

STATE OF CONNECTICUT *CONNECTICUT SITING COUNCIL* Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: <u>siting.council@ct.gov</u> Web Site: portal.ct.gov/csc

VIA ELECTRONIC MAIL

February 15, 2024

Kenneth C. Baldwin, Esq. Robinson & Cole 280 Trumbull Street Hartford, CT 06103-3597 <u>kbaldwin@rc.com</u>

RE: **PETITION NO. 1547** – SBA Communications Corporation Declaratory Ruling, pursuant to Connecticut General Statutes §4-176 and §16-50k, for the replacement and extension of an existing telecommunications facility located at 277 Huckleberry Hill Road, Avon, Connecticut. **Request for Project Changes.**

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) is in receipt of your correspondence dated February 7, 2024, on behalf of Cellco Partnership d/b/a Verizon Wireless, regarding changes to the above-referenced Declaratory Ruling that was issued by the Council on March 3, 2023.

Pursuant to Condition No. 1 of the Council's March 3, 2023 Declaratory Ruling, your request to install antenna models MT6413-77A and NNHSS-65B-R2BT4 in lieu of MT6407-77A and NHHSS-65-R2BT0 and remote radio head models RF4423-48A, RF4439d-25A and RF4461-13A in lieu of models RT 4401-48A/CBRS, B2/B66A and B5/B13 is hereby approved.

This approval applies only to the project changes described in your February 7, 2024 correspondence.

Please be advised that deviations from the standards established by the Council in the Declaratory Ruling are enforceable under the provisions of Connecticut General Statutes §16-50u.

Thank you for your attention and cooperation.

Sincerely,

Melanie A. Bachman Executive Director

c: Brandon Robertson, Town Manager, Town of Avon (<u>brobertson@avonct.gov</u>) Service List, dated December 8, 2022

Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

February 7, 2024

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Petition No. 1547 – SBA Communications Corporation – Petition for a Declaratory Ruling, pursuant to Connecticut General Statutes §4-176 and §16-50k, for the proposed replacement and extension of an existing telecommunications facility located at 277 Huckleberry Hill Road, Avon, Connecticut

Minor Equipment Changes

Dear Attorney Bachman:

On behalf of Cellco Partnership d/b/a Verizon Wireless ("Cellco"), and pursuant to Conditions No. 1 of the Siting Council's decision in Petition No. 1547, we respectfully request staff approval of the following minor equipment changes at the SBA Communication Corporation wireless facility at 277 Huckleberry Road in Avon, Connecticut.

Due to equipment availability issues, Cellco will install antenna models MT6413-77A and NNHSS-65B-R2BT4 in lieu of models MT6407-77A and NHHSS-65B-R2BT0. Cellco will also be installing remote radio head (RRH) models RF4423-48A, RF4439d-25A and RF4461-13A in lieu of models RT 4401-48A/CBRS, B2/B66A and B5/B13.

Attached is a revised set of project plans, specifications for the new antennas and RRHs and an updated Structural Analysis Report confirming that the new tower is capable of supporting this new equipment. Please contact me if you have any questions or need any additional information.

Boston | Hartford | New York | Washington, DC | Providence | Miami | Stamford | Wilmington | Philadelphia | Los Angeles | Albany | rc.com

²⁸⁷⁹⁶⁶⁸⁴⁻v1

Robinson+Cole

Melanie A. Bachman, Esq. February 7, 2024 Page 2

Sincerely, ____ M 0 me Kenneth C. Baldwin

Copy to:

Greg Hines, SBA Communication Corp. Brandon Robertson, Avon Town Manager Tim Parks Michael Humphreys

verizon SITE NAME: BURLINGTON 2 CT 277 HUCKLEBERRY HILL ROAD AVON, CT 06001

GENERAL NOTES

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2021 INTERNATIONAL BUILDING CODE AS MODIFED BY THE 2022 CONNECTICUT SUPPLEMENT, INCLUDING THE TA/EA-222 REVISION "\#" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2022 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- Contractor shall review all drawings and specifications in the contract document set. Contractor shall coordinate all work shown in the set of drawings. The contractor shall provide a complete set of drawings to all subcontractors and all related parties. The subcontractors shall examine all the drawings and specifications for the information that affects their work.
- BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE, WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENSIS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS AND ANGLES WITH DUSTING CONTIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS, AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- Contractor shall provide a complete Build-Out with All Finishes, structural, mechanical, and electrical components and provide All terms as shown or indicated on the drawings or in the written specifications.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HANNIG LAWFUL JURSDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC, PERMITS SHALL BE PAD FOR BY THE RESPECTIVE SUBCONTRACTORS.
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTIBUTION OF New DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHULL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBJECT TO STRUCTURAL
- THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRUCING, UNDERFINNING, ETC. THAT MAY BE NECESSARY.
- ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.

- 14. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REDULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REDULATIONS WITH NO INCREASE IN COSTS.
- 15. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 16. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE TIENS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- . ANY AND ALL ERRORS, DISCREPANCIES, AND 'WISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE VERIZON WIRELESS CONSTRUCTION WANNEER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE TEMS ARE TO BE INCLUDED IN THE BIO. NO 'EXTRA' WILL BE ALLOWED FOR MISSED THEMS.
- CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER. 18
- CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 20. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 21. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTUNCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND CONFIRMED WITH THE PROJECT MANAGER AND OWNER PROR TO THE COMMENCEMENT OF AN WORK
- 22. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR, THE CONTRACTOR WILL BE HELD LABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 23. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCANATIONS AT 1-BOD-822-4455. ALL LITELINES SHALL BE IDEMIFIED AND CLEARLY MARKED, CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 24. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL ALL BACKFIL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 25. THE COUNTY/CITY/TOWN MAY MAKE PERIODIC FIELD INSPECTIONS TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, AND DOCUMENTS.
- THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURAL OF ANY SYSTEM OR MATERIAL, THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIAL, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RNO OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURTING GROUND RODS, PLATES OR GROS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY ATMM.
- 27. PRIOR TO THE SUBMISSION OF BIDS, THE CONTRACTOR SHALL VISIT THE STEE TO FAMILURIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DECREPANCY FOLIND SHALL BE BROUGHT TO THE ATTENTION OF EXCINEER ON RECORD, PRIOR TO THE COMMENCEMENT OF ANY WORK.

VICINITY MAP

5. INSTALL (3) PROPOSE
6. INSTALL (3) PROPOSE
7. INSTALL (3) PROPOSE
8. INSTALL (1) PROPOSE
9. INSTALL (2) PROPOSE
10. INSTALL PROPOSED S
11. INSTALL PROPOSED C
12. INSTALL PROPOSED E
13. INSTALL PROPOSED D PROPOSED 20' × 12'
ρ
SITE NAME:
ste name: ste address:
SITE ADDRESS:

PROPOSED TOWER COORDINATES:

SHEET. NO	DESCRIPTION	REV
T-1	TITLE SHEET	2
N-1	SPECIFICATIONS, NOTES & ANT. SCHEDULE	2
C-1	COMPOUND PLAN, EQUIPMENT PLAN AND ELEVATION	2
C-2	ANTENNA PLAN AND ELEVATION	2
C-3	TYPICAL EQUIPMENT DETAILS	2
C-4	TYPICAL EQUIPMENT DETAILS	2
C-5	ICE CANOPY DETAILS	2
E-1	ELECTRICAL RISER AND CONDUIT ROUTING PLAN	2
E-2	ELECTRICAL SCHEMATIC DIAGRAM	2
E3	ELECTRICAL GROUNDING PLANS	2
E4	TYPICAL ELECTRICAL DETAILS	2
E5	TYPICAL ELECTRICAL DETAILS	2
E-6	ELECTRICAL SPECIFICATIONS	2
RF-1	PLUMBING DIAGRAM ALPHA SECTOR	2
RF-2	PLUMBING DIAGRAM BETA SECTOR	2
RF-3	PLUMBING DIAGRAM GAMMA SECTOR	2

PROJECT SUMMARY

- THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED
 - INSTALL (3) PROPOSED COMMSCOPE: NHH-658-R28 ANTENNAS
 - INSTALL (3) PROPOSED COMMISCOPE: NHHSS-658-R28T4 ANTENNAS
- 3. INSTALL (3) PROPOSED SAMSUNG: MT6413-77A ANTENNAS
- INSTALL (3) PROPOSED COMMSCOPE: BASMINT-SBS-1-2 ANTENNA MOUNTS
 - ED SAMSUNG: B2/B66A RRH ORAN (RF4439d-25A) RADIO
 - ED SAMSUNG: RF4461d-13A RADIO
 - STI SAMSLING CRRS FT4423-484 RADIO
 - ED RAYCAP OVP 12 BOX
 - ED 6v12 HYBRIELEX CARLES
 - STEPRO: F3P-12W ANTENNA PLATFORM WITH HANDRAIL KIT
 - ABLE ICE BRIDGE
 - DUIPMENT CANOPY
 - HESEL GENERATOR AND ASSOCIATED EQUIPMENT CABINETS ATOP A CONCRETE PAD.

ROJECT INFORMATION

BURLINGTON 2 CT 277 HUCKLEBERRY HILL ROAD AVON, CT 06001 TOWN OF AVON 60 WEST MAIN STREET AVON, CT 06001

VERIZON WIRELESS 20 ALEXANDER DRIVE, FLOOR 2 WALLINGFORD, CT 06492

- MTACT: PHILLIP COTTO STRUCTURE CONSULTING GROUP (617) 454-7363
- LATITUDE 41'-47'-17.28" LONGTUDE 72'-55'-5.71" GROUND ELEVATION: 468.0' + A.M.S.L

COORDINATES AND GROUND ELEVATION REFERENCED FROM STRUCTURAL ANALYSIS REPORT PREPARED BY TOWER ENGINEERING PROFESSIONALS FOR VERIZON WIRELESS, DATE (REVISED) 04/17/2023.

NOTES AND SPECIFICATIONS:

DESIGN BASIS

GOVERNING CODE: 2021 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2022 CONNECTICUT STATE BUILDING CODE. 1. DESIGN CRITERIA:

- RISK CATEGORY II (BASED ON IBC TABLE 1604.5) NOMINAL DESIGN SPEED: 116 MPH (Vand) (EXPOSURE B/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-18).

SITE NOTES

- 1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRORT TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
- Contractor shall minimize disturbance to existing site during construction, erosion control measures, shall be in conformance with the local guidelines for erosion and sedment control.
- IF ANY FIELD CONDITIONS EXIST WHICH PRECLIDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

GENERAL NOTES

- All work shall be in accordance with the 2021 international Building code as Modified by the 2022 connecticut supplement, including the ta/faa-222 revision "h" "Structural standards for steel antenna towers and supporting structures." 2022 connecticut fire safety code, national electrical code and local codes.
- Should any field conditions preclude compliance with the drawings, the contractor shall mandbately notify the engineer and shall not proceed with any affected work.
- CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THER WORK. 3.
- BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTINUOUS TO THE SITE, WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK .
- ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GURANTEE IS IMADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND CONDINATE ALL DIMENSIONS, ELEVATIONS AND AND LASS WITH EXISTING COMMINIONS AND WITH ARCHTECTURAL AND SHE DRAWINGS BEFORE PROCEEDING WITH ANY 5.
- AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS, AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED. 6.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE 8.
- Contractor shall secure and pay for all permits and all inspections required and shall also pay fees required for the general construction, plumbing, electrical, and hyac. Permits shall be paid for by the respective subcontractors. 9.
- 10. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTORS SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- Location of Equipment and work supplied by others that is diagrammatically indicated on the drawings, shall be determined by the contractor. The contractor shall determine locations and dimensions subject to structural conditions and work of the subcontractors.
- 12. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERFINING, ETC. THAT MAY BE NECESSARY.
- 13. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS, CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.

- 14. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK CONTRUCTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CONTRUCTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CONSTRUCTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 15. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 18. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 17. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE VENZON WIRELESS CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE INESS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 18. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 19. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION IMAVAGER FOR REVEW.
- 20. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE STE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 21. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND CONFIRMED WITH THE PROJECT MANAGER AND OWNER PRIOR TO THE COMMENCEMENT OF ANY WORK
- 22. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LUBLE FOR ALL REPARS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 23. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO MAY EXCANATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 24. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL ALL BACKFILL MATERIALS TO BE FROVIDED BY THE CONTRACTOR.
- 25. THE COUNTY/CITY/TOWN MAY MAKE PERIODIC FIELD INSPECTIONS TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, AND CONTRACT DOCUMENTS.
- 25. THE COUNTY/CITY/TOWN MUST BE NOTFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURKL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIAS, METHODS OR WORKMARHIP, SOMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURTING GROUND FORS, PLATES OR GRIDS, ETC. THE CONTINUETOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED CONDENSE BY THE CONTINUE OF MEDIA OTHERWISE BY THE COUNTY/CITY/TOWN.
- 27. PRIOR TO THE SUBMISSION OF BIDS, THE CONTRACTOR SHALL VISIT THE SITE TO FAMILUATZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS, ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF ENGINEER ON RECORD, PRIOR TO THE COMMENDEMENT OF ANY WORK.

STRUCTURAL STEEL 1. ALL STRUCTURAL STEEL IS I

- STRUCTURAL STEEL (W STRUCTURAL STEEL (OT
- C. STRUCTURAL HSS (RECT. (FY = 46 KSI) D. STRUCTURAL HSS (ROUN
- D. STRUCTURAL HSS (ROUN (FY = 42 KSI) E. PIPE----ASTM A53 (FY F. CONNECTION BOLTS-----G. U-BOLTS----ASTM A36 H. ANCHOR RODS----ASTM I. WELDING ELECTRODE----
- 2. CONTRACTOR TO REVIEW ALL APPROVAL DRAWINGS MUST I DIGINEER FOR REVIEW. SHOP PROFILES, SZZES, CONNECTION OF FASTENERS AND ACCESSO
- 3. STRUCTURAL STEEL SHALL BE THE LATEST PROVISIONS OF
- 4. PROVIDE ALL PLATES, CUP A PIECES AND HOLES REQUIRED
- FIT AND SHOP ASSEMBLE FAE DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUME DISTORTIONS OR DEFECTS. 7. AFTER ERECTION OF STRUCTU SURFACES WITH A 95% ORGA
 - 8. ALL STEEL MATERIAL (EXPOS
 - ACCORDANCE WITH ASTM A12 STEEL PRODUCTS.
 - 9. ALL BOLTS, ANCHORS AND MI ACCORDANCE WITH ASTM A15
 - 10. THE ENGINEER SHALL BE NO OTHERWISE MISFITTING OR NO CORRECTIVE ACTION. ANY SUC
 - 11. CONNECTION ANGLES SHALL
 - 12. STRUCTURAL CONNECTION BOI 3/4" DAMETER MINIMUM AND ON THE DRAWINGS. 13. LOCK WASHER ARE NOT PERI
 - 14. SHOP CONNECTIONS SHALL B
 - 15. MILL BEARING ENDS OF COLL TRANSFER LOAD OVER ENTIRE
 - 16. FABRICATE BEAMS WITH MILL

 - 17. LEVEL AND PLUMB INDIVIDUAL BUT NOT TO EXCEED 1/4" I
 - 18. COMMENCEMENT OF STRUCTUR DISCREPANCIES WILL BE CONS
 - 19. INSPECTION AND TESTING OF PERFORMED BY AN INDEPEND 20. FOUR COPIES OF ALL INSPEC WITHIN TEN (10) WORKING DA

SECTOR	EXISTING/PROPOSED	antenna	SIZE (INCHES) (L x W x D)	ANTENNA &	AZIMUTH	(E/P) RRU (QTY)	(E/P) OVP (QTY)	(QTY) PROPOSE
A1	PROPOSED	SAMSUNG (MT8413-77A)	24 x 11.6 x 4.53	110'	σ	(P) SAMSUNG: CBRS RT4423-48A (1)		
A2	PROPOSED	COMMSCOPE (NHHSS-658-R28T4)	71.6 x 19 x 7.4	110'	σ	(P) SAMSUNG: RF4481d-13A (1)	1	
A3	PROPOSED	COMMSCOPE (NHH-658-R28)	71.6 x 19 x 7.4	110'	o	(P) SAMSUNG: B2/800A RRH ORAN (RF4439d-25A) (1)	1	
B1	PROPOSED	SAMSUNG (MT8413-77A)	24 x 11.8 x 4.53	110'	1207	(P) SAMSUNG: CBRS RT4423-48A (1)	1	
82	PROPOSED	COMMSCOPE (NHHSS-658-R28T4)	71.6 x 19 x 7.4	110'	120"	(P) SAMSUNG: RF4461d-13A (1)	(P) OVP 12 BOX (1)	(2) 6x12 H
83	PROPOSED	COMMSCOPE (NHH-858-R2B)	71.6 × 19 × 7.4	110'	120"	(P) SAMSUNG: B2/B66A RRH ORAN (RF4439d-25A) (1)	1	00
C1	PROPOSED	SAMSUNG (MT6413-77A)	24 x 11.6 x 4.53	110'	240*	(P) SAMSUNG: CBRS RT4423-48A (1)	1	
C2	PROPOSED	COMMSCOPE (NHHSS-658-R28T4)	71.8 x 19 x 7.4	110'	2407	(P) SAMSUNG: RF4461d-13A (1)]	
C3	PROPOSED	COMMSCOPE (NHH-658-R28)	71.6 x 19 x 7.4	110"	240	(P) SAMSUNG: B2/B66A RRH ORAN (RF4439d-25A) (1)		

2.

	_			
				REFERENCE DATS
				2 March
designed by allowable stress design (ASD)	11			CUEN C
SHAPES)ASTM A992 (FY = 50 KSI) Ther Shapes)ASTM A36 (FY = 38 KSI) TANGULAR SHAPES)ASTM A500 GRADE B,				228
und shapes)astm a500 grade b,	11			- 167690 - 167690 - 15560
r = 35 KSI) —ASTM A325—N	11			
5 MF1554 	11			DOCUMENTS
L SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE MP DRAWINDS SHALL INCLUDE THE FOLLOWING: SECTION ON ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE ORIES. INCLUDE ERECTION DRAWINGS, BLEVATIONS AND DETAILS.				CONSTRUCTION [CONSTRUCTION [CONSTRUCTION] DESCRIPTION
SE DETAILED, FASRICATED AND ERECTED IN ACCORDANCE WITH AISC MANUAL OF STEEL CONSTRUCTION.	H			6
ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS ED TO COMPLETE THE STRUCTURE	H	44		TJR TJR TJR
ABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR	П			BSP BSP DRAWN B
B AND LEVEL, ACCURATELY FITTED, AND FREE FROM	Ħ	Ħ	1	2 02/01/24 1 31/10/23 0 06/20/23 REV. DATE DA
TURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED MANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.	Н			11/00
SED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN 23 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND	138	1	-	EV.
MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN 33 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".	DIAMEDR 65	and and	CUT CUT	191
OTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR Ion conforming materials or conditions to remedial or Ich action shall require engineer review.	PROFESSIONAL DI	of comp	J.	2
Have a minimum thickness of 1/4 inches. Olts shall conform to astm A325, all bolts shall be D shall have a minimum of two bolts, unless otherwise	2002	1	and a state of the	
RWITTED FOR A325 STEEL ASSEMBLIES.			5	\bigcirc
BIE WELDED OR HIGH STRENGTH BOLTED.			Ň	
JMINS, STIFFENERS, AND OTHER BEARING SURFACES TO E CROSS SECTION.			L.	
. CAMBER UP. N. MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500,			ž	
IN THE FULL HEIGHT OF THE COLUMN.	B	_	-	
URAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY ISIDERED ACCEPTANCE OF PRECEDING WORK.	Guinoaring		Road	E
ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE DENT TESTING LABORATORY.	IV		ax ord Ro	10. 10. 0
CTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER		Conter-Dist Non-Kon	(203) 488 0580 (203) 488 8587 Fax 63-2 North Branford Re	Branford, CT 06405 www.CenlekEng.com
	1	Cropped and	03) 486 03) 486 03) 488	unford ww.C
	F		<u> </u>	± ₹
			5	8
	8		ิด	¥_
	ニ		Ž	₹§
	<u>اچ</u>		2	E E E E E
DPOSED HYBRID/COAX	VERZON WIRE E88		BURLINGTON 2 CT	277 HUCKLEBERTY HEL ROAD AVON, CT 06001
	ĬŽ		4	<u>₹</u> ₹
1 1	₽		Ē	1 X
			ជ	2
12 IMBRID CABLES				
	DATE	<u> </u>	06/05/2	U I
	SCAL JOB	Ē	AS NOTE	D
				IONS,
		NC	TES	8
		NT.S	CHEI	JULE
NOTE: ALL HYBRID/COAX LENGTHS TO BE MEASURED AND VERIFIED IN FIELD BEFORE ORDERING		Ν	I-1	
	Shee	t Ho. 2	of	16

					
	STRUCTURAL COMPLIANCE				
	INDATION S OF THE TOWER AND TOWER FOU ROPOSED EQUIPMENT INSTALLATION RUCTURALLY SUFFICIENT TO ACCOUNT				- REVERD FOR CONSTRUCTION
r to the structl Neering profession Additional inform	IRAL ANALYSIS REPORT PREPARED DNALS" (PROJECT ∦ 144880) DATE ATION AND REQUIREMENTS.	By "TOWER D 01/28/24			P FOR CO
	SHALL BE INSTALLED ON THE HOS ING STRUCTURAL ANALYSIS REPOR TION THAT ANY AND ALL REQUISIT		Devetor sou		CONSTRUCTION DOCUMENTS CONSTRUCTION DOCUMENTS CONSTRUCTION DOCUMENTS
	 EXISTING 800A MULTI-GANG METER CENTER - NISTALL PROPOSED - 2000 UTLITY WETER AND CIRCUIT BREAKER = ±10° x 31° FENCED COMPOUND EXPANSION TO ACCOMMODATE TI PROPOSED DESPP EQUIPMENT S (PENDING INSTALLATION) 	4Ε HELTER,	conginio arting	verizon	5
±2'	DESPP ANTENNA CABLE ICE BRI (PENDING INSTALLATION)	DGE		(203) 468-0580 (203) 428-8587 Fox (203) 428-8587 Fox (203) 428-8587 Fox 80001000 F070.4005 80001000 F070.4005	www.CantakEng.com
	- DESPP NOMINAL 12'x20' EQUIPM SHELTER HOUSING RADIO EQUIP AND A 40KW DIESEL FUELED GE (PENDING INSTALLATION) - SHELTER CONCRETE ENTRY STOC	NERATOR	883 8	N 2 CT	CHELL ROAD
	(PENDING INSTALLATION)	(Tra Gr Z)	VERZON WREI	BURLINGTON 2 CT	277 HUCKLEBERRY AVON, CT 0
			DATE: SCALE:	06/05/23 As noted	
			EQU	POUND F POUND F PMENT F ELEVAT	PLAN
			Sheet N	C-1	6

6 T 4

MOUNT

RF4439d-25A

EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: SAMSUNG MODEL: RF4439d—25A	14.95"H x 14.96"W x 10.04"D	74.7 LBS
	SPONSIBLE TO COORDINATE AND CONFI	84
1. THE CONTRACTOR IS RE FINAL EQUIPMENT MAKE/	Sponsible to coordinate and confi wodel and quantity selection with struction manager prior to ordern	

RF4461d-13A

EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: SAMSUNG MODEL: RF4416d-13A	14.96"H x 14.96"W x 10.23"D	79.1 LBS.
FINAL EQUIPMENT MAKE	SPONSIBLE TO COORDINATE AND CONFI MODEL AND QUANTITY SELECTION WITH TRUCTION MANAGER PRIOR TO ORDERING	

RT4423-48 WITH CLIP-ON ANTENNA

EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: SAMSUNG MODEL: RT4423—48(A/B)	11.8"H x 8.7"W x 3.6"D	15.43 LBS
1. THE CONTRACTOR IS RESPI	ONSIBLE TO COORDINATE AND CON	FIRM
FINAL EQUIPMENT MARE/MC VERIZON WIRELESS CONSTR 2. RT4423-48A IS FOR DC RT4423-48B IS FOR AC (Onstelle to coordinate and com Del and Quantity Selection wit Luction Manager Prior to ordei NC and DC type have same size Hown are for the RRU only.	H GNG.

		·····
	ELEVATION - ISOMETRIC BOTTOM 10-PORT SECTOR ANTENNA Intersions EQUIPMENT DIMENSIONS WEIGHT MAKE: COMMISCOPE 71.9°L x 11.9°W x 7.1°D (W/OUT MOUNT KIT) A SECTOR ANTENNA DETAL	
Shunt No. <u>5</u> of 16	EQUIPMENT DMENSIONS WEIGHT MAKE: RAYCAP MODEL: DB-C1-12C-24AB-0Z 29.5°H x 16.5°W x 12.6°D 32 LBS. MODES: 1. CONTRACTOR TO CONFIRM OVP BOX MAKE/MODEL AND QUANTITY WITH VERIZON WIRELESS CONSTRUCTION MANAGER PRIOR TO ORDERING. 38 8 PROPOSED OVER-VOLTAGE PROTECTION BOX	
		Shaat No. <u>5</u> of 16

- 1. INSTALL A MINIMUM OF (2) ANCHORS PER UNISTRUT (± 16°o/c MIN).
- 2. MOUNT RRU TO UNISTRUT WITH 3/8°≢ UNISTRUT BOLTING HARDWARE AND SPRING NUTS. TYPICAL FOUR PER BRACKET.
- 3. NO PAINTING OF THE RRU OR SOLAR SHIELD IS ALLOWED.

VERIZON WIRELESS SHALL SUPPLY RRU, AND RRU POLE-MOUNTING BRACKET. CONTRACTOR SHALL SUPPLY POLE/PIPE AND INSTALL ALL MOUNTING HARDWARE INCLUDING ERICSSON RRU POLE-MOUNTING BRACKET.

2. NO PAINTING OF THE RRU OR SOLAR SHIELD IS ALLOWED.

NOTES: (PIPE_MOUNTING)

			BACKUP POWER	GENERATOR		
EQUIPMENT	POWER GENERATED	FUEL	MODEL NUMBER	FUEL TANK SIZE (GAL)	DIMENSIONS	WEIGHT
MAKE: KOHLER NODEL: SOREOZJE	50 KW, AC	DIESEL	GM117250-SA8	283	91.3°L x 41.2°W x 48.8°H	3795 LBS.
<u>NOTES:</u> 1. FUEL LEVEL/S NOC.	ECONDARY CO	NTAINMENT	shall be alarmed a	ND IN COMMUN	cation with verizon wireless	'S
2. CONTRACTOR CONSTRUCTION				CTION AND ALL	OPTIONAL FEATURES WITH VERIZ	on Wireless'

5 PROPOSED GENERATOR DETAIL (0-4) SCALE: NOT TO SCALE

Main equipment cabinet (CMC74-36E)

r		EQUIPI	
EQUIPME	Int	LQUP	DIM
MAKE: MODEL:	COMMSCOPE CMC7438E CABINET		7
MAKE: MODEL:	COMMISCOPE CMC74-368 CABINET		7

6 CMC74-36 CABINET DETAILS C-4 SCALE NOT TO SCALE

(1) TYPICAL RRU MOUNTING DETAILS SCALE NOT TO SCALE

Battery cabinet (CMC74-36B)

	-				_
DTES				REFERENCE	
BOGA MUTLI-GANG METER CENTER TO REMAIN.) PER UPONTED SA REFE	NOC
EW 200A, SINGLE PHASE, 240V RATED UTILITY METER. WITH CRICUIT BREAKER.				MIED OF	STRUCI
COUPLING TYP.				PER UPONTED PER QUENT OF	2000
FIBER/TELCO DEMARC.				8 6	90 F0
NWG, (1) #6 AWG GROUND. 2" CONDUIT				REVISED	ISSUED
ONDUIT WITH PULL ROPES FOR TELEPHONE COMPANY RS, CONDUCTORS PROVIDED Y TELEPHONE COMPANY, PROVIDE ALL S, ADAPTERS, SWEEPS AND ASSOCIATED HARDWARE, MATERIAL PER TELEPHONE COMPANY SPECIFICATIONS.				1111	CONSTRUCTION DOCUMENTS -
, 240V, 10, ILC CABINET				N DOC	8
WRELESS EQUIPMENT CABINET				NCTIO	NCTIO
1' NEMA 3R HOFFMAN BOX AT EQUIPMENT FORM TELCO INS. INDUITS AND CONDUCTORS FROM EQUIPMENT CABINET AS				CONSTRUCTION	CONST
WIRELESS EQUIPMENT CABINETS.					5
IT AND CONDUCTORS FOR BATTERY CABINET CONNECTION PER	$\left \right $		++		H
R BATTERY CHARGER AND CONVENIENCE GFCI OUTLET WIRED TO OUTLET TO BE MOUNTED IN WEATHERPROOF ENCLOSURE.				22	1
r block heater wired to ilc cabinet			111	02/01/24	20/2
ENERATOR SHUT OFF SWITCH IN BREAK GLASS ENCLOSURE TO EXTERIOR OF GENERATOR ENCLOSURE PER 2019 NFPA 110	┢		+++	11	8
Y BACK-UP GENERATOR	100	Ш	Com.	D	<u>_</u> 15
DUIT AND CONDUCTORS REQUIRED FOR PROPER OPERATION OF Y GENERATOR SHUT OFF SWITCH.	DIGNEDR S	- Martin	CUT PA		ALCONG IN
R GROUNDING PER NEC AND MANUFACTURER'S REQUIREMENTS. EXISTING GROUNDING SYSTEM. (MINIMUM OF (1) #2 AWG GROUND)		COM		Q)	Child
R OUTPUT CIRCUIT BREAKER.	PROFESSIONL	ann	X	2	
T FOR GENERATOR CONTROL AND SIGNAL WIRING, CONTRACTOR TO UTING IN FIELD.	MO	4	The State	June	
T FOR CABINET ALARM.			X		1
ENERATOR POWER OUTPUT CONDUCTORS TO EMERGENCY LUGS IN			2	\bigcirc	
			Ň		
			Ë		
			Ř		
		2			
		angincaning	1	2	_
			× 1	5 5	www.ContekEng.com
			(203) 488-0580 (203) 488-8587 Fax	T 0640	lakEng
	17		486.0	ord, C	.Cent
	i	J and	(E02)	Junia Junia	Ŵ
	1				
	L				
<u> </u>	L		BURLINGTON 2 CT	ą	}
•]	8	3	Ñ	×	AVON CT 08001
	1 a		Z	1	Ø
710/13	VERITON WIRFI F88		Ō	Ì	ŏ
┑┍─┑║║ ╺╋╡ॿ┙╴╴╸║			5		0
	12	2	Ž	Ţ	0
	12	il	ليہ	ŝ	
H @ 40-9(&) 4	>		5	5	
	1		Ξ	~	I
¥_0		6			
1					
₹	DA		06/05		
	_	NLE:	AS NO		_
			RICAL		cr
AM		AND	CON	DUIT	
		ROL	ITING	PLAN	1
1		_	_		_

E-1

		1
		ω.
	IEMATIC NOTES	S DB6
	NG BCW	UPDATED SA RECUPARED SA RECOMMEND
	PRESSION EQUIPMENT SHALL BE BONDED TO GROUND PER	REVISED PER REVISED FOR
	SE NOTED OR REQUIRED BY CODE, GROUND CONDUCTORS E ∦2 AWG (SOLID TINNED BCW - EXTERIOR; STRANDED D - INTERIOR).	UNENTS
	e sections together with #6 AWG stranded green ERS.	DOD NOL
	NUND BARS SHALL BE BONDED TOGETHER WITH #2 AWG	OHSTRUC
	MENT CABINETS AND BATTERY CABINETS TO GROUND PER SPECIFICATIONS.	
	OWER SHALL BE MADE IN STRICT ACCORDANCE WITH	
	NDING PLAN FOR LOCATION OF GROUNDING DEVICES.	
	LECTRICAL AND GROUNDING DETAILS.	10/22
	TOWER MOUNTED EQUIPMENT WITH OWNER.	10 17 80
	NTED AMPLIFIERS AND ASSOCIATED EQUIPMENT SHALL BE SECTOR GROUND BAR PER MANUFACTURER'S	3
	s within 6' of equipment pad shall be bonded to	Domethy I
	shall be in accordance with NEC and owner's	
ABICINA MARIE 200 ACTORNAL PORTON ACTIONNAL 200 ACTIONNAL 200	TO GROUND PER NEC AND MANUFACTURERS	
ABICINA MARIE 200 ACTORNAL PORTON ACTIONNAL 200 ACTIONNAL 200	TOWER OWNER BEFORE INSTALLING ANY GROUNDING WER OR BONDING TO EXISTING TOWER GROUND RING.	
CHECK CT CONSTITUENT FOR ANY CT CONSTITUENT F		
DIST PARTY AND A CONTRACT OF A		>
DIST PARTY AND A CONTRACT OF A		Burros
DIST PARTY AND A CONTRACT OF A		
DITE: 00/06/23 SCALE: 45 NOTED JOB NO. 2108.04 ELECTRICAL SCHEMATIC DIAGRAM ELECTRICAL SCHEMATIC		
DITE: 00/06/23 SCALE: 45 NOTED JOB NO. 2108.04 ELECTRICAL SCHEMATIC DIAGRAM ELECTRICAL SCHEMATIC		
DATE: 08/05/23 SCALE: AS NOTED JOB NO. 21090.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		Bianfo
DATE: 08/05/23 SCALE: AS NOTED JOB NO. 21090.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		
DATE: 08/05/23 SCALE: AS NOTED JOB NO. 21090.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		
DATE: 08/06/23 SCALE: AS NOTED JOE NO. 21098.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		5 e
DATE: 08/06/23 SCALE: AS NOTED JOE NO. 21098.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		
DATE: 08/05/23 SCALE: AS NOTED JOB NO. 21090.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		
DATE: 08/05/23 SCALE: AS NOTED JOB NO. 21090.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		
DATE: 08/05/23 SCALE: AS NOTED JOB NO. 21090.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		
DATE: 08/05/23 SCALE: AS NOTED JOB NO. 21090.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		
DATE: 08/05/23 SCALE: AS NOTED JOB NO. 21090.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		비원 구 옷
DATE: 08/05/23 SCALE: AS NOTED JOB NO. 21090.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		^{>} 🚊 🖡
SCALE: AS NOTED JOB NO. 21098.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		
SCALE: AS NOTED JOB NO. 21098.04 ELECTRICAL SCHEMATIC DIAGRAM E-2		
ELECTRICAL SCHEMATIC DIAGRAM E-2		SCALE: AS NOTED
E-2		
E-2		SCHEMATIC
1. STATE AND A		E_2
Sheet No. 9 of 15		

IDING PLAN NOTES: SOLID TINNED BOW GROUND RING (2'-0" FROM OUTSIDE EDGE OF				et persente		NON	
pment pad foundation) (typ.).		111					l
INDING ROD WITH ACCESS (TYP.) PER DETAILS.	11	111	11		Diano	SNOC	
INDING ROD (TYP.) PER DETAILS.	11	111	11	2	2 2	B	l
GROUND BAR TYP.		111	11	ACCHARTER OF			L
EQUIPMENT CABINETS TO MAIN GROUND BAR, TYP.	11		Ы.	1 12	- 1-	8	L
MAIN GROUND BAR TO GROUND RING TYP. 2 LEADS.	11					1 00	L
DICE-BRIDGE POST TO MAIN GROUND BAR.	11			or and the		Light	L
) STEEL CANOPY POST TO MAIN GROUND BAR.	11		11	Š		ß	L
) STEEL CANOPY POSTS TO GROUND RING TYP.	11				- 1	B	١.
IRIDGE POST AND COVER. BOND EACH SECTION AND SUPPORT TO IND RING.				NAME OF A DESCRIPTION	STRUCT	STRUCT	
GENERATOR TO GROUND RING PER NEC AND MANUFACTURER IREMENTS.				2	ŝ	CON	1 76T
LECT FENCE AND FENCE POSTS TO GROUND RING TYP, ALL FENCE S WITHIN 6' OF EQUIPMENT PAD SHALL BE BONDED TO GROUND				81	an	TJR	a cuero
R TOWER MOUNTED GROUND BAR.	16		T	B	B	0	R.
LOWER TOWER MOUNTED GROUND BAR TO ICE-BRIDGE POST. TYP.	- 11	111	111	1 Sel	3 18	859	ł
LOWER TOWER MOUNTED GROUND BAR TO TOWER STEEL.			++		\$2/01	2	ľ
2 LEADS.				AC1 101 00	101/15	06/20/23	
EQUIPMENT GROUND RING TO COMPOUND GROUND RING TYP. 2 S.		Ш	Ĩ		XI.	0	Ì
R TOWER MOUNTED GROUND BAR.	3		the series	1	1.		
LOWER TOWER MOUNTED GROUND BAR TO UPPER TOWER MOUNTED ND TYP. 2 LEADS.	Distance	annun an	Ka	T	1	240	11.44
UPPER TOWER MOUNTED GROUND BAR TO SECTOR GROUND BAR	OM D	CO.				and a	Ĩ
OR GROUND BAR, TYP.	182	1		4	4	al and	
ANTENNA AND RRU MOUNTING PIPES TO SECTOR GROUND BAR. TYP.	l₹	5	A State	in har			
SECTOR GROUND BAR TO STEEL ANTENNA FRAME			X	1	1	V	
SECTOR GROUND BARS SHALL BE BONDED TOGETHER WITH #2 AWG			verizon	~	-)	
SECTOR GROUND BAR TO TOWER STEEL TYP.			- N				

ELECTRICAL SPECIFICATIONS

SECTION 16010

I.01. SCOPE OF

- A. WORK SHALL INCLUDE ALL LABOR, EQUIPMENT AND SERVICES REQUIRED TO COMPLETE (MANCE READY FOR OPERATION) ALL THE ELECTRICAL WORK INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING:
- INSTALL 2004, 120/240V, 14, 3W ELECTRIC SERVICE REVENUE METER AND 2004 MAIN CIRCUIT BREAKER FOR OWNER AND ASSOCIATED DISTRIBUTION EQUIPMENT. (AS REQUIRED BY UNLITY CO.)
- 2. NEW SITE TELEPHONE SERVICE AS SPECIFIED BY TELEPHONE COMPANY.
- 3. FEEDERS AND BRANCH CIRCUIT WIRING TO PANELS, RECEPTACLES, EQUIPMENT, ETC. AS INDICATED OR NOTED ON PLANS.
- 4. CELLULAR GROUNDING SYSTEMS, CONSISTING OF ANTENNA GROUNDING, INTERIOR GROUNDING RING, GROUND BARS, ETC.
- 5. FIELD MEASURE EXISTING ELECTRICAL SERVICES TO CONFIRM AVAILABLE EXISTING
- 6. COORDINATE ALL WORK SHOWN, ON THESE PLANS WITH LOCAL UTILITY COMPANIES.
- B. LOCAL UTILITY COMPANIES SHALL PROVIDE THE FOLLOWING:
- 1. TELEPHONE CABLES.
- C. CONTRACTOR SHALL CONFER WITH LOCAL UTILITY COMPANIES TO ASCERTAIN THE LIMITS OF THER WORK AND SHALL INCLUDE IN BID ANY CHARGES OR FEES MADE BY THE UTILITY COMPANIES FOR THER PORTION OF THE WORK AND SHALL PROVIDE AND INSTALL ALL ITEMS REQUIRED, BUT NOT PROVIDED BY UTILITY COMPANY.
- D. CONTRACTOR SHALL COORDINATE WITH TELEPHONE UTILITY COMPANY FOR LOCATION OF TELEPHONE SERVICE AND TO DETERMINE ANY REQUIRED EQUIPMENT TO BE INSTALLED BY
- 1.02. GENERAL REPLIREMENTS
- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- 8. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL ALTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH LOCAL TELEPHONE COMPANY THAT MAY BE REQUIRED FOR THE INSTALLATION OF TELEPHONE SERVICE TO THE PROPOSED CELLUAR SITE.
- . NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK, ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- G. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTINITING WARRANTES FROM ALL COLPHENENT MAIN/FACTURERSF FOR SUBMISSION TO THE
- I. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLIDED IN CONTRACT. CONTRACTOR SHALL WITHOUT DITRA CHARGE, MACE MODIFICATIONS TO THE LYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK, CHECK ALL DRAWINGS AND VISIT JOB STIE TO VEREY SPACE AND TYPE OF EDISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBWITTAL
- THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, EXCINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEDES AND THER RESPECTIVE EQUIPHENT. THESE MANUALS SHALL COVERED 3-RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST
- ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- K. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- M. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- N. SHOP DRAWINGS:
- CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GMING ALL DETALS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
- CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.
- O, ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO CORDINATE WITH APPROPRIATE INDIVIDUALS TO DETAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN, OR OMITTED FROM, THESE DOCUMENTS SHALL REJUEVE CONTRACTOR FROM THIS OBLIGATION.

SECTION 1611 1.01. CONDUIT

- A MINIMUM CONDUIT SIZE FOR BIRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4", CONDUITS SHALL BE PROPERLY FASTEMED AS REQUIRED BY THE N.E.C.
- B. THE INTERIOR OF RACEWAYS/ ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION, INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WATHERPROFIC CONSTRUCTION IN WET LOCATIONS.
- C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5.
- D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RMC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS
- E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS.

CONDUIT TYPE		APPLICATION	MEL BURAL CEPTH (PE) NEC TABLE 300.69
ent	ARTICLE 358	INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS	N/A
RMC, RIGID GALV.	ARTICLE 344, 300.5, 300.50	ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS.	8 INCHES
PVC, SCHEDULE 40	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE.	18 INCHES
PVC, Schedule 80	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE.	18 INCHES
Liquid tight flex. Metal	ARTICLE 350	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A
FLEX. METAL	ARTICLE 348	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A
PHYSICAL DAMAGE IS	SUBJECT TO THE A	UTHORITY HAVING JURISDICTION	

EXTENDING DOWN TO ROCK

SECTION 16123

- 1.01.
- ALL CONDUCTORS SHALL BE TYPE THWN (NT. APPLICATION) AND X0HW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS. #8 AWG AND LARGER SHALL BE COLOR CONDUCTOR FOR LINE VOLTAGE BRANCH CRCUTS. REFER TO PANEL SCHEDULE FOR BRANCH CRCUTT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION. 2772 (ABM.

B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

SECTION 16130

- 1.01. BOXES
- A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.
- 8. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED, PROVIDE WEATHERPROFIC CONSTRUCTION IN WET LOCATIONS.

SECTION 16140

1.01. WIRING DEVICES

- A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLITON FOR APPROVAL
- 1. 15 MINUTE TIMER SWITCH INTERMATIC #FF15M (INTERIOR LIGHTS)
- 2. DUPLEX RECEPTACLE PAS #2095 (GFCI) SPECIFICATION GRADE
- 3. SINGLE POLE SWITCH PAS (CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE 4. DUPLEX RECEPTACLE - PAS #5382 (20A-120V HARD USE) SPECIFICATION GRADE
- B. PLATES ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND REDEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
- C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

SECTION 16170

SWITCHES

A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWING, AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED, DISCONNECT SWITCH COVER SHALL BE MEEMANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "DN" POSITION. BUTREOR APPLICATIONS SHALL BE NEBA 37 CONSTRUCTION WITH PADLOCK FEATURE.

SECTION 16190

1.01. SEISMIC RESTRAINT

A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS. **SECTION 16195**

- 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT
- A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT. B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.
- D. PROVIDE NAMEPLATE FOR PORTABLE ENGINE/GENERATOR CONNECTION SHOWING VOLTAGE WITH WHITE LETTERS.
- E. ALL RECEPTACLES, SWITCHES, DISCONNECT SWITCHES, ETC. SHALL BE LABELED WITH THE CORRECT BRANCH CRICILIT NUMBER SERVED BY MEANS OF PERMANENT PRESSED TYPE BLACK 1/4" INVASTER LETIENING, (FOR EVAMPLE" MOR-5", ETC.).

SECTION 16450

- 1.01. GROUNDING
- A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RELIVEN PATH TO THE EQUIPMENT GROUNDING SOURCES.
- B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISICHTON.
- C. GROUNDING OF PANELBOARDS:
 - PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET, ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL PRIME AND PANT OVER TO PREVENT CORROSION.
 - 2. CONDUT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE \$10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).
- D. EQUIPMENT GROUNDING CONDUCTOR
- 1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122.
- 2. THE MENIMUM SIZE OF EDUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER
- EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME RACEWAY(S).

E. CELLULAR GROUNDING SYSTEM:

contractor shall provide a cellular grounding system with the maximum ac resistance. To ground of 10 onm between any point on the grounding system as messared by 3-point grounding test, (refer to section 1996).

PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

- 1. GROUND BARS 2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER) THAN SPECIFIED). 3. ANTENNA GROUND CONNECTIONS AND PLATES.
- F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCELIMENT/BURAL OF SMAE, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND WAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.
- G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS.

SECTION 16470

- 1.01. DISTRIBUTION EQUIPMENT
- A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.
- **SECTION 16477** 1.01. FUSES
- A FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LIN-RE (2507) UL CLASS RK1, LOW PERK, DUAL ELDHERT, TIME-DELY FUSES, FUSES SHALL HAVE SPARATE SHORT CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 INACL, UPON OWNERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 INACL, UPON OWNERLENO OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.

SECTI<u>ON 18961</u>

- 1.01. TESTS BY CONTRACTOR ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR, THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE GUALITY OF MATERIAS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS, ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 5000 IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DETREES F.
 - CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS, CIRCUITS SHALL BE SO CONNECTED TO THE PANELBOARDS SUCH THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEED FACH LOAD AND NEUTRAL TOK SHALL BE CONSIDERED AS A RESSONABLE AND ACCEPTABLE ALLOWANCE BRANCH CRCCUTS SHALL BE BALANCED ON THEIR OWN PANELBOARDS, FEEDER LOADS SHALL IN TURN, BE BALANCED ON THE SERVICE EQUIPADET, RESSONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER.

SECTION 16960

1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

- A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:
 - TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER.
- TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.
- THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:
- 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.
- 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (8) MONTHS OF DATE OF TESTING, INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.
- 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.
- B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITEN
- C. THE CONTRACTOR SHALL FORWARD SX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/AMALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITHESSING.

C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE, ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROFENSI INSTALLED, ALL SUCH DETECTED WORK SHALL BE REPARED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPARED.

ALPHA SECTOR PLUMBING DIAGRAM

BETA SECTOR PLUMBING DIAGRAM

GAMMA SECTOR PLUMBING DIAGRAM

SAMSUNG

C-band 64T64R

Gen 2

Gen 2 : Higher conducted power radio with reduced size/volume/weight vs Gen 1 and also SOC embedded for flexibility to support new features

í.		1
10		
ł.		ŧ
0))

💥 Preliminary Design: External appearance and

mechanical design can be subject to change Gen 2. e4764R C-band MMU Dimensions

Size	400 x 734 x 140 mm (15.75
(WxHxD)	x 28.90 x 5.51 inch)
Weight	26kg (57.3 lb)

© Samsung Electronics. All Rights Reserved.

Itam	Gen 2 64T64R (MT6413-77A)
Air Technology	NR n77/TDD
Frequency	3700 – 3980 MHz
IBW	200 MHz
OBW	200 MHz
Carrier Randwichth	20(HW ready)/40/60/100 MHz
# of Carriers	2 carriers
Layer	DL: 164, UL: 1664X (81)
RF Chain	64T64R
Antenne Configuration	4V16H with 192 AE
EIRP	80.5 dBm @320W (55 dBm + 25.5 dB)
Conductive Pawer	320W
Spectrum Analyzer	TX/RX support
RX Sensitivity	Typical -97,8dBm @(1Rx, 18.36MHz with 30kHz,51RBs)
Modulation	DL 256QAM support, (DL 1024QAM with 12dB power back-off)
Function Split	DL/UL option 7-2x
Input Power	-48 VDC (-38 VDC to -57 VDC)
Power Consumption	1,287W (100% load, room temp.)
Size (WHD)	400 x 734 x 140 mm (15.75 x 28.90 x 5.51 lnch)
Volume	41.11
Weight	26kg (57.3 lb)
Operating Temperature	-40°C - 55°C (w/o solar load)
Cooling	Natural convection
	3GPP 38.104
	FCC 47 CFR 27.53 : < -13dBm/MHz
Unwanted Emission	 < -40 dBm/MHz @ above 4 GHz <-50 dBm /MHz @ 4,040 ~ 4,050 MHz <-60 dBm /MHz @ above 4,050 MHz
Optic Interface	15km, 4 ports (25Gbps x 4), 5FP28, single mode, Bi-di (Option: Duplex)
Maunting Options	Pote, wall
NB-IoT	Not support
External Alarm	ARX
Emothaul Totarface	

10-port sector antenna, 2x 698–896, 4x 1695–2200 and 4x 3100-4200 MHz, 65° HPBW, 2x RETs and 2x SBTs. Both high bands share the same electrical tilt.

- Perfect antenna to add 3 5GHz CBRS to macro sites
- Low band and mid band performance mirrors the performance of existing NHH hex port
 antennas
- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper .cable
- One LB RET and one HB RET. Both high bands are controlled by one RET to ensure same tilt level for 4x MIMO

General Specifications	
Antenna Type	Sector
Band	Multiband
Color	Light gray
Grounding Type	RF connector inner conductor and body grounded to reflector and mounting bracket
Performance Note	Outdoor usage
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	4.3-10 Female
RF Connector Location	Bottom
RF Connector Quantity, high band	4
RF Connector Quantity, mid band	4
RF Connector Quantity, low band	2
RF Connector Quantity, total	10

Remote Electrical Tilt (RET) Information

RET Hardware	CommRET v2
RET Interface	4x 8 pin connector as per IEC 60130-9 Daisy chain in: Male / Daisy chain out: Female Pin3: RS485A(AISG_B), Pin5: RS485B(AISG_A), Pin6: DC 10~30V, Pin7: DC_ Return

Page 1 of 5

©2021 CommScope, Inc, All rights reserved. All trademarks identified by ® or " are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

2 female 2 male
10-30 Vdc
High band (1) Low band (1)
10 W
2 W
3GPP/AISG 2.0 (Single RET)
" 301 mm 11.85 in
181 mm 7.126 in
1828 mm 71.969 in

Array Layout

Net Weight, without mounting kit

Array ID	Frequency (MHz)	RF Connector	RET	AJSG No.	AISG RET UID	
11	698-896	1 - 2	1	AISG1	CPxxxxxxxxxxxxxxR1	
10	1695-2200	3 - 4	2	AISG2	CPXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
112	1695-2200	5 - 6	2	AI5G2	CPARITY	
	3100-4200	7-8	N/A	NA	N/A	
22	3100-4200	9 - 10	N/A	NA	NVA	

23.1 kg | 50.927 lb

(Sures of colored boxes are not true depictions of array sures)

Port Configuration

Page 2 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or " are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised. September 14, 2021

 $\left| \cdot \right|$

Electrical Specifications

Impedance	50 ohm
Operating Frequency Band	1695 – 2200 MHz 3100 – 4200 MHz 698 – 896 MHz
Polarization	±45°
Total Input Power, maximum	1,000 W @ 50 °C

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-188	0 1850-199	0 1920-220	0 3100-355	0 3550-370	0 3700-4200
Gain, dBi	14.8	15.2	17.4	17.8	18	17.7	17.3	17.9
Beamwidth, Horizontal, degrees	65	62	66	61	64	54	64	60
Beamwidth, Vertical, degrees	13	11.6	5.5	5.2	4.9	5.7	5.3	4.9
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	4	4	4
USLS (First Lobe), dB	15	15	16	18	18	16	17	18
Front-to-Back Ratio at 180°, dB	26	29	31	28	27	30	33	29
Isolation, Cross Polarization, dB	25	25	25	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25	28	28	28
VSWR Return loss, dB	1.5 14.0	1.5 14.0	15 140	1.5 14.0	15 140	15 140	15 140	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-140	-140	-140

Page 3 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or ** are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

COMMSCOPE®

Input Power per Port at 50°C, maximum, watts	300	300	300	300	300	100	100	100
Electrical Specification	ons, BA	STA						
Frequency Band, MHz	698-806	806-896	1695-188	0 1850-199	0 1920-220	0 3100-355	0 3550-370	0 3700-4200
Gain by all Beam Tilts, average, dBi	14.6	14.8	17	17.5	17.7	17.3	17	17.2
Gain by all Beam Tilts Tolerance, dB	±0.4	±0_4	±0.6	±0.3	±0.4	±0.6	±0.7	±0.8
Gain by Beam Tilt, average, dBi	0 ° 14.6 7 ° 14.6 14 ° 14.4	0 ° 15.0 7 ° 14.9 14 ° 14.5	0° 16.9 3° 17.0 7° 16.8	0° 17.4 3° 17.5 7° 17.4	0° 175 3° 178 7° 176			
Beamwidth, Horizontal Tolerance, degrees	±1.7	±1.3	±7.2	±3.1	±6.2	±10	±6.7	±10.5
Beamwidth, Vertical Tolerance, degrees	±0.8	±0.8	±0.2	±0.2	±0.4	±0.4	±0.3	±0.4
USLS, beampeak to 20° above beampeak, dB	18	16	14	15	17	14		
Front-to-Back Total Power at 180° ± 30°, dB	22	25	25	25	24	26	25	24
CPR at Boresight, dB	24	17	16	21	19	15	17	14
CPR at Sector, dB	12	6	11	10	8	8	9	7

Mechanical Specifications

Wind Loading @ Velocity, frontal	278.0 N @ 150 km/h (62.5 lbf @ 150 km/h)
Wind Loading @ Velocity, lateral	230.0 N @ 150 km/h (51.7 lbf @ 150 km/h)
Wind Loading @ Velocity, maximum	537.0 N @ 150 km/h (120.7 lbf @ 150 km/h)
Wind Loading @ Velocity, rear	287.0 N @ 150 km/h (64.5 lbf @ 150 km/h)
Wind Speed, maximum	241 km/h 149.75 mph

Packaging and Weights

Width, packed	1973 mm 77.677 in
Depth, packed	441 mm 17.362 in
Length, packed	337 mm 13.268 in
Weight, gross	35.1 kg 77.382 lb

Regulatory Compliance/Certifications

Agency Classification

CHINA-ROHS

Above maximum concentration value

Page 4 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or ¹⁶ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

ROHS

Compliant/Exempted

.

Included Products

BSAMNT-3 — Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe

Severe environmental conditions may degrade optimum performance

©2021 CommScope, Inc. All rights reserved. All trademarks identified by © or ¹⁶ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised. September 14, 2021

٠

SAMSUNG

Samsung Micro Radio CBRS(N48) 4T4R Micro Radio

Samsung's CBRS 4T4R Micro Radio provides mobile operators with a cost-effective solution to fill coverage gaps encountered when Macro Radios are in use.

RT4423-48A(DC) Model Code RT4423-48B(AC)

Youtube www.youtube.com/samsung5g

Points of Differentiation

Dual Personality

The new CBRS Radio supports existing CPRI and advanced eCPRI interfaces providing installation options for both legacy LTE and NR network equipment.

High Capacity

The number of carriers required varies according to site(region). Supporting multiple carriers is essential to customers as they seek to utilize all frequencies available to them.

The new CBRS radio can support up to 5 carriers which is and increase of 3 carriers over the capacity of the previous CBRS product.

Supports up to 5 carriers

O-RAN Compliant

A standardized O-RAN radio supports implementing cost-effective networks capable of enhanced data throughput without compromising existing or new network investments.

Samsung O-RAN products ensure state-of-the-art O-RAN technology will accelerate efforts for creating solid O-RAN ecosystems.

Compact and Easy Installation

New CBRS RU is compact in it's design with a volume of 6L and weighing only about 7kg.

This compact design allows for various installation options including, tower, rooftop, pole, wall and shroud.

A clip on antenna is available providing flexibility to installation requirements.

w/o Clip-on antenna

w/Clip-on antenna

Technical Specifications

Item	Specification
Tech	LTE / NR
Band	B48, n48 / TDD
Frequency Band	3,550 – 3,700 MHz
RF Power	20 W (5 W x 4 Ports)
IBW/OBW	150MHz / 100MHz
Installation	Pole, Wall, Side by side (max 3 radio)
Size/ Weight	[Radio] w/o Clip-on antenna : 8.7 x 11.8 x 3.6 inch, 5.97L, 7kg w/ Clip-on antenna : 8.7 x 11.8 x 5.0 inch, 8.42L, 8.5kg *AC and DC type have same size and weight
	[Bracket Weight] Tilting & Swivel (EP97-02038A) : 2.51kg Fixed (EP97-02037A) : 1.31kg Side by side (EP97-02089A) : 8.0kg

SAMSUNG

AWS/PCS MACRO RADIO DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code RF4439d-25A

Youtube www.youtube.com/samsung5g

Continuous Migration

Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L

Same as an

incumbent radio volume

2 FH connectivity O-RAN capability More carriers and spectrum

Technical Specifications

Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

SAMSUNG

Specifications

700/850 4T4R Macro 320W ORU - New Filter (RF4461d-13A)

* 5MHz supporting in B13(700MHz) depends on 3GPP std. and UE capability. External filters in interferer and victim sides for Mexican boarder to support 5MHz service need to be considered ** Finger guard is not needed.

© Samsung Electronics. All Rights Reserved. Confidential and Proprietary.

Item	Specif	Specification
Air Interface	LTE, NR(HW I	LTE, NR(HW resource ready)
Band	Band13 (700MHz)	BandS (850MHz)
	DL: 746~756MHz	DL: 869~894MHz
Frequency	UL: 777~787MHz	UL: 824~849MHz
IBW	10MHz	25MHz
OBW	10MHz	25MHz
Carrier Bandwidth	LTE/NR 5*/10MHz	LTE 5/10MHz NR 5/10/15/20MHz
# of carriers	2C*	30
Total # of carriers	4C + B1	4C + B13 (SDL) 1C
RF Chain	4T4R/2T4F 2T2R+2T2	4T4R/2T4R/2T2R/1T2R 2T2R+2T2R bi-sector
	Total	Total : 320W
	4 x 40W or 2 x 60W	4 x 40W or 2 x 60W
Spectrum Analyzer	TX/RX	TX/RX Support
RX Sensitivity	Tvp104.5dBm @	TVp104.5dBm @1Rx (25RBs 5MHz)
Modulation	256QAM support, (1024QAM	256QAM support, (1024QAM with 1~2dB power back-off)
Input Power	-48VDC (-38V	-48VDC (-38VDC to -57VDC)
Power Consumption	1,165 Watt @ 100% RF	1,165 Watt @ 100% RF load, room temperature
Size (WHD)	380 x 380 x 260 mm (1	380 x 380 x 260 mm (14.96 x 14.96 x 10.23 inch)
Volume	37	15 L
Weight (W/o Solar Shield & finger guard)	35.9 kg	35.9 kg (79.1 lb)
Operating Temperature	-40°C (-40°F) ~ 55°C (1	-40°C (-40°F) ~ 55°C (131°F) (Without solar load)
Cooling	Natural	Natural convection
	3GPP 36.104	3GPP 36.104
Unwanted Emission	FCC 47 CFR 27.53 c), f)	FCC 47 CFR 22.917
	34	-69 dBm/100 kHz per path @ 896 ~901MHz
CPRI Cascade	Not su	Not supported
Optic Interface	20km, 2 ports (9.8Gbps x 2), SFP+	20km, 2 ports (9.8Gbps x 2), SFP+, single mode, Duplex (Option: Bi-di)
RET & TMA Interface	AIS	AISG 3.0
Bias-T	4 ports (2 p	4 ports (2 ports per band)
Mounting Options	Pol	Pole, wall
NB-IoT	2GB+2IB or 4IB	25A+2G8 or 2G8+2I8 or 4G8
PIM Cancellation	Suj	Support
# of antenna port		4
External Alarm		4
Fronthaul Interface	Opt. 8 CPRI / Opt. 7-2x select	Opt. 8 CPRI / Opt. 7-2x selectable (not simultaneous support)
CDRI compression	Not	Not Support

2

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 130 ft SABRE Monopole Customer Name: SBA Communications Corp Customer Site Number: CT46143-A Customer Site Name: Burlington - Avon Landfill Carrier Name: Verizon (App#: 241526-1) Carrier Site ID / Name: 5000205807 / BURLINGTON_2_CT Site Location: 277 Huckleberry Hill Road Avon, Connecticut Hartford County Latitude: 41.788055 Longitude: -72.918166

<u>Analysis Result:</u> Max Structural Usage: 30.8% [Pass] Max Foundation Usage: 26.5% [Pass] Additional Usage Caused by New Mount/Mount Modification: N/A

Report Prepared By: Changzhi Zang

TES Project Number: 144880

Page 1

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 130 ft SABRE Monopole Customer Name: SBA Communications Corp Customer Site Number: CT46143-A Customer Site Name: Burlington - Avon Landfill Carrier Name: Verizon (App#: 241526-1) Carrier Site ID / Name: 5000205807 / BURLINGTON_2_CT Site Location: 277 Huckleberry Hill Road Avon, Connecticut Hartford County Latitude: 41.788055 Longitude: -72.918166

<u>Analysis Result:</u> Max Structural Usage: 30.8% [Pass] Max Foundation Usage: 26.5% [Pass] Additional Usage Caused by New Mount/Mount Modification: N/A

Report Prepared By : Changzhi Zang

Introduction

The purpose of this report is to summarize the analysis results on the 130 ft SABRE Monopole to support the proposed antennas and transmission lines in addition to those currently installed. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

Sources of Information

Tower Drawings	Design Report prepared by Sabre, Job #521586 Revision A dated 6/29/2023
Foundation Drawing	Design Report prepared by Sabre, Job #521586 Revision A dated 6/29/2023
Geotechnical Report	Delta Oaks Group, Project #23-19365-01 Revision 0 dated 6/28/2023
Modification Drawings	N/A
Mount Analysis	N/A

Analysis Criteria

The comprehensive analysis was performed in accordance with the requirements and stipulations of the TIA-222-H. In accordance with this standard, the structure was analyzed using **TESPoles**, a proprietary analysis software. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis: Wind Speed with Ice: Service Load Wind Speed: Standard/Codes: Exposure Category: Risk Category:	120.0 mph (3-Sec. Gust) (Ultimate wind speed) 50 mph (3-Sec. Gust) with 1"1/2 radial ice concurrent 60 mph + 0" Radial ice TIA-222-H / 2021 IBC / 2022 Connecticut State Building Code C II
Topographic Category: Crest Height: Seismic Parameters:	0 ft S _S = 0.189, S ₁ = 0.055
••••••	

This structural analysis is based upon the tower being classified as a Risk Category II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

ltems	Elevation (ft)	Qty.	Antenna Descriptions Mount Type & Qty.		Transmission Lines	Owner
30		3	Commscope NHHSS-65B-R2B - Panel			
*		3	Commscope NHH-65B-R2B - Panel			
-		3	Samsung MT6407-77A - Panel			
34	110.0 3		Samsung B2/B66A RRH-BR049 - RRU (2) Ring Mounts		(2) 1 5/8" 6x12	Vorizez
12/	110.0	3 Samsung B5/B13 RRH-BR04C - RRU (2) Ring Mo		(2) King Mounts	Hybrid	Verizon
9		3	Samusng CBRS RRH - RT4401-48A - RRU			
		1	Raycap DB-B1-6C-12AB-0Z - Junction box			
8		3	Andrew DHHTT65B-3XR - Panel		(1) (1)	Sprint Nextel
9		4	RFS ACU-A20-N - RRU			
10	99.0	3	ALU 1900MHz RRH - RRU			
11	99.0	3	ALU 800 MHz RRH - RRU	Flush Mount	(4) 1 1/4"	
12	3		ALU TD-RRH8x20-25 - RRU			
13		3	ALU 800MHz Filter			
14		3	Andrew SBNHH-1D65C - Panel		(6) 1 5/8"	
15		3	Powerwave LGP21401 - TMA		(1) 3" Conduit	
16	90.0 3		Cci TMABPD7823VG12A - TMA	Flush Mount		AT&T
17		3	Andrew APTDC-BDFDM-DBW - OVP		{(2) 3/4" DC (1) 7/16" Fiber}	
18	80.0	3	RFS APXVAR18_43-C-NA20 - Panel	Flush Mount	(12) 7/0//	TATL
19	00.0	6	RFS ATMAA1412D-A1A20 - TMA	Flush Wount	(12) 7/8"	T-Mobile
20		3	JMA Wireless MX08FRO665-21 - Panel		(1) 1.41"	
21	70.0	3	Fujitsu TA08025-B605 - RRU	Platform w/HRK		Dish
22	70.0	3	Fujitsu TA08025-B604 - RRU	[Commscope MC-PK8-DSH]	Hybrid	Wireless
23		1	Raycap RDIDC-9181-PF-48 - OVP			

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

lterns	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
1		3	Commscope NHHSS-65B-R2B - Panel			
2		3	Commscope NHH-65B-R2B - Panel			
3	3 110.0		Samsung MT6413-77A - Panel		(2) 1 5/8" 6x12	
4			Samsung RF4439d-25A - RRU	(2) Ring Mounts		Verizon
5	110.0	3	Samsung RF4461d-13A - RRU		Hybrid	T Childen
6		3	Samsung RT4423-48A - RRU			
-	1		Raycap DB-B1-6C-12AB-0Z			
'		L L	- Junction box			

See the attached coax layout for the line placement considered in the analysis.

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

	Pole shafts	Anchor Bolts	Base Plate	
Max. Usage:	30.8%	28.9%	30.8%	
Pass/Fail	Pass	Pass	Pass	

Foundations

	Moment (Kip-Ft)	Shear (Kips)	Axial (Kips)
Analysis Reactions	1570.3	20.7	32.3

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

Service Load Condition (Rigidity):

Operational characteristics of the tower are found to be within the limits prescribed by TIA-222 for the installed antennas. The maximum twist/sway at the elevation of the proposed equipment is 0.4412 degrees under the operational wind speed as specified in the Analysis Criteria.

Conclusions

Based on the analysis results, the existing structure and its foundation were found to be adequate to safely support the existing and proposed equipment and meet the minimum requirements per the TIA-222 Standard under the design basic wind speed as specified in the Analysis Criteria.

Standard Conditions

- 1. This analysis was performed based on the information supplied to **(TES) Tower Engineering Solutions**, **LLC.** Verification of the information provided was not included in the Scope of Work for **TES**. The accuracy of the analysis is dependent on the accuracy of the information provided.
- 2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
- 3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of TES. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the ANSI/TIA-222 standard or other codes, TES should be notified in writing and the applicable minimum values provided by the client.
- 4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. **TES** has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, **TES** should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
- 5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
- 6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.

	()	()	()	()	· 7 F -		(((3))	-			
1	53.25	35.41	51.14	0.438		0.29531	65				
2	53.50	21.92	37.72	0.375	Slip	0.29531	65				
3	31.75	14.00	23.38	0.250	Slip	0.29531	65				
		Disc	rete A	Appurte	nances	5				<u> </u>	31'-9" 1/4" Thick (65 KSI)
Attach	Force							110-07		i į i	
Elev (ft)) Qty	Descri	ption		Carrier		-		H	
110.00	110.00) 1	Ring M	ount		Verizon					a
110.00	110.00) 1	Raycap)		Verizon		-	101*-5"	<u>ńnn</u>	
110.00	110.00) 3	Comms	scope		Verizon		93-07	98'-3"		39"
110.00	110.00) 3	Comme	scope		Verizon				누나누	
110.00	110.00) 3	Samsu	ng RF4439	9d-25A	Verizon				自自自	
110.00	110.00) 3	Samsu	ng RF4461	ld-13A	Verizon		90"-0"			
110.00	110.00) 3	Samsu	ng RT4423	3-48A	Verizon					
110.00	110.00) 3		ng MT6413		Verizon				TTT	
99.00	99.00) 3	Andrew	DHHTT6	5B-3XR	Sprint Nexte				hńń	
99.00	99.00) 1	Flush N			Sprint Nextel		80:-0*			
99.00				CU-A20-N		Sprint Nexte					53.45
99.00				00MHz RF		Sprint Nexte					3/8" Thick (55 KSI)
99.00				0 MHz RR		Sprint Nexte		70.0.			(sa Koi)
99.00				D-RRH8x2		Sprint Nextel					
99.00				OMHz Filte		Sprint Nexte					130*-0*
90.00				SBNHH-		AT&T					
90.00				vave LGP2		AT&T					
90.00				ABPD7823	SVG12A	AT&T					
90.00			Andrew			AT&T			53'-3"		· · · · · · · · · · · · · · · · · · ·
90.00			Flush N			AT&T T-Mobile			<u></u>		
80.00			Flush N	nount		T-Mobile			48'-0"		63"
80.00			RFS	TMAA1412	00 44420						
80.00 70.00			JMA W		D-A AZU	Dish Wireless					
70.00				TA08025-I	3605	Dish Wireless					
70.00				TA08025-I		Dish Wireless					
70.00			Raycap		5004	Dish Wireless					
70.00			• •		PK8-DSH	Dish Wireless					
10.00	70.00		_								53'-3"
Eleve	F [*] L-++	LIN	ear A	ppurter	lances						7/16" Thick (65 KSI)
Elev From (ff)	Elev) To (ft)	Placem	ent De	scription		Carrier					
From (ft) 0.00	110.00	Inside		/8" 6x12 H	vhrid	Verizon		-			
0.00	99.00	Inside		/4" Coax	ybrid	Sprint Nextel					
0.00	90.00	Inside		/8" Coax		AT&T					
0.00	90.00	Inside		Coax		AT&T					
0.00	90.00	Inside		" DC		AT&T					
0.00	90.00	Inside		6" Fiber		AT&T					
0.00	80.00	Inside		" Coax		T-Mobile					
0.00	70.00	Outsid		1" Hybrid		Dish Wireless					
			Anc	hor Bol	ts			1	a a a a a a a a a a a a a a a a a a a		
L		0	Grade					- <u>P</u>			
Qty S	Specificatio		(ksi)	Arrange	ement						
18	2.25" 18J		75.0	Rad				-			
	_		_								

Copyright © 2024 by Tower Engineering Solutions, LLC. All rights reserved.

Base Plate

Structure: CT46143-A-SBAType:TaperedBase Shape:18 Sided1/26/2024Site Name:Burlington - Avon LandfillTaper:0.295311/26/2024Height:130.00 (ft)Page: 3Page: 3

Thickness (in)	Specifications (in)	Grade (ksi)	Geo	metry	
2.2500	63.8	50.0	Ro	ound	
		Reactio	ns		
3		M	oment	Shear	Axial
Load Case		(F1	-Kips)	(Kips)	(Kips)
1.2D + 1.0W	120 mph Wind	15	70.3	20.7	32.3
0.9D + 1.0W 1	120 mph Wind	15	63.7	20.7	24.2
1.2D + 1.0Di -	+ 1.0Wi 50 mph Wind	4	40.7	5.9	50.4
1.2D + 1.0Ev	+ 1.0Eh	e	8.7	0.8	33.4
0.9D + 1.0Ev	+ 1.0Eh	6	8.6	0.8	25.3
1.0D + 1.0W 6	60 mph Wind	3	50.3	4.6	26.9

Copyright © 2024 by Tower Engineering Solutions, LLC. All rights reserved.

1-1-	d.		S	haft Propertie	• <i>1</i>		
Structure:	CT46143-A-S	BA		Code:	TIA-222-H	1/26/2024	4
Site Name:	Burlington - A	von Landfill		Exposure:	С		((cHan))
Height:	130.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		LD
Gh:	1.1	Topography:	1	Struct Class:	11	Page: 5	Tower Engineering Solution

Sec. No.	Shape	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Overlap (in)	Weight (lb)
1	18	53.250	0.4375	65		0.00	10,779
2	18	53.500	0.3750	65	Slip	63.00	6,379
3	18	31.750	0.2500	65	Slip	39.00	1,581
					Total Sha	aft Weight:	18,739

			Bo	ottom									
Sec. No.	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Taper
1	51.14	0.00	70.40	22867.07	19.20	116.89	35.41	53.25	48.57	7507.30	12.86	80.95	0.295308
2	37.72	48.00	44.44	7829.01	16.32	100.57	21.92	101.50	25.64	1503.11	8.89	58.44	0.295308
3	23.38	98.25	18.35	1239.90	15.08	93.50	14.00	130.00	10.91	260.61	8.46	56.00	0.295308

		Load Summary	(<u> </u>		
Structure:	CT46143-A-SBA	Code:	TIA-222-H	1/26/2024	
Site Name:	Burlington - Avon Landfill	Exposure:	С	de Banh	
Height:	130.00 (ft)	Crest Height:	0.00	Τ	2C
Base Elev:	0.000 (ft)	Site Class:	D - Stiff Soil		<u>LO</u>
Gh:	1.1 Topography: 1	Struct Class:	11	Page: 6	neering Solution

Discrete Appurtenances

				No Ice			Ice			Vert
No.	Elev (ft) Descriptio	n Qty	Weight (Ib)	CaAa (sf)	CaAa Factor	Weight (Ib)	CaAa (sf)	CaAa Factor	Hor. Ecc. (ft)	Vert Ecc (ft)
1	110.00 Ring Mount	1	660.00	7.50	1.00	1553.33	15.114	1.00	0.00	0.00
2	110.00 Raycap DB-B1-6C-12A	B-0Z 1	21.40	4.10	1.00	136.39	4.877	1.00	0.00	0.00
3	110.00 Commscope NHHSS-6		51.00	8.05	0.84	237.52	9.276	0.84	0.00	0.00
4	110.00 Commscope NHH-65B	R2B 3	43.70	8.08	0.83	238.01	9.330	0.83	0.00	0.00
5	110.00 Samsung RF4439d-25/	A 3	74.70	1.87	0.67	190.98	3.009	0.67	0.00	0.00
6	110.00 Samsung RF4461d-13/		39.70	1.37	0.67	120.30	2.204	0.67	0.00	0.00
7	110.00 Samsung RT4423-48A	3	15.40	0.86	0.67	57.09	1.745	0.67	0.00	0.00
8	110.00 Samsung MT6413-77A	3	57.32	3.79	0.69	251.28	5.329	0.75	0.00	0.00
9	99.00 Andrew DHHTT65B-3X	R 3	45.00	8.09	0.83	238.03	9.388	0.83	0.00	0.00
10	99.00 Flush Mount	1	350.00	5.00	1.00	631.26	8.348	1.00	0.00	0.00
11	99.00 RFS ACU-A20-N	4	1.00	0.14	0.67	5.12	0.425	0.67	0.00	0.00
12	99.00 ALU 1900MHz RRH	3	60.00	2.31	0.67	132.57	2.933	0.67	0.00	0.00
13	99.00 ALU 800 MHz RRH	3	53.00	2.13	0.67	113.52	2.698	0.67	0.00	0.00
4	99.00 ALU TD-RRH8x20-25	3	70.00	4.05	0.67	175.07	4.828	0.67	0.00	0.00
15	99.00 ALU 800MHz Filter	3	8.80	0.78	0.67	25.73	1.401	0.67	0.00	0.00
16	90.00 Andrew SBNHH-1D650	; 3	49.60	11.39	0.84	296.91	12.962	0.84	0.00	0.00
17	90.00 Powerwave LGP21401	3	17.50	0.82	0.67	37.85	1.196	0.67	0.00	0.00
18	90.00 Cci TMABPD7823VG1	А 3	26.00	1.37	0.67	58.22	1.822	0.67	0.00	0.00
19	90.00 Andrew APTDC-BDFD		1.32	0.10	0.67	4.21	0.248	0.67	0.00	0.00
20	90.00 Flush Mount	1	350.00	5.00	1.00	628.60	8.317	1.00	0.00	0.00
21	80.00 Flush Mount	1	350.00	5.00	1.00	625.33	8.278	1.00	0.00	0.00
22	80.00 RFS APXVAR18 43-C	NA20 3	69.40	9.65	0.81	290.10	10.884	0.81	0.00	0.00
23	80.00 RFS ATMAA1412D-A1		1.16	0.15	0.67	6.33	0.336	0.67	0.00	0.00
24	70.00 JMA Wireless MX08FR		64.50	12.49	0.74	334.03	13.847	0.74	0.00	0.00
25	70.00 Fujitsu TA08025-B605	3	75.00	1.96	0.67	123.47	2.480	0.67	0.00	0.00
26	70.00 Fujitsu TA08025-B604	3	63.90	1.96	0.67	110.81	2.480	0.67	0.00	0.00
27	70.00 Raycap RDIDC-9181-P		21.85	2.56	1.00	84.10	3.146	1.00	0.00	0.00
28	70.00 Commscope MC-PK8-I		1727.00	37.59	1.00	3290.98	81.358	1.00	0.00	0.00
-		Totals: 74	6,148.73			16,115.43				

Linear Appurtenances

Bottom Elev. (ft)	Top Elev. (ft)	Description	Exposed Width	Exposed	
0.00	110.00	(2) 1 5/8" 6x12 Hybrid	0.00	Inside	
0.00	99.00	(4) 1 1/4" Coax	0.00	Inside	
0.00	90.00	(6) 1 5/8" Coax	0.00	Inside	
0.00	90.00	(1) 3" Coax	0.00	Inside	
0.00	90.00	(2) 3/4" DC	0.00	Inside	
0.00	90.00	(1) 7/16" Fiber	0.00	Inside	
0.00	80.00	(12) 7/8" Coax	0.00	Inside	
0.00	70.00	(1) 1.41" Hybrid	1.41	Outside	

	Shaf	t Section Prope	erties	
Structure:	CT46143-A-SBA	Code:	TIA-222-H	1/26/2024
Site Name:	Burlington - Avon Landfill	Exposure:	С	((chin))
Height:	130.00 (ft)	Crest Height:	0.00	I FC
Base Elev:	0.000 (ft)	Site Class:	D - Stiff Soil	LES
Gh:	1.1 Topography: 1	Struct Class:	П	Page: 7 Tower Engineering Solu

Increment Length: 5 (ft)

Elev (ft)	Description	Thick (in)	Dia (in)	Area (in^2)	lx (in^4)	W/t Ratio	D/t Ratio	Fpy (ksi)	S (in^3)	Weight (Ib)
0.00		0.4375	51.140	70.404	22867.1	19.20	116.89	78.8		0.0
5.00		0.4375	49.663	68.354	20926.9	18.61	113.52	79.5	829.9	1180.4
10.00		0.4375	48.187	66.304	19099.7	18.01	110.14	80.2	780.7	1145.5
15.00		0.4375	46.710	64.253	17382.1	17.42	106.77	80.9	732.9	1110.6
20.00		0.4375	45.234	62.203	15770.7	16.82	103.39	81.6	686.7	1075.8
25.00		0.4375	43.757	60.153	14262.1	16.23	100.02	82.3	642.0	1040.9
30.00		0.4375	42.281	58.103	12852.8	15.63	96.64	82.5	598.7	1006.0
35.00		0.4375	40.804	56.052	11539.7	15.03	93.27	82.5	557.0	971.1
40.00		0.4375	39.328	54.002	10319.1	14.44	89.89	82.5	516.8	936.2
45.00		0.4375	37.851	51.952	9187.8	13.84	86.52	82.5	478.1	901.3
48.00	Bot - Section 2	0.4375	36.965	50.721	8550.5	13.49	84.49	82.5	455.6	524.1
50.00		0.4375	36.375	49.901	8142.4	13.25	83.14	82.5	440.9	642.5
53.25	Top - Section 1	0.3750	36.165	42.597	6893.8	15.59	96.44	0.0	0.0	1021.9
55.00		0.3750	35.648	41.982	6599.4	15.35	95.06	82.5	364.6	251.8
60.00		0.3750	34.172	40.225	5804.9	14.66	91.12	82.5	334.6	699.3
65.00		0.3750	32.695	38.467	5076.8	13.96	87.19	82.5	305.8	669.4
70.00		0.3750	31.218	36.710	4412.3	13.27	83.25	82.5	278.4	639.5
75.00		0.3750	29.742	34.953	3808.5	12.57	79.31		252.2	609.6
80.00		0.3750	28.265	33.195	3262.4	11.88	75.37	82.5	227.3	579.7
85.00		0.3750	26.789	31.438	2771.2	11.19	71.44	82.5	203.8	549.8
90.00		0.3750	25.312	29.681	2332.0	10.49	67.50	82.5	181.5	519.9
95.00		0.3750	23.836	27.923	1941.8	9.80	63.56	82.5	160.5	490.0
98.25	Bot - Section 3	0.3750	22.876	26.781	1713.1	9.35	61.00	82.5	147.5	302.5
99.00		0.3750	22.655	26.517	1663.0	9.24	60.41	82.5	144.6	114.6
00.00		0.3750	22.359	26.166	1597.8	9.10	59.62	82.5	140.7	151.1
101.50	Top - Section 2	0.2500	22.416	17.588	1091.8	14.40	89.67	0.0	0.0	222.9
05.00		0.2500	21.383	16.768	946.1	13. 67	85.53	82.5	87.2	204.6
110.00		0.2500	19.906	15.597	761.3	12.63	79.62	82.5	75.3	275.3
115.00		0.2500	18.430	14.425	602.3	11.59	73.72	82.5	64.4	255.4
20.00		0.2500	16.953	13.253	467.2	10.55	67.81	82.5	54.3	235.5
25.00		0.2500	15.477	12.082	353.9	9.51	61.91	82.5	45.0	215.5
30.00		0.2500	14.000	10.910	260.6	8.46	56.00	82.5	36.7	195.6
										18738.5

18738.5

						ind Loa										
Structure:	CT46143	-A-SBA				Co	de:	Т	IA-222-H			1/26/2024				
Site Name:	Burlingto	n - Avon	Landfi	1		Exp	osure	e: C	;		((·······))					
	130.00 (f					-	st Hei		.00					TO		
Height:								•		a				ES		
Base Elev:	0.000 (ft)						Clas	-) - Stiff So	011		_	Toward	Engincering Solu		
Gh:	1.1		Торо	graphy	: 1	Str	uct Cl	ass: II				Page	: 8 ^{10wei 1}	Signeering 508		
Load Case:	1.2D + 1	I.0W 120) mph V	Vind							Y	1	Iteratio	ons		
Dea	d Load F	actor	1.20									×				
Win	d Load F	actor	1.00								3					
			_		_	_								Tot		
Elev (ft) Des	cription	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Dead Load (Ib)		
0.00		1.00	0.85	29.269	32.20	474.73	0.730	0.000	0.00	0.000	0.00	0.0	0.0	0.0		
5.00		1.00	0.85	29.269	32.20	461.02	0.730	0.000	5.00	21.325	15.57	501.2	0.0	1416.5		
10.00		1.00	0.85	29.269	32.20	447.32	0.730	0.000	5.00	20.700	15.11	486.5	0.0	1374.6		
15.00		1.00	0.85	29.269	32.20	433.61	0.730	0.000	5.00	20.075	14.65	471.8	0.0	1332.8		
20.00		1.00	0.90	31.055	34.16	432.53	0.730	0.000	5.00	19.451	14.20	485.0	0.0	1290.9		
25.00		1.00	0.95	32.549	35.80	428.36	0.730	0.000		18.826	13.74	492.0	0.0	1249.0		
30.00		1.00	0.98	33.823	37.20	421.92	0.730	0.000		18.201	13.29	494.3	0.0	1207.2		
35.00		1.00	1.01	34.938	38.43	413.85	0.730	0.000		17.576	12.83	493.1	0.0	1165.3		
40.00		1.00	1.04	35.934	39.53	404.52	0.730	0.000		16.952	12.37	489.1	0.0	1123.5		
45.00		1.00	1.07	36.837	40.52	394.19	0.730	0.000		16.327	11.92	482.9	0.0	1081.6		
48.00 Bot - Sec	tion 2	1.00		37.341	41.07	387.59	0.730	0.000	3.00	9.496	6.93	284.7	0.0	628.9		
50.00		1.00		37.663	41.43	383.04	0.730	0.000	2.00		4.62	191.5	0.0	771.0		
53.25 Top - Sec	tion 1	1.00		38.165	41.98	375.41	0.730	0.000		10.078	7.36	308.9	0.0	1226.3		
55.00		1.00	1.12	38.426	42.27	379.17	0.730	0.000	1.75	5.317	3.88	164.1	0.0	302.2		
60.00		1.00	1.14	39.137	43.05	366.81	0.730	0.000		14.770	10.78	464.2	0.0 0.0	839.2 803.3		
65.00		1.00		39.802	43.78	353.93	0.730	0.000		14.145	10.33	452.1 438.9	0.0	767.4		
70.00 Appurten	ance(s)	1.00		40.427	44.47	340.59	0.730 0.730	0.000		13.521 12.896	9.87 9.41	436.9	0.0	731.6		
75.00		1.00		41.019	45.12	326.85	0.730	0.000		12.090	8.96	409.7	0.0	695.7		
80.00 Appurten	ance(s)	1.00		41.580	45.74	312.74 298.30	0.730	0.000		11.647	8.50	393.9	0.0	659.8		
85.00	(.)	1.00		42.114 42.624	46.33 46.89	298.50	0.730	0.000		11.022	8.05	377.2	0.0	623.9		
90.00 Appurten	ance(s)	1.00 1.00		42.024	40.69	268.54	0.730	0.000		10.397	7.59	359.9	0.0	588.0		
95.00	tion 2			43.418	47.76	258.64	0.730	0.000	3.25		4.69	223.9	0.0	363.0		
98.25 Bot - Sec		1.00 1.00		43.488	47.84	256.35		0.000	0.75	1.477	1.08	51.6	0.0	137.5		
99.00 Appurten 00.00	ance(s)	1.00		43.580	47.94	253.27		0.000	1.00	1.947	1.42	68.1	0.0	181.3		
00.00 01.50 Top - Sec	ction 2	1.00		43.717	48.09	248.64		0.000	1.50		2.10	100.9	0.0	267.5		
01.50 TOP - Sec 05.00		1.00		44.030	48.43	243.46		0.000	3.50		4.73	229.3	0.0	245.5		
105.00 10.00 Appurten	ance(s)	1.00		44.463	48.91	227.76	0.730	0.000	5.00		6.38	311.9	0.0	330.4		
115.00 Appullen	a.100(0)	1.00		44.881	49.37	211.85		0.000	5.00	8.110	5.92	292.3	0.0	306.5		
120.00		1.00		45.285	49.81	195.75		0.000	5.00	7.485	5.46	272.2	0.0	282.6		
125.00		1.00		45.676	50.24	179.48	0.730	0.000	5.00	6.860	5.01	251.6	0.0	258.6		
				46.055	50.66	163.02	0 700	0.000	5.00	6.236	4.55	230.6	0.0	234.7		

				D	iscret	e App	urten	ance	Forces					
Sit He	ructure: e Name: ight: se Elev:	CT46143-A-SBA Burlington - Avon 130.00 (ft) 0.000 (ft)	Landf	ill		Ex	ode: posure est He te Clas	e: (ight: (ΓΙΑ-222-⊢ C).00 C - Stiff S		1/26	/2024		S
Gh	:	1.1	Торо	graphy	r : 1	Sti	ruct Cl	ass: I	I		Pa	age: 9	lower Enginee	ring Solution
Lo	ad Case	: 1.2D + 1.0W 120	mph	Wind							¥Ą	İter	ations	2
	Dea	ad Load Factor	1.20									x		
		nd Load Factor	1.00								3	>		
No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (Ib-ft)
1	110.00 Co	ommscope	3	44.463	48.910	0.66	0.80	16.10	157.32	0.000	0.000	787.22	0.00	0.0
2	110.00 Rir	ng Mount	1	44.463	48.910	1.00	1.00	7.50	792.00	0.000	0.000	366.82	0.00	0.0
3	110.00 Ra	усар	1	44.463	48.910	0.80	0.80	3.28	25.68	0.000	0.000	160.42	0.00	0.0
4	110.00 Co	mmscope	3	44.463	48.910	0.67	0.80	16.23	183.60	0.000	0.000	793.75	0.00	0.0
5	110.00 Sa	msung MT6413-77A	3	44.463	48.910	0.55	0.80	6.30	206.35	0.000	0.000	308.30	0.00	0.0
6	110.00 Sa	msung RF4439d-25A	3	44.463	48.910	0.54	0.80	3.01	268.92	0.000	0.000	147.07	0.00	0.0
7	110.00 Sa	msung RF4461d-13A	3	44.463	48.910	0.54	0.80	2.20	142.92	0.000	0.000	107.75	0.00	0.0
8	110.00 Sa	msung RT4423-48A	3	44.463	48.910	0.54	0.80	1.38	55.44	0.000	0.000	67.64	0.00	0.0
9	99.00 AL	U 800MHz Filter	3	43.488	47.837	0.54	0.80	1.25	31.68	0.000	0.000	60.00	0.00	0.0
10	99.00 AL	U TD-RRH8x20-25	3	43.488	47.837	0.54	0.80	6.51	252.00	0.000	0.000	311.53	0.00	0.0
11	99.00 AL	U 800 MHz RRH	3	43.488	47.837	0.54	0.80	3.43	190.80	0.000	0.000	163.84	0.00	0.0
12	99.00 AL	U 1900MHz RRH	3	43.488	47.837	0.54	0.80	3.71	216.00	0.000	0.000	177.69	0.00	0.0
13	99.00 RF	S ACU-A20-N	4	43.488		0.54	0.80	0.30	4.80	0.000	0.000	14.36	0.00	0.0
14	99.00 Flu	ish Mount	1	43.488		1.00	1.00	5.00	420.00	0.000	0.000	239.18	0.00	0.0
15	99.00 An	drew DHHTT65B-3XR	3	43.488	47.837	0.66	0.80	16.12	162.00	0.000	0.000	770.90	0.00	0.0
16	90.00 Flu	ish Mount	1	42.624	46.886	1.00	1.00	5.00	420.00	0.000	0.000	234.43	0.00	0.0
17	90.00 An	drew	3	42.624	46.886	0.54	0.80	0.16	4.75	0.000	0.000	7.54	0.00	0.0
18	90.00 Cc	i TMABPD7823VG12A	3	42.624	46.886	0.54	0.80	2.20	93.60	0.000	0.000	103.29	0.00	0.0
19		werwave LGP21401	3	42.624		0.54	0.80	1.32	63.00	0.000	0.000	61.82	0.00	0.0
20	90.00 An	drew SBNHH-1D65C	3	42.624		0.67	0.80	22.96	178.56	0.000	0.000	1076.62	0.00	0.0
21	80.00 Flu	ish Mount	1		45.738	1.00	1.00	5.00	420.00	0.000	0.000	228.69	0.00	0.0
22	80.00 RF	S	3	41.580		0.65	0.80	18.76	249.84	0.000	0.000	858.03	0.00	0.0
23	80.00 RF		6	41.580		0.54	0.80	0.48	8.35	0.000	0.000	22.06	0.00	0.0
24	70.00 Co	mmscope	1	40.427		1.00	1.00	37.59	2072.40	0.000	0.000	1671.64	0.00	0.0
25	70.00 Ra		1	40.427		0.75	0.75	1.92	26.22	0.000	0.000	85.38	0.00	0.0
26		jitsu TA08025-B604	3	40.427		0.50	0.75	2.95	230.04	0.000	0.000	131.40	0.00	0.0
27		itsu TA08025-B605	3	40.427		0.50	0.75	2.95	270.00	0.000	0.000	131.40	0.00	0.00
28		A Wireless	3	40.427		0.55	0.75	20.80	232.20	0.000	0.000	924.80	0.00	0.0
			_			0.00	0.70	20.00	202.20	0.000	0.000	324.00	0.00	0.0

	Total Applied Force Summary												
Structure:	CT46143-A-SBA		Code:	TIA-222-H	1/26/2024	A							
Site Name:	Burlington - Avon Landfill		Exposure:	С		(ceffer))							
Height:	130.00 (ft)		Crest Height:	0.00		EC							
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil									
Gh:	1.1 Topography:	1	Struct Class:	I	Page: 10	Tower Engineering Solutions							
Load Case	• 1 2D + 1 0W 120 mph Wind				¥4	terations 21							

Iterations

X

Load Case: 1.2D + 1.0W 120 mph Wind

1.20 **Dead Load Factor** Wind Load Factor 1.00

Elev (ft)	Description	Lateral FX (-) (Ib)	Axial FY (-) (lb)	Torsion MY (Ib-ft)	Moment MZ (Ib-ft)		
0.00		0.00	0.00	0.00	0.00		
5.00		501.19	1553.37	0.00	0.00		
10.00		486.51	1511.51	0.00	0.00		
15.00		471.82	1469.65	0.00	0.00		
20.00		485.05	1427.79	0.00	0.00		
25.00		492.05	1385.93	0.00	0.00		
30.00		494.34	1344.07	0.00	0.00		
35.00		493.11	1302.21	0.00	0.00		
40.00		489.15	1260.35	0.00	0.00		
45.00		482.95	1218.49	0.00	0.00		
48.00		284.74	711.00	0.00	0.00		
50.00		191.53	825.71	0.00	0.00		
53.25		308.85	1315.25	0.00	0.00		
55.00		164.07	350.11	0.00	0.00		
60.00		464.18	976.08	0.00	0.00		
65.00		452.10	940.20	0.00	0.00		
70.00	(11) attachments	3383.54	3735.18	0.00	0.00		
75.00		424.77	861.60	0.00	0.00		
80.00	(10) attachments	1518.51	1503.91	0.00	0.00		
85.00	()	393.86	752.40	0.00	0.00		
90.00	(13) attachments	1860.95	1476.43	0.00	0.00		
95.00	(,	359.94	623.40	0.00	0.00	· ·	
98.25		223.94	385.97	0.00	0.00		
99.00	(20) attachments	1789.07	1420.12	0.00	0.00		
100.00	()	68.13	185.20	0.00	0.00		
101.50		100.87	273.31	0.00	0.00		
105.00		229.32	259.17	0.00	0.00		
110.00	(20) attachments	3050.82	2182.15	0.00	0.00		
115.00	(292.28	306.47	0.00	0.00		
120.00		272.19	282.55	0.00	0.00		
125.00		251.63	258.63	0.00	0.00		
			234.71	0.00	0.00		
130.00		230.61	234.71	0.00	0.00		

•

	Linear Appurtena	nce Segment F	orces (Factored)		
Structure:	CT46143-A-SBA	Code:	TIA-222-H	1/26/2024	4
Site Name:	Burlington - Avon Landfill	Exposure:	С		(((HI)))
Height:	130.00 (ft)	Crest Height:	0.00		EC
Base Elev:	0.000 (ft)	Site Class:	D - Stiff Soil		<u>IES</u>
Gh:	1.1 Topography: 1	Struct Class:	II	Page: 11	Tower Engineering Solutions
Load Case:	1.2D + 1.0W 120 mph Wind			×4 I	terations 21

Description

5.00 1.41" Hybrid 10.00 1.41" Hybrid

70.00 1.41" Hybrid

Тор Elev (ft)

1 20 **Dead Load Factor** Wind Load F

Yes

5.00

0.000

1.41

nd	Length		Exposed Width	Area	CaAa		Cf Adjust	qz	FX	Dead Load
sed	(ft)	Ca	(in)	(sqft)	(sqft)	Ra	Factor	(psf)	(Ib)	(Ib)
s	5.00	0.000	1.41	0.59	0.00	0.028	0.000	29.269	0.00	6.84
s	5.00	0.000	1.41	0.59	0.00	0.028	0.000	29.269	0.00	6.84
s	5.00	0.000	1.41	0.59	0.00	0.029	0.000	29.269	0.00	6.84
s	5.00	0.000	1.41	0.59	0.00	0.030	0.000	31.055	0.00	6.84
s	5.00	0.000	1.41	0.59	0.00	0.031	0.000	32.549	0.00	6.84
s	5.00	0.000	1.41	0.59	0.00	0.032	0.000	33.823	0.00	6.84
s	5.00	0.000	1.41	0.59	0.00	0.033	0.000	34.938	0.00	6.84
s	5.00	0.000	1.41	0.59	0.00	0.035	0.000	35.934	0.00	6.84
S	5.00	0.000	1.41	0.59	0.00	0.036	0.000	36.837	0.00	6.84
s	3.00	0.000	1.41	0.35	0.00	0.037	0.000	37.341	0.00	4.10
	1.00 sed s s s s s s s s s s s s s s s s s s	sed (ff) s 5.00 s 5.00	1.00 ad Length (ft) Ca s 5.00 0.000 s 5.00 0.000	1.00 Exposed Width (ft) Exposed Width (in) s 5.00 0.000 1.41 s 5.00 0.000 1.41	1.00 Exposed Width (ft) Area (sqft) s 5.00 0.000 1.41 0.59 s 5.00 0.000 1.41 0.59	1.00 Exposed Width (ft) Area (sqft) CaAa (sqft) s 5.00 0.000 1.41 0.59 0.00 s 5.00 0.000 1.41 0.59	1.00 Exposed Width (ft) Area (sqft) CaAa (sqft) Ra s 5.00 0.000 1.41 0.59 0.00 0.028 s 5.00 0.000 1.41 0.59 0.00 0.028 s 5.00 0.000 1.41 0.59 0.00 0.028 s 5.00 0.000 1.41 0.59 0.00 0.029 s 5.00 0.000 1.41 0.59 0.00 0.028 s 5.00 0.000 1.41 0.59 0.00 0.028 s 5.00 0.000 1.41 0.59 0.00 0.033 s 5.00 0.000 1.41 0.59 0.00 0.032 s 5.00 0.000 1.41 0.59 0.00 0.033 s 5.00 0.000 1.41 0.59 0.00 0.035 s 5.00 0.000 1.41 0.59 0.00 0.035 <td>1.00 Exposed Width (ft) Area Ca CaAa (sqft) Cf Adjust Factor s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 s 5.00 0.000 1.41 0.59 0.00 0.029 0.000 s 5.00 0.000 1.41 0.59 0.00 0.030 0.000 s 5.00 0.000 1.41 0.59 0.00 0.031 0.000 s 5.00 0.000 1.41 0.59 0.00 0.032 0.000 s 5.00 0.000 1.41 0.59 0.00 0.033 0.000 s 5.00 0.000 1.41 0.59 0.00 0.035 0.000 s 5.00 0.000 1.41 0.59</td> <td>1.00Exposed (ft)Area (sqft)CaAa (sqft)Cf Adjust (sqft)qz (psf)s$5.00$$0.000$$1.41$$0.59$$0.00$$0.028$$0.000$$29.269s5.00$$0.000$$1.41$$0.59$$0.00$$0.028$$0.000$$29.269s5.00$$0.000$$1.41$$0.59$$0.00$$0.028$$0.000$$29.269s5.00$$0.000$$1.41$$0.59$$0.00$$0.029$$0.000$$29.269s5.00$$0.000$$1.41$$0.59$$0.00$$0.029$$0.000$$29.269s5.00$$0.000$$1.41$$0.59$$0.00$$0.029$$0.000$$29.269s5.00$$0.000$$1.41$$0.59$$0.00$$0.023$$0.000$$31.055s5.00$$0.000$$1.41$$0.59$$0.00$$0.033$$0.000$$33.823s5.00$$0.000$$1.41$$0.59$$0.00$$0.033$$0.000$$34.938s5.00$$0.000$$1.41$$0.59$$0.00$$0.035$$0.000$$35.934s5.00$$0.000$$1.41$$0.59$$0.00$$0.036$$0.000$$36.837$</td> <td>1.00 Exposed (ft) Exposed (ft) Area (sqft) Ca (sqft) Cf (sqft) Adjust Ra qz Factor F X (psf) F X (lb) s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.029 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.029 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.031 0.000 31.055 0.00 s 5.00 0.00</td>	1.00 Exposed Width (ft) Area Ca CaAa (sqft) Cf Adjust Factor s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 s 5.00 0.000 1.41 0.59 0.00 0.029 0.000 s 5.00 0.000 1.41 0.59 0.00 0.030 0.000 s 5.00 0.000 1.41 0.59 0.00 0.031 0.000 s 5.00 0.000 1.41 0.59 0.00 0.032 0.000 s 5.00 0.000 1.41 0.59 0.00 0.033 0.000 s 5.00 0.000 1.41 0.59 0.00 0.035 0.000 s 5.00 0.000 1.41 0.59	1.00Exposed (ft)Area (sqft)CaAa (sqft)Cf Adjust (sqft)qz (psf)s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 29.269 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 29.269 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 29.269 s 5.00 0.000 1.41 0.59 0.00 0.029 0.000 29.269 s 5.00 0.000 1.41 0.59 0.00 0.029 0.000 29.269 s 5.00 0.000 1.41 0.59 0.00 0.029 0.000 29.269 s 5.00 0.000 1.41 0.59 0.00 0.023 0.000 31.055 s 5.00 0.000 1.41 0.59 0.00 0.033 0.000 33.823 s 5.00 0.000 1.41 0.59 0.00 0.033 0.000 34.938 s 5.00 0.000 1.41 0.59 0.00 0.035 0.000 35.934 s 5.00 0.000 1.41 0.59 0.00 0.036 0.000 36.837	1.00 Exposed (ft) Exposed (ft) Area (sqft) Ca (sqft) Cf (sqft) Adjust Ra qz Factor F X (psf) F X (lb) s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.028 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.029 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.029 0.000 29.269 0.00 s 5.00 0.000 1.41 0.59 0.00 0.031 0.000 31.055 0.00 s 5.00 0.00

	,									201200	0.00
15.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.029	0.000	29.269	0.00
20.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.030	0.000	31.055	0.00
25.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.031	0.000	32.549	0.00
30.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.032	0.000	33.823	0.00
35.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.033	0.000	34.938	0.00
40.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.035	0.000	35.934	0.00
45.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.036	0.000	36.837	0.00
48.00	1.41" Hybrid	Yes	3.00	0.000	1.41	0.35	0.00	0.037	0.000	37.341	0.00
50.00	1.41" Hybrid	Yes	2.00	0.000	1.41	0.23	0.00	0.038	0.000	37.663	0.00
53.25	1.41" Hybrid	Yes	3.25	0.000	1.41	0.38	0.00	0.039	0.000	38.165	0.00
55.00	1.41" Hybrid	Yes	1.75	0.000	1.41	0.21	0.00	0.039	0.000	38.426	0.00
60.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.040	0.000	39.137	0.00
65.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.042	0.000	39.802	0.00

0.59

0.00

0.043

Totals:

40.427

0.000

2.74

4.45

2.39

6.84

6.84

6.84

95.8

0.00

0.0

x

				3	1	Calc	ulated Fo	orces		A.				
Struct	ture:	CT461	43-A-S	BA			Code:	TIA	-222-H		1/2	6/2024	(
Site N				von Lan	dfill		Exposure	С					((明))	
			-				Crest Heig		0				In	a
Heigh	nt:	130.00					-							5
Base	Elev:	0.000	(ft)				Site Class	: D-	Stiff Soi					<u> </u>
Gh:		1.1		Тор	ography	: 1	Struct Cla	ss: II		_	Pa	age: 12	Tower Engineer	nng Solutions
Load	Dea	d Load	- 1.0W I Facto I Facto		0					z	ľ	ite S	erations	21
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-32.32	-20.74	0.00	-1570.2	0.00	1570.27	4994.17	1235.59	5197.80	5206.12	0.00	0.000	0.000	0.308
5.00	-30.73	-20.29	0.00	-1466.5	0.00	1466.57	4891.79	1199.61	4899.47	4949.63	0.05	-0.094	0.000	0.303
10.00	-29.18	-19.85	0.00	-1365.1	0.00	1365.13	4786.83	1163.63	4609.96	4696.86	0.20	-0.191	0.000	0.297
15.00	-27.68	-19.42	0.00	-1265.9	0.00	1265.90	4679.28	1127.65	4329.26	4448.07	0.46	-0.289	0.000	0.291
20.00	-26.23	-18.97	0.00	-1168.8	0.00	1168.82	4569.15	1091.66	4057.38	4203.49	0.81	-0.388	0.000	0.284
25.00	-24.81	-18.51	0.00	-1073.9	0.00	1073.97	4456.44	1055.68	3794.32	3963.36	1.27	-0.489	0.000	0.277
30.00	-23.44	-18.05	0.00	-981.42	0.00	981.42	4316.73	1019.70	3540.07	3706.95	1.84	-0.592	0.000	0.270
35.00	-22.11	-17.58	0.00	-891.19	0.00	891.19	4164.40	983.72	3294.64	3448.64	2.52	-0.696	0.000	0.264
40.00	-20.83	-17.11	0.00	-803.30	0.00	803.30	4012.07	947.73	3058.03	3199.66	3.30	-0.800	0.000	0.257
45.00	-19.59	-16.64	0.00	-717.75	0.00	717.75	3859.75	911.75	2830.23	2960.01	4.20	-0.905	0.000	0.248
48.00	-18.87	-16.36	0.00	-667.83	0.00	667.83	3768.35	890.16	2697.78	2820.70	4.79	-0.969	0.000	0.242
50.00	-18.03	-16.17	0.00	-635.11	0.00	635.11	3707.42	875.77	2611.24	2729.69	5.20	-1.013	0.000	0.238
53.25	-16.71	-15.85	0.00	-582.55	0.00	582.55	3164.77	747.58	2219.90	2324.50	5.92	-1.082	0.000	0.256
55.00	-16.34	-15.71	0.00	-554.81	0.00	554.81	3119.07	736.79	2156.26	2257.51	6.32	-1.119	0.000	0.251
60.00	-15.34	-15.25	0.00	-476.28	0.00	476.28	2988.51	705.95	1979.51	2071.51	7.55	-1.231	0.000	0.236
65.00	-14.39	-14.80	0.00	-400.03	0.00	400.03	2857.94	675.10	1810.33	1893.51	8.90	-1.338	0.000	0.217
70.00	-10.71	-11.35	0.00	-326.01	0.00	326.01	2727.38	644.26	1648.70	1723.51	10.36	-1.440	0.000	0.193
75.00	-9.85	-10.92	0.00	-269.27	0.00	269.27	2596.81	613.42	1494.62	1561.50	11.92	-1.536	0.000	0.177
80.00	-8.37	-9.37	0.00	-214.68	0.00	214.68	2466.25	582.58	1348.10	1407.49	13.58	-1.626	0.000	0.156
85.00	-7.62	-8.97	0.00	-167.82	0.00	167.82	2335.68	551.74	1209.14	1261.47	15.33	-1.709	0.000	0.137 0.112
90.00	-6.19	-7.07	0.00	-122.99	0.00	122.99	2205.12	520.89	1077.74	1123.45	17.16	-1.784	0.000	0.091
95.00	-5.57	-6.69	0.00	-87.65	0.00	87.65	2074.55	490.05	953.89	993.42	19.06	-1.848 -1.885	0.000 0.000	0.091
98.25	-5.19	-6.46	0.00	-65.89	0.00	65.89	1989.68	470.00	877.44	913.19	20.34 20.63	-1.865	0.000	0.075
99.00	-3.83	-4.63	0.00	-61.05	0.00	61.05	1970.10	465.38	860.25	895.16 871.39	20.63		0.000	0.070
100.00	-3.65	-4.55	0.00	-56.42	0.00	56.42	1943.99	459.21	837.60	593.96	21.03	-1.903 -1.917	0.000	0.086
101.50	-3.38	-4.44	0.00	-49.60	0.00	49.60	1306.72	308.67 294.28	567.69 515.98	539.57	23.05	-1.917	0.000	0.066
105.00	-3.12	-4.21	0.00	-34.05	0.00	34.05	1245.79		446.40	466.39	25.05	-1.945	0.000	0.029
110.00	-1.05	-1.08	0.00	-13.01	0.00	13.01 7.59	1158.75 1071.71	273.72 253.16	446.40 381.85	466.39 398.55	25.11	-1.980	0.000	0.029
115.00	-0.75	-0.78	0.00	-7.59	0.00	3.69	984.66	232.60	322.34	336.04	29.29	-2.013	0.000	0.011
120.00	-0.48	-0.50	0.00	-3.69	0.00	3.69 1.19	964.66 897.62	232.60	267.87	278.85	31.40	-2.013	0.000	0.005
125.00	-0.23	-0.24	0.00	-1.19	0.00	1.19	091.02	212.04	201.01	210.00	01.40	-2.020	0.000	0.000

					W	ind Lo	ading	- Sha	ift,					
Structure	: CT46143	3-A-SBA				Co	de:	T	TIA-222-H			1/26/20	24	
Site Name	e: Burlingto		l andfi	11			posur						((W)	1))
				111			-						T	· · ·
Height:	130.00 (1	•				Cr	est He	ight: C	00.00					FC
Base Elev	r: 0.000 (ft))				Sit	e Clas	s: D) - Stiff So	bil				LO
Gh:	1.1		Торо	graphy	: 1	Str	uct Cl	ass: I				Page:	13 Tower	Engincering Solu
					_							, ugo.		
	e: 0.9D + 1			Wind								1	Iteratio	ons 2
D	ead Load F	actor	0.90									X		
W	ind Load F	actor	1.00								3			
											P			Tot
Elev (ft) C	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Dead Load (Ib)
0.00		1.00	0.85	29.269	32.20	474.73	0.730	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.85	29.269	32.20	461.02	0.730	0.000	5.00	21.325	15.57	501.2	0.0	1062.4
0.00		1.00	0.85	29.269	32.20	447.32	0.730	0.000	5.00	20.700	15.11	486.5	0.0	1031.0
5.00		1.00	0.85	29.269	32.20	433.61	0.730	0.000	5.00	20.075	14.65	471.8	0.0	999.6
20.00		1.00	0.90	31.055	34.16	432.53	0.730	0.000	5.00	19.451	14.20	485.0	0.0	968.2
5.00		1.00	0.95	32.549	35.80	428.36	0.730	0.000	5.00	18.826	13.74	492.0	0.0	936.8
80.00		1.00	0.98	33.823	37.20	421.92	0.730	0.000	5.00	18.201	13.29	494.3	0.0	905.4
35.00		1.00	1.01	34.938	38.43	413.85	0.730	0.000	5.00	17.576	12.83	493.1	0.0	874.0
10.00		1.00	1.04	35.934	39.53	404.52	0.730	0.000	5.00	16.952	12.37	489.1	0.0	842.6
15.00		1.00	1.07	36.837	40.52	394.19	0.730	0.000	5.00	16.327	11.92	482.9	0.0	811.2
8.00 Bot - S	ection 2	1.00	1.08	37.341	41.07	387.59	0.730	0.000	3.00	9.496	6.93	284.7	0.0	471.7
50.00		1.00	1.09	37.663	41.43	383.04	0.730	0.000	2.00	6.333	4.62	191.5	0.0	578.2
53.25 Top - S	Section 1	1.00	1.11	38.165	41.98	375.41	0.730	0.000	3.25	10.078	7.36	308.9	0.0	919.7
55.00		1.00	1.12	38.426	42.27	379.17	0.730	0.000	1.75	5.317	3.88	164.1	0.0	226.6
60.00		1.00	1.14	39.137	43.05	366.81	0.730	0.000	5.00	14.770	10.78	464.2	0.0	629.4
65.00		1.00	1.16	39.802	43.78	353.93	0.730	0.000	5.00	14.145	10.33	452.1	0.0	602.5
70.00 Appurt	enance(s)	1.00	1.17	40.427	44.47	340.59	0.730	0.000	5.00	13.521	9.87	438.9	0.0	575.6
75.00		1.00		41.019	45.12	326.85	0.730	0.000	5.00	12.896	9.41	424.8	0.0	548.7
30.00 Appurt	enance(s)	1.00		41.580	45.74	312.74	0.730	0.000		12.271	8.96	409.7	0.0	521.8
35.00		1.00		42.114	46.33	298.30		0.000	5.00	11.647	8.50	393.9	0.0	494.8
0.00 Appurt	enance(s)	1.00		42.624	46.89	283.56	0.730	0.000		11.022	8.05	377.2	0.0	467.9
95.00		1.00		43.112	47.42	268.54	0.730	0.000	5.00	10.397	7.59	359.9	0.0	441.0
98.25 Bot - S		1.00		43.418	47.76	258.64		0.000	3.25	6.423	4.69	223.9	0.0	272.2
9.00 Appurt	enance(s)	1.00		43.488	47.84	256.35		0.000	0.75	1.477	1.08	51.6	0.0	103.2
10.00	Castion D	1.00		43.580	47.94	253.27		0.000	1.00	1.947	1.42	68.1	0.0	136.0
1.50 Top - S	section 2	1.00		43.717	48.09	248.64		0.000	1.50	2.873	2.10	100.9	0.0	200.6
5.00		1.00		44.030	48.43	243.46		0.000	3.50	6.486	4.73	229.3	0.0	184.1
10.00 Appurt	enance(s)	1.00		44.463	48.91	227.76		0.000	5.00	8.735	6.38	311.9	0.0	247.8
15.00		1.00		44.881	49.37	211.85		0.000	5.00	8.110	5.92	292.3	0.0	229.9
20.00		1.00		45.285	49.81	195.75		0.000	5.00	7.485	5.46	272.2	0.0	211.9
25.00		1.00 1.00		45.676 46.055	50.24 50.66	1 79.4 8 163.02		0.000 0.000	5.00 5.00	6.860 6.236	5.01 4.55	251.6 230.6	0.0	194.0 176.0
30.00					61166							120.0	0.0	

			-										<i>a</i> ,	
				Di	scret	e Appi	urtena	ance i	Forces		- 1 ⁴	14		
Str	ucture:	CT46143-A-SBA				Co	de:	Т	IA-222-H		1/26/	/2024	ann ab	
Sit	e Name:	Burlington - Avon	Landfi	ill		Ex	posure	e: C)				四川	
He	ight:	130.00 (ft)				Cre	est Hei	ght: 0	.00				T	C
	•						e Clas	-) - Stiff So	hil			IE	S
Ва	se Elev:	• •								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-		ower Enginee	ring Solution
Gh	:	1.1	Торо	graphy	: 1	Str		ass: II			Pag	je: 14	ower Engliee	
Lo	ad Case	e: 0.9D + 1.0W 120	mph \	Wind							YA	iter	ations	21
		ad Load Factor	0.90									X		
		ind Load Factor	1.00								3			
_						Orient		Total	Dead	Horiz	Vert	Wind	Mom	Mom
	Elev			qz	qzGh	Factor		CaAa	Load	Ecc	Ecc	FX	Y (Ib-ft)	Z (Ib-ft)
No.	(ft)	Description	Qty	(psf)	(psf)	x Ka	Ka	(sf)	(lb)	(ft)	(ft)	(Ib)		
1		Commscope	3	44.463	48.910	0.66	0.80	16.10	117.99	0.000	0.000	787.22	0.00	0.00
2		Ring Mount	1	44.463	48.910	1.00	1.00	7.50	594.00	0.000 0.000	0.000 0.000	366.82 160.42	0.00	0.00
3	110.00 R	- · ·	1		48.910	0.80	0.80	3.28	19.26 137.70	0.000	0.000	793.75	0.00	0.00
4		Commscope	3	44.463	48.910	0.67	0.80	16.23	154.76	0.000	0.000	308.30	0.00	0.00
5		Samsung MT6413-77A	3		48.910	0.55 0.54	0.80 0.80	6.30 3.01	201.69	0.000	0.000	147.07	0.00	0.00
6		Samsung RF4439d-25A	3 3		48.910 48.910	0.54	0.80	2.20	107.19	0.000	0.000	107.75	0.00	0.00
7		Samsung RF4461d-13A	3		48.910	0.54	0.80	1.38	41.58	0.000	0.000	67.64	0.00	0.00
8		Samsung RT4423-48A	3		46.910	0.54	0.80	1.25	23.76	0.000	0.000	60.00	0.00	0.00
9		LU 800MHz Filter	3		47.837	0.54	0.80	6.51	189.00	0.000	0.000	311.53	0.00	0.00
10		LU TD-RRH8x20-25	3		47.837	0.54	0.80	3.43	143.10	0.000	0.000	163.84	0.00	0.00
11 12		ALU 800 MHz RRH ALU 1900MHz RRH	3		47.837	0.54	0.80	3.71	162.00	0.000	0.000	177.69	0.00	0.00
13		RFS ACU-A20-N	4		47.837	0.54	0.80	0.30	3.60	0.000	0.000	14.36	0.00	0.00
14		lush Mount	1		47.837	1.00	1.00	5.00	315.00	0.000	0.000	239.18	0.00	0.00
15		Andrew DHHTT65B-3XR	3		47.837	0.66	0.80	16.12	121.50	0.000	0.000	770.90	0.00	0.00
16		lush Mount	1		46.886	1.00	1.00	5.00	315.00	0.000	0.000	234.43	0.00	0.00
17	90.00 A		3		46.886	0.54	0.80	0.16	3.56	0.000	0.000	7.54	0.00	0.00
18		ci TMABPD7823VG12A	3		46.886	0.54	0.80	2.20	70.20	0.000	0.000	103.29	0.00	0.00
19		Powerwave LGP21401	3		46.886	0.54	0.80	1.32	47.25	0.000	0.000	61.82	0.00	0.00
20		ndrew SBNHH-1D65C	3		46.886	0.67	0.80	22.96	133.92	0.000	0.000	1076.62	0.00	0.00
21		Flush Mount	1		45.738	1.00	1.00	5.00	315.00	0.000	0.000	228.69	0.00	0.00
22	80.00 R		3		45.738	0.65	0.80	18.76	187.38	0.000	0.000	858.03	0.00	0.00
23	80.00 R		6	41.580	45.738	0.54	0.80	0.48	6.26	0.000	0.000	22.06	0.00	0.00
24		Commscope	1	40.427	44.470	1.00	1.00	37.59	1554.30	0.000	0.000	1671.64	0.00	0.00
25	70.00 R		1	40.427	44.470	0.75	0.75	1.92	19.67	0.000	0.000	85.38	0.00	0.00
26		ujitsu TA08025-B604	3	40.427	44.470	0.50	0.75	2.95	172.53	0.000	0.000	131.40	0.00	0.00
27		ujitsu TA08025-B605	3	40.427	44.470	0.50	0.75	2.95	202.50	0.000	0.000	131.40	0.00	0.00
28	70.00 J	MA Wireless	3	40.427	44.470	0.55	0.75	20.80	174.15	0.000	0.000	924.80	0.00	0.00
							Totals	:	5,533.86		1	0,013.57		

	Total Applied Force Summary											
Structure:	CT46143-A-SBA	Code:	TIA-222-H	1/26/2024								
Site Name:	Burlington - Avon Landfill	Exposure:	С	(((##1)))								
Height:	130.00 (ft)	Crest Height:	0.00									
Base Elev:	0.000 (ft)	Site Class:	D - Stiff Soil	LES								
Gh:	1.1 Topography: 1	Struct Class:	11	Page: 15 Tower Engineering Soluti								

Load Case: 0.9D + 1.0W 120 mph Wind **Dead Load Factor** 0.90

Wind Load Factor 1.00

Totals: 20,712.03 Iterations

X

21

	Linear Appurtenance	e Segment F	orces (Factored)		
Structure:	CT46143-A-SBA	Code:	TIA-222-H	1/26/2024	Accession
Site Name:	Burlington - Avon Landfill	Exposure:	C		distant.
Height:	130.00 (ft)	Crest Height:	0.00		FC
Base Elev:	0.000 (ft)	Site Class:	D - Stiff Soil		
Gh:	1.1 Topography: 1	Struct Class:	II	Page: 16	Tower Engineering Solutions
Load Case:	0.9D + 1.0W 120 mph Wind			¥ 4 и	erations 21

X

Z,

Dead Load Factor 0.90 1.00

Wind	Load	Factor

				_								
Top Elev (ft)	Description	Wind Exposed	Length (ft)	Са	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
5.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.028	0.000	29.269	0.00	5.13
10.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.028	0.000	29.269	0.00	5.13
15.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.029	0.000	29.269	0.00	5.13
20.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.030	0.000	31.055	0.00	5.13
25.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.031	0.000	32.549	0.00	5.13
30.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.032	0.000	33.823	0.00	5.13
35.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.033	0.000	34.938	0.00	5.13
40.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.035	0.000	35.934	0.00	5.13
45.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.036	0.000	36.837	0.00	5.13
48.00	1.41" Hybrid	Yes	3.00	0.000	1.41	0.35	0.00	0.037	0.000	37.341	0.00	3.08
50.00	1.41" Hybrid	Yes	2.00	0.000	1.41	0.23	0.00	0.038	0.000	37.663	0.00	2.05
53.25	1.41" Hybrid	Yes	3.25	0.000	1.41	0.38	0.00	0.039	0.000	38.165	0.00	3.33
55.00	1.41" Hybrid	Yes	1.75	0.000	1.41	0.21	0.00	0.039	0.000	38.426	0.00	1.80
60.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.040	0.000	39.137	0.00	5.13
65.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.042	0.000	39.802	0.00	5.13
70.00	1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.043	0.000	40.427	0.00	5.13
									То	tals:	0.0	71.8

		P		1		Calc	ulated Fe	orces	¢.					F
Struc	ture:	CT46'	143-A-S	SBA			Code:	TIA	-222-H		1/2	6/2024		
Site N	Name:	Burling	aton - A	von Lan	ndfill		Exposure	: с					((冊))	
Heigh	nt-	130.00					Crest Heig		0				1	0
-			• •											5
	Elev:	0.000	(π)				Site Class		Stiff Soi	I				
Gh:		1.1		Тор	ography	: 1	Struct Cla	ss:			Pa	age: 17	Tower Engineer	ing Solutions
Load			⊦ 1.0W I Facto	120 mpt r 0.9							ľ	lte x	erations	21
	Win	d Load	l Facto	r 1.0	0					2				
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-24.23	-20.73	0.00	-1563.6	0.00	1563.69	4994.17	1235.59	5197.80	5206.12	0.00	0.000	0.000	0.305
5.00	-23.03	-20.27	0.00	-1460.0	0.00	1460.03	4891.79	1199.61	4899.47	4949.63	0.05	-0.094	0.000	0.300
10.00	-21.87	-19.82	0.00	-1358.6	0.00	1358.69	4786.83	1163.63	4609.96	4696.86	0.20	-0.190	0.000	0.294
15.00	-20.73	-19.38	0.00	-1259.6	0.00	1259.61	4679.28	1127.65	4329.26	4448.07	0.45	-0.287	0.000	0.288
20.00	-19.63	-18.92	0.00	-1162.7	0.00	1162.74	4569.15	1091.66	4057.38	4203.49	0.81	-0.386	0.000	0.281
25.00	-18.57	-18.45	0.00	-1068.1	0.00	1068.15	4456.44	1055.68	3794.32	3963.36	1.27	-0.487	0.000	0.274
30.00	-17.53	-17.98	0.00	-975.90	0.00	975.90	4316.73	1019.70	3540.07	3706.95	1.83	-0.589	0.000	0.268
35.00	-16.53	-17.50	0.00	-886.01	0.00	886.01	4164.40	983.72	3294.64	3448.64	2.51	-0.692	0.000	0.261
40.00	-15.56	-17.03	0.00	-798.49	0.00	798.49	4012.07	947.73	3058.03	3199.66	3.29	-0.796	0.000	0.254
45.00	-14.63	-16.56	0.00	-713.33	0.00	713.33	3859.75	911.75	2830.23	2960.01	4.18	-0.900	0.000	0.245
48.00	-14.08	-16.28	0.00	-663.66	0.00	663.66	3768.35	890.16	2697.78	2820.70	4.76	-0.964	0.000	0.239
50.00 53.25	-13.45 -12.46	-16.09	0.00	-631.11	0.00	631.11	3707.42	875.77	2611.24	2729.69	5.18	-1.007	0.000	0.235
	-12.46	-15.77 -15.62	0.00	-578.83	0.00	578.83	3164.77	747.58	2219.90	2324.50	5.89	-1.076	0.000	0.253
55.00 60.00	-12.10	-15.02	0.00 0.00	-551.23	0.00	551.23	3119.07	736.79	2156.26	2257.51	6.29	-1.113	0.000	0.249
65.00	-10.70	-15.16	0.00	-473.14 -397.34	0.00 0.00	473.14	2988.51	705.95	1979.51	2071.51	7.52	-1.224	0.000	0.233
70.00	-7.97	-11.28	0.00	-397.34		397.34	2857.94	675.10	1810.33	1893.51	8.86	-1.330	0.000	0.214
75.00	-7.31	-10.85	0.00	-323.77	0.00 0.00	323.77 267.39	2727.38 2596.81	644.26 613.42	1648.70 1494.62	1723.51 1561.50	10.31 11.86	-1.431 -1.527	0.000 0.000	0.191 0.174
80.00	-6.21	-9.31	0.00	-213.16	0.00	207.39	2596.61	582.58	1348.10	1561.50	13.51	-1.527	0.000	0.174
85.00	-5.65	-8.90	0.00	-166.62	0.00	166.62	2335.68	551.74	1209.14	1261.45	15.24	-1.699	0.000	0.134
90.00	-4.59	-7.02	0.00	-122.10	0.00	122.10	2205.12	520.89	1077.74	1123.45	17.07	-1.773	0.000	0.133
95.00	-4.13	-6.65	0.00	-87.01	0.00	87.01	2074.55	490.05	953.89	993.42	18.96	-1.837	0.000	0.090
98.25	-3.84	-6.41	0.00	-65.42	0.00	65.42	1989.68	470.00	877.44	913.19	20.22	-1.873	0.000	0.030
99.00	-2.84	-4.59	0.00	-60.60	0.00	60.60	1970.10	465.38	860.25	895.16	20.52	-1.881	0.000	0.069
100.00	-2.70	-4.52	0.00	-56.01	0.00	56.01	1943.99	459.21	837.60	871.39	20.91	-1.891	0.000	0.066
101.50	-2.50	-4.41	0.00	-49.23	0.00	49.23	1306.72	308.67	567.69	593.96	21.51	-1.905	0.000	0.085
105.00	-2.31	-4.18	0.00	-33.79	0.00	33.79	1245.79	294.28	515.98	539.57	22.92	-1.933	0.000	0.065
110.00	-0.78	-1.07	0.00	-12.90	0.00	12.90	1158.75	273.72	446.40	466.39	24.96	-1.968	0.000	0.028
115.00	-0.56	-0.77	0.00	-7.53	0.00	7.53	1071.71	253.16	381.85	398.55	27.03	-1.987	0.000	0.019
120.00	-0.35	-0.49	0.00	-3.66	0.00	3.66	984.66	232.60	322.34	336.04	29.12	-2.000	0.000	0.011
125.00	-0.17	-0.24	0.00	-1.18	0.00	1.18	897.62	212.04	267.87	278.85	31.22	-2.008	0.000	0.004
130.00	0.00	-0.23	0.00	0.00	0.00	0.00	810.58	191.47	218.44	227.00	33.32	-2.010	0.000	0.000

					W	ind Loa	ading	- Sha	ft				J.	
Structure:	CT46143	-A-SBA				Co	de:	Т	IA-222-H			1/26/20	24	
Site Name:	Burlingto	n - Avon	n Landfil	I		Exi	posure	e: C)				(())	"
	-			•		-		ight: 0						TO
Height:	130.00 (f	-						-						HN
Base Elev:	0.000 (ft))				Site	e Clas	s: [) - Stiff So	DI				
Gh:	1.1		Тород	raphy	: 1	Str	uct Cl	ass: II				Page:	18 Tower	Engincering Solu
Load Case	a: 1.2D + 1	I.0Di + 1	.0Wi 50	mph \	Wind	3					¥	4	Iteratio	ons
	ad Load F		1.20									x		
											2			
VVI	nd Load F	actor	1.00								X			
Elev (ft) De	escription	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0.85	5.081	5.59	0.00	1.200	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.85	5.081	5.59	0.00	1.200	1.242		22.360	26.83	150.0	396.1	1812.6
10.00		1.00	0.85	5.081	5.59	0.00	1.200	1.331		21.809	26.17	146.3	412.9	1787.5
15.00		1.00	0.85	5.081	5.59	0.00	1.200	1.386		21.230	25.48	142.4	417.6	1750.4
20.00		1.00	0.90	5.392	5.93	0.00	1.200	1.427		20.639	24.77	146.9	417.0	1707.9
25.00		1.00	0.95	5.651	6.22	0.00	1.200	1.459		20.042	24.05	149.5	413.2	1662.2
30.00		1.00	0.98	5.872	6.46	0.00	1.200	1.486		19.439	23.33	150.7	407.3	1614.5
35.00		1.00	1.01	6.066	6.67	0.00	1.200	1.509		18.834	22.60	150.8	399.9	1565.2
10.00		1.00	1.04	6.239	6.86	0.00	1.200	1.529		18.226	21.87	150.1	391.3	1514.8
45.00		1.00	1.07	6.395	7.03	0.00	1.200	1.547		17.616	21.14	148.7	381.8	1463.4
48.00 Bot - Se	ction 2	1.00	1.08	6.483	7.13	0.00	1.200	1.557		10.275	12.33	87.9	225.4	854.3
50.00		1.00	1.09	6.539	7.19	0.00	1.200	1.564	2.00	6.854	8.22	59.2	151.5	922.5
53.25 Top - Se	ection 1	1.00	1.11	6.626	7.29	0.00	1.200	1.574		10.930	13.12	95.6	241.7	1468.0
55.00		1.00	1.12	6.671	7.34	0.00	1.200	1.579	1.75	5.778	6.93	50.9	128.8	431.0
60.00		1.00	1.14	6.795	7.47	0.00	1.200	1.592		16.097	19.32	144.4	356.6	1195.8
65.00		1.00	1.16	6.910	7.60	0.00	1.200	1.605		15.483	18.58	141.2	344.8	1148.1
70.00 Appurte	nance(s)	1.00	1.17	7.019	7.72	0.00	1.200	1.617		14.868	17.84	137.7	332.5	1099.9 1051.4
75.00		1.00	1.19	7.121	7.83	0.00	1.200	1.628		14.253	17.10	134.0	319.9	1002.5
80.00 Appurte	nance(s)	1.00	1.21	7.219	7.94	0.00	1.200	1.639		13.637	16.36	129.9 125.7	306.9 293.6	953.4
85.00		1.00	1.22	7.311	8.04	0.00	1.200	1.649		13.021	15.62		293.0	903.9
90.00 Appurte	nance(s)	1.00	1.24	7.400	8.14	0.00	1.200 1.200	1.658		12.404	14.88	121.2 116.4	266.2	854.2
95.00		1.00	1.25	7.485	8.23	0.00		1.667	5.00		14.14	72.9	167.1	530.1
98.25 Bot - Se		1.00	1.26	7.538	8.29	0.00	1.200	1.673	3.25	7.329	8.80	16.8	39.0	176.6
99.00 Appurte	nance(s)	1.00	1.26	7.550	8.30	0.00	1.200	1.674	0.75	1.686	2.02	22.2	59.0 51.5	232.8
00.00		1.00	1.27	7.566	8.32	0.00	1.200 1.200	1.676	1.00 1.50	2.226 3.293	2.67 3.95	33.0	75.9	343.4
01.50 Top - S	ection 2	1.00	1.27	7.590	8.35	0.00	1.200	1.678	3.50	3.293 7.468	3.95 8.96	33.0 75.4	170.2	415.7
05.00		1.00	1.28	7.644	8.41	0.00 0.00	1.200	1.684 1.692		10.144	12.17	103.4	228.7	559.1
10.00 Appurte	nance(s)	1.00	1.29	7.719	8.49	0.00	1.200	1.692	5.00	9.526	11.43	98.0	220.7	520.6
15.00		1.00	1.30	7.792	8.57		1.200			9.526 8.907	10.69	98.0 92.4	199.3	481.8
20.00		1.00	1.32	7.862	8.65	0.00	1.200	1.707 1.714	5.00 5.00	8.288	9.95	92.4 86.8	199.3	401.0
25.00 30.00		1.00	1.33 1.34	7.930 7.996	8.72 8.80	0.00 0.00	1.200	1.714	5.00	a.∠oo 7.669	9.95 9.20	80.8	169.2	443.0
		1.00	1 44	/ 446	- X X(I	0.00	1 2110	1/20			3.20	00.9	103.2	-00.0

				Di	scret	e App	urten	ance	Forces					
	ructure: :e Name:	CT46143-A-SBA	Londf				de:		「IA-222-⊦	1	1/26	/2024	((H)))	
		U U	Lanui	ri			posure							
He	ight:	130.00 (ft)				Cr	est Hei	i ght : C	0.00				D	C
Ba	se Elev:	0.000 (ft)				Sit	e Clas	s: D) - Stiff S	oil			IE	¹ O
Gh		1.1	Topo	graphy	: 1	C+-		ass: I			Por	10	Tower Enginee	ring Solutio
		1.1	TOPO	grapity		30		ass. 1			Fag	ge: 19		
Lo	oad Case	: 1.2D + 1.0Di + 1.	.0Wi 50) mph \	Vind						YA	lter	rations	20
	Dea	d Load Factor	1.20									x		
	Wir	nd Load Factor	1.00								2			
No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ка	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (Ib-ft)	Mom Z (Ib-ft)
1	110.00 Co	mmscope	3	7.719	8.491	0.66	0.80	18.58	740.24	0.000	0.000	157.81	0.00	0.00
2	110.00 Rin		1	7.719	8.491	1.00	1.00	15.11	2028.33	0.000	0.000	128.33	0.00	0.0
3	110.00 Ra		1	7.719	8.491	0.80	0.80	3.90	110.97	0.000	0.000	33.13	0.00	0.0
4	110.00 Co		3	7.719	8.491	0.67	0.80	18.70	605.16	0.000	0.000	158.79	0.00	0.0
5	110.00 Sa	msung MT6413-77A	3	7.719	8.491	0.60	0.80	9.57	788.90	0.000	0.000	81.23	0.00	0.0
6		msung RF4439d-25A	3	7.719	8.491	0.54	0.80	4.84	841.85	0.000	0.000	41.08	0.00	0.0
7	110.00 Sa	msung RF4461d-13A	3	7.719	8.491	0.54	0.80	3.54	405.43	0.000	0.000	30.10	0.00	0.0
8	110.00 Sa	msung RT4423-48A	3	7.719	8.491	0.54	0.80	2.81	152.31	0.000	0.000	23.82	0.00	0.0
9	99.00 AL	U 800MHz Filter	3	7.550	8.305	0.54	0.80	2.25	67.46	0.000	0.000	18.70	0.00	0.0
0	99.00 AL	U TD-RRH8x20-25	3	7.550	8.305	0.54	0.80	7.76	567.21	0.000	0.000	64.47	0.00	0.0
1	99.00 AL	U 800 MHz RRH	3	7.550	8.305	0.54	0.80	4.34	285.65	0.000	0.000	36.03	0.00	0.0
2	99.00 AL	U 1900MHz RRH	3	7.550	8.305	0.54	0.80	4.72	388.10	0.000	0.000	39.17	0.00	0.0
3	99.00 RF	S ACU-A20-N	4	7.550	8.305	0.54	0.80	0.91	16.08	0.000	0.000	7.56	0.00	0.0
4	99.00 Fil	ish Mount	1	7.550	8.305	1.00	1.00	8.35	601.26	0.000	0.000	69.33	0.00	0.0
5	99.00 An	drew DHHTT65B-3XR	3	7.550	8.305	0.66	0.80	18.70	741.09	0.000	0.000	155.30	0.00	0.0
6	90.00 Flu	ish Mount	1	7.400	8.140	1.00	1.00	8.32	598.60	0.000	0.000	67.70	0.00	0.0
7	90.00 An	drew	3	7.400	8.140	0.54	0.80	0.40	17.37	0.000	0.000	3.24	0.00	0.0
8	90.00 Cc	i TMABPD7823VG12A	3	7.400	8.140	0.54	0.80	2.93	268.25	0.000	0.000	23.84	0.00	0.0
9	90.00 Po	werwave LGP21401	3	7.400	8.140	0.54	0.80	1.92	112.95	0.000	0.000	15.65	0.00	0.0
20	90.00 An	drew SBNHH-1D65C	3	7.400	8.140	0.67	0.80	26.13	920.48	0.000	0.000	212.71	0.00	0.0
21	80.00 Flu	ish Mount	1	7.219	7.941	1.00	1.00	8.28	595.33	0.000	0.000	65.73	0.00	0.0
22	80.00 RF	S	3	7.219	7.941	0.65	0.80	21.16	1120.14	0.000	0.000	168.01	0.00	0.0
23	80.00 RF	S	6	7.219	7.941	0.54	0.80	1.08	-77.28	0.000	0.000	8.58	0.00	0.0
24	70.00 Co	mmscope	1	7.019	7.721	1.00	1.00	81.36	3263.38	0.000	0.000	628.13	0.00	0.0
25	70.00 Ra	усар	1	7.019	7.721	0.75	0.75	2.36	75.72	0.000	0.000	18.22	0.00	0.0
26	70.00 Fu	jitsu TA08025-B604	3	7.019	7.721	0.50	0.75	3.74	334.48	0.000	0.000	28.86	0.00	0.0
27	70.00 Fu	jitsu TA08025-B605	3	7.019	7.721	0.50	0.75	3.74	377.60	0.000	0.000	28.86	0.00	0.0
28	70.00 JM	A Wireless	3	7.019	7.721	0.55	0.75	23.06	839.18	0.000	0.000	178.00	0.00	0.00

K (19	Total A	pplied Force Summary	
Structure:	CT46143-A-SBA	Code: TIA-222-H	1/26/2024
Site Name:	Burlington - Avon Landfill	Exposure: C	deale and
Height:	130.00 (ft)	Crest Height: 0.00	IFS
Base Elev:	0.000 (ft)	Site Class: D - Stiff Soil	
Gh:	1.1 Topography: 1	Struct Class: II	Page: 20 Tower Engineering Solutions
	• 1 2D + 1 0Di + 1 0Wi 50 mph Wind		1 Iterations 20

x

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1.20 Dead Load Factor

> 1.00 Wind Load Factor

Elev (ft)	Description	Lateral FX (-) (lb)	Axial FY (-) (lb)	Torsion MY (lb-ft)	Moment MZ (Ib-ft)		
0.00	4	0.00	0.00	0.00	0.00		
5.00		149.98	1966.51	0.00	0.00		
10.00		146.28	1943.38	0.00	0.00		
15.00		142.40	1907.47	0.00	0.00		
20.00		146.89	1865.87	0.00	0.00		
25.00		149.49	1820.96	0.00	0.00		
30.00		150.67	1773.83	0.00	0.00		
35.00		150.80	1725.10	0.00	0.00		
40.00		150.09	1675.14	0.00	0.00		
45.00		148.71	1624.21	0.00	0.00		
48.00		87.92	950.94	0.00	0.00		
50.00		59.16	986.99	0.00	0.00		
53.25		95.60	1572.95	0.00	0.00		
55.00		50.88	487.56	0.00	0.00		
60.00		144.37	1357.78	0.00	0.00		
65.00		141.22	1310.36	0.00	0.00		
70.00	(11) attachments	1019.82	6152.86	0.00	0.00		
75.00	(11)	133.98	1181.46	0.00	0.00		
80.00	(10) attachments	372.26	2770.79	0.00	0.00		
85.00	(10) dillonnionio	125.66	1045.98	0.00	0.00		
90.00	(13) attachments	444.31	2914.18	0.00	0.00		
95.00	(10) diadimento	116.45	889.60	0.00	0.00		
98.25		72.93	553.08	0.00	0.00		
99.00	(20) attachments	407.37	2848.72	0.00	0.00		
100.00	(20) utabilitioni	22.23	236.68	0.00	0.00		
101.50		32.99	349.26	0.00	0.00		
105.00		75.36	429.39	0.00	0.00		
110.00	(20) attachments	757.66	6251.82	0.00	0.00		
115.00	(20) utuumineme	97.98	520.57	0.00	0.00		
120.00		92.44	481.85	0.00	0.00		
125.00		86.76	442.96	0.00	0.00		
130.00		80.94	403.91	0.00	0.00		
	Totals:	5,853.62	50,442.16	0.00	0.00		

	Linear Appu	rtenan	ce Segment F	orces (Factored)		
Structure:	CT46143-A-SBA		Code:	TIA-222-H	1/26/2024	
Site Name:	Burlington - Avon Landfill		Exposure:	С		(app)
Height:	130.00 (ft)		Crest Height:	0.00		EC
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil		LES
Gh:	1.1 Topography:	1	Struct Class:	II	Page: 21	Tower Engineering Solutions

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

1.20 Dead Load Factor Wind Load Factor 1.00

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (Ib)	Dead Load (Ib)
5.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.62	0.00	0.028	0.000	5.081	0.00	23.90
10.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.70	0.00	0.028	0.000	5.081	0.00	25.79
15.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.74	0.00	0.029	0.000	5.081	0.00	27.01
20.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.78	0.00	0.030	0.000	5.392	0.00	27.93
25.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.80	0.00	0.031	0.000	5.651	0.00	28.67
30.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.83	0.00	0.032	0.000	5.872	0.00	29.30
35.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.84	0.00	0.033	0.000	6.066	0.00	29.85
40.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.86	0.00	0.035	0.000	6.239	0.00	30.34
45.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.88	0.00	0.036	0.000	6.395	0.00	30.78
48.00	1.41" Hybrid	Yes	3.00	0.000	1.41	1.13	0.00	0.037	0.000	6.483	0.00	18.61
50.00	1.41" Hybrid	Yes	2.00	0.000	1.41	0.76	0.00	0.038	0.000	6.539	0.00	12.47
53.25	1.41" Hybrid	Yes	3.25	0.000	1.41	1.23	0.00	0.039	0.000	6.626	0.00	20.42
55.00	1.41" Hybrid	Yes	1.75	0.000	1.41	0.67	0.00	0.039	0.000	6.671	0.00	11.04
60.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.91	0.00	0.040	0.000	6.795	0.00	31.89
65.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.93	0.00	0.042	0.000	6.910	0.00	32.21
70.00	1.41" Hybrid	Yes	5.00	0.000	1.41	1.94	0.00	0.043	0.000	7.019	0.00	32.51
									Tot	als:	0.0	412.7

Iterations

X

20

.

														_
	Ĩ.		1		£.	Calc	ulated Fo	orces			J.		di ti	15.3
Struc	ture:	CT461	43-A-S	SBA			Code:	TIA	-222-H		1/2	6/2024	(
	Name:			won Lar	ndfill		Exposure	c c					((冊)))	
		130.00	-	tion La	iann		Crest Heig		0					C
Heigh			• •				-	-						5
Base	Elev:	0.000	(ft)				Site Class		Stiff Soi				Turne	ing Solutions
Gh:		1.1		Тој	pography	/: 1	Struct Cla	ss: II			Pa	age: 22	Tower Enginee	ing solutions
Load	Dea	d Load	l Facto	r 1.2		Vind					Ĭ	ite	erations	20
	Win	d Load	l Facto	r 1.0	0									
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-50.44	-5.87	0.00	-440.70	0.00	440.70	4994.17	1235.59	5197.80	5206.12	0.00	0.000	0.000	0.095
5.00	-48.47	-5.74	0.00	-411.37	0.00	411.37	4891.79	1199.61	4899.47	4949.63	0.01	-0.027	0.000	0.093
10.00	-46.53	-5.61	0.00	-382.69	0.00	382.69	4786.83	1163.63	4609.96	4696.86	0.06	-0.053	0.000	0.091
15.00	-44.62	-5.49	0.00	-354.63	0.00	354.63	4679.28	1127.65	4329.26	4448.07	0.13	-0.081	0.000	0.089
20.00	-42.75	-5.36	0.00	-327.19	0.00	327.19	4569.15	1091.66	4057.38	4203.49	0.23	-0.109	0.000	0.087
25.00	-40.92	-5.23	0.00	-300.39	0.00	300.39	4456.44	1055.68	3794.32	3963.36	0.36	-0.137	0.000	0.085
30.00	-39.15	-5.09	0.00	-274.26	0.00	274.26	4316.73	1019.70	3540.07	3706.95	0.52	-0.166	0.000	0.083
35.00	-37.42	-4.95	0.00	-248.80	0.00	248.80	4164.40	983.72	3294.64	3448.64	0.71	-0.195	0.000	0.081
40.00	-35.74	-4.82	0.00	-224.04	0.00	224.04	4012.07	947.73	3058.03	3199.66	0.93	-0.224	0.000	0.079
45.00	-34.12	-4.67	0.00	-199.96	0.00	199.96	3859.75	911.75	2830.23	2960.01	1.18	-0.253	0.000	0.076
48.00	-33.17	-4.59	0.00	-185.94	0.00	185.94	3768.35	890.16	2697.78	2820.70	1.34	-0.271	0.000	0.075
50.00	-32.18	-4.54	0.00	-176.76	0.00	176.76	3707.42	875.77	2611.24	2729.69	1.46	-0.283	0.000	0.073
53.25	-30.61	-4.44	0.00	-162.02	0.00	162.02	3164.77	747.58	2219.90	2324.50	1.66	-0.302	0.000	0.079
55.00	-30.12	-4.40	0.00	-154.25	0.00	154.25	3119.07	736.79	2156.26	2257.51	1.77	-0.313 -0.344	0.000 0.000	0.078 0.074
60.00	-28.76	-4.26	0.00	-132.26	0.00	132.26	2988.51	705.95 675.10	1979.51 1810.33	2071.51 1893.51	2.11 2.49	-0.344	0.000	0.074
65.00	-27.45	-4.12	0.00	-110.96	0.00	110.96	2857.94 2727.38	644.26	1648.70	1723.51	2.45	-0.402	0.000	0.060
70.00	-21.30	-3.07	0.00	-90.34	0.00	90.34 74.97	2596.81	613.42	1494.62	1561.50	3.33	-0.428	0.000	0.056
75.00	-20.12	-2.94	0.00	-74.97	0.00 0.00	60.27	2466.25	582.58	1348.10	1407.49	3.80	-0.454	0.000	0.050
80.00	-17.35	-2.55	0.00	-60.27	0.00	47.50	2335.68	551.74	1209.14	1261.47	4.28	-0.477	0.000	0.045
85.00	-16.30	-2.43 -1.96	0.00 0.00	-47.50 -35.37	0.00	35.37	2335.08	520.89	1077.74	1123.45	4.80	-0.498	0.000	0.038
90.00	-13.39 -12.50	-1.96	0.00	-35.37 -25.56	0.00	25.56	2074.55	490.05	953.89	993.42	5.33	-0.517	0.000	0.032
95.00 98.25	-12.50	-1.84	0.00	-25.50	0.00	19.58	1989.68	470.00	877.44	913.19	5.68	-0.528	0.000	0.027
98.25 99.00	-11.95 -9.10	-1.76	0.00	-19.56	0.00	18.26	1970.10	465.38	860.25	895.16	5.77	-0.530	0.000	0.025
99.00 100.00	-9.10	-1.33	0.00	-16.93	0.00	16.93	1943.99	459.21	837.60	871.39	5.88	-0.533	0.000	0.024
100.00	-8.52	-1.31	0.00	-14.97	0.00	14.97	1306.72	308.67	567.69	593.96	6.05	-0.537	0.000	0.032
101.50	-8.02	-1.19	0.00	-10.52	0.00	10.52	1245.79	294.28	515.98	539.57	6.44	-0.546	0.000	0.026
110.00	-0.05	-0.38	0.00	-4.55	0.00	4.55	1158.75	273.72	446.40	466.39	7.02	-0.557	0.000	0.011
115.00	-1.33	-0.27	0.00	-2.67	0.00	2.67	1071.71	253.16	381.85	398.55	7.61	-0.564	0.000	0.008
110.00	1.00	5.27	5.00		0.00	4.20	004.66	222.60	222.24	336.04	9 20	0.560	0.000	0.005

-1.30

-0.42

0.00

-0.18

-0.08

-0.08

-0.85

-0.40

0.00

120.00

125.00

130.00

0.00

0.00

0.00

0.00

0.00

0.00

1.30

0.42

0.00

984.66

897.62

810.58

232.60

212.04

191.47 218.44

322.34

267.87

336.04

278.85

227.00

8.20

8.80

9.40

-0.569

-0.571

-0.572

0.005

0.002

0.000

0.000

0.000

0.000

	9 E	1	Seismic Se	egment F	orces	Facto	red)		j.	
Struc	ture: CT46143-	A-SBA		Code:		TIA-22	2-H	1/26/2024	4	
Site I	Name: Burlingtor	ı - Avon Landfi	ll	Exposu	ILE:	С			(((円)))	
Heigl	nt: 130.00 (ft)		Crest H	leight:	0.00			11	C
-	Elev: 0.000 (ft)	,		Site Cla	-	D - Stif	FRail			S
		Tana					301		Tower Engineer	ing Solutions
Gh:	1.1	Ιοροί	graphy: 1	Struct	Class:			Page: 23	3 Tower Engineer	ing bolanons
Load	I Case: 1.2D + 1.	0Ev + 1.0Eh						×	Iterations	18
G	ust Response Fa	ctor 1.10				Sds	0.20	x	Ss	0.19
	Dead Load Fa	ctor 1.20	Seismic Load	Factor	1.00	Sd1	0.09	3	S1	0.06
	Wind Load Fa	ctor 0.00	Structure Free	quency (f1)	0.56	SA	0.05	Seismic Importan	ce Factor	1.00
Тор					Vertical	Later	al			
Elev (ft)	Descriptior		Wz (Ib)	Hz	Ev (Ib)	Fs				. 4 50
_	Description		(Ib)	(lb)	(Ib)	(Ib)				R: 1.50
0.00 5.00			0.00	0.00	0.00	0.0				
5.00 10.00			1317.2	2.50 7.50	53.11	0.:				
15.00			1282.4 1247.5	12.50	51.71 50.30	1.: 2.0				
20.00			1247.5	17.50	48.89	4.4				
25.00			1177.7	22.50	48.89 47.49	4.4 6.4				
30.00			1142.8	27.50	46.08	8.				
35.00			1107.9	32.50	44.67	10.0				
40.00			1073,1	37.50	43.27	12.				
45.00			1038.2	42.50	41.86	14.9				
48.00	Bot - Section 2		606.19	46.50	24.44	7.				
50.00			697.22	49.00	28.11	9.	79			
53.25	Top - Section 1		1110.8	51.63	44.79	22.9	98			
55.00			299.74	54.13	12.09	2.8	87			
60.00			836.22	57.50	33.72	17.	19			
65.00			806.32	62.50	32.51	18.	57			
70.00	Appurtenance(s)		3135.4	67.50	126.42	197.:				
75.00			739.68	72.50	29.82	20.				
80.00	Appurtenance(s)		1274.9	77.50	51.41	56.2				
85.00 90.00	Appurtonesse/s)		642.44	82.50	25.90	20.1				
90.00 95.00	Appurtenance(s)		1245.8 525.40	87.50 92.50	50.23 21.18	66. ⁻				
95.00 98.25	Bot - Section 3		525.40 325.47	92.50 96.63	21.18	17.4 8.5				
99.00	Appurtenance(s)		1184.3	98.63 98.63						
100.00			154.98	99.50	47.75 6.25	74. ⁻ 2.0				
101.50	Top - Section 2		228.74	100.75	9.22	5.1				
105.00			218.25	103.25	8.80	4.9				
110.00	Appurtenance(s)		1821.7	107.50	73.45	173.0				
115.00			255.39	112.50	10.30	7.3				
120.00			235.46	117.50	9.49	6.9				
125.00			215.53	122.50	8.69	6.4				
130.00			195.59	127.50	7.89	5.8				
		Totals:	27,355.5		1,103.0	814		Total Wine	d: 20,712	2.0

Calculated Forces														
Struc	ture:	CT461	43-A-S	BA			Code:	τı	A-222-⊢		• 1/2	6/2024	(
Site N				voņ Land	fill		Exposure	: C					(((円)))	
			-				Crest Hei		าก				T	C
Heigh		130.00	• •					•		- 94			H	5
Base	Elev:	0.000	(ft)				Site Class		- Stiff So	IIC			Tower Engineer	ing Solutions
Gh:		1.1		Тор	ography:	1	Struct Cla	ass: II			P	age: 24	Tower Engineer	ing solutions
											1440			
Load	Case:	1.2D	+ 1.0Ev	+ 1.0Eh							1	lt	erations	18
Gu	ust Res	ponse	e Facto	r 1.10)				Sds 0	.20		×	Ss	0.19
	Dea	d Load	d Facto	r 1.20	Seismic	: Load Fa	ctor	1.00	Sd1 0	.09	3		S1	0.06
	Win	d Load	I Facto	r 0.00	Structu	re Freque	ncy (f1)	0.56	SA 0	.05 Se	ismic Im	portance	e Factor	1.00
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips			Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-33.44	-0.81	0.00	-68.66	0.00	68.66	4994.17	1235.59				0.00	0.00	0.020
5.00	-31.83	-0.82	0.00	-64.59	0.00	64.59	4891.79					0.00	0.00	0.020
10.00	-30.27	-0.82	0.00	-60.51	0.00	60.51	4786.83	1163.63				0.01	-0.01	0.019
15.00	-28.75	-0.82		-56.42	0.00	56.42						0.02	-0.01	0.019
20.00	-27.27	-0.81	0.00	-52.34	0.00	52.34	4569.15					0.04	-0.02 -0.02	0.018 0.018
25.00	-25.84	-0.81	0.00	-48.27	0.00	48.27	4456.44	1055.68				0.06 0.08	-0.02	0.018
30.00	-24.45	-0.80		-44.23	0.00	44.23	4316.73					0.08	-0.03	0.018
35.00	-23.10	-0.79		-40.22	0.00	40.22						0.15	-0.04	0.017
40.00	-21.80	-0.78		-36.26	0.00	36.26	4012.07 3859.75					0.19	-0.04	0.016
45.00	-20.53	-0.77		-32.36	0.00 0.00	32.36 30.06	3768.35					0.21	-0.04	0.016
48.00	-19.80	-0.76		-30.06 -28.54	0.00	28.54	3708.33					0.23	-0.05	0.016
50.00 53.25	-18.95 -17.59	-0.75 -0.73		-26.10	0.00	26.10						0.26	-0.05	0.017
55.00	-17.59	-0.73		-24.83	0.00	24.83						0.28	-0.05	0.017
60.00	-16.21	-0.72	0.00	-21.21	0.00	21.21	2988.51	705.95				0.34	-0.06	0.016
65.00	-15.24	-0.69		-17.67	0.00	17.67		675.10	1810.3	3 1893.	51	0.40	-0.06	0.015
70.00	-11.38	-0.49		-14.23	0.00	14.23		644.26	6 1648.7	0 1723.	51	0.46	-0.06	0.012
75.00	-10.49	-0.47		-11.79	0.00	11.79	2596.81	613.42	1494.6	2 1561.	50	0.53	-0.07	0.012
80.00	-8.93	-0.41		-9.45	0.00	9.45	2466.25	582.58	1348.1	0 1407.	49	0.61	-0.07	0.010
85.00	-8.15	-0.39		-7.40	0.00	7.40	2335.68	551.74	1209.1	4 1261.	47	0.68	-0.08	0.009
90.00	-6.63	-0.32	0.00	-5.45	0.00	5.45	2205.12					0.77	-0.08	0.008
95.00	-5.98	-0.30	0.00	-3.84	0.00	3.84						0.85	-0.08	0.007
98.25	-5.58	-0.29	0.00	-2.86	0.00	2.86						0.91	-0.08	0.006
99.00	-4.12	-0.22	0.00	-2.64	0.00	2.64						0.92	-0.08	0.005
100.00	-3.92	-0.22	0.00	-2.42	0.00	2.42						0.94	-0.08	0.005
101.50	-3.64	-0.21		-2.09	0.00	2.09						0.96	-0.09	0.006
105.00	-3.37	-0.20		-1.36	0.00	1.36						1.03	-0.09	0.005 0.002
110.00	-1.12	-0.03		-0.33	0.00	0.33						1.12	-0.09	0.002
115.00	-0.80	-0.02		-0.20	0.00	0.20						1.21 1.30	-0.09 -0.09	0.001
120.00	-0.51	-0.01		-0.09	0.00	0.09						1.30	-0.09	0.000
125.00	-0.24	-0.01		-0.03	0.00	0.03						1.40	-0.09	0.000
130.00	0.00	-0.01	0.00	0.00	0.00	0.00	010.00	131,47	210.4	- 221.		1.10	0.00	0.000

				Selsmic Se	gment	Forces	Facto	red)			đ
Struc	cture:	CT46143-A-SB	A		Code	:	TIA-222	2-H	1/26/2024	4	
Site	Name:	Burlington - Avo	on Landfill		Expo	sure:	С			(((明)))	
Heig		130.00 (ft)				Height:					a
-	Elev:	0.000 (ft)				Class:	D - Stiff	Coil		H	S
	LIEV.		T					301		Tower Engineer	
Gh:		1.1	lopogr	aphy: 1	Struc	t Class:	 		Page: 25	Tower Engineer	ing solutions
Load	d Case:	0.9D + 1.0Ev +	1.0Eh						×4	terations	18
G	ust Res	sponse Factor	1.10				Sds	0.20	x	Ss	0.19
	Dea	d Load Factor	0.90 Se	eismic Load	Factor	1.00	Sd1	0.09	24	S1	0.06
	Win	d Load Factor	0.00 St	ructure Free	quency (f	1) 0.56	SA	0.05	Seismic Importanc	e Factor	1.00
Тор						Vertical	Latera	al			
Elev (ft)		Description		Wz	Hz	Ev	Fs				
		Description	_	(lb)	(lb)	(lb)	(Ib)				R: 1.50
0.00				0.00	0.00	0.00	0.0				
5.00				1283.0	2.50	51.73	0.2				
10.00				1248.1	7.50	50.33	1.1				
15.00 20.00				1213.3	12.50	48.92	2.6				
25.00				1178.4	17.50	47.51	4.3				
30.00				1143.5 1108.6	22.50 27.50	46.11	6.2				
35.00				1073.7	32.50	44.70 43.29	8.3 10.3				
40.00				1038.8	37.50	41.89	10.3				
45.00				1004.0	42.50	40.48	14.4				
48.00	Bot - Se	ection 2		585.66	46.50	23.61	6.9				
50.00				683.53	49.00	27.56	9.7				
53.25	Top - Se	ection 1		1088.6	51.63	43.89	22.7				
55.00				287.76	54.13	11.60	2.7	75			
60.00				801.99	57.50	32.34	16.4	14			
65.00				772.09	62.50	31.13	17.7	72			
70.00	Appurte	nance(s)		3101.2	67.50	125.04	198.5	55			
75.00				707.16	72.50	28.51	19.5				
80.00	Appurte	nance(s)		1242.4	77.50	50.09	55.2				
85.00	Appute			619.28	82.50	24.97	19.4		10		
90.00 95.00	Appune	nance(s)		1222.6	87.50	49.30	65.7				
98.25	Bot - Se	ection 3		516.55 319.73	92.50 96.63	20.83 12.89	17.4				
99.00	Appurte						8.5 75 8				
100.00				1183.0 1 54.0 1	98.63 99.50	47.70 6.21	75.8 2.6				
101.50	Top - Se	ection 2		227.27	100.75	9.16	5.1				
105.00				214.84	103.25	8.66	4.9				
110.00	Appurte	nance(s)		1816.8	107.50	73.25	177.1				
115.00				255.39	112.50	10.30	7.5				
120.00				235.46	117.50	9.49	7.0				
125.00				215.53	122.50	8.69	6.5				
130.00				195.59	127.50	7.89	5.9				
			Totals:	26,738.5		1,078.1	814		Total Wind:	20,712	2.0

3

	,F		Į.			Calc	ulated F	orces			Ŧ			
Struct	ture:	CT461	43-A-SE	3A			Code:	TIA	-222-H		1/2	6/2024	feann an	
Site N		Burling	nton - Av	on Land	fill		Exposure	: C						
				Chi Luna			Crest Hei		n					C
Heigh		130.00	• •					-						5
Base	Elev:	0.000	(ft)				Site Class		Stiff Soi	I			Tower Engineer	ing Solutions
Gh:		1.1		Торо	ography:	1	Struct Cla	iss: II			Pa	age: 26	Tower Engineer	ing solutions
_											NA.			
Load	Case:	0.9D	+ 1.0Ev	+ 1.0Eh							1		erations	18
Gu	ust Res	ponse	Factor	1.10				5	Sds 0.2	20	-	_×	Ss	0.19
	Dea	d Load	I Factor	0.90	Seismic	Load Fa	ctor	1.00	Sd1 0.0)9	s.		S1	0.06
	Win	d Load	I Factor	0.00	Structu	e Freque	ncy (f1)	0.56	SA 0.0	05 Seis	mic Im	portance	Factor	1.00
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips) (MX	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)		Rotation Twist (deg)	Stress Ratio
0.00	-25.33	-0.81	0.00	-68.65	0.00	68.65	4994.17	1235.59	5197.80	5206.12		0.00	0.00	0.018
5.00	-24.11	-0.82	0.00	-64.58	0.00	64.58	4891.79	1199.61	4899.47	4949.63		0.00	0.00	0.018
10.00	-22.93	-0.82	0.00	-60.50	0.00	60.50	4786.83	1163.63	4609.96	4696.86		0.01	-0.01	0.018
15.00	-21.78	-0.81	0.00	-56.42	0.00	56.42	4679.28	1127.65		4448.07		0.02	-0.01	0.017
20.00	-20.66	-0.81	0.00	-52.35	0.00	52.35	4569.15	1091.66		4203.49		0.04	-0.02	0.017
25.00	-19.57	-0.81	0.00	-48.29	0.00	48.29	4456.44	1055.68	3794.32	3963.36		0.06	-0.02	0.017
30.00	-18.52	-0.80	0.00	-44.25	0.00	44.25	4316.73	1019.70		3706.95		0.08	-0.03	0.016
35.00	-17.50	-0.79	0.00	-40.26	0.00	40.26	4164.40	983.72		3448.64		0.11	-0.03	0.016
40.00	-16.51	-0.78	0.00	-36.31	0.00	36.31	4012.07	947.73		3199.66		0.15	-0.04	0.015 0.015
45.00	-15.56	-0.76	0.00	-32.42	0.00	32.42	3859.75	911.75		2960.01		0.19	-0.04	0.015
48.00	-15.00	-0.76	0.00	-30.13	0.00	30.13	3768.35	890.16		2820.70		0.21 0.23	-0.04 -0.05	0.013
50.00	-14.35	-0.75	0.00	-28.61	0.00	28.61	3707.42	875.77		2729.69 2324.50		0.25	-0.05	0.014
53.25	-13.32	-0.72	0.00	-26.18	0.00	26.18	3164.77	747.58		2324.50		0.20	-0.05	0.015
55.00	-13.05	-0.72	0.00	-24.91	0.00	24.91	3119.07	736.79		2071.51		0.20	-0.06	0.014
60.00	-12.28	-0.71	0.00	-21.30	0.00	21.30	2988.51	705.95 675.10		1893.51		0.40	-0.06	0.013
65.00	-11.55	-0.69	0.00	-17.77	0.00	17.77	2857.94 2727.38	644.26		1723.51		0.46	-0.06	0.011
70.00	-8.62	-0.49	0.00	-14.32	0.00	14.32 11.88	2596.81	613.42		1561.50		0.53	-0.07	0.011
75.00	-7.95	-0.47	0.00	-11.88	0.00 0.00	9.54	2466.25	582.58		1407.49		0.61	-0.07	0.010
80.00	-6.77	-0.41	0.00	-9.54 -7.48	0.00	7.48	2335.68	551.74		1261.47		0.68	-0.08	0.009
85.00	-6.18	-0.39 -0.33	0.00 0.00	-7.48	0.00	5.52	2205.12			1123.45		0.77	-0.08	0.007
90.00	-5.02 -4.54	-0.33	0.00	-3.89	0.00	3.89	2074.55	490.05		993.42		0.85	-0.08	0.006
95.00 98.25	-4.54	-0.31		-3.89	0.00	2.89	1989.68	470.00		913.19		0.91	-0.08	0.005
		-0.30		-2.67	0.00	2.67	1970.10					0.92	-0.08	0.005
99.00 100.00	-3.12 -2.97	-0.22		-2.45	0.00	2.45	1943.99			871.39		0. 9 4	-0.08	0.004
101.50	-2.37	-0.22		-2.12	0.00	2.12	1306.72			593.96		0.97	-0.09	0.006
105.00	-2.56	-0.21		-1.38	0.00	1.38	1245.79		515.98	539.57		1.03	-0.09	0.005
110.00	-0.85	-0.03		-0.34	0.00	0.34	1158.75		446.40	466.39		1.12	-0.09	0.001
115.00	-0.61	-0.02		-0.20	0.00	0.20	1071.71	253.16	381.85	398.55		1.21	-0.09	0.001
120.00	-0.39	-0.01	0.00	-0.10	0.00	0.10	984.66	232.60	322.34	336.04		1.31	-0.09	0.001
125.00	-0.18	-0.01		-0.03	0.00	0.03	897.62	212.04	267.87	278.85		1.40	-0.09	0.000
130.00	0.00	-0.01		0.00	0.00	0.00	810.58	191.47	218.44	227.00		1.49	-0.09	0.000

Structu	ire: CT	46143-A-SBA				C -	de:	-	ГІА-222-Н			1/26/20	24	
Site Na				C 11								1/20/20	²⁴ (()	h.
		lington - Avoi	n Land	TI II	ia kan		posur		2				l de la	
Height	: 130).00 (ft)				Сг	est He	ight: (0.00					$\mathbf{\Gamma}$
Base E	lev: 0.0	00 (ft)				Sit	e Clas	s: [D - Stiff So	oil				E
Gh:	1.1		Торс	graphy	/: 1	St	ruct C	ass: I				Page:	27 Tower	Engineeri
					<u> </u>				_				21	
Load		D + 1.0W 60	•	Vind							Y	x	Iteratio	ons
		ad Factor	1.00									s s		
	Wind L	oad Factor	1.00								2			
Elev (ft)	Descrip	ion Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0.85	6.547	7.20	237.37	0.730	0.000	0.00	0.000	0.00	0.0	0.0	
5.00		1.00	0.85	6.547	7.20	230.51	0.730	0.000	5.00	21.325	15.57	112.1	0.0	118
10.00		1.00	0.85	6.547	7.20	223.66	0.730	0.000	5.00	20.700	15.11	108.8	0.0	114
15.00		1.00	0.85	6.547	7.20	216.81	0.730	0.000	5.00	20.075	14.65	105.5	0.0	111
20.00		1.00	0.90	6.947	7.64	216.27	0.730	0.000	5.00	19.451	14.20	108.5	0.0	107
25.00		1.00	0.95	7.281	8.01	214.18	0.730	0.000	5.00	18.826	13.74	110.1	0.0	104
30.00		1.00	0.98	7.566	8.32	210.96	0.730	0.000	5.00	18.201	13.29	110.6	0.0	100
35.00		1.00	1.01	7.815	8.60	206.92	0.730	0.000	5.00	17.576	12.83	110.3	0.0	97
40.00		1.00	1.04	8.038	8.84	202.26	0.730	0.000	5.00	16.952	12.37	109.4	0.0	93
45.00		1.00	1.07	8.240	9.06	197.09	0.730	0.000	5.00	16.327	11.92	108.0	0.0	90
	t - Section 2	1.00	1.08	8.352	9.19	193.79	0.730	0.000	3.00	9.496	6.93	63.7	0.0	52
50.00		1.00	1.09	8.425	9.27	191.52	0.730	0.000	2.00	6.333	4.62	42.8	0.0	64
	o - Section	1.00	1.11	8.537	9.39	187.71	0.730	0.000	3.25	10.078	7.36	69.1	0.0	102
55.00		1.00	1.12	8.595	9.45	189.59	0.730	0.000	1.75	5.317	3.88	36.7	0.0	25
60.00		1.00	1.14		9.63	183.41	0.730	0.000	5.00	14.770	10.78	103.8	0.0	69
65.00		1.00	1.16		9.79	176.97	0.730	0.000	5.00	14.145	10.33	101.1	0.0	66
	ourtenance		1.17		9.95	170.30	0.730	0.000	5.00	13.521	9.87	98.2	0.0	63
75.00		1.00	1.19	-	10.09	163.42	0.730	0.000	5.00	12.896	9.41	95.0	0.0	60
	ourtenance	,	1.21		10.23	156.37	0.730	0.000	5.00	12.271	8.96	91.6	0.0	57
85.00		1.00	1.22		10.36	149.15	0.730	0.000		11.647	8.50	88.1	0.0	54
	ourtenance(,	1.24		10.49	141.78	0.730	0.000		11.022	8.05	84.4	0.0	51
95.00	• • •	1.00	1.25		10.61	134.27	0.730	0.000		10.397	7.59	80.5	0.0	49
	- Section 3	1.00	1.26		10.68	129.32	0.730	0.000	3.25	6.423	4.69	50.1	0.0	30
	ourtenance(,		9.728	10.70	128.17		0.000		1.477	1.08	11.5	0.0	11
00.00	0	1.00		9.748	10.72	126.64	0.730	0.000		1.947	1.42	15.2	0.0	15
	o - Section 2		1.27		10.76	124.32		0.000	1.50	2.873	2.10	22.6	0.0	22
05.00		1.00	1.28		10.83	121.73		0.000	3.50	6.486	4.73	51.3	0.0	20
	ourtenance(9.946	10.94	113.88		0.000		8.735	6.38	69.8	0.0	27
15.00		1.00		10.039	11.04	105.93	0.730	0.000	5.00	8.110	5.92	65.4	0.0	25
20.00		1.00		10.130	11.14	97.88	0.730	0.000	5.00	7.485	5.46	60.9	0.0	23
25.00 30.00		1.00		10.217	11.24	89.74		0.000	5.00	6.860	5.01	56.3	0.0	215
งนานป		1.00	1.34	10.302	11.33	81.51	0.730	0.000	5.00	6.236	4.55	51.6	0.0	195

Gh: 1.1 Topograpny: 1 Struct class: II Page. 20 Load Case: 1.0D + 1.0W 60 mph Wind Iteratio Iteratio Iteratio No. (ft) Description 0.0 Vind Load Factor 1.00 Iteratio 1 110.00 Commscope 3 9.946 10.940 Iteratio Iteratio 1 110.00 Commscope 3 9.946 10.940 0.66 0.80 16.10 131.10 0.000 0.000 82.05 0.00 3 110.00 Ring Mount 1 9.946 10.940 0.66 0.80 16.10 131.10 0.000 0.000 82.05 0.00 82.05 0.00 1755 0.00 0.000 1755 0.00 110.00 88.80 0.612.3 153.00 0.000 0.000 28.90 0.177.55 0.00 0.000 24.10 0.000 0.000 24.10 0.000 0.000 24.90 0.000 0.000 24.90														_	_
Site Name: Burlington - Avon Landfill Exposure: C Height: 130.00 (ft) Site Class: D - Stiff Soil Base Elev: 0.000 (ft) Site Class: D - Stiff Soil Gh: 1.1 Topography: 1 Struct Class: I Page: 28 Image: 28 Load Case: 1.00 + 1.0W 60 mph Wind Elev Creat Creat Creat Code Morization Vert Wind Mind 1 1100 Creat Grén Factor Total Creat Creat Creat Creat Creat Wind Keration 1 110.00 Commscope 3 9.946 10.40 0.66 0.80 16.10 131.10 0.000 0.000 82.00 16.60 1 110.00 Commscope 3 9.946 10.40 0.80 3.28 16.30 10.00 0.000 0.000 82.00 17.50 600.00 0.000 17.50 600.00 0.000 17.50 600.00 0.000 <th></th> <th></th> <th>1 81</th> <th></th> <th>Di</th> <th>scret</th> <th>e App</th> <th>urten</th> <th>ance l</th> <th>Forces</th> <th></th> <th></th> <th></th> <th></th> <th></th>			1 81		Di	scret	e App	urten	ance l	Forces					
Site Name: Burlington - Avon Landfill Exposure: C Height: 130.00 (ft) Site Class: D - Stiff Soil Base Elev: 0.000 (ft) Site Class: D - Stiff Soil Chead Case: 1.0D + 1.0W 60 mph Wind Site Class: I Page: 28 Load Case: 1.0D + 1.0W 60 mph Wind Site Class: I Page: 28 Load Case: 1.0D + 1.0W 60 mph Wind Site Class: I Page: 28 Load Case: 1.0D + 1.0W 60 mph Wind Site Class: I Page: 28 Vind Load Factor 1.00 100 Site Class: I Page: 28 Vind Load Factor 1.00 Site Class: Site Class: I Page: 28 I 1000 Commscope 3 9.46 10.40 0.86 0.80 0.200 0.000 0.000 176.09 1 1000 Commscope 3 9.46 10.40 0.80 0.83 171.36 0.000 0.000 177.55 1 1000 Samsung RF44384-25A 3 9.46 10.40 0.	Str	ructure:	CT46143-A-SBA			_	Co	de:	Т	- IA-222-⊦	1	1/26/	2024		
Height: 130.00 (ft) Crest Height: 0.00 Base Elev: 0.000 (ft) Site Class: D - Stiff Soil Cheight: 1.1 Topography: 1 Struct Class: II Page: 28 Load Case: 1.0D + 1.0W 60 mph Wind Dead Load Factor 1.00 Struct Class: II Page: 28 Iteration No. (ft) Description Qr qr pr <				Londfi	u		Ev	nosura	C	• • •				(開)))	
Base Elev: 0.000 (ft) Site Class: D - Stiff Soil Page: 28 Construct Class: 1.1 Topography: 1 Struct Class: I Page: 28 Terretor Load Case: 1.00 + 1.0W 60 mph Wind Struct Class: I Dead Load Factor 1.00 Struct Class: I Struct Class: I Page: 28 Terretor No. (ft) Description Qr qr rd/sh Fetor Total Dead Horiz Vert Wind (ft) Wind (ft) Description Qr rd/sh Ka Ka (ft) One (ft) Mon 1 110.00 Commscope 3 9.946 0.940 0.66 0.80 16.10 131.10 0.000 0.000 82.05 0.000 177.55 0.000 0.000 32.88 0.000 0.000 32.89 0.000 0.000 32.99 0.000 32.99 0.000 32.99 0.000 32.99 0.000 0.000			•	Lanun	11								- 2	-	~
Chi 1,1 Topography: 1 Struct Class: II Page: 20 Terretion Load Case: 1.0D + 1.0W 60 mph Wind Image:	He	ight:	130.00 (ft)						-	.00					5
Ch: 1.1 Topography: 1 Struct Class: II Prage. 20 Load Case: 1.0D + 1.0W 60 mph Wind Dead Load Factor 1.00 Iteratio Iteratio No. (it) Description Qty (psf) (psf) Factor CaAa Horiz Vert Wind Mode 1 110.00 Commscope 3 9.946 10.940 0.66 0.80 16.10 131.10 0.000 0.000 176.09 0.00 2 110.00 Commscope 3 9.946 10.940 0.66 0.80 16.10 131.10 0.000 0.000 82.05 0.00 3 110.00 Raycap 1 9.946 10.940 0.65 0.80 16.23 153.00 0.000 0.000 32.90 0.10 7.55 0.00 0.000 0.000 2.94 1.10.00 Samsung RF4439d-25A 3 9.946 10.940 0.54 0.80 3.01 22.4110 0.000 0.000 <	Ва	se Elev:	0.000 (ft)				Sit	e Clas	s: D) - Stiff Se	oil				ND_
Load Case: 1.0D + 1.0W 60 mph Wind Dead Load Factor 1.00 Iteration Mo. (rt) Dead Load Factor 1.00 Vind Load Factor 1.00 Vind Load Factor 1.00 Total Case Dead Horiz (rt) Vert Wind Mori Ecc Vert Wind Mori Case Vert Wind	Gh	•	11	Topo	iranhv	: 1	Str	uct Cl	ass: II			Pac	ie: 28	ower Enginee	ring Solution
Dead Load Factor 1.00 Wind Load Factor 1.00 No. (ft) Description Qt (gz) (gz) Orient Total Dead Horiz Vert Wind Mod 1 110.00 Commscope 3 9.946 10.940 0.66 0.80 16.10 131.10 0.000 0.000 176.09 0. 2 110.00 Raycap 1 9.946 10.940 0.66 0.80 16.10 131.10 0.000 0.000 82.05 0. 3 110.00 Raycap 1 9.946 10.940 0.67 0.80 68.03 16.23 153.00 0.000 0.000 82.05 0. 5 110.00 Samsung RT44394-25A 3 9.946 10.940 0.54 0.80 2.20 119.10 0.000 0.000 2.410 0.000 122.410 0.000 0.000 124.10 0.000 0.000 124.10 0.000 0.000 <td< th=""><th></th><th></th><th></th><th>10003</th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th>_</th><th>_</th></td<>				10003						_				_	_
Dead Load Factor 1.00 Wind Load Factor 1.00 Vind Load Factor 0.0 (ft) Description Qty (psf) rKa Ka (ft) Dead Horiz Vert Wind Mod 1 110.00 Ring Mount 1 9.946 10.940 0.66 0.80 16.23 153.00 0.000 0.000 82.95 0. 3 110.00 Commscope 3 9.946 10.940 0.67 0.80 16.23 153.00 0.000 0.000 82.96 0. 4 110.00 Samsung RF44439d-25A 3 9.946 10.940 0.54 0.80 2.20 119.10 0.000 0.000 2.410 0. 110.00 Samsung RF4461d-13A 9.946 10.940 0.54 0.80 1.25 25 0.000	Lo	oad Case	e: 1.0D + 1.0W 60 r	mph W	ind	e .						YA		ations	20
Liev rgz qz		De	ad Load Factor	1.00									×		
Elev gz gzGh Factor (psf) CAA x Ka Load (sf) Ecc (th) Ecc		Wi	nd Load Factor	1.00								Z			
1 10.00 Commscope 3 9.46 10.940 0.66 0.80 16.10 131.10 0.000 176.09 0 2 110.00 Ring Mount 1 9.946 10.940 0.86 0.80 16.10 131.10 0.000 176.09 0 3 110.00 Raycap 1 9.946 10.940 0.87 0.82 21.40 0.000 0.000 35.88 0. 4 110.00 Commscope 3 9.946 10.940 0.55 0.80 6.30 171.96 0.000 0.000 32.90 0. 5 110.00 Samsung RF4439d-25A 3 9.946 10.940 0.54 0.80 3.01 22.410 0.000 0.000 32.90 0. 7 110.00 Samsung RF4423-48A 3 9.946 10.940 0.54 0.80 1.25 26.40 0.000 0.000 15.13 0. 9.900 ALU B00MHz RRH 3 <t< th=""><th>No</th><th></th><th>Description</th><th>Otv</th><th>•</th><th></th><th>Factor</th><th>Ka</th><th>CaAa</th><th>Load</th><th>Ecc</th><th>Ecc</th><th>FX</th><th>Mom Y (Ib-ft)</th><th>Mom Z (Ib-ft)</th></t<>	No		Description	Otv	•		Factor	Ka	CaAa	Load	Ecc	Ecc	FX	Mom Y (Ib-ft)	Mom Z (Ib-ft)
110.00 Ring Mount 1 9.446 10.940 1.00 7.50 660.00 0.000 82.05 0. 3 110.00 Raycap 1 9.946 10.940 0.80 3.22 21.40 0.000 0.000 35.88 0. 4 110.00 Commscope 3 9.946 10.940 0.67 0.80 16.23 153.00 0.000 0.000 35.88 0. 5 110.00 Samsung RF4439d-25A 3 9.946 10.940 0.54 0.80 3.01 224.10 0.000 0.000 32.90 0. 7 110.00 Samsung RF4439d-25A 3 9.946 10.940 0.54 0.80 2.20 119.10 0.000 0.000 24.10 0. 8 110.00 Samsung RT4423-48A 3 9.946 10.940 0.54 0.80 1.25 26.40 0.000 0.000 15.13 0. 9 9.00 ALU BOMHz Filter 3 9.728 10.700 0.54 0.80 3.71 180.00 0.000 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.1</td><td></td><td></td><td>0.00</td><td>0.00</td></td<>	-										1.1			0.00	0.00
10.00 Raycap 1 9.946 10.940 0.80 0.80 3.28 21.40 0.000 0.000 35.88 0. 4 110.00 Raycap 3 9.946 10.940 0.80 0.80 3.28 21.40 0.000 0.000 177.55 0. 5 110.00 Samsung MT6413-77A 3 9.946 10.940 0.55 0.80 6.30 171.96 0.000 0.000 83.88 0. 6 110.00 Samsung RF4439d-25A 3 9.946 10.940 0.54 0.80 3.01 224.10 0.000 0.000 24.10 0. 7 110.00 Samsung RT4423.48A 3 9.946 10.940 0.54 0.80 1.38 46.20 0.000 0.000 13.42 0. 0. 9 9.00 ALU B00MHz RRH 3 9.728 10.700 0.54 0.80 3.43 159.00 0.000 0.000 39.75 0. 13 99.00 ALU B00MHz RRH 3 9.728 10.700 0.54 0.80 <td></td> <td>0.00</td> <td>0.00</td>														0.00	0.00
10:00 Commscope 3 9.946 10.940 0.67 0.80 16.23 153.00 0.000 177.55 0. 5 110.00 Samsung MT6413-77A 3 9.946 10.940 0.55 0.80 6.30 171.96 0.000 0.000 68.96 0. 6 110.00 Samsung RF4461d-13A 3 9.946 10.940 0.54 0.80 3.01 224.10 0.000 0.000 32.90 0. 7 110.00 Samsung RF4461d-13A 3 9.946 10.940 0.54 0.80 1.38 46.20 0.000 0.000 15.13 0. 9 9.00 ALU 800MHz Filter 3 9.728 10.700 0.54 0.80 1.25 26.40 0.000 0.000 68.68 0. 19 9.00 ALU 800 MHz RRH 3 9.728 10.700 0.54 0.80 3.43 159.00 0.000 0.000 36.65 0. 19 9.00 ALU 800 MHz RRH 3 9.728 10.700 1.00 1.00 5.00			-											0.00	0.00
110.00 Samsung MT6413-77A 3 9.946 10.940 0.55 0.80 6.30 171.96 0.000 0.000 32.90 0. 6 110.00 Samsung RF4439d-25A 3 9.946 10.940 0.54 0.80 3.01 224.10 0.000 0.000 32.90 0. 7 110.00 Samsung RF44514-13A 3 9.946 10.940 0.54 0.80 2.20 119.10 0.000 0.000 24.10 0. 8 110.00 Samsung RT4423-48A 3 9.946 10.940 0.54 0.80 1.25 26.40 0.000 0.000 15.13 0. 9 9.00 ALU B00MHz Filter 3 9.728 10.700 0.54 0.80 3.43 159.00 0.000 0.000 36.65 0. 11 99.00 ALU B00MHz RRH 3 9.728 10.700 0.54 0.80 3.71 180.00 0.000 0.000 32.97 0. 13 99.00 Alue B00Mtz RRH 3 9.728 10.700 0.54 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.000</td><td>177.55</td><td>0.00</td><td>0.00</td></t<>												0.000	177.55	0.00	0.00
6 110.00 Samsung RF44394-25A 3 9.946 10.940 0.54 0.80 3.01 224.10 0.000 0.000 32.90 0. 7 110.00 Samsung RF4421-48A 3 9.946 10.940 0.54 0.80 2.20 119.10 0.000 0.000 24.10 0. 8 110.00 Samsung RF4423-48A 3 9.946 10.940 0.54 0.80 1.25 26.40 0.000 0.000 15.13 0. 9 90.00 ALU 800MHz Filter 3 9.728 10.700 0.54 0.80 1.25 26.40 0.000 0.000 66.68 0. 19 90.00 ALU 800 MHz RRH 3 9.728 10.700 0.54 0.80 3.71 180.00 0.000 0.000 36.65 0. 12 99.00 ALU 1900MHz RRH 3 9.728 10.700 0.54 0.80 3.71 180.00 0.000 0.000 35.50 0. 13 99.00 Flush Mount 1 9.728 10.700 0.66 <td></td> <td>0.000</td> <td>0.000</td> <td>68.96</td> <td>0.00</td> <td>0.00</td>											0.000	0.000	68.96	0.00	0.00
110.00 Samsung RF4461d-13A 3 9.946 10.940 0.54 0.80 2.20 119.10 0.000 0.000 24.10 0. 8 110.00 Samsung RF4461d-13A 3 9.946 10.940 0.54 0.80 1.38 46.20 0.000 0.000 15.13 0. 9 99.00 ALU TD-RRH8x20-25 3 9.728 10.700 0.54 0.80 6.51 210.00 0.000 0.000 69.68 0. 11 99.00 ALU 800 MHz RRH 3 9.728 10.700 0.54 0.80 3.43 159.00 0.000 0.000 36.65 0. 12 99.00 ALU 800 MHz RRH 3 9.728 10.700 0.54 0.80 3.71 180.00 0.000 0.000 39.75 0. 13 99.00 RFS ACU-A20-N 4 9.728 10.700 1.00 1.00 5.00 350.00 0.000 0.000 353.50 0. 14 99.00 Flush Mount 1 9.534 10.488 1.64 0.80 <td>_</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.01</td> <td>224.10</td> <td>0.000</td> <td>0.000</td> <td>32.90</td> <td>0.00</td> <td>0.00</td>	_		•						3.01	224.10	0.000	0.000	32.90	0.00	0.00
8 110.00 Samsung RT4423-48A 3 9.946 10.940 0.54 0.80 1.38 46.20 0.000 0.000 15.13 0. 9 99.00 ALU 800MHz Filter 3 9.728 10.700 0.54 0.80 1.25 26.40 0.000 0.000 69.68 0. 10 99.00 ALU TD-RRH8x20-25 3 9.728 10.700 0.54 0.80 6.51 210.00 0.000 0.000 69.68 0. 11 99.00 ALU 800 MHz RRH 3 9.728 10.700 0.54 0.80 3.43 159.00 0.000 0.000 39.75 0. 13 99.00 RES ACU-A20-N 4 9.728 10.700 0.54 0.80 0.30 4.00 0.000 0.000 32.1 0. 14 99.00 Flush Mount 1 9.728 10.700 0.66 0.80 16.12 135.00 0.000 0.000 53.50 0. 15 99.00 Andrew DHHTT65B-3XR 3 9.734 10.488 0.54			•						2.20	119.10	0.000	0.000	24.10	0.00	0.00
9 99.00 ALU 800MHz Filter 3 9.728 10.700 0.54 0.80 1.25 26.40 0.000 0.000 13.42 0. 10 99.00 ALU TD-RRH8x20-25 3 9.728 10.700 0.54 0.80 6.51 210.00 0.000 0.000 69.68 0. 11 99.00 ALU 800 MHz RRH 3 9.728 10.700 0.54 0.80 3.43 159.00 0.000 0.000 36.65 0. 12 99.00 ALU 1900MHz RRH 3 9.728 10.700 0.54 0.80 3.71 180.00 0.000 0.000 39.75 0. 13 99.00 Fis ACU-A20-N 4 9.728 10.700 1.00 1.00 5.00 350.00 0.000 0.000 3.21 0. 14 99.00 Flush Mount 1 9.728 10.700 0.66 0.80 16.12 135.00 0.000 0.000 12.44 0. 16 90.00 Andrew DHHT65B-3XR 3 9.534 10.488 0.54			v				0.54	0.80	1.38	46.20	0.000	0.000	15.13	0.00	0.00
10 99.00 ALU TD-RRH8x20-25 3 9.728 10.700 0.54 0.80 6.51 210.00 0.000 69.68 0. 11 99.00 ALU 800 MHz RRH 3 9.728 10.700 0.54 0.80 3.43 159.00 0.000 0.000 36.65 0. 12 99.00 ALU 1900MHz RRH 3 9.728 10.700 0.54 0.80 3.71 180.00 0.000 0.000 39.75 0. 13 99.00 RFS ACU-A20-N 4 9.728 10.700 1.00 1.00 5.00 350.00 0.000 0.000 32.1 0. 14 99.00 Flush Mount 1 9.728 10.700 0.66 0.80 16.12 135.00 0.000 0.000 172.44 0. 16 90.00 Flush Mount 1 9.534 10.488 0.54 0.80 0.16 3.96 0.000 0.000 1.69 0. 17 90.00 Andrew 3 9.534 10.488 0.54 0.80 2.20			•				0.54	0.80	1.25	26.40	0.000	0.000	13.42	0.00	0.00
11 99.00 ALU 800 MHz RRH 3 9.728 10.700 0.54 0.80 3.43 159.00 0.000 0.000 36.65 0. 12 99.00 ALU 1900MHz RRH 3 9.728 10.700 0.54 0.80 3.71 180.00 0.000 0.000 39.75 0. 13 99.00 RFS ACU-A20-N 4 9.728 10.700 0.54 0.80 0.30 4.00 0.000 0.000 32.1 0. 14 99.00 Flush Mount 1 9.728 10.700 0.66 0.80 16.12 135.00 0.000 0.000 53.50 0. 15 99.00 Andrew DHHTT65B-3XR 3 9.534 10.488 1.00 1.00 5.00 350.00 0.000 0.000 1.69 0. 16 90.00 Andrew 3 9.534 10.488 0.54 0.80 1.16 3.96 0.000 0.000 1.69 0. 17 90.00 Andrew SBNHH-1D65C 3 9.534 10.488 0.54 0.80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.54</td> <td>0.80</td> <td>6.51</td> <td>210.00</td> <td>0.000</td> <td>0.000</td> <td>69.68</td> <td>0.00</td> <td>0.00</td>							0.54	0.80	6.51	210.00	0.000	0.000	69.68	0.00	0.00
12 99.00 ALU 1900MHz RRH 3 9.728 10.700 0.54 0.80 3.71 180.00 0.000 30.00 32.1 0. 13 99.00 RFS ACU-A20-N 4 9.728 10.700 0.54 0.80 0.30 4.00 0.000 0.000 32.1 0. 14 99.00 Flush Mount 1 9.728 10.700 1.00 1.00 5.00 350.00 0.000 0.000 32.1 0. 15 99.00 Andrew DHHTT65B-3XR 3 9.728 10.700 0.66 0.80 16.12 135.00 0.000 0.000 172.44 0. 16 90.00 Flush Mount 1 9.534 10.488 1.00 1.00 5.00 350.00 0.000 0.000 1.69 0. 17 90.00 Andrew 3 9.534 10.488 0.54 0.80 2.20 78.00 0.000 0.000 23.10 0. 18 90.00 Powerwave LGP21401 3 9.534 10.488 0.54 0.80					9.728		0.54	0.80	3.43	159.00	0.000	0.000	36.65	0.00	0.00
13 99.00 RFS ACU-A20-N 4 9.728 10.700 0.54 0.80 0.30 4.00 0.000 0.000 3.21 0. 14 99.00 Flush Mount 1 9.728 10.700 1.00 1.00 5.00 350.00 0.000 0.000 53.50 0. 15 99.00 Andrew DHHTT65B-3XR 3 9.728 10.700 0.66 0.80 16.12 135.00 0.000 0.000 172.44 0. 16 90.00 Flush Mount 1 9.534 10.488 1.00 1.00 5.00 350.00 0.000 0.000 169 0. 17 90.00 Andrew 3 9.534 10.488 0.54 0.80 0.16 3.96 0.000 0.000 1.69 0. 18 90.00 Cci TMABPD7823VG12A 3 9.534 10.488 0.54 0.80 1.32 52.50 0.000 0.000 23.10 0. 20 90.00 Andrew SBNHH-1D65C 3 9.534 10.488 0.67 0.80 <td></td> <td></td> <td></td> <td></td> <td>9.728</td> <td>10,700</td> <td>0.54</td> <td>0.80</td> <td>3.71</td> <td>180.00</td> <td>0.000</td> <td>0.000</td> <td>39.75</td> <td>0.00</td> <td>0.00</td>					9.728	10,700	0.54	0.80	3.71	180.00	0.000	0.000	39.75	0.00	0.00
1499.00Flush Mount19.72810.7001.001.005.00350.000.00053.500.1599.00Andrew DHHTT65B-3XR39.72810.7000.660.8016.12135.000.0000.000172.440.1690.00Flush Mount19.53410.4881.001.005.00350.000.0000.00052.440.1790.00Andrew39.53410.4880.540.800.163.960.0000.0001.690.1890.00Cci TMABPD7823VG12A39.53410.4880.540.802.2078.000.0000.00023.100.1990.00Powerwave LGP2140139.53410.4880.540.801.3252.500.0000.000240.820.2090.00Andrew SBNHH-1D65C39.53410.4880.670.8022.96148.800.0000.000240.820.2180.00Flush Mount19.30110.2311.005.00350.000.0000.00051.150.2280.00RFS39.30110.2310.540.800.486.960.0000.0004.940.2380.00RFS69.30110.2310.540.800.486.960.0000.0004.940.2470.00Commscope19						10.700	0.54	0.80	0.30	4.00	0.000	0.000	3.21	0.00	0.00
16 90.00 Flush Mount 1 9.534 10.488 1.00 1.00 5.00 350.00 0.000 0.000 52.44 0. 17 90.00 Andrew 3 9.534 10.488 0.54 0.80 0.16 3.96 0.000 0.000 1.69 0. 18 90.00 Cci TMABPD7823VG12A 3 9.534 10.488 0.54 0.80 2.20 78.00 0.000 0.000 23.10 0. 19 90.00 Powerwave LGP21401 3 9.534 10.488 0.54 0.80 1.32 52.50 0.000 0.000 23.10 0. 20 90.00 Andrew SBNHH-1D65C 3 9.534 10.488 0.67 0.80 22.96 148.80 0.000 0.000 240.82 0. 21 80.00 Flush Mount 1 9.301 10.231 1.00 1.00 5.00 350.00 0.000 191.93 0. 22 80.00 RFS 3 9.301 10.231 0.54 0.80 0.48				1	9.728	10.700	1.00	1.00	5.00	350.00	0.000	0.000	53.50	0.00	0.00
1690.00Flush Mount19.53410.4881.001.005.00350.000.0000.00052.440.1790.00Andrew39.53410.4880.540.800.163.960.0000.0001.690.1890.00Cci TMABPD7823VG12A39.53410.4880.540.802.2078.000.0000.00023.100.1990.00Powerwave LGP2140139.53410.4880.540.801.3252.500.0000.000240.820.2090.00Andrew SBNHH-1D65C39.53410.4880.670.8022.96148.800.0000.000240.820.2180.00Flush Mount19.30110.2311.001.005.00350.000.0000.00051.150.2280.00RFS39.30110.2310.650.8018.76208.200.0000.000191.930.2380.00RFS69.30110.2310.540.800.486.960.0000.0004.940.2470.00Commscope19.0439.9471.001.0037.591727.000.0000.000373.920.2570.00Raycap19.0439.9470.500.752.95191.700.0000.00029.390.2670.00Fujitsu TA080	15	99.00 A	ndrew DHHTT65B-3XR	3	9.728	10.700	0.66	0.80	16.12	135.00	0.000	0.000	172.44	0.00	0.00
17 90.00 Andrew 3 9.534 10.488 0.54 0.80 10.00 10.00 23.10 0. 18 90.00 Cci TMABPD7823VG12A 3 9.534 10.488 0.54 0.80 2.20 78.00 0.000 23.10 0. 19 90.00 Powerwave LGP21401 3 9.534 10.488 0.54 0.80 1.32 52.50 0.000 0.000 240.82 0. 20 90.00 Andrew SBNHH-1D65C 3 9.534 10.488 0.67 0.80 22.96 148.80 0.000 0.000 240.82 0. 21 80.00 Flush Mount 1 9.301 10.231 1.00 1.00 5.00 350.00 0.000 0.000 191.93 0. 22 80.00 RFS 3 9.301 10.231 0.54 0.80 18.76 208.20 0.000 0.000 191.93 0. 23 80.00 RFS 6 9.301 10.231 0.54 0.80 0.48 6.96 0.000 <t< td=""><td></td><td>90.00 FI</td><td>lush Mount</td><td>1</td><td>9.534</td><td>10.488</td><td>1.00</td><td>1.00</td><td>5.00</td><td>350.00</td><td>0.000</td><td>0.000</td><td>52.44</td><td>0.00</td><td>0.00</td></t<>		90.00 FI	lush Mount	1	9.534	10.488	1.00	1.00	5.00	350.00	0.000	0.000	52.44	0.00	0.00
19 90.00 Powerwave LGP21401 3 9.534 10.488 0.54 0.80 1.32 52.50 0.000 0.000 13.83 0. 20 90.00 Andrew SBNHH-1D65C 3 9.534 10.488 0.67 0.80 1.32 52.50 0.000 0.000 240.82 0. 21 80.00 Flush Mount 1 9.301 10.231 1.00 1.00 5.00 350.00 0.000 0.000 51.15 0. 22 80.00 RFS 3 9.301 10.231 0.65 0.80 18.76 208.20 0.000 0.000 51.15 0. 23 80.00 RFS 6 9.301 10.231 0.54 0.80 0.48 6.96 0.000 0.000 4.94 0. 24 70.00 Commscope 1 9.043 9.947 1.00 37.59 1727.00 0.000 0.000 19.10 0. 25 70.00 Raycap 1 9.043 9.947 0.75 0.75 1.92 21.85	17	90.00 A	ndrew	3	9.534	10.488	0.54	0.80	0.16	3.96	0.000	0.000	1.69	0.00	0.00
19 90.00 Powerwave LGP21401 3 9.534 10.488 0.54 0.80 1.32 52.50 0.000 0.000 13.83 0. 20 90.00 Andrew SBNHH-1D65C 3 9.534 10.488 0.67 0.80 22.96 148.80 0.000 0.000 240.82 0. 21 80.00 Flush Mount 1 9.301 10.231 1.00 1.00 5.00 350.00 0.000 0.000 240.82 0. 22 80.00 RFS 3 9.301 10.231 0.65 0.80 18.76 208.20 0.000 0.000 191.93 0. 23 80.00 RFS 6 9.301 10.231 0.54 0.80 0.48 6.96 0.000 0.000 4.94 0. 24 70.00 Commscope 1 9.043 9.947 1.00 1.00 37.59 1727.00 0.000 0.000 19.10 0. 25 70.00 Raycap 1 9.043 9.947 0.50 0.75 2.95	18	90.00 C	ci TMABPD7823VG12A	3	9.534	10.488	0.54	0.80	2.20	• 78.00	0.000	0.000	23.10	0.00	0.00
20 90.00 Andrew SBNHH-1D65C 3 9.534 10.488 0.67 0.80 22.96 148.80 0.000 0.000 240.82 0. 21 80.00 Flush Mount 1 9.301 10.231 1.00 1.00 5.00 350.00 0.000 0.000 51.15 0. 22 80.00 RFS 3 9.301 10.231 0.65 0.80 18.76 208.20 0.000 0.000 191.93 0. 23 80.00 RFS 6 9.301 10.231 0.54 0.80 0.48 6.96 0.000 0.000 4.94 0. 24 70.00 Commscope 1 9.043 9.947 1.00 1.00 37.59 1727.00 0.000 0.000 373.92 0. 25 70.00 Raycap 1 9.043 9.947 0.75 1.92 21.85 0.000 0.000 19.10 0. 26 70.00 Fujitsu TA08025-B604 3 9.043 9.947 0.50 0.75 2.95 191.70 </td <td></td> <td></td> <td></td> <td>3</td> <td>9.534</td> <td>10.488</td> <td>0.54</td> <td>0.80</td> <td>1.32</td> <td>52.50</td> <td>0.000</td> <td>0.000</td> <td>13.83</td> <td>0.00</td> <td>0.0</td>				3	9.534	10.488	0.54	0.80	1.32	52.50	0.000	0.000	13.83	0.00	0.0
21 80.00 RFS 3 9.301 10.231 0.65 0.80 18.76 208.20 0.000 191.93 0. 23 80.00 RFS 6 9.301 10.231 0.54 0.80 18.76 208.20 0.000 0.000 191.93 0. 24 70.00 Commscope 1 9.043 9.947 1.00 37.59 1727.00 0.000 0.000 373.92 0. 25 70.00 Raycap 1 9.043 9.947 0.75 0.75 1.92 21.85 0.000 0.000 19.10 0. 26 70.00 Fujitsu TA08025-B604 3 9.043 9.947 0.50 0.75 2.95 191.70 0.000 0.000 29.39 0. 27 70.00 Fujitsu TA08025-B605 3 9.043 9.947 0.50 0.75 2.95 225.00 0.000 20.000 29.39 0.		90.00 A	ndrew SBNHH-1D65C	3	9.534	10.488	0.67	0.80	22.96	148.80				0.00	0.00
22 80.00 RFS 6 9.301 10.231 0.54 0.80 0.48 6.96 0.000 0.000 4.94 0. 24 70.00 Commscope 1 9.043 9.947 1.00 1.00 37.59 1727.00 0.000 0.000 373.92 0. 25 70.00 Raycap 1 9.043 9.947 0.75 0.75 1.92 21.85 0.000 0.000 19.10 0. 26 70.00 Fujitsu TA08025-B604 3 9.043 9.947 0.50 0.75 2.95 191.70 0.000 0.000 29.39 0. 27 70.00 Fujitsu TA08025-B605 3 9.043 9.947 0.50 0.75 2.95 225.00 0.000 20.39 0.	21	80.00 FI	lush Mount	1	9.301	10.231	1.00	1.00	5.00	350.00	0.000	0.000	51.15	0.00	0.00
23 80.00 KP3 0 9.041 9.947 1.00 1.00 37.59 1727.00 0.000 0.000 373.92 0. 24 70.00 Commscope 1 9.043 9.947 1.00 1.00 37.59 1727.00 0.000 0.000 373.92 0. 25 70.00 Raycap 1 9.043 9.947 0.75 0.75 1.92 21.85 0.000 0.000 19.10 0. 26 70.00 Fujitsu TA08025-B604 3 9.043 9.947 0.50 0.75 2.95 191.70 0.000 0.000 29.39 0. 27 70.00 Fujitsu TA08025-B605 3 9.043 9.947 0.50 0.75 2.95 225.00 0.000 20.000 29.39 0.	22	80.00 R	FS	3	9.301	10.231	0.65	0.80	18.76	208.20	0.000	0.000	191.93	0.00	0.00
24 70.00 Raycap 1 9.043 9.947 0.75 0.75 1.92 21.85 0.000 0.000 19.10 0. 26 70.00 Fujitsu TA08025-B604 3 9.043 9.947 0.50 0.75 2.95 191.70 0.000 0.000 29.39 0. 27 70.00 Fujitsu TA08025-B605 3 9.043 9.947 0.50 0.75 2.95 225.00 0.000 29.39 0.	23	80.00 R	FS	6	9.301	10.231	0.54	0.80	0.48	6.96	0.000			0.00	0.00
26 70.00 Fujitsu TA08025-B604 3 9.043 9.947 0.50 0.75 2.95 191.70 0.000 0.000 29.39 0. 27 70.00 Fujitsu TA08025-B605 3 9.043 9.947 0.50 0.75 2.95 191.70 0.000 0.000 29.39 0. 27 70.00 Fujitsu TA08025-B605 3 9.043 9.947 0.50 0.75 2.95 225.00 0.000 29.39 0.	24	70.00 C	ommscope	1	9.043	9.947	1.00	1.00	37.59	1727.00				0.00	0.00
26 70.00 Fujitsu TA08025-B604 3 9.043 9.947 0.50 0.75 2.95 191.70 0.000 29.39 0. 27 70.00 Fujitsu TA08025-B605 3 9.043 9.947 0.50 0.75 2.95 225.00 0.000 29.39 0. 27 70.00 Fujitsu TA08025-B605 3 9.043 9.947 0.50 0.75 2.95 225.00 0.000 29.39 0.	25	70.00 R	aycap	1	9.043	9.947	0.75	0.75	1.92	21.85	0.000			0.00	0.00
	26		-	3	9.043	9.947	0.50							0.00	0.00
28 70.00 JMA Wireless 3 9.043 9.947 0.55 0.75 20.80 193.50 0.000 0.000 206.86 0.	27	70.00 F	ujitsu TA08025-B605		9.043	9.947								0.00	0.00
	28	70.00 JI	MA Wireless	3	9.043	9.947	0.55	0.75	20.80	193.50	0.000	0.000	206.86	0.00	0.00
Totals: 6,148.73 2,239.88								Totals		6,148.73			2,239.88		

	То	tal App	lied Force St	ummary	Total Applied Force Summary												
Structure:	CT46143-A-SBA		Code:	TIA-222-H	1/26/2024	4											
Site Name:	Burlington - Avon Landfill		Exposure:	С		((char)))											
Height:	130.00 (ft)		Crest Height:	0.00		EC											
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil		LD											
Gh:	1.1 Topography:	1	Struct Class:	11	Page: 29	Tower Engineering Solutions											

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor1.00Wind Load Factor1.00

Elev (ft)	Description	Lateral FX (-) (Ib)	Axial FY (-) (Ib)	Torsion MY (lb-ft)	Moment MZ (Ib-ft)		
0.00		0.00	0.00	0.00	0.00		
5.00		112.11	1294.48	0.00	0.00		
10.00		108.82	1259.59	0.00	0.00		
15.00		105.54	1224.71	0.00	0.00		
20.00		108.50	1189.83	0.00	0.00		
25.00		110.06	1154.94	0.00	0.00		
30.00		110.57	1120.06	0.00	0.00		
35.00		110.30	1085.18	0.00	0.00		
40.00		109.41	1050.29	0.00	0.00		
45.00		108.03	1015.41	0.00	0.00		
48.00		63.69	592.50	0.00	0.00		
50.00		42.84	688.09	0.00	0.00		
53.25		69.09	1096.04	0.00	0.00		
55.00		36.70	291.75	0.00	0.00		
60.00		103.83	813.40	0.00	0.00		
65.00		101.13	783.50	0.00	0.00		
70.00	(11) attachments	756.84	3112.65	0.00	0.00		
75,00		95.01	718.00	0.00	0.00		
80.00	(10) attachments	339.67	1253.26	0.00	0.00		
85.00		88.10	627.00	0.00	0.00		
90.00	(13) attachments	416.26	1230.36	0.00	0.00		
95.00		80.51	519.50	0.00	0.00		
98.25		50.09	321.64	0.00	0.00		
99.00	(20) attachments	400.19	1183.44	0.00	0.00		
100.00		15.24	154.33	0.00	0.00		
101.50		22.56	227.76	0.00	0.00		
105.00		51.29	215.98	0.00	0.00		
110.00	(20) attachments	682.42	1818.46	0.00	0.00		
115.00		65.38	255.39	0.00	0.00		
120.00		60.88	235.46	0.00	0.00		
125.00		56.28	215.53	0.00	0.00		
130.00		51.58	195.59	0.00	0.00		
	Totals:	4,632.95	26,944.15	0.00	0.00		

					and the second se			
	1 10 1	inear Appur	tenanc	e Segment F	orces (Fac	ctored)		
Structure:	CT46143-A-SBA			Code:	TIA-222-H		1/26/2024	Accum Al
Site Name:	Burlington - Avor	Landfill		Exposure:	С			der un ante
Height:	130.00 (ft)			Crest Height:	0.00			IFS
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil			
Gh:	1.1	Topography:	1	Struct Class:			Page: 30	Tower Engineering Solutions
Load Case:	: 1.0D + 1.0W 60	mph Wind				1	×	terations 20
Dea	d Load Factor	1.00					S-S	
Win	d Load Factor	1.00				3		

op lev (ft) Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (Ib)	Dead Load (Ib)
5.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.028	0.000	6.547	0.00	5.70
0.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.028	0.000	6.547	0.00	5.70
15.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.029	0.000	6.547	0.00	5.70
20.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.030	0.000	6.947	0.00	5.7
25.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.031	0.000	7.281	0.00	5.7
30.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.032	0.000	7.566	0.00	5.7
35.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.033	0.000	7.815	0.00	5.7
10.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.035	0.000	8.038	0.00	5.7
15.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.036	0.000	8.240	0.00	5.7
8.00 1.41" Hybrid	Yes	3.00	0.000	1.4 1	0.35	0.00	0.037	0.000	8.352	0.00	3.4
50.00 1.41" Hybrid	Yes	2.00	0.000	1.41	0.23	0.00	0.038	0.000	8.425	0.00	2.2
53.25 1.41" Hybrid	Yes	3.25	0.000	1.41	0.38	0.00	0.039	0.000	8.537	0.00	3.7
55.00 1.41" Hybrid	Yes	1.75	0.000	1.41	0.21	0.00	0.039	0.000	8.595	0.00	1.9
50.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.040	0.000	8.754	0.00	5.7
55.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.042	0.000	8.903	0.00	5.7
70.00 1.41" Hybrid	Yes	5.00	0.000	1.41	0.59	0.00	0.043	0.000	9.043	0.00	5.7
								То	tals:	0.0	79.

		F			J.	Calc	ulated Fe	orces		E.		£.	T I	
Struc	ture:	CT46	143 -A- S	SBA			Code:	TIA	-222-H		1/2	6/2024		
Site I	Name:	Burlin	aton - A	von Lar	ndfill		Exposure	: C					((開))	
Heigl		130.00	-				Crest Heig		0					2
-			• •					-					IН	5
	Elev:	0.000	(π)				Site Class		Stiff Soi	l				
Gh:		1.1		То	pography	r: 1	Struct Cla	ss: II			Pa	age: 31	Tower Enginee	ring Solutions
Load	Dea	d Load	⊦ 1.0W I Facto I Facto		0						ľ	ite x	erations	20
		_	_											
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Twist	Stress Ratio
0.00	-26.94	-4.64	0.00	-350.28	0.00	350.28	4994.17	1235.59	5197.80	5206.12	0.00	0.000	(deg) 0.000	0.073
5.00	-25.65	-4.53	0.00	-327.09	0.00	327.09	4891.79	1199.61	4899.47	4949.63	0.00	-0.021	0.000	0.073
10.00	-24.39	-4.43	0.00	-304.42	0.00	304.42	4786.83	1163.63	4609.96	4696.86	0.05	-0.043	0.000	0.070
15.00	-23.16	-4.34	0.00	-282.25	0.00	282.25	4679.28	1127.65	4329.26	4448.07	0.10	-0.064	0.000	0.068
20.00	-21.97	-4.24	0.00	-260.56	0.00	260.56	4569.15	1091.66	4057.38	4203.49	0.18	-0.087	0.000	0.067
25.00	-20.81	-4.13	0.00	-239.39	0.00	239.39	4456.44	1055.68	3794.32	3963.36	0.28	-0.109	0.000	0.065
30.00	-19.69	-4.03	0.00	-218.73	0.00	218.73	4316.73	1019.70	3540.07	3706.95	0.41	-0.132	0.000	0.064
35.00	-18.60	-3.92	0.00	-198.60	0.00	198.60	4164.40	983.72	3294.64	3448.64	0.56	-0.155	0.000	0.062
40.00	-17.55	-3.82	0.00	-179.00	0.00	179.00	4012.07	947.73	3058.03	3199.66	0.74	-0.178	0.000	0.060
45.00	-16.54	-3.71	0.00	-159.92	0.00	159.92	3859.75	911.75	2830.23	2960.01	0.94	-0.202	0.000	0.058
48.00	-15.94	-3.65	0.00	-148.79	0.00	148.79	3768.35	890.16	2697.78	2820.70	1.07	-0.216	0.000	0.057
50.00	-15.25	-3.60	0.00	-141.50	0.00	141.50	3707.42	875.77	2611.24	2729.69	1.16	-0.226	0.000	0.056
53.25	-14.16	-3.53	0.00	-129.78	0.00	129.78	3164.77	747.58	2219.90	2324.50	= 1.32	-0.241	0.000	0.060
55.00	-13.87	-3.50	0.00	-123.59	0.00	123.59	3119.07	736.79	2156.26	2257.51	1.41	-0.250	0.000	0.059
60.00	-13.05	-3.40	0.00	-106.09	0.00	106.09	2988.51	705.95	1979.51	2071.51	1.68	-0.274	0.000	0.056
65.00	-12.27	-3.30	0.00	-89.10	0.00	89.10	2857.94	675.10	1810.33	1893.51	1.98	-0.298	0.000	0.051
70.00	-9.16	-2.53	0.00	-72.61	0.00	72.61	2727.38	644.26	1648.70	1723.51	2.31	-0.321	0.000	0.046
75.00	-8.44	-2.43	0.00	-59.97	0.00	59.97	2596.81	613.42	1494.62	1561.50	2.66	-0.342	0.000	0.042
80.00	-7.19	-2.09	0.00	-47.81	0.00	47.81	2466.25	582.58	1348.10	1407.49	3.03	-0.362	0.000	0.037
85.00	-6.56	-2.00	0.00	-37.37	0.00	37.37	2335.68	551.74	1209.14	1261.47	3.42	-0.381	0.000	0.032
90.00	-5.33	-1.57	0.00	-27.39	0.00	27.39	2205.12	520.89	1077.74	1123.45	3.83	-0.398	0.000	0.027
95.00	-4.81	-1.49	0.00	-19.52	0.00	19.52	2074.55	490.05	953.89	993.42	4.25	-0.412	0.000	0.022
98.25	-4.49	-1.44	0.00	-14.67	0.00	14.67	1989.68	470.00	877.44	913.19	4.53	-0.420	0.000	0.018
99.00	-3.31	-1.03	0.00	-13.59	0.00	13.59	1970.10	465.38	860.25	895.16	4.60	-0.422	0.000	0.017
100.00	-3.16	-1.01	0.00	-12.56	0.00	12.56	1943.99	459.21	837.60	871.39	4.69	-0.424	0.000	0.016
101.50	-2.93	-0.99	0.00	-11.04	0.00	11.04	1306.72	308.67	567.69	593.96	4.82	-0.427	0.000	0.021
105.00	-2.71	-0.94	0.00	-7.58	0.00	7.58	1245.79	294.28	515.98	539.57	5.14	-0.433	0.000	0.016
110.00	-0.90	-0.24	0.00	-2.89	0.00	2.89	1158.75	273.72	446.40	466.39	5.60	-0.441	0.000	0.007
115.00	-0.65	-0.17	0.00	-1.69	0.00	1.69	1071.71	253.16	381.85	398.55	6.06	-0.445	0.000	0.005
120.00	-0.41	-0.11	0.00	-0.82	0.00	0.82	984.66	232.60	322.34	336.04	6.53	-0.448	0.000	0.003
125.00	-0.20	-0.05	0.00	-0.27	0.00	0.27	897.62	212.04	267.87	278.85	7.00	-0.450	0.000	0.001
130.00	0.00	-0.05	0.00	0.00	0.00	0.00	810.58	191.47	218.44	227.00	7.47	-0.451	0.000	0.000

£ 1	Final Analysis Summary											
Structure:	CT46143-A-SBA		Code: ·	TIA-222-H	1/26/2024	4						
Site Name:	Burlington - Avon Landfill		Exposure:	С	and see the set	der Barnh						
Height:	130.00 (ft)		Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil								
Gh:	1.1 Topograph	i y: 1	Struct Class:	11	Page: 32	Tower Engineering Solution						

Reactions

Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	
1.2D + 1.0W 120 mph Wind	20.7	0.00	32.32	0.00	0.00	1570.27	
0.9D + 1.0W 120 mph Wind	20.7	0.00	24.23	0.00	0.00	1563.69	
1.2D + 1.0Di + 1.0Wi 50 mph Wind	5.9	0.00	50.44	0.00	0.00	440.70	
1.2D + 1.0Ev + 1.0Eh	0.8	0.00	33.44	0.00	0.00	68.66	
0.9D + 1.0Ev + 1.0Eh	0.8	0.00	25.33	0.00	0.00	68.65	
1.0D + 1.0W 60 mph Wind	4.6	0.00	26.94	0.00	0.00	350.28	

Max Stresses

Load Case	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	t phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Elev (ft)	Stress Ratio
1.2D + 1.0W 120 mph Wind	-32.32	-20.74	0.00	-1570.2	0.00	-1570.2	4994.17	1235.5	5197.80	5206.12	0.00	0.308
0.9D + 1.0W 120 mph Wind	-24.23	-20.73	0.00	-1563.6	0.00	-1563.6	4994.17	1235.5	5197.80	5206.12	0.00	0.305
1.2D + 1.0Di + 1.0Wi 50 mph Wind	-50.44	-5.87	0.00	-440.70	0.00	-440.70	4994.17	1235.5	5197.80	5206.12	0.00	0.095
1.2D + 1.0Ev + 1.0Eh	-33.44	-0.81	0.00	-68.66	0.00	-68.66	4994.17	1235.5	5197.80	5206.12	0.00	0.020
0.9D + 1.0Ev + 1.0Eh	-25.33	-0.81	0.00	-68.65	0.00	-68.65	4994.17	1235.5	5197.80	5206.12	0.00	0.018
1.0D + 1.0W 60 mph Wind	-26.94	-4.64	0.00	-350.28	0.00	-350.28	4994.17	1235.5	5197.80	5206.12	0.00	0.073

			Base	Plate Summ	ary 🧳	
Structure:	CT46143-A-SI	3		Code:	TIA-222-H	1/26/2024
Site Name:	Burlington - Av	on Landfill		Exposure:	С	(((料)))
Height:	130.00 (ft)			Crest Height:	0.00	
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil	
Gh:	1.1	Topography:	1	Struct Class:	II.	Page: 33 Tower Engincering

Reaction	S	Base Plat	te	Anchor Bolts			
Original Des	sign	Yield (ksi):	50.00	Bolt Circle:	58.00		
Moment (kip-ft):	4630.55	Width (in):	63.75	Number Bolts:	18.00		
Axial (kip):	43.46	Style:	Round	Bolt Type:	2.25" 18J		
Shear (kip):	48.17	Polygon Sides:	0.00	Bolt Diameter (in):	2.25		
Analysis (1.2D + 1.0W) Ioment (kip-ft): 1570.27		Clip Length (in):	0.00	Yield (ksi):	75.00		
		Effective Len (in):	14.47	Ultimate (ksi):	100.00		
Axial (kip):	32.32	Moment (kip-in):	253.79	Arrangement:	Radial		
Shear (kip):	20.74	Allow Stress (ksi):	67.50	Cluster Dist (in):	0.00		
(·····//		Applied Stress (ksi):	20.93	Start Angle (deg):	0.00		
		Stress Ratio:	0.31	Compress	sion		
				Force (kip):	73.99		
				Allowable (kip):	268.39		
	X			Ratio:	0.28		
				Tension			
				Force (kip):	70.40		
				Allowable (kip):	243.75		
				Ratio:	0.29		

		Pier Foundation Design For Monopole							
		Customer Name:	Dish Wireless			EIA/TIA Standard:	1/26/2024 TIA-222-I		
	21	Site Name:				Structure Height (Ft.):	130		
		Site Number:	CT46143-A-SBA			Engineer Name:	C. Zang		
, Tower Engineering Solutions		Engr. Number:	144880		16-back	Engineer Login ID:	and a state of		
Foundation Info Obtained from:		awings/Calculations							
Structure Type:		Monopole				7 ft.			
Analysis or Design?		Analysis			0.50 ft.				
Base Reactions (Factored):					* 11		11/1		
Axial Load (Kips):	32.3	Shear Force (Kips):	20.7						
Jplift Force (Kips):	0.0	Moment (Kips-ft):	1570.3		10.0 ft.	4	6) #10 rebar		
Foundation Geometries:					V		58) #7 ties		
Diameter of Pier (ft.):	7.0	Depth of Base B. G. S. :	19.0	ft.	-		19.0 ft.		
Pier Height A. G. (ft.):	0.50								
							V		
Material Properties and Reabr Info:						< 7.0 ft.	c		
Concrete Strength (psi):	4500	Steel Elastic Modulus:	29000	ksi					
/ertical bar yield (ksi)	60	Tie steel yield strength:		ksi	(46) #10 reba		—7 ft. φ Pier		
/ertical Rebar Size #:	10	Tie / Stirrup Size #:	•7			6 7	🔫 58) #7 ties		
Qty. of Vertical Rebars:	46	Tie Spacing:	4.5	in.	18				
Concrete Cover (in.):	3	Concrete unit weight:	150.0	pcf					
Soil Design Parameters:	100		2			Monopole Pier Foundation	- ŝ		
Nater Table B.G.S. (ft):	10.0	Unit weight of water:	62.4	psf		ž.	а ж		
Ratio of Uplift/Axial Skin Friction:	0.8	Pullout failure Angle:	30	(°)					
Skin Frictions are to be obtained from:		Soil Report							
					a				

Depth of	Layers (ft)	Ysoll	¢	Cohesion	Ultimate Skin	Ultimate	Soil				
Тор	Bottom	(pcf)	(°)	(psf)	Friction (psf)	Bearing (psf)	Types				
0.0	2.0	115	0	0			Sand				
2.0	4.0	120	0	0			Sand			 	
4.0	6.0	120	35	0	190	14740	Sand				
6.0	8.0	120	36	0	260	40110	Sand				
8.0	13.0	130	41	0	390	68290	Sand				
13.0	19.0	150	0	10000	4000	89670	Clay				
19.0	24.0			28							
								·	 	 -	_
				soils (1.0 to 1.15):	1.1				 	 	_

Soil weight Increase Factor for bouyant soils (1.0 to 1.15):

Foundation Analysis and Design:

Uplift Strength Reduction Factor:

- Total Dry Soil Volume from Conical Failure (cu. Ft.): Total Buoyant Soil Volume from Conical Failure (cu. Ft.):
- Total Dry Concrete Volume (cu. Ft.):
- Total Buoyant Concrete Volume (cu. Ft.):
- Total Effective Concrete Weight (Kips):
- Total Effective Vertical Load on Base (Kips):

0.75 0.75 Soil Bearing Strength Reduction Factor: 472 3898 Dry Soil Weight from Conical Failure: Kips Buoyant Soil Weight from Conical Failure (Ki 33 Kips 769 60.6 • 404 Total Dry Concrete Weight: Kips 30.34 Kips 346.4 Total Buoyant Concrete Weight: 91.0 Total Effective Soil Weight: 505.2 Kips 61.6

144880	Page 2/2 Date:	1/26/2024		
			Usage	
7127.2	> Design Factored Moment (kips-ft):	1891	0.27	OK!
3.77	OK!			
0.90	Strength reduction factor (Shear):	0.75		
0.65	Wind Load Factor on Concrete Design:	1.00		
			Usage	
1.27	Tie / Stirrup Area (sq. in./each):	0.60		
9419.1	> Design Factored Moment (Mu, K-Ft):	1659.2	0.18	οκι
1188.9	> Design Factored Shear (Kips):	256.8	0.22	OK!
3154.7	> Design Factored Tension (Tu Kips):	0.0	0.00	OK!
10906	> Design Factored Axial Load (Pu Kips):	32.3	0.00	OK!
0.18	OK! Max. Allowable Tie/Stirrup Spacing:	12.00	in.	
0.011	Reinforcement Ratio is satisfied per ACI			
	7127.2 3.77 0.90 0.65 1.27 9419.1 1188.9 3154.7 10906 0.18	 7127.2 > Design Factored Moment (kips-ft): 3.77 OK! 0.90 Strength reduction factor (Shear): 0.65 Wind Load Factor on Concrete Design: 1.27 Tie / Stirrup Area (sq. in./each): 9419.1 > Design Factored Moment (Mu, K-Ft): 1188.9 > Design Factored Shear (Kips): 3154.7 > Design Factored Tension (Tu Kips): 10906 > Design Factored Axial Load (Pu Kips): 0.18 OK! Max. Allowable Tie/Stirrup Spacing: 	7127.2> Design Factored Moment (kips-ft):18913.77OK!	7127.2 > Design Factored Moment (kips-ft): 1891 0.27 3.77 OK! 0.90 Strength reduction factor (Shear): 0.75 0.65 Wind Load Factor on Concrete Design: 1.00 0.90 Usage 1.27 Tie / Stirrup Area (sq. in./each): 0.60 9419.1 > Design Factored Moment (Mu, K-Ft): 1659.2 0.18 1188.9 > Design Factored Shear (Kips): 256.8 0.22 3154.7 > Design Factored Tension (Tu Kips): 0.0 0.00 10906 > Design Factored Axial Load (Pu Kips): 32.3 0.00 0.18 OK! Max. Allowable Tie/Stirrup Spacing: 12.00 in.