## **Additional Cases**

- Improved model more consistent starting voltage profile (near 1.05 p.u.)
- More system configurations 7104
- Counts in histograms reflect that each case has 10 measurement points
- Exhaustive search for "worst case" not done cases based on expected system configurations
- EnerNex load model has more damping in the zero sequence than the GE model – results in somewhat lower TOV's in some situations. Exhaustive exploration of load model impact not done.

| Case 5 with no extra miles of cable |     |                                                                          |  |  |  |
|-------------------------------------|-----|--------------------------------------------------------------------------|--|--|--|
| Case5                               | 148 | Case 5 at 30, 40, 50 and 70% load Base system strength                   |  |  |  |
| Case5-EQ8                           | 148 | Case 5 at 30, 40, 50 and 70% load 80 % system strength                   |  |  |  |
|                                     |     | Case 5 at 30, 40, 50 and 70% load 80 % system strength and Extra         |  |  |  |
| Case5-EQ8-C2                        | 148 | Capactors                                                                |  |  |  |
|                                     |     | Case 5 at 30, 40, 50 and 70% load 80 % system strength and Extra         |  |  |  |
| Case5-EQ8-C2-AltLoad                | 148 | Capactors, Alternate Load Model                                          |  |  |  |
| Case5-EQ9                           | 148 | Case 5 at 40, 50 and 70% load 90 % system strength                       |  |  |  |
|                                     |     | Case 5 at 40, 50 and 70% load 90 % system strength, alternate load       |  |  |  |
| Case5-EQ9-AL                        | 148 | model                                                                    |  |  |  |
|                                     |     | Case 5 at 40, 50 and 70% load 90 % system strength and Extra             |  |  |  |
| Case5-EQ9-C2                        | 148 | Capactors                                                                |  |  |  |
|                                     |     | Case 5 at 40, 50 and 70% load 90 % system strength and Extra             |  |  |  |
| Case5-EQ9-C2-AL                     | 148 | Capactors, alternate load model                                          |  |  |  |
|                                     |     | Case 5 at 40, 50 and 70% load Base system strength and Extra             |  |  |  |
| Case5-EQ1-C2                        | 148 | Capacitors                                                               |  |  |  |
|                                     |     | Case 5 at 40, 50 and 70% load Base system strength and Extra             |  |  |  |
| Case5-EQ1-C2-AL                     | 148 | Capacitors,alternate load model                                          |  |  |  |
|                                     |     | Case 5 at 30, 40, 50 and 70% load with successive 0 faults 3.5 cycle     |  |  |  |
| Case5-F2                            | 148 | clear                                                                    |  |  |  |
|                                     |     |                                                                          |  |  |  |
| Case5-F3                            | 148 | Case 5 at 30, 40, 50 and 70% load with successive 0 faults 4 cycle clear |  |  |  |

Case

| Case 5A | Case 5 with 20 extra miles of cable |     |                                                                           |  |  |  |
|---------|-------------------------------------|-----|---------------------------------------------------------------------------|--|--|--|
|         | Case5A                              | 148 | Case 5A at 30, 40, 50 and 70% load and full system strength               |  |  |  |
|         |                                     |     | Case 5A at 30, 40, 50 and 70% load, 100% system strength and extra        |  |  |  |
|         | Case5A-EQ1-C2                       | 148 | capacitors                                                                |  |  |  |
|         |                                     |     | Case 5A at 30, 40, 50 and 70% load, 100% system strength and extra        |  |  |  |
|         | Case5A-EQ1-C2-AL                    | 148 | capacitors, alternate load model                                          |  |  |  |
|         | Case5A-EQ9                          | 148 | Case 5A at 30, 40, 50 and 70% load, 90% system strength                   |  |  |  |
|         |                                     |     | Case 5A at 30, 40, 50 and 70% load, 90% system strength , Alternate       |  |  |  |
|         | Case5A-EQ9-AL                       | 148 | Load                                                                      |  |  |  |
|         |                                     |     | Case 5A at 30, 40, 50 and 70% load, 90% system strength and extra         |  |  |  |
|         | Case5A-EQ9-C2                       | 148 | capacitors                                                                |  |  |  |
|         |                                     |     | Case 5A at 30, 40, 50 and 70% load, 90% system strength and extra         |  |  |  |
|         | Case5A-EQ9-C2-AL                    | 148 | capacitors, alternate load model                                          |  |  |  |
|         | Case5A-EQ8                          | 148 | Case 5A at 30, 40, 50 and 70% load, 80% system strength                   |  |  |  |
|         |                                     |     | Case 5A at 30, 40, 50 and 70% load, 80% system strength and extra         |  |  |  |
|         | Case5A-EQ8-C2                       | 148 | capacitors                                                                |  |  |  |
|         |                                     |     | Case 5A at 30, 40, 50 and 70% load, 80% system strength and extra         |  |  |  |
|         | Case5A-EQ8-C2-AltLoad               | 148 | capacitors, alternate load model                                          |  |  |  |
|         |                                     |     | Case 5A at 30, 40, 50 and 70% load with successive 0 faults 3.5 cycle     |  |  |  |
|         | Case5A-F2                           | 148 | clear                                                                     |  |  |  |
|         |                                     |     |                                                                           |  |  |  |
|         | Case5A-F3                           | 148 | Case 5A at 30, 40, 50 and 70% load with successive 0 faults 4 cycle clear |  |  |  |

| <u>Bin</u>                | <u>Case 5</u> | <u>Case 5+5</u> | <u>Case 5+10</u> | <u>Case 5+20</u> |
|---------------------------|---------------|-----------------|------------------|------------------|
| 1                         | 16            | 40              | 33               | 5                |
| 1.05                      | 2033          | 2006            | 2023             | 1337             |
| 1.1                       | 3987          | 3602            | 3605             | 3026             |
| 1.15                      | 2960          | 3525            | 3611             | 2774             |
| 1.2                       | 2780          | 3146            | 3097             | 2969             |
| 1.25                      | 2229          | 2233            | 2145             | 2411             |
| 1.3                       | 1414          | 1246            | 1217             | 1711             |
| 1.35                      | 880           | 763             | 783              | 1172             |
| 1.4                       | 634           | 446             | 462              | 852              |
| 1.45                      | 329           | 268             | 273              | 596              |
| 1.5                       | 237           | 186             | 156              | 386              |
| 1.55                      | 127           | 104             | 104              | 232              |
| 1.6                       | 93            | 79              | 90               | 127              |
| 1.65                      | 35            | 45              | 47               | 65               |
| 1.7                       | 6             | 34              | 41               | 39               |
| 1.75                      | 0             | 14              | 10               | 21               |
| 1.8                       | 0             | 8               | 9                | 14               |
| 1.85                      | 0             | 5               | 8                | 10               |
| 1.9                       | 0             | 1               | 14               | 12               |
| 1.95                      | 0             | 4               | 10               | 1                |
| 2                         | 0             | 1               | 6                | 0                |
| More                      | 0             | 4               | 16               | 0                |
| Into Safty                |               |                 |                  |                  |
| Margin                    | 134           | 195             | 251              | 289              |
| Above Equip<br>Capability | 0             | 15              | 54               | 23               |





- SWCT studies clearly show cases where TOV's worse with C-Type Filters tuned to the third harmonic violates "do no harm" principal
- When tuned near the second harmonic, they effectively mitigate TOV's in the computer simulations
- Optimum design indicates the need for a very large inductor (> 2 Henries), which will likely require an iron core design
  - No experience with an iron core filter in this application
  - Audible noise issues
  - Yet another saturable element must study inrush in switching filter itself
- Normally applied for harmonic control
  - Unproven for controlling TOV's we cannot find any instances of such installations anywhere in the world
  - Filter component ratings different than common practice to withstand TOV's no guidelines available
  - Protection practices complicated for filter in harmonic control application, would likely be more complicated for TOV control
- Too much capacitance under light load conditions
  - More effective design may require tuning near the second harmonic which adds even more capacitance to the system
  - May require switched bank and/or shunt reactors
- Consequences of TOV's so dire that C-Type filters must be designed for at least one contingency of a filter bank out of service – complicates optimization
- Optimization cannot account for all system contingencies, operating points, and unknowns
- Should be physically located close to problem areas twice the physical size of normal cap bank