STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
Web Site: portal.ct.gov/csc

VIA ELECTRONIC MAIL

February 15, 2024
Kenneth C. Baldwin, Esq.
Robinson \& Cole
280 Trumbull Street
Hartford, CT 06103-3597
kbaldwin@rc.com
RE: PETITION NO. 1547 - SBA Communications Corporation Declaratory Ruling, pursuant to Connecticut General Statutes $\S 4-176$ and $\S 16-50$ k, for the replacement and extension of an existing telecommunications facility located at 277 Huckleberry Hill Road, Avon, Connecticut. Request for Project Changes.

Dear Attorney Baldwin:
The Connecticut Siting Council (Council) is in receipt of your correspondence dated February 7, 2024, on behalf of Cellco Partnership d/b/a Verizon Wireless, regarding changes to the above-referenced Declaratory Ruling that was issued by the Council on March 3, 2023.

Pursuant to Condition No. 1 of the Council's March 3, 2023 Declaratory Ruling, your request to install antenna models MT6413-77A and NNHSS-65B-R2BT4 in lieu of MT6407-77A and NHHSS-65-R2BT0 and remote radio head models RF4423-48A, RF4439d-25A and RF4461-13A in lieu of models RT 440148A/CBRS, B2/B66A and B5/B13 is hereby approved.

This approval applies only to the project changes described in your February 7, 2024 correspondence.
Please be advised that deviations from the standards established by the Council in the Declaratory Ruling are enforceable under the provisions of Connecticut General Statutes §16-50u.

Thank you for your attention and cooperation.
Sincerely,

Melanie A. Bachman
Executive Director
c: Brandon Robertson, Town Manager, Town of Avon (brobertson@avonct.gov) Service List, dated December 8, 2022

Robinson+Cole

Kenneth C. Baldwin

280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345
Also admitted in Massachusetts and New York

February 7, 2024
Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square
New Britain, CT 06051
Re: Petition No. 1547 - SBA Communications Corporation - Petition for a Declaratory Ruling, pursuant to Connecticut General Statutes $\S 4-176$ and $\S 16-50 \mathrm{k}$, for the proposed replacement and extension of an existing telecommunications facility located at 277 Huckleberry Hill Road, Avon, Connecticut

Minor Equipment Changes

Dear Attorney Bachman:
On behalf of Cellco Partnership d/b/a Verizon Wireless ("Cellco"), and pursuant to Conditions No. 1 of the Siting Council's decision in Petition No. 1547, we respectfully request staff approval of the following minor equipment changes at the SBA Communication Corporation wireless facility at 277 Huckleberry Road in Avon, Connecticut.

Due to equipment availability issues, Cellco will install antenna models MT6413-77A and NNHSS-65B-R2BT4 in lieu of models MT6407-77A and NHHSS-65B-R2BT0. Cellco will also be installing remote radio head (RRH) models RF4423-48A, RF4439d-25A and RF446113A in lieu of models RT 4401-48A/CBRS, B2/B66A and B5/B13.

Attached is a revised set of project plans, specifications for the new antennas and RRHs and an updated Structural Analysis Report confirming that the new tower is capable of supporting this new equipment. Please contact me if you have any questions or need any additional information.

Robinson+Cole

Melanie A. Bachman, Esq.
February 7, 2024
Page 2

Copy to:
Greg Hines, SBA Communication Corp.
Brandon Robertson, Avon Town Manager
Tim Parks
Michael Humphreys

verizon ${ }^{\vee}$

SITE NAME: BURLINGTON 2 CT 277 HUCKLEBERRY HILL ROAD AVON, CT 06001

NOTES AND SPECIFICATIONS:

EEgCN Bass

DEsane cantrue

IE NOTE

ceveral notes

2.

13.

19.

ITACTURAL STET

 -

. Wastir

.

3.

ANTENNA/APPURTENANCE SCHEDULE								
	Sxsmu/Propeses	мтדми		Nimam	rewum	(E/P) Rav (am)	(E/P) OWP (am)	(am) proposem mmazo/coux
${ }^{1}$	Praposes	Suswnc (mpal-7x)	$24 \times 11.5 \times 4.50$	110°	σ	(P) SAISUNG: CBRS RT4423-4 (1)		
N2	PRepososesp		$\frac{71.8 \times 19 \times 7.4}{71.8 \times 10 \times 7.4}$	$\frac{110^{\prime}}{110^{\circ}}$	-			
B1	Propesso	Sussum (ITAl13-74)	$24 \times 11.0 \times 4.53$	10^{\prime}	${ }^{12 \mathrm{~F}}$	(f) Susume cars		
${ }^{82}$	Praposes	comuscoee (mutrs-ses-rezti)	$\frac{71.8 \times 18 \times 7.4}{71.8 \times 19 \times 7 .}$	${ }^{110^{\circ}}$	${ }^{12}$		(P) OPP 12 gox (1)	(2) Ex12 mmap caus
${ }^{8}$	Praposid		$71.6 \times 19 \times 7.4$	10°	${ }^{22}$			
0	Praposes	Sussun ameni-7n)	$24 \times 11.0 \times 4.53$	10°	245	(i) Susunce cass		
$\stackrel{\text { cl }}{ }$	Propeses			$\frac{110}{110^{\circ}}$	${ }_{24}^{240}$	(1) Sussuc:		

EOUPMENICE BTDCE CANOPY ELEVATONS

	OUNDING PLAN NOTE8
(1) ${ }^{\text {cmamim }}$	
(1) paxio mid	
(13) LOWER TOWER MOUNIED GROUND EAR (14) BOND LOWER TOWER mOUNTED GROUND bar to IcE-bridGE POST. t (15) BOND LOWER TOWER MOLNIED CROUND ENR TO TOWER STEI. (10) BOND LOWER TOWER MOUNIED GROUND EMR TO TOWER GROUND RANG	
(1) \%esmo	

3.

씨표

$\begin{array}{ll}(2) & \text { GROUND ROD DETAL } \\ \text { E-5 } \\ \text { MT TO SCOLE }\end{array}$

ECTPCAL SPECHECATONS

1．L．mavpune cuans

．022 Conimul roumpurns

${ }^{\circ}$ ．

J．Su Mer sine

CONDUT SCAEDULE SECTION 16III			
cacour ine	rectramat	armoman	边
ar	Nencif 3 se		N／A
			${ }^{\text {a motus }}$
Pra，scheour 40	${ }_{\text {cosem }}$		（1）
	${ }_{\text {a }}$		${ }_{18}$ wewles
	Nenc	Stor	N／A
Hex．wern	ATICLE 38	Stain	m／A
PHYSICAL DAMAGEIS SUQJECTTO THEALTOPITY HAVING JURISDICTION UNDERGROUND CONDUIT INSTADED UNDER ROADS，HIGWAYS，ORIVEWAYS．PARKING LOTS SHAL HAVE			

SECTION 16123

SECITN 10130

SECTON 1040

2 ．2 2 Uuprex

SECTION 161900

a．

SECTON 18450

2．
c． crounnowc of PNEbowes：

D．Exuwher crownonc convourto

E cavive cravinome ssita：

$\frac{\text { SECTON } 18470}{1.01 .}$

SECTION 10000

\wedge A

樃
開

Sub 6

ALPHA SECTOR PLUMBING DIAGRAM

Sub 6

GAMMA SECTOR PLUMBING DIAGRAM
C-band 64T64R

NHHSS-65B-R2BT.4

10-pórt sector antenna, $2 \times 698-896,4 \times 1695-2200$ and $4 \times 3100-$ $4200 \mathrm{MHz}, 65^{\circ} \mathrm{HPBW}, 2 x$ RETs and $2 \times$ SBTs. Both high bands share the same electrical tilt.

- Perfect antenna to add 3.5 GHz CBRS to macro sites
- Low band and mid band performance mirrors the performance of existing NHH hex port antennas
- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper çable
- One LB RET• and one HB RET. Both high bands are controlled by one RET to ensure same tilt level for 4 x MIMO

General Specifications

Antenna Type

Band
Color
Grounding Type

Performance Note
Radome Material
Radiator Material
Reflector Material
RF Connector Interface
RF Connector Location
RF Connector Quantity, high band
RF Connector Quantity, mid band
RF Connector Quantity, low band
RF Connector Quantity, total

Sector
Multiband
Light gray
RF connector inner conductor and body grounded to reflector and mounting bracket

Outdoor usage
Fiberglass, UV resistant
Low loss circuit board
Aluminum
4.3-10 Female

Bottom
4
4
2
10

Remote Electrical Tilt (RET) Information

RET Hardware
RET Interface

CommRET v2
4x 8 pin connector as per IEC 60130-9 Daisy chain in: Male / Daisy chain out: Female Pin3: RS485A(AISG_B), Pin5: RS485B(AISG_A), Pin6: DC 10~30V, Pin7: DC_Return

NHHSS-65B-R2BT4

RET Interface, quantity

Input Voltage
Intemal RET
Power Consumption, active state, maximum
Power Consumption, idle state, maximum
Protocol
Dimensions
Width
Depth
Length
Net Weight, without mounting kit

2 female | 2 male
$10-30 \mathrm{Vdc}$
High band (1) | Low band (1)
10 W
2 W
3GPP/AISG 2.0 (Single RET)

301 mm | 11.85 in
181 mm | 7.126 in
1828 mm | 71.969 in
$23.1 \mathrm{~kg} \mathrm{\mid} 50.927 \mathrm{lb}$

Array Layout

Array iD	Frequency (MHz)	RF Connector	$\begin{array}{l\|} \hline \text { RET } \\ \text { Serert } \end{array}$	AISG No.	AISG RET UID
15	698.896	$1 \cdot 2$	1	AISG1	CPxxxxxxxxxxxxxxxxR1
II.	1695-2200	3.4	2	AISG2	
路	1695-2200	5-6			
71	3100-4200	7.8	N/A	NA	N/A
$\%$	3100-4200	9.10			

Port Configuration

NHHSS-65B-R2BT4

Electrical Specifications

Impedance
Operating Frequency Band
Polarization
Total Input Power, maximum

50 ohm
$1695-2200 \mathrm{MHz}$ | $3100-4200 \mathrm{MHz}$ | $698-896 \mathrm{MHz}$
$\pm 45^{\circ}$
$1,000 \mathrm{~W} @ 50^{\circ} \mathrm{C}$

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-1	1850-	1920	3100	3550	3700-4200
Gain, dBi	14.8	15.2	17.4	17.8	18	17.7	17.3	17.9
Beamwidth, Horizontal, degrees	65	62	66	61	64	54	64	60
Beamwidth, Vertical, degrees	13	11.6	5.5	5.2	4.9	5.7	5.3	4.9
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	4	4	4
USLS (First Lobe), dB	15	15	16	18	18	16	17	18
Front-to-Back Ratio at 180°, dB	26	29	31	28	27	30	33	29
Isolation, Cross Polarization, dB	25	25	25	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25	28	28	28
VSWR \| Return loss, dB	1,51740	1.5114 .0	1.51140	1.5114.0	1.5114 .0	1.5174 .0	1.5114 .0	1.5\|14.0
PIM, 3rd Order, 2×20 W, dBc	-153	-153	-753	-153	-153	-140	-140	-140

NHHSS-65B-R2BT4

Input Power per Port at $\mathbf{5 0}{ }^{\circ} \mathbf{C}$, maximum, watts	300	300	300	300	300	100	100	100

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-18	1850-	1920			--4200
Gain by all Beam Tilts, average, dBi	14.6	14.8	17	17.5	17.7	17.3	17	17.2
Gain by all Beam Tilts Tolerance, dB	± 0.4	± 0.4	± 0.6	± 0.3	± 0.4	± 0.6	± 0.7	± 0.8
Gain by Beam Tilt, average, dBi	$\begin{aligned} & 0^{\circ} \mid 14.6 \\ & 7^{\circ} \mid 14.6 \\ & 14^{\circ} \mid 14.4 \end{aligned}$	$\begin{aligned} & 0^{\circ} \mid 15.0 \\ & 7^{\circ} \mid 14.9 \\ & 14^{\circ} \mid 14.5 \end{aligned}$	$\begin{aligned} & 0^{\circ} \mid 16.9 \\ & 3^{\circ} \mid 17.0 \\ & 7^{\circ} \mid 16.8 \end{aligned}$	$\begin{aligned} & 0^{\circ} 117.4 \\ & 3^{\circ} 117.5 \\ & 7^{\circ} 117.4 \end{aligned}$	$\begin{aligned} & 0^{\circ} 117.5 \\ & 3^{\circ} 117.8 \\ & 7^{\circ} 117.6 \end{aligned}$			
Beamwidth, Horizontal Tolerance, degrees	± 1.7	± 7.3	± 7.2	± 3.1	± 6.2	± 10	± 6.7	± 10.5
Beamwidth, Vertical Tolerance, degrees	± 0.8	± 0.8	± 0.2	± 0.2	± 0.4	± 0.4	± 0.3	± 0.4
USLS, beampeak to $\mathbf{2 0 ^ { \circ }}$ above beampeak, dB	18	16	14	15	17	14		
Front-to-Back Total Power at $180^{\circ} \pm 30^{\circ}, \mathrm{dB}$	22	25	25	25	24	26	25	24
CPR at Boresight, dB	24	17	16	21	19	15	17	14
CPR at Sector, dB	12	6	11	10	8	8	9	7

Mechanical Specifications

Wind Loading @ Velocity, frontal
Wind Loading @ Velocity, lateral
Wind Loading @ Velocity, maximum
Wind Loading @ Velocity, rear
Wind Speed, maximum
$278.0 \mathrm{~N} @ 150 \mathrm{~km} / \mathrm{h}$ (62.5 lbf @ $150 \mathrm{~km} / \mathrm{h})$
$230.0 \mathrm{~N} @ 150 \mathrm{~km} / \mathrm{h}(51.7 \mathrm{lbf} @ 150 \mathrm{~km} / \mathrm{h})$
$537.0 \mathrm{~N} @ 150 \mathrm{~km} / \mathrm{h}(120.7 \mathrm{lbf} @ 150 \mathrm{~km} / \mathrm{h})$
$287.0 \mathrm{~N} @ 150 \mathrm{~km} / \mathrm{h}(64.5 \mathrm{lbf} @ 150 \mathrm{~km} / \mathrm{h})$
$241 \mathrm{~km} / \mathrm{h}$ | 149.75 mph

Packaging and Weights

Width, packed
Depth, packed
Length, packed
Weight, gross

1973 mm | 77.677 in
441 mm | 17.362 in
337 mm | 13.268 in
$35.1 \mathrm{~kg} \mathrm{\mid} 77.382 \mathrm{lb}$

Regulatory Compliance/Certifications

Agency
CHINA-ROHS

Classification
Above maximum concentration value

NHHSS-65B-R2BT4

ROHS
50

Included Products
BSAMNT-3

* Footnotes

Performance Note

- Wide Profile Antenna Downtilt Mounting Kit for 2.4-4.5 in (60-115 mm) OD round members.

Kit contains one scissor top bracket set and one bottom bracket set.
Compliant/Exempted

Severe environmental conditions may degrade optimum performance

SNMSUNG

Samsung
 Micro Radio
 CBRS(N48)
 4T4R Micro Radio

Samsung's CBRS 4T4R Micro Radio provides mobile
operators with a cost-effective solution to fill coverage
gaps encountered when Macro Radios are in use.
$\begin{array}{ll}\text { Model Code } & R^{\top} 4423-48 A(D C) \\ & R^{\top} \angle 423-48 B(A C)\end{array}$

Dual Personality

The new CBRS Radio supports existing CPRI and advanced eCPRI interfaces providing installation options for both legacy LTE and NR network equipment.

High Capacity

The number of carriers required varies according to site(region). Supporting multiple carriers is essential to customers as they seek to utilize all frequencies available to them.
The new CBRS radio can support up to 5 carriers which is and increase of 3 carriers over the capacity of the previous CBRS product.

O-RAN Compliant

A standardized O-RAN radio supports implementing cost-effective networks capable of enhanced data throughput without compromising existing or new network investments.
Samsung O-RAN products ensure state-of-the-art O-RAN technology will accelerate efforts for creating solid O-RAN ecosystems.

Compact and Easy Installation

New CBRS RU is compact in it's design with a volume of 6 L and weighing only about 7 kg .
This compact design allows for various installation options including, tower, rooftop, pole, wall and shroud.
A clip on antenna is available providing flexibility to installation requirements.

Technical Specifications

Item	Specification
Tech	LTE / NR
Band	B48, n 48 / TDD
Frequency Band	3,550-3,700 MHz
RF Power	20 W (5 W x 4 Ports)
IBW/OBW	$150 \mathrm{MHz} / 100 \mathrm{MHz}$
Installation	Pole, Wall, Side by side (max 3 radio)
Size/ Weight	[Radio] w/o Clip-on antenna : $8.7 \times 11.8 \times 3.6$ inch, $5.97 \mathrm{~L}, 7 \mathrm{~kg}$ w/ Clip-on antenna : $8.7 \times 11.8 \times 5.0$ inch, $8.42 \mathrm{~L}, 8.5 \mathrm{~kg}$ *AC and $D C$ type have same size and weight [Bracket Weight] Tilting \& Swivel (EP97-02038A) : 2.51kg Fixed (EP97-02037A): 1.31kg Side by side (EP97-02089A) : 8.0kg

SAMSUNG

AWS/PCS MACRO RADIO DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Sámsung's future proof dual-band radio is designed to help
effectively increase the coverage areas in wireless networks.
This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx
RF chains options and a total output power of 320W, making
it ideal for macro sites.

Model Code RF4439d-25A

Points of Differentiation

Continuous Migration

Samsungs AWS/PCS macro radio can support each incurnbent CPRI interface as well as advanced eCPRI interfaces. Thisfeature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.
The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9 GHz) band and 4 carriers in the AWS (21GHz) band, respectively.

PCS
PCS
PCS
AWS
AWS
AWS
AWS

C Technical Specifications

Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930-1995MHz, UL- 1850 - 1915MHz DL: $2110-2200 \mathrm{MHz}, \mathrm{UL}: 1710-1780 \mathrm{MHz}$
RF Power	$\begin{aligned} & \text { (B25) } 4 \times 40 \mathrm{~W} \text { or } 2 \times 60 \mathrm{~W} \\ & (\mathrm{~B} 66) 4 \times 60 \mathrm{~W} \text { or } 2 \times 80 \mathrm{~W} \end{aligned}$
IBW/OBW	(B25) $65 \mathrm{MHz} / 30 \mathrm{MHz}$ (B66) DL90MHz, UL70MHz/60MHz
Installation	Pole, Wall
Size/ Weight	$\begin{aligned} & 14.96 \times 14.96 \times 10.04 \text { inch }(36.8 \mathrm{~L}) \text { / } \\ & 74.7 \mathrm{lb} \end{aligned}$

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.
Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystern.

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L

700/850 4T4R Macro 320W ORU - New Filter (RF446ld-13A)
Specifications

* 5 MHz supporting in BI3(700MMz) depends on 3GPp std. and UE capability. support 5 MHz service need to be considered
© Samsung Electronics. All Rughts Reserved. Conlidential and Proprietary

Tower Engineering Solutions
Phone (972) 483-0607, Fax (972) 975-9615
1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Report Prepared By: Changzhi Zang

Tower Engineering Solutions
Phone (972) 483-0607, Fax (972) 975-9615

Structural Analysis Report

Existing 130 ft SABRE Monopole
Customer Name: SBA Communications Corp
Customer Site Number: CT46143-A
Customer Site Name: Burlington - Avon Landfill
Carrier Name: Verizon (App\#: 241526-1)
Carrier Site ID / Name: 5000205807 / BURLINGTON_2_CT
Site Location: $\mathbf{2 7 7}$ Huckleberry Hill Road
Avon, Connecticut
Hartford County
Latitude: 41.788055
Longitude: -72.918166

Analysis Result:
Max Structural Usage: 30.8\% [Pass]
Max Foundation Usage: 26.5\% [Pass]
Additional Usage Caused by New Mount/Mount Modification: N/A

Report Prepared By : Changzhi Zang

Introduction

The purpose of this report is to summarize the analysis results on the 130 ft SABRE Monopole to support the proposed antennas and transmission lines in addition to those currently installed. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

Sources of Information

Tower Drawings	Design Report prepared by Sabre, Job \#521586 Revision A dated 6/29/2023
Foundation Drawing	Design Report prepared by Sabre, Job \#521586 Revision A dated 6/29/2023
Geotechnical Report	Delta Oaks Group, Project \#23-19365-01 Revision O dated 6/28/2023
Modification Drawings	N/A
Mount Analysis	N/A

Analysis Criteria

The comprehensive analysis was performed in accordance with the requirements and stipulations of the TIA-222-H. In accordance with this standard, the structure was analyzed using TESPoles, a proprietary analysis software. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis:	120.0 mph (3-Sec. Gust) (Ultimate wind speed)
Wind Speed with Ice:	50 mph (3-Sec. Gust) with $1 " 1 / 2$ radial ice concurrent
Service Load Wind Speed:	$60 \mathrm{mph}+0^{\prime \prime}$ Radial ice
Standard/Codes:	TIA-222-H/2021 IBC / 2022 Connecticut State Building Code
Exposure Category:	C
Risk Category:	II
Topographic Category:	1
Crest Height:	0 ft
Seismic Parameters:	$\mathrm{S}_{\mathrm{s}}=0.189, \mathrm{~S}_{1}=0.055$

This structural analysis is based upon the tower being classified as a Risk Category II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type \& Qty.	Transmission Lines	Owner
-	110.0	3	Commscope NHHSS-65B-R2B - Panel	(2) Ring Mounts	(2) $15 / 8^{\prime \prime} 6 \times 12$ Hybrid	Verizon
-		3	Commscope NHH-65B-R2B - Panel			
-		3	Samsung MT6407-77A - Panel			
-		3	Samsung B2/B66A RRH-BR049 - RRU			
-		3	Samsung B5/B13 RRH-BR04C - RRU			
-		3	Samusng CBRS RRH - RT4401-48A - RRU			
-		1	Raycap DB-B1-6C-12AB-0Z - Junction box			
8	99.0	3	Andrew DHHTT65B-3XR - Panel	Flush Mount	(4) $11 / 4^{\prime \prime}$	Sprint Nextel
9		4	RFS ACU-A20-N - RRU			
10		3	ALU 1900MHz RRH - RRU			
11		3	ALU 800 MHz RRH - RRU			
12		3	ALU TD-RRH8×20-25-RRU			
13		3	ALU 800 MHz Filter			
14	90.0	3	Andrew SBNHH-1D65C - Panel	Flush Mount	(6) $15 / 8^{\prime \prime}$ (1) $3^{\prime \prime}$ Conduit housing \{(2) $3 / 4^{\prime \prime} \mathrm{DC}$ (1) $7 / 16$ " Fiber\}	AT\&T
15		3	Powerwave LGP21401-TMA			
16		3	Cci TMABPD7823VG12A - TMA			
17		3	Andrew APTDC-BDFDM-DBW - OVP			
18	80.0	3	RFS APXVAR18_43-C-NA20-Panel	Flush Mount	(12) $7 / 8{ }^{\prime \prime}$	T-Mobile
19		6	RFS ATMAA1412D-A1A20 - TMA			
20	70.0	3	JMA Wireless MX08FRO665-21-Panel	Platform w/HRK [Commscope MC-PK8-DSH]	(1) $1.41^{\prime \prime}$ Hybrid	Dish Wireless
21		3	Fujitsu TA08025-B605-RRU			
22		3	Fujitsu TA08025-B604-RRU			
23		1	Raycap RDIDC-9181-PF-48-0VP			

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

Items	Elevation (t)	Qty.	Antenna Descriptions	Mount Type \& Qty.	Transmission Lines	Owner
1	110.0	3	Commscope NHHSS-65B-R2B - Panel	(2) Ring Mounts	(2) $15 / 8$ " 6×12 Hybrid	Verizon
2		3	Commscope NHH-65B-R2B - Panel			
3		3	Samsung MT6413-77A - Panel			
4		3	Samsung RF4439d-25A - RRU			
5		3	Samsung RF4461d-13A - RRU			
6		3	Samsung RT4423-48A - RRU			
7		1	Raycap DB-B1-6C-12AB-0Z - Junction box			

See the attached coax layout for the line placement considered in the analysis.

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

	Pole shafts	Anchor Bolts	Base Plate
Max. Usage:	$\mathbf{3 0 . 8 \%}$	$\mathbf{2 8 . 9 \%}$	$\mathbf{3 0 . 8 \%}$
Pass/Fail	Pass	Pass	Pass

Foundations

	Moment (Kip-Ft)	Shear (Kips)	Axial (Kips)
Analysis Reactions	1570.3	20.7	32.3

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

Service Load Condition (Rigidity):

Operational characteristics of the tower are found to be within the limits prescribed by TIA-222 for the installed antennas. The maximum twist/sway at the elevation of the proposed equipment is 0.4412 degrees under the operational wind speed as specified in the Analysis Criteria.

Conclusions

Based on the analysis results, the existing structure and its foundation were found to be adequate to safely support the existing and proposed equipment and meet the minimum requirements per the TIA222 Standard under the design basic wind speed as specified in the Analysis Criteria.

Standard Conditions

1. This analysis was performed based on the information supplied to (TES) Tower Engineering Solutions, LLC. Verification of the information provided was not included in the Scope of Work for TES. The accuracy of the analysis is dependent on the accuracy of the information provided.
2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of TES. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the ANSI/TIA-222 standard or other codes, TES should be notified in writing and the applicable minimum values provided by the client.
4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. TES has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, TES should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.

Usage Diagram - Max Ratio 30.84\% at 0.0ft

Structure: CT46143-A-SBA
Site Name: Burlington - Avon Landfill
Height: $\quad 130.00$ (ft)
Base Elev: 0.000 (ft)

Code:	EIA/TIA-222-H	$1 / 26 / 2024$	$((1)$
Exposure:	C		
Gh:	1.1		
		Page: 1	
			Tower Enginecting Solutions

Structure: CT46143-A-SBA

Type:	Tapered	Base Shape:	18 Sided	$1 / 26 / 2024$
Site Name:	Burlington - Avon Landfill	Taper: 0.29531		
Height:	$130.00(\mathrm{ft})$			
Base Elev:	$0.00(\mathrm{ft})$			

Structure: CT46143-A-SBA					
Type:	Tapered	Base Shape:	18 Sided	1/26/2024	$\left(\left(1 H_{1}\right)\right.$
Site Name:	Burlington - Avon Landfill	Taper:	0.29531		T
Height:	130.00 (ft)				-
Base Elev:	0.00 (ft)			Page: 3	Tower Engincering Solutions

Thickness (in)	Specifications (in)	Geometry		
2.2500	63.8	Round		
Reactions				
Load Case		Moment (FT-Kips)	$\begin{aligned} & \hline \text { Shear } \\ & \text { (Kips) } \end{aligned}$	Axial (Kips)
1.2D + 1.0W	0 mph Wind	1570.3	20.7	32.3
$0.9 \mathrm{D}+1.0 \mathrm{~W}$	0 mph Wind	1563.7	20.7	24.2
$1.2 \mathrm{D}+1.0 \mathrm{Di}$	1.0Wi 50 mph Wind	440.7	5.9	50.4
$1.2 \mathrm{D}+1.0 \mathrm{Ev}$	1.0Eh	68.7	0.8	33.4
$0.9 \mathrm{D}+1.0 \mathrm{Ev}$	1.0Eh	68.6	0.8	25.3
$1.0 \mathrm{D}+1.0 \mathrm{~W}$	mph Wind	350.3	4.6	26.9

| Type: Monopole | 1/26/2024 |
| :--- | :--- | :--- |

Site Name: Burlington - Avon Landfill
Height: 130.00 (ft)

Shaft Properties

Shaft Properties						
Structure:	CT46143-A-SBA		Code:	TIA-222-H	1/26/2024	
Site Name:	Burlington - Avon Landfill		Exposure:	C		(10) 11$)$
Height:	130.00 (ft)		Crest Height:	0.00		
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil		,
Gh:	1.1 Topography:	1	Struct Class:	II	Page: 5	Tower Engineering Solutions

Sec. No.	Shape	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Overiap (in)	Weight (Ib)
1	18	53.250	0.4375	65		0.00	10,779
2	18	53.500	0.3750	65	Slip	63.00	6,379
3	18	31.750	0.2500	65	Slip	39.00	1,581
					Total Shaft Weight:	$\mathbf{1 8 , 7 3 9}$	

Sec. No.	Bottom						Top						Taper
	Dia (in)	Elev (ft)	Area (sqin)	$\underset{\left(i n^{\wedge} 4\right)}{\operatorname{lx}}$	$\begin{gathered} \text { W/t } \\ \text { Ratio } \end{gathered}$	D/t Ratio	Dia (in)	Elev (ft)	Area (sqin)		W/t Ratio	$\begin{gathered} \text { D/t } \\ \text { Ratio } \end{gathered}$	
1	51.14	0.00	70.40	22867.07	19.20	116.89	35.41	53.25	48.57	7507.30	12.86	80.95	0.295308
2	37.72	48.00	44.44	7829.01	16.32	100.57	21.92	101.50	25.64	1503.11	8.89	58.44	0.295308
3	23.38	98.25	18.35	1239.90	15.08	93.50	14.00	130.00	10.91	260.61	8.46	56.00	0.295308

Load Summary						
Structure:	CT46143-A-SBA		Code:	TIA-222-H	1/26/2024	((14) ${ }^{(1)}$
Site Name:	Burlington - Avon Landfill		Exposure:	C		(1)
Height:	130.00 (ft)		Crest Height:	0.00		FS
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil		
Gh:	1.1 Topography:	1	Struct Class:	11	Page: 6	Tower Engineering Solutions

Discrete Appurtenances

No.	Elev (ft)	Description	Qty	No lce			Ice			Hor. Ecc. (ft)	Vert Ecc (ft)
				Weight (b)	$\begin{gathered} \mathrm{CaAa} \\ (\mathrm{sf}) \end{gathered}$	CaAa Factor	Weight (Ib)	$\begin{gathered} \text { CaAa } \\ \text { (sf) } \end{gathered}$	CaAa Factor		
1	110.00	Ring Mount	1	660.00	7.50	1.00	1553.33	15.114	1.00	0.00	0.00
2	110.00	Raycap DB-B1-6C-12AB-0Z	1	21.40	4.10	1.00	136.39	4.877	1.00	0.00	0.00
3	110.00	Commscope NHHSS-65B-R2B	3	51.00	8.05	0.84	237.52	9.276	0.84	0.00	0.00
4	110.00	Commscope NHH-65B-R2B	3	43.70	8.08	0.83	238.01	9.330	0.83	0.00	0.00
5	110.00	Samsung RF4439d-25A	3	74.70	1.87	0.67	190.98	3.009	0.67	0.00	0.00
6	110.00	Samsung RF4461d-13A	3	39.70	1.37	0.67	120.30	2.204	0.67	0.00	0.00
7	110.00	Samsung RT4423-48A	3	15.40	0.86	0.67	57.09	1.745	0.67	0.00	0.00
8	110.00	Samsung MT6413-77A	3	57.32	3.79	0.69	251.28	5.329	0.75	0.00	0.00
9	99.00	Andrew DHHTT65B-3XR	3	45.00	8.09	0.83	238.03	9.388	0.83	0.00	0.00
10	99.00	Flush Mount	1	350.00	5.00	1.00	631.26	8.348	1.00	0.00	0.00
11	99.00	RFS ACU-A20-N	4	1.00	0.14	0.67	5.12	0.425	0.67	0.00	0.00
12	99.00	ALU 1900MHz RRH	3	60.00	2.31	0.67	132.57	2.933	0.67	0.00	0.00
13	99.00	ALU 800 MHz RRH	3	53.00	2.13	0.67	113.52	2.698	0.67	0.00	0.00
14	99.00	ALU TD-RRHBx20-25	3	70.00	4.05	0.67	175.07	4.828	0.67	0.00	0.00
15	99.00	ALU 800MHz Filter	3	8.80	0.78	0.67	25.73	1.401	0.67	0.00	0.00
16	90.00	Andrew SBNHH-1D65C	3	49.60	11.39	0.84	296.91	12.962	0.84	0.00	0.00
17	90.00	Powerwave LGP21401	3	17.50	0.82	0.67	37.85	1.196	0.67	0.00	0.00
18	90.00	Cci TMABPD7823VG12A	3	26.00	1.37	0.67	58.22	1.822	0.67	0.00	0.00
19	90.00	Andrew APTDC-BDFDM-DBW	3	1.32	0.10	0.67	4.21	0.248	0.67	0.00	0.00
20	90.00	Flush Mount	1	350.00	5.00	1.00	628.60	8.317	1.00	0.00	0.00
21	80.00	Flush Mount	1	350.00	5.00	1.00	625.33	8.278	1.00	0.00	0.00
22	80.00	RFS APXVAR18_43-C-NA20	3	69.40	9.65	0.81	290.10	10.884	0.81	0.00	0.00
23	80.00	RFS ATMAA1412D-A1A20	6	1.16	0.15	0.67	6.33	0.336	0.67	0.00	0.00
24	70.00	JMA Wireless MX08FRO665-21	3	64.50	12.49	0.74	334.03	13.847	0.74	0.00	0.00
25	70.00	Fujitsu TA08025-B605	3	75.00	1.96	0.67	123.47	2.480	0.67	0.00	0.00
26	70.00	Fujitsu TA08025-B604	3	63.90	1.96	0.67	110.81	2.480	0.67	0.00	0.00
27	70.00	Raycap RDIDC-9181-PF-48	1	21.85	2.56	1.00	84.10	3.146	1.00	0.00	0.00
28	70.00	Commscope MC-PK8-DSH	1	1727.00	37.59	1.00	3290.98	81.358	1.00	0.00	0.00
		Tota	74	6,148.73			16,115.43				

Linear Appurtenances

Bottom Elev. (ft)	Top Elev. (ft)	Description	$\begin{aligned} & \text { Exposed } \\ & \text { Width } \end{aligned}$	Exposed
0.00	110.00	(2) $15 / 8{ }^{\prime \prime} 6 \times 12$ Hybrid	0.00	Inside
0.00	99.00	(4) $11 / 4^{\prime \prime}$ Coax	0.00	Inside
0.00	90.00	(6) $15 / 8^{\prime \prime}$ Coax	0.00	Inside
0.00	90.00	(1) $3^{\prime \prime}$ Coax	0.00	Inside
0.00	90.00	(2) $3 / 4^{\prime \prime} \mathrm{DC}$	0.00	Inside
0.00	90.00	(1) $7 / 16^{\prime \prime}$ Fiber	0.00	Inside
0.00	80.00	(12) 7/8" Coax	0.00	Inside
0.00	70.00	(1) 1.41 " Hybrid	1.41	Outside

Shaft Section Properties							
Structure:	CT46143-A-SBA			Code:	TIA-222-H	1/26/2024	
Site Name:	Burlington - Avon	Landfill		Exposure:	C		$\left(1 H^{1} 1\right)$
Height:	130.00 (ft)			Crest Height:	0.00		PN
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		工N
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 7	Tower Engineering Solutions

Increment Length: 5 (ft)

Elev (ft)	Description	Thick (in)	Dia (in)	Area $\left(\operatorname{in}^{\wedge} 2\right)$	$\begin{gathered} \text { lx } \\ \left(i n^{\wedge} 4\right) \end{gathered}$	W/t Ratio	D/t Ratio	Fpy (ksi)	$\begin{gathered} s \\ \left(\operatorname{in}^{\wedge} 3\right) \end{gathered}$	Weight (Ib)
0.00		0.4375	51.140	70.404	22867.1	19.20	116.89	78.8	880.7	0.0
5.00		0.4375	49.663	68.354	20926.9	18.61	113.52	79.5	829.9	1180.4
10.00		0.4375	48.187	66.304	19099.7	18.01	110.14	80.2	780.7	1145.5
15.00		0.4375	46.710	64.253	17382.1	17.42	106.77	80.9	732.9	1110.6
20.00		0.4375	45.234	62.203	15770.7	16.82	103.39	81.6	686.7	1075.8
25.00		0.4375	43.757	60.153	14262.1	16.23	100.02	82.3	642.0	1040.9
30.00		0.4375	42.281	58.103	12852.8	15.63	96.64	82.5	598.7	1006.0
35.00		0.4375	40.804	56.052	11539.7	15.03	93.27	82.5	557.0	971.1
40.00		0.4375	39.328	54.002	10319.1	14.44	89.89	82.5	516.8	936.2
45.00		0.4375	37.851	51.952	9187.8	13.84	86.52	82.5	478.1	901.3
48.00	Bot - Section 2	0.4375	36.965	50.721	8550.5	13.49	84.49	82.5	455.6	524.1
50.00		0.4375	36.375	49.901	8142.4	13.25	83.14	82.5	440.9	642.5
53.25	Top - Section 1	0.3750	36.165	42.597	6893.8	15.59	96.44	0.0	0.0	1021.9
55.00		0.3750	35.648	41.982	6599.4	15.35	95.06	82.5	364.6	251.8
60.00		0.3750	34.172	40.225	5804.9	14.66	91.12	82.5	334.6	699.3
65.00		0.3750	32.695	38.467	5076.8	13.96	87.19	82.5	305.8	669.4
70.00		0.3750	31.218	36.710	4412.3	13.27	83.25	82.5	278.4	639.5
75.00		0.3750	29.742	34.953	3808.5	12.57	79.31	B2.5	252.2	609.6
80.00		0.3750	28.265	33.195	3262.4	11.88	75.37	82.5	227.3	579.7
85.00		0.3750	26.789	31.438	2771.2	11.19	71.44	82.5	203.8	549.8
90.00		0.3750	25.312	29.681	2332.0	10.49	67.50	82.5	181.5	519.9
95.00		0.3750	23.836	27.923	1941.8	9.80	63.56	82.5	160.5	490.0
98.25	Bot-Section 3	0.3750	22.876	26.781	1713.1	9.35	61.00	82.5	147.5	302.5
99.00		0.3750	22.655	26.517	1663.0	9.24	60.41	82.5	144.6	114.6
100.00		0.3750	22.359	26.166	1597.8	9.10	59.62	82.5	140.7	151.1
101.50	Top-Section 2	0.2500	22.416	17.588	1091.8	14.40	89.67	0.0	0.0	222.9
105.00		0.2500	21.383	16.768	946.1	13.67	85.53	82.5	87.2	204.6
110.00		0.2500	19.906	15.597	761.3	12.63	79.62	82.5	75.3	275.3
115.00		0.2500	18.430	14.425	602.3	11.59	73.72	82.5	64.4	255.4
120.00		0.2500	16.953	13.253	467.2	10.55	67.81	82.5	54.3	235.5
125.00		0.2500	15.477	12.082	353.9	9.51	61.91	82.5	45.0	215.5
130.00		0.2500	14.000	10.910	260.6	8.46	56.00	82.5	36.7	195.6
										18738.5

Total Applied Force Summary										
Structure: Site Name Height: Base Elev Gh:	$\begin{array}{ll} \text { Ire: } & \text { CT46143-) } \\ \text { Ime: } & \text { Burlington } \\ & 130.00(\mathrm{ft}) \\ \text { lev: } & 0.000(\mathrm{ft}) \\ 1.1 \end{array}$	-SBA Avon La To	fill graphy:	1	Cod Exp Cre Site Str	: ight: S: ass:	$\begin{aligned} & \text { TIA-222-H } \\ & \text { C } \\ & 0.00 \\ & \text { D - Stiff Soil } \\ & \text { II } \end{aligned}$	1/26/2024	$\underset{\text { Tower Enginn }}{((\text { (1) }}$	
Load	Case: 1.2D + 1. Dead Load Facto Wind Load Fa		Wind					\longrightarrow	erations	
Elev (ft)	Description	Lateral FX (-) (Ib)	Axial FY (-) (Ib)		Torsion MY (lb-ft)	$\begin{gathered} \text { Momer } \\ \text { MZ } \\ \text { (lb-ft) } \end{gathered}$				
0.00		0.00	0.00		0.00	0.00				
5.00		501.19	1553.37		0.00	0.00				
10.00		486.51	1511.51		0.00	0.00				
15.00		471.82	1469.65		0.00	0.00				
20.00		485.05	1427.79		0.00	0.00				
25.00		492.05	1385.93		0.00	0.00				
30.00		494.34	1344.07		0.00	0.00				
35.00		493.11	1302.21		0.00	0.00				
40.00		489.15	1260.35		0.00	0.00				
45.00		482.95	1218.49		0.00	0.00				
48.00		284.74	711.00		0.00	0.00				
50.00		191.53	825.71		0.00	0.00				
53.25		308.85	1315.25		0.00	0.00				
55.00		164.07	350.11		0.00	0.00				
60.00		464.18	976.08		0.00	0.00				
65.00		452.10	940.20		0.00	0.00				
70.00	(11) attachments	3383.54	3735.18		0.00	0.00				
75.00		424.77	861.60		0.00	0.00				
80.00	(10) attachments	1518.51	1503.91		0.00	0.00				
85.00		393.86	752.40		0.00	0.00				
90.00	(13) attachments	1860.95	1476.43		0.00	0.00				
95.00		359.94	623.40		0.00	0.00				
98.25		223.94	385.97		0.00	0.00				
99.00	(20) attachments	1789.07	1420.12		0.00	0.00				
100.00		68.13	185.20		0.00	0.00				
101.50		100.87	273.31		0.00	0.00				
105.00		229.32	259.17		0.00	0.00				
110.00	(20) attachments	3050.82	2182.15		0.00	0.00				
115.00		292.28	306.47		0.00	0.00				
120.00		272.19	282.55		0.00	0.00				
125.00		251.63	258.63		0.00	0.00				
130.00		230.61	234.71		0.00	0.00				
	Totals:	20,712.03	32,332.97		0.00	0.00				

Linear Appurtenance Segment Forces (Factored)						
Structure:	CT46143-A-SBA		Code:	TIA-222-H	1/26/2024	
Site Name:	Burlington - Avon Landfill		Exposure:	C		((1) $\mathrm{H}_{\text {(}}$) $)$
Height:	130.00 (ft)		Crest Height:	0.00		CG
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil		1
Gh:	1.1 Topography:		Struct Class:	11	Page: 11	Towet Engineering Solutions

Load Case: $1.2 \mathrm{D}+1.0 \mathrm{~W} 120 \mathrm{mph}$ Wind				CaExposed Width (in)							Iteration	$\begin{aligned} & 51 \\ & \hline \\ & \hline \begin{array}{c} \text { Dead } \\ \text { Load } \\ \text { (Ib) } \end{array} \\ & \hline \end{aligned}$
Top Elev (ft)	Description	Wind Exposed	Length (ft)			Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	$\underset{(\mathbf{p s f})}{q \mathbf{z}}$	$\begin{aligned} & \text { F X } \\ & \text { (Ib) } \end{aligned}$	
5.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.028	0.000	29.269	0.00	6.84
10.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.028	0.000	29.269	0.00	6.84
15.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.029	0.000	29.269	0.00	6.84
20.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.030	0.000	31.055	0.00	6.84
25.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.031	0.000	32.549	0.00	6.84
30.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.032	0.000	33.823	0.00	6.84
35.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.033	0.000	34.938	0.00	6.84
40.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.035	0.000	35.934	0.00	6.84
45.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.036	0.000	36.837	0.00	6.84
48.00	1.41" Hybrid	Yes	3.00	0.000	1.41	0.35	0.00	0.037	0.000	37.341	0.00	4.10
50.00	1.41" Hybrid	Yes	2.00	0.000	1.41	0.23	0.00	0.038	0.000	37.663	0.00	2.74
53.25	1.41" Hybrid	Yes	3.25	0.000	1.41	0.38	0.00	0.039	0.000	38.165	0.00	4.45
55.00	1.41" Hybrid	Yes	1.75	0.000	1.41	0.21	0.00	0.039	0.000	38.426	0.00	2.39
60.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.040	0.000	39.137	0.00	6.84
65.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.042	0.000	39.802	0.00	6.84
70.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.043	0.000	40.427	0.00	6.84
									Totals:		0.0	95.8

Seg Elev (ft)		$\begin{gathered} \text { Vu } \\ \text { FX (-) } \\ (\mathbf{k i p s}) \end{gathered}$	Tu MY (-) (ft-kips)	$\begin{gathered} \mathrm{Mu} \\ \mathrm{MZ} \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \text { Mu } \\ \text { MX } \\ \text { (ft-kips) } \end{gathered}$	Resultant Moment (ft-kips)	phi Pn (kips)	$\begin{gathered} \text { phi } \\ \text { Vn } \\ \text { (kips) } \end{gathered}$	\qquad	$\begin{gathered} \text { phi } \\ \text { Mn } \\ \text { (ft-kips) } \\ \hline \end{gathered}$	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-32.32	-20.74	0.00	-1570.2	0.00	1570.27	4994.17	1235.59	5197.80	5206.12	0.00	0.000	0.000	0.308
5.00	-30.73	-20.29	0.00	-1466.5	0.00	1466.57	4891.79	1199.61	4899.47	4949.63	0.05	-0.094	0.000	0.303
10.00	-29.18	-19.85	0.00	-1365.1	0.00	1365.13	4786.83	1163.63	4609.96	4696.86	0.20	-0.191	0.000	0.297
15.00	-27.68	-19.42	0.00	-1265.9	0.00	1265.90	4679.28	1127.65	4329.26	4448.07	0.46	-0.289	0.000	0.291
20.00	-26.23	-18.97	0.00	-1168.8	0.00	1168.82	4569.15	1091.66	4057.38	4203.49	0.81	-0.388	0.000	0.284
25.00	-24.81	-18.51	0.00	-1073.9	0.00	1073.97	4456.44	1055.68	3794.32	3963.36	1.27	-0.489	0.000	0.277
30.00	-23.44	-18.05	0.00	-981.42	0.00	981.42	4316.73	1019.70	3540.07	3706.95	1.84	-0.592	0.000	0.270
35.00	-22.11	-17.58	0.00	-891.19	0.00	891.19	4164.40	983.72	3294.64	3448.64	2.52	-0.696	0.000	0.264
40.00	-20.83	-17.11	0.00	-803.30	0.00	803.30	4012.07	947.73	3058.03	3199.66	3.30	-0.800	0.000	0.257
45.00	-19.59	-16.64	0.00	-717.75	0.00	717.75	3859.75	911.75	2830.23	2960.01	4.20	-0.905	0.000	0.248
48.00	-18.87	-16.36	0.00	-667.83	0.00	667.83	3768.35	890.16	2697.78	2820.70	4.79	-0.969	0.000	0.242
50.00	-18.03	-16.17	0.00	-635.11	0.00	635.11	3707.42	875.77	2611.24	2729.69	5.20	-1.013	0.000	0.238
53.25	-16.71	-15.85	0.00	-582.55	0.00	582.55	3164.77	747.58	2219.90	2324.50	5.92	-1.082	0.000	0.256
55.00	-16.34	-15.71	0.00	-554.81	0.00	554.81	3119.07	736.79	2156.26	2257.51	6.32	-1.119	0.000	0.251
60.00	-15.34	-15.25	0.00	-476.28	0.00	476.28	2988.51	705.95	1979.51	2071.51	7.55	-1.231	0.000	0.236
65.00	-14.39	-14.80	0.00	-400.03	0.00	400.03	2857.94	675.10	1810.33	1893.51	8.90	-1.338	0.000	0.217
70.00	-10.71	-11.35	0.00	-326.01	0.00	326.01	2727.38	644.26	1648.70	1723.51	10.36	-1.440	0.000	0.193
75.00	-9.85	-10.92	0.00	-269.27	0.00	269.27	2596.81	613.42	1494.62	1561.50	11.92	-1.536	0.000	0.177
80.00	-8.37	-9.37	0.00	-214.68	0.00	214.68	2466.25	582.58	1348.10	1407.49	13.58	-1.626	0.000	0.156
85.00	-7.62	-8.97	0.00	-167.82	0.00	167.82	2335.68	551.74	1209.14	1261.47	15.33	-1.709	0.000	0.137
90.00	-6.19	-7.07	0.00	-122.99	0.00	122.99	2205.12	520.89	1077.74	1123.45	17.16	-1.784	0.000	0.112
95.00	-5.57	-6.69	0.00	-87.65	0.00	87.65	2074.55	490.05	953.89	993.42	19.06	-1.848	0.000	0.091
98.25	-5.19	-6.46	0.00	-65.89	0.00	65.89	1989.68	470.00	877.44	913.19	20.34	-1.885	0.000	0.075
99.00	-3.83	-4.63	0.00	-61.05	0.00	61.05	1970.10	465.38	860.25	895.16	20.63	-1.893	0.000	0.070
100.00	-3.65	-4.55	0.00	-56.42	0.00	56.42	1943.99	459.21	837.60	871.39	21.03	-1.903	0.000	0.067
101.50	-3.38	-4.44	0.00	-49.60	0.00	49.60	1306.72	308.67	567.69	593.96	21.63	-1.917	0.000	0.086
105.00	-3.12	-4.21	0.00	-34.05	0.00	34.05	1245.79	294.28	515.98	539.57	23.05	-1.945	0.000	0.066
110.00	-1.05	-1.08	0.00	-13.01	0.00	13.01	1158.75	273.72	446.40	466.39	25.11	-1.980	0.000	0.029
115.00	-0.75	-0.78	0.00	-7.59	0.00	7.59	1071.71	253.16	381.85	398.55	27.19	-1.999	0.000	0.020
120.00	-0.48	-0.50	0.00	-3.69	0.00	3.69	984.66	232.60	322.34	336.04	29.29	-2.013	0.000	0.011
125.00	-0.23	-0.24	0.00	-1.19	0.00	1.19	897.62	212.04	267.87	278.85	31.40	-2.020	0.000	0.005
130.00	0.00	-0.23	0.00	0.00	0.00	0.00	810.58	191.47	218.44	227.00	33.52	-2.022	0.000	0.000

Discrete Appurtenance Forces														
Structure: Site Name Height: Base Elev: Gh:		$\begin{array}{ll} : & \text { CT46143-A-SBA } \\ \text { e: } & \text { Burlington - Avon } \\ 130.00(\mathrm{ft}) \\ \mathrm{v}: & 0.000(\mathrm{ft}) \\ 1.1 \end{array}$	Landfil Topo	graphy:			e: osur st He Clas ct C		IA-222-I 00 - Stiff S		Page: 14			
		se: $0.9 \mathrm{D}+1.0 \mathrm{~W} 120$ ead Load Factor Vind Load Factor	$\begin{aligned} & \mathrm{mph} \\ & 0.90 \\ & 1.00 \end{aligned}$	Wind								Iter	rations	21
No.	Elev (ft)	Description	Qty	$\begin{gathered} \text { qz } \\ \text { (psf) } \end{gathered}$	$\begin{aligned} & \text { qzGh } \\ & \text { (psf) } \end{aligned}$	Orient Factor $\mathbf{x K a}$	Ka	Total CaAa (sf)	Dead Load (lb)	Horiz Ecc (ft)	Vert Ecc (ft)	$\begin{gathered} \text { Wind } \\ \text { FX } \\ \text { (Ib) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Mom } \\ \mathbf{Y} \\ (\mathrm{Ib}-\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Mom } \\ \mathbf{Z} \\ \text { (lb-ft) } \end{gathered}$
1	110.00 C	Commscope	3	44.463	48.910	0.66	0.80	16.10	117.99	0.000	0.000	787.22	0.00	0.00
2	110.00 R	Ring Mount	1	44.463	48.910	1.00	1.00	7.50	594.00	0.000	0.000	366.82	0.00	0.00
3	110.00 R	Raycap	1	44.463	48.910	0.80	0.80	3.28	19.26	0.000	0.000	160.42	0.00	0.00
4	110.00	Commscope	3	44.463	48.910	0.67	0.80	16.23	137.70	0.000	0.000	793.75	0.00	0.00
5	110.00 S	Samsung MT6413-77A	3	44.463	48.910	0.55	0.80	6.30	154.76	0.000	0.000	308.30	0.00	0.00
6	110.00 S	Samsung RF4439d-25A	3	44.463	48.910	0.54	0.80	3.01	201.69	0.000	0.000	147.07	0.00	0.00
7	110.00 S	Samsung RF4461d-13A	3	44.463	48.910	0.54	0.80	2.20	107.19	0.000	0.000	107.75	0.00	0.00
8	110.00 S	Samsung RT4423-48A	3	44.463	48.910	0.54	0.80	1.38	41.58	0.000	0.000	67.64	0.00	0.00
9	99.00 A	ALU 800 MHz Filter	3	43.488	47.837	0.54	0.80	1.25	23.76	0.000	0.000	60.00	0.00	0.00
10	99.00 A	ALU TD-RRH8×20-25	3	43.488	47.837	0.54	0.80	6.51	189.00	0.000	0.000	311.53	0.00	0.00
11	99.00 A	ALU 800 MHz RRH	3	43.488	47.837	0.54	0.80	3.43	143.10	0.000	0.000	163.84	0.00	0.00
12	99.00 A	ALU 1900MHz RRH	3	43.488	47.837	0.54	0.80	3.71	162.00	0.000	0.000	177.69	0.00	0.00
13	99.00 R	RFS ACU-A20-N	4	43.488	47.837	0.54	0.80	0.30	3.60	0.000	0.000	14.36	0.00	0.00
14	99.00 F	Flush Mount	1	43.488	47.837	1.00	1.00	5.00	315.00	0.000	0.000	239.18	0.00	0.00
15	99.00	Andrew DHHTT65B-3XR	3	43.488	47.837	0.66	0.80	16.12	121.50	0.000	0.000	770.90	0.00	0.00
16	90.00 F	Flush Mount	1	42.624	46.886	1.00	1.00	5.00	315.00	0.000	0.000	234.43	0.00	0.00
17	90.00 A	Andrew	3	42.624	46.886	0.54	0.80	0.16	3.56	0.000	0.000	7.54	0.00	0.00
18	90.00	Cci TMABPD7823VG12A	3	42.624	46.886	0.54	0.80	2.20	70.20	0.000	0.000	103.29	0.00	0.00
19	90.00 P	Powerwave LGP21401	3	42.624	46.886	0.54	0.80	1.32	47.25	0.000	0.000	61.82	0.00	0.00
20	90.00 A	Andrew SBNHH-1D65C	3	42.624	46.886	0.67	0.80	22.96	133.92	0.000	0.000	1076.62	0.00	0.00
21	80.00 F	Flush Mount	1	41.580	45.738	1.00	1.00	5.00	315.00	0.000	0.000	228.69	0.00	0.00
22	80.00	RFS	3	41.580	45.738	0.65	0.80	18.76	187.38	0.000	0.000	858.03	0.00	0.00
23	80.00 R	RFS	6	41.580	45.738	0.54	0.80	0.48	6.26	0.000	0.000	22.06	0.00	0.00
24	70.00	Commscope	1	40.427	44.470	1.00	1.00	37.59	1554.30	0.000	0.000	1671.64	0.00	0.00
25	70.00 R	Raycap	1	40.427	44.470	0.75	0.75	1.92	19.67	0.000	0.000	85.38	0.00	0.00
26	70.00 F	Fujitsu TA08025-B604	3	40.427	44.470	0.50	0.75	2.95	172.53	0.000	0.000	131.40	0.00	0.00
27	70.00 F	Fujitsu TA08025-B605	3	40.427	44.470	0.50	0.75	2.95	202.50	0.000	0.000	131.40	0.00	0.00
28	70.00	JMA Wireless	3	40.427	44.470	0.55	0.75	20.80	174.15	0.000	0.000	924.80	0.00	0.00

Total Applied Force Summary

Structure: Site Name:	CT46143-A-SBA			Code:	TIA-222-H	1/26/2024	(1 叫 10$)$
	Burlington	Landfill		Exposure:	C		
Height:	130.00 (ft)			Crest Height:	0.00		FS
Base Elev:	0.000 (tt)			Site Class:	D - Stiff Soil		CN
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 15	Tower Engireering Solutions

Calculated Forces														
Structure: Site Name: Height: Base Elev: Gh:		$\begin{aligned} & \text { CT46143-A-SB } \\ & \text { Burlington-Avo } \\ & 130.00 \text { (ft) } \\ & 0.000 \text { (ft) } \\ & 1.1 \end{aligned}$		A Landfill Topography:			Code: TIA-222-H Exposure: C Crest Height: 0.00 Site Class: D - Stiff Soil Struct Class: II			1/26/2024 Page: 17			$\xlongequal[\text { Tower Engineering Solutions }]{((1 \text { NHNO) }}$	
Load Case: 0.9D + 1.0W 120 mph Wind Dead Load Factor 0.90 Wind Load Factor 1.00													erations	21
Seg (ft)	Pu FY (-) (kips)	$\begin{gathered} \quad \mathbf{V u} \\ \text { FX (}- \text {) } \\ \text { (kips) } \end{gathered}$	$\begin{gathered} \text { Tu } \\ \text { MY (-) } \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \mathrm{Mu} \\ \text { MZ } \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \text { Mu } \\ \text { MX } \\ \text { (ft-kips) } \end{gathered}$	Resultant Moment (ft-kips)	$\begin{gathered} \text { phi } \\ \text { Pn } \\ \text { (kips) } \end{gathered}$	$\begin{gathered} \text { phi } \\ \substack{\text { Vn } \\ \text { (kips })} \end{gathered}$		$\begin{gathered} \text { phi } \\ \text { Mn } \\ \text { (ft-kips) } \end{gathered}$	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratlo
0.00	-24.23	-20.73	0.00	-1563.6	0.00	1563.69	4994.17	1235.59	5197.80	5206.12	0.00	0.000	0.000	0.305
5.00	-23.03	-20.27	0.00	-1460.0	0.00	1460.03	4891.79	1199.61	4899.47	4949.63	0.05	-0.094	0.000	0.300
10.00	-21.87	-19.82	0.00	-1358.6	0.00	1358.69	4786.83	1163.63	4609.96	4696.86	0.20	-0.190	0.000	0.294
15.00	-20.73	-19.38	0.00	-1259.6	0.00	1259.61	4679.28	1127.65	4329.26	4448.07	0.45	-0.287	0.000	0.288
20.00	-19.63	-18.92	0.00	-1162.7	0.00	1162.74	4569.15	1091.66	4057.38	4203.49	0.81	-0.386	0.000	0.281
25.00	-18.57	-18.45	0.00	-1068.1	0.00	1068.15	4456.44	1055.68	3794.32	3963.36	1.27	-0.487	0.000	0.274
30.00	-17.53	-17.98	0.00	-975.90	0.00	975.90	4316.73	1019.70	3540.07	3706.95	1.83	-0.589	0.000	0.268
35.00	-16.53	-17.50	0.00	-886.01	0.00	886.01	4164.40	983.72	3294.64	3448.64	2.51	-0.692	0.000	0.261
40.00	-15.56	-17.03	0.00	-798.49	0.00	798.49	4012.07	947.73	3058.03	3199.66	3.29	-0.796	0.000	0.254
45.00	-14.63	-16.56	0.00	-713.33	0.00	713.33	3859.75	911.75	2830.23	2960.01	4.18	-0.900	0.000	0.245
48.00	-14.08	-16.28	0.00	-663.66	0.00	663.66	3768.35	890.16	2697.78	2820.70	4.76	-0.964	0.000	0.239
50.00	-13.45	-16.09	0.00	-631.11	0.00	631.11	3707.42	875.77	2611.24	2729.69	5.18	-1.007	0.000	0.235
53.25	-12.46	-15.77	0.00	-578.83	0.00	578.83	3164.77	747.58	2219.90	2324.50	5.89	-1.076	0.000	0.253
55.00	-12.18	-15.62	0.00	-551.23	0.00	551.23	3119.07	736.79	2156.26	2257.51	6.29	-1.113	0.000	0.249
60.00	-11.43	-15.16	0.00	-473.14	0.00	473.14	2988.51	705.95	1979.51	2071.51	7.52	-1.224	0.000	0.233
65.00	-10.70	-14.71	0.00	-397.34	0.00	397.34	2857.94	675.10	1810.33	1893.51	8.86	-1.330	0.000	0.214
70.00	-7.97	-11.28	0.00	-323.77	0.00	323.77	2727.38	644.26	1648.70	1723.51	10.31	-1.431	0.000	0.191
75.00	-7.31	-10.85	0.00	-267.39	0.00	267.39	2596.81	613.42	1494.62	1561.50	11.86	-1.527	0.000	0.174
80.00	-6.21	-9.31	0.00	-213.16	0.00	213.16	2466.25	582.58	1348.10	1407.49	13.51	-1.616	0.000	0.154
85.00	-5.65	-8.90	0.00	-166.62	0.00	166.62	2335.68	551.74	1209.14	1261.47	15.24	-1.699	0.000	0.135
90.00	-4.59	-7.02	0.00	-122.10	0.00	122.10	2205.12	520.89	1077.74	1123.45	17.07	-1.773	0.000	0.111
95.00	-4.13	-6.65	0.00	-87.01	0.00	87.01	2074.55	490.05	953.89	993.42	18.96	-1.837	0.000	0.090
98.25	-3.84	-6.41	0.00	-65.42	0.00	65.42	1989.68	470.00	877.44	913.19	20.22	-1.873	0.000	0.074
99.00	-2.84	-4.59	0.00	-60.60	0.00	60.60	1970.10	465.38	860.25	895.16	20.52	-1.881	0.000	0.069
100.00	-2.70	-4.52	0.00	-56.01	0.00	56.01	1943.99	459.21	837.60	871.39	20.91	-1.891	0.000	0.066
101.50	-2.50	-4.41	0.00	-49.23	0.00	49.23	1306.72	308.67	567.69	593.96	21.51	-1.905	0.000	0.085
105.00	-2.31	-4.18	0.00	-33.79	0.00	33.79	1245.79	294.28	515.98	539.57	22.92	-1.933	0.000	0.065
110.00	-0.78	-1.07	0.00	-12.90	0.00	12.90	1158.75	273.72	446.40	466.39	24.96	-1.968	0.000	0.028
115.00	-0.56	-0.77	0.00	-7.53	0.00	7.53	1071.71	253.16	381.85	398.55	27.03	-1.987	0.000	0.019
120.00	-0.35	-0.49	0.00	-3.66	0.00	3.66	984.66	232.60	322.34	336.04	29.12	-2.000	0.000	0.011
125.00	-0.17	-0.24	0.00	-1.18	0.00	1.18	897.62	212.04	267.87	278.85	31.22	-2.008	0.000	0.004
130.00	0.00	-0.23	0.00	0.00	0.00	0.00	810.58	191.47	218.44	227.00	33.32	-2.010	0.000	0.000

Total Applied Force Summary						
Structure:	CT46143-A-SBA		Code:	TIA-222-H	1/26/2024	
Site Name:	Burlington - Avon Landfill		Exposure:	C		
Height:	130.00 (ft)		Crest Height:	0.00		
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil		
Gh:	1.1 . Topography:	1	Struct Class:	II	Page: 20	Tower Engineering Soluions

| Load Case: $1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 50 \mathrm{mph}$ Wind | | | |
| :---: | :---: | :---: | :---: | :---: |
| Dead Load Factor | 1.20 | | |
| Wind Load Factor | 1.00 | | |

Elev (ft)	Description	Lateral FX (-) (lb)	Axial FY (-) (lb)	$\begin{gathered} \text { Torsion } \\ \text { MY } \\ \text { (lb-ft) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Moment } \\ \text { MZ } \\ (\mathrm{lb}-\mathrm{ft}) \end{gathered}$
0.00		0.00	0.00	0.00	0.00
5.00		149.98	1966.51	0.00	0.00
10.00		146.28	1943.38	0.00	0.00
15.00		142.40	1907.47	0.00	0.00
20.00		146.89	1865.87	0.00	0.00
25.00		149.49	1820.96	0.00	0.00
30.00		150.67	1773.83	0.00	0.00
35.00		150.80	1725.10	0.00	0.00
40.00		150.09	1675.14	0.00	0.00
45.00		148.71	1624.21	0.00	0.00
48.00		87.92	950.94	0.00	0.00
50.00		59.16	986.99	0.00	0.00
53.25		95.60	1572.95	0.00	0.00
55.00		50.88	487.56	0.00	0.00
60.00		144.37	1357.78	0.00	0.00
65.00		141.22	1310.36	0.00	0.00
70.00	(11) attachments	1019.82	6152.86	0.00	0.00
75.00		133.98	1181.46	0.00	0.00
80.00	(10) attachments	372.26	2770.79	0.00	0.00
85.00		125.66	1045.98	0.00	0.00
90.00	(13) attachments	444.31	2914.18	0.00	0.00
95.00		116.45	889.60	0.00	0.00
98.25		72.93	553.08	0.00	0.00
99.00	(20) attachments	407.37	2848.72	0.00	0.00
100.00		22.23	236.68	0.00	0.00
101.50		32.99	349.26	0.00	0.00
105.00		75.36	429.39	0.00	0.00
110.00	(20) attachments	757.66	6251.82	0.00	0.00
115.00		97.98	520.57	0.00	0.00
120.00		92.44	481.85	0.00	0.00
125.00		86.76	442.96	0.00	0.00
130.00		80.94	403.91	0.00	0.00
	Totals:	5,853.62	50,442.16	0.00	0.00

Structure:	CT46143-A-SBA		Code:	TIA-222-H	1/26/2024	
Site Name:	Burlington - Avon Landiill		Exposure:	C		((1) $\mathrm{H}_{\text {1 }}$) $)$
Height:	130.00 (ft)		Crest Height:	0.00		PC
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil		-
Gh:	1.1 Topography:	1	Struct Class:	1	Page: 21	Tower Enginecring Solutions

Load Case: $1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 50 \mathrm{mph}$ Wind $\begin{array}{ll}\text { Dead Load Factor } & 1.20 \\ \text { Wind Load Factor } & 1.00\end{array}$					Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra		x	teration	- 20
Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca						$\underset{(\mathrm{psf})}{\mathrm{qz}}$	$\begin{aligned} & \text { F X } \\ & \text { (Ib) } \end{aligned}$	Dead Load (Ib)
5.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.62	0.00	0.028	0.000	5.081	0.00	23.90
10.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.70	0.00	0.028	0.000	5.081	0.00	25.79
15.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.74	0.00	0.029	0.000	5.081	0.00	27.01
20.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.78	0.00	0.030	0.000	5.392	0.00	27.93
25.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.80	0.00	0.031	0.000	5.651	0.00	28.67
30.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.83	0.00	0.032	0.000	5.872	0.00	29.30
35.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.84	0.00	0.033	0.000	6.066	0.00	29.85
40.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.86	0.00	0.035	0.000	6.239	0.00	30.34
45.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.88	0.00	0.036	0.000	6.395	0.00	30.78
48.00	1.41" Hybrid	Yes	3.00	0.000	1.41	1.13	0.00	0.037	0.000	6.483	0.00	18.61
50.00	1.41" Hybrid	Yes	2.00	0.000	1.41	0.76	0.00	0.038	0.000	6.539	0.00	12.47
53.25	1.41" Hybrid	Yes	3.25	0.000	1.41	1.23	0.00	0.039	0.000	6.626	0.00	20.42
55.00	1.41" Hybrid	Yes	1.75	0.000	1.41	0.67	0.00	0.039	0.000	6.671	0.00	11.04
60.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.91	0.00	0.040	0.000	6.795	0.00	31.89
65.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.93	0.00	0.042	0.000	6.910	0.00	32.21
70.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.94	0.00	0.043	0.000	7.019	0.00	32.51
									Totals:		0.0	412.7

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind Dead Load Factor 1.20 Wind Load Factor 1.00														
Seg Elev (ft)	$\begin{aligned} & \text { Pu } \\ & \text { FY (-) } \\ & \text { (kips) } \end{aligned}$	$\begin{gathered} \text { Vu } \\ \text { FX (-) } \\ \text { (kips) } \end{gathered}$	$\begin{gathered} \text { Tu } \\ \text { MY (-) } \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \mathrm{Mu} \\ \mathrm{MZ} \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \text { Mu } \\ \text { MX } \\ \text { (ft-kips) } \end{gathered}$	Resultant Moment (ft-kips)	$\begin{gathered} \text { phi } \\ \text { Pn } \\ \text { (kips) } \\ \hline \end{gathered}$	$\begin{gathered} \text { phi } \\ \text { Vn } \\ \text { (kips) } \\ \hline \end{gathered}$	$\begin{gathered} \text { phi } \\ \text { Tn } \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \text { phi } \\ \text { Mn } \\ \text { (ft-kips) } \end{gathered}$	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-50.44	-5.87	0.00	-440.70	0.00	440.70	4994.17	1235.59	5197.80	5206.12	0.00	0.000	0.000	0.095
5.00	-48.47	-5.74	0.00	-411.37	0.00	411.37	4891.79	1199.61	4899.47	4949.63	0.01	-0.027	0.000	0.093
10.00	-46.53	-5.61	0.00	-382.69	0.00	382.69	4786.83	1163.63	4609.96	4696.86	0.06	-0.053	0.000	0.091
15.00	-44.62	-5.49	0.00	-354.63	0.00	354.63	4679.28	1127.65	4329.26	4448.07	0.13	-0.081	0.000	0.089
20.00	-42.75	-5.36	0.00	-327.19	0.00	327.19	4569.15	1091.66	4057.38	4203.49	0.23	-0.109	0.000	0.087
25.00	-40.92	-5.23	0.00	-300.39	0.00	300.39	4456.44	1055.68	3794.32	3963.36	0.36	-0.137	0.000	0.085
30.00	-39.15	-5.09	0.00	-274.26	0.00	274.26	4316.73	1019.70	3540.07	3706.95	0.52	-0.166	0.000	0.083
35.00	-37.42	-4.95	0.00	-248.80	0.00	248.80	4164.40	983.72	3294.64	3448.64	0.71	-0.195	0.000	0.081
40.00	-35.74	-4.82	0.00	-224.04	0.00	224.04	4012.07	947.73	3058.03	3199.66	0.93	-0.224	0.000	0.079
45.00	-34.12	-4.67	0.00	-199.96	0.00	199.96	3859.75	911.75	2830.23	2960.01	1.18	-0.253	0.000	0.076
48.00	-33.17	-4.59	0.00	-185.94	0.00	185.94	3768.35	890.16	2697.78	2820.70	1.34	-0.271	0.000	0.075
50.00	-32.18	-4.54	0.00	-176.76	0.00	176.76	3707.42	875.77	2611.24	2729.69	1.46	-0.283	0.000	0.073
53.25	-30.61	-4.44	0.00	-162.02	0.00	162.02	3164.77	747.58	2219.90	2324.50	1.66	-0.302	0.000	0.079
55.00	-30.12	-4.40	0.00	-154.25	0.00	154.25	3119.07	736.79	2156.26	2257.51	1.77	-0.313	0.000	0.078
60.00	-28.76	-4.26	0.00	-132.26	0.00	132.26	2988.51	705.95	1979.51	2071.51	2.11	-0.344	0.000	0.074
65.00	-27.45	-4.12	0.00	-110.96	0.00	110.96	2857.94	675.10	1810.33	1893.51	2.49	-0.374	0.000	0.068
70.00	-21.30	-3.07	0.00	-90.34	0.00	90.34	2727.38	644.26	1648.70	1723.51	2.90	-0.402	0.000	0.060
75.00	-20.12	-2.94	0.00	-74.97	0.00	74.97	2596.81	613.42	1494.62	1561.50	3.33	-0.428	0.000	0.056
80.00	-17.35	-2.55	0.00	-60.27	0.00	60.27	2466.25	582.58	1348.10	1407.49	3.80	-0.454	0.000	0.050
85.00	-16.30	-2.43	0.00	-47.50	0.00	47.50	2335.68	551.74	1209.14	1261.47	4.28	-0.477	0.000	0.045
90.00	-13.39	-1.96	0.00	-35.37	0.00	35.37	2205.12	520.89	1077.74	1123.45	4.80	-0.498	0.000	0.038
95.00	-12.50	-1.84	0.00	-25.56	0.00	25.56	2074.55	490.05	953.89	993.42	5.33	-0.517	0.000	0.032
98.25	-11.95	-1.76	0.00	-19.58	0.00	19.58	1989.68	470.00	877.44	913.19	5.68	-0.528	0.000	0.027
99.00	-9.10	-1.33	0.00	-18.26	0.00	18.26	1970.10	465.38	860.25	895.16	5.77	-0.530	0.000	0.025
100.00	-8.87	-1.31	0.00	-16.93	0.00	16.93	1943.99	459.21	837.60	871.39	5.88	-0.533	0.000	0.024
101.50	-8.52	-1.27	0.00	-14.97	0.00	14.97	1306.72	308.67	567.69	593.96	6.05	-0.537	0.000	0.032
105.00	-8.09	-1.19	0.00	-10.52	0.00	10.52	1245.79	294.28	515.98	539.57	6.44	-0.546	0.000	0.026
110.00	-1.85	-0.38	0.00	-4.55	0.00	4.55	1158.75	273.72	446.40	466.39	7.02	-0.557	0.000	0.011
115.00	-1.33	-0.27	0.00	-2.67	0.00	2.67	1071.71	253.16	381.85	398.55	7.61	-0.564	0.000	0.008
120.00	-0.85	-0.18	0.00	-1.30	0.00	1.30	984.66	232.60	322.34	336.04	8.20	-0.569	0.000	0.005
125.00	-0.40	-0.08	0.00	-0.42	0.00	0.42	897.62	212.04	267.87	278.85	8.80	-0.571	0.000	0.002
130.00	0.00	-0.08	0.00	0.00	0.00	0.00	810.58	191.47	218.44	227.00	9.40	-0.572	0.000	0.000

Seismic Segment Forces (Factored)

Discrete Appurtenance Forces

Structure:	CT46143-A			Code:	TIA-222-H	1/26/2024	(((州))
Site Name:	Burlington	Landfill		Exposure:			(10)
Height:	130.00 (ft)			Crest Height:	0.00		ES
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 28	Tower Engineering Solutions

| Load Case: $1.0 \mathrm{D}+1.0 \mathrm{~W} 60 \mathrm{mph}$ Wind | |
| :---: | :---: | :---: | :---: | :---: |
| Dead Load Factor | 1.00 |
| Wind Load Factor | 1.00 |

No.	Elev (ft)	Description	Qty	$\begin{gathered} q z \\ \text { (psf) } \end{gathered}$	$\begin{aligned} & \text { qzGh } \\ & \text { (psf) } \end{aligned}$	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	$\begin{gathered} \text { Mom } \\ Y \\ \text { (lb-ft) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Mom } \\ Z \\ \text { (lb-ft) } \end{gathered}$
1	110.00	Commscope	3	9.946	10.940	0.66	0.80	16.10	131.10	0.000	0.000	176.09	0.00	0.00
2	110.00	Ring Mount	1	9.946	10.940	1.00	1.00	7.50	660.00	0.000	0.000	82.05	0.00	0.00
3	110.00	Raycap	1	9.946	10.940	0.80	0.80	3.28	21.40	0.000	0.000	35.88	0.00	0.00
4	110.00	Commscope	3	9.946	10.940	0.67	0.80	16.23	153.00	0.000	0.000	177.55	0.00	0.00
5	110.00	Samsung MT6413-77A	3	9.946	10.940	0.55	0.80	6.30	171.96	0.000	0.000	68.96	0.00	0.00
6	110.00	Samsung RF4439d-25A	3	9.946	10.940	0.54	0.80	3.01	224.10	0.000	0.000	32.90	0.00	0.00
7	110.00	Samsung RF4461d-13A	3	9.946	10.940	0.54	0.80	2.20	119.10	0.000	0.000	24.10	0.00	0.00
8	110.00	Samsung RT4423-48A	3	9.946	10.940	0.54	0.80	1.38	46.20	0.000	0.000	15.13	0.00	0.00
9	99.00	ALU 800 MHz Filter	3	9.728	10.700	0.54	0.80	1.25	26.40	0.000	0.000	13.42	0.00	0.00
10	99.00	ALU TD-RRH8×20-25	3	9.728	10.700	0.54	0.80	6.51	210.00	0.000	0.000	69.68	0.00	0.00
11	99.00	ALU 800 MHz RRH	3	9.728	10.700	0.54	0.80	3.43	159.00	0.000	0.000	36.65	0.00	0.00
12	99.00	ALU 1900MHz RRH	3	9.728	10.700	0.54	0.80	3.71	180.00	0.000	0.000	39.75	0.00	0.00
13	99.00	RFS ACU-A20-N	4	9.728	10.700	0.54	0.80	0.30	4.00	0.000	0.000	3.21	0.00	0.00
14	99.00	Flush Mount	1	9.728	10.700	1.00	1.00	5.00	350.00	0.000	0.000	53.50	0.00	0.00
15	99.00	Andrew DHHTT65B-3XR	3	9.728	10.700	0.66	0.80	16.12	135.00	0.000	0.000	172.44	0.00	0.00
16	90.00	Flush Mount	1	9.534	10.488	1.00	1.00	5.00	350.00	0.000	0.000	52.44	0.00	0.00
17	90.00	Andrew	3	9.534	10.488	0.54	0.80	0.16	3.96	0.000	0.000	1.69	0.00	0.00
18	90.00	Cci TMABPD7823VG12A	3	9.534	10.488	0.54	0.80	2.20	78.00	0.000	0.000	23.10	0.00	0.00
19	90.00	Powerwave LGP21401	3	9.534	10.488	0.54	0.80	1.32	52.50	0.000	0.000	13.83	0.00	0.00
20	90.00	Andrew SBNHH-1D65C	3	9.534	10.488	0.67	0.80	22.96	148.80	0.000	0.000	240.82	0.00	0.00
21	80.00	Flush Mount	1	9.301	10.231	1.00	1.00	5.00	350.00	0.000	0.000	51.15	0.00	0.00
22	80.00	RFS	3	9.301	10.231	0.65	0.80	18.76	208.20	0.000	0.000	191.93	0.00	0.00
23	80.00	RFS	6	9.301	10.231	0.54	0.80	0.48	6.96	0.000	0.000	4.94	0.00	0.00
24	70.00	Commscope	1	9.043	9.947	1.00	1.00	37.59	1727.00	0.000	0.000	373.92	0.00	0.00
25	70.00	Raycap	1	9.043	9.947	0.75	0.75	1.92	21.85	0.000	0.000	19.10	0.00	0.00
26	70.00	Fujitsu TA08025-B604	3	9.043	9.947	0.50	0.75	2.95	191.70	0.000	0.000	29.39	0.00	0.00
27	70.00	Fujitsu TA08025-B605	3	9.043	9.947	0.50	0.75	2.95	225.00	0.000	0.000	29.39	0.00	0.00
28	70.00	JMA Wireless	3	9.043	9.947	0.55	0.75	20.80	193.50	0.000	0.000	206.86	0.00	0.00

Totals:

Total Applied Force Summary

Structure:	CT46143-A-SBA			Code:	TIA-222-H	1/26/2024	
Site Name:	Burlington	Landfill		Exposure:	C		
Height:	130.00 (ft)			Crest Height:	0.00		- PS
Base Elev:	0.000 (tt)			Site Class:	D - Stiff Soil		CN
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 29	Tower Engincering Solutions

| Load Case: $1.0 \mathrm{D}+1.0 \mathrm{~W} 60 \mathrm{mph}$ Wind | | Iterations | 20 |
| ---: | ---: | ---: | ---: | ---: |
| Dead Load Factor | 1.00 | | |
| Wind Load Factor | 1.00 | | |

Linear Appurtenance Segment Forces												
	Nare: CT46143 Name: Burlingt Elev: 130.00 1.1	SBA Avon Lan Top	dfill ography:	1		ure: Height: ass: Class:	$\begin{aligned} & \hline \text { TIA-22 } \\ & \text { C } \\ & 0.00 \\ & \text { D - Stil } \\ & \text { II } \end{aligned}$			1/26/2024		
Dead Load Factor Wind Load Factor			$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$						2	\xrightarrow{x}	Iteration	S 20
Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca \quadExposed Width (in)		Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	$\underset{\text { (psf) }}{\mathrm{qz}}$	$\begin{aligned} & \text { F X } \\ & \text { (lb) } \end{aligned}$	Dead (Ib)
5.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.028	0.000	6.547	0.00	5.70
10.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.028	0.000	6.547	0.00	5.70
15.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.029	0.000	6.547	0.00	5.70
20.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.030	0.000	6.947	0.00	5.70
25.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.031	0.000	7.281	0.00	5.70
30.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.032	0.000	7.566	0.00	5.70
35.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.033	0.000	7.815	0.00	5.70
40.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.035	0.000	8.038	0.00	5.70
45.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.036	0.000	8.240	0.00	5.70
48.00	1.41" Hybrid	Yes	3.00	0.000	1.41	0.35	0.00	0.037	0.000	8.352	0.00	3.42
50.00	1.41" Hybrid	Yes	2.00	0.000	1.41	0.23	0.00	0.038	0.000	8.425	0.00	2.28
53.25	1.41" Hybrid	Yes	3.25	0.000	1.41	0.38	0.00	0.039	0.000	8.537	0.00	3.70
55.00	1.41" Hybrid	Yes	1.75	0.000	1.41	0.21	0.00	0.039	0.000	8.595	0.00	1.99
60.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.040	0.000	8.754	0.00	5.70
65.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.042	0.000	8.903	0.00	5.70
70.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.043	0.000	9.043	0.00	5.70
										tals:	0.0	79.8

Calculated Forces

Reactions

	Shear FX (kips)	Shear FZ (kips)	Axial Foad Case (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment (ft-kips)
1.2D + 1.0W 120 mph Wind	20.7	0.00	32.32	0.00	0.00	1570.27
0.9D + 1.0W 120 mph Wind	20.7	0.00	24.23	0.00	0.00	1563.69
1.2D + 1.0Di + 1.0Wi 50 mph Wind	5.9	0.00	50.44	0.00	0.00	440.70
1.2D + 1.0Ev + 1.0Eh	0.8	0.00	33.44	0.00	0.00	68.66
0.9D + 1.0Ev + 1.0Eh	0.8	0.00	25.33	0.00	0.00	68.65
1.0D + 1.0W 60 mph Wind	4.6	0.00	26.94	0.00	0.00	350.28

Max Stresses

Load Case	$\begin{aligned} & \text { Pu } \\ & \text { FY (-) } \\ & \text { (kips) } \end{aligned}$	$\begin{gathered} \text { Vu } \\ \text { FX (-) } \\ \text { (kips) } \end{gathered}$	$\begin{gathered} \text { Tu } \\ \text { MY (-) } \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \mathrm{Mu} \\ \mathrm{MZ} \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} M \mathbf{M u} \\ M X \\ \text { (ft-kips) } \end{gathered}$	Resultant Moment (ft-kips)	$\begin{gathered} \text { phi } \\ \text { Pn } \\ \text { (kips) } \end{gathered}$	$\begin{gathered} \text { phi } \\ \text { Vn } \\ \text { (kips) } \end{gathered}$	$\begin{gathered} \text { phi } \\ \text { Tn } \\ \text { (ft-kips) } \end{gathered}$	phi Mn (ft-kips)	Elev (ft)	Stress Ratio
1.20 + 1.0W 120 mph Wind	-32.32	-20.74	0.00	-1570.2	0.00	-1570.2	4994.17	1235.5	5197.80	5206.12	0.00	0.308
0.9D + 1.0W 120 mph Wind	-24.23	-20.73	0.00	-1563.6	0.00	-1563.6	4994.17	1235.5	5197.80	5206.12	0.00	0.305
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 50 \mathrm{mph}$ Wind	-50.44	-5.87	0.00	-440.70	0.00	-440.70	4994.17	1235.5	5197.80	5206.12	0.00	0.095
$1.2 \mathrm{D}+1.0 \mathrm{Ev}+1.0 \mathrm{Eh}$	-33.44	-0.81	0.00	-68.66	0.00	-68.66	4994.17	1235.5	5197.80	5206.12	0.00	0.020
0.9D + 1.0Ev + 1.0Eh	-25.33	-0.81	0.00	-68.65	0.00	-68.65	4994.17	1235.5	5197.80	5206.12	0.00	0.018
$1.0 \mathrm{D}+1.0 \mathrm{~W} 60 \mathrm{mph}$ Wind	-26.94	-4.64	0.00	-350.28	0.00	-350.28	4994.17	1235.5	5197.80	5206.12	0.00	0.073

Base Plate Summary						
Structure:	CT46143-A-SB		Code:	TIA-222-H	1/26/2024	
Site Name:	Burlington - Avon Landfill		Exposure:	C		((1, 10)
Height:	130.00 (ft)		Crest Height:	0.00		(1)
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil		1-N
Gh:	1.1 Topography:	1	Struct Class:	II	Page: 33	Tower Engincering Solutions

$\left(\left(\operatorname{lin} \operatorname{Hin}_{1}\right)\right.$	Pier Foundation Design For Monopole			Date
	Customer Name:	Dish Wireless	EIATIA Standard:	TIA-222-H
	Site Name:		Structure Height (Ft.):	130
	Site Number:	CT46143-A-SBA	Engineer Name:	C. Zang
	Engr. Number:	144880	Engineer Login ID:	

Foundation Analysis and Design:

Uplift Strength Reduction Factor
Total Dry Soil Volume from Conical Failure (cu. Ft.):
Total Buovant Soil Volume from Conical Failure (cu. Ft.):
Total Dry Concrete Volume (cu. Ft.):
Total Buoyant Concrete Volume (cu. Ft.):
Total Effective Concrete Weight (Kips):
Total Effective Vertical Load on Base (Kips):
.75 Soil Bearing Strength Reduction Factor:
3898 Dry Soil Weight from Conical Failure:
769 Buoyant Soil Weight from Conical Failure (Ki

- 404 Total Dry Concrete Weight:
346.4 Total Buoyant Concrete Weight:
91.0 Total Effective Soil Weight:

