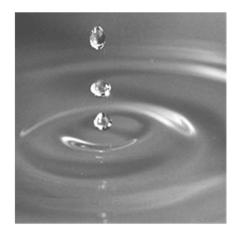


Consulting Engineers and Scientists

Geotechnical Report BESS Installation CT8


Skinner Street East Hampton, Connecticut

Submitted to: VHB 100 Great Meadow Road, Suite 200 Wethersfield, CT 06109

Submitted by:

GEI Consultants, Inc. 455 Winding Brook Drive, Suite 201 Glastonbury, CT 06033 860-368-5300

June 23, 2023 Project No. 2301203

Marto

Matthew Glunt, P.E. Senior Geotechnical Engineer

Table of Contents

<u>1. Introdu</u>	iction	1
1.1	Project Summary	1
1.2	Scope of Services	1
1.3	Authorization	2
1.4	Horizontal and Vertical Reference	2
2. Site and	d Project Description	3
2.1	Site Description	3
2.2	Proposed Construction	3
	ation Procedures	4
3.1	Test Borings	4
3.2	Test Pits	4
3.3	In-place Permeability Testing	4
3.4		5
3.5	Laboratory Testing	5
<u>4. Subsur</u>	face Conditions	6
4.1	Geologic Setting	6
4.2	Subsurface Conditions	6
4.3	Groundwater Conditions	7
<u>5. Design</u>	Recommendations	8
5.1	General Suitability	8
5.2	Soil Properties	8
5.3	Foundation Considerations	8
	5.3.1 Grade Beams	9
	5.3.2 Drilled Piers	10
	5.3.3 Helical Piles	10
	5.3.4 Equipment Pads	11
5.4		11
5.5	Subsurface Drainage Design	11
5.6	Site Slopes	11
5.7	Access Roads	12
5.8	Soil Corrosivity	12
5.9	Thermal Resistivity Testing	13
<u>6. Constru</u>	uction Considerations	14
6.1	Subgrade Preparation	14
	6.1.1 General	14
	6.1.2 Unit Foundations	14
	6.1.3 Equipment Pads	14
	6.1.4 Access Roads	15
6.2	Excavation and Dewatering	15
6.3	Freezing Conditions	16

	6.4	Backfilling and Compaction	16
<u>7.</u>	Closure		18
	7.1	Follow-on Services	18
	7.2	Limitations	18

Figures

1 Test Location Plan

Appendices

- A Boring Logs
- B Test Pit Logs
- C Laboratory Test Data
- D Infiltration Testing Results
- E In-situ Resistivity Testing
- F Recommended Material Specifications

1. Introduction

1.1 Project Summary

The property slated for development is located off of Skinner Street in East Hampton, Connecticut. We understand that the proposed battery storage facility will include multiple arrays of battery units with associated electrical infrastructure and appurtenant site features.

This report was prepared to address foundation and site preparation recommendations for the proposed BESS development.

1.2 Scope of Services

Our scope of work included the following tasks:

- Reviewed provided site plans and layout drawings.
- Oversaw an investigation program consisting of three (3) test borings, six (6) test pits, and in-situ resistivity testing at two (2) locations.
- Observed soil samples recovered from the test borings, took groundwater level measurements, and prepared test boring logs.
- Observed soils removed from test pits, groundwater conditions, and prepared test pit logs.
- Conducted downhole infiltration testing within three (3) of the test pits.
- Conducted in-situ thermal resistivity testing within two (2) of the test pits.
- Engaged a testing laboratory to perform laboratory analyses on soil samples from the test borings and test pits.
- Developed recommendations for earthworks and battery storage unit (BESS) foundation design and construction.
- Prepared this Geotechnical Report.

1.3 Authorization

Our work was performed in general accordance with our proposal dated October 10, 2022, and the resulting Subconsultant Agreement executed on January 6, 2023.

1.4 Horizontal and Vertical Reference

Boring locations were located and referenced using handheld GPS with accuracy on the order of 5 to 10 feet. The locations shown on the attached figure should be considered approximate.

Ground surface elevations for test borings and test pits will be provided in a subsequent version of this report.

2. Site and Project Description

2.1 Site Description

The proposed development will occur on a wooded, undeveloped 28-acre parcel located off of Skinner Street in East Hampton, Connecticut, just north of a recently constructed solar array.

2.2 Proposed Construction

We were provided by VHB with a conceptual site plan for the project on March 14, 2023. References to site plan elements and ground surface elevations will be updated in a subsequent version of this report as plans are updated.

We understand a 4.9 MW/19.6 MW-h battery energy storage system (BESS) facility is planned for the referenced site. From provided conceptual plans, we understand this facility is to consist of the following:

- Battery Energy Storage System (BESS) with multiple arrays of battery racks, PCS inverters, and supporting equipment pads.
- Underground or overhead electrical tie-in to existing electrical infrastructure to the north of the site.
- Stormwater management basin(s) along the southern periphery of the project.
- A gravel access road approximately 12 feet in width into the site, connecting to the existing gravel road from Skinner Street servicing the solar array.

We understand the BESS arrays and supporting features will generally follow existing grades where feasible. Though grading plans have not yet been finalized, we expect cuts and fills of up to about 6 feet will likely be required.

3. Exploration Procedures

3.1 Test Borings

The boring locations were laid out on the site from the provided site plan using approximate measurements and a GPS-locator with horizontal accuracy on the order of 5 to 10 feet. Approximate boring locations relative to the site plan are shown on Figure 1.

Five (5) soil test borings were conducted at the site on April 4, 2023, by New England Boring Contractors, Inc., under subcontract to GEI, with a track-mounted drilling rig. The appropriate one-call utility locate service (CBYD) was contacted prior to our arrival. Each boring location was also pre-scanned for utilities using geophysical methods. The borings were advanced to depths of 9 feet to 11 feet each utilizing hollow-stem augering techniques. Soil test boring logs are attached in Appendix A.

Standard Penetration Testing (SPT) and split-spoon sampling were generally performed continuously through the upper 8 feet of the borings and at 5-foot intervals thereafter using an automatic 140-lb. hammer. Representative samples of the soils obtained by the sampler were classified by a GEI representative. The samples were placed in appropriately identified sealed glass jars and transported to our office for storage and laboratory assignment.

3.2 Test Pits

Six (6) test pits were dug at the site on April 4, 2023, using an excavator to depths of approximately 3 feet to 8 feet each. These test pits were logged and photographed by a representative of GEI. After completion, each test pit was backfilled using excavated spoils tamped in lifts.

Test pit logs are attached in Appendix B.

3.3 In-place Permeability Testing

In-situ hydraulic conductivity was measured using a Guelph permeameter within three (3) of the test pits, located within the property as shown on Figure 1. Constant-head test procedures generally followed ASTM D5126 and manufacturer recommendations.

Estimations of in-place permeability from the test measurements are provided in Appendix D.

3.4 Soil Resistivity Testing

In-situ resistivity testing was performed using the Wenner Four-Electrode Method at two (2) locations, as shown on Figure 1, each including two orthogonal traverses using electrode spacings of 1, 2.5, 5, 10, 20, and 40 feet. Measurements were taken using an L & R Industries MiniRes Instrument. Test results are provided in Appendix E.

3.5 Laboratory Testing

Laboratory testing was conducted on representative soil samples to confirm field identification of the soils and establish engineering characteristics for design. Tests performed by GeoTesting Express, under subcontract to GEI, included the following:

- Four (4) grain-size analyses with standard sieve set and hydrometer (ASTM D6913)
- Four (4) natural moisture content (ASTM D2974)

A composite sample obtained between depths of 2 and 8 feet was also subjected to the following tests:

- pH (ASTM G51)
- Laboratory resistivity (ASTM G57)
- Chlorides (ASTM D512)
- Sulfates (ASTM D516)

The laboratory test results are included in Appendix C.

4. Subsurface Conditions

4.1 Geologic Setting

Local geology maps indicate that the site is underlain by upland glacial till, characterized as dense nonsorted, generally nonstratified soils.

Bedrock is mapped by Rodgers (1985) as the Brimfield Schist formation, characterized as gray, medium to coarse-grained interlayered metamorphic schist and gneiss.

4.2 Subsurface Conditions

The generalized subsurface conditions at the site are described below, in order of increasing depth. The subsurface conditions between test locations may differ. The nature and extent of variations between the sampling points will not become evident until construction.

Topsoil – The topsoil and root mat thickness was generally noted as 6 to 16 inches at the test locations.

Glacial Till – Glacial tills common to the area were encountered in each boring to termination depth or drill refusal. The brown to reddish brown glacial till was classified as silty sand in a tight matrix with suspended gravel and cobbles. The non-plastic to low plasticity silt fines proportion generally varied between 15 and 40 percent. Recovered samples generally coarsened with depth, with increased sand, gravel, and cobbles noted. Cobbles to small boulders as well as zones of highly weathered to decomposed rock were encountered in many of the test pits and test borings and should be expected in the site glacial tills.

SPT N-values were generally consistent with medium-dense to very dense conditions, increasing with depth.

<u>Weathered Rock</u> – At many test locations, the drilling augers and excavation bucket proceeded with difficulty before refusal through materials with intrinsic rock characteristics. From our experience, the materials within this zone can most likely be characterized as decomposed to weathered metamorphic rock or very dense soil ("hardpan").

<u>Refusal Material</u> – Drilling refusal is defined as material that could not be penetrated with the drill rig or excavating equipment used on the project. Refusal of the drilling tools or excavator bucket may have resulted from the presence of tight gravel/cobble beds, boulders or ledges of weathered rock, or continuous, relatively hard competent rock. Diamond core

procedures would be necessary to assess the character and apparent strength of materials below refusal.

Drill or dig refusal occurred at the locations and depths noted below. Based on our observations and expectations of rock conditions, these refusal depths may be presumed as relatively intact bedrock for development planning and costing purposes.

Test ID	Refusal Depth (ft)	Note				
B1	11.0	Weathered rock at 10.0				
B2	9.0	Weathered rock at 6.5				
B3	10.0	Weathered rock at 9.0				
TP-1	> 7.5	Planned termination depth				
TP-2	7.0	Frequent cobbles and boulders at 5.5 to 7.0				
TP-3	6.2	Frequent cobbles and boulders at 5.0 to 6.2				
TP-4	3.2					
TP-5	5.0	Weathered rock at 4.0				
TP-6	> 8.0	Frequent cobbles at depth; weathered rock at 4.0				

Table 1 – Summary of Refusal Depths

4.3 Groundwater Conditions

Groundwater was encountered in boring B-3 at a depth of 8.0 feet and in two of the test pits (TP-1 and TP-2) at depths of 4.5 feet and 6.7 feet, respectively.

Groundwater levels are subject to seasonal and weather-related variations. Groundwater measurements made at different times and different locations may be significantly different than the measurements taken as part of this investigation.

5. Design Recommendations

5.1 General Suitability

The site is underlain by dense, silty glacial till soils with frequent cobble to boulder-laden zones at depth and shallow rock likely within a depth of interest to construction. The primary geotechnical concerns and risk factors for this project would include:

- Limitations of shallow rock and cobbles to boulders with use of drilled-in foundations to support the equipment.
- Relatively low stormwater infiltration rates.
- Though feasible, re-use of similar on-site soils with high silt fines content and oversize material as Structural Fill will likely present challenges.
- Potential for minor to moderate quantities of rock excavation, depending on finished grades.

The influence of shallow rock and cobble to boulder-laden zones on proposed construction will be highly dependent on finished grades, which were not available at the time of this report. This will be discussed in further detail in a subsequent version of this report.

5.2 Soil Properties

Recommended soil properties for design are presented below. We selected these values based on published correlations to SPT N-values, our experience with similar soils in this locale, and our engineering judgment.

Stratum	Angle of Internal Friction (\$°)	Cohesion (c) (psf)	Moist (Total) Unit Weight (γr) (lb/ft ³)	Active Earth Pressure Coeff. (K _a)	Passive Earth Pressure Coeff. (K _p)
New Structural Fill	34	0	125	0.28	3.54
Glacial Till	36	0	125	0.26	3.85

Table 2 – In-Place Soil Properties

5.3 Foundation Considerations

The proposed battery units may be supported by drilled-in or conventional shallow foundations, subject to the limitations described in more detail below. We provide two

options below that we believe are feasible given the subsurface conditions and unit constraints.

Foundation design will be further progressed subsequent to this report and the recommendations updated, in coordination with Key Capture and the design team.

5.3.1 Grade Beams

Grade beams, installed either along each long side of the unit or in a grid format, would be suitable for use in supporting the battery units. Depending on finished grades, difficult excavation and – potentially – rock excavation may be required to install these foundations. Exposed soils will also be susceptible to moisture intrusion and disturbance.

From our review of the current site layout, it appears that bearing conditions for unit foundations will vary from Structural Fill, dense glacial sands (glacial till), to weathered/decomposed rock, or – potentially - sound bedrock. These materials are suitable for support of the units using conventional shallow foundations designed and constructed as recommended below.

We recommend that all footing subgrades be evaluated by a GEI representative prior to concrete placement. The maximum allowable bearing pressures for the design of footings are:

Bearing Stratum	Net Allowable Bearing Pressure
Structural Fill, Glacial Till, Weathered Rock, or Bedrock	4,000 lb/ft ²

 Table 3 - Allowable Bearing Pressure

Minimum individual grade beam widths should be at least 18 inches. All grade beams should bear at least 42 inches below exterior grade for frost protection. Foundations founded on rock will have no frost depth requirement. Where rock within unit foundation excavations cannot be removed with conventional equipment (i.e. hoe-ramming as required), we recommend assuming a minimum embedment depth of 2 feet below finished grade. Where rock is broken or highly weathered and can be removed, we recommend extending the footings to bear 42 inches below the adjacent exterior grade for frost protection.

Lateral capacity of shallow foundations includes a soil lateral pressure and coefficient of friction as described in CBC/IBC Section 1806. Footings will predominantly be embedded in material similar to those described as class 4 as described in Table 1806.2. Where foundations are cast neat against the sides of excavations, an allowable lateral bearing pressure of 150 psf per foot depth below natural grade may be used in computations.

Assuming subgrades are prepared as recommended herein, an allowable coefficient of friction of 0.45 at the base of the foundations may be used in the calculation of sliding resistance.

5.3.2 Drilled Piers

Individual drilled concrete piers would also be feasible for use in supporting the battery units, so long as suitable embedment can be achieved within the dense and cobble-laden natural soils and weathered rock. As noted elsewhere, cobble to small boulder obstructions that would hinder drilling advancement were frequently encountered at depth during the recent investigation.

For preliminary design and costing, we provide expected capacities for two common pier sizes below. Efficient pier sizing, spacing, and lengths will be further evaluated with the design team in future phases of this project, if this option is pursued. Capacities will also be somewhat dependent on finished grades, which will be further evaluated at a later stage of design.

Pier Diameter	Depth	Ultimate Axial Capacity (kips)	Allowable Axial Capacity (kips)		
18 inches	10 feet	69	23		
24 inches	10 feet	120	40		

Table 4 – Drilled Piers – Preliminary Capacities

Rebar cages or individual center bars would also likely be required for the piers to provide sufficient lateral support. A minimum embedment depth may be required to satisfy uplift requirements.

5.3.3 Helical Piles

Helical, or "screw", piles consist of round or square steel shafts with welded helixes of specified diameter and at specified intervals along the shaft. Helical piles would be designed and installed by a specialty geotechnical contractor and held to a performance specification that includes a required pile capacity. Based on their experience with similar projects in similar geologic conditions, the specialty contractor would design a system intended to make most efficient use of the piling options.

Based on the prevalence of cobbles to small boulders on this site, and the potential for shallow rock within the embedment zone, we do not recommend utilizing helical piles for support on this project.

If the team desires to pursue this option further, a specialty contractor should be consulted for further information regarding cost, schedule, feasibility and, in particular, methods for dealing with the site limitations listed above.

5.3.4 Equipment Pads

The natural soils will be susceptible to frost heave. We recommend that the proposed equipment pads bear on Structural Fill that extends below the frost depth. If some seasonal movement of the equipment pads is acceptable, we recommend that the top 18 inches of existing frost-susceptible material below the slab be removed and replaced with compacted, well-draining Structural Fill.

For pad subgrades prepared in this manner, a modulus of subgrade reaction of 150 pounds per cubic inch (pci) may be assumed.

5.4 Settlement

Subject to further evaluation, we expect battery units supported by one of the options listed above would be expected to settle less than 1 inch, with differential settlements between each unit of less than ½-inch. We expect nearly all expected settlement will occur during construction or soon after.

5.5 Subsurface Drainage Design

We understand a series of stormwater management basins are planned along the southern periphery of the project. Based on the results of the borings and test pits, these features will likely be founded in dense glacial till soils with limited capacity for infiltration. Infiltration testing was conducted within test pits TP-1, TP-2, and TP-3 at a depth of approximately 4 feet below current grade. Results of all infiltration testing are included in Appendix D.

From our review of the data obtained and experience with similar soils, we recommend using a field-measured infiltration rate of **0.5 inches/hour** when founded in natural glacial till soils. In accordance with CT DEEP policy, a factor of safety of 2.0 must be applied to these values for design.

5.6 Site Slopes

The project is expected to include finished earthen cut and fill slopes on the periphery of the development area and within the stormwater basins. We recommend that all cut and fill slopes on the project be constructed at grades no steeper than 2H:1V. Suitable erosion protection should be established as quickly as possible following construction of slopes.

5.7 Access Roads

We expect that new access ways into the facility will be constructed as unpaved gravel roads. We also understand that, once constructed, traffic on these roadways will consist primarily of maintenance pickup trucks, though the design will also need to accommodate full-size fire trucks. Fully constructed roadways should not be subjected to construction traffic.

Based on the results of this investigation, roadway subgrades are expected to consist predominantly of silty glacial till soils with moderate susceptibility to frost heave.

Assuming new roadways are supported on new Structural Fill or soil subgrades prepared in accordance with Section 6.1, we recommend the following roadway section to support the expected facility traffic:

<u>Facility Roadways (maintenance trucks and fire trucks)</u>
4.0 inches of Gravel Surface (CTDOT Form 818 M02.06, Grading C)
12.0 inches of compacted gravel Subbase (CTDOT Form 818 M.02.06, Grading A)

Roadway materials should conform with and be placed in accordance with the *Connecticut Department of Transportation (CTDOT) Standard Specifications for Road, Bridges, and Incidental Construction (Form 818), 2020.*

5.8 Soil Corrosivity

We summarized our evaluation of the soil corrosivity to structural elements shown in the table below by comparing the laboratory test results to some available corrosivity references.

Test	Laboratory Results	Reference	Corrosivity to Structural Elements
pН	5.64	Caltrans - Corrosion Guidelines January 2015	Not corrosive
Electrical Resistivity	51,652 Ω-cm	EPRI - Environmental Factors Governing Corrosion Rates, Report 1021854 December 2011	Not corrosive ¹
Chloride	24 mg/kg	Caltrans - Corrosion Guidelines January 2015	Not corrosive
Sulfate	12 mg/kg	Caltrans - Corrosion Guidelines January 2015	Not corrosive

Table 5 – Soil Corrosivity

¹Field-measured resistivity values also indicate a non-corrosive environment.

5.9 Thermal Resistivity Testing

In-situ thermal resistivity tests were conducted within five (5) of the test pits at depths of approximately 3 feet below current grade, as summarized below. Tests were conducted using a Thermtest[®] TLS-100 meter in accordance with ASTM D5334-22.

Test Location	Depth (ft)	Thermal Conductivity (W/mK)	Thermal Resistivity (mK/W)	Soil Temp (°C)	
TP-4	3.0	1.8232	0.5514	7.3	
TP-5	3.0	1.4980	0.6705	7.5	
TP-6	3.0	1.9694	0.5138	6.7	

Table 6 – Thermal Resistivity

GEI Consultants, Inc.

6. Construction Considerations

6.1 Subgrade Preparation

6.1.1 General

Site preparation should include the removal of all unsuitable surface materials within the BESS development footprint. This should include surface vegetation, topsoil, and any otherwise unstable surface or subsurface soils.

6.1.2 Unit Foundations

If used to support the battery units, conventional shallow foundations are expected to bear on a subgrade consisting of glacial sands and silts (glacial till), weathered rock, competent bedrock, or Structural Fill.

If bedrock is encountered at or above planned bearing elevation, the top of rock should be excavated to a firm surface, cleaned, and examined. If the bedrock is sloping, below column footings, the rock surface should be cut to an approximately level surface (within 10 degrees of horizontal). Below exterior wall footings, the rock surface can slope in the direction of the wall but should be within 10 degrees of horizontal in the direction perpendicular to the wall. Minimum embedment requirements for rock-bearing foundations are discussed in Section 5.3.1.

Bearing surfaces should be free of standing water, frost, and loose soil before placement of reinforcing steel and concrete. Protruding cobbles, boulders, loose rock, or ledge should be removed a minimum of 12 inches below bearing grade.

All finished bearing surfaces should be free of standing water, frost, and loose soil before placement of reinforcing steel and concrete. We recommend that a GEI representative observe the final preparation of all subgrades prior to footing construction.

6.1.3 Equipment Pads

If some seasonal movement of the equipment pads is acceptable, we recommend that the top 18 inches of existing frost-susceptible material below the slab be removed and replaced with compacted, well-draining Structural Fill. If rock is encountered during this process, 12 inches of Structural Fill would be sufficient.

Excavations to final subgrade for the equipment pads should be performed in such a way that limits disturbing or loosening subgrade soils. After stripping and cutting and prior to placing pad base materials, the resulting subgrade should be firm, stable, and unyielding. Stabilization, where required, may consist of removing unsuitable material and replacement

with compacted Structural Fill, or where unsuitable soils are relatively thin, drying and compacting in place.

Soil subgrades for equipment pads should be proof-rolled with at least four (4) passes of a minimum 10-ton vibratory roller in open areas, or a 1-ton vibratory roller or large plate compactor, such as Wacker DPU4545 or equivalent, in trenches. Proof-rolling in close proximity to groundwater may need to be accomplished without vibratory action to reduce the potential for disturbance to the subgrade. Final bearing surfaces should be free of standing water, frost, and loose soil.

6.1.4 Access Roads

Before placing the roadway section, the exposed subgrade (after removing topsoil, organic material, or otherwise unsuitable material) should be proof-rolled with at least four (4) passes of a minimum 10-ton vibratory roller. The resulting subgrade should be firm, stable, and unyielding.

We recommend that the road surface be graded with a minimum cross slope of $\frac{1}{2}$ inch per foot of road width to allow water to drain. Drainage ditches should be provided along the edges of the road to direct surface water and runoff away from the road and subbase.

We recommend that a GEI representative observe the final preparation of all subgrades prior to access road construction.

6.2 Excavation and Dewatering

Mass excavations on upland areas of the site would take place through dense to very dense glacial till soils, minor to moderate cobbles and boulders, and, potentially, weathered to sound rock, and difficult excavation should be anticipated. It is our experience that large excavators can generally remove dense to very dense soils (hardpan) and highly weathered/decomposed metamorphic rock characterized with an SPT N-value of less than 50 blows per 6 inches (or less than 100 blows/foot). Heavy-duty rock teeth and slower, difficult excavation should be expected where the material is characterized as 50 blows per 6 inches (50/6") to 50 blows per 3 inches (50/3"). Dozer-mounted rippers may also be effective in removing materials of this density. Rock removal using localized hoe-ramming or mass blasting should be expected for any materials exhibiting 50 blows for less than 3 inches or drill refusal.

Based on the results of this investigation, the scale of this project, and our expectations of finished grades, we expect that rock excavation, if required, would be of relatively minor quantities, suitable for the use of pneumatic (i.e. hoe ramming or line drilling) procedures.

All excavations should be sloped or shored in accordance with the local, state, and federal regulations, including Occupational Safety and Health Agency (OSHA 29 CFR Part 1926) excavation trench safety standards.

Stabilized groundwater is not likely to significantly impact construction operations. However, perched water is likely to be encountered near the soil/rock interface, especially after rainfall events. If encountered during foundation or utility excavations or general site grading, groundwater can likely be controlled using conventional methods such as ditching, sumps, and pumps.

6.3 Freezing Conditions

The soils at the sites are frost susceptible. Therefore, if construction is performed during freezing weather, special precautions will be required to prevent the subgrade soils from freezing. Freezing of the soil beneath equipment foundations during construction may result in subsequent settlement.

All subgrades should be free of frost before placement of concrete. Frost-susceptible soils that have frozen should be removed and replaced with compacted Structural Fill. Soil placed as fill should be free of frost, as should the ground on which it is placed.

6.4 Backfilling and Compaction

Recommended specifications for gradation and compaction of backfill soils are provided in the recommended Material Specifications in Appendix F. We understand fill for raising the site grades, where required, will be mined from on-site sources wherever possible.

The native glacial tills found on site are not ideal for compaction as they contain a fairly high percentage of silty fines; however, provided the material can meet the appropriate compaction requirements, does not contain deleterious materials, and is stable under the weight of construction equipment, the material is likely suitable for re-use on site as Structural Fill or Ordinary Fill. We caution that this material will be difficult to near impossible to work if it becomes wet and may require long drying times to obtain the required compaction. As such, careful moisture control will be required to achieve satisfactory compaction. Cobbles and boulders in excess of 4-inches in diameter should be screened out of the native glacial till or crushed to an acceptable size.

Soils to be used as fill imported from off-site should also meet the attached gradation requirements. Fill placed under the BESS arrays, the proposed substation, all access roads, and all equipment pads should meet the compaction requirements for Structural Fill. Backfill placed in areas that will not support structural or paved elements should meet the compaction

requirements for Ordinary Fill. Proposed borrow materials that fall slightly outside of these specifications may also be suitable for use, subject to review and approval by GEI.

GEI Consultants, Inc.

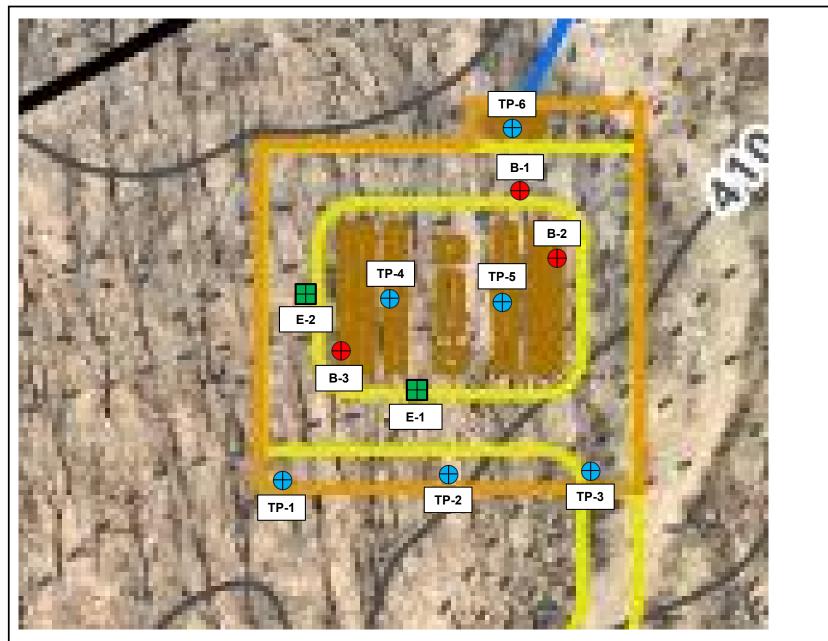
7. Closure

7.1 Follow-on Services

We recommend that GEI be kept on the project through the final design and construction phases of this project for the following services:

- Review geotechnical-related contractor submittals and assist in developing responses to questions from the contractor (i.e. RFI's).
- Provide periodic site visits during construction to view subgrades and consult on geotechnical-related issues that occur.

7.2 Limitations


This report was prepared for the use of the project team, exclusively. Our recommendations are based on the project information provided to us at the time of this report and may require modification if there are any changes in the nature, design, or location of the proposed building. We cannot accept responsibility for designs based on our recommendations unless we are engaged to review the final plans and specifications to determine whether any changes in the project affect the validity of our recommendations, and whether our recommendations have been properly implemented in the design.

Our professional services for this project have been performed in accordance with generally accepted engineering practices. No warranty, expressed or implied, is made.

GEOTECHNICAL REPORT BESS INSTALLATION CT8 EAST HAMPTON, CONNECTICUT JUNE 23, 2023

Figures

GEI Consultants, Inc.

LEGEND

- APPROX. TEST PIT LOCATION
- APPROX. BORING LOCATION

APPROX. RESISTIVITY TEST LOCATION

<u>SOURCE:</u>

PROPOSED PROJECT LAYOUT, (VHB, 03/14/23)

	TEST LOCATION PLAN	FIGURE
	BESS CT8	1
	East Hampton, CT	
GEI PROJECT NO:	2300876	

FIGURE NO.

GEOTECHNICAL REPORT BESS INSTALLATION CT8 EAST HAMPTON, CONNECTICUT JUNE 23, 2023

Appendix A

Boring Logs

GEI Consultants, Inc.

VERTICAL TOTAL DEI LOGGED B			(ft): NM			DATE START/END: 4	/4/202	23 - 4/4/2023	BORING
TOTAL DEI LOGGED B		JM:				DRILLING COMPANY:		B-1	
	PTH (ft):11.)			DRILLER NAME: Dav			
	BY: _	T. Yurma	n			RIG TYPE:			PAGE 1 of 1
	TYPE:		Hammer		omatic			CORE BARR	REL TYPE: REL I.D./O.D. NA / NA
DRILLING I WATER LE				n Auger					
ABBREVIA	TION	Rec. RQD WOF	= Recovery = Rock Qu	Length ality Designa Sound Core of Rods	ation ss>4 in / Pen.,%	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit PI = Plasticity Index PID = Photoionization Detector I.D./O.D. = Inside Diameter/Outside Dia	NA, NM = Not Applicable, Not Measu Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler. meter
		Sa	ample Inf	ormation			ne		
Elev. Dep (ft) (ft		Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and Ro	ock Description
_		S1	0 to 2	24/17	1-2-1-1				. F-sand, ~45% NP fines, ~5% brown to brown, dry. (16 inches
-		S2	2 to 4	24/12	3-7-11- 11			S2: SILTY SAND WITH GRA NP fines, 29.5% F-C gravel, w	VEL (SM); 40.8% F-C sand, 29.7 vith cobbles, brown, dry.
-	5	S3	4 to 6	24/0	15-13- 11-12		,ILL	S3: No recovery, cobbles in s	ampler.
-		S4	6 to	24/7	18-26- 56-77		GLACIAL TILL	S4: SILTY SAND (SM); ~75% F-C gravel, brown, dry, weath	F-sand, ~15% NP fines, ~10% ered rock structure.
	X		8						
-	10	S5	8 to 10	24/11	20-55- 47-72			S5: Similar to S4, weathered/ Difficult drilling at 10.0 ft.	decomposed rock.
_								Auger Refusal at 11.0 ft. Backfilled with drill cuttings.	
								JECT NAME: VHB-Key Capture C	

		IG INFC									BORING
											BORING
					(ft):NM			_ DATE START/END: _			РЭ
	VERTI			M:				DRILLING COMPANY:	-		B-2
	LUGG			. ruma	n						PAGE 1 of 1
L	DRILL	ING INF	OR	MATION	1						
	намм	ER TYF	E:	Safety	Hammer	- semi-aut	omatic	CASING I.D./O.D.: N	A/ NA	CORE BAI	RREL TYPE:
					nch / NA			DRILL ROD O.D.: NI			RREL I.D./O.D. NA / NA
	DRILL	ING ME	тно	DD: <u>Ho</u>	llow Stem	n Auger					
	WATE	R LEVE	LD	EPTHS	(ft): Free	e groundw	ater not enco	ountered.			
⊦				Don	= Penetrati	on Longth		S = Split Spoon Sample		Qp = Pocket Penetrometer Strength	NA, NM = Not Applicable, Not Measured
	ADDRI		JNG	Rec.	= Recovery	Length		C = Core Sample		Sv = Pocket Torvane Shear Strength	
				RQD	= Rock Qu = Length of	ality Designa Sound Core	ation s>4 in / Pen.,9	6 U = Undisturbed Sample 5 SC = Sonic Core		LL = Liquid Limit PI = Plasticity Index	30 inches to drive a 2-inch-O.D.
					t = Weight o I = Weight o			DP = Direct Push Sample HSA = Hollow-Stem Auger		PID = Photoionization Detector I.D./O.D. = Inside Diameter/Outside I	split spoon sampler.
┢			1					HSA - Hollow-Stelli Auger			Jameter
			L	Sa	ample Inf	ormation			ayer Name		
	Elev.	Depth	s	ample	Depth	Pen./	Blows	Drilling Remarks/ Field Test Data	Ž	Soil and	Rock Description
	(ft)	(ft)	0	No.	(ft)	Rec.	per 6 in. or RQD	Field Test Data	aye		·
					. ,	(in)			تّ		
ſ			NT	S1	0 to	24/8	4-4-3-2				i% F-sand, ~40% NP fines, ~5% wn, dry to moist. (12 inches
			V		2					TOPSOIL)	
/23		-	X								
EAST HAMPTON.GPJ GEI DATA TEMPLATE 2013.GDT 5/19/23			$\ /\ $								
Ц		_	\square		2						20/ E C cond 21 20/ ND fince E 40/
13.G			NA	S2	2 to	24/16	4-10-13- 12			F-C gravel (up to 1-in.), gra	3% F-C sand, 31.3% NP fines, 5.4% y-brown, dry.
E 20			IVI		4		12				
LAT			$ \Lambda $								
EMP			$ \rangle $.		
ΤΑΤ		-	\vdash	00	4	04/47	11.10		GLACIAL TILL	S3: SILTY SAND (SM): ~80	0% F-C sand, ~15% NP fines, ~5%
DA.			\mathbb{N}/\mathbb{I}	S3	to 6	24/17	11-13- 19-45		IAL	F-gravel, light-brown, dry to	
В		- 5	IVI		0				A		
GPJ		-	IVI						0		
NO NO			ΙN								
MP		-	\square	S4	6	6/6	102			S4: Similar to S3.	
H H			Ħ		to 6.5					Difficult driling at 6.5 ft.	
		-									
TES.											
S SI		_									
BES											
GEI WOBURN STD 1-LOCATION-LAYER NAME 2301203 - VHB-KEY CAPTURE CT BESS SITES-											
LURE		-	\square							Auger Refusal at 9.0 ft.	
LAPI										Backfilled with drill cuttings.	
EX (- 10									
년 논											
<u> </u>		L									
1200											
230											
AME		F									
R N											
AYE		F									
J-NC											
ATIC		L									
ĻOC											
10-1-											
LS N	NOTES		1			1			PR0	JECT NAME: VHB-Key Capture	CT BESS - CT
BUR	NUTES								TRU	Contrame. Vib-rey Capture	
Ŵ										STATE: East Hampton, Conne	
Ш О									GEI PROJECT NUMBER: 2301203		

LOCAT		See								BORING
VERTI TOTAL	CAL D	ATU TH (f	IM: it):10.()				New ve DeA	v England Boring	B-3
LOGGED BY: T. Yurman							RIG TYPE:			PAGE 1 of 1
DRILLING INFORMATION HAMMER TYPE: Safety Hammer - semi-automatic AUGER I.D./O.D.: 3.75 inch / NA DRILLING METHOD: Hollow Stem Auger WATER LEVEL DEPTHS (ft): ¥ 8.0							CASING I.D./O.D.: <u>N/</u> DRILL ROD O.D.: <u>NM</u>	√ NA 1	CORE BARF	REL TYPE:
ABBRI	EVIAT	IONS	Rec. RQD WOR	= Length of t = Weight c	Length ality Designa Sound Core	ation es>4 in / Pen.,%	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit PI = Plasticity Index PID = Photoionization Detector I.D./O.D. = Inside Diameter/Outside Dia	NA, NM = Not Applicable, Not Measu Blows per 6 in.: 140-lb hammer fallin 30 inches to drive a 2-inch-O.D. split spoon sampler. meter
			Sa	ample Inf	ormation			me		
Elev. (ft)	Dept (ft)	h s	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Name	Soil and R	ock Description
	_		S1	0 to 2	24/9	WOH 1/12"-5- 4			S1: SILTY SAND (SM); ~50% F-gravel, organic fibers, brow TOPSOIL)	NP fines, ~45% F-sand, ~5% n, dry to moist. (12 inches
	 _ _		S2	2 to 4	24/21	5-14-13- 9			S2: SILTY SAND (SM); ~60% F-gravel, with cobbles, brown	F-sand, ~30% NP fines, ~10% , dry to moist.
	_ 	5	S3	4 to 6	24/19	5-10-10- 12		GLACIAL TILL		√EL (SM); ~65% F-C sand, ~20 ⁰ ith cobbles and decomposed roo
	-		S4	6 to 8	24/18	9-6-3-15		Ū	S4: SILTY SAND WITH GRA NP fines, ~15% F-C gravel, b	VEL (SM); ~60% F-M sand, ~25 rown, moist to wet.
	_		S5	8 to 9.3	16/16	35-65- 75/4"				√EL (SM); ~60% F-M sand, ~25' eddish-brown to dark-gray, moist
	— 10 -								Auger Refusal at 10.0 ft. Backfilled with drill cuttings.	
	-									
	–									
NOTES	 S:							PRO.	IECT NAME: VHB-Key Capture C	T BESS - CT
									STATE: East Hampton, Connect ROJECT NUMBER: 2301203	icut GEI Consulta

GEOTECHNICAL REPORT BESS INSTALLATION CT8 EAST HAMPTON, CONNECTICUT JUNE 23, 2023

Appendix B

Test Pit Logs

GEI Consultants, Inc.

				CLIENT: VHB		TE	ST PIT LOG
	$((\bigcirc))$	GEI Consultan 455 Winding E		PROJECT: Key Capture B	ESS (CT8)	PAGE	
СГІ		Glastonbury, (CITY/STATE: East Hampt		I AGE	TP-1
	Consultants	(860) 368-530				1	16-1
	Consultants			GEI PROJECT NUMBER: 2	301203-3.1		
GROUND SURF			TBD	LOCATION:		See Pla	
NORTHING:	NM	-	NM	TOTAL DEPTH:		7.5 FT	
OBSERVED BY:	Majid Mahn	noodabadi		TOTAL LENGTH:		11.5 F	Г
CHECKED BY:				TOTAL WIDTH:		3 FT	
EQUIPMENT:	Hitachi ZX 1			DATUM VERT. / HORZ.:			
WEATHER:	60°F, Sunny			DATE START / END		4/4/202	23
DEPTH FT.	SAMPLE TYPE &	SAMPLE		501	L DESCRIPTION		
DEFIN FI.	ID	DEPTH (FT)		301	L DESCRIPTION		
0			ςανίου ςιι	.T (ML); ~80% LP fines, ~2	0% F- sand f	requent org	anic fibers and
Ū.	G-1	(0.0-0.5)		ck, moist. TOPSOIL	2070 i - Salia, i		and noers and
_1 _2 _3	G-2	(0.5-3.5)		D WITH GRAVEL (SM); 53 own, moist.	8.1% F-C sand	, 27.6% NP fi	nes, 19.3% F-C
_4 _5 _6 _7	G-3	(3.5-7.5)		Ĥ GRAVEL (SW); ∼65% F∙ 5% NP fines, gray-brown,			subround to
_8				Pli	anned depth.		
Bottom of to	est pit at 7.5	feet. Backfil	led with ex	cavated soil placed in lif	s and tamped	d with excave	ator bucket.
				eet. No apparent soil mo			
F=FINE C=COARSE	M=MEDIUM LP=LOW PLA	NP= NONPLA STICITY		NM= NOT MEASURED JM PLASTICITY			

	I Consultants, Inc.	CLIENT: VHB		TES	T PIT LOG
45.	5 Winding Brook Drive	PROJECT: Key Capture BE	SS (CT8)	PAGE	
GEI Gla	astonbury, CT 06033	CITY/STATE: East Hampto		2	TP-1
ULI Consultants (86	50) 368-5300	GEI PROJECT NUMBER: 23	01203-3.1	2	
GROUND SURFACE ELE		TBD	LOCATION:		e Plan.
NORTHING: NN		NM	TOTAL DEPTH:		7.5 FT
	ajid Mahmoodabadi		TOTAL LENGTH:	1	.1.5 FT
CHECKED BY:			TOTAL WIDTH:		3 FT
	tachi ZX 160LC		DATUM VERT. / HORZ.:		
WEATHER: 60)°F, Sunny		DATE START / END	4/	4/2023
		PHOTOGRAPHIC	.0G		
and the second	LA AN			al Texa	
and the line		The Martin Car		and the second	
			A Martin and a start of the	- aline Bar	and the second of the
		AT LE COL			
	HALL	NAN BANK	A PARA	1 and the	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TON CARA	And the second second	and the second	- CALLER'S
	- HAY	AND AN CA		11 13	in the second
Alked -		MAN HAR AND		and the second	Constant of the
A Start		1 4 Lever Aller	A ANTIN A	a should be	State Maria
and the second s	16 1	AL TOTAL		1 St Can Martin	
	× ) N	I TTI TON	NA PROPERTY	Sector 1	1 1 1 1 1 1 5
		11 13185	C. Mage to A.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
BE SEAR SE	THE REAL PROPERTY OF	1 1 2 4 1 1	ATT CALL MAS	11/1 75	
			A BOARS		5 . 84
12-1 Alas	ALC AN	A Contract of the second	the state of the		at offered
-1	Marsh		and the state	ant j	- ATTNES
1. Contraction	AZ M	A STATE A	A CARLON AND A CAR	The st	1-18
The State	All a star			Ser Mar	- Network
		See Parent		10×245	
and the states of the states o		St. State		1/	
A CALLER AND A CALL				Stand and	
A AN	CHARLES MARCH			S. Stand	D. TTE
the states of the		North /			
A TALAN				Sal	X
Jahr Call	A A				
	147 m		to the UNA		
	ALY ANA	R KA	1 × 20		
and a state	and the	AGA AND		1. Alle	A Contract
S In I		AN RUCE	AN ANS		A 94
		DUV 9		A DE GRANT	A CONTRACT
		test pit at 7.5 feet.			
	Picture sho	wing soil strata at Test P	it 1		
NOTES:					
IN. = INCHES NN FT. = FEET	A= NOT MEASURED				

		GEI Consultan	te loc	CLIENT: VHB		TES	T PIT LOG
	$((\bigcirc))$	455 Winding E	-	PROJECT: Key Capture BE	SS (CT8)	PAGE	
		Glastonbury, (		CITY/STATE: East Hampto			TP-2
GEL	Consultants	(860) 368-530		GEI PROJECT NUMBER: 23		1	
GROUND SURFA		NI /ET).	TBD	LOCATION:	501205-5.1	See Plan	
NORTHING:	NM		NM	TOTAL DEPTH:		7 FT	
OBSERVED BY:		-		TOTAL LENGTH:		12 FT	
CHECKED BY:		loouabaul		TOTAL WIDTH:		4 FT	
EQUIPMENT:	Hitachi ZX 1			DATUM VERT. / HORZ.:		411	
WEATHER:	60°F, Sunny			DATE START / END		4/4/2023	2
WEATHER.	SAMPLE	1		DATE START / LND		7/7/2023	,
DEPTH FT.	TYPE &	SAMPLE		SOIL D	DESCRIPTION		
	ID	DEPTH (FT)		JOIL			
0				.T (ML); ~80% LP fines, ~2	0% E- sand fr	equent org	anic fibers and
0	G-1	(0.0-0.5)		ck, moist. TOPSOIL	076 i - Saliu, ii	equent org	anic inders and
			roots, blat	.K, MOISL TOPSOIL			
1							
	G-2	(0.5-2.5)		D WITH GRAVEL (SM); ~4!	5% F-C sand,	°40% NP fir	ies, ~15% F-C
			gravel, bro	own, moist.			
2							
3							
4							
			ςιι τν ς α Νι	D WITH GRAVEL (SM); ~6	5% E-M sand	~20% E_C a	ravel ~15% ND
	G-3	(2.5-7.0)		-brown moist. Frequent		-	
5	G-5	(2.5-7.0)		esumed rock)	boulders at 5	.5 10 7.0 11.	Dig Terusai at
			7.0 It. (pre	esumeu rock)			
6							
_							
7							
				Terminated	due to dig ref	fusal.	
					0 -		
8							
Datta fr			المطايبة المحا				ator builto
Bottom of te	est pit at 7.0	reet. Backfil	ied with ex	cavated soil placed in lifts	s and tamped	with excav	ator bucket.
Note: Grour	ndwater intru	usion observ	ved at 6.7 f	eet. No apparent soil mo	ottling noted.		
F=FINE	M=MEDIUM	ΝΡ= ΝΟΝΡΙ	ASTIC	NM= NOT MEASURED			
C=COARSE	LP=LOW PLAS			JM PLASTICITY			
C CONTOL	0LA						

	GEI Consultants, Inc.	CLIENT: VHB			TEST PIT LOG
$(\bigcirc)$	455 Winding Brook Drive	PROJECT: Key Capture	e BESS (CT8)	PAGE	
GEI Consultants	Glastonbury, CT 06033	CITY/STATE: East Han			TP-2
	(860) 368-5300	GEI PROJECT NUMBEI		2	
GROUND SURFACE	ELEVATION (FT):	TBD	LOCATION:		See Plan.
NORTHING:	NM EASTING:	NM	TOTAL DEPTH:		7 FT
OBSERVED BY:	Majid Mahmoodabadi		TOTAL LENGTH:		12 FT
CHECKED BY:			TOTAL WIDTH:		4 FT
EQUIPMENT:	Hitachi ZX 160LC		DATUM VERT. / HOR		
WEATHER:	60°F, Sunny		DATE START / END		4/4/2023
		PHOTOGRA	APHIC LOG		
		test pit at 7.0 feet.			
	Picture sho	owing soil strata at Te	est Pit 2		
NOTES:					
IN. = INCHES	NM= NOT MEASURED				
FT. = FEET					

			GEI Consultan	ts Inc	CLIENT: VHB		TES	T PIT LOG
		$(\bigcirc)$	455 Winding E		PROJECT: Key Capture BESS	(CT8)	PAGE	
C	CI	S	Glastonbury, (		CITY/STATE: East Hampton		_	TP-3
G		Consultants	(860) 368-530	0	GEI PROJECT NUMBER: 230		1	
GROUN	ID SURF	ACE ELEVATIO	N (FT):	TBD	LOCATION:		See Plan.	
NORTH	ING:	NM	EASTING:	NM	TOTAL DEPTH:		6.2 FT	
OBSER	VED BY:	Majid Mahm	noodabadi		TOTAL LENGTH:		10.9 FT	
CHECKE					TOTAL WIDTH:		3.2 FT	
EQUIP	VENT:	Hitachi ZX 10	50LC		DATUM VERT. / HORZ.:			
WEATH	IER:	60°F, Sunny			DATE START / END		4/4/2023	}
DEPT	TH FT.	SAMPLE TYPE & ID	SAMPLE DEPTH (FT)		SOIL DE	SCRIPTION		
0		G-1	(0.0-0.25)		.T (ML); ~80% LP fines, ~209 ck, moist. TOPSOIL	% F- sand, fi	requent orga	anic fibers and
1 2		G-2	(0.25-2.5)		D WITH GRAVEL (SM); ~459 own, moist.	% F- sand, ~	40% LP fines	, ~15% F-C
3 4 5 6		G-3	(2.5-6.2)	fines, gray	D WITH GRAVEL (SM); ~609 -brown, moist. Frequent b esumed rock)		-	
					Terminated d	ue to dig re	fusal.	
7								
Bott	om of te	est pit at 6.2	feet. Backfil	led with ex	cavated soil placed in lifts a	and tamped	l with excava	ator bucket.
Note	e: Grour	ndwater intru	usion not ob	served. Ap	pparent soil mottling obser	ved at 4.0 f	eet.	
F=FII C=CC	NE DARSE	M=MEDIUM LP=LOW PLAS			NM= NOT MEASURED JM PLASTICITY			

	K GEI Consultants, Inc.	CLIENT: VHB		TF	EST PIT LOG
	455 Winding Brook Drive	PROJECT: Key Cap	oture BESS (CT8)	PAGE	· · · · · · · · · · · · · · · · · · ·
GFI 🚩	Glastonbury, CT 06033	CITY/STATE: East H		2	TP-3
	nts (860) 368-5300		MBER: 2301203-3.1	2	
ROUND SURFAC	CE ELEVATION (FT):	TBD	LOCATION:		See Plan.
ORTHING:	NM EASTING:		TOTAL DEPTH:		6.2 FT
BSERVED BY:	Majid Mahmoodabadi	ı	TOTAL LENGTH:		10.9 FT
HECKED BY:			TOTAL WIDTH:		3.2 FT
QUIPMENT:	Hitachi ZX 160LC		DATUM VERT. / HORZ.:		
/EATHER:	60°F, Sunny		DATE START / END	/	4/4/2023
		РНОТ	TOGRAPHIC LOG		
DTES:		f test pit at 6.2 feet			

FT. = FEET

	6			CLIENT: VHB		TEST PIT LOG	
	$((\bigcirc))$	GEI Consultar 455 Winding		PROJECT: Key Capture BESS (CT8)	PAGE		
	S	Glastonbury,		CITY/STATE: East Hampton, CT		TP-4	
GEI	Consultants	(860) 368-530	00	GEI PROJECT NUMBER: 2301203-3.1	1		
GROUND SURF	ACE ELEVATIO	N (FT):	TBD	Plan.			
NORTHING:	NM		NM	TOTAL DEPTH:		2 FT	
OBSERVED BY:	Majid Mahn	noodabadi		TOTAL LENGTH:	1	1 FT	
CHECKED BY:				TOTAL WIDTH:	3	3 FT	
EQUIPMENT:	Hitachi ZX 1	60LC		DATUM VERT. / HORZ.:			
WEATHER:	60°F, Sunny			DATE START / END	4/4	/2023	
DEPTH FT.	SAMPLE TYPE & ID	SAMPLE DEPTH (FT)		SOIL DESCRIPT	ION		
0	G-1	(0.0-0.25)		T (ML); ~80% LP fines, ~20% F- sand, st. TOPSOIL	frequent o	organic fibers and roots,	
1	G-2	(0.25-2.0)		D WITH GRAVEL (SM); ~45% F- sand, , brown, moist.	~40% NP-L	.P fines, ~15% F-C gravel,	
3	G-3	(2.0-3.2)		D (SM); ~75% F-C sand, ~15% NP fine amp. Dig refusal at 3.2 ft. (presume		C gravel, gray-brown,	
				Terminated due to d	lig refusal.		
4							
	Bottom of test pit at 3.2 feet. Backfilled with excavated soil placed in lifts and tamped with excavator bucket.						
Note: Grou	Note: Groundwater intrusion not observed. No apparent soil mottling noted.						
F=FINE M=MEDIUM NP= NONPLASTIC NM= NOT MEASURED C=COARSE LP=LOW PLASTICITY MP=MEDIUM PLASTICITY							

	GEI Consultants, Inc.	CLIENT: VHB	-	TEST PIT LOG
$(\bigcirc)$	455 Winding Brook Drive	PROJECT: Key Capture BESS (CT8)	PAGE	
GEI Consultant		CITY/STATE: East Hampton, CT	2	TP-4
		GEI PROJECT NUMBER: 2301203-3.1	۷	
GROUND SURFACE		TBD LOCATION:		See Plan.
NORTHING:	NM EASTING:			3.2 FT
OBSERVED BY:	Majid Mahmoodabadi	TOTAL LENGTH:		11 FT
CHECKED BY:	Litashi 7V 1COLC			3 FT
EQUIPMENT: WEATHER:	Hitachi ZX 160LC 60°F, Sunny	DATUM VERT. / HORZ.: DATE START / END		4/4/2023
WEATHER.	oo r, sunny	PHOTOGRAPHIC LOG		4/4/2023
		<image/>		
		test pit at 3.2 feet.		
	Picture sho	owing soil strata at Test Pit 4		
NOTES: IN. = INCHES	NM= NOT MEASURED			
FT. = FEET				

	GEI Consultants,		te Inc	CLIENT: VHB		TEST PIT LOG	
	455 Winding Brook I		-	PROJECT: Key Capture BESS	5 (CT8)	PAGE	
CEL		Glastonbury,		CITY/STATE: East Hampton,	, CT		TP-5
GEI	Consultants	(860) 368-530	00	GEI PROJECT NUMBER: 2301203-3.1		1	
GROUND SURF	ACE ELEVATIO	N (FT):	TBD	LOCATION:		See Pl	an.
NORTHING:	NM	EASTING:	NM	TOTAL DEPTH:		5 F1	Γ
OBSERVED BY:	Majid Mahm	noodabadi		TOTAL LENGTH:		10.5	FT
CHECKED BY:				TOTAL WIDTH:		3.5 F	T
EQUIPMENT:	Hitachi ZX 16	50LC		DATUM VERT. / HORZ.:			
WEATHER:	60°F <i>,</i> Sunny	T	T	DATE START / END		4/4/20	023
DEPTH FT.	SAMPLE TYPE & ID	SAMPLE DEPTH (FT)		SOIL D	DESCRIPTION		
0	G-1	(0.0-0.5)		T (ML); ~80% LP fines, ~20% k, moist. TOPSOIL	% F- sand, fr	equent or	ganic fibers and
1	G-2	(0.5-1.5)		D (SM); ~70% F- sand, ~25% pers, brown, moist.	% NP fines, ^	5% F- grav	vel, some roots and
2 3 4 5	G-3	(1.5-5.0)	moist. Fre	D (SM); ~70% F-M sand, ~2 equent boulders at 2.5 to 4. presumed rock)	.0 ft. Weath	ered rock	
_				Terminated	due to dig r	efusal.	
6					5		
Bottom of	test pit at 5.0	feet. Backfil	led with ex	cavated soil placed in lifts a	and tamped	with exca	vator bucket.
	-			-	-		
F=FINE C=COARSE							

		CLIENT: VHB		TEST PIT LOG
$\bigcirc$	GEI Consultants, Inc. 455 Winding Brook Drive	PROJECT: Key Capture BESS (CT8)	PAGE	
	Glastonbury, CT 06033	CITY/STATE: East Hampton, CT	PAGE	TP-5
	(860) 368-5300	GEI PROJECT NUMBER: 2301203-3.1	2	17-5
GROUND SURFACE		TBD LOCATION:		See Plan.
NORTHING:	NM EASTING:			5 FT
OBSERVED BY:	Majid Mahmoodabadi	TOTAL LENGTH:		10.5 FT
CHECKED BY:	majla mannoodabaan	TOTAL WIDTH:		3.5 FT
EQUIPMENT:	Hitachi ZX 160LC	DATUM VERT. / HORZ.	:	0.011
WEATHER:	60°F, Sunny	DATE START / END	·	4/4/2023
		PHOTOGRAPHIC LOG		, ,
No.	S. P. S. Eng		3 Constant	
The Good of		A LAND AND TO LAND	A Land Co	Part Part
Mart Aller	- March March		States -	a la fatter a fatter
	Call Martin Barry	and the second second		La Contraction
ALL ISA			S AN	A Che Carton
The The		a fear the same a second the second	Con Children	time and the second state
THE NUMBER OF	A THE LAS	AND THE PROPERTY OF		- Kartan Bark
	Real As in and	and the second second second	the to have	
	HALL SAL	The second second	State and a	
~	A PARTINE		-1	
	State - and			Not start
A LANK X CA	A ANA		Lines I have	
	A LETA STA		7 1 21	A State
	A MARINE SAN	The second secon	AN EIT.	The Contraction
	SATA WEAN	A A A A	2 16/20	
			THE AVE	The second second
		2 STATE TO PARTY AND AND	17 5 2 V	the and the second
Section and			N/ C	
		AND BEEN AT AN AND AND A AND A AND AND AND AND AND		
			XV. A	Mar one and and
		No. 19 Martin Contractor		PARAL AND SH
		and the second states of		A AMB ALL PARTY
				SA MAL
			A A A A	AN A HARRY
A STATE AND	and the second second	in a sector sector sector to	est and	Starte NI
Same S				and the states
and the second		ALL REPORT OF ALL ALL	A STOR	
			Contraction of the	
A Mile		Carlos Anna Carlos	Contraction of	
A state of the			El este de la	1000 100 4 AC. 13
	A starting		the state we	
and the	A set and			E the A. M. M.
it company	the hand have the second	the third the second second	R	
	A CONTRACT	A A A A A A A A A A A A A A A A A A A	E Str	
				ALL THE MAN
A CONTRACT	a state of the		Et	A WAT I THE
State of the second	1 Million	Contraction of the second		
	12 And And		A set of	12 de la Carte
	A A TANK		the states of the states	the state of
				A CONTRACTOR
	Bottom of	test pit at 5.0 feet.		
	200000			

Picture showing soil strata at Test Pit 5

NOTES:

IN. = INCHES NM= NOT MEASURED

FT. = FEET

			ta la l	CLIENT: VHB		1	EST PIT LOG
	$((\bigcirc))$	GEI Consultan 455 Winding E		PROJECT: Key Capture BE	ESS (CT8)	PAGE	
	Glastonbury, CT 06033			CITY/STATE: East Hampton, CT			TP-6
GEL	Consultants	(860) 368-530		GEI PROJECT NUMBER: 2301203-3.1		1	
GROUND SURFA		N (ET).	TBD	LOCATION:	501205-5.1	See Pl	an
NORTHING:	NM	EASTING:	NM	TOTAL DEPTH:		8 F	
OBSERVED BY:		-		TOTAL LENGTH:		11.5	
CHECKED BY:		loouabaul		TOTAL WIDTH:		3.3 F	
	Hitachi ZX 10			DATUM VERT. / HORZ.:		5.5 Г	- 1
	60°F, Sunny	JULC		DATE START / END		4/4/20	172
WLATTER.	SAMPLE			DATE START / END		4/4/20	525
DEPTH FT.	TYPE & ID	SAMPLE DEPTH (FT)		SOI	L DESCRIPTION	N	
0	G-1	(0.0-0.7)		T (ML); ~80% LP fines, ~2 k, moist. TOPSOIL	20% F- sand, f	requent or	ganic fibers and
1			ςιι τν ςανι	D WITH GRAVEL (SM); ~6	5% E- cand ~	20% NP fin	es ~15% E-C gravel
_23	G-2	(0.7-3.0)		s and organic fibers, bro		2070 NF 111	es, 15%1-C gravel,
4 5 6 7 8	G-3	130-800		D WITH GRAVEL (SM); 47 -brown, moist. Frequent	t cobbles at d		-
				Pla	anned depth.		
				cavated soil placed in lift			vator bucket.
Note: Grour	ndwater intru	usion not ob	served. Ap	parent soil mottling obs	erved at 3.5 f	feet.	
F=FINE C=COARSE	M=MEDIUM LP=LOW PLAS			NM= NOT MEASURED IM PLASTICITY			

r					
	-	CLIENT: VHB		TEC	T PIT LOG
GEI Consultants, Inc. 455 Winding Brook Drive		CLIENT: VHB PROJECT: Key Capture B	PAGE		
	Glastonbury, CT 06033	CITY/STATE: East Hampt		TAGE	TP-6
GEI Consultant	(860) 368-5300	GEI PROJECT NUMBER: 2		2	16-0
GROUND SURFACE		TBD	LOCATION:	С <i>г</i>	e Plan.
NORTHING:	NM EASTING:		TOTAL DEPTH:	36	8 FT
OBSERVED BY:	Majid Mahmoodabadi		TOTAL LENGTH:	1	11.5 FT
CHECKED BY:			TOTAL WIDTH:		3.3 FT
EQUIPMENT:	Hitachi ZX 160LC		DATUM VERT. / HORZ.:		
WEATHER:	60°F, Sunny		DATE START / END	4,	/4/2023
	· · ·	PHOTOGRAPHIC			·
		test pit at 8.0 feet.	<image/>		
NOTES:					
IN. = INCHES	NM= NOT MEASURED				
FT. = FEET					

# Appendix C

Laboratory Test Results

GEI Consultants, Inc.



Client:	GEI Consultants, Inc.				
Project:	Key Capture Energy Bat	tery Storage			
Location:	Windsor Locks, CT			Project No:	GTX-317151
Boring ID:		Sample Type:		Tested By:	ckg
Sample ID	:	Test Date:	05/04/23	Checked By:	ank
Depth :		Test Id:	714130		

# Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
EH-B-1	S- 2	2-4'	Moist, brown silty sand with gravel	10.2
EH-B-2	S- 2	2-4'	Moist, brown silty sand	8.3
EH-TP-1	G- 2	2.5'	Moist, dark yellowish brown silty sand with gravel	16.2
EH-TP-6	G- 3	3'	Moist, grayish brown silty sand with gravel	9.2
HA-B-1	S- 3	4-6'	Moist, reddish brown sand with silt	3.7
HA-B-2	S- 2	2-4'	Moist, brown sand with silt	4.2
HA-TP-3	G- 2	2'	Moist, reddish brown sand with silt	5.9
HA-TP-5	G- 2	3'	Moist, dark reddish brown silty sand	18.6
WI-B-1	S- 3	4-6'	Moist, dark brown silty sand with gravel	8.4
WI-B-3	S- 2	2-4'	Molist, brown silty sand with gravel	9.0



Client:	GEI Consultants, Inc.			
Project Name:	Key Capture Energy Battery Storage			
Project Location:	Windsor Locks, CT			
GTX #:	317151			
Test Date:	05/01/23			
Tested By:	NLB			
Checked By:	ank			

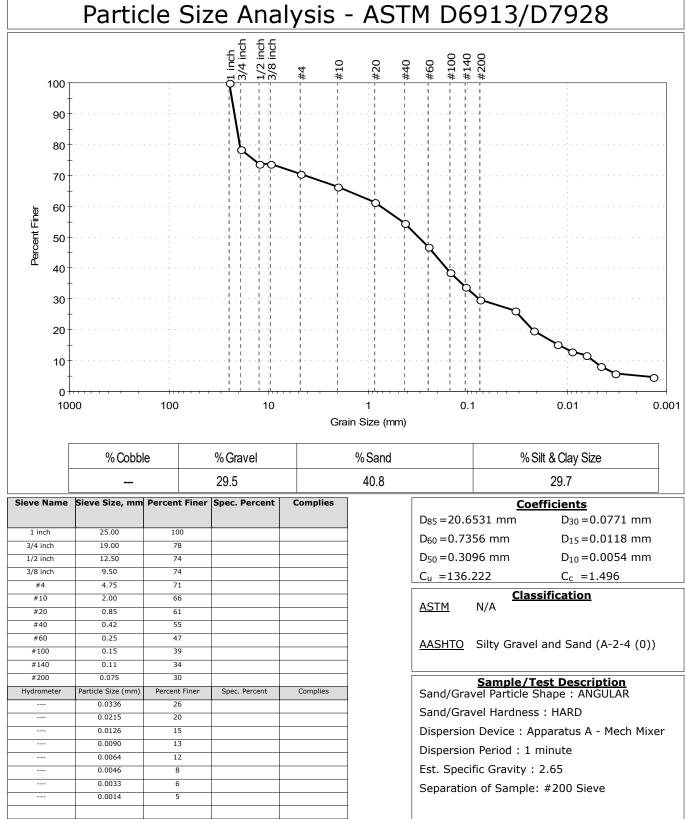
## Laboratory pH of Soil by ASTM G51

Boring ID	Sample ID	Depth, ft	Description	Soil Temperature, ° C	Average pH Reading
EH-B-3	EH-Composite	2-8'	Moist, dark yellowish brown silty sand with gravel	21.8	5.64
WI-B-2	WI-Composite	2-8'	Moist, yellowish brown silty sand with gravel	21.8	5.39
WL-B-2	WL-Composite	2-8'	Moist, dark reddish brown silty sand	22.2	6.61
HA-B-5	HA-Composite	2-8'	Moist, dark reddish brown silty sand	22.5	6.85

Notes:



Client:	GEI Consultants, Inc.
Project:	Key Capture Energy Battery Storage
Location:	Windsor locks, CT
GTX#:	317151
Test Date:	05/05/23
Tested By:	nlb
Checked By:	ank


## Laboratory Measurement of Soil Resistivity Using the Wenner Four-Electrode Method by ASTM G57 (Laboratory Measurement)

Boring ID	Sample ID	Depth, ft.	Sample Description	Electrical Resistivity, ohm-cm	Electrical Conductivity, (ohm-cm) ⁻¹
EH-B-3	EH-Composite	2-8'	Moist, dark yellowish brown silty sand with gravel	51,652	1.94E-05
WI-B-2	WI-Composite	2-8'	Moist, yellowish brown silty sand with gravel	33,057	3.03E-05
WL-B-2	WL-Composite	2-8'	Moist, dark reddish brown silty sand	10,330	9.68E-05
HA-B-5	HA-composite	2-8'	Moist, dark reddish brown silty sand	10,537	9.49E-05

Notes:Test Equipment: Nilsson Model 400 Soil Resistance Meter, MC Miller Soil BoxWater added to sample to create a thick slurry prior to testing (saturated condition).Electrical Conductivity is calculated as inverse of Electrical Resistivity (per ASTM G57)Test conducted in standard laboratory atmosphere: 68-73 F



	Client:	GEI Consul	tants, Inc.								
	Project:	Key Captur	Key Capture Energy Battery Storage								
à	Location:	Windsor Lo	ocks, CT			Project No:	GTX-317151				
<b>g</b>	Boring ID:	EH-B-1		Sample Type:	bag	Tested By:	ckg				
	Sample ID:	S-2		Test Date:	05/04/23	Checked By:	ank				
	Depth :	2-4'		Test Id:	714038						
	Test Comm	ent:									
	Visual Desc	ription:	Moist, brown s	silty sand with g	gravel						
	Sample Cor	nment:									
cicle Size Analysis - ASTM D6913/D7928											
ICI	e Size	e Ana	Iysis -	ASIM	D691	3/D/9	28				

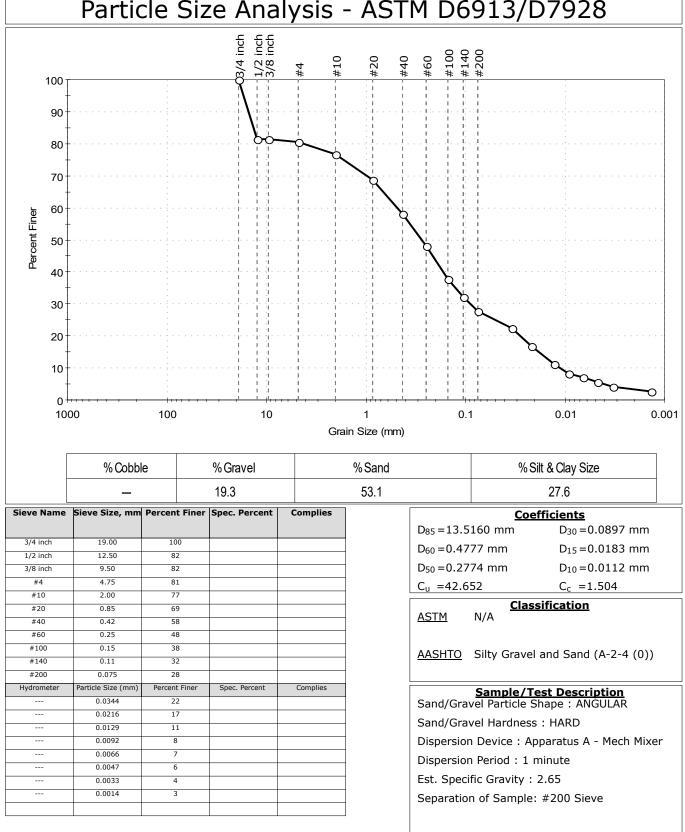




Percent Finer 

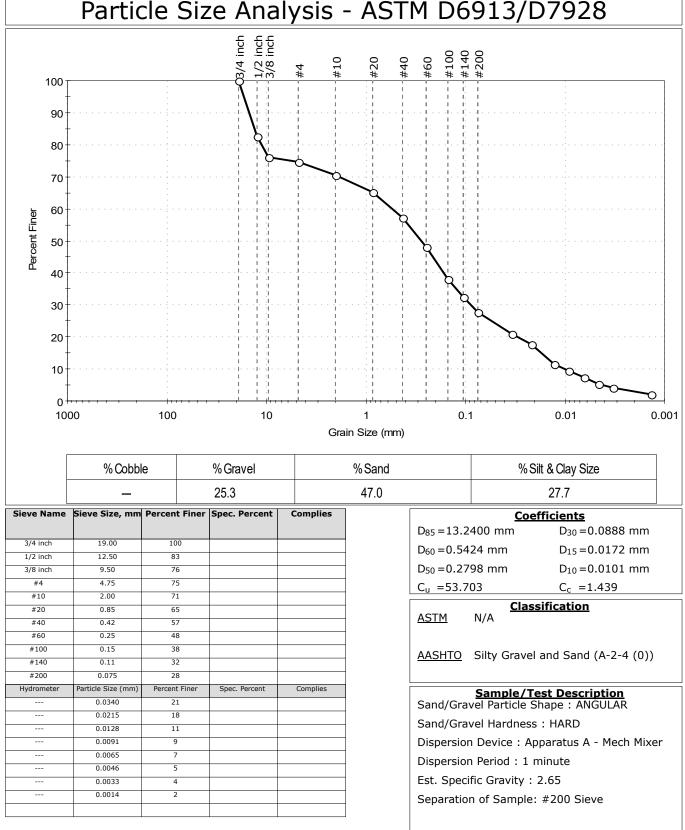
	Client:	GEI Consu	ltants, Inc.								
	Project:	Key Captu	re Energy B	attery	Storage						
sting	Location:	Windsor Lo	ocks, CT				Project No:	GTX-317151			
, in g	Boring ID:	EH-B-2		Sa	mple Type:	: bag	Tested By:	ckg			
	Sample ID:	S-2		Te	st Date:	05/04/23	Checked By:	ank			
	Depth :	2-4'		Te	st Id:	714039					
	Test Comm	ent:									
	Visual Desc	ription:	Moist, brow	wn silty	sand						
	Sample Cor	nment:	removed 1	in rock							
Particl	Particle Size Analysis - ASTM D6913/D7928										
		11/2 inch 3/8 inch	# #4 #10	#20	#40 #60	#100 #140 #200					
		Q	· · ·								

Grain Size (mm) 0.1


0.001

0.01

	% Cobbl	e	% Gravel		% Sand		% Silt & Clay Size	
			5.4		63.3			31.3
Sieve Name 1/2 inch 3/8 inch #4 #10 #20	Sieve Size, mm 12.50 9.50 4.75 2.00 0.85	Percent Finer 100 97 95 89 82	Spec. Percent	Complies	-	$D_{85} = 1.26$ $D_{60} = 0.25$ $D_{50} = 0.17$ $C_{u} = 27.2$	53 mm 89 mm 54 mm 53	$fficientsD_{30} = 0.0646 mmD_{15} = 0.0208 mmD_{10} = 0.0095 mmC_c = 1.697$
#40 #60 #100 #140 #200 Hydrometer	0.42 0.25 0.15 0.11 0.075 Particle Size (mm)	71 59 46 38 31 Percent Finer	Spec. Percent	Complies		<u>ASTM</u> <u>AASHTO</u>	N/A	and Sand (A-2-4 (0))
   	0.0324 0.0223 0.0129 0.0092 0.0065 0.0047 0.0033 0.0014	24 15 13 10 8 7 6 3			-	Sand/Grav Dispersior Dispersior Est. Speci	vel Particle S vel Hardness	paratus A - Mech Mixe ninute 2.65




	Client:	GEI Consu	ltants, Inc.						
	Project:	Key Captu	Key Capture Energy Battery Storage						
<b>1</b> g	Location:	Windsor Lo	ocks, CT			Project No:	GTX-317151		
9	Boring ID:	EH-TP-1		Sample Type:	bag	Tested By:	ckg		
	Sample ID:	G-2		Test Date:	05/04/23	Checked By:	ank		
	Depth :	2.5'		Test Id:	714040				
	Test Comm	ent:							
	Visual Desc	ription:	Moist, dark ye	llowish brown s	silty sand w	ith gravel			
	Sample Cor	nment:							
rticl	ticle Size Analysis - ASTM D6913/D7928								





	Client:	GEI Consu	ltants, Inc.					
	Project:	Key Captu	Key Capture Energy Battery Storage					
ng	Location:	Windsor Lo	ocks, CT			Project No:	GTX-317151	
9	Boring ID:	EH-TP-6		Sample Type:	bag	Tested By:	ckg	
	Sample ID:	G-3		Test Date:	05/04/23	Checked By:	ank	
	Depth :	3'		Test Id:	714041			
	Test Comm	ent:						
	Visual Desc	ription:	Moist, grayish	brown silty sar	nd with grav	/el		
	Sample Cor	nment:						
	<u> </u>	-					]	
rticl	$\triangle$ Ciza	ב ∧n מ	lycic -	ΛCTM	N601	2/070	70	





PO Box 572455 / Salt Lake City UT 84157-2455 / USA TEL +1 801 262 2448 · FAX +1 801 262 9870 · www.TEi-TS.com

Analysis No.	TS-A2311113
Report Date	04 May 2023
Date Sampled	28 April 2023
Date Received	03 May 2023
Where Sampled	Acton, MA USA
Sampled By	Client

When examined to the applicable requirements of:

ASTM D 512-12*	"Standard Test Methods for Chloride Ion in Water" Method B
ASTM D 516-16	"Standard Test Method for Sulfate Ion in Water"

Results:

ASTM D 512 - Chloride Method B

Sample		Res	Detection Limit		
Sa	npie	ppm (mg/kg)	% ¹	Delection Limit	
EH-	B-3	- 24.	0.0024		
EH-Composite	2 – 8'	24.	0.0024		
HA-	HA-B-5		0.0015	- 10.	
HA-Composite	HA-Composite 2 – 8'		0.0015		
WI-	WI-B-2		0.0012		
WI-Composite	2 – 8'	12.	0.0012		
WL-B-2		10	0.0010		
WL-Composite	2 – 8'	- 19.	0.0019		

NOTE: ¹Percent by weight after drying and prepared as per the Standard. *Withdrawn 2021 without Replacement



ASTM D 516- Sulfates (Soluble)

Sample		Res	Detection Limit		
Sa	Inple	ppm (mg/kg)	% ¹	Delection Limit	
EH·	-B-3	12.	0.0012		
EH-Composite	2 – 8'	12.	0.0012		
HA-B-5		< 10.	< 0.0010		
HA-Composite	2 – 8'	< 10.	< 0.0010	10.	
WI-B-2		14.	0.0014	10.	
WI-Composite	2 – 8'	14.	0.0014		
WL-B-2		16.	0.0016		
WL-Composite	2 – 8'	10.	0.0016		

NOTE: ¹Percent by weight after drying and prepared as per the Standard.

END OF ANALYSIS

USEPA Laboratory ID UT00930

Merrill Gee P.E. – Engineer in Charge

© 2023 by Testing Engineers International, Inc. CAVEAT: This certificate may not be reproduced except in full, without the expressed written consent of TEi-Testing Services, LLC. Note: The values in this certificate are the values obtained under standard test conditions as reported in the appropriate Report of Test and thus may be used for purposes of demonstrating compliance or for comparison with other units tested under the same standard. The results do not indicate the function of the sample(s) under nonstandard or field conditions. Statement of Risk: Client understands and agrees that declarations of conformity are made by directly comparing the measurement results against the test limits given in the standard without consideration to factors that may contribute to measurement uncertainty and accepts the shared risk that arises from this approach. This certificate gives the product in general meets the requirements of any standard, nor its acceptability in the marketplace. TEi stylized lettering and logo are registered trademarks and use is by contract and/or written permission only. USEPA Laboratory ID UT00930 TEi-Testing Services is a wholly owned LLC of Testing Engineers International, Inc.



# Appendix D

Infiltration Testing Results

GEI Consultants, Inc.

GEI Consultants, Inc. GEI Proj # 2301203- 3.1 **Guelph Permeameter Testing** CT 8 - East Hampton, CT 4/4/2023 Test Date

Field Data TP-1

Reservoir	Combined
Unit Set	6"
Depth of Test	3'-6"
Depth to GW	4'-6"
GEI Rep.	Majid Mahmoodabadi
Soil Type	SILTY SAND WITH GRAVEL (SM); 53.1% F-C sand, 19.3% F-C gravel, 27.6% NP fines, grav-brown moist to damp

gray-brown, moist to damp.

<u> </u>	Vater Level in Well	6.35	cm	*
Time (min)	Time Change (min)	Water Level in Res. (cm)	Change in Res. Water Level (cm)	Rate of Change (cm/min)
0.0000		5.25		
0.167	0.17	5.30	0.05	0.30
0.333	0.17	5.30	0.00	0.00
0.500	0.17	5.40	0.10	0.60
0.667	0.17	5.50	0.10	0.60
0.833	0.17	5.60	0.10	0.60
1.000	0.17	5.70	0.10	0.60
1.167	0.17	5.80	0.10	0.60
	Steady Rate of	Change, R ₁ (cr	n/min)	0.60

Steady Rate of Change,  $R_1$  (cm/min)

Wat	er Level in Well	13	cm	
Time (min)	Time Change	Water Level	Change in Res.	Rate of Change
rine (niin)	(min)	in Res. (cm)	Water Level (cm)	(cm/min)
0.000		12.7		
0.083	0.08	12.8	0.10	1.20
0.167	0.08	13.1	0.30	3.60
0.250	0.08	13.2	0.10	1.20
0.333	0.08	13.4	0.20	2.40
0.417	0.08	13.5	0.10	1.20
0.500	0.08	13.6	0.10	1.20
0.583	0.08	13.7	0.10	1.20
0.667	0.08	13.8	0.10	1.20
0.750	0.08	13.8	0.00	0.00
0.833	0.08	13.9	0.10	1.20
0.917	0.08	14.0	0.10	1.20
1.000	0.08	14.1	0.10	1.20
1.083	0.08	14.2	0.10	1.20
1.167	0.08	14.3	0.10	1.20
1.250	0.08	14.3	0.00	0.00
1.333	0.08	14.4	0.10	1.20
1.417	0.08	14.4	0.00	0.00
1.500	0.08	14.5	0.10	1.20
	Steady Rate of	Change, R2 (cr	n/min)	0.93

### GEI Consultants, Inc. GEI Proj # 2301203- 3.1 CT 8 - East Hampton, CT Guelph Permeameter Testing - TP-1

### Single Head Method - Test 1

				0.7	in/hour	
Tes •	<b>it Averages</b> Soil Saturated Hydraulic Conductivity	K _{fs}	-	4.837E-04	cm/sec	
•	Soil Matrix Flux Potential	Φ _m	-	3.733E-03	cm ² /sec	(Table 3: One Head, Combined Reservoir)
•	Soil Saturated Hydraulic Conductivity	K _{fs}	-	4.480E-04	cm/sec	(Table 3: One Head, Combined Reservoir)
•	Volumetric Flow Rate	Q ₂	-	0.547866667	cm ³ /sec	(Table 3: One Head, Combined Reservoir)
•	Shape Factor	C ₂	-	1.463		(Table 2: Based on Soil Texture-Structure Category)
<u>Tes</u>	<u>t Calculations and Results</u> Microscopic Capillary Length Factor	α*	-	0.12	cm ⁻¹	(Table 2: Based on Soil Texture-Structure Category)
•	Steady State Rate of Water Level Change	$R_2$	-	0.93	cm/min	(Obtained during testing)
•	Soil Texture-Structure Category		-	3		(Table 2)
•	Borehole Radius	а	-	3.2	cm	Assumed slightly larger than 3cm rad. hand auger
•	Water Head Height	H ₂	-	13	cm	
•	Reservoir Reservoir Cross-Sectional Area		-	35.22	cm ²	(Provided on Permeameter)
Tes	gle Head Method - Test 2 It Data and Information			Combined		
•	Soil Matrix Flux Potential	Φ _m	-	4.329E-03	cm ² /sec	(Table 3: One Head, Combined Reservoir)
•	Soil Saturated Hydraulic Conductivity	K _{fs}	-	5.194E-04	cm/sec	(Table 3: One Head, Combined Reservoir)
•	Volumetric Flow Rate	Q1	-	0.3522	cm ³ /sec	(Table 3: One Head, Combined Reservoir)
•	Shape Factor	$C_1$	-	0.907		(Table 2: Based on Soil Texture-Structure Category)
<u>Tes</u>	<u>t Calculations and Results</u> Microscopic Capillary Length Factor	α*	-	0.12	cm ⁻¹	(Table 2: Based on Soil Texture-Structure Category)
•	Level Change	R ₁	-	0.60	cm/min	(Obtained during testing)
•	Soil Texture-Structure Category Steady State Rate of Water		-	3		(Table 2)
•	Borehole Radius	а	-	3.2	cm	Assumed slightly larger than 3cm rad. hand auger
•	Water Head Height	H ₁	-	6.35	cm	A second slightly lowers there 2 are used based scores
•	Reservoir Cross-Sectional Area		-	35.22	cm ²	(Provided on Permeameter)
				Combined	2	

Calc. by:

Check by:

M. Mahmoodabadi

M. Glunt

GEI Consultants, Inc. GEI Proj # 2301203- 2.1 Guelph Permeameter Testing CT 8 - East Hampton, CT 4/4/2023 Test Date

Field Data

Reservoir	Combined
Unit Set	6"
Depth of Test	3'-6"
Depth to GW	6'-8"
GEI Rep.	Majid Mahmoodabadi
Soil Tuno	SILTY SAND WITH GRAVEL (SM); ~65% F-M sand, ~20% F-C gravel, ~15% NP fines,

TP-2

Soil Type

gray-brown, moist.

Wat	Water Level in Well 6.03 cm *						
Time (min)	Time Change	Water Level	Change in Res.	Rate of Change			
Time (min)	(min)	in Res. (cm)	Water Level (cm)	(cm/min)			
0.00		2.30					
0.17	0.17	2.30	0.00	0.00			
0.33	0.17	2.30	0.00	0.00			
0.50	0.17	2.30	0.00	0.00			
0.67	0.17	2.40	0.10	0.60			
0.83	0.17	2.50	0.10	0.60			
1.00	0.17	2.70	0.20	1.20			
1.17	0.17	2.80	0.10	0.60			
1.33	0.17	2.90	0.10	0.60			
1.50	0.17	3	0.10	0.60			
1.67	0.17	3.1	0.10	0.60			
1.83	0.17	3.2	0.10	0.60			
2.00	0.17	3.3	0.10	0.60			
2.17	0.17	3.5	0.20	1.20			
2.33	0.17	3.6	0.10	0.60			
2.50	0.17	3.7	0.10	0.60			
2.67	0.17	3.8	0.10	0.60			
2.83	0.17	3.9	0.10	0.60			
3.00	0.17	4.1	0.20	1.20			
3.17	0.17	4.2	0.10	0.60			
3.33	0.17	4.3	0.10	0.60			
	Steady Rate of	Change, R ₁ (cr	m/min)	0.75			

	Water Level in Well	12.38	cm	
Time (min)	Time Change	Water Level	Change in Res.	Rate of Change
Time (min)	(min)	in Res. (cm)	Water Level (cm)	(cm/min)
0.000		11.3		
0.167	0.17	11.3	0.00	0.00
0.333	0.17	11.3	0.00	0.00
0.500	0.17	11.3	0.00	0.00
0.667	0.17	12.0	0.70	4.20
0.833	0.17	12.1	0.10	0.60
1.000	0.17	12.6	0.50	3.00
1.167	0.17	12.7	0.10	0.60
1.333	0.17	12.8	0.10	0.60
1.500	0.17	13.1	0.30	1.80
1.667	0.17	13.2	0.10	0.60
1.833	0.17	13.4	0.20	1.20
2.000	0.17	13.6	0.20	1.20
2.167	0.17	13.9	0.30	1.80
2.333	0.17	14.1	0.20	1.20
2.500	0.17	14.2	0.10	0.60
2.667	0.17	14.4	0.20	1.20
2.833	0.17	14.6	0.20	1.20
3.000	0.17	14.8	0.20	1.20
3.167	0.17	15	0.20	1.20
3.333	0.17	15.2	0.20	1.20
	Steady Rate of	Change, R2 (c	m/min)	1.15

### GEI Consultants, Inc. GEI Proj # 2301203- 3.1 CT 8 - East Hampton, CT Guelph Permeameter Testing - TP-2

### Single Head Method - Test 1

Test Data and Information

Test Data and information					
Reservoir		-	Combined		
Reservoir Cross-Sectional Area		-	35.22	cm ²	(Provided on Permeameter)
Water Head Height	$H_1$	-	6.03	cm	
Borehole Radius	а	-	3.2	cm	Assumed slightly larger than 3cm rad. hand auger
• Soil Texture-Structure Category		-	3		(Table 2)
• Steady State Rate of Water • Level Change	$R_1$	-	0.75	cm/min	(Obtained during testing)
Test Calculations and Results					
Microscopic Capillary Length • Factor	α*	-	0.12	cm ⁻¹	(Table 2: Based on Soil Texture-Structure Category)
Shape Factor	$C_1$	-	0.875		(Table 2: Based on Soil Texture-Structure Category)
Volumetric Flow Rate	<b>Q</b> ₁	-	0.4403	cm ³ /sec	(Table 3: One Head, Combined Reservoir)
Soil Saturated Hydraulic Conductivity	K _{fs}	-	6.731E-04	cm/sec	(Table 3: One Head, Combined Reservoir)
Soil Matrix Flux Potential	Φ _m	-	5.609E-03	cm ² /sec	(Table 3: One Head, Combined Reservoir)
Single Head Method - Test 2					
Test Data and Information					
Reservoir		-	Combined	2	
Reservoir Cross-Sectional Area		-	35.22	cm ²	(Provided on Permeameter)
Water Head Height	H ₂	-	12.38	cm	
Borehole Radius	а	-	3.2	cm	Assumed slightly larger than 3cm rad. hand auger
Soil Texture-Structure Category		-	3		(Table 2)
• Level Change	R ₂	-	1.15	cm/min	(Obtained during testing)
Test Calculations and Results					
<ul> <li>Microscopic Capillary Length</li> <li>Factor</li> </ul>	α*	-	0.12	cm ⁻¹	(Table 2: Based on Soil Texture-Structure Category)
Shape Factor	C ₂	-	1.418		(Table 2: Based on Soil Texture-Structure Category)
Volumetric Flow Rate	Q ₂	-	0.672381818	cm ³ /sec	(Table 3: One Head, Combined Reservoir)
Soil Saturated Hydraulic	К _{fs}	_	5.756E-04	cm/sec	(Table 3: One Head, Combined Reservoir)
Conductivity				2.	(Table 2: One Used, Cambined Decembra)
Soil Matrix Flux Potential	Φ _m	-	4.797E-03	cm ² /sec	(Table 3: One Head, Combined Reservoir)
Test Averages					7
• Soil Saturated Hydraulic • Conductivity	${\sf K}_{\sf fs}$	-	6.243E-04	cm/sec	
			0.9	in/hour	

Calc. by:

Check by:

M. Mahmoodabadi

M. Glunt

Date: 4/11/2023 Date: 5/8/2023 GEI Consultants, Inc. GEI Proj # 2301203- 2.1 Guelph Permeameter Testing CT 8 - East Hampton, CT 4/4/2023 Test Date

Field Data

Soil Type

Reservoir	Combined
Unit Set	6"
Depth of Test	3'-6"
Depth to GW	Not Encountered
GEI Rep.	Majid Mahmoodabadi

TP-3

SILTY SAND WITH GRAVEL (SM); ~65% F-C sand, ~25% F-C gravel, ~15% NP-LP fines, gray-brown, moist.

#### Water Level in Well

	Water Level in Well	5.97	cm	*
Time (min)	Time Change	Water Level	Change in Res.	Rate of Change
	(min)	in Res. (cm)	Water Level (cm)	(cm/min)
0.00		2.20		
0.17	0.17	2.20	0.00	0.00
0.33	0.17	2.20	0.00	0.00
0.50	0.17	2.20	0.00	0.00
0.67	0.17	2.30	0.10	0.60
0.83	0.17	2.30	0.00	0.00
1.00	0.17	2.40	0.10	0.60
1.17	0.17	2.50	0.10	0.60
1.33	0.17	2.80	0.30	1.80
1.50	0.17	3	0.20	1.20
1.67	0.17	3.1	0.10	0.60
1.83	0.17	3.2	0.10	0.60
2.00	0.17	3.3	0.10	0.60
2.17	0.17	3.5	0.20	1.20
2.33	0.17	3.7	0.20	1.20
2.50	0.17	3.8	0.10	0.60
2.67	0.17	4	0.20	1.20
2.83	0.17	4.2	0.20	1.20
3.00	0.17	4.3	0.10	0.60
3.17	0.17	4.4	0.10	0.60
3.33	0.17	4.5	0.10	0.60
3.50	0.17	4.7	0.20	1.20
3.67	0.17	4.8	0.10	0.60
3.83	0.17	4.9	0.10	0.60
4.00	0.17	5	0.10	0.60
4.17	0.17	5.1	0.10	0.60
	Steady Rate of	Change, R. (cn	n/min)	0.78

#### Steady Rate of Change, R₁ (cm/min)

	Water Level in Well	12.38	cm	
Time (min)	Time Change (min)	Water Level in Res. (cm)	Change in Res. Water Level (cm)	Rate of Change (cm/min)
0.00		11.0		
0.08	0.08	13.4	2.40	28.80
0.17	0.08	13.8	0.40	4.80
0.25	0.08	14.3	0.50	6.00
0.33	0.08	14.5	0.20	2.40
0.42	0.08	14.9	0.40	4.80
0.50	0.08	15.3	0.40	4.80
0.58	0.08	15.7	0.40	4.80
0.67	0.08	16.0	0.30	3.60
0.75	0.08	16.2	0.20	2.40
0.83	0.08	16.6	0.40	4.80
0.92	0.08	16.9	0.30	3.60
1.00	0.08	17.2	0.30	3.60
1.08	0.08	17.4	0.20	2.40
1.17	0.08	17.6	0.20	2.40
1.25	0.08	18.0	0.40	4.80
1.33	0.08	18.3	0.30	3.60
1.42	0.08	18.5	0.20	2.40
1.50	0.08	18.7	0.20	2.40
1.58	0.08	18.9	0.20	2.40
1.75	0.17	19.7	0.80	4.80
1.83	0.08	20	0.30	3.60
	Steady Rate of	Change, R2 (ci	n/min)	3.20

#### GEI Consultants, Inc. GEI Proj # 2301203- 3.1 CT 8 - East Hampton, CT **Guelph Permeameter Testing - TP-3**

Single	Head	Method ·	- Test 1
--------	------	----------	----------

Tes	t Data and Information					
•	Reservoir		-	Combined		
•	Reservoir Cross-Sectional Area		-	35.22	cm ²	(Provided on Permeameter)
•	Water Head Height	$H_1$	-	5.97	cm	
•	Borehole Radius	а	-	3.2	cm	Assumed slightly larger than 3cm rad. hand auger
•	Soil Texture-Structure Category		-	3		(Table 2)
•	Steady State Rate of Water Level Change	$R_1$	-	0.78	cm/min	(Obtained during testing)
Tes	t Calculations and Results					
•	Microscopic Capillary Length Factor	α*	-	0.12	cm ⁻¹	(Table 2: Based on Soil Texture-Structure Category)
•	Shape Factor	$C_1$	-	0.869		(Table 2: Based on Soil Texture-Structure Category)
•	Volumetric Flow Rate	Q ₁	-	0.4579	cm ³ /sec	(Table 3: One Head, Combined Reservoir)
•	Soil Saturated Hydraulic Conductivity	K _{fs}	-	7.049E-04	cm/sec	(Table 3: One Head, Combined Reservoir)
•	Soil Matrix Flux Potential	$\Phi_{m}$	-	5.874E-03	cm²/sec	(Table 3: One Head, Combined Reservoir)
Sin	gle Head Method - Test 2					
Tes	t Data and Information					
•	Reservoir		-	Combined		
•	Reservoir Cross-Sectional Area		-	35.22	cm ²	(Provided on Permeameter)
•	Water Head Height	H ₂	-	12.38	cm	
•	Borehole Radius	а	-	3.2	cm	Assumed slightly larger than 3cm rad. hand auger
•	Soil Texture-Structure Category		-	3		(Table 2)
	Chandy, Chata Data of Matan					
•	Steady State Rate of Water Level Change	R ₂	-	3.20	cm/min	(Obtained during testing)
• <u>Tes</u>	-	R ₂	-	3.20	cm/min	(Obtained during testing)
• <u>Tes</u>	Level Change	R ₂ α*	-	3.20 0.12	cm/min cm ⁻¹	(Obtained during testing) (Table 2: Based on Soil Texture-Structure Category)
• <u>Tes</u> •	Level Change <u>It Calculations and Results</u> Microscopic Capillary Length	-	-		·	
• <u>Tes</u> •	Level Change <u>It Calculations and Results</u> Microscopic Capillary Length Factor	α*	-	0.12	·	(Table 2: Based on Soil Texture-Structure Category)
• • •	Level Change <u> t Calculations and Results</u> Microscopic Capillary Length Factor Shape Factor	α* C ₂		0.12	cm ⁻¹	(Table 2: Based on Soil Texture-Structure Category) (Table 2: Based on Soil Texture-Structure Category)

• Soil Matrix Flux Potential  $\Phi_{\mathsf{m}}$ 1.340E-02 cm²/sec Test Averages Soil Saturated Hydraulic  ${\rm K}_{\rm fs}$ 1.156E-03 cm/sec ٠ -Conductivity 1.6 in/hour

-

(Table 3: One Head, Combined Reservoir)

Calc. by:

Check by:

### GEI Consultants, Inc. GEI Proj # 2301203- 3.1 Guelph Permeameter Testing

#### Table 2

Soil Texture-Structure Category	α*(cm ⁻¹ )	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{2/a}}{2.081 + 0.121 \binom{H_{2}}{a}}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_{1} = \left(\frac{H_{1/a}}{1.992 + 0.091(H_{1/a})}\right)^{0.683}$ $C_{2} = \left(\frac{H_{2/a}}{1.992 + 0.091(H_{2/a})}\right)^{0.683}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.754}$

Calculation formulas related to shape factor (C). Where  $H_1$  is the first water head height (cm),  $H_2$  is the second water head height (cm),  $\alpha$  is borehole radius (cm) and  $\alpha^*$  is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only  $C_1$  needs to be calculated while for two-head method,  $C_1$  and  $C_2$  are calculated (Zang et al., 1998).

#### Table 3

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}C_{1}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\phi_m = G_3Q_1 - G_4Q_2$

Calculation formulas related to one-head and two-head methods. Where *R* is steady-state rate of fall of water in reservoir (cm/s),  $K_{fs}$  is Soil saturated hydraulic conductivity (cm/s),  $\phi_m$  is Soil matric flux potential (cm²/s),  $a^*$  is Macroscopic capillary length parameter (from Table 2), *a* is Borehole radius (cm),  $H_1$  is the first head of water established in borehole (cm) ,  $H_2$  is the second head of water established in borehole (cm) and *C* is Shape factor (from Table 2).

# Appendix E

In-situ Resistivity Testing Results

GEI Consultants, Inc.

> Tested By: Majid Mahmoodabadi Date: 4/7/23 Location: ER-1 (See Plan)

Orientation: Southwest-Northeast

Weather: Sunny, 60°F

Spa	cing (feet)			Readings		Apparent	
"a"	Potential	Current	Potential (Volts)	Current (mAmp)	Resistivity E-W (Ohms)	Resistivity E-W (Ohm-cm)	Notes
1	0.5	1.5	400	10	1131.7	216,734	High range.
2.5	1.25	3.75	400	10	1359.4	650,852	High range.
5	2.5	7.5	400	10	630.6	603,836	High range.
10	5	15	400	10	185.3	354,871	High range.
20	10	30	400	10	41.3	158,188	High range.
40	20	60	400	10	10.5	80,435	High range.

Tested By: Majid Mahmoodabadi Date: 4/7/23 Location: ER-1 (See Plan) Orientation: Northwest-Southeast Weather: Sunny, 60°F

Spacing (feet)			Readings			Apparent	
"a"	Potential	Current	Potential (Volts)	Current (mAmp)	Resistivity E-W (Ohms)	Resistivity E-W (Ohm-cm)	Notes
1	0.5	1.5	400	10	NA	NA	High range. Resistivity is too high (out of range).
2.5	1.25	3.75	400	10	1028.5	492,424	High range.
5	2.5	7.5	400	10	566.2	542,169	High range.
10	5	15	400	10	164.2	314,462	High range.
20	10	30	400	10	40.3	154,358	High range.
40	20	60	400	10	4.8	36,770	High range.

Tested By: Majid Mahmoodabadi Date: 4/7/23 Location: ER-2 (See Plan) Orientation: Northeast-Southwest Weather: Sunny, 60°F

Spacing (feet)			Readings			Apparent	
"a"	Potential	Current	Potential (Volts)	Current (mAmp)	Resistivity E-W (Ohms)	Resistivity E-W (Ohm-cm)	Notes
1	0.5	1.5	400	10	NA	NA	High range. Resistivity is too high (out of range).
2.5	1.25	3.75	400	10	1511.3	723,578	High range.
5	2.5	7.5	400	10	551.8	528,380	High range.
10	5	15	400	10	162.7	311,589	High range.
20	10	30	400	10	33.0	126,398	High range.
40	20	60	400	10	13.7	104,948	High range.

Tested By: Majid Mahmoodabadi Date: 4/7/23 Location: ER-2 (See Plan) Orientation: Southeast-Northwest Weather: Sunny, 60°F

Spacing (feet)			Readings			Apparent	
"a"	Potential	Current	Potential (Volts)	Current (mAmp)	Resistivity E-W (Ohms)	Resistivity E-W (Ohm-cm)	Notes
1	0.5	1.5	400	10	NA	NA	High range. Resistivity is too high (out of range).
2.5	1.25	3.75	400	10	1178.0	564,001	High range.
6	3	9	400	10	508.3	584,072	High range.
10	5	15	400	10	227.1	434,923	High range.
20	10	30	400	10	47.1	180,404	High range.
40	20	60	400	10	15.5	118,737	High range.



# Appendix F

**Recommended Material Specifications** 

GEI Consultants, Inc.

## Recommended Material Specifications CT BESS CT 8 East Hampton, CT

Per the Geotechnical Report, the native glacial tills found on site are not ideal for compaction as they contain a fairly high percentage of silty fines; however, provided the material can meet the appropriate compaction requirements, does not contain deleterious materials, and is stable under the weight of construction equipment, the material is likely suitable for re-use on site as Structural Fill or Ordinary Fill. We caution that this material will be difficult to near impossible to work if it becomes wet and may require long drying times to obtain the required compaction. As such, careful moisture control will be required to achieve satisfactory compaction. Cobbles and boulders in excess of 4-inches in diameter should be screened out of the native glacial till or crushed to an acceptable size.

Soils to be used as fill imported from off-site should also meet the below gradation requirements. Fill placed under the BESS arrays, the proposed substation, all access roads, and all equipment pads should meet the compaction requirements for Structural Fill. Backfill placed in areas that will not support structural or paved elements should meet the compaction requirements for Ordinary Fill. Proposed borrow materials that fall slightly outside of these specifications may also be suitable for use, subject to review and approval by GEI.

### **Structural Fill**

Structural Fill should consist of hard, durable sand and gravel. It should be free of clay, organic matter, surface coatings, and other deleterious materials. Soil finer than the No. 200 sieve (the "fines") should be nonplastic. Structural Fill shall meet the following gradation requirements:

Sieve Size	Percent Passing by Weight
3 inches	100
1 - ½ inch	55 – 100
No. 4	35 – 85
No. 16	20 – 65
No. 50	5 – 40
No. 200 (fines)	0 – 10

Structural Fill should be compacted in maximum 12-inch-thick, loose lifts to at least 95 percent of the maximum dry density determined in accordance with ASTM D1557 (Modified AASHTO Compaction). The moisture content should be held to within +/- 3 percent of optimum moisture content (as determined by ASTM D1557).

## **Ordinary Fill**

Ordinary fill should consist of hard, durable sand and gravel, free of clay, organic matter, surface coatings, and other deleterious materials. Soil finer than the No. 200 sieve (the "fines") should be nonplastic. Ordinary Fill shall meet the following gradation requirements:

Sieve Size	Percent Passing by Weight
6 inches	100
3 inches	80 – 100
No. 4	20 – 100
No. 200 (fines)	0 – 20

Ordinary fill should be compacted in maximum 12-inch-thick, loose lifts to at least 92 percent of the maximum dry density determined in accordance with ASTM D1557 (Modified AASHTO Compaction). The moisture content should be held to within +/- 3 percent of optimum moisture content (as determined by ASTM D1557).

## **Crushed Stone**

Crushed Stone should consist of a ³/₄-inch size durable crushed rock or durable crushed gravel stone and shall conform to the requirements of the ConnDOT Form 818, Section M.01.01, No. 6. Crushed stone should be compacted with at least four passes of a vibratory compactor.

## **Geotextile Fabric**

Geotextile fabric should be a non-woven fabric, consisting of Mirafi 140N or an approved equivalent product.