ATTACHMENT B

For electrical infrastructure security purposes certain <u>Critical Energy/Electric</u> <u>Infrastructure Information</u> contained in the study has been redacted.

Distribution Generation Interconnection Impact Study

West Haven Energy Center BESS 335 Elm Street, West Haven, CT 06516

> Prepared For: The United Illuminating Company 100 Marsh Hill Road, Orange, CT 06477

> > Submitted By: RLC Engineering, PLLC

Index

1.	Executive Summary	3
2.	INTRODUCTION AND EVALUATION DESCRIPTION	5
3.	STUDY MODELS AND ASSUMPTIONS	6
4.	INTERCONNECTION EVALUATION	9
4.1.	Voltage Change Analysis	9
4.2.	Voltage Fluctuation Analysis	12
4.3.	Substation Thermal and Reverse Power Analysis	18
5.	CONCLUSION	21
Append	dix A - CUSTOMER ONE-LINE DIAGRAM	22
Append	dix B - MODEL DIAGRAMS	23
Append	dix C – INVERTER SPEC SHEET	24

Executive Summary

This re-study of the interconnection impacts of the proposed Battery Energy Storage System (BESS), located at 335 Elm Street, West Haven, CT 06516, is a following step recommended in the previous study. The re-study covers some key aspects identified previously based on most recent models, system conditions, and a more detailed representation of the elements. None of the BESS operation or design elements were changed from the original study issued on October 10, 2023 for this restudy. If any, operation or design elements (such as charge and discharge schedule) of the BESS were to change the original results from the study and this re-study would not longer be valid.

This re-study report presents updated recommendations that supersede the previous ones. For the Project information and other analysis not mentioned in this document, the previous recommendations remain the most current.

The simulations results have shown that the proposed DG interconnection of 15,000 kW of BESS must make the mitigations identified in this report prior to operation, based on the United Illuminating (UI) criteria. After these mitigations are made, the Project will result in no adverse impacts on the Electric Distribution Company (EDC) distribution system, nor to customers supplied from the same distribution feeder to which the Project would interconnect.

The proposal cannot be implemented as requested without the following system upgrades:

- Enable Reverse Power operation in the LTC controllers with settings identical to the Forward Power settings and ensure transformer secondary side (13.8 kV) is regulated regardless of power flow direction.
- LTC controller programming and any required equipment to subtract BESS power flows out of the Load Drop Compensation (LDC) scheme calculations.
- Should subtracting BESS flows from the LDC scheme be infeasible, utilize the following LTC settings:
 - Band Center = 122 V
 - Bandwidth = 2 V
 - LDC Resistance = 3 V
 - LDC Reactance = 0 V
- BESS operational schedule (charge/discharge) implementation to eliminate the possibility of output volatility.

A summary of results is shown in Table 1.

The second secon	Table 1: Results Summary							
Analysis	Criteria	Results	Upgrades	Notes				
Voltage Change	97.5% - 105%	Fail	Project BESS Ensure operational schedule recommended in previous report (charging during light load and discharging during peak load) is implemented Substation Transformer LTC's Subtract BESS flows from	High voltages up to 105.07% experienced under peak load, no generation, max BESS charging scenario				
Voltage Fluctuations (Transient)	ΔV< ⅓ LTC Bandwidth	Fail	LDC calculations 2. If 1. is not achievable, utilize the following settings: Band Center = 122 V Bandwidth = 2 V LDC Resistance = 3 V LDC Reactance = 0 V	Pre-tap ΔV up to 1.14% experienced when BESS transitions from full discharge to full charge				
Interconnection Transformer	Meets UI standards for utility grade	Pass	None					
Harmonics	< 5% THD, Individual Harmonic Requirements	Pass	None	Not evaluated in re-study				
System Imbalance	Voltage Imbalance <3% Current Imbalance <15% Difference between phases <50 Amps	Pass	None	Not evaluated in re-study				
Potential Ferroresonance	Wye connected primary	Pass	None	Not evaluated in re-study				
	LROV	Fail	A safe approach to avoid islanding is to implement a	Not evaluated in re-study				
Risk of Islanding	Sandia Screen	Fail	logic system based on the status and current of transformer breakers. These signals should be taken to the BESS control by wires. This system would ensure that if the transformers are out of service, BESS would automatically trip	Sandia Screen at the Substation and Feeder levels fail Not evaluated in re-study				
Thermal Loading	No facilities loaded >90%	Pass	None					
Reverse Flow	No reverse power flow	Fail	Enable Reverse Power operation in LTC controllers with settings identical to Forward Power settings and ensure transformer secondary side (13.8 kV) is regulated regardless of power flow direction. For M-2001D UI recommends REGULATE FORWARD.	Reverse power flow at the feeder breaker and substation are present. LTC controllers are sufficient to accommodate reverse power flow and only settings changes are required				

2. INTRODUCTION AND EVALUATION DESCRIPTION

The following items have been identified as necessary to be re-studied and were included as part of this re-study:

- a. Voltage Change Analysis evaluation of the steady-state distribution voltage level on the network to ensure that voltage levels stay within acceptable limits.
- b. Voltage Fluctuation Analysis evaluation of the rapid change in voltage caused by changes in output at the generating station. This study was performed to ensure that transient voltages during generation output transitions do not cause excessive voltage swings.
- c. Substation Thermal and Reverse Power Analysis evaluation of reverse power flow through the substation transformer and into the transmission grid due to the DG installation, as well as any thermal issues present at the substation.

3. STUDY MODELS AND ASSUMPTIONS

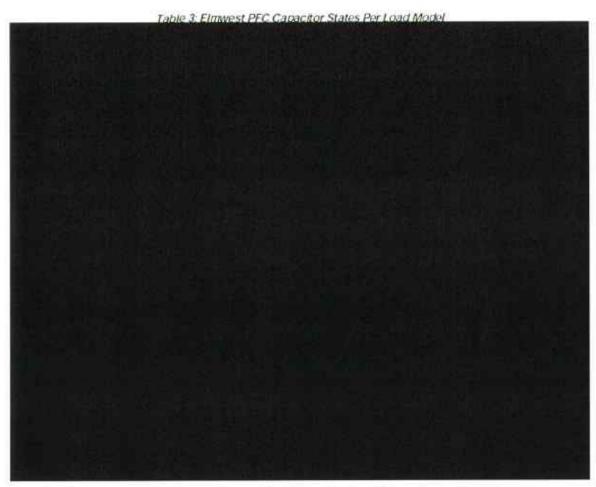
Characteristics of the proposed DG interconnection and UI system are summarized below. The full one-line diagram of this interconnection is available in Appendix A and model layouts are available in Appendix B.

A system model has been developed in the CYME version 9.2r5 power system simulation software. A diagram showing the circuit configuration is available in Appendix B. This model represents the BESS, the GSU transformers, and the interconnecting distribution feeder with protection equipment.

Below is a list of assumptions made as part of the modeling and analysis:

• The system model considered both peak and light load conditions on the supply feeder, using 2022-2024 load information for maximum and minimum load data respectively, for the total demand of the substation. This study used the worst-case scenarios of the last 3 years to determine possible mitigation techniques for observed adverse impacts. The load was allocated in the CYME model according to the connected kVA of the loads in the model. Because the study was for BESS, the peak load was chosen across all 24 hour periods. The light load condition, however, was selected during daytime hours due to the amount of PV interconnected (approximately 11,918 kW) at the Elmwest substation. The exiting feeder conditions are in the following table.

Table 2: Existing Elmwest Substation Loading Conditions


Load Model	Time	MW	MVAR	PF
Peak				
Light				

- All other customers' existing generators and all generation on the feeders prior to the proposed Project were assumed to be in service. This includes the following generation:
 - of photovoltaic (PV)
 - of fuel cells
 - of fuer cens
- Loads were modeled as constant power type.
- The substation contains parallel LTC transformers, which utilize the following settings:
 - o CT Ratio: 3,200/0.2 A = 16,000
 - o PT Ratio: 7,960/120 V = 66.3
 - Block Raise: 125.7 V
 - Runback Deadband: 2 V
 - Block Lower 114.9 V
 - Runup Deadband: N/A (Runup disabled)
 - Band Center: 120 V
 Bandwidth: 2 V
 LDC Resistance: 10 V
 LDC Reactance: 0 V

- The Load Flow analysis was conducted to determine the Project impact on steady-state circuit voltage. To ensure adequate voltage to customers (114 V to 126 V), the circuit voltage must remain within the range of 117 V to 126 V (120 V base) during normal operation. In general, the circuit voltage at the substation must remain in the range of 120 to 126 V to maintain an adequate voltage on circuits under all anticipated load conditions, regardless of generation operation.
- The CYME model contains capacitors, with capacitors possessing switching capabilities and operating within the Elmwest Power Factor Control (PFC) scheme. These capacitors monitor the substation bus and are controlled such that the substation VAR flows is as close to zero as possible via remote monitoring and switching priority order. For the Peak and Light load models specified in Table 2, PFC capacitor bank states were initially modeled per UI Distribution Capacitor Bank Reporting data. All feeder loads for both loading conditions were allocated accordingly with these states implemented; however, this resulted in various negative feeder load power factors, which would indicate inaccuracies in the capacitor bank states. Therefore, these states were manipulated such that feeder load power factors were reasonable (≥ 85%) with consideration given to the switching priority order. The states used for load profile load allocations and corresponding evaluations can be seen in Table 3.

- All voltages shown in the report refers to the Medium Voltage level (13.8 kV) converted to a per unit basis.
- The analyses in Section 4 include the following four (4) scenarios and corresponding descriptions:
 - Pre-Project, No Generation: pre-Project scenario with all existing/earlier queued generation offline
 - Pre-Project, Max Generation: pre-Project scenario with all existing/earlier queued generation online at full output
 - Post-Project, No Generation, Max BESS Charging: post-Project scenario with all existing/earlier queued generation offline and the Project BESS fully charging at -15,000 kW
 - Post-Project, Max Generation, Max BESS Discharging: post-Project scenario with all existing/earlier queued generation online at full output and the Project BESS fully discharging at +15,000 kW

4. INTERCONNECTION EVALUATION

The system models developed were used to complete the required analyses and simulations to meet the screening criteria identified in Section 2 of this report. The subsequent sections provide the detailed performance of the DG interconnection against this criteria under multiple loading Scenarios.

4.1. Voltage Change Analysis

Voltage impact is a key screening criterion when interconnecting DG to the utility system. At a baseline, the impact of the DG under steady state conditions needs to meet standards to ensure that it can operate under normal conditions without causing issues to the system or other UI customers. UI criteria for this evaluation is as follows:

• 97.5% ≤ Medium Voltage ≤ 105%

To ensure worst case voltages were captured, both Top of Band (ToB) and Bottom of Band (BoB) scenarios, or the upper and lower bounds of regulation device's bandwidth, were simulated. The Elmwest transformer LTC's operate with a 120 V Band Center and 2 V Bandwidth; therefore, these values were modeled as follows:

- LTC ToB = 120 V + 2 V/2 = 121 V
- LTC BoB = 120 V 2 V/2 = 119 V

Note that with these settings in place, an infinite tap solution was utilized such that convergence was achieved at the exact values specified. In order for this to be possible, CYME solves for non-integer tap positions with precision up to the 9th decimal point rather than integer positions as would be expected in real world operation. This methodology is for worst case planning purposes.

Furthermore, the Project BESS units were operated under maximum charging (-15,000 kW) and maximum discharging (+15,000 kW) scenarios.

The steady state voltage with and without the Project interconnected are shown in the following table.

Table 4: Steady State Voltages – Existing LTC Settings

Loading	Scenario			Volta	iges		
Loading	Scenario	ToB Violations	Highest	Ckt	BoB Violations	Lowest	Ckt
	Pre-Project, No Generation	No violations	104 12%	625	No violations	99 04%	620
Peak	Pre-Project, Max Generation	No violations	103 84%	646	No violations	98.99%	620
	Post-Project, No Generation, Max BESS Charging	HV at northern end of 625	105.07%	625	No violations	99 90%	620
	Post-Project, Max Generation, Max BESS Discharging	No violations	102.93%	646	No violations	98 04 4	620
	Pre-Project, No Generation	No violations	102 42%	627	No violations	99 34%	627
Trans.	Pre-Project, Max Generation	No violations	102 28%	627	No violations	98 86%	627
Light	Post-Project, No Generation, Max BESS Charging	No violations	103 24%	627	No violations	100 08%	627
	Post-Project, Max Generation, Max BESS Discharging	No violations	101 49%	627	No violations	98 16%	627

As shown, high voltages up to 105.07% were experienced under the post-Project, no generation, maximum BESS charging scenario. Therefore, the following mitigation was required.

 Subtract BESS flows from LTC LDC calculations such that LTC's operate near-identically to pre-Project scenarios

Updated steady state voltages were obtained with the proposed mitigation. These results can be seen in the following table.

Table 5: Steady State Voltages – BESS Flows Subtracted from LDC Calculations

Loading	Compania	و حاليه جوالا		Volta	ges		
	Scenario	ToB Violations	Highest	Ckt	BoB Violations	Lowest	Ckt
	Pre-Project, No Generation	No violations	104 09%	625	No violations	98 98%	620
	Pre-Project, Max Generation	No violations	103 84%	646	No violations	98 99%	620
Peak	Post-Project, No Generation, Max BESS Charging	No violations	104 09%	625	No violations	98 96%	620
	Post-Project, Max Generation, Max BESS Discharging	No violations	103 86%	646	No violations	99 01%	620
	Pre-Project, No Generation	No violations	102 41%	627	No violations	99.34%	627
1:-1-	Pre-Project, Max Generation	No violations	102 28%	627	No violations	98.98%	627
Light	Post-Project, No Generation, Max BESS Charging	No violations	102 41%	627	No violations	99 349	627
	Post-Project, Max Generation, Max BESS Discharging	No violations	102 28%	627	No violations	98 98%	627

It can be seen that pre- to post-Project voltages are nearly identical, regardless of Project BESS operation.

Should it not be feasible to subtract BESS flows from the LDC calculations, the following settings may be utilized alternatively:

- Band Center = 122 V
- Bandwidth = 2 V
- LDC Resistance = 3 V
- LDC Reactance = 0 V

Note that with these settings in place, the following ToB and BoB parameters were simulated.

- LTC ToB = 122 V + 2 V/2 = 123 V
- LTC BoB = 122 V 2 V/2 = 121 V

The results with these settings implemented can be seen in the following table.

Table 6: Steady State Voltages - Alternative LTC Settings

Loading	Scenario			Volta	iges		
Loading	Scenario	ToB Violations	Highest	Ckt	BoB Violations	Lowest	Ckt
Peak	Pre-Project, No Generation	No violations	103.78%	625	No violations	98.49%	620
	Pre-Project, Max Generation	No violations	103.86%	646	No violations	99.04%	620
Peak	Post-Project, No Generation, Max BESS Charging	No violations	104.50%	625	No violations	98.76%	620
	Post-Project, Max Generation, Max BESS Discharging	No violations	103.60%	646	No violations	98.72%	620
	Pre-Project, No Generation	No violations	103.42%	627	No violation	100.31%	627
Limba	Pre-Project, Max Generation	No violations	103.70%	627	No violations	102.60%	623
Light	Post-Project, No Generation, Max BESS Charging	No violations	103.57%	627	No violations	100.54%	627
	Post-Project, Max Generation, Max BESS Discharging	No violations	103.47%	627	No violations	100.13%	627

UI shall make final determination on the LTC settings implemented to comply with voltage change criteria.

4.2. Voltage Fluctuation Analysis

One of the most significant limiting factors of interconnecting a new generating source is how much the voltage changes when the full capacity of the DG is suddenly disconnected from the system or in the case of the Project BESS, when the DG fully transitions from one output state to another (i.e. full discharge to full charge). These voltage changes may impact the safety, power quality, and reliability of supply to other customers which are served by the same feeder that the proposed DG will be interconnected to.

This evaluation was held to the following UI criteria:

- Pre- and post-tap voltage deltas < ½ regulation device bandwidth at the regulation device
- Pre- and post-tap voltage deltas < 3% at the Project point of interconnection (POI)

In the case of the Elmwest network, the only voltage regulation devices are the transformer LTC's. As discussed in Section 3, the LTC's are set with a Bandwidth of 2 V and therefore, the ½ regulation device bandwidth criteria dictates that the voltage deltas shall not exceed 1 V on 120 V base, or 0.833% on a per unit base.

Furthermore, RLC performed an additional evaluation where LTC taps were monitored for reference purposes. The criteria for this evaluation was as follows:

• Devices taps < 2 positions for any given Project operation event

For each criteria, the following scenarios were evaluated:

- Full discharge to full charge (100% to -100%, or 15,000 kW to -15,000 kW)
- Float to full discharge (0% to 100%, or 0 kW to 15,000 kW)
- Float to full charge (0% to -100%, or 0 kW to -15,000 kW)

Similar to Section 4.1, the following LTC control schemes were simulated for this evaluation:

- Existing LTC Settings
- BESS Flow Subtracted from LDC Calculations
- Alternative LTC Settings

Tables 7 through 12 provide summaries of the voltage fluctuation analyses for the Existing LTC Settings.

Table 7: Voltage Fluctuation Summary – Existing LTC Settings – 100% to -100%

Looding	Scenario	Project	Voltag	e Levels @	POI (%)	Voltage Levels @ LTC (%)		
Loading	Scenario	Output	VA	VB	VC	VA	VB	VC
		100%	101 36	101 00	101 16	101 34	100 98	10114
	Pre-Tap	-100%	100 24	99 88	100 04	100 20	99 84	100 00
Peak		ΔV	112	1.12	1 12	1.14	1.14	1.14
	Post-Tap	-100%	103 02	102 65	102 82	103 03	102 66	102 83
		Δ٧	1 66	1 65	1 66	1.69	1.68	1.69
		100%	99 67	99 61	99.67	99 66	99 60	99 66
	Pre-Tap	-100%	99 32	99 25	99 31	99 32	99 26	99.31
Light		Δ٧	0 35	0 36	0 36	0 34	0 34	0 35
	Doct Jan	100%	100 59	100 53	100 58	100 59	100.53	100.58
	Post-Tap	Δ∨	0 92	0 92	0 91	0.93	0.93	0.92

Table 8: Device Tapping Summary - Existing LTC Settings - 100% to -100%

l andina	Davisa	Numb	er of Tap Ope	rations
Loading	Device	А	В	С
Dont	A Bank LTC	4	4	4
Peak	B Bank LTC	4	4	4
Light	A Bank LTC	2	2	2
Light	B Bank LTC	2	2	2

Table 9: Voltage Fluctuation Summary – Existing LTC Settings – 0% to 100%

Looding	Cooperie	Project	Voltage	Voltage Levels @ POI (%)			Voltage Levels @ LTC (%)		
Loading	Scenario	Output	VA	VB	VC	VA	VB	VC	
	DE 0	0%	101 73	101.37	101 53	101.73	101 37	101 53	
	Pre-Tap	100%	102 04	101.69	101 85	102 05	101 69	101 85	
Peak		Δ∨	0 31	0.32	0 32	0 32	0 32	0 32	
	Post-Tap	100%	102.04	101 69	101 85	102.05	101 69	101 85	
		Δ٧	0.31	0.32	0 32	0 32	0.32	0 32	
		0%	99 70	99 64	99 70	99 71	99 65	99.70	
	Pre-Tap	100%	99 67	99 61	99.66	99.67	99 61	99 66	
Light		ΔV	0 03	0.03	0 04	0 04	0 04	0 04	
	Dort Tap	100%	99 67	99 61	99.66	99 67	99 61	99 66	
	Post-Tap	Δ٧	0.03	0.03	0 04	0 04	0 04	0 04	

Table 10: Device Tapping Summary – Existing LTC Settings – 0% to 100%

Looding	Davisa	Numb	er of Tap Ope	rations	
Loading	Device	Α	В	С	
Doot	A Bank LTC	0	0	0	
Peak	B Bank LTC	0	0	0	
Light	A Bank LT	0	0	0	
Light	B Bank LTC	0	0	0	

Table 11: Voltage Fluctuation Summary – Existing LTC Settings – 0% to -100%

Looding	Scenario	Project	Voltage	Voltage Levels @ POI (%)			Voltage Levels @ LTC (%)		
Loading	Scenario	Output	VA	VB	VC	VA	VB	VC	
		0%	101.73	101.37	101.53	101.73	101.37	101.53	
	Pre-Tap	-100%	100.92	100.56	100.72	100.92	100.55	100.72	
Peak		Δ٧	0.81	0.81	0.81	0.81	0.82	0.81	
	Post-Tap	-100%	103.02	102.66	102.82	103.03	102.66	102.82	
		Δ٧	1.29	1.29	1.29	1.30	1.29	1.29	
		0%	99.70	99.64	99.70	99.71	99.65	99.70	
	Pre-Tap	100%	99.31	99.25	99.31	99.32	99.26	99.31	
Light		Δ٧	0.39	0.39	0.39	0.39	0.39	0.39	
	Day: Inn	-100%	100.59	100.53	100.58	100.59	100.53	100.58	
	Post-Tap	Δ٧	0.89	0.89	0.88	0.88	0.88	0.88	

Table 12: Device Tapping Summary – Existing LTC Settings – 0% to -100%

Looding	Device	Number of Tap Operations				
Loading	Device	Α	В	С		
Dook	A Bank LTC	3	3	3		
Peak	B Bank LTC	3	3	3		
Light	A Bank LTC	2	2	2		
Light	B Bank LTC	2	2	2		

As shown, the Existing LTC Settings fail both the UI ½ regulation device bandwidth criteria under both pre- and post-tap scenarios, and optional RLC tapping criteria. Note that these settings were deemed infeasible in the presence of the Project BESS per Section 4.1 and are shown for reference purposes only.

Tables 13 through 18 provide summaries of the voltage fluctuation analyses for the BESS Flow Subtracted from LDC Calculations.

Table 13: Voltage Fluctuation Summary – BESS Flow Subtracted from LDC Calculations – 100% to -100%

Landina	Scenario	Project	Voltag	e Levels @	POI (%)	Voltage	Voltage Levels @ LTC (%)		
Loading	Scenario	Output	VA	VB	VC	VA	VB	VC	
		100%	102 04	101 68	101.84	102 04	101 68	101.84	
	Pre-Tap	-100%	100.90	100.54	100 70	100.90	100 54	100 70	
Peak		Δ٧	1 14	1.14	114	1.14	1.14	1.14	
	Post-Tap	-100%	101 61	101 24	101.40	101 61	101 24	101 40	
		Δ٧	0 43	0 44	0 44	0 43	0 44	0 44	
		100%	99 67	99 61	99,66	99.67	99 61	99.66	
	Pre-Tap	-100%	99 31	99 25	99 31	99 31	99 25	99.31	
Light		Δ٧	0 36	0.36	0 35	0 36	0.36	0 35	
	Post-Tap	-100%	99 95	99 89	99.94	99 95	99 89	99.94	
		Δ٧	0 28	0.28	0 28	0 28	0 28	0 28	

Table 14: Device Tapping Summary – BESS Flow Subtracted from LDC Calculations – 100% to -100%

Loading	Device	Number of Tap Operations					
Loading	Device	А	В	С			
Deak	A Bank LTC	1	1	1			
Peak	B Bank LTC	1	9	1			
Light	A Bank LTC	1	1	· ·			
Light	B Bank LTC	1	1	1			

Table 15: Voltage Fluctuation Summary – BESS Flow Subtracted from LDC Calculations – 0% to 100%

Looding	Scenario	Project	Voltag	e Levels @	POI (%)	Voitage Levels @ LTC (%)		
Loading	Scenario	Output	VA	VB	VC	VA	VB	VC
		0%	102.44	102.08	102 24	102.44	102 08	102 24
	Pre-Tap	100%	102.74	102 38	102.54	102.74	102 38	102 54
Peak		Δ∨	0.30	0.30	0.30	0.30	0 30	0.30
	David Tax	100%	102 74	102 38	102 54	102.74	102 38	102.54
	Post-Tap	Δ٧	0.30	0 30	0 30	0 30	0 30	0.30
		0%	99 70	99.64	99 70	99.70	99 64	99 70
	Pre Tap	100%	99 67	99 61	99 66	99 67	99 61	99 66
Light		ΔV	0 03	0 03	0 04	0 03	0 03	0 04
	Post-Tap	100%	99.67	99 61	99 66	99 67	99 61	99 66
		Δ٧	0 03	0.03	0 04	0 03	0 03	0 04

Table 16: Device Tapping Summary - BESS Flow Subtracted from LDC Calculations - 0% to 100%

Loading	Dovice	Number of Tap Operations					
Loading	Device	Α	В	С			
On al.	A Bank LTC	0	0	0			
Peak	B Bank LTC	- 0	0	O			
Light	A Bank LTC	0	0	0			
Light	B Bank LTC	0	0	0			

Table 17: Voltage Fluctuation Summary - BESS Flow Subtracted from LDC Calculations - 0% to -100%

Looding	Caeparia	Project	Voltag	e Levels @	POI (%)	Voltage Levels @ LTC (%)		
Loading	Scenario	Output	VA	VB	VC	VA	VB	VC
		0%	102.44	102.08	102 24	102.43	102 07	102 23
	Pre-Tap	100%	101 61	101 24	101.40	101 61	101.24	101 40
Peak		ΔV	0.83	0 84	0 84	0.82	0.83	0.83
	Post-Tap	-100%	101 61	101 24	101 40	101 61	101 24	101 40
		Δ٧	0.83	0 84	0 84	0 82	0 83	0 83
		0%	99 70	99 64	99 70	99.70	99 64	99.70
	Pre-Tap	-100%	99 31	99.25	99.31	99 31	99 25	99 31
<mark>Lig</mark> ht		ΔV	0 39	0.39	0 39	0 39	0 39	0 39
	Post-Tap	-100%	99 95	99 89	99 94	99.95	99 89	99.94
		Δ٧	0 25	0.25	0 24	0 25	0 25	0 24

Table 18: Device Tapping Summary – BESS Flow Subtracted from LDC Calculations – 0% to -100%

Loading	Device	Number of Tap Operations					
Loading	Device	Α	В	С			
Peak	A Bank LTC	0	0	0			
Peak	B Bank LTC	0	O	0			
Licabe	A Bank LTC	1	1	1			
Light	B Bank LTC	1	1	1			

It can be seen that the BESS Flow Subtracted from LDC Calculations fail the UI ½ regulation device bandwidth criteria under pre-tap scenarios during 100% to -100% transitions. Therefore, the Project BESS must operate with an operational schedule (charge/discharge) to eliminate the possibility of output volatility and shall not be permitted to participate in any frequency markets, should these settings be utilized.

Tables 19 through 24 provide summaries of the voltage fluctuation analyses for the Alternative LTC Settings.

Table 19: Voltage Fluctuation Summary – Alternative LTC Settings – 100% to -100%

Landina	Canadia	Project	Voltage	e Levels @	POI (%)	Voltage	e Levels @	LTC (%)
Loading	Scenario	Output	VA	VB	VC	VA	VB	VC
		100%	102 07	101 71	101 87	102 03	101.67	101.84
	Pre-Tap	-100%	100 89	100 52	100 68	100.96	100 59	100 76
Peak		Δ٧	1.18	1 19	1 19	1.07	1.08	1.08
	Deat Tea	-100%	102.32	101 96	102 12	102.32	101.95	102 12
	Post-Tap	Δ٧	0.25	0 25	0 25	0.29	0 28	0 28
		100%	100 95	100 89	100 94	100.94	100 88	100 94
	Pre-Tap	-100%	100 61	100 55	100 60	100.57	100 51	100 57
Light		Δ٧	0.34	0.34	0.34	0 37	0.37	0 37
	Post-Tap	-100%	101 22	101 16	101 22	101 23	101 16	101 22
		Δ٧	0.27	0 27	0 28	0 29	0 28	0 28

Table 20: Device Tapping Summary – Alternative LTC Settings – 100% to -100%

Looding	Device	Number of Tap Operations				
Loading	Device	А	В	С		
Dook	A Bank LTC	2	2	2		
Peak	B Bank LTC	2	2	2		
Light	A Bank LTC	1	1	1		
Light	B Bank LTC	1	1	1		

Table 21: Voltage Fluctuation Summary – Alternative LTC Settings – 0% to 100%

Looding	Cooperio	Project	Voltag	e Levels @	POI (%)	Voltage	e Levels @	LTC (%)
Loading	Scenario	Output	VA	VB	VC	VA	VB	VC
		0%	101 73	101 37	101.53	101.73	101.37	101 53
	Pre-Tap	100%	102 04	101 69	101.85	102 05	101 69	101 85
Peak		Δ٧	0 31	0 32	0 32	0 32	0 32	0 32
	Death Toron	100%	102 04	101 69	101.85	102.05	101 69	101.85
	Post-Tap	Δ٧	0.31	0 32	0 32	0 32	0.32	0 32
		0%	100 98	100 91	100 97	100.98	100 92	100 98
	Pre-Tap	100%	100 94	100 88	100 94	100 94	100 88	100 94
Light		ΔV	0.04	0 03	0.03	0 04	0 04	0.04
	Post-Tap	100%	100.94	100.88	100.94	100 94	100 88	100 94
		Δ٧	0.04	0 03	0.03	0 04	0 04	0 04

Table 22: Device Tapping Summary - Alternative LTC Settings - 0% to 100%

Landina	Davisa	Numbe	Number of Tap Operations			
Loading	Device	Α	В	С		
Peak	A Bank LTC	0	0	0		
	B Bank LTC	0	0	0		
	A Bank LTC	0	0	0		
Light	B Bank LTC	0	0	0		

Table 23: Voltage Fluctuation Summary - Alternative LTC Settings - 0% to -100%

Looding	Scenario	Project	Voltage	e Levels @	POI (%)	Voltage	e Levels @	LTC (%)
Loading	Scenario	Output	VA	VB	VC	VA	VB	VC
		0%	101 73	101.37	101 53	101.73	101.37	101.53
	Pre-Tap	-100%	100 92	100 56	100 72	100.92	100.55	100 72
Peak		Δ٧	0.81	0 81	0.81	0 81	0 82	0 81
	Post-Tap	-100%	102.32	101 96	102 12	102.32	101 96	102.12
		Δ٧	0 59	0.59	0 59	0.59	0 59	0 59
		0%	100 98	100 91	100 97	100 98	100 92	100 98
	Pre-Tap	-100%	100 59	100 53	100.58	100.59	100 53	100 58
Light		ΔV	0 39	0 38	0 39	0 39	0 39	0 40
	Post-Tap	100%	101.22	101 16	101.22	101.23	101 16	101 22
		Δ∨	0 24	0 25	0 25	0 25	0 24	0 24

Table 24: Device Tapping Summary - Alternative LTC Settings - 0% to -100%

Loading	Device	Number of Tap Operations				
		Α -	В	С		
Dogle	A Bank LTC	2	2	2		
Peak	B Bank LTC	2	2	2		
1	A Bank LTC	1	3	1		
Light	B Bank LTC	1	1	1		

It can be seen that the Alternative LTC Settings fail the UI ½ regulation device bandwidth during 100% to -100% transitions, and optional RLC tapping criteria under 100% to -100% and 0% to -100% scenarios. Therefore, the Project BESS must operate with an operational schedule (charge/discharge) to eliminate the possibility of output volatility and shall not be permitted to participate in any frequency markets, should these settings be utilized. Note that the optional RLC tapping criteria may be neglected and is solely provided for reference purposes.

UI shall make final determination on the LTC settings utilized to comply with voltage fluctuation criteria.

4.3. Substation Thermal and Reverse Power Analysis

Excessive thermal loading of distribution equipment can lead to damage or failure of facilities. The interconnection of new DG facilities can create conditions where the direction of flow is changed and even increased from normal conditions. The change in loading across distribution facilities needs to be evaluated to ensure that the Project does not create an overload condition. UI criteria for this evaluation is as follows:

- Thermal loading ≤ 90% of facility rating
- No reverse power flow

The following scenarios were evaluated for this analysis:

- Normal configuration (N-0): substation transformer Normal rating
- Loss of A Bank (N-1): substation transformer Normal and LTE ratings.
- Loss of B Bank (N-1): substation transformer Normal and LTE ratings

Tables 25 through 29 summarize loading of the Elmwest substation transformers across the scenarios specified above. Note that since the Project BESS interconnects directly at the substation, additional equipment on the individual distribution circuits was not monitored. Also note that any negative values are indicative of reverse power flow.

Table 25: Substation Transformer Loading - Normal Configuration (N-O) - Normal Ratings

Transformer Specifications		Transformer Loading					
Parameter	Value	Scenario	Project Status	Metric	A Bank	B Bank	
Normal Rating	70	Peak Load,	Offline	Max Amps	146.20	147.00	
(MVA)	70			% of Rating	41.60%	41.83%	
Primary Nominal		Max BESS Charging	Online	Max Amps	185 80	186 20	
Voltage (kV)	115	Charging		% of Rating	52.87%	52.98%	
Secondary Nominal	13 8		Offline	Max Amps	17.60	18 00	
Voltage (kV)	13 8	Light Load.		% of Rating	5.01%	5.12%	
Primary Current	351 43	Max BESS Discharging	Online	Max Amps	-20 40	-21.20	
Rating (A)	35143		Chiline	% of Rating	-5.80%	-6.03%	

Table 26: Substation Transformer Loading – Loss of A Bank (N-1) – Normal Ratings

Transformer Speci	fications	Transformer Loading					
Parameter	Value	Scenario	Project Status	Metric	A Bank	B Bank	
Normal Rating	70	Peak Load, Max BESS Charging	Offline	Max Amps		302.80	
(MVA)	70			% of Rating		86.16%	
Primary Nominal			Online	Max Amps		396.10	
Voltage (kV)	115	omi ging		% of Rating		112.71%	
Secondary Nominal	13 8		Offline	Max Amps		35.80	
Voltage (kV)	13 8	Light Load, Max BESS	Offline	% of Rating		10.19%	
Primary Current	351 43	Discharging	Online	Max Amps		-41.60	
Rating (A)	33143		Offine	% of Rating		-11.84%	

Table 27: Substation Transformer Loading – Loss of A Bank (N-1) – LTE Ratings

Transformer Speci	fications	Transformer Loading				
Parameter	Value	Scenario	Project Status	Metric	A Bank	B Bank
Normal Rating	92	Peak Load, Max BESS Charging	Offline	Max Amps		302.80
(MVA)				% of Rating		65.56%
Primary Nominal			Online	Max Amps		396.10
Voltage (kV)	115			% of Rating		85.76%
Secondary Nominal	15 25	Light Load,	Offline	Max Amps		35.80
Voltage (kV)				% of Rating		7.75%
Primary Current Rating (A)	AC1 00	Max BESS Discharging	Online	Max Amps		-41.60
	46188	D. I.S. Idi Girig	Othing	% of Rating		-9.01%

Table 28: Substation Transformer Loading - Loss of B Bank (N-1) - Normal Ratings

Transformer Specifications		Transformer Loading						
Parameter	Value	Scenario	Project Status	Metric	A Bank	B Bank		
Normal Rating	70	Peak Load, Max BESS Charging	Offline	Max Amps	304.00			
(MVA)	70			% of Rating	86.50%			
Primary Nominal	44.5			Max Amps	403.70			
Voltage (kV)	115	51 gg	Online	% of Rating	114.87%			
Secondary Nominal	13.8		Offline	Max Amps	35.80			
Voltage (kV)	13.8	Light Load,	Light Load, Max BESS	Light Load,	Ornine	% of Rating	10.19%	
Primary Current	251.42	351 43 Discharging	Online	Max Amps	-41.60			
Rating (A)	33143		Crime	% of Rating	-11.84%			

Table 29: Substation Transformer Loading - Loss of B Bank (N-1) - LTE Ratings

Transformer Specifications			Transformer Loading					
Parameter	Value	Scenario	Project Status	Metric	A Bank	B Bank		
Normal Rating	02		Offline	Max Amps	146 20			
(MVA)	92	Peak Load, Max BESS Charging	OHnne	% of Rating	41.60%			
Primary Nominal	415		Online	Max Amps	185 80			
Voltage (kV)	115			% of Rating	52.87%			
Secondary Nominal	13 8		Offline	Max Amps	17.60			
Voltage (kV)	13 8	Light Load, Max BESS	Offline	% of Rating	5.01%			
Primary Current	461 88	Discharging	Online	Max Amps	-20 40			
Rating (A)	401 88		Omne	% of Rating	-5.80%			

Based on the established criteria, the Project may potentially cause the following violations:

- Transformer Normal rating: loss of A or B bank during peak load, maximum BESS charging scenarios
- Reverse power flow normal configuration, loss of A bank, or loss of B bank during light load, maximum BESS discharging scenarios

The transformer Normal rating violations are permissible during N-1 conditions since there are no transformer LTE rating violations, however, it is recommended that respective LTE time durations are considered when the Project BESS is online under these conditions.

The LTC controllers are currently set to block reverse power flow. Therefore, UI shall enable Reverse Power operation in the LTC controllers with settings identical to the Forward Power settings and ensure transformer secondary side (13.8 kV) is regulated regardless of power flow direction.

The EDC always reserves the right to limit BESS operation at any time for conditions that may cause negative impact to the system or its customers

5. CONCLUSION

The 15,000 kW BESS system was evaluated against the interconnection criteria described and summarized in this report using the source from Elmwest substation. Both peak load and light load models were evaluated.

Based on these results, the BESS system may be interconnected once the following upgrades have been met

- The LTC controllers are currently set to block reverse power flow. Therefore, UI shall
 enable Reverse Power operation in the LTC controllers with settings identical to the
 Forward Power settings and ensure transformer secondary side (13.8 kV) is regulated
 regardless of power flow direction. For M-2001D UI recommends REGULATE FORWARD
- The LTC controllers shall be programmed and any required equipment shall be included to subtract BESS power flows out of the Load Drop Compensation (LDC) scheme calculations.
- If subtraction of the BESS power flows from the LDC calculations is not achievable, the following LTC settings can be implemented to meet criteria:
 - Band Center = 122 V
 - Bandwidth = 2 V
 - LDC Resistance = 3 V
 - LDC Reactance = 0 V
- BESS operational schedules (charge/discharge) shall be implemented to eliminate the possibility of output volatility and frequency market participation shall not be permitted.
- All conductors, switches, reclosers etc. used to serve the Project shall be properly sized to accommodate its full 15,000 kW (~628 A at 13.8 kV) output.
- The EDC always reserves the right to limit BESS operation at any time for conditions that may cause negative impact to the system or its customers.
- The operation schedule recommended in the previous study, charging during light load and discharging during peak load is still valid.

Additional studies not undertaken as part of this re-study, such as short circuit and protection criteria, may require system improvements or modifications for interconnection.

Appendix A - CUSTOMER ONE-LINE DIAGRAM

Appendix B - MODEL DIAGRAMS

Appendix C – INVERTER SPEC SHEET