

STATE OF CONNECTICUT *CONNECTICUT SITING COUNCIL* Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: <u>siting.council@ct.gov</u> Web Site: portal.ct.gov/csc

VIA ELECTRONIC MAIL

May 19, 2023

Victoria Masse Northeast Site Solutions 420 Main Street, Unit 1, Box 2 Sturbridge, MA 01566-1359 victoria@northeastsitesolutions.com

RE: **PETITION NO. 1569** – Dish Wireless, LLC petition for a declaratory ruling, pursuant to Connecticut General Statutes §4-176 and §16-50k, for proposed modifications to an existing telecommunications facility located at St. Matthew Lutheran Church, 224 Lovely Street, Avon, Connecticut.

Dear Victoria Masse:

The Connecticut Siting Council (Council) requests your responses to the enclosed questions no later than June 9, 2023.

Please submit an original and 15 copies to the Council's office and an electronic copy to <u>siting.council@ct.gov</u>. In accordance with the State Solid Waste Management Plan and in accordance with Section 16-50j-12 of the Regulations of Connecticut State Agencies, the Council requests all filings be submitted on recyclable paper, primarily regular weight white office paper. Please avoid using heavy stock paper, colored paper, and metal or plastic binders and separators. Fewer copies of bulk material may be provided as appropriate.

Please be advised that the original and 15 copies are required to be submitted to the Council's office on or before the June 9, 2023 deadline.

Copies of your responses are required to be provided to all parties and intervenors listed in the service list, which can be found on the Council's website under the "Pending Matters" link.

Any request for an extension of time to submit responses to interrogatories shall be submitted to the Council in writing pursuant to §16-50j-22a of the Regulations of Connecticut State Agencies.

Sincerely,

MuliiRhael

Melanie Bachman Executive Director

MB/rm

Petition No. 1569 Dish Wireless LLC 224 Lovely Street, Avon, Connecticut

Interrogatories May 19, 2023

Notice

1. Referencing Section V, p. 3 and Attachment 7 of the Petition, has the Town of Avon and/or any abutting property owners provided comments to Dish since the Petition filing? If so, please summarize the comments.

No, we have not received any abutting notice responses.

Project Development

- Is the project, or any portion of the project, proposed to be undertaken by state departments, institutions or agencies, or to be funded in whole or in part by the state through any contract or grant?
 No.
- Would the proposed antenna installation at the existing facility be needed for coverage or capacity? What areas in the vicinity of the existing facility would benefit from the proposed installation? This site will provide coverage along Routes 177 and 167 and to nearby residents of Avon, CT.

Existing Facility

4. Referencing Attachment 1 to the Petition, SRR Towers, LLC owns the existing facility. Council records for the existing facility indicate the Certificate was issued to New Cingular Wireless PCS, LLC (AT&T), but there is no record of any subsequent transfer of the Certificate to SRR Towers, LLC in accordance with the requirements of Certificate Condition No. 15. Explain how SRR Towers, LLC acquired the Certificate.

SRR Towers, LLC purchased this facility from AT&T Wireless on March 31, 2022. Please find attached Omnibus assignment and assumption of ground lease.

5. Revise Sheet A-2 (Proposed East Elevation) to include all carriers located on the tower. Please find attached revised plans prepared by Infinigy, dated 7/17/2023.

Proposed Modifications

- 6. Referring to Petition p. 1, define "normal business hours" for construction. No construction restrictions on lease. Will not complete any construction work during Church events or normal hours.
- Petition p. 2 states the canister will extend five feet. Petition p. 3 refers to "the 8-foot replacement of the existing stealth pole." Sheet A-2 shows a canister extension of eight feet. Clarify. This was a typo; the canister will extend a total of 8 feet. Please see attached revised cover letter.
- Is the proposed compound expansion within the existing lease area for the facility? Submit a depiction of the existing facility lease area.
 The total lease area is 50x50. Please find attached Letter of Acknowledgement from the St. Matthew Lutheran Church of Avon.

- 9. How will the proposed equipment platform and radio cabinets be installed? What construction equipment will be used and how will it access the construction area?Dish's equipment will be installed by hand and brought to the site via a towable trailer.
- 10. Referring to Petition p. 2 and Sheet A-1, if the native tree on the north side of the existing compound needs to be removed, would the stump also be removed? What equipment would be required for tree trimming or removal?

The tree would be trimmed or removed by hand. Dish does not usually remove stumps unless leaving would impact our equipment.

11. Will excavation and/or filling be required to accommodate the compound expansion area and swing gate?

The area would be graded, and stone will be brought in to match existing conditions. Stone will be installed over weed barrier mat.

12. Post-construction, how will DISH access the swing gate and radio equipment? What route from the parking area would be used?

Dish will utilize the main gate to the compound to access their equipment. The swing gate being installed by Dish will be used for additional accessibility.

13. Would the landscape plantings along the east and/or west sides of the existing compound fence be removed to facilitate construction and/or post-construction site access? If yes, would the landscape plantings be replaced? Explain.

No, Dish will not be removing existing landscape from the east or west side.

14. Provide photographs of the compound expansion area, construction and tree removal access areas. **Please see attached photos.**

Environmental

15. The record for Docket No. 373 indicates the nearest wetland/watercourse is Roaring Brook, approximately 20 feet east of the site. Would erosion and sedimentation (E&S) controls be installed to protect this resource? If yes, Provide details.

Dish is prepared to install E&S control measures encompassing; the compound, access road and construction staging area. Please see attached plans prepared by Infinigy, dated 7/17/2023.

16. The record for Docket No. 373 indicates the site is within the range of the eastern box turtle (Petition Attachment 2, Council Decision and Order item 2f.) What measures are proposed to reduce potential construction related impacts to the eastern box turtle?

Although the Eastern Box Turtle was not identified on the Connecticut Natural Diversity Data Base, the possibility exists for the Eastern Box Turtle to be located at the Project Site.

Dish will work with an Environmental consultant prior to construction. Additionally, work crews will be notified that if the Eastern Box Turtle is located at the Project Site, work will cease until the turtle has cleared the area.

Provide a construction site plan that depicts E&S controls, eastern box turtle mitigation measures, grading, construction site access, vegetation removal/trimming and restoration.
 Please see page A-1.2 of the attached plans prepared by Infinigy, dated 7/17/2023.

Public Safety

- Identify the applicable safety standards and/or codes for the proposed equipment, machinery or technology that would be used or operated at the facility.
 We will be following all building codes, OSHA, and FCC requirements.
- 19. Would any lighting be installed on Dish's equipment? If so, what would it be used for? Would it be on all the time, have a motion sensor or work on a preset timer?No, Dish will not be installing any lighting.
- 20. Provide a detailed structural analysis that includes all carrier equipment on the existing tower in addition to the proposed equipment. The structural analysis provided as Petition Attachment 4 refers to a previous structural analysis dated January 27, 2023 that was not included. Please see attached Structural Analysis prepared by BST Management LLC, dated 6/22/2023.
- 21. Referring to Sheet A-3, "Platform Equipment Plan," a proposed generator plug is depicted. Would DISH obtain emergency backup power from a temporary mobile generator? If power is lost to DISH's equipment, can DISH still provide wireless services from the site through a network sharing agreement with another wireless carrier located at the site?

We will be utilizing our network sharing agreements in the short-term, but we reserve the right to use a portable generator in the future.

22. Provide a rigorous cumulative far-field Radio Frequency Power Density Analysis that accounts for Dish's proposed equipment and all other entities' equipment on the tower, accounting for a 6-foot tall person at ground level and the actual antenna patterns for the facility with a cumulative %MPE at or below 100%. Identify the distance from the tower with the highest cumulative %MPE. Please find attached revised Radio Frequency report prepared by Fox Hill Telecom, dated

Please find attached revised Radio Frequency report prepared by Fox Hill Telecom, (12/30/2022.

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

IN KE.	•	
	:	
A PETITION FOR A DECLARATORY	:	PETITION NO.
RULING ON THE NEED TO OBTAIN A	:	
SITING COUNCIL CERTIFICATE FOR THE	:	
PROPOSED MODIFICATION OF AN	:	
EXISTING WIRELESS	:	
TELECOMMUNICATIONS FACILITY AT	:	
224 LOVELY STREET, AVON, CONNECTICUT	:	September 6, 2023

PETITION FOR A DECLARATORY RULING: INSTALLATION HAVING NO SUBSTANTIAL ADVERSE ENVIRONMENTAL EFFECT

I. Introduction

NIDE.

Pursuant to Sections 16-50j-38 and 16-50j-39 of the Regulations of Connecticut State Agencies ("R.C.S.A."), Dish Wireless LLC ("Dish") hereby petitions the Connecticut Siting Council (the "Council") for a declaratory ruling ("Petition") that no Certificate of Environmental Compatibility and Public Need ("Certificate") is required under Section 16-50k(a) of the Connecticut General Statutes ("C.G.S.") for the modification of an existing wireless telecommunications facility at 224 Lovely Street, Avon, Connecticut (the "Existing Facility").

II. Existing Facility

The Existing Facility is located on an approximately 5.24-acre parcel owned by St Matthews Lutheran Church of Collinsville. The Facility consists of a 110-foot stealth monopole tower. Attachment 1 contains the owner's authorization permitting Dish to file this Petition. The Facility was originally approved for use by the Council on October 7, 2010, Docket No. 373A as documented in Attachment 2.

III. Dish Facility

Dish's proposed modification to its facility is illustrated on the plans submitted as **Attachment 3**. Dish proposes to replace the existing 36inch stealth canister with a new 48inch canister from approximately the 63-foot level to the 71-foot level of the existing stealth monopole. Additionally, Dish will expand the compound an additional 87.60sqft (14.6x6ft) which includes a proposed gate to easily access the 5x7 steel platform that will hold the proposed cabinets. The proposed new fence will match the existing compound fence. No Generator or backup power is proposed at this time. Installation of Dish's facility will take approximately three (3) weeks to complete. Construction will occur during normal business hours, or as allowed by the tower and/or property owner.

Dish Planned Installation:

Install New:

(3) Commscope FVV-65B-R3 antenna @ 67ft RAD
(6) Commscope CDX623T-DS-T Diplexers @ 60ft RAD
(12) 0.875" Coax

Installation of Dish's facility will cost approximately \$48,000.

Dish has confirmed that the Modified Facility is capable of supporting the additional antennas and other changes to the tower mounted equipment, as documented in the Structural Analysis Report annexed hereto as **Attachment 4**.

IV. The Proposed Modification Will Not Have A Substantial Adverse Environmental Effect

1. <u>Physical Environmental Effects</u>

The modification of Dish's Facility will not involve a significant alteration to the physical and environmental characteristics of the Property. One native tree will be removed or cut back to provide space for the proposed gate installation. No on-site or off-site wetlands or watercourses will be impacted by the proposed facility expansion.

2. <u>Visual Effects</u>

Given the overall height of the existing stealth cannister is 110-feet AGL, Dish's proposed cannister extension of <u>8-feet</u> at the 67-foot RAD would have a minimal visual impact. The extended cannister will be disguised in the same manner as the existing cannister structure and will have a minimal visual impact when viewed from the public right-of-way or adjacent private properties.

3. FCC Compliance

Radio frequency ("RF") emissions resulting from Dish's proposed modification of the Existing Facility will be well below the standards adopted by the Federal Communications Commission ("FCC"). Included in **Attachment 6** is a Radio Frequency Emissions Analysis Report prepared by Fox Hill Telecom. This report confirms that the modified facility will operate well within the RF emission standards established by the FCC.

V. Notice to the Municipality, Property Owner and Abutting Landowners

On April 26, 2023, a copy of this Petition was sent to Brandon Robertson, Town Manager and Hiram Peck III, AICP, CFM, ZEO, Director of Planning and Community Development for the Town of Avon. A notice of Dish's intent to file this Petition was also sent to the owners of land that may be considered to abut the Property or they are within 200-feet. Included in **Attachment 5** is a sample abutter's letter and the list of those abutting landowners who were sent notice.

VI. Conclusion

Based on the information provided above, the Petitioners respectfully requests that the Council issue a determination in the form of a declaratory ruling that the 8-foot replacement of the existing stealth pole and the new facility compound at the Property will not have a substantial adverse environmental effect and does not require the issuance of a Certificate of Environmental Compatibility and Public Need pursuant to § 16-50k of the General Statutes.

Respectfully submitted,

Victoria Masse Northeast Site Solutions Agent for Dish Wireless (860) 306- 2326 victoria@northeastsitesolutions.com

Attachments

Cc: Brandon Robertson, Town Manager Avon Town Hall 60 West Main Street Avon, CT 06001

Hiram Peck III, Director of Planning and Community Development Avon Town Hall 60 West Main Street Avon, CT 06001

		SITE INF	ORMATION	Γ
		PROPERTY OWNER: ADDRESS:	ST. MATTHEWS LUTHERAN CHURCH 224 LOVELY STREET AVON, CT 06001	Ā
		TOWER TYPE:	STEALTH CANNISTER	
		TOWER CO SITE ID:	CT-1239	π
	SCOPE OF WORK	TOWER APP NUMBER:	TBD	
	THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PARTS OR ENGINEER APPROVED FOLINAIENT, CONTRACTOR SHALL VERIEV ALL NEEDED FOLIPMENT TO PROVIDE A FUNCTIONAL STE-	COUNTY:	HARTFORD	s
WIFEIESS	THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:	LATITUDE (NAD 83):	41° 47' 58.0" N 41.799452 N	
	INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) INSTALL PROPOSED JUMPERS INSTALL (12) PROPOSED JUMPERS INSTALL (12) PROPOSED JOAC CARLES (96FT LENGTH APPROX.)	LONGITUDE (NAD 83):	-72°53'16.3"W -72.887874W	
DISH Wireless L.L.C. SITE ID:	INSTALL (6) DIPLEXERS (2 PER SECTOR) INSTALL (1) PROPOSED CANISTER (DESIGNED BY RAYCAP) CODING SCORE OF WORK	ZONING JURISDICTION:	CT SITING COUNSEL	s
BOBDL00030A	INSTALL (1) PROPOSED METAL PLATFORM INSTALL (1) PROPOSED METAL PLATFORM INSTALL (1) PROPOSED ICE BRIDGE	ZONING DISTRICT:	R30	c
	 INSTALL (1) PROPOSED PPC CABINET INSTALL (1) PROPOSED EQUIPMENT CABINET INSTALL (6) PROPOSED RRUS (2 PER SECTOR, GROUND MOUNTED ON H-FRAME) 	PARCEL NUMBER:	3060224	
DISH Wireless L.L.C. SITE ADDRESS:	INSTALL (6) DIPLEXERS INSTALL (1) PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT	OCCUPANCY GROUP:	U	R
224 LOVELY STREET	INSTALL (1) PROPOSED TELCO-FIBER BOX INSTALL (1) PROPOSED GPS UNIT INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED)	CONSTRUCTION TYPE:	V—В	
AVON CT 06001	INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED) INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED) INSTALL (1) PROPOSED METER SOCKET (VERIFY IF EXISTING METER SOCKET WITH DISCONNECT CAN BE USED)	POWER COMPANY:	EVERSOURCE	
	• INSTALL (I) PROPOSED H-FRAME	TELEPHONE COMPANY:	CROWN FIBER	
CONNECTICUT CODE OF COMPLIANCE	SITE PHOTO		DIREC	TIC
BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES: <u>CODE TYPE</u> <u>CODE</u> BUILDING 2021 IBC OF THE 2022 CONNECTICUT STATE BUILDING CODE MECHANICAL 2021 IMC OF THE 2022 CONNECTICUT STATE BUILDING CODE ELECTRICAL 2020 NFPA 70 OF THE 2022 CONNECTICUT STATE BUILDING CODE		CT-10 / HOPMEADOW HILL RD, TURN RIGHT (RD, ROAD NAME CHANG / LOVELY ST, ARRIVE /	TARU MASSAGU SI, TURN RIGHT ST, TURN RIGHT ONTO CT-167 ONTO CANTON RD, KEEP RIGHT 1 SES TO WASHBURN RD, BEAR LEI AT, 224 LOVELY STREET, AVON C	/ WE TO GE FT OF
SHEET INDEX			VICINI	ΤY
SHEET NO. SHEET TITLE			Overly St	1
			to a	
A-1 OVERALL AND ENLARGED SHE PLAN A-1.1 SITE PLAN AND ABUTERS A.1.2 CEDINETITION DADRED DIAN			South and the second second	
A=1.2 SEDIMENTATION BARRIER NOTES A=1.4 SEDIMENTATION BARRIER NOTES		9		
A-2 ELEVATION, ANTENNA LAYOUT AND SCHEDULE A-3 EQUIPMENT PLATFORM AND H-FRAME DETAILS		4		
A-4 EQUIPMENT DETAILS		a Bridgewa		1
A-5 EQUIPMENT DETAILS A-6 EQUIPMENT DETAILS			COP. Dr	
E-1 ELECTRICAL/FIBER ROUTE PLAN AND NOTES	UNDERGROUND SERVICE ALERT CBYD 811	st I	177 St. Matthew Lutheran Chur	/
E-2 ELECTRICAL DETAILS E-3 ELECTRICAL ONE-LINE & PANEL SCHEDULE	(800) 922-4455 WWW.CBYD.COM	ainger	SITE LOCATION	
G-1 GROUNDING PLANS AND NOTES	CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION	2 ^{0°}	Greenwood Dr	
G-2 GROUNDING DETAILS G-3 GROUNDING DETAILS	GENERAL NOTES			Ρ,
RF-1 RF CABLE COLOR CODE	THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED			/
CN-1 LEGEND AND ABBREVIATIONS	FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.		D V	
GN-Z KF SIGNAGE GN-3 GENERAL NOTES				
GN-4 GENERAL NOTES GN-5 GENERAL NOTES	11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED			
ADDL. PROPOSED CANISTER DESIGN BY RAYCAP	CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.	NO SCALE		_
				_

PROJECT DIRECTORY	
APPLICANT: DISH Wireless L.L.C. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120	dish
TOWER OWNER: SRR TOWERS	5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
SITE DESIGNER: INFINIGY 2500 W. HIGGINS RD. STE. 500 HOFFMAN ESTATES, IL 60169 (847) 648–4068	
SITE ACQUISITION: DAVID GOODFELLOW DAVID.GOODFELLOW@DISH.COM (860) 573-2758 CONSTRUCTION MANAGER: CHAD WILCOX	Turnkey Wirdess Development
(860) 634-9600 RF ENGINEER: DIPESH PARIKH DIPESH.PARIKHØDISH.COM (312) 929-9086	FROM ZERO TO INFINITGI The solutions are encless 2500 w. HIGGINS RD. SUITE 500 I HOFFANN ESTATES, IL 60169 PHONE: 847-648-4068 I FAX: 518-690-0793 www.INFINIGY.com
	DE CONVECTION
CTIONS	HEN *
AIRPORT: ONTO MASSACO ST, TURN RIGHT ONTO US-202 W / / WEST ST, TURN LEFT TO STAY ON CT-167 / BUSHY TO GET ONTO WILDWOOD RD, BEAR LEFT ONTO NOTCH EFT ONTO LAWTON RD, ROAD NAME CHANGES TO CT-177 CT 06001.	9/7/23 9/7/20 9/
	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
TY MAP	DRAWN BY: CHECKED BY: APPROVED BY:
	RFDS REV #: N/A
ad Spring Rd	CONSTRUCTION DOCUMENTS
	0 07/07/22 ISSUED FOR CONSTRUCTION
	1 07/13/22 ISSUED FOR CONSTRUCTION
	3 01/17/23 ISSUED FOR CONSTRUCTION
i i i i i i i i i i i i i i i i i i i	4 03/13/23 ISSUED FOR CONSTRUCTION
	5 05/15/23 UPDATED SA & MA INFORMATION
	7 09/07/23 ISSUED FOR CONSTRUCTION
	A&E PROJECT NUMBER
AND	2039-Z5555C
2 530 ⁰	DISH Wireless L.L.C. PROJECT INFORMATION
Saxon Woods	BOBDL00030A
i i i i i i i i i i i i i i i i i i i	224 LOVELY STREET AVON, CT 06001
unostante Colo danno e Cold	SHEET TITLE TITLE SHEET
Allin	SHEET NUMBER
	T-1

GRADING & EXCAVATING NOTES:

- 1. ALL EXCAVATIONS ON WHICH CONCRETE IS TO BE PLACED SHALL BE SUBSTANTIALLY HORIZONTAL ON UNDISTURBED AND UNFROZEN SOIL AND BE FREE FROM LOOSE MATERIAL AND EXCESS GROUNDWATER. DEWATERING FOR EXCESS GROUNDWATER SHALL BE PROVIDED IF REQUIRED.
- 2. CONCRETE FOUNDATIONS SHALL NOT BE PLACED ON ORGANIC MATERIAL. IF SOUND 2. SOIL IS NOT REACHED AT THE DESIGNATED EXCAVATION DEPTH, THE UNSATISFACTORY SOIL SHALL BE EXCAVATED TO ITS FULL DEPTH AND EITHER BE REPLACED WITH MECHANICALLY COMPACTED GRANULAR MATERIAL OR THE EXCAVATION BE FILLED WITH CONCRETE OF THE SAME QUALITY SPECIFIED FOR THE FOUNDATION.
- 3. ANY EXCAVATION OVER THE REQUIRED DEPTH SHALL BE FILLED WITH EITHER MECHANICALLY COMPACTED GRANULAR MATERIAL OR CONCRETE OF THE SAME QUALITY SPECIFIED FOR THE FOUNDATION. CRUSHED STONE MAY BE USED TO STABILIZE THE BOTTOM OF THE EXCAVATION. STONE, IF USED, SHALL NOT BE USED AS COMPILING CONCRETE THICKNESS.
- 4. AFTER COMPLETION OF THE FOUNDATION AND OTHER CONSTRUCTION BELOW GRADE, AND BEFORE BACKFILLING, ALL EXCAVATIONS SHALL BE CLEAN OF UNSUITABLE MATERIAL SUCH AS VEGETATION, TRASH, DEBRIS, AND SO FORTH.
- 5. -USE APPROVED MATERIALS CONSISTING OF EARTH, LOAM, SANDY CLAY, SAND
 -BE FREE FROM CLODS OR STONES OVER 2-1/2" MAXIMUM DIMENSIONS
 -BE PLACED IN 6" LAYERS AND COMPACTED TO 95% STANDARD PROCTOR EXCEPT IN GRASSED/LANDSCAPED AREAS, WHERE 90% STANDARD PROCTOR.
- 6. REMOVE ALL VEGETATION, TOPSOIL, DEBRIS, WET AND UNSATISFACTORY SOIL MATERIALS, OBSTRUCTIONS, AND DELETERIOUS MATERIALS FROM GROUND SURFACE PRIOR TO PLACING FILLS. PLOW, STRIP, OR BREAK UP SLOPED SURFACES STEEPER THAN THAN 1 VERTICAL TO 4 HORIZONTAL SO FILL MATERIAL WILL BOND WITH EXISTING SURFACE. WHEN SUBGRADE OR EXISTING GROUND SURFACE TO RECEIVE FILL HAS A DENSITY LESS THAN THAT REQUIRED FOR FILL, BREAK UP GROUND SURFACE TO DEPTH REQUIRED, PULVERIZE, MOISTURE-CONDITION OR AERATE SOIL AND RECOMPACT TO REQUIRED DENSITY.
- 7. PROTECT EXISTING GRAVEL SURFACING AND SUBGRADE IN AREAS WHERE EQUIPMENT LOADS WILL OPERATE. USE PLANKING OR OTHER SUITABLE MATERIALS DESIGNED TO SPREAD EQUIPMENT LOADS. REPAIR DAMAGE TO EXISTING GRAVEL SURFACING OR SUBGRADE WHERE SUCH DAMAGE IS DUE TO THE CONTRACTOR'S OPERATIONS. DAMAGED GRAVEL SURFACING SHALL BE RESTORED TO MATCH THE ADJACENT UNDAMAGED GRAVEL SURFACING AND SHALL BE OF THE SAME THICKNESS.
- 8. REPLACE EXISTING GRAVEL SURFACING ON AREAS FROM WHICH GRAVEL SURFACING IS REMOVED DURING CONSTRUCTION OPERATIONS. GRAVEL SURFACING SHALL BE REPLACED TO MATCH EXISTING ADJACENT GRAVEL SURFACING AND SHALL BE OF THE SAME THICKNESS. SURFACES OF GRAVEL SURFACING SHALL BE FREE FROM CORRUGATIONS AND WAVES. EXISTING GRAVEL SURFACING MAY BE EXCAVATED SEPARATELY AND REUSED IF INJURIOUS AMOUNTS OF EARTH, ORGANIC MATTER, OR OTHER DELETERIOUS MATERIALS ARE REMOVED PRIOR TO REUSE. FURNISH ALL ADDITIONAL GRAVEL RESURFACING MATERIAL AS REQUIRED. BEFORE GRAVEL SURFACING IS REPLACED, SUBGRADE SHALL BE GRADED TO CONFORM TO REQUIRED SUBGRADE ELEVATIONS, AND LOOSE OR DISTURBED MATERIALS SHALL BE THOROUGHLY COMPACTED. DEPRESSIONS IN THE SUBGRADE SHALL BE FILLED AND COMPACTED WITH APPROVED SELECTED MATERIAL. GRAVEL SURFACING MATERIAL MAY BE USED FOR FILLING DEPRESSIONS IN THE SUBGRADE, SUBJECT TO ENGINEER'S APPROVAL.

- DAMAGE TO EXISTING STRUCTURES AND UTILITIES RESULTING FROM CONTRACTOR'S NEGLIGENCE SHALL BE REPAIRED/REPLACED TO OWNER'S SATISFACTION AT CONTRACTOR'S EXPENSE
- 10. CONTRACTOR SHALL COORDINATE THE CONSTRUCTION SCHEDULE WITH PROPERTY OWNER SO AS TO AVOID INTERRUPTIONS TO PROPERTY OWNER'S OPERATIONS.
- 11. ENSURE POSITIVE DRAINAGE DURING AND AFTER COMPLETION OF CONSTRUCTION.
- 12. ALL CUT AND FILL SLOPES SHALL BE MAXIMUM 2 HORIZONTAL TO 1 VERTICAL.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR MONITORING SITE VEHICLE TRAFFIC AS TO NOT ALLOW VEHICLES LEAVING THE SITE TO TRACK MUD ONTO PUBLIC STREETS. THE CONTRACTOR IS RESPONSIBLE FOR CLEANING PUBLIC STREETS DUE TO MUDDY VEHICLES LEAVING THE SITE.

GENERAL EROSION & SEDIMENT CONTROL NOTES:

- 1. THE SOIL EROSION AND SEDIMENT CONTROL MEASURES AND DETAILS AS SHOWN HEREIN AND STIPULATED WITHIN STATE STANDARDS SHALL BE FOLLOWED AND INSTALLED IN A MANNER SO AS TO MINIMIZE SEDIMENT LEAVING THE SITE.
- 2. PRIOR TO COMMENCING LAND DISTURBANCE ACTIVITY, THE LIMITS OF LAND DISTURBANCE SHALL BE CLEARLY AND ACCURATELY DEMARCATED WITH STAKES, RIBBONS, OR OTHER APPROPRIATE MEANS.
- 3. EROSION CONTROL DEVICES SHALL BE INSTALLED BEFORE GROUND DISTURBANCE OCCURS. THE LOCATION OF SOME OF THE EROSION CONTROL DEVICES MAY HAVE TO BE ALTERED FROM SHOWN ON THE APPROVED PLANS IF DRAINAGE PATTERNS DURING CONSTRUCTION ARE DIFFERENT FROM THE FINAL PROPOSED DRAINAGE PATTERNS. IT IS THE CONTRACTOR'S RESPONSIBILITY TO ACCOMPLISH EROSION CONTROL FOR ALL DRAINAGE PATTERNS CREATED AT VARIOUS STAGES DURING CONSTRUCTION. ANY DIFFICULTY IN CONTROLLING EROSION DURING ANY PHASE OF CONSTRUCTION SHALL BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 4. THE LOCATION OF SOME OF THE EROSION CONTROL DEVICES MAY HAVE TO BE ALTERED FROM THAT SHOWN ON THE PLANS IF DRAINAGE PATTERNS DURING CONSTRUCTION ARE DIFFERENT FROM THE FINAL PROPOSED DRAINAGE PATTERNS. ANY DIFFICULTY IN CONTROLLING EROSION DURING ANY PHASE OF CONSTRUCTION SHALL BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR SHALL MAINTAIN ALL EROSION CONTROL MEASURES UNTIL PERMANENT VEGETATION HAS BEEN ESTABLISHED. CONTRACTOR SHALL CLEAN OUT ALL SEDIMENT PONDS WHEN REQUIRED BY THE ENGINEER OR THE LOCAL JURISDICTION INSPECTOR. CONTRACTOR SHALL INSPECT EROSION CONTROL MEASURES AT THE END OF EACH WORKING DAY TO ENSURE MEASURES ARE FUNCTIONING PROPERLY.
- 6. THE CONTRACTOR SHALL REMOVE ACCUMULATED SILT WHEN THE SILT IS WITHIN 12" OF THE TOP OF THE SILT FENCE.
- 7. FAILURE TO INSTALL, OPERATE OR MAINTAIN ALL EROSION CONTROL MEASURES WILL RESULT IN ALL CONSTRUCTION BEING STOPPED ON THE JOB SITE UNTIL SUCH MEASURES ARE CORRECTED.
- 8. SILT BARRIERS TO BE PLACED AT DOWNSTREAM TOE OF ALL CUT AND FILL SLOPES.

CONTINUED

MULCHING

- 9. ALL CUT AND FILL SLOPES MUST BE SURFACED ROUGHENED AND VEGETATED WITHIN SEVEN (7) DAYS OF THEIR CONSTRUCTION.
- 10. CONTRACTOR SHALL REMOVE ALL EROSION & SEDIMENT CONTROL MEASURES AFTER COMPLETION OF CONSTRUCTION AND ESTABLISHMENT OF PERMANENT GROUND COVER.
- 11. THE ESCAPE OF SEDIMENT FROM THE SITE SHALL BE PREVENTED BY THE INSTALLATION OF EROSION CONTROL MEASURES AND PRACTICES PRIOR TO, OR CONCURRENT WITH, LAND-DISTURBING ACTIVITIES.

SEEDING GUIDELINES:

FINAL STABILIZATION OF ALL DISTURBED AREAS, UNLESS OTHERWISE NOTED, SHALL BE LOAMED AND SEEDED. LOAM SHALL BE PLACED AT A MINIMUM COMPACTED DEPTH OF 4". RECOMMENDED SEEDING DATES FOR PERMANENT VEGETATION SHALL BE BETWEEN JUNE 15 THROUGH AUGUST 1 AND SEPTEMBER 15 THROUGH OCTOBER 15. TEMPORARY VEGETATIVE MEASURES SHALL CONSIST OF AN ANNUAL OR PERENNIAL RYE GRASS WITH RECOMMENDED SEEDING DATES BEING FROM JUNE 1 THROUGH AUGUST 15 AND SEPTEMBER 30 THROUGH NOVEMBER 30.

EVALUATE PROPOSED COVER MATERIAL

BEFORE SPREADING COVER MATERIAL OVER THE DESIGNATED AREA, OBTAIN A REPRESENTATIVE SOIL SAMPLE AND SUBMIT TO A REPUTABLE SOIL TESTING LABORATORY FOR CHEMICAL AND PHYSICAL ANALYSIS. THE PRELIMINARY TEST IS NECESSARY TO DETERMINE THE REQUIRED INORGANIC AND/OR ORGANIC AMENDMENTS THAT ARE NEEDED TO ASSIST IN ESTABLISHING THE SEED MIXTURE IN AN ENVIRONMENTALLY AND ECONOMICALLY SOUND MANNER. THE RESULTS WILL GIVE THE COVER MATERIAL CHARACTERISTICS SUCH AS pH AND FERTILIZATION NEEDS. THESE RESULTS SHALL BE KEPT ON—SITE B THE CONTRACTOR AND AVAILABLE FOR 3. REVIEW BY THE COUNTY.

SEED BED PREPARATION

PROPOSED COVER MATERIAL SHOULD BE SPREAD EVENLY OVER THE SITE AREA IN A MINIMUM 4" LIFT VIA BULLDOZER/BUCKET LOADER. USING THE INFORMATION FROM THE SOIL ANALYSIS, CAREFULLY CALCULATE THE QUANTITIES OF LIMESTONE AND PRE-PLANT FERTILIZER NEEDED PRIOR TO APPLYING. PRE-PLANT AMENDMENTS CAN BE APPLIED WITH A BROADCAST AND/OR DROP SEEDER AND INCORPORATED WITH AN OFFSET DISK, YORK RAKE, AND/OR HAND RAKE. AFTER INCORPORATION THE PRE-PLANT SOIL AMENDMENTS, THE SEED BED SHOULD BE SMOOTH AND FIRM PRIOR TO SEEDING. THE FOLLOWING SEED MIXTURES SHALL BE USED AS NOTED:

SEED MIXTURE

SPECIES/VARIETY	<u>LBS/ACRE</u>
CREEPING RED FESCUE	20
KENTUCKY BLUEGRASS	20
PERENNIAL RYEGRASS	5

SEED TIME AND METHOD

THE PREFERRED TIME FOR SEEDING THE COOL SEASON MIXTURE IS LATE SUMMER. SOIL AND AIR TEMPERATURES ARE IDEAL FOR SEED GERMINATION AND SEEDING GROWTH. WEED COMPETITION IS REDUCED BECAUSE SEEDS OF MANY WEED SPECIES GERMINATE EARLIER IN THE GROWING SEASON. ADDITIONALLY, HERBICIDE USE IS GREATLY REDUCED. HOWEVER, SEEDING MAY BE DONE AT ANY OF THE ABOVE NOTED TIMES. NEWLY SEEDED AREAS SHOULD BE MULCHED TO INSURE ADEQUATE MOISTURE FOR SUCCESSFUL TURF ESTABLISHMENT AND TO PROTECT AGAINST SURFACE MOVEMENT OF SEDIMENT-BOUND AGROCHEMICALS AND SOIL EROSION. IF MULCHING PROCEDURES ARE NOT SPECIFIED ON PLANS, APPLY GOOD QUALITY STRAW OR HAY AT A RATE OF 2 BALES/1000 SQ. FT. OTHER COMMERCIALLY AVAILABLE MULCHES CAN BE USED.

CONSTRUCTION NOTES FOR FABRICATED SILT FENCE

- WOVEN WIRE FENCE TO BE FASTENED SECURELY FENCE POSTS WITH WIRE TIES OR STAPLES.
- 2. FILTER CLOTH TO BE FASTENED SECURELY TO WOVEN WIRE FENCE WITH TIES SPACED EVERY 24" AT TOP AND MID SECTION.
- 3. WHEN TWO SECTIONS OF FILTER CLOTH ADJOIN EACH OTHER THEY SHALL BE OVER-LAPPED BY SIX INCHES AND FOLDED.
- 4. MAINTENANCE SHALL BE PERFORMED AS NEEDED AND MATERIAL REMOVED WHEN "BULGES" DEVELOP IN THE SILT FENCE.
- 5. ALL SILT FENCE MATERIALS MUST BE LISTED ON THE CURRENT STATES. D.O.T. QUALIFIED PRODUCTS LIST.

POSTS: STEEL EITHER T OR U TO TYPE.

FENCE: WOVEN WIRE, 14 GA. 6" MAX. MESH OPENING.

FILTER CLOTH: FILTER X, MIRAFI 100X' STABILINKA T140N OR APPROVED EQUAL.

PREFABRICATED UNIT: GEOFAB, ENVIROFENCE OR APPROVED EQUAL.

NOTES

CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.

ANTENNA AND MW DISH SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS

. EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY.

DIPLEXERS TO BE GROUND MOUNTED ON THE PROPOSED ICE BRIDGE POST.

. SEE MOUNT ANALYSIS DATED 03/24/2023 BY INFINIGY

FOR ADDITIONAL INFORMATION ON THE PROPOSED CANISTER DESIGN, SEE ADDL. SHEETS AT THE END AND SEE VECTOR ENGINEERS STRUCTURAL CALCULATIONS DATED 05/02/2022

SEE STRUCTURAL ANALYSIS BY CELLSITE SOLUTIONS, LLC DATED 04/10/23. CONTRACTOR TO REFER TO STRUCTURAL ANALYSIS PRIOR TO CONSTRUCTION.

2"9"6"3"0 ~

1"=1'-0"						
		_				
	TRANSMISSION CABLE					
RAD CENTER	FEED LINE TYPE AND LENGTH					

67'–0"	
67'-0"	(12) 7/8" COAX (96' LONG)
67'–0"	

A-2

3

NO SCALE

NOTES			
CURRENT CARRYING CONDUCTORS 80% PER 2014/17 NEC TABLE 3) FOR UL1015 WIRE.	EACH, SHALL AI 10.15(B)(3)(a)	PPLY OR	
15A-20A/1P BREAKER: 0.8 x 3 25A-30A/2P BREAKER: 0.8 x 4 35A-40A/2P BREAKER: 0.8 x 5 45A-60A/2P BREAKER: 0.8 x 7	DA = 24.0A DA = 32.0A 5A = 44.0A 5A = 60.0A		
PER NEC CHAPTER 9, TABLE 4, 22 SQ. IN AREA 213 SQ. IN AREA 316 SQ. IN AREA 307 SQ. IN AREA	ARTICLE 358.		5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
CONDUCTORS (1 CONDUIT): USIN	IG THWN—2, CU		
0211 SQ. IN X 2 = 0.0422 SQ. 0211 SQ. IN X 1 = 0.0211 SQ. = 0.0633 SQ.	IN IN <ground< td=""><td></td><td></td></ground<>		
TE TO HANDLE THE TOTAL OF (3) INDICATED ABOVE.	WIRES,		NSS NORTHE
0266 SQ. IN X 4 = 0.1064 SQ.	IN		
0082 SQ. IN X 1 = 0.0082 SQ. = 0.1146 SQ.	IN <bare gro<="" td=""><td>UND</td><td>FROM ZERO TO INFINIGY</td></bare>	UND	FROM ZERO TO INFINIGY
ATE TO HANDLE THE TOTAL OF (5 INDICATED ABOVE. DNDUIT): USING THWN, CU.	5) WIRES,		the solutions are encless 2500 W. HigGINS RD. SUITE 500 HOFFMAN ESTATES, IL 60169 PHONE: 847-648 - 4068 FAX: 518-690-0793 WWW.INFINIGY.COM
0.2679 SQ. IN X 3 = 0.8037 SQ. IN X 1 = 0.0507 SQ. IN X 1 = 0.0507 SQ.). IN). IN <ground< td=""><td></td><td></td></ground<>		
= 0.8544 SG	. IN		TE OF CONVECTION
ADEQUATE TO HANDLE THE TOTA INDICATED ABOVE.	L OF (4) WIRES	•	OPTICAL CUT
			THE AND
			No. 23544 9/7/23
			CENSED WITH
			MAL EN MAL
	NO SCALE	1	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
			DRAWN BY: CHECKED BY: APPROVED BY:
			RCD SS CJW
			RFDS REV #: N/A
			CONSTRUCTION DOCUMENTS
			REV DATE DESCRIPTION 0 07/07/22 ISSUED FOR CONSTRUCTION
			1 07/13/22 ISSUED FOR CONSTRUCTION 2 11/29/22 ISSUED FOR CONSTRUCTION
			3 01/17/23 ISSUED FOR CONSTRUCTION
			4 03/13/23 ISSUED FOR CONSTRUCTION 5 05/15/23 UPDATED SA & MA INFORMATION
			6 05/31/23 ISSUED FOR CONSTRUCTION
			7 09/07/23 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER
			2039-Z5555C
			DISH Wireless L.L.C. PROJECT INFORMATION
			BOBDL00030A
			AVON, CT 06001
			& PANEL SCHEDULE
			F_3
	NO SCALE	3	

<u>S</u>	NO SCALE	3
----------	----------	---

	 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GF BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHER WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE SHALL BE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT AL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BC THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AS REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN) 	Round Mic Larger. L Ipound Iductor Dlted on Tor. S Iers).		EXTERNAL TOOTHED S/8" DIA x1 1/2" S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT UIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DR INSULATION AGAINST THE DR BARREL		EXTERNAL INSPECTION WINDOW IN BARREL, REQUIRED FOR ALL INTERIOR TWO-HOLE CONNECTORS S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT UNDOW IN BARREL, REQUIRED FOR ALL INTERIOR TWO-HOLE CONNECTORS S/S FLAT UNDOW IN S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING
Γ	TYPICAL GROUNDING NOTES	NO SCALE	1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO HO
	NOTE: MINIMUM OF 3 THREADS TO BE VISIBLE (TYP) 2 HOLE LONG BARREL TINNED SOLID COPPER LUG (TYP) TIN COATED SOLID COPPER BUS BAR COPPER BUS BAR COPPER BUS BAR COPPER BUS BAR	(TYP) Washer (TYP) Vasher (TYP) Vasher (TYP) YP)					
F	LUG DETAIL	NO SCALE	4	•	NO SCALE	5	
	<u>NOT_USED</u>	NO SCALE	7		NO SCALE	8	

RF JUMPER COLOR CODING	3/4" TAPE WIDTHS WITH 3/4" SPACING			
LOW–BAND RRH – (600MHz N71 BASEBAND) + (850MHz N26 BAND) + (700MHz N29 BAND) – OPTIONAL PER MARKET	ALPHA RRH BETA RRH PORT 1 PORT 2 PORT 3 PORT 4 + SLANT + SLANT + SLANT + SLANT + SLANT RED RED RED RED RED BLUE BLUE BLUE BLUE BLUE GREEN GREEN GREEN			LOW BANDS (N71-N28) OPTIONAL - (N29) ORANGE
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	ORANGE ORANGE RED ORANGE ORANGE BLUE BLUE ORANGE ORANGE GREEN WHITE (1) PORT ORANGE ORANGE ORANGE WHITE (1) PORT ORANGE ORANGE ORANGE ORANGE ORANGE ORANGE WHITE (1) PORT ORANGE ORANGE WHITE (1) PORT ORANGE WHITE (1) PORT WHITE WHITE			CBRS TECH (3 GHz) YELLOW
MID-BAND RRH – (AWS BANDS N66+N70)	RED RED RED BLUE BLUE BLUE BLUE GREEN GREEN GREEN GREEN PURPLE PURPLE RED RED PURPLE PURPLE BLUE BLUE BLUE BLUE GREEN GREEN GREEN			ALPHA SECTOR BETA SECTOR
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	WHITE (1) PORT PURPLE PURPLE PURPLE PURPLE WHITE (1) PORT PURPLE PURPLE WHITE (1) PORT (1) PORT (1) PORT (1) PORT (1) PORT (1) PORT (1) PORT			COLOR IDENTIFIER
HYBRID/DISCREET CABLES	EXAMPLE 1 EXAMPLE 2			
INCLUDE SECTOR BANDS BEING SUPPORTED AM	RED RED BLUE BLUE			
EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS	GREEN GREEN			
EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS	ORANGE YELLOW PURPLE			
HYBRID/DISCREET CABLES	LOW BAND RRH HIGH BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH			
LOW-BAND RRH FIBER CABLES HAVE SECTOR STRIPE ONLY	RED BLUE BLUE GREEN GREEN PURPLE PURPLE PURPLE PURPLE			
POWER CABLES TO RRHs	LOW BAND RRH HIGH BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH			
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED BLUE BLUE GREEN GREEN			
	PURPLE PURPLE PURPLE			NOT USED
RET MOTORS AT ANTENNAS	PORT 1/ PORT 1/ ANTENNA 1 ANTENNA 1 ANTENNA 1 "IN" IN" IN" IN" IN" IN" IN" IN" IN" IN"			
MICROWAVE RADIO LINKS	PRIMARY SECONDARY			
LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH	WHITE RED			
ADUITIONAL MW RADIO. MICROWAVE CABINETS WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID'S.	WHITE RED WHITE WHITE			
	RF CABLE COLOR CODES	NO SCALE	1	NOT USED

AWS (N65+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANTRRH WHITE TOR GAMMA SE GREEN	CTOR N NO SCALE	2	A COMPARENT OF CONVERTINE OF C
			TT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
			DRAWN BY: CHECKED BY: APPROVED BY: RCD SS CJW RFDS REV #: N/A CONSTRUCTION DOCUMENTS
	NU SUALE	3	SUBMITTALS REV DATE DESCRIPTION 0 07/07/22 ISSUED FOR CONSTRUCTION 1 07/13/22 ISSUED FOR CONSTRUCTION 2 11/29/22 ISSUED FOR CONSTRUCTION 3 01/17/23 ISSUED FOR CONSTRUCTION 4 03/13/23 ISSUED FOR CONSTRUCTION 5 05/15/23 UPDATED SA & MA INFORMATION 6 06/31/23 ISSUED FOR CONSTRUCTION 7 09/07/23 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 2039-Z5555C DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00030A 224 LOVELY STREET AVON, CT 06001 SHEET TITLE RF CABLE COLOR CODES SHEET NUMBER RF-1
	NO SCALE	4	

EXOTHERMIC CONNECTION	•	AB	ANCHOR BOLT	IN	INCH
MECHANICAL CONNECTION		ABV		INT	
BUSS BAR INSULATOR	A	ADDL	ADDITIONAL	LE(3)	LINEAR FEET
CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	-	AFF	ABOVE FINISHED FLOOR	LTE	LONG TERM EVOLUTION
	0	AFG	ABOVE FINISHED GRADE	MAS	MASONRY
EVOTHERMICHE ELECTION SI EEVE		AGL	ABOVE GROUND LEVEL	MAX	
		ALUM	ALUMINUM	MECH	MECHANICAL
GROUNDING BAR		ALT	ALTERNATE	MFR	MANUFACTURER
	u⊨∎ 	ANT		MGB	MASTER GROUND BAR
TEST GROUND ROD WITH INSPECTION SLEEVE	II⊨⊕T	APPROX	APPROXIMATE	MIN	MINIMUM MISCELLANEOLIS
SINGLE POLE SWITCH	\$	ATS	AUTOMATIC TRANSFER SWITCH	MTL	METAL
	Ψ	AWG	AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
DUPLEX RECEPTACLE	\square	BATT	BATTERY	MW	MICROWAVE
DUPLEX GECI RECEPTACLE	Ŭ,	BLK	BLOCK	NEC	NATIONAL ELECTRIC CODE NEWTON METERS
		BLKG	BLOCKING	NO.	NUMBER
FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS 4	18-T8 F	BM	BEAM	#	NUMBER
		BOF	BARE TINNED COPPER CONDUCTOR BOTTOM OF FOOTING	NTS	NOT TO SCALE
SMORE DETECTION (DC)	(SD)	CAB	CABINET	OC	ON-CENTER OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
EMERGENCY LIGHTING (DC)		CANT	CANTILEVERED	OPNG	OPENING
		CHG		P/C	PRECAST CONCRETE
SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW		CLG	CLEAR	PCS	PERSONAL COMMUNICATION SERVICES
	vvvv	COL	COLUMN	PCU	PRIMARY CONTROL UNIT
	x x x x	СОММ	COMMON	PP	POLARIZING PRESERVING
WOOD/WROUGHT IRON FENCE		CONC	CONCRETE	PSF	POUNDS PER SQUARE FOOT
WALL STRUCTURE		DBL	DOUBLE	PSI	POUNDS PER SQUARE INCH
LEASE AREA		DC	DIRECT CURRENT	PI	PRESSURE IREATED POWER CABINET
PROPERTY LINE (PL)		DEPT	DEPARTMENT	QTY	QUANTITY
SETBACKS			DOUGLAS FIR DIAMETER	RAD	RADIUS
ICE BRIDGE		DIAG	DIAGONAL	RECT	RECTIFIER
CABLE TRAY		DIM	DIMENSION	REINF	REINFORCEMENT
WATER LINE	w w w w w	DWG	DRAWING	REQ'D	REQUIRED
UNDERGROUND POWER	UGP UGP UGP UGP	EA	EACH	RET	REMOTE ELECTRIC TILT
UNDERGROUND TELCO	UGT UGT UGT	EC	ELECTRICAL CONDUCTOR	RF	
OVERHEAD POWER	OHP OHP OHP	EL.	ELEVATION	RRH	REMOTE RADIO HEAD
OVERHEAD TELCO	ОНТ ОНТ ОНТ	ELEC	ELECTRICAL ELECTRICAL METALLIC TUBING	RRU	REMOTE RADIO UNIT
UNDERGROUND TELCO/POWER	UGT/P UGT/P UGT/P	ENG	ENGINEER	RWY	RACEWAY
ABOVE GROUND POWER	AGP AGP AGP AGP	EQ	EQUAL	SHT	SHEET
ABOVE GROUND TELCO	AGT AGT AGT AGT	EXP	EXPANSION	SIAD	SMART INTEGRATED ACCESS DEVICE
ABOVE GROUND TELCO/POWER	AGT/P AGT/P AGT/P	EW	EACH WAY	SIM	SIMILAR
WORKPOINT	W.P.	FAB	FABRICATION	SPEC	SPECIFICATION SOLIARE
		FF	FINISH FLOOR	SS	STAINLESS STEEL
SECTION REFERENCE	$\left(\begin{array}{c} xx \\ x-x \end{array}\right)$	FIF	FINISH GRADE FACILITY INTERFACE FRAME	STD	STANDARD
	\bigcirc	FIN	FINISH(ED)	STL	STEEL TE POPARY
	\frown	FLR	FLOOR	THK	THICKNESS
DETAIL REFERENCE	$\left(\frac{xx}{x-x}\right)$	FDN	FOUNDATION	TMA	TOWER MOUNTED AMPLIFIER
		FOC	FACE OF MASONRY	TN	
		FOS	FACE OF STUD	TOA	TOP OF ANTENNA TOP OF CURB
		FOW	FACE OF WALL	TOF	TOP OF FOUNDATION
		FS FT	FINISH SURFACE	TOP	TOP OF PLATE (PARAPET)
		FTG	FOOTING	TOS	TOP OF STEEL
		GA	GAUGE	TOW	IOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION
		GEN	GENERATOR	TYP	TYPICAL
		GFCI GLB	GLUE LAMINATED BEAM	UG	UNDERGROUND
		GLV	GALVANIZED	UL	UNDERWRITERS LABORATORY
		GPS	GLOBAL POSITIONING SYSTEM	UMTS	UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
			GROUND GLOBAL SYSTEM FOR MORILE	UPS	UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
		HDG	HOT DIPPED GALVANIZED	VIF	VERIFIED IN FIELD
		HDR	HEADER	W 	WIDE
		HGR		W/ WD	WITH
			HEAT/VENTILATION/AIR CONDITIONING	WP	WEATHERPROOF
		IGR	INTERIOR GROUND RING	WT	WEIGHT
	LEGEND				ABBREVIATIONS

		SIGN TYPES
TYPE	COLOR	COLOR CODE PURPOSE
INFORMATION	GREEN	"INFORMATIONAL SIGN" TO NOTIFY OTHERS OF SITE OWNERSHIP & CONTACT NUMBER AND POTENTIAL RF EXPOSURE.
NOTICE	BLUE	"NOTICE BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)
CAUTION	YELLOW	"CAUTION BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)
WARNING	ORANGE/RED	"WARNING BEYOND THIS POINT" RF FIELDS AT THIS SITE EXCEED FCC RULES FOR HUMAN EXPOSURE. FAILURE TO OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS COULD RESULT IN SERIOUS INJURY. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)

SIGN PLACEMENT:

- RF SIGNAGE PLACEMENT SHALL FOLLOW THE RECOMMENDATIONS OF AN EXISTING EME REPORT, CREATED BY A THIRD PARTY PREVIOUSLY AUTHORIZED BY DISH Wireless L.L.C.
- INFORMATION SIGN (GREEN) SHALL BE LOCATED ON EXISTING DISH Wireless L.L.C EQUIPMENT.
 A) IF THE INFORMATION SIGN IS A STICKER, IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C EQUIPMENT CABINET.
 B) IF THE INFORMATION SIGH IS A METAL SIGN IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C H-FRAME WITH A SECURE ATTACH METHOD.
- IF EME REPORT IS NOT AVAILABLE AT THE TIME OF CREATION OF CONSTRUCTION DOCUMENTS; PLEASE CONTACT DISH Wireless L.L.C. CONSTRUCTION MANAGER FOR FURTHER INSTRUCTION ON HOW TO PROCEED.

NOTES:

- 1. FOR DISH Wireless L.L.C. LOGO, SEE DISH Wireless L.L.C. DESIGN SPECIFICATIONS (PROVIDED BY DISH Wireless L.L.C.)
- 2. SITE ID SHALL BE APPLIED TO SIGNS USING "LASER ENGRAVING" OR ANY OTHER WEATHER RESISTANT METHOD (DISH Wireless L.L.C. APPROVAL REQUIRED)
- 3. TEXT FOR SIGNAGE SHALL INDICATE CORRECT SITE NAME AND NUMBER AS PER DISH Wireless L.L.C. CONSTRUCTION MANAGER RECOMMENDATIONS.
- 4. CABINET/SHELTER MOUNTING APPLICATION REQUIRES ANOTHER PLATE APPLIED TO THE FACE OF THE CABINET WITH WATER PROOF POLYURETHANE ADHESIVE
- 5. ALL SIGNS WILL BE SECURED WITH EITHER STAINLESS STEEL ZIP TIES OR STAINLESS STEEL TECH SCREWS
- 6. ALL SIGNS TO BE 8.5"x11" AND MADE WITH 0.04" OF ALUMINUM MATERIAL

NOTICE

(((:)))

INF

This is area wit

Obey all Call the DISH

Site ID: THIS SIGN IS FOR REFERENCE F

() R N/A I () N I	
	wireless
an access naint to an	
s an access point to an	LITTLETON, CO 80120
h transmitting antennas.	$((u, \mathbf{k}_{0}))$
· · · · · · · · · · · · · · · · · · ·	
signs and barriers beyond this point.	NSS NORTHEAST
Wireless L.L.C. NOC at 1-866-624-6874	Turnkey Wireless Development
	II INFINIGY
	FROM ZERO TO INFINIGY the solutions are endless
	2500 W. HIGGINS RD. SUITE 500 HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 FAX: 518-690-0793 WWW.INFINIGY.COM
	ALE OPHER S.
URPOSES ONLY	SIL
	* 0
	9/7/23 CENSED
	SONAL ENGININ
	UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
	DRAWN BY: CHECKED BY: APPROVED BY
	RCD SS CJW
	DOCUMENTS
	SUBMITTALS
	REV DATE DESCRIPTION 0 07/07/22 ISSUED FOR CONSTRUCTION
Transmitting Antenna(s)	1 07/13/22 ISSUED FOR CONSTRUCTION 2 11/29/22 ISSUED FOR CONSTRUCTION
Radio frequency fields beyond this point	3 01/17/23 ISSUED FOR CONSTRUCTION 4 03/13/23 ISSUED FOR CONSTRUCTION
EXCEED the FCC Occupational exposure limit.	5 05/15/23 UPDATED SA & MA INFORMATION 6 05/31/23 ISSUED FOR CONSTRUCTION
Obey all posted signs and site guidelines for	7 09/07/23 ISSUED FOR CONSTRUCTION
working in radio frequency environments.	2039-Z5555C
Call the DISH Wireless L.L.C. NOC at 1-866-624-6874	PROJECT INFORMATION
prior to working beyond this point.	224 LOVELY STREET
Site ID: 88	AVON, CT 06001
	SHEET TITLE
děsn /	SIGNAGE
	SHEET NUMBER
	GN-2

Terrer	حد حد الشاها	* min man	1-3
1201517	111111	Antenna	1.1

Radio frequency fields beyond this point MAY **EXCEED** the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dish

A CAUTION

Transmitting Antenna(s)

Radio frequency fields beyond this point MAY **EXCEED the FCC Occupational exposure limit.**

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dish

RF SIGNAGE

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELES LL.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 2. psf.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO 3. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES, AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 60 ksi

#5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON 6. DRAWINGS:

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE. IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.

- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.

ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

8. TIE WRAPS ARE NOT ALLOWED

ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH 10 TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS 11. OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH 12 TYPE THHW. THWN. THWN-2, XHHW. XHHW-2, THW. THW-2, RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 13 BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).

RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NFC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15 EXPOSED INDOOR LOCATIONS.

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16.

17 SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT

LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION 18. OCCURS OR FLEXIBILITY IS NEEDED.

CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET 19 SCREW FITTINGS ARE NOT ACCEPTABLE.

CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20 NEC.

21 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).

22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).

CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE 23. DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.

EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET 24. STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.

25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.

26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.

THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.

28 THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. WITH

29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".

30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.

15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

1	2	3		4	5		(5
DESIGN NOTES			GENER	RAL			STE	ALTHSKIN PANELS
STRUCTURAL DESIGN IS BASED ON THE (TIA-222-G STANDARD.	CONNECTICUT STATE BUILDING CODE, 2018 ED	TION (2015 IBC) & THE	1. T E	THIS PRODUCT IS SOLD PURSUANT TO RAYCAP, INC. TI 3Y REFERENCE.	ERMS AND CONDITIONS, WHICH ARE INCORF	PORATED HEREIN	1.	FASTENER HOLES IN DRILLED IN THE FIEL
DESIGN LOADS WIND:			2. 1 3. /	THESE SHALL APPLY FOR ALL CASES UNLESS NOTED C ANY ITEMS REFERENCED AS BEING ON "HOLD" ARE TO CONSTRUCTION OR FABRICATION IS NOT TO BEGIN UN	DTHERWISE (U.N.O.). BE INCLUDED IN THE WORK AS SHOWN. HO ITIL THE "HOLD" REFERENCE IS REMOVED.	WEVER,	2.	PANEL FASTENERS TOP AND BOTTOM O EDGES. 4' WIDE PAN
BASIC WIND SPEED: 120 MPH (3-SEC RISK CATEGORY/STRUCTURE CLAS EXPOSURE: B	C GUST) PER ASCE 7-10 STANDARD S: II		4. I E 5. I	N THE CASE WHERE DIMENSIONS CONTAINED WITHIN BE FIELD VERIFIED AND/OR CUSTOMER APPROVED PRI N THE CASE THAT THE PROPOSED IS TO BE PLACED FOR N THE CASE THAT THE PROPOSED IS TO BE PLACED FOR	ARE LABELED TO BE VERIFIED IN FIELD (V.I.) IOR TO FABRICATION OF MATERIALS. N AN EXISTING STRUCTURE, THE MODIFICAT	F.), THEY MUST	3.	FASTENERS TOP AN WHEN FASTENER BO PANEL BOLTS ONLY
CREST HEIGHT: 0 FT ELEVATION: 294 FT ABOVE SEA LEV	ΈL		 	N THESE DRAWINGS ARE INTENDED TO PROVIDE STRU STRUCTURE OUTLINED WITHIN. THE EXISTING STRUCT APPLICABLE) SHALL BE ANALYZED AND RETROFITTED / MPOSED BY THE NEW RAYCAP STRUCTURE, SHOWN O	UCTURAL SUPPORT FOR THE ADDITION OF T URE, WHETHER IT BE A FOUNDATION, POLE, AS REQUIRED, BY OTHERS, TO WITHSTAND T IN THE DRAWINGS	NE TELECOM OR BUILDING (IF THE LOADS	4.	PANEL BOLTS. USE THIN BE PANEL BOLTS. USE V PANELS WILL EXPAN TEMPERATURES EV
ICE: 1" RADIAL ICE THICKNESS @ 50 MPH	I (3-SEC GUST)		6. T	TELECOM PRODUCTS SHALL BE INSTALLED BY A CONT TAKEN IN THE INSTALLATION OF ANY AND ALL MEMBER	RACTOR EXPERIENCED IN SIMILAR WORK. C RS IN ACCORDANCE WITH RECOGNIZED INDU	ARE SHALL BE ISTRY	5.	PANELS TO ALLOW F ADJACENT FLAT PAN
			5 N	STANDARDS AND PROCEDURES. ALL APPLICABLE OSH, NOT PROVIDING FIELD INSTALLATION SUPERVISION.		D. RAYCAP IS	0	INTO THE SIDE OF EA
SHEAR, $V = 345 \text{ lbs} (1.0 \text{ WIND})$ AXIAL, R = 845 lbs (1.2 DEAD + 1.0 ICE)			7. P 	NOTES FOR CONTRACTOR/INSTALLER: ALL BIDS FOR T NCLUDE, BUT NOT LIMITED TO THE FOLLOWING MINIMU SABRICATION/MODIFICATION, WEI DING, FLECTRICAL (HE INSTALLATION/ERECTION OF THIS PRODU UM REQUIRED TRADES: RIGGING, STEEL ER CONCRETE, EXCAVATION AND WATERPROOF	ECTION, STEEL	б. 7	H-CHANNEL. RADIUS PANELS MUS
THE REACTION V LISTED ABOVE SHALL B SUPPORTING STRUCTURE TO RESIST TH	E CONSIDERED TO ACT IN ANY HORIZONTAL DI E DESIGN REACTIONS LISTED ABOVE IS THE RE	RECTION. ANALYSIS OF THE SPONSIBILITY OF OTHERS.	י (א	CONTRACTOR MAY, IN CONTRACTOR'S SOLE AND ASS VECESSARY TO INSTALL/ERECT THE PRODUCT.	DLUTE DISCRETION, DETERMINE ADDITIONAL			OF RADIUS SUPPOR H-CHANNEL CONNEC
			o. (CONDITION THAT MAY BE ENCOUNTERED. THEREFORE SHOULD SURVEY THE JOB SITE THOROUGHLY TO MINIP	E, PRIOR TO BEGINNING OF WORK THE CONT MIZE FIELD PROBLEMS.	RACTOR	8.	SURFACES OF PANE MUST BE COVERED
	DESERVATION		9. F	PROTECTION OF EXISTING STRUCTURES DURING THE (RESPONSIBILITY OF THE GENERAL CONTRACTOR.			9.	II" OR PRE APPROVE EXPOSED TOP AND
1. STEEL FABRICATION SHALL BE DON	NE ON THE PREMISES OF A FABRICATOR REGIS	TERED AND APPROVED AS	10. 1 L	THE STRUCTURAL INTEGRITY OF THIS STRUCTURE IS I JNDER CONSTRUCTION ANY TEMPORARY BRACING OF STABILITY DRIOD TO COMPLETION SHALL BE THE DESE	DESIGNED TO BE ATTAINED IN ITS COMPLETE SHORING WHICH MAY BE REQUIRED TO MA	INTAIN		THIS PURPOSE FOR
REQUIRED BY THE BUILDING CODE SPECIAL INSPECTION OF MATERIAL	TO PERFORM SUCH WORK WITHOUT SPECIAL S, WELDING, AND FABRICATION PROCEDURES	NSPECTION. ALTERNATIVELY, SHALL BE REQUIRED FOR	11. T	THE PLANS AND DETAILS WITHIN DO NOT INCLUDE DET WATERPROOFING OF EXTERIOR OR INTERIOR SURFAC	TAILS OR DESIGN FOR DRAINAGE FROM OR	ST BE		SPACING ON THE IN BEADS OF ADHESIVI

- FABRICATION BY AN UNAPPROVED FABRICATOR. NO FIELD WELDING SHALL BE PERMITTED.
- 3 THE FOLLOWING SPECIAL INSPECTIONS (WHERE APPLICABLE) SHALL BE REQUIRED PER CHAPTER 17 OF THE BUILDING CODE
 - SPECIAL INSPECTION OF HIGH-STRENGTH BOLTING (WHEN APPLICABLE): PERIODIC SPECIAL INSPECTION IF BOLTS ARE PRETENSIONED WITH MATCH-MARKING TECHNIQUES. CONTINUOUS SPECIAL INSPECTION OF ALL OTHER HIGH-STRENGTH BOI TING
- SPECIAL INSPECTION IS NOT REQUIRED FOR WORK OF A MINOR NATURE OR AS WARRANTED BY CONDITIONS IN THE JURISDICTION AS APPROVED BY THE BUILDING OFFICIAL. THUS, SPECIAL INSPECTION ITEMS ABOVE MAY BE WAIVED AS DEEMED APPROPRIATE BY THE BUILDING OFFICIAL
- NO STRUCTURAL OBSERVATION IS REQUIRED. 5

COAX NOTE

ROUTING THE LARGE QUANTITY OF COAX CABLES THROUGH THE CONCEALMENT BULKHEADS IS POSSIBLE (WHEN LAID OUT ON PAPER), BUT WILL BE VERY DIFFICULT IN REAL WORLD FIELD CONDITIONS. WHILE THE CABLES MAY PHYSICALLY FIT THROUGH THE BASE FLANGE ON TOP OF THE MONOPOLE AND THE SUBSEQUENT STEEL BUILKHEADS ABOVE ROUTING THEM PAST THE ANTENNAS IS UNPREDICTABLE, DEPENDING ON THE ANTENNA MOUNTING HARDWARE EMPLOYED, COAX CONNECTOR TYPE(S) USED, COAX ROUTING, AND RELATIVE AZIMUTH DIRECTIONS OF THE ANTENNAS IN THE POLE. RAYCAP, INC. CAN NOT GUARANTEE THAT ALL OF THE COAX CAN BE ROUTED WITHOUT INTERFERENCE TO SOME OR ALL ANTENNAS. IT IS HIGHLY RECOMMENDED THAT THE INSTALLER MOCK UP THE COAX RUNS WITHIN THE CONCEALMENT AND DEVELOP A COAX ROUTING PLAN PRIOR TO INSTALLATION.

DESIGN

В

ENGINEERING AND DESIGN CALCULATIONS FOR RAYCAP. INC. POLE AND TOWER PRODUCTS ARE PREPARED IN 1 ACCORDANCE WITH ADOPTED TIA STANDARDS. OTHER STRUCTURES ARE DESIGNED IN ACCORDANCE WITH APPLICABLE LOCAL OR NATIONAL STANDARDS AND PER CLIENT INPUT.

DISCLAIMERS

- ALL STRUCTURAL COMPONENTS TO BE CONNECTED TOGETHER SHALL BE COMPLETELY FIT UP ON THE GROUND 1 OR OTHERWISE VERIFIED FOR COMPATIBILITY PRIOR TO LIFTING ANY COMPONENT INTO PLACE. REPAIRS REQUIRED DUE TO FIT-UP OR CONNECTION COMPATIBILITY PROBLEMS AFTER PARTIAL ERECTION ARE THE FINANCIAL RESPONSIBILITY OF THE CONTRACTOR
- 2 SOME TELECOMMUNICATION STRUCTURES ARE SUSCEPTIBLE TO WIND-INDUCED OSCILLATIONS. OSCILLATIONS MAY OCCUR AT LOW OR MODERATE WIND SPEEDS AND MAY CAUSE STRUCTURAL DAMAGE. TIA PROVIDES NO PRACTICAL ANALYTICAL METHOD TO PREDICT AND PREVENT WIND-INDUCED STRUCTURAL OSCILLATIONS. RAYCAP, INC. RECOMMENDS FREQUENT MONITORING TO IDENTIFY WIND-INDUCED OSCILLATION AND REGULAR CONDITION ASSESSMENTS TO IDENTIFY FATIGUE CRACKING, LOOSE OR MISSING BOLTS, AND ANY OTHER STRUCTURAL DEFECTS ANY OSCILLATION OR DEFECTS OBSERVED SHALL BE IMMEDIATELY REPORTED TO RAYCAP, INC. FOR FURTHER EVALUATION AND POSSIBLE REPAIRS OR MODIFICATIONS WHICH MAY BE REQUIRED AT THE OWNERS EXPENSE.
- WHERE EFFECTIVE PROJECTED AREAS (EPA) ARE USED, IT IS THE RESPONSIBILITY OF OTHERS TO VERIFY 3 INSTALLED EQUIPMENT DOES NOT EXCEED LISTED EPA

- AMERICAN WELDING SOCIETY (AWS) BY CERTIFIED WELDERS PER AWS D1.1 FOR STEEL AND AWS D1.2 FOR ALUMINUM. ALL WELDING SHALL BE PERFORMED IN A SHOP APPROVED BY THE BUILDING OFFICIAL. STEEL WELDS
- SHALL BE PERFORMED WITH MINIMUM E70XX LOW-HYDROGEN ELECTRODE EXCEPT WHERE HIGHER STRENGTH ELECTRODE IS REQUIRED BY AWS D1.1. ALUMINUM WELDS SHALL UTILIZE 4043 FILLER OR APPROVED ALTERNATIVES. VERIFY FILLER MATERIAL IS COMPATIBLE WITH BASE METAL FOR EACH WELDED JOINT ALL STEEL SURFACES SHALL BE GALVANIZED PER ASTM A123, U.N.O.
- ALL BOLTS FOR STEEL-TO-STEEL CONNECTIONS SHALL CONFORM TO ASTM F3125 GRADE A325 SPECIFICATIONS,
- U.N.O. A325N AND A325X ALLOWED. ASTM A193 GR. B7 THREADED RODS MAY BE SUBSTITUTED FOR ASTM F3125 GR. A325 BOLTS. ALL 41
- REQUIREMENTS FOR BOLTS SHALL APPLY TO THREADED ROD SUBSTITUTES. ALL BOLTS SHALL BE GALVANIZED IN ACCORDANCE w/ ASTM F2329 SPECIFICATIONS
- ALL STRUCTURAL BOLTS SHALL BE TIGHTENED PER AN APPROVED PRETENSIONING METHOD AS DEFINED BY AISC FOR EASE OF INSPECTION, THE "TURN-OF-NUT" METHADD AS DEFINED BY AISC WITH MATCH-MARKING TECHNIQUES
- IS RECOMMENDED. ALL BOLT HOLES SHALL BE STANDARD SIZE PER TABLE J3.3 OF AISC U.N.O. WASHERS ARE REQUIRED FOR ANY CONNECTION THAT HAS LARGER THAN STANDARD SIZED BOLT HOLES.
- ALL HEAVY HEX NUTS SHALL BE ASTM A563 GR. C OR DH OR EQUIVALENT.
- ALL HARDENED WASHERS SHALL BE ASTM F436 OR EQUIVALENT.

10.

- COMPLETED BY OTHERS.
- CONTRACTOR TO SHIM BASE PLATES AND MATING FLANGES AS REQUIRED TO ENSURE LEVEL SURFACE. 12

MATERIAL NOTES

- ALL OTHER STRUCTURAL STEEL SHAPES & PLATES SHALL CONFORM TO ASTM A36. U.N.O.
 - ALL WELDING SHALL BE PERFORMED IN ACCORDANCE WITH THE SPECIFICATIONS AND PROCEDURES OF THE 11.

N STEALTHSKIN FOAM COMPOSITE PANELS ARE NOT FACTORY DRILLED AND MUST BE

TO BE SPACED 12" O.C. MAX. AND LOCATED 6" MAX. HORIZONTALLY FROM EACH EDGE AT)F PANEL, UNLESS NOTED OTHERWISE. MAINTAIN 1 ½" MIN. EDGE DISTANCE FROM ALL NELS REQUIRE (4) FASTENERS TOP AND BOTTOM. 5' WIDE PANELS REQUIRE (5) D BOTTOM.

DLT HEAD OR NUT BEARS DIRECTLY ON SURFACE OF STEALTHSKIN PANEL, TIGHTEN 1/2 TURN PAST SNUG. APPLY THREAD LOCK COMPOUND TO THE THREADS OF METAL AD OF EPOXY TO LOCK THE NUTS OF FRP BOLTS AND STEALTH} STAINLESS STEEL VASHER OR FLANGED HEAD BOLT, OR FASTENER WITH LARGE BEARING SURFACE. ND AND CONTRACT DUE TO TEMPERATURE. WHEN INSTALLING PANELS IN COLD EVEN AND SERVICE ALONG LENGTH OF SCREEN WALL WITH EQUAL GAPS BETWEEN OR EXPANSION DURING WARM TEMPERATURES.

NELS ARE JOINED BY A VERTICAL FOAM SPLINE THAT IS INSERTED INTO GROOVES CUT ACH PANEL. DO NOT LIFT PANELS BY GROOVES. PANELS MUST BE LIFTED WITH FORCE NEL SURFACE

PANELS ARE JOINED BY A VERTICAL H-CHANNEL. INSERT PANELS INTO EACH SIDE OF

ST BE EVENLY SPACED ALONG RADIUS SUPPORT. CONTRACTOR TO MEASURE LENGTH T AND DIVIDE BY THE NUMBER OF RADIUS PANELS TO DETERMINE PROPER SPACING. CTORS ARE USED TO COVER THE GAP BETWEEN PANELS AND TO ALLOW FOR PANEL NTRACTION

LS SHALL BE COATED WITH SUITABLE PAINT FOR UV PROTECTION. TOP EDGE OF PANEL TO PREVENT WATER TRAVEL BETWEEN PANELS. USE SHERWIN WILLIAMS "COROTHANE D EQUIVALENT

SIDE FOAM EDGES OF PANELS MUST BE COVERED OR COATED FOR UV PROTECTION. PROVIDE PANEL EDGE CAPS (VERTICAL AND HORIZONTAL) TO BE FIELD APPLIED FOR MOST APPLICATIONS. HORIZONTAL AND VERTICAL PANEL EDGE CAPS TO BE SECURED DGES OF THE PANELS WITH PROVIDED TEK SCREWS INSTALLED @ 12" MAXIMUM SIDE FACE OF THE PANEL. IN RESENSITIVE LOCATIONS CONTRACTOR WILL APPLY (2) E TO EACH INSIDE CORNER OF THE EDGE CAP AND SECURE CAP TO PANEL WITH TAPE WHILE ADHESIVE CURES

AT CORNER APPLICATIONS, VERTICAL PANEL EDGE CAPS ARE TO BE USED TO CAP BOTH EXPOSED EDGES (1 PER CUT EDGE OF PANELS). THESE EDGE CAPS ARE TO BE CUT 1" SHORTER THAN THE PANEL AND LEAVE 1" GAP AT THE TOP TO ALLOW ROOM FOR THE THE HORIZONTAL PANEL EDGE CAP AT THE TOP. CONTRACTOR TO APPLY (2) BEADS OF ADHESIVE TO EACH EDGE CAP (INSIDE CORNERS OF CAP), AND SECURE WITH TAPE AND/OR PROVIDED SCREWS (16 TOTAL PER CORNER) WHILE THE ADHESIVE CURES. IF CORNERS ARE IN NON-RF AREAS, EDGE CAP SCREWS CAN BE LEFT IN PLACE.

AT CORNER APPLICATIONS WITH SSV PANEL ONLY, CORNER CHANNELS ARE TO BE USED TO JOIN PANELS TOGETHER. BOTH ADJOINING PANELS WILL BE INSERTED INTO THE CORNER CHANNEL AND SECURED USING PROVIDED NYLON PUSHPINS. THE PUSHPINS ARE TO BE PLACED ON THE INSIDE OF ONE OF THE PANELS ONLY @ 12" MAXIMUM SPACING.

	Raycap		-							
	7555-A PALMETTO COMMERCE PARKWAY NORTH CHARLESTON, SC 29420 USA									
	NORTHEAST SITE SOLUTIONS SITE #: BOBDL00030A; 224 LOVELY STREET 224 LOVELY STREET AVON, CT 06001									
		SHEET #	REVISION							
NOTES & SPECIFICATIONS N1 B										
	RAYCAP #: DW22-00175W-17R1 DATE: 05/02/22									
1)S), /	THE INFORMATION CONTAINED WITHIN THIS DRAWING SET IS PR URE OTHER THAN THAT WHICH RELATES TO RAYCAP, INC. IS ST ALL RIGHTS RESERVED	OPRIETARY & CONFID RICTLY PROHIBITED.	ENTIAL BY							
	7	8								

	1		2	3	4	5	6
			REVISION	N TABLE			
REVISION	DESIGNER	DATE		SCOPE OF REVIS	ION		
A	CTF-VSE	03/22/22		FINAL ENGINEER	ING		
В	CTF-VSE	05/02/22		REVISED FINAL ENGIN	IEERING		

D

						DRAWN	CTF-VSE	Ravca		
						DESIGNED	CTF-VSE	7555-A PALMETTO COMMERCE PAR	KWAY NORTH	
						REVISED		CHARLESTON, SC 29420	USA	
						DRAWING <u>NO</u> ALL DIMENSIONS UNLESS OTHERV	<u>)T</u> TO SCALE. 3 ARE IN INCHES WISE SPECIFIED	NORTHEAST SITE SOL	UTIONS	
						TOLERA DECIMAL: .X ±0.1 .XX ±0.03 .XXX ±0.01 ANGLES ±5°	ANCES: FRACTIONAL: X/X ± 1/16	SITE #: BOBDL00030A; 224 LO 224 LOVELY STRE AVON, CT 0600	DVELY STRE EET 1	.ET
					CTOR	ALL BENDING T ± 1.0° THIRD ANGLE		NOTES & SPECIFICATIONS	SHEET #	REVISION B
				651 W. GALENA	PARK BLVD., SUITE 101		$\overline{\mathbf{\nabla}}$	RAYCAP #: DW22-00175W-17R1	DATE: 05/02/22	2
				P: (801) 990-17 VECTOR PRO CT FIRM LICENSE	775 F: (801) 990-1776 JECT: U0142-1402-221 E NUMBER: PEC 0001229	PROPRIETARY NATURE, ANY U COPYRIGHT 20	INFORMATION: JSE OR DISCLO 22 RAYCAP INC	THE INFORMATION CONTAINED WITHIN THIS DRAWING SET IS SURE OTHER THAN THAT WHICH RELATES TO RAYCAP, INC. IS . ALL RIGHTS RESERVED	PROPRIETARY & CONFIL STRICTLY PROHIBITED.	DENTIAL BY
1	2	3	4	5		6		7	8	

CEALMENT DME PER ATION		
CEALMENT DME PER ATION		
PER ATION		D
EL ANTENNAS ELEVATION		
		c
		В
Ravcan		
7555-A PALMETTO COMMERCE PARKV CHARLESTON, SC 29420 US	NAY NORTH	
NORTHEAST SITE SOLU SITE #: BOBDL00030A; 224 LOV 224 LOVELY STREE	TIONS 'ELY STRE T	ET
	SHEET #	A
ELEVATIONS	S1	B

OMNIBUS ASSIGNMENT AND ASSUMPTION OF GROUND LEASES

THIS OMNIBUS ASSIGNMENT AND ASSUMPTION OF GROUND LEASES (this "<u>Assignment</u>") is made effective as of March 31, 2020 ("<u>Effective Date</u>"), by and between each Affiliate of AT&T, Inc. ("<u>AT&T</u>") signing this Assignment as an "Assignor" on the signature pages hereto (each, an "<u>Assignor</u>" and collectively, the "<u>Assignors</u>"), on the one hand, and each Affiliate of Octagon Towers, LLC ("<u>Octagon</u>") signing this Assignment as an "Assignee" on the signature pages hereto (each an "<u>Assignee</u>" and collectively, the "<u>Assignees</u>"), on the other hand.

BACKGROUND RECITALS

A. This Assignment is made pursuant to that certain Asset Purchase Agreement dated as of October 22, 2019 between AT&T and certain of its Tower Site Subsidiaries (including the other Assignors), as sellers, and Octagon and certain other Buyers, as buyers (the "<u>Purchase Agreement</u>").

B. Capitalized terms used herein but not otherwise defined herein, shall have the meanings ascribed to them in the Purchase Agreement.

C. Assignors, as tenants, lessees, grantees or licensees, as applicable, are a party to certain Ground Leases for the Assignable Sites transferred at the Subsequent Site Closing taking place on the Effective Date (the "<u>Transferred Ground Leases</u>"), as set forth on <u>Exhibits A - L</u> attached hereto and incorporated herein by reference. <u>Exhibits A - L</u> indicate the particular Assignor and Assignee for each Assignable Site and the related Transferred Ground Leases thereto.

D. Pursuant to the Purchase Agreement, Assignors have agreed, among other things, to transfer and assign to the applicable Assignee all of the Assignors' right, title and interest in and to the Transferred Ground Leases and each Assignee has agreed to accept an assignment thereof.

E. The terms of the Purchase Agreement, including, but not limited to, the representations, warranties, covenants, agreements and indemnities relating to the Transferred Ground Leases, are incorporated herein by this reference. The Assignors and Assignees acknowledge and agree that the representations, warranties, covenants, agreements and indemnities contained in the Purchase Agreement shall not be superseded hereby, but shall remain in full force and effect to the full extent provided therein. In the event of any conflict or inconsistency between the terms of the Purchase Agreement and the terms hereof, the terms of the Purchase Agreement shall govern and control.

OPERATIVE PROVISIONS

NOW, THEREFORE, in consideration of the mutual covenants and conditions contained herein, as well as other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

1. The Background Recitals are true and correct and are incorporated herein by this reference.
2. Assignors hereby assign, grant, convey and transfer to the applicable Assignees as of the Effective Date and as set forth on Exhibits A - L all of the Assignors' right, title and interest in and to the Transferred Ground Leases, together with any amendments, modifications, supplements, assignments, guarantees, side letters and other documents related thereto, and each Assignee hereby accepts the aforesaid assignment, as applicable, and assumes and agrees to be bound by and timely perform, observe and discharge, all of the Assignors' obligations, as applicable, under the Transferred Ground Leases arising from and after the Effective Date and relating to periods after the Effective Date upon the terms and conditions set forth in the Transferred Ground Leases.

3. Except as expressly set forth herein, the terms of the Transferred Ground Leases shall remain in full force and effect, unaltered by this Assignment.

4. Assignors hereby confirm that all of the representations made in the Purchase Agreement regarding the Transferred Ground Leases as of the Site Closing applicable to such Transferred Ground Leases are true and correct as of the date of this Assignment. Assignors and the Assignees acknowledge and agree that nothing in this Assignment shall be deemed to contravene or supersede the terms of the Purchase Agreement.

5. Each of the parties hereto shall execute and deliver, at the reasonable request of any other party hereto, such additional documents, instruments, conveyances and assurances, and take such further actions as such other party may reasonably request, to carry out the provisions hereof and give effect to the transactions contemplated by the Purchase Agreement and this Assignment with respect to the Assignable Sites set forth on Exhibits A - L.

6. This Assignment shall bind and inure to the benefit of Assignors, the Assignees, and their respective successors and assigns.

7. This Assignment may be executed in multiple counterparts, each of which will be deemed an original document, but all of which will constitute a single document.

* * * Remainder of Page Blank – Signature Pages Follow * * *

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNOR:

AT&T MOBILITY IJ LLC

RNN Ву: ____

Name: Thomas H. Lowe Title: Vice President – Corporate Development

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNOR:

AT&T MOBILITY WIRELESS OPERATIONS HOLDINGS INC.

By

Name: Jackie A. Begue Title: Secretary

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNOR:

LAKE MOBILITY LLC

By: AT&T Mobility Corporation, its Manager

By:

Name: Thomas H. Lowe Title: Vice President – Corporate Development

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNOR:

NEW CINGULAR WIRELESS PCS, LLC

By: the h

Name: Thomas H. Lowe Title: Vice President – Corporate Development

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNOR:

ORLANDO SMSA LIMITED PARTNERSHIP

By: New Cingular Wireless PCS, LLC, its General Partner

the hr ر By:

Name: Thomas H. Lowe Title: Vice President – Corporate Development

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNOR:

SANTA BARBARA CELLULAR SYSTEMS, LTD.

By: Santa Barbara Holding, Ltd., its General Partner

By: New Cingular Wireless PCS, LLC, its General Partner

tan By:

Name: Thomas H. Lowe Title: Vice President – Corporate Development

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

IRI By:___ Name: F. Howard Mandel

Title: Co-President

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

By:

Name: F. Howard Mandel Title: Co-President

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

By: Name: F. Howard Mandel

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

By:_

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

M. I By:__

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

pl 1 By:_

Name: F. Howard Mandel Title: Co-President

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

11 By:_

Name: F. Howard Mandel Title: Co-President

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

H-1 By:___

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

IL I By:__

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

11 By:__

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the date first above written.

ASSIGNEE:

By:_

SRR TOWERS, LLC

11

EXHIBIT A

AT&T FA#	USID	Site Name	Buyer Site ID	Assigno r	Assignee	Ground Lessor (or its successo r in interest) Name	Ground Lessee Name	LEASE DATE
1								
1								
								10

EXHIBIT B

AT&T FA#	USID	Site Name	Buyer Site ID	Assigno r	Assignee	Ground Lessor (or its successo r in interest) Name	Ground Lessee Name	LEASE DATE

EXHIBIT C

		1	Lessor (or its successo r in interest) Name	Ground Lessee Name	LEASE DATE
1					
I I I I I I I I I I I I I I I I I I I					

EXHIBIT D

AT&T FA#	USID	Site Name	Buyer Site ID	Assigno r	Assignee	Ground Lessor (or its successo r in interest) Name	Ground Lessee Name	LEASE DATE
1								
1								
1								

EXHIBIT E

AT&T FA#	USID	Site Name	Buyer Site ID	Assigno r	Assignee	Ground Lessor (or its successo r in interest) Name	Ground Lessee Name	LEASE DATE
1								
1								

EXHIBIT F

EXHIBIT G

AT&T FA#	USID	Site Name	Buyer Site ID	Assigno r	Assignee	Ground Lessor (or its successo r in interest) Name	Ground Lessee Name	LEASE DATE
1								
8								

EXHIBIT H

AT&T FA #	USID	Site Name	Buye r Site ID	Assignor	Assign ee	Ground Lessor (or its successor in interest) Name	Groun d Lessee Name	LEASE DATE

EXHIBIT I

AT&T FA#	USID	Site Name	Buyer Site ID	Assigno r	Assignee	Ground Lessor (or its successo r in interest) Name	Ground Lessee Name	LEASE DATE
1								
1								

EXHIBIT J

AT&T FA#	USID	Site Name	Buyer Site ID	Assigno r	Assignee	Ground Lessor (or its successo r in interest) Name	Ground Lessee Name	LEASE DATE
1								

EXHIBIT K

AT&T FA#	USID	Site Name	Buyer Site ID	Assigno r	Assignee	Ground Lessor (or its successo r in interest) Name	Ground Lessee Name	LEASE DATE
1								

EXHIBIT L

SRR Towers, LLC Assignable Sites

AT&T FA#	USID	Site Name	Buyer Site ID	Assigno r	Assignee	Ground Lessor (or its successo r in interest) Name	Ground Lessee Name	LEASE DATE
1008607 7	11830	SUN VALLE Y III OVLY - C309	CA-1209	NEW CINGU LAR WIREL ESS PCS, LLC	SRR Towers, LLC	YS & YL Partners hip	Los Angeles Cellular Telepho ne Compan y	10/05/19 90
1008686 8	17333	EL RIO	CA-1212	NEW CINGU LAR WIREL ESS PCS, LLC	SRR Towers, LLC	M & H Realty Partners IV L.P.	New Cingular Wireless , PCS, LLC	10/22/20 01
1011040 8	83397	QWEST BILTM ORE	AZ-1235	NEW CINGU LAR WIREL ESS PCS, LLC	SRR Towers, LLC	Biltmore Church of Nazaren e	New Cingular Wireless PCS, LLC	8/15/200 5
1011774 4	97421	AVON LOVEL Y ST	CT-1239	NEW CINGU LAR WIREL ESS PCS, LLC	SRR Towers, LLC	St. Matthew Lutheran Church of Avon, Connecti cut	New Cingular Wireless PCS, LLC	06/12/20 12
1012700 9	97431	PELHA M NH ROCKY	NH- 1246	NEW CINGU LAR WIREL	SRR Towers, LLC	Geoffrey & Nora Detellis	AT&T Mobility , Inc. manager	11/17/20 08

		HILL RD		ESS PCS, LLC			of New Cingular Wireless PCS, LLC*	
1012809 7	98607	WINCH ESTER NH MICHIG AN STREET	NH- 1251	NEW CINGU LAR WIREL ESS PCS, LLC	SRR Towers, LLC	Town of Winches ter	New Cingular Wireless PCS, LLC	08/05/20 09
1012841 2	101397	FB1040 - DIPPER	AK- 1252	NEW CINGU LAR WIREL ESS PCS, LLC	SRR Towers, LLC	Foundati on Health, LLC	New Cingular Wireless PCS, LLC	11/04/20 09
1013387 5	105130	NE CT S MDSX SE CS	CT-1263	NEW CINGU LAR WIREL ESS PCS, LLC	SRR Towers, LLC	Wilcox Family, LLC	New Cingular Wireless PCS, LLC	09/08/20 09
1055015 0	125760	GEIST & LOFTU S	AK- 1315	NEW CINGU LAR WIREL ESS PCS, LLC	SRR Towers, LLC	APAN, LLC	New Cingular Wireless PCS, LLC	07/21/20 11
1055218 5	125887	DEERE & PEGER	AK- 1316	NEW CINGU LAR WIREL ESS PCS, LLC	SRR Towers, LLC	Rochelea u Propertie s, Inc.	New Cingular Wireless PCS, LLC	7/25/201 1

SRR Towers, LLC 352 Park Street Suite 108 North Reading, MA 01864

June 6, 2023

St. Matthew Lutheran Church of Avon Benjamin Wright Property Committee Chair 224-228 Lovely Street Avon, CT 06001

RE: Letter of Acknowledgement, Lease Agreement for Wireless Facility at 224 Lovely Street, Avon

Dear Mr. Wright,

St. Matthew Lutheran Church of Avon (the "Church") and SRR Towers, LLC, successor-in-interest to New Cingular Wireless PCS, LLC, are parties to that certain Lease Agreement dated June 4, 2008. The Lease Agreement provides for a lease area measuring 50' x 50'. The lease area currently includes a wireless facility and equipment for T-Mobile and AT&T Wireless.

Dish Network has entered into a lease agreement with SRR Towers, LLC to install additional equipment on the ground within the lease area.

By signing below, the Church is in agreement that the proposed Dish Network equipment is within the 50' x 50' lease area provided in the Lease Agreement between the Church and SRR Towers, LLC and that no lease area expansion is necessary.

SRR Towers, LLC

Jim Kech

Jiff 裕智的20943E... President and CEO SRR Towers, LLC 617-549-2800 8/15/2023 St. Matthew Lutheran Church of Avon.

John F. Pietrick President Church Council

Structural Analysis Report

Structure	: 108.9' Stealth Monopole
BlueSky Site Name	: Avalon Lovely Street
BlueSky Site Number	: CT-1239
Proposed Carrier	: Dish Wireless LLC
Carrier Site Name	:BOBDL00030A
Carrier Site Number	:BOBDL00030A
Site Location	: 224 Lovely Street
	Avon, CT 06001 (Hartford County)
	41.7996, -72.8896
Date	: June 22, 2023
Max Member Stress Level	: 66.7% (Tower) : 22.5% (Foundation) : 49.7% (Base Plate / Anchor Bolts)
Result	: PASS

Prepared by:

06/22/2023

Table of Contents

Introduction	1
Existing Structural Information	1
Final Proposed Equipment Loading for Dish Wireless LLC	1
Design Criteria	2
Analysis Results	2
Assumptions	2
Conclusions	3
Standard Conditions	4
Disclaimer of Warranties	4
Calculations	Attached
Collocation Application	Attached

Introduction

We have completed our structural analysis of the proposed equipment installation on the foregoing tower to determine its ability to support the new loads proposed by **Dish Wireless LLC**. The objective of the analysis was to determine if the tower meets the current structural codes and standards with the proposed equipment installation.

Existing Structural Information

The following documents for the existing structure were made available for our structural analysis.

Tower Information	Monopole Mapping Report completed by Structural Components, dated
	September 1, 2021.
Foundation Information	Monopole Mapping Report completed by Structural Components, dated
	September 1, 2021.
Geotechnical Information	Not available at time of analysis.
Existing Equipment Information	BlueSky Towers colocation application.
	Monopole Mapping Report completed by Structural Components, dated
	September 1, 2021.
Tower Reinforcement Information	Tower has not been previously modified.

Final Proposed Equipment Loading

The following proposed loading was obtained from the BlueSky Towers Collocation Application:

	Antenna/Equipment				Coax	
Mount (Ft.)	RAD (Ft.)	Qty.	Antenna	Туре	Qty.	Size/Type
	-	1	Stealth Canister	Mount		
103.0	102.3	3	Powerwave P65-16-XLH-RR	Panel	6	1.625" Coax
	100.4	3	TTAW-07BP111-001	TMA		
	-	1	Stealth Canister	Mount		
93.0	94.9	3	Powerwave P65-16-XLH-RR	Panel	6	1.625" Coax
	90.4	3	TTAW-07BP111-001	TMA		
	-	1	Stealth Canister	Mount		
83.0	85.3	3	Powerwave P65-16-XLH-RR	Panel	6	1.625" Coax
	80.3	3	TTAW-07BP111-001	TMA		
	-	1	48" Rapcap Stealth Canister	Mount		
67.0	67.0	3	Commscope FVV-65B-R3	Panel	12	0.875" Coax
	60.0	6	Commscope CDX623T-DS-T / E15V95P63	Diplexer		

Note: Other existing loading can be found on the tower profile attached.

Note: Proposed equipment is in Bold print.

Note: Proposed RRU's will be ground mounted.

Design Criteria

The tower was analyzed using tnxTower (Version 8.1.1.0) tower analysis software using the following design criteria.

State	Connecticut
City/County Building Code	Harford County
	2022 Connecticut State Building Code
TIA/EIA Standard Code	ТІА-222-Н
Basic Wind Speed	116 MPH (Vult)
Basic Wind Speed w/ Ice	50 MPH w/ 1.50" Ice
Steel Grade	Pole Shaft A53-B-35 (35 KSI) /
	Base Plate A572 GR 50 (50 KSI) /
	Anchor Bolts A615-75 (75 KSI) /
	Splice Bolts A325
Exposure Category	В
Topographic Cat. (Height)	1 (0)
Risk Category	II
Ss	0.179
Seismic design Category	В

Analysis Results

Based on the foregoing information, our structural analysis determined that **the existing tower is structurally capable of supporting the proposed equipment loads without modification.** The existing tower foundation, splice plates, base plate, splice bolts and anchor bolts have also been evaluated. The foundation, splice plates, base plate, splice bolts and anchor bolts were found to be structurally capable of supporting the proposed loads. A seismic analysis has been performed on this site and is not controlling.

Assumptions

The below assumptions are true, complete, and accurate.

- 1. The existing tower has been maintained to manufacturer's specifications and is in good condition.
- 2. Foundations are considered to have been properly designed for the original design loads.
- 3. All member connections are considered to have been designed to meet the load carrying capacity of the connected member.
- 4. Antenna mount loads have been estimated based on generally accepted industry standards.
- 5. The mounts for the proposed antennas have been analyzed and designed by others.
- 6. See additional assumptions contained in the report attached.
- 7. Tower is within acceptable engineering tolerance at 105%.
- 8. Foundations are within acceptable engineering tolerance at 110%.

Conclusions

The existing tower described above **has sufficient capacity** to support the proposed loading based on the governing Building Code. The tower foundation, splice plates, base plate, splice bolts and anchor bolts have also been evaluated and **are acceptable**. A seismic analysis has been performed on this site and is not controlling.

We appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance, please call us anytime at 941-400-2206.

Sincerely,

Analysis by:

Michael T De Boer, PE Vice President of Engineering Cellsite Solutions, LLC

06/22/2023

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but not necessarily limited, to:

- Information supplied by the client regarding the structure itself, the antenna and transmission line loading on the structure and it components, or relevant information.

- Information from drawings in possession of Cellsite Solutions, LLC, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to Cellsite Solutions, LLC and used in the performance of our engineering services is correct and complete. In the absence of information contrary, we consider that all structures were constructed in accordance with the drawings and specifications and are in a uncorroded condition and have not deteriorated; and we, therefore consider that their capacity has not significantly changed from the original design condition.

All services will be performed to the codes and standards specified by the client, and we do not imply to meet any other code and standard requirements unless explicitly agreed to in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes and standards, the client shall specify the exact requirements. In the absence of information to the contrary, all work will be performed in accordance with the revision of ANSI/TIA/EIA-222-H requested.

All services are performed, results obtained, and recommendations made in accordance with the generally accepted engineering principles and practices. Cellsite Solutions LLC is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Disclaimer of Warranties

Cellsite Solutions, LLC makes no warranties, express or implied, in connection with this report and disclaims any liability arising from the ability of the existing structure to support the design loads for which it was originally designed. Cellsite Solutions, LLC will not be responsible whatsoever for or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of Cellsite Solutions, LLC pursuant to this report will be limited to the total fee received for preparation of this report.

Attachment 1: Calculations

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Shroud Support at 108.9375'	108.94	(3) TMAT1921B68-21-43 (T-Mobile)	75
(3) Powerwave P65-16-XLH-RR (ATT)	102.3	(3) APVSPP18-C-A20 (T-Mobile)	75
(3) TTAW-07BP111-001 (ATT)	100.4	Shroud Support at 70.75	70.75
Shroud Support at 98.895833	98.9	(3) Commscope FVV-65B-R3 (Dish)	67
(3) Powerwave P65-16-XLH-RR (ATT)	94.85	Shroud Support at 62.7916667	62.79
(3) TTAW-07BP111-001 (ATT)	90.44	(3) Commscope E15V95P63 Diplexer	60
Shroud Support at 88.8541667	88.85	(Dish)	
(3) Powerwave P65-16-XLH-RR (ATT)	85.25	(3) Commscope CDX623T-DS-T	60
(3) TTAW-07BP111-001 (ATT)	80.25		
Shroud Support at 78.75	78.75		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-35	35 ksi	63 ksi			

TOWER DESIGN NOTES

- 1. Tower is located in Hartford County, Connecticut.
- 2. Tower designed for Exposure B to the TIA-222-H Standard.
- Tower designed for a 116 mph basic wind in accordance with the TIA-222-H Standard. 3.
- 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.

- Deflections are based upon a 60 mph wind.
 Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
- 8. Weld together tower sections have flange connections.
- 9. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications.
- 10. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- 11. Welds are fabricated with ER-70S-6 electrodes.
- 12. TOWER RATING: 66.7%

Cellsite Solutions, LLC	^{Job:} CT-1239 (Avon CT)	
4150 C Street SW	Project: 108.9' Stealth Monopole Analysis	
Cedar Rapids, IA 52404	^{Client:} Blue Sky (Dish) ^{Drawn by:} mike.deboer	App'd:
Phone: 319-826-3404	^{Code:} TIA-222-H ^{Date:} 04/06/23	Scale: NTS
FAX:		^{Dwg No.} E-1

Feed Line Plan

Cellsite Solutions, LLC	^{Job:} CT-1239 (Avon CT)	
4150 C Street SW	Project: 108.9' Stealth Monopole Analysis	
Cedar Rapids, IA 52404	^{Client:} Blue Sky (Dish) ^{Drawn by:} mike.deboer	App'd:
Phone: 319-826-3404	^{Code:} TIA-222-H ^{Date:} 04/06/23	Scale: NTS
FAX:	Path:	Dwg No. E-7

CT-1239 (Avor	ιCT)

Cellsite Solutions, LLC 4150 C Street SW Cedar Rapids, IA 52404 Phone: 319-826-3404 FAX:

108.9' Stealth Monopole Analysis

12:29:10 04/06/23

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

• Tower is located in Hartford County, Connecticut.

Job

Project

Client

- Tower base elevation above sea level: 298.00 ft.
- Basic wind speed of 116 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.500 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.00 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50.00 °F.
- Deflections calculated using a wind speed of 60 mph.
- Weld together tower sections have flange connections..
- Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications..
- Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards..
- Welds are fabricated with ER-70S-6 electrodes..
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs	Distribute Leg Loads As Uniform	Use ASCE 10 X-Brace Ly Rules
Consider Moments - Horizontals	Assume Legs Pinned	 Calculate Redundant Bracing Forces
Consider Moments - Diagonals	 Assume Rigid Index Plate	Ignore Redundant Members in FEA
Use Moment Magnification	 Use Clear Spans For Wind Area	SR Leg Bolts Resist Compression
 Use Code Stress Ratios	 Use Clear Spans For KL/r	All Leg Panels Have Same Allowable
 Use Code Safety Factors - Guys	Retension Guys To Initial Tension	Offset Girt At Foundation
Escalate Ice	 Bypass Mast Stability Checks	 Consider Feed Line Torque
Always Use Max Kz	 Use Azimuth Dish Coefficients	Include Angle Block Shear Check
Use Special Wind Profile	 Project Wind Area of Appurt.	Use TIA-222-H Bracing Resist. Exemption
Include Bolts In Member Capacity	Autocalc Torque Arm Areas	Use TIA-222-H Tension Splice Exemption
Leg Bolts Are At Top Of Section	Add IBC .6D+W Combination	Poles
Secondary Horizontal Braces Leg	Sort Capacity Reports By Component	 Include Shear-Torsion Interaction
Use Diamond Inner Bracing (4 Sided)	Triangulate Diamond Inner Bracing	Always Use Sub-Critical Flow
SR Members Have Cut Ends	Treat Feed Line Bundles As Cylinder	Use Top Mounted Sockets
SR Members Are Concentric	Ignore KL/ry For 60 Deg. Angle Legs	Pole Without Linear Attachments
		Pole With Shroud Or No Appurtenances
		Outside and Inside Corner Radii Are
		Known

tnxTower

Cellsite Solutions, LLC 4150 C Street SW Cedar Rapids, IA 52404 Phone: 319-826-3404 FAX:

Job		Page
	CT-1239 (Avon CT)	2 of 20
Project	100 01 Staalth Managala Analysia	Date
	108.9 Stealth Monopole Analysis	12:29:10 04/06/23
Client	Blue Sky (Dish)	Designed by mike.deboer

Pole Section Geometry

Section	Elevation	Section Length	Pole Size	Pole Grade	Socket Length ft
	ft	ft			
L1	108.90-88.82	20.08	P6.625x0.34875	A53-B-35	
				(35 ksi)	
L2	88.82-62.76	26.06	P12.75x0.349	A53-B-35	
				(35 ksi)	
L3	62.76-40.63	22.13	P36x0.34875	A53-B-35	
				(35 ksi)	
I.4	40 63-0 00	40.63	P36x0 34875	A53-B-35	
E.	10.05 0.00	10.05	1 50/015 10/5	(35 ksi)	

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
L1				1	1	1			
108.90-88.82									
L2 88.82-62.76				1	1	1			
L3 62.76-40.63				1	1	1			
L4 40.63-0.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Exclude	Component	Placement	Total	Number	Clear	Width or	Perimeter	Weight
	or	Shield	From	Туре		Number	Per Row	Spacing	Diameter		
	Leg		Torque		ft			in	in	in	klf
			Calculation								

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow Shield	Exclude From	Component	Placement	Total Number		$C_A A_A$	Weight
	Leg	Shielu	Torque Calculation	Type	ft	number		ft²/ft	klf
****ATT****									
LDF7-50A (1-5/8	С	No	No	Inside Pole	102.30 - 0.00	6	No Ice	0.00	0.00
FOAM)							1/2" Ice	0.00	0.00
(ATT)							1" Ice	0.00	0.00
							2" Ice	0.00	0.00
LDF7-50A (1-5/8	С	No	No	Inside Pole	94.90 - 0.00	6	No Ice	0.00	0.00
FOAM)							1/2" Ice	0.00	0.00
(ATT)							1" Ice	0.00	0.00
							2" Ice	0.00	0.00
LDF7-50A (1-5/8	С	No	No	Inside Pole	85.30 - 0.00	6	No Ice	0.00	0.00
FOAM							1/2" Ice	0.00	0.00

Anna Tanu ar	Job	Page
tnx 1 ower	CT-1239 (Avon CT)	3 of 20
Cellsite Solutions, LLC 4150 C Street SW	Project 108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
Cedar Rapids, IA 52404 Phone: 319-826-3404 FAX:	Client Blue Sky (Dish)	Designed by mike.deboer

Description	Face	Allow	Exclude	Component	Placement	Total Number		$C_A A_A$	Weight
	Ur	Snieia	Tomana	Type	A	Number		62/6	1-1 f
	Leg		Calculation		Ji			ji /ji	ĸij
(ATT)			curculation				1" Ice	0.00	0.00
()							2" Ice	0.00	0.00
****T-Mobile****									
LDF5-50A (7/8	В	No	No	Inside Pole	75.00 - 0.00	12	No Ice	0.00	0.00
FOAM)							1/2" Ice	0.00	0.00
(T-Mobile)							1" Ice	0.00	0.00
							2" Ice	0.00	0.00
****Dish****									
LDF5-50A (7/8	Α	No	No	Inside Pole	67.00 - 0.00	12	No Ice	0.00	0.00
FOAM)							1/2" Ice	0.00	0.00
(Dish)							1" Ice	0.00	0.00
							2" Ice	0.00	0.00

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	Κ
L1	108.90-88.82	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.10
L2	88.82-62.76	А	0.000	0.000	0.000	0.000	0.02
		В	0.000	0.000	0.000	0.000	0.05
		С	0.000	0.000	0.000	0.000	0.37
L3	62.76-40.63	А	0.000	0.000	0.000	0.000	0.09
		В	0.000	0.000	0.000	0.000	0.09
		С	0.000	0.000	0.000	0.000	0.33
L4	40.63-0.00	А	0.000	0.000	0.000	0.000	0.16
		В	0.000	0.000	0.000	0.000	0.16
		С	0.000	0.000	0.000	0.000	0.60

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	Κ
L1	108.90-88.82	А	1.674	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.10
L2	88.82-62.76	А	1.630	0.000	0.000	0.000	0.000	0.02
		В		0.000	0.000	0.000	0.000	0.05
		С		0.000	0.000	0.000	0.000	0.37
L3	62.76-40.63	А	1.569	0.000	0.000	0.000	0.000	0.09
		В		0.000	0.000	0.000	0.000	0.09
		С		0.000	0.000	0.000	0.000	0.33
L4	40.63-0.00	А	1.429	0.000	0.000	0.000	0.000	0.16
		В		0.000	0.000	0.000	0.000	0.16
		С		0.000	0.000	0.000	0.000	0.60

Cellsite Solutions, LLC 4150 C Street SW Cedar Rapids, IA 52404 Phone: 319-826-3404 FAX:

Job		Page
	CT-1239 (Avon CT)	4 of 20
Project	108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
Client	Blue Sky (Dish)	Designed by mike.deboer

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	108.90-88.82	0.000	0.000	0.000	0.000
L2	88.82-62.76	0.000	0.000	0.000	0.000
L3	62.76-40.63	0.000	0.000	0.000	0.000
L4	40.63-0.00	0.000	0.000	0.000	0.000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

User Defined Loads

Description	Elevation	Offset From Centroid	Azimuth Angle		Weight	F_x	F_z	Wind Force	$C_A A_C$
	ft	ft	0		K	Κ	Κ	Κ	ft^2
Shroud Support at 108.9375'	108.94	0.00	0.00	No Ice	0.31	0.00	0.00	0.33	9.04
				Ice	1.36	0.00	0.00	0.14	20.33
				Service	0.31	0.00	0.00	0.08	9.04
Shroud Support at 98.895833	98.90	0.00	0.00	No Ice	0.31	0.00	0.00	0.63	18.08
				Ice	1.35	0.00	0.00	0.26	40.63
				Service	0.31	0.00	0.00	0.15	18.08
Shroud Support at 88.8541667	88.85	0.00	0.00	No Ice	0.31	0.00	0.00	0.62	18.13
				Ice	1.35	0.00	0.00	0.26	40.71
				Service	0.31	0.00	0.00	0.15	18.13
Shroud Support at 78.75	78.75	0.00	0.00	No Ice	0.29	0.00	0.00	0.54	16.29
				Ice	1.10	0.00	0.00	0.22	36.54
				Service	0.29	0.00	0.00	0.13	16.29
Shroud Support at 70.75	70.75	0.00	0.00	No Ice	0.27	0.00	0.00	0.57	17.74
				Ice	1.33	0.00	0.00	0.22	37.29
				Service	0.27	0.00	0.00	0.14	17.74
Shroud Support at 62.7916667	62.79	0.00	0.00	No Ice	0.00	0.00	0.00	0.32	10.54
11				Ice	0.00	0.00	0.00	0.12	21.16
				Service	0.00	0.00	0.00	0.08	10.54

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	0		Vert ft ft ft	0	ft		ft^2	ft ²	K
****ATT**** (3) Powerwave P65-16-XLH-RR (ATT)	С	None	<u>,</u> ,,	0.00	102.30	No Ice 1/2" Ice 1" Ice 2" Ice	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00$	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00$	$0.07 \\ 0.00 \\ 0.00 \\ 0.00$

tnxTower	Job	Page	
		5 of 20	
Cellsite Solutions, LLC 4150 C Street SW Cedar Rapids, 1A 52404 Phone: 319-826-3404 FAX:	Project	108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
	Client	Blue Sky (Dish)	Designed by mike.deboer

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vort	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft ²	ft ²	Κ
(3) TTAW-07BP111-001 (ATT)	С	None		0.00	100.40	No Ice	0.00	0.00	0.02
						1/2" Ice	0.00	0.00	0.00
						1" Ice	0.00	0.00	0.00
						2" Ice	0.00	0.00	0.00
(3) Powerwave	С	None		0.00	94.85	No Ice	0.00	0.00	0.07
P65-16-XLH-RR (ATT)						1/2" Ice	0.00	0.00	0.00
						1" Ice	0.00	0.00	0.00
						2" Ice	0.00	0.00	0.00
(3) TTAW-07BP111-001	С	None		0.00	90.44	No Ice	0.00	0.00	0.02
(ATT)						1/2" Ice	0.00	0.00	0.00
						1" Ice	0.00	0.00	0.00
	G			0.00		2" Ice	0.00	0.00	0.00
(3) Powerwave	С	None		0.00	85.25	No Ice	0.00	0.00	0.07
P65-16-XLH-RR						1/2" Ice	0.00	0.00	0.00
(ATT)						I" Ice	0.00	0.00	0.00
(2) TT AW 07DD111 001	C	N		0.00	00.25	2" Ice	0.00	0.00	0.00
(3) TTAW-0/BP111-001 (ATT)	C	None		0.00	80.25	No Ice	0.00	0.00	0.02
						1/2" Ice	0.00	0.00	0.00
						1" Ice	0.00	0.00	0.00
****T Mabila****						2 th Ice	0.00	0.00	0.00
$(2) \land \mathbf{DVSDD18} \subset \land 20$	C	Nona		0.00	75.00	No Iso	0.00	0.00	0.06
(5) APV SPP18-C-A20 (T. Mabila)	C	None		0.00	75.00	1/2" Ice	0.00	0.00	0.00
(1-Mobile)						1/2 ICC	0.00	0.00	0.00
						2" Ice	0.00	0.00	0.00
(3) TMAT1921B68-21-43	C	None		0.00	75.00	No Ice	0.00	0.00	0.00
(T-Mobile)	C	None		0.00	75.00	1/2" Ice	0.00	0.00	0.02
						1" Ice	0.00	0.00	0.00
						2" Ice	0.00	0.00	0.00
****Dish****						2 100	0.00	0.00	0.00
(3) Commscope	С	None		0.00	67.00	No Ice	8.25	5.50	0.04
FVV-65B-R3						1/2" Ice	8.48	5.79	0.09
(Dish)						1" Ice	8.94	6.24	0.14
						2" Ice	9.86	7.14	0.24
(3) Commscope	С	None		0.00	60.00	No Ice	0.37	0.33	0.03
CDX623T-DS-T Diplexer						1/2" Ice	0.48	0.44	0.04
(Dish)						1" Ice	0.60	0.56	0.05
· · ·						2" Ice	0.84	0.80	0.07
(3) Commscope E15V95P63	С	None		0.00	60.00	No Ice	0.38	0.34	0.03
Diplexer						1/2" Ice	0.49	0.45	0.04
(Dish)						1" Ice	0.61	0.57	0.05
						2" Ice	0.85	0.81	0.07

Tower Pressures - No Ice

 $G_H = 1.100$
tnxTower	Job	CT-1239 (Avon CT)	Page 6 of 20
Cellsite Solutions, LLC 4150 C Street SW	Project	108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
Cedar Rapids, IA 52404 Phone: 319-826-3404 FAX:	Client	Blue Sky (Dish)	Designed by mike.deboer

Section	Z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		ksf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1	98.86	0.985	0.03	11.086	Α	0.000	11.086	11.086	100.00	0.000	0.000
108.90-88.82					В	0.000	11.086		100.00	0.000	0.000
					С	0.000	11.086		100.00	0.000	0.000
L2 88.82-62.76	75.79	0.913	0.03	27.689	Α	0.000	27.689	27.689	100.00	0.000	0.000
					В	0.000	27.689		100.00	0.000	0.000
					С	0.000	27.689		100.00	0.000	0.000
L3 62.76-40.63	51.70	0.818	0.03	66.390	Α	0.000	66.390	66.390	100.00	0.000	0.000
					В	0.000	66.390		100.00	0.000	0.000
					С	0.000	66.390		100.00	0.000	0.000
L4 40.63-0.00	20.34	0.7	0.02	121.890	Α	0.000	121.890	121.890	100.00	0.000	0.000
					В	0.000	121.890		100.00	0.000	0.000
					С	0.000	121.890		100.00	0.000	0.000

Tower Pressure - With Ice

$G_H = 1.100$

Section	Ζ	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		ksf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 108.90-88.82	98.86	0.985	0.01	1.674	16.688	Α	0.000	16.688	16.688	100.00	0.000	0.000
						В	0.000	16.688		100.00	0.000	0.000
						С	0.000	16.688		100.00	0.000	0.000
L2 88.82-62.76	75.79	0.913	0.01	1.630	34.769	Α	0.000	34.769	34.769	100.00	0.000	0.000
						В	0.000	34.769		100.00	0.000	0.000
						С	0.000	34.769		100.00	0.000	0.000
L3 62.76-40.63	51.70	0.818	0.00	1.569	72.176	Α	0.000	72.176	72.176	100.00	0.000	0.000
						В	0.000	72.176		100.00	0.000	0.000
						С	0.000	72.176		100.00	0.000	0.000
L4 40.63-0.00	20.34	0.7	0.00	1.429	131.568	Α	0.000	131.568	131.568	100.00	0.000	0.000
						В	0.000	131.568		100.00	0.000	0.000
						С	0.000	131.568		100.00	0.000	0.000

Tower Pressure - Service

Section	Ζ	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а			_	%	In	Out
					С					Face	Face
ft	ft		ksf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1	98.86	0.985	0.01	11.086	Α	0.000	11.086	11.086	100.00	0.000	0.000
108.90-88.82					В	0.000	11.086		100.00	0.000	0.000
					С	0.000	11.086		100.00	0.000	0.000
L2 88.82-62.76	75.79	0.913	0.01	27.689	Α	0.000	27.689	27.689	100.00	0.000	0.000
					В	0.000	27.689		100.00	0.000	0.000
					С	0.000	27.689		100.00	0.000	0.000
L3 62.76-40.63	51.70	0.818	0.01	66.390	Α	0.000	66.390	66.390	100.00	0.000	0.000
					В	0.000	66.390		100.00	0.000	0.000
					С	0.000	66.390		100.00	0.000	0.000
L4 40.63-0.00	20.34	0.7	0.01	121.890	Α	0.000	121.890	121.890	100.00	0.000	0.000

 $G_H = 1.100$

Job		Page
	CT-1239 (Avon CT)	7 of 20
Project	108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
Client	Blue Sky (Dish)	Designed by mike.deboer

Section Elevation	Z	Kz	q_z	A_G	F a	A_F	A_R	A_{leg}	Leg %	$C_A A_A$ In	$C_A A_A$ Out
ft	ft		ksf	ft ²	c e	ft ²	ft ²	ft ²	, -	Face ft ²	Face ft ²
-					В	0.000	121.890		100.00	0.000	0.000
					С	0.000	121.890		100.00	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			-						Face
			С			ksf						
ft	Κ	Κ	е			-			ft^2	Κ	klf	
L1	0.10	0.47	Α	1	0.74	0.03	1	1	11.086	0.29	0.01	С
108.90-88.82			В	1	0.74		1	1	11.086			
			С	1	0.74		1	1	11.086			
L2	0.43	1.21	Α	1	0.6	0.03	1	1	27.689	0.54	0.02	С
88.82-62.76			В	1	0.6		1	1	27.689			
			С	1	0.6		1	1	27.689			
L3	0.50	2.94	Α	1	0.6	0.03	1	1	66.390	1.16	0.05	С
62.76-40.63			В	1	0.6		1	1	66.390			
			С	1	0.6		1	1	66.390			
L4 40.63-0.00	0.92	5.40	Α	1	0.6	0.02	1	1	121.890	1.83	0.04	С
			В	1	0.6		1	1	121.890			
			С	1	0.6		1	1	121.890			
Sum Weight:	1.95	10.02						OTM	166.60	3.82		
Ũ									kip-ft			

	Tower Forces - No Ice - Wind 60 To Face												
				n		1		1					
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.	
Elevation	Weight	Weight	а									Face	
			С			ksf							
ft	K	K	е						ft^2	K	klf		
L1	0.10	0.47	Α	1	0.74	0.03	1	1	11.086	0.29	0.01	С	
108.90-88.82			В	1	0.74		1	1	11.086				
			С	1	0.74		1	1	11.086				
L2	0.43	1.21	Α	1	0.6	0.03	1	1	27.689	0.54	0.02	С	
88.82-62.76			В	1	0.6		1	1	27.689				
			С	1	0.6		1	1	27.689				
L3	0.50	2.94	Α	1	0.6	0.03	1	1	66.390	1.16	0.05	С	
62.76-40.63			В	1	0.6		1	1	66.390				
			С	1	0.6		1	1	66.390				
L4 40.63-0.00	0.92	5.40	Α	1	0.6	0.02	1	1	121.890	1.83	0.04	С	
			В	1	0.6		1	1	121.890				
			С	1	0.6		1	1	121.890				
Sum Weight:	1.95	10.02						OTM	166.60	3.82			
, i i i i i i i i i i i i i i i i i i i									kip-ft				

Tower Forces - No Ice - Wind 90 To Face

ver	Job		Page
		GT-1239 (Avon GT)	0 01 20
ns. LLC	Project		Date
t SW		108.9' Stealth Monopole Analysis	12:29:10 04/06/23
4 52404 6-3404	Client	Blue Sky (Dish)	Designed by mike.deboer

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			-						Face
			С			ksf						
ft	K	K	е						ft^2	K	klf	
L1	0.10	0.47	Α	1	0.74	0.03	1	1	11.086	0.29	0.01	С
108.90-88.82			В	1	0.74		1	1	11.086			
			С	1	0.74		1	1	11.086			
L2	0.43	1.21	Α	1	0.6	0.03	1	1	27.689	0.54	0.02	С
88.82-62.76			В	1	0.6		1	1	27.689			
			С	1	0.6		1	1	27.689			
L3	0.50	2.94	Α	1	0.6	0.03	1	1	66.390	1.16	0.05	С
62.76-40.63			В	1	0.6		1	1	66.390			
			С	1	0.6		1	1	66.390			
L4 40.63-0.00	0.92	5.40	Α	1	0.6	0.02	1	1	121.890	1.83	0.04	С
			В	1	0.6		1	1	121.890			
			С	1	0.6		1	1	121.890			
Sum Weight:	1.95	10.02						OTM	166.60	3.82		
									kip-ft			

	Tower Forces -	With Ice -	Wind Normal	To Face
--	----------------	------------	-------------	---------

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			-						Face
			С			ksf						
ft	K	K	е						ft^2	K	klf	
L1	0.10	0.81	Α	1	1.2	0.01	1	1	16.688	0.13	0.01	С
108.90-88.82			В	1	1.2		1	1	16.688			
			С	1	1.2		1	1	16.688			
L2	0.43	1.95	Α	1	1.2	0.01	1	1	34.769	0.25	0.01	С
88.82-62.76			В	1	1.2		1	1	34.769			
			С	1	1.2		1	1	34.769			
L3	0.50	4.53	Α	1	1.2	0.00	1	1	72.176	0.47	0.02	С
62.76-40.63			В	1	1.2		1	1	72.176			
			С	1	1.2		1	1	72.176			
L4 40.63-0.00	0.92	8.06	Α	1	1.2	0.00	1	1	131.568	0.73	0.02	С
			В	1	1.2		1	1	131.568			
			С	1	1.2		1	1	131.568			
Sum Weight:	1.95	15.35						OTM	71.16	1.58		
, in the second s									kip-ft			

	Tower Forces - With Ice - Wind 60 To Face												
									[0		
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.	
Elevation	Weight	Weight	а									Face	
			С			ksf							
ft	K	K	е			-			ft^2	Κ	klf		
L1	0.10	0.81	А	1	1.2	0.01	1	1	16.688	0.13	0.01	С	
108.90-88.82			В	1	1.2		1	1	16.688				
			С	1	1.2		1	1	16.688				
L2	0.43	1.95	А	1	1.2	0.01	1	1	34.769	0.25	0.01	С	
88.82-62.76			В	1	1.2		1	1	34.769				
			С	1	1.2		1	1	34.769				

ver	Job	CT-1239 (Avon CT)	Page 9 of 20
o ns, LLC et SW	Project	108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
A 52404 26-3404	Client	Blue Sky (Dish)	Designed by mike.deboer

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			ksf						
ft	K	K	е			-			ft^2	Κ	klf	
L3	0.50	4.53	Α	1	1.2	0.00	1	1	72.176	0.47	0.02	С
62.76-40.63			В	1	1.2		1	1	72.176			
			С	1	1.2		1	1	72.176			
L4 40.63-0.00	0.92	8.06	Α	1	1.2	0.00	1	1	131.568	0.73	0.02	С
			В	1	1.2		1	1	131.568			
			С	1	1.2		1	1	131.568			
Sum Weight:	1.95	15.35						OTM	71.16	1.58		
Ū.									kip-ft			

		т	ow	er Fo	rces	- Wi	th Ic	e - N	/ind 90	To Fac	е	
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			ksf						
ft	K	K	е						ft^2	K	klf	
L1	0.10	0.81	Α	1	1.2	0.01	1	1	16.688	0.13	0.01	С
108.90-88.82			В	1	1.2		1	1	16.688			
			С	1	1.2		1	1	16.688			
L2	0.43	1.95	Α	1	1.2	0.01	1	1	34.769	0.25	0.01	С
88.82-62.76			В	1	1.2		1	1	34.769			
			С	1	1.2		1	1	34.769			
L3	0.50	4.53	Α	1	1.2	0.00	1	1	72.176	0.47	0.02	С
62.76-40.63			В	1	1.2		1	1	72.176			
			С	1	1.2		1	1	72.176			
L4 40.63-0.00	0.92	8.06	Α	1	1.2	0.00	1	1	131.568	0.73	0.02	С
			В	1	1.2		1	1	131.568			
			С	1	1.2		1	1	131.568			
Sum Weight:	1.95	15.35						OTM	71.16	1.58		
									kip-ft			

	Tower Forces - Service - Wind Normal To Face														
~ .	Section Add Self F e Cr a Dr Do Ar F w Ctrl														
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.			
Elevation	Weight	Weight	а									Face			
			С			ksf									
ft	K	K	е						ft^2	K	klf				
L1	0.10	0.47	Α	1	1.2	0.01	1	1	11.086	0.11	0.01	С			
108.90-88.82			В	1	1.2		1	1	11.086						
			С	1	1.2		1	1	11.086						
L2	0.43	1.21	Α	1	0.772	0.01	1	1	27.689	0.17	0.01	С			
88.82-62.76			В	1	0.772		1	1	27.689						
			С	1	0.772		1	1	27.689						
L3	0.50	2.94	А	1	0.6	0.01	1	1	66.390	0.28	0.01	С			
62.76-40.63			B	1	0.6		1	1	66.390			_			
02170 10100			C	1	0.6		1	1	66 390						
I 4 40 63-0 00	0.92	5 40	Δ	1	0.6	0.01	1	1	121 890	0.44	0.01	C			
1-1-0.05-0.00	0.72	5.40	B	1	0.0	0.01	1	1	121.890	0.44	0.01	Č			
			C	1	0.0		1	1	121.890						
Sum Woight:	1.05	10.02	C	1	0.0		1	OTM	121.090	0.00					
Sum weight:	1.95	10.02						OIM	40.95	0.99					

Job		Page
	CT-1239 (Avon CT)	10 of 20
Project	108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
Client	Blue Sky (Dish)	Designed by mike.deboer

Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
ft	K	K	c e			ksf			ft ²	K	klf	
· ·									kip-ft		ř	

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			ksf						
ft	K	Κ	е						ft^2	Κ	klf	
L1	0.10	0.47	А	1	1.2	0.01	1	1	11.086	0.11	0.01	С
108.90-88.82			В	1	1.2		1	1	11.086			
			С	1	1.2		1	1	11.086			
L2	0.43	1.21	Α	1	0.772	0.01	1	1	27.689	0.17	0.01	С
88.82-62.76			В	1	0.772		1	1	27.689			
			С	1	0.772		1	1	27.689			
L3	0.50	2.94	Α	1	0.6	0.01	1	1	66.390	0.28	0.01	С
62.76-40.63			В	1	0.6		1	1	66.390			
			С	1	0.6		1	1	66.390			
L4 40.63-0.00	0.92	5.40	Α	1	0.6	0.01	1	1	121.890	0.44	0.01	С
			В	1	0.6		1	1	121.890			
			С	1	0.6		1	1	121.890			
Sum Weight:	1.95	10.02						OTM	46.93	0.99		
									kip-ft			

Tower Forces - Service - Wind 90 To Face												
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			-						Face
	Ū	Ū.	С			ksf						
ft	K	K	е			-			ft^2	K	klf	
L1	0.10	0.47	Α	1	1.2	0.01	1	1	11.086	0.11	0.01	С
108.90-88.82			В	1	1.2		1	1	11.086			
			С	1	1.2		1	1	11.086			
L2	0.43	1.21	Α	1	0.772	0.01	1	1	27.689	0.17	0.01	С
88.82-62.76			В	1	0.772		1	1	27.689			
			С	1	0.772		1	1	27.689			
L3	0.50	2.94	Α	1	0.6	0.01	1	1	66.390	0.28	0.01	С
62.76-40.63			В	1	0.6		1	1	66.390			
			С	1	0.6		1	1	66.390			
L4 40.63-0.00	0.92	5.40	А	1	0.6	0.01	1	1	121.890	0.44	0.01	С
			В	1	0.6		1	1	121.890			
			С	1	0.6		1	1	121.890			
Sum Weight:	1.95	10.02						OTM	46.93	0.99		
C									kip-ft			

tnxTower

Job

Project

Client

Cellsite Solutions, LLC

4150 C Street SW Cedar Rapids, IA 52404 Phone: 319-826-3404 FAX:

CT-1239 (Avon CT)

108.9' Stealth Monopole Analysis

Force Totals

Blue Sky (Dish)

Designed by mike.deboer

12:29:10 04/06/23

Load Vertical Sum of Sum of Sum of Sum of Sum of Torques Forces Forces Forces Overturning Overturning Case Ζ Х Moments, M_x Moments, M_z K K K kip-ft kip-ft kip-ft Leg Weight 10.02 Bracing Weight 0.00 Total Member Self-Weight 10.02 0.00 0.00 14.74 Total Weight 0.00 0.00 Wind 0 deg - No Ice -7.67 -478.37 0.00 0.00 0.00 Wind 30 deg - No Ice -239.19 0.00 3.83 -6.64 -414.28 Wind 60 deg - No Ice 6.64 -3.83 -239.19 -414.28 0.00 Wind 90 deg - No Ice 7.67 0.00 0.00 -478.37 0.00 Wind 120 deg - No Ice 6.64 3.83 239.19 -414.28 0.00 Wind 150 deg - No Ice 3.83 414.28 -239.19 0.00 6.64 Wind 180 deg - No Ice 0.00 7.67 478.37 0.00 0.00 239.19 Wind 210 deg - No Ice -3.83 6.64 414.28 0.00 Wind 240 deg - No Ice -6.64 3.83 239.19 414.28 0.00 Wind 270 deg - No Ice -7.67 0.00 0.00 478.37 0.00 Wind 300 deg - No Ice -6.64 -3.83 -239.19 414.28 0.00 Wind 330 deg - No Ice -3.83 -6.64 -414.28 239.19 0.00 Member Ice 5.34 Total Weight Ice 24.78 0.00 0.00 Wind 0 deg - Ice 0.00 -3.00-188.52 0.00 0.00 Wind 30 deg - Ice 1.50 -2.60 -163.26 -94.26 0.00 Wind 60 deg - Ice 2.60 -1.50 -94.26 -163.26 0.00 Wind 90 deg - Ice 3.00 0.00 0.00 -188.52 0.00 Wind 120 deg - Ice 2.60 1.50 94.26 -163.26 0.00 Wind 150 deg - Ice 1.50 163.26 2.60 -94.26 0.00 Wind 180 deg - Ice 0.00 3.00 188.52 0.00 0.00 Wind 210 deg - Ice -1.50 2.60 163.26 94.26 0.00 Wind 240 deg - Ice -2.60 1.50 94.26 163.26 0.00 Wind 270 deg - Ice -3.00 0.00 0.00 188.52 0.00 Wind 300 deg - Ice -1.50 -94.26 -2.60 163.26 0.00 Wind 330 deg - Ice -1.50 -2.60 -163.26 94.26 0.00 14.74 Total Weight 0.00 0.00 Wind 0 deg - Service 0.00 -1.91 -121.56 0.00 0.00 Wind 30 deg - Service 0.96 -1.66 -105.27 -60.78 0.00 Wind 60 deg - Service 1.66 -0.96 -60.78 -105.27 0.00 Wind 90 deg - Service 1.91 0.00 0.00 0.00 -121.56 Wind 120 deg - Service 1.66 0.96 60.78 -105.27 0.00 Wind 150 deg - Service 0.96 105.27 1.66 -60.78 0.00 Wind 180 deg - Service 0.00 1.91 121.56 0.00 0.00 Wind 210 deg - Service -0.96 1.66 105.27 60.78 0.00 Wind 240 deg - Service -1.66 0.96 60.78 105.27 0.00 Wind 270 deg - Service -1.91 0.00 0.00 121.56 0.00 Wind 300 deg - Service -1.66 -0.96 -60.78 105.27 0.00 -105.27 60.78 Wind 330 deg - Service -0.96 -1.66 0.00

Load Combinations

Comb
No.

Description

- Dead Only
 1.2 Dead+1.0 Wind 0 deg No Ice
- 3 0.9 Dead+1.0 Wind 0 deg No Ice
- 4 1.2 Dead+1.0 Wind 30 deg No Ice
- 5 0.9 Dead+1.0 Wind 30 deg No Ice

Page 11 of 20

Date

tn

Cellsite

41. Cedar Phon

Town	Job	Page	
xiower		12 of 20	
te Solutions, LLC 150 C Street SW	Project	108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
r Rapids, IA 52404 ne: 319-826-3404 FAX:	Client	Blue Sky (Dish)	Designed by mike.deboer

Comb.	Description
No.	
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 wind 90 deg+1.0 Ice+1.0 Temp
22	1.2 Dead+1.0 Wind 150 deg+1.0 tee+1.0 Temp
32	1.2 Deat+1.0 wind 150 deg+1.0 lea+1.0 remp
33	1.2 Deart-1.0 Wind 210 deart-1.0 Leart-0.7 Emp
35	1.2 Dead+1.0 Wind 240 dea+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Lee+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Lee+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
L1	108.9 - 88.82	Pole	Max Tension	8	0.00	0.00	0.00
			Max. Compression	26	-5.37	0.00	0.00
			Max. Mx	8	-2.32	-16.99	0.00
			Max. My	2	-2.32	0.00	16.99
			Max. Vy	8	1.96	-16.99	0.00
			Max. Vx	2	-1.96	0.00	16.99
			Max. Torque	4			-0.00
L2	88.82 - 62.76	Pole	Max Tension	1	0.00	0.00	0.00

tnxTower	Job	CT-1239 (Avon CT)	Page 13 of 20	
Cellsite Solutions, LLC 4150 C Street SW	Project	108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23	
Cedar Rapids, IA 52404 Phone: 319-826-3404 FAY:	Client	Blue Sky (Dish)	Designed by mike.deboer	

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
			Max. Compression	26	-11.36	0.00	0.00
			Max. Mx	8	-5.69	-91.87	0.00
			Max. My	2	-5.69	0.00	91.87
			Max. Vy	8	4.69	-91.87	0.00
			Max. Vx	2	-4.69	0.00	91.87
			Max. Torque	4			-0.00
L3	62.76 - 40.63	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-17.49	0.00	0.00
			Max. Mx	8	-10.04	-210.22	0.00
			Max. My	2	-10.04	0.00	210.22
			Max. Vy	8	5.95	-210.22	0.00
			Max. Vx	2	-5.95	0.00	210.22
			Max. Torque	4			-0.00
L4	40.63 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-27.73	0.00	0.00
			Max. Mx	8	-17.69	-487.85	0.00
			Max. My	2	-17.69	0.00	487.85
			Max. Vy	8	7.67	-487.85	0.00
			Max. Vx	2	-7.67	0.00	487.85
			Max. Torque	4			-0.00
			-				

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	27	27.73	0.00	3.00
	Max. H _x	20	17.69	7.67	0.00
	Max. Hz	2	17.69	0.00	7.67
	Max. M _x	2	487.85	0.00	7.67
	Max. M _z	8	487.85	-7.67	0.00
	Max. Torsion	12	0.00	-3.83	-6.64
	Min. Vert	7	13.27	-6.64	3.83
	Min. H _x	8	17.69	-7.67	0.00
	Min. Hz	14	17.69	0.00	-7.67
	Min. M _x	14	-487.85	0.00	-7.67
	Min. Mz	20	-487.85	7.67	0.00
	Min. Torsion	4	-0.00	-3.83	6.64

Tower Mast Reaction Summary

Load	Vertical	Shear	Shear	Overturning	Overturning	Torque
Combination	, erneur	Shearx	Shear _z	Moment, M_x	Moment, Mz	Torque
	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
Dead Only	14.74	0.00	0.00	0.00	0.00	0.00
1.2 Dead+1.0 Wind 0 deg - No	17.69	0.00	-7.67	-487.85	0.00	0.00
Ice						
0.9 Dead+1.0 Wind 0 deg - No	13.27	0.00	-7.67	-485.41	0.00	0.00
Ice						
1.2 Dead+1.0 Wind 30 deg - No	17.69	3.83	-6.64	-422.49	-243.93	0.00
Ice						
0.9 Dead+1.0 Wind 30 deg - No	13.27	3.83	-6.64	-420.38	-242.71	0.00
Ice						

tnxTower

Cellsite Solutions, LLC 4150 C Street SW Cedar Rapids, IA 52404 Phone: 319-826-3404 FAX:

ver	Job	CT-1239 (Avon CT)	Page 14 of 20
ns, LLC _{SW}	Project	108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
52404 -3404	Client	Blue Sky (Dish)	Designed by mike.deboer

Load	Vertical	Shear _x	<i>Shear</i> _z	Overturning	Overturning	Torque
Combination	K	K	K	Moment, M_x	Moment, M_z	kin_ft
1.2 Dead+1.0 Wind 60 deg - No	17.69	6.64	-3.83	-243.93	-422.49	-0.00
Ice 0.9 Dead+1.0 Wind 60 deg - No	13.27	6.64	-3.83	-242.71	-420.38	-0.00
Ice 1.2 Dead+1.0 Wind 90 deg - No	17.69	7.67	0.00	0.00	-487.85	0.00
0.9 Dead+1.0 Wind 90 deg - No Ice	13.27	7.67	0.00	0.00	-485.41	0.00
1.2 Dead+1.0 Wind 120 deg - No Ice	17.69	6.64	3.83	243.93	-422.49	0.00
0.9 Dead+1.0 Wind 120 deg - No Ice	13.27	6.64	3.83	242.71	-420.38	0.00
1.2 Dead+1.0 Wind 150 deg - No Ice	17.69	3.83	6.64	422.49	-243.93	-0.00
0.9 Dead+1.0 Wind 150 deg - No Ice	13.27	3.83	6.64	420.38	-242.71	-0.00
1.2 Dead+1.0 Wind 180 deg - No Ice	17.69	0.00	7.67	487.85	0.00	0.00
0.9 Dead+1.0 Wind 180 deg - No Ice	13.27	0.00	7.67	485.41	0.00	0.00
1.2 Dead+1.0 Wind 210 deg - No Ice	17.69	-3.83	6.64	422.49	243.93	0.00
0.9 Dead+1.0 Wind 210 deg - No Ice	13.27	-3.83	6.64	420.38	242.71	0.00
1.2 Dead+1.0 Wind 240 deg - No Ice	17.69	-6.64	3.83	243.93	422.49	-0.00
0.9 Dead+1.0 Wind 240 deg - No Ice	13.27	-6.64	3.83	242.71	420.38	-0.00
1.2 Dead+1.0 Wind 270 deg - No Ice	17.69	-7.67	0.00	0.00	487.85	0.00
0.9 Dead+1.0 Wind 270 deg - No Ice	13.27	-7.67	0.00	0.00	485.41	0.00
1.2 Dead+1.0 Wind 300 deg - No Ice	17.69	-6.64	-3.83	-243.93	422.49	0.00
0.9 Dead+1.0 Wind 300 deg - No Ice	13.27	-6.64	-3.83	-242.71	420.38	0.00
1.2 Dead+1.0 Wind 330 deg - No Ice	17.69	-3.83	-6.64	-422.49	243.93	-0.00
0.9 Dead+1.0 Wind 330 deg - No Ice	13.27	-3.83	-6.64	-420.38	242.71	-0.00
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0	27.73 27.73	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.00 -3.00	0.00 -195.97	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$
1.2 Dead+1.0 Wind 30 deg+1.0	27.73	1.50	-2.60	-169.72	-97.99	0.00
1.2 Dead+1.0 Wind 60 deg+1.0	27.73	2.60	-1.50	-97.99	-169.72	-0.00
1.2 Dead+1.0 Wind 90 deg+1.0	27.73	3.00	0.00	0.00	-195.97	0.00
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	27.73	2.60	1.50	97.99	-169.72	0.00
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	27.73	1.50	2.60	169.72	-97.99	-0.00
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	27.73	0.00	3.00	195.97	0.00	0.00
1.2 Dead+1.0 Wind 210 deg+1 0 Ice+1 0 Temp	27.73	-1.50	2.60	169.72	97.99	0.00
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	27.73	-2.60	1.50	97.99	169.72	-0.00
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	27.73	-3.00	0.00	0.00	195.97	0.00

Cellsite S 4150 Cedar R Phone:

:Tower	Job	CT-1239 (Avon CT)	Page 15 of 20
Solutions, LLC) C Street SW	Project	108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
Rapids, IA 52404 : 319-826-3404 FAX:	Client	Blue Sky (Dish)	Designed by mike.deboer

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 300	27.73	-2.60	-1.50	-97.99	169.72	0.00
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	27.73	-1.50	-2.60	-169.72	97.99	-0.00
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	14.74	0.00	-1.91	-123.59	0.00	0.00
Dead+Wind 30 deg - Service	14.74	0.96	-1.66	-107.03	-61.80	0.00
Dead+Wind 60 deg - Service	14.74	1.66	-0.96	-61.80	-107.03	-0.00
Dead+Wind 90 deg - Service	14.74	1.91	0.00	0.00	-123.59	0.00
Dead+Wind 120 deg - Service	14.74	1.66	0.96	61.80	-107.03	0.00
Dead+Wind 150 deg - Service	14.74	0.96	1.66	107.03	-61.80	-0.00
Dead+Wind 180 deg - Service	14.74	0.00	1.91	123.59	0.00	0.00
Dead+Wind 210 deg - Service	14.74	-0.96	1.66	107.03	61.80	0.00
Dead+Wind 240 deg - Service	14.74	-1.66	0.96	61.80	107.03	-0.00
Dead+Wind 270 deg - Service	14.74	-1.91	0.00	0.00	123.59	0.00
Dead+Wind 300 deg - Service	14.74	-1.66	-0.96	-61.80	107.03	0.00
Dead+Wind 330 deg - Service	14.74	-0.96	-1.66	-107.03	61.80	-0.00

Solution Summary

	Sui	m of Applied Forces	5		Sum of Reaction	5	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-14.74	0.00	0.00	14.74	0.00	0.000%
2	0.00	-17.69	-7.67	0.00	17.69	7.67	0.000%
3	0.00	-13.27	-7.67	0.00	13.27	7.67	0.000%
4	3.83	-17.69	-6.64	-3.83	17.69	6.64	0.000%
5	3.83	-13.27	-6.64	-3.83	13.27	6.64	0.000%
6	6.64	-17.69	-3.83	-6.64	17.69	3.83	0.000%
7	6.64	-13.27	-3.83	-6.64	13.27	3.83	0.000%
8	7.67	-17.69	0.00	-7.67	17.69	0.00	0.000%
9	7.67	-13.27	0.00	-7.67	13.27	0.00	0.000%
10	6.64	-17.69	3.83	-6.64	17.69	-3.83	0.000%
11	6.64	-13.27	3.83	-6.64	13.27	-3.83	0.000%
12	3.83	-17.69	6.64	-3.83	17.69	-6.64	0.000%
13	3.83	-13.27	6.64	-3.83	13.27	-6.64	0.000%
14	0.00	-17.69	7.67	0.00	17.69	-7.67	0.000%
15	0.00	-13.27	7.67	0.00	13.27	-7.67	0.000%
16	-3.83	-17.69	6.64	3.83	17.69	-6.64	0.000%
17	-3.83	-13.27	6.64	3.83	13.27	-6.64	0.000%
18	-6.64	-17.69	3.83	6.64	17.69	-3.83	0.000%
19	-6.64	-13.27	3.83	6.64	13.27	-3.83	0.000%
20	-7.67	-17.69	0.00	7.67	17.69	0.00	0.000%
21	-7.67	-13.27	0.00	7.67	13.27	0.00	0.000%
22	-6.64	-17.69	-3.83	6.64	17.69	3.83	0.000%
23	-6.64	-13.27	-3.83	6.64	13.27	3.83	0.000%
24	-3.83	-17.69	-6.64	3.83	17.69	6.64	0.000%
25	-3.83	-13.27	-6.64	3.83	13.27	6.64	0.000%
26	0.00	-27.73	0.00	0.00	27.73	0.00	0.000%
27	0.00	-27.73	-3.00	0.00	27.73	3.00	0.000%
28	1.50	-27.73	-2.60	-1.50	27.73	2.60	0.000%
29	2.60	-27.73	-1.50	-2.60	27.73	1.50	0.000%
30	3.00	-27.73	0.00	-3.00	27.73	0.00	0.000%
31	2.60	-27.73	1.50	-2.60	27.73	-1.50	0.000%
32	1.50	-27.73	2.60	-1.50	27.73	-2.60	0.000%
33	0.00	-27.73	3.00	0.00	27.73	-3.00	0.000%
34	-1.50	-27.73	2.60	1.50	27.73	-2.60	0.000%
35	-2.60	-27.73	1.50	2.60	27.73	-1.50	0.000%
36	-3.00	-27.73	0.00	3.00	27.73	0.00	0.000%

	Job		Page
tnx 1 ower		CT-1239 (Avon CT)	16 of 20
Cellsite Solutions, LLC 4150 C Street SW	Project	108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
Cedar Rapids, 1A 52404 Phone: 319-826-3404 FAX [.]	Client	Blue Sky (Dish)	Designed by mike.deboer

	Su	m of Applied Forces	7		Sum of Reaction	5	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	Κ	Κ	K	Κ	K	
37	-2.60	-27.73	-1.50	2.60	27.73	1.50	0.000%
38	-1.50	-27.73	-2.60	1.50	27.73	2.60	0.000%
39	0.00	-14.74	-1.91	0.00	14.74	1.91	0.000%
40	0.96	-14.74	-1.66	-0.96	14.74	1.66	0.000%
41	1.66	-14.74	-0.96	-1.66	14.74	0.96	0.000%
42	1.91	-14.74	0.00	-1.91	14.74	0.00	0.000%
43	1.66	-14.74	0.96	-1.66	14.74	-0.96	0.000%
44	0.96	-14.74	1.66	-0.96	14.74	-1.66	0.000%
45	0.00	-14.74	1.91	0.00	14.74	-1.91	0.000%
46	-0.96	-14.74	1.66	0.96	14.74	-1.66	0.000%
47	-1.66	-14.74	0.96	1.66	14.74	-0.96	0.000%
48	-1.91	-14.74	0.00	1.91	14.74	0.00	0.000%
49	-1.66	-14.74	-0.96	1.66	14.74	0.96	0.000%
50	-0.96	-14.74	-1.66	0.96	14.74	1.66	0.000%

Non-Linear Convergence Results

_

Load	Converged?	Number	Displacement	Force
Combination	-	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00007455
3	Yes	4	0.00000001	0.00003050
4	Yes	4	0.00000001	0.00081483
5	Yes	4	0.00000001	0.00054698
6	Yes	4	0.00000001	0.00081483
7	Yes	4	0.00000001	0.00054698
8	Yes	4	0.00000001	0.00007455
9	Yes	4	0.00000001	0.00003050
10	Yes	4	0.00000001	0.00081483
11	Yes	4	0.00000001	0.00054698
12	Yes	4	0.00000001	0.00081483
13	Yes	4	0.00000001	0.00054698
14	Yes	4	0.00000001	0.00007455
15	Yes	4	0.00000001	0.00003050
16	Yes	4	0.00000001	0.00081483
17	Yes	4	0.00000001	0.00054698
18	Yes	4	0.00000001	0.00081483
19	Yes	4	0.00000001	0.00054698
20	Yes	4	0.00000001	0.00007455
21	Yes	4	0.00000001	0.00003050
22	Yes	4	0.00000001	0.00081483
23	Yes	4	0.00000001	0.00054698
24	Yes	4	0.00000001	0.00081483
25	Yes	4	0.00000001	0.00054698
26	Yes	4	0.00000001	0.00000001
27	Yes	5	0.00000001	0.00018942
28	Yes	5	0.00000001	0.00019757
29	Yes	5	0.00000001	0.00019757
30	Yes	5	0.00000001	0.00018942
31	Yes	5	0.00000001	0.00019757
32	Yes	5	0.00000001	0.00019757
33	Yes	5	0.00000001	0.00018942
34	Yes	5	0.00000001	0.00019757
35	Yes	5	0.00000001	0.00019757
36	Yes	5	0.00000001	0.00018942
37	Yes	5	0.00000001	0.00019757

tux Towar	Job			Page
inx i ower		CT-123	9 (Avon CT)	17 of 20
Cellsite Solutions, L	LC Project			Date
4150 C Street SW		108.9' Stealth	Monopole Analysis	12:29:10 04/06/23
Cedar Rapids, IA 5240 Phone: 319-826-3404 FAX:	Client	Blue	Designed by mike.deboer	
38 Yes	5	0.00000001	0.00019757	
39 Yes	4	0.00000001	0.00000001	
40 Yes	4	0.00000001	0.00001848	
41 Yes	4	0.00000001	0.00001848	
42 Yes	4	0.00000001	0.00000001	
43 Yes	4	0.00000001	0.00001848	
44 Yes	4	0.0000001	0.00001848	
45 Yes	4	0.00000001	0.00000001	
46 Yes	4	0.00000001	0.00001848	
47 Yes	4	0.00000001	0.00001848	
48 Yes	4	0.00000001	0.00000001	
49 Yes	4	0.00000001	0.00001848	
 50 Yes	4	0.00000001	0.00001848	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	ft	Comb.	0	0
L1	108.9 - 88.82	0.60	39	0.84	0.00
L2	88.82 - 62.76	0.33	39	0.56	0.00
L3	62.76 - 40.63	0.14	39	0.20	0.00
L4	40.63 - 0	0.07	39	0.16	0.00

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	ft	0	0	ft
108.94	Shroud Support at 108.9375'	39	0.60	0.84	0.00	11938
102.30	(3) Powerwave P65-16-XLH-RR	39	0.50	0.75	0.00	9044
100.40	(3) TTAW-07BP111-001	39	0.48	0.73	0.00	7022
98.90	Shroud Support at 98.895833	39	0.46	0.71	0.00	5969
94.85	(3) Powerwave P65-16-XLH-RR	39	0.40	0.65	0.00	4248
90.44	(3) TTAW-07BP111-001	39	0.35	0.59	0.00	3298
88.85	Shroud Support at 88.8541667	39	0.33	0.56	0.00	3158
85.25	(3) Powerwave P65-16-XLH-RR	39	0.29	0.51	0.00	3206
80.25	(3) TTAW-07BP111-001	39	0.25	0.43	0.00	3588
78.75	Shroud Support at 78.75	39	0.24	0.40	0.00	3722
75.00	(3) APVSPP18-C-A20	39	0.21	0.34	0.00	4109
70.75	Shroud Support at 70.75	39	0.18	0.28	0.00	4656
67.00	(3) Commscope FVV-65B-R3	39	0.16	0.24	0.00	5277
62.79	Shroud Support at 62.7916667	39	0.14	0.20	0.00	6153
60.00	(3) Commscope CDX623T-DS-T	39	0.12	0.18	0.00	6798
	Diplexer					

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	ft	Comb.	0	0

Anna Tasu an	Job	Page
thx1ower	CT-1239 (Avon CT)	18 of 20
Cellsite Solutions, LLC 4150 C Street SW	Project 108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
Cedar Rapids, IA 52404 Phone: 319-826-3404 FAX:	Client Blue Sky (Dish)	Designed by mike.deboer

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	ft	Comb.	0	0
L1	108.9 - 88.82	2.32	2	3.23	0.00
L2	88.82 - 62.76	1.29	2	2.17	0.00
L3	62.76 - 40.63	0.54	2	0.79	0.00
L4	40.63 - 0	0.26	2	0.64	0.00

Critical Deflections and Radius of Curvature - Design Wind

		~		an. 1		
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	ft	0	0	ft
108.94	Shroud Support at 108.9375'	2	2.32	3.23	0.00	3143
102.30	(3) Powerwave P65-16-XLH-RR	2	1.95	2.90	0.00	2381
100.40	(3) TTAW-07BP111-001	2	1.85	2.80	0.00	1848
98.90	Shroud Support at 98.895833	2	1.77	2.72	0.00	1571
94.85	(3) Powerwave P65-16-XLH-RR	2	1.57	2.51	0.00	1118
90.44	(3) TTAW-07BP111-001	2	1.36	2.26	0.00	867
88.85	Shroud Support at 88.8541667	2	1.29	2.17	0.00	830
85.25	(3) Powerwave P65-16-XLH-RR	2	1.14	1.95	0.00	842
80.25	(3) TTAW-07BP111-001	2	0.97	1.64	0.00	942
78.75	Shroud Support at 78.75	2	0.92	1.55	0.00	977
75.00	(3) APVSPP18-C-A20	2	0.81	1.33	0.00	1078
70.75	Shroud Support at 70.75	2	0.70	1.11	0.00	1221
67.00	(3) Commscope FVV-65B-R3	2	0.62	0.94	0.00	1383
62.79	Shroud Support at 62.7916667	2	0.54	0.79	0.00	1611
60.00	(3) Commscope CDX623T-DS-T	2	0.49	0.73	0.00	1777
	Diplexer					

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	Κ	K	ϕP_n
L1	108.9 - 88.82 (1)	P6.625x0.34875	20.08	0.00	0.0	6.876	-2.32	216.61	0.011
L2	88.82 - 62.76 (2)	P12.75x0.349	26.06	0.00	0.0	13.597	-5.69	428.30	0.013
L3	62.76 - 40.63 (3)	P36x0.34875	22.13	0.00	0.0	39.061	-10.04	1194.58	0.008
L4	40.63 - 0 (4)	P36x0.34875	40.63	0.00	0.0	39.061	-17.69	1194.58	0.015

Pole Bending Design Data

tnxTower	Job CT-1239 (Avon CT)	Page 19 of 20
Cellsite Solutions, LLC 4150 C Street SW	Project 108.9' Stealth Monopole Analysis	Date 12:29:10 04/06/23
Cedar Rapids, IA 52404 Phone: 319-826-3404 FAX:	Client Blue Sky (Dish)	Designed by mike.deboer

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uv}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	108.9 - 88.82 (1)	P6.625x0.34875	16.99	36.10	0.471	0.00	36.10	0.000
L2	88.82 - 62.76 (2)	P12.75x0.349	91.87	140.92	0.652	0.00	140.92	0.000
L3	62.76 - 40.63 (3)	P36x0.34875	210.22	1055.48	0.199	0.00	1055.48	0.000
L4	40.63 - 0 (4)	P36x0.34875	487.85	1055.48	0.462	0.00	1055.48	0.000

Pole Shear Design Data

Section No.	Elevation	Size	$Actual \\ V_u$	ϕV_n	$Ratio V_u$	Actual T_u	ϕT_n	$\begin{array}{c} Ratio \\ T_u \end{array}$
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	108.9 - 88.82 (1)	P6.625x0.34875	1.96	64.98	0.030	0.00	35.86	0.000
L2	88.82 - 62.76 (2)	P12.75x0.349	4.69	128.49	0.037	0.00	140.09	0.000
L3	62.76 - 40.63 (3)	P36x0.34875	5.95	369.12	0.016	0.00	991.33	0.000
L4	40.63 - 0 (4)	P36x0.34875	7.67	369.12	0.021	0.00	991.33	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V_u	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	108.9 - 88.82 (1)	0.011	0.471	0.000	0.030	0.000	0.482	1.000	4.8.2 🖌
L2	88.82 - 62.76 (2)	0.013	0.652	0.000	0.037	0.000	0.667	1.000	4.8.2 🖌
L3	62.76 - 40.63 (3)	0.008	0.199	0.000	0.016	0.000	0.208	1.000	4.8.2 🖌
L4	40.63 - 0 (4)	0.015	0.462	0.000	0.021	0.000	0.477	1.000	4.8.2 🗸

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	${{{\mathscr O}P}_{allow}} \over K$	% Capacity	Pass Fail
L1	108.9 - 88.82	Pole	P6.625x0.34875	1	-2.32	216.61	48.2	Pass
L2	88.82 - 62.76	Pole	P12.75x0.349	2	-5.69	428.30	66.7	Pass
L3	62.76 - 40.63	Pole	P36x0.34875	3	-10.04	1194.58	20.8	Pass

tur	lob	Page
<i>inx10wer</i>	CT-1239 (Avon CT)	20 of 20
Callsita Solutions IIC	Project	Date
4150 C Street SW	108.9' Stealth Monopole Analysis	12:29:10 04/06/23
Cedar Rapids, IA 52404 Phone: 319-826-3404 FAX:	Client Blue Sky (Dish)	Designed by mike.deboer

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	${}^{ heta P_{allow}}_{K}$	% Capacity	Pass Fail
L4	40.63 - 0	Pole	P36x0.34875	4	-17.69	1194.58	47.7 Summary	Pass
						Pole (L2) RATING =	66.7 66.7	Pass Pass

Program Version 8.1.1.0 - 6/3/2021 File:C:/Users/mike.deboer/OneDrive - CellSite Solutions LLC/Documents/BlueSky-CT-1239_SA_030723_Dish/CT-1239_SA_040623_Dish_ReRun.eri

Monopole Flange Plate Connection

Elevation = 8	38.82 ft.
---------------	-----------

16.99

BU #	CT-1239
Site Name	Avon CT
Order #	
TIA-222 Revision	Н

Top Plate - External

Axial Force (kips)2.32Shear Force (kips)1.96*TIA-222-H Section 15.5 Applied

Moment (kip-ft)

Applied Loads

Bottom Plate - External

Connection Properties

Bolt Data

(6) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 15" BC

Top Plate Data

18.8" OD x 1" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Top Stiffener Data

(6) 6.5"H x 4"W x 0.5"T, Notch: 0.5" plate: Fy= 50 ksi ; weld: Fy= 60 ksi horiz. weld: 0.25" fillet vert. weld: 0.25" fillet

Top Pole Data

6.625" x 0.34875" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Bottom Plate Data

18.8" OD x 1" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Bottom Stiffener Data

(6) 6.5"H x 3"W x 0.5"T, Notch: 0.5" plate: Fy= 50 ksi ; weld: Fy= 60 ksi horiz. weld: 0.25" fillet vert. weld: 0.25" fillet

Bottom Pole Data

12.75" x 0.349" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

			Analy	sis Results			
			Bolt	Capacity			
			Max Load (kips)	8.66			
			Allowable (kips)	54.54			
			Stress Rating:	15.1%	Pass		
Top Plate Capacity					Bottom Plate Capacity		
Max Stress (ksi):	15.55	(Flexural)			Max Stress (ksi):	5.37	(Flexural (b/Le>2))
Allowable Stress (ksi):	45.00				Allowable Stress (ksi):	45.00	
Stress Rating:	32.9%	Pass			Stress Rating:	11.4%	Pass
Tension Side Stress Rating:	35.4%	Pass			Tension Side Stress Rating:	3.5%	Pass
Top Stiffener Capacity					Bottom Stiffener Capacity		
Horizontal Weld:	32.3%	Pass			Horizontal Weld:	18.0%	Pass
Vertical Weld:	23.2%	Pass			Vertical Weld:	8.7%	Pass
Plate Flexure+Shear:	8.0%	Pass			Plate Flexure+Shear:	2.4%	Pass
Plate Tension+Shear:	13.1%	Pass			Plate Tension+Shear:	7.3%	Pass
Plate Compression:	23.2%	Pass			Plate Compression:	9.5%	Pass
Top Pole Capacity					Bottom Pole Capacity		
Punching Shear:	10.5%	Pass			Punching Shear:	3.4%	Pass

Monopole Flange Plate Connection

BU #	CT-1239
Site Name	Avon CT
Order #	
TIA-222 Revision	Н

Top Plate - External

Elevation = 62.76 ft.

91.87

5.69

4.69

Applied Loads

Moment (kip-ft) Axial Force (kips)

Shear Force (kips)

*TIA-222-H Section 15.5 Applied Bottom Plate - Internal

Connection Properties

Bolt Data

(12) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 32.8" BC

Top Plate Data

36" OD x 1.5" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Top Stiffener Data

(12) 11.5"H x 6"W x 0.75"T, Notch: 0.75" plate: Fy= 50 ksi ; weld: Fy= 60 ksi horiz. weld: 0.25" fillet vert. weld: 0.25" fillet

Top Pole Data

12.75" x 0.349" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Bottom Plate Data

36" ID x 1.5" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Bottom Stiffener Data

(12) 11.5"H x 6"W x 0.75"T, Notch: 0.75" plate: Fy= 50 ksi ; weld: Fy= 60 ksi horiz. weld: 0.25" fillet vert. weld: 0.25" fillet

Bottom Pole Data

36" x 0.34875" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Analysis Results								
Bolt Capacity								
			Max Load (kips)	10.73				
			Allowable (kips)	54.54				
			Stress Rating:	18.7%	Pass			
Top Plate Capacity					Bottom Plate Capacity			
Max Stress (ksi):	17.73	(Flexural)			Max Stress (ksi):	4.32	(Flexural)	
Allowable Stress (ksi):	45.00				Allowable Stress (ksi):	45.00		
Stress Rating:	37.5%	Pass			Stress Rating:	9.2%	Pass	
Tension Side Stress Rating:	52.6%	Pass			Tension Side Stress Rating:	N/A		
Top Stiffener Capacity					Bottom Stiffener Capacity			
Horizontal Weld:	35.0%	Pass			Horizontal Weld:	32.1%	Pass	
Vertical Weld:	20.3%	Pass			Vertical Weld:	3.3%	Pass	
Plate Flexure+Shear:	4.1%	Pass			Plate Flexure+Shear:	0.1%	Pass	
Plate Tension+Shear:	9.4%	Pass			Plate Tension+Shear:	-0.4%	Pass	
Plate Compression:	14.4%	Pass			Plate Compression:	3.0%	Pass	
Top Pole Capacity					Bottom Pole Capacity			
Punching Shear:	8.4%	Pass			Punching Shear:	0.1%	Pass	

Monopole Flange Plate Connection

Flevation	= 40.63	ft
LIEVULION	- 40.05	ji.

BU #	CT-1239	
Site Name	Avon CT	
Order #		
TIA-222 Revision	Н	

Top Plate - Internal

Moment (kip-ft)210.22Axial Force (kips)10.04Shear Force (kips)5.95*TIA-222-H Section 15.5 Applied

Applied Loads

Connection Properties

Bolt Data

(12) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 32.8" BC

Top Plate Data

Top Stiffener Data

Top Pole Data

N/A

37" ID x 1.25" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

36" x 0.34875" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Bottom Plate Data

37" ID x 1.25" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data 36" x 0.34875" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Analysis Results Bolt Capacity Max Load (kips) 24.79 Allowable (kips) 54.53 Stress Rating: 43.3% Pass

Top Plate Capacity

Max Stress (ksi):	14.12	(Flexural)
Allowable Stress (ksi):	45.00	
Stress Rating:	29.9%	Pass
Tension Side Stress Rating:	12.9%	Pass

Bottom Plate Capacity

Max Stress (ksi):	14.12	(Flexural)	
Allowable Stress (ksi):	45.00		
Stress Rating:	29.9%	Pass	
Tension Side Stress Rating:	12.9%	Pass	

Monopole Base Plate Connection

Site Info		
BL	U # CT-1239	
Site Nar	me Avon CT	
Orde	er #	

Analysis Considerations				
TIA-222 Revision	Н			
Grout Considered:	No			
I _{ar} (in)	0			

Applied Loads	
Moment (kip-ft)	487.85
Axial Force (kips)	17.69
Shear Force (kips)	7.67
*TIA 222 U.C	lin d

*TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(4) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 43.1" BC

Base Plate Data

42.5" W x 2.75" Plate (A572-50; Fy=50 ksi, Fu=65 ksi); Clip: 6 in

Stiffener Data

N/A

Pole Data

36" x 0.34875" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_c = 140.1	φPn_c = 268.39	Stress Rating
Vu = 1.92	φVn = 120.77	49.7%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	11.1	(Flexural)
Allowable Stress (ksi):	45	
Stress Rating:	23.5%	Pass

Drilled Pier Foundation

BU # :	CT-1239
Site Name:	Avon CT
Order Number:	
TIA-222 Revison:	Н
Tower Type:	Monopole

Applied Loads					
Comp. Uplift					
Moment (kip-ft)	488				
Axial Force (kips)	18				
Shear Force (kips)	8				

Material Properties									
Concrete Strength, f'c:	3	ksi							
Rebar Strength, Fy:	60	ksi							
Tie Yield Strength, Fvt:	40	ksi							

	Pier D	esign Data		Rebar & Pier Option
	Depth	20.25	ft	
	Ext. Above Grade	0.5	ft	Embedded Pole Inpu
	Pier	Section 1		Belled Pier Inputs
	From 0.5' above gra	ade to 20.25' below	v grade	
	Pier Diameter	5.5	ft	1
-	Rebar Quantity	22		
	Rebar Size	8		
	Clear Cover to Ties	3	in	
	Tie Size	4		
	Tie Spacing	12	in	

	Analysis	s Results	
	Soil Lateral Check	Compression	Uplift
	D _{v=0} (ft from TOC)	5.14	-
	Soil Safety Factor	7.25	-
	Max Moment (kip-ft)	516.86	-
	Rating*	17.5%	-
	Soil Vertical Check	Compression	Uplift
	Skin Friction (kips)	131.21	-
	End Bearing (kips)	427.65	-
	Weight of Concrete (kips)	88.74	-
	Total Capacity (kips)	558.86	-
	Axial (kips)	106.74	-
IS	Rating*	18.2%	-
	Reinforced Concrete Flexure	Compression	Uplift
its	Critical Depth (ft from TOC)	4.89	-
	Critical Moment (kip-ft)	516.75	-
	Critical Moment Capacity	2188.09	-
	Rating*	22.5%	-
	Reinforced Concrete Shear	Compression	Uplift
	Critical Depth (ft from TOC)	14.89	-
	Critical Shear (kip)	69.31	-
	Critical Shear Capacity	358.50	-
	Rating*	18.4%	-

\cap		CROWN
$\mathbf{\cup}$	\smile	CASTLE

Check Limitation	
Apply TIA-222-H Section 15.5:	V
N/A	
Additional Longitudinal Reb	bar
Input Effective Depths (else Actual):	
Shear Design Options	
Check Shear along Depth of Pier:	V
Utilize Shear-Friction Methodology:	
Override Critical Depth:	
Go to Soil Ca	lculations

Structural Foundation Rating*	22.5%
Soil Interaction Rating*	18.2%
*Rating per TIA-222-H Sectio	n 15.5

					Soil Pr	ofile					
Groundwa	ter Depth	N/A		# of Layers	1						
					Angle of	Calculated	Calculated	Ultimate Skin	Illtimate Skin	Ult. Gross	

Layer	Top (ft)	Bottom (ft)	Thickness (ft)	Y _{soil} (pcf)	Y _{concrete} (pcf)	Cohesion (ksf)	Angle of Friction (degrees)	Ultimate Skin Friction Comp (ksf)	Ultimate Skin Friction Uplift (ksf)	Friction Comp Override (ksf)	Ultimate Skin Friction Uplift Override (ksf)	Bearing Capacity (ksf)	SPT Blow Count	Soil Type
1	0	20.25	20.25	110	150	0	30	0.000	0.000	0.50	0.50	24		Cohesionless

CROWN	BU: WO: Order:	CT-1239	Structure: Rev:	A
	Location			
Decimal Degrees		Deg	Min	Sec
Lat: 41.799600	+	41	47	58.56
Long: -72.889600	-	72	53	22.56
Code ar	nd Site Par	ameters		
	_			
Seismic Desig	gn Code:	TIA-222-H		
	Site Soil:	D (Default)	Default	
RISK Ca	ategory:	II		
USGS Seismic Reference	S _s :	0.1790	g	
	S₁:	0.0540	g	
	T.·	6	c .	
	. [.	Ŭ	5	
Seismic Design	Category	Determination		
			7	
Importance Fa	actor, I _e :	1	-	
Acceleration-based site coeffic	cient, F _a :	1.6000		
Velocity-based site coeffic	cient, F _v :	2.4000		
	F		7	
Design spectral response acceleration short per	iod, S _{DS} :	0.1909	g	
Design spectral response acceleration 1 s per	iod, S _{D1} :	0.0864	g	
Seismic Design Category Based	d on S _{DS} :	В	1	
Seismic Design Category Based		B	4	
Seismic Design Category Base	od on S.	N/A	4	
Seisinie Design Calegol y Dase	10013_1	IN/A	J	
Controlling Seismic Design Ca	ategory:	В		
6	σ,		•	

	CT-1239	Stru	cture: A
Order:			Rev:
Tower De	tails		
		_	
Tower Type:	Stepped Monopole		
Height, h:	109	ft	
Effective Seismic Weight, W: Amplification Factor: A :	12.56	KIPS	2781
	1.0		2.7.0.1
Seismic Base	e Shear		
Pochance Medification Factor D	1 5	٦	
Response Mounication Factor, R.	1.5		
Discrete Appurtenance Weight in Top 1/3 of Structure, W_u :	0.972	kips	
WL:	11.58635415	kips	
E:	29000.0	ksi	
g:	386.088	in/s ²	
Average Moment of Inertia, I _{avg} :	3645.66123	in ⁴	
F _a :	0.611539483	hz	
Approximate Fundamental Period Monopole, T _a :	1.6352	S	2.7.7.1.3.3
		٦	
Seismic Response Coefficient, C _s	0.1273	_	2.7.7.1.1
Seismic Response Coefficient Max 1, C _{smax}	0.0352	_	2.7.7.1.1
Seismic Response Coefficient Max 2, C _{smax}	N/A	_	2.7.7.1.1
Seismic Response Coefficient Min 1, C _{smin}	0.0300	_	2.7.7.1.1
Seismic Response Coefficient Min 2, C _{smin}	N/A		2.7.7.1.1
Controlling Seismic Response Coefficient, C _{sc}	0.0352		
Solemic Pace Shear V	0.442	king	27711
Seisinic Dase Sfield, V	0.442	NINS	2././.1.1
Vertical Distribut	ion Factors		
		7	
Period Related Exponent, k:	1.568	-	2.7.7.1.2
Sum of w _i h _i *	5864.99		2.7.7.1.2

	Tower Section Loads												
Section Number	Length	Top Height	Mid Height, h _x	Section Weight, w _x	w _x h _x ^k	C _{vx}	F _{xh}	F _{xv}					
1 - 1	0.08	108.90	108.86	0.0019	2.92	0.0005	0.0002	0.0001					
1 - 2	10.00	108.82	103.82	0.2340	338.80	0.0578	0.0256	0.0089					
1-3	10.00	98.82	93.82	0.2340	289.06	0.0493	0.0218	0.0089					
2 - 1	6.06	88.82	85.79	0.2804	301.03	0.0513	0.0227	0.0107					
2 - 2	10.00	82.76	77.76	0.4627	425.83	0.0726	0.0321	0.0177					
2 - 3	10.00	72.76	67.76	0.4627	343.17	0.0585	0.0259	0.0177					
3 - 1	2.13	62.76	61.70	0.2831	181.29	0.0309	0.0137	0.0108					
3 - 2	10.00	60.63	55.63	1.3291	723.66	0.1234	0.0546	0.0508					
3 - 3	10.00	50.63	45.63	1.3291	530.43	0.0904	0.0400	0.0508					
4 - 1	0.63	40.63	40.32	0.0837	27.52	0.0047	0.0021	0.0032					
4 - 2	10.00	40.00	35.00	1.3291	350.00	0.0597	0.0264	0.0508					
4 - 3	10.00	30.00	25.00	1.3291	206.54	0.0352	0.0156	0.0508					
4 - 4	10.00	20.00	15.00	1.3291	92.73	0.0158	0.0070	0.0508					
4 - 5	10.00	10.00	5.00	1.3291	16.57	0.0028	0.0012	0.0508					
			Sum	10.0173	3829.53								

	Discrete Loads												
Name	h _x	w _x	w _x h _x ^k	C _{vx}	F _{xh}	F _{xv}							
(3) Powerwave P65-16-XLH-RR	102.30	0.1950	275.89	0.0470	0.0208	0.0074							
(3) TTAW-07BP111-001	100.40	0.0540	74.19	0.0126	0.0056	0.0021							
(3) Powerwave P65-16-XLH-RR	94.85	0.1950	245.05	0.0418	0.0185	0.0074							
(3) TTAW-07BP111-001	90.44	0.0540	62.98	0.0107	0.0048	0.0021							
(3) Powerwave P65-16-XLH-RR	85.25	0.1950	207.30	0.0353	0.0156	0.0074							
(3) TTAW-07BP111-001	80.25	0.0540	52.22	0.0089	0.0039	0.0021							
(3) APVSPP18-C-A20	75.00	0.1710	148.72	0.0254	0.0112	0.0065							
(3) TMAT1921B68-21-43	75.00	0.0540	46.96	0.0080	0.0035	0.0021							
(3) Commscope FVV-65B-R3	67.00	0.1320	96.19	0.0164	0.0073	0.0050							
(3) cellsite1 Fujitsu TA08025-B604	67.00	0.1800	131.17	0.0224	0.0099	0.0069							
(3) cellsite1 Fujitsu TA08025-B605	67.00	0.2400	174.90	0.0298	0.0132	0.0092							
	Sum	1.5240	1515.57										

Linear Loads								
Name	Start Height	End Height	h _x	w _x	w _x h _x ^k	C _{vx}	F _{xh}	F _{xv}
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 102.3	99.00	102.30	100.65	0.0162	22.39	0.0038	0.0017	0.0006
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 102.3	89.00	99.00	94.00	0.0492	60.96	0.0104	0.0046	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 102.3	79.00	89.00	84.00	0.0492	51.11	0.0087	0.0039	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 102.3	69.00	79.00	74.00	0.0492	41.90	0.0071	0.0032	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 102.3	59.00	69.00	64.00	0.0492	33.37	0.0057	0.0025	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 102.3	49.00	59.00	54.00	0.0492	25.57	0.0044	0.0019	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 102.3	39.00	49.00	44.00	0.0492	18.55	0.0032	0.0014	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 102.3	29.00	39.00	34.00	0.0492	12.38	0.0021	0.0009	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 102.3	19.00	29.00	24.00	0.0492	7.17	0.0012	0.0005	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 102.3	9.00	19.00	14.00	0.0492	3.08	0.0005	0.0002	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 102.3	0.00	9.00	4.50	0.0443	0.47	0.0001	0.0000	0.0017
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 94.9	89.00	94.90	91.95	0.0290	34.75	0.0059	0.0026	0.0011
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 94.9	79.00	89.00	84.00	0.0492	51.11	0.0087	0.0039	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 94.9	69.00	79.00	74.00	0.0492	41.90	0.0071	0.0032	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 94.9	59.00	69.00	64.00	0.0492	33.37	0.0057	0.0025	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 94.9	49.00	59.00	54.00	0.0492	25.57	0.0044	0.0019	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 94.9	39.00	49.00	44.00	0.0492	18.55	0.0032	0.0014	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 94.9	29.00	39.00	34.00	0.0492	12.38	0.0021	0.0009	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 94.9	19.00	29.00	24.00	0.0492	7.17	0.0012	0.0005	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 94.9	9.00	19.00	14.00	0.0492	3.08	0.0005	0.0002	0.0019
(6) andrew (cci) LDF7-50A (1-5/8 FOAM) From 0 to 94.9	0.00	9.00	4.50	0.0443	0.47	0.0001	0.0000	0.0017
****Dish**** From 0 to 75	69.00	75.00	72.00	0.0020	1.62	0.0003	0.0001	0.0001
****Dish**** From 0 to 75	59.00	69.00	64.00	0.0033	2.24	0.0004	0.0002	0.0001
****Dish**** From 0 to 75	49.00	59.00	54.00	0.0033	1.71	0.0003	0.0001	0.0001
****Dish**** From 0 to 75	39.00	49.00	44.00	0.0033	1.24	0.0002	0.0001	0.0001
****Dish**** From 0 to 75	29.00	39.00	34.00	0.0033	0.83	0.0001	0.0001	0.0001
****Dish**** From 0 to 75	19.00	29.00	24.00	0.0033	0.48	0.0001	0.0000	0.0001
****Dish**** From 0 to 75	9.00	19.00	14.00	0.0033	0.21	0.0000	0.0000	0.0001
****Dish**** From 0 to 75	0.00	9.00	4.50	0.0030	0.03	0.0000	0.0000	0.0001
***** From 0 to 67	59.00	67.00	63.00	0.0026	1.75	0.0003	0.0001	0.0001
***** From 0 to 67	49.00	59.00	54.00	0.0033	1.71	0.0003	0.0001	0.0001
***** From 0 to 67	39.00	49.00	44.00	0.0033	1.24	0.0002	0.0001	0.0001
***** From 0 to 67	29.00	39.00	34.00	0.0033	0.83	0.0001	0.0001	0.0001
***** From 0 to 67	19.00	29.00	24.00	0.0033	0.48	0.0001	0.0000	0.0001
***** From 0 to 67	9.00	19.00	14.00	0.0033	0.21	0.0000	0.0000	0.0001
***** From 0 to 67	0.00	9.00	4.50	0.0030	0.03	0.0000	0.0000	0.0001
			Sum	1.0171	519.89			

ASCE 7 Hazards Report

Section 11.4.3)

No Address at This Location

ASCE/SEI 7-16 Standard:

Risk Category: II

Soil Class:

Latitude: 41.7996 D - Default (see

Longitude: -72.8896 Elevation: 0 ft (NAVD 88)

we nto i Torring Hartford West Hartf ethersfield Bristol

Wind

Results:

Wind Speed	116 Vmph
10-year MRI	75 Vmph
25-year MRI	84 Vmph
50-year MRI	89 Vmph
100-year MRI	96 Vmph

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Mon Mar 06 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class:

Results:

S _s :	0.179	S _{D1} :	0.087
S ₁ :	0.054	T∟ :	6
F _a :	1.6	PGA :	0.096
F _v :	2.4	PGA M :	0.153
S _{MS} :	0.287	F _{PGA} :	1.6
S _{M1} :	0.13	l _e :	1
S _{DS} :	0.191	C _v :	0.7

Data Accessed:

Mon Mar 06 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

	Ice Thickness:	1.50 in.
	Concurrent Temperature:	5 F
	Gust Speed	50 mph
Data	Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date	Accessed:	Mon Mar 06 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Attachment 2: Collocation Application

			SRR Tov	vers Collocation Application		
	Installatio	on Type: Anchor		Collocation 🗵	Add to Existing	
	-					
	Contact: J	ames Burgess amesb@blueskvtower.com		Site Number: Site Name:	CT-1239	
	Office: 6	17-549-2800		Submittal Date		
PLEASE SUBMIT THIS APPLICATION	Fax:	nclude Drawings Specificat	ion Sheets	Revision Date(s)		
		icidae Brawings, opeeniea	Ar	oplicant Information		
Applicant Name:		DISH Wireless LLC		Primary Contact/Agent Name:	Phillip	Sipe
Applicant Site Name:	-	BOBDL00030A		Contact/Agent Company Name:	Northeast Sit	e Solutions
Proposed ON AIR Date:		BOBDLOOUSUA		Contact Email:	Phillip @Northeast	sitesolutions.com
*			Applic	cant Contact Information		
Leasing Contact Name:	Jean	ne Conttrell	Email:	jean.cottrell@dish.com	Number:	203-927-4317
RF Contact Name:	Jar	ed Robinson	Email:	jared.robinson@dish.com	Number:	978-855-5870
Emergency Contact Name:	I	avier Soto	Email: Email:	javier.soto(d/dish.com	Number:	61/-839-6514
Account Payable Contact Name:			Email:		Number:	
				Tower Information		
Latitude:	41.7996	N		Structure Type:	Stealth	_
Longitude:	-72.8896	W T Site Address: 224 I	ovely Stree	Structure Height:		_
	^	1 0100 Hadrebb. <u>1111</u>	EOU	IPMENT SPECIFICATIONS		_
Summany of Nonk to be Compl	atad.	Dish proposes to place	(3) antenna	s 12 coax cable(s) at the 67 foot	RAD Six Dipleyors will be moun	ted at the 60' level BBUS are
Summary of work to be compr	eteu:	bion proposes to pidee	(5) uncenna	ground mo	unted.	
EXISTING CONDITIO	NS - List all	installed equipment pri	or to prop	osed modification. If this is a n	ew installation, proceed to FIN	IAL CONFIGURATION.
				SECTOR 2		SECTOR 4 (if personal)
Current RAD Center (Ft AGL)		JEGIURI		SLOTON Z	JLOTOK 3	
Tower Mount Height (if different than RA	D ctr)					
Mount Type (Label "Existing" if no chang	le)			l		
Antenna Manufacturer					 	1
Antenna Model# (Attach Specs)						
Antenna Dimensions (WxHxD in inches)						
Antenna Weight (LDS.) Antenna Quantity						1
Dish Manufacturer						
Dish Model# (attach Specs)						
Dish Diameter (Ft) Dish Weight (Lbs.)						
Dish Mount Height						
Azimuths						
Total # of Coax Lines per Sector						
Diameter Of Coax Cables (In)						
Diameter Of Hybrid Cables (In)						
Total # of other Cables per Sector						
Diameter Of Other Cables (In)						
Quantity of RRUs per Sector						
Manufacturer Model						
Dimensions						
Weight (Lbs.)						
Quantity of TMAs per Sector						
Model						
Dimensions						
Weight (Lbs.)						
Manufacturer						
Model						
Antenna Model & Quantity to be Remov	ed per Sector (I	f				
Applicable)		-				
RRU Model & Quantity to be Removed p	er Sector (I	t				1
Line/Cable Type, Size & Quantity to be F	temoved (If				1
Applicable)	-					1
List Any Other Equipment to be Remove	d (If				
Аррісане)		1		1	L	_ I
	FINAL CO	NFIGURATION - List all	installed (equipment after proposed modi	fication or initial installation.	
		SECTOR 1		SECTOR 2	SECTOR 3	SECTOR 4 (if necessary)
Current/Proposed RAD Center (Ft AGL)		67'		67'	67'	
Tower Mount Height (if different than RA	D ctr)					
Mount Type (Label "Existing" if no chang	je)	Sabre	0.0	Sabre	Sabre	
Antenna Manufacturer		C10099500-127		Commscope	Commscope	1
Antenna Model# (Attach Specs)		FVV-65B-R3		FVV-65B-R3	FVV-65B-R3	
Antenna Dimensions (WxHxD in inches)		72.0" x 11.8" x	7.1"	72.0" x 11.8" x 7.1"	72.0" x 11.8" x 7.1"	+
Antenna Quantity		43.9		43.9	43.9	1
Dish Manufacturer						
Dish Model# (attach Specs)						
Dish Diameter (Ft) Dish Weight (Lbs.)						1
Dish Mount Height				<u> </u>		
Azimuths		0/120/240		0/120/240	0/120/240	
Total # of Coax Lines per Sector		4		4	4	
Diameter Of Coax Cables (In)		7/8"		7/8"	7/8"	
Total # of Hybrid Cables per Sector		0		<u> </u>		+
Total # of other Cables per Sector					 	1
Diameter Of Other Cables (In)						

Quantity of RRUs per Sector	2 @ 60'		2 0 60'	2 @ 60'	
Manufacturer	Commscope (Diplexo	r)	Commscope (Diplexor)	Commscope (Diplexor)	
Model	CDX623T-DS-T E15V9	5P63	CDX623T-DS-T E15V95P63	CDX623T-DS-T E15V95P63	
Quantity of RRUs per Sector					
Manufacturer					
Model					
Quantity of Surge Arrestors per Sector					
Model					
Transmit Frequency (MHz)					
Receive Frequency (MHz)					
Antenna Gain (Db)					
Type of Technology	40000		40000	40000	
FRP (Watts)	76.02		76.02	40000	
Electric Service Required (Amps/Volts)	,0102		70.02	70.02	
					1
		GROU	ND SPACE REQUIREMENTS		
Existing Lease Area: DIM	MS: L(ft) W(:	Et)	OR	Square footage	
	5'x				
New/Add 'I Lease Area being requested: DIN Shelter:	AS: L(ft) // W(:	Et) Ft)	OR U(ft)	Square footage	
SHELCEL: DIE	5'x			—	
Concrete Pad for Shelter/Cabinets: DIM	MS: L(ft) 7' W(Et)			
		P	OWER REQUIREMENTS		
Power Provided by:	Electrical Service Provi	der:	Electrical	l Service Telephone Number:	
Average Monthly Power Consumption: Is a multi-tenant meter rack present: Telco/Interconnect Requirements: POTS Fiber Provider:	KWH units Yes How T1	w many, if	any, empty meter banks are pres	ent: IBER OPTIC	-
		BACK	-UP POWER INFORMATION		
Generator Required: No	Gene	eration Lo	cation:		
Generator Ground Space Requirement: DIM	1S: L(ft)	W(ft)	H(ft)	Fu	iel Type:
BST Generator:	Generator Owner:		Shared Generator Peak	Usage:	KW
Fuel Tank Location:	el Tank Size: DIMS: L(f		W(ft)	Fuel Tank S	Gallons
Pad for Fuel Tank (if required) DIMS: L(ft	W(ft)				
Comments:					
	Comments: List	any pertin	ent information that was not includ	led above.	
	be	stalled			
	at	cabinet*			
	All	oha			
	Sec	ctor: (2)			
	CD	K623T-DS-			
	Т				
	E1: Tor	5V95P63			
	10	7			
	(2))			
	Cor	mscope (623T-DS-			
	В				
	El	5V95P62			
	Bot	ttom ta			
	Sec	ctor: (2)			
1	Cor	mmscope			
1	CDI T	1023T-DS-			
1	E1:	5V95P63			
1	Top	,			
	(2))			
	Cor	nmscope			
	CDI	k623T-DS-			
1	E1	5V95P62			
1	Bot	ttom			
1	Gar Sec	und ctor :			
Comments: List any pertinent information that was	not included above. (2))			
1					
1					
1					
1					
1					
1					
1					
1					
1					
1					
1					
1					

Radio Frequency Emissions Analysis Report

Site ID: BOBDL00030A

224 Lovely Street Avon, CT 06001

December 30, 2022

Fox Hill Telecom Project Number: 222145

Site Compliance Summary						
Compliance Status:	COMPLIANT					
Site total MPE% of FCC general population allowable limit:	21.67 %					

December 30, 2022

Dish Wireless 5701 South Santa Fe Drive Littleton, CO 80120

Emissions Analysis for Site: BOBDL00030A

Fox Hill Telecom, Inc ("Fox Hill") was directed to analyze the proposed radio installation for Dish Wireless, LLC (Dish) facility located at **224 Lovely Street, Avon, CT**, for the purpose of determining whether the emissions from the Proposed Dish radio and antenna installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 600 MHz band is approximately 400 μ W/cm². The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS / AWS-4) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure and can exercise control over the potentia

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed upgrades to the Dish Wireless antenna facility located at **224 Lovely Street, Avon, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 for far field modeling calculations.

In OET-65, plane wave power densities in the Far Field of an antenna are calculated by considering antenna gain and reflective waves that would contribute to exposure.

Since the radiation pattern of an antenna has developed in the **Far Field** region the power gain in specific directions needs to be considered in exposure predictions to yield an Effective Radiated Power (ERP) in each specific direction from the antenna. Also, since the vertical radiation pattern of the antenna is considered, the exposure calculations would most likely be reduced significantly at ground level, resulting in a more realistic estimate of the actual exposure levels. To determine a worst-case scenario at each point along the calculation radials, each point was calculated using the antenna gain value at each angle of incident and compared against the result using an isotropic radiator at the antenna height with the greater of the two used to yield the more pessimistic far field value for each point along the calculation radial.

Additionally, to model a truly "worst case" prediction of exposure levels at or near a surface, such as at ground-level or on a rooftop, reflection off the surface of antenna radiation power can be assumed, resulting in a potential 1.6 times increase in power density in calculating far field power density values.

With these factors Considered, the worst case **Far Field prediction model** utilized in this analysis is determined by the following equation:

Equation 9 per FCC OET65 for Far Field Modeling

$$S = \frac{33.4 \ ERP}{R^2}$$

S = Power Density (in μ w/cm²) ERP = Effective Radiated Power from antenna (watts) R = Distance from the antenna (meters)

Predicted far field power density values for all carriers identified in this report were calculated 6 feet above the ground level and are displayed as a percentage of the applicable FCC standards. All emissions values for other carriers were calculated using the same Far Field model outlined above, using industry standard radio configurations and frequency band selection based upon available licenses in this geographic area for emissions contribution estimates.

For each Dish sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
5G	n71 (600 MHz)	4	61.5
5G	n70 (AWS-4 / 1995-2020)	4	40
5G	n66 (AWS-4 / 2180-2200)	4	40

Table 1: Channel Data Table

The following **Dish** antennas listed in *Table 2* were used in the modeling for transmission in the 600 MHz (n71) frequency band and the 2100 MHz (AWS 4) frequency bands at 1995-2020 MHz (n70) and 2180-2200 MHz (n66). This is based on feedback from Dish regarding anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below.

	A		Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	JMA MX08FRO665-20	66
В	1	JMA MX08FRO665-20	66
С	1	JMA MX08FRO665-20	66

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed **Dish** configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

					Total TX		
Antenna	Antenna Make /		Antenna Gain	Channel	Power		
ID	Model	Frequency Bands	(dBd) Count		(W)	ERP (W)	MPE %
		n71 (600 MHz) /					
Antenna	JMA	n70 (AWS-4 / 1995-2020) /	11.45 / 16.15 /				
A1	MX08FRO665-20	n66 (AWS-4 / 2180-2200)	16.65	12	566	17,426.72	9.44
				5	Sector A Com	posite MPE%	9.44
		n71 (600 MHz) /					
Antenna	JMA	n70 (AWS-4 / 1995-2020) /	11.45 / 16.15 /				
B1	MX08FRO665-20	n66 (AWS-4 / 2180-2200)	16.65	12	566	17,426.72	9.44
				:	Sector B Com	posite MPE%	9.44
		n71 (600 MHz) /					
Antenna	JMA	n70 (AWS-4 / 1995-2020) /	11.45 / 16.15 /				
C1	MX08FRO665-20	n66 (AWS-4 / 2180-2200)	16.65	12	566	17,426.72	9.44
Sector C Composite MPE%					9.44		

Table 3: Dish Emissions Levels

The Following table (*Table 4*) shows all additional carriers on site and their emissions contribution estimates, along with the newly calculated **Dish** far field emissions contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site emissions values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each **Dish** Sector as well as the composite emissions value for the site.

Site Composite MPE%				
Carrier	MPE%			
Dish – Max Per Sector Value	9.44 %			
AT&T	6.34 %			
T-Mobile	5.89 %			
Site Total MPE %:	21.67 %			

Table 4: All Carrier MPE Contributions

Dish Sector A Total:	9.44 %
Dish Sector B Total:	9.44 %
Dish Sector C Total:	9.44 %
Site Total:	21.67 %

Table 5: Site MPE Summary

Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated **Dish** sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

Dish _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowabl e MPE (µW/cm²)	Calculated % MPE
Dish n71 (600 MHz) 5G	4	858.77	66	24.96	n71 (600 MHz)	400	6.24%
Dish n70 (AWS-4 / 1995-2020) 5G	4	1,648.39	66	16.00	n70 (AWS-4 / 1995-2020)	1000	1.60%
Dish n66 (AWS-4 / 2180-2200) 5G	4	1,849.52	66	16.00	n66 (AWS-4 / 2180-2200)	1000	1.60%
						Total:	9.44 %

Table 6: Dish Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Sector	Power Density Value (%)			
Sector A:	9.44 %			
Sector B:	9.44 %			
Sector C:	9.44 %			
Dish Maximum Total	0.44.04			
(per sector):	9.44 %			
Site Total:	21.67 %			
Site Compliance Status:	COMPLIANT			

The anticipated composite emissions value for this site, assuming all carriers present, is **21.67** % of the allowable FCC established general population limit sampled at the ground level. This is based upon the far field calculations performed for all carriers identified in this report.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

let Aff

Scott Heffernan Principal RF Engineer Fox Hill Telecom, Inc Worcester, MA 01609 (978)660-3998