

MAY 2024

PHASE IA CULTURAL RESOURCES ASSESSMENT SURVEY OF THE
PROPOSED C-TEC SOLAR PROJECT ALONG POMPEO ROAD
IN THOMPSON, CONNECTICUT

PREPARED FOR:

100 GREAT MEADOW ROAD #200,
WETHERSFIELD, CONNECTICUT 06109

PREPARED BY:

P.O. Box 310249
NEWINGTON, CONNECTICUT 06131

ABSTRACT

This report presents the results of a Phase IA cultural resources assessment survey for the proposed C-TEC Thompson Solar Center (Pompeo 2) Project located to the east of Pompeo Road in Thompson, Connecticut. The proposed solar center will occupy approximately 24 acres of land and will include the construction of a solar array, access road, and associated infrastructure. The current investigation consisted of: 1) preparation of an overview of the region's precontact era, post-European Contact period, and natural settings; 2) a literature search to identify and discuss previously recorded cultural resources in the region; 3) a review of readily available maps and aerial imagery depicting the proposed project area to identify potential post-European Contact period resources and/or areas of past disturbance; and 4) pedestrian survey and photo-documentation of the project area to determine its archaeological sensitivity. A literature review revealed that there are three previously identified post-European contact period archaeological sites, a single Historic District listed on the National Register of Historic Places (NRHP), and one State Register of Historic Places property located within 1.6 km (1 mi) of the project area. The results of the pedestrian survey indicate that the proposed facility is characterized by pine forest, much of which has been recently logged. The northernmost portion of the project area contains open agricultural fields associated with a farm. The survey also resulted in the identification of a long stone wall located along the eastern side of Pompeo Road, which forms the western limit of the project area. The overall terrain is level to gently sloping, punctuated with sections of steep slope and rock outcrops. Wetlands are located in the northwest and southwest portions of the project area. A total of 5.19 acres of the project area that are characterized by steep slopes, rock outcrops, and wetlands were determined to retain no/low archaeological sensitivity. The remaining 13.21 acres of land were determined to retain four areas of high/moderate potential to contain intact archaeological deposits (Sensitivity Areas SA-1 through SA-4). Phase IB cultural resources reconnaissance survey of the four identified high archaeological sensitivity areas is recommended prior to the construction.

TABLE OF CONTENTS

CHAPTER I: INTRODUCTION	1
Project Description and Methods Overview	1
Project Results and Management Recommendations Overview.....	1
Project Personnel	2
CHAPTER II: NATURAL SETTING	3
Introduction.....	3
Ecoregions of Connecticut.....	3
Northeast Hills Ecoregion.....	3
Hydrology in the Vicinity of the Project Area.....	3
Soils Comprising the Project Area	4
Charlton-Chatfield Soils (73C and 73E)	4
Summary.....	5
CHAPTER III: PRECONTACT SETTING.....	6
Introduction.....	6
Paleo-Indian Period (12,000 to 10,000 Before Present [B.P.]).....	6
Archaic Period (10,000 to 2,700 B.P.).....	7
Early Archaic Period (10,000 to 8,000 B.P.)	8
Middle Archaic Period (8,000 to 6,000 B.P.)	8
Late Archaic Period (6,000 to 3,700 B.P.)	9
Terminal Archaic Period (3,700 to 2,700 B.P.)	9
Woodland Period (2,700 to 350 B.P.).....	10
Early Woodland Period (ca., 2,700 to 2,000 B.P.)	10
Middle Woodland Period (2,000 to 1,200 B.P.)	11
Late Woodland Period (ca., 1,200 to 350 B.P.)	11
Summary of Connecticut's Precontact Era.....	12
CHAPTER IV: POST-EUROPEAN CONTACT OVERVIEW	13
Introduction.....	13
Windham County.....	13
Woodland Period to Seventeenth Century	13
Seventeenth Century through Eighteenth Century	14
Nineteenth Century through the Twenty-first Century	15
History of the Project Area	17
CHAPTER V: PREVIOUS INVESTIGATIONS	18
Introduction.....	18
Previously Recorded Archaeological Sites, National/State Register of Historic Places	
Properties/District, and Inventoried Historic Standing Structure in the Vicinity of the Project Area .	18
Site 141-43.....	18
Site 141-44.....	18
Site 141-45.....	19
North Grosvenordale Mill Historic District.....	19
Tourtellotte Memorial High School.....	19

CHAPTER VI: METHODS.....	20
Methods	20
Introduction.....	20
Research Framework.....	20
Archival Research & Literature Review	20
Field Methodology and Data Synthesis.....	20
CHAPTER VII: RESULTS & MANAGEMENT RECOMMENDATIONS	21
Introduction.....	21
Overall Sensitivity of the Proposed Study Area.....	21
Results of Phase IA Survey and Management Recommendations.....	22
BIBLIOGRAPHY	24

LIST OF FIGURES

Figure 1. Excerpt from a USGS 7.5' series topographic quadrangle image showing the location of the project parcel in Thompson, Connecticut.

Figure 2. Proposed project plans for the C-TEC Thompson Solar Center in Thompson, Connecticut.

Figure 3. Digital map depicting the soil types present in the vicinity of the project parcel in Thompson, Connecticut.

Figure 4. Excerpt from an 1856 map showing the location of the project parcel in Thompson, Connecticut.

Figure 5. Excerpt from an 1869 map showing the location of the project parcel in Thompson, Connecticut.

Figure 6. Excerpt from a 1934 aerial photograph showing the location of the project parcel in Thompson, Connecticut.

Figure 7. Excerpt from a 1970 aerial photograph showing the location of the project parcel in Thompson, Connecticut.

Figure 8. Excerpt from a 2004 aerial photograph showing the location of the project parcel in Thompson, Connecticut.

Figure 9. Excerpt from a 2019 aerial photograph showing the location of the project parcel in Thompson, Connecticut.

Figure 10. Digital map depicting the location of previously identified archaeological sites in the vicinity of Thompson, Connecticut.

Figure 11. Digital map depicting the location of a previously identified National and State Register of Historic Places properties in the vicinity of the project parcel in Thompson, Connecticut.

Figure 12. Excerpt from a 2019 aerial photograph depicting moderate/high archaeologically sensitive areas and the location of directional arrows of photo points taken for the Solar Center in Thompson, Connecticut.

LIST OF PHOTOS

- Photo 1. Overview photo of the northwestern portion of the project area. Note the stone wall located on the east side of Pompeo Road. Note the open agricultural fields and barn located outside the project area to the north. Photo taken facing northeast.
- Photo 2. Overview photo of the northern portion of the project area in the open agricultural fields. Note the bedrock outcrops and the upward slope leading to the pine tree line. Photo taken facing southeast.
- Photo 3. Overview photo of wetlands near Sensitivity Area 1. Photo taken facing southwest.
- Photo 4. Overview photo of wetlands adjacent to Sensitivity Area 2. Photo taken facing west.
- Photo 5. Overview photo of Sensitivity Area 4. Photo taken facing west.
- Photo 6. Overview photo of Sensitivity Area 3. Photo taken from the northeast corner of the project area facing southwest.
- Photo 7. Overview photo of Sensitivity Area 3. Photo taken from the southern end of the project area facing north.
- Photo 8. Overview photo of Sensitivity Area 3. Photo taken from the western edge of the project area facing north.
- Photo 9. Overview photo of logging road, one of several logging roads present within the project area. Photo taken from the north end of the project area facing south.
- Photo 10. Overview photo of the sloping terrain at the southeastern portion of the project area. Photo taken facing south.

CHAPTER I

INTRODUCTION

This report presents the results of a Phase IA cultural resources assessment survey for the proposed C-TEC Thompson Solar Center in Thompson Connecticut (the Project; Figure 1). Vanasse Hangen Brustlin (VHB) requested that Heritage Consultants, LLC (Heritage) complete the assessment survey as part of the planning process for the proposed Project. Heritage completed this investigation on behalf of VHB in April of 2024. All work associated with this project was performed in accordance with the *Environmental Review Primer for Connecticut's Archaeological Resources* promulgated by the Connecticut Historic Commission, State Historic Preservation Office (Poirier 1987).

Project Description and Methods Overview

The proposed Project area is situated at elevations ranging from 179 to 189 meters (587 to 620 feet) NVDG. It will occupy approximately 24 acres of land on the east side of Pompeo Road (Figure 1). It will consist of the construction of a solar array, interconnection paths, access roads and associated infrastructure (Figure 2). This Phase IA cultural resources assessment survey consisted of the completion of the following tasks: 1) a contextual overview of the region's precontact era, post-European Contact period, and natural setting (e.g., soils, ecology, hydrology, etc.); 2) a literature search to identify and discuss previously completed cultural resources surveys and previously recorded cultural resources in the region encompassing the Project area; 3) a review of readily available maps and aerial imagery depicting the Project area in order to identify potential post-European Contact period resources and/or areas of past disturbance; 4) pedestrian survey and photo-documentation of the Project area in order to determine its archaeological sensitivity; and 5) preparation of the current Phase IA cultural resources assessment survey report.

Project Results and Management Recommendations Overview

The review of maps and aerial images depicting the Project area, as well as files maintained by the CT-SHPO, resulted in the identification of three previously identified post-European contact period archaeological sites (141-43, 141-44 and 141-45), one National Register historic district (North Grosvenordale Mill Historic District), and a single State Register of Historic Places property (Tourtellotte Memorial High School) within 1.6 kilometers (1 mile) of the proposed Project area. These cultural resources are discussed in Chapter V. Heritage also combined data from map and aerial image analyses, as well as subsequent pedestrian survey, to stratify the Project area into zones of no/low and/or moderate/high archaeological sensitivity.

Pedestrian survey of the Project area revealed that the it is characterized by pine forest, which has been recently subjected to logging, and contains well-drained soils and level topography. The northernmost portion of the Project area is contains agricultural fields associated with an adjacent farm. The Project parcel is located near small streams and wetlands that lie within 0.8 kilometers (0.5 miles) of the French River. Due to the presence of level topography and proximity to fresh water sources, 13.21 acres of the Project area were determined to retain moderate/high potential to yield intact archaeological deposits. This acreage was divided amongst four archaeological sensitivity areas, Sensitivity Areas SA-1 through SA-4. The remaining 5.19 acres of land were defined by wetlands, steep slopes, and rock outcrops,; these areas were determined to retain no/low archaeological sensitivity. Finally, the survey identified a long dry laid stone wall located along the eastern side of Pompeo Road; it forms the western limit of the Project area. The wall remains largely intact but could not be assigned to a particular time period, origin,

or cultural affiliation. It is recommended that the four identified moderate/high archaeological sensitivity areas be subjected to a Phase IB cultural reconnaissance survey prior to construction. It is also recommended that the identified stonewall be avoided to the extent practicable during construction.

Project Personnel

Key personnel for this project included David R. George, M.A., R.P.A. (Principal Investigator), Antonio Medina, B.A. (Operations Supervisor), Elise Manning-Sterling, (Project Manager); Nita Vitaliano, M.A. (Historian); and Sean Buckley, B.A. (GIS Specialist).

CHAPTER II

NATURAL SETTING

Introduction

This chapter provides a brief overview of the natural setting of the region containing the proposed Project area in Thompson, Connecticut. Previous archaeological research has documented that a few specific environmental factors can be associated with both precontact era and post-European Contact period site selection. These include general ecological conditions, as well as types of fresh water sources and soils present. The remainder of this section provides a brief overview of the ecology, hydrological resources, and soils present within the project area and the larger region in general.

Ecoregions of Connecticut

Throughout the Pleistocene and Holocene Periods, Connecticut has undergone numerous environmental changes. Variations in climate, geology, and physiography have led to the “regionalization” of Connecticut’s modern environment. It is clear, for example, that the northwestern portion of the state has very different natural characteristics than the coastline. Recognizing this fact, Dowhan and Craig (1976), as part of their study of the distribution of rare and endangered species in Connecticut, subdivided the state into various ecoregions. Dowhan and Craig (1976:27) defined an ecoregion as:

“an area characterized by a distinctive pattern of landscapes and regional climate as expressed by the vegetation composition and pattern, and the presence or absence of certain indicator species and species groups. Each ecoregion has a similar interrelationship between landforms, local climate, soil profiles, and plant and animal communities. Furthermore, the pattern of development of plant communities (chronosequences and toposequences) and of soil profile is similar in similar physiographic sites. Ecoregions are thus natural divisions of land, climate, and biota.”

Dowhan and Craig defined nine major ecoregions for the State of Connecticut. They are based on regional diversity in plant and animal indicator species (Dowhan and Craig 1976). Only one of the ecoregions is germane to the current investigation: Northeast Hills Ecoregion. A brief summary of this ecoregion is presented below. It is followed by a discussion of the hydrology and soils found in and adjacent to the project area.

Northeast Hills Ecoregion

The Northeast Hills ecoregion consists of a hilly upland terrain located between approximately 40.2 and 88.5 km (25 and 55 mi) to the north of Long Island Sound (Dowhan and Craig 1976). It is characterized by streamlined hills bordered on either side by local ridge systems, as well as broad lowland areas situated near large rivers and tributaries. Physiography in this region is composed of a series of north-trending ridge systems, the western-most of which is referred to as the Bolton Range and the eastern-most as the Mohegan Range (Bell 1985:45). Elevations in the Northeast Hills range from 121.9 to 243.8 m (400 to 800 ft) above sea level, reaching a maximum of nearly 304.8 m (1,000 ft) above sea level near the Massachusetts border (Bell 1985). The bedrock of the region is composed of Schist and gneiss created during the Paleozoic as well as gneiss and granite created during the Precambrian period (Bell 1985). Soils in uplands areas have been deposited on top of glacial till and in the valley they consist of stratified deposits of sand, gravel, and silt (Dowhan and Craig 1976).

Hydrology in the Vicinity of the Project Area

The project location is situated within close proximity to several sources of freshwater, including the French River, Backwater Brook and North Grosvenordale Pond to the west, and Stoud Brook to the East.

Small, unnamed bodies of water are also nearby and within the project area. Previously completed archaeological investigations in Connecticut have demonstrated that streams, rivers, and wetlands were focal points for precontact era occupations because they provided access to transportation routes, sources of freshwater, and abundant faunal and floral resources.

Soils Comprising the Project Area

Soil formation is the direct result of the interaction of a number of variables, including climate, vegetation, parent material, time, and organisms present (Gerrard 1981). Once archaeological deposits are buried within the soil, they are subject to a number of diagenic processes. Different classes of artifacts may be preferentially protected, or unaffected by these processes, whereas others may deteriorate rapidly. Cyclical wetting and drying, freezing and thawing, and compression can accelerate chemically and mechanically the decay processes for animal bones, shells, lithics, ceramics, and plant remains. Lithic and ceramic artifacts are largely unaffected by soil pH, whereas animal bones and shells decay more quickly in acidic soils such as those that are present within the current project area. In contrast, acidic soils enhance the preservation of charred plant remains.

The Project area is predominately characterized by the presence of moderate to excessively well drained soils, which include Charlton-Chatfield Complex soils (Figure 3). Where they are not disturbed and on less than an eight percent slope, these soil types are generally well correlated with both post-European Contact period and precontact era archaeological site locations and are considered to have higher archaeological sensitivity. Below is a summary of the specific soil type identified within the Project area.

Charlton-Chatfield Soils (73C and 73E)

The Charlton series consists of very deep, well drained soils formed in loamy melt-out till. They are nearly level to very steep soils on moraines, hills, and ridges. Slope ranges from 0 to 60 percent. A typical profile associated with Charlton soils is as follows: **Oe**--0 to 4 cm; black (10YR 2/1) moderately decomposed forest plant material. **A**--4 to 10 cm; dark brown (10YR 3/3) fine sandy loam; weak fine granular structure; very friable; many fine roots; 5 percent gravel; very strongly acid; abrupt smooth boundary; **Bw1**--10 to 18 cm; brown (7.5YR 4/4) fine sandy loam; weak coarse granular structure; very friable; many fine and medium roots; 5 percent gravel; very strongly acid; clear wavy boundary; **Bw2**--18 to 48 cm; yellowish brown (10YR 5/6) fine sandy loam; weak medium subangular blocky structure; very friable; common fine and medium roots; 10 percent gravel and cobbles; very strongly acid; clear wavy boundary; **Bw3**--48 to 69 cm; light olive brown (2.5Y 5/4) gravelly fine sandy loam; massive; very friable; few medium roots; 15 percent gravel and cobbles; very strongly acid; abrupt wavy boundary; and **C**--69 to 165 cm; grayish brown (2.5Y 5/2) gravelly fine sandy loam with thin lenses of loamy sand; massive; friable, some lenses firm; few medium roots; 25 percent gravel and cobbles; strongly acid.

The Chatfield series consists of well drained soils formed in loamy melt-out till. They are moderately deep to bedrock. They are nearly level to very steep soils on bedrock-controlled hills and ridges. Slope ranges from 0 to 70 percent. A typical profile associated with Chatfield soils is as follows: **Oi**--0 to 3 cm, slightly decomposed leaf, needle, and twig litter; extremely acid, pH 4.2; **A**--3 to 5 cm, very dark gray (10YR 3/1) fine sandy loam, gray (10YR 5/1), dry; weak fine subangular blocky structure; friable; many fine and medium roots throughout; 5 percent mixed gravel and cobbles; very strongly acid, pH 4.5; abrupt smooth boundary; **Bw1**--5 to 33 cm, strong brown (7.5YR 5/6) gravelly fine sandy loam; weak fine subangular blocky structure; friable; common fine roots throughout and common medium roots throughout; 15 percent mixed gravel and cobbles; very strongly acid, pH 4.5; abrupt wavy boundary; **Bw2**--33 to 76 cm, strong brown (7.5YR 5/6) gravelly fine sandy loam; moderate medium subangular

blocky structure; friable; few fine roots throughout; 20 percent mixed rock fragments; very strongly acid, pH 4.5; abrupt irregular boundary; and **2R**--76 cm; fractured slightly-weathered schist bedrock.

Summary

The natural setting of the area containing the proposed project is common throughout the Northeast Hills ecoregion. The major river within this area is the French River, which has numerous smaller tributaries. Moderate slopes dominate the region, and the soils are sandy and loamy. In general, the project region was well suited to Native American occupation throughout the precontact era. This portion of Thompson was also used after Colonial settlement for agricultural land, as evidenced by the presence of agricultural fields throughout the region; thus, archaeological deposits dating from the precontact era and post-European Contact period era may be expected near or within the Project area.

CHAPTER III

PRECONTACT ERA SETTING

Introduction

Prior to the late 1970s and early 1980s, very few systematic archaeological surveys of large portions of the State of Connecticut had been undertaken. Rather, the precontact era occupation of the region was studied at the site level. Sites chosen for excavation were highly visible and they were in such areas as the coastal zone, e.g., shell middens, and Connecticut River Valley. As a result, a skewed interpretation of the precontact era occupation of Connecticut was developed. It was suggested that the upland portions of the state, i.e., the northeastern and northwestern hills ecoregions, were little used and rarely occupied by precontact era Native Americans, while the coastal zone, i.e., the eastern and western coastal and the southeastern and southwestern hills ecoregions, was the focus of settlements and exploitation. This interpretation remained unchallenged until the 1970s and 1980s when several town-wide and regional archaeological studies were completed. These investigations led to the creation of several archaeological phases that subsequently were applied to understand the precontact period of Connecticut. The remainder of this chapter provides an overview of the precontact era setting of the region encompassing the Facility.

Paleo-Indian Period (12,000 to 10,000 Before Present [B.P.])

The earliest inhabitants of the area encompassing the State of Connecticut, who have been referred to as Paleo-Indians, arrived in the area by ca., 13,000 B.P. (Gramly and Funk 1990; Snow 1980). Due to the presence of large Pleistocene mammals at that time and the ubiquity of large fluted projectile points in archaeological deposits of this age, Paleo-Indians often have been described as big-game hunters (Ritchie and Funk 1973; Snow 1980); however, as discussed below, it is more likely that they hunted a broad spectrum of animals. While there have been over 50 surface finds of Paleo-Indian projectile points throughout the State of Connecticut, only three sites, the Templeton Site (6-LF-21) in Washington, Connecticut, the Hidden Creek Site (72-163) in Ledyard, Connecticut, and the Brian D. Jones Site (4-10B) in Avon, Connecticut have been studied in detail and dated using the radiocarbon method (Jones 1997; Moeller 1980; Singer 2017a; Leslie et al. 2020).

The Templeton Site (6-LF-21) in Washington, Connecticut was occupied between 10,490 and 9,890 years ago (Moeller 1980). In addition to a single large and two small, fluted points, the Templeton Site produced a stone tool assemblage consisting of gravers, drills, core fragments, scrapers, and channel flakes, which indicates that the full range of stone tool production and maintenance took place at the site (Moeller 1980). Moreover, the use of both local and non-local raw materials was documented in the recovered tool assemblage, suggesting that not only did the site's occupants spend some time in the area, but they also had access to distant stone sources, the use of which likely occurred during movement from region to region. More recently, the site has undergone re-investigation by Singer (2017a and 2017b), who has determined that the overwhelming majority of tools and debitage are exotic and were quarried directly from the Hudson River Valley. Recent research has focused on task-specific loci at the Templeton Site, particularly the production of numerous Michaud-Neponset projectile points, as identified through remnant channel flakes.

The Hidden Creek Site (72-163) is situated on the southeastern margin of the Great Cedar Swamp on the Mashantucket Pequot Reservation in Ledyard, Connecticut (Jones 1997). While excavation of the Hidden

Creek Site produced evidence of Terminal Archaic and Woodland Period components (see below) in the upper soil horizons, the lower levels of the site yielded artifacts dating from the Paleo-Indian era. Recovered Paleo-Indian artifacts included broken bifaces, side-scrapers, a fluted preform, gravers, and end-scrapers. Based on the types and number of tools present, Jones (1997:77) has hypothesized that the Hidden Creek Site represented a short-term occupation, and that separate stone tool reduction and rejuvenation areas were present.

The Brian D. Jones Site (4-10B) was identified in a Pleistocene levee on the Farmington River in Avon, Connecticut; it was buried under 1.5 m (3.3 ft) of alluvium (Leslie et al. 2020). The Brian D. Jones Site was identified by Archaeological and Historical Services, Inc., in 2019 during a survey for the Connecticut Department of Transportation preceding a proposed bridge construction project. It is now the oldest known archaeological site in Connecticut at +12,500 years old. The site also provides a rare example of a Paleo-Indian site on a river rather than the more common upland areas or on the edges of wetlands. Ground-penetrating radar survey revealed overbank flooding and sedimentation that resulted in the creating of a stable ancient river levee with gentle, low-energy floods. Archaeological deposits on the levee were therefore protected.

Excavations at the Brian D. Jones Site revealed 44 soil anomalies, 27 of which were characterized as cultural features used as hearths and post holes, among other uses. Of these, one hearth has been dated thus far ($10,520 \pm 30$ 14C yr BP; charred Pinus; 2-sigma 12,568 to 12,410 CAL B.P.) (Leslie et al. 2020:4). Further radiocarbon testing will be completed in the future. Artifact concentrations surrounded these features and were separated in two stratigraphic layers representing at least two temporally discrete Paleo-Indian occupations. The recovered lithic artifacts are fashioned from Normanskill chert, Hardyston jasper, Jefferson/Mount Jasper rhyolite, chalcedony, siltstone, and quartz. They include examples of a fluted point base, preforms, channel flakes, pièces esquillées, end scrapers, side scrapers, grinding stones, bifaces, utilized flakes, gravers, and drilled stone pendant fragments. Lithic tools numbered over 100, while toolmaking debris was in the thousands. The channel flakes represent the production of spear points used in hunting. Scrapers, perforators, and grinding stones indicate animal butchering, plant food grinding, the production of wood and bone tools, and the processing of animal skins for clothing and tents. Other collected cultural materials included charred botanicals and calcined bone. Botanical specimens recovered in hearth features included burned remains of cattail, pin cherry, strawberry, acorn, sumac, water lily, and dogwood. Approximately 15,000 artifacts were collected in total.

The scarcity of identified Paleo-Indian sites suggests a low population density during this period. The small size of most Paleo-Indian sites, their likely inundation by rising sea levels, and the high degree of landscape disturbance over the past 10,000 years likely contribute to poor site visibility, although the presence of two deeply alluvially buried Paleo-Indian sites in Connecticut suggests that other sites may be located along stable rivers (Leslie et al. 2021).

Archaic Period (10,000 to 2,700 B.P.)

The Archaic Period, which succeeded the Paleo-Indian Period, began by ca., 10,000 B.P. (Ritchie and Funk 1973; Snow 1980), and it has been divided into three subperiods: Early Archaic (10,000 to 8,000 B.P.), Middle Archaic (8,000 to 6,000 B.P.), and Late Archaic (6,000 to 3,400 B.P.). These periods were devised to describe all non-farming, non-ceramic producing populations in the area. Regional archeologists recently have recognized a final “transitional” Archaic Period, the Terminal Archaic Period (3,400-2,700 B.P.), which was meant to describe those groups that existed just prior to the onset of the Woodland Period and the widespread adoption of ceramics into the toolkit (Snow 1980; McBride 1984;

Pfeiffer 1984, 1990; Witthoft 1949, 1953).

Early Archaic Period (10,000 to 8,000 B.P.)

To date, very few Early Archaic sites have been identified in southern New England. As a result, researchers such as Fitting (1968) and Ritchie (1969), have suggested a lack of these sites likely is tied to cultural discontinuity between the Early Archaic and preceding Paleo-Indian Period, as well as a population decrease from earlier times. However, with continued identification of Early Archaic sites in the region, and the recognition of the problems of preservation, it is difficult to maintain the discontinuity hypothesis (Curran and Dincauze 1977; Snow 1980).

Like their Paleo-Indian predecessors, Early Archaic sites tend to be very small and produce few artifacts, most of which are not temporally diagnostic. While Early Archaic sites in other portions of the United States are represented by projectile points of the Kirk series (Ritchie and Funk 1973) and by Kanawha types (Coe 1964), sites of this age in southern New England are identified on the basis of a series of ill-defined bifurcate-based projectile points. These projectile points are identified by the presence of their characteristic bifurcated base, and they generally are made from high quality raw materials. Moreover, finds of these projectile points have rarely been in stratified contexts. Rather, they occur commonly either as surface expressions or intermixed with artifacts representative of later periods. Early Archaic occupations, such as the Dill Farm Site and Sites 6LF64 and 6LF70 in Litchfield County, are represented by camps that were relocated periodically to take advantage of seasonally available resources (McBride 1984; Pfeiffer 1986). In this sense, a foraging type of settlement pattern was employed during the Early Archaic Period.

Another localized cultural tradition, the Gulf of Maine Archaic, which lasted from ca. 9,500 to 6,000 14C B.P., is beginning to be recognized in Southern New England (Petersen and Putnam 1992). It is distinguished by its microlithic industry, which may be associated with the production of compound tools (Robinson and Peterson 1993). Assemblages from Maine (Petersen et al. 1986; Petersen 1991; Sanger et al. 1992), Massachusetts (Strauss 2017; Leslie et al. 2022), and Connecticut (Forrest 1999) reflect the selection of local, coarse-grained stones. Large choppers and hoe-like forms from southeastern Connecticut's Sandy Hill Site likely functioned as digging implements. Woodworking tools, including adzes, celts, and gull-channeled gouges recovered at the Brigham and Sharow sites in Maine (Robinson and Petersen 1993:68), may have been used for dugout canoe manufacture. The deeply stratified Sandy Hill (Forrest 1999; Jones and Forrest 2003) and Sharow sites (Petersen 1991), with their overlapping lenses of "black sand" floor deposits, suggest intensive site re-occupations according to an adaptation that relied, in part, on seasonally available wetland resources. Thus far, sites from this tradition have only been identified within coastal and near-coastal territories along the Gulf of Maine, in southeastern Connecticut, and in Massachusetts.

Middle Archaic Period (8,000 to 6,000 B.P.)

By the onset of the Middle Archaic Period modern deciduous forests had developed in the region (Davis 1969). Increased numbers and types of sites associated with this period are noted in Connecticut (McBride 1984). The most well-known Middle Archaic site in New England is the Neville Site in Manchester, New Hampshire studied by Dincauze (1976). Careful analysis of the Neville Site indicated that the Middle Archaic occupation dated from between 7,700 and 6,000 years ago. In fact, Dincauze obtained several radiocarbon dates from the Middle Archaic component of the Neville Site associated with the then-newly named Neville type projectile point, ranging from $7,740 \pm 280$ and $7,015 \pm 160$ B.P. (Dincauze 1976).

In addition to Neville points, Dincauze (1976) described two other projectile points styles that are attributed to the Middle Archaic Period: Stark and Merrimac projectile points. While no absolute dates were recovered from deposits that yielded Stark points, the Merrimac type dated from 5,910+180 B.P. Dincauze argued that both the Neville and later Merrimac and Stark occupations were established to take advantage of the excellent fishing that the falls situated adjacent to the site area would have afforded Native American groups. Thus, based on the available archaeological evidence, the Middle Archaic Period is characterized by continued increases in diversification of tool types and resources exploited, as well as by sophisticated changes in the settlement pattern to include different site types, including both base camps and task-specific sites (McBride 1984:96).

Late Archaic Period (6,000 to 3,700 B.P.)

The Late Archaic Period in southern New England is divided into two major cultural traditions that appear to have coexisted. They include the Laurentian and Narrow-Stemmed Traditions (Funk 1976; McBride 1984; Ritchie 1969a and b). Artifacts assigned to the Laurentian Tradition include ground stone axes, adzes, gouges, ulus (semi-lunar knives), pestles, atlatl weights, and scrapers. The diagnostic projectile point forms of this time period in southern New England include the Brewerton Eared-Notched, Brewerton Eared and Brewerton Side-Notched varieties (McBride 1984; Ritchie 1969a; Thompson 1969). In general, the stone tool assemblage of the Laurentian Tradition is characterized by flint, felsite, rhyolite, and quartzite, while quartz was largely avoided for stone tool production.

In terms of settlement and subsistence patterns, archaeological evidence in southern New England suggests that Laurentian Tradition populations consisted of groups of mobile hunter-gatherers. While a few large Laurentian Tradition occupations have been studied, sites of this age generally encompass less than 500 m² (5,383 ft²). These base camps reflect frequent movements by small groups of people in search of seasonally abundant resources. The overall settlement pattern of the Laurentian Tradition was dispersed in nature, with base camps located in a wide range of microenvironments, including riverine as well as upland zones (McBride 1978, 1984:252). Finally, subsistence strategies of Laurentian Tradition focused on hunting and gathering of wild plants and animals from multiple ecozones.

The second Late Archaic tradition, known as the Narrow-Stemmed Tradition, is unlike the Laurentian Tradition, and it likely represents a different cultural adaptation. The Narrow-Stemmed Tradition is recognized by the presence of quartz and quartzite narrow stemmed projectile points, triangular quartz Squibnocket projectile points, and a bipolar lithic reduction strategy (McBride 1984). Other tools found in Narrow-Stemmed Tradition artifact assemblages include choppers, adzes, pestles, antler and bone projectile points, harpoons, awls, and notched atlatl weights. Many of these tools, notably the projectile points and pestles, indicate a subsistence pattern dominated by hunting and fishing, as well the collection of a wide range of plant foods (McBride 1984; Snow 1980:228).

Terminal Archaic Period (3,700 to 2,700 B.P.)

The Terminal Archaic, which lasted from ca., 3,700 to 2,700 B.P., is perhaps the most interesting, yet confusing of the Archaic Periods in southern New England precontact period. Originally termed the "Transitional Archaic" by Witthoft (1953) and recognized by the introduction of technological innovations, e.g., broadspear projectile points and soapstone bowls, the Terminal Archaic has long posed problems for regional archeologists. While the Narrow-Stemmed Tradition persisted through the Terminal Archaic and into the Early Woodland Period, the Terminal Archaic is coeval with what appears to be a different technological adaptation, the Susquehanna Tradition (McBride 1984; Ritchie 1969b). The Susquehanna Tradition is recognized in southern New England by the presence of a new stone tool industry that was based on the use of high-quality raw materials for stone tool production and a

settlement pattern different from the “coeval” Narrow-Stemmed Tradition.

The Susquehanna Tradition is based on the classification of several Broadspear projectile point types and associated artifacts. There are several local sequences within the tradition, and they are based on projectile point type chronology. Temporally diagnostic projectile points of these sequences include the Snook Kill, Susquehanna Broadspear, Mansion Inn, and Orient Fishtail types (Lavin 1984; McBride 1984; Pfeiffer 1984). The initial portion of the Terminal Archaic Period (ca., 3,700-3,200 B.P.) is characterized by the presence of Snook Kill and Susquehanna Broadspear projectile points while the latter Terminal Archaic (3,200-2,700 B.P.) is distinguished by Orient Fishtail projectile points (McBride 1984:119; Ritchie 1971).

In addition, it was during the late Terminal Archaic that interior cord marked, grit tempered, thick-walled ceramics with conoidal (pointed) bases made their initial appearance in the Native American toolkit. These are the first ceramics in the region, and they are named Vinette I (Ritchie 1969a; Snow 1980:242); this type of ceramic vessel appears with much more frequency during the ensuing Early Woodland Period. In addition, the adoption and widespread use of soapstone bowls, as well as the implementation of subterranean storage, suggests that Terminal Archaic groups were characterized by reduced mobility and longer-term use of established occupation sites (Snow 1980:250).

Finally, while settlement patterns appeared to have changed, Terminal Archaic subsistence patterns were analogous to earlier patterns. The subsistence pattern was still diffuse in nature, and it was scheduled carefully. Typical food remains recovered from sites of this period consist of fragments of white-tailed deer, beaver, turtle, fish, and various small mammals. Botanical remains recovered from the site area consisted of *Chenopodium* sp., hickory, butternut, and walnut (Pagoulatos 1988:81). Such diversity in food remains suggests at least minimal use of a wide range of microenvironments for subsistence purposes.

Woodland Period (2,700 to 350 B.P.)

Traditionally, the advent of the Woodland Period in southern New England has been associated with the introduction of pottery; however, as mentioned above, early dates associated with pottery now suggest the presence of Vinette I ceramics appeared toward the end of the preceding Terminal Archaic Period (Ritchie 1969a; McBride 1984). Like the Archaic Period, the Woodland Period has been divided into three subperiods: Early, Middle, and Late Woodland. The various subperiods are discussed below.

Early Woodland Period (ca., 2,700 to 2,000 B.P.)

The Early Woodland Period of the northeastern United States dates from ca., 2,700 to 2,000 B.P., and it was thought to have been characterized by the advent of farming, the initial use of ceramic vessels, and increasingly complex burial ceremonialism (Griffin 1967; Ritchie 1969a and 1969b; Snow 1980). In the Northeast, the earliest ceramics of the Early Woodland Period are thick walled, cord marked on both the interior and exterior, and possess grit temper. Archaeological investigations of Early Woodland sites in southern New England resulted in the recovery of narrow stemmed projectile points in association with ceramic sherds and subsistence remains, including specimens of white-tailed deer, soft and hard-shell clams, and oyster shells (Lavin and Salwen 1983; McBride 1984:296-297; Pope 1952). McBride (1984) has argued that the combination of the subsistence remains and the recognition of multiple superimposed cultural features at various sites indicates that Early Woodland Period settlement patterns were characterized by multiple re-use of the same sites on a seasonal basis by small co-residential groups.

Middle Woodland Period (2,000 to 1,200 B.P.)

The Middle Woodland Period is marked by an increase in the number of ceramic types and forms utilized (Lizee 1994a), as well as an increase in the amount of exotic lithic raw material used in stone tool manufacture (McBride 1984). The latter suggests that regional exchange networks were established, and that they were used to supply local populations with necessary raw materials (McBride 1984; Snow 1980). The Middle Woodland Period is represented archaeologically by narrow stemmed and Jack's Reef projectile points; increased amounts of exotic raw materials in recovered lithic assemblages, including chert, argillite, jasper, and hornfels; and conoidal ceramic vessels decorated with dentate stamping. Ceramic types that are indicative of the Middle Woodland Period include Linear Dentate, Rocker Dentate, Windsor Cord Marked, Windsor Brushed, Windsor Plain, and Hollister Stamped (Lizee 1994a:200).

In terms of settlement patterns, the Middle Woodland Period is characterized by the occupation of village sites by large co-residential groups that utilized native plant and animal species for food and raw materials in tool making (George 1997). These sites were the principal place of occupation, and they were positioned close to major river valleys, tidal marshes, estuaries, and the coastline, all of which would have supplied an abundance of plant and animal resources (McBride 1984:309). In addition to villages, numerous temporary and task-specific sites were utilized in the surrounding upland areas, as well as in closer ecozones such as wetlands, estuaries, and floodplains. The use of temporary and task-specific sites to support large village populations indicates that the Middle Woodland Period was characterized by a resource acquisition strategy that can best be termed as logistical collection (McBride 1984:310).

Late Woodland Period (ca., 1,200 to 350 B.P.)

The Late Woodland Period in southern New England dates from ca., 1,200 to 350 B.P., and it is characterized by the earliest evidence for the use of corn in the lower Connecticut River Valley (Bendremer 1993; Bendremer and Dewar 1993; Bendremer et al. 1991; George 1997; McBride 1984); an increase in the frequency of exchange of non-local lithics (Feder 1984; George and Tryon 1996; McBride 1984; Lavin 1984); increased variability in ceramic form, function, surface treatment, and decoration (Lavin 1980, 1986, 1987; Lizee 1994a, 1994b); and a continuation of a trend towards larger, more permanent settlements in riverine, estuarine, and coastal ecozones (Dincauze 1974; McBride 1984; Snow 1980).

Stone tool assemblages associated with Late Woodland occupations, especially village-sized sites, are functionally variable and they reflect plant and animal resource processing and consumption on a large scale. Finished stone tools recovered from Late Woodland sites include Levanna and Madison projectile points; drills; side-, end-, and thumbnail scrapers; mortars and pestles; nutting stones; netsinkers; and celts, adzes, axes, and digging tools. These tools were used in activities ranging from hide preparation to plant processing to the manufacture of canoes, bowls, and utensils, as well as other settlement and subsistence-related items (McBride 1984; Snow 1980). Finally, ceramic assemblages recovered from Late Woodland sites are as variable as the lithic assemblages. Ceramic types identified include Windsor Fabric Impressed, Windsor Brushed, Windsor Cord Marked, Windsor Plain, Clearview Stamped, Sebonac Stamped, Selden Island, Hollister Plain, Hollister Stamped, and Shantok Cove Incised (Lavin 1980, 1988a, 1988b; Lizee 1994a; Pope 1953; Rouse 1947; Salwen and Ottesen 1972; Smith 1947). These types are more stylistically diverse than their predecessors with incision, shell stamping, punctuation, single point, linear dentate, rocker dentate stamping, and stamp and drag impressions common (Lizee 1994a:216).

Summary of Connecticut's Precontact Era

The precontact era of Connecticut spans from ca. 13,000 to 350 B.P., and it is characterized by numerous changes in tool types, subsistence patterns, and land use strategies. Much of this era is characterized by local Native American groups who practiced a subsistence pattern based on a mixed economy of hunting and gathering plant and animal resources. It is not until the Late Woodland Period that incontrovertible evidence for the use of domesticated species is available. Further, settlement patterns throughout the precontact period shifted from seasonal occupations of small co-residential groups to large aggregations of people in riverine, estuarine, and coastal ecozones. In terms of the region that includes the proposed project area, a variety of precontact site types may be expected, ranging from seasonal camps utilized by Paleo-Indian and Archaic populations to temporary and task-specific sites of the Woodland era.

Chapter IV

POST-EUROPEAN

CONTACT OVERVIEW

Introduction

The proposed Project area is located along Pompeo Road in Thompson in Windham County, Connecticut. As with most Connecticut towns, Thompson originated as Native American settlement and later became an English colonial village. Through the nineteenth and twentieth centuries, Thompson was both agricultural and manufacturing hub powered by local water sources, such as the Quinebaug and French River. The automobile culture of the twentieth century along with the development of improved roads and highways in the twenty-first century, did not significantly impact Thompson, which remains a rural municipality with pockets of residential and commercial development. For the purposes of this study, this chapter will provide an overview of Windham County and the town of Thompson, with a focus on the impact of the proposed Project area.

Windham County

Windham County was established in 1726 by an act of the Connecticut General Court with lands from Hartford and New London Counties. Located in northeastern Connecticut, it is bounded to the north by the State of Massachusetts, to the east by the State of Rhode Island, to the south by New London County, and to the west by Tolland County. Windham County is 521.5 square miles with a population of 118,428 individuals, and the most populous town is Windham (Connecticut 2023). Often referred to as the Quiet Corner, Windham County is the least populous county in Connecticut. The topography of Windham County includes parallel ridges of hills, aligned primarily north-to-south (Eves 2022). The landscape includes terrain that is “rugged and broken” but with numerous streams and falls, thus limiting large scale agriculture except for in the fertile valleys but providing a strong basis for early industrial development on waterways (Bayles 1889:2). Important waterways associated with Windham County include the Quinebaug, Five Mile, Willimantic, Shetucket, and Natchaug River.

Woodland Period to Seventeenth Century

During the Woodland Period of northeastern North American history (ca., 3000 to 500 years ago) the Indigenous peoples who resided in the present-day northeastern Connecticut were part of the greater Algonquian culture of northeastern North America (Lavin 2013). They spoke local variations of Southern New England Algonquian (SNEA) languages and resided in extended kinship groups on lands they maintained for a variety of horticultural and resource extraction purposes (Goddard 1978). Native people in the region practiced subsistence activities including hunting, fowling, and fishing, along with the cultivation of various crops, the most important of which were maize, squash, and beans. They supplemented these foods seasonally by collecting shellfish, fruits, and plants during warmer periods, and gathering nuts, roots, and tubers during colder times (Lavin 2013). In addition, these communities came together in large groups to hunt deer in the fall and winter. Indigenous peoples lived with their immediate or extended families in large settlements often concentrated along rivers and/or wetlands. Some villages were fortified by wooden palisades. Their habitations, known as a *weetu* or *wigwam*, were generally constructed of a tree sapling frame and covered in reed matting during warm months and tree bark throughout the winter. These varied in size from a small, individual dwelling to an expansive “long house” which could accommodate several families. Native communities commonly traded among both their immediate neighbors and often maintained long-distance networks as well (Lavin 2013). At the time of the arrival of Europeans the Nipmuc were the most prominent Native nation within the present-

day bounds of Windham County; however, the area that is present-day Thompson was an intersection of several Native American tribe's territorial ranges including the Nipmuck, Mohegan, and Narragansett people (De Forest 1852; Larned 1874; Lavin 2013). All these groups were closely connected through kinship, culture, language, and trade.

Seventeenth Century through Eighteenth Century

As Native communities maintained oral tradition rather than a written record, most surviving information of the Indigenous people of Connecticut was recorded by European observers (Lavin 2013). In 1614, Dutch traders sailing under Captain Adrian Block were the earliest Europeans known to have sailed along Long Island Sound and up the Connecticut River where they initiated contact and trade with the Indigenous people of the Connecticut River Valley (De Forest 1852; Larned 1874; Lavin 2013). Following that voyage, Block created a figurative map of the region which clearly depicted the Connecticut River, which the Dutch named the *Versche Rivier* (Fresh River) due to it being a freshwater river. It was during this voyage that Dutch traders learned the significance of *wampum*, polished tubular shell beads created from the white *whelk* shell and the purple *quahog* shell (Hauptman and Wherry 2009; McBride 2013). They found they could exchange wampum for valuable furs from Native peoples north along the Hudson River. By the early 1620s, the Dutch and Pequot of present-day southeastern Connecticut entered a trade partnership in which the Pequot supplied wampum and furs in return for European goods. In 1624, the Dutch established New Netherland Colony on the Hudson River with its eastern bounds extending as far as Cape Cod (Jacobs 2009). The Pequot accessed a variety of trade goods they distributed to tributaries and other groups in the region. They extended their dominance over the Connecticut shoreline, eastern Long Island, and the lower Connecticut River Valley bringing Native nations there into a tributary relationship under their leadership (Hauptman and Wherry 2009; McBride 2013). Some Nipmuc groups and the Quinebaug became tributaries to the Pequot during this time as well.

In 1633, the Pequot allowed the Dutch to build a fortified post, the *Huys de Hoop*, on the Connecticut River at the site of present-day Hartford to further cement both parties' domination over the flow of wampum, fur, and trade goods. To break from the Pequot, several Connecticut River sachems invited the English to the valley who settled Windsor (1633), Wethersfield (1634), and Hartford (1635) (Van Dusen 1961; Barry 1985). Increased interactions with Europeans resulted in exposure to epidemics Native people never encountered and to which they had no natural immunity. Illnesses such as smallpox, measles, tuberculosis, and cholera devastated Native communities. In the winter of 1633-1634, one such epidemic spread to the people of the Connecticut River Valley, but there is no indication it impacted the Nipmuc further northeast (Trumbull 1886). Tensions between Native and European groups in the region resulted in the death of several English traders in 1634 and 1636, which were blamed on the Pequot. In retaliation English forces from Massachusetts Bay destroyed Pequot and Nehantic villages on the Pequot (Thames) River in August 1636, which began the Pequot War. The Pequot laid siege to Saybrook Fort at the mouth of the Connecticut River during the winter of 1636-1637 and attacked Wethersfield in April 1637. Connecticut Colony declared war on the Pequot and was joined by Native warriors from the Connecticut River, including the Poquonnock, as well as Mohegans under the Sachem Uncas (Oberg 2006). In May of 1637, English forces led by Captain John Mason of Windsor destroyed the fortified Pequot village at Mistick and in July, they pursued refugees west where the Pequot were defeated in present-day Fairfield and the war soon ended (Cave 1996). Pequot territory was considered conquered land claimed by Connecticut Colony, and in 1652, the Dutch lost the *Huys de Hoop* at Hartford during the First Anglo-Dutch War (Trumbull 1886).

In January of 1639, the Connecticut River towns adopted the "fundamental orders" which outlined the framework for Connecticut Colony (Trumbull 1886). In the aftermath of the Pequot War, the Sachem

Uncas claimed much of northeastern Connecticut colony, the lands of former Pequot tributaries, as Mohegan through both right of conquest and hereditary claims (Larned 1874; Oberg 2006). In 1675, the cultural and political pressures of European attempts to establish hegemony came to a head in the widespread Indian rebellion known as King Philip's War, after the Wampanoag sachem who led the fight. Many of the Nipmuck tribal members joined in the war against the English. There were no English settlers within the bounds of Thompson at this time, and the English forces were victorious in less than a year. During the upheaval of King Philip's War much of present-day Windham County was depopulated of Native communities. Several years after the war, the effort to colonize the land once owned by the Nipmuck resumed, and in 1682 a local Indigenous leader called Black John sold most of what would become Thompson to the Massachusetts Bay Colony. He retained ownership of two parcels in the future Thompson, one at Quantissett and one at Maanexit. Due to its location near the Massachusetts border, the original settlement at Quinnatisset, in present-day Thompson, included 5,000 acres as a reservation, although the land was immediately transferred to agents from Massachusetts who then sold it. By 1684, farms were laid out at the settlement, the earliest division of land in Windham County, though had not yet been determined if these properties were in Connecticut or Massachusetts (Bayles 1889). He later sold them in 1707. Some of the Indigenous population stayed in the region, while others moved westward to escape English domination (Connole 2001). In 1708, the town of Killingly was established, which included present-day Thompson. Water-powered industry developed around the High Falls in the Putnam area of Killingly beginning around 1730 when David Howe constructed a gristmill, malt house, and dye house on the Quinebaug (Larned 1880). Northeastern Connecticut continued to develop into an agricultural region producing a variety of crops such as corn, rye, oats, and barley while others turned to raising livestock including cattle, sheep, and pigs. Water-powered industry developed around the Quinebaug and Five Mile River in the early 1700s and several sawmills and gristmills were built by the late eighteenth century (Larned 1880).

Slavery existed in Windham during the eighteenth century and was primarily practiced by wealthy families, merchants, and ministers in larger towns. The 1774 Connecticut colonial census recorded in Killingly, which then included Thompson, a "White" population of 3,439, an African American population of 47, and 12 Native Americans, but the number of enslaved individuals was not noted (Hoadly 1887). It was not until 1784 that the State passed a gradual manumission law, but slavery was not fully abolished until 1848 (Normen 2013). During the American Revolution (1775-1783) men from the Windham County served in the Connecticut Militia while the town supplied food stores for the war effort. Killingly, which then included Thompson, provided 146 men in response to the Lexington Alarm - so many that few men were left in town (Crofut 1937). In 1785, the town of Thompson was incorporated by the state legislature; its boundaries included part of what would later be the Town of Putnam. After the Revolution, Windham County recovered from wartime economic disruptions thanks to its robust agricultural production, and Thompson became incorporated as an independent town in 1785. On January 9, 1788, Connecticut ratified the U.S. Constitution to become the fifth state (Van Dusen 1961).

Nineteenth Century through the Twenty-first Century

During the early 1800s Windham County experienced an overall population increase, particularly towns like Thompson situated along the Quinebaug River, due to early industrialization. The manufacture of cotton textiles on waterways in eastern Connecticut, using technology imported from Britain, began to take off in the second decade of the nineteenth century. This increase was propelled by political and economic events such as the Embargo Act and the War of 1812. The first major company in Thompson, however, was a 1,000-acre facility called Conger's Mills, located on the Quinebaug River at the junction between Pomfret, Thompson, and Killingly. Others in and around the town followed, mostly founded by members of the Slater and Wilkinson families, who had started the textile technology revolution in

Rhode Island during the 1790s (Iamartino 2003). In the 1830s, Thompson was “a rich agricultural and manufacturing town and the inhabitants [were] distinguished for their spirit of enterprise” (Barber 1837:441). At that time, the four houses of worship in town included one Congregational, one Methodist, and two Baptist. The village of Thompson contained some 30 dwelling houses, four stores, a bank, and a printing office. The town as a whole had six or seven cotton factories and two or three woolen factories. Other villages in town included Masonville, Fisherville (North Grosvenordale), and New Boston (Barber 1837). By 1830 Thompson’s population was already well over 3,000, which meant it was the twentieth largest town in the state (Table 1; Connecticut 2024b).

Transportation improvements in the form of improved roads and railroad construction further linked northeastern Connecticut to markets in southern New England. The Boston & New York Central railroad opened in 1854 between Boston and Mechanicsville in Thompson, with stations in Thompson and East Thompson as well (Turner and Jacobus 1989). The high level of rail service undoubtedly helped Thompson maintain and even increase its population to over 6,000 by 1900, as well as supporting both its agricultural and mill-based industrial economy (Table 1; Connecticut 2024c). During the late nineteenth century, agriculture in Connecticut became increasingly specialized in areas such as dairying and poultry, but by the early twentieth century many native farmers had abandoned agriculture for more secure pursuits. Those towns that depended on agriculture began to lose population, in some cases so much that their numbers fell below 1790 levels. The proximity of the numerous industrial firms in Thompson, Killingly and Putnam may, however, have helped the farms in town remain more viable as truck farms (providing fresh produce and dairy products to industrial and urban areas).

During the Civil War (1861-1865), local manufacturers produced military goods, including uniforms, and many men served in the Union Army from Windham County (Niven 1965; Hines 2002). From Thompson, 215 men served in the Union Army (Hines 2002). To meet wartime demand for cotton textiles, Mason Mills in Thompson grew by 19,000 spindles in 1864, creating a total capacity of 46,000 spindles in the operation (Niven 1965). Following the end of the war, northeastern Connecticut towns continued to grow, as manufacturing centers along the Quinebaug River and Five Mile Rivers and agricultural hubs were linked together through a growing rail system (Larned 1880; Bayles 1889).

At the beginning of the twentieth century, slow growth was noted in northeastern Connecticut. In 1932, Thompson’s main industries were still cotton and woolen textile manufacturing and agriculture (Connecticut 1932). The region’s mill-based economy was boosted again during World War II, but in the 1950s, the textile industry in the region collapsed completely. Some new industries appeared to take over the mill buildings or build new facilities, but the domination of a single industry had come to an end (Spencer 1993). These new businesses probably did not employ sufficient people to explain the rise in Thompson’s population after 1960, however. Suburbanization is the more likely explanation, abetted by the construction of car-oriented roads (Spencer 1993). Route 12, established in the 1920s, formed the first north-south improved “interstate” automobile road between Worcester and New London. In 1968, however, Interstate 395 opened through Thompson, provided an expressway link to the city of Worcester and connections to Boston, as well as to southeastern Connecticut (Oglesby 2006). By 1970 agriculture remained a primary industry, in addition to the manufacture of furniture, woolen goods, plastics, shoes, candy, and plumbing goods (Connecticut 1970). Despite suburbanization, highways, and the various new businesses, however, Thompson’s population of less than 10,000 as of 2010 made it a relatively small municipality by Connecticut standards (Table 1; Connecticut 2024d).

In the twenty-first century, Thompson remained a largely rural town. In 2021, there were 20 active farms in Thompson, including those that produce feed corn and hay, as well as smaller apiarists, egg

producers, and other farming enterprises (Thompson 2021). The population reached 9,213 in 2021. Top industries included government and health care and social assistance. The key employers in Thompson in 2023 were Ivanhoe Tool and Die Company and Nutmeg Container (AdvanceCT and CT Data Collaborative 2023). The Town of Thompson is committed to “green, sustainable and innovate” growth that is in keeping with the “small-town feel” of the community (Thompson 2021).

Table 1: Population of Thompson, Connecticut 1790-2020 (Connecticut 2023a-d; Connecticut 2021)

Town	1790	1800	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
Thompson, Windham County	2,267	2,341	2,467	2,928	3,380	3,535	4,638	3,259	3,804	5,051	5,580	6,442
	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000	2010	2020
	4,804	5,055	4,999	5,577	5,585	6,271	7,580	8,141	8,668	8,878	9,458	9,379

History of the Project Area

The proposed Project area is located along Pompeo Road in the central portion of Thompson, Connecticut. Woodford's map from 1856, indicates that the Project area lies to the east of the what we the Fisherville portion of town and a main road at that time (Figure 4). The nearest property owner at that time was Robert Prince, who resided to the north of the Project area. Prince was listed as a 64-year-old farmer in the 1860 US Census (USCB 1860). A rail line is also visible to the west and to the east of the Project area along the western boundary of the project area. As previously mentioned, the Boston & New York Central Rail passed through Thompson on the way to Southbridge, Massachusetts and points east (Turner and Jacobus 1989). This was later restructured as the Boston, Hartford & Erie Railroad and then the New York & New England Railroad. Thompson was on the eastern division of this line and was the sight of a deadly train crash in 1891. To the west of the western rail line, the French River is noted on the map. Later mapping from 1869 shows the project area within the North Grosvenordale section of Thompson (Figure 5). In addition, the 1869 map depicts the estate of R. Prince, the aforementioned farmer, Robert Prince, to the north of the Project area. Thus, the landscaping including the project area likely was used for agricultural purposes in the nineteenth century. The development of North Grosvenordale to the south and west of the Project area is evident with the establishment of a rail station, cotton factory, cemetery, and increased residences.

The earliest available aerial photography of the project area dates from 1934. These images show the Project area was located on predominately forested land along Pompeo Road, directly to the south of open agricultural land (Figure 6). To the east of the Project area a stream is visible, while to the west industrial development and transportation are evident in the North Grosvenordale portion of Thompson. By 1970, few changes to the landscape were visible. The parcel remained largely forested, and the area directly to the north of the Project area still appeared to be open, agricultural land although a few new single-family homes were present along Pompeo Road (Figure 7). There was an additional home constructed on Pompeo Road near the Project parcel by 2004 (Figure 8). Few additional changes were evident in the photography from 2019 (Figure 9).

Conclusions

The documentary review indicates that the Project area has the potential to be associated with cultural resources. In the portion that were agricultural fields, there is the possibility of encountering evidence of post-European Contact period farming activities that may be important as a component of a rural historic landscape (*sensu* McClelland et al. 1999). In addition, the French River to the west and the stream to the east of the project parcel suggest there is the possibility of encountering cultural resources related to post-European Contact period riverine activities.

CHAPTER V

PREVIOUS INVESTIGATIONS

Introduction

This chapter presents an overview of previous cultural resources research completed within the vicinity of the proposed Project area in Thompson, Connecticut. This discussion provides the comparative data necessary for assessing the results of the current Phase IA cultural resources assessment survey, and it ensures that the potential impacts to all previously recorded cultural resources located within and adjacent to the Project area are taken into consideration. Specifically, this chapter reviews previously identified archaeological sites, and National/State Register of Historic Places properties situated in the project region (Figures 10 and 11). The discussions presented below are based on information currently on file at the CT-SHPO in Hartford, Connecticut. In addition, the electronic site files maintained by Heritage were examined during this investigation. Both the quantity and quality of the information contained in the original cultural resources survey reports and State of Connecticut archaeological site forms are reflected below.

Previously Recorded Archaeological Sites, National/State Register of Historic Places Properties/District, and Inventoried Historic Standing Structure in the Vicinity of the Project Area

A review of data currently on file at the CT-SHPO, as well as the electronic site files maintained by Heritage, indicates that there are three previously identified archaeological sites (141-43, 141-44, and 141-45), one historic district (North Grosvenordale Mill Historic District) listed on the National Register of Historic Places located, and a single State Register of Historic Places property (Tourtellotte Memorial High School) within 1.6 kilometers (1 mile) of the proposed Project area (Figures 10 and 11). These cultural resources are briefly discussed below.

Site 141-43

Site 141-43, which is also known as the North Grosvenor Dale Trash Midden Site, is a post-European contact period archaeological site located in Thompson, Connecticut (Figure 10). It is located on a road running north from Buckley Hill Road, on the southwest bank of the French River. The site was recorded in May of 1987 by F. J. E. Gorman with the Environmental Archaeology Group. Gorman identified the site as a late-nineteenth through early-twentieth century domestic midden. Artifacts recovered from the site consisted of bottle glass shards, ceramic sherds, pieces of coal, and furnace clinker. Site 141-43 has not been assessed applying the qualities of significance as defined by the National Register of Historic Places criteria for evaluation (36 CFR 60.4[a-d]). It is located approximately 500 meters (1,640 feet) to the southwest of the proposed Project Area. Due to its distance from the Project area, no impacts are anticipated to Site 141-43 as a result of the proposed construction.

Site 141-44

Site 141-44, which is also known as Mill No. 2 Dam and Headrace Gate, is a post-European contact period industrial complex located in Thompson, Connecticut (Figure 10). Historically, the site was a cotton textile mill. It is located at the south end of North Grosvenor Dale Pond. The site was recorded by F. J. E. Gorman in May of 1987. The site dates from between the late nineteenth century and the early twentieth century. No artifacts have been recovered, but the site consists of a dam and a hand-powered, four-gate headgate, with some early-twentieth century modifications. The site has been evaluated by the American Historic Engineering Record and may be eligible for nomination to the National Register of Historic Places. The site

is located approximately 420 meters (1378 feet) from the Project area. Due to its distance from the Project area, no impacts are anticipated to Site 141-44 as a result of the proposed construction.

Site 141-45

Site 141-45, also known as the New York, New Haven, and Hartford Railroad Station, is a post-European contact period railroad depot located in Thompson, Connecticut (Figure 10). It is located at the intersection of Buckley Hill Road and Penn Central Railroad track. The site was located by the Environmental Archaeology Group. The site dates to the nineteenth century and consists of a concrete pad foundation and a grass and gravel lot and may contain buried architectural features and archaeological deposits. Site 141-45 has not been assessed applying the qualities of significance as defined by the National Register of Historic Places criteria for evaluation (36 CFR 60.4[a-d]). The site is located approximately 560 meters (1837 feet) from the proposed Facility area. Due to its distance from the project area, no impacts are anticipated to Site 141-45 as a result of the proposed construction.

North Grosvenordale Mill Historic District

The North Grosvenordale Mill Historic District is located on Riverside Drive, Buckley Hill Road, Floral Avenue, Market Lane, Marshall Street, Central Street, River Street, and Holmes Street (Figure 11). The Historic District consists of homes and mill-related structures, meant to accommodate mill workers. Many of these structures are classified as Greek Revival and Romanesque. The mill itself was completed in 1872, is four stories high, and made of brick. It produced cotton and was one of the largest textile mills in Connecticut. The North Grosvenordale Mill Historic District was listed on the National Register of Historic Places (NRHP) in 1993. It is located well enough away that it will not be impacted directly or indirectly by the proposed Project.

Tourtellotte Memorial High School

The Tourtellotte Memorial High School is listed on the Connecticut State Register of Historic Places (Figure 11). It is located at 1372 Route 12 in Thompson, Connecticut. The school is an example of Neoclassical architecture with a granite foundation with brick exterior and a hip roofline with asphalt shingles. The building is two and one-half-stories in height and retains cast stone ornamental details. The school was donated to the Town of Thompson in 1907 by Jacob F. and Harriet Arnold Tourtellotte, who made a sizable fortune in banking. The first class consisted of 47 students who graduated in 1911. The building was listed on the State Register of Historic Places in 1986 due to its historical significance as a longtime community institution and its connection with a locally prominent family, as well as for its architectural significance. The structure represents one of the town's finest buildings, as well as the renewed interest in classical architecture that followed Chicago's Columbian Exposition of 1893. The Tourtellotte Memorial High School is located approximately 1 kilometer (0.6 miles) to the southwest of the Project area; it will not be impacted by the Project.

CHAPTER VI

METHODS

Introduction

This chapter describes the research design and field methodology used to complete the Phase IA cultural resources assessment survey of Project area in Thompson, Connecticut. The following tasks were completed during this investigation: 1) study of the region's precontact era, post-European Contact period, and natural setting, as presented in Chapters II through IV; 2) a literature search to identify and discuss previously recorded cultural resources in project region; 3) a review of maps, topographic quadrangles, and aerial imagery depicting the study area in order to identify potential post-European Contact period resources and/or areas of past disturbance; and 4) pedestrian survey and photo-documentation of the Project area in order to determine its archaeological sensitivity. These methods are in keeping with those required by the Connecticut State Historic Preservation Office in the document entitled: *Environmental Review Primer for Connecticut's Archaeological Resources* (Poirier 1987).

Research Framework

The current Phase IA cultural resources assessment survey was designed to identify assess the archaeological sensitivity of the proposed Project area, as well as to visually examine area and record any previously unidentified cultural resources. The undertaking was comprehensive in nature, and project planning considered the distribution of previously recorded cultural resources located within the Project region, as well as a visual assessment of the Project area. The methods used to complete this investigation were designed to provide coverage of all portions of the Project area. The fieldwork portion of this undertaking entailed pedestrian survey, photo-documentation, and study area mapping (see below).

Archival Research & Literature Review

Background research for this survey included a review of a variety of historical maps depicting the proposed Project area; an examination of USGS 7.5' series topographic quadrangles; an examination aerial images dating from 1934 through 2019; and a review of all archaeological sites, and National and State Register of Historic Places on file with the Connecticut State Historic Preservation Office, as well as electronic cultural resources data maintained by Heritage. The intent of this review was to identify all previously recorded cultural resources situated within and immediately adjacent to the Project area to provide a natural and cultural context for the region. This information then was used to develop the archaeological context of the Project area, and to assess its sensitivity with respect to the potential for producing intact cultural resources.

Field Methodology and Data Synthesis

Heritage also performed fieldwork for the Phase IA cultural resources assessment survey of the Project area in Thompson, Connecticut. This included pedestrian survey, photo-documentation, and mapping. During the completion of the pedestrian survey, representatives from Heritage photo-documented all potential areas of impact using digital media.

CHAPTER VII

RESULTS & MANAGEMENT

RECOMMENDATIONS

Introduction

This chapter presents the results of the Phase IA cultural resources assessment survey of the proposed Project area in Thompson, Connecticut, as well as management recommendations. As stated in the introductory section of this report, the goals of the investigation included completion of the following tasks: 1) a contextual overview of the region's precontact era, post-European Contact, and natural setting (e.g., soils, ecology, hydrology, etc.); 2) a literature search to identify and discuss previously completed cultural resources surveys and previously recorded cultural resources in the Project region; 3) a review of readily available maps and aerial imagery depicting the Project area in order to identify potential post-European Contact period resources and/or areas of past disturbance; 4) pedestrian survey and photo-documentation of the Project area in order to determine its archaeological sensitivity; and 5) preparation of the current Phase IA cultural resources assessment survey report.

Overall Sensitivity of the Proposed Project Area

The field data associated with soils, slopes, aspect, distance to water, and previous disturbance collected during the pedestrian survey and presented above was used in conjunction with the analysis of maps, aerial images, data regarding previously identified archaeological sites, and National and State Register of Historic Places properties to stratify the project items into zones of no/low and/or moderate/high archaeological sensitivity. In general, post-European Contact period archeological sites are relatively easy to identify on the current landscape because the features associated with them tend to be relatively permanent constructions that extend above the ground surface (i.e., stone foundations, pens, wells privies, etc.). Archaeological sites dating from the precontact era, on the other hand, are less often identified during pedestrian survey because they are buried, and predicting their locations relies more on the analysis and interpretation environmental factors that would have informed Native American site choices.

With respect to the potential for identifying precontact archaeological sites, the Project area was assessed as to areas of no/low and/or moderate/high archaeological potential by analyzing the landform types, slope, aspect, soils contained within them, and their distance to water. In general, areas located less than 300 m (1,000 ft) from a freshwater source and that contain slopes of less than 8 percent and well-drained soils possess a high potential for producing precontact archaeological deposits. Those areas located between 300 and 600 m (1,000 and 2,000 ft) from a freshwater source and well drained soils are considered moderate probability areas. This is in keeping with broadly based interpretations of precontact settlement and subsistence models that are supported by decades of previous archaeological research throughout the region. It is also expected that there may be variability of precontact site types found in the moderate/high sensitivity zones. For example, large Woodland period village sites and Archaic period seasonal camps may be expected along large river floodplains and near stream/river confluences, while smaller temporary or task specific sites may be expected on level areas with well-drained soils that are situated more than 300 m (1,000 ft) but less than 600 m (2,000 ft) from a water source. Finally, steeply sloping areas, poorly drained soils, or areas of previous disturbance are generally deemed to retain a no/low archaeological sensitivity with respect to their potential to contain precontact era archaeological sites.

In addition, the potential for a given area to yield evidence of Post-European Contact period archaeological deposits is based not only the above-defined landscape features but also on the presence or absence of previously identified Post-European Contact period archaeological resources as identified during previous archaeological surveys, recorded on period maps, or captured in aerial images of the region under study. In this case, proposed project items that are situated within 100 m (328 ft) of a previously identified Post-European Contact period archaeological site, a National or State Register of Historic Places district/individually listed property, or an area that contains known historic period buildings also may be deemed to retain a moderate/high archaeological sensitivity. In contrast, those areas situated over 100 m (328 ft) from any of the above-referenced properties would be considered to retain a no/low Post-European Contact period archaeological sensitivity.

Phase IA cultural resources assessment survey revealed that portions of the Project area contain low slopes and primarily well-drained soils within an area situated in proximity to streams and wetlands. Based on the landscape type, proximity to freshwater, and the presence of well-drained sandy loamy soils, the solar center project area appears to retain a moderate/high sensitivity for yielding archaeological deposits.

Results of Phase IA Survey and Management Recommendations

Heritage personnel conducted a pedestrian survey of the proposed Project area in April of 2024. The pedestrian survey was supplemented by mapping and photo-documentation (Figure 12 and Photos 1 through 10). The area is situated on level to gently sloping terrain at approximate elevations ranging from 179 to 189 meters (587 to 620 feet) NVDG, with steeper slopes and rock outcrops present throughout. The results of the pedestrian survey indicate that the proposed Project area is characterized as mostly level topography and defined by pine forest in the south, with the northernmost portion of area comprised of open agricultural fields associated with an adjacent farm. In addition, stonewalls are extant in the northwest corner of the Project area, as well as a long stonewall located along the eastern side of Pompeo Road. The latter forms the western limit of the Project area (Photo 1). The open field contains rock outcrops and slopes leading uphill toward the pine tree line (Photo 2). The Project parcel is located near small streams and wetlands that are situated within a 0.8 kilometers (0.5 miles) of the French River. Due to the presence of level topography and proximity to fresh water sources, 13.21 acres of the Project area were determined to retain a moderate/high potential to yield intact archaeological deposits. This acreage is divided amongst four archaeological sensitivity areas that were designated as Sensitivity Areas, SA-1 through SA-4 (Figure 12). They are described in more detail below.

Sensitivity Area SA-1 was defined by the presence of level terrain in the northwest corner of the Project area; it encompasses 0.19 acres of land (Photo 3). Directly to the south of Sensitivity Area SA 1 is Sensitivity Area 2 (SA 2), which was characterized by the presence of level terrain across 0.07 acres of land in (Photo 4). Sensitivity Area 4 is a small area that is comprised of 0.25 acres of level terrain and situated in the northeast quadrant of the Project area; it is bordered to the north and west by logging roads (Photo 5). The largest sensitivity area, Sensitivity Area 3, encompasses 12.7 acres of land and is characterized by level terrain with well drained soils. It is located in close proximity to wetland areas and fresh water sources (Photos 6 through 8). The remaining 5.19 acres of land adjacent to SA-3 were defined by wetlands, logging roads, rock outcrops, and areas of moderate to extreme slope along the project area's eastern border (Photos 9 and 10). These areas were determined to retain no/low archaeological sensitivity. The results of the Phase IA literature review and pedestrian survey indicated that the sour moderate/high archaeologically sensitivity areas should be subjected to a Phase IB cultural resources reconnaissance survey prior to the construction of the Project.

Finally, as described above, the Phase IA survey also resulted in the identification of a long dry laid stonewall located along the eastern side of Pompeo Road; it extends for 234 meters (1,062 feet) in a north-south direction. The wall also forms the western limit of the project area. In addition, a secondary stone wall extending off of the northern portion of the was identified. It extends 34 meters (11 feet) to the east prior to tuning north for 62 meters (203 feet). The two walls remain largely intact but could not be assigned to a particular time period, origin, or cultural affiliation. It is recommended that they be avoided to the extent practicable during construction.

BIBLIOGRAPHY

AdvanceCT and CTData Collaborative
2023 Stonington, Connecticut, CERC Town Profile 2023. <https://s3-us-west-2.amazonaws.com/cerc-pdfs/2023/Stonington.pdf>, accessed March 1, 2024.

Barber, J. W.
1837 *Connecticut Historical Collections*. Storrs, CT, Hanover, N.H.: Bibliopola Press; Distributed by the University Press of New England.

Barry, Ann P.
1985 *Connecticut Towns and their Establishment*. Connecticut State Library, Hartford, CT.

Bayles, Richard M.
1889 *History of Windham County, Connecticut*. Volume 2. W. W. Preston, New York, NY.

Bendremer, J.
1993 *Late Woodland Settlement and Subsistence in Eastern Connecticut*. Ph.D. Dissertation, Department of Anthropology, University of Connecticut, Storrs, CT.

Bendremer, J. and R. Dewar
1993 The Advent of Maize Horticulture in New England. In *Corn and Culture in the Prehistoric New World*. Ed. by S. Johannessen and C. Hastorf. Westview Press, Boulder, CO.

Bendremer, J., E. Kellogg and T. Largy
1991 A Grass-Lined Storage Pit and Early Maize Horticulture in Central Connecticut. *North American Archaeologist* 12(4):325-349.

Bowen, Clarence Winthrop
1926 *The History of Woodstock, Connecticut*. The Plimpton Press, Norwood, MA.

Calabretta, Fred
2013 "They came here as fisherman..." *Connecticut Explored*. Fall:38-43.

Capitol Region Council of Governments
2016 *Statewide Aerial Photograph Series*. Connecticut Department of Energy and Environmental Protection, Connecticut Environmental Conditions Online. <http://www.cteco.uconn.edu/>.

Cave, Alfred A.
1996 *The Pequot War*. University of Massachusetts Press, Amherst, MA.

Coe, J.L.
1964 The Formative Cultures of the Carolina Piedmont. *Transactions of the American Philosophical Society*, Vol. 54, Part 5. Philadelphia, PA.

Connecticut Department of Transportation (CT DOT)
2004 Connecticut Statewide Aerial Photograph Series. CT DOT, Newington, CT.

Connecticut Environmental Conditions Online (CT ECO)
2019 *Connecticut 2019 Orthophotography*. University of Connecticut, Connecticut Environmental Conditions Online, Storrs, CT. <http://www.cteco.uconn.edu/data/flight2019/>, accessed May 6, 2022.

Connecticut, State of
1932 *State Register and Manual*. State of Connecticut, Hartford, CT.

1970 *State Register and Manual*. State of Connecticut, Hartford, CT.

2021 *State Register and Manual*. State of Connecticut, Hartford, CT.

2023 *State Register and Manual*. State of Connecticut, Hartford, CT.

2024a "Population of Connecticut Towns 1756-1820," Office of the Secretary of the State. <https://portal.ct.gov/SOTS/Register-Manual/Section-VII/Population-1756-1820>, accessed January 17, 2024.

2024b "Population of Connecticut Towns 1830-1890," Office of the Secretary of the State. <https://portal.ct.gov/SOTS/Register-Manual/Section-VII/Population-1830---1890>, accessed January 17, 2024.

2024c "Population of Connecticut Towns 1900-1960," Office of the Secretary of the State. <https://portal.ct.gov/SOTS/Register-Manual/Section-VII/Population-1900-1960>, accessed January 17, 2024.

2024d "Population of Connecticut Towns 1970-2010," Office of the Secretary of the State. <https://portal.ct.gov/SOTS/Register-Manual/Section-VII/Population-1970-2010>, January 17, 2024.

Crofut, F. S. M.
1937 *Guide to the History and the Historic Sites of Connecticut*. Yale University Press, New Haven, CT.

Curran, M.L., and D.F. Dincauze
1977 Paleo-Indians and Paleo-Lakes: New Data from the Connecticut Drainage. In *Amerinds and their Paleoenvironments in Northeastern North America*. Annals of the New York Academy of Sciences 288:333-348.

Davis, M.
1969 Climatic changes in southern Connecticut recorded by Pollen deposition at Rogers Lake. *Ecology* 50:409-422.

De Forest, J. W.
1852 *History of the Indians of Connecticut from the Earliest Known Period to 1850*. Wm. Jas. Hamersley, Hartford, CT.

DeLuca, Richard
2020 *Paved Roads & Public Money: Connecticut Transportation in the Age of Internal Combustion.* Wesleyan University Press, Middletown, CT.

Dincauze, D.F.
1974 An Introduction to Archaeology in the Greater Boston Area. *Archaeology of Eastern North America* 2(1):39-67.

1976 *The Neville Site: 8000 Years at Amoskeag.* Peabody Museum Monograph No. 4. Cambridge, MA.

Dowhan, J.J. and R.J. Craig
1976 *Rare and endangered species of Connecticut and Their Habitats.* State Geological Natural History Survey of Connecticut Department of Environmental Protection, Report of Investigations No. 6.

Eves, Jamie H.
2022 "A Historical Atlas of Windham, a Connecticut Mill Town." Windham Textile and History Museum – The Mill Museum. <https://millmuseum.org/historical-geography-of-windham/>, accessed April 20, 2023.

Fairchild Aerial Surveys
1934 *Connecticut Statewide Aerial Photograph Series.* Connecticut State Archives, Hartford, CT.

Feder, K.
1984 *Pots, Plants, and People: The Late Woodland Period of Connecticut.* Bulletin of the Archaeological Society of Connecticut 47:99-112.

Funk, R.E.
1976 *Recent Contributions to Hudson Valley Prehistory.* New York State Museum Memoir 22. Albany, NY.

George, D.
1997 A Long Row to Hoe: The Cultivation of Archaeobotany in Southern New England. *Archaeology of Eastern North America* 25:175 - 190.

George, D. and C. Tryon
1996 *Lithic and Raw Material Procurement and Use at the Late Woodland Period Cooper Site, Lyme, Connecticut.* Paper presented at the joint meeting of the Archaeological Society of Connecticut and the Massachusetts Archaeological Society, Storrs, CT.

George, D.R., and R. Dewar
1999 Prehistoric Chenopodium in Connecticut: Wild, Weedy, Cultivated, or Domesticated? *Current Northeast Paleoethnobotany*, edited by J. Hart, New York State Museum, Albany, NY.

Gerrard, A.J.
1981 *Soils and Landforms, An Integration of Geomorphology and Pedology.* George Allen & Unwin, London.

Goddard, Ives

1978 *Handbook of North American Indians*, V. 17, Languages. Smithsonian Institution, Washington, D.C.

Gramly, R. Michael, and Robert E. Funk

1990 What is Known and Not Known About the Human Occupation of the Northeastern United States Until 10,000 B. P. *Archaeology of Eastern North America* 18: 5-32.

Gray, Ormando Willis

1869 *Atlas of Windham and Tolland Counties: With a Map of Connecticut*. C. G. Keeney, Hartford, CT.

Griffin, J.B.

1967 Eastern North America Archaeology: A Summary. *Science* 156(3772):175-191.

Hauptman, Laurence M. and James D. Wherry, eds.

1990 *The Pequots in Southern New England: The Fall and Rise of an American Indian Nation*. University of Oklahoma Press, Norman, OK.

Hines, Blaikie

2002 *Civil War Volunteer Sons of Connecticut*. American Patriot Press, Thomaston, ME.

Hoadly, Charles J.

1887 *The Public Records of the Colony of Connecticut*, Volume 14. Case, Lockwood & Brainard Company, Hartford, CT.

Iamartino, Joseph, ed.

2003 *Echoes of Old Thompson: A Pictorial History of Thompson, Connecticut*. The Donning Company Publishers, Virginia Beach, VA.

Jacobs, Jaap

2009 *The Colony of New Netherland: A Dutch Settlement in Seventeenth-Century America*. Cornell University Press, Cornell, NY.

Jones, B.

1997 The Late Paleo-Indian Hidden Creek Site in Southeastern Connecticut. *Archaeology of Eastern North America* 25:45-80.

Keystone Aerial Surveys, Inc.

1970 Connecticut Statewide Aerial Photograph Series. Connecticut State Archives, Hartford, CT.

Lavin, L.

1980 Analysis of Ceramic Vessels from the Ben Hollister Site, Glastonbury, Connecticut. *Bulletin of the Archaeological Society of Connecticut* 43:3-46.

1984 Connecticut Prehistory: A Synthesis of Current Archaeological Investigations. *Archaeological Society of Connecticut Bulletin* 47:5-40.

1986 *Pottery Classification and Cultural Models in Southern New England Prehistory*. *North American Archaeologist* 7(1):1-12.

1987 The Windsor Ceramic Tradition in Southern New England. *North American Archaeologist* 8(1):23-40.

2013 *Connecticut's Indigenous Peoples: What Archaeology, History, and Oral Traditions Teach Us About Their Communities and Cultures*. Yale University Press, New Haven, CT.

Leslie, David E., Sarah P. Sportman, and Brian D. Jones

2020 The Brian D. Jones Site (4-10B): A Multi-Component Paleoindian Site in Southern New England. *PaleoAmerica* 6(2):199-203.

Leslie, David E., Zachary L.F. Singer, William B. Ouimet, and Peter A. Leach

2021 Deeply Buried Pleistocene Landscapes and the Search for Paleoindian Sites in the Northeast. *Bulletin of the Archaeological Society of Connecticut*, 83:87-101.

Leslie, David E., Zachary L.F. Singer, G. Logan Miller, Katharine R. Reinhart, and Brian D. Jones

2022 Gulf of Maine Archaic Tradition Occupations at the Edgewoods Apartment Site, Plainville, Massachusetts. *Archaeology of Eastern North America*, 50:1-29.

Lester, William Jr.

1833 Map of New London and Windham Counties in Conn. from Actual Survey. Daggett & Ely, Engr., New Haven, CT.

Lizee, J.

1994a *Prehistoric Ceramic Sequences and Patterning in southern New England: The Windsor Tradition*. Unpublished Ph.D. dissertation, Department of Anthropology, University of Connecticut, Storrs, CT.

1994b *Cross-Mending Northeastern Ceramic Typologies*. Paper presented at the 1994 Annual Meeting of the Northeastern Anthropological Association, Geneseo, NY.

McBride, K.

1978 Archaic Subsistence in the Lower Connecticut River Valley: Evidence from Woodchuck Knoll. *Man in the Northeast* 15 & 16:124-131.

1983 *Prehistory of the Lower Connecticut River Valley*. Ph.D. Dissertation, Department of Anthropology, University of Connecticut, Storrs, CT.

2013 "War and Trade in Eastern New Netherland" In *A Beautiful and Fruitful Place*. M. Lacy, editor pp. 271-141. University of Massachusetts Press, Amherst, MA.

Moeller, R.

1980 *6-LF-21: A Paleo-Indian Site in Western Connecticut*. American Indian Archaeological Institute, Occasional Papers No. 2.

Niven, John
 1965 *Connecticut for the Union: The Role of the State in the Civil War*. Yale University Press, New Haven, CT.

Normen, Elizabeth J. (Editor)
 2013 *African American Connecticut Explored*. Wesleyan University Press, Middletown, CT.

Oberg, Michael Leroy
 2006 *Uncas: First of the Mohegans*. Cornell University Press, Ithaca, NY.

Oglesby, Scott
 2014 I-95. *Connecticut Roads*. Accessed April 24, 2018.
<http://www.kurumi.com/roads/ct/i95.html>.

Pagoulatos, P.
 1988 Terminal Archaic Settlement and Subsistence in the Connecticut River Valley. *Man in the Northeast* 35:71-93.

Pease, John C. and John M. Niles
 1819 *A Gazetteer of the States of Connecticut and Rhode-Island*. William S. Marsh, Hartford, CT.

Pfeiffer, J.
 1984 The Late and Terminal Archaic Periods in Connecticut Prehistory. *Bulletin of the Bulletin of the Archaeological Society of Connecticut* 47:73-88.
 1986 Dill Farm Locus I: Early and Middle Archaic Components in Southern Connecticut. *Bulletin of the Archaeological Society of Connecticut* 49:19-36.
 1990 The Late and Terminal Archaic Periods in Connecticut Prehistory: A Model of Continuity. In *Experiments and Observations on the Archaic of the Middle Atlantic Region*. R. Moeller, ed.

Poirier, D.
 1987 *Environmental Review Primer for Connecticut's Archaeological Resources*. Connecticut Historical Commission, State Historic Preservation Office, Hartford, CT.

Pope, G.
 1952 Excavation at the Charles Tyler Site. *Bulletin of the Archaeological Society of Connecticut* 26:3-29.
 1953 The Pottery Types of Connecticut. *Bulletin of the Archaeological Society of New Haven* 27:3-10.

Ritchie, W.A.
 1969a *The Archaeology of New York State*. Natural History Press. Garden City, NJ.
 1969b *The Archaeology of Martha's Vineyard: A Framework for the Prehistory of Southern New England; A study in Coastal Ecology and Adaptation*. Natural History Press, Garden City, NJ.

1971 *A Typology and Nomenclature for New York State Projectile Points*. New York State Museum Bulletin Number 384, State Education Department. University of the State of New York, Albany, NY.

Ritchie, W.A., and R.E. Funk
1973 *Aboriginal Settlement Patterns in the Northeast*. New York State Museum Memoir 20. The State Education Department, Albany, NY.

Rouse, I.
1947 Ceramic Traditions and sequences in Connecticut. *Bulletin of the Archaeological Society of Connecticut* 21:10-25.

Salwen, B., and A. Ottesen
1972 Radiocarbon Dates for a Windsor Occupation at the Shantok Cove Site. *Man in the Northeast* 3:8-19.

Shelford, V.E.
1963 *The Ecology of North America*. University of Illinois Press, Champaign, IL.

Smith, C.
1947 An Outline of the Archaeology of Coastal New York. *Bulletin of the Archaeological Society of Connecticut* 21:2-9.

Snow, D.
1980 *The Archaeology of New England*. Academic Press, New York, NY.

Spaid, Elizabeth Levitan
1991 "Looks Beyond Defense Industries" in *The Christian Science Monitor*. Boston, MA

Spencer, L. S.
1993 *Eastern Uplands: Historical and Architectural Overview and Management Guide*. Connecticut Historical Commission, State Historic Preservation Office, Hartford, CT.

Sportman, Sarah P., and David E. Leslie
2020 12,500-Year-Old Paleoindian Site Discovered. *Connecticut Explored*.

Thompson, Town of
2021 Town of Thompson Plan of Conservation & Development, 2021. Electronic document, https://www.thompsonct.org/sites/g/files/vyhlif5076/f/uploads/_town_of_thompson_pocd_-_amended_18_may_2022.pdf, accessed February 27, 2024.

Trumbull, J. Hammond
1886 *The Memorial History of Hartford County, Connecticut, 1633-1884*. E.L. Osgood, Boston, MA.

Turner, Gregg M. and Melancthon W. Jacobus
1986 *Connecticut Railroads: An Illustrated History*. The Connecticut Historical Society, Hartford, CT.

United States Census Bureau (US Census)

1850a Seventh Census of the United States. Ancestry.com, https://www.ancestry.com/discoveryui-content/view/18301545:8054?tid=&pid=&queryId=68a21dc6-769a-494a-939e-dbfe3fbb6d82&_phsrc=rYP184&_phstart=successSource, accessed March 4, 2024.

1850b Seventh Census of the United States. Ancestry.com, <https://www.ancestry.com/discoveryui-content/view/18301840:8054>, accessed March 4, 2024.

1870 Ninth Census of the United States. Ancestry.com, https://www.ancestry.com/discoveryui-content/view/1602739:7163?tid=&pid=&queryId=53995074-a75a-44cf-87bd-0a70631bbbfc&_phsrc=rYP208&_phstart=successSource, accessed March 5, 2024.

United States Department of Agriculture (USDA)

1951 Agricultural Stabilization and Conservation Service Aerial Photography for Connecticut. Collections of the National Archives and Records Administration, Washington, DC.

United States Geological Survey (USGS).

1970 *Aerial Photograph Series for Connecticut*. Reston, Virginia: USGS.

Van Dusen, Albert E.

1961 *Connecticut*. Random House, NY.

Witthoft, J.

1949 An Outline of Pennsylvania Indian History. *Pennsylvania History* 16(3):3-15.

1953 Broad Spearpoints and the Transitional Period Cultures. *Pennsylvania Archaeologist*, 23(1):4-31.

Wood, F. J.

1919 *The Turnpikes of New England and Evolution of the Same Through England, Virginia, and Maryland*. Marshall Jones Company, Boston, MA.

Woodford, E. M.

1856 *Windham County, Connecticut*. E. M. Woodford, Philadelphia, PA.

Figure 1. Excerpt from a USGS 7.5' series topographic quadrangle image showing the location of the project parcel in Thompson, Connecticut.

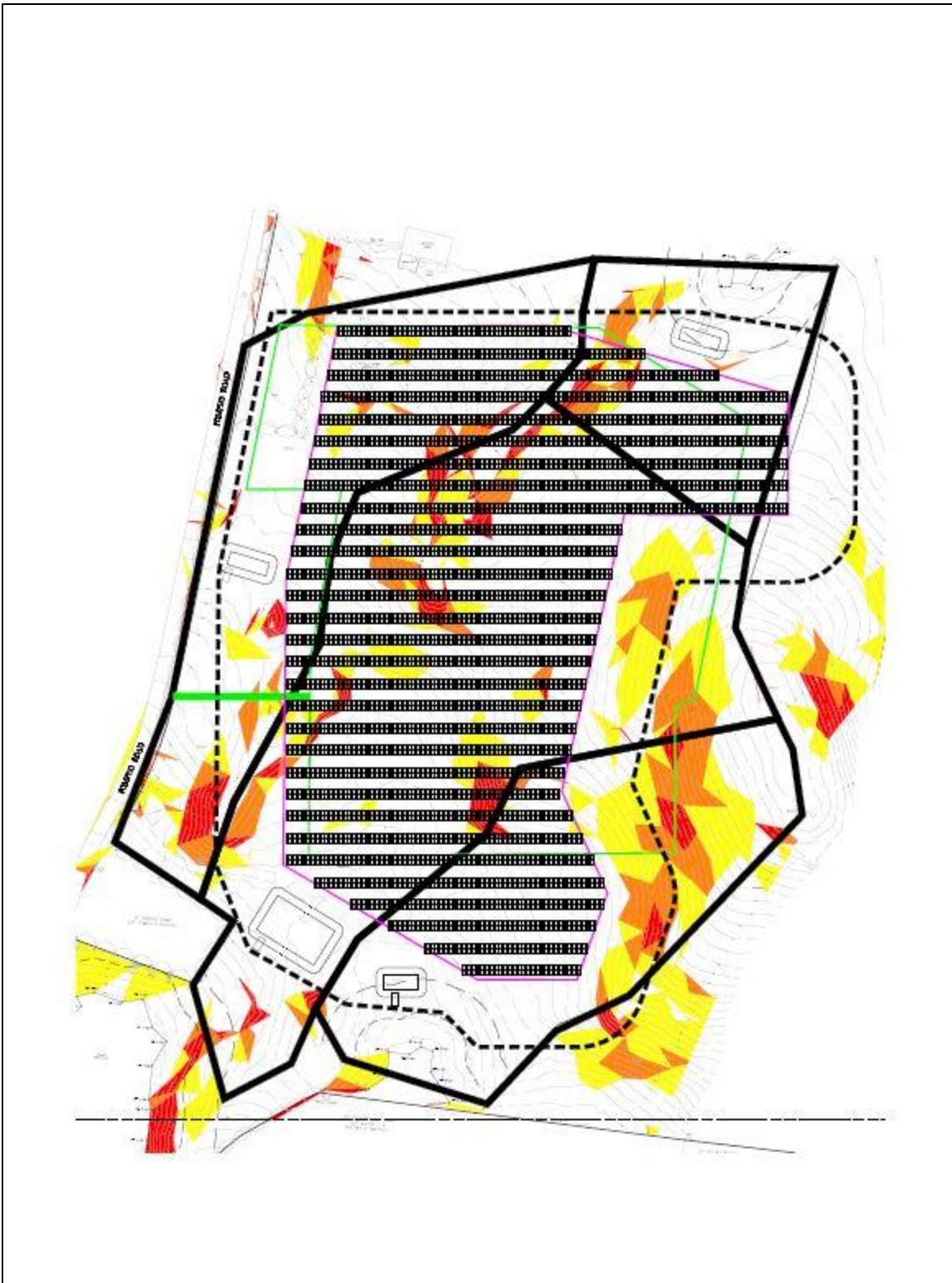


Figure 2. Proposed project plans for the TEC Thompson Solar Center project in Thompson, Connecticut.

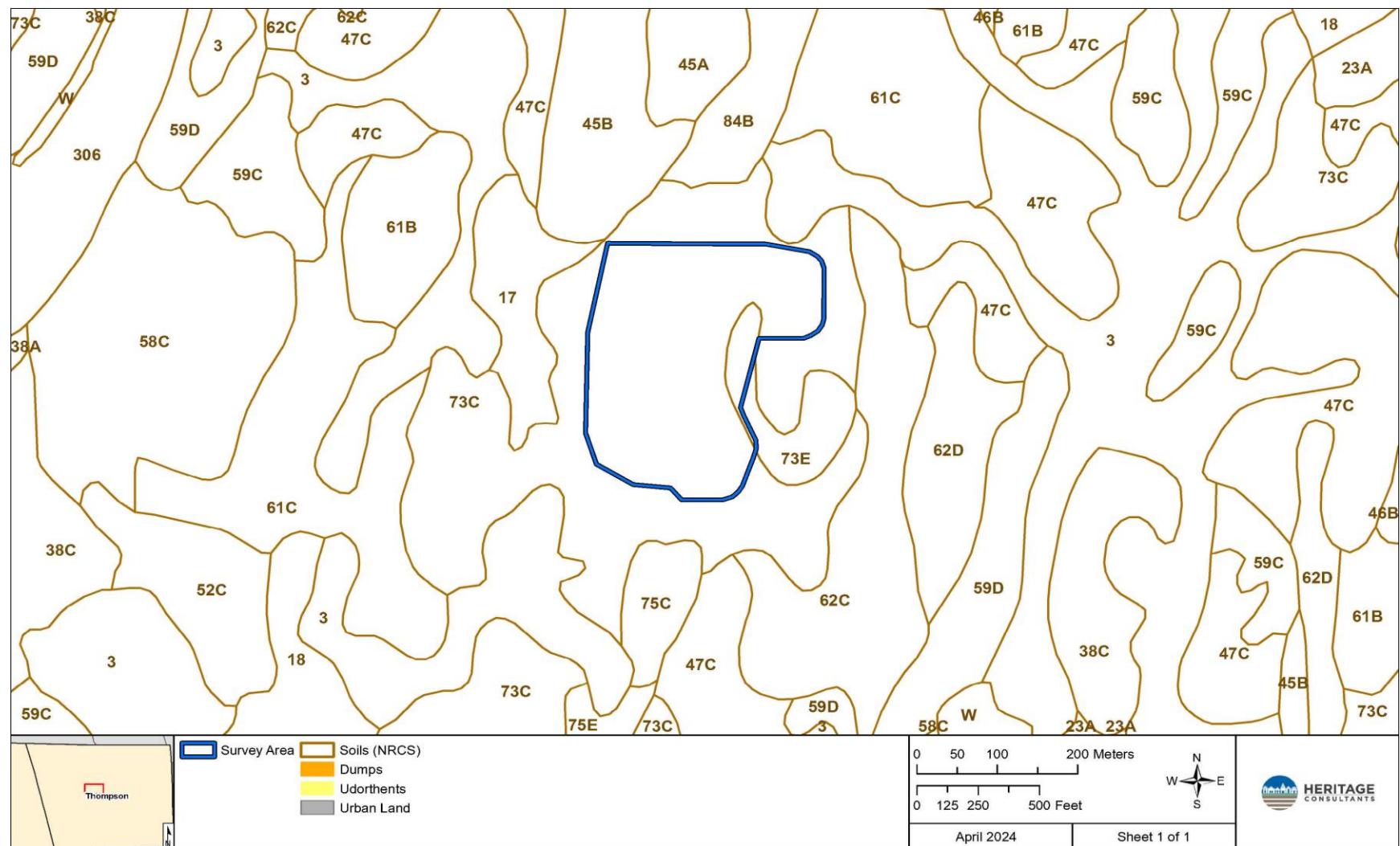


Figure 3. Digital map depicting the soil types present in the vicinity of the project parcel in Thompson, Connecticut.

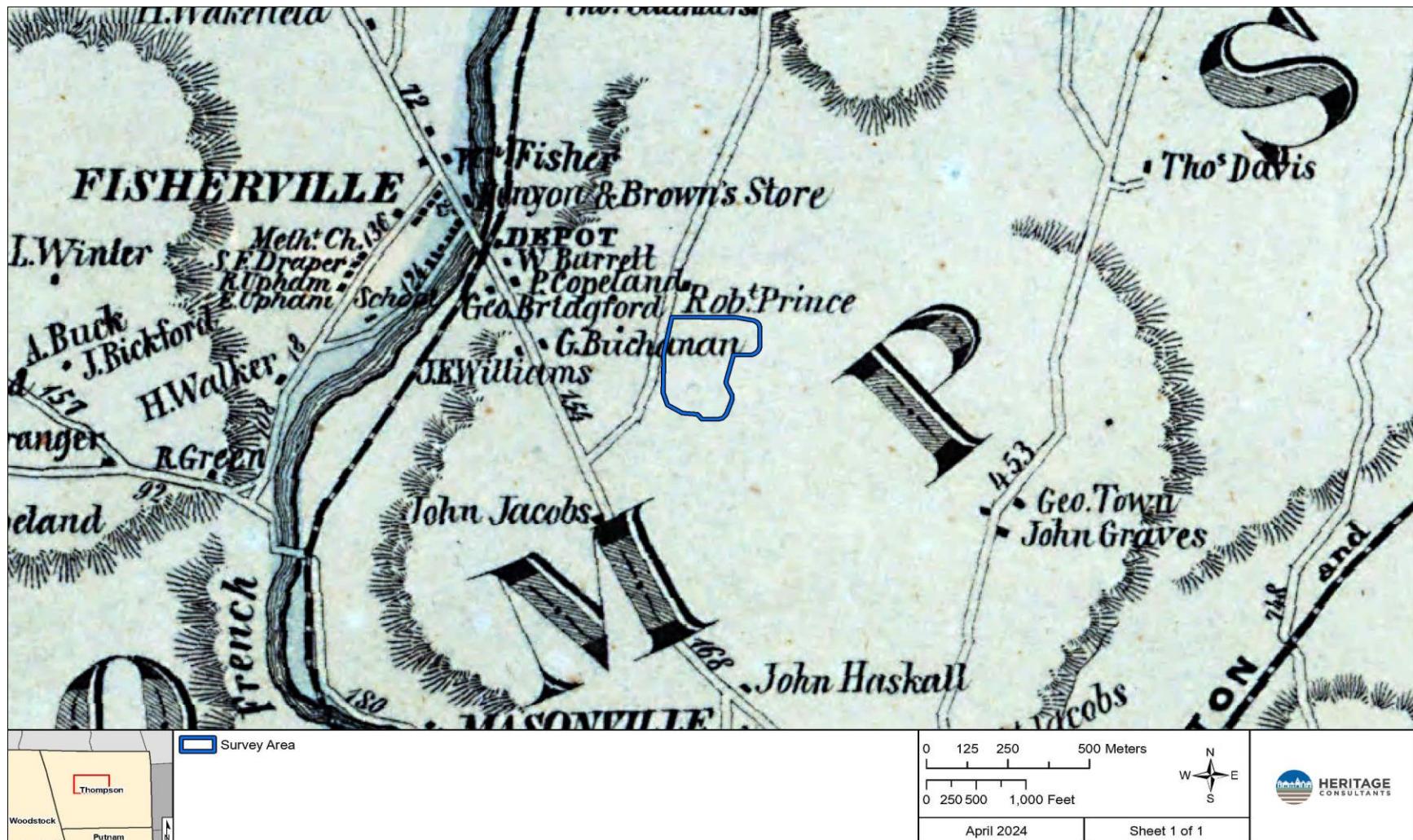


Figure 4. Excerpt from an 1854 map showing the location of the project parcel in Thompson, Connecticut.

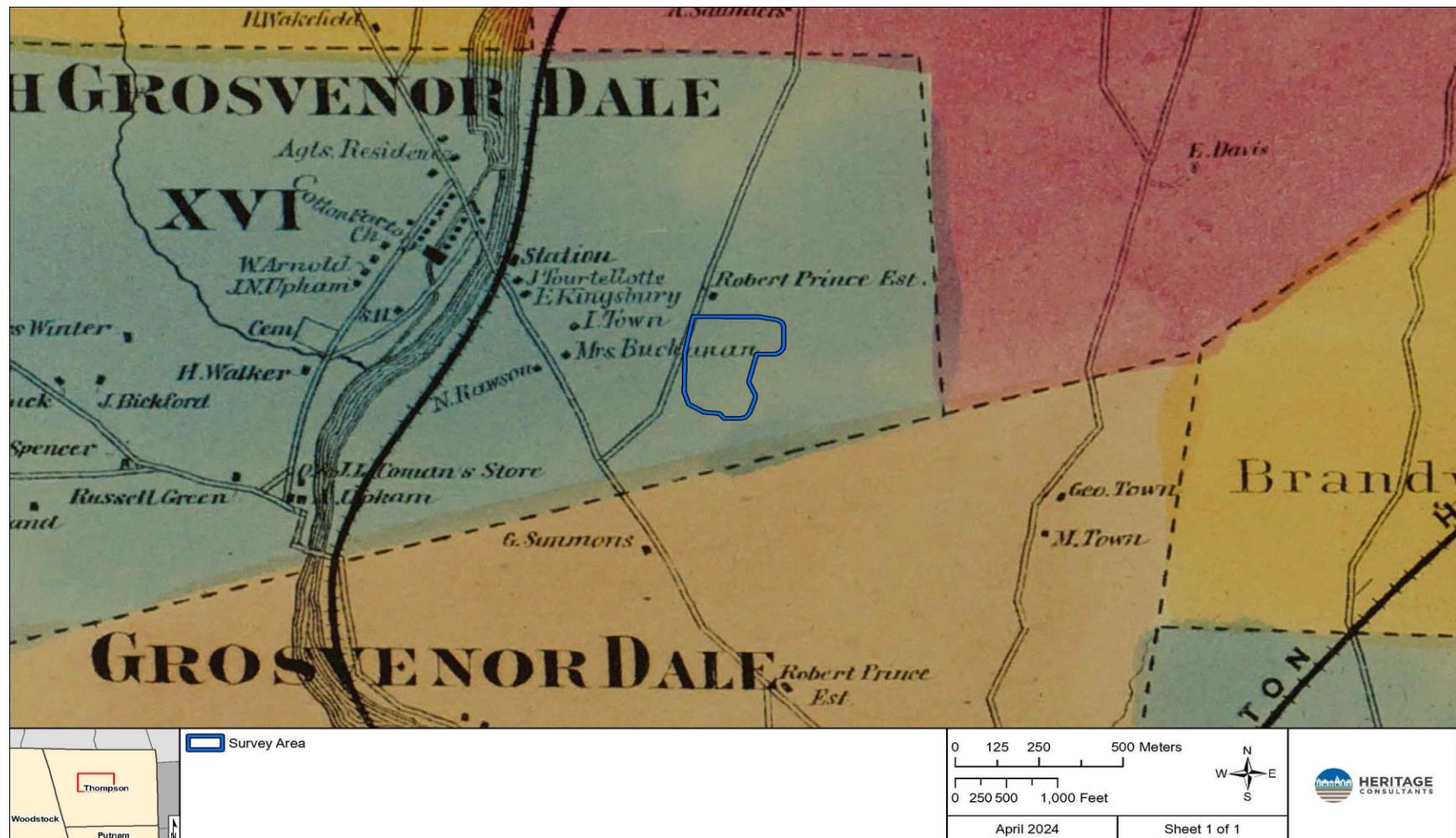


Figure 5. Excerpt from an 1869 map showing the location of the project parcel in Thompson, Connecticut.

Figure 6. Excerpt from a 1934 aerial photograph showing the location of the project parcel in Thompson, Connecticut.

Figure 7. Excerpt from a 1970 aerial photograph showing the location of the project parcel in Thompson, Connecticut.

Figure 8. Excerpt from a 2004 aerial photograph showing the location of the project parcel in Thompson, Connecticut.



Figure 9. Excerpt from a 2019 aerial photograph showing the location of the project parcel in Thompson, Connecticut.

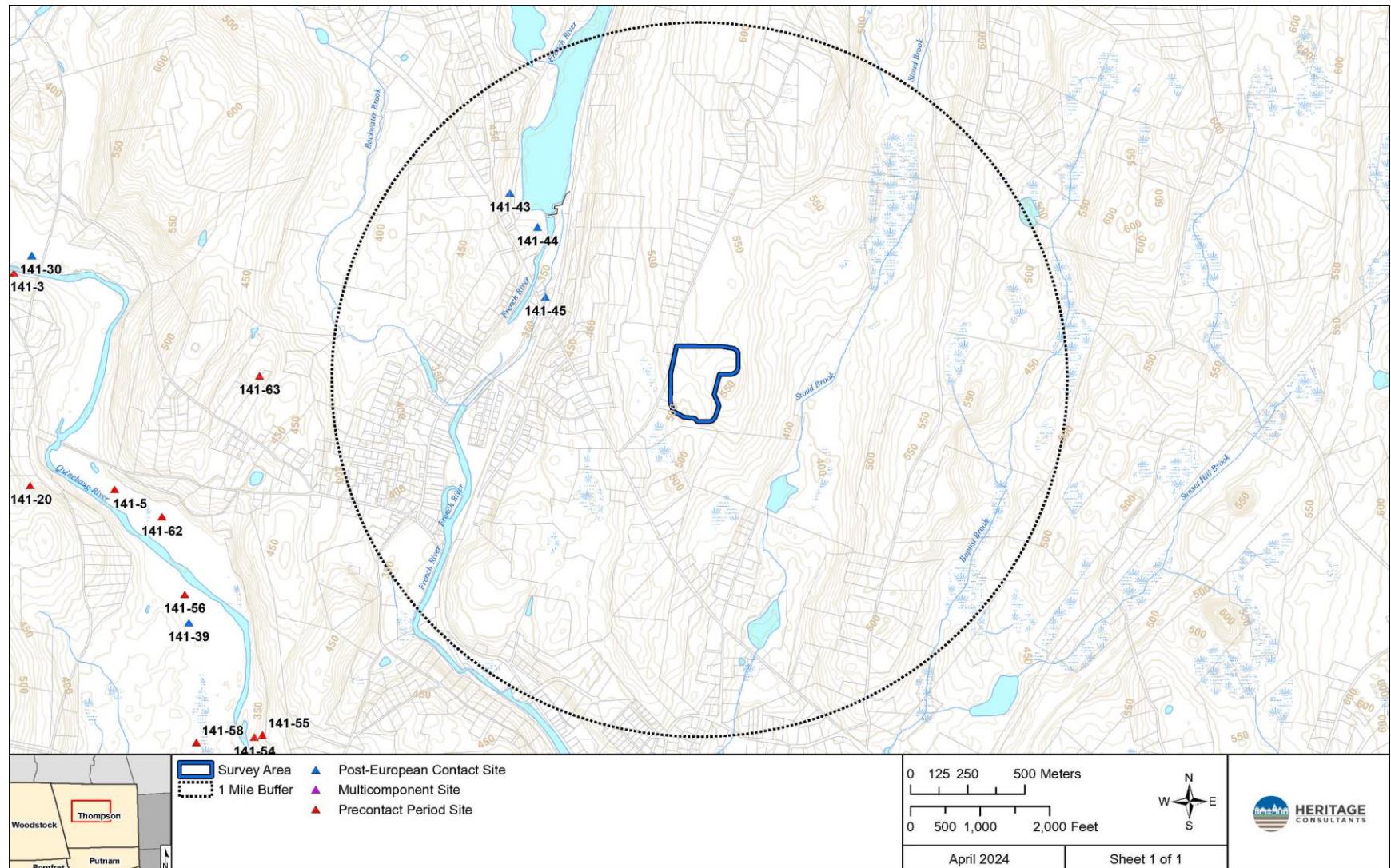


Figure 10. Digital map depicting the location of previously identified archaeological sites in the vicinity of Thompson, Connecticut.

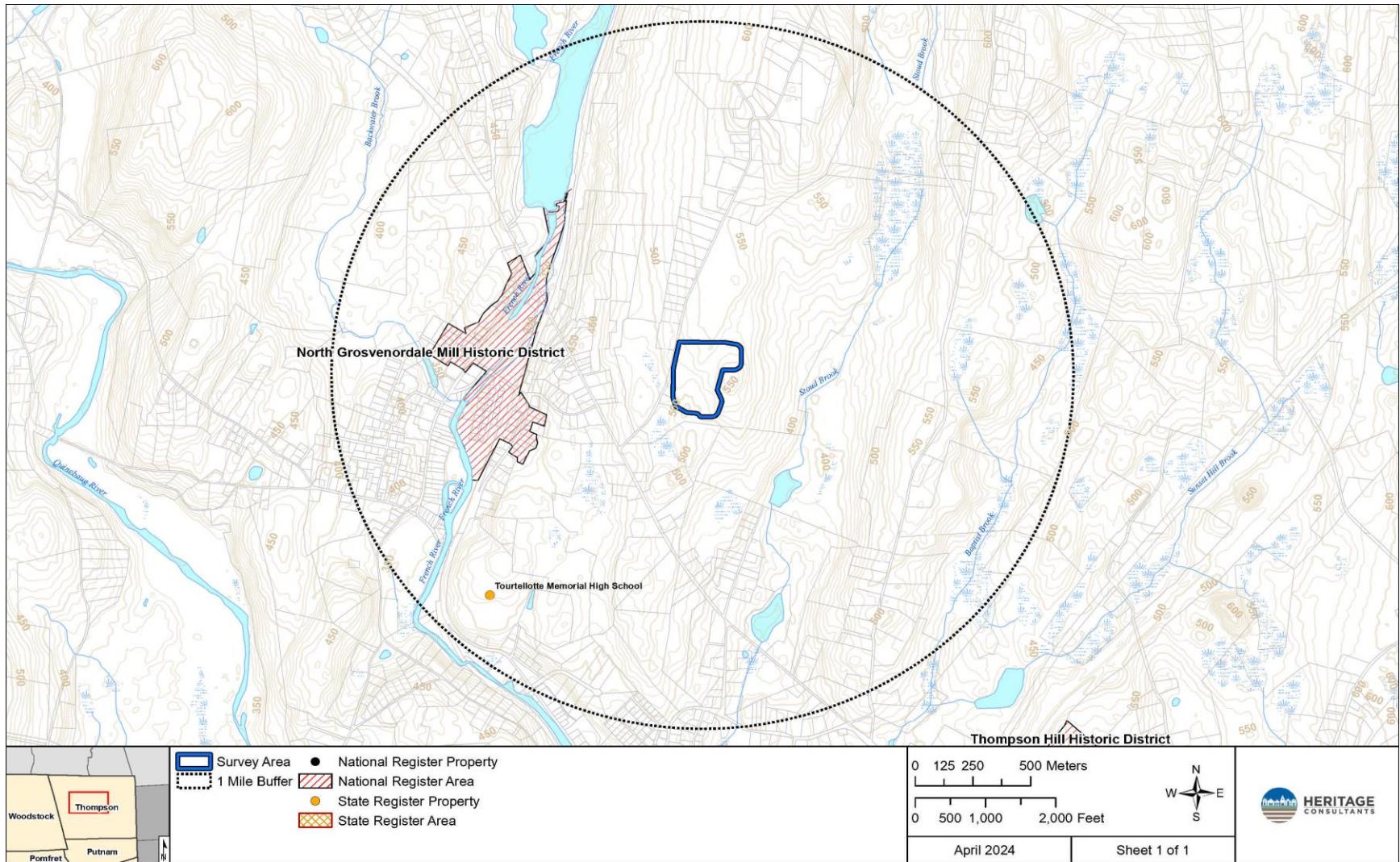


Figure 11. Digital map depicting the location of a previously identified National and State Register of Historic Places properties in the vicinity of the project parcel in Thompson, Connecticut.

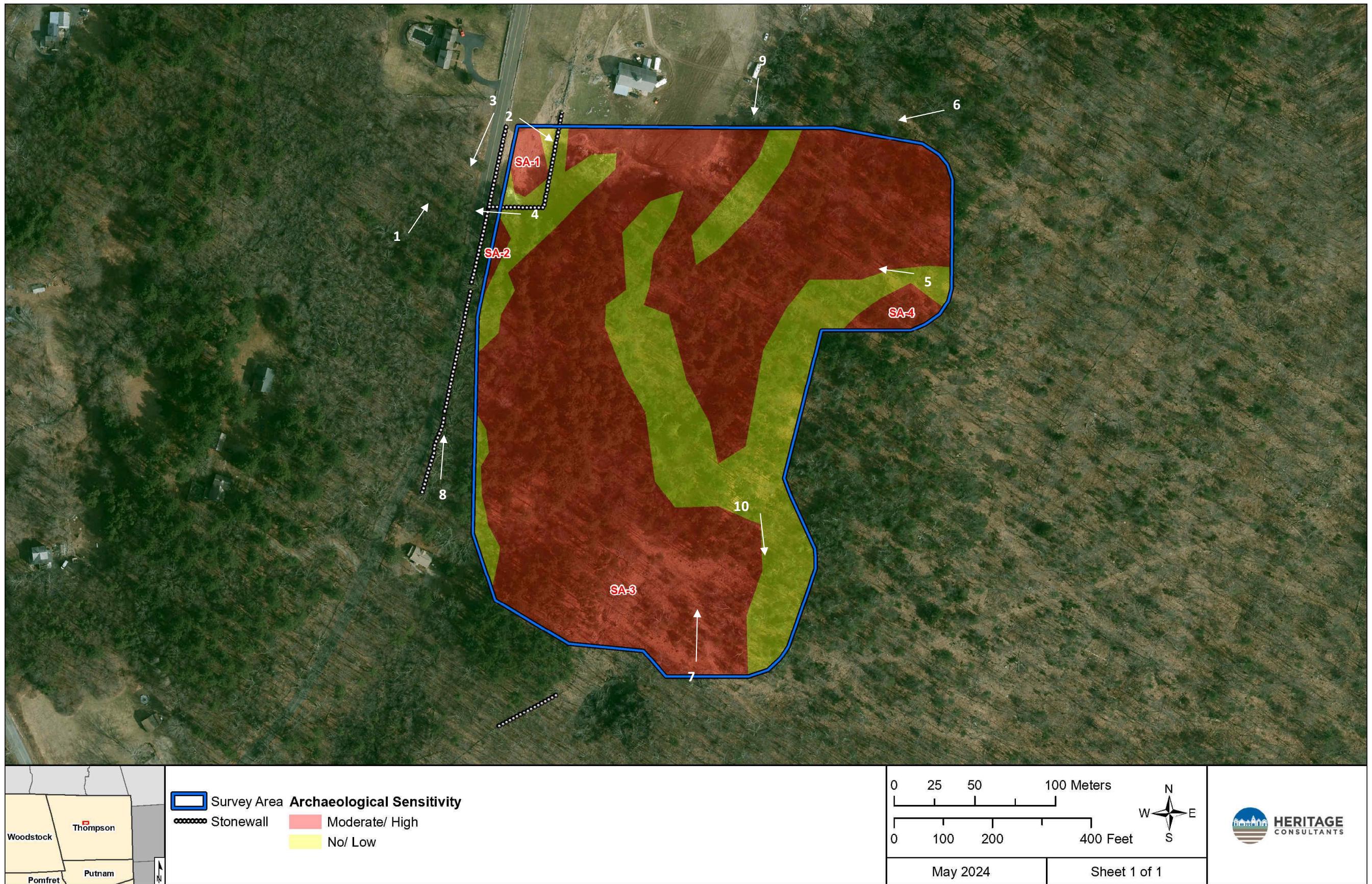


Figure 12. Excerpt from a 2019 aerial photograph depicting moderate/high archaeologically sensitive areas and the location of directional arrows of photo points taken for the Solar Center in Thompson, Connecticut.

Photo 1. Overview photo of the northwestern portion of the project area. Note the stone wall located on the east side of Pompeo Road. Note the open agricultural fields and barn located outside the project area to the north. Photo taken facing northeast.

Photo 2. Overview photo of the northern portion of the project area in the open agricultural fields. Note the bedrock outcrops and the upward slope leading to the pine tree line. Photo taken facing southeast.

Photo 3. Overview photo of wetlands near Sensitivity Area 1. Photo taken facing southwest.

Photo 4. Overview photo of wetlands adjacent to Sensitivity Area 2. Photo taken facing west.

Photo 5. Overview photo of Sensitivity Area 4. Photo taken facing west.

Photo 6. Overview photo of Sensitivity Area 3. Photo taken from the northeast corner of the project area facing southwest.

Photo 7. Overview photo of Sensitivity Area 3. Photo taken from the southern end of the project area facing north.

Photo 8. Overview photo of Sensitivity Area 3. Photo taken from the western edge of the project area facing north.

Photo 9. Overview photo of logging road, one of several logging roads present with the project area. Photo taken from the north end of the project area facing south.

Photo 10. Overview photo of the sloping terrain at the southeastern portion of the project area. Photo taken facing south.