br>53       | 5,607           | 0.0%          |  |
| 2030        | 5 639                                           | (33)         | (62)                                          | 102                      | -               | 69              | 5 647           | 0.0%          |  |
| Normaliz    | ed Compound                                     | Rates of (   | Growth (202)                                  | )-2030)                  | -               | 03              | 0,047           | 0.170         |  |
|             | 1.0%                                            |              |                                               |                          |                 |                 | 1.0%            |               |  |

#### Table 2-2: Adjustments to Output and Summer Peak Forecasts

#### 2.2 ISO-NE Wholesale Electric Markets

This section reports on the most recent ISO-NE forward capacity auction.

The fifteenth FCA took place on Monday, February 8, 2020. Virtually all the information about FCA 14 has been taken from the ISO-NE press release, which can be found at the following location:

https://www.iso-ne.com/staticassets/documents/2021/02/20210211 pr fca15 initial results.pdf

Holyoke, MA—February 11, 2021—New England's annual capacity auction for power system resources concluded Monday with sufficient resources to meet peak demand in 2024-2025, with preliminary clearing prices ranging from \$2.48 per kilowatt-month (kW-month) to \$3.98 kW-month across different pricing zones. ISO New England Inc. runs the auction to procure the resources needed to meet consumer demand for electricity in three years.

The 15th auction of the Forward Capacity Market (FCA 15) cleared three separate prices because of local capacity requirements within New England. For this auction, the region was divided into four zones: Northern New England (NNE), made up of Vermont, portions of Maine and New Hampshire; "Nested" Maine, referring to the remainder of Maine; Southeast New England (SENE), comprising Northeastern Massachusetts, Greater Boston, Southeastern Massachusetts, and Rhode Island; and Rest of Pool (ROP), which includes Connecticut and western and central Massachusetts.

Capacity zones are developed to align with power system transmission constraints. They signal areas of the system with a potential shortfall or surplus of capacity. Multiple zones help to ensure that capacity is located and priced appropriately. The preliminary clearing prices for FCA 15 are: \$3.98 kW-month in the SENE zone, \$2.61 kW-month in the Rest-of-Pool zone, and \$2.48 kW-month in the NNE and Maine zones.

"The clearing prices in FCA 15 reveal the different values across the region based on the individual capacity needs for each zone," said Robert Ethier, vice president for system planning at ISO New England. "In addition, new this year is a large amount of energy storage—almost 600 megawatts (MW)—that has cleared the market."

Resources totaling 40,692 MW, including 33,662 MW of existing capacity and 219 new resources totaling 7,030 MW, qualified to participate in FCA 15, while the regional capacity target for 2024-2025 is 33,270 MW.

The auction concluded with capacity commitments of 34,621 MW to be available in 2024-2025, with 1,351 MW of surplus supply over the net installed capacity requirement. The auction rules allow the region to acquire more or less than the capacity target, providing flexibility to acquire additional capacity and enhanced reliability at a cost-effective price.

More than 2,525 MW of new resources within New England secured obligations during the auction. Of this total, approximately 19 MW received their obligations under the renewable technology resource (RTR) designation, which remained from prior auctions. The RTR designation allowed a limited amount of renewable resources to participate in the auction without being subject to the minimum offer-price rule. FCA 15 marked the final year of the RTR exemption. Almost 600 MW have come into the market under the RTR designation since FCA 9, the first auction for which the RTR designation applied.

#### Preliminary results of FCA 15:

• The primary auction cleared for all resources after five rounds of competitive bidding.

• Previous clearing prices (all per kilowatt-month): FCA 10 (2016), \$7.03; FCA 11 (2017), \$5.30; FCA 12 (2018), \$4.63; FCA 13 (2019), \$3.80; FCA 14 (2020), \$2.00. For earlier auction clearing prices, please go to the ISO website: Markets (iso-ne.com).

• The total value of the capacity market in 2024-2025 will be approximately \$1.36 billion (preliminary estimate).

• Capacity clearing the auction totaled 34,621 MW to meet the 33,270 MW net installed capacity target for 2024-2025:

o 29,243 MW of generation, including 950 MW of new resources

o 3,891 MW (including 170 MW new) of demand resources, including energy efficiency, load management, and distributed generation resources

o More than 630 MW of new plus existing battery storage

o 1,487 MW of total imports from New York, Québec, Canada, and New Brunswick, Canada

• Prior to FCA 15, 199 MW of resources submitted retirement bids, while an additional 43 MW of resources submitted permanent de-list bids to leave the capacity market; 101 MW of these de-list bids were cleared before the auction, and 141 MW were cleared during the auction.

#### **Chapter Highlights**

- Energy savings resulting from Connecticut Energy Efficiency Fund ("Fund") programs are the most cost- effective and reliable resource for Connecticut's energy policymakers and stakeholders. The programs help Connecticut residents, businesses, and local/state government reduce their energy bills and help mitigate peak energy prices.
- Fund programs are nationally recognized nationally and are perennially ranked in the top 10 states for energy efficiency and demand management. Connecticut's Electric Companies (Eversource and United Illuminating) and Natural Gas Companies (Eversource, Connecticut Natural Gas, and Southern Connecticut Gas) develop and implement Fund programs.
- Connecticut's energy efficiency and demand management strategies are designed to help the state in its efforts to reduce greenhouse gas ("GHG") emissions that result from energy usage in residential and C&I buildings, and to provide economic development benefits.

#### 3.1 Connecticut's Energy Efficiency Programs

Energy efficiency is a cost-effective resource available to policymakers to address rising energy costs, reliability challenges, and increasing GHG emissions. Connecticut's energy efficiency and demand management programs reduce the amount of energy used by residential and commercial and industrial ("C&I") customers. This helps to decrease energy demand from power plants, reduce the amount of GHG emissions emitted due to power generation, and helps to lower customers' energy bills across all sectors. Energy efficiency and demand management programs also provide economic development benefits for Connecticut and helps mitigate winter peak energy prices resulting from natural gas pipeline constraint during winter high-use periods.

Connecticut is a nationally-recognized leader in implementing high-quality energy efficiency and demand management programs. Since 2000, the American Council for an Energy Efficiency Economy ("ACEEE") has ranked Connecticut as one of the top 10 states for energy efficiency. In the ACEEE's 2020 State Energy Efficiency Scorecard, Connecticut ranked seventh in the nation. This ranking reflects the success and expertise of Connecticut's electric and natural gas utilities ("Companies") in developing and administering innovative energy efficiency programs.

Eversource with guidance from the Energy Efficiency Board ("EEB"), maintains their energy efficiency and demand management programs' success through a flexible and integrated approach that reaches out to customers in their homes, at their jobs, in schools, and in the community. Through seminars, workshops, teacher training, museum partnerships, trade ally and professional affiliations, retail partnerships, teacher trainings, museum partnerships, and marketing, Eversource is helping to shape a more efficiency-minded consumer that not only participates in award-winning programs, but who makes wise energy choices every day.

#### 3.2 Legislative History

The Connecticut General Assembly passed Public Act 98-28—An Act Concerning Electric Restructuring in 1998 and established the Fund, initially serving solely electric residential and

C&I customers across the state. In addition, Public Act 98-28 established the EEB to advise Connecticut's Electric Companies in developing their annual energy efficiency and load management plans. In 2005, Public Act 05-01—An Act Concerning Electricity and Energy Efficiency was passed created a funding mechanism for Natural Gas Companies to develop and implement cost-effective energy efficiency programs to reduce natural gas consumption. In 2007, new legislation called for the Companies to pursue "all cost-effective energy efficiency" with the passage of Public Act 07-242—An Act Concerning Electricity and Energy Efficiency. This legislation envisioned energy efficiency as the focal point for statewide energy policy.

In 2011, the Connecticut General Assembly passed Public Act 11-80, which laid the groundwork for pursuing "all cost-effective energy efficiency" and required the newly-created Department of Energy and Environmental Protection ("DEEP") to prepare a Comprehensive Energy Strategy for Connecticut every three years. Additionally, Public Act 11-80 established ambitious energy-saving targets for the state, including weatherizing 80 percent of Connecticut's residential homes by 2030. In 2013, due to passage of Public Act 13- 298, *An Act Concerning Implementation of Connecticut's Comprehensive Strategy and Various Revision to the Energy Statutes*, the Companies were required to develop three-year plans for energy efficiency and demand management programs. The first three-year plan was filed on November 1, 2015—the 2016-2018 Conservation & Load Management Plan ("2016-2018 Plan").

#### 3.3 Conservation & Load Management Plans

During the 2016-2018 Plan, the Companies saw significant funding for Fund programs diverted to the state's General Fund through the Connecticut General Assembly's passage of June Special Session Public Act 17-2, An Act Concerning the State Budget for the Biennium Ending June 30, 2019, Making Appropriations Therefor, Authorizing and Adjusting Bonds of the State and Implementing Provisions of the Budget ("SS Public Act 17-2") on October 31, 2017. June SS Public Act 17-2 diverted \$63.5 million per year for Fiscal Year 2018 and 2019 from the Fund and diverted an additional \$10 million per year in proceeds from the RGGI's carbon trade auctions. These diversions negatively impacted Connecticut's Energy Efficiency Portfolios for 2017, 2018, and 2019.

The 2019-2021 Conservation & Load Management Plan ("2019-2021 Plan") is the second three-year plan developed after the passage of Public Act 13-228<sup>1</sup>. On December 20, 2018, DEEP approved the 2019 – 2020 Plan submitted on November 18, 2018. The C&LM Plan was based upon input from members of the public, industry groups and private enterprise, and was developed in collaboration with the Energy Efficiency Board. The Plan included unprecedented levels of funding for both electric and natural gas energy efficiency programs based on Public Act 13-298. For the 2019-2021 term, the Companies saw partial restoration of funds for Program Year 2019, and full funding restored for Program Years 2020 and 2021. These budget restorations are a direct result of the Connecticut General Assembly's passage of Public Act 18-50—An Act Concerning Connecticut's Energy Future<sup>2</sup>. Public Act 18-50 also changed the structure of how energy efficiency programs are funded in the state to help deter future funding diversion efforts.

The 2019-2021 Plan was based upon input from members of the public, industry groups, and

<sup>&</sup>lt;sup>1</sup> 2019-2021 Plan, filed Nov. 19, 2018, available online at: https://portal.ct.gov/-

<sup>/</sup>media/DEEP/energy/ConserLoadMgmt/Final20192021CLMPlan111918pdf.pdf?la=en&hash=891F955EDEADB86FA2414A C6A6AC4772.

<sup>&</sup>lt;sup>2</sup> Public Act 18-50, An Act Concerning Connecticut's Energy Future. Approved May 24, 2018. Also known as Senate Bill 9 ("SB 9") Available at: https://www.cga.ct.gov/2018/act/pa/pdf/2018PA-00050-R00SB-00009-PA.pdf.

private enterprise, and was developed in collaboration with the EEB and its consultants, the Companies, DEEP, and other stakeholders. The 2019-2021 Plan included unprecedented levels of funding for both electric and natural gas energy efficiency programs based on Public Act 13-298.

## <u>Funding</u>

Funding for energy efficiency and demand management programs currently comes from several sources. Since the passage of the state's restructuring legislation in 1999, a 3-mil electric charge has served as the primary funding source<sup>3</sup>. Public Act 11-80 and the subsequent DEEP approval of the 2019-2021 Plan provide an additional 3 mil Conservation Adjustment Mechanism ("CAM") charge for conservation. In addition, Fund programs receive funding from other sources including the ISO-NE's FCM and from RGGI.

### 2019-2021 Plan Priorities

In mid-March 2020, the Electric and Natural Gas Companies had to quickly shift gears with the onset of the COVID-19 pandemic and the suspension of in-home and on-premises services from March 17 to mid-June 2020. This resulted in a significant impact on customers, contractors, the Electric and Natural Gas Companies, and the goals set forth in the 2019-2021 Plan and the 2020 Plan Update. The pandemic-related impacts on Connecticut's energy efficiency and demand management programs will continue into the 2021 term, and will affect the Electric and Natural Gas Companies', the EEB's, and DEEP's planning for the next triennial filing—the 2022-2024 Conservation & Load Management Plan.

Eversource and the other Companies filed the 2021 Plan Update to the 2019-2021 Plan on November 1, 2020. The 2021 Plan Update focuses on the seven priorities laid out in the 2019-2021 Plan:

- 1. Advance state energy and environmental policy goals.
- 2. Offer tailored solutions for market segments while ensuring equitable distribution.
- 3. Focus on direct savings to customers.
- 4. Develop and maintain a sustainable workforce.
- 5. Continuous commitment to deliver comprehensive energy efficiency strategies.
- 6. Implement effective demand reduction strategies.
- 7. Continue to explore and implement financing options.

# 3.4 Ten-Year C&LM Forecast

Table 3-1 presents the potential cumulative annualized energy savings and summer and winter peak-load reductions forecasted for energy efficiency programs implemented in Eversource's (f/k/a CL&P) service territory for the 2019-2021 Plan budget. The forecast is based on anticipated savings from the 2021 Update to the 2019-2021 Plan. Forecasted savings beyond 2021 assume similar programs and savings as anticipated in 2021. However, savings in years 2021 and beyond reflect anticipated changes in energy efficiency budgets and production costs due to market transformation, stringent building codes, and federal standards.

<sup>&</sup>lt;sup>3</sup> Conn. Gen. Stat. § 16-245m.

#### **Forecast Sensitivity**

Connecticut's energy efficiency and demand management programs utilize a complementary mix of lost opportunity, retrofit, and market transformation implementation strategies to achieve energy savings. The energy savings and peak-load reductions projected in this forecast are sensitive to changes in a number of factors including changes in the electricity marketplace and consumer attitudes. In particular, the impact of federal policy on lighting standards is unclear at this point and may impact future savings.

| Table 3-1                                |                                                   |           |          |          |         |         |      |      |      |      |  |  |  |
|------------------------------------------|---------------------------------------------------|-----------|----------|----------|---------|---------|------|------|------|------|--|--|--|
| CL&P C&LM Programs Annual Energy Savings |                                                   |           |          |          |         |         |      |      |      |      |  |  |  |
| and                                      |                                                   |           |          |          |         |         |      |      |      |      |  |  |  |
| Peak Load Reduction by Customer Class    |                                                   |           |          |          |         |         |      |      |      |      |  |  |  |
| Connecticut Light and Power              |                                                   |           |          |          |         |         |      |      |      |      |  |  |  |
| 2021-2030                                |                                                   |           |          |          |         |         |      |      |      |      |  |  |  |
| GWh Sales Saved                          |                                                   |           |          |          |         |         |      |      |      |      |  |  |  |
|                                          |                                                   |           |          |          |         |         |      |      |      |      |  |  |  |
|                                          | 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 |           |          |          |         |         |      |      |      |      |  |  |  |
| Residential                              | 49                                                | 89        | 123      | 153      | 178     | 200     | 219  | 228  | 236  | 243  |  |  |  |
| Commercial                               | 118                                               | 174       | 220      | 262      | 300     | 334     | 365  | 393  | 417  | 440  |  |  |  |
| Industrial                               | 35                                                | 52        | 66       | 79       | 90      | 100     | 109  | 118  | 125  | 132  |  |  |  |
| Total                                    | 202                                               | 315       | 410      | 494      | 568     | 635     | 694  | 738  | 778  | 815  |  |  |  |
|                                          |                                                   |           |          |          |         |         |      |      |      |      |  |  |  |
| М                                        | W Redu                                            | ctions (P | assive F | Resource | e Summ  | er Impa | cts) |      |      |      |  |  |  |
|                                          | 2021                                              | 2022      | 2023     | 2024     | 2025    | 2026    | 2027 | 2028 | 2029 | 2030 |  |  |  |
| Residential                              | 8                                                 | 14        | 18       | 22       | 25      | 28      | 30   | 32   | 33   | 33   |  |  |  |
| Commercial (non-Load Response)           | 14                                                | 21        | 27       | 32       | 36      | 40      | 44   | 47   | 50   | 53   |  |  |  |
| Industrial (non-Load Response)           | 4                                                 | 6         | 8        | 9        | 11      | 12      | 13   | 14   | 15   | 16   |  |  |  |
| Total                                    | 27                                                | 41        | 53       | 63       | 72      | 80      | 88   | 93   | 98   | 102  |  |  |  |
|                                          |                                                   |           |          |          |         |         |      |      |      |      |  |  |  |
| 1                                        | /W Redu                                           | uctions ( | Passive  | Resourc  | e Winte | r Impac | ts)  |      |      |      |  |  |  |
|                                          | 2021                                              | 2022      | 2023     | 2024     | 2025    | 2026    | 2027 | 2028 | 2029 | 2030 |  |  |  |
| Residential                              | 13                                                | 22        | 29       | 34       | 40      | 44      | 48   | 50   | 52   | 53   |  |  |  |
| Commercial (non-Load Response))          | 17                                                | 25        | 32       | 38       | 43      | 48      | 52   | 56   | 60   | 63   |  |  |  |
| Industrial (non-Load Response)           | 5                                                 | 7         | 9        | 11       | 13      | 14      | 16   | 17   | 18   | 19   |  |  |  |
| Total                                    | 35                                                | 54        | 70       | 83       | 96      | 106     | 116  | 123  | 130  | 135  |  |  |  |
|                                          |                                                   |           |          |          |         |         |      |      |      |      |  |  |  |

Notes:

1) Table 3-1 includes only passive resources. It does not include 72.2 MW of Active Demand Response ("ADR") resources that is planned during the 2019-2021 term.

2) Total savings assumes that all measures will continue to provide savings for their measure lives throughout the forecast period.

3) The forecast includes 34MW of Summer Peak Savings from the Incremental Energy Efficiency Bid installed between 2017 and 2021.

#### Chapter 4: TRANSMISSION PLANNING AND SYSTEM NEEDS

#### 4.1 Transmission is planned and built for the long term

Transmission systems enable varying amounts and sources of generation to serve load over a long term. The addition of significant amounts of remote renewable generating capacity or the retirement of local generation may increase the need to import or export power to or from Connecticut, and the transmission system may need to be expanded. Transmission system additions are proposed and built to accommodate the future, considering many scenarios.

#### 4.2 Transmission Planning and National Reliability Standards

Eversource's transmission facilities are part of the New England regional grid and must be designed, operated and maintained to ensure compliance with mandatory NERC and NPCC, ISO-NE and Eversource reliability standards and criteria.

On December 20, 2012, the FERC issued a final ruling (FERC Order 773) approving revisions to NERC's "Bulk Electric System" definition. Key revisions to the approved definition removed language allowing for broad discretion across the reliability regions in North America and establish a "bright-line" threshold that includes all facilities operated at or above 100 kilovolts. The revised definition requires that more facilities be covered and be compliant with the NERC Transmission Planning Reliability Standards than under the previous definition. Periodic transmission planning assessments and studies have been expanded to adhere to this revised definition to comply with the NERC reliability standards.

On March 19, 2015 FERC approved Order 1000 that requires a transition in the way New England plans the transmission system. In May 2015, ISO New England implemented changes to the regional and interregional transmission planning process to comply with the directives in FERC Order No. 1000 which establishes new electric transmission planning and cost allocation requirements for public utility transmission providers. This will introduce competition into the development of regulated transmission solutions. It removes arrangements that protect the ROFR for incumbent transmission providers.

On March 27, 2020 NPCC approved revisions to the Criteria A-10 "Classification of Bulk Power System Elements" that requires a more targeted approach to how bulk power system elements 69-kV and above are identified and classified as critical elements, and included on the NPCC Bulk Power System list. Key revisions that were approved eliminated the automatic inclusion of system elements on the Bulk Power List and introduced a test that will allow NPCC members to exclude elements that are impactful to Bulk Power Transfer and inter area reliability. It is expected that future regional and local studies conducted by ISO-NE, New England and, Transmission owners will include the revised Criteria A-10.

#### 4.3 Transmission Planning Process

Within the ISO-NE regional planning process established for compliance with NERC and NPCC planning standards, ISO-NE performs reliability assessment studies of the New England transmission system. Individual sub-area studies ("Needs Assessments") are performed to identify system needs over a ten-year horizon. When a system reliability problem is identified from a needs assessment, ISO-NE first determines whether the system reliability problem exists under current conditions or is expected to develop within three years. If these criteria are met, ISO-NE and the TO develop one or more transmission system options (i.e., backstop transmission solutions) to resolve the transmission reliability needs and ensure that NERC and

NPCC reliability standards are met. If the system reliability problem is not expected to materialize until more than three years from the completion of the Needs Assessment, ISO-NE would use its competitive transmission development process to solicit regulated transmission solutions from any qualified developer, including Eversource.

The transmission system solution options are then further evaluated to determine their feasibility of construction, potential for environmental impacts, estimated costs, longevity, operational differences, etc. When analysis of the options is complete, the ISO-NE recommends a proposed transmission project to the Planning Advisory Committee. In parallel, market participants can develop and propose Non-Transmission Alternatives to resolve the identified needs.

These transmission studies, and the transmission solutions, are documented in a series of reports prepared by ISO-NE, and in aggregate, provide a basis for updating RSP as depicted in the sequence of the process below:



#### **Transmission Planning Process Figure 1**

#### 4.4 Connecticut's Transmission System and Serving Load

Eversource plans, builds and operates transmission infrastructure with a goal of safely and reliably delivering power to its customers, under a wide variety of supply and demand conditions.

• Eversource is responsible to meet reliability standards mandated by the FERC and implemented by NERC. Penalties for non-compliance can be up to \$1.2 million per event per day, based on the severity of the violation.

#### 4.5 Assessment of Transmission Needs in Connecticut's Sub-areas

Eversource divides its service territory into several areas as described below for the purpose of assessing the reliability of its transmission system. ISO-NE has identified reliability projects within those areas that are needed in Connecticut.

- The ISO-NE Southwest Connecticut ("SWCT") area is the largest load area within Connecticut which comprises fifty-four towns, including all Avangrid's service territory, Wallingford Electric and some of the CMEEC service territory. This area includes the towns essentially west of Interstate 91 and south of Interstate 84, and accounts for approximately half of the state's peak electric load demand. In July of 2014, the Southwest Connecticut 2022 Preferred Solution was presented to ISO-NE PAC. Eversource received ISO-NE approval for the SWCT preferred Solution in April of 2015. Eversource has since successfully constructed and placed the SWCT 2022 Solution in service at the end of 2020.
- There also is a local reliability project proposed in the Norwalk Stamford subarea known as the Greenwich Substation and Line project to meet load serving needs. This project was approved by ISO-NE. Eversource has since successfully constructed and placed the

Greenwich Substation and Line project in service at the end of 2020.

- The Eastern Connecticut ("ECT") Area extends in a westerly direction for about twenty miles from the Rhode Island border and north from Long Island Sound to the Massachusetts border. The area is served by both Eversource and CMEEC. Eversource is currently evaluating the siting strategy for the various components of the Eastern Connecticut solution, as may be required. In May of 2018, ISO-NE completed a 2027 Needs Assessment that analyzed the performance of the sub- area. In March of 2019, ISO-NE announced a re-assessment of the Eastern Connecticut Needs due to the reduction of load resulting from the 2018 and 2019 CELT Report load forecasts. The Eastern Connecticut 2029 Needs Assessment results were presented to ISO- NE PAC in September of 2019. ISO-NE subsequently presented the ECT 2029 Preliminary Preferred Solution1 at the May 20, 2020 Planning Advisory Committee ("PAC") meeting. A draft ECT 2029 Solutions Study was then posted on June 3, 2020 and the final version on June 19, 2020 on ISO-NE's external website. This report established the preferred solution to address the identified time-sensitive needs for the ECT area.
- The Greater Hartford / Central Connecticut ("GHCC") needs assessment was completed in February 2014, and a needs report was published in April 2014. The preferred solutions for the identified needs were presented to PAC in July 2014. The preferred solution consists of transmission improvements in each if the four subareas, and include elements that will perform a "double duty" of both meeting local load-serving needs and addressing the remaining need for increased Western Connecticut import capability. Eversource received ISO-NE approval for the GHCC preferred Solution in April of 2015. Eversource has since successfully constructed and placed the GHCC preferred Solution in service at the end of 2020. The four GHCC subareas are:
  - The Manchester Barbour Hill Area includes towns north and south of Manchester. These include Glastonbury to the south and the Massachusetts border towns of Enfield, Suffield, and Somers to the north.
  - The Middletown Area consists of a five- to ten-mile-wide band east and west of the Connecticut River from Hebron to Old Lyme. The westerly section consists of the area included in a triangle that runs from Middletown to Old Saybrook and back to the eastern part of Meriden.
  - The Greater Hartford Area includes the towns in the vicinity of the Capitol city and stretches north to the Massachusetts border, west to the Farmington River, and south to the Route 691 interchange with the Berlin Turnpike. It straddles the Connecticut River in the heart of central Connecticut.
  - The Northwestern Connecticut Area is the portion of the state bounded north and west by the Massachusetts and New York state borders, easterly toward Route 8 and southerly to the SWCT region.
- Eversource Transmission Line Department is continuing to improve the reliability of the transmission system. Inspections have found indicated degradation of many overhead wood transmission structures. Replacing these structures over the next several years resolves multiple structural/hardware issues and supports a safe and reliable operation.

A list of all transmission projects and their components is listed by transmission line and substation in tables 4-1 and 4.2, below. Transmission line reinforcements and asset condition

projects are identified by entries under the "from" and "to" station headings in Table 4.1. Station reinforcements are identified by single line entries under the "from" station heading in Table 4.2. The term "station" is interchangeable with substation or switching station. The tables include information on the project's proposed In-Service-Date.

# Table 4-1: Eversource Proposed Transmission Line Projects in Connecticut

| From<br>Station       | City or<br>Town  | To Station                      | City or<br>Town                    | Voltage<br>kV | ISD  | Miles | Project<br>Description                               | Status             |
|-----------------------|------------------|---------------------------------|------------------------------------|---------------|------|-------|------------------------------------------------------|--------------------|
| Northeast<br>Simsbury | Simsbury         | Canton                          | Canton                             | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Manchester            | Manchester       | South<br>Windsor                | South<br>Windsor                   | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Manchester            | Manchester       | Rood Ave                        | Windsor                            | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| South<br>Windsor      | South<br>Windsor | Barbour Hill                    | South<br>Windsor                   | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Mystic                | Stonington       | Shunock                         | North<br>Stonington                | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Berlin                | Berlin           | Westside                        | Middletown                         | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Haddam                | Haddam           | Pratt &<br>Whitney              | Middletown                         | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Killingly             | Killingly        | Brooklyn<br>Fry Brook<br>Tunnel | Danielson<br>Plainfield<br>Preston | 115           | 2021 | N/A   | Laminated<br>Structure<br>Replacements               | Under Construction |
| Millstone             | Waterford        | Manchester                      | Manchester                         | 345           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Montville             | Montville        | Haddam<br>Neck                  | Haddam                             | 345           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Millstone             | Waterford        | Card                            | Lebanon                            | 345           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Scovill<br>Rock       | Middletown       | East Shore                      | New Haven                          | 345           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Barbour Hill          | South<br>Windsor | Ludlow<br>(MA)                  | Ludlow<br>(MA)                     | 345           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Beseck                | Wallingford      | Southington                     | Southington                        | 345           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Card                  | Lebanon          | Lake Road                       | Killingly                          | 345           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Southington           | Southington      | Wallingford                     | Wallingford                        | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Northeast<br>Simsbury | Simsbury         | Canton                          | Canton                             | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Rocky River           | New Milford      | West<br>Brookfield              | Brookfield                         | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Campville             | Harwinton        | Canton<br>Franklin<br>Drive     | Canton<br>Torrington               | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| West Side             | Middletown       | Berlin                          | Berlin                             | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Dooley                | Middletown       | West Side                       | Middletown                         | 115           | 2021 | N/A   | Line Structure<br>Replacements                       | Under Construction |
| Tunnel                | Preston          | SCRRA                           | Preston                            | 115           | 2021 | N/A   | Replace<br>Copper<br>Conductor<br>and Shield<br>Wire | Concept            |
| Barbour Hill          | South<br>Windsor | Rockville                       | Vernon                             | 115           | 2021 | N/A   | Replace<br>Copper<br>Conductor<br>and Shield<br>Wire | Concept            |
| Bristol               | Bristol          | Forestville                     | Bristol                            | 115           | 2021 | N/A   | Copper and<br>Shield Wire<br>Replacement             | Proposed           |

| From<br>Station      | City or<br>Town  | To Station                  | City or<br>Town             | Voltage<br>kV | ISD  | Miles | Project<br>Description                             | Status   |
|----------------------|------------------|-----------------------------|-----------------------------|---------------|------|-------|----------------------------------------------------|----------|
| Montville            | Montville        | Gales Ferry                 | Ledyard                     | 69            | 2021 | 2.4   | Line Rebuild<br>to allow<br>operation at<br>115-kV | Proposed |
| Ledyard Jct.         | Ledyard          | Buddington<br>(CMEEC)       | Groton                      | 69            | 2021 | 1.8   | Line Rebuild<br>to allow<br>operation at<br>115-kV | Proposed |
| Ledyard Jct.         | Ledyard          | Gales Ferry                 | Ledyard                     | 69            | 2021 | 1.6   | Line Rebuild<br>to allow<br>operation at<br>115-kV | Proposed |
| Montville            | Montville        | Card                        | Lebanon                     | 115           | 2021 | N/A   | Split<br>1000/1080<br>DCT for<br>QP588             | Planned  |
| Southington          | Southington      | Black Rock                  | New Britain                 | 115           | 2022 | N/A   | Replace<br>Structures and<br>Copper<br>Conductor   | Concept  |
| Barbour Hill         | South<br>Windsor | Enfield<br>Windsor<br>Locks | Enfield<br>Windsor<br>Locks | 115           | 2022 | N/A   | Replace<br>Shield Wire                             | Concept  |
| Southington          | Southington      | Black Rock                  | New Britain                 | 115           | 2022 | N/A   | Copper<br>Conductor<br>Replacement<br>/Rebuild     | Concept  |
| Barbour Hill         | South<br>Windsor | Enfield<br>Windsor<br>Locks | Enfield<br>Windsor          | 115           | 2022 | N/A   | Copper and<br>Shield Wire<br>Replacement           | Concept  |
| Stevenson            | Monroe           | Pootatuck                   | Shelton                     | 115           | 2022 | N/A   | Copper and<br>Shield Wire<br>Replacement           | Proposed |
| Devon                | Milford          | South<br>Naugatuck          | Naugatuck                   | 115           | 2022 | N/A   | Copper and<br>Shield Wire<br>Replacement           | Proposed |
| North<br>Wallingford | Wallingford      | Colony                      | Wallingford                 | 115           | 2022 | N/A   | Copper and<br>Shield Wire<br>Replacement           | Proposed |
| Plumtree             | Bethel           | Stony Hill<br>Shepaug       | Brookfield<br>Southbury     | 115           | 2022 | N/A   | Copper and<br>Shield Wire<br>Replacement           | Proposed |
| Frost Bridge         | Watertown        | Noera                       | Waterbury                   | 115           | 2022 | N/A   | Copper and<br>Shield Wire<br>Replacement           | Proposed |
| Millstone            | Waterford        | Manchester                  | Manchester                  | 345           | 2022 | N/A   | Line Structure<br>and Insulator<br>Replacements    | Proposed |
| Manchester           | Manchester       | Card                        | Lebanon                     | 345           | 2022 | N/A   | Line Structure<br>and Insulator<br>Replacements    | Proposed |
| Card                 | Lebanon          | Millstone                   | Waterford                   | 345           | 2022 | N/A   | Line Structure<br>and Insulator<br>Replacements    | Proposed |
| Scovill Rock         | Middletown       | East Shore                  | New Haven                   | 345           | 2022 | N/A   | Line Structure<br>and Insulator<br>Replacements    | Proposed |
| Southington          | Southington      | Scovill Rock                | Middletown                  | 345           | 2022 | N/A   | Line Structure<br>and Insulator<br>Replacements    | Proposed |

| From<br>Station       | City or     | To Station                            | City or                       | Voltage | ISD  | Miles | Project<br>Description                                          | Status   |
|-----------------------|-------------|---------------------------------------|-------------------------------|---------|------|-------|-----------------------------------------------------------------|----------|
| Manchester            | Manchester  | Kleen                                 | Middletown                    | 345     | 2022 | N/A   | Line Structure<br>and Insulator                                 | Proposed |
|                       |             |                                       |                               |         |      |       | Replacements                                                    |          |
| Beseck                | Wallingford | Southington                           | Southington                   | 345     | 2022 | N/A   | Line Structure<br>and Insulator<br>Replacements                 | Proposed |
| Card                  | Lebanon     | Lake Road                             | Killingly                     | 345     | 2022 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| Tunnel                | Preston     | Ledyard Jct.                          | Ledyard                       | 69      | 2022 | 8.6   | Line Rebuild<br>to allow<br>operation at<br>115-kV              | Proposed |
| Mystic                | Stonington  | Shunock                               | North<br>Stonington           | 115     | 2022 | N/A   | Install a<br>Series<br>Reactor                                  | Proposed |
| Darien                | Darien      | Fitch St.<br>(CMEEC)                  | Norwalk                       | 115     | 2023 | N/A   | Line<br>Relocation                                              | Proposed |
| Sherwood              | Westport    | South<br>Norwalk<br>(CMEEC)           | Norwalk                       | 115     | 2023 | N/A   | Line<br>Relocation                                              | Proposed |
| Montville             | Montville   | Bean Hill                             | Norwich                       | 115     | 2023 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| North<br>Bloomfield   | Bloomfield  | Northeast<br>Simsbury                 | Simsbury                      | 115     | 2023 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| Montville             | Montville   | Tunnel<br>Card<br>Lisbon              | Preston<br>Lebanon<br>Norwich | 115     | 2023 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| Stevenson             | Monroe      | Sandy Hook                            | Newtown                       | 115     | 2023 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| Montville             | Montville   | Mystic<br>Buddington                  | Stonington<br>Groton          | 115     | 2023 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| Montville             | Montville   | Buddington                            | Groton                        | 115     | 2023 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| Northwest<br>Hartford | Hartford    | North<br>Bloomfield<br>Rood<br>Avenue | Bloomfield<br>Windsor         | 115     | 2023 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| Bloomfield            | Bloomfield  | Northwest<br>Hartford                 | Hartford                      | 115     | 2023 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| Southington           | Southington | Todd                                  | Wolcott                       | 115     | 2023 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| Card                  | Lebanon     | Willimantic                           | Windham                       | 115     | 2023 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| Southington           | Southington | Hanover                               | Meriden                       | 115     | 2023 | N/A   | Copper<br>Retirement                                            | Concept  |
| Mystic                | Stonington  | Shunock                               | North<br>Stonington           | 115     | 2023 | N/A   | Line Structure<br>Replacements                                  | Proposed |
| Montville             | Montville   | QP788                                 | Montville                     | 69      | 2023 | N/A   | Gen-Tie Line<br>for QP788                                       | Proposed |
| Card                  | Lebanon     | Lake Road                             | Killingly                     | 345     | 2023 | N/A   | Sectionalize<br>Tap for<br>QP724                                | Planned  |
| Tunnel                | Preston     | Ledyard Jct.                          | Ledyard                       | 69      | 2024 | 8.6   | Line Rebuild<br>to allow<br>operation at<br>115-kV for<br>QP831 | Proposed |
| Killingly             | Killingly   | QP831                                 | Killingly                     | 345     | 2024 | N/A   | Gen-Tie Line<br>for QP831                                       | Proposed |

# Table 4-2: Eversource Proposed Substation Projects in Connecticut

| Franklin DriveTorrington115/13.22021Replace both distribution<br>transformerConceptManchesterManchester345 and 1152021Manchester Control House<br>ExpansionUnder ConstructionQuinebaugPlainfield1152021Add a new 3-breaker Bus<br>switching station for<br>generatorPlannedMillstoneWaterford3452021Insulator ReplacementsUnder ConstructionNewingtonNewington115/232021Replace Transformer (3x)ProposedReod AveWindsor115/232021Replace STATCOMUnder ConstructionRood AveWindsor115/232022Add a distribution<br>transformerPlannedCarmel HillWoodbury115/232022Add a distribution<br>transformerConceptSandy HookNewtown115/232022Replace RelaysUnder ConstructionSandy HookNewtown115/232022Replace RelaysUnder ConstructionSouthingtonSouthington1152022Replace RelaysUnder ConstructionKillingly1152022Replace RelaysUnder ConstructionKillingly1152022Replace RelaysUnder ConstructionKillingly1152022Install Capacitor and<br>BreakerProposedConceptEasi2023Construct substation Ore<br>QP724ProposedKandy115/232023Replace TransformerConceptContor BridgeKillingly345 <th>Substation</th> <th>City or Town</th> <th>Voltage kV</th> <th>ISD</th> <th>Project Description</th> <th>Status</th>                                                                                                                                                                                                       | Substation     | City or Town | Voltage kV  | ISD  | Project Description                                    | Status             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|-------------|------|--------------------------------------------------------|--------------------|
| ManchesterManchester345 and 1152021Manchester Control House<br>ExpansionUnder ConstructionQuinebaugPlainfield1152021Add a new 3-breaker Bus<br>generator<br>(QP688)PlannedMillstoneWaterford3452021Replace Transformer (1x)<br>ProposedProposedNewingtonNewington115/232021Replace Transformer (3x)<br>transformer (3x)ProposedCentrolStamford115/232021Replace STATCOMUnder ConstructionNewingtonNewington115/232022Add a distributionProposedCarmel HillWoodbury115/232022Add a distributionConceptCarmel HillWoodbury115/232022Replace TransformerConceptSandy HookNewtown115/232022Replace RelaysUnder ConstructionSouthington1152022Replace RelaysUnder ConstructionSouthington1152022Replace RelaysUnder ConstructionKillingtyKillingly1152022Replace RelaysProposedGravel PitEast Windsor1152022Install Capacitor and<br>QP724ProposedMontvilleMontville3452023Construct substation for<br>QP724ProposedMontvilleMontville115/232023Replace TransformerConceptGravel PitEast Windsor1152022Install OraProposedGravel PitEast Windsor115                                                                                                                                                                                                                                                                                                                                                              | Franklin Drive | Torrington   | 115/13.2    | 2021 | Replace both distribution                              | Concept            |
| Manchester         Manchester         345 and 115         2021         Manchester Control House         Under Construction           Quinebaug         Plainfield         115         2021         Add a new 3-breaker Bus<br>switching station for<br>generator<br>(OP588)         Planned           Millstone         Waterford         345         2021         Insulator Replacements         Under Construction           Newington         Newington         115/23         2021         Replace Transformer (1x)         Proposed           Glenbrook         Stamford         115         2021         Replace Transformer (1x)         Proposed           Rood Ave         Windsor         115/23         2022         Add a distribution         Planned           Carmel Hill         Woodbury         115/23         2022         Add a distribution         Concept           Falls Village         Canaan         69/13.2         2022         Replace Relays         Under Construction           Killingly         Killingly         115         2022         Replace Relays         Under Construction           Killingly         115         2022         Replace Relays         Under Construction           Killingly         115         2022         Construct substation OP292         Proposeed <tr< td=""><td></td><td></td><td></td><td></td><td>transformer</td><td></td></tr<> |                |              |             |      | transformer                                            |                    |
| QuinebaugPlainfield1152021Add a new 3-breaker Bus<br>switching station for<br>generator<br>(QP588)PlannedMilistoneWaterford3452021Insulator Replace mentsUnder ConstructionNewingtonNewington115/232021Replace Transformer (1x)ProposedNewingtonNewington115/232021Replace Transformer (3x)ProposedGlenbrookStamford1152021Replace STATCOMUnder ConstructionRood AveWindsor115/232022Add a distributionPlannedCarmel HillWoodbury115/232022Add a distributionConceptSandy HookNewtown115/232022Replace transformerConceptSandy HookNewtown115/232022Replace transformerConceptFalls VillageCanaan69/13.22022Replace transformerConceptSouthington1052022Install Capacitor and<br>ProposedProposedGravel PitEast Windsor1152022Construct substation QP892ProposedGarvel PitEast Windsor115/232023Construct substation QP892ProposedGarvel PitEast Windsor115/27.62023Replace TransformerConceptGardLebanon345/1152023Replace TransformerConceptCardLebanon115/27.62023Replace TransformerProposedCardLebanon115/27.62023Replace                                                                                                                                                                                                                                                                                                                                                                              | Manchester     | Manchester   | 345 and 115 | 2021 | Manchester Control House                               | Under Construction |
| QuinebaugPlainfield1152021Add a new 3-breaker Bus<br>switching station for<br>generator<br>(QP588)PlannedMillstoneWaterford3452021Insulator ReplacementsUnder ConstructionNewingtonNewington115/232021Replace Transformer (1x)ProposedGlenbrookStamford1152021Replace Transformer (1x)ProposedRood AveWindsor115/232022Add a distributionPlannedCarmel HillWoodbury115/232022Add a distributionConceptSandy HookNewtown115/232022Add a distributionConceptSandy HookNewtown115/232022Replace RelaysUnder ConstructionSouthington1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Replace RelaysProposedCotton BridgeKillingly3452023Construct substation of PannedCatron BridgeKillingly3452023Construct substation of PannedCatro BridgeKillingly3452023Construct substation of PannedCatro Lebanon115/732023Replace TransformerConceptCatroLebanon345/1152023Replace TransformerConceptCatrdL                                                                                                                                                                                                                                                                                                                                                                            |                |              |             |      | Expansion                                              |                    |
| Switching station for<br>generator<br>(QP588)switching station for<br>(QP588)MillstoneWaterford3452021Insulator ReplacementsUnder ConstructionNewingtonNewington115/232021Replace Transformer (1x)ProposedGenbrookStamford1152021Replace STATCOMUnder ConstructionRod AveWindsor115/232022Add a distributionPlannedCarmel HillWoodbury115/232022Add a distributionConceptFransformerConceptTransformerConceptTransformerSandy HookNewtown115/232022Add a distributionConceptFails VillageCanaan69/13.22022Replace RelaysUnder ConstructionSouthingtonSouthington1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Install Capacitor and<br>BreakerProposedGravel PitEast Windsor115/232023Construct substation OP892ProposedCotto BridgeKillingly3452023Construct substation for<br>OP724Planned<br>transformerMansfieldMansfield115/232023Replace TransformerConceptGales FerryGales Ferry692023Replace TransformerConceptCardLebanon115/232023Replace TransformerConceptCardLebanon115/232023Replace TransformerConcept <td< td=""><td>Quinebaug</td><td>Plainfield</td><td>115</td><td>2021</td><td>Add a new 3-breaker Bus</td><td>Planned</td></td<>                                                                                                                                                                                                                                     | Quinebaug      | Plainfield   | 115         | 2021 | Add a new 3-breaker Bus                                | Planned            |
| Millstone         Waterford         345         2021         Insulator Replacements         Under Construction           Newington         Newington         115/23         2021         Replace Transformer (1x)         Proposed           Glenbrook         Stamford         115/23         2021         Replace Transformer (1x)         Proposed           Glenbrook         Stamford         115/23         2022         Add a distribution         Planned           Rood Ave         Windsor         115/23         2022         Add a distribution         Concept           Carmel Hill         Woodbury         115/23         2022         Add a distribution         Concept           Transformer         Concept         transformer         Concept         transformer         Concept           Sandy Hook         Newtown         115/23         2022         Replace Transformer         Concept           Southington         Southington         115         2022         Replace Transformer         Concept           Southington         115         2022         Install Capacitor and Broposed         Proposed           Gravel Pit         East Windsor         115         2022         Construct substation for Planned           Glarade         Mansfield                                                                                                                  |                |              |             |      | switching station for                                  |                    |
| MilistoneWaterford3452021Insulator ReplacementsUnder ConstructionNewingtonNewington115/232021Replace Transformer (3x)ProposedGlenbrookStamford1152021Replace Transformer (3x)ProposedGlenbrookStamford115/232022Add a distributionPlannedCarmel HillWoodbury115/232022Add a distributionConceptTransformerConceptTransformerConceptConceptSandy HookNewtown115/232022Add a distributionConceptFalls VillageCanaan69/13.22022Replace transformerConceptSouthingtonSouthington1152022Replace transformerProposedSouthingtonSouthington1152022Instal Capacitor and<br>BreakerProposedMontvilleMontville3452022Instal Capacitor and<br>BreakerProposedCarton BridgeKillingly3452023Construct substation Or 692ProposedCardLebanon115/232023Replace TransformerConceptSouthingtonSouthington115/232023Replace TransformerPlannedCardLebanon115/232023Replace TransformerConceptCardLebanon115/232023Replace TransformerConceptCardLebanon115/232023Replace TransformerConceptCardLebanon1                                                                                                                                                                                                                                                                                                                                                                                                                        |                |              |             |      | generator                                              |                    |
| InstitutionProcessedNewingtonNewington115/232021Replace Transformer (1x)ProposedNewingtonNewington115/232021Replace Transformer (3x)ProposedGlenbrookStamford1152021Replace STATCOMUnder ConstructionRood AveWindsor115/232022Add a distributionPlannedCarmel HillWoodbury115/232022Add a distributionConceptSandy HookNewtown115/232022Replace transformerConceptFalls VillageCanaan60/13.22022Replace transformerConceptSouthingtonSouthington1152022Replace transformerConceptKillinglyKillingly1152022Install Capacitor and<br>QP724ProposedMontvilleMontville3452023Construct substation QP882ProposedCotton BridgeKillingly3452023Construct substation OP882ProposedCardLebanon115/27.62023Replace TransformerConceptSouthington115/232023Add a distribution<br>transformerPlanned<br>transformerBokumOld Saybrook115/27.62023Replace TransformerConceptCardLebanon1152023Install 2 <sup>m</sup> AutotransformerProposedCardLebanon1152023Install 2 <sup>m</sup> AutotransformerProposedCardLebanon1152023Install 2                                                                                                                                                                                                                                                                                                                                                                                   | Millstone      | Waterford    | 345         | 2021 | Insulator Replacements                                 | Under Construction |
| NewingtonNewington115/232021Replace Transformer (3x)ProposedGlenbrookStamford1152021Replace Transformer (3x)ProposedRood AveWindsor115/232022Add a distributionPlannedCarmel HillWoodbury115/232022Add a distributionConceptSandy HookNewtown115/232022Add a distributionConceptFalls VillageCanaan60/13.22022Replace transformerConceptFalls VillageCanaan60/13.22022Replace transformerConceptSouthingtonSouthington1152022Replace transformerConceptSouthingtonSouthington1152022Install Capacitor and<br>BreakerProposedMontvilleMontville3452022Construct substation OP892ProposedCotton BridgeKillingly3452023Construct substation for<br>PlannedPlannedMansfieldMansfield115/232023Replace TransformerConceptSouthingtonSouthington115/13.82023Replace TransformerConceptCardLebanon115/13.82023Replace TransformerProposedCardLebanon1152023Install ParasformerConceptCardLebanon1152023Install ParasformerProposedCardLebanon1152023Install ParasformerProposedCardLebanon<                                                                                                                                                                                                                                                                                                                                                                                                                        | Newington      | Newington    | 115/23      | 2021 | Replace Transformer (1x)                               | Proposed           |
| Glenbrook         Stamford         115         2021         Replace STATCOM         Under Construction           Rood Ave         Windsor         115/23         2022         Add a distribution transformer         Planned           Carmel Hill         Woodbury         115/23         2022         Add a distribution transformer         Concept           Sandy Hook         Newtown         115/23         2022         Add a distribution transformer         Concept           Sandy Hook         Newtown         115/23         2022         Replace transformer         Concept           Sandy Hook         Newtown         115/23         2022         Replace transformer         Concept           Sandy Hook         Newtown         115         2022         Replace transformer         Concept           Southington         Southington         115         2022         Install Capacitor and Proposed         Proposed           Gravel Pit         East Windsor         115         2022         Construct substation QP892         Proposed           Cotton Bridge         Killingty         345         2023         Replace Transformer         Concept           Bokum         Old Saybrook         115/27.6         2023         Replace Transformer         Concept                                                                                                          | Newington      | Newington    | 115/23      | 2021 | Replace Transformer (3x)                               | Proposed           |
| Rood AveWindsor115/232022Add a distribution<br>transformerPlannedCarmel HillWoodbury115/232022Add a distribution<br>transformerConceptSandy HookNewtown115/232022Add a distribution<br>ConceptFalls VillageCanaan69/13.22022Replace transformerConceptSouthingtonSouthington1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Construct substation QP892ProposedGravel PitEast Windsor1152022Construct substation QP892ProposedCotton BridgeKillingly3452023Construct substation for<br>QP724PlannedMansfieldMansfield115/232023Replace TransformersConceptSouthingtonSouthington115/13.82023Install 2nd AutotransformerConceptCardLebanon345/1152023Install 2nd AutotransformerProposedCardLebanon1152023Install 2nd AutotransformerProposedCardLebanon1152023Install 2nd AutotransformerProposedCardLebanon1152023Install Pred AutotransformerProposedCardLebanon1152023Install Pred AutotransformerProposedGales FerryGales Ferry692023 <td>Glenbrook</td> <td>Stamford</td> <td>115</td> <td>2021</td> <td>Replace STATCOM</td> <td>Under Construction</td>                                                                                                                                                                                                                                                                      | Glenbrook      | Stamford     | 115         | 2021 | Replace STATCOM                                        | Under Construction |
| TotalTransformerTransformerCarmel HillWoodbury115/232022Add a distribution<br>transformerConceptSandy HookNewtown115/232022Add a distribution<br>transformerConceptFalls VillageCanaan69/13.22022Replace transformerConceptSouthingtonSouthington1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Install Capacitor and<br>BreakerProposedGravel PitEast Windsor1152022Install Capacitor and<br>BreakerProposedCotton BridgeKillingly3452023Construct substation OP892ProposedCotton BridgeKillingly3452023Construct substation or<br>QP724Planned<br>transformerBokumOld Saybrook115/27.62023Replace TransformerConceptSouthington115/17.82023Install Ore Area to BPS<br>standardsProposedCardLebanon345/1152023Install One BreakerProposedCardLebanon1152023Install one BreakerProposedCardLebanon1152023Install one BreakerProposedCardLebanon1152023Install one BreakerProposedCardLebanon1152023Install one BreakerProposedCardLebanon                                                                                                                                                                                                                                                                                                                                                                                         | Rood Ave       | Windsor      | 115/23      | 2022 | Add a distribution                                     | Planned            |
| Carmel HillWoodbury115/232022Add a distribution<br>TransformerConceptSandy HookNewtown115/232022Add a distribution<br>transformerConceptFalls VillageCanaan69/13.22022Replace transformerConceptSouthingtonSouthington1152022Replace transformerConceptKillinglyKillingly1152022Install Capacitor and<br>BreakerProposedMontvilleMontville3452022Install Capacitor and<br>BreakerProposedCotton BridgeKillingly3452023Construct substation OP892ProposedCotton BridgeKillingly3452023Construct substation for<br>QP724PlannedMansfieldMansfield115/232023Replace TransformerConceptSouthingtonSouthington115/13.82023Replace TransformerConceptCardLebanon115/13.82023Replace TransformerConceptCardLebanon1152023Upgrade Card to BPS<br>standardsProposedCardLebanon1152023Install ore AutotransformerProposedCardLebanon1152023Install breaker of QP787ProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedGales FerryCanterbury1152024Replace TransformerConceptSalisburySalisbury69/13.22024 <td>1000700</td> <td>Windoor</td> <td>110/20</td> <td>2022</td> <td>transformer</td> <td>T laining</td>                                                                                                                                                                                                                                                                            | 1000700        | Windoor      | 110/20      | 2022 | transformer                                            | T laining          |
| Sandy HookNewtown115/232022Add a distribution<br>transformerConceptFalls VillageCanaan69/13.22022Replace transformerConceptSouthingtonSouthington1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Install Capacitor and<br>BreakerProposedMontvilleMontville3452022Install Capacitor and<br>BreakerProposedCotton BridgeKillingly3452023Construct substation OP892<br>QP724ProposedMansfieldMansfield115/232023Construct substation or<br>QP724PlannedMansfieldMansfield115/27.62023Replace TransformersConceptSouthingtonSouthington115/13.82023Replace TransformerConceptCardLebanon1152023Install Capace TransformerProposedCardLebanon1152023Install Capace TransformerProposedCardLebanon1152023Install one BreakerProposedCardLebanon1152023Convert from 69-kV to 115-<br>kVProposedCardLebanon1152023Install breaker for QP787ProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedGales FerryCanterbury115/13.82024Replace TransformerConceptSalisburySalisbury69/13.22024 <td>Carmel Hill</td> <td>Woodbury</td> <td>115/23</td> <td>2022</td> <td>Add a distribution</td> <td>Concept</td>                                                                                                                                                                                                                                                                  | Carmel Hill    | Woodbury     | 115/23      | 2022 | Add a distribution                                     | Concept            |
| Sandy HookNewtown115/232022Add a distribution<br>transformerConceptFalls VillageCanaan69/13.22022Replace transformerConceptSouthingtonSouthington1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Install Capacitor and<br>BreakerProposedMontvilleMontville3452022Install capacitor and<br>BreakerProposedGravel PitEast Windsor1152022Construct substation QP892ProposedCotton BridgeKillingly3452023Construct substation for<br>QP724Planned<br>transformerPlannedBokumOld Saybrook115/27.62023Replace TransformersConceptSouthingtonSouthington115/13.82023Install 2 <sup>ref</sup> AutofransformerProposedCardLebanon1152023Install 2 <sup>ref</sup> AutofransformerProposedCardLebanon1152023Unstall one BreakerProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-8V to 115ProposedGales FerryGales Ferry692023Install one BreakerProposedSkungamaugCoventry69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptShunockMystic115<                                                                                                                                                                                                                                                                                                                                                               |                |              |             |      | Transformer                                            | o o no opt         |
| Falls VillageCanaan69/13.22022Replace transformerConceptSouthingtonSouthington1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Install Capacitor and<br>BreakerProposedGravel PitEast Windsor1152022Construct substation QP892ProposedCotton BridgeKillingly3452023Construct substation for<br>QP724PlannedMansfield115/232023Add a distribution<br>transformerPlannedBokumOld Saybrook115/27.62023Replace Transformers<br>transformerConceptSouthingtonSouthington115/13.82023Replace Transformer<br>transformerConceptCardLebanon345/1152023Install One BreakerProposedCardLebanon1152023Upgrade Card to BPS<br>standardsProposedCardLebanon1152023Convert from 69-kV to 115-<br>kVProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedGales FerryCanterbury1152023Install breaker and MOD for<br>QP788ProposedCanterburySalisbury69/13.22024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformerConceptPeaceableRedding                                                                                                                                                                                                                                                                                                                                                                | Sandy Hook     | Newtown      | 115/23      | 2022 | Add a distribution                                     | Concept            |
| Falls VillageCanaan69/13.22022Replace transformerConceptSouthingtonSouthington1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Install Capacitor and<br>BreakerProposedMontvilleMontville3452022Construct substation QP892ProposedCotton BridgeKillingly3452023Construct substation QP892ProposedCotton BridgeKillingly3452023Construct substation QP892ProposedMansfieldMansfield115/232023Add a distribution<br>transformerPlannedBokumOld Saybrook115/27.62023Replace TransformerConceptCardLebanon1152023Install 2nd AutotransformerProposedCardLebanon1152023Install 2nd AutotransformerProposedCardLebanon1152023Install one BreakerProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152023Install breaker for QP787ProposedSkungamaugCoventry69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptShunockMystic1152024Replace TransformerConcept                                                                                                                                                                                                                                                                                                                                                                                              |                |              |             |      | transformer                                            |                    |
| SouthingtonSouthington1152022Replace RelaysUnder ConstructionKillinglyKillingly1152022Install Capacitor and<br>BreakerProposedMontvilleMontville3452022Install one 345-kV BreakerProposedGravel PitEast Windsor1152022Construct substation QP892ProposedCotton BridgeKillingly3452023Construct substation for<br>QP724PlannedMansfieldMasfield115/232023Replace TransformerPlannedBokumOld Saybrook115/27.62023Replace TransformerConceptSouthingtonSouthington115/13.82023Install 2nd AutotransformerProposedCardLebanon1152023Install one BreakerProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-KV to 115-<br>KVProposedGaterburyCanterbury1152023Install breaker for QP787ProposedSalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptSkungamaugKillingly1152024Replace TransformerConceptSkungamaugKillingly1152024Replace TransformerC                                                                                                                                                                                                                                                                                                                                                                                              | Falls Village  | Canaan       | 69/13.2     | 2022 | Replace transformer                                    | Concept            |
| KillinglyKillingly1152022Install Capacitor and<br>BreakerProposedMontvilleMontville3452022Install one 345-kV BreakerProposedGravel PitEast Windsor1152022Construct substation QP892ProposedCotton BridgeKillingly3452023Construct substation for<br>QP724PlannedMansfieldMansfield115/232023Add a distribution<br>transformerPlannedBokumOld Saybrook115/27.62023Replace TransformerConceptSouthingtonSouthington115/13.82023Replace TransformerConceptCardLebanon345/1152023Install 2nd AutotransformerProposedCardLebanon1152023Lugrade Card to BPS<br>standardsProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedMontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152024Replace TransformerConceptSalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformerConceptShunockMystic1152024Replace                                                                                                                                                                                                                                                                                                                                                                                         | Southington    | Southington  | 115         | 2022 | Replace Relays                                         | Under Construction |
| MontvilleMontville3452022Install one 345-kV BreakerProposedGravel PitEast Windsor1152022Construct substation QP892ProposedCotton BridgeKillingly3452023Construct substation for<br>QP724PlannedMansfieldMansfield115/232023Add a distribution<br>transformerPlannedBokumOld Saybrook115/27.62023Replace TransformersConceptSouthingtonSouthington115/13.82023Install 2nd AutotransformerConceptCardLebanon345/1152023Install 2nd AutotransformerProposedCardLebanon1152023Upgrade Card to BPS<br>standardsProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedMontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptBunker HillWaterbury1152023Install breaker for QP787ProposedShunockMystic115/13.82024Replace TransformerConceptShungamaugCoventry69/13.82024Replace TransformerConceptBunker HillWaterbury1152024<                                                                                                                                                                                                                                                                                                                                                                                   | Killingly      | Killingly    | 115         | 2022 | Install Capacitor and<br>Breaker                       | Proposed           |
| Gravel PitEast Windsor1152022Construct substation QP892ProposedCotton BridgeKillingly3452023Construct substation for<br>QP724PlannedMansfieldMansfield115/232023Add a distribution<br>transformerPlannedBokumOld Saybrook115/27.62023Replace TransformersConceptSouthingtonSouthington115/13.82023Replace TransformerConceptCardLebanon345/1152023Install 2 <sup>rd</sup> AutotransformerProposedCardLebanon1152023Upgrade Card to BPS<br>standardsProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Montville      | Montville    | 345         | 2022 | Install one 345-kV Breaker                             | Proposed           |
| Cotton BridgeKillingly3452023Construct substation for<br>QP724PlannedMansfieldMansfield115/232023Add a distribution<br>transformerPlannedBokumOld Saybrook115/27.62023Replace TransformersConceptSouthingtonSouthington115/13.82023Replace TransformerConceptCardLebanon345/1152023Install 2nd AutotransformerProposedCardLebanon1152023Upgrade Card to BPS<br>standardsProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedMontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152024Replace TransformerConceptSalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptBunker HillWaterbury1152024Replace TransformerConceptShunockMystic1152024Replace TransformerConceptShunockMystic1152024Replace TransformerConceptShunockMystic1152024Replace TransformerConceptShunockMystic1152024Replace TransformerConceptConce                                                                                                                                                                                                                                                                                                                                                                                                                  | Gravel Pit     | East Windsor | 115         | 2022 | Construct substation QP892                             | Proposed           |
| MansfieldMansfield115/232023Add a distribution<br>transformerPlannedBokumOld Saybrook115/27.62023Replace TransformerConceptSouthingtonSouthington115/13.82023Replace TransformerConceptCardLebanon345/1152023Install 2 <sup>nd</sup> AutotransformerProposedCardLebanon1152023Upgrade Card to BPS<br>standardsProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedMontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152023Install breaker for QP787ProposedSalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformersConceptPeaceableRedding115/13.82024Replace TransformersConceptBunker HillWaterbury1152024Reconfigure substation to a<br>G-breaker ring busConceptShunockMystic1152024Reconfigure substation to a<br>G-breakers for<br>ORes1ProposedKillinglyKillingly1152024Add two breakers for<br>ORes3Proposed                                                                                                                                                                                                                                                                                                                                                                                                                            | Cotton Bridge  | Killingly    | 345         | 2023 | Construct substation for<br>QP724                      | Planned            |
| BokumOld Saybrook115/27.62023Replace TransformersConceptSouthingtonSouthington115/13.82023Replace TransformersConceptCardLebanon345/1152023Install 2 <sup>nd</sup> AutotransformerProposedCardLebanon1152023Upgrade Card to BPSProposedCardLebanon1152023Install one BreakerProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedMontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152024Replace TransformerConceptSalisburySalisbury69/13.22024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformerConceptBunker HillWaterbury1152024Replace TransformerConceptShunockMystic1152024Reconfigure substation to a<br>6-breaker ring busConceptKillinglyKillingly1152024Reconfigure substation to a<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mansfield      | Mansfield    | 115/23      | 2023 | Add a distribution                                     | Planned            |
| BokumOld Saybrook115/27.62023Replace TransformersConceptSouthingtonSouthington115/13.82023Replace TransformerConceptCardLebanon345/1152023Install 2nd AutotransformerProposedCardLebanon1152023Upgrade Card to BPS<br>standardsProposedCardLebanon1152023Install one BreakerProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedMontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152024Replace TransformerConceptSkungamaugCoventry69/13.22024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformerConceptBunker HillWaterbury1152024Replace TransformersConceptShunockMystic1152024Replace TransformersConceptKillinglyKillingly1152024Replace TransformersProposedKillinglyKillingly1152024Replace TransformersConceptShunockMystic1152024Replace TransformersConceptCondenser and two<br>BreakersMystic1152024ProposedProposedCondenser and two<br>Bre                                                                                                                                                                                                                                                                                                                                                                                                                  |                |              |             |      | transformer                                            |                    |
| SouthingtonSouthington115/13.82023Replace TransformerConceptCardLebanon345/1152023Install 2nd AutotransformerProposedCardLebanon1152023Upgrade Card to BPS<br>standardsProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedMontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152023Install breaker for QP787ProposedSalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformersConceptBunker HillWaterbury1152024Reconfigure substation to a<br>6-breaker ring busConceptShunockMystic1152024Reconfigure substation to a<br>6-breakers and two<br>BreakersProposedKillinglyKillingly1152024Add two breakers for<br>OPS31Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bokum          | Old Saybrook | 115/27.6    | 2023 | Replace Transformers                                   | Concept            |
| CardLebanon345/1152023Install 2nd AutotransformerProposedCardLebanon1152023Upgrade Card to BPS<br>standardsProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedMontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152023Install breaker for QP787ProposedSalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformersConceptBunker HillWaterbury1152024Replace TransformersConceptShunockMystic1152024Reconfigure substation to a<br>Gondenser and two<br>BreakersProposedKillinglyKillingly1152024Add two breakers for<br>OPR31Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Southington    | Southington  | 115/13.8    | 2023 | Replace Transformer                                    | Concept            |
| CardLebanon1152023Upgrade Card to BPS<br>standardsProposedCardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedMontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152023Install breaker for QP787ProposedSalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformersConceptBunker HillWaterbury1152024Reconfigure substation to a<br>6-breaker ring busConceptShunockMystic1152024Install a Synchronous<br>Condenser and two<br>BreakersProposedKillinglyKillingly1152024Add two breakers for<br>OR831Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Card           | Lebanon      | 345/115     | 2023 | Install 2 <sup>nd</sup> Autotransformer                | Proposed           |
| CardLebanon1152023Install one BreakerProposedGales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedMontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152023Install breaker for QP787ProposedSalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformersConceptBunker HillWaterbury1152024Reconfigure substation to a<br>6-breaker ring busConceptShunockMystic1152024Install a Synchronous<br>Condenser and two<br>BreakersProposedKillinglyKillingly1152024Add two breakers for<br>OP831Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Card           | Lebanon      | 115         | 2023 | Upgrade Card to BPS<br>standards                       | Proposed           |
| Gales FerryGales Ferry692023Convert from 69-kV to 115-<br>kVProposedMontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152023Install breaker for QP787ProposedSalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformersConceptBunker HillWaterbury1152024Reconfigure substation to a<br>6-breaker ring busConceptShunockMystic1152024Install a Synchronous<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Card           | Lebanon      | 115         | 2023 | Install one Breaker                                    | Proposed           |
| MontvilleMontville692023Install breaker and MOD for<br>QP788ProposedCanterburyCanterbury1152023Install breaker for QP787ProposedSalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformersConceptBunker HillWaterbury1152024Reconfigure substation to a<br>6-breaker ring busConceptShunockMystic1152024Install a Synchronous<br>Condenser and two<br>BreakersProposedKillinglyKillingly1152024Add two breakers for<br>OP831Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gales Ferry    | Gales Ferry  | 69          | 2023 | Convert from 69-kV to 115-<br>kV                       | Proposed           |
| CanterburyCanterbury1152023Install breaker for QP787ProposedSalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformersConceptBunker HillWaterbury1152024Reconfigure substation to a<br>6-breaker ring busConceptShunockMystic1152024Install a Synchronous<br>BreakersProposedKillinglyKillingly1152024Add two breakers for<br>OP831Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Montville      | Montville    | 69          | 2023 | Install breaker and MOD for<br>QP788                   | Proposed           |
| SalisburySalisbury69/13.22024Replace TransformerConceptSkungamaugCoventry69/13.82024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformersConceptBunker HillWaterbury1152024Reconfigure substation to a<br>6-breaker ring busConceptShunockMystic1152024Install a Synchronous<br>Condenser and two<br>BreakersProposedKillinglyKillingly1152024Add two breakers for<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Canterbury     | Canterbury   | 115         | 2023 | Install breaker for QP787                              | Proposed           |
| SkungamaugCoventry69/13.82024Replace TransformerConceptPeaceableRedding115/13.82024Replace TransformersConceptBunker HillWaterbury1152024Reconfigure substation to a<br>6-breaker ring busConceptShunockMystic1152024Install a Synchronous<br>Condenser and two<br>BreakersProposedKillinglyKillingly1152024Add two breakers for<br>OP831Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Salisbury      | Salisbury    | 69/13.2     | 2024 | Replace Transformer                                    | Concept            |
| PeaceableRedding115/13.82024Replace TransformersConceptBunker HillWaterbury1152024Reconfigure substation to a<br>6-breaker ring busConceptShunockMystic1152024Install a Synchronous<br>Condenser and two<br>BreakersProposedKillinglyKillingly1152024Add two breakers for<br>OP831Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Skungamaug     | Coventry     | 69/13.8     | 2024 | Replace Transformer                                    | Concept            |
| Bunker HillWaterbury1152024Reconfigure substation to a<br>6-breaker ring busConceptShunockMystic1152024Install a Synchronous<br>Condenser and two<br>BreakersProposedKillinglyKillingly1152024Add two breakers for<br>OP831Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peaceable      | Redding      | 115/13.8    | 2024 | Replace Transformers                                   | Concept            |
| ShunockMystic1152024Install a Synchronous<br>Condenser and two<br>BreakersProposedKillinglyKillingly1152024Add two breakers for<br>OP831Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bunker Hill    | Waterbury    | 115         | 2024 | Reconfigure substation to a<br>6-breaker ring bus      | Concept            |
| Killingly     Killingly     115     2024     Add two breakers for     Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shunock        | Mystic       | 115         | 2024 | Install a Synchronous<br>Condenser and two<br>Breakers | Proposed           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Killingly      | Killingly    | 115         | 2024 | Add two breakers for                                   | Proposed           |

# 4.6 Incorporation of Renewables on the Eversource Transmission and Distribution System

There is a significant amount of solar PV and offshore wind development in southern New England that is supported in part by Eversource's transmission and distribution system in Connecticut.

Solar PV interconnections in Connecticut are increasing at a rapid pace, due largely to the LREC/ZREC and other financing programs noted in Section 2.1.1. Most PV systems are interconnecting to the distribution system, prompting the need for modernizing the electric distribution system (DPU Docket No. 17-12-03).

Offshore wind interconnections are impacting the Eversource T&D system in Connecticut both as physical interconnections to the grid in Connecticut, and as energy contracts with offshore wind projects located in other areas. DEEP, through competitive RFPs, secured offshore wind projects that will provide approximately 19% of the state's electricity supply, although none of those projects are interconnecting to the electric system in Connecticut.

Deepwater Wind's Revolution Wind project is a joint venture offshore wind project by Eversource Energy and Ørsted. This project will be interconnected to a switching station in the state of Rhodes Island, and will provide approximately 5% of the electrical supply in the state of Connecticut.

Vineyard Wind's Park City Wind project is an 804 MW offshore wind project that was selected as part of the 2019 RFP. This project will make a landfall in Barnstable County, MA and is expected to provide approximately 14% of the electrical supply of the Connecticut.

In addition to these projects, there are two offshore wind projects that have submitted their interconnection request to ISO-NE. QP893/QP927 is a 1200 MW project that is proposing to interconnect to the coast of Eastern and or Central Connecticut. QP791/QP792 is an 805 MW project that is proposing to interconnect to the same locations in Connecticut. These projects combined could provide approximately 35% of the electrical supply in the state of Connecticut, but the energy from these projects could be purchased by other states in the region in the same way that Connecticut has purchased energy from projects interconnecting to Rhode Island and Massachusetts.

The offshore wind projects in New England are in various level of regulatory approval process, contract negotiations, and system impact studies. However, the two projects that are selling energy to Connecticut have contracts approved by PURA.

Eversource will continue to monitor and incorporate these projects in the reliable planning of the electrical system in Connecticut. There are activities underway to address the integration of all these clean energy resources. ISO-NE has initiated a cluster study to address the interconnection of significant amounts of offshore wind on Cape Cod, some of which plans to sell energy to Connecticut. ISO-NE has also initiated a pilot study to assess potential modifications to the reliability planning process to address the integration of clean energy resources. CT DEEP's Draft Integrated Resource Plan found that electric transmission is an essential part of integrating enough clean energy to meet state targets, and DEEP has recommended that the region undertake a coordinated, scenario-based approach to planning the future electric grid.