

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

October 4, 2023

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Cellco Partnership d/b/a Verizon Wireless – Petition for a Declaratory Ruling on the Need to Obtain a Certificate for the Installation of a Wireless Telecommunications Facility at 19 Doubling Road, Greenwich, Connecticut

Dear Attorney Bachman:

Enclosed is an original and fifteen (15) copies of the above-referenced Petition for Declaratory Ruling filed on behalf of Cellco Partnership d/b/a Verizon Wireless for the installation of a wireless telecommunications facility at 19 Doubling Road, Greenwich, Connecticut. Also enclosed is a \$625.00 check for the filing fee.

Thank you in advance for your assistance and cooperation.

Sincerely,

Kenneth C. Baldwin

**Enclosures** 

#### STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

| IN:   | F |
|-------|---|
| TTA . |   |
|       |   |

A PETITION OF CELLCO PARTNERSHIP : PETITION NO. \_\_\_\_

D/B/A VERIZON WIRELESS FOR A

DECLARATORY RULING ON THE NEED
TO OBTAIN A SITING COUNCIL

CERTIFICATE FOR THE INSTALLATION

OF A WIRELESS TELECOMMUNICATIONS

FACILITY AT 19 DOUBLING ROAD,

GREENWICH, CONNECTICUT CONNECTICUT CONNECTICUT

#### PETITION FOR A DECLARATORY RULING: INSTALLATION HAVING NO SUBSTANTIAL ADVERSE ENVIRONMENTAL EFFECT

#### I. Introduction

Pursuant to Sections 16-50j-38 and 16-50j-39 of the Regulations of Connecticut State Agencies ("R.C.S.A."), Cellco Partnership d/b/a Verizon Wireless ("Cellco") hereby petitions the Connecticut Siting Council (the "Council") for a declaratory ruling ("Petition") that no Certificate of Environmental Compatibility and Public Need ("Certificate") is required under Section 16-50k(a) of the Connecticut General Statutes ("C.G.S.") for the installation of a wireless telecommunications facility on the roof of the Greenwich Country Club ("GCC") clubhouse. The GCC clubhouse, golf course, surface parking areas and related site improvements are located on an approximately 165-acre parcel at 19 Doubling Road in Greenwich, Connecticut (the "Property"). See Attachment 1 —Site Schematic Map (Aerial Photograph). The Property is owned by GCC.

The Property is in Greenwich's RA-1 Residential zone district and is surrounded by low-density residential uses. Cellco refers to its proposed facility as its "Greenwich 4 Facility". The

Greenwich 4 Facility will provide Cellco customers with improved wireless service on the Property and surrounding residential areas.

#### II. Proposed Construction Activity

The proposed Greenwich 4 Facility will consist of the installation of a total of nine (9) panel type antennas and six (6) remote radio heads ("RRHs"). Six (6) antennas and three (3) RRHs would be attached to metal frame pipe mast support structure in the western portion of the clubhouse roof (Enclosure No. 1). Three (3) antennas and three (3) RRHs would be attached to metal frame pipe mast support structure in the eastern portion of the clubhouse roof (Enclosure No. 2). Both antenna pipe mast support structures would be surrounded by radio frequency ("RF") transparent screening enclosures designed to match the existing chimneys on the clubhouse building. The top of antenna screening Enclosure No. 1 would extend approximately ten (10) feet above the roof peak, 52 feet above ground level ("AGL"). The top of antenna screening Enclosure No. 2 would extend approximately twelve (12) feet above the roof peak, 49 feet 9 inches AGL. Equipment associated with the antennas will be located on the ground adjacent to the northeast corner of the building behind an existing fence. Cellco will share the GCC's on-site generator. (See Cellco's Project Plans included in Attachment 2).

Cellco will provide wireless telecommunications services in its 700 MHz, 850 MHz, 1900 MHz, 2100 MHz and C-Band (3730 MHz and 3625 MHz) frequency ranges from the proposed Greenwich 4 Facility. Specifications for Cellco's antennas and remote radio heads are included in <u>Attachment 3</u>. The Greenwich 4 Facility will be capable of providing 5G wireless services in the future.

<sup>&</sup>lt;sup>1</sup> An existing chimney on the western portion of the roof will be removed and replaced with a faux chimney antenna screening structure (Enclosure No. 1).

Cellco's project engineer, Centek Engineering, prepared a Structural Analysis ("SA") that confirms the antenna mast support structure, associated dunnage, anchoring system and host-building roof are all structurally capable of supporting the Greenwich 4 Facility improvements.

A copy of the SA is included in <u>Attachment 4</u>.

#### III. Discussion

## A. The Proposed Facility Will Not Have A Substantial Adverse Environmental Effect

The Public Utility Environmental Standards Act (the "Act"), C.G.S. § 16-50g et seq., provides for the orderly and environmentally compatible development of telecommunications facilities in the state to avoid "a significant impact on the environment and ecology of the State of Connecticut." C.G.S. § 16-50g. To achieve these goals, the Act established the Council, and requires a Certificate of Environmental Compatibility and Public Need for the construction of cellular telecommunication towers "that may, as determined by the council, have a substantial adverse environmental effect". C.G.S. § 16-50k(a).

#### Physical Environmental Effects

Cellco respectfully submits that the proposed Greenwich 4 Facility will not involve a significant impact on the physical and environmental characteristics of the Property or the surrounding community. All roof-top improvements associated with the Greenwich 4 Facility will be located behind faux chimney screening enclosures. Cellco's equipment cabinets will be located on the ground adjacent to the east side of the clubhouse building adjacent to the existing GCC mechanical equipment and behind an existing ornamental fence. No tree removal or site grading is required to install Cellco's ground-mounted equipment.

#### Visual Effects

As described above, the antennas, RRHs and antenna pipe mast support structures will be

-3-

located behind radio frequency transparent faux chimney screening enclosures on the roof of the building. The enclosures are designed and painted to match the existing chimneys on the roof of the building. Ground-mounted equipment will be located behind an existing screen fence adjacent to other GCC mechanical equipment. Visual effects associated with the proposed Greenwich 4 Facility would, therefore, be minimal or non-existent. Year-round views of the faux chimney enclosures would be limited primarily to the Property and its immediate surroundings, comparable to the visibility of the existing roof-top chimneys. A Visibility Analysis for the proposed Greenwich 4 Facility improvements is included in Attachment 5.

#### FCC Compliance

Radio frequency ("RF") emissions from the Greenwich 4 Facility will not exceed the maximum permissible exposure limits established by the Federal Communications Commission ("FCC"). Included in <u>Attachment 6</u> is a Far Field RF exposure calculation confirming that the proposed Greenwich 4 Facility will operate well within (7.9%) the FCC safety standards.

#### 4. FAA Notification Not Required

Cellco's proposed facility improvements will not extend above the height of the tallest existing chimney structure on the roof in the center of the building.<sup>2</sup> Therefore, no Federal Airways and Airspace Report was prepared.

#### B. <u>Notice to the Town, Property Owner and Abutting Landowners</u>

On October 4, 2023, a copy of this Petition was sent to Greenwich's First Selectman, Fred Camillo; Patrick LaRow, Greenwich's Director of Planning and Zoning; and Greenwich Country Club, the owner of the Property. Copies of the letters sent to these public officials and

-4-

\_

<sup>&</sup>lt;sup>2</sup> The tallest chimney structure on the roof of the GCC clubhouse extends to a height of 56 feet AGL (See Attachment 2, Plan Sheet C-3).

the Property owner are included in <u>Attachment 7</u>.

A copy of this Petition was also sent to the owners of land considered to abut the Property. A sample abutter's notice letter and the list of those abutting landowners to whom notice was sent is included in Attachment 8.

#### IV. Conclusion

Based on the information provided above, Cellco respectfully requests that the Council issue a determination, in the form of a declaratory ruling, that the installation of the proposed rooftop metal frame pipe mast support structures and faux chimney screening structures described above, will not have a substantial adverse environmental effect and does not require the issuance of a Certificate of Environmental Compatibility and Public Need pursuant to § 16-50k of the General Statutes.

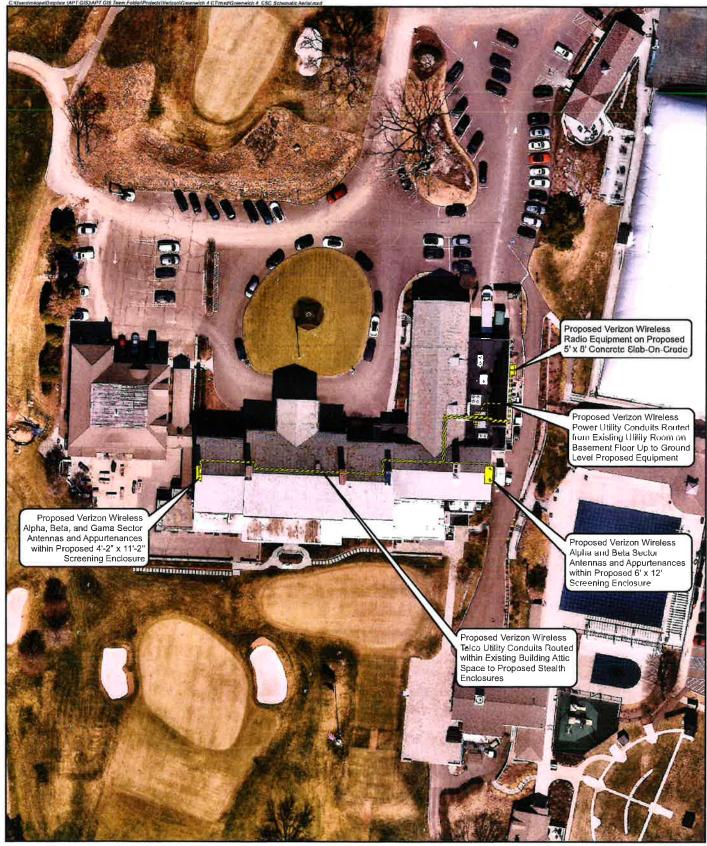
Respectfully submitted,

CELLCO PARTNERSHIP d/b/a VERIZON WIRELESS

By Kunie gmu

Kenneth C. Baldwin, Esq.

Robinson & Cole LLP


280 Trumbull Street

Hartford, CT 06103-3597

(860) 275-8200

Its Attorneys

# **ATTACHMENT 1**



#### Legend

Proposed Verizon Wireless Equipment
==== Proposed Verizon Wireless Conduit

#### Mep Notes: Base Map Source: 2023 Nearmap Aerial Imagery Map Scale: 1 inch = 70 feet Map Date: July 2023

#### Site Schematic

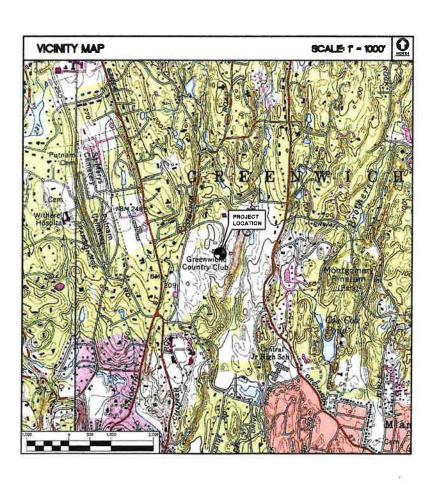
Proposed Wireless
Telecommunications Facility
Greenwich 4 CT
19 Doubling R oad
Greenwich, Connecticut





## **ATTACHMENT 2**

# verizon


# GREENWICH 4 CT 19 DOUBLING ROAD GREENWICH, CT 06830

| SITE DIR                                                                                                                      | ECTIONS                                                                                                                   |     |                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------|
| FROM                                                                                                                          | 20 ALEXANDER DRIVE,<br>WALLINGFORD, CT                                                                                    | TO: | 19 DOUBLING ROAD<br>GREENWICH, CT 0883                                                           |
| 2. TURN RIGHT 3. TURN LEFT 4. TURN RIGHT 5. TURN RIGHT 6. TURN RIGHT 7. MERGE ONT 8. TAKE EXIT 3 9. TURN RIGHT 10. TURN RIGHT | ONTO N COLONY RD TO MERGE ONTO CT-15 N TOWARD HARTFORD ) CT-15 S 1 OT NORTH STREET ONTO DOUBLING ROAD ONTO GOLD CLUB ROAD |     | 0.30 M<br>0.10 M<br>0.40 M<br>0.20 M<br>0.30 M<br>0.20 M<br>0.01 M<br>2.80 M<br>0.20 M<br>0.20 M |

#### SITE INFORMATION

THE SCOPE OF WORK SHALL GENERALLY INCLUDE:

- THE PROPOSED CELLCO PARTINERSHIP ANTENNA INSTALLATION TO CONSIST OF A TOTAL OF (3) ANTENNA SECTORS INCLUDING A TOTAL OF (3) ANTENNAS AND (6) ANTENNAS WITH INTEGRATED RRHs. ADDITIONAL APPURITENANCES INCLIDE (8) REMOTE RADIO HEADS (RRHs), (2) OVER VOLTAGE PROTECTION BOX (OVP) AND ASSOCIATED CASILES.
- POWER AND TELCO UTILITIES SHALL BE ROUTED FROM EXISTING DEMARCS WITHIN THE SUBJECT BUILDING, FINAL UTILITY DEMARC LOCATIONS AND ROUTING TO BE DETERMINED DURING CONSTRUCTION DOCUMENT PHASE OF THE PROJECT, AND WILL BE COORDINATED WITH BUILDING CHAPTER AND LOCAL UTILITY COMPANY REGULARIEMITS.
- EQUIPMENT LAYOUT SHOWN HEREIN IS PRELIMINARY AND SCHEMATIC. FINAL LAYOUT TO BE DETERMINED DURING THE CONSTRUCTION PHASE OF THE PROJECT.
- THE PROPOSED CELLCO PARTNERSHIP ANTENNA RF TRANSPARENT SCREENING ENCLOSURES SHALL MATCH THE EXISTING BUILDING FACADE IN COLOR AND ARCHITECTURAL APPEARANCE.
- THE PROPOSED CELLCO PARTINERSHIP ANTENNA RF TRANSPARENT SCREENING ENCLOSURE DIMENSIONS SHOWN ARE APPROXIMATE AND WILL BE FINALIZED DURING THE CONSTRUCTION DOCUMENT PHASE OF THE PROJECT
- 6. THE EXISTING GENERATOR IS TO BE RELACHED AND REPLACED, REPLACEMENT GENERATOR TO SERVE EXISTING BUILDING AND PROPOSED LESSEE EQUIPMENT, LANDLORD AND LESSEE TO COORDMATE NEW GENERATOR SIZE. CONTRACTOR IS RESPONSIBLE FOR, BUT NOT LIMITED TO, REMOVING, SEES ASSISSE BRUTINGS, AND CONSMITTING AND EXPENSES AND REPORTED FOR THE PROPERTY OF THE PROPER



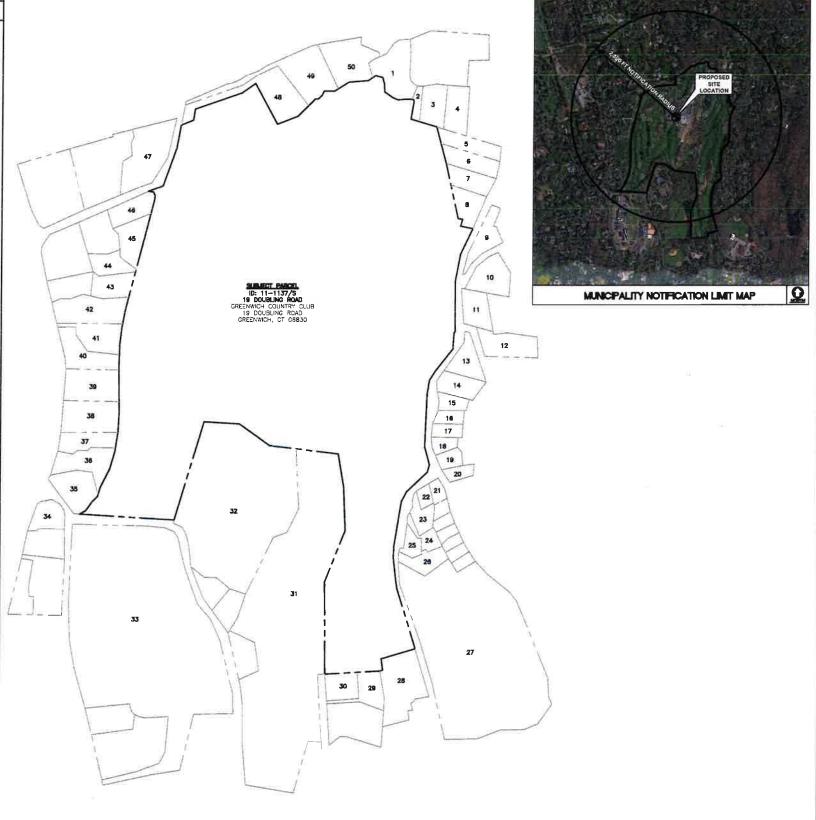
#### GENERAL NOTES:

 ALL WORK SHALL BE IN ACCORDANCE WITH THE 2021 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2022 CONNECTICUT SUPPLEMENT, INCLUDING THE TAY/EA-222 REVISION "H" "STRUCTURAL STANDARDS FOR ANTENNA SUPPORTING STRUCTURES, ANTENNAS, AND SALL WIND TURBENE SUPPORT STRUCTURES.", 2022 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.

# SITE NAME: SITE NAME: SITE ADDRESS: 19 DOUBLING ROAD GREENWICH, CT 06830 PROPERTY OWNER: 19 DOUBLING ROAD GREENWICH, COUNTRY CLUB 19 DOUBLING ROAD GREENWICH, CT 06830 LESSEE/TENANT: CELLCO PARTINERSHIP d.b.a. VERIZON WRELESS 20 ALEXANDER DIRNE, FLOOR 2 WALLINGFORD, CT 06492 VERIZON SITE ACQUISITION CONTACT: DAVID TRIVIAN SAI COMBUNICATIONS LLC (603) 212—8328 LEGAL/REGULATORY COUNSEL: KENNETH C. BALDWIN, ESQ. ROBINSON & COLE (860) 275—8345 PROPOSED TOWER COORDINATES: LATTUDE 41"—03"—23.21" LONGTUDE 73—36"-41.36" GROUND ELEVATION: 198.61'\$\pm\$ AM.S.L COORDINATES AND GROUND ELEVATION REFERENCED FROM FAR 2C CERTIFICATION PREPARED BY CENTER VENINEERIND FOR VERIZON WIRELESS, DATE (REVISED)

| SHE  | ET INDEX                                     |            |
|------|----------------------------------------------|------------|
| SHT. | DESCRIPTION                                  | REV<br>NO. |
| T-1  | TITLE SHEET                                  | 1          |
| C-1  | ABUTTERS MAP AND LIST                        | 1          |
| C-2  | ROOF AND EQUIPMENT PLANS                     | 1          |
| C-3  | NORTH BUILDING ELEVATION                     | 1          |
| C-4  | PARTIAL WEST BUILDING ELEVATION & RF CHIMNEY | 1          |
| C-5  | ANTENNA ENCLOSURE ELEVATIONS                 | 1          |

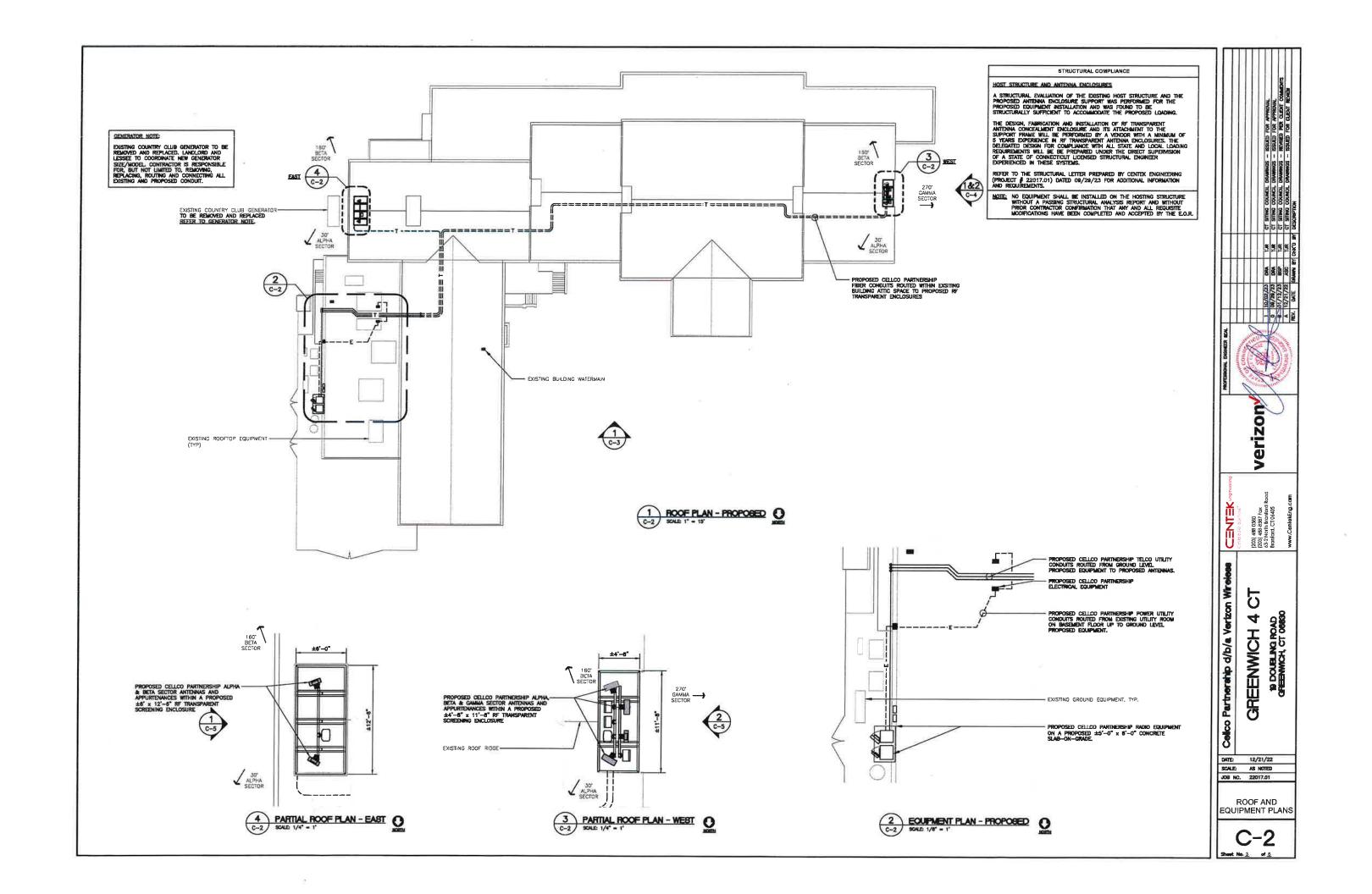
| I |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      | ŀ    |            |      |                   | I              | İ        |                    | ١ |
|---|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------------|------|-------------------|----------------|----------|--------------------|---|
|   |          | PROFESSIONAL ENGRETR SEAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |      |            | 12   |                   |                |          |                    |   |
| 5 |          | To the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | F    |            |      |                   |                |          |                    | l |
|   |          | THE PERSON NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | -    |            |      |                   |                |          |                    | l |
|   |          | The state of the s |        | -    |            |      |                   |                |          |                    | ı |
|   | 201:10:  | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |      |            |      |                   |                |          |                    | П |
|   | NOTION I | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/01  | 16/6 | į          | 9    | OT OTHER OF MAN   | - Constitution | 200      |                    | Н |
|   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -    | •          | 1    | C SHIPS COUNTY    | - COMMISSION   | 9        | TOR ATTRIONAL      |   |
|   | 1        | した。大人は一人に下                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08/    | 6/23 | DRA<br>DRA | T.F. | CH STREET COLMET  | DEVAMMES       | CONSSI . | FOR APPROVAL       |   |
|   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1077   | 2/23 | 989        | 3    | CT STIMO COUNCIL  | DRAWINGS       | REMSED.  | PER CLEAT COMMENTS | l |
|   | )        | The state of the s | A 12/2 | 1/22 | ASC        | 37   | CT STILLS COUNCIL | DRAMMOS        | CONSSI   | FOR CLEAT REMEW    | ı |
|   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |            |      |                   |                |          |                    |   |

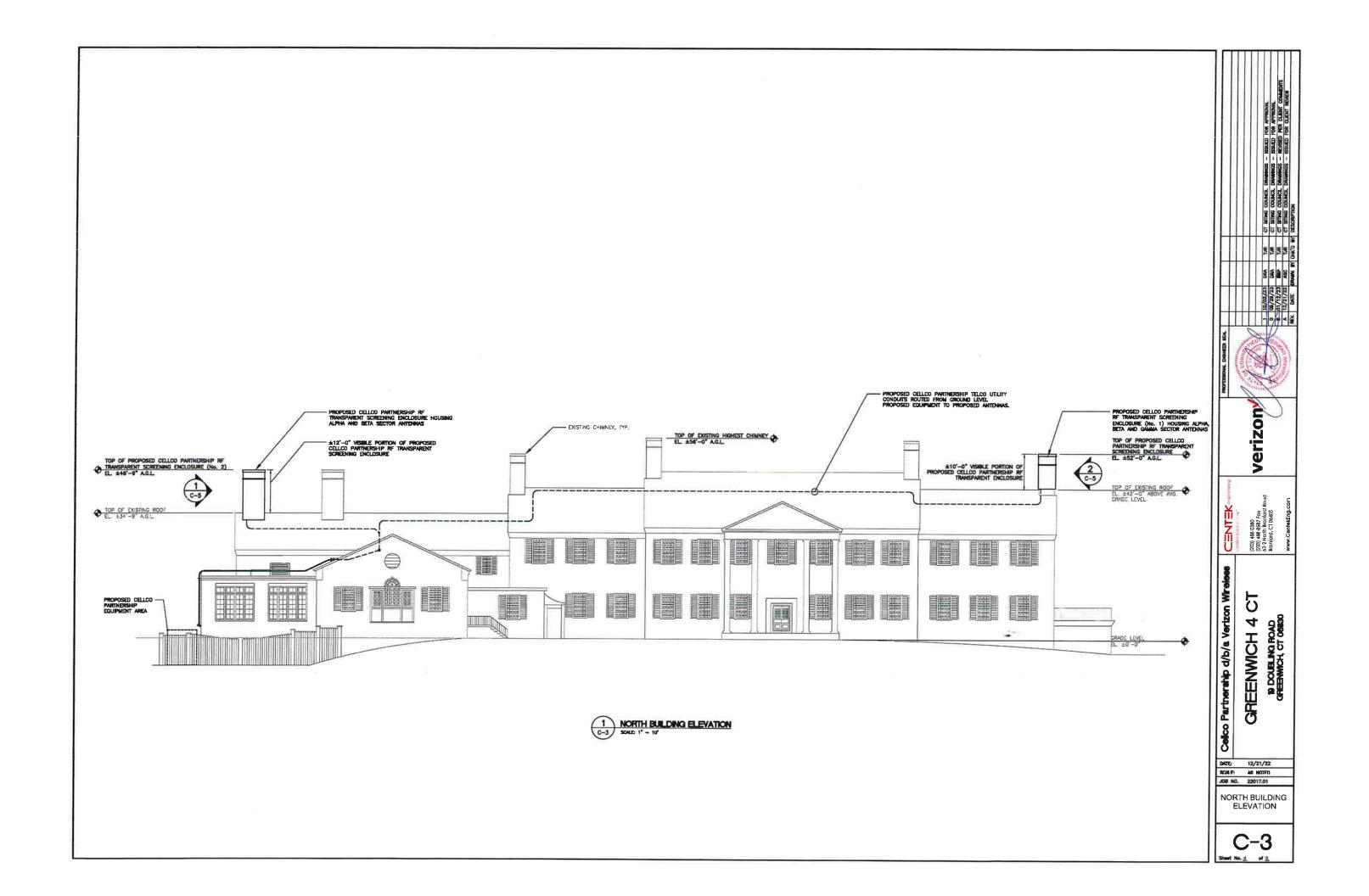

GREENWICH 4

DATE: 12/21/22 SCALE: AS NOTED JOB NO. 22017.01

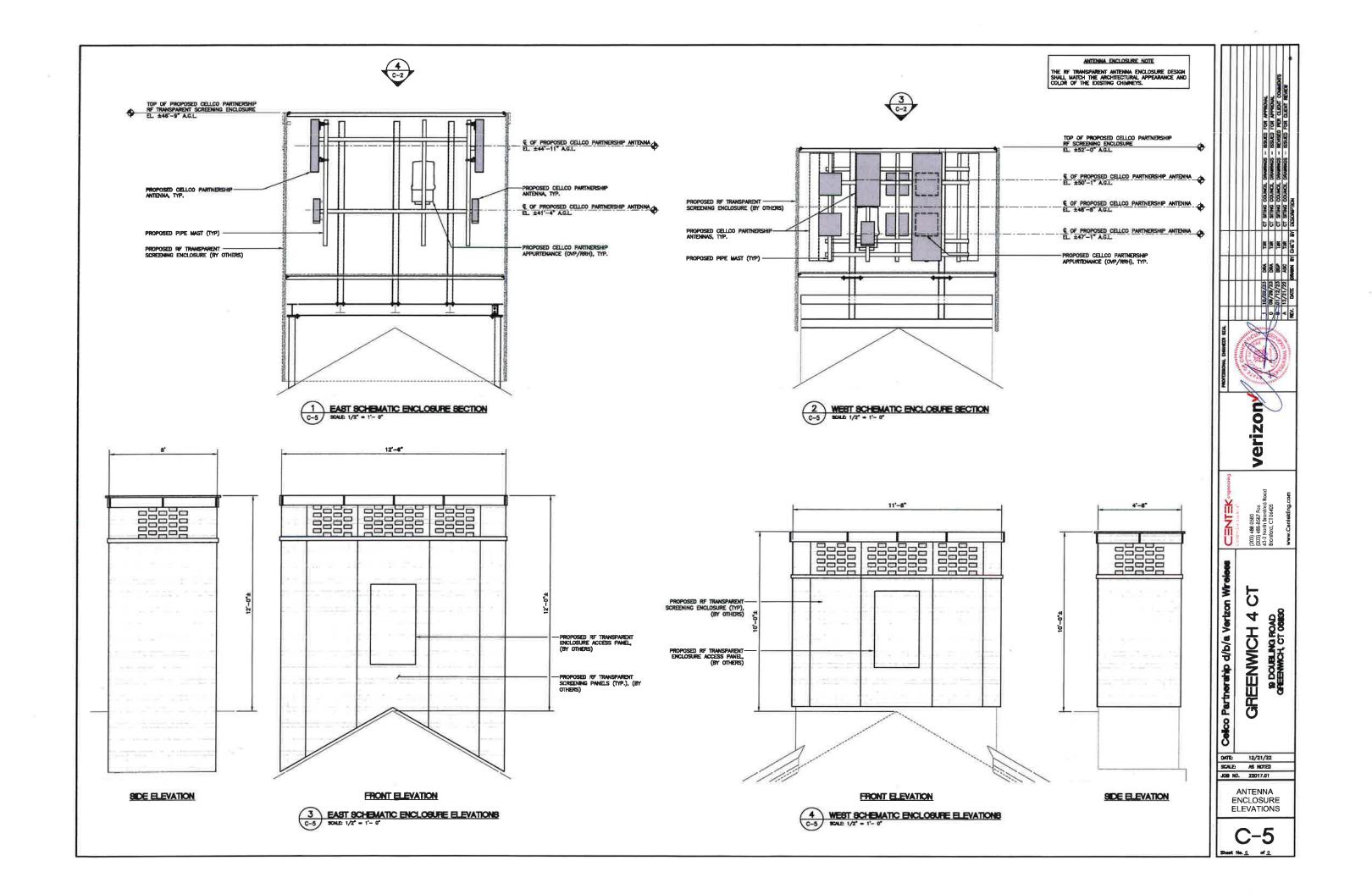
TITLE SHEET

T-1


|     |           |                          | ABUTTERS LIST                                                   |                                           |
|-----|-----------|--------------------------|-----------------------------------------------------------------|-------------------------------------------|
| ŒF. | ID        | ADDRESS                  | OWNER                                                           | MAILING ACORESS                           |
| 1   | 11-1001   | 25 FAIRWAY LANE          | 25 FARRWAY LANE, ILC                                            | 29 FARMAY LANE, GREENMICH, CT 08830       |
| 2   | 11-1021   | FAIRWAY LANE             | CLT FAIRWAY LLC C/O JAMES GARDINER                              | 115 NUTMEG LANE, FARFRELD, CT 08824       |
| ,   | 11-102B   | S FAIRWAY LAME           | CLT FAIRWAY LLC                                                 | 9 FARWAY LANE, GREENWICH, CT 06824        |
| 4   | 11-1029   | 7 FAIRNAY LAME           | KAREN GIANUZZI                                                  | 7 FAIRWAY LANE, GREENWICH, CT 08824       |
| 5   | 11-1272   | 160 STANNICH ROAD        | CAROL R GILBRIDE                                                | 180 STANWICH ROAD, GREENWICH, CT 06830    |
| 6   | 11-1295   | 158 STANWICH ROAD        | ERIC & KAREN HOPP                                               | 158 STANWICH ROAD, GREENWICH, CT 06830    |
| 7   | 11-1011   | 154 STANWICH ROAD        | Horacio Martin Robredo & Natalia Garcia Lopez                   | 154 STANWICH ROAD, GREENWICH, CT 04830    |
| 8   | 11-1229   | 150 STANWICH ROAD        | VINAYKUMAR & ARUNA PATWARDHAN                                   | 150 STANWICH ROAD, GREENWICH, CT 04830    |
| 9   | 08-2404   | 147 STANWICH ROAD        | JOSEPH S. & WENDY MALLORY III                                   | 147 STANNICH ROAD, GREENWICH, CT 04830    |
| 10  | 08-3483   | 1 PINE RIDGE ROAD        | PETER D. CLOSE                                                  | 1 PINE RIDGE ROAD, GREENWICH, CT 06830    |
| 11  | 08-3877   | 133 STANNICH ROAD        | EDINEIA BICKERSTAFF                                             | 133 STANWICH ROAD, GREENWICH, CT 08830    |
| 12  | 08A-1091  | 26 JEFFERY ROAD          | PRUDY & ALFRED SOFER                                            | 26 JEFFERY ROAD, GREENWICH, CT 06830      |
| 13  | 08-3696   | 127 STANWICH ROAD        | ROBERT GOTTLIES                                                 | 127 STANWICH ROAD, GREENWICH, CT 08830    |
| 14  | 08-3697   | 123 STANNICH ROAD        | ANTHONY & CLAUDIA BUETI                                         | 123 STANNICH ROAD, GREENWICH, CT 08830    |
| 15  | 08-3981   | 119 STANWICH ROAD        | ANDREW & ISABELLA LEAVY                                         | 119 STANWICH ROAD, GREENWICH, CT 08830    |
| 16  | 08A-1000  | 117 STANWICH ROAD        | KENNETH A. & MARGARET MULLER JR                                 | 117 STANNICH ROAD, OREENWICH, CT 06830    |
| 17  | 08-3980   | 115 STANWICH ROAD        | CHARLES SETON V. HENRY &                                        | 115 STANWICH ROAD, GREENWICH, CT 06830    |
| •   |           |                          | MOLLY MCAULIFFE URELL-POE                                       |                                           |
| 8   | 08-3978   | 113 STANWICH ROAD        | ANTHONY & JENNIFER FEBLES                                       | 113 STANWICH ROAD, GREENWICH, CT 08830    |
| 9   | 08-3979   | 111 STANWICH ROAD        | DIONISIO FERENC & MARIANA TANNER                                | 111 STANWICH ROAD, GREENWICH, CT 06830    |
| 20  | 08-3977   | 323 ORCHARD STREET       | KATHERIN ALEXANDRA MENACHO DE SAOUD                             | 323 ORCHARD STREET, GREENWICH, CT 06830   |
| 21  | 08-3758   | 109 STANNICH ROAD        | MARK & PAULA KANDL                                              | 109 STANWICH ROAD, GREENWICH, CT 08830    |
|     | 08-3757   | 107 STANWICH ROAD        | RYAN BENINCASA &                                                | 107 STANWICH ROAD, GREENWICH, CT 08830    |
| 2   |           | VCCV 10 /C               | NOELLE RADCLIFFE WINICKI                                        |                                           |
| 23  | 06-3759   | 105 STANWICH ROAD        | JONATHAN B OSSER                                                | 105 STANWICH ROAD, GREENWICH, CT 08830    |
| 4   | 08A-1711  | 101 STANWICH ROAD        | NINA MONTI & MICHAEL LULKIN                                     | 101 STANWICH ROAD, GREENWICH, CT 04830    |
| 15  | 08-3608   | 98 STANWICH ROAD         | MICHAEL & IRINA STRAW                                           | 99 STANNICH ROAD, GREENWICH, CT 00830     |
| 26  | 08-3607   | 95 STANWICH ROAD         | ROBERT & RACHEL KOVEN                                           | 95 STANWICH ROAD, GREENWICH, CT 08830     |
| 27  | 08-4508/S | 9 INDIAN ROCK LANE       | TOWN OF GREENWICH C/O<br>FINANCE DEPTARTMENT                    | 101 FIELD POINT ROAD, GREENWICH, CT 00030 |
| 28  | 11-1094   | BO STANFICH ROAD         | STEPHEN M. NAPIER TR C/O<br>THE STANMICH ROAD REAK ESTATE TRUST | P.O. BOX 5178, GREENWICH, CT 08830        |
| .9  | 11-1094   | 2 CARDINAL ROAD          | 2 CARDINAL RD LLC                                               | 401 OLD CHURCH RD, GREENWICH, CT 08830    |
| 10  | 11-2020   | 21 CARDINAL ROAD         | GREENWICH COUNTRY DAY SCHOOL INC                                | 401 OLD CHURCH RD, GREENWICH, CT 06830    |
| 1   | 11-2021   | 47 FARFIELD ROAD         | GREENWICH COUNTRY DAY SCHOOL INC                                | PO 80X 823, GREENWICH, CT 06836           |
| 2   | 11-4020/S | 23 FAIRFIELD ROAD        | GREENWICH COUNTRY DAY SCHOOL INC                                | PO BOX 623, GREENWICH, CT 06636           |
| 3   | 07-4024/3 | 401 OLD CHURCH ROAD      | GREENWICH COUNTRY DAY SCHOOL INC                                | PO BOX 623, GREENWICH, CT 00836           |
| 4   | 07/2686/S | 444 OLD CHURCH ROAD      | 444 OLD CHURCH ROAD LLC                                         | 444 OLD CHURCH ROAD, GREENWICH, CT 06830  |
| 5   | 11-1013   | 330 NORTH STREET         | JOHN & MACY MACASKILL                                           | 3 FAIRFIELD ROAD, GREENWICH, CT 06830     |
| 6   | 11-2208   | 336 NORTH STREET         | SCOTT & VANESSA ROSEN                                           | 14 GOLF CLUB ROAD, GREENWICH, CT 06830    |
| 7   | 11-2891   | 334 NORTH STREET         | JERRY D. & MARJORIE A. LEE                                      | 18 GOLF CLUB ROAD, GREENWICH, CT 06830    |
| •   | 11-2308   | 340 NORTH STREET         | KATHLEEN CRAIG KNIGHT                                           | 340 NORTH STREET, GREENWICH, CT 08830     |
| 9   | 11-2507   | 344 NORTH STREET         | HELEN W. HALL TR                                                | 344 NORTH STREET, GREENWICH, CT 08830     |
| 0   | 11-1103   | 346 NORTH STREET         | AUGUST I. & JELL DUPONT                                         | 346 NORTH STREET, GREENWICH, CT 08830     |
| 1   | 11-2066   | NORTH STREET             |                                                                 | 6 GOLF CLUB ROAD, GREENWICH, CT 06830     |
| 2   | 11-1481   | 352 NORTH STREET         | MAJORIE & GUY L. SMITH IV                                       | 352 NORTH STREET, GREENWICH, CT 08830     |
| 3   |           | 38 GOLF CLUB ROAD        | ELLEN BI GRIFFIN                                                | 36 GOLF CLUB ROAD, GREENWICH, CT 08830    |
| 4   | 11-1480   | the about Charles States | ANDREW MARCUS                                                   |                                           |
|     | 11-3212   | 7 DOUBLING ROAD          |                                                                 | 7 DOUBLING ROAD, CREENWICH, CT 08830      |
| 5   | 11-1464   | 10 GOLF CLUB ROAD        | RICHARD H. & JOAN L. WYNN                                       | 10 GOLF CLUB ROAD, GREENWICH, CT 08830    |
|     | 11-1652   | 15 DOUBLING ROAD         | MARY ANN GRABAVOY                                               | 15 DOUBLING ROAD, GREENWICH, CT 06830     |
| 7   | 11-3235   | 15 DOUBLING ROAD         | GPFS LLC                                                        | 16 DOUBLING ROAD, GREENWICH, CT 08830     |
| 8   | 11-3236   | 29 DOUBLING ROAD         | 29 DOUBLING ROAD LLC                                            | 29 DOUBLING ROAD, GREENWICH, CT 06830     |
| 9   | 11-2161   | 31 DOUBLING ROAD         | AMOT CHRISTINE CARTER TR ET AL.                                 | 31 DOUBLING ROAD, GREENWICH, CT 06830     |
| 0   | 11-1680   | 29 FAIRWAY LANE          | BARTON J. & ELIZABETH GOODWIN                                   | 29 FAIRWAY LANE, GREENWICH, CT 08830      |




1 ABUTTERS MAP OPPOSITION




C-1









# **ATTACHMENT 3**

#### NNH4-65B-R6H4



### 12-port sector antenna, 4x 698–896 and 8x 1695–2360 MHz, 65° HPBW, 6x RET

- Features broadband Low Band (698-896 MHz) and High Band (1695-2360 MHz) arrays for 4T4R
   (4X MIMO) capability for Band 14, AWS, PCS and WCS applications
- Non-stacked high band array design provides higher gain and narrower vertical beamwidth than traditional antenna designs
- Independent tilt for all arrays
- Array configuration provides capability for 4T4R (4x MIMO) on Low band and Dual 4T4R (4x MIMO) on High band
- Optimized SPR performance across all operating bands
- Excellent wind loading characteristics
- Supports re-configurable antenna sharing capability enabling control of the internal RET system using up to two separate RET compatible OEM radios

#### General Specifications

Antenna Type Sector

**Band** Multiband

**Color** Light gray

**Grounding Type**RF connector inner conductor and body grounded to reflector and mounting

bracket

Performance Note Outdoor usage | Wind loading figures are validated by wind tunnel

measurements described in white paper WP-112534-EN

Radome Material Fiberglass, UV resistant

Radiator Material Low loss circuit board

Reflector Material Aluminum

**RF Connector Interface** 4.3-10 Female

RF Connector Location Bottom

RF Connector Quantity, high band

RF Connector Quantity, low band

RF Connector Quantity, total 12

#### Remote Electrical Tilt (RET) Information

**RET Hardware** CommRET v2

**RET Interface** 8-pin DIN Female | 8-pin DIN Male

**RET Interface, quantity** 2 female | 2 male

COMMSCOPE®

#### NNH4-65B-R6H4

Input Voltage

10-30 Vdc

**Internal RET** 

High band (4) | Low band (2)

Power Consumption, active state, maximum

8 W

Power Consumption, idle state, maximum

1 W

**Protocol** 

3GPP/AISG 2.0 (Multi-RET)

**Dimensions** 

Width

498 mm | 19.606 in

Depth

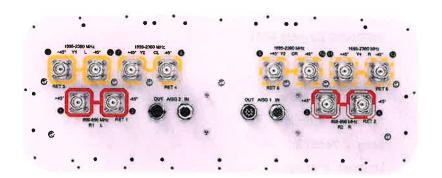
197 mm | 7.756 in

Net Weight, antenna only

34 kg | 74.957 lb

Length

1828 mm | 71.969 in


#### Array Layout



| Array     | Freq (MHz) | Conns | RET<br>(MRET) | AISG RET UID            |
|-----------|------------|-------|---------------|-------------------------|
| R1        | 698-896    | 1-2   | 1             | CPxxxxxxxxxxxxxmm.1     |
| R2        | 698-896    | 3-4   | 2             | CPxxxxxxxxxxxxxxxxxmm.2 |
| Y1        | 1695-2360  | 5-6   | 3             | CPxxxxxxxxxxxxxxxxmm.3  |
| Y2        | 1695-2360  | 7-8   | 4             | CPxxxxxxxxxxxxxxmm.4    |
| <b>Y3</b> | 1695-2360  | 9-10  | 5             | CPxxxxxxxxxxxxxxxxmm.5  |
| Y4        | 1695-2360  | 11-12 | 6             | CPxxxxxxxxxxxxxxxxmm.6  |

Left Right Bottom (Sizes of colored boxes are not true depictions of array sizes)

#### Port Configuration



#### **Electrical Specifications**

Impedance

**Operating Frequency Band** 

**Polarization** 

Total Input Power, maximum

50 ohm

1695 - 2360 MHz | 698 - 896 MHz

±45°

900 W @ 50 °C

#### **Electrical Specifications**

| Frequency Band, MHz                | 698-806    | 806-896    | 1695-1880  | 1850-1990  | 1920-2180  | 2300-2360  |
|------------------------------------|------------|------------|------------|------------|------------|------------|
| Gain, dBi                          | 14.2       | 14.8       | 16.7       | 17.3       | 17.9       | 18.4       |
| Beamwidth, Horizontal,<br>degrees  | 68         | 64         | 70         | 67         | 61         | 59         |
| Beamwidth, Vertical, degrees       | 11.5       | 10.2       | 6.9        | 6.5        | 6          | 5.4        |
| Beam Tilt, degrees                 | 2-14       | 2-14       | 2-12       | 2-12       | 2-12       | 2-12       |
| USLS (First Lobe), dB              | 16         | 18         | 16         | 19         | 19         | 19         |
| Front-to-Back Ratio at 180°,<br>dB | 30         | 30         | 33         | 34         | 34         | 34         |
| Isolation, Cross Polarization, dB  | 25         | 25         | 25         | 25         | 25         | 25         |
| Isolation, Inter-band, dB          | 25         | 25         | 25         | 25         | 25         | 25         |
| VSWR   Return loss, dB             | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 |

Page 3 of 5



#### NNH4-65B-R6H4

| PIM, 3rd Order, 2 x 20 W, dBc | -150 | -150 | -150 | -150 | -150 | -150 |
|-------------------------------|------|------|------|------|------|------|
| Input Power per Port at 50°C, | 300  | 300  | 250  | 250  | 250  | 200  |
| maximum, watts                |      |      |      |      |      |      |

#### Electrical Specifications, BASTA

| •                                           | •       |         |           |           |           |           |
|---------------------------------------------|---------|---------|-----------|-----------|-----------|-----------|
| Frequency Band, MHz                         | 698-806 | 806-896 | 1695-1880 | 1850-1990 | 1920-2180 | 2300-2360 |
| Gain by all Beam Tilts,<br>average, dBi     | 13.8    | 14.5    | 16.1      | 16.9      | 17.5      | 18        |
| Gain by all Beam Tilts<br>Tolerance, dB     | ±0.6    | ±0.5    | ±0.7      | ±0.6      | ±0.6      | ±0.5      |
| Beamwidth, Horizontal<br>Tolerance, degrees | ±5.7    | ±3.2    | ±6.4      | ±7.5      | ±5.9      | ±3.6      |
| Beamwidth, Vertical<br>Tolerance, degrees   | ±0.9    | ±0.7    | ±0.5      | ±0.3      | ±0.4      | ±0.2      |
| USLS, beampeak to 20° above beampeak, dB    | 16      | 15      | 12        | 15        | 15        | 16        |
| Front-to-Back Total Power at 180° ± 30°, dB | 20      | 21      | 27        | 26        | 27        | 28        |
| CPR at Boresight, dB                        | 24      | 23      | 19        | 19        | 20        | 17        |
| CPR at Sector, dB                           | 12      | 10      | 7         | 5         | 6         | 8         |

#### Mechanical Specifications

| Effective Projective Area (EPA), frontal | 0.65 m <sup>2</sup>   6.997 ft <sup>2</sup> |
|------------------------------------------|---------------------------------------------|
| Effective Projective Area (EPA), lateral | 0.22 m²   2.368 ft²                         |
| Wind Loading @ Velocity, frontal         | 694.0 N @ 150 km/h (156.0 lbf @ 150 km/h)   |
| Wind Loading @ Velocity, lateral         | 235.0 N @ 150 km/h (52.8 lbf @ 150 km/h)    |
| Wind Loading @ Velocity, maximum         | 900.0 N @ 150 km/h (202.3 lbf @ 150 km/h)   |
| Wind Loading @ Velocity, rear            | 571.0 N @ 150 km/h (128.4 lbf @ 150 km/h)   |
| Wind Speed, maximum                      | 241,402 km/h   150 mph                      |

#### Packaging and Weights

| Width, packed  | 565 mm   22.244 in  |
|----------------|---------------------|
| Depth, packed  | 309 mm   12.165 in  |
| Length, packed | 2035 mm   80.118 in |
| Weight, gross  | 47.6 kg   104.94 lb |

Regulatory Compliance/Certifications



#### NNH4-65B-R6H4

#### Agency

#### Classification

CHINA-ROHS

Above maximum concentration value

ISO 9001:2015

Designed, manufactured and/or distributed under this quality management system

ROHS

Compliant/Exempted





#### Included Products

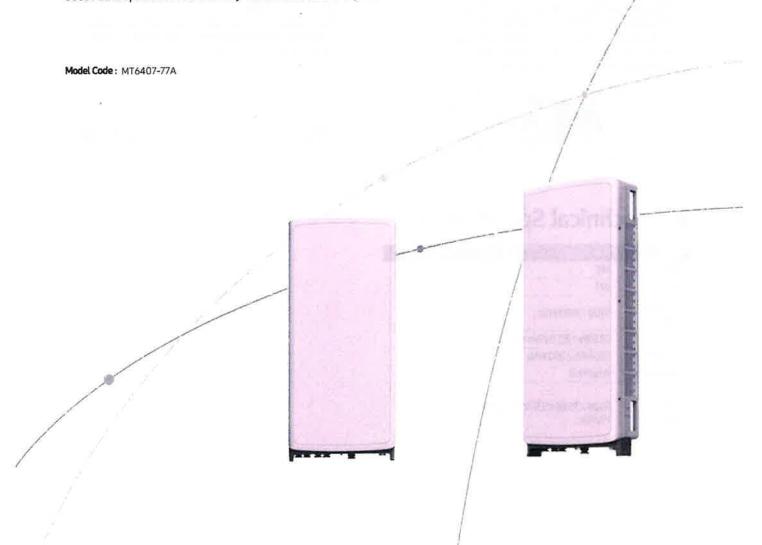
BSAMNT-3

Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members.
 Kit contains one scissor top bracket set and one bottom bracket set.

#### \* Footnotes

**Performance Note** 

Severe environmental conditions may degrade optimum performance



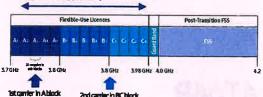

#### SAMSUNG

# SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..




#### Points of Differentiation

#### **Wide Bandwidth**

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

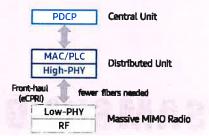
Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

#### C-Band spectrum supported by Massive MIMO Radio



#### **Enhanced Performance**

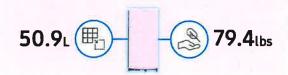
C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.


This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



#### **Future Proof Product**


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.



#### **Well Matched Design**

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.



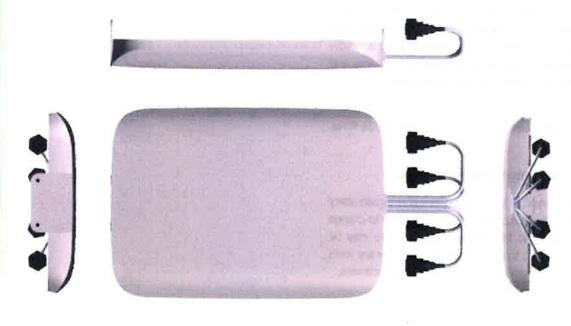
#### Technical Specifications

| Item              | Specification                                   |
|-------------------|-------------------------------------------------|
| Tech              | NR                                              |
| Band              | n77                                             |
| Frequency<br>Band | 3700 - 3980 MHz                                 |
| EIRP              | 78.5dBm (53.0 dBm+25.5 dBi)                     |
| IBW/OBW           | 280 MHz/200 MHz                                 |
| Installation      | Pole/Wall                                       |
| Size/<br>Weight   | 16.06 x 35.06 x 5.51 inch (50.86L)/<br>79.4 lbs |

#### SAMSUNG

#### About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.


129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

#### © 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

# [CBRS] Clip-on Antenna Specifications

VzW accepted IP45 in FLD, but IP55 is Samsung Spec.




| Items                                          | Clip-on Antenna, BASTA**                                                                                   |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Antenna Gain                                   | 12.5 ± 0.5 dBi (Max 13 dBi)                                                                                |
| Horizontal BW (-3dB)                           | 65° ± 5°                                                                                                   |
| Vertical BW (-3dB)                             | 17° ±3°                                                                                                    |
| Electrical Tilt                                | 8° (fixed) $\pm 2$ °                                                                                       |
| Front-to-Back Ratio                            | > 25 dB                                                                                                    |
| Port-to-Port Tracking                          | < 3 dB                                                                                                     |
| VSWR                                           | < 1.5                                                                                                      |
| Isolation                                      | > 25 dB                                                                                                    |
| Ingress Protection                             | IP55                                                                                                       |
| Size                                           | 220(W)×313(H)×34.3(D) mm (*) (8.7 x 12.3 x 1.4 inch.)                                                      |
| Weight                                         | < 2.0 kg [Typ. 1.3 kg]                                                                                     |
| It is required that the radio with JMA WPS Boo | It is required that the radio should be weatherproofed properly with JMA WPS Boot with external antenna or |
| <br>with Weatherproof                          | with Weatherproof Boot for clip-on antennas.                                                               |

Antenna includes integrated cable with connector \* Design is subject to minor change

\*\* Ant. spec. follows NGMN recommendations on Base Station Antenna Standards (BASTA). For example, 'mean ± tolerance of 86.6%' is applied to double-sided specification of statistical RF parameters.

# [CBRS RRH] Spec.



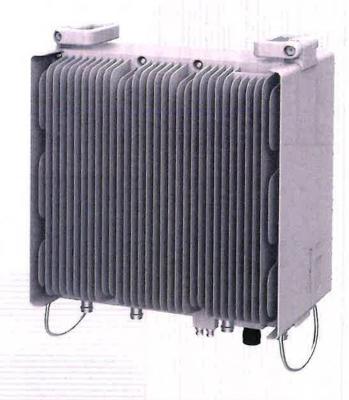




Standard Label Current Size: 216 x 307 x 105.5 mm (6.99L) (8.5 x 12.1 x 4.1 inch., excluding Port Guard) Design is subject to minor change

| Item                                                | Specification                                                                                            |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Band                                                | Band 48 (3.5 GHz)                                                                                        |
| пенентинительный работ                              | 3550~3700 MHz                                                                                            |
| IBW                                                 | 150 MHz                                                                                                  |
| OBW                                                 | 80 MHz                                                                                                   |
| # of Carriers                                       | 5/10/15/20 MHz x 4 carriers                                                                              |
| RF Chain                                            | 4TX / 4RX                                                                                                |
| RF Output Power                                     | 4 path x 5 W (Total: 20 W = 43 dBm)                                                                      |
| & EIRP                                              | (EIRP: 47 dBm / 10 MHz)                                                                                  |
| RX Sensitivity                                      | Typical : -101.5 dBm @ 1 Rx (3GPP 36.104, Wide Area)                                                     |
| Modulation                                          | 256-QAM support (1024-QAM with 1~2dB power back-off)                                                     |
| Input Power                                         | -48 VDC (-38 to -57 VDC, 1 SKU),<br>with clip-on AC-DC converter (Option)                                |
| Power Consumption                                   | About 160 Watt @ 100% RF load, typical conditions                                                        |
| Volume                                              | Under 7L (w/o Antenna), Under 9.6L (with antenna)                                                        |
| Weight                                              | Under 8.0 kg (18.64 lb) (w/o Antenna), Under 10.5 Kg (with ant.)                                         |
| Operating Temperature                               | -40°C (-40°F) ~ 55°C (131°F) (W/o solar load)                                                            |
| Cooling                                             | Natural convection                                                                                       |
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )             | 3GPP 36.104 Category A                                                                                   |
| Onwanted Emission                                   | [B48] : FCC 47 CFR 96.41 e)                                                                              |
| Optic Interface                                     | 20km, 2 ports (9.8Gbps x 2), SFP, single mode, duplex or Bi-Di                                           |
| CPRI Cascade                                        | Not supported                                                                                            |
| # of Antenna Port                                   | 4                                                                                                        |
| External Alarm (UDA)                                | 4                                                                                                        |
| RET                                                 | AISG 2.2                                                                                                 |
| TIMA & built-in Bias-T I//F<br>and PIM cancellation | Not supported                                                                                            |
| Mounting Options                                    | Pole, wall, tower, back to back, side by side (for external ant), 3 RRH with Clip-on Antenna on the pole |
| Antenna Type                                        | Integrated (Clip-on) antenna (Option),<br>External antenna (Option)                                      |
| NB-loT                                              | Not Supported (HW Resource reserved for 1 Guard Band NB-loT per LTE carrier)                             |
| Spectrum Analyzer                                   | TX/RX Support                                                                                            |
| External Alarm (UDA)                                | 4                                                                                                        |
| 5G NR                                               | Support with S/W upgrade                                                                                 |
| XRAN                                                | Support with S/W ungrade                                                                                 |
| E 24 / E 27                                         | 177.747                                                                                                  |

#### SAMSUNG


# 700/850MHZ MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

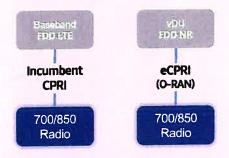
Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W making it ideal for macro sites.

Model Code

RF4440d-13A










#### Points of Differentiation

#### **Continuous Migration**

Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

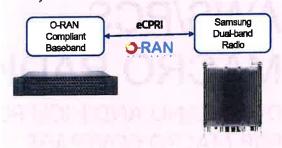


#### **Optimum Spectrum Utilization**

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.

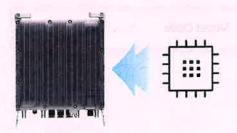



#### Technical Specifications

| item              | Specification                                                            |  |
|-------------------|--------------------------------------------------------------------------|--|
| Tech              | LTE /NR                                                                  |  |
| Brand             | B13(700MHz), B5(850MHz)                                                  |  |
| Frequency<br>Band | DL: 746 – 756MHz, UL: 777 – 787MHz<br>DL: 869 – 894MHz, UL: 824 – 849MHz |  |
| RF Power          | (B13) 4 × 40W or 2 × 60W<br>(B5) 4 × 40W or 2 × 60W                      |  |
| IBW/OBW           | (B13) 10MHz / 10MHz<br>(B5) 25MHz / 25MHz                                |  |
| Installation      | Pole, Wall                                                               |  |
| Size/<br>Weight   | 14.96 x 14.96 x 9.05inch (33.2L) /<br>70.33 lb                           |  |

#### **O-RAN Compliant**

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.


Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.



#### Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).



#### SAMSUNG


# AWS/PCS MACRO RADIO

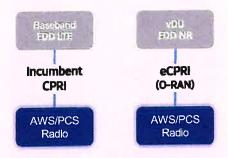
DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A








#### Points of Differentiation

#### **Continuous Migration**

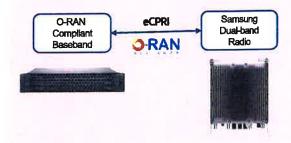
Samsung's AWS/PCS macro radio can support each Incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.



#### Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.




Supports up to 7 carriers

#### **O-RAN Compliant**

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.



#### Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, Q-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.



- 2 FH connectivity
- O-RAN capability
   More carriers and spectrum
- Same as an incumbent radio volume

#### Technical Specifications

| Item              | Specification                                                                    |  |
|-------------------|----------------------------------------------------------------------------------|--|
| Tech              | LTE/NR                                                                           |  |
| Brand             | B25(PCS), B66(AWS)                                                               |  |
| Frequency<br>Band | DL: 1930 – 1995MHz, UL: 1850 – 1915MHz<br>DL: 2110 – 2200MHz, UL: 1710 – 1780MHz |  |
| RFPower           | (B25) 4 × 40W or 2 × 60W<br>(B66) 4 × 60W or 2 × 80W                             |  |
| IBW/OBW           | (B25) 65MHz / 30MHz<br>(B66) DL 90MHz, UL 70MHz / 60MHz                          |  |
| Installation      | Pole, Wall                                                                       |  |
| Size/<br>Weight   | 14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb                                       |  |

# **ATTACHMENT 4**



Centered on Solutions

#### Structural Analysis Report

Antenna Mounts/Enclosures

Proposed Verizon Wireless Rooftop Site Build

Site Ref: Greenwich 4 CT

19 Doubling Road Greenwich, CT

CENTEK Project No. 22017.01

Date: September 29, 2023

Prepared for: Verizon Wireless 20 Alexander Drive Wallingford, CT 06492



#### Table of Contents

#### SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANTENNA AND EQUIPMENT INSTALLATION SUMMARY
- ANALYSIS
- DESIGN LOADING
- RESULTS
- CONCLUSION

#### SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

#### SECTION 3 - CALCULATIONS

- WIND LOAD CALCULATION
- NEW CHIMNEY ENCLOSURE MOUNT ANALYSIS
- EXISTING RAFTER ANALYSIS
- REPLACEMENT CHIMNEY ENCLOSURE MOUNT ANALYSIS
- EXISTING CHIMNEY FRAME ANALYSIS
- CONNECTION TO EXISTING MASONRY CHECK

#### SECTION 4 - REFERENCE MATERIAL

RF DATA SHEET

TABLE OF CONTENTS TOC-1

#### <u>Introduction</u>

The purpose of this structural analysis report (SAR) is to summarize the results of our analysis of the hosting building structural components impacted by the proposed Verizon Wireless site build at the Greenwich Country Club building located at 19 Doubling Road in Greenwich, Connecticut.

The proposed antennas are to be mounted within two (East & West) proposed faux chimney RF transparent antenna concealment enclosures. The East Antenna Enclosure will be mounted to an internal steel frame and will be anchored to the host building's structural steel rood framing by means of a steel platform. The West Antenna Enclosure will also be mounted to an internal steel frame which will be anchored to the existing masonry faux chimney structure as modified by the proposed design.

The analysis performed encompasses the design of the antenna enclosure steel support framing, the design of any associated dunnage and anchorage for transfer of loads to the existing building structure, and verification of the structural impact on the host building.

The RF transparent antenna concealment enclosures and their attachment to the steel framing prepared under this design will be provided during the construction phase of the project as a delegated design performed by a vendor with a minimum of five (5) years of experience in the design of RF transparent antenna enclosures. The delegated design for compliance with state and local building code requirements will be prepared under the direct supervision of a State of Connecticut licensed structural engineer experience in these systems.

#### <u>Primary Assumptions Used in the Analysis</u>

- The host structure's theoretical capacity not including any assessment of the condition of the host structure.
- The proposed elevated steel antenna frames carry the horizontal and vertical loads due to the weight of equipment, and wind and transfers into host structure.
- The existing lateral bracing system of the host structure was not included in this assessment.
- Proposed reinforcement and support steel will be properly installed and maintained.
- Structure is in plumb condition.
- Loading for equipment and enclosure as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as observed during roof framing mapping.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.

REPORT SECTION 1-1

#### Antenna and Equipment Summary

| Location                  | Appurtenance / Equipment                                                                                                                                                                                                                                  | Rad<br>Center<br>Elevation<br>(AGL) | Mount<br>Type                                                         |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|
| East Chimney<br>Enclosure | <ul> <li>(1) Commscope NHH4-65B-R6H4 Antenna</li> <li>(1) Samsung B5/B13 RRH</li> <li>(1) Samsung B2/B66A RRH</li> <li>(1) CBRS RRH-RT4423-48A</li> <li>(1) Samsung MT6407-77A</li> <li>(1) Samsung XXDWMM-12.5-65</li> <li>(1) Raycap OVP Box</li> </ul> | 51/55-ft                            | Antenna Pipe<br>Mast<br>mounted to<br>HSS Tube<br>within<br>Enclosure |
| West Chimney<br>Enclosure | (2) Commscope NHH4-65B-R6H4 Antenna (2) Samsung B5/B13 RRH (2) Samsung B2/B66A RRH (2) CBRS RRH-RT4423-48A (2) Samsung MT6407-77A (2) Samsung XXDWMM-12.5-65 (1) Raycap OVP Box                                                                           | 51/55-ft                            | Antenna Pipe<br>Mast<br>mounted to<br>HSS Tube<br>within<br>Enclosure |

**Equipment** – Indicates equipment to be installed.

#### **Analysis**

The roof and enclosure support framing wer analyzed using a comprehensive computer program titled Risa3D. The program analyzes the equipment enclosure supports and antenna mounts considering the worst case code prescribed loading condition. The structures were considered to be loaded by concentric forces, and the model assumes that the members are subjected to bending, axial, and shear forces.

#### Design Loading

Loading was determined per the requirements of the 2021 International Building Code amended by the 2022 CSBC and ASCE 7-16 "Minimum Design Loads for Buildings and Other Structures".

| Wind Speed:        | V <sub>ult</sub> = 120 mph            | Appendix P of the 2022 CT<br>State Building Code         |
|--------------------|---------------------------------------|----------------------------------------------------------|
| Risk Category:     | II                                    | 2021 IBC; Table 1604.05                                  |
| Exposure Category: | Surface Roughness B                   | ASCE 7-16; Section 26.7.2                                |
| Ground Snow Load   | 30 psf                                | Appendix P of the 2022 CT State<br>Building Code         |
| Dead Load          | Equipment and framing self-<br>weight | Identified within SAR design calculations                |
| Live Load          | 20 psf                                | ASCE 7-16; Table 4-1 "Roofs –<br>All Other Construction" |

#### Reference Standards

#### 2021 International Building Code:

- 1. ACI 318-14, Building Code Requirements for Structural Concrete.
- 2. ACI 530-13, Building Code Requirements for Masonry Structures.
- 3. AISC 360-10, Specification for Structural Steel Buildings

REPORT SECTION 1-3

CENTEK Engineering, Inc. Structural Analysis – Antenna Mounts and Enclosures Verizon Wireless Rooftop Site Build- Greenwich 4 CT Greenwich, CT September 29, 2023

## Results

Structure stresses were calculated utilizing the structural analysis software RISA 3D. The stresses were determined based on the AISC standard.

 Calculated stresses for the antenna ballast, platforms, and host building were found to be within allowable limits.

| Sector                    | Component                                | Stress Ratio (percentage of capacity) | Result |
|---------------------------|------------------------------------------|---------------------------------------|--------|
|                           | L2 ½ x 2 ½ x 4 Panel Frame<br>Member     | 77%                                   | PASS   |
|                           | LL2x2x5/16x 4" Enclosure<br>Frame Member | 93%                                   | PASS   |
| East Chimney<br>Enclosure | HSS4x4x1/4 Enclosure Post                | 59%                                   | PASS   |
|                           | W12x26 Steel Member (under roof)         | 26%                                   | PASS   |
|                           | Existing 16WF36 Rafters                  |                                       | PASS   |
|                           | L2 ½ x 2 ½ x 4 Panel Frame<br>Member     | 52%                                   | PASS   |
|                           | LL2x2x5/16x 4" Enclosure<br>Frame Member | 83%                                   | PASS   |
|                           | HSS4x4x1/4 Enclosure Post                | 36%                                   | PASS   |
| West Chimney              | W6x15 Steel Member<br>(Within Chimney)   | 21%                                   | PASS   |
| Enclosure                 | Connection to Masonry                    | 79%                                   | PASS   |
|                           | Existing 16WF40 Ridge                    | 14%                                   | PASS   |
|                           | Existing 10WF21 Chimney Frame Member     | 10%                                   | PASS   |
|                           | L2 ½ x2 ½ Hanger                         | 97%                                   | PASS   |

REPORT SECTION 1-4

CENTEK Engineering, Inc.

Structural Analysis – Antenna Mounts and Enclosures Verizon Wireless Rooftop Site Build- Greenwich 4 CT Greenwich, CT September 29, 2023

## Conclusion

This analysis finds the proposed antenna enclosure steel support framing, associated dunnage and anchorage to the existing building, and the impacted host building structural components **HAVE SUFFICIENT CAPACITY** to support the proposed Verizon equipment configuration.

The analysis is based, in part, on the information provided to this office by Verizon Wireless. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Carlo F. Centore, PE Structural Engineer Luke A. Amiot Engineer CENTEK Engineering, Inc. Structural Analysis – Antenna Mounts and Enclosures Verizon Wireless Rooftop Site Build- Greenwich 4 CT Greenwich, CT September 29, 2023

# Standard Conditions for Furnishing of Professional Engineering Services on Existing Structures

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
  conditions, the antenna and feed line loading on the structure and its components, or
  other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to
  meet any other codes or requirements unless explicitly agreed in writing. If wind and ice
  loads or other relevant parameters are to be different from the minimum values
  recommended by the codes, the client shall specify the exact requirement. In the
  absence of information to the contrary, all work will be performed in accordance with the
  latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance
  with generally accepted engineering principles and practices. Centek Engineering, Inc.
  is not responsible for the conclusions, opinions and recommendations made by others
  based on the information we supply.

REPORT SECTION 2-1



63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 F: (203) 488-8587 Subject:

Location:

Date: 09/26/2023

Greenwich, CT

Prepared by: LAA; Checked by: CFC Job No. 22017.01

wind Load on Equipment per ASCE 7-10

## **Design Wind Load on Other** Structures:

(Based on IBC 2021, CSBC 2022 and ASCE 7-16)

Wind Speed =

V := 120 BC≔II mph

ft

ft

(User Input) (CSBC Appendix-N) (IBC Table 1604.5)

Risk Category =

Exp := C

(User Input) (User Input)

Exposure Category = Height Above Grade =

Z = 52

(User Input)

Structure Type =

Structuretype := Square\_Chimney

Structure Height =

Height ≔ 12

(User Input)

(User Input)

Horizontal Dimension of Structure =

Width = 12

(User Input) ft

#### Terrain Exposure Constants:

Nominal Height of the Atmospheric Boundary Layer =

zg = || if Exp = B|| = 9001200 if Exp = C

(Table 26.9-1)

3-Sec Gust Speed Power Law Exponent =

$$\alpha := \| \text{if } \text{Exp} = B \| = 9.5$$

$$\| \| 7$$

$$\| \text{if } \text{Exp} = C \|$$

9.5 if Exp = D 11.5

900 if Exp = D700

(Table 26.9-1)

Integral Length Scale Factor =

1:= | if Exp = B | = 500

(Table 26.9-1)

320 if Exp = C500 if Exp = D 650

Integral Length Scale Power Law Exponent =

if Exp = B 1

> 3 if Exp = C 1 5 if Exp = D

(Table 26.9-1)

Turbulence Intensity Factor =

If Exp = B = 0.20.3

8

If Exp = C0.2

if Exp = D0.15

(Table 26.9-1)



Centered on Solutions <sup>544</sup> 63-2 North Branford Road Branford, CT 06405

ww.centekeng.com P: (203) 488-0580 F: (203) 488-8587 Subject:

Location:

Date: 09/26/2023

wind Load on Equipment per ASCE 7-10

Greenwich, CT

Prepared by: LAA; Checked by: CFC Job No. 22017.01

Exposure Constant = 
$$Z_{min} := \begin{vmatrix} \text{if } Exp = B \\ 30 \end{vmatrix} = 15$$
 (Table 26.9-1)

If  $Exp = C$ 

If  $Exp = D$ 

The second is the second in the sec

Exposure Coefficient = 
$$K_z := \left\| \begin{array}{c} \text{if } 15 \le Z \le zg \\ \left\| \begin{array}{c} 2.01 \cdot \left( \frac{Z}{zg} \right)^{\left( \frac{2}{\alpha} \right)} \\ \end{array} \right\| = 1.1 \end{array} \right\|$$
 (Table 29.3-1)

Topographic Factor = 
$$K_{zt} = 1$$
 (Eq. 26.8-2)

Wind Directionality Factor = 
$$K_d = 0.9$$
 (Table 26.6-1)

Velocity Pressure = 
$$q_z = 0.00256 \cdot K_z \cdot K_{d} \cdot V^2 = 36.59$$
 (Eq. 29.3-1)

Peak Factor for Background Response = 
$$g_Q = 3.4$$
 (Sec 26.9.4)

Peak Factor for Wind Response = 
$$g_v = 3.4$$
 (Sec 26.9.4)

Equivalent Height of Structure = 
$$z =$$
 | if  $z_{min} > 0.6 \cdot \text{Height}$  | = 15 (Sec 26.9.4) |  $z_{min} = 15$  (Sec 26.9.4) |  $z_{min} = 15$  (Sec 26.9.4)

Intensity of Turbulence = 
$$I_z = c \cdot \left(\frac{33}{z}\right)^{\left(\frac{1}{6}\right)} = 0.228$$
 (Eq. 26.9-7)

Integral Length Scale of Turbulence = 
$$L_z = 1 \cdot \left(\frac{z}{33}\right)^E = 427.057$$
 (Eq. 26.9-9)

Background Response Factor = 
$$Q := \sqrt{\frac{1}{1 + 0.63 \cdot \left(\frac{\text{Width + Height}}{L_7}\right)^{0.63}}} = 0.952 \text{ (Eq. 26.9-8)}$$

Gust Response Factor = 
$$G := 0.925 \cdot \left( \frac{(1 + 1.7 \cdot g_Q \cdot I_z \cdot Q)}{1 + 1.7 \cdot g_V \cdot I_z} \right) = 0.9$$
 (Eq. 26.9-6)

Force Coefficient = 
$$C_f = 1.3$$
 (Fig 29.5-1 - 29.5-3)

Wind Force = 
$$F := q_z \cdot G \cdot C_f = 43$$
 psf



63-2 North Branford Road

Branford, CT 06405

P: (203) 488-0580 F: (203) 488-8587 Subject

Location:

Date: 09/26/2023

wind Load on Equipment per ASCE 7-10

Greenwich, CT

Prepared by: LAA; Checked by: CFC Job No. 22017.01

#### **Development of Wind on Antennas**

#### Antenna Data:

Antenna Model = Samsung XXDWMM-12.5-65

Antenna Shape = Flat (User Input)

Antenna Height = L<sub>ant</sub> == 12.32 in (User Input)

Antenna Width =  $W_{ant} = 8.66$  in (User Input)

Antenna Thickness =  $T_{ant} = 1.35$  in (User Input)

Antenna Weight = WT<sub>ant</sub> := 2.86 lbs (User Input)

Number of Antennas =  $N_{ant} = 1$  (User Input)

#### Wind Load (Front)

Surface Area for One Antenna =  $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 0.7$  sf

Antenna Projected Surface Area =  $A_{ant} := SA_{ant} \cdot N_{ant} = 0.7$  sf

Total Antenna Wind Force = Fant = F • Aant = 32 lbs

#### Wind Load (Side)

Surface Area for One Antenna =  $\underbrace{SA_{ent}}_{144} = \underbrace{-\frac{L_{ant} \cdot T_{ant}}{144}}_{144} = 0.1$  sf

Antenna Projected Surface Area =  $A_{ant} \cdot N_{ant} = 0.1$  sf

Total Antenna Wind Force = F · A<sub>ant</sub> = 5 lbs

Gravity Load (without ice)

Weight of All Antennas = WT<sub>ant</sub> · N<sub>ant</sub> = 3 lbs



Centered on Solutions www.centekeng.com 63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 F: (203) 488-8587 Subject:

Location:

Date: 09/26/2023

wind Load on Equipment per ASCE 7-10

Greenwich, CT

Prepared by: LAA; Checked by: CFC Job No. 22017.01

#### Development of Wind on Antennas

#### Antenna Data:

Antenna Model = Samsung MT6407-77A

Antenna Shape = Flat (User Input)

Antenna Height = Lant == 35.1 in (User Input)

Antenna Width = W<sub>ant</sub> := 16.1 (User Input)

Antenna Thickness = Tang = 5.5 (User Input)

Antenna Weight = WT<sub>ant</sub> := 87 lbs (User Input)

Number of Antennas =  $N_{ant} = 1$ (User Input)

#### Wind Load (Front)

 $\overline{SA_{ant}} = \frac{L_{ant} \cdot W_{ant}}{144} = 3.9$ Surface Area for One Antenna =

Antenna Projected Surface Area = Aant = SAant · Nant = 3.9 sf

Total Antenna Wind Force = = F • A<sub>ant</sub> = 168

#### Wind Load (Side)

Surface Area for One Antenna = sf

Antenna Projected Surface Area =  $A_{ant} := SA_{ant} \cdot N_{ant} = 1.3$ sf

Total Antenna Wind Force = and = F • A<sub>ant</sub> = 57 lbs

#### Gravity Load (without ice)

Weight of All Antennas =



Centered on Solutions 5th 63-2 North Branford Road Branford, CT 06405

www.centekeng.com P: (203) 488-0580 F: (203) 488-8587 Subject:

Location:

Date: 09/26/2023

wing Load on Equipment per ASCE 7-10

Greenwich, CT

Prepared by: LAA; Checked by: CFC Job No. 22017.01

#### Development of Wind on Antennas

#### Antenna Data:

Antenna Model = Commscope NNH4-65B-R6H4

Antenna Shape = Flat (User Input)

Antenna Height = [an] = 72 in (User Input)

Antenna Width = Wan := 19.6 in (User Input)

Antenna Thickness = Tan = 7.79 in (User Input)

Antenna Weight = WT<sub>ant</sub> := 83.12 lbs (User Input)

Number of Antennas = N<sub>ant</sub> := 1 (User Input)

#### Wind Load (Front)

Surface Area for One Antenna = 
$$\frac{\sum_{A_{ant}} - W_{ant}}{144} = 9.8$$
 sf

#### Wind Load (Side)

Surface Area for One Antenna = 
$$SA_{ant} = \frac{L_{ant} \cdot T_{ant}}{144} = 3.9$$
 sf

Antenna Projected Surface Area = 
$$A_{ant} := SA_{ant} \cdot N_{ant} = 3.9$$
 sf



Centered on Solutions 63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 F: (203) 488-8587 Subject:

Location:

Date: 09/26/2023

wind Load on Equipment per ASCE 7-10

Greenwich, CT

Prepared by: LAA; Checked by: CFC

Job No. 22017.01

#### Development of Wind on RRHs

#### RRH Data:

RRH Model = Samsung B2/B66A RRH RRH Shape = Flat (User Input) RRH Height =  $L_{RRH} = 15.0$ in (User Input) RRH Width =  $W_{RRH} \coloneqq 15.0$ in (User Input) RRH Thickness =  $T_{RRH} = 10.0$ in (User Input) RRH Weight =  $WT_{RRH} = 75$ lbs (User Input)

Number of RRHs =  $N_{RRH} = 1$  (User Input)

#### Wind Load (Front)

Surface Area for One RRH =  $SA_{RRH} = \frac{L_{RRH} \cdot W_{RRH}}{144} = 1.6$  sf RRH Projected Surface Area =  $A_{RRH} = SA_{RRH} \cdot N_{RRH} = 1.6$  sf

Total RRH Wind Force = F<sub>HKH</sub> = F · A<sub>BRH</sub> = 67

#### Wind Load (Side)

Surface Area for One RRH =  $\frac{L_{RRH} \cdot T_{RRH}}{144} = 1$  sf

RRH Projected Surface Area =  $A_{RRH} = SA_{RRH} \cdot N_{RRH} = 1$  sf

Total RRH Wind Force = Frank = F · Arrive = 45

Gravity Load (without ice)

Weight of All RRHs =  $WT_{RRH} \cdot N_{RRH} = 75$  lbs



Centered on Solutions 63-2 North Branford Road Branford, CT 06405 vww.centekeng.com P: (203) 488-0580 F: (203) 488-8587 Subject:

Location:

Date: 09/26/2023

wing Loag on Equipment per ASCE 7-10

Greenwich, CT

Prepared by: LAA; Checked by: CFC Job No. 22017.01

#### Development of Wind & Ice Load on RRHs

#### **RRH Data:**

RRH Model = Samsung B5/B13 RRH

RRH Shape = Flat (User Input)

RRH Height = [LRRH] = 15.0 in (User Input)

RRH Width = WRRH = 15.0 in (User Input)

RRH Thickness = TRRH = 10.23 in (User Input)

RRH Weight = WT<sub>RRH</sub> = 79.1 lbs (User Input)

Number of RRHs = NRH = 1 (User Input)

#### Wind Load (Front)

Surface Area for One RRH = 
$$\frac{SA_{RRH} \cdot W_{RRH}}{144} = 1.6$$
 sf

#### Wind Load (Side)

Surface Area for One RRH = 
$$\frac{SA_{RRH}}{144} = \frac{L_{RRH} \cdot T_{RRH}}{144} = 1.1$$
 si



Centered on Solutions www.centekeng.com P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Date: 09/26/2023

vvind Load on Equipment per ASCE 7-10

Greenwich, CT

Prepared by: LAA; Checked by: CFC Job No. 22017.01

#### Development of Wind & Ice Load on RRHs

#### RRH Data:

RRH Model = Samsung CBRS RRH

RRH Shape = Flat (User Input)

RRH Height = LRRH = 11.8 (User Input)

RRH Width = W<sub>RRH</sub> = 8.7 in (User Input)

RRH Thickness = TRRH = 3.6 in (User Input)

RRH Weight = WT<sub>RRE</sub> = 18.6 lbs (User Input)

Number of RRHs =  $N_{RRI} = 1$ (User Input)

#### Wind Load (Front)

Surface Area for One RRH = 
$$\frac{\sum_{RRH} \cdot W_{RRH}}{144} = 0.7$$
 sf

RRH Projected Surface Area = 
$$A_{RRH} = SA_{RRH} \cdot N_{RRH} = 0.7$$
 sf

#### Wind Load (Side)

Surface Area for One RRH = 
$$\underbrace{SA_{RRH}}_{144} = \underbrace{L_{RRH} \cdot T_{RRH}}_{144} = 0.3$$
 sf

Total RRH Wind Force = 
$$F_{RRH} = F \cdot A_{RRH} = 13$$
 lbs

Weight of All RRHs = 
$$WT_{RRH} \cdot N_{RRH} = 19$$
 lbs



63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Date: 09/26/2023

wing Load on Equipment per ASCE 7-10

Greenwich, CT

Prepared by: LAA; Checked by: CFC Job No. 22017.01

#### Development of Wind & Ice Load on RRHs

#### RRH Data:

Raycap OVP Box RRH Model =

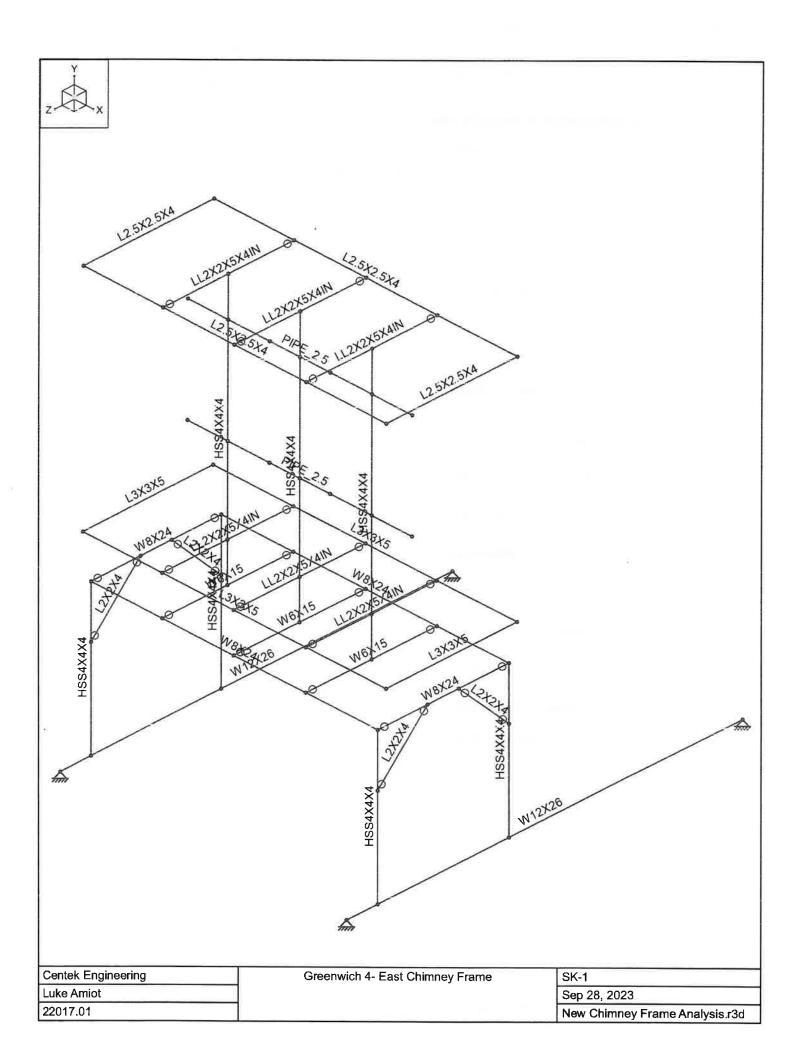
(User Input) Flat RRH Shape =

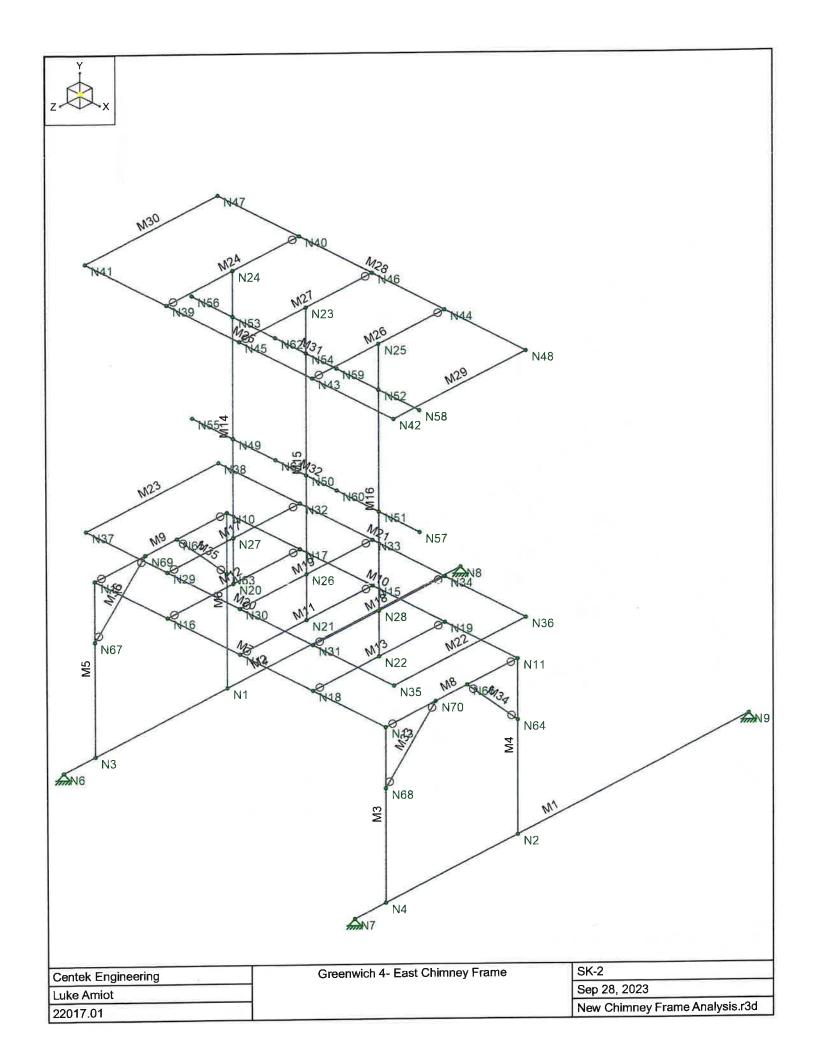
(User Input) RRH Height = L<sub>RRH</sub> := 19.18

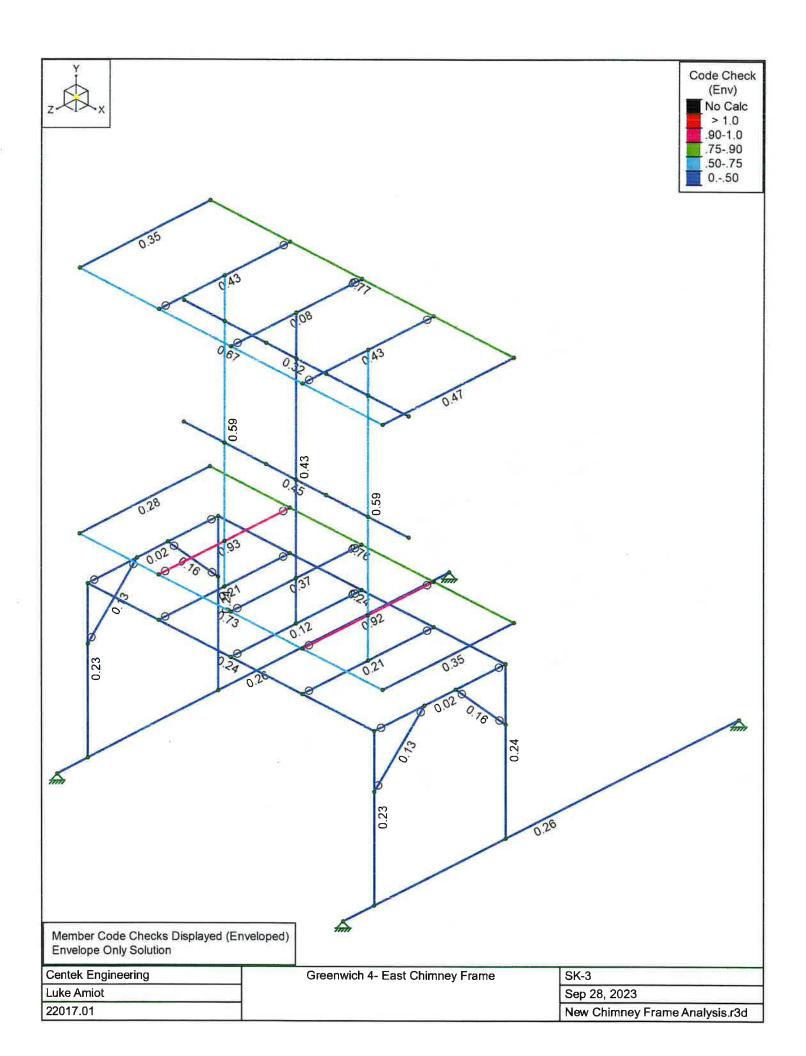
W<sub>RRH</sub> = 15.73 (User Input) RRH Width =

 $T_{RRH} = 10.25$ (User Input) RRH Thickness =

(User Input) RRH Weight =  $WT_{RRH} = 26.9$ lbs


(User Input) N<sub>RRH</sub> := 1 Number of RRHs =


#### Wind Load (Front)


Surface Area for One RRH = 
$$\frac{\sum_{RRH} \cdot W_{RRH}}{144} = 2.1$$
 sf

#### Wind Load (Side)

Surface Area for One RRH = 
$$\frac{SA_{RRH}}{144} = \frac{L_{RRH} \cdot T_{RRH}}{144} = 1.4$$
 sf







## EAST ENCLOSURE FRAMING COMPUTATIONS



: Centek Engineering

Company : Centek Eng Designer : Luke Amiot Job Number : 22017.01

Model Name: Greenwich 4- East Chimney Frame

9/28/2023 4:34:28 PM

Checked By: CFC

## Node Coordinates

|          | Label | X [ft] | Y [ft] | Z [ft] | Detach From Diaphragm   |
|----------|-------|--------|--------|--------|-------------------------|
| 1        | N1    | 0      | 0      | 0      |                         |
| 2        | N2    | 11.5   | 0      | 0      |                         |
| 3        | N3    | 0      | 0      | 5.25   | 1 1011                  |
|          | N4    | 11.5   | 0      | 5.25   |                         |
| 5        | N6    | 0      | 0      | 6.5    |                         |
| 3        | N7    | 11.5   | 0      | 6.5    |                         |
|          | N8    | 0      | 0      | -9.25  |                         |
| 3        | N9    | 11.5   | 0      | -9.25  |                         |
| 9        | N10   | 0      | 5.75   | 0      |                         |
| 0        | N11   | 11.5   | 5.75   | 0      |                         |
| 1        | N12   | 0      | 5.75   | 5.25   |                         |
| 2        | N13   | 11.5   | 5.75   | 5.25   |                         |
| 3        | N14   | 5.75   | 5.75   | 5.25   |                         |
| 4        | N15   | 5.75   | 5.75   | 0      |                         |
| 4<br>5   | N16   | 2.875  | 5.75   | 5.25   |                         |
| 6        | N17   | 2.875  | 5.75   | 0      |                         |
| 7        | N18   | 8.625  | 5.75   | 5.25   |                         |
| 8        | N19   | 8.625  | 5.75   | 0      |                         |
| 9        | N20   | 2.875  | 5.75   | 2.625  |                         |
| 20       | N21   | 5.75   | 5.75   | 2.625  |                         |
| 1        | N22   | 8.625  | 5.75   | 2.625  | LD .                    |
| 2        | N23   | 5.75   | 16     | 2.625  |                         |
| 3        | N24   | 2.875  | 16     | 2.625  |                         |
| 4        | N25   | 8.625  | 16     | 2.625  |                         |
| 5        | N26   | 5.75   | 7.25   | 2.625  |                         |
| 25       | N27   | 2.875  | 7.25   | 2.625  |                         |
| 7        | N28   | 8.625  | 7.25   | 2.625  |                         |
| 28       | N29   | 2.875  | 7.25   | 5.25   |                         |
| 0        | N30   | 5.75   | 7.25   | 5.25   |                         |
| 29<br>30 | N31   | 8.625  | 7.25   | 5.25   |                         |
| 31       | N32   | 2.875  | 7.25   | 0      |                         |
| 32       | N33   | 5.75   | 7.25   | 0      |                         |
| 33       | N34   | 8.625  | 7.25   | 0      |                         |
| 34       | N35   | 11.833 | 7.25   | 5.25   |                         |
| 35       | N36   | 11.833 | 7.25   | 0      |                         |
| 36       | N37   | -0.333 | 7.25   | 5.25   |                         |
| 37       | N38   | -0.333 | 7.25   | 0      |                         |
| 00       | N39   | 2.875  | 16     | 5.25   |                         |
| 88<br>89 | N40   | 2.875  | 16     | 0      |                         |
| 0        | N41   | -0.333 | 16     | 5.25   |                         |
| 11       | N41   | 11.833 | 16     | 5.25   |                         |
|          |       | 8.625  | 16     | 5.25   |                         |
| 12       | N43   | 8.625  | 16     | 0      |                         |
| 3        | N44   | 5.75   | 16     | 5.25   |                         |
| 4        | N45   | 5.75   | 16     | 0      |                         |
| 5        | N46   |        | 16     | 0      |                         |
| 6        | N47   | -0.333 | 16     | 0      |                         |
| 7        | N48   | 11.833 | 10.5   | 2.625  |                         |
| 8        | N49   | 2.875  | 10.5   | 2.625  | EN . I MEN NI Y EN      |
| 19       | N50   | 5.75   |        | 2.625  |                         |
| 50       | N51   | 8.625  | 10.5   | 2.625  | EVILLE XXXIII TERRETARE |
| 51       | N52   | 8.625  | 14.5   |        |                         |
| 52       | N53   | 2.875  | 14.5   | 2.625  |                         |
| 53       | N54   | 5.75   | 14.5   | 2.625  |                         |
| 54       | N55   | 1.25   | 10.5   | 2.625  |                         |
| 55       | N56   | 1.25   | 14.5   | 2.625  |                         |



Company : Centek Engineering Designer : Luke Amiot Job Number : 22017.01

Model Name: Greenwich 4- East Chimney Frame

9/28/2023 4:34:28 PM

Checked By: CFC

#### Node Coordinates (Continued)

|          | Label | X [ft] | Y [ft] | Z [ft] | Detach From Diaphragm |
|----------|-------|--------|--------|--------|-----------------------|
| 56       | N57   | 10.25  | 10.5   | 2.625  |                       |
| 56<br>57 | N58   | 10.25  | 14.5   | 2.625  | 45 / 5 /              |
| 58       | N59   | 6.955  | 14.5   | 2.625  |                       |
| 59       | N60   | 6.955  | 10.5   | 2.625  |                       |
| 60       | N61   | 4.545  | 10.5   | 2.625  |                       |
| 61       | N62   | 4.545  | 14.5   | 2.625  |                       |
| 62       | N63   | 0      | 3.75   | 0      |                       |
| 63       | N64   | 11.5   | 3.75   | 0      |                       |
| 64       | N65   | 0      | 5.75   | 2      |                       |
| 65       | N66   | 11.5   | 5.75   | 2      |                       |
| 66       | N67   | 0      | 3.75   | 5.25   |                       |
| 67       | N68   | 11.5   | 3.75   | 5.25   |                       |
| 68       | N69   | 0      | 5.75   | 3.25   |                       |
| 69       | N70   | 11.5   | 5.75   | 3.25   |                       |

#### Node Boundary Conditions

|   | Node Label | X [k/in] | Y [k/in] | Z [k/in] |
|---|------------|----------|----------|----------|
| 1 | N6         | Reaction | Reaction | Reaction |
| 2 | N7         | Reaction | Reaction | Reaction |
| 3 | N9         | Reaction | Reaction | Reaction |
| 4 | N8         | Reaction | Reaction | Reaction |

#### **Hot Rolled Steel Properties**

|   | Label          | E [ksi] | G [ksi] | Nu  | Therm. Coeff. [1e5°F-1] | Density [k/ft³] | Yield [ksi] | Ry   | Fu [ksi] | Rt   |
|---|----------------|---------|---------|-----|-------------------------|-----------------|-------------|------|----------|------|
| 1 | A992           | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 50          | 1.1  | 65       | 1.1  |
| 2 | A36 Gr.36      | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 36          | 1.5  | 58       | 1.2  |
| 3 | A572 Gr.50     | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 50          | 1.1  | 65       | 1.1  |
| 4 | A500 Gr.B RND  | 29000   | 11154   | 0.3 | 0.65                    | 0.527           | 42          | 1.4  | 58       | 1.3  |
| 5 | A500 Gr.B Rect | 29000   | 11154   | 0.3 | 0.65                    | 0.527           | 46          | 1.4  | 58       | 1.3  |
| 6 | A53 Gr.B       | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 35          | 1.6  | 60       | 1.2  |
| 7 | A1085          | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 50          | 1.25 | 65       | 1.15 |
| 8 | A913 Gr.65     | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 65          | 1.1  | 80       | 1.1  |

#### Member Primary Data

|    | Label | l Node | J Node | Section/Shape | Type | Design List           | Material       | Design Rule |
|----|-------|--------|--------|---------------|------|-----------------------|----------------|-------------|
| 1  | M1    | N7     | N9     | W12X26        | Beam | Wide Flange           | A992           | Typical     |
| 2  | M2    | N6     | N8     | W12X26        | Beam | Wide Flange           | A992           | Typical     |
| 3  | M3    | N4     | N13    | HSS4X4X4      | Beam | Tube                  | A500 Gr.B Rect | Typical     |
| 4  | M4    | N2     | N11    | HSS4X4X4      | Beam | Tube                  | A500 Gr.B Rect | Typical     |
| 5  | M5    | N3     | N12    | HSS4X4X4      | Beam | Tube                  | A500 Gr.B Rect | Typical     |
| 6  | M6    | N1     | N10    | HSS4X4X4      | Beam | Tube                  | A500 Gr.B Rect | Typical     |
| 7  | M7    | N12    | N13    | W8X24         | Beam | Wide Flange           | A992           | Typical     |
| 8  | M8    | N13    | N11    | W8X24         | Beam | Wide Flange           | A992           | Typical     |
| 9  | M9    | N12    | N10    | W8X24         | Beam | Wide Flange           | A992           | Typical     |
| 10 | M10   | N10    | N11    | W8X24         | Beam | Wide Flange           | A992           | Typical     |
| 11 | M11   | N14    | N15    | W6X15         | Beam | Wide Flange           | A992           | Typical     |
| 12 | M12   | N16    | N17    | W6X15         | Beam | Wide Flange           | A992           | Typical     |
| 13 | M13   | N18    | N19    | W6X15         | Beam | Wide Flange           | A992           | Typical     |
| 14 | M14   | N20    | N24    | HSS4X4X4      | Beam | Tube                  | A500 Gr.B Rect | Typical     |
| 15 | M15   | N21    | N23    | HSS4X4X4      | Beam | Tube                  | A500 Gr.B Rect | Typical     |
| 16 | M16   | N22    | N25    | HSS4X4X4      | Beam | Tube                  | A500 Gr.B Rect | Typical     |
| 17 | M17   | N29    | N32    | LL2X2X5X4in   | Beam | Double Angle (No Gap) | A36 Gr.36      | Typical     |



Company : Centek Engineering Designer : Luke Amiot

Job Number : 22017.01

Model Name: Greenwich 4- East Chimney Frame

9/28/2023 4:34:28 PM

Checked By: CFC

## Member Primary Data (Continued)

|    | WA 121 121 | Node       | J Node | Section/Shape | Type | Design List           | Material  | Design Rule |
|----|------------|------------|--------|---------------|------|-----------------------|-----------|-------------|
| οl | Label      | N31        | N34    | LL2X2X5X4in   | Beam | Double Angle (No Gap) | A36 Gr.36 | Typical     |
| 8  | M18        | N30        | N33    | LL2X2X5X4in   | Beam | Double Angle (No Gap) | A36 Gr.36 | Typical     |
| 9  | M19        | N37        | N35    | L3X3X5        | Beam | Single Angle          | A36 Gr.36 | Typical     |
| 9  | M20        | N38        | N36    | L3X3X5        | Beam | Sinale Anale          | A36 Gr.36 | Typical     |
| 1  | M21        | N35        | N36    | L3X3X5        | Beam | Single Angle          | A36 Gr.36 | Typical     |
| 긲  | M22        | N37        | N38    | L3X3X5        | Beam | Single Angle          | A36 Gr.36 | Typical     |
| 3  | M23        | N39        | N40    | LL 2X2X5X4in  | Beam | Double Angle (No Gap) | A36 Gr.36 | Typical     |
| 5  | M24        | N41        | N42    | L2.5X2.5X4    | Beam | Single Angle          | A36 Gr.36 | Typical     |
|    | M25        | N43        | N44    | LL2X2X5X4in   | Beam | Double Angle (No Gap) | A36 Gr.36 | Typical     |
| 6  | M26<br>M27 | N45        | N46    | LL2X2X5X4in   | Beam | Double Angle (No Gap) | A36 Gr.36 | Typical     |
| 7  |            | N45<br>N47 | N48    | 12.5X2.5X4    | Beam | Single Angle          | A36 Gr.36 | Typical     |
| 8  | M28        | N47        | N48    | L2.5X2.5X4    | Beam | Single Angle          | A36 Gr.36 | Typical     |
| 9  | M29        |            | N47    | L2.5X2.5X4    | Beam | Single Angle          | A36 Gr.36 | Typical     |
| 0  | M30        | N41        | N58    | PIPE 2.5      | Beam | HSS Pipe              | A53 Gr.B  | Typical     |
| 1  | M31        | N56        | N57    | PIPE 2.5      | Beam | HSS Pipe              | A53 Gr.B  | Typical     |
| 2  | M32        | N55<br>N68 | N70    | L2X2X4        | Beam | Single Angle          | A36 Gr.36 | Typical     |
| 3  | M33        | N66        | N64    | L2X2X4        | Beam | Single Angle          | A36 Gr.36 | Typical     |
| 4  | M34        | N65        | N63    | L2X2X4        | Beam | Single Angle          | A36 Gr.36 | Typical     |
| 5  | M35<br>M36 | N69        | N67    | L2X2X4        | Beam | Single Angle          | A36 Gr.36 | Typical     |

## Hot Rolled Steel Design Parameters

|          | Label      | Shape       | Length [ft] | Lcomp top [ft] | Channel Conn. | a [ft] | Function |
|----------|------------|-------------|-------------|----------------|---------------|--------|----------|
| 1        | M1         | W12X26      | 15.75       | Lbyy           | N/A           | N/A    | Lateral  |
| 2        | M2         | W12X26      | 15.75       | Lbyy           | N/A           | N/A    | Lateral  |
| 3        | M3         | HSS4X4X4    | 5.75        | Lbyy           | N/A           | N/A    | Lateral  |
| 4        | M4         | HSS4X4X4    | 5.75        | Lbyy           | N/A           | N/A    | Lateral  |
| 5        | M5         | HSS4X4X4    | 5.75        | Lbyy           | N/A           | N/A    | Lateral  |
| 6        | M6         | HSS4X4X4    | 5.75        | Lbyy           | N/A           | N/A    | Lateral  |
| 7        | M7         | W8X24       | 11.5        | Lbyy           | N/A           | N/A    | Lateral  |
| 8        | M8         | W8X24       | 5.25        | Lbyy           | N/A           | N/A    | Lateral  |
| 9        | M9         | W8X24       | 5.25        | Lbyy           | N/A           | N/A    | Lateral  |
| 10       | M10        | W8X24       | 11.5        | Lbyy           | N/A           | N/A    | Lateral  |
| 11       | M11        | W6X15       | 5.25        | Lbyy           | N/A           | N/A    | Lateral  |
| 12       | M12        | W6X15       | 5.25        | Lbyy           | N/A           | N/A    | Lateral  |
| 13       | M13        | W6X15       | 5.25        | Lbvy           | N/A           | N/A    | Lateral  |
| 14       | M14        | HSS4X4X4    | 10.25       | Lbyy           | N/A           | N/A    | Lateral  |
| 15       | M15        | HSS4X4X4    | 10.25       | Lbvv           | N/A           | N/A    | Lateral  |
| 16       | M16        | HSS4X4X4    | 10.25       | Lbyy           | N/A           | N/A    | Lateral  |
| 17       | M17        | LL2X2X5X4in | 5.25        | Lbyy           | N/A           | N/A    | Lateral  |
| 18       | M18        | LL2X2X5X4in | 5.25        | Lbyy           | N/A           | N/A    | Lateral  |
| 19       | M19        | LL2X2X5X4in | 5.25        | Lbvv           | N/A           | N/A    | Lateral  |
| 20       | M20        | L3X3X5      | 12.166      | Lbyy           | N/A           | N/A    | Lateral  |
| 21       | M21        | L3X3X5      | 12.166      | Lbyy           | N/A           | N/A    | Lateral  |
|          | M22        | L3X3X5      | 5.25        | Lbyy           | N/A           | N/A    | Lateral  |
| 22       | M23        | L3X3X5      | 5.25        | Lbyv           | N/A           | N/A    | Lateral  |
| 23       |            | LL2X2X5X4in | 5.25        | Lbvv           | N/A           | N/A    | Lateral  |
|          | M24<br>M25 | L2.5X2.5X4  | 12.166      | Lbvv           | N/A           | N/A    | Lateral  |
| 25       | M26        | LL2X2X5X4in | 5.25        | Lbvv           | N/A           | N/A    | Lateral  |
| 26       | M27        | LL2X2X5X4in | 5.25        | Lbvv           | N/A           | N/A    | Lateral  |
| 27       | M28        | L2.5X2.5X4  | 12.166      | Lbyy           | N/A           | N/A    | Lateral  |
| 28       |            | L2.5X2.5X4  | 5.25        | Lbyy           | N/A           | N/A    | Lateral  |
| 29<br>30 | M29        | L2.5X2.5X4  | 5.25        | Lbyy           | N/A           | N/A    | Lateral  |
|          | M30        | PIPE 2.5    | 9           | Lbvv           | N/A           | N/A    | Lateral  |
| 31       | M31        | PIPE 2.5    | 9           | Lbyy           | N/A           | N/A    | Lateral  |
| 32<br>33 | M32<br>M33 | L2X2X4      | 2.828       | Lbyv           | N/A           | N/A    | Lateral  |



Company

: Centek Engineering

Designer : Luke Amiot Job Number : 22017.01

Model Name : Greenwich 4- East Chimney Frame

9/28/2023 4:34:28 PM

Checked By: CFC

#### Hot Rolled Steel Design Parameters (Continued)

|    | Label | Shape  | Length [ft] | Lcomp top [ft] | Channel Conn. | a [ft] | Function |
|----|-------|--------|-------------|----------------|---------------|--------|----------|
| 34 | M34   | L2X2X4 | 2.828       | Lbyy           | N/A           | N/A    | Lateral  |
| 35 | M35   | L2X2X4 | 2.828       | Lbyy           | N/A           | N/A    | Lateral  |
| 36 | M36   | L2X2X4 | 2.828       | Lbyy           | N/A           | N/A    | Lateral  |

#### Member Distributed Loads (BLC 5 : Panel Weight)

| M20 | Y | -0.023 | End Magnitude [k/ft, F, ksf, k-ft/ | 0 | %100 |
|-----|---|--------|------------------------------------|---|------|
| M23 | Υ | -0.023 | -0.023                             | 0 | %100 |
| M21 | Y | -0.023 | -0.023                             | 0 | %100 |
| M22 | Y | -0.023 | -0.023                             | 0 | %100 |
| M25 | Y | -0.023 | -0.023                             | 0 | %100 |
| M28 | Y | -0.023 | -0.023                             | 0 | %100 |
| M29 | Y | -0.023 | -0.023                             | 0 | %100 |
| M30 | Υ | -0.023 | -0.023                             | 0 | %100 |

#### Member Distributed Loads (BLC 9 : BLC 2 Transient Area Loads)

| M | ember Labe | el Direction Star | Magnitude [k/ft, F, ksf, k-ft/ft] | End Magnitude [k/ft, F, ksf, k- | ft/ft]Start Location [(ft, %)]E | nd Location (ft. % |
|---|------------|-------------------|-----------------------------------|---------------------------------|---------------------------------|--------------------|
| 1 | M17        | Y                 | -0.03                             | -0.03                           | 2.22e-16                        | 5.25               |
| 2 | M18        | Y                 | -0.03                             | -0.03                           | 2.22e-16                        | 5.25               |
| 3 | M19        | Y                 | -0.029                            | -0.029                          | 2.22e-16                        | 5.25               |
| 4 | M22        | Y                 | -0.016                            | -0.016                          | 2.22e-16                        | 5.25               |
| 5 | M23        | Y                 | -0.016                            | -0.016                          | 4.441e-16                       | 5.25               |

#### Member Distributed Loads (BLC 10 : BLC 3 Transient Area Loads)

| M17 | Y | -0.061 | End Magnitude [k/ft, F, ksf, k-<br>-0.061 | 2.22e-16  | 5.25 |
|-----|---|--------|-------------------------------------------|-----------|------|
| M18 | Y | -0.061 | -0.061                                    | 2.22e-16  | 5.25 |
| M19 | Y | -0.058 | -0.058                                    | 2.22e-16  | 5.25 |
| M22 | Y | -0.032 | -0.032                                    | 2.22e-16  | 5.25 |
| M23 | Υ | -0.032 | -0.032                                    | 4.441e-16 | 5.25 |

#### Member Distributed Loads (BLC 11 : BLC 6 Transient Area Loads)

| 11 | Member Labe | el Direction | Start Magnitude [k/ft, F, ksf, k-ft/ft] | End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location [(ft, % | 6)]End Location ((ft. %)] |
|----|-------------|--------------|-----------------------------------------|---------------------------------------|------------------------|---------------------------|
| 1  | M22         | X            | -0.188                                  | -0.188                                | 0                      | 5.25                      |
| 2  | M29         | X            | -0.188                                  | -0.188                                | 5 718e-15              | 5.25                      |

## Member Distributed Loads (BLC 12 : BLC 7 Transient Area Loads)

| _M | ember Lab | el Direction S | Start Magnitude [k/ft, F, ksf, k-ft/ft] | End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location [(ft, %) | End Location (ft. %)] |
|----|-----------|----------------|-----------------------------------------|---------------------------------------|-------------------------|-----------------------|
| 1  | M20       | Z              | -0.188                                  | -0.188                                | 1.554e-15               | 12.166                |
| 2  | M25       | Z              | -0.188                                  | -0.188                                | 3.109e-15               | 12.166                |

#### Member Distributed Loads (BLC 13 : BLC 8 Transient Area Loads)

| Member Labe | ol Direction Start | Magnitude [k/ft, F, ksf, k-ft/ft] | End Magnitude [k/ft, F, ksf, k- | ft/ft]Start Location [(ft, %)]E | nd Location (ft. |
|-------------|--------------------|-----------------------------------|---------------------------------|---------------------------------|------------------|
| M17         | Y                  | -0.091                            | -0.091                          | 2.22e-16                        | 5.25             |
| M18         | Υ                  | -0.091                            | -0.091                          | 2.22e-16                        | 5.25             |
| M19         | Y                  | -0.086                            | -0.086                          | 2.22e-16                        | 5.25             |
| M22         | Υ                  | -0.048                            | -0.048                          | 2.22e-16                        | 5.25             |



Company

: Centek Engineering : Luke Amiot

Designer : Luke Amid Job Number : 22017.01

Model Name: Greenwich 4- East Chimney Frame

9/28/2023 4:34:28 PM

Checked By : CFC

# Member Distributed Loads (BLC 13 : BLC 8 Transient Area Loads) (Continued)

| Ma   | mbor Labo | Direction | Start Magnitude [k/ft F. ksf. k-ft/ft | End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location [(ft, %) | [(ft, %)] End Location |
|------|-----------|-----------|---------------------------------------|---------------------------------------|-------------------------|------------------------|
| INIE |           | V         | -0.048                                | -0.048                                | 4.441e-16               | 5.25                   |
| 101  | M23       |           | -0.040                                |                                       |                         |                        |

#### Member Area Loads (BLC 2 : Dead Load)

| Node A | Node B | Node C | Node D | Direction | Load Direction | Magnitude [ksf] |
|--------|--------|--------|--------|-----------|----------------|-----------------|
|        |        | N36    | N38    | Y         | A-B            | -0.01           |
| 1 N37  | N35    | 1430   | 1400   |           |                |                 |

## Member Area Loads (BLC 3 : Live Load (Roof))

| Node A | Node B | Node C | Node D | Direction | Load Direction | Magnitude [ksf] |
|--------|--------|--------|--------|-----------|----------------|-----------------|
|        |        | N36    | N38    | Y         | A-B            | -0.02           |
| 1 N37  | N35    | 1430   | INOU   |           |                |                 |

## Member Area Loads (BLC 6 : Wind-X)

| Node A | Node B | Node C | Node D | Direction | Load Direction | Magnitude [ksf] |
|--------|--------|--------|--------|-----------|----------------|-----------------|
| 10.000 | N42    | N48    | N36    | X         | A-B            | -0.043          |
| 1 N35  | IN4Z   | 1140   | 1100   |           |                |                 |

#### Member Area Loads (BLC 7 : Wind-Z)

| Node A Node B Note 7               | Nede A        | Magnitude [ksf | Load Direction | Direction | Node D | Node C | Node B |  |
|------------------------------------|---------------|----------------|----------------|-----------|--------|--------|--------|--|
| 1 107   111   112   1130   2   1 2 | Node A<br>N37 | -0.043         | A-B            | Z         | N35    | N42    | N41    |  |

## Member Area Loads (BLC 8 : Snow Load)

| Welliber Area L | Odda (DEC C. C. | TOTAL ELECTION |        | Discotion | Load Direction | Magnitude [ksf] |
|-----------------|-----------------|----------------|--------|-----------|----------------|-----------------|
| Node A          | Node B          | Node C         | Node D | Direction | Load Direction |                 |
| 1 N37           | N35             | N36            | N38    | Y         | A-B            | -0.03           |

#### Basic Load Cases

|    | BLC Description            | Category | Y Gravity  | Nodal | Distributed       | Area(Member) |
|----|----------------------------|----------|------------|-------|-------------------|--------------|
| 1  | Self Weight                | DL       | 1          |       |                   |              |
| 2  | Dead Load                  | DL       |            |       |                   |              |
| 3  | Live Load (Roof)           | RLL      |            | 1 0 1 | the factor of the |              |
| 4  | Equipment Load             | DL       |            | 7     |                   |              |
| 5  | Panel Weight               | DL       |            |       | 8                 |              |
| 6  | Wind-X                     | WLX      |            |       |                   |              |
| 7  | Wind-Z                     | WLZ      |            |       |                   |              |
| 8  | Snow Load                  | SL       |            |       |                   |              |
| 9  | BLC 2 Transient Area Loads | None     |            |       | 5                 |              |
| 10 | BLC 3 Transient Area Loads | None     |            |       | 5                 |              |
| 11 | BLC 6 Transient Area Loads | None     | TREE LEVEL |       | 2                 |              |
| 12 | BLC 7 Transient Area Loads | None     |            |       | 2                 |              |
| 13 | BLC 8 Transient Area Loads | None     |            |       | 5                 |              |

#### **Load Combinations**

|    | Description   | Solve | P-Delta | BLC | Factor | BLC | Factor  | BLC | Factor | BLC | Factor | BLC | Factor | BLC | Factor |
|----|---------------|-------|---------|-----|--------|-----|---------|-----|--------|-----|--------|-----|--------|-----|--------|
| 1  | IBC 16-8      | Yes   | Y       | DL  | 1      |     | L F A T |     |        |     |        |     |        |     |        |
| 2  | IBC 16-9      | Yes   | Y       | DL  | 1      | LL  | 1       | LLS | 11     |     |        |     |        |     | -      |
| 2  | IBC 16-10 (a) | Yes   | Y       | DL  | 1      | RLL | 1       |     |        | 1.0 |        |     |        |     |        |
| 1  | IBC 16-10 (b) | Yes   | Y       | DL  | 1      | SL  | 1       | SLN | 11     |     |        |     |        |     | _      |
| 5  | IBC 16-11 (a) | Yes   | Y       | DL  | 1      | LL  | 0.75    | LLS | 0.75   | RLL | 0.75   |     |        |     |        |
| 10 | IBC 16-11 (b) | Yes   | Y       | DL  | 1      | LL  | 0.75    | LLS | 0.75   | SL  | 0.75   | SLN | 0.75   |     |        |



Company : Centek Engineering

Designer : Luke Amiot Job Number : 22017.01

Model Name: Greenwich 4- East Chimney Frame

9/28/2023 4:34:28 PM

Checked By: CFC

#### Load Combinations (Continued)

| Description         | Solve | P-Delta | BLC | Factor | BLC | Factor | BLC  | Factor | BLC | Factor | BLC | Factor | BLC | Factor    |
|---------------------|-------|---------|-----|--------|-----|--------|------|--------|-----|--------|-----|--------|-----|-----------|
| 7 IBC 16-12 (a) (a) | Yes   | Y       | DL  | 1      | WLX | 0.6    |      |        |     |        |     |        |     | I GITTE   |
| 8 BC 16-12 (a) (b)  | Yes   | Υ       | DL  | 1      | WLZ | 0.6    |      |        |     |        |     |        |     |           |
| 9 IBC 16-12 (a) (c) |       | Y       | DL  | 1      | WLX | -0.6   |      |        |     |        |     |        |     |           |
| 10 BC 16-12 (a) (d) |       | Y       | DL  | 1      | WLZ | -0.6   |      |        |     |        |     |        |     |           |
| 11 BC 16-13 (a) (a) | Yes   | Y       | DL  | 1      | WLX | 0.45   | LL   | 0.75   | LLS | 0.75   | RLL | 0.75   |     |           |
| 12 BC 16-13 (a) (b) |       | Y       | DL  | 1      | WLZ | 0.45   | LL   | 0.75   | LLS | 0.75   | RLL | 0.75   |     |           |
| 13 BC 16-13 (a) (c) |       | Υ       | DL  | 1      | WLX | -0.45  | LL   | 0.75   | LLS | 0.75   | RLL | 0.75   |     | 5-11-11-1 |
| 14 BC 16-13 (a) (d) | Yes   | Y       | DL  | 1      | WLZ | -0.45  | LL   | 0.75   | LLS | 0.75   | RLL | 0.75   |     |           |
| 15 BC 16-13 (b) (a) |       | Y       | DL  | 1      | WLX | 0.45   | LL   | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN | 0.75      |
| 16 BC 16-13 (b) (b) |       | Y       | DL  | 1      | WLZ | 0.45   | LL   | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN | 0.75      |
| 17 BC 16-13 (b) (c) | Yes   | Y       | DL  | 1      | WLX | -0.45  | LL   | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN | 0.75      |
| 18 BC 16-13 (b) (d) | Yes   | Y       | DL  | 1      | WLZ | -0.45  | LL   | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN | 0.75      |
| 19 BC 16-13 (c) (a) | Yes   | Y       | DL  | 1      | WLX | 0.45   | LL   | 0.75   | LLS | 0.75   |     |        |     |           |
| 20 BC 16-13 (c) (b) | Yes   | Y       | DL  | 1      | WLZ | 0.45   | LL   | 0.75   | LLS | 0.75   |     |        |     |           |
| 21 BC 16-13 (c) (c) | Yes   | Y       | DL  | 1      | WLX | -0.45  | LL   | 0.75   | LLS | 0.75   |     |        |     |           |
| 22 BC 16-13 (c) (d) | Yes   | Y       | DL  | 1      | WLZ | -0.45  | LL   | 0.75   | LLS | 0.75   |     |        |     |           |
| 23 IBC 16-15 (a)    | Yes   | Y       | DL  | 0.6    | WLX | 0.6    | a de |        |     |        |     |        |     | 8,6       |
| 24 IBC 16-15 (b)    | Yes   | Υ       | DL  | 0.6    | WLZ | 0.6    |      |        |     |        |     |        |     |           |

## Envelope Node Reactions NOTE: HIGHLIGHTED VALUES BELOW APPLIED TO EXISTING RAFTER

| _  | Node Label |     | X [k]  | LC | Y [k]  | LC | Z [k]  | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|------------|-----|--------|----|--------|----|--------|----|-----------|----|-----------|----|-----------|----|
| 1  | N6         | max | 0.599  | 7  | 3.401  | 18 | 0.984  | 24 | 0         | 24 | 0         | 24 | 0         | 24 |
| 2  |            | min | -0.361 | 9  | 0.227  | 24 | -1.042 | 10 | 0         | 1  | 0         | 1  | 0         | 1  |
| 3  | N7         | max | 0.41   | 23 | 3.437  | 18 | 0.984  | 24 | 0         | 24 | 0         | 24 | 0         | 24 |
| 4  |            | min | -0.599 | 9  | 0.249  | 24 | -1.043 | 10 | 0         | 1  | 0         | 1  | 0         | 1  |
| 5  | N9         | max | 0.097  | 23 | 1.867  | 8  | 0.405  | 8  | 0         | 24 | 0         | 24 | 0         | 24 |
| 6  |            | min | -0.14  | 9  | -0.189 | 10 | -0.331 | 10 | 0         | 1  | 0         | 1  | 0         | 1  |
| 7  | N8         | max | 0.14   | 7  | 1.856  | 8  | 0.404  | 8  | 0         | 24 | 0         | 24 | 0         | 24 |
| 8  |            | min | -0.085 | 9  | -0.2   | 10 | -0.331 | 10 | 0         | 1  | 0         | 1  | 0         | 1  |
| 9  | Totals:    | max | 1.185  | 7  | 7.791  | 4  | 2.746  | 8  |           |    |           |    |           |    |
| 10 |            | min | -1.185 | 9  | 3.525  | 23 | -2.746 | 10 |           |    |           |    |           |    |

# NOTE: HIGHLIGHTED VALUES BELOW ARE STRESS RATIOS IDENTIFIED IN REPORT Envelope AISC 15TH (360-16): ASD Member Steel Code Checks

| _  |              | Chang           |       |       |    |       |         |     |    | D 21 11 11 11 11 11 11 11 11 11 11 11 11 | D 1/ 1/1           |                | www.veresectures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
|----|--------------|-----------------|-------|-------|----|-------|---------|-----|----|------------------------------------------|--------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1  | Member<br>M1 | Shape<br>W12X26 | 0.259 | 6.563 |    | 0.061 | CLOCITI | UII | 18 | 72.795                                   |                    | Mnyy/om [k-ft] | CANADA CHICAGO CONTROL | A CHARLES OF PROPERTY |
| 2  | M2           | W12X26          | 0.258 | 6.563 |    | 0.061 | 0       | Y   | 18 | 72.795                                   | 229.042<br>229.042 | 20.384         | 75.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.412H1-1b            |
| 3  | M3           | HSS4X4X4        | 0.235 | 5.75  | 9  | 0.061 | 3.714   | Z   | 10 |                                          | 92.826             | 20.384         | 75.24<br>10.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.413H1-1b            |
| 4  | M4           | HSS4X4X4        | 0.236 | 0.75  | 8  | 0.072 | 3.714   | _   | 8  | 80.831                                   | 92.826             | 10.765         | 10.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.656H1-1b            |
| 5  | M5           | HSS4X4X4        | 0.234 | 5.75  | 7  | 0.067 | 3.714   |     | _  | 80.831                                   | 92,826             | 10.765         | 10.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.665H1-1b            |
| 6  | M6           | HSS4X4X4        | 0.236 | 0     | 8  | 0.072 | 3.714   |     | 8  | 80.831                                   | 92.826             | 10.765         | 10.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.657H1-1b            |
| 7  | M7           | W8X24           | 0.239 | 5.75  | 10 |       | 11.5    | -   | 10 | 123.687                                  | 211.976            | 21.382         | 54.298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.123H1-1b            |
| 8  | M8           | W8X24           | 0.02  | 3.281 | 8  | 0.033 | 3.227   | -   | 8  | 189.464                                  | 211.976            | 21.382         | 57.635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.919H1-1b            |
| 9  | M9           | W8X24           | 0.02  | 3.281 | 8  | 0.033 | 3.227   | v   | 8  | 189.464                                  | 211.976            | 21.382         | 57.635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.919H1-1b            |
| 10 | M10          | W8X24           | 0.239 | 5.75  | 8  | 0.07  | 11.5    | V   | 8  | 123.687                                  | 211.976            | 21.382         | 53.537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.107H1-1b            |
| 11 | M11          | W6X15           | 0.124 | 2.625 | 10 | 0.044 | 0       | V   | 10 | 115.545                                  | 132.635            | 10.834         | 25.364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.433H1-1b            |
| 12 | M12          | W6X15           | 0.208 | 2.625 | 16 | 0.08  | 5.25    | ٧   | 16 | 115.545                                  | 132.635            | 10.834         | 25.364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.535H1-1b            |
| 13 | M13          | W6X15           | 0.213 | 2.625 | 16 | 0.082 | 5.25    | У   | 16 | 115.545                                  | 132.635            | 10.834         | 25.364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.529H1-1b            |
| 14 | M14          | HSS4X4X4        | 0.59  | 0     | 8  | 0.055 | 1.495   | z   | 8  | 59.802                                   | 92.826             | 10.765         | 10.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.046H1-1b            |
| 15 | M15          | H3S4X4X4        | 0.433 | 0     | 10 | 0.028 | 1.495   | V   | 9  | 59.802                                   | 92.826             | 10.765         | 10.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.179H1-1b            |
| 16 | M16          | HSS4X4X4        | 0.591 | 0     | 8  | 0.056 | 1.495   | z   | 8  | 59.802                                   | 92.826             | 10.765         | 10.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.018H1-1b            |
| 17 | M17          | LL2X2X5X4iri    |       | 2.625 |    | 0.136 | 2.625   | _   | 17 | 27.822                                   | 49.609             | 10.805         | 1.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 H1-1b               |
| 18 | M18          | LL2X2X5X4iri    |       | 2.625 |    | 0.139 | 2.625   | _   | 15 |                                          | 49.609             | 10.805         | 1.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 H1-1b               |
| 19 | M19          | LL2X2X5X4iri    | 0.365 | 2.625 | 4  | 0.046 | 2.625   | V   | 17 | 27.822                                   | 49.609             | 10.805         | 1.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 H1-1b               |



Company : Centek Engineering
Designer : Luke Amiot
Job Number : 22017.01
Model Name : Greenwich 4- East Chimney Frame

9/28/2023 4:34:28 PM

Checked By: CFC

# Envelope AISC 15TH (360-16): ASD Member Steel Code Checks (Continued)

| N  | /lember | Shape       | Code Chec | kLoc[ft] L | C Shear C | heckLoc[ft] | ] Dir | LC | Pnc/om [k] | Pnt/om [k] | Mnyy/om [k-ft] | Mnzz/om [k-ft] | Cb    | Eqn   |
|----|---------|-------------|-----------|------------|-----------|-------------|-------|----|------------|------------|----------------|----------------|-------|-------|
| 20 | M20     | L3X3X5      | 0.726     | 3.168      | 4 0.03    | 2 3.295     | Z     | 8  | 4.267      | 38.371     | 1.34           | 2.216          | 1.12  | H2-1  |
| 21 | M21     | L3X3X5      | 0.758     | 8.998      | 4 0.03    | 1 3.168     | Y     | 4  | 4.267      | 38.371     | 1.34           | 2.22           |       | H2-1  |
| 22 | M22     | L3X3X5      | 0.351     | 5.25 1     | 5 0.03    | 3 5.25      | z     | 7  | 20.75      | 38.371     | 1.34           | 2.942          | 1.5   | H2-1  |
| 23 | M23     | L3X3X5      | 0.281     | 0 4        | 4 0.02    | 4 5.25      | V     | 4  | 20.75      | 38.371     | 1.34           | 2.835          |       | H2-1  |
| 24 | M24     | L2X2X5X4in  | 0.43      | 2.625 1    | 0.08      | 7 2.625     | V     | 8  | 27.822     | 49.609     | 10.805         | 1.616          |       | H1-1b |
| 25 | M25     | L2.5X2.5X4  | 0.666     | 8.998      | 7 0.04    | 3.168       | 2     | 8  | 1.95       | 25.653     | 0.741          | 1.141          |       | H2-1  |
| 26 | M26     | LL2X2X5X4in | 0.434     | 2.625      | 7 0.09    | 3 2.625     | У     | 7  | 27.822     | 49.609     | 10.805         | 1.616          | _     | H1-1b |
| 27 | M27     | L2X2X5X4in  |           | 2.625 2    | 24 0.02   | 1 2.625     | Z     | 7  | 27.822     | 49.609     | 10.805         | 1.616          | _     | H1-1b |
| 28 | M28     | L2.5X2.5X4  | 0.773     | 8.998      | 7 0.02    | 5 8.998     | У     | 8  | 1.95       | 25.653     | 0.741          | 1.083          | 1.05  |       |
| 29 | M29     | L2.5X2.5X4  | 0.47      | 5.25       | 7 0.04    | 9 5.25      | z     | 7  | 10.436     | 25.653     | 0.741          | 1.568          | 1.5   | H2-1  |
| 30 | M30     | L2.5X2.5X4  | 0.346     | 0 8        | 8 0.02    | 2 5.25      | z     | 8  | 10.436     | 25.653     | 0.741          | 1.568          | 1.5   | H2-1  |
| 31 | M31     | PIPE 2.5    | 0.315     | 7.313      | 9 0.06    | 3 4.5       |       | 7  | 17.39      | 33.743     | 2.393          | 2.393          | 1     | H1-1b |
| 32 | M32     | PIPE 2.5    | 0.452     | 7.313      | 9 0.08    | 5 7.313     |       | 9  | 17.39      | 33.743     | 2.393          | 2.393          | _     | H1-1b |
| 33 | M33     | L2X2X4      | 0.133     | 1.385 1    | 0.01      | 2 2.828     | V     | 9  | 13.574     | 20.35      | 0.46           | 1.036          | 1.136 | H2-1  |
| 34 | M34     | L2X2X4      | 0.155     |            | 8 0.00    | 8 2.828     | У     | 9  | 13.574     | 20.35      | 0.46           | 1.036          | 1.136 | H2-1  |
| 35 | M35     | L2X2X4      | 0.155     |            | 8 0.00    | 8 2.828     | V     | 7  | 13.574     | 20.35      | 0.46           | 1.036          | 1.136 | H2-1  |
| 36 | M36     | L2X2X4      | 0.133     | 1.444 1    | 0.01      | 2 2.828     | V     | 7  | 13.574     | 20.35      | 0.46           | 1.036          | 1.136 | H2-1  |

#### Envelope Member End Reactions

|               |       | Member End |     |        |    |        |    | 0.41   | 23 | 0      | 24       | y-y Moment[k-ft] | 24 | 0      | 24 |
|---------------|-------|------------|-----|--------|----|--------|----|--------|----|--------|----------|------------------|----|--------|----|
| 1             | M1    |            |     |        | 10 | 3.438  | 18 |        |    |        | 1        | 0                | 1  | 0      | 1  |
| 2             |       |            | min | -0.984 | 24 | 0.247  | 24 | -0.6   | 9  | 0      | 24       | 0                | 24 | 0      | 24 |
| 3             |       | J          | max | 0.405  | 8  | 0.189  | 10 | 0.14   | 9  |        | 1        | 0                | 1  | 0      | 1  |
| 4             |       |            | min | -0.331 | 10 | -1.868 | 8  | -0.097 | 23 | 0      | <u> </u> |                  |    | 0      | 24 |
| 5             | M2    |            | max | 1.042  | 10 | 3.401  | 18 | 0.6    | 7  | 0      | 24       | 0                | 24 | 0      | 1  |
| 6             |       |            | min | -0.984 | 24 | 0.225  | 24 | -0.36  | 9  | 0      |          | 0                |    | 0      | 24 |
| 7             |       | J          | max | 0.404  | 8  | 0.2    | 10 | 0.085  | 9  | 0      | 24       | 0                | 24 | 0      | 1  |
| 8             |       |            | min | -0.331 | 10 | -1.857 | 8  | -0.14  | 7  | 0      | 1        | 0                | 1  |        | 9  |
| 9             | M3    |            | max | 3.737  | 10 | 0.426  | 9  | 0.526  | 24 | 0.247  | 24       | 1.645            | 10 | 0.013  |    |
| 10            |       |            | min | -1.706 | 24 | -0.279 | 23 | -0.715 | 10 | -0.36  | 10       | -1.098           | 24 | -0.006 | 23 |
| 11            |       | J          | max | 2.433  | 10 | 0.417  | 9  | 0.519  | 10 | 0.248  | 24       | 0.002            | 9  | 1.598  | 23 |
| 12            |       |            | min | -0.788 | 24 | -0.279 | 23 | -0.437 | 24 | -0.361 | 10       | -0.002           | 23 | -2.417 | 9  |
| 13            | M4    |            | max | 3.763  | 8  | 0.336  | 9  | 0.901  | 8  | 0.34   | 24       | 1.515            | 10 | 0.006  | 23 |
| 14            |       |            | min | -1.186 | 10 | -0.229 | 23 | -0.663 | 10 | -0.364 | 10       | -2.29            | 8  | -0.013 | 9  |
| 15            |       | J          | max | 2.262  | 16 | 0.329  | 9  | 0.486  | 10 | 0.341  | 24       | 0.003            | 9  | 1.323  | 23 |
| 16            |       |            | min | -0.111 | 10 | -0.229 | 23 | -0.545 | 8  | -0.364 | 10       | -0.002           | 23 | -1.93  | 9  |
| 17            | M5    |            | max | 3.712  | 10 | 0.247  | 9  | 0.527  | 24 | 0.359  | 10       | 1.639            | 10 | 0.005  | 24 |
| 18            | .,,,, |            | min | -1.721 | 24 | -0.425 | 7  | -0.713 | 10 | -0.248 | 24       | -1.102           | 24 | -0.012 | 7  |
| 19            |       |            | max | 2.411  | 10 | 0.245  | 9  | 0.518  | 10 | 0.36   | 10       | 0.002            | 23 | 2.414  | 7  |
| 20            |       |            | min | -0.801 | 24 | -0.416 | 7  | -0.438 | 24 | -0.248 | 24       | -0.002           | 9  | -1.413 | 9  |
| 21            | M6    |            | max | 3.74   | 8  | 0.206  | 9  | 0.9    | 8  | 0.363  | 10       | 1.521            | 10 | 0.012  | 7  |
| 22            | IVIC  | •          | min | -1.209 | 10 | -0.336 | 7  | -0.665 | 10 | -0.341 | 24       | -2.284           | 8  | -0.005 | 24 |
| 23            |       | RIPJEE     | max | 2.241  | 16 | 0.204  | 9  | 0.486  | 10 | 0.363  | 10       | 0.002            | 23 | 1.932  | 7  |
| 24            |       |            | min | -0.132 | 10 | -0.329 | 7  | -0.545 | 8  | -0.341 | 24       | -0.003           | 9  | -1.186 | 9  |
| 25            | M7    |            | max | 0.412  | 7  | 2.664  | 10 | 0.667  | 24 | 0.002  | 9        | 0.36             | 10 | 2.415  | 7  |
| 26            | 1417  | ·          | min | -0.244 | 9  | -0.913 | 24 | -0.686 | 10 | -0.002 | 23       | -0.248           | 24 | -1.414 | 9  |
| 27            |       |            | max | 0.413  | 9  | 0.898  | 24 | 0.686  | 10 | 0.002  | 9        | 0.361            | 10 | 2.418  | 9  |
| 28            |       |            | min | -0.279 | 23 | -2.688 | 10 | -0.667 | 24 | -0.002 | 23       | -0.248           | 24 | -1.599 | 23 |
| 29            | M8    |            | max | 1.103  | 24 | 0.113  | 24 | 0.002  | 8  | 0.014  | 8        | 0                | 24 | 0      | 24 |
| 30            | IVIO  |            | min | -1.206 | 10 | -0.254 | 10 | 0      | 9  | -0.013 | 10       | 0                | 1  | 0      | 1  |
| 31            |       | J          | max | 1.174  | 10 | 0.482  | 8  | 0      | 9  | 0.014  | 8        | 0                | 24 | 0      | 24 |
| $\overline{}$ |       | J          | min | -1.262 | 8  | -0.312 | 10 | -0.002 | 8  | -0.013 | 10       | 0                | 1  | 0      | 1  |
| 32            | M9    |            | max | 1.103  | 24 | 0.114  | 24 | 0.002  | 7  | 0.013  | 10       | 0                | 24 | 0      | 24 |
| 33            | MA    |            | min | -1.205 | 10 | -0.252 | 10 | -0.002 | 8  | -0.014 | 8        | 0                | 1  | 0      | 1  |
| 34<br>35      |       |            |     | 1.174  | 10 | 0.48   | 8  | 0.002  | 8  | 0.013  | 10       | 0                | 24 | 0      | 24 |



Company : Centek Engineering
Designer : Luke Amiot
Job Number : 22017.01
Model Name : Greenwich 4- East Chimney Frame

9/28/2023 4:34:28 PM

Checked By: CFC

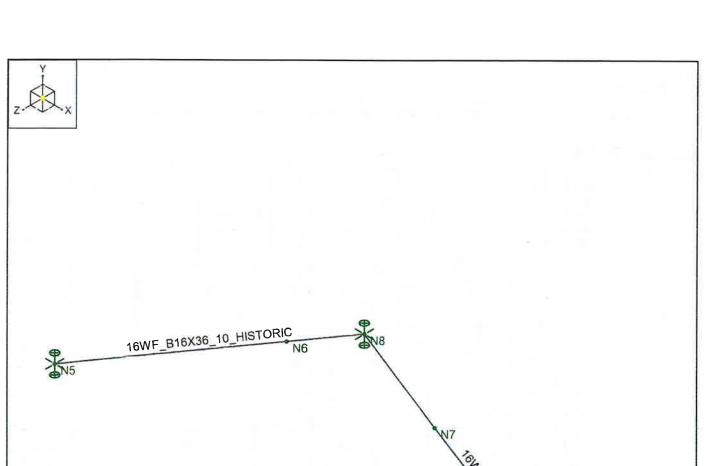
#### Envelope Member End Reactions (Continued)

|          | Manakan | . Leader Car |          | A: -101-1 | 10 | OF E 1          | 10 | - 01 - 113      | 10 | T 0 01          | 10 | SAME A PERSON NO. | 10 | - 14 - 10 61     |    |
|----------|---------|--------------|----------|-----------|----|-----------------|----|-----------------|----|-----------------|----|-------------------|----|------------------|----|
| _        | Member  | Member End   |          |           |    |                 |    |                 |    |                 |    |                   |    | z-z Moment[k-ft] |    |
| 36       | 1440    |              |          | -1.262    | 8  | -0.314          | 10 | 0               | 7  | -0.014          | 8  | 0                 | 1  | 0                | 1  |
| 37       | M10     |              | max      | 0.327     | 7  | 2.704           | 8  | 0.712           | 8  | 0.003           | 9  | 0.363             | 10 | 1.933            | 7  |
| 38<br>39 | _       |              | min      | -0.202    | 9  | -0.446          | 10 | -0.688          | 10 | -0.002          | 23 | -0.341            | 24 | -1.186           | 9  |
|          |         | J            | max      | 0.326     | 9  | 0.423           | 10 | 0.688           | 10 | 0.003           | 9  | 0.364             | 10 | 1.93             | 9  |
| 40       | M11     |              | min      |           | 23 | -2.727          | 8  | -0.711          | 8  | -0.002          | 23 | -0.341            | 24 | -1.322           | 23 |
| 41       | MII     |              | max      | 0.249     | 18 | 1.205           | 10 | 0.219           | 7  | 0.016           | 7  | 0                 | 24 | 0                | 24 |
| 42       | -       |              | min      | -0.044    | 24 | -0.653          | 24 | -0.22           | 9  | -0.016          | 9  | 0                 | 1  | 0                | 1  |
| 43       |         | J            | max      | 0.022     | 24 | 0.553           | 10 | 0.176           | 9  | 0.016           | 9  | 0                 | 24 | 0                | 24 |
| 44       | 140     |              | min      | -0.256    | 18 | -1.127          | 8  | -0.177          | 7  | -0.015          | 7  | 0                 | 1  | 0                | 1  |
| 45       | M12     |              | max      | 0.579     | 10 | 1.909           | 10 | 0.213           | 23 | 0.018           | 7  | 0                 | 24 | 0                | 24 |
| 46       |         |              | min      | -0.661    | 8  | -0.68           | 24 | -0.223          | 9  | -0.014          | 9  | 0                 | 1  | 0                | 1  |
| 47       |         |              | max      | 0.723     | 8  | 0.321           | 10 | 0.182           | 9  | 0.013           | 9  | 0                 | 24 | 0                | 24 |
| 48       | 8440    |              | min      | -0.582    | 10 | -1.994          | 16 | -0.171          | 23 | -0.017          | 7  | 0                 | 1  | 0                | 1  |
| 49       | M13     |              | max      | 0.579     | 10 | 1.957           | 10 | 0.224           | 7  | 0.014           | 23 | 0                 | 24 | 0                | 24 |
| 50<br>51 |         |              | min      | -0.66     | 8  | -0.651          | 24 | -0.214          | 9  | -0.018          | 9  | 0                 | 1  | 0                | 1  |
| 52       |         | J            | max      | 0.723     | 8  | 0.276           | 10 | 0.171           | 9  | 0.017           | 9  | 0                 | 24 | 0                | 24 |
| 53       | N44.4   | - 4          | min      | -0.582    | 10 | -2.041          | 16 | -0.184          | 7  | -0.014          | 23 | 0                 | 1  | 0                | 1  |
|          | M14     | 1            | max      |           | 15 | 0.407           | 9  | 1.401           | 8  | 0.112           | 7  | 5.854             | 10 | 0.027            | 9  |
| 54<br>55 | _       |              | min      | 0.312     | 9  | -0.404          | 7  | -1.174          | 10 | -0.108          | 9  | -6.211            | 8  | -0.035           | 7  |
|          |         |              | max      | 0.529     | 8  | 0.201<br>-0.122 | 9  | 0.646           | 8  | 0.09            | 10 | 0.033             | 20 | -0.013           | 23 |
| 56<br>57 | M15     |              | min      |           | 23 |                 | 23 | -0.565          | 10 | -0.198          | 8  | -0.102            | 10 | -0.038           | 9  |
| 58       | IVI IS  |              | max      | 0.933     | 24 | 0.401           | 7  | 0.07            | 24 | 0.113<br>-0.114 | 23 | 4.614             | 10 | 0.032            | 9  |
| 59       |         | J            | min      | 0.079     | 10 | -0.401<br>0.278 |    | -0.51           | 18 | 0.013           | 9  | -4.352            | 24 | -0.031           | 7  |
| 60       |         |              | max      | -0.012    | 24 | -0.291          | 7  | 0.154           | 24 |                 | 7  | 0.058             | 10 | 0.006            | -  |
| 61       | M16     |              | min      | 3.09      | 17 |                 | 9  | 0.283           | 10 | -0.013          | 23 | -0.172            | 8  | -0.006           | 9  |
| 62       | IVI TO  |              | max      | -0.232    | 23 | 0.409<br>-0.411 | 7  | 1.401           |    | 0.108           |    | 5.863             | 10 | 0.035            | 9  |
| 63       |         |              | min      | 0.53      | 8  | 0.118           | 9  | -1.175<br>0.646 | 10 | -0.114<br>0.197 | 9  | -6.212<br>0.034   | 20 | -0.028<br>0.04   | 7  |
| 64       |         | J            | max      | 0.308     | 23 | -0.203          | 7  | -0.565          | 10 | -0.09           | 10 | -0.1              | 10 | 0.04             | 9  |
| 65       | M17     |              | max      | 0.678     | 8  | -0.152          | 24 | 0.13            | 9  | 0.001           | 23 | 0                 | 24 | 0.024            | 24 |
| 66       | IVI 17  |              | min      | -0.499    | 10 | -0.132          | 4  | -0.121          | 23 | -0.026          | 17 | 0                 | 1  | 0                | 1  |
| 67       |         |              | max      | 0.166     | 10 | 0.391           | 4  | 0.113           | 7  | 0.027           | 17 | 0                 | 24 | 0                | 24 |
| 68       |         | 9            | min      | -0.256    | 8  | 0.14            | 24 | -0.11           | 9  | -0.001          | 23 | 0                 | 1  | 0                | 1  |
| 69       | M18     | 1            | max      | 0.635     | 8  | -0.152          | 24 | 0.122           | 9  | 0.026           | 15 | 0                 | 24 | 0                | 24 |
| 70       | IVITO   |              | min      | -0.544    | 10 | -0.132          | 4  | -0.132          | 7  | 0.020           | 9  | 0                 | 1  | 0                | 1  |
| 71       |         |              | max      | 0.122     | 10 | 0.389           | 4  | 0.112           | 23 | -0.003          | 9  | 0                 | 24 | 0                | 24 |
| 72       |         |              | min      | -0.302    | 16 | 0.14            | 24 | -0.117          | 9  | -0.003          | 15 | 0                 | 1  | 0                | 1  |
| 73       | M19     |              | max      | -0.037    | 24 | -0.035          | 24 | 0.059           | 9  | 0.009           | 7  | 0                 | 24 | 0                | 24 |
| 74       | WITS    |              | min      | -0.239    | 18 | -0.069          | 9  | -0.06           | 23 | -0.009          | 9  | 0                 | 1  | 0                | 1  |
| 75       |         | J            | max      | 0.413     | 16 | 0.102           | 8  | 0.057           | 7  | 0.009           | 9  | 0                 | 24 | 0                | 24 |
| 76       |         |              | min      | -0.131    | 10 | 0.043           | 23 | -0.056          | 9  | -0.009          | 7  | 0                 | 1  | 0                | 1  |
| 77       | M20     |              |          | -0.029    |    | -0.069          | 24 | 0.066           | 24 | 0.001           | 15 | 0.254             | 4  | 0.255            | 4  |
| 78       | WIE     |              | min      | -0.11     | 16 | -0.242          | 4  | -0.096          | 10 | 0.001           | 9  | 0.095             | 23 | 0.095            | 23 |
| 79       |         | J            | max      | 0.27      | 23 | 0.242           | 4  | 0.061           | 10 | 0.001           | 15 | 0.093             | 17 | 0.093            | 9  |
| 80       |         |              | min      | -0.358    | 9  | 0.069           | 24 | -0.094          | 8  | 0.001           | 9  | -0.104            | 23 | -0.106           | 23 |
| 81       | M21     |              |          | 0.11      | 16 | -0.072          | 23 | 0.096           | 10 | 0.001           | 16 | 0.153             | 16 | 0.151            | 16 |
| 82       | IVIZI   |              | min      | 0.029     | 10 | -0.247          | 4  | -0.066          | 24 | 0.001           | 10 | 0.133             | 10 | 0.012            | 10 |
| 83       |         | J            |          | 0.346     | 7  | 0.247           | 4  | 0.094           | 8  | 0.001           | 16 | 0.319             | 15 | 0.321            | 15 |
| 84       |         | 3            |          | -0.235    | 9  | 0.073           | 24 | -0.061          | 10 | 0.001           | 10 | 0.011             | 9  | 0.01             | 9  |
| 85       | M22     |              |          | 0.094     | 8  | 0.245           | 4  | 0.27            | 23 | 0.001           | 7  | 0.217             | 9  | 0.217            | 17 |
| 86       | IVILL   |              | min      |           | 10 | 0.071           | 23 | -0.358          | 9  | -0.001          | 9  | -0.106            | 23 | -0.105           | 23 |
| 87       |         |              |          | 0.094     | 8  | -0.071          | 24 | 0.235           | 9  | 0.001           | 7  | -0.106            | 9  | -0.105           | 9  |
| 88       |         | 3            |          | -0.061    | 10 | -0.244          | 4  | -0.346          | 7  | -0.001          | 9  | -0.319            | 15 | -0.32            | 15 |
| 89       | M23     |              |          | 0.066     | 24 | 0.244           | 4  | 0.11            | 16 | 0.001           | 16 | -0.095            | 23 | -0.096           | 10 |
| 90       | 10120   |              |          | -0.096    | 10 | 0.071           | 24 | 0.029           | 10 | 0.001           | 10 | -0.254            | 4  | -0.255           | 4  |
| 20       |         |              | 1.111111 | 1-0.030   | IU | 0.071           | 4  | U.UZ8           | 10 | U               | 10 | -0.204            | 4  | -0.255           | 4  |



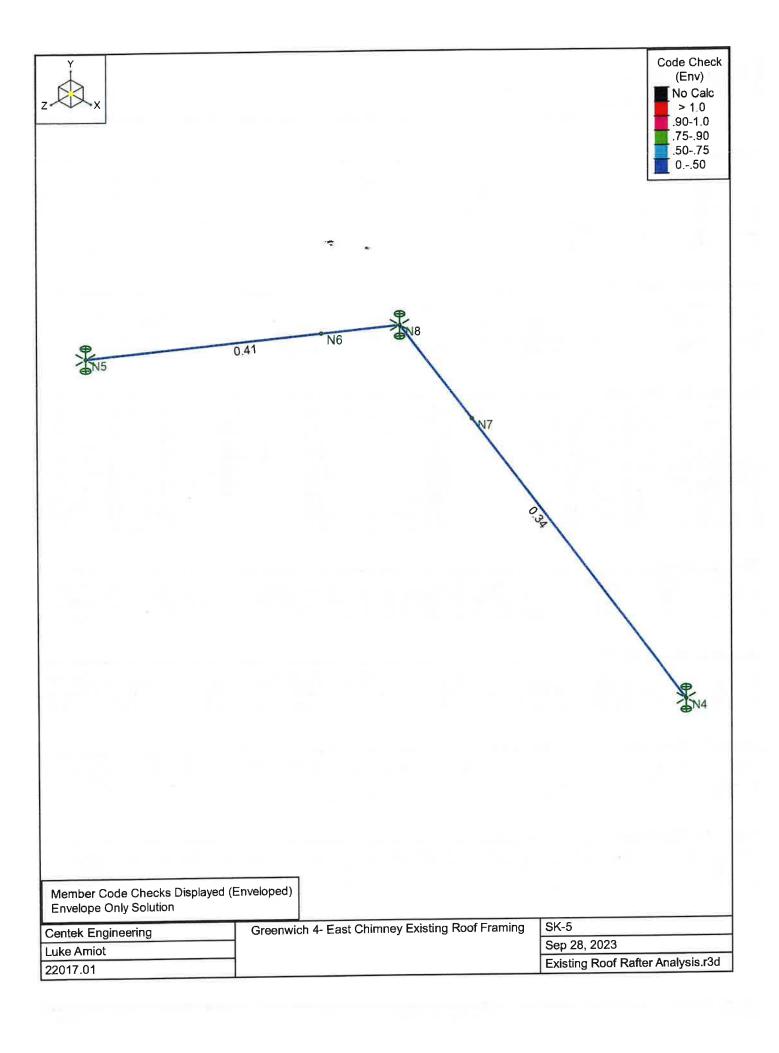
Company : Centek Engineering Designer : Luke Amiot Job Number : 22017.01

Model Name: Greenwich 4- East Chimney Frame


9/28/2023 4:34:28 PM

Checked By: CFC

## Envelope Member End Reactions (Continued)


|     | _      | 215 1155   |     | tions (C |    |            | 19713443 |            |     |        |    | 10.01            | 10  | Managerille ft1 | 1.0 |
|-----|--------|------------|-----|----------|----|------------|----------|------------|-----|--------|----|------------------|-----|-----------------|-----|
| 1   | Member | Member End |     | Axial[k] |    | y Shear[k] |          | z Shear[k] |     |        |    | y-y Moment[k-ft] |     |                 | 16  |
| 91  |        | J          | max | 0.066    | 24 | -0.071     | 23       | 0.11       | 16  | 0.001  | 16 | 0.152            | 16  | 0.153           | 10  |
| 92  |        |            | min | -0.096   | 10 | -0.245     | 4        | 0.029      | 10  | 0      | 10 | 0.012            | 10  | 0.012           | 24  |
| 93  | M24    |            | max | 0.513    | 8  | -0.143     | 23       | 0.109      | 9   | -0.007 | 23 | 0                | 24  | 0               | 1   |
| 94  |        |            | min | -0.446   | 10 | -0.242     | 16       | -0.054     | 23  | -0.019 | 9  | 0                | 1   | 0               | 24  |
| 95  |        | J          | max | 0.101    | 10 | 0.235      | 10       | 0.067      | 23  | 0.02   | 8  | 0                | 24  | 0               |     |
| 96  |        |            | min | -0.111   | 8  | 0.136      | 24       | -0.089     | 9   | 0.006  | 23 | 0                | 1   | 0               | 8   |
| 97  | M25    | J          | max | 0.009    | 10 | -0.039     | 24       | 0.069      | 24  | 0.001  | 7  | 0.171            | 8   | 0.172           | 10  |
| 98  |        |            | min | -0.087   | 8  | -0.07      | 9        | -0.09      | 10  | 0      | 9  | 0.011            | 10  | 0.011           |     |
| 99  |        | J          | max | 0.271    | 23 | 0.076      | _7_      | 0.068      | 10  | 0.001  | 7  | 0.182            | 9   | 0.183           | 9   |
| 100 |        |            | min | -0.332   | 9  | 0.039      | 24       | -0.086     | 8   | 0      | 9  | -0.1             | 23  | -0.101          | 23  |
| 101 | M26    | 1          | max | 0.487    | 8  | -0.143     | 23       | 0.047      | 9   | 0.018  | 7  | 0                | 24  | .0              | 24  |
| 102 |        |            | min | -0.473   | 10 | -0.242     | 16       | -0.111     | 7   | 0.011  | 24 | 0                | 1   | 0               | 1   |
| 103 |        | J          | max | 0.073    | 10 | 0.234      | 10       | 0.09       | 7   | -0.011 | 9  | 0                | 24  | 0               | 24  |
| 104 |        |            | min | -0.137   | 8  | 0.136      | 24       | -0.068     | 9   | -0.021 | 7  | 0                | 1   | 0               | 1   |
| 105 | M27    |            | max | 0.238    | 24 | 0.053      | 24       | 0.136      | _9_ | 0.003  | 7  | 0                | 24  | 0               | 24  |
| 106 |        |            | min | -0.295   | 10 | -0.025     | 10       | -0.143     | 7   | -0.003 | 9  | 0                | 1   | 0               | 1   |
| 107 |        | J          | max | 0.1      | 8  | 0.014      | 9        | 0.148      | 7   | 0.003  | 9  | 0                | 24  | 0               | 24  |
| 108 |        |            | min | -0.016   | 10 | 0.003      | 10       | -0.142     | 9   | -0.003 | 23 | 0                | 1_  | 0               | 1   |
| 109 | M28    |            | max | 0.087    | 8  | -0.043     | 23       | 0.09       | 10  | 0.001  | 8  | 0.152            | 8   | 0.15            | 8   |
| 110 |        |            | min | -0.009   | 10 | -0.076     | 8        | -0.069     | 24  | 0      | 10 | -0.046           | 10  | -0.046          | 7   |
| 111 |        | J          | max | 0.338    | 7  | 0.078      | 7        | 0.088      | 7   | 0.001  | 8  | 0.232            | 7   | 0.233           |     |
| 112 |        |            | min | -0.26    | 9  | 0.046      | 23       | -0.068     | 10  | 0      | 10 | -0.049           | 9   | -0.05           | 9   |
| 113 | M29    |            | max | 0.086    | 7  | 0.071      | 8        | 0.271      | 23  | 0.001  | 23 | 0.183            | 9   | 0.182           | 9   |
| 114 |        |            | min | -0.068   | 10 | 0.043      | 23       | -0.332     | 9   | -0.001 | 9  | -0.101           | 23  | -0.1            | 23  |
| 115 |        | J          | max | 0.086    | 7  | -0.042     | 24       | 0.261      | 9   | 0.001  | 23 | 0.05             | 9   | 0.049           | 9   |
| 116 |        |            | min | -0.068   | 10 | -0.071     | 10       | -0.338     | 7   | -0.001 | 9  | -0.232           | 7   | -0.232          | 7   |
| 117 | M30    |            | max | 0.068    | 24 | 0.071      | 10       | 0.087      | 8   | 0.001  | 8  | -0.011           | 10  | -0.011          | 10  |
| 118 |        |            | min | -0.09    | 10 | 0.042      | 24       | -0.009     | 10  | 0      | 10 | -0.171           | 8   | -0.172          | 8   |
| 119 |        | J          | max | 0.068    | 24 | -0.043     | 23       | 0.087      | 8   | 0.001  | 8  | 0.15             | 8   | 0.151           | 8   |
| 120 |        |            | min | -0.09    | 10 | -0.071     | 8        | -0.009     | 10  | 0      | 10 | -0.046           | 10  | -0.046          | 10  |
| 121 | M31    | 1          | max | 0        | 24 | -0.05      | 24       | 0          | 24  | 0      | 24 | 0                | 24  | 0               | 24  |
| 122 |        |            | min | 0        | 1_ | -0.083     | 7        | 0          | 1   | 0      | 1  | 0                | 1   | 0               | 1   |
| 123 |        | J          | max | 0        | 24 | 0.087      | 13       | 0          | 24  | 0      | 24 | 0                | 24  | 0               | 24  |
| 124 |        |            | min | 0        | 1  | 0.052      | 24       | 0          | _1_ | 0      | 1  | 0                | 1   | 0               | 1   |
| 125 | M32    | 1          | max | 0        | 24 | 0          | 24       | 0          | 24  | 0      | 24 | 0                | 24  | 0               | 24  |
| 126 |        |            | min | 0        | 1  | 0          | 1        | 0          | 1   | 0      | 1  | 0                | _1_ | 0               | 1   |
| 127 |        | J          | max | 0        | 24 | 0.022      | 11       | 0          | 24  | 0      | 24 | 0                | 24  | 0               | 24  |
| 128 |        |            | min | 0        | 1  | 0.013      | 23       | 0          | 1   | 0      | 1  | 0                | 1   | 0               | 1   |
| 129 | M33    |            | max | 1.741    | 10 | 0.003      | 21       | 0          | 23  | 0.001  | 9  | 0                | 24  | 0               | 24  |
| 130 |        |            | min | -1.364   | 24 | 0.002      | 23       | 0          | 9   | -0.001 | 23 | 0                | 1   | 0               | 1   |
| 131 |        | J          |     | 1.734    | 10 | -0.002     | 24       | 0          | 23  | 0.001  | 9  | 0                | 24  | 0               | 24  |
| 132 |        |            |     | -1.368   |    | -0.003     | 1        | 0          | 9   | -0.001 | 23 | 0                | 1   | 0               | -   |
| 133 | M34    |            | max | 2.036    | 8  | 0.003      | 21       | 0          | 24  | 0      | 23 | 0                | 24  | 0               | 24  |
| 134 |        |            | min | -1.631   | 10 | 0.002      | 23       | 0          | 1   | -0.001 | 9  | 0                | 1_  | 0               | 1   |
| 135 |        | J          | max | 2.042    | 8  | -0.002     | 24       | 0          | 24  | 0      | 23 | 0                | 24  | 0               | 24  |
| 136 |        |            | min | -1.624   | 10 | -0.003     | 1        | 0          | 1   | -0.001 | 9  | 0                | 1_  | 0               | 1   |
| 137 |        | 1          |     | 2.034    | 8  | 0.003      | 19       | 0          | 24  | 0.001  | 7  | 0                | 24  | 0               | 24  |
| 138 |        |            | min | -1.633   | 10 | 0.002      | 23       | 0          | 7   | 0      | 9  | 0                | 1   | 0               | 1   |
| 139 |        | J          | max |          | 8  | -0.002     | 24       | 0          | 24  | 0.001  | 7  | 0                | 24  | 0               | 24  |
| 140 |        |            | min |          | 10 | -0.003     | 1        | 0          | 7   | 0      | 9  | 0                | 1   | 0               | 1   |
| 141 |        |            | max |          | 10 | 0.003      | 19       | 0          | 19  | 0.001  | 9  | 0                | 24  | 0               | 24  |
| 142 |        |            | min |          | 24 | 0.002      | 23       | 0          | 9   | -0.001 | 7  | 0                | 1   | 0               | 1   |
| 143 |        | J          | max |          | 10 | -0.002     | 24       | 0          | 19  | 0.001  | 9  | 0                | 24  | 0               | 24  |
|     |        |            |     | -1.367   | 24 | -0.003     | 1        | 0          | 9   | -0.001 | 7  | 0                | 1   | 0               | 1   |

Page 9



TOME BIOLOGIC

| Centek Engineering | Greenwich 4- East Chimney Existing Roof Framing | SK-4                              |
|--------------------|-------------------------------------------------|-----------------------------------|
| Luke Amiot         |                                                 | Sep 28, 2023                      |
| 22017.01           |                                                 | Existing Roof Rafter Analysis.r3d |



#### EAST ENCLOSURE EXISTING RAFTER COMPUTATIONS



Company : Centek Engineering

Designer : Luke Amiot Job Number : 22017.01

Model Name: Greenwich 4- East Chimney Exist...

9/28/2023 4:41:48 PM

Checked By: CFC

#### Node Coordinates

|   | Label | X [ft]  | Y [ft] | Z [ft] | Detach From Diaphragm |
|---|-------|---------|--------|--------|-----------------------|
| 1 | N8    | 5.5     | 2.5    | 3      |                       |
| 2 | N4    | 24.29   | -9.5   | 3      |                       |
| 3 | N5    | -15     | -9.5   | 3      |                       |
| 4 | N6    | 0.375   | -0.5   | 3      |                       |
| 5 | N7    | 10.1975 | -0.5   | 3      |                       |

#### Node Boundary Conditions

|   | Node Label | X [k/in] | Y [k/in] | Z [k/in] | Y Rot [k-ft/rad] |
|---|------------|----------|----------|----------|------------------|
|   | N5         | Reaction | Reaction | Reaction | Reaction         |
| 2 | N8         | Reaction | Reaction | Reaction | Reaction         |
| 3 | N4         | Reaction | Reaction | Reaction | Reaction         |

#### Hot Rolled Steel Properties

| _ | Label          | E [ksi] | G [ksi] | Nu  | Therm. Coeff. [1e5°F-1] | Density [k/ft³] | Yield [ksi] | Ry   | Fu [ksi] | Rt   |
|---|----------------|---------|---------|-----|-------------------------|-----------------|-------------|------|----------|------|
| 1 | A992           | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 50          | 1.1  | 65       | 1.1  |
| 2 | A36 Gr.36      | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 36          | 1.5  | 58       | 1.2  |
| 3 | A572 Gr.50     | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 50          | 1.1  | 65       | 1.1  |
|   | A500 Gr.B RND  | 29000   | 11154   | 0.3 | 0.65                    | 0.527           | 42          | 1.4  | 58       | 1.3  |
| 5 | A500 Gr.B Rect | 29000   | 11154   | 0.3 | 0.65                    | 0.527           | 46          | 1.4  | 58       | 1.3  |
| 6 | A53 Gr.B       | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 35          | 1.6  | 60       | 1.2  |
| 7 | A1085          | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 50          | 1.25 | 65       | 1.15 |
| 8 | A913 Gr.65     | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 65          | 1.1  | 80       | 1.1  |

#### Member Primary Data

| Label | Node | J Node | Section/Shape           | Туре | Design List | Material  | Design Rule |
|-------|------|--------|-------------------------|------|-------------|-----------|-------------|
| M1    | N5   | N8     | 16WF B16X36 10 HISTORIC | Beam | Wide Flange | A36 Gr.36 | Typical     |
| M2    | N4   | N8     | 16WF B16X36 10 HISTORIC | Beam | Wide Flange | A36 Gr 36 | Typical     |

#### Hot Rolled Steel Design Parameters

|   | Label | Shape                   | Length [ft] | Lb y-y [ft] | Lcomp top [ft] | Channel Conn. | a [ft] | Function |
|---|-------|-------------------------|-------------|-------------|----------------|---------------|--------|----------|
| 1 | M1    | 16WF B16X36 10 HISTORIC | 23.754      | 1           | Lbyy           | N/A           | N/A    | Lateral  |
| 2 | M2    | 16WF B16X36 10 HISTORIC | 22.295      | 1           | Lbyy           | N/A           | N/A    | Lateral  |

#### Member Distributed Loads (BLC 2 : Dead Load)

| Me | ember Lab | el Direction S | tart Magnitude [k/ft, F, ksf, k-ft/ | ft]End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location [(ft, %) | End Location (ft. %) |
|----|-----------|----------------|-------------------------------------|------------------------------------------|-------------------------|----------------------|
| 1  | M1        | Y              | <mark>-0.19</mark>                  | -0.19                                    | 0                       | %100                 |
| 2  | M2        | Y              | -0.19                               | -0.19                                    | 0                       | %100                 |

#### Member Distributed Loads (BLC 8: Snow Load)

| _ M | ember Labe | elDirection | Start Magnitude [k/ft, F, ksf, k-ft/ft] | End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location [(ft, %)] | End Location (ft. %)] |
|-----|------------|-------------|-----------------------------------------|---------------------------------------|--------------------------|-----------------------|
| 1   | M1         | Y           | -0.237                                  | -0.237                                | 0                        | %100                  |
| 2   | M2         | Y           | -0.237                                  | -0.237                                | 0                        | %100                  |



Company : Centek Engineering
Designer : Luke Amiot
Job Number : 22017.01

Model Name: Greenwich 4- East Chimney Exist...

9/28/2023 4:41:48 PM

Checked By: CFC

#### Basic Load Cases

|    | BLC Description      | Category | Y Gravity | Nodal | Distributed |
|----|----------------------|----------|-----------|-------|-------------|
| 1  | Self Weight          | DL       | -1-1      |       |             |
| 2  | Dead Load            | DL       |           |       | 2           |
| 3  | Live Load (Roof)     | RLL      |           |       |             |
| 4  | Equipment Load       | DL       |           | 2     |             |
| 5  | Panel Weight         | DL       |           |       |             |
| 6  | Wind-X               | WLX      |           | 2     |             |
| 7  | Wind-Z               | WLZ      |           | 2     |             |
| 8  | Snow Load            | SL       |           |       | 2           |
| 9  | Dead Load (Masonry)  | DL       |           |       |             |
| 10 | Dead Load (Concrete) | DL       |           |       |             |

#### Load Combinations

|    | Description       | Solve | P-Delta | BLC  | Factor | BLC | Factor | BLC | Factor | BLC | Factor | BLC | Factor | BLC | Factor |
|----|-------------------|-------|---------|------|--------|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| 1  | IBC 16-8          | Yes   | Y       | DL   | 1      | -   |        |     |        |     |        |     |        |     |        |
| 2  | IBC 16-9          | Yes   | Y       | DL   | 1      | LL  | 1      | LLS | 1      |     |        |     |        |     |        |
| 3  | IBC 16-10 (a)     | Yes   | Y       | DL   | 1      | RLL | 1      |     |        |     |        |     |        |     |        |
| 4  | IBC 16-10 (b)     | Yes   | Y       | DL   | 1      | SL  | 1      | SLN | 1      |     |        |     |        |     |        |
| 5  | IBC 16-11 (a)     | Yes   | Y       | DL   | 1      | LL  | 0.75   | LLS | 0.75   | RLL | 0.75   |     |        |     |        |
| 6  | IBC 16-11 (b)     | Yes   | Y       | DL   | 1      | LL  | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN | 0.75   |     |        |
| 7  | BC 16-12 (a) (a)  | Yes   | Y       | DL   | 1      | WLX | 0.6    |     |        |     |        |     |        |     |        |
|    | BC 16-12 (a) (b)  | Yes   | Y       | DL   | 1      | WLZ | 0.6    |     |        |     |        |     |        |     |        |
|    | IBC 16-12 (a) (c) | Yes   | Y       | DL   | 1      | WLX | -0.6   |     |        |     |        |     |        |     |        |
|    | BC 16-12 (a) (d)  | Yes   | Y       | DL   | 1      | WLZ | -0.6   |     |        |     |        |     |        |     |        |
| _  | BC 16-13 (a) (a)  | Yes   | Y       | DL   | 1      | WLX | 0.45   | LL  | 0.75   | LLS | 0.75   | RLL | 0.75   |     |        |
| _  | BC 16-13 (a) (b)  | Yes   | Y       | DL   | 1      | WLZ | 0.45   | LL  | 0.75   | LLS | 0.75   | RLL | 0.75   |     |        |
| _  | IBC 16-13 (a) (c) | Yes   | Y       | DL   | 1      | WLX | -0.45  | LL  | 0.75   | LLS | 0.75   | RLL | 0.75   |     | ļ      |
|    | BC 16-13 (a) (d)  | Yes   | Y       | DL   | 1      | WLZ | -0.45  | LL  | 0.75   | LLS | 0.75   | RLL | 0.75   |     |        |
|    | BC 16-13 (b) (a)  | Yes   | Y       | DL ' | 1      | WLX | 0.45   | LL  | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN | 0.75   |
|    | BC 16-13 (b) (b)  | Yes   | Y       | DL   | 1      | WLZ | 0.45   | LL  | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN | 0.75   |
|    | IBC 16-13 (b) (c) |       | Y       | DL   | 1      | WLX | -0.45  | LL  | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN | 0.75   |
|    | IBC 16-13 (b) (d) |       | Y       | DL   | 1      | WLZ | -0.45  | LL  | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN | 0.75   |
| _  | IBC 16-13 (c) (a) |       | Y       | DL   | 1      | WLX | 0.45   | LL  | 0.75   | LLS | 0.75   |     |        |     |        |
| _  | IBC 16-13 (c) (b) | Yes   | Y       | DL   | 1      | WLZ | 0.45   | LL  | 0.75   | LLS | 0.75   |     |        |     |        |
|    | IBC 16-13 (c) (c) | Yes   | Y       | DL   | 1      | WLX | -0.45  | LL  | 0.75   | LLS | 0.75   |     |        |     |        |
| _  | IBC 16-13 (c) (d) |       | Y       | DL   | 1      | WLZ | -0.45  | LL  | 0.75   | LLS | 0.75   |     |        |     |        |
| 23 |                   | Yes   | Y       | DL   | 0.6    | WLX | 0.6    |     |        |     |        |     |        |     |        |
| 24 |                   | Yes   | Y       | DL   | 0.6    | WLZ | 0.6    |     |        |     |        |     |        |     |        |

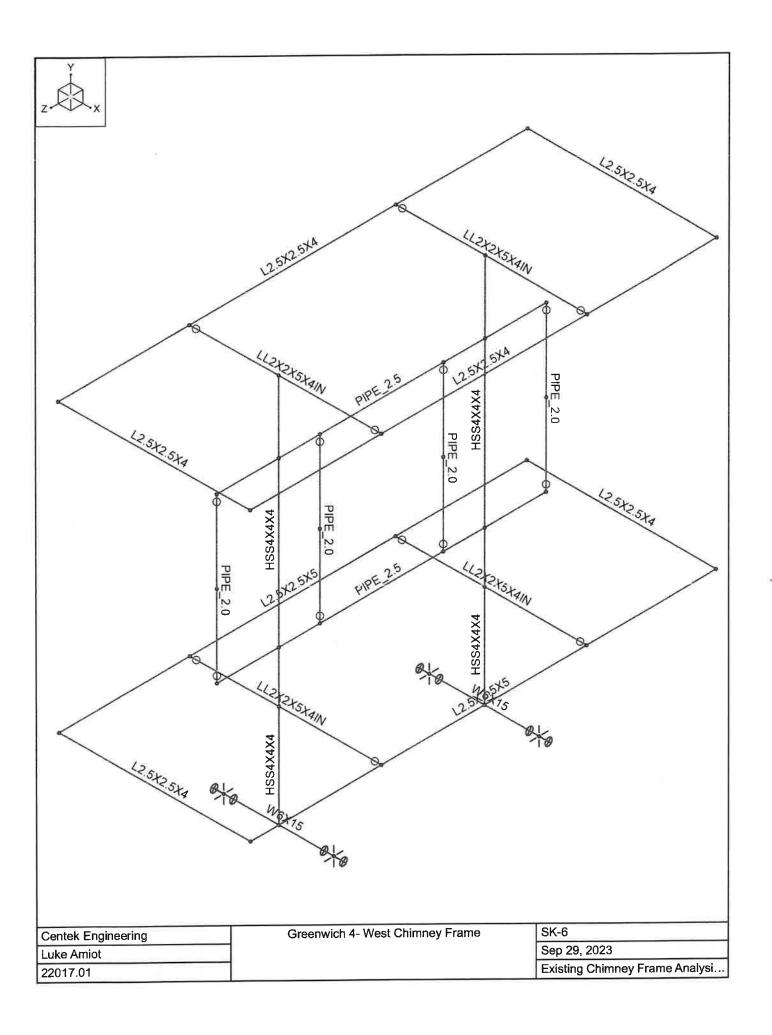
#### Envelope Node Reactions

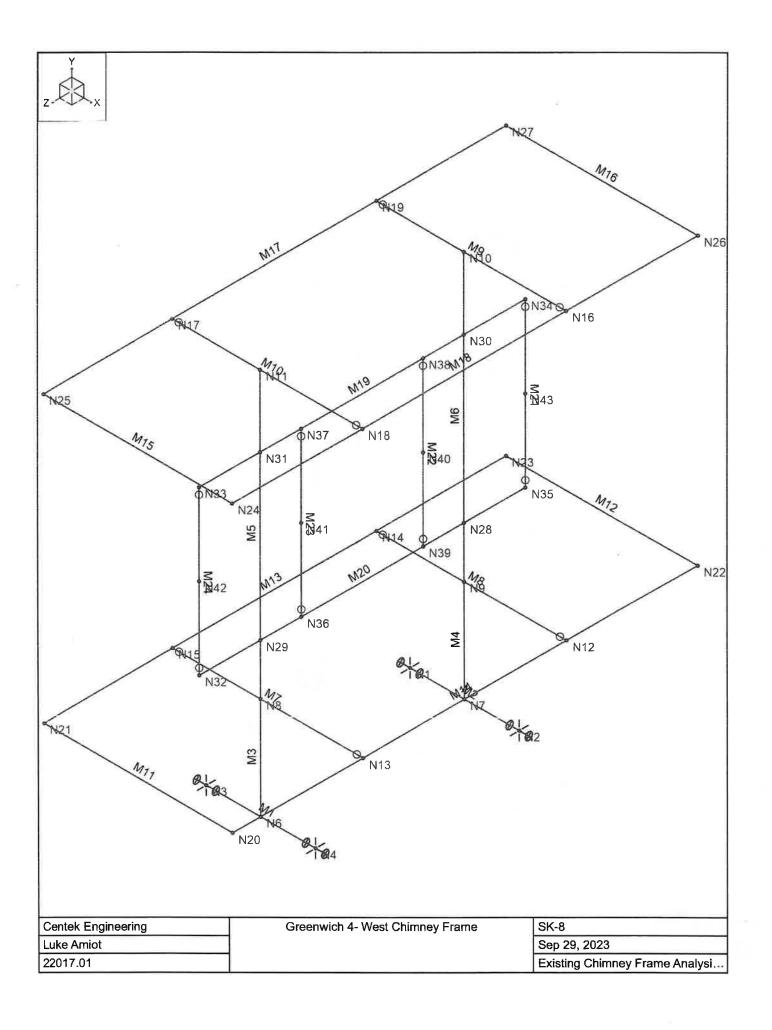
| Node Label |     | X [k]  | LC | Y [k]  | LC | Z [k]  | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|------------|-----|--------|----|--------|----|--------|----|-----------|----|-----------|----|-----------|----|
| 1 N5       | max | 0.79   | 4  | 5.015  | 4  | 0.142  | 10 | 0         | 24 | 0.104     | 24 | 0         | 24 |
| 2          | min | 0.213  | 23 | 1.608  | 23 | -0.144 | 24 | 0         | 1  | -0.103    | 10 | 0         | 1  |
| 8 N8       | max | 0.608  | 9  | 18.579 | 4  | 0.949  | 10 | 0         | 24 | 0.359     | 10 | 0         | 24 |
| 1 140      | min | -0.499 | 23 | 7.272  | 24 | -0.949 | 8  | 0         | 1  | -0.362    | 24 | 0         | 1  |
| 5 N4       | max | -0.344 | 24 | 4.623  | 4  | 0.16   | 10 | 0         | 24 | 0.104     | 10 | 0         | 24 |
| 3 147      | min | -0.896 | 4  | 1.488  | 23 | -0.163 | 24 | 0         | 1  | -0.105    | 24 | 0         | 1  |
| 7 Totals:  | max | 0.72   | 9  | 28.217 | 4  | 1.252  | 10 |           |    |           |    |           |    |
| R TOLLIS.  | min | -0.72  | 23 | 10.37  | 23 | -1.252 | 8  |           |    |           |    |           |    |

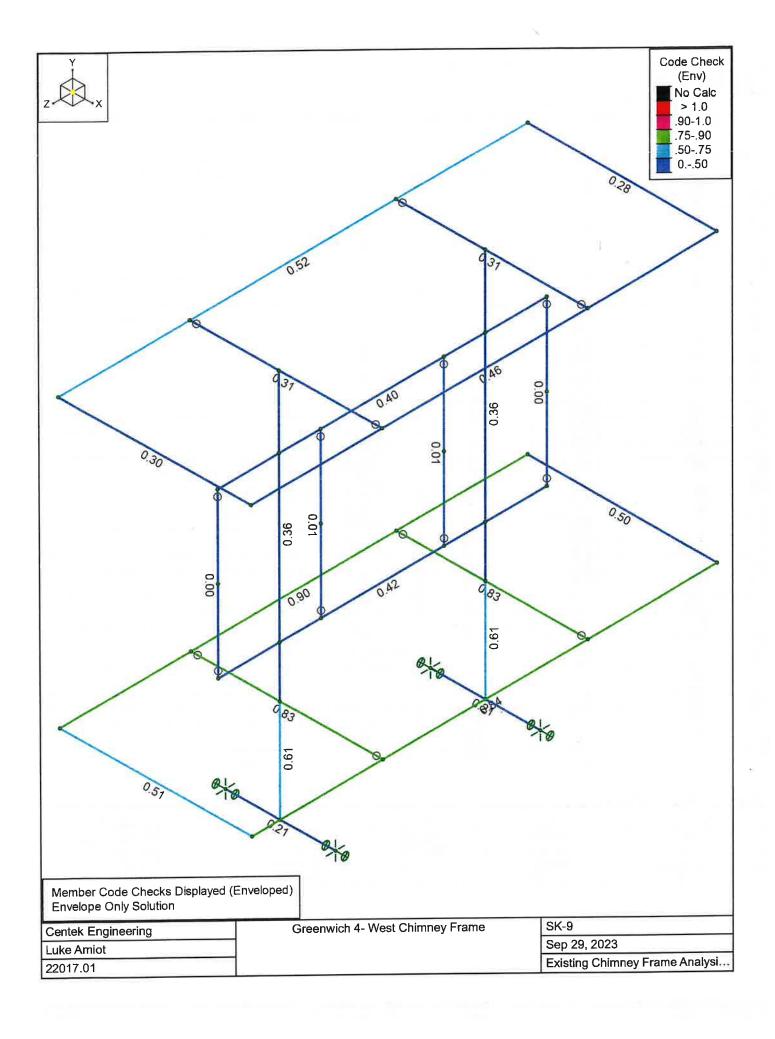


Company : Centek Engineering
Designer : Luke Amiot
Job Number : 22017.01
Model Name : Greenwich 4- East Chimney Exist...

9/28/2023 4:41:48 PM


Checked By: CFC


#### Envelope AISC 15TH (360-16): ASD Member Steel Code Checks


|   | Member | r    | Sha     | oe          | Code Chec | kLoc[ft]LC | Shear Chec | kLoc[ft]DirLC | Pnc/om [k] | Pnt/om [k] | Mnyy/om [k-ft] | Mnzz/om [k-ft] | Cb Eqn      |
|---|--------|------|---------|-------------|-----------|------------|------------|---------------|------------|------------|----------------|----------------|-------------|
| 1 | M1     | 16WF | B16X36  | 10 HISTORIC | 0.412     | 23.754 4   | 0.125      | 23.754 y 4    | 121.63     | 228.287    | 18.17          | 91.945         | 1.972H1-1b  |
| 2 | M2     | 16WF | B16X36_ | 10_HISTORIC | 0.337     | 22.295 4   | 0.12       | 22.295 y 4    | 125.747    | 228.287    | 18.17          | 113.174        | 2.386 H1-1b |

#### Envelope Member End Reactions

|   | Member | Member End |     | Axial[k] | LC | y Shear[k] | LC | z Shear[k] | LC | Torque[k-ft] | LÇ | y-y Moment[k-ft] | LC | z-z Moment[k-ft] | LC |
|---|--------|------------|-----|----------|----|------------|----|------------|----|--------------|----|------------------|----|------------------|----|
| 1 | M1     |            | max | 3.215    | 4  | 3.93       | 4  | 0.144      | 10 | 0.053        | 24 | 0.09             | 24 | 0                | 24 |
| 2 |        |            | min | 0.997    | 23 | 1.236      | 24 | -0.145     | 24 | -0.052       | 10 | -0.089           | 10 | 0                | 1  |
| 3 |        | J          | max | -1.362   | 23 | -3.323     | 24 | 0.473      | 24 | 0.053        | 24 | 0.309            | 24 | 37.074           | 4  |
| 4 |        |            | min | -4.083   | 4  | -8.531     | 4  | -0.469     | 10 | -0.052       | 10 | -0.307           | 10 | 14.233           | 24 |
| 5 | M2     |            | max | 3.243    | 4  | 3.415      | 4  | 0.164      | 24 | 0.056        | 10 | 0.088            | 10 | 0                | 24 |
| 6 |        |            | min | 1.091    | 24 | 1.021      | 23 | -0.162     | 10 | -0.057       | 24 | -0.088           | 24 | 0                | 1  |
| 7 |        | J          | max | -1.646   | 24 | -3.071     | 23 | 0.45       | 10 | 0.056        | 10 | 0.117            | 24 | 37.074           | 4  |
| 8 |        |            | min | -4.168   | 4  | -8.187     | 4  | -0.454     | 24 | -0.057       | 24 | -0.117           | 10 | 14.233           | 24 |







#### WEST ENCLOSURE FRAMING COMPUTATIONS



Company : Centek Engineering Designer : Luke Amiot Job Number : 22017.01

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:23:10 AM

Checked By: CFC

#### Node Coordinates

|          | Label | X [ft] | Y [ft] | Z [ft]  | Detach From Diaphragm |
|----------|-------|--------|--------|---------|-----------------------|
| 1        | N1    | 0      | 0      | Ö       |                       |
| 2        | N2    | 2.67   | 0      | Q       |                       |
| 2        | N3    | 0      | 0      | 5       |                       |
| 4        | N4    | 2.67   | 0      | 5       |                       |
| 5        | N6    | 1.335  | 0      | 5       |                       |
| 6        | N7    | 1.335  | 0      | 0       |                       |
| 7        | N8    | 1.335  | 2.5    | 5       |                       |
| 8        | N9    | 1.335  | 2.5    | 0       |                       |
| 9        | N10   | 1.335  | 9.5    | 0       |                       |
| 10       | N11   | 1.335  | 9.5    | 5       |                       |
| 11       | N12   | 3.835  | 2.5    | 0       |                       |
| 12<br>13 | N13   | 3.835  | 2.5    | 5       |                       |
| 13       | N14   | -0.825 | 2.5    | 0       |                       |
| 14       | N15   | -0.825 | 2.5    | 5       |                       |
| 15       | N16   | 3.835  | 9.5    | 0       |                       |
| 16       | N17   | -0.825 | 9.5    | 5       |                       |
| 17       | N18   | 3.835  | 9.5    | 5       |                       |
| 18       | N19   | -0.825 | 9.5    | 0       |                       |
| 19       | N20   | 3.835  | 2.5    | 8.1875  |                       |
| 20       | N21   | -0.825 | 2.5    | 8.1875  |                       |
| 21       | N22   | 3.835  | 2.5    | -3.1875 |                       |
| 22       | N23   | -0.825 | 2.5    | -3.1875 |                       |
| 23       | N24   | 3.835  | 9.5    | 8.1875  |                       |
| 24       | N25   | -0.825 | 9.5    | 8.1875  |                       |
| 25       | N26   | 3.835  | 9.5    | -3.1875 |                       |
| 26       | N27   | -0.825 | 9.5    | -3.1875 |                       |
| 27       | N28   | 1.335  | 3.75   | 0       |                       |
| 28       | N29   | 1.335  | 3.75   | 5       |                       |
| 28<br>29 | N30   | 1.335  | 7.75   | 0       |                       |
| 30       | N31   | 1.335  | 7.75   | 5       |                       |
| 31       | N32   | 1.335  | 3.75   | 6.5     |                       |
| 32       | N33   | 1.335  | 7.75   | 6.5     |                       |
| 33       | N34   | 1.335  | 7.75   | -1.5    |                       |
| 34       | N35   | 1.335  | 3.75   | -1.5    |                       |
| 35       | N36   | 1.335  | 3.75   | 4       |                       |
| 36       | N37   | 1.335  | 7.75   | 4       |                       |
| 37       | N38   | 1.335  | 7.75   |         |                       |
| 38<br>39 | N39   | 1.335  | 3.75   | 1       |                       |
| 39       | N40   | 1.335  | 5.75   | 1       |                       |
| 40       | N41   | 1.335  | 5.75   | 4       |                       |
| 41       | N42   | 1.335  | 5.75   | 6.5     |                       |
| 42       | N43   | 1.335  | 5.75   | -1.5    |                       |

#### Node Boundary Conditions

|   | Node Label | X [k/in] | Y [k/in] | Z [k/in] | X Rot [k-ft/rad] |
|---|------------|----------|----------|----------|------------------|
| 1 | N3         | Reaction | Reaction | Reaction | Reaction         |
| 2 | N4         | Reaction | Reaction | Reaction | Reaction         |
| 3 | N1         | Reaction | Reaction | Reaction | Reaction         |
| 4 | N2         | Reaction | Reaction | Reaction | Reaction         |



Company : Centek Engineering
Designer : Luke Amiot
Job Number : 22017.01

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:23:10 AM

Checked By: CFC

#### Hot Rolled Steel Properties

| Label            | E [ksi] | G [ksi] | Nu  | Therm. Coeff. [1e5°F-1] | Density [k/ft3] | Yield [ksi] | Ry   | Fu [ksi] | Rt   |
|------------------|---------|---------|-----|-------------------------|-----------------|-------------|------|----------|------|
| 7                | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 50          | 1.1  | 65       | 1.1  |
| 1 A992           |         | 11154   | 0.3 | 0.65                    | 0.49            | 36          | 1.5  | 58       | 1.2  |
| 2 A36 Gr.36      | 29000   |         |     | 0.65                    | 0.49            | 50          | 1.1  | 65       | 1.1  |
| 3 A572 Gr.50     | 29000   | 11154   | 0.3 | 0.65                    | 0.527           | 42          | 1.4  | 58       | 1.3  |
| 4 A500 Gr.B RND  | 29000   | 11154   | 0.3 | 0.65                    | 0.527           | 46          | 1.4  | 58       | 1.3  |
| 5 A500 Gr.B Rect | 29000   | 11154   | 0.3 |                         | 0.49            | 35          | 1.6  | 60       | 1.2  |
| 6 A53 Gr.B       | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 50          | 1.25 | 65       | 1.15 |
| 7 A1085          | 29000   | 11154   | 0.3 | 0.65                    |                 | 65          | 1 1  | 80       | 1.1  |
| 8 A913 Gr.65     | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 00          | 441  | - 00     |      |

| Mem | ber | <u> P</u> | <u>rin</u> | <u>1ai</u> | <u>v</u> | Da | ta |
|-----|-----|-----------|------------|------------|----------|----|----|
|     |     |           |            |            |          |    |    |

|    | Label | Node | J Node | Section/Shape | Type | Design List           | Material       | Design Rule |
|----|-------|------|--------|---------------|------|-----------------------|----------------|-------------|
|    |       | N3   | N4     | W6X15         | Beam | Wide Flange           | A992           | Typical     |
| 1  | M1    |      | N2     | W6X15         | Beam | Wide Flange           | A992           | Typical     |
| 2  | M2    | N1   |        | HSS4X4X4      | Beam | Tube                  | A500 Gr.B Rect | Typical     |
| 3  | M3    | N6   | N8     | HSS4X4X4      | Beam | Tube                  | A500 Gr.B Rect | Typical     |
| 1  | M4    | N7   | N9     |               | Beam | Tube                  | A500 Gr.B Rect | Typical     |
| 5  | M5    | N8   | N11    | HSS4X4X4      | Beam | Tube                  | A500 Gr.B Rect | Typical     |
| 6  | M6    | N9   | N10    | HSS4X4X4      |      | Double Angle (No Gap) | A36 Gr.36      | Typical     |
| 7  | M7    | N15  | N13    | LL2X2X5X4in   | Beam | Double Angle (No Gap) | A36 Gr.36      | Typical     |
| 8  | M8    | N14  | N12    | LL2X2X5X4in   | Beam |                       | A36 Gr.36      | Typical     |
| 9  | M9    | N19  | N16    | LL2X2X5X4in   | Beam | Double Angle (No Gap) | A36 Gr.36      | Typical     |
| 10 | M10   | N17  | N18    | LL2X2X5X4in   | Beam | Double Angle (No Gap) |                | Typical     |
| 11 | M11   | N20  | N21    | L2.5X2.5X4    | Beam | Single Angle          | A36 Gr.36      |             |
| 12 | M12   | N22  | N23    | L2.5X2.5X4    | Beam | Single Angle          | A36 Gr.36      | Typical     |
| 13 | M13   | N21  | N23    | L2.5X2.5X5    | Beam | Single Angle          | A36 Gr.36      | Typical     |
| 14 | M14   | N20  | N22    | L2.5X2.5X5    | Beam | Single Angle          | A36 Gr.36      | Typical     |
| 15 | M15   | N24  | N25    | L2.5X2.5X4    | Beam | Single Angle          | A36 Gr.36      | Typical     |
| 16 | M16   | N26  | N27    | L2.5X2.5X4    | Beam | Single Angle          | А36 Gг.36      | Typical     |
| _  |       | N25  | N27    | L2.5X2.5X4    | Beam | Single Angle          | A36 Gr.36      | Typical     |
| 17 | M17   |      | N26    | L2.5X2.5X4    | Beam | Single Angle          | A36 Gr.36      | Typical     |
| 18 | M18   | N24  |        | PIPE 2.5      | Beam | HSS Pipe              | A53 Gr.B       | Typical     |
| 19 | M19   | N33  | N34    | PIPE 2.5      | Beam | HSS Pipe              | A53 Gr.B       | Typical     |
| 20 | M20   | N32  | N35    |               | Beam | HSS Pipe              | A53 Gr.B       | Typical     |
| 21 | M21   | N34  | N35    | PIPE 2.0      |      | HSS Pipe              | A53 Gr.B       | Typical     |
| 22 | M22   | N38  | N39    | PIPE 2.0      | Beam |                       | A53 Gr.B       | Typical     |
| 23 | M23   | N37  | N36    | PIPE 2.0      | Beam | HSS Pipe              | A53 Gr.B       | Typical     |
| 24 | M24   | N33  | N32    | PIPE 2.0      | Beam | HSS Pipe              | ASS GLD        | Typical     |

#### Hot Rolled Steel Design Parameters

| Hot i |       | Shape       | Length [ft] | Lcomp top [ft] | Channel Conn. | a [ft] | Function |
|-------|-------|-------------|-------------|----------------|---------------|--------|----------|
|       | Label |             | 2.67        | Lbvv           | N/A           | N/A    | Lateral  |
| 1     | M1    | W6X15       |             |                | N/A           | N/A    | Lateral  |
| 2     | M2    | W6X15       | 2.67        | Lbyy           |               | N/A    | Lateral  |
| 3     | M3    | HSS4X4X4    | 2.5         | Lbyy           | N/A           |        |          |
| 1     | M4    | HSS4X4X4    | 2.5         | Lbyy           | N/A           | N/A    | Lateral  |
| 5     | M5    | HSS4X4X4    | 7           | Lbyy           | N/A           | N/A    | Lateral  |
|       | M6    | HSS4X4X4    | 7           | Lbyy           | N/A           | N/A    | Lateral  |
| 6     |       | LL2X2X5X4in | 4,66        | Lbvy           | N/A           | N/A    | Lateral  |
| 4     | M7    |             | 4.66        | Lbvy           | N/A           | N/A    | Lateral  |
| 8     | M8    | LL2X2X5X4in |             | Lbvy           | N/A           | N/A    | Lateral  |
| 9     | M9    | LL2X2X5X4in | 4.66        |                |               | N/A    | Lateral  |
| 0     | M10   | LL2X2X5X4in | 4.66        | Lbyy           | N/A           |        |          |
| 11    | M11   | L2.5X2.5X4  | 4.66        | Lbyy           | N/A           | N/A_   | Lateral  |
| 2     | M12   | 1.2.5X2.5X4 | 4.66        | Lbyy           | N/A           | N/A    | Lateral  |
|       | M13   | L2.5X2.5X5  | 11.375      | Lbyy           | N/A           | N/A    | Lateral  |
| 13    | M14   | L2.5X2.5X5  | 11.375      | Lbyy           | N/A           | N/A    | Lateral  |



Company

Centek Engineering

Designer Job Number : 22017.01

: Luke Amiot

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:23:10 AM

Checked By: CFC

#### Hot Rolled Steel Design Parameters (Continued)

|    | Label | Shape      | Length [ft] | Lcomp top [ft] | Channel Conn. | a [ft] | Function |
|----|-------|------------|-------------|----------------|---------------|--------|----------|
| 15 | M15   | L2.5X2.5X4 | 4.66        | Lbyy           | N/A           | N/A    | Lateral  |
| 16 | M16   | L2.5X2.5X4 | 4.66        | Lbyy           | N/A           | N/A    | Lateral  |
| 17 | M17   | L2.5X2.5X4 | 11.375      | Lbyy           | N/A           | N/A    | Lateral  |
| 18 | M18   | L2.5X2.5X4 | 11.375      | Lbyy           | N/A           | N/A    | Lateral  |
| 19 | M19   | PIPE 2.5   | 8           | Lbyy           | N/A           | N/A    | Lateral  |
| 20 | M20   | PIPE 2.5   | 8           | Lbyy           | N/A           | N/A    | Lateral  |
| 21 | M21   | PIPE 2.0   | 4           | Lbvv           | N/A           | N/A    | Lateral  |
| 22 | M22   | PIPE 2.0   | 4           | Lbyy           | N/A           | N/A    | Lateral  |
| 23 | M23   | PIPE 2.0   | 4           | Lbyy           | N/A           | N/A    | Lateral  |
| 24 | M24   | PIPE 2.0   | 4           | Lbyy           | N/A           | N/A    | Lateral  |

#### Member Distributed Loads (BLC 5 : Panel Weight)

| M11 | Y | -0.018 | End Magnitude [k/ft, F, ksf, k-ft/ | 0 | %100 |
|-----|---|--------|------------------------------------|---|------|
| M13 | Y | -0.018 | -0.018                             | 0 | %100 |
| M14 | Y | -0.018 | -0.018                             | 0 | %100 |
| M12 | Y | -0.018 | -0.018                             | 0 | %100 |
| M15 | Y | -0.018 | -0.018                             | 0 | %100 |
| M17 | Y | -0.018 | -0.018                             | 0 | %100 |
| M16 | Y | -0.018 | -0.018                             | 0 | %100 |
| M18 | Y | -0.018 | -0.018                             | 0 | %100 |

#### Member Distributed Loads (BLC 9 : BLC 2 Transient Area Loads)

| M | ember Lab | el Direction Star | t Magnitude [k/ft, F, ksf, k-ft/ft | End Magnitude [k/ft, F, ksf, k- | ft/ft]Start Location [(ft. %)]E | nd Location [(ft %)] |
|---|-----------|-------------------|------------------------------------|---------------------------------|---------------------------------|----------------------|
| 1 | M7        | Y                 | -0.041                             | -0.041                          | 2.22e-16                        | 4.66                 |
| 2 | M8        | Y                 | -0.041                             | -0.041                          | 3.331e-16                       | 4.66                 |
| 3 | M11       | Y                 | -0.016                             | -0.016                          | 3.331e-16                       | 4.66                 |
| 4 | M12       | Y                 | -0.016                             | -0.016                          | 3.331e-16                       | 4 66                 |

#### Member Distributed Loads (BLC 10 : BLC 3 Transient Area Loads)

| M | ember Labe | el Direction Star | t Magnitude [k/ft, F, ksf, k-ft/ft | End Magnitude [k/ft, F, ksf, k-f | ft/ft]Start Location [(ft. %)]E | nd Location ((ft. %)) |
|---|------------|-------------------|------------------------------------|----------------------------------|---------------------------------|-----------------------|
| 1 | M7         | Y                 | -0.082                             | -0.082                           | 2.22e-16                        | 4.66                  |
| 2 | M8         | Y                 | -0.082                             | -0.082                           | 3.331e-16                       | 4.66                  |
| 3 | M11        | Y                 | -0.032                             | -0.032                           | 4.441e-16                       | 4.66                  |
| 4 | M12        | Y                 | -0.032                             | -0.032                           | 3.331e-16                       | 4.66                  |

#### Member Distributed Loads (BLC 11 : BLC 6 Transient Area Loads)

| _ M | ember Lab | el Direction S | Start Magnitude [k/ft, F, ksf, k-f | ft/ft]End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location (ft. %)] | End Location (ft. %)] |
|-----|-----------|----------------|------------------------------------|---------------------------------------------|-------------------------|-----------------------|
| 1   | M14       | X              | -0.151                             | -0.151                                      | 1.166e-15               | 11 375                |
| 2   | M18       | X              | -0.15                              | -0.15                                       | 2.776e-16               | 11.375                |

#### Member Distributed Loads (BLC 12 : BLC 7 Transient Area Loads)

| N | Member Lab | el Direction S | Start Magnitude [k/ft, F, ksf, k-f | ft/ft]End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location (ft. %) | End Location (ft. %) |
|---|------------|----------------|------------------------------------|---------------------------------------------|------------------------|----------------------|
| 1 | M11        | Z              | -0.151                             | -0.151                                      | 1.332e-15              | 4.66                 |
| 2 | M15        | Z              | -0.15                              | -0.15                                       | 0                      | 4.66                 |



Company

: Centek Engineering

Designer Job Number : 22017.01

Luke Amiot

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:23:10 AM

Checked By: CFC

## Member Distributed Loads (BLC 13 : BLC 8 Transient Area Loads)

|     | Directionotare |                  | End Magnitude [k/ft, F, ksf, k- | 2.22e-16  | 4.66 |
|-----|----------------|------------------|---------------------------------|-----------|------|
| M7  | Y              | -0.123           | -0.123                          | 3.331e-16 | 4.66 |
| M8  | <u> </u>       | -0.123           | -0.048                          | 3.331e-16 | 4.66 |
| M11 | Y              | -0.048<br>-0.048 | -0.048                          | 3.331e-16 | 4.66 |

## Member Area Loads (BLC 2 : Dead Load)

| Node A | Node B | Node C | Node D | Direction | Load Direction | Magnitude [ksf] |
|--------|--------|--------|--------|-----------|----------------|-----------------|
|        | N20    | N22    | N23    | Y         | B-C            | -0.01           |
| N21    | INZU   | 1122   | 11420  |           |                |                 |

# Member Area Loads (BLC 3 : Live Load (Roofl)

| Node A | Node B | Node C | Node D | Direction | Load Direction | Magnitude [ksf] |
|--------|--------|--------|--------|-----------|----------------|-----------------|
| N23    | N21    | N20    | N22    | Y         | A-B            | -0.02           |

## Member Area Loads (BLC 6 : Wind-X)

| Node A | Node B | Node C | Node D | Direction | Load Direction | Magnitude [ksf] |
|--------|--------|--------|--------|-----------|----------------|-----------------|
|        | N24    | N26    | N22    | X         | A-B            | -0.043          |
| 1 N20  | INZ4   | IVZU   | 1166   |           |                |                 |

## Member Area Loads (BLC 7 : Wind-Z)

|        | Node B | Node C | Node D | Direction | Load Direction | Magnitude [ksf] |
|--------|--------|--------|--------|-----------|----------------|-----------------|
| Node A |        | N24    | N20    | 7         | A-B            | -0.043          |
| N21    | N25    | INZT   | 1120   |           |                |                 |

## Member Area Loads (BLC 8 : Snow Load)

| CHIDCI FIELD | ads (BLC 6 . Si | 2/22   | TATALOG STATE OF THE PERSON NAMED IN COLUMN TO STATE OF T | D:        | Load Direction | Magnitude [ksf]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|--------------|-----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Node A       | Node B          | Node C | Node D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Direction | Load Direction | THE STATE OF THE S |  |  |
| N21          | N20             | N22    | N23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y         | B-C            | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

#### Basic Load Cases

|    | BLC Description            | Category Y Gravity |    | Nodal | Distributed | Area(Member)     |
|----|----------------------------|--------------------|----|-------|-------------|------------------|
| 1  | Self Weight                | DL                 | -1 |       |             |                  |
| 2  | Dead Load                  | DL                 |    |       |             | 1                |
| 3  | Live Load (Roof)           | RLL                |    |       |             | 1                |
| 4  | Equipment Load             | DL                 |    | 13    |             |                  |
| 5  | Panel Weight               | DL                 |    |       | 8           |                  |
| 6  | Wind-X                     | WLX                |    |       |             |                  |
| 7  | Wind-Z                     | WLZ                |    |       |             | 1                |
| 8  | Snow Load                  | SL                 |    |       |             |                  |
| 9  | BLC 2 Transient Area Loads | None               |    |       | 4           |                  |
| 10 | BLC 3 Transient Area Loads | None               |    |       | 4           | VI-7-11-11-11-11 |
| 11 | BLC 6 Transient Area Loads | None               |    |       | 2           |                  |
| 12 | BLC 7 Transient Area Loads | None               |    |       | 2           |                  |
| 13 | BLC 8 Transient Area Loads | None               |    |       | 4           |                  |

#### Load Combinations

|   | Description | Solve | P-Delta | BLC | Factor |
|---|-------------|-------|---------|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| 1 | IBC 16-8    | Yes   | Y       | DL  | 1      |     |        |     | 177    |     |        |     |        |     | 1      |
| 2 | IBC 16-9    | Yes   | Y       | DL  | 1      | LL  | 1      | LLS | 1 1    |     |        |     |        |     |        |



Company : Centek Engineering

Designer : Luke Amiot Job Number : 22017.01

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:23:10 AM

Checked By: CFC

# Load Combinations (Continued)

|    | Description       | Solve | P-Delta | BLC | Factor | BLC | Factor | BLC  | Factor | BLC | Factor | BLC | Factor | BLC        | Factor  |
|----|-------------------|-------|---------|-----|--------|-----|--------|------|--------|-----|--------|-----|--------|------------|---------|
| 3  | IBC 16-10 (a)     | Yes   | Y       | DL  | 1      | RLL | 1      |      |        |     |        |     |        |            | 1 40.01 |
| 4  | IBC 16-10 (b)     | Yes   | Υ       | DL  | 1      | SL  | 1      | SLN  | 1      |     |        |     |        |            |         |
| 5  | IBC 16-11 (a)     | Yes   | Y       | DL  | 1      | LL  | 0.75   | LLS  | 0.75   | RLL | 0.75   |     |        |            |         |
| 6  | IBC 16-11 (b)     | Yes   | Y       | DL  | 1      | LL  | 0.75   | LLS  | 0.75   | SL  | 0.75   | SLN | 0.75   |            |         |
|    | IBC 16-12 (a) (a) | Yes   | Υ       | DL  | 1      | WLX | 0.6    |      |        |     |        |     |        |            |         |
|    | IBC 16-12 (a) (b) | Yes   | Y       | DL  | 1      | WLZ | 0.6    |      |        |     |        |     |        |            |         |
|    | IBC 16-12 (a) (c) |       | Y       | DL  | 1      | WLX | -0.6   |      |        |     |        |     | A.T.L. | Total Till | 42-75   |
|    | BC 16-12 (a) (d)  | Yes   | Υ       | DL  | 1      | WLZ | -0.6   |      |        |     |        |     |        |            |         |
|    | IBC 16-13 (a) (a) | Yes   | Y       | DL  | 1      | WLX | 0.45   | LL   | 0.75   | LLS | 0.75   | RLL | 0.75   |            |         |
| 12 | BC 16-13 (a) (b)  | Yes   | Y       | DL  | 1      | WLZ | 0.45   | LL   | 0.75   | LLS | 0.75   | RLL | 0.75   |            |         |
|    | IBC 16-13 (a) (c) | Yes   | Y       | DL  | 1      | WLX | -0.45  | _ LL | 0.75   | LLS | 0.75   | RLL | 0.75   |            |         |
|    | BC 16-13 (a) (d)  | Yes   | Y       | DL  | 1      | WLZ | -0.45  | LL   | 0.75   | LLS | 0.75   | RLL | 0.75   |            |         |
|    | BC 16 13 (b) (a)  | Yes   | Y       | DL  | 1      | WLX | 0.45   | LL   | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN        | 0.75    |
|    | IBC 16-13 (b) (b) | Yes   | Y       | DL  | 1 1    | WLZ | 0.45   | LL   | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN        | 0.75    |
| 17 | IBC 16-13 (b) (c) | Yes   | Y       | DL  | 1      | WLX | -0.45  | LL   | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN        | 0.75    |
|    | BC 16-13 (b) (d)  | Yes   | Υ       | DL  | 1      | WLZ | -0.45  | LL   | 0.75   | LLS | 0.75   | SL  | 0.75   | SLN        | 0.75    |
|    | IBC 16-13 (c) (a) | Yes   | Y       | DL  | 1      | WLX | 0.45   | LL   | 0.75   | LLS | 0.75   |     |        |            | 0.70    |
| 20 | IBC 16-13 (c) (b) | Yes   | Y       | DL  | 1      | WLZ | 0.45   | LL   | 0.75   | LLS | 0.75   |     |        |            |         |
| 21 | IBC 16-13 (c) (c) | Yes   | Y       | DL  | 1      | WLX | -0.45  | LL   | 0.75   | LLS | 0.75   |     |        |            |         |
| 22 | IBC 16-13 (c) (d) | Yes   | Υ       | DL  | 1      | WLZ | -0.45  | LL   | 0.75   | LLS | 0.75   |     |        |            |         |
| 23 |                   | Yes   | Y       | DL  | 0.6    | WLX | 0.6    |      |        |     |        |     |        |            |         |
| 24 | IBC 16-15 (b)     | Yes   | Y       | DL  | 0.6    | WLZ | 0.6    |      |        |     |        |     |        |            |         |

# Envelope Node Reactions NOTE: HIGHLIGHTED VALUES BELOW APPLIED MASONRY CONNECTION

|    | Node Label |     | X [k]  | LC | Y [k]  | LC | Z [k]  | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|------------|-----|--------|----|--------|----|--------|----|-----------|----|-----------|----|-----------|----|
| 1  | N3         | max | 0.513  | 23 | 3.172  | 7  | 0.204  | 8  | 0.407     | 24 | 0         | 24 | 1 0 1     | 24 |
| 2  |            | min | -0.513 | 9  | -1.554 | 9  | -0.189 | 10 | -0.429    | 10 | 0         | 1  | 0         | 1  |
| 3  | N4         | max | 0.513  | 23 | 3.261  | 9  | 0.232  | 8  | 0.407     | 24 | 0         | 24 | 0         | 24 |
| 4  |            | min | -0.513 | 9  | -1.813 | 23 | -0.219 | 10 | -0.429    | 10 | 0         | 1  | 0         | 1  |
| 5  | N1         | max | 0.514  | 7  | 3.108  | 7  | 0.19   | 24 | 0.405     | 24 | 0         | 24 | 0         | 24 |
| 6  |            | min | -0.514 | 9  | -1.616 | 9  | -0.202 | 10 | -0.431    | 10 | 0         | 1  | 0         | 1  |
| 7  | N2         | max | 0.514  | 7  | 3.197  | 9  | 0.22   | 24 | 0.405     | 24 | 0         | 24 | 0         | 24 |
| 8  |            | min | -0.514 | 9  | -1.849 | 23 | -0.231 | 10 | -0.431    | 10 | 0         | 1  | 0         | 1  |
| 9  | Totals:    | max | 2.054  | 23 | 4.878  | 4  | 0.842  | 24 |           |    |           |    |           |    |
| 10 |            | min | -2.054 | 9  | 1.973  | 23 | -0.842 | 10 |           |    |           |    |           |    |

# NOTE: HIGHLIGHTED VALUES BELOW ARE STRESS RATIOS IDENTIFIED IN REPORT

# Envelope AISC 15TH (360-16): ASD Member Steel Code Checks

|    | Member | Shape       | Code Chec | kLoc[ft] | LC: | Shear Chec | kLoc[ft] | Dir | LC | Pnc/om [k] | Pnt/om [k] | Mnyy/om [k-ft] | Mnzz/om [k-ft | Cb                         | Egn   |
|----|--------|-------------|-----------|----------|-----|------------|----------|-----|----|------------|------------|----------------|---------------|----------------------------|-------|
| 1  | M1     | W6X15       | 0.212     | 0        | 10  |            | 1.78     | У   |    | 127.986    | 132.635    | 10.834         | 25.364        | _                          | H1-1b |
| 2  | M2     | W6X15       | 0.213     | 2.67     | 10  | 0.117      | 1.697    | V   | 9  | 127.986    | 132.635    | 10.834         | 25.364        |                            | H1-1b |
| 3  | M3     | HSS4X4X4    | 0.608     | 0        | 9   | 0.041      | 2.5      | ٧   | 7  | 90.43      | 92.826     | 10.765         | 10.765        | _                          | H1-1b |
| 4  | M4     | HSS4X4X4    | 0.608     | 0        | 9   | 0.041      | 2.5      | ٧   | 7  | 90.43      | 92.826     | 10.765         | 10.765        | Charles of the Park Street | H1-1b |
| 5  | M5     | HSS4X4X4    | 0.355     | 0        | 9   | 0.021      | 5.25     | У   | 7  | 75.615     | 92.826     | 10.765         | 10.765        |                            | H1-1b |
| 6  | M6     | HSS4X4X4    | 0.356     | 0        | 9   | 0.021      | 1.24     | У   | 7  | 75.615     | 92.826     | 10.765         | 10.765        |                            | H1-1b |
| 7  | M7     | LL2X2X5X4in |           | 2.184    | 4   | 0.176      | 2.136    | У   | 16 | 31.454     | 49.609     | 10.805         | 1.616         |                            | H1-1b |
| 8  |        | LL2X2X5X4in |           | 2.184    | 4   | 0.176      | 2.136    | У   | 4  | 31.454     | 49.609     | 10.805         | 1.616         | 1                          | H1-1b |
| 9  | M9     | LL2X2X5X4in | 0.311     | 2.184    | 10  | 0.089      | 2.136    | У   | 10 | 31.454     | 49.609     | 10.805         | 1.616         | 1                          | H1-1b |
| 10 | M10    | LL2X2X5X4in | 0.311     | 2.184    | 8   | 0.091      | 2.136    | У   | 8  | 31.454     | 49.609     | 10.805         | 1.616         | 1                          | H1-1b |
| 11 | M11    | L2.5X2.5X4  | 0.514     | 0        | 18  | 0.04       | 0        | Z   | 10 | 12.63      | 25.653     | 0.741          | 1.603         | 1.5                        | -     |
| 12 | M12    | L2.5X2.5X4  | 0.496     | 4.66     | 15  | 0.026      | 0        | ν   | 4  | 12.63      | 25.653     | 0.741          | 1.585         | 1.409                      |       |
| 13 | M13    | L2.5X2.5X5  | 0.897     | 8.294    | 4   | 0.032      | 3.081    | y   | 4  | 2.725      | 31.473     | 0.876          | 1.504         | 1.075                      |       |
| 14 | M14    | L2.5X2.5X5  | 0.836     | 3.081    | 4   | 0.032      | 8.294    | У   | 4  | 2.725      | 31.473     | 0.876          | 1.504         | 1.075                      |       |
| 15 | M15    | L2.5X2.5X4  | 0.301     | 0        | 10  | 0.038      | 0        | z   | 10 | 12.63      | 25.653     | 0.741          | 1.603         | 1.5                        |       |



: Centek Engineering : Luke Amiot

Company : Centek Er Designer : Luke Amid Job Number : 22017.01

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:23:10 AM

Checked By: CFC

# Envelope AISC 15TH (360-16): ASD Member Steel Code Checks (Continued)

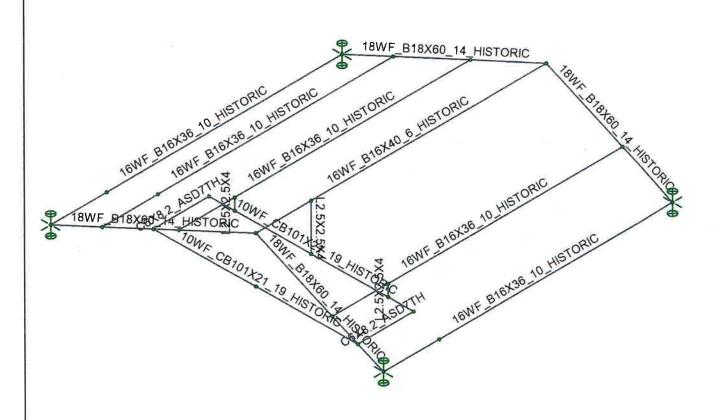
|    | Member | Shape      | Code Chec | kLocfftl | LC | Shear Chec | kLoc[ft] | Dir | LC | Pnc/om [k] | Pnt/om [k] | Mnyy/om [k-ft] | Mnzz/om [k-ft] | Cb    | Eqn    |
|----|--------|------------|-----------|----------|----|------------|----------|-----|----|------------|------------|----------------|----------------|-------|--------|
| 16 | M16    | L2.5X2.5X4 | T         | 4.66     | 7  | 0.011      | 4.66     |     | 7  | 12.63      | 25.653     | 0.741          | 1.603          | 1.5   | H2-1   |
| 13 |        | L2.5X2.5X4 | 0.516     | 3.081    | 8  | 0.018      | 8.294    | _   | 7  | 2.23       | 25.653     | 0.741          | 1.155          | 1.128 | H2-1   |
| 14 | M17    |            |           | 3.081    | -  | 0.032      | 3.081    | -   | 7  | 2.23       | 25.653     | 0.741          | 1.164          | 1.148 | H2-1   |
| 18 | M18    | L2.5X2.5X4 |           |          | 10 |            | 1.5      | -   | 10 |            | 33.743     | 2.393          | 2.393          | 1     | H1-1b  |
| 19 |        | PIPE 2.5   | 0.397     |          | -  |            | 6.5      |     | Q  | 19.986     | 33.743     | 2.393          | 2.393          | 1     | H1-1b  |
| 20 |        | PIPE 2.5   | 0.424     | 1.5      | 10 |            | 0.0      |     | 24 |            | 21.377     | 1.245          | 1.245          |       | H1-1b* |
| 21 | M21    | PIPE 2.0   | 0.003     | 4        | 10 |            | 4        | -   | -  |            | 21.377     | 1.245          | 1.245          |       | H1-1b* |
| 22 | M22    | PIPE 2.0   | 0.006     | 4        | 8  | 0.002      | 4        | H   | 24 |            |            |                | 1.245          |       | H1-1b* |
| 23 | M23    | PIPE 2.0   | 0.005     | 4        | 10 |            | 4        |     | 24 |            | 21.377     | 1.245          |                | _     | H1-1b* |
| 24 | M24    | PIPE 2.0   | 0.004     | 4        | 8  | 0.002      | 4        |     | 10 | 17.646     | 21.377     | 1.245          | 1.245          |       | 11-10  |

| Envelope Member E | nd Reactions |
|-------------------|--------------|
|-------------------|--------------|

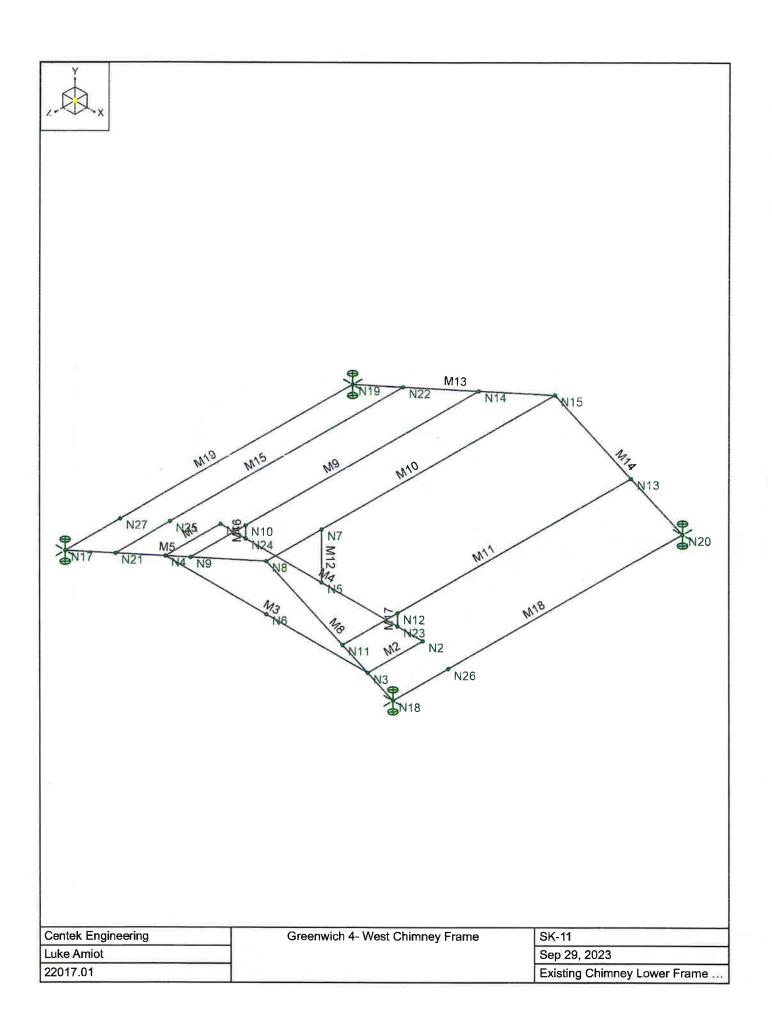
| ١  | <b>∕</b> lember | Member End |     |        |    |        |    | z Shear[k]      |    |        |    | y-y Moment[k-ft] | 24 | 0      | ft] LC |
|----|-----------------|------------|-----|--------|----|--------|----|-----------------|----|--------|----|------------------|----|--------|--------|
| 1  | M1              |            | max | 0.513  | 23 | 3.173  | 7  | 0.204           | 8  | 0.407  | 24 | 0                | 1  | 0      | 1      |
| 2  |                 |            | min | -0.513 | 9  | -1.554 | 9  | -0.189          | 10 | -0.429 | 10 | 0                | 24 | 0      | 24     |
| 3  |                 | J          | max | 0.513  | 9  | 1.813  | 23 | 0.219           | 10 | 0.429  | 10 | 0                |    | 0      | 1      |
| IT |                 |            | min | -0.513 | 23 | -3.261 | 9  | -0.232          | 8  | -0.407 | 24 | 0                | 1  |        | 24     |
| 5  | M2              |            | max | 0.514  | 7  | 3.108  | 7  | 0.19            | 24 | 0.405  | 24 | 0                | 24 | 0      | 1      |
| 5  |                 |            | min | -0.514 | 9  | -1.616 | 9  | -0.202          | 10 | -0.431 | 10 | 0                | 1  | 0      | 24     |
| 7  |                 | J          | max | 0.514  | 9  | 1.849  | 23 | 0.231           | 10 | 0.431  | 10 | 0                | 24 | 0      | _      |
| 3  |                 |            | min | -0.514 | 7  | -3.197 | 9  | -0.22           | 24 | -0.405 | 24 | 0                | 1  | 0      | 1      |
| 1  | МЗ              |            | max | 2.777  | 18 | 1.043  | 9  | 0.441           | 8  | 0.04   | 10 | 0.858            | 10 | 6.428  | 9      |
| ol |                 |            | min | 0.315  | 24 | -1.042 | 7  | -0.421          | 10 | -0.04  | 24 | -0.814           | 24 | -6.207 | 23     |
| 1  |                 | J          | max | 2.746  | 18 | 1.043  | 9  | 0.441           | 8  | 0.04   | 10 | 0.291            | 8  | 3.82   | 9      |
| 2  |                 |            | min | 0.296  | 24 | -1.042 | 7  | -0.421          | 10 | -0.04  | 24 | -0.195           | 10 | -3.617 | 23     |
| 3  | M4              |            | max | 2.651  | 16 | 1.042  | 9  | 0.418           | 24 | 0.039  | 10 | 0.862            | 10 | 6.426  | 9      |
| 4  | IVI             |            | min | 0.855  | 10 | -1.042 | 7  | -0.438          | 10 | -0.041 | 24 | -0.81            | 24 | -6.203 | 2:     |
| 5  |                 | ment of    | max | 2.621  | 16 | 1.042  | 9  | 0.418           | 24 | 0.039  | 10 | 0.239            | 8  | 3.82   | 9      |
| 6  |                 |            | min | 0.824  | 10 | -1.042 | 7  | -0.438          | 10 | -0.041 | 24 | -0.234           | 10 | -3.612 | 2:     |
| 7  | M5              |            | max | 1.655  | 10 | 0.532  | 9  | 0.234           | 8  | 0.01   | 10 | 0.243            | 8  | 3.739  | 9      |
| 8  | IVIO            |            | min | -0.1   | 24 | -0.531 | 7  | -0.189          | 10 | -0.009 | 24 | -0.211           | 10 | -3.685 | 17     |
| 9  |                 |            | max | 0.393  | 10 | 0.527  | 9  | 0.242           | 8  | 0.032  | 10 | 0.04             | 8  | 0.066  | 1      |
|    |                 | J          | min | 0.231  | 24 | -0.526 | 7  | -0.188          | 10 | -0.033 | 24 | 0.01             | 10 | 0      | 2      |
| 0  | MC              |            | max | 1.53   | 8  | 0.531  | 9  | 0.204           | 24 | 0.009  | 10 | 0.258            | 8  | 3.735  | 6      |
| 1  | M6              |            | min | 0.16   | 10 | -0.53  | 7  | -0.242          | 10 | -0.009 | 24 | -0.186           | 10 | -3.685 | 7      |
| 2  |                 |            | -   | 0.392  | 8  | 0.527  | 9  | 0.193           | 24 | 0.032  | 10 | -0.002           | 24 | 0.067  | 2      |
| 3  |                 | J          | max | 0.234  | 23 | -0.527 | 7  | -0.237          | 10 | -0.034 | 24 | -0.04            | 10 | 0.002  | 2      |
| 4  | 1.17            |            | min | 0.234  | 18 | -0.13  | 24 | 0.116           | 10 | 0.038  | 16 | - 0              | 24 | 0      | 2      |
| 5  | M7              |            | max | -      | 24 | -0.332 | 4  | -0.105          | 24 | 0.008  | 10 | 0                | 1  | 0      | 1      |
| 6  |                 |            | min | -0.043 | 7  | 0.33   | 4  | 0.103           | 24 | -0.008 | 10 | 0                | 24 | 0      | 2      |
| 7  |                 | J          | max | 0.484  | 9  | 0.124  | 23 | -0.112          | 10 | -0.032 | 16 | 0                | 1  | 0      | 1      |
| 8  |                 |            | min | -0.449 |    | -0.131 | 23 | 0.097           | 10 | -0.003 | 24 | 0                | 24 | 0      | 2      |
| 9  | M8              |            | max | 0.032  | 9  | -0.131 | 4  | -0.11           | 8  | -0.038 | 18 | 0                | 1  | 0      | 1      |
| 0  |                 |            | min | -0.064 | 15 | 0.331  | 4  | 0.107           | 8  | 0.032  | 18 | 0                | 24 | 0      | 2      |
| 1  |                 | J          | max | 0.457  | 23 |        | _  | -0.095          | 10 | 0.002  | 24 | 0                | 1  | 0      | 1      |
| 2  |                 |            | min | -0.482 | 9  | 0.125  | 23 | 0.119           | 10 | -0.001 | 24 | 0                | 24 | 0      | 2      |
| 3  | M9              |            | max | 0.04   | 9  | -0.106 | 23 |                 | 24 | -0.001 | 10 | 0                | 1  | 0      | 1      |
| 14 |                 |            | min | -0.055 | 7  | -0.178 | 8  | -0.096<br>0.096 | 24 | 0.019  | 10 | 0                | 24 | 0      | 2      |
| 5  |                 | J          | max | 0.462  | 23 | 0.178  | 8  |                 |    | 0.001  | 24 | 0                | 1  | 0      | 7      |
| 6  |                 |            | min | -0.474 | 9  | 0.09   | 23 | -0.116          | 10 |        |    | 0                | 24 | 0      | 2      |
| 37 | M10             |            | max | 0.059  | 10 | -0.104 | 24 | 0.093           | 10 | 0.022  | 10 | 0                | 1  | 0      | 1      |
| 8  |                 |            | min | -0.045 | 24 | -0.179 | 10 | -0.122          | 8  | 0.005  |    |                  | 24 | 0      | 2      |
| 39 |                 | J          | max |        | 7  | 0.178  | 10 | 0.118           | 8  | -0.005 | 10 | 0                | 1  | 0      | -      |
| 10 |                 |            | min | -0.456 | 9  | 0.09   | 23 | -0.093          | 10 | -0.018 | 8  | 0                |    | 0.016  | 2      |
| 11 | M11             |            | max | 0.039  | 23 | 0.199  | 4  | 0.262           | 10 | 0.001  | 18 | 0.017            | 24 | -0.26  | _      |
| 12 |                 |            | min | -0.062 | 17 | 0.053  | 23 | -0.176          | 24 | -0.001 | 24 | -0.259           | 18 |        | 1      |
| 43 |                 | J          | max | 0.039  | 23 | -0.053 | 24 | 0.267           | 8  | 0.001  | 18 | 0.183            | 16 | 0.185  |        |



Company : Centek Engineering
Designer : Luke Amiot
Job Number : 22017.01
Model Name : Greenwich 4- West Chimney Frame


9/29/2023 9:23:10 AM

Checked By: CFC


# Envelope Member End Reactions (Continued)

| _  | Membe | Member Er | nd  | Axial[k | LC | y Shear[k] | LC | z Shear[k] | LC | Torque[k-ft] | LC | y-y Moment[k-ft] | LC       | z-z Moment[k-ft] | LC |
|----|-------|-----------|-----|---------|----|------------|----|------------|----|--------------|----|------------------|----------|------------------|----|
| 44 |       |           | min | -0.062  | 17 | -0.2       | 4  | -0.159     | 10 | -0.001       | 24 | -0.024           | 10       | -0.023           | 10 |
| 45 | M12   | 1         | max | 0.058   | 7  | 0.2        | 4  | -0.017     | 9  | 0            | 17 | 0.157            | 15       | 0.159            | 15 |
| 46 |       |           | min | -0.036  | 9  | 0.053      | 24 | -0.123     | 15 | 0            | 23 | 0.009            | 9        | 0.009            | 9  |
| 47 |       | J         | max | 0.058   | 7  | -0.053     | 23 | -0.017     | 9  | 0            | 17 | -0.047           | 9        | -0.047           | 9  |
| 48 |       |           | min | -0.036  | 9  | -0.199     | 4  | -0.123     | 15 | 0            | 23 | -0.248           | 15       | -0.249           | 15 |
| 49 | M13   |           | max | 0.267   | 8  | -0.055     | 23 | 0.062      | 18 | 0.001        | 15 | 0.184            | 16       | 0.184            | 16 |
| 50 |       |           | min | -0.159  | 10 | -0.204     | 4  | -0.039     | 23 | 0            | 9  | -0.022           | 10       | -0.024           | 10 |
| 51 | THE P | J         | max | 0.123   | 15 | 0.203      | 4  | 0.059      | 7  | 0.001        | 15 | 0.248            | 15       | 0.248            | 15 |
| 52 |       |           | min | 0.017   | 9  | 0.053      | 24 | -0.035     | 9  | 0            | 9  | 0.047            | 9        | 0.047            | 9  |
| 53 | M14   |           | max | 0.176   | 24 | -0.051     | 23 | 0.039      | 23 | 0.001        | 16 | 0.259            | 18       | 0.26             | 18 |
| 54 |       |           | min | -0.262  | 10 | -0.196     | 4  | -0.061     | 17 | 0            | 10 | -0.016           | 24       | -0.017           | 24 |
| 55 |       | J         | max | -0.017  | 9  | 0.197      | 4  | 0.035      | 9  | 0.001        | 16 | 0.158            | 15       | 0.158            | 15 |
| 56 |       |           | min | -0.123  | 15 | 0.052      | 23 | -0.059     | 7  | 0            | 10 | 0.009            | 9        | 0.009            | 9  |
| 57 | M15   |           | max | 0.042   | 23 | 0.051      | 9  | 0.245      | 10 | 0.001        | 10 | 0.037            | 24       | 0.036            | 24 |
| 58 |       |           | min | -0.056  | 9  | 0.031      | 23 | -0.187     | 24 | -0.001       | 24 | -0.152           | 10       | -0.152           | 10 |
| 59 |       | J         | max | 0.042   | 23 | -0.031     | 24 | 0.249      | 8  | 0.001        | 10 | 0.133            | 8        | 0.133            | 8  |
| 60 |       |           | min | -0.056  | 9  | -0.052     | 7  | -0.175     | 10 | -0.001       | 24 | -0.037           | 10       | -0.036           | 10 |
| 61 | M16   |           | max | 0.053   | 7  | 0.052      | 7  | 0.002      | 9  | 0            | 10 | 0.108            | 7        | 0.108            | 7  |
| 62 |       |           | min | -0.042  | 9  | 0.031      | 24 | -0.075     | 7  | 0            | 23 | -0.011           | 9        | -0.011           | 9  |
| 63 |       | i i Jan   | max | 0.053   | 7  | -0.031     | 23 | 0.002      | 9  | Ó            | 10 | -0.006           | 9        | -0.006           | 9  |
| 64 |       |           | min | -0.042  | 9  | -0.051     | 9  | -0.075     | 7  | 0            | 23 | -0.139           | 7        | -0.14            | 7  |
| 65 | M17   |           | max |         | 8  | -0.033     | 24 | 0.056      | 9  | 0            | 7  | 0.133            | 8        | 0.134            | 8  |
| 66 |       |           | min | -0.176  | 10 | -0.055     | 8  | -0.043     | 23 | 0            | 9  | -0.036           | 10       | -0.037           | 10 |
| 67 |       |           | max | 0.075   | 7  | 0.054      | 7  | 0.053      | 7  | 0            | 7  | 0.14             | 7        | 0.139            | 7  |
| 68 |       |           | min | -0.002  | 9  | 0.031      | 24 | -0.042     | 9  | 0            | 9  | 0.006            | 9        | 0.006            | 9  |
| 69 | M18   |           |     | 0.187   | 24 | -0.029     | 23 | 0.043      | 23 | ō            | 8  | 0.151            | 10       | 0.152            | 10 |
| 70 |       |           | min | -0.245  | 10 | -0.054     | 8  | -0.056     | 9  | 0            | 10 | -0.036           | 24       | -0.037           | 24 |
| 71 |       | J         | max |         | 9  | 0.051      | 8  | 0.042      | 9  | 0            | 8  | 0.108            | 7        | 0.108            | 7  |
| 72 |       |           | min | -0.075  | 7  | 0.029      | 23 | -0.053     | 7  | 0            | 10 | -0.011           | 9        | -0.011           | _  |
| 73 | M19   |           | max | 0.0.0   | 8  | -0.063     | 24 | 0          | 9  | 0            | 24 | 0.002            | 10       |                  | 9  |
| 74 | 10110 |           | min | 0       | 22 | -0.128     | 10 | 0          | 7  | 0            | 1  | -0.002           | 24       | 0                | 24 |
| 75 |       | J         | max | 0       | 10 | 0.07       | 8  | 0.001      | 7  | 0            | 24 | 0.002            | 24       | 0                | 1  |
| 76 |       | -         | min | 0       | 8  | 0.036      | 23 | -0.001     | 9  | 0            | 1  | -0.002           |          | 0                | 24 |
| 77 | M20   |           | max | 0       | 22 | -0.079     | 23 | 0.001      | 7  | 0            | 24 | 0.002            | 10<br>24 | 0                | 1  |
| 78 | IVIEC | 1         | min | 0       | 8  | -0.141     | 8  | 0          | 9  | 0            | 1  | -0.002           | 10       | 0                | 24 |
| 79 |       |           | max | 0       | 8  | 0.073      | 10 | 0.001      | 9  | 0            | 24 |                  |          | 0                | 1  |
| 80 |       |           | min | 0       | 10 | 0.028      | 24 | -0.001     | 7  | 0            | 1  | 0.002            | 10       | 0                | 24 |
| 81 | M21   |           | max | 0.037   | 10 | 0.028      | 9  | 0.001      | 10 | 0.002        | 10 | -0.002           | 24       | 0                | 1  |
| 82 | WILL  |           | min | 0.006   | 24 | 0          | 7  | 0          | 8  | -0.002       | 24 | 0                | 24       | 0                | 24 |
| 83 |       |           | max | 0.051   | 10 | 0          | 7  | 0          | 8  | 0.002        | 10 | 0                | 1        | 0                | 1  |
| 84 |       |           | min | 0.015   | 24 | 0          | 9  | 0          | 10 | -0.002       | 24 |                  | 24       | 0                | 24 |
| 85 | M22   |           |     | 0.022   |    | 0.001      | 9  | 0          | 10 | 0.002        | 10 | 0                | 1        | 0                | 1  |
| 86 | 18122 |           |     | -0.07   | 10 | -0.001     | 7  | 0          |    |              |    | 0                | 24       | 0                | 24 |
| 87 |       | J         |     | 0.108   | 8  | 0.001      | 7  |            | 8  | -0.003       | 24 | 0                | 1        | 0                | 1  |
| 88 |       | 3         |     | 0.108   | 10 | -0.001     |    | 0          | 8  | 0.002        | 10 | 0                | 24       | 0                | 24 |
| 89 | M23   |           |     | 0.027   | 10 | -0.001     | 9  | 0          | 10 | -0.003       | 24 | 0                | 1        | 0                | 1  |
| 90 | IVIZO |           |     | -0.027  | 24 |            | 9  | 0          | 10 | 0.003        | 10 | 0                | 24       | 0                | 24 |
| 91 |       | A J f     |     | 0.027   |    | 0          | 7  | 0          | 8  | -0.003       | 24 | 0                | 1        | 0                | 1  |
| 92 |       | J         |     | -0.003  | 10 | 0          | _  | 0          | 8  | 0.003        | 10 | 0                | 24       | 0                | 24 |
|    | M24   |           |     | -0.003  |    | 0 001      | 9  | 0          | 10 | -0.003       | 24 | 0                | 1        | 0                | 1  |
|    | IVIZ4 |           |     |         |    | 0.001      | 9  | 0          | 10 | 0.002        | 10 | 0                | 24       | 0                | 24 |
| 94 |       | - J       |     | 0.049   | 10 | -0.001     | 7  | 0          | 8  | -0.002       | 24 | 0                | 1        | 0                | 1  |
|    |       | J         |     | 0.066   | 8  | 0.001      | 7  | 0          | 8  | 0.002        | 10 | 0                | 24       | 0                | 24 |
| 96 |       |           | min | 0.034   | 23 | -0.001     | 9  | 0          | 10 | -0.002       | 24 | 0                | _1       | 0                | 1  |





| Centek Engineering | Greenwich 4- West Chimney Frame | SK-10                        |
|--------------------|---------------------------------|------------------------------|
| Luke Amiot         | 7                               | Sep 29, 2023                 |
| 22017.01           | 7                               | Existing Chimney Lower Frame |
| 22017.01           |                                 |                              |



# WEST ENCLOSURE EXISTING FRAMING COMPUTATIONS



: Centek Engineering

Company : Centek Eng Designer : Luke Amiot Job Number : 22017.01

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:36:00 AM

Checked By: CFC

# **Node Coordinates**

|                | Label | X [ft] | Y [ft] | Z [ft] | Detach From Diaphragm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------|-------|--------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | N1    | 0      | 0      | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2              | N2    | 11     | 0      | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3              | N3    | 11     | 0      | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4              | N4    | 0      | 0      | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5              | N5    | 5.5    | 0      | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6              | N6    | 5.5    | 0      | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7              | N7    | 5.5    | 2.5    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8              | N8    | 5.5    | 2.5    | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9              | N9    | 1.375  | 0.625  | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10             | N10   | 1.375  | 0.625  | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11             | N11   | 9.625  | 0.625  | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12             | N12   | 9.625  | 0.625  | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13             | N13   | 9.625  | 0.625  | -12.67 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14             | N14   | 1.375  | 0.625  | -12.67 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15             | N15   | 5.5    | 2.5    | -12.67 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16             | N17   | -5.5   | -2.5   | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17             | N18   | 12.375 | -0.625 | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18             | N19   | -5.5   | -2.5   | -12.67 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19             | N20   | 12.375 | -0.625 | -12.67 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20             | N21   | -2.75  | -1.25  | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21             | N22   | -2.75  | -1.25  | -12.67 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22             | N23   | 9.625  | 0      | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23             | N24   | 1.375  | 0      | 0      | THE PARTY OF THE P |
| 22<br>23<br>24 | N25   | -2.75  | -1.25  | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25             | N26   | 12.375 | -0.625 | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26             | N27   | -5.5   | -2.5   | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **Node Boundary Conditions**

| Node Label | X [k/in] | Y [k/in] | Z [k/in] | Y Rot [k-ft/rad] |
|------------|----------|----------|----------|------------------|
| N17        | Reaction | Reaction | Reaction | Reaction         |
| N19        | Reaction | Reaction | Reaction | Reaction         |
| N20        | Reaction | Reaction | Reaction | Reaction         |
| N18        | Reaction | Reaction | Reaction | Reaction         |

Hot Rolled Steel Properties

|     | Label          | E [ksi] | G [ksi] | Nu  | Therm. Coeff. [1e5°F-1] | Density [k/ft³] | Yield [ksi] | Ry   | Fu [ksi] | Rt   |
|-----|----------------|---------|---------|-----|-------------------------|-----------------|-------------|------|----------|------|
| [4] | A992           | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 50          | 1.1  | 65       | 1.1  |
| 2   | A36 Gr.36      | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 36          | 1.5  | 58       | 1.2  |
| 2   | A572 Gr.50     | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 50          | 1.1  | 65       | 1.1  |
| 13  | A500 Gr.B RND  | 29000   | 11154   | 0.3 | 0.65                    | 0.527           | 42          | 1.4  | 58       | 1.3  |
|     | A500 Gr.B Rect |         | 11154   | 0.3 | 0.65                    | 0.527           | 46          | 1.4  | 58       | 1.3  |
|     | A53 Gr.B       | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 35          | 1.6  | 60       | 1.2  |
| 6   | A1085          | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 50          | 1.25 | 65       | 1.15 |
| 8   | A913 Gr.65     | 29000   | 11154   | 0.3 | 0.65                    | 0.49            | 65          | 1.1  | 80       | 1.1  |

# Member Primary Data

|   | Label | l Node | J Node | Rotate(deg)   | Section/Shape             | Type | Design List | Material  | Design Rule |
|---|-------|--------|--------|---------------|---------------------------|------|-------------|-----------|-------------|
| 4 | M1    | N1     | N4     | / (Otato(Gog) | C6X8.2 ASD7TH             | Beam | Channel     | A36 Gr.36 | Typical     |
| 1 | M2    | N2     | N3     |               | C6X8.2 ASD7TH             | Beam | Channel     | A36 Gr.36 | Typical     |
| 5 | M3    | N3     | N4     |               | 10WF CB101X21 19 HISTORIC | Beam | Wide Flange | A36 Gr.36 | Typical     |
| 3 | M4    | N2     | N1     |               | 10WF CB101X21 19 HISTORIC |      | Wide Flange | A36 Gr.36 | Typical     |



Company : Centek Engineering Designer : Luke Amiot Job Number : 22017.01

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:36:00 AM

Checked By: CFC

# Member Primary Data (Continued)

|    | Label | I Node | J Node | Rotate(deg) | Section/Shape           | Type | Design List  | Material  | Design Rule |
|----|-------|--------|--------|-------------|-------------------------|------|--------------|-----------|-------------|
| 5  | M5    | N8     | N17    |             | 18WF B18X60 14 HISTORIC | Beam | Wide Flange  | A36 Gr.36 | Typical     |
| 6  | M8    | N8     | N18    |             | 18WF B18X60 14 HISTORIC | Beam | Wide Flange  | A36 Gr.36 | Typical     |
| 7  | M9    | N9     | N14    | 330         | 16WF B16X36 10 HISTORIC | Beam | Wide Flange  | A36 Gr.36 | Typical     |
| 8  | M10   | N8     | N15    |             | 16WF B16X40 6 HISTORIC  | Beam | Wide Flange  | A36 Gr.36 | Typical     |
| 9  | M11   | N11    | N13    | 30          | 16WF B16X36 10 HISTORIC | Beam | Wide Flange  | A36 Gr.36 | Typical     |
| 10 | M12   | N7     | N5     |             | L2.5X2.5X4              | Beam | Single Angle | A36 Gr.36 | Typical     |
| 11 | M13   | N15    | N19    |             | 18WF B18X60 14 HISTORIC | Beam | Wide Flange  | A36 Gr.36 | Typical     |
| 12 | M14   | N15    | N20    |             | 18WF B18X60 14 HISTORIC | Beam | Wide Flange  | A36 Gr.36 | Typical     |
| 13 | M15   | N21    | N22    | 330         | 16WF B16X36 10 HISTORIC | Beam | Wide Flange  | A36 Gr.36 | Typical     |
| 14 | M16   | N24    | N10    |             | L2.5X2.5X4              | Beam | Single Angle | A36 Gr.36 | Typical     |
| 15 | M17   | N23    | N12    |             | L2.5X2.5X4              | Beam | Single Angle | A36 Gr.36 | Typical     |
| 16 | M18   | N18    | N20    | 30          | 16WF B16X36 10 HISTORIC | Beam | Wide Flange  | A36 Gr.36 | Typical     |
| 17 | M19   | N17    | N19    | 330         | 16WF B16X36 10 HISTORIC | Beam | Wide Flange  | A36 Gr.36 | Typical     |

# Hot Rolled Steel Design Parameters

|    | Label | Shape                     | Length [ft] | Lcomp top [ft] | Channel Conn. | a [ft] | Function |
|----|-------|---------------------------|-------------|----------------|---------------|--------|----------|
| 1  | M1    | C6X8.2 ASD7TH             | 3           | Lbyy           | N/A           | N/A    | Lateral  |
| 2  | M2    | C6X8.2 ASD7TH             | 3           | Lbyy           | N/A           | N/A    | Lateral  |
| 3  | МЗ    | 10WF CB101X21 19 HISTORIC | 11          | Lbyy           | N/A           | N/A    | Lateral  |
| 4  | M4    | 10WF CB101X21 19 HISTORIC | 11          | Lbyy           | N/A           | N/A    | Lateral  |
| 5  | M5    | 18WF B18X60 14 HISTORIC   | 12.083      | Lbyy           | N/A           | N/A    | Lateral  |
| 6  | M8    | 18WF B18X60 14 HISTORIC   | 7.552       | Lbvv           | N/A           | N/A    | Lateral  |
| 7  | M9    | 16WF B16X36 10 HISTORIC   | 15.67       | Lbvv           | N/A           | N/A    | Lateral  |
| 8  | M10   | 16WF B16X40 6 HISTORIC    | 15.67       | Lbyy           | N/A           | N/A    | Lateral  |
| 9  | M11   | 16WF B16X36 10 HISTORIC   | 15.67       | Lbvv           | N/A           | N/A    | Lateral  |
| 10 | M12   | L2.5X2.5X4                | 2.5         | Lbvv           | N/A           | N/A    | Lateral  |
| 11 | M13   | 18WF B18X60 14 HISTORIC   | 12.083      | Lbvv           | N/A           | N/A    | Lateral  |
| 12 | M14   | 18WF B18X60 14 HISTORIC   | 7.552       | Lbvv           | N/A           | N/A    | Lateral  |
| 13 | M15   | 16WF B16X36 10 HISTORIC   | 15.67       | Lbvv           | N/A           | N/A    | Lateral  |
| 14 | M16   | L2.5X2.5X4                | 0.625       | Lbvv           | N/A           | N/A    | Lateral  |
| 15 | M17   | L2.5X2.5X4                | 0.625       | Lbvv           | N/A           | N/A    | Lateral  |
| 16 | M18   | 16WF B16X36 10 HISTORIC   | 15.67       | Lbyy           | N/A           | N/A    | Lateral  |
| 17 | M19   | 16WF B16X36 10 HISTORIC   | 15.67       | Lbyy           | N/A           | N/A    | Lateral  |

# Member Distributed Loads (BLC 2 : Dead Load)

| Me | ember Labe | elDirectionS | Start Magnitude [k/ft, F, ksf, k-ft/ft] | End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location [(ft, %)] | End Location [(ft, %)] |
|----|------------|--------------|-----------------------------------------|---------------------------------------|--------------------------|------------------------|
| 1  | M13        | Y            | -0.076                                  | -0.076                                | 0                        | %100                   |
| 2  | M14        | Y            | -0.076                                  | -0.076                                | 0                        | %100                   |

# Member Distributed Loads (BLC 4 : Equipment Load)

| Member Label Direction Sta | urt Magnitude [k/ft, F, ksf, k-ft | ft]End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location [(ft, % | 6)]End Location [(ft, %)] |
|----------------------------|-----------------------------------|------------------------------------------|------------------------|---------------------------|
| 1 M4 Y                     | -0.581                            | -0.581                                   | 0                      | %100                      |

# Member Distributed Loads (BLC 8: Snow Load)

| Me | ember Labe | IDirectionS | tart Magnitude [k/ft, F, ksf, k-ft/ft] | End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location [(ft, % | )]End Location [(ft, %)] |
|----|------------|-------------|----------------------------------------|---------------------------------------|------------------------|--------------------------|
| 1  | M14        | Y           | -0.19                                  | -0.19                                 | 0                      | %100                     |
| 2  | M13        | Y           | -0.19                                  | -0.19                                 | 0                      | %100                     |



: Centek Engineering

Company Designer : Luke Amiot Job Number : 22017.01

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:36:00 AM

Checked By: CFC

# Member Distributed Loads (BLC 9 : Dead Load (Masonry))

| Mei | IIDEI DISC | -IDi-esting Stor | Magnitude (k/ft E ksf k-ft/ft | End Magnitude [k/ft, F, ksf, k-ft/f | ft]Start Location [(ft, % | )]End Location [(ft, %) |
|-----|------------|------------------|-------------------------------|-------------------------------------|---------------------------|-------------------------|
| Me  |            | erbirectionstar  | -0.267                        | -0.267                              | 0                         | %100                    |
| 1   | M1         | Y                | -0.267                        | -0.267                              | 0                         | %100                    |
| 2   | M4         | Y                |                               | -0.267                              | 0                         | %100                    |
| 31  | M2         | Υ                | -0.267                        | -0.201                              |                           |                         |

# Member Distributed Loads (BLC 10 : Dead Load (Concrete))

| Mellipel Distri | IDDICO EGG |                                      |                                         | Chart Lanction [/ft 0/  | VEnd Location (/ft %)] |
|-----------------|------------|--------------------------------------|-----------------------------------------|-------------------------|------------------------|
| Member Labe     | DirectionS | tart Magnitude [k/ft, F, ksf, k-ft/f | t]End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location I(it, 76 | JEHO LOCATION (N. 70)  |
| 1 M4            | T V        | -0.156                               | -0.156                                  | 0                       | %100                   |
| I Met           |            |                                      |                                         |                         |                        |

Member Distributed Loads (BLC 11 : BLC 2 Transient Area Loads)

| Me       | mber Label C | Direction Star | t Magnitude [k/ft, F, ksf, k-ft/ft] | End Magnitude [k/ft, F, ksf, k-ft/ft] S | Start Location [(ft, %)] | End Location (III, 9 |
|----------|--------------|----------------|-------------------------------------|-----------------------------------------|--------------------------|----------------------|
| T        | M1           | Y              | -0.032                              | -0.034                                  | 0                        | 0.0                  |
|          | M1           | Y              | -0.034                              | -0.024                                  | 0.6                      | 1.2                  |
|          | M1           | Ÿ              | -0.024                              | -0.018                                  | 1.2                      | 1.8                  |
| $\vdash$ | M1           | Ÿ              | -0.018                              | -0.028                                  | 1.8                      | 2.4                  |
|          | M1           | Y              | -0.028                              | -0.038                                  | 2.4                      | 3                    |
|          | M9           | Y              | -0.037                              | -0.04                                   | 0                        | 2.239                |
|          | M9           | Y              | -0.04                               | -0.051                                  | 2.239                    | 4.477                |
| $\vdash$ |              | Y              | -0.051                              | -0.062                                  | 4.477                    | 6.716                |
| -        | M9           | Y              | -0.062                              | -0.058                                  | 6.716                    | 8.954                |
| 1        | M9<br>M9     | Y              | -0.058                              | -0.051                                  | 8.954                    | 11.193               |
|          |              | Y              | -0.051                              | -0.051                                  | 11.193                   | 13.431               |
| 1        | M9           | Y              | -0.051                              | -0.051                                  | 13.431                   | 15.67                |
| 2        | M9           | Y              | -0.036                              | -0.059                                  | 0                        | 2.239                |
| 3        | M10          | Y              | -0.059                              | -0.06                                   | 2.239                    | 4.477                |
| 1        | M10          | Y              | -0.06                               | -0.049                                  | 4.477                    | 6.716                |
| 5        | M10          |                | -0.049                              | -0.056                                  | 6.716                    | 8.954                |
| 6        | M10          | Y              | -0.056                              | -0.062                                  | 8.954                    | 11.193               |
| 7        | M10          | Y              | -0.062                              | -0.056                                  | 11.193                   | 13.431               |
| 8        | M10          | Y              | -0.056                              | -0.044                                  | 13.431                   | 15.67                |
| 9        | M10          | Y              | -0.029                              | -0.043                                  | 0                        | 2.239                |
| 0        | M15          | Y              | -0.029                              | -0.044                                  | 2.239                    | 4.477                |
| 1        | M15          | Υ              |                                     | -0.04                                   | 4.477                    | 6.716                |
| 2        | M15          | Y              | -0.044<br>-0.04                     | -0.044                                  | 6.716                    | 8.954                |
| 3        | M15          | Y              | -0.044                              | -0.051                                  | 8.954                    | 11.193               |
| 4        | M15          | Y              |                                     | -0.048                                  | 11.193                   | 13.431               |
| 5        | M15          | Y              | -0.051                              | -0.034                                  | 13.431                   | 15.67                |
| 6<br>7   | M15          | Y              | -0.048                              | -0.018                                  | 8.882e-16                | 15.67                |
|          | M19          | Y              | -0.018                              | -0.018                                  | 0                        | 3                    |
| 8        | M2           | Y              | -0.018                              | -0.037                                  | Ŏ                        | 2.239                |
| 9        | M11          | Υ              | -0.04                               | -0.044                                  | 2.239                    | 4.477                |
| 0        | M11          | Y              | -0.037                              | -0.05                                   | 4.477                    | 6.716                |
| 1        | M11          | Y              | -0.044                              | -0.03                                   | 6.716                    | 8.954                |
| 2        | M11          | Υ              | -0.05                               | -0.043                                  | 8.954                    | 11.193               |
| 3        | M11          | Y              | -0.046                              | -0.043                                  | 11.193                   | 13.431               |
| 4        | M11          | Y              | -0.043                              | -0.043                                  | 13.431                   | 15.67                |
| 5        | M11          | Y              | -0.043                              |                                         | 0                        | 2.239                |
| 6        | M18          | Y              | -0.007                              | -0.012                                  | 2.239                    | 4.477                |
| 7        | M18          | Y              | -0.012                              | -0.018                                  | 4.477                    | 6.716                |
| 8        | M18          | Υ              | -0.018                              | -0.019                                  | 6.716                    | 8.954                |
| 9        | M18          | Y              | -0.019                              | -0.018                                  | 8.954                    | 11.193               |
| 0        | M18          | Y              | -0.018                              | -0.018                                  | 11.193                   | 13.431               |
| 11       | M18          | Y              | -0.018                              | -0.018                                  |                          | 15.67                |
| 12       | M18          | Y              | -0.018                              | -0.018                                  | 13.431                   | 10.01                |



: Centek Engineering : Luke Amiot

Company : Centek Er Designer : Luke Amid Job Number : 22017.01

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:36:00 AM

Checked By: CFC

# Member Distributed Loads (BLC 12 : BLC 8 Transient Area Loads)

| IV | lember Labe | Direction | Start Magnitude [k/ft, F, ksf, k-ft/ft] | End Magnitude [k/ft, F, ksf, k-ft/ft] | Start Location [(ft, %) | End Location [(ft, %) |
|----|-------------|-----------|-----------------------------------------|---------------------------------------|-------------------------|-----------------------|
| 1  | M10         | Y         | -0.14                                   | -0.155                                | 8.954                   | 11.193                |
| 2  | M10         | Y         | -0.155                                  | -0.14                                 | 11.193                  | 13.431                |
| 3  | M10         |           | -0.14                                   | -0.11                                 | 13.431                  | 15.67                 |
| 4  | M15         | Y         | -0.074                                  | -0.107                                | 0                       | 2.239                 |
| 5  | M15         | Y         | -0.107                                  | -0.11                                 | 2.239                   | 4.477                 |
| 6  | M15         | Y         | -0.11                                   | -0.1                                  | 4.477                   | 6.716                 |
| 7  | M15         | Y         | -0.1                                    | -0.111                                | 6.716                   | 8.954                 |
| 8  | M15         | Y         | -0.111                                  | -0.128                                | 8.954                   | 11.193                |
| 9  | M15         | Y         | -0.128                                  | -0.12                                 | 11.193                  | 13.431                |
| 10 | M15         | Υ         | -0.12                                   | -0.086                                | 13.431                  | 15.67                 |
| 11 | M19         | Υ         | -0.045                                  | -0.045                                | 1.277e-15               | 15.67                 |
| 12 | M2          | Υ         | -0.046                                  | -0.046                                | 0                       | 3                     |
| 13 | M11         | Y         | -0.099                                  | -0.093                                | 0                       | 2.239                 |
| 14 | M11         | Υ         | -0.093                                  | -0.109                                | 2.239                   | 4.477                 |
| 15 | M11         | Y         | -0.109                                  | -0.126                                | 4.477                   | 6.716                 |
| 16 | M11         | Υ         | -0.126                                  | -0.115                                | 6.716                   | 8.954                 |
| 17 | M11         | Υ         | -0.115                                  | -0.107                                | 8.954                   | 11.193                |
| 18 | M11         | Υ         | -0.107                                  | -0.107                                | 11.193                  | 13.431                |
| 19 | M11         | Y         | -0,107                                  | -0.107                                | 13.431                  | 15.67                 |
| 20 | M18         | Υ         | -0.017                                  | -0.03                                 | 0                       | 2.239                 |
| 21 | M18         | Y         | -0.03                                   | -0.045                                | 2.239                   | 4.477                 |
| 22 | M18         | Y         | -0.045                                  | -0.049                                | 4.477                   | 6.716                 |
| 23 | M18         | Y         | -0.049                                  | -0.044                                | 6.716                   | 8.954                 |
| 24 | M18         | Y         | -0.044                                  | -0.044                                | 8.954                   | 11.193                |
| 25 | M18         | Υ         | -0.044                                  | -0.044                                | 11,193                  | 13.431                |
| 26 | M18         | Y         | -0.044                                  | -0.044                                | 13.431                  | 15.67                 |
| 27 | M1          | Y         | -0.079                                  | -0.086                                | 0                       | 0.6                   |
| 28 | M1          | Y         | -0.086                                  | -0.059                                | 0.6                     | 1.2                   |
| 29 | M1          | Y         | -0.059                                  | -0.044                                | 1.2                     | 1.8                   |
| 30 | M1          | Y         | -0.044                                  | -0.07                                 | 1.8                     | 2.4                   |
| 31 | M1          | Y         | -0.07                                   | -0.095                                | 2.4                     | 3                     |
| 32 | M9          | Υ         | -0.092                                  | -0.101                                | 0                       | 2.239                 |
| 33 | M9          | Y         | -0.101                                  | -0.127                                | 2.239                   | 4.477                 |
| 34 | M9          | Y         | -0.127                                  | -0.155                                | 4.477                   | 6.716                 |
| 35 | M9          | Y         | -0.155                                  | -0.145                                | 6.716                   | 8.954                 |
| 36 | M9          | Y         | -0.145                                  | -0.128                                | 8.954                   | 11.193                |
| 37 | M9          | Y         | -0.128                                  | -0.128                                | 11.193                  | 13.431                |
| 38 | M9          | Y         | -0.128                                  | -0.128                                | 13.431                  | 15.67                 |
| 39 | M10         | Y         | -0.09                                   | -0.148                                | 0                       |                       |
| 40 | M10         | Y         | -0.148                                  | -0.15                                 | 2.239                   | 2.239                 |
| 41 | M10         | Y         | -0.15                                   | -0.124                                | 4.477                   | 4.477                 |
| 42 | M10         | Ÿ         | -0.124                                  | -0.14                                 | 6.716                   | 6.716<br>8.954        |

# Member Area Loads (BLC 2 : Dead Load)

|   | Node A | Node B | Node C | Node D | Direction | Load Direction | Magnitude [ksf] |
|---|--------|--------|--------|--------|-----------|----------------|-----------------|
| 1 | N17    | N8     | N15    | N19    | Y         | A-B            | -0.012          |
| 2 | N8     | N18    | N20    | N15    | Υ         | A-B            | -0.012          |

# Member Area Loads (BLC 8 : Snow Load)

|   | Node A | Node B | Node C | Node D | Direction | Load Direction | Magnitude [ksf] |
|---|--------|--------|--------|--------|-----------|----------------|-----------------|
| 1 | N8     | N17    | N19    | N15    | Y         | A-B            | -0.03           |
| 2 | N8     | N18    | N20    | N15    | Υ         | A-B            | -0.03           |



Company : Centek Engineering
Designer : Luke Amiot
Job Number : 22017.01
Model Name : Greenwich 4- West Chimney Frame

9/29/2023 9:36:00 AM

Checked By: CFC

# Basic Load Cases

|    | BLC Description            | Category | Y Gravity | Distributed | Area(Member)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|----------------------------|----------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Self Weight                | DL       | -1        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2  | Dead Load                  | DL       |           | 2           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3  | Live Load (Roof)           | RLL      |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4  | Equipment Load             | DL       |           | 1           | THE RESERVE THE PARTY OF THE PA |
| 5  | Panel Weight               | DL       |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6  | Wind-X                     | WLX      |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7  | Wind-Z                     | WLZ      |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8  | Snow Load                  | SL       |           | 2           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9  | Dead Load (Masonry)        | DL       |           | 3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 | Dead Load (Concrete)       | DL       |           | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 | BLC 2 Transient Area Loads | None     |           | 42          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12 | BLC 8 Transient Area Loads | None     |           | 42          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **Load Combinations**

| Description          | Solve | P-Delta | BLC | Factor | BLC | Factor  | BLC | Factor | BLC | Factor | BLC   | Factor | BLC | Factor |
|----------------------|-------|---------|-----|--------|-----|---------|-----|--------|-----|--------|-------|--------|-----|--------|
| 1 IBC 16-8           | Yes   | Y       | DL  | 1      |     | TOTAL T |     |        |     | П., П. |       |        |     |        |
| 2 IBC 16-9           | Yes   | Y       | DL  | 1      | LL  | 1       | LLS | 1      |     |        |       |        |     |        |
| 3 IBC 16-10 (a)      | Yes   | Y       | DL  | 1      | RLL | 1       |     |        |     |        |       |        |     |        |
| 4 IBC 16-10 (b)      | Yes   | Y       | DL  | 11     | SL  | 1       | SLN | 1      |     |        |       |        |     |        |
| 5 IBC 16-11 (a)      | Yes   | Y       | DL  | 1      |     | 0.75    | LLS | 0.75   | RLL | 0.75   |       |        |     |        |
| 6 IBC 16-11 (b)      | Yes   | Y       | DL  | 1      | LL  | 0.75    | LLS | 0.75   | SL  | 0.75   | SLN   | 0.75   | _   |        |
| 7 IBC 16-12 (a) (a)  | Yes   | Y       | DL  | 1      | WLX | 0.6     |     |        |     |        | 7.3=- |        |     |        |
| 8 IBC 16-12 (a) (b)  |       | Y       | DL  | 1      | WLZ | 0.6     |     |        |     |        |       |        |     |        |
| 9 IBC 16-12 (a) (c)  |       | Y       | DL  | 1      | WLX | -0.6    |     |        |     |        |       |        |     |        |
| 10 BC 16-12 (a) (d)  |       | Y       | DL  | 1      | WLZ | -0.6    |     |        |     |        |       |        |     |        |
| 11 BC 16-13 (a) (a)  |       | Y       | DL  | 1      | WLX | 0.45    | LL  | 0.75   | LLS | 0.75   | RLL   | 0.75   |     |        |
| 12 BC 16-13 (a) (b)  |       | Y       | DL  | 1      | WLZ | 0.45    | LL  | 0.75   | LLS | 0.75   | RLL   | 0.75   |     |        |
| 13 BC 16-13 (a) (c)  |       | Y       | DL  | 1      | WLX | -0.45   | LL  | 0.75   | LLS | 0.75   | RLL   | 0.75   |     |        |
| 14 BC 16-13 (a) (d)  |       | Y       | DL  | 1      | WLZ | -0.45   | LL  | 0.75   | LLS | 0.75   | RLL   | 0.75   |     |        |
| 15 BC 16-13 (b) (a)  |       | Y       | DL  | 1      | WLX | 0.45    | LL  | 0.75   | LLS | 0.75   | SL    | 0.75   | SLN | 0.75   |
| 16 BC 16-13 (b) (b)  |       | Y       | DL  | 1      | WLZ | 0.45    | LL  | 0.75   | LLS | 0.75   | SL    | 0.75   | SLN | 0.75   |
| 17 IBC 16-13 (b) (c) |       | Y       | DL  | 1      | WLX | -0.45   | LL  | 0.75   | LLS | 0.75   | SL    | 0.75   | SLN | 0.75   |
| 18 BC 16-13 (b) (d)  |       | Y       | DL  | 1      | WLZ | -0.45   | LL  | 0.75   | LLS | 0.75   | SL    | 0.75   | SLN | 0.75   |
| 19 IBC 16-13 (c) (a) |       | Y       | DL  | 1      | WLX | 0.45    | LL  | 0.75   | LLS | 0.75   |       |        |     |        |
| 20 IBC 16-13 (c) (b) |       | Y       | DL  | 1      | WLZ | 0.45    | LL  | 0.75   | LLS | 0.75   |       |        |     |        |
| 21 IBC 16-13 (c) (c) | -     | Y       | DL  | 1      | WLX | -0.45   | LL  | 0.75   | LLS | 0.75   |       |        |     |        |
| 22 IBC 16-13 (c) (d) |       | Y       | DL  | 1      | WLZ | -0.45   | LL  | 0.75   | LLS | 0.75   |       |        |     |        |
| 23 IBC 16-15 (a)     | Yes   | Y       | DL  | 0.6    | WLX | 0.6     |     |        |     |        |       |        |     |        |
| 24 IBC 16-15 (b)     | Yes   | Ý       | DL  | 0.6    | WLZ | 0.6     |     |        |     |        |       |        |     |        |

# **Envelope Node Reactions**

|    | lode Label |     | X [k]   | LC | Y [k]  | LC | Z [k]  | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|------------|-----|---------|----|--------|----|--------|----|-----------|----|-----------|----|-----------|----|
| 1  | N17        | max | 16.435  | 4  | 10.604 | 4  | -0.194 | 24 | 0         | 24 | 0.098     | 4  | 0         | 24 |
| -  | INII       | min | 7.793   | 23 | 4.756  | 23 | -0.713 | 4  | 0         | 1  | -0.058    | 1_ | 0         | 1  |
| 3  | N19        | max | 11.011  | 4  | 9.308  | 4  | 0.658  | 4  | 0         | 24 | -0.064    | 24 | 0         | 24 |
| 4  | 1413       | min | 3.371   | 23 | 2.749  | 23 | 0.16   | 23 | 0         | 1  | -0.262    | 4  | 0         | 1  |
| 5  | N20        | max | -3.361  | 24 | 7.554  | 4  | 0.994  | 4  | 0         | 24 | 1.184     | 4  | 0         | 24 |
| 6  | 1420       | min | -10.993 | 4  | 2.378  | 23 | 0.402  | 23 | 0         | 1  | 0.663     | 23 | 0         | 1  |
| 7  | N18        | max | -7.803  | 24 | 9.664  | 4  | -0.367 | 24 | 0         | 24 | 0.357     | 22 | 0         | 24 |
| 8  | INTO       | min | -16.452 | 4  | 4.619  | 23 | -0.939 | 4  | 0         | 1  | 0.213     | 23 | 0         | 11 |
| 9  | Totals:    | max | 0       | 22 | 37.13  | 4  | 0      | 4  |           | 6  |           |    |           |    |
| 10 | i otala.   | min | 0       | 6  | 14.501 | 23 | 0      | 23 | 5         |    |           |    |           |    |



Company Designer Centek Engineering

: Luke Amiot Job Number : 22017.01

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:36:00 AM

Checked By: CFC

# NOTE: HIGHLIGHTED VALUES BELOW ARE STRESS RATIOS IDENTIFIED IN REPORT Envelope AISC 15TH (360-16): ASD Member Steel Code Checks

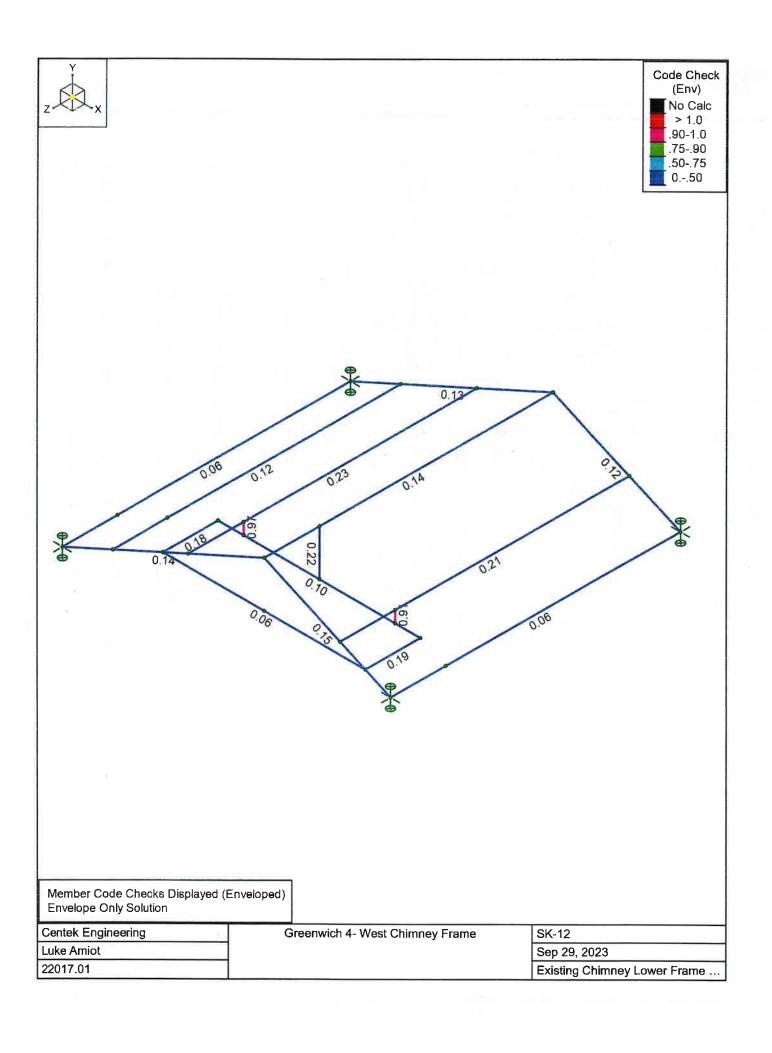
|    | Member | Shape                     | Code Chec | kLoc[ft] | LC | Shear Ched | kLoc[ft] | Dir | LC | Pnc/om [k] | Pnt/om [k] | Mnyy/om [k-ft | Mnzz/om [k-f | t) Cb Eqn  |
|----|--------|---------------------------|-----------|----------|----|------------|----------|-----|----|------------|------------|---------------|--------------|------------|
| 1  | M1     | C6X8.2 ASD7TH             | 0.18      | 3        | 4  | 0.053      | 3        | ٧   | 4  | 40.835     | 51.737     | 1.413         | 9.229        | 2.988H1-1b |
| 2  | M2     | C6X8.2 ASD7TH             | 0.187     | 3        | 4  | 0.057      | 3        | У   | 4  | 40.835     | 51.737     | 1.413         | 9.229        | 2.701H1-1b |
| 3  | МЗ     | 10WF_CB101X21_19_HISTORIC | 0.064     | 11       | 4  | 0.005      | 0        | ٧   | 4  | 74.312     | 133.437    | 9.697         | 42.754       | 1.267H1-1b |
| 4  | M4     | 10WF_CB101X21_19_HISTORIC | 0.1       | 5.5      | 4  | 0.085      | 5.5      | У   | 4  | 74.312     | 133.437    | 9.697         | 42.754       | 1.698H1-1b |
| 5  | M5     | 18WF_B18X60_14_HISTORIC   | 0.144     | 4.531    | 4  | 0.053      | 4.531    | ٧   | 4  | 251.224    | 380.263    | 35.824        | 218.802      | 1.346H1-1b |
| 6  | M8     | 18WF_B18X60_14_HISTORIC   | 0.147     | 7.552    | 4  | 0.047      | 6.057    | z   | 4  | 323.417    | 380.263    | 35.824        | 218.802      | 1.737H1-1b |
| 7  | M9     | 16WF_B16X36_10_HISTORIC   | 0.233     | 0        | 4  | 0.075      | 2.938    | y   | 4  | 93.562     | 228.287    | 18.17         | 90.724       | 1.151H1-1b |
| 8  | M10    | 16WF B16X40 6 HISTORIC    | 0.143     | 3.428    | 4  | 0.084      | 0        | У   | 4  | 110.995    | 253.725    | 21.762        | 113.041      | 1.206H1-1b |
| 9  | M11    | 16WF_B16X36_10_HISTORIC   | 0.205     | 0        | 4  | 0.07       | 2.938    | V   | 4  | 93.562     | 228.287    | 18.17         | 91.912       | 1.166H1-1b |
| 10 | M12    | L2.5X2.5X4                | 0.221     | 2.5      | 4  | 0.001      | 2.5      | γ   | 4  | 20.92      | 25.653     | 0.741         | 1.688        | 1.5 H2-1   |
| 11 | M13    | 18WF_B18X60_14_HISTORIC   | 0.127     | 0        | 4  | 0.037      | 0        | ٧   | 4  | 251.224    | 380.263    | 35.824        | 218.802      | 1.179H1-1b |
| 12 | M14    | 18WF_B18X60_14_HISTORIC   | 0.122     | 0        | 4  | 0.025      | 0        | y   | 4  | 323.417    | 380.263    | 35.824        | 218.802      | 2.113H1-1b |
| 13 | M15    | 16WF_B16X36_10_HISTORIC   | 0.117     | 7.835    | 4  | 0.019      | 15.67    | V   | 4  | 93.562     | 228.287    | 18.17         | 88.719       | 1.125H1-1b |
| 14 | M16    | L2.5X2.5X4                | 0.966     | 0        | 4  | 0.175      | 0.625    | ٧   | 4  | 25.328     | 25.653     | 0.741         | 1.688        | 1.5 H2-1   |
| 15 | M17    | L2.5X2.5X4                | 0.91      | 0        | 4  | 0.167      | 0.625    | У   | 4  | 25.328     | 25.653     | 0.741         | 1.688        | 1.5 H2-1   |
| 16 | M18    | 16WF_B16X36_10_HISTORIC   | 0.065     | 7.509    | 4  | 0.011      | 15.67    | ٧   | 4  | 93.562     | 228.287    | 18.17         | 88.981       | 1.128H1-1b |
| 17 | M19    | 16WF_B16X36_10_HISTORIC   | 0.061     | 7.835    | 4  | 0.01       | 15.67    | y   | 4  | 93.562     | 228.287    | 18.17         | 89.331       | 1.133Н1-1Ь |

# Envelope Member End Reactions

| _! | Membe | rMember End |     | Axial[k] | LC | y Shear[k] | LC | z Shear[k] | LC | Torque[k-ft] | LC | y-y Moment[k-ft] | LC | z-z Moment[k-ft] | LC |
|----|-------|-------------|-----|----------|----|------------|----|------------|----|--------------|----|------------------|----|------------------|----|
| 1  | M1    |             | max | 0.169    | 4  | 0.316      | 4  | 0.078      | 4  | 0.003        | 4  | -0.039           | 24 | 0.008            | 22 |
| 2  |       |             | min | 0.055    | 23 | 0.165      | 23 | 0.029      | 23 | 0.001        | 23 | -0.107           | 4  | 0.005            | 23 |
| 3  |       | J           | max | 0.169    | 4  | -0.38      | 24 | 0.078      | 4  | 0.003        | 4  | 0.127            | 4  | 0.74             | 4  |
| 4  |       |             | min | 0.055    | 23 | -0.8       | 4  | 0.029      | 23 | 0.001        | 23 | 0.048            | 23 | 0.33             | 23 |
| 5  | M2    |             | max | 0.115    | 4  | 0.124      | 22 | -0.02      | 24 | -0.001       | 24 | 0.073            | 4  | -0.024           | 24 |
| 6  |       |             | min | 0.041    | 23 | 0.074      | 23 | -0.052     | 4  | -0.002       | 4  | 0.027            | 23 | -0.05            | 4  |
| 7  |       | J           | max | 0.115    | 4  | -0.454     | 24 | -0.02      | 24 | -0.001       | 24 | -0.034           | 24 | 1.132            | 4  |
| 8  |       |             | min | 0.041    | 23 | -0.903     | 4  | -0.052     | 4  | -0.002       | 4  | -0.084           | 4  | 0.546            | 23 |
| 9  | M3    |             | max | 4.356    | 4  | 0.183      | 4  | 0.014      | 4  | -0.001       | 24 | 0.067            | 4  | 0.213            | 4  |
| 10 |       | i i         | min | 2.003    | 23 | 0.097      | 23 | 0.004      | 23 | -0.002       | 4  | 0.036            | 23 | 0.098            | 23 |
| 11 |       | J D         | max | 4.356    | 4  | -0.042     | 24 | 0.01       | 4  | -0.001       | 24 | 0.197            | 4  | -0.207           | 24 |
| 12 |       |             | min | 2.003    | 23 | -0.07      | 1  | 0.003      | 23 | -0.002       | 4  | 0.071            | 23 | -0.517           | 4  |
| 13 | M4    | The state   | max | 0.052    | 4  | -0.074     | 24 | 0.115      | 4  | 0.05         | 4  | -0.027           | 24 | -0.001           | 24 |
| 14 |       |             | min | 0.02     | 23 | -0.124     | 1  | 0.041      | 23 | 0.024        | 23 | -0.073           | 4  | -0.002           | 4  |
| 15 |       | J           | max | 0.078    | 4  | 0.317      | 4  | -0.055     | 24 | 0.008        | 22 | -0.039           | 24 | -0.001           | 24 |
| 16 |       |             | min | 0.029    | 23 | 0.165      | 23 | -0.169     | 4  | 0.005        | 23 | -0.107           | 4  | -0.003           | 4  |
| 17 | M5    |             | max | 12.781   | 4  | 3.148      | 4  | -0.427     | 24 | -0.009       | 24 | 2.348            | 4  | 3.863            | 4  |
| 18 |       |             | min | 6.121    | 23 | 1.496      | 23 | -1.003     | 4  | -0.025       | 4  | 0.943            | 23 | 1.805            | 23 |
| 19 |       | J           | max | 19.027   | 4  | -0.877     | 24 | -0.194     | 24 | 0.044        | 4  | -0.287           | 24 | 0                | 22 |
| 20 |       |             | min | 8.957    | 23 | -2.156     | 4  | -0.712     | 4  | 0.007        | 23 | -1.059           | 4  | 0                | 4  |
| 21 | M8    |             | max | 13.205   | 4  | 2.177      | 4  | 0.838      | 4  | 0.028        | 22 | -0.896           | 24 | 3.858            | 4  |
| 22 |       |             | min | 6.296    | 23 | 1.094      | 23 | 0.353      | 23 | 0.017        | 23 | -2.256           | 4  | 1.803            | 23 |
| 23 |       | J           | max | 18.685   | 4  | -0.799     | 24 | 0.937      | 4  | -0.377       | 24 | 0.775            | 4  | 0.001            | 22 |
| 24 |       |             | min | 8.913    | 23 | -1.432     | 4  | 0.367      | 23 | -0.776       | 4  | 0.146            | 23 | 0                | 4  |
| 25 | M9    |             | max | -0.273   | 24 | 4.29       | 4  | 1.399      | 4  | 0.106        | 4  | -1.427           | 24 | -0.247           | 24 |
| 26 |       |             | min | -0.576   | 4  | 2.047      | 23 | 0.686      | 23 | 0.051        | 23 | -3.212           | 4  | -0.557           | 4  |
| 27 |       | J           | max | -0.217   | 24 | -0.778     | 24 | -0.282     | 24 | -0.012       | 24 | -0.922           | 24 | -0.046           | 24 |
| 28 |       |             | min | -0.402   | 4  | -2.206     | 4  | -0.963     | 4  | -0.025       | 4  | -2.734           | 4  | -0.18            | 4  |
| 29 | M10   |             | max | 1.845    | 4  | 5.909      | 4  | 0.014      | 4  | -0.002       | 24 | -0.04            | 24 | 1.858            | 4  |
| 30 |       |             | min | 0.781    | 23 | 2.782      | 23 | 0.006      | 23 | -0.005       | 4  | -0.082           | 4  | 0.737            | 23 |
| 31 |       | J           | max | 1.844    | 4  | -1.021     | 24 | 0.007      | 4  | 0.001        | 4  | 0.045            | 22 | 2.195            | 4  |
| 32 |       |             | min | 0.781    | 23 | -2.825     | 4  | 0.004      | 23 | 0            | 23 | 0.027            | 23 | 0.981            | 23 |
| 33 | M11   |             | max | -0.028   | 4  | 3.93       | 4  | -0.623     | 24 | -0.05        | 24 | 2.766            | 4  | -0.202           | 24 |
| 34 |       |             | min | -0.052   | 1  | 1.928      | 23 | -1.216     | 4  | -0.105       | 4  | 1.294            | 23 | -0.436           | 4  |



Company : Centek Engineering Designer : Luke Amiot Job Number : 22017.01

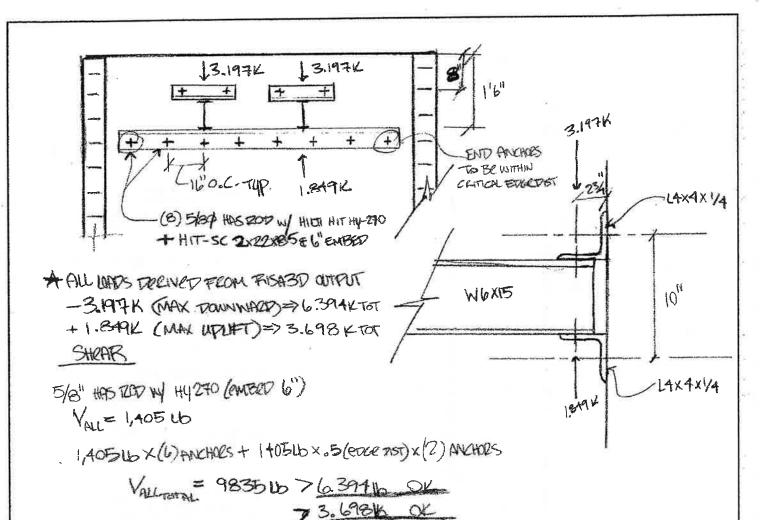

Model Name: Greenwich 4- West Chimney Frame

9/29/2023 9:36:00 AM

Checked By: CFC

# Envelope Member End Reactions (Continued)

| 1  | Member  | Member End | 8   | Axial[k] | LC | y Shear[k] | LC | z Shear[k] | LC |        |    | y-y Moment[k-ft] |     |        | LC |
|----|---------|------------|-----|----------|----|------------|----|------------|----|--------|----|------------------|-----|--------|----|
| 35 |         | J          | max | 0.082    | 4  | -0.725     | 24 | 0.833      | 4  | 0.024  | 4  | 2.418            | 4   | 0.042  | 22 |
| 36 |         |            | min | 0.01     | 23 | -1.957     | 4  | 0.259      | 23 | 0.011  | 23 | 0.871            | 23  | 0.003  | 4  |
| 37 | M12     |            | max | -2.912   | 24 | -0.003     | 24 | -0.001     | 24 | 0      | 4  | 0.008            | 4   | 0      | 4  |
| 38 | IIII    |            | min | -5.107   | 4  | -0.008     | 4  | -0.005     | 4  | 0      | 1  | 0.002            | _23 | -0.003 | 1  |
| 39 |         | <b>1</b>   | max | -2.906   | 24 | -0.003     | 24 | -0.001     | 24 | 0      | 4  | -0.005           | 24  | 0.005  | 4  |
| 40 |         |            | min | -5.096   | 4  | -0.008     | 4  | -0.005     | 4  | 0      | 1  | -0.014           | 4   | 0.001  | 23 |
| 41 | M13     |            | max | 10.543   | 4  | 4.058      | 4  | 0.934      | 4  | 0.025  | 4  | -1.191           | 24  | 5.88   | 4  |
| 42 | WITE    |            | min | 3.325    | 23 | 1.178      | 23 | 0.389      | 23 | 0.011  | 23 | -2.672           | 4   | 1.704  | 23 |
| 43 |         | J          |     | 13.553   | 4  | -0.873     | 24 | 0.659      | 4  | -0.008 | 24 | 1.203            | 4   | 0      | 4  |
| 44 |         |            | min | 4.101    | 23 | -3.21      | 4  | 0.16       | 23 | -0.04  | 4  | 0.374            | 23  | 0      | 1  |
| 45 | M14     | 1          | max | 11.163   | 4  | 2,708      | 4  | -0.392     | 24 | -0.008 | 24 | 2.724            | 4   | 5.878  | 4  |
| 46 | 191.1-1 |            | min | 3.5      | 23 | 0.803      | 23 | -0.914     | 4  | -0.017 | 4  | 1.222            | 23  | 1.703  | 23 |
| 47 |         |            |     | 12.821   | 4  | -0.504     | 24 | -0.402     | 24 | 0.22   | 4  | -0.906           | 24  | 0      | 4  |
| 48 |         |            | min | 3.942    | 23 | -1.563     | 4  | -0.996     | 4  | 0.101  | 23 | -2.016           | 4   | -0.001 | 1  |
| 49 | M15     | 1          | max | 0.127    | 4  | 1.226      | 4  | 0.702      | 4  | 0      | 22 | -0.438           | 24  | -0.169 | 24 |
| 50 | IVITO   |            | min | -0.02    | 1  | 0.311      | 23 | 0.177      | 23 | 0      | 4  | -1.808           | 4   | -0.403 | 4  |
| 51 |         | J          | max | 0.127    | 4  | -0.334     | 24 | -0.196     | 24 | 0      | 22 | -0.534           | 24  | -0.077 | 24 |
| 52 |         |            | min | -0.02    | 1  | -1.315     | 4  | -0.766     | 4  | 0      | 4  | -2.016           | 4   | -0.218 | 4  |
| 53 | M16     |            | max | -2.111   | 24 | -0.57      | 24 | -0.058     | 24 | -0.001 | 24 | 0.419            | 4   | -0.216 | 24 |
| 54 | IVI IO  | <b>I</b>   | min | -3.518   | 1  | -1.19      | 4  | -0.181     | 4  | -0.004 | 4  | 0.2              | 23  | -0.449 | 4  |
| 55 |         |            | max | -2.112   | 24 | -0.57      | 24 | -0.058     | 24 | -0.001 | 24 | -0.078           | 24  | 0.016  | 22 |
| 56 |         |            | min | -3.521   | 1  | -1.19      | 4  | -0.181     | 4  | -0.004 | 4  | -0.187           | 4   | -0.003 | 4  |
| 57 | M17     |            | max | -1.99    | 24 | 1.16       | 4  | -0.041     | 24 | 0.003  | 4  | -0.184           | 24  | 0.462  | 4  |
| 58 | INIT    |            | min | -3.317   | 1  | 0.56       | 23 | -0.115     | 4  | 0.001  | 23 | -0.38            | 4   | 0.224  | 23 |
| 59 |         |            |     | -1.991   | 24 | 1.16       | 4  | -0.041     | 24 | 0.003  | 4  | 0.082            | 4   | -0.042 | 24 |
| 60 |         |            | min | -3.319   | 1  | 0.56       | 23 | -0.115     | 4  | 0.001  | 23 | 0.045            | 23  | -0.101 | 4  |
| 61 | M18     |            | max | 0        | 24 | 0.532      | 4  | -0.119     | 24 | 0      | 4  | 0.894            | 4   | -0.496 | 24 |
| 62 | IVI IO  |            | min | 0        | 1  | 0.168      | 23 | -0.345     | 4  | -0.001 | 1  | 0.294            | 23  | -0.962 | 4  |
| 63 |         |            | max | 0        | 24 | -0.259     | 24 | 0.386      | 4  | 0      | 4  | 0.96             | 4   | 0.239  | 22 |
| 64 |         | 3          | min | 0        | 1  | -0.734     | 4  | 0.128      | 23 | -0.001 | 1  | 0.318            | 23  | 0.143  | 23 |
| 65 | M19     |            | max | 0        | 24 | 0.67       | 4  | 0.39       | 4  | 0      | 22 | -0.314           | 24  | -0.052 | 24 |
| 66 | IVITE   |            | min | 0        | 1  | 0.218      | 23 | 0.127      | 23 | 0      | 4  | -0.964           | 4   | -0.097 | 4  |
| 67 |         | J          | max | 0        | 24 | -0.223     | 24 | -0.127     | 24 | 0      | 22 | -0.316           | 24  | -0.013 | 24 |
| 68 |         | J          | min | 0        | 1  | -0.68      | 4  | -0.39      | 4  | 0      | 4  | -0.967           | 4   | -0.025 | 4  |




# -=NT=Kengineering

Centered on Solutions ™ www.centekeng.com 63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 F: (203) 488-8587

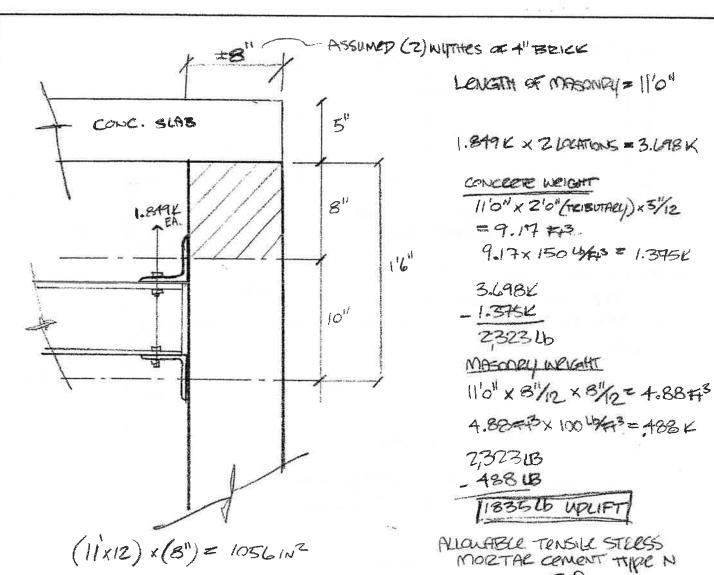
|               | ++-Auchora |        | 2        |
|---------------|------------|--------|----------|
| SHEET NO      |            | OF     |          |
| CALCULATED BY | LAA        | DATE _ | 09/23/23 |
| CHECKED BY    | CFC        | DATE   | AB: VAS  |



TENSION\_ 5/8" HAS EDD W/ HY-270 (EMBED 6")

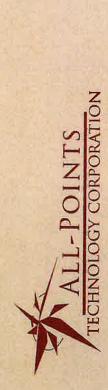
> TAILS 1,025 Lb DOWNWASD 6.3914×234"=17.6KN 17.6 KIN/10" = 1.76 K=Tpot

(2) ANCHOS X 1,02516= 2.05 K7 1.76 KOK


COMBINED 6.394 × 1.017 × = 0.792 79.2% OK

UDUET 3.698K x 234=10.17 KIN 10.17KIN/10" = 1.017K (6) ANCHOZ X 1.000-K +(2) ANCH X 1.025-KX.5 = 7.175K71.017K OK

# **ENTEK** engineering


Centered on Solutions<sup>™</sup> www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587

| SHEET NO.     | 2    | OF 2          |
|---------------|------|---------------|
|               | 1 ΔΔ |               |
| CALCULATED BY | LAIN | DATE 09/28/23 |
| CHECKED BY    | CFC. | DATE          |



= 30 psi 1835 6 = 1.7+ 6 OF WRIFT CCC 30 PSI OK

# **ATTACHMENT 5**



# VISIBILITY ANALYSIS



GREENWICH 4 CT 19 DOUBLING ROAD GREENWICH, CT

PREPARED FOR:

verizon<sup>v</sup>

PREPARED BY:

All-Points Technology Corporation, P.C. 567 Vauxhall Street Extension – Suite 311

Waterford, CT 06320

# **VISUAL ASSESSMENT & PHOTO-SIMULATIONS**

Cellco Partnership, d/b/a Verizon Wireless ("Verizon Wireless") is seeking approval for the development of a new wireless communications facility (the "Facility") at 19 Doubling Road in Greenwich, Connecticut (the "Host Property"). All-Points Technology Corporation, P.C. ("APT") completed this assessment to evaluate the potential visual effects of the proposed Facility from within a two-mile radius (the "Study Area").

# **Project Setting**

The Host Property is an irregularly-shaped parcel located between Stanwich Road to the east, North Street to the west, and Fairfield Road to the south. It is developed with a golf course, tennis courts, and various buildings associated with the Greenwich Country Club. The proposed Facility would be located on the rooftop and adjacent to the clubhouse building (the "clubhouse") in the north central portion of the Host Property ("Site"). Land use within the immediate area is a mix of residential and educational (public and private schools) development.

The topography within the Study Area consists of relatively hilly terrain. Ground elevations range from sea level in the southeastern portion of the Study Area along Cos Cob Harbor to approximately 401 feet above mean sea level ("AMSL") approximately 2 miles northwest of the Site. Tree cover (consisting primarily of mixed deciduous hardwoods) occupies approximately 5,016 acres (or  $\pm 62.37\%$ ) of the 8,042-acre Study Area.

# **Project Undertaking**

Based on information contained in CT Siting Council Drawings (prepared by Centek Engineering, dated December 21, 2022), two (2) proposed radio-frequency-transparent enclosures (i.e., mock chimneys resembling existing structures) would be installed on the clubhouse rooftop, approximately 57 feet above ground level. One of the proposed Verizon Wireless mock chimney enclosures will replace an existing, unused chimney at the west end of the clubhouse. The mock chimneys would house antennas, remote radio heads (RRHs), ancillary equipment and cabling. Associated ground-mounted equipment would be placed on a new 5' by 8' concrete slab within an existing fenced utility area on the eastern side of the clubhouse.

# Methodology

APT used the combination of a predictive computer model, in-field analysis, and various data sources to evaluate the visibility associated with the proposed Facility on both a quantitative and qualitative basis. The predictive model provides a measurable assessment of visibility throughout the entire Study Area, including private properties and other areas inaccessible for direct observations. The in-field analysis consisted of a reconnaissance of the Study Area to record existing conditions, verify results of the model, inventory seasonal and year-round view locations, and provide photographic documentation from publicly accessible areas. A description of the procedures used in the analysis is provided below.

# **Preliminary Computer Modeling**

To conduct this assessment, a predictive computer model was developed specifically for this project using ESRI's ArcMap GIS¹ software and available GIS data. The predictive model incorporates Project- and Study Area-specific data, including the Site location, its ground elevation, and the proposed mock chimney heights, as well as the surrounding topography, existing vegetation, and structures (the primary features that can block direct lines of sight).

A digital surface model ("DSM"), capturing both the natural and built features on the Earth's surface, was generated for the extent of the Study Area utilizing State of Connecticut 2016 LiDAR² LAS³ data points. LiDAR is a remote-sensing technology that develops elevation data by measuring the time it takes for laser light to return from the surface to the instrument's sensors. The varying reflectivity of objects also means that the "returns" can be classified based on the characteristics of the reflected light, normally into categories such as "bare earth," "vegetation," "road," "surface water" or "building." Derived from the 2016 LiDAR data, the LAS datasets contain the corresponding elevation point data and return classification values. The Study Area DSM incorporates the first return LAS dataset values that are associated with the highest feature in the landscape, typically a treetop, top of a building, and/or the highest point of other tall structures.

Once the DSM was generated, ESRI's Viewshed Tool was utilized to identify locations within the Study Area where the proposed Facility may be visible. ESRI's Viewshed Tool predicts visibility by identifying those cells<sup>4</sup> within the DSM that can be seen from an observer location. Cells where visibility was indicated were extracted and converted from a raster dataset to a polygon

<sup>&</sup>lt;sup>1</sup> ArcMap is a Geographic Information System desktop application developed by the Environmental Systems Research Institute for creating maps, performing spatial analysis, and managing geographic data.

<sup>&</sup>lt;sup>2</sup> Light Detection and Ranging

<sup>&</sup>lt;sup>3</sup> An LAS file is an industry-standard binary format for storing airborne LiDAR data.

<sup>&</sup>lt;sup>4</sup> Each DSM cell size is 1 square meter.

feature which was then overlaid onto aerial photograph and topographic base maps. Since the DSM includes the highest relative feature in the landscape, isolated "visible" cells are often indicated within heavily forested areas (e.g., from the top of the highest tree) or on building rooftops during the initial processing. It is recognized that these areas do not represent typical viewer locations and overstate visibility. As such, the resulting polygon feature is further refined by extracting those areas. The viewshed results are also cross-checked against the most current aerial photographs to assess whether significant changes (a new housing development, for example) have occurred since the time the LiDAR-based LAS datasets were captured.

The results of the preliminary analysis are intended to provide a representation of those areas where portions of the Facility may potentially be visible to the human eye without the aid of magnification, based on a viewer eye-height of five (5) feet above the ground and the combination of intervening topography, trees and other vegetation, and structures. However, the Facility may not necessarily be visible from all locations within those areas identified by the predictive model, which has its limitations. For instance, the computer model cannot account for mass density, tree diameters and branching variability of trees, or the degradation of views that occurs with distance. As a result, some areas depicted on the viewshed maps as theoretically offering potential visibility of the Facility may be over-predictive because the quality of those views is not sufficient for the human eye to recognize the Facility or discriminate it from other surrounding or intervening objects.

# Seasonal Visibility

Visibility also varies seasonally with increased, albeit obstructed, views occurring during "leaf-off" conditions. Beyond the variabilities associated with density of woodland stands found within any given Study Area, each individual tree also has its own unique trunk, pole timber and branching patterns that provide varying degrees of screening in leafless conditions which, as introduced above, cannot be precisely modeled. Seasonal visibility is therefore estimated based on a combination of factors including the type, size, and density of trees within a given area; topographic constraints; and other visual obstructions that may be present. Considering these dynamics, areas depicting seasonal visibility on the viewshed maps are intended to represent locations from where there is a potential for views through intervening trees, as opposed to indicating that leaf-off views will exist from within an entire seasonally-shaded area.

### **Field Reconnaissance**

To supplement and fine tune the results of the computer modeling efforts, APT completed infield verification activities consisting of a vehicular and pedestrian reconnaissance, and photo-documentation. The field reconnaissance was completed on April 18, 2023. Weather conditions were favorable for the in-field activities with partly cloudy skies. APT conducted the

reconnaissance of the Study Area by driving along roads and other publicly accessible locations to document and inventory where the clubhouse and existing chimneys could be seen above and through the tree canopy and other visual obstructions.

# **Photographic Documentation and Simulations**

Visual observations from the reconnaissance were used to evaluate the results of the preliminary visibility mapping, including identifying any discrepancies in the initial modeling, and to obtain photo-documentation from representative locations within the Study Area. Photographs were taken with a Canon EOS 6D digital camera body<sup>5</sup> and Canon EF 24 to 105 millimeter ("mm") zoom lens. The coordinates of the clubhouse were entered as a "waypoint" into a handheld global positioning system ("GPS") device, with the "find" tool on the GPS unit then used to provide the distance and orientation to the proposed Facility location. The geographic coordinates of each photo location were recorded as meta data using GPS technology internal to the camera. APT used a standard focal length of 50 mm to present a consistent field of view.

Photographic simulations were generated to portray scaled renderings of the proposed Facility from seven (7) locations presented herein where the Facility will be seen above/through the trees. Using field data, site plan information and 3-dimensional (3D) modeling software, spatially referenced models of the Site and Facility were generated and merged. The geographic coordinates obtained in the field for the photograph locations were incorporated to produce virtual camera positions within the spatial 3D model. Photo-simulations were then created using a combination of renderings generated in the 3D model and photo-rendering software programs, which were ultimately composited and merged with the existing conditions photographs (using Adobe Photoshop image editing software). The scale of the subjects in the photograph (the clubhouse and existing chimneys) and the corresponding simulation (the Facility) is proportional to their surroundings.

For presentation purposes in this report, the photographs were produced in an approximate 7-inch by 10.5-inch format. When reproducing the images in this format size, we believe it is important to present the largest view while providing key contextual landscape elements (existing developments, street signs, utility poles, etc.) so that the viewer can determine the proportionate scale of each object within the scene. Photo-documentation of the field reconnaissance and photo-simulations of the proposed Facility are presented in the attachment at the end of this report. The photo-simulations are intended to provide the reader with a general understanding of the visual characteristics associated with the proposed mock chimneys

<sup>&</sup>lt;sup>5</sup> The Canon EOS 6D is a full-framed camera which includes a lens receptor of the same size as the film used in 35 mm cameras. As such, the images produced are comparable to those taken with a conventional 35 mm camera.

from various locations. Photographs were taken from publicly accessible areas and unobstructed view lines were chosen wherever possible.

<u>Table 1 – Photo Locations</u> summarizes the photographs and simulations presented in the attachment to this report, and includes a description of each location, view orientation, distance from where the photo was taken relative to the Site, and the general characteristics of the view. The photo locations are depicted on the photolog and viewshed maps provided as attachments to this report.

Table 1 - Photo Locations

| Photo | Location                         | Orientation     | Distance<br>to Site | Visibility  |  |
|-------|----------------------------------|-----------------|---------------------|-------------|--|
| 1     | Host Property                    | South           | ± 309 Feet          | Year Round  |  |
| 2     | Golf Club Road                   | South           | ± 0.12 Mile         | Year Round  |  |
| 3     | Doubling Road                    | Southeast       | + 0.20 Mile         | Year Round  |  |
| 4     | North Street                     | East/Northeast  | ± 0.34 Mile         | Not Visible |  |
| 5     | Fairfield Road                   | North/Northeast | ± 0.40 Mile         | Not Visible |  |
| 6     | Fairfield Road                   | North           | ± 0.25 Mile         | Seasonal    |  |
| 7     | Stanwich Road                    | North/Northwest | ± 0.39 Mile         | Seasonal    |  |
| 8     | Stanwich Road                    | Northwest       | ± 0.28 Mile         | Year Round  |  |
| 9     | Stanwich Road                    | West            | ± 0.25 Mile         | Year Round  |  |
| 10    | Montgomery Lane at Stanwich Road | West/Southwest  | ± 0.33 Mile         | Not Visible |  |
| 11    | Stanwich Road                    | Southwest       | ± 0.50 Mile         | Not Visible |  |
| 12    | Wyngate Road                     | South           | ± 0.38 Mile         | Not Visible |  |

# **Final Visibility Mapping**

Information obtained during the field reconnaissance was incorporated into the mapping data layers, including observations of the field reconnaissance, the photograph locations, areas that experienced recent land use changes and those places where the initial model was found to over or under-predict visibility. Once the additional data was integrated into the model, APT recalculated the visibility of the proposed Facility within the Study Area.

### **Conclusions**

As presented on the attached viewshed maps, year-round visibility of the Facility would be limited primarily to the Host Property and its immediate surroundings, comparable to the visibility of the chimneys today. Year-round visibility associated with the existing clubhouse chimneys accounts for approximately 20 acres of visibility. Development of the proposed Facility is anticipated to increase year-round visibility by only  $\pm 13$  acres; the addition of the proposed eastern mock chimney would increase the total year-round visibility to approximately 33 acres. This represents far less than one percent ( $\pm 0.41\%$ ) of the 8,042-acre Study Area. Nearly 94% of the year-round visibility of the Facility ( $\pm 30$  acres) would occur on the Host Property). Seasonal views may extend to areas within  $\pm 0.66$  mile of the Site.

The results of this assessment demonstrate that areas currently experiencing partial or full views of the clubhouse will likely have views of the mock chimneys. However, due to the combination of the design of the mock chimneys and the in-kind replacement of one existing chimney, the aesthetic character of the clubhouse will be minimally changed. The addition of the mock chimney on the east side of the clubhouse will appear to be an original component of the building. As a result, there will be no significant visual impact to the community.

# **Proximity to Schools And Commercial Child Day Care Centers**

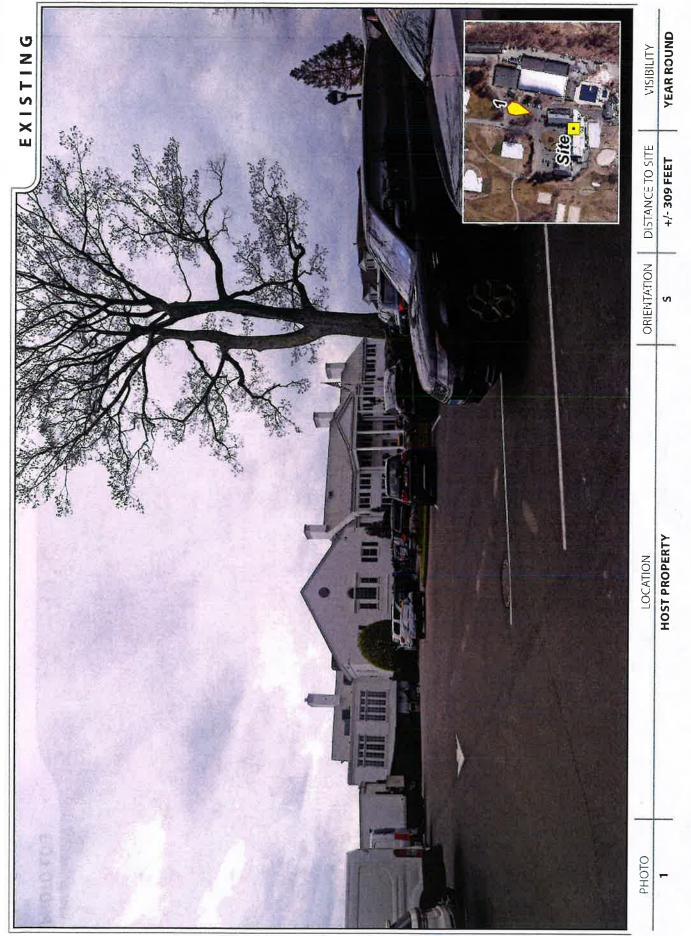
No schools or commercial child day care centers are located within 250 feet of the proposed Facility. The North Street School, located at 381 North Street in Greenwich, is approximately 0.4-mile west of the Site. The Greenwich Country Day School Lower Elementary School is located approximately 0.5-mile south of the Site at 401 Old Church Road in Greenwich. The existing clubhouse and Facility may be visible from both locations when leaves are off the deciduous trees.

### Limitations

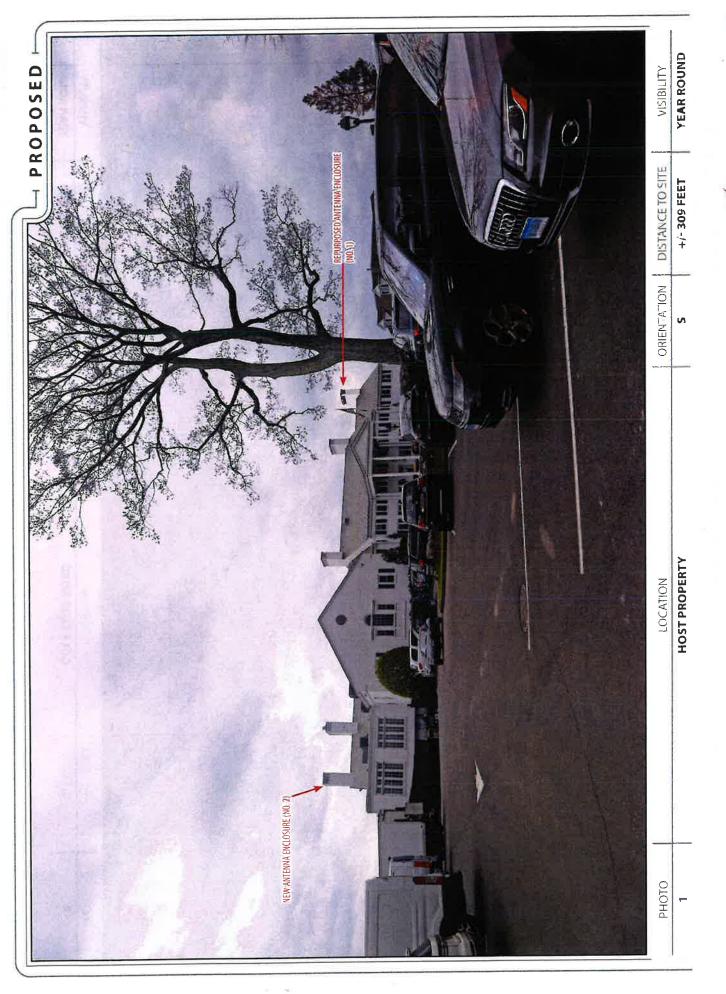
The viewshed maps presented in the attachment to this report depict areas where the proposed Facility may potentially be visible to the human eye without the aid of magnification based on a viewer eye-height of five (5) feet above the ground and intervening topography, tree canopy, and structures. This analysis may not account for all visible locations, as it is based on the combination of computer modeling, incorporating aerial photographs, and in-field observations from publicly accessible locations. This analysis does not claim to depict the only areas, or all locations, where visibility may occur; it is intended to provide a representation of those areas where the Facility is likely to be seen.

The photo-simulations provide a representation of the Facility under similar settings as those encountered during the field review and reconnaissance. Views of the Facility can change throughout the seasons and the time of day, and are dependent on weather and other atmospheric conditions (e.g., haze, fog, clouds); the location, angle and intensity of the sun; and the specific viewer location. Weather conditions on the day of the field review included partly cloudy skies.

# ATTACHMENTS





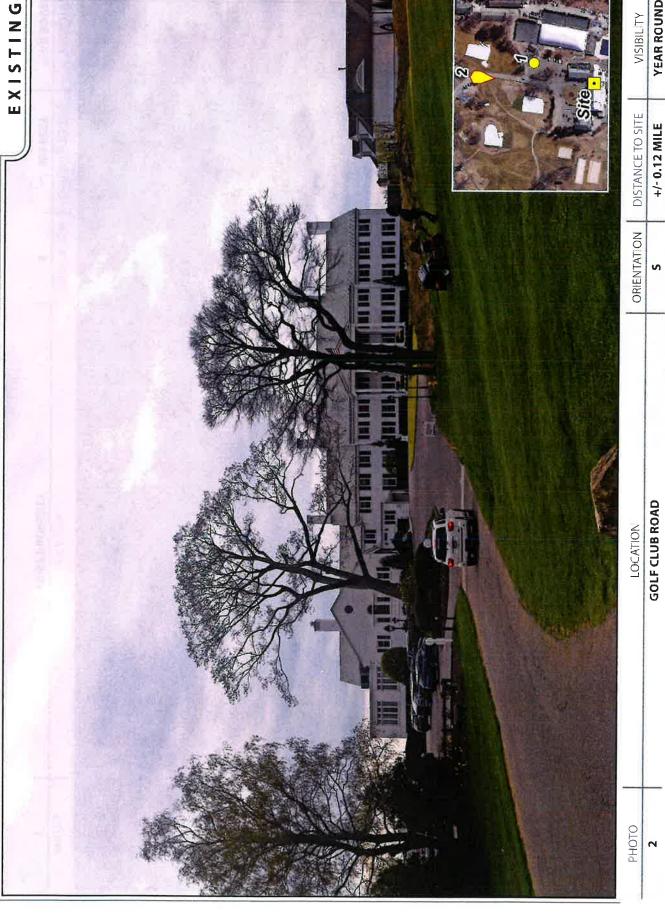


1 unch = 600 feet



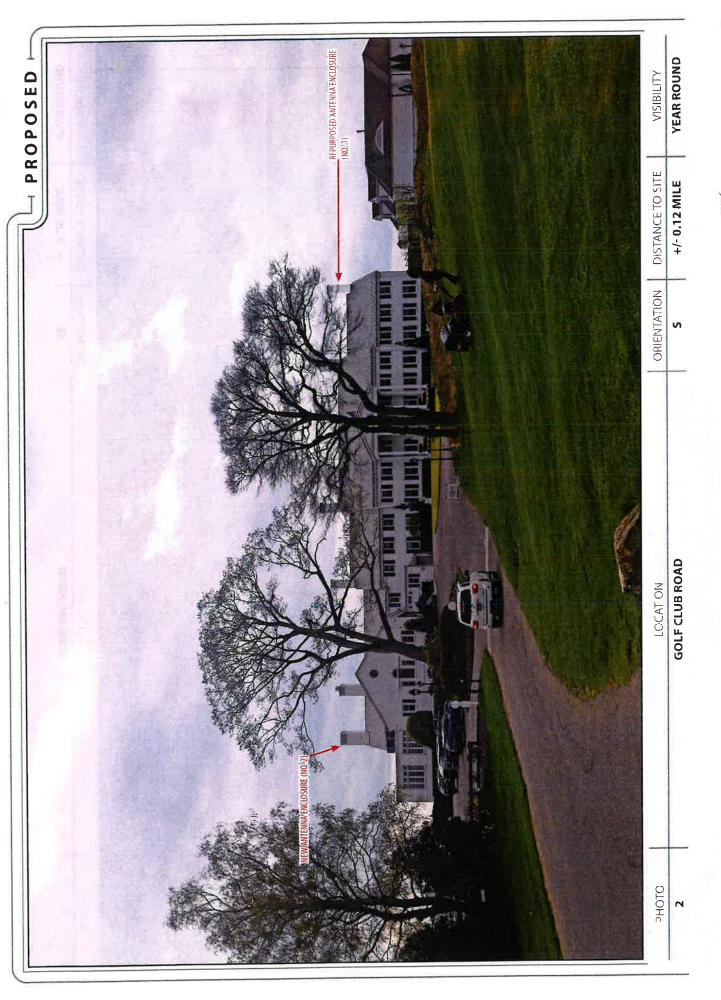








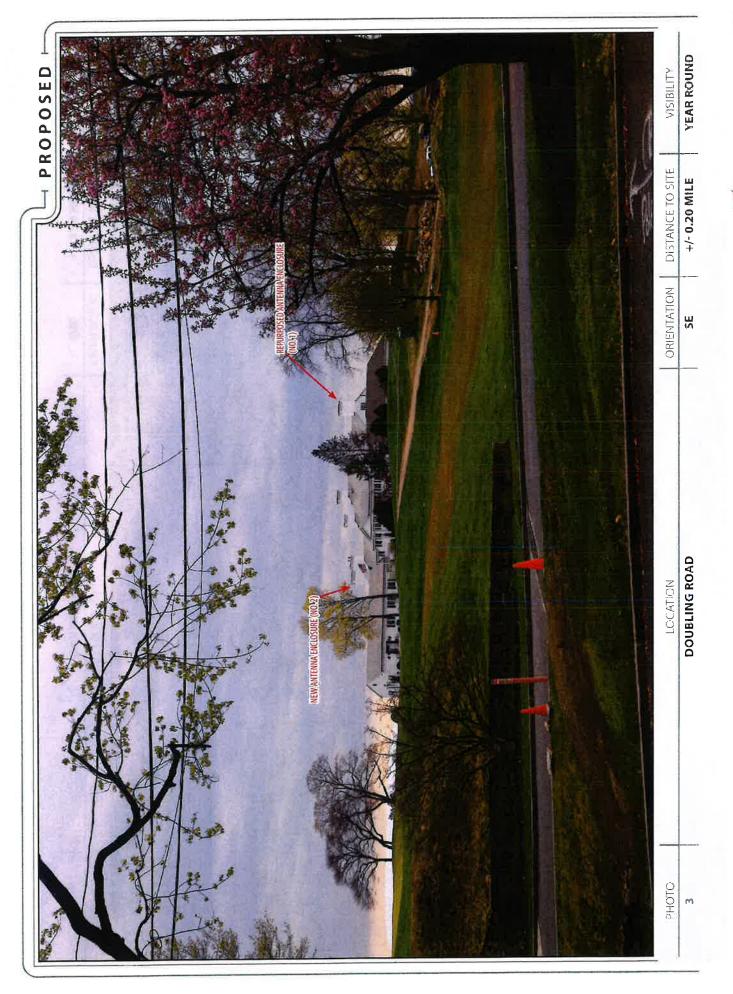




YEAR ROUND VISIBIL TY

ESOS/81\4 NO G3H9A920T0H9

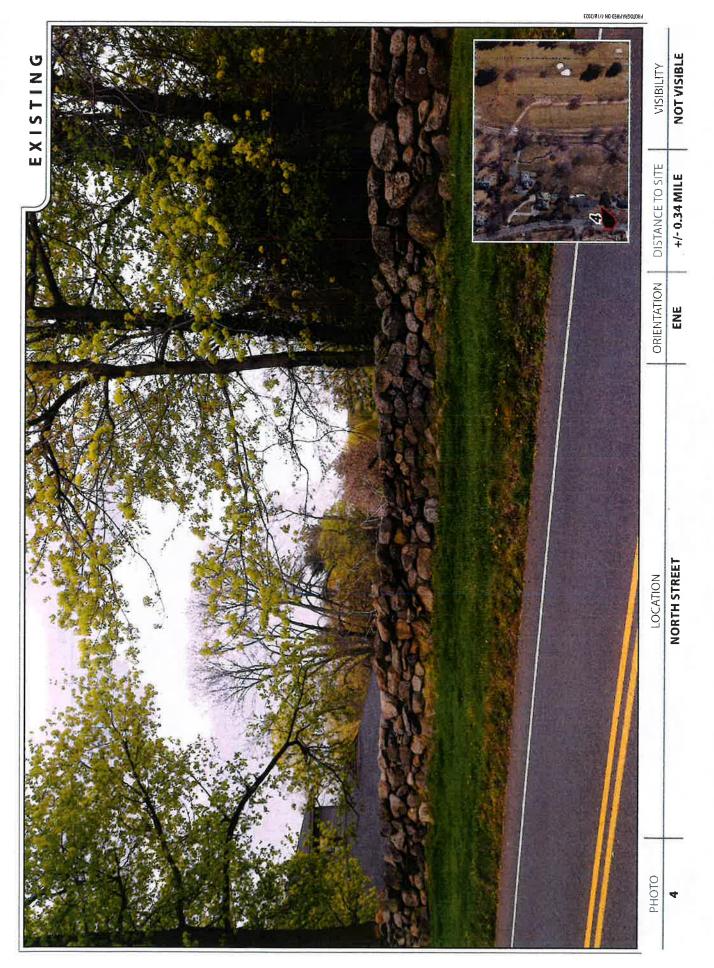

GOLF CLUB ROAD







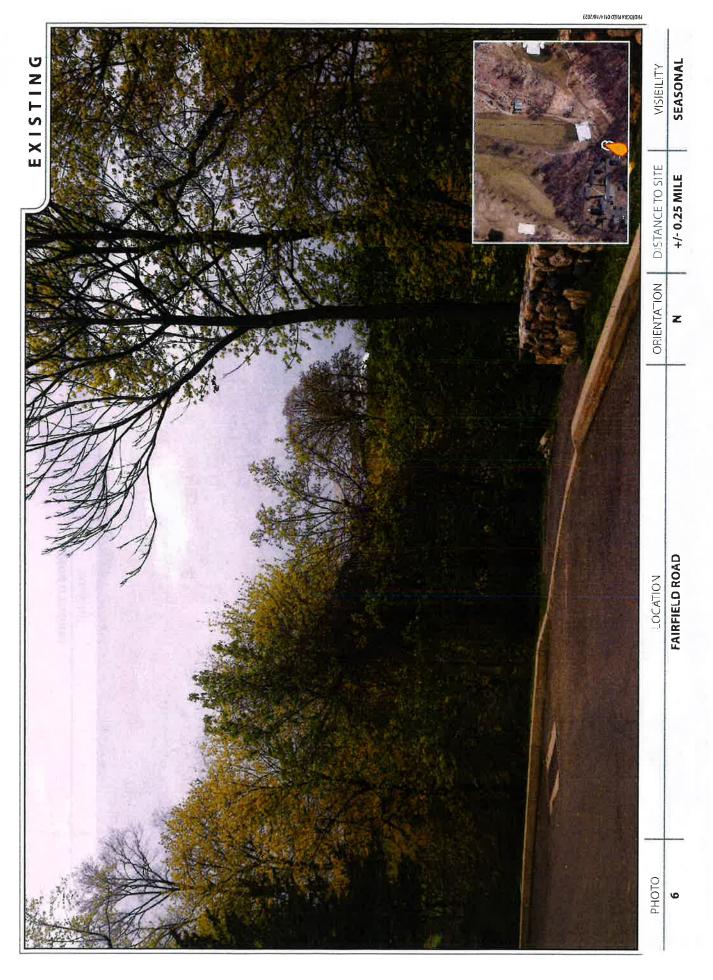


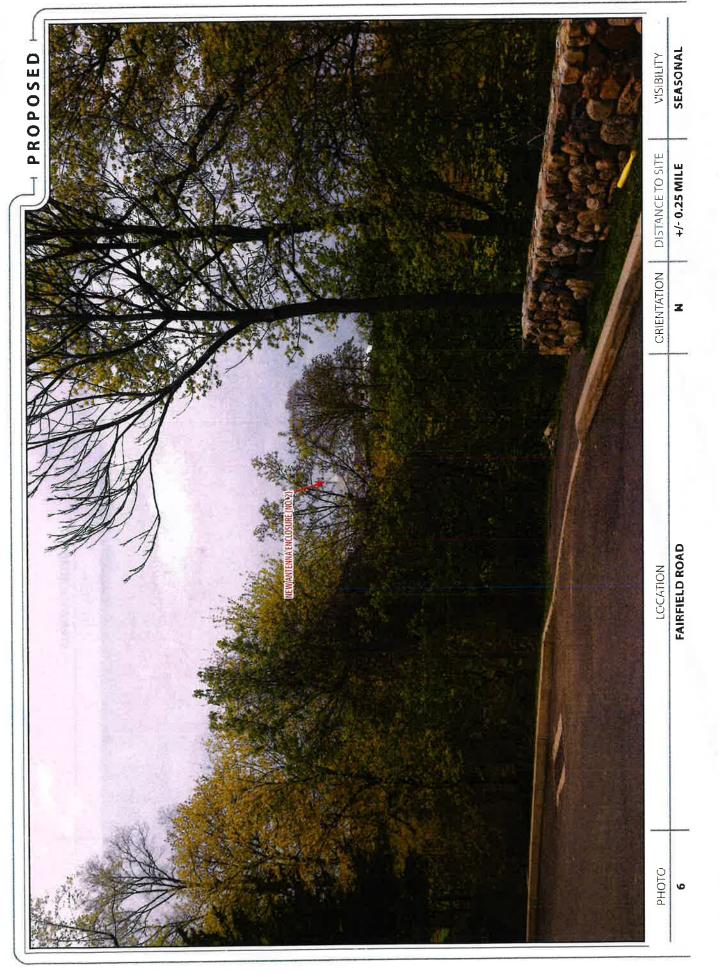








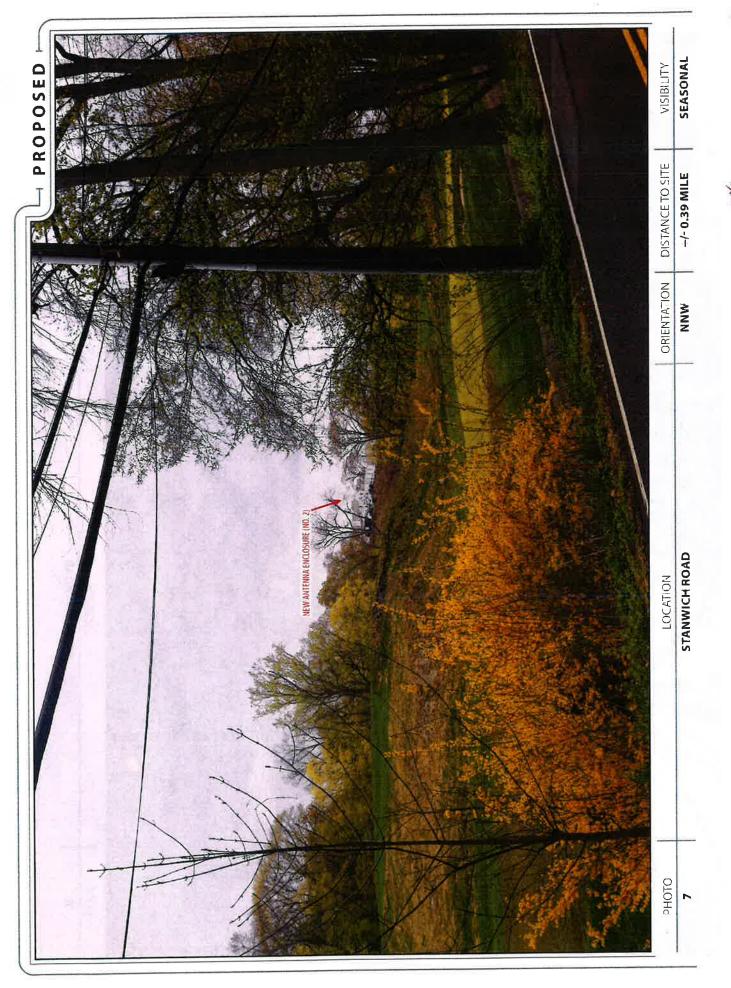

















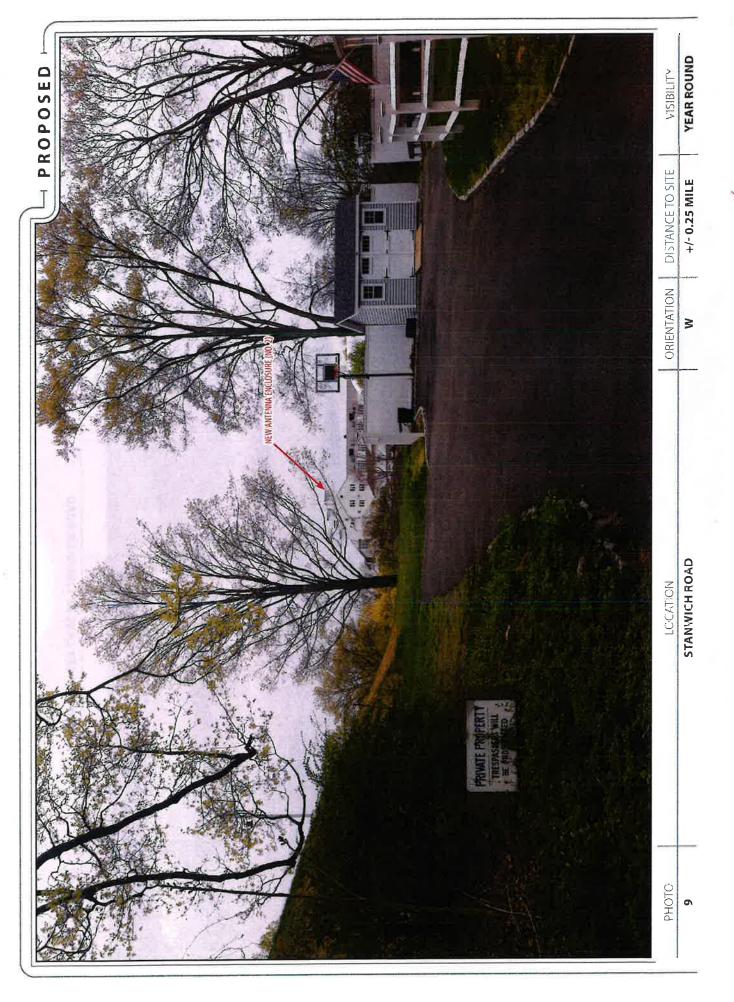






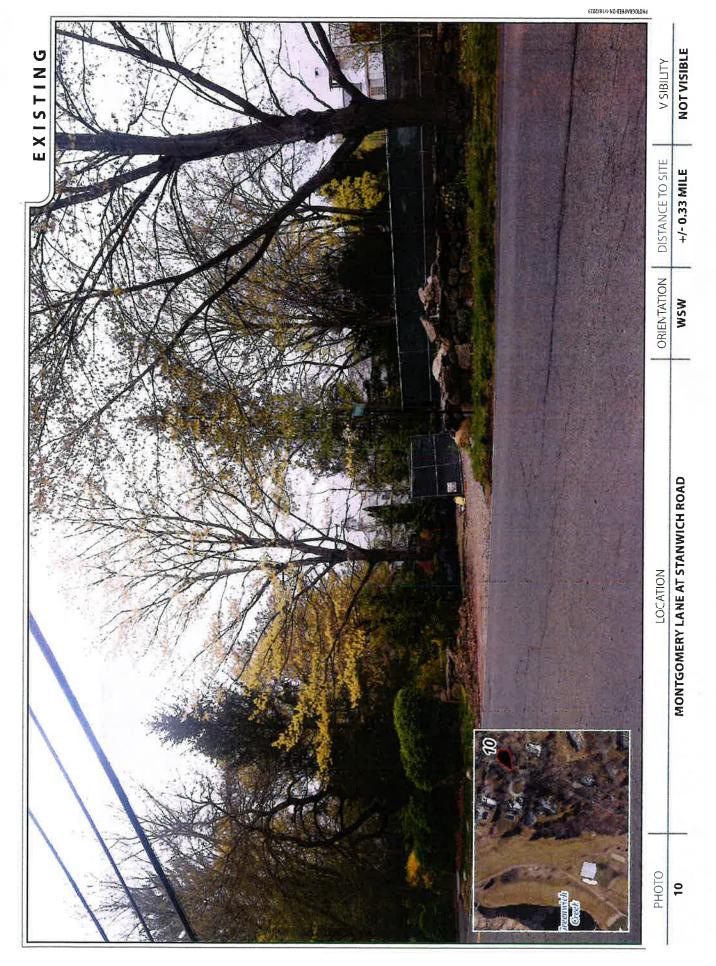




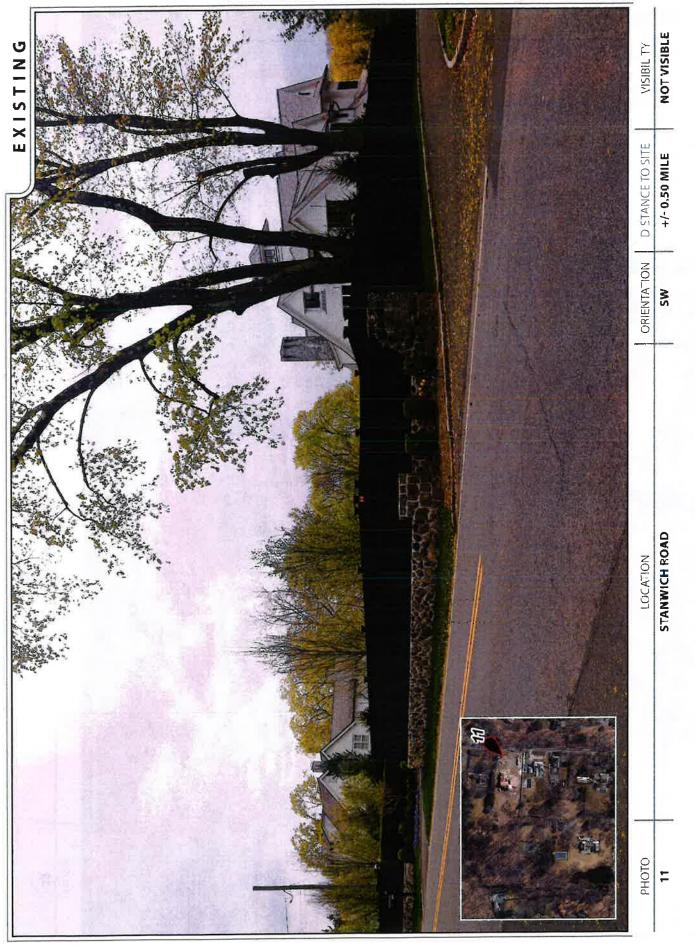




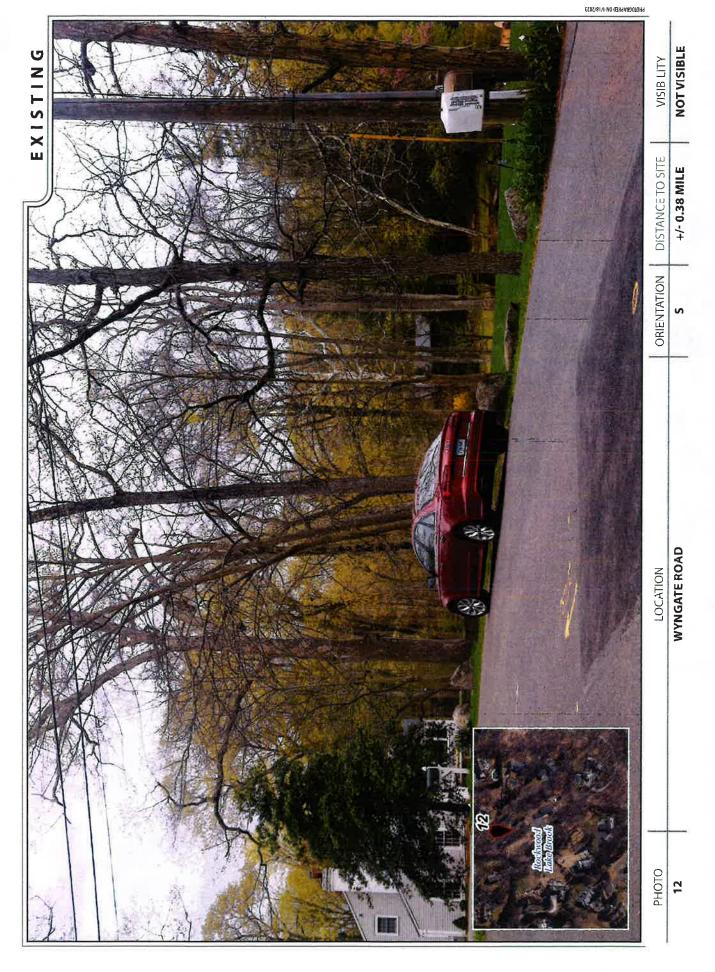



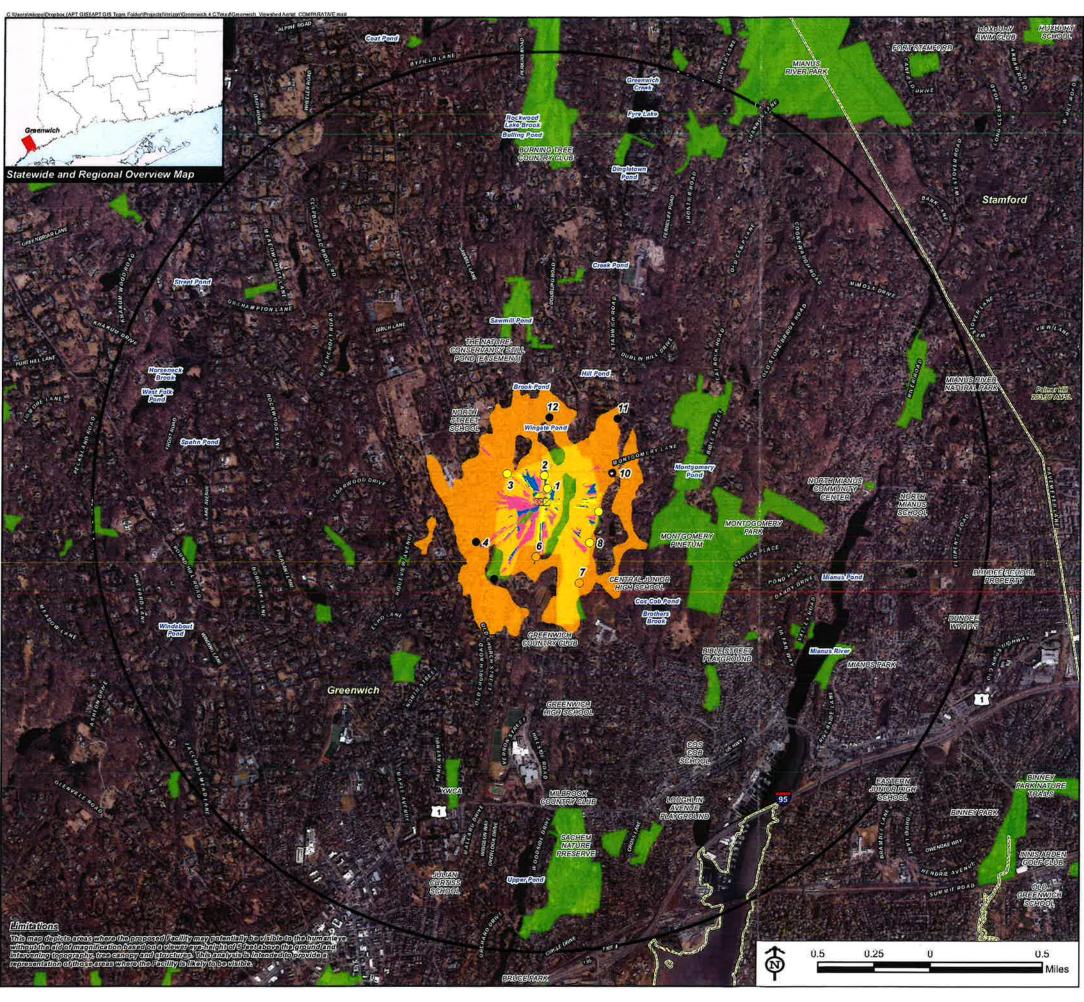



















### **Comparative Viewshed Analysis Map**

Proposed Eastern Antenna Screening Enclosure and Existing Central Chimneys 19 Doubling Road Greenwich, Connecticut

Proposed facility includes the installation of two (2) antenna screening enclosures at heights of 56'-9" AGL to match existing chimneys atop an existing building; the proposed western enclosure will match an unused existing chimney to be removed.

This analysis depicts visibility associated with the proposed eastern antenna enclosure (a new visual element) and the existing central chimneys (+/- 60' AGL) for comparative purposes. Forest canopy height is derived from LiDAR data.

---- Trail

Scenic Highway

DEEP Boat Launches

Slate Forest/Park
Protected Open Space Property

Federal

Land Trust

Municipal

Municipal and Private Open Space Property

Study area encompasses a two-mile radius surrounding the existing chimneys and includes 8,042 acres.

Existing conditions field verified by APT on April 18, 2023 Base Map Source; 2019 Aerial Photograph (CTECO) Map Date: July 2023

### Legend

Existing Chimney
Proposed Eastern Antenna Screening
Study Area (2-Mile Radius)

Municipal Boundary

Photo Locations (April 18, 2021)

Seasonal
Year-Round
Socoonal Violbility

Saaconal Violbility Existing Chimneya and/or Proposed Western Anlenna Foolosure, 335 Acres Year-Round Visibility (33 Acres Total)

Existing Chinneys Only, 20 Acres
Existing Chinneys Only, 20 Acres
Existing Chinneys and Proposed Eastern Antenna Enclusure, 7
Acres

Proposed Eastern Antenna Enclosure Only, 6 Acres

### Data Sources:

### Physical Geography / Background Data

A digital surface model (DSM) was created from the State of Connecticul 2016 LiDAR LAS data points. The DSM captures the natural and built features on the Earth's surface.

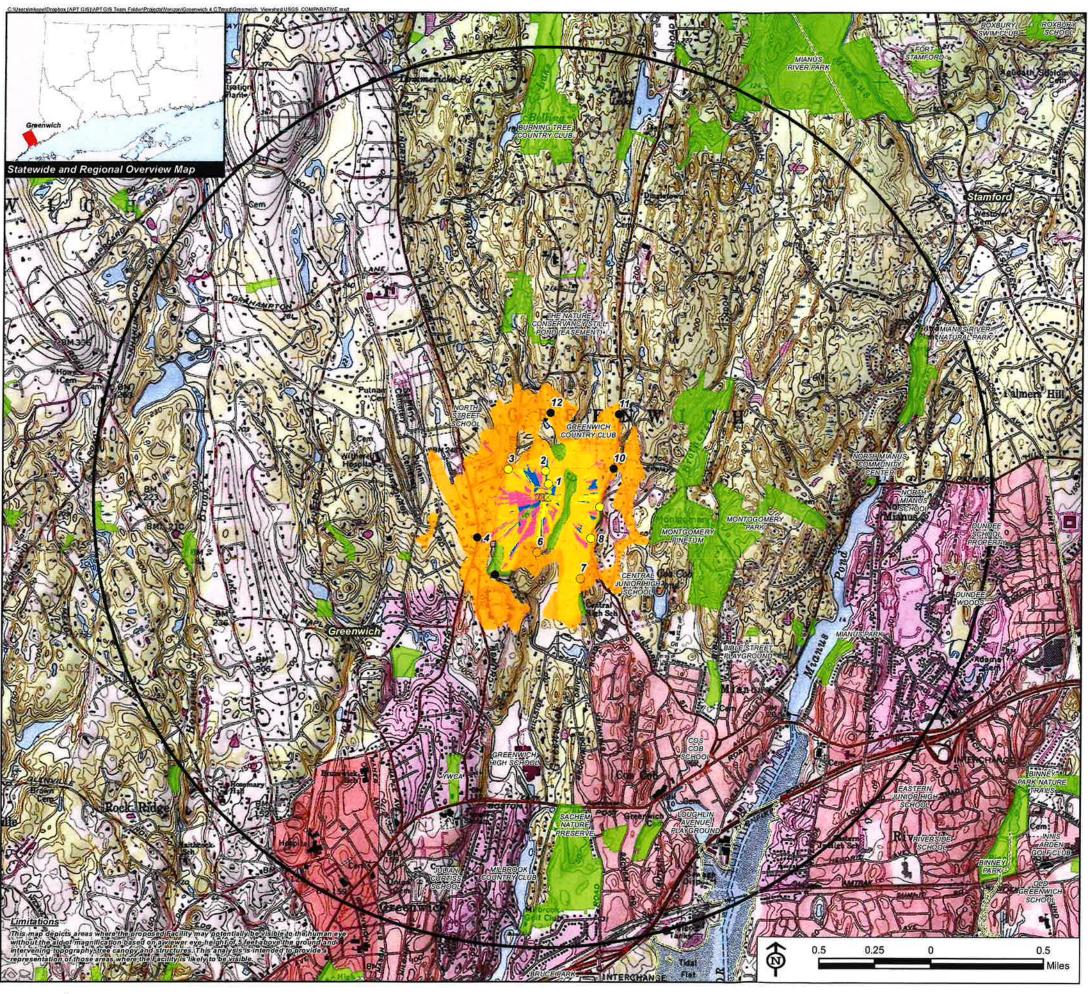
Municipal Open Space, State Recreation Areas, Trails, County Recreation Areas, and Town Boundary data obtained from CT DEEP. Scenic Roads: CTDOT State Scenic Highways (2015); Municipal Scenic Roads (compiled by APT)

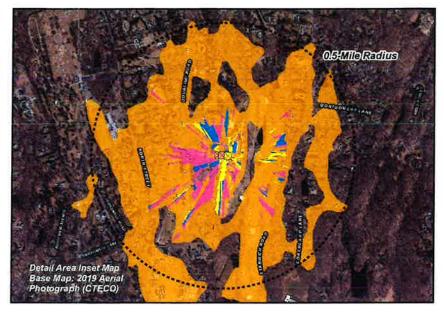
### Dedicated Open Space & Recreation Areas

Connecticut Department of Energy and Environmental Protection (DEEP): DEEP Property (May 2007; Federal Open Space (1997); Municipal and Private Open Space (1997); DEEP Boat Launches (1994)

Connecticut Forest & Parks Association, Connecticut Walk Books East & West

### **Other**


CTDOT Scenic Strips (based on Department of Transportation data)


### Not

"Not all the sources listed above appear on the Viewshed Maps. Only those features within the scale of the graphic are shown









## **Comparative Viewshed Analysis Map**

Proposed Eastern Antenna Screening Enclosure and Existing Central Chimneys 19 Doubling Road Greenwich, Connecticut

Proposed facility includes the installation of two (2) antenna screening enclosures at heights of 56'-9" AGL to match existing chimneys atop an existing building; the proposed western enclosure will match an unused existing chimney to be removed.

This analysis depicts visibility associated with the proposed eastern antenna enclosure (a new visual element) and the existing central chimneys (+/- 60' AGL) for comparative purposes. Forest canopy height is derived from LiDAR data,

Study area encompasses a two-mile radius surrounding the existing chimneys

study area encompasses a two-mile radius surrounding the exist and includes 8,042 acres.

Existing conditions field verified by APT on April 18, 2023

Base Map Source: USGS 7.5 Minute Topographic

Quadrangle Map, Glenville, CT (1971) and Stamford, CT (1984)

Map Date: July 2023

Legend

| 26       | Existing Chimney                                                                   |       | Trail                                |
|----------|------------------------------------------------------------------------------------|-------|--------------------------------------|
| ×        | Proposed Eastern Antenna Screening Enclosure                                       |       | Scenic Highway                       |
|          | Study Area (2-Mile Radius)                                                         | *     | DEEP Boat Launches                   |
|          | Municipal Boundary                                                                 |       | Municipal and Private Cons Second Pr |
| Photo    | Locations (April 18, 2023)                                                         |       | Municipal and Private Open Space Pr  |
|          | Not Visible                                                                        |       | State Forest/Park                    |
| <b>(</b> | Seasonal                                                                           | Prote | cted Open Space Property             |
|          | Year-Round                                                                         |       | Federal                              |
| 1        | Seasonal Visibility - Existing Chimneys and/or Proposed                            |       | Land Trust                           |
|          | Western Antenna Enclosure, 335 Acres                                               |       | Municipal                            |
| Year-R   | cound Visibility (33 Acres Total)                                                  |       | Privale                              |
|          | Existing Chimneys Only, 20 Acres                                                   |       | State                                |
|          | Existing Chimneys and Proposed Eastern Antenna Enclosure, 7 $\operatorname{Acres}$ |       |                                      |
|          | Proposed Eastern Antenna Enclosure Only, 6 Acres                                   |       |                                      |

### Data Sources: Physical Geography / Background Data

A digital surface model (DSM) was created from the State of Connecticut 2016 LiDAR LAS data points, The DSM captures the natural and built features on the Earth's surface.

Municipal Open Space, State Recreation Areas, Trails, County Recreation Areas, and Town Boundary data obtained from CT DEEP. Scenic Roads: CTDOT State Scenic Highways (2015); Municipal Scenic Roads (compiled by APT)

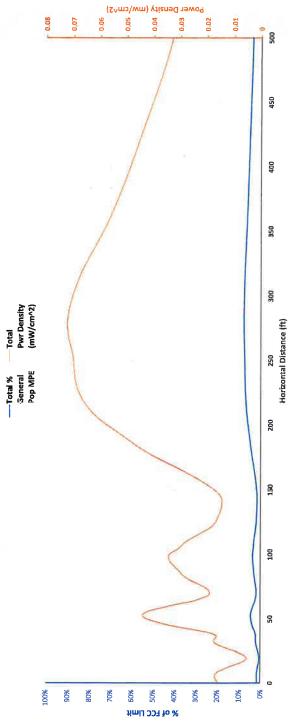
### Dedicated Open Space & Recreation Areas

Connecticut Department of Energy and Environmental Protection (DEEP); DEEP Property (May 2007; Federal Open Space (1997); Municipal and Private Open Space (1997); DEEP Boat Launches (1994)

Connecticut Forest & Parks Association, Connecticut Walk Books East & West

CTDOT Scenic Strips (based on Department of Transportation data)

"Not all the sources listed above appear on the Viewshed Maps, Only those features within the






# **ATTACHMENT 6**

| Location                                   |        |       | GREENWICH 4 CT | ICH 4 CT |             |             |
|--------------------------------------------|--------|-------|----------------|----------|-------------|-------------|
| Date                                       |        |       | 1/8/1          | 19/2023  |             |             |
| Band                                       | C-Band | CBRS  | AWS            | PCS      | 850-LTE     | 200         |
| Operating Frequency<br>(MHz)               | 3,700  | 3,550 | 2,145          | 1,970    | 880         | 746         |
| General Population MPE<br>(mW/cm^2)        | 1      | -     | -              | -        | 0.586666667 | 0.497333333 |
| ERP Per Transmitter<br>(Watts)             | 8,610  | 11    | 1,629          | 1,246    | 701         | 561         |
| Number of Transmitters                     | 2      | 4     | 4              | 4        | 4           | 4           |
| Antenna Centerline<br>(feet)               | 50.5   | 54.5  | 52             | 52       | 52          | 52          |
| Total ERP (Watts)                          | 17,220 | 43    | 6,514          | 4,984    | 2,806       | 2,244       |
| Total ERP (dBm)                            | 72     | 46    | 89             | 29       | 54          | 9           |
| Ventimus 1, of Georgia<br>Population Limit | 100    |       |                | No.      |             |             |





| Angle            |             |             | Power Density (mW/cm^2) | (mW/cm^2)   |             |             |       |       |       | recent of Game | rol Populárion | New Control |       |       |        |             |                      |      |
|------------------|-------------|-------------|-------------------------|-------------|-------------|-------------|-------|-------|-------|----------------|----------------|-------------|-------|-------|--------|-------------|----------------------|------|
| Below<br>Horizon | C-Band      | CBRS        | AWS                     | 803         | BSD-UTE     | 700 MHz     | 39646 | MORE  | 1     | SHEE           | Same           | 200         | -     |       | 200.00 | Distance    | Total<br>Pwr Density | il   |
|                  |             |             |                         |             |             |             |       |       |       |                |                |             |       |       |        |             | [mW/cm^2]            | Ì    |
| 90               | 0.015458023 | 2.40463E-06 | 5.87745E-06             | 1.44507E-06 | 0.0002至1948 | 0.000112561 | %00.0 | %00.0 | 1.55% | %00.0          | %00.0          | %00.0       | 0.04% | %0000 | 0.02%  | 0           | 0.015849871          | 1.61 |
| 88               | 0.015453314 | 2.89026E-06 | 1.06186E-05             | 2.51053E-07 | 0.00022765  | 0.000115151 | 0.00% | 0.00% | 1.55% | %00.0          | 0.00%          | %0000       | 0.04% | 0.00% | 0.02%  | 0.776750389 | 0.015849067          | 1,61 |
| 88               | 0.01579882  | 3.09459E-06 | 2.5217E-05              | 1,20335E-06 | 0.000221256 | 0.000109621 | 0.00% | 0.00% | 1.58% | 0.00%          | 0.00%          | 0.00%       | 0.04% | 0.00% | 0.02%  | 1.553974747 | 0.016199714          | 1 65 |
| 87               | 0.015994208 | 3.388E-06   | 4.83142E-05             | 4.6214E-06  | 0.000210512 | 9.8011E-05  | 0.00% | 0.00% | 1.60% | %00.0          | 0.00%          | 0.00%       | 0.04% | 0.00% | 0.02%  | 2.332145178 | 0.01640056           | 167  |
| 98               | 0.016331855 | 3.709075-06 | 7.2145E-05              | 9.16022E-06 | 0.000194271 | 8.40247E-05 | 0.00% | 0.00% | 1.63% | 0.00%          | 0.01%          | 0.00%       | 0.03% | 0.00% | 0.02%  | 3.111743131 | C2C72730             | 1 70 |
| 85               | 0.016287048 | 4.24873E-06 | 8.63156E-05             | 1.40536E-05 | 0.000173897 | 7,11588E-05 | 0.00% | 0.00% | 1.63% | 0.00%          | 0.01%          | 0.00%       | 0.03% | %000  | 0.01%  | 3.893245527 | 0.015678959          | 1 50 |
| 84               | 0.016610497 | 5.09364E-06 | 8.33149E-05             | 2,17983E-05 | 0.00015273  | 6.09429E-05 | 0.00% | 0.00% | 1.66% | 0.00%          | 0.01%          | 0.00%       | 0.03% | %00'0 | 0.01%  | 4.677138469 | 0.016976123          | 17.  |
| 83               | 0.016544565 | 7.00764E-06 | 6.47299E-05             | 3.4818E-05  | 0.000134371 | 5.37409E-05 | 0.00% | 0.00% | 1.65% | 0.00%          | 0.01%          | 0.00%       | 0.02% | %00'0 | 0.01%  | 5.46391796  | 0.0168799            | 1 70 |
| 82               | 0.016468706 | 9.86022E-06 | 4.19986E-05             | 5.06914E-05 | 0.000122585 | 4.98236E-05 | 0.00% | 0.00% | 1.65% | 0.00%          | 0.00%          | 0.01%       | 0.02% | %00'0 | 0.01%  | 6.254067144 | 0.016782627          | 1 60 |
| 81               | 0.016383014 | 1.3551E-05  | 2.80615E-05             | 6.30683E-05 | 0.000120313 | 4.93528E-05 | 0.00% | 0.00% | 1.64% | 0.00%          | 0.00%          | 0.01%       | 0.02% | 0.00% | 0.01%  | 7.048107594 | 0.016694445          | 9 6  |
| 80               | 0.01591684  | 1.77757E-05 | 2.83618E-05             | 6.98928E-05 | 0.000128509 | 5.16337E-05 | 0.00% | 0.00% | 1.59% | 0.00%          | %00.0          | 0.01%       | 0.02% | 0.00% | 0.01%  | 7.846550642 | 0.016247397          | 1.54 |
|                  |             |             |                         |             |             |             |       |       |       |                |                |             |       |       |        |             |                      |      |

61% 61% 65% 70% 69% 71% 70% 69% 69%

| 1.60%<br>1.53%<br>1.43%<br>1.1.29%<br>1.1.29%<br>1.1.29%<br>0.95%<br>0.05%<br>0.075%<br>0.05%                                                                                                      | 0.56%<br>0.59%<br>0.70%<br>0.70%<br>0.95%<br>1.1.22%<br>1.1.60%<br>1.1.60%<br>1.1.60%<br>2.209%<br>2.2.18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.21%<br>2.20%<br>2.24%<br>2.38%<br>2.99%<br>3.36%<br>3.16%<br>4.17%<br>4.17%<br>4.50%                                                                                               | 4.35%<br>4.06%<br>3.46%<br>2.24%<br>1.99%<br>1.97%<br>2.210%<br>2.39%<br>2.39%<br>2.39%<br>2.39%                                                                            | 3.16%<br>3.60%<br>3.66%<br>3.16%<br>2.12%<br>1.166%<br>1.66%<br>4.25%<br>6.54%                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.015827585<br>0.015089092<br>0.014074021<br>0.01356099<br>0.011550907<br>0.010541402<br>0.007947905<br>0.007947905<br>0.007947905<br>0.007947905<br>0.00705595746                                 | 0.005195212<br>0.005339867<br>0.005339867<br>0.005200981<br>0.007131662<br>0.002165076<br>0.0010296532<br>0.0110983077<br>0.015983026<br>0.015983026<br>0.015983026<br>0.01573262<br>0.01573262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.016574337<br>0.01656825<br>0.016564851<br>0.017968614<br>0.020675715<br>0.028551493<br>0.028551493<br>0.038824647<br>0.041506698<br>0.04336428                                     | 0.04276927<br>0.04276927<br>0.045927<br>0.045927<br>0.04592605<br>0.021947<br>0.02967329<br>0.0206671224<br>0.0206671224                                                    | 0.00038244<br>0.03233152<br>0.03397649<br>0.03397649<br>0.02761476<br>0.02778436<br>0.017724326<br>0.017724326<br>0.017724326<br>0.017724326<br>0.017724326<br>0.017724326<br>0.017724326<br>0.017724326<br>0.017724326<br>0.017727781 |
| 8.649923757<br>9.42876994<br>10.27363451<br>11.09509613<br>11.03273906<br>11.7501967<br>13.6050132<br>14.45892648<br>16.1966742<br>17.08194956                                                     | 18.88912932<br>20.72669079<br>21.70410019<br>22.6738825<br>23.66106971<br>24.66675279<br>25.69208698<br>26.73829755<br>27.8066816<br>28.3986379<br>30.015639<br>31.15922545<br>33.3311425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34,76721038<br>36,03538948<br>37,33993359<br>38,68325983<br>40,06797997<br>44,5<br>46,5<br>46,0810896<br>47,7204076<br>49,42225691<br>51,19139412<br>53,0330487                      | 54,9529247<br>56,95740263<br>56,95740263<br>56,9574056<br>61,2489546<br>63,552863<br>66,5739631<br>66,52939689<br>71,124488654<br>74,06043696<br>77,07052694<br>80,28012511 | 91.2365.095<br>92.43055796<br>95.4305776<br>99.9486364<br>104.8354303<br>110.141365<br>115.9264634<br>122.267452<br>129.2739841<br>145.5529415<br>145.5529415<br>145.5529415<br>115.7566764<br>107.7566764<br>107.7566764              |
| 0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%                                                                                                             | 0.03%<br>0.015%<br>0.12%<br>0.12%<br>0.22%<br>0.29%<br>0.29%<br>0.63%<br>0.63%<br>0.69%<br>0.69%<br>0.69%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.65%<br>0.77%<br>0.77%<br>0.77%<br>0.51%<br>0.51%<br>0.41%<br>0.21%<br>0.10%<br>0.10%                                                                                               | 0.07%<br>0.04%<br>0.04%<br>0.02%<br>0.02%<br>0.05%<br>0.08%<br>0.09%<br>0.11%<br>0.11%                                                                                      | 0.15% 0.20% 0.30% 0.33% 0.34% 0.34% 0.16% 0.10% 0.03% 0.03% 0.03% 0.03%                                                                                                                                                                |
| %00°0<br>%00°0<br>%00°0<br>%00°0<br>%00°0<br>%00°0<br>%00°0<br>%00°0<br>%00°0<br>%00°0<br>%00°0                                                                                                    | %00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0<br>%00.0 | 0.01%<br>0.01%<br>0.02%<br>0.02%<br>0.03%<br>0.03%<br>0.03%<br>0.03%<br>0.03%<br>0.03%                                                                                               | 0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.03%<br>0.03%<br>0.04%<br>0.04%                                                                                                        | 0.03%<br>0.01%<br>0.01%<br>0.00%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.00%<br>0.00%                                                                                                                               |
| 0.03%<br>0.03%<br>0.04%<br>0.05%<br>0.06%<br>0.08%<br>0.08%<br>0.08%<br>0.08%                                                                                                                      | 0.07%<br>0.06%<br>0.06%<br>0.05%<br>0.05%<br>0.04%<br>0.04%<br>0.03%<br>0.02%<br>0.02%<br>0.02%<br>0.03%<br>0.03%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.26%<br>0.36%<br>0.46%<br>0.55%<br>0.65%<br>0.67%<br>0.64%<br>0.49%<br>0.28%<br>0.29%                                                                                               | 0.03%<br>0.03%<br>0.03%<br>0.03%<br>0.03%<br>0.03%<br>0.03%<br>0.02%                                                                                                        | 0.17% 0.12% 0.12% 0.27% 0.37% 0.45% 0.50% 0.51% 0.026% 0.16% 0.015%                                                                                                                                                                    |
| 0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.02%<br>0.02%<br>0.05%<br>0.05%<br>0.06%<br>0.06%                                                                                                             | 0.13%<br>0.13%<br>0.12%<br>0.03%<br>0.04%<br>0.02%<br>0.01%<br>0.01%<br>0.11%<br>0.21%<br>0.21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.55%<br>0.71%<br>0.77%<br>0.82%<br>0.88%<br>0.88%<br>1.15%<br>1.15%<br>1.27%<br>1.40%<br>1.40%                                                                                      | 0.73%<br>0.73%<br>0.08%<br>0.00%<br>0.00%<br>0.23%<br>0.23%<br>0.12%<br>0.02%                                                                                               | 0.148%<br>0.12%<br>0.06%<br>0.01%<br>0.01%<br>0.17%<br>0.017%<br>0.00%<br>0.00%<br>0.018%<br>0.13%<br>0.00%                                                                                                                            |
| 0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%                                                                                                                      | 0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.01%<br>0.04%<br>0.10%<br>0.11%<br>0.12%<br>0.12%<br>0.12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05%<br>0.05%<br>0.05%<br>0.17%<br>0.40%<br>0.69%<br>0.97%<br>1.13%<br>1.38%<br>1.38%                                                                                               | 1.44%<br>1.43%<br>1.43%<br>1.26%<br>0.94%<br>0.17%<br>0.01%<br>0.07%<br>0.039%<br>0.39%                                                                                     | 0.12%<br>0.13%<br>0.14%<br>0.12%<br>0.06%<br>0.07%<br>0.07%<br>0.18%<br>0.18%<br>0.019%<br>0.00%                                                                                                                                       |
| 0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%                                                                                                                      | 0.00%<br>0.00%<br>0.01%<br>0.01%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00%<br>0.00%<br>0.00%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%                                                                                                        | 0.02%<br>0.02%<br>0.02%<br>0.02%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.00%                                                                                               | 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.02% 0.02% 0.03% 0.03%                                                                                                                                                                      |
| 1.55%<br>1.36%<br>1.29%<br>1.19%<br>0.95%<br>0.56%<br>0.46%                                                                                                                                        | 0.32% 0.32% 0.32% 0.36% 0.40% 0.60% 0.68% 0.75% 0.84% 0.84% 0.82% 0.73% 0.62%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25%<br>0.25%<br>0.05%<br>0.09%<br>0.09%<br>0.12%<br>0.21%<br>0.34%<br>0.50%<br>0.70%<br>0.70%<br>1.36%                                                                             | 1.55%<br>1.68%<br>1.68%<br>1.53%<br>1.13%<br>1.11%<br>0.91%<br>0.70%<br>0.80%                                                                                               | 1.51%<br>1.69%<br>1.169%<br>1.180%<br>1.180%<br>1.180%<br>0.68%<br>0.07%<br>0.07%<br>0.07%<br>0.07%<br>1.21%<br>1.21%<br>2.20%<br>2.20%<br>4.38%<br>4.38%                                                                              |
| 0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.01%<br>0.01%<br>0.01%<br>0.01%                                                                                                                      | 0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%<br>0.01%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02%<br>0.02%<br>0.03%<br>0.03%<br>0.03%<br>0.02%<br>0.02%<br>0.02%<br>0.02%<br>0.02%<br>0.02%                                                                                      | 0.07%<br>0.06%<br>0.07%<br>0.05%<br>0.05%<br>0.03%<br>0.83%<br>0.60%<br>0.89%<br>1.15%                                                                                      | 1.124%<br>1.118%<br>1.118%<br>1.019%<br>0.037%<br>0.082%<br>0.082%<br>0.082%<br>0.063%<br>0.063%<br>0.063%<br>0.063%<br>0.064%                                                                                                         |
| 0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>0.00%                                                                                                             | %60000 %60000 %60000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %600000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %60000 %6000 %60000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %6000 %60000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %60°0 %60°0 %60°0 %60°0 %60°0 %60°0 %60°0 %60°0 %60°0 %60°0 %60°0                                                                                                                    | %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0                                                                                                           | %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0                                                                                                                                                          |
| 5.58854E-05<br>6.11511E-05<br>6.61074E-05<br>6.91563E-05<br>6.88721E-05<br>6.34157E-05<br>3.349E-05<br>3.36227E-05<br>4.23127E-05<br>4.23127E-05<br>8.15923E-05<br>8.15923E-05                     | 0.000158751<br>0.000158751<br>0.00041309<br>0.000601309<br>0.001100131<br>0.001284321<br>0.002412919<br>0.003438262<br>0.003438262<br>0.003438262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.004208673<br>0.004208673<br>0.004850923<br>0.00349228<br>0.00351532<br>0.002531532<br>0.00152346<br>0.00152346<br>0.001528464<br>0.000700037<br>0.000518893<br>0.000451276         | 0.000330594<br>0.00028581<br>0.000222057<br>0.000128813<br>0.00028769<br>0.000391133<br>0.00043958<br>0.00043958                                                            | 0.000/37296<br>0.001229693<br>0.001475416<br>0.001475416<br>0.00156884<br>0.001566884<br>0.001566884<br>0.001508724<br>0.00150889<br>0.00039695<br>0.00015236<br>0.00017286<br>0.00017286<br>0.00043729                                |
| 0,000148354<br>0,00018047<br>0,00025035<br>0,000243037<br>0,000451827<br>0,000451827<br>0,00048469<br>0,000466551<br>0,000466551<br>0,000466551<br>0,000466551<br>0,000466551                      | 0.000388786<br>0.000370242<br>0.000318492<br>0.000221698<br>0.00022368<br>0.000182168<br>0.000182169<br>0.000182169<br>0.000182169<br>0.000183169<br>0.000183169<br>0.000183169<br>0.000183169<br>0.000183169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.001549339<br>0.001549339<br>0.002576493<br>0.003515775<br>0.003870815<br>0.00325694<br>0.002371554<br>0.0022465<br>0.0022465<br>0.0022465<br>0.0022465<br>0.0022465                | 0.000491243<br>0.000137536<br>0.00011627<br>0.00011567<br>0.00011567<br>0.00011869<br>0.000138083<br>0.000138083<br>0.00013908<br>9.15687-05<br>9.49265E-05                 | 0.0008934<br>0.00106933<br>0.00102934<br>0.0012487<br>0.0025439<br>0.0025629<br>0.00275629<br>0.000278629<br>0.000278629<br>0.000278668<br>0.000278668                                                                                 |
| 7.5474E-05<br>8.45091E-05<br>9,78924E-05<br>0.00011677<br>0.00013135<br>0.000457057<br>0.000657057<br>0.0006377057<br>0.0006377057<br>0.0006377057<br>0.0006377057<br>0.0006377057<br>0.0006377057 | 0.00128536<br>0.0012184<br>0.00121184<br>0.00120942<br>0.000748687<br>0.000717445<br>2.82376-0<br>0.000112827<br>0.000112827<br>0.000112827<br>0.00020741<br>0.0002112827<br>0.0002112827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00645126<br>0.007146132<br>0.007710168<br>0.008212619<br>0.008512619<br>0.0140403124<br>0.014012861<br>0.014012861<br>0.014098788<br>0.013857845                                   | 0.01113767<br>0.007315228<br>0.003475037<br>0.00310879<br>2.655714-05<br>0.000872161<br>0.00255066<br>0.00255066<br>0.00235271<br>0.001194661<br>0.000222272                | 0.00186045<br>0.001186045<br>0.0011861582<br>0.0001801<br>0.000407078<br>0.001184502<br>0.001184502<br>0.00138654<br>0.000499822<br>3.52385E-06<br>0.0003734<br>0.00152239<br>0.001410446                                              |
| 3.63997E-05<br>3.67324E-05<br>2.6646E-05<br>2.6646E-05<br>1.0736E-05<br>1.08335E-05<br>1.08335E-05<br>2.73208E-05<br>2.73208E-05<br>2.7321E-05<br>1.10522E-05                                      | 4.03027E-06<br>9.82389E-06<br>2.2948E-05<br>4.77462E-05<br>9.11448E-05<br>0.00020713<br>0.00070839<br>0.0001402573<br>0.0001402573<br>0.0001359471<br>0.000135947<br>0.000135947<br>0.000135947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0001574043<br>0.0001695793<br>0.0001645473<br>0.0001645485<br>0.0006864368<br>0.0008664368<br>0.001893741<br>0.01137378971<br>0.01137378971<br>0.01137378971                       | 0.014391127<br>0.014707143<br>0.01430451<br>0.012825755<br>0.009407662<br>0.00123892<br>7.92727E-05<br>0.0005394764<br>0.0005394764<br>0.0005394764                         | 0.001565713<br>0.001304957<br>0.001405122<br>0.001405122<br>0.000571449<br>0.000717152<br>0.00128863<br>0.00128863<br>0.001382864<br>0.001942308<br>0.00034316.05<br>0.000342449<br>0.000342449                                        |
| 2.22745E-05<br>2.84995E-05<br>3.32649E-05<br>3.88057E-05<br>4.52078E-05<br>4.6874E-05<br>4.6805E-05<br>4.56005E-05<br>3.39282E-05<br>3.39365E-05                                                   | 4,033-0<br>4,033-0<br>4,0933E-0<br>5,4939E-0<br>5,07227E-0<br>4,76789E-0<br>4,76789E-0<br>3,2331E-0<br>3,2331E-0<br>3,2331E-0<br>3,2331E-0<br>2,67681E-0<br>2,67681E-0<br>2,57681E-0<br>2,2351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,3351E-0<br>2,33                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.02663F.05<br>3.02663F.05<br>5.445538F.05<br>5.54646-05<br>5.53266F.05<br>9.53658F.05<br>9.53658F.05<br>0.0001112<br>0.000123501<br>0.000123537<br>0.000135347<br>0.000135347       | 0.000182974<br>0.000183918<br>0.00013936<br>0.0001756<br>0.00015738<br>0.00013738<br>7.3342E-05<br>5.05618E-05<br>1.1892E-05                                                | 5.6673E-06<br>1.9402E-07<br>1.9402E-05<br>1.9402E-05<br>7.0661E-05<br>0.000100953<br>0.00017479<br>0.00077479<br>0.000217799<br>0.000217799<br>0.000217799<br>0.000217799<br>0.000217799                                               |
| 0.01545422<br>0.014654221<br>0.013870686<br>0.012851747<br>0.011886158<br>0.0107371987<br>0.006623973<br>0.0057376459<br>0.004775699<br>0.004775699                                                | 0.003200414<br>0.003256209<br>0.003562094<br>0.004964959<br>0.004964959<br>0.0067376<br>0.007375<br>0.008380793<br>0.008380793<br>0.00838178<br>0.0083178<br>0.0083178<br>0.0083178<br>0.0083178<br>0.0083178<br>0.0083178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00303012<br>0.00309217<br>0.000892717<br>0.000892717<br>0.000892717<br>0.00110876<br>0.0011876<br>0.00210876<br>0.00501916<br>0.00501916<br>0.00501916<br>0.00501916<br>0.00501916 | 0.015484513<br>0.016781775<br>0.016888509<br>0.01225342<br>0.012075707<br>0.009132157<br>0.009032254<br>0.009022254                                                         | 0.01569756<br>0.01569766<br>0.01569765<br>0.01787651<br>0.01787651<br>0.005820438<br>0.00022663<br>0.00022663<br>0.00072663<br>0.00072663<br>0.00072663<br>0.001221942<br>0.01212942<br>0.01212942<br>0.0238669                        |
| 79<br>77<br>75<br>75<br>74<br>73<br>70<br>69                                                                                                                                                       | 66<br>66<br>66<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                | 3 3 3 3 4 4 5 5 6 6 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                         | 2 2 3 2 4 2 5 5 5 6 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1                                                                                                                                                                              |

| 7.28%<br>7.59%<br>7.53%<br>6.41%<br>5.23%<br>3.80%<br>2.56%<br>1.56%<br>0.73%                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0.068685338<br>0.07227833<br>0.057227833<br>0.05681291<br>0.04489553<br>0.021236868<br>0.005025508                                                             |  |
| 228.932637<br>252.372041<br>280.9619424<br>316.6339526<br>362.423416<br>423.3892182<br>508.6373275<br>536.3796484<br>849.1105826<br>1274.313271<br>2549.403233 |  |
| 0.46%<br>0.59%<br>0.68%<br>0.72%<br>0.70%<br>0.50%<br>0.36%<br>0.10%<br>0.10%                                                                                  |  |
| 0.12%<br>0.19%<br>0.26%<br>0.31%<br>0.34%<br>0.34%<br>0.33%<br>0.15%<br>0.07%                                                                                  |  |
| 0.31%<br>0.48%<br>0.63%<br>0.72%<br>0.74%<br>0.68%<br>0.55%<br>0.40%<br>0.11%<br>0.03%                                                                         |  |
| 0.00%<br>0.02%<br>0.03%<br>0.05%<br>0.01%<br>0.01%<br>0.01%<br>0.00%                                                                                           |  |
| 0.04%<br>0.00%<br>0.03%<br>0.03%<br>0.04%<br>0.04%<br>0.04%<br>0.08%                                                                                           |  |
| 0.02%<br>0.02%<br>0.01%<br>0.01%<br>0.01%<br>0.00%<br>0.00%                                                                                                    |  |
| 5.99%<br>6.00%<br>6.00%<br>5.40%<br>4.33%<br>3.42%<br>2.35%<br>0.75%<br>0.05%                                                                                  |  |
| 0.33%<br>0.25%<br>0.19%<br>0.19%<br>0.08%<br>0.05%<br>0.03%<br>0.01%                                                                                           |  |
| 0,00%<br>0,00%<br>0,00%<br>0,00%<br>0,00%<br>0,00%<br>0,00%<br>0,00%<br>0,00%                                                                                  |  |
| 0.002266212<br>0.002914936<br>0.00389396<br>0.00349586<br>0.003414077<br>0.002509293<br>0.001080598<br>0.0004056349                                            |  |
| 0.001795981<br>0.002803047<br>0.00368233<br>0.004233709<br>0.003247526<br>0.00231852<br>0.000320557<br>0.000149585                                             |  |
| 4.81725E-05<br>0.00024273<br>0.000745798<br>0.000887603<br>0.00050881<br>7.4614E-05<br>0.000108655<br>0.000558096<br>0.000558096<br>0.000731583                |  |
| 0.000399117<br>3.11479E-06<br>0.000871629<br>0.000871629<br>0.000371E-05<br>0.00035421<br>0.00036421<br>0.000306468                                            |  |
| 0.000242131<br>0.000183014<br>0.00014837<br>0.00014837<br>0.00016518<br>8.5781E-05<br>5.83156E-05<br>1.9195E-05<br>7.96804E-06<br>1.77623E-06                  |  |
| 0.059889629<br>0.060047426<br>0.05995409<br>0.053983336<br>0.043345386<br>0.034458278<br>0.0074947<br>0.00059830038                                            |  |
|                                                                                                                                                                |  |

# **ATTACHMENT 7**



KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

October 4, 2023

### Via Certificate of Mailing

Fred Camillo, First Selectman Town of Greenwich 101 Field Point Road Greenwich, CT 06830

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for Modifications to its Existing Wireless Telecommunications Facility at 19 Doubling Road, Greenwich, Connecticut

Dear Mr. Camillo:

This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Today, Cellco filed a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval for the installation of a wireless telecommunications facility at the Greenwich Country Club ("GCC") at 19 Doubling Road in Greenwich (the "Property").

The facility will consist of the installation of two metal frame pipe mast antenna support structures extending above the roof. Each antenna support structure will be surrounded by a faux chimney screening enclosure. Equipment associated with the antennas will be placed on the ground adjacent to the building behind an existing screen fence.

A copy of the full Petition is attached for your review. Landowners whose parcels are considered to abut the Property were also sent notice of this filing along with a copy of the Petition.

Please contact me if you have any questions regarding this proposal.

Sincerely,

Kenneth C. Baldwin

Attachment

# Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

October 4, 2023

### Via Certificate of Mailing

Patrick LaRow, Director of Planning and Zoning Town of Greenwich 101 Field Point Road Greenwich, CT 06830

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for Modifications to its Existing Wireless Telecommunications Facility at 19 Doubling Road, Greenwich, Connecticut

Dear Mr. LaRow:

This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Today, Cellco filed a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval for the installation of a wireless telecommunications facility at the Greenwich Country Club ("GCC") at 19 Doubling Road in Greenwich (the "Property").

The facility will consist of the installation of two metal frame pipe mast antenna support structures extending above the roof. Each antenna support structure will be surrounded by a faux chimney screening enclosure. Equipment associated with the antennas will be placed on the ground adjacent to the building behind an existing screen fence.

A copy of the full Petition is attached for your review. Landowners whose parcels are considered to abut the Property were also sent notice of this filing along with a copy of the Petition.

Please contact me if you have any questions regarding this proposal.

Sincerely,

Kenneth C. Baldwin

Attachment

# Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

October 4, 2023

Via Certificate of Mailing

Greenwich Country Club 19 Doubling Road Greenwich, CT 06830

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for Modifications to its Existing Wireless Telecommunications Facility at 19 Doubling Road, Greenwich, Connecticut

Dear Sir or Madam:

This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Today, Cellco filed a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval for the installation of a wireless telecommunications facility on the roof of the Greenwich Country Club clubhouse at 19 Doubling Road in Greenwich (the "Property").

A copy of the full Petition is attached for your review. Pursuant to Connecticut Siting Council requirements, copies of the Petition were also sent to municipal officials and landowners whose parcels are considered to abut the Property.

Please contact me if you have any questions regarding this proposal.

Sincerely,

Kenneth C. Baldwin

Kunie gmu

Attachment

# **ATTACHMENT 8**



KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

October 4, 2023

Via Certificate of Mailing

«Name\_and\_Address»

Re: Petition for Declaratory Ruling Filed with the Connecticut Siting Council for Modifications to its Existing Wireless Telecommunications Facility at 19 Doubling Road, Greenwich, Connecticut

Dear «Salutation»:

This firm represents Cellco Partnership d/b/a Verizon Wireless ("Cellco"). Today, Cellco filed a Petition for Declaratory Ruling ("Petition") with the Connecticut Siting Council ("Council") seeking approval for the installation of a wireless telecommunications facility at the Greenwich Country Club ("GCC") at 19 Doubling Road in Greenwich (the "Property").

The facility will consist of the installation of two metal frame pipe mast antenna support structures extending above the roof. Each antenna support structure will be surrounded by a faux chimney screening enclosure. Equipment associated with the antennas will be placed on the ground adjacent to the building behind an existing screen fence.

This notice and a full copy of the Petition is being sent to you because you are listed on the Town Assessor's records as an owner of land that abuts the Property. If you have any questions regarding the Petition, the Council's process for reviewing the Petition or the details of the filing itself, please feel free to contact me at the number listed above. You may also contact the Council directly at 860-827-2935.

Sincerely,

Kenneth C. Baldwin

Attachment

### CELLCO PARTNERSHIP D/B/A VERIZON WIRELESS

### ABUTTING PROPERTY OWNERS

# 19 DOUBLING ROAD GREENWICH, CONNECTICUT

|    | Property Address  | Owner's and Mailing Address                                                           |
|----|-------------------|---------------------------------------------------------------------------------------|
| 1. | 25 Fairway Lane   | 25 Fairway Lane, LLC<br>29 Fairway Lane<br>Greenwich, CT 06830                        |
| 2. | Fairway Lane      | CLT Fairway LLC<br>c/o James Gardiner<br>115 Nutmeg Lane<br>Fairfield, CT 06824       |
| 3. | 9 Fairway Lane    | CLT Fairway LLC<br>9 Fairway Lane<br>Greenwich, CT 06830                              |
| 4. | 7 Fairway Lane    | Karen Gianuzzi<br>7 Fairway Lane<br>Greenwich, CT 06830                               |
| 5. | 160 Stanwich Road | Carol R. Gilbride<br>160 Stanwich Road<br>Greenwich, CT 06830                         |
| 6. | 156 Stanwich Road | Eric and Karen Hopp<br>156 Stanwich Road<br>Greenwich, CT 06830                       |
| 7. | 154 Stanwich Road | Horacio Martin Robredo and Natalia Garcia Lopez 154 Stanwich Road Greenwich, CT 06830 |
| 8. | 150 Stanwich Road | Vinaykumar and Aruna Patwardhan<br>150 Stanwich Road<br>Greenwich, CT 06830           |

|     | <b>Property Address</b> | Owner's and Mailing Address                                                                |
|-----|-------------------------|--------------------------------------------------------------------------------------------|
| 9.  | 147 Stanwich Road       | Joseph S. and Wendy Mallory III<br>147 Stanwich Road<br>Greenwich, CT 06830                |
| 10. | 1 Pine Ridge Road       | Peter D. Close 1 Pine Ridge Road Greenwich, CT 06830                                       |
| 11. | 133 Stanwich Road       | Edineia Bickerstaff<br>133 Stanwich Road<br>Greenwich, CT 06830                            |
| 12. | 26 Jeffrey Road         | Prudy and Alfred Sofer 26 Jeffrey Road Greenwich, CT 06830                                 |
| 13. | 127 Stanwich Road       | Robert Gottlieb<br>127 Stanwich Road<br>Greenwich, CT 06830                                |
| 14. | 123 Stanwich Road       | Anthony and Claudia Bueti<br>123 Stanwich Road<br>Greenwich, CT 06830                      |
| 15. | 119 Stanwich Road       | Andrew and Isabella Leahy<br>119 Stanwich Road<br>Greenwich, CT 06830                      |
| 16. | 117 Stanwich Road       | Kenneth A. and Margaret Muller Jr.<br>117 Stanwich Road<br>Greenwich, CT 06830             |
| 17. | 115 Stanwich Road       | Charles Seton V. Henry and Molly McAuliffe Urell-Poe 115 Stanwich Road Greenwich, CT 06830 |
| 18. | 113 Stanwich Road       | Anthony and Jennifer Febles 113 Stanwich Road Greenwich, CT 06830                          |
| 19. | 111 Stanwich Road       | Dionisio Ferenc and Mariana Tanner<br>111 Stanwich Road<br>Greenwich, CT 06830             |

|     | <b>Property Address</b> | Owner's and Mailing Address                                                                               |
|-----|-------------------------|-----------------------------------------------------------------------------------------------------------|
| 20. | 323 Orchard Street      | Katherin Alexandra Menacho De Saoud and<br>Raja Biaggi Saoud<br>323 Orchard Street<br>Greenwich, CT 06830 |
| 21. | 109 Stanwich Road       | Mark and Paula Kandl<br>109 Stanwich Road<br>Greenwich, CT 06830                                          |
| 22. | 107 Stanwich Road       | Ryan Benincasa and Noelle Radcliffe Winicki 107 Stanwich Road Greenwich, CT 06830                         |
| 23. | 105 Stanwich Road       | Jonathan B. Osser<br>105 Stanwich Road<br>Greenwich, CT 06830                                             |
| 24. | 101 Stanwich Road       | Nina Monti and Michael Lulkin<br>101 Stanwich Road<br>Greenwich, CT 06830                                 |
| 25. | 99 Stanwich Road        | Michael and Irina Straw 99 Stanwich Road Greenwich, CT 06830                                              |
| 26. | 95 Stanwich Road        | Robert and Rachel Koven<br>95 Stanwich Road<br>Greenwich, CT 06830                                        |
| 27. | 9 Indian Rock Lane      | Town of Greenwich<br>c/o Finance Department<br>101 Field Point Road<br>Greenwich, CT 06830                |
| 28. | 80 Stanwich Road        | Stephen M. Napier TR c/o The Stanwich Road Real Estate Trust P.O. Box 5176 Greenwich, CT 06830            |
| 29. | 2 Cardinal Road         | 2 Cardinal Road LLC<br>401 Old Church Road<br>Greenwich, CT 06830                                         |

|     | Property Address    | Owner's and Mailing Address                                                     |
|-----|---------------------|---------------------------------------------------------------------------------|
| 30. | 21 Cardinal Road    | Greenwich Country Day School Inc.<br>401 Old Church Road<br>Greenwich, CT 06830 |
| 31. | 47 Fairfield Road   | Greenwich Country Day School Inc<br>P.O. Box 623<br>Greenwich, CT 06836         |
| 32. | 23 Fairfield Road   | Greenwich Country Day School Inc<br>P.O. Box 623<br>Greenwich, CT 06836         |
| 33. | 401 Old Church Road | Greenwich Country Day School Inc<br>P.O. Box 623<br>Greenwich, CT 06836         |
| 34. | 444 Old Church Road | 444 Old Church Road LLC<br>444 Old Church Road<br>Greenwich, CT 06830           |
| 35. | 330 North Street    | John and Macy Macaskill 3 Fairfield Road Greenwich, CT 06830                    |
| 36. | 336 North Street    | Scott and Vanessa Rosen<br>14 Golf Club Road<br>Greenwich, CT 06830             |
| 37. | 334 North Street    | Jerry D. and Marjorie A. Lee<br>18 Golf Club Road<br>Greenwich, CT 06830        |
| 38. | 340 North Street    | Kathleen Craig Knight<br>340 North Street<br>Greenwich, CT 06830                |
| 39. | 344 North Street    | Helen W. Hall TR<br>344 North Street<br>Greenwich, CT 06830                     |
| 40. | 346 North Street    | August I. and Jill Dupont<br>346 North Street<br>Greenwich, CT 06830            |

|     | Property Address  | Owner's and Mailing Address                                                       |
|-----|-------------------|-----------------------------------------------------------------------------------|
| 41. | North Street      | Creighton S. McDonough and Claire Rauh<br>6 Golf Club Road<br>Greenwich, CT 06830 |
| 42. | 352 North Street  | Marjorie and Guy L. Smith IV 352 North Street Greenwich, CT 06830                 |
| 43. | 36 Golf Club Road | Ellen B. Griffin<br>36 Golf Club Road<br>Greenwich, CT 06830                      |
| 44. | 7 Doubling Road   | Andrew Marcus 7 Doubling Road Greenwich, CT 06830                                 |
| 45. | 10 Golf Club Road | Richard H. and Joan L. Wynn<br>10 Golf Club Road<br>Greenwich, CT 06830           |
| 46. | 15 Doubling Road  | Marshall H. Heaven and Mary Ann Grabavoy 15 Doubling Road Greenwich, CT 06830     |
| 47. | 16 Doubling Road  | GPFS LLC<br>16 Doubling Road<br>Greenwich, CT 06830                               |
| 48. | 29 Doubling Road  | 29 Doubling LLC<br>29 Doubling Road<br>Greenwich, CT 06830                        |
| 49. | 31 Doubling Road  | Amiot Christine Carter TR Et Al<br>31 Doubling Road<br>Greenwich, CT 06830        |
| 50. | 29 Fairway Lane   | Barton J. and Elizabeth Goodwin<br>29 Fairway Lane<br>Greenwich, CT 06830         |