

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Web Site: portal.ct.gov/csc

VIA ELECTRONIC MAIL

September 19, 2023

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597 kbaldwin@rc.com

RE:

PETITION NO. 1547 – SBA Communications Corporation Declaratory Ruling, pursuant to Connecticut General Statutes §4-176 and §16-50k, for the proposed replacement and extension of an existing telecommunications facility located at 277 Huckleberry Hill Road, Avon, Connecticut. **Compliance with Condition Nos. 4, 5 and 6.**

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) is in receipt of your correspondence dated September 18, 2023, regarding compliance with Condition Nos. 4, 5 and 6 of the Council's Declaratory Ruling issued on March 2, 2023 for the above-referenced facility. The correspondence includes final construction drawings, a structural analysis and correspondence from the Town of Avon regarding its planned equipment installation, in accordance with Condition Nos. 4, 5 and 6, respectively.

Therefore, the Council acknowledges that Condition Nos. 4, 5 and 6 have been satisfied. This acknowledgment applies only to the conditions satisfied by the September 18, 2023 correspondence.

Please be advised that deviations from the standards established by the Council in the Declaratory Ruling are enforceable under the provisions of Connecticut General Statutes §16-50u.

Thank you for your attention and cooperation.

Sincerely,

Melanie A. Bachman Executive Director

Milwashael

MB/RDM

c: Brandon Robertson, Town Manager, Town of Avon (<u>brobertson@avonct.gov</u>) Service List, dated December 8, 2022

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

September 18, 2023

Via Electronic Mail and Federal Express

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Petition No. 1547 – SBA Communications Corporation – Petition for a Declaratory Ruling, pursuant to Connecticut General Statutes §4-176 and §16-50k, for the proposed replacement and extension of an existing telecommunications facility located at 277 Huckleberry Hill Road, Avon, Connecticut.

Dear Attorney Bachman:

In accordance with conditions of 4, 5 and 6 of the Council's March 2, 2023 approval of the above referenced Petition, enclosed please find the following:

- 1. Final construction drawings stamped and signed by a Professional Engineer licensed in the State of Connecticut.
- 2. A Structural Analysis, including antenna mounts, tower and foundation design information stamped and signed by a professional engineer duly licensed in the State of Connecticut.
- 3. Correspondence from the Town of Avon regarding its plan to commence equipment installation in April of 2024.

Robinson+Cole

Melanie A. Bachman, Esq. September 18, 2023 Page 2

Thank you very much for your continued assistance and cooperation.

Sincerely,

Kenneth C. Baldwin

Kunie BMM-

Attachment

Copy to:

Greg Hines, SBA Communications Corporation Paul Melanson, Avon Chief of Police Brandon Robertson, Avon Town Manager

PROJECT SUMMARY

BURLINGTON-AVON LANDFILL SITE NAME:

CT46143A SITE I.D.:

277 HUCKLEBERRY HILL ROAD AVON, CT 06001 SITE ADDRESS:

TOWN OF AVON JURISDICTION:

TELECOMMUNICATIONS FACILITY LAND USE:

TOWN OF AVON 60 WEST MAIN STREET PROPERTY OWNER:

AVON, CT 06001

SBA COMMUNICATIONS CORPORATION APPLICANT:

8051 CONGRESS AVENUE **BOCA RATON, FL 33487** OFFICE: (561) 226-9332

2810277 PARCEL TAX ID:

R-40 (RESIDENTIAL) **ZONING DISTRICT:**

1-A CERTIFICATION

N 41° 47' 17.277882" (NAD '83) LONGITUDE: W 72° 55' 05.713930" (NAD '83)

GROUND ELEVATION: 528.8'± AMSL (NAVD '88)

PROPOSED OCCUPANCY

TELECOMMUNICATIONS FACILITY

PROPOSED 130' MONOPOLE TOWER CONSTRUCTION TYPE:

DRIVING DIRECTIONS:

FROM BRADLEY INT. AIRPORT (BDL): TAKE THE CT-20 W EXIT TOWARD E GRANBY/GRANBY. SLIGHT LEFT ONTO CT-20 W/W GRANBY RD. TURN LEFT ONTO CT-219 S. TURN LEFT ONTO CASE ST. SLIGHT LEFT ONTO CT-179 S. TURN RIGHT ONTO BRIDGE ST. SLIGHT LEFT ONTO CENTER ST. CONTINUE ONTO HUCKLEBERRY HILL RD

GENERAL PROJECT

REMOVAL/REPLACEMENT OF THE EXISTING 100' WOODEN TOWER, WITH THE INSTALLATION OF A PROPOSED 130' MONOPOLE TOWER AND CONCRETE FOUNDATION, WITHIN EXISTING FENCED COMPOUND AT HUCKLEBERRY HILL RD.

HANDICAPPED REQUIREMENTS

FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. HANDICAP ACCESS NOT REQUIRED.

PLUMBING REQUIREMENTS

FACILITY HAS NO PLUMBING.

CONSULTING TEAM

ARCHITECTURAL - ENGINEERING FIRM: TOWER ENGINEERING PROFESSIONALS, INC. 326 TRYON ROAD, RALEIGH, NC 27603 CONTACT: SCOTT C. BRANTLEY, P.E. PHONE: (919) 661-6351 FAX: (919) 661-6350

SURVEYING FIRM: MILL MAN SURVEYING INC.

4111 BRADLEY CIRCLE NW, SUITE 240 **CANTON, OH 44718**

APPLICANT/LESSEE CONTACTS: SBA COMMUNICATIONS CORPORATION ANDREA GASSNER - (561) 226-9207

POWER COMPANY: TELCO COMPANY:

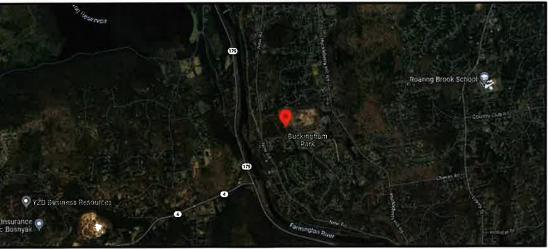
EVERSOURCE ENERGY FRONTIER COMMUNICATIONS (888) 544-4826 (800) 921-8101

ELECTRICAL ENGINEER:

TOWER ENGINEERING PROFESSIONALS, INC. 326 TRYON ROAD, RALEIGH, NC 27603 CONTACT: SCOTT C. BRANTLEY, P.E. PHONE: (919) 661-6351 FAX: (919) 661-6350

SITE NAME **BURLINGTON-AVON LANDFILL**

SBA SITE I.D. CT46143A


ADDRESS

277 HUCKLEBERRY HILL ROAD **AVON, CT 06001** (HARTFORD COUNTY)

PROJECT TYPE PROPOSED 130' MONOPOLE TOWER

LOCATION & VICINITY MAPS

_		
T-1	TITLE SHEET	3
C-1	SITE PLAN	2
C-2	EXISTING COMPOUND LAYOUT	2
C-2A	PROPOSED COMPOUND LAYOUT	2
C-3	TOWER ELEVATION	2
C-4	ICE BRIDGE DETAILS	2
C-5	FENCE DETAILS	2
E-1	ELECTRICAL NOTES	2
E-2	ELECTRICAL LEGEND	2
E-3	GROUNDING PLAN	2
E-4	GROUNDING DETAILS I	2
E-5	GROUNDING DETAILS II	2
E-6	GROUNDING DETAILS III	2
N-1	GENERAL NOTES 1	2
N-2	GENERAL NOTES II	2
	APPENDIX	
	TOWER & FOUNDATION DESIGN DRAWINGS	
		#
\neg		

SHEET INDEX

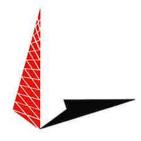
APPROVALS				
LANDLORD	DATE			
PROPERTY	DATE			
CONSTRUCTION	DATE			
RSM	DATE			
TENANT	DATE			
ZONING	DATE			

CONNECTICUT 811

CALL BEFORE YOU DIG DIAL 811 OR 1 (800) 922-4455

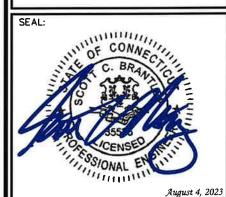
THE UTILITIES SHOWN HEREON ARE FOR THE CONTRACTORS CONVENIENCE ONLY. THERE MAY BE OTHER UTILITIES NOT SHOWN ON THESE PLANS. THE ENGINEER/ SURVEYOR ASSUMES NO RESPONSIBILITY FOR THE LOCATIONS SHOWN AND IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO VERIFY ALL UTILITIES WITHIN THE LIMITS OF THE WORK, ALL DAMAGE MADE TO EXISTING UTILITIES BY THE CONTRACTOR SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.

APPLICANT/LESSEE:


B051 CONGRESS AVENUE BOCA RATON, FL 33487-1307 OFFICE: (561) 226-9457

PROJECT INFORMATION:

SITE NAME: **BURLINGTON-AVON LANDFILL SITE ID: CT46143A**

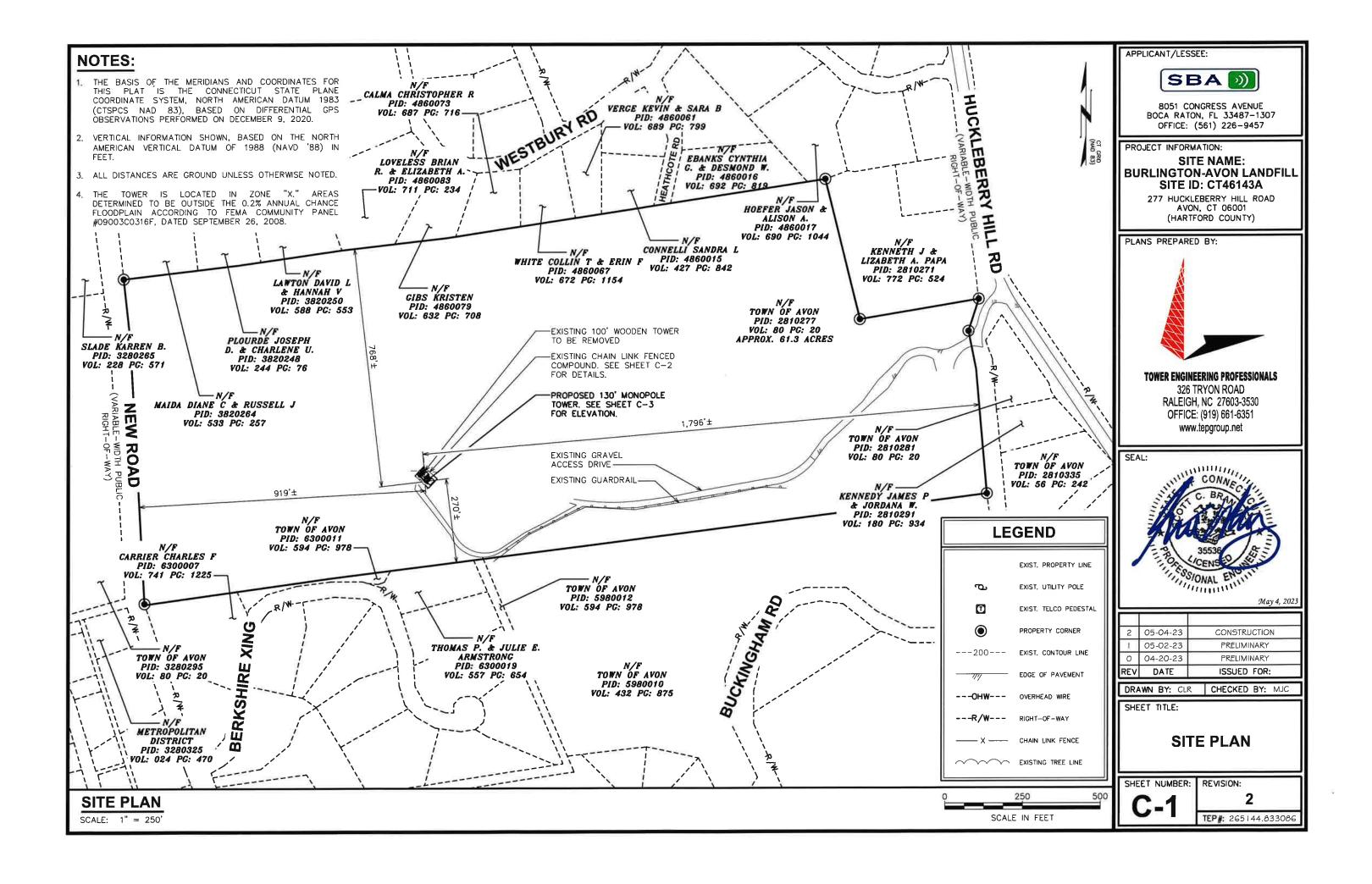

277 HUCKLEBERRY HILL ROAD AVON, CT 06001 (HARTFORD COUNTY)

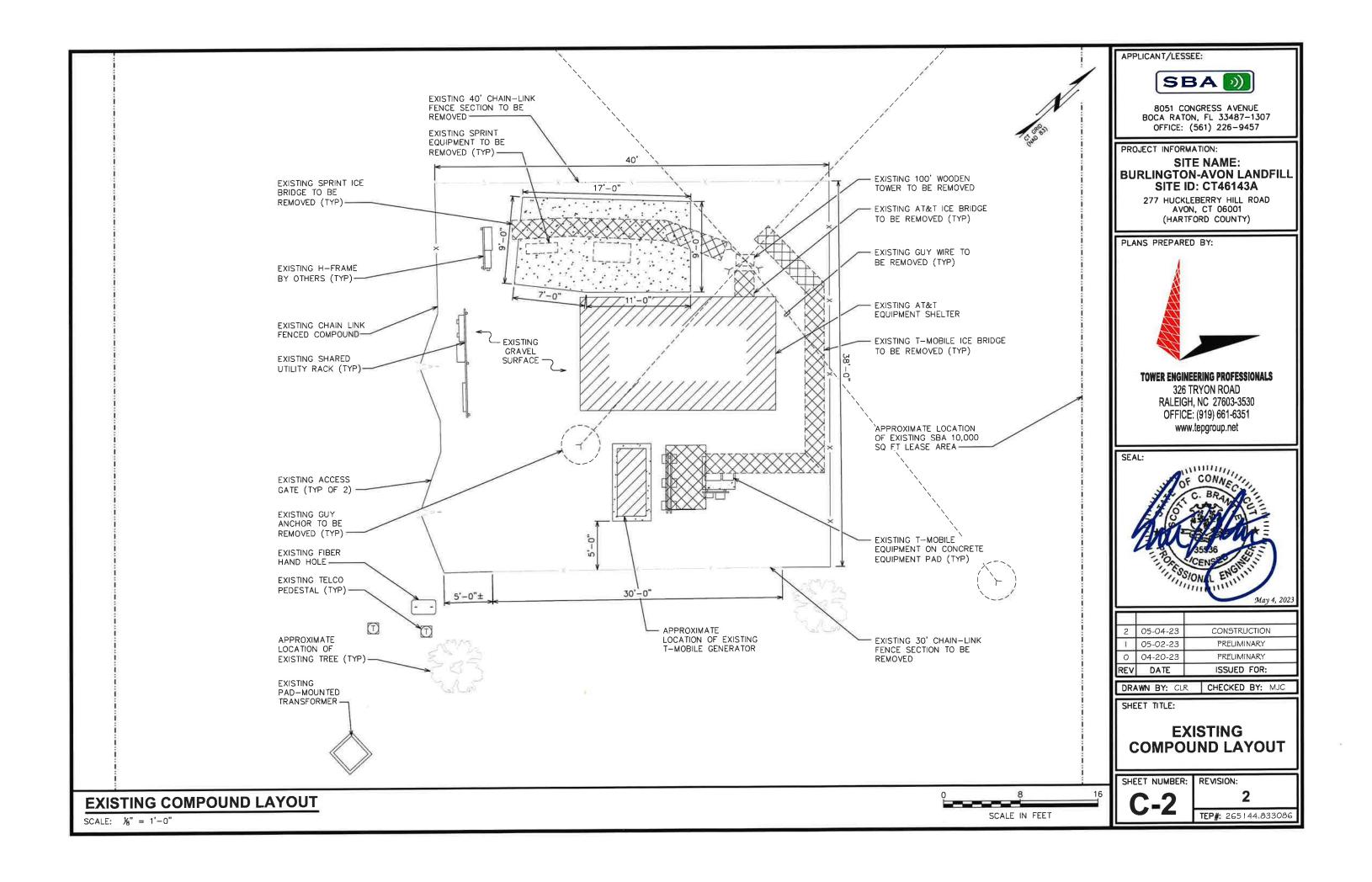
PLANS PREPARED BY:

TOWER ENGINEERING PROFESSIONALS

326 TRYON ROAD RALEIGH, NC 27603-3530 OFFICE: (919) 661-6351 www.tepgroup.net

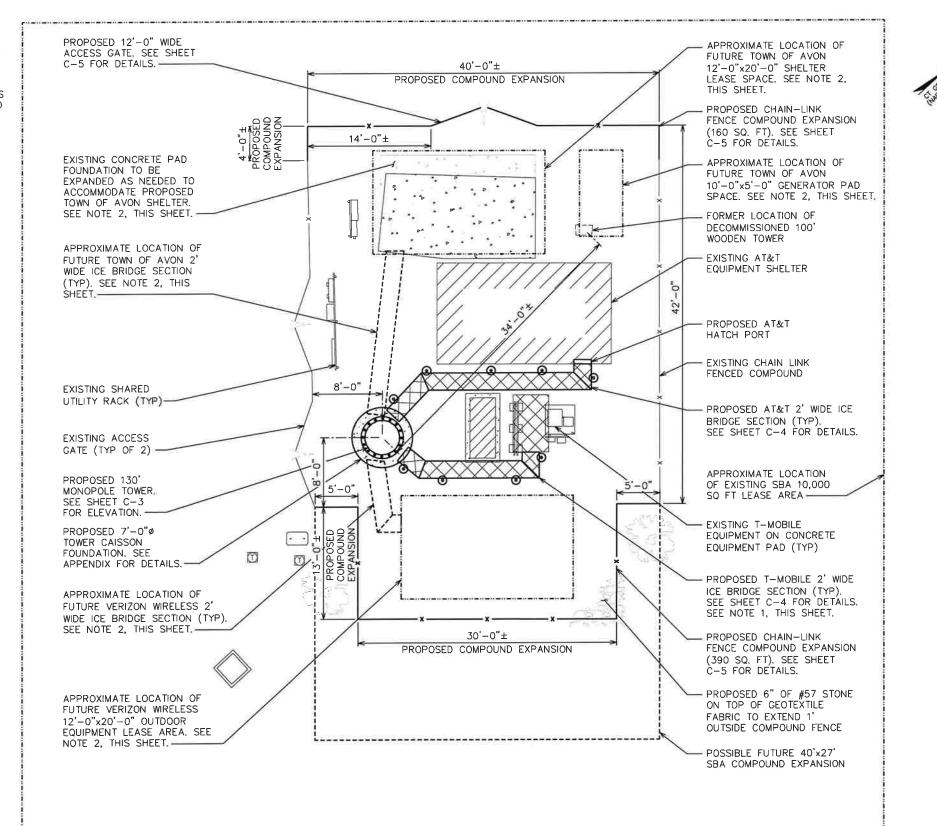
3	08-04-23	CONSTRUCTION
2	05-04-23	CONSTRUCTION
1	05-02-23	PRELIMINARY
0	04-20-23	PRELIMINARY
E٧	DATE	ISSUED FOR:


DRAWN BY: CLR CHECKED BY: MJC


SHEET TITLE:

TITLE SHEET

SHEET NUMBER: | REVISION:


TEP#: 265144.833086

NOTES:

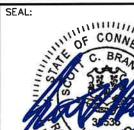
- PROPOSED LESSEE ICE BRIDGE LOCATIONS SUBJECT TO CHANGE. CONTRACTOR TO VERIFY LOCATIONS PRIOR TO CONSTRUCTION.
- 2. ALL PROPOSED VERIZON & TOWN OF AVON EQUIPMENT INSTALLATIONS ON TOWER & AT GROUND LEVEL TO BE PERMITTED & INSTALLED SEPARATELY FROM THIS PROJECT

APPLICANT/LESSEE:

8051 CONGRESS AVENUE BOCA RATON, FL 33487-1307 OFFICE: (561) 226-9457

PROJECT INFORMATION:

SITE NAME: **BURLINGTON-AVON LANDFILL SITE ID: CT46143A**


277 HUCKLEBERRY HILL ROAD AVON, CT 06001 (HARTFORD COUNTY)

PLANS PREPARED BY:

TOWER ENGINEERING PROFESSIONALS

326 TRYON ROAD RALEIGH, NC 27603-3530 OFFICE: (919) 661-6351 www.tepgroup.net

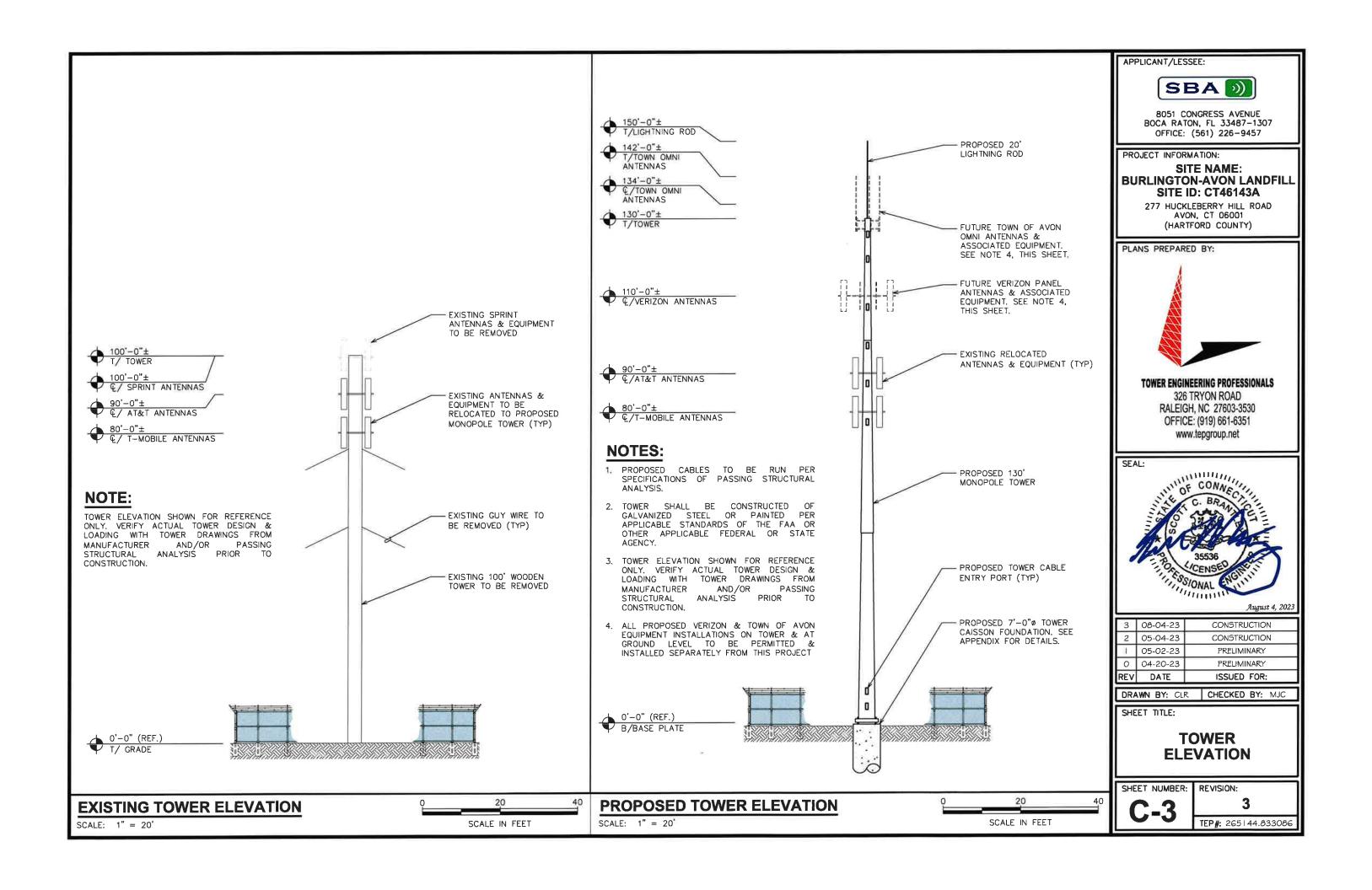
August 4, 2023

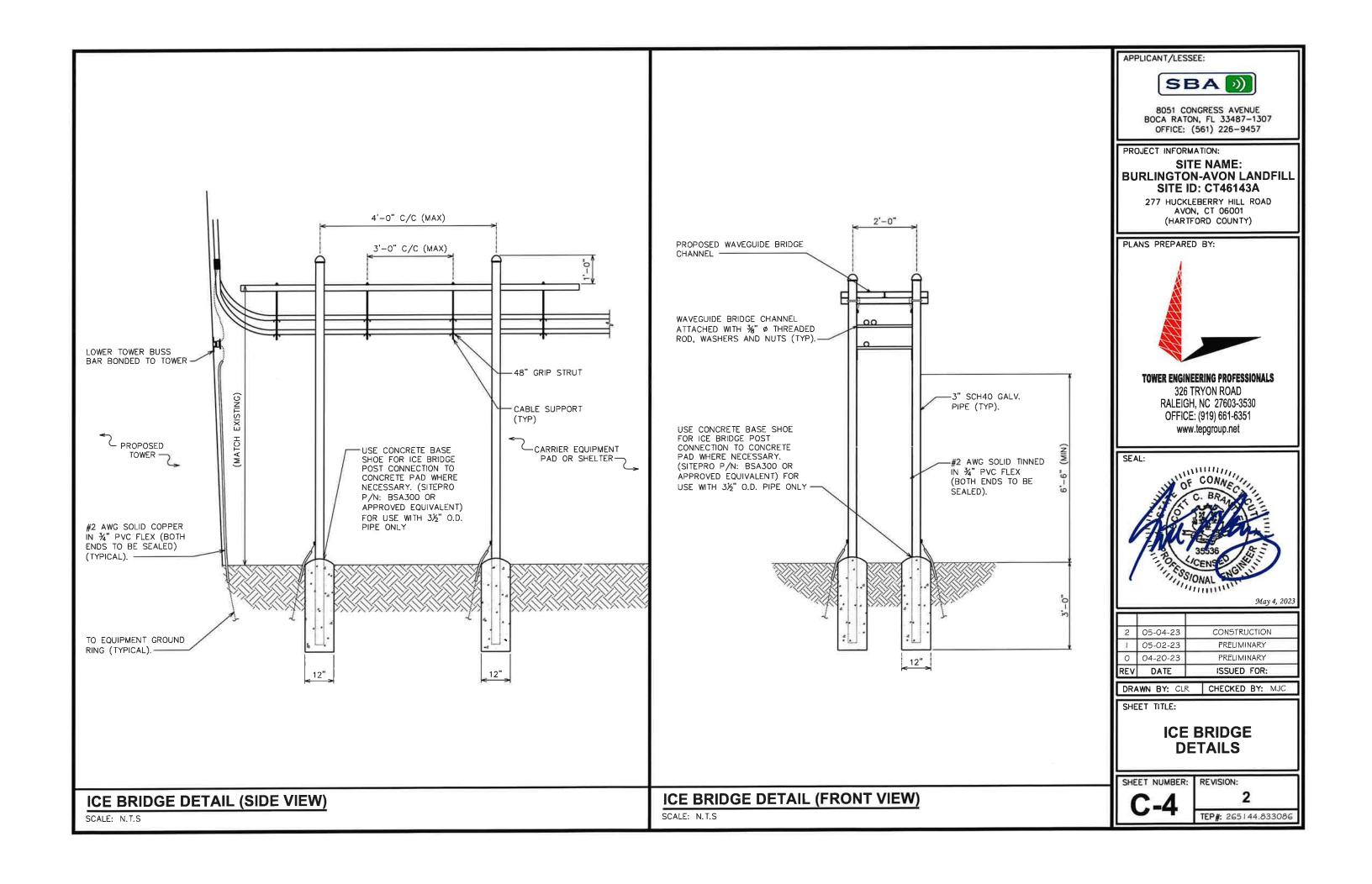
REV	DATE	ISSUED FOR:			
0	04-20-23	PRELIMINARY			
J,	05-02-23	PRELIMINARY			
2	05-04-23	CONSTRUCTION			
3	08-04-23	CONSTRUCTION			

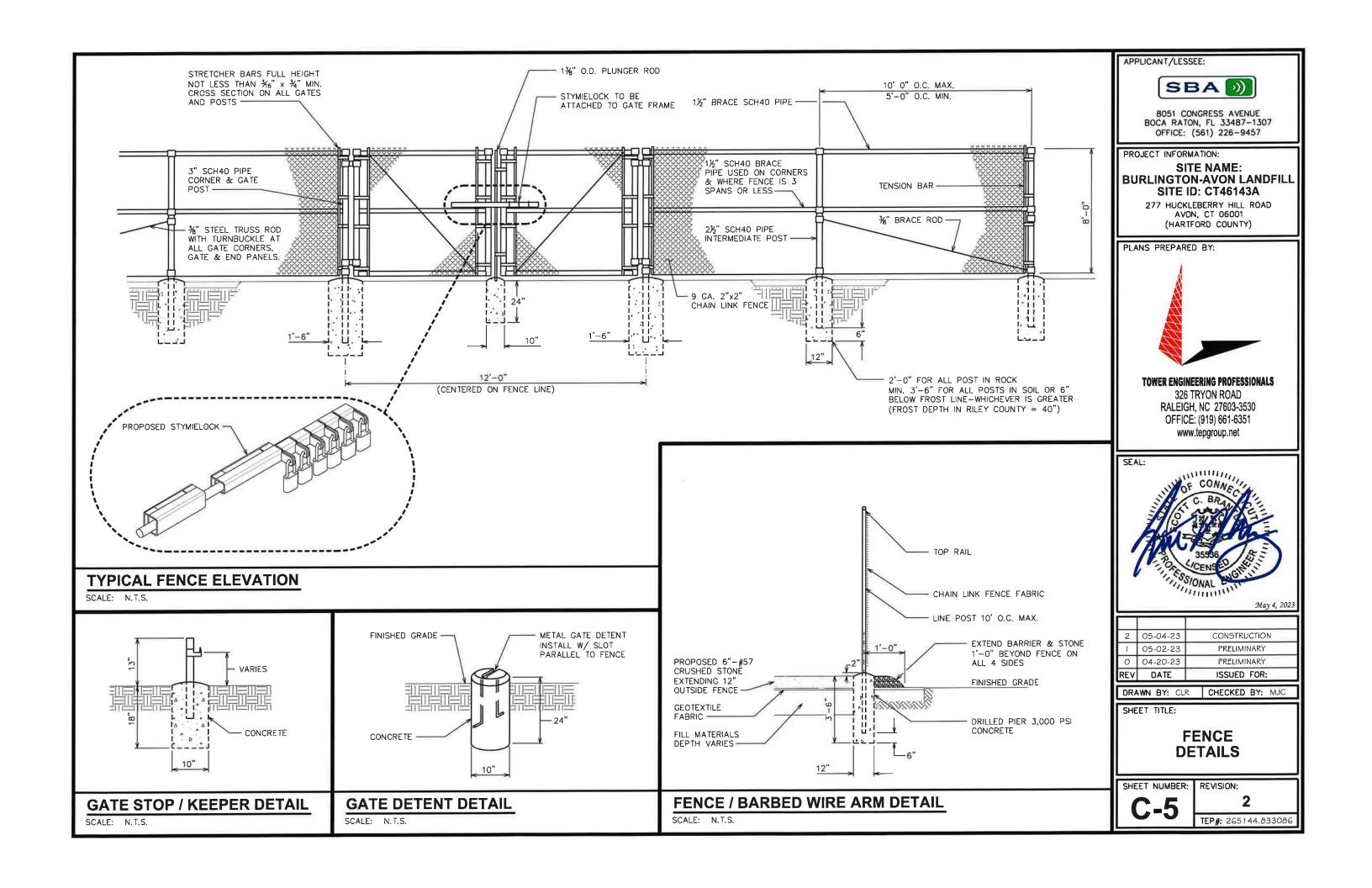
DRAWN BY: CLR | CHECKED BY: MJC

SHEET TITLE:

PROPOSED COMPOUND LAYOUT


SHEET NUMBER: REVISION:


TEP#: 265144.83308


PROPOSED COMPOUND LAYOUT

SCALE: $\frac{3}{2}$ " = 1'-0"

SCALE IN FEET

SCOPE:

1. PROVIDE LABOR, MATERIALS, INSPECTION, AND TESTING TO PROVIDE CODE COMPLIANCE FOR ELECTRIC, TELEPHONE, AND GROUNDING/LIGHTNING SYSTEMS.

- 1. THE INSTALLATION SHALL COMPLY WITH APPLICABLE LAWS AND CODES. THESE INCLUDE BUT ARE NOT LIMITED TO THE LATEST ADOPTED EDITIONS OF:
 - A. THE NATIONAL ELECTRICAL SAFETY CODE
- D. LOCAL AND STATE AMENDMENTS
- B. THE NATIONAL ELECTRIC CODE NFPA-70
- E, THE INTERNATIONAL ELECTRIC CODE -
- IEC (WHERE APPLICABLE) C. REGULATIONS OF THE SERVING UTILITY COMPANY
- 2. PERMITS REQUIRED SHALL BE OBTAINED BY THE CONTRACTOR.
- 3. AFTER COMPLETION AND FINAL INSPECTION OF THE WORK, THE OWNER SHALL BE FURNISHED A CERTIFICATE OF COMPLETION AND APPROVAL

1. UPON COMPLETION OF THE INSTALLATION, OPERATE AND ADJUST THE EQUIPMENT AND SYSTEMS TO MEET SPECIFIED PERFORMANCE REQUIREMENTS. THE TESTING SHALL BE DONE BY QUALIFIED PERSONNEL.

- 1. IN ADDITION TO THE GUARANTEE OF THE EQUIPMENT BY THE MANUFACTURER, EACH PIECE OF EQUIPMENT SPECIFIED HEREIN SHALL ALSO BE GUARANTEED FOR DEFECTS OF MATERIAL OR WORKMANSHIP OCCURRING DURING A PERIOD OF ONE (1) YEAR FROM FINAL ACCEPTANCE OF THE WORK BY THE OWNER AND WITHOUT
- 2. THE WARRANTEE CERTIFICATES & GUARANTEES FURNISHED BY THE MANUFACTURERS SHALL BE TURNED OVER TO THE OWNER.

UTILITY CO-ORDINATION:

CONTRACTOR SHALL COORDINATE WORK WITH THE POWER AND TELEPHONE COMPANIES AND SHALL COMPLY WITH THE SERVICE REQUIREMENTS OF EACH UTILITY COMPANY.

EXAMINATION OF SITE:

PRIOR TO BEGINNING WORK, THE CONTRACTOR SHALL VISIT THE SITE OF THE JOB AND SHALL FAMILIARIZE HIMSELF WITH THE CONDITIONS AFFECTING THE PROPOSED ELECTRICAL INSTALLATION AND SHALL MAKE PROVISIONS AS TO THE COST THEREOF. FAILURE TO COMPLY WITH THE INTENT OF THIS SECTION WILL IN NO WAY RELIEVE THE CONTRACTOR OF PERFORMING THE WORK NECESSARY FOR A COMPLETE AND WORKING SYSTEM OR SYSTEMS.

CUTTING, PATCHING AND EXCAVATION:

- COORDINATION OF SLEEVES, CHASES, ETC., BETWEEN SUBCONTRACTORS WILL BE REQUIRED PRIOR TO THE CONSTRUCTION OF ANY PORTION OF THE WORK. CUTTING AND PATCHING OF WALLS, PARTITIONS, FLOORS, AND CHASES IN CONCRETE, WOOD, STEEL OR MASONRY SHALL BE DONE AS PROVIDED ON THE DRAWINGS.
- 2. NECESSARY EXCAVATIONS AND BACKFILLING INCIDENTAL TO THE ELECTRICAL WORK SHALL BE PROVIDED BY THE ELECTRICAL CONTRACTOR UNLESS SPECIFICALLY NOTED OTHERWISE ON THE DRAWING.
- 3. SEAL PENETRATIONS THROUGH RATED WALLS, FLOORS, ETC., WITH APPROVED METHOD AS LISTED BY UL.

RACEWAYS / CONDUITS GENERAL:

- CONDUCTORS SHALL BE INSTALLED IN LISTED RACEWAYS. CONDUIT SHALL BE RIGID STEEL, EMT, SCH40 PVC, OR SCHBOPVC AS INDICATED ON THE DRAWINGS. THE RACEWAY SYSTEM SHALL BE COMPLETE COMPLETE BEFORE INSTALLING CONDUCTORS.
- 2. EXTERIOR RACEWAYS AND GROUNDING SLEEVES SHALL BE SEALED AT POINTS OF ENTRANCE AND EXIT. THE RACEWAY SYSTEM SHALL BE BONDED PER NEC.

EXTERIOR CONDUIT:

- EXPOSED CONDUIT SHALL BE NEATLY INSTALLED AND RUN PARALLEL OR PERPENDICULAR TO STRUCTURAL ELEMENTS, SUPPORTS AND MOUNTING HARDWARE SHALL BE HOT DIPPED GALVANIZED STEEL
- 2. THE CONDUIT SHALL BE RIGID STEEL AT GRADE TRANSITIONS OR WHERE EXPOSED TO DAMAGE.
- 3. UNDERGROUND CONDUITS SHALL BE RIGID STEEL, SCH40 PVC, OR SCH80 PVC AS INDICATED ON THE DRAWINGS.
- 4. BURIAL DEPTH OF CONDUITS SHALL BE AS REQUIRED BY CODE FOR EACH SPECIFIC CONDUIT TYPE AND APPLICATION, BUT SHALL NOT BE LESS THAN THE FROST DEPTH AT THE SITE.
- 5. CONDUIT ROUTES ARE SCHEMATIC. CONTRACTOR SHALL FIELD VERIFY ROUTES BEFORE BID. COORDINATE ROUTE WITH WIRELESS CARRIER AND/OR BUILDING OWNER.

INTERIOR CONDUIT:

- 1. CONCEALED CONDUIT IN WALLS OR INTERIOR SPACES ABOVE GRADE MAY BE EMT OR PVC.
- 2. CONDUIT RUNS SHALL USE APPROVED COUPLINGS AND CONNECTORS. PROVIDE INSULATED BUSHING FOR ALL CONDUIT TERMINATIONS. CONDUIT RUNS IN A WET LOCATION SHALL HAVE WATERPROOF FITTINGS.
- 3. PROVIDE SUPPORTS FOR CONDUITS IN ACCORDANCE WITH NEC REQUIREMENTS. CONDUITS SHALL BE SIZED AS REQUIRED BY NEC.

EQUIPMENT:

- 1. DISCONNECT SWITCHES SHALL BE SERVICE ENTRANCE RATED, HEAVY DUTY TYPE.
- 2. CONTRACTOR SHALL VERIFY MAXIMUM AVAILABLE FAULT CURRENT AND COORDINATE INSTALLATION WITH THE LOCAL UTILITY BEFORE STARTING WORK. CONTRACTOR WILL VERIFY THAT EXISTING CIRCUIT BREAKERS ARE RATED FOR MORE THAN AVAILABLE FAULT CURRENT AND REPLACE AS NECESSARY.
- 3. NEW CIRCUIT BREAKERS SHALL BE RATED TO WITHSTAND THE MAXIMUM AVAILABLE FAULT CURRENT AS DETERMINED BY THE LOCAL UTILITY.

- 1. FURNISH AND INSTALL CONDUCTORS SPECIFIED IN THE DRAWINGS. CONDUCTORS SHALL BE COPPER AND SHALL HAVE TYPE THWN (MIN) (75°C) INSULATION, RATED FOR 600 VOLTS.
- 2. THE USE OF ALUMINUM CONDUCTORS SHALL BE LIMITED TO THE SERVICE FEEDERS INSTALLED BY THE UTILITY.
- 3. CONDUCTORS SHALL BE PROVIDED AND INSTALLED AS FOLLOWS:
 - A. MINIMUM WIRE SIZE SHALL BE #12 AWG.
 - CONDUCTORS SIZE #8 AND LARGER SHALL BE STRANDED. CONDUCTORS SIZED #10 AND #12 MAY BE SOLID OR STRANDED.
 - CONNECTION FOR #10 AWG #12 AWG SHALL BE BY TWISTING TIGHT AND INSTALLING INSULATED PRESSURE OR WIRE NUT CONNECTIONS.
 - D. CONNECTION FOR #8 AWG AND LARGER SHALL BE BY USE OF STEEL CRIMP-ON SLEEVES WITH NYLON INSULATOR.
- 3. CONDUCTORS SHALL BE COLOR CODED IN ACCORDANCE WITH NEC STANDARDS.

UL COMPLIANCE:

ELECTRICAL MATERIALS, DEVICES, CONDUCTORS, APPLIANCES, AND EQUIPMENT SHALL BE LABELED/LISTED BY UL OR ACCEPTED BY JURISDICTION (I.E., LOCAL COUNTY OR STATE) APPROVED THIRD PARTY TESTING AGENCY.

GROUNDING:

ATS

- 1. ELECTRICAL NEUTRALS, RACEWAYS AND NON-CURRENT CARRYING PARTS OF ELECTRICAL EQUIPMENT AND ASSOCIATED ENCLOSURES SHALL BE GROUNDED IN ACCORDANCE WITH NEC ARTICLE 250. THIS SHALL INCLUDE NEUTRAL CONDUCTORS, CONDUITS, SUPPORTS, CABINETS, BOXES, GROUND BUSSES, ETC. THE NEUTRAL CONDUCTOR FOR EACH SYSTEM SHALL BE GROUNDED AT A SINGLE POINT.
- 2. PROVIDE GROUND CONDUCTOR IN RACEWAYS PER NEC.
- 3. PROVIDE BONDING AND GROUND TO MEET NFPA 780 "LIGHTNING PROTECTION" AS A MINIMUM.
- 4. PROVIDE GROUNDING SYSTEM AS INDICATED ON THE DRAWINGS, AS REQUIRED BY THE NATIONAL ELECTRIC CODE, RADIO EQUIPMENT MANUFACTURERS, AND MOTOROLA R56 (AS APPLICABLE).

ABBREVIATIONS AND LEGEND

 AMPERE PVC ABOVE FINISHED GRADE - AUTOMATIC TRANSFER SWITCH RGS

 AMERICAN WIRE GAUGE BCW BARE COPPER WIRE

BFG BELOW FINISHED GRADE BKR BREAKER

CKT CIRCUIT DISC DISCONNECT

CONDUIT

EGR EXTERNAL GROUND RING

- ELECTRIC METALLIC TUBING

FSC FLEXIBLE STEEL CONDUIT **GEN** GENERATOR

GPS GLOBAL POSITIONING SYSTEM

GRD

IGB ISOLATED GROUND BAR INTERIOR GROUND RING (HALO) **IGR**

KW KILOWATTS

NEC NATIONAL ELECTRIC CODE

PCS PERSONAL COMMUNICATION SYSTEM PН PHASE

PNL PANEL PNLBD - PANELBOARD

- RIGID NON-METALLIC CONDUIT RIGID GALVANIZED STEEL CONDUIT

SW - SWITCH

TOWER GROUND BAR TGB

UNDERWRITERS LABORATORIES UL

V VOLTAGE W XFMR TRANSFORMER

XMTR - TRANSMITTER

— UNDERGROUND ELECTRICAL CONDUIT UNDERGROUND TELEPHONE CONDUIT

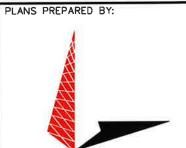
凸 KILOWATT-HOUR METER UNDERGROUND BONDING AND GROUNDING CONDUCTOR.

GROUND ROD

CADWELD

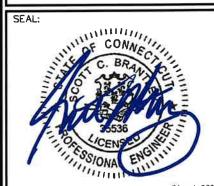
GROUND ROD WITH INSPECTION WELL

APPLICANT/LESSEE:



8051 CONGRESS AVENUE BOCA RATON, FL 33487-1307 OFFICE: (561) 226-9457

PROJECT INFORMATION:


SITE NAME: **BURLINGTON-AVON LANDFILL SITE ID: CT46143A**

277 HUCKLEBERRY HILL ROAD AVON, CT 06001 (HARTFORD COUNTY)

TOWER ENGINEERING PROFESSIONALS

326 TRYON ROAD RALEIGH, NC 27603-3530 OFFICE: (919) 661-6351 www.tepgroup.net

May 4, 202.

REV	DATE	ISSUED FOR:			
0	04-20-23	PRELIMINARY			
-1	05-02-23	PRELIMINARY			
2	05-04-23	CONSTRUCTION			

DRAWN BY: CLR | CHECKED BY: MJC

SHEET TITLE:

ELECTRICAL NOTES

SHEET NUMBER:

REVISION:

TEP#: 265144.8330

ELECTRICAL LEGEND:

ABBREVIATIONS:

A – AMPERE

AFG - ABOVE FINISHED GRADE

ATS - AUTOMATIC TRANSFER SWITCH

AWG - AMERICAN WIRE GAUGE

BCW - BARE COPPER WIRE BFG - BELOW FINISHED GRADE

BKR - BREAKER

BTS - BASE TRANSCEIVER STATION

C - CONDUIT

C/W - COMPLETE WITH

CKT - CIRCUIT

DISC - DISCONNECT

EC - EMPTY CONDUIT

EGR - EXTERNAL GROUND RING EMT - ELECTRIC METALLIC TUBING

F/A - FIRE ALARM

FSC - FLEXIBLE STEEL CONDUIT

GEN - GENERATOR

GPS - GLOBAL POSITIONING SYSTEM

GRD - GROUND

IGB - ISOLATED GROUND BAR

IGR - INTERIOR GROUND RING (HALO)

KW - KILOWATTS

MGB - MAIN GROUND BAR

CEC - CANADIAN ELECTRIC CODE

PCS - PERSONAL COMMUNICATION SYSTEM

PH - PHASE

PNL - PANEL

PNLBD - PANELBOARD

PVC - SCH40 RIGID NON-METALLIC CONDUIT

RBS - RADIO BASE STATION

REL - RELOCATED

RGS - RIGID GALVANIZED STEEL CONDUIT

S/C - SEPERATE CONDUIT

SES - SITE ENGINEERING SPECIFICATIONS

SW - SWITCH

TGB - TOWER GROUND BAR

U/F - UNFUSED

ULC - UNDERWRITERS LABORATORIES, CANADA

V – VOLTAGE

W - WATTS

WP - WEATHERPROOF

XFMR - TRANSFORMER

XMTR - TRANSMITTER

----E ---- UNDERGROUND ELECTRICAL CONDUIT

----T---- UNDERGROUND TELEPHONE CONDUIT

KILOWATT-HOUR METER Ф

UNDERGROUND BONDING AND _____ GROUNDING CONDUCTOR

CADWELD

• GROUND ROD WITH INSPECTION WELL

EXISTING M/W DISH ANTENNA

FUTURE M/W DISH ANTENNA

8 EXISTING ROOF DRAIN

EXISTING ROOF HATCH

15A 120V SPST SWITCH

15A 120V DUPLEX RECEPTACLE

120V. 10 DIRECT CONNECTION TO EQUIPMENT SUPPLIED BY OTHER DIVISIONS

0 208V. 1Ø DIRECT CONNECTION TO

EQUIPMENT SUPPLIED BY OTHER DIVISIONS

CIRCUIT BREAKER

DISCONNECT SWITCH, F DENOTES FUSED

SURFACE MOUNTED PANELBOARD

T TRANSFORMER

(19) CHECK METER

DENOTES CABLE OR CONDUITTURNING UP

IN PLAN VIEW

CHANGE IN ELEVATION OF CABLE OR

CONDUIT IN PLAN VIEW

DENOTES CABLE OR CONDUITTURNING DOWN

IN PLAN VIEW GROUND ROD

LIGHTNING PROTECTION AIR TERMINAL

ETHERNET CABLE

FIBRE CABLE

DC CABLE

APPLICANT/LESSEE:

8051 CONGRESS AVENUE BOCA RATON, FL 33487-1307 OFFICE: (561) 226-9457

PROJECT INFORMATION:

SITE NAME: **BURLINGTON-AVON LANDFILL** SITE ID: CT46143A

277 HUCKLEBERRY HILL ROAD AVON, CT 06001 (HARTFORD COUNTY)

PLANS PREPARED BY:

TOWER ENGINEERING PROFESSIONALS

326 TRYON ROAD RALEIGH, NC 27603-3530 OFFICE: (919) 661-6351 www.tepgroup.net

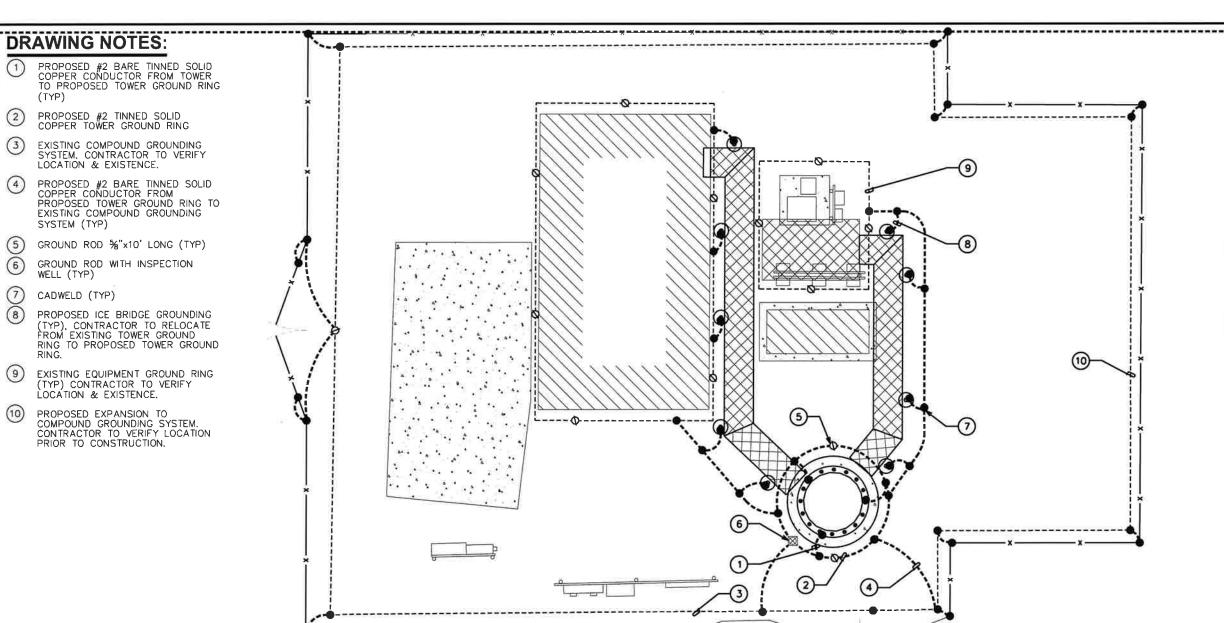
CONSTRUCTION 2 05-04-23 PRELIMINARY 05-02-23 PRELIMINARY 0 04-20-23 ISSUED FOR: DATE

DRAWN BY: CLR CHECKED BY: MJC

SHEET TITLE:

ELECTRICAL LEGEND

SHEET NUMBER: REVISION:


TEP#: 265144.83308

ELECTRICAL LEGEND

SCALE: N.T.S.

GROUNDING NOTES:

- 1. CONTRACTOR SHALL VERIFY THAT GROUNDING ELECTRODES SHALL BE CONNECTED IN A RING USING #2 AWG BARE TINNED COPPER WIRE. THE TOP OF THE GROUND RODS AND THE RING CONDUCTOR SHALL BE 30" BELOW FINISHED GRADE, GROUNDING ELECTRODES SHALL BE DRIVEN ON 10'-0" CENTERS (PROVIDE AND INSTALL AS REQUIRED, REQUIRED PER PLAN BELOW).
- 2. BONDING OF THE GROUNDED CONDUCTOR (NEUTRAL) AND THE GROUNDING CONDUCTOR SHALL BE AT THE SERVICE DISCONNECTING MEANS. BONDING JUMPER SHALL BE INSTALLED PER N.E.C. ARTICLE 250.30.
- 3. GROUND RING CONNECTION CONDUCTORS SHALL BE OF EQUAL LENGTH, MATERIAL, AND BONDING TECHNIQUE.
- 4. CONTRACTOR SHALL ENSURE GROUND RING IS WITHIN 12 TO 36 INCHES OF THE EQUIPMENT PAD. PROVIDE AND INSTALL GROUNDING CONNECTIONS SHOWN BELOW AS NEEDED PER EXISTING SITE GROUNDING SYSTEM. CONTRACTOR SHALL VERIFY ALL EXISTING SITE GROUNDING CONDITIONS BEFORE STARTING WORK OR PURCHASING EQUIPMENT
- 5. BOND GROUND BAR TO EXTERNAL GROUND RING WITH (1) RUN OF #2 BARE, TINNED, SOLID COPPER CONDUCTOR IN PVC. CONNECT BAR END WITH 2-HOLE LUG, AND "CADWELD" THE OTHER END TO THE EXTERNAL GROUND ROD.
- 6. ALL DOWN CONDUCTORS MUST GO DOWN
- 7. CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER WHEN THE GROUNDING SYSTEM IS COMPLETE. THE CONSTRUCTION MANAGER SHALL INSPECT THE GROUNDING SYSTEM PRIOR TO BACKFILLING

TOWER GROUNDING PLAN

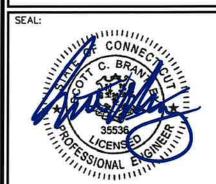
SCALE: N.T.S.

APPLICANT/LESSEE:


8051 CONGRESS AVENUE BOCA RATON, FL 33487-1307 OFFICE: (561) 226-9457

PROJECT INFORMATION:

SITE NAME: BURLINGTON-AVON LANDFILL SITE ID: CT46143A


277 HUCKLEBERRY HILL ROAD AVON, CT 06001 (HARTFORD COUNTY)

PLANS PREPARED BY:

TOWER ENGINEERING PROFESSIONALS

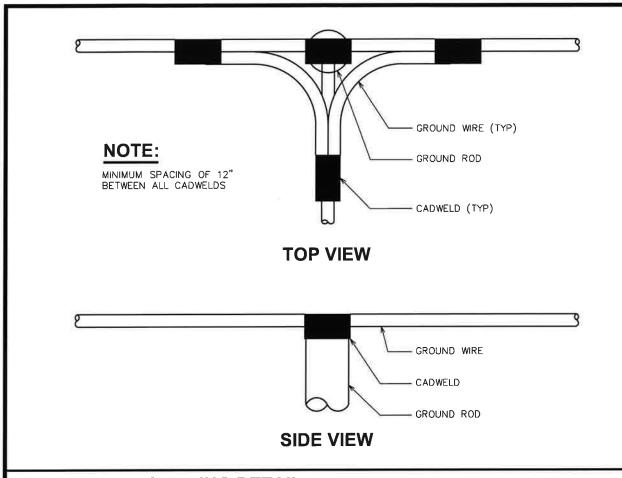
326 TRYON ROAD RALEIGH, NC 27603-3530 OFFICE: (919) 661-6351 www.tepgroup.net

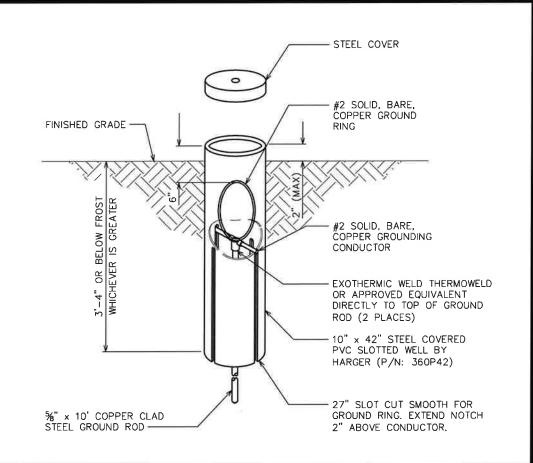
May 4, 2023

Ш						
ı	2	05-04-23	CONSTRUCTION			
Ш	1	05-02-23	PRELIMINARY			
I	0	04-20-23	PRELIMINARY			
	REV	DATE	ISSUED FOR:			

DRAWN BY: CLR CHECKED BY: MJC

SHEET TITLE:


TOWER GROUNDING PLAN


SHEET NUMBER: | REVISION:

E-3

2

TEP#: 265144.833086

APPLICANT/LESSEE:

8051 CONGRESS AVENUE BOCA RATON, FL 33487-1307 OFFICE: (561) 226-9457

PROJECT INFORMATION:

SITE NAME: BURLINGTON-AVON LANDFILL SITE ID: CT46143A

277 HUCKLEBERRY HILL ROAD AVON, CT 06001 (HARTFORD COUNTY)

TOWER ENGINEERING PROFESSIONALS

326 TRYON ROAD RALEIGH, NC 27603-3530 OFFICE: (919) 661-6351 www.tepgroup.net

SEAL: OF CONNECTION C. BR 35536 CENS CENS SONAL

May 4, 2023

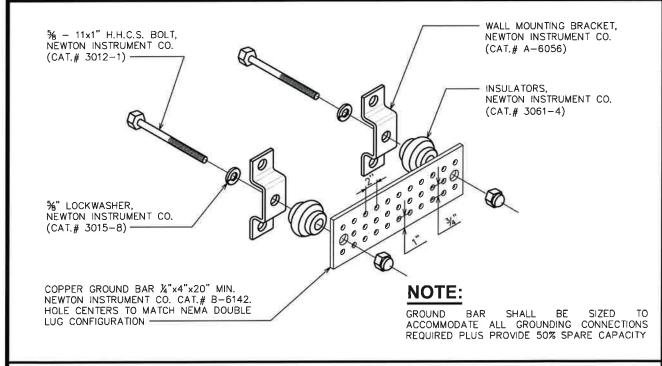
2	05-04-23	CONSTRUCTION
1	05-02-23	PRELIMINARY
0	04-20-23	PRELIMINARY
REV	DATE	ISSUED FOR:

DRAWN BY: CLR | CHECKED BY: MJC

SHEET TITLE:

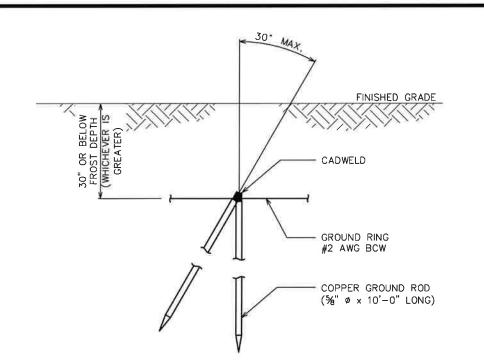
GROUNDING DETAILS I

SHEET NUMBER: REVISION:


-4

2

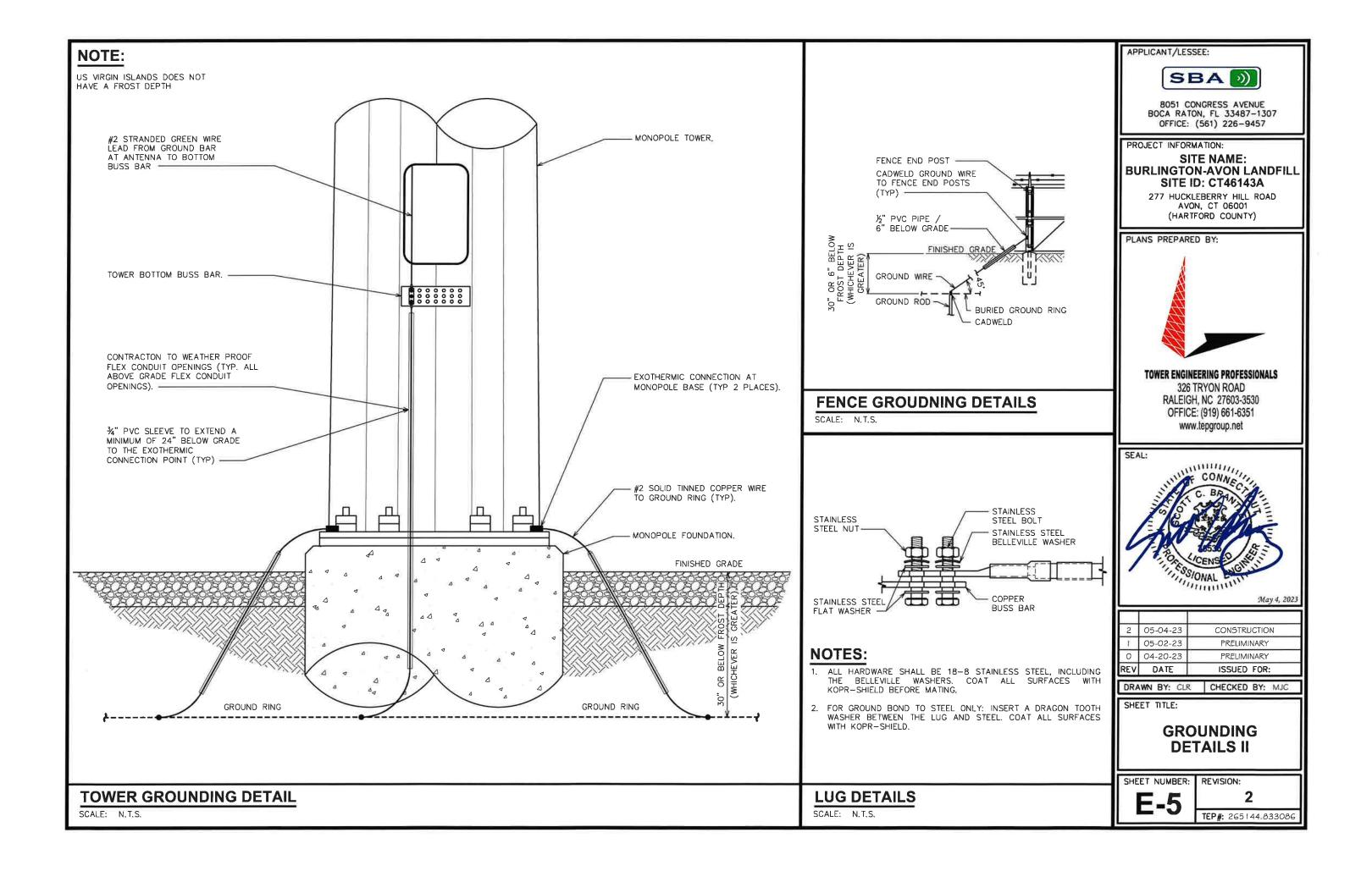
TEP#: 265144.833086

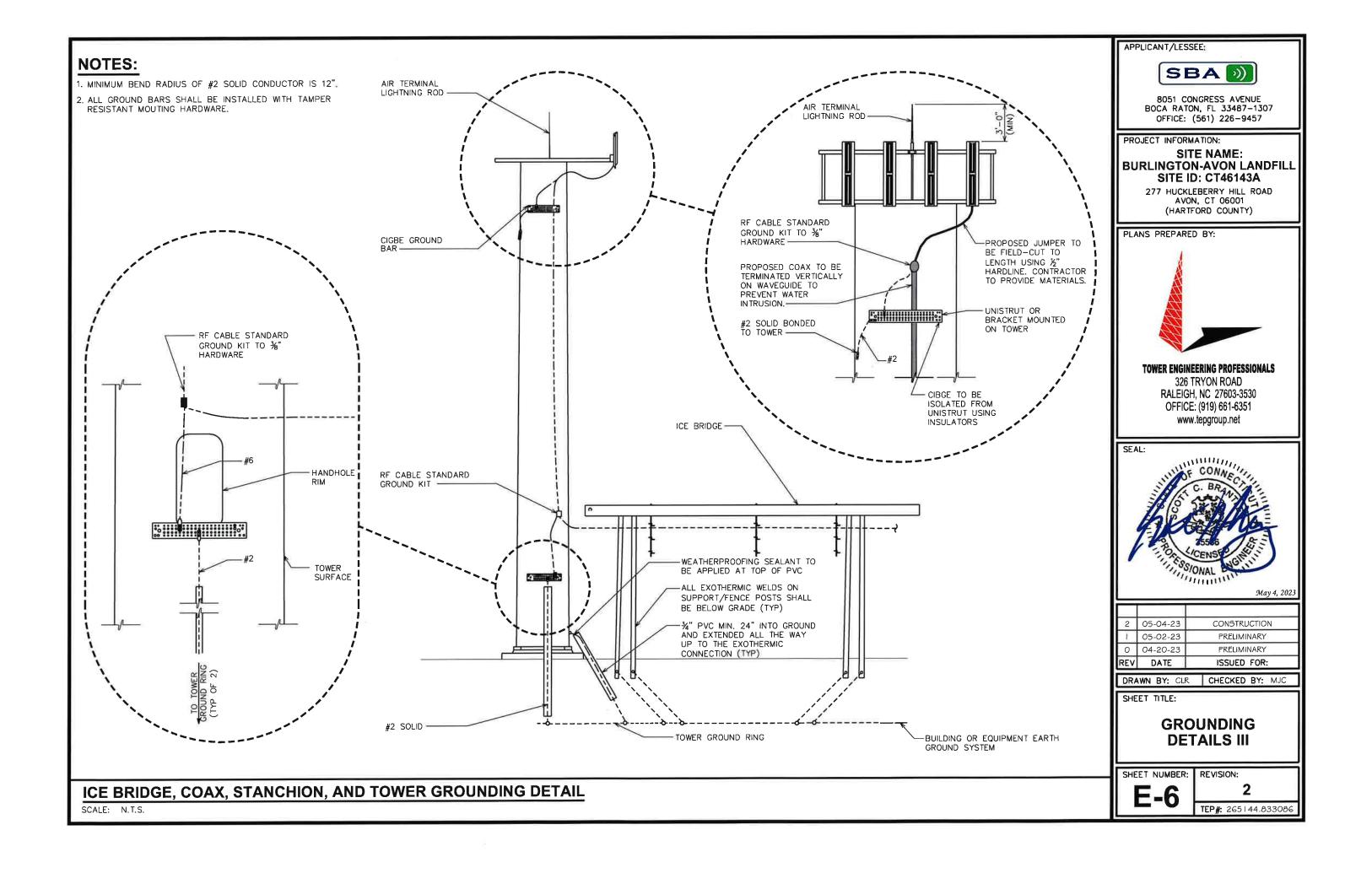

CADWELD GROUNDING DETAIL

SCALE: N.T.S.

GROUND ROD WITH INSPECTION WELL DETAIL

SCALE: N.T.S.




COPPER-CLAD STEEL GROUND ROD DETAIL

SCALE: N.T.S.

STANDARD GROUND BAR DETAIL

SCALE: N.T.S.

GENERAL NOTES:

- 1. ALL REFERENCES MADE TO OWNER IN THESE DOCUMENTS SHALL BE CONSIDERED SBA COMMUNICATIONS OR IT'S DESIGNATED REPRESENTATIVE.
- 2. ALL WORK PRESENTED ON THESE DRAWINGS MUST BE COMPLETED BY THE CONTRACTOR UNLESS NOTED OTHERWISE. THE CONTRACTOR MUST HAVE CONSIDERABLE EXPERIENCE IN PERFORMANCE OF WORK SIMILAR TO THAT DESCRIBED HEREIN, BY ACCEPTANCE OF THIS ASSIGNMENT, THE CONTRACTOR IS ATTESTING THAT HE DOES HAVE SUFFICIENT EXPERIENCE AND ABILITY, THAT HE IS KNOWLEDGEABLE OF THE WORK TO BE PERFORMED AND THAT HE IS PROPERLY LICENSED AND PROPERLY REGISTERED TO DO THIS WORK IN THE STATE OF CONNECTICUT.
- 3. WORK SHALL BE COMPLETED IN ACCORDANCE WITH ANSI/TIA-222-H STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES, ASCE 7-16 MINIMUM DESIGN LOADS FOR BUILDINGS AND THE 2018 INTERNATIONAL BUILDING CODE.
- UNLESS SHOWN OR NOTED OTHERWISE ON THE CONTRACT DRAWINGS, OR IN THE SPECIFICATIONS, THE FOLLOWING NOTES SHALL APPLY TO THE MATERIALS LISTED HEREIN, AND TO THE PROCEDURES TO BE USED ON THIS PROJECT.
- 5. ALL HARDWARE ASSEMBLY MANUFACTURER'S INSTRUCTIONS SHALL BE FOLLOWED EXACTLY AND SHALL SUPERSEDE ANY CONFLICTING NOTES ENCLOSED HEREIN.
- 6. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE TO INSURE THE SAFETY OF THE STRUCTURE AND IT'S COMPONENT PARTS DURING ERECTION AND/OR FIELD MODIFICATIONS. THIS INCLUDES, BUT IS NOT LIMITED TO, THE ADDITION OF TEMPORARY BRACING, GUYS OR TIE DOWNS THAT MAY BE NECESSARY. SUCH MATERIAL SHALL BE REMOVED AND SHALL REMAIN THE PROPERTY OF THE CONTRACTOR AFTER THE COMPLETION OF THE PROJECT.
- 7. ALL DIMENSIONS, ELEVATIONS, AND EXISTING CONDITIONS SHOWN ON THE DRAWINGS SHALL BE FIELD VERIFIED BY THE CONTRACTOR PRIOR TO BEGINNING ANY MATERIALS ORDERING, FABRICATION OR CONSTRUCTION WORK ON THIS PROJECT. CONTRACTOR SHALL NOT SCALE CONTRACT DRAWINGS IN LIEU OF FIELD VERIFICATION. ANY DISCREPANCIES SHALL BE IMMEDIATELY BROUGHT TO THE ATTENTION OF THE OWNER AND THE OWNER'S ENGINEER. THE DISCREPANCIES MUST BE RESOLVED BEFORE THE CONTRACTOR IS TO PROCEED WITH THE WORK. THE CONTRACT DOCUMENTS DO NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. OBSERVATION VISITS TO THE SITE BY THE OWNER AND/OR THE ENGINEER SHALL NOT INCLUDE INSPECTION OF THE PROTECTIVE MEASURES OR THE PROCEDURES.
- 8. ALL MATERIALS AND EQUIPMENT FURNISHED SHALL BE NEW AND OF GOOD QUALITY, FREE FROM FAULTS AND DEFECTS AND IN CONFORMANCE WITH THE CONTRACT DOCUMENTS. ANY AND ALL SUBSTITUTIONS MUST BE PROPERLY APPROVED AND AUTHORIZED IN WRITING BY THE OWNER AND ENGINEER PRIOR TO INSTALLATION. THE CONTRACTOR SHALL FURNISH SATISFACTORY EVIDENCE AS TO THE KIND AND QUALITY OF THE MATERIALS AND EQUIPMENT BEING SUBSTITUTED.
- 9. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THE WORK. THE CONTRACTOR IS RESPONSIBLE FOR INSURING THAT THIS PROJECT AND RELATED WORK COMPLIES WITH ALL APPLICABLE LOCAL, PROVINCIAL, AND FFDERAL SAFETY CODES AND REGULATIONS GOVERNING THIS WORK.
- 10. ACCESS TO THE PROPOSED WORK SITE MAY BE RESTRICTED. THE CONTRACTOR SHALL COORDINATE INTENDED CONSTRUCTION ACTIVITY, INCLUDING WORK SCHEDULE AND MATERIALS ACCESS, WITH THE SBA PROJECT MANAGER
- 11. BILL OF MATERIALS AND PART NUMBERS LISTED ON CONSTRUCTION DRAWINGS ARE INTENDED TO AID CONTRACTOR/OWNER. CONTRACTOR/OWNER SHALL VERIFY PARTS AND QUANTITIES WITH MANUFACTURER PRIOR TO BIDDING AND/OR ORDERING MATERIALS.
- 12. THE CONTRACTOR SHALL REWORK (DRY, SCARIFY, ETC.) ALL MATERIAL NOT SUITABLE FOR SUBGRADE IN ITS PRESENT STATE. AFTER REWORKING, IF THE MATERIAL REMAINS UNSUITABLE, THE CONTRACTOR SHALL UNDERCUT THIS MATERIAL AND REPLACE WITH APPROVED MATERIAL. ALL SUBGRADES SHALL BE PROOF—ROLLED WITH A FULLY LOADED TANDEM AXLE DUMP TRUCK PRIOR TO PAVING. ANY SOFT MATERIAL SHALL BE REWORKED OR REPLACED.
- 13. THE CONTRACTOR IS REQUIRED TO MAINTAIN ALL PIPES, DITCHES, AND OTHER DRAINAGE STRUCTURES FREE FROM OBSTRUCTION UNTIL WORK IS ACCEPTED BY THE OWNER. THE CONTRACTOR IS RESPONSIBLE FOR ANY DAMAGES CAUSED BY FAILURE TO MAINTAIN DRAINAGE STRUCTURE IN OPERABLE CONDITION.
- 14. ALL MATERIALS AND WORKMANSHIP SHALL BE WARRANTED FOR ONE YEAR FROM ACCEPTANCE DATE.
- 15. ALL BUILDING/TOWER DIMENSIONS SHALL BE VERIFIED WITH THE PLANS (LATEST REVISION) PRIOR TO COMMENCING CONSTRUCTION, NOTIFY THE ENGINEER IMMEDIATELY IF ANY DISCREPANCIES ARE DISCOVERED. THE OWNER SHALL HAVE A SET OF APPROVED PLANS AVAILABLE AT THE SITE AT ALL TIMES WHILE WORK IS BEING PERFORMED. A DESIGNATED RESPONSIBLE EMPLOYEE SHALL BE AVAILABLE FOR CONTACT BY GOVERNING AGENCY INSPECTORS.
- 16. ANY BUILDINGS ON THIS SITE ARE INTENDED TO SHELTER EQUIPMENT WHICH WILL ONLY BE PERIODICALLY MAINTAINED, AND ARE NOT INTENDED FOR HUMAN OCCUPANCY.
- 17. TEMPORARY FACILITIES FOR PROTECTION OF TOOLS AND EQUIPMENT SHALL CONFORM TO LOCAL REGULATIONS AND SHALL BE THE CONTRACTOR'S RESPONSIBILITY.
- 18. RENTAL CHARGES, SAFETY, PROTECTION AND MAINTENANCE OF RENTED EQUIPMENT SHALL BE THE CONTRACTOR'S RESPONSIBILITY.
- 19. THE CONTRACTOR AND ITS SUBCONTRACTORS SHALL CARRY LIABILITY INSURANCE IN THE AMOUNTS AND FORM IN ACCORDANCE WITH GLOBALIVE SPECIFICATIONS. CERTIFICATES DEMONSTRATING PROOF OF COVERAGE SHALL BE PROVIDED TO GLOBALIVE PRIOR TO THE START OF THE WORK ON THE PROJECT.

- 20. THESE DOCUMENTS DO NOT INCLUDE THE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY, SAFETY, CARE OF ADJACENT PROPERTIES, AND COMPLIANCE WITH PROVINCIAL AND FEDERAL REGULATIONS REGARDING SAFETY, SHALL BE THE CONTRACTOR'S RESPONSIBILITY, AND THIS, PER THE INTERNATIONAL CODE REGULATORS RESPECTING OCCUPATIONAL SAFETY & HEALTH THE SUCCESSFUL CONTRACTOR WILL SUBMIT HIT SAFETY MANUAL AT THE PROJECT SITE.
- 21. THE CONTRACTOR SHALL CONTACT ALL APPLICABLE UTILITY SERVICES TO VERIFY LOCATIONS OF EXISTING UTILITIES AND REQUIREMENTS FOR NEW UTILITY CONNECTIONS PRIOR TO EXCAVATING.
- 22. THE CONTRACTOR SHALL MAINTAIN THE JOB CLEAR OF TRASH AND DEBRIS. ALL WASTE MATERIALS SHALL BE REMOVED FROM THE SITE PRIOR TO SUBSTANTIAL COMPLETION AND PRIOR TO FINAL ACCEPTANCE. THE CONTRACTOR SHALL FURNISH ONE 55 GALLON BARREL, AND TRASH BAGS, AND SHALL REMOVE TRASH, DEBRIS, ETC., ON A DAILY BASIS.
- 23. COSTS FOR BUILDING PERMITS, LANDFILL TAXES, USE TAXES, SALES TAXES AND OTHER CHARGES RELATIVE TO CONSTRUCTION OF THIS PROJECT SHALL BE INCLUDED IN THE CONTRACT PRICE.
- 24. THE CONTRACTOR SHALL VISIT THE SITE AND BECOME FAMILIAR WITH ALL CONDITIONS PRIOR TO SUBMITTING HIS PROPOSAL, CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS SHOWN ON THESE DRAWINGS WITH THOSE AT THE SITE. ANY VARIATION WHICH REQUIRES PHYSICAL CHANGE SHALL BE BROUGHT TO THE ATTENTION OF THE SBA PROJECT ENGINEER FOR FACILITIES/CONSTRUCTION.
- 25. THE CONTRACTOR SHALL GUARANTEE THE WORK PERFORMED ON THE PROJECT BY THE CONTRACTOR AND ANY OR ALL OF THE SUBCONTRACTORS WHO PERFORMED WORK FOR THE CONTRACTOR ON THIS PROJECT. THE GUARANTEE SHALL BE FOR A FULL YEAR FOLLOWING ISSUANCE OF THE FINAL PAYMENT OF HOLDBACK.
- 26. AWARDED CONTRACTOR WILL BE REQUIRED TO SIGN AND RETURN A COPY OF AN AWARD LETTER FOR SBA'S FILE.
- 27. CONTRACTOR WILL BE REQUIRED TO PROVIDE PROOF OF LICENSE TO PERFORM WORK IN JURISDICTION AT TIME OF BID AWARD.
- 28. CONTRACTOR WILL PROVIDE A CONSTRUCTION SCHEDULE PRIOR TO CONSTRUCTION STARTING AND WILL PROVIDE UPDATE/CHANGES (WITH EXPLANATIONS) TO THAT SCHEDULE WHEN/IF ITEMS ARE DELAYED OR PUSHED OUT.
- 29. CONTRACTOR WILL BE RESPONSIBLE TO PROVIDE SBA PROJECT MANAGERS WITH PHOTOS OF THE MAJOR CONSTRUCTION MILESTONES AS THEY OCCUR.
- 30. CONTRACTOR WILL BE RESPONSIBLE TO ASSIST IN COORDINATING AND OBTAINING PRIMARY POWER TO THE SITE PRIOR TO TOWER ERECTION BEFORE PROJECT COMPLETION. (ON SITE VISITS WITH UTILITY COMPANY REPRESENTATIVES AS NECESSARY, ETC...)
- 31, CONTRACTOR SHOULD BE PREPARED FOR RANDOM SBA SAFETY INSPECTIONS AT ALL TIMES.
- 32. CONTRACTOR IS EXPECTED TO MAINTAIN PROPER WORKING CONDITIONS AND PROCEDURES PER OKLAHOMA STANDARDS AT ALL TIMES.
- 33. CONTRACTOR WILL BE REQUIRED TO OBTAIN THE NECESSARY ELECTRICAL PERMITS AND INSPECTIONS AS REQUIRED BY JURISDICTION.
- 34. CONTRACTOR IS EXPECTED TO CLOSE-OUT THE JOB SITE AS QUICKLY AS POSSIBLE (OBTAINING A CERTIFICATE OF OCCUPANCY AS REQUIRED BY LOCAL MUNICIPALITY AND GETTING SBA'S REGIONAL SITE MANAGER'S SIGN-OFF/CHECKLIST APPROVAL ON THE SITE).
- 35. CONTRACTOR WILL PROVIDE A COMPLETED TOWER HEIGHT VERIFICATION FORM AND TAPE DROP WITHIN 24 HOURS OF REACHING OVERALL HEIGHT.
- 5. CONTRACTOR WILL UTILIZE ALL OF THE SBA PROVIDED DOCUMENTATION INCLUDING BUT NOT LIMITED TO: TOWER CONSTRUCTION ACCEPTANCE CHECKLIST, CONSTRUCTION SCHEDULE, CONSTRUCTION CLOSE-OUT LIST & TOWER HEIGHT VERIFICATION.
- 37. CONTRACTOR IS RESPONSIBLE FOR CONCRETE COMPRESSION TESTING.
- 38. CONTRACTOR IS RESPONSIBLE FOR GROUND MEG TESTING AND PROVIDING PROOF OF RESULT.
- 39. WHEN REQUESTED, PROVIDE 3 COPIES OF FABRICATION AND ERECTION DRAWINGS PRIOR TO FABRICATION. ALLOW UP TO 1 WEEK FOR REVIEW BY CONSULTANT.
- 40. IN ADDITION TO CONTRACTOR'S QUALITY CONTROL PROGRAM, INDEPENDENT TESTING AND INSPECTION MAY BE PERFORMED BY OWNER OR OWNER'S REPRESENTATIVE.
- 41. SUBMIT RED-LINES COPY OF CONSTRUCTION DRAWINGS UPON COMPLETION OF CONSTRUCTION HIGHLIGHTING CHANGES IN THE STAMPED AND SIGNED AS—BUILT CONDITION FROM SHOWN ON THE DRAWINGS.
- 42. CONTRACTOR WILL BE RESPONSIBLE FOR ALL GRADING AND FILL COMPACTION TESTING REQUIRED AS SET FORTH IN THE GEO TECHNOLOGICAL REPORT PROVIDED BY OWNER.

CONCRETE:

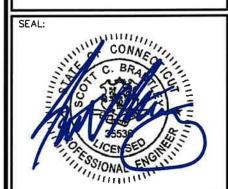
- ALL CONCRETE AND CONCRETE MATERIALS SHALL CONFORM TO THE REQUIREMENTS OF THE 2018
 INTERNATIONAL BUILDING CODE.
- 2. THE CONTRACTOR SHALL TAKE SAMPLES OF THE CONCRETE POURED UNDER THE CONDITIONS OUTLINED IN THE 2018 INTERNATIONAL BUILDING CODE.
- 3. ANY FAILURE OF A CONCRETE TEST CYLINDER TO MEET THE SPECIFIED STRENGTH REQUIREMENTS MUST BE REPORTED TO THE DESIGN ENGINEER IMMEDIATELY. CORRECTIVE ACTION MUST BE APPROVED BY THE ENGINEER AND ALL RELATED COSTS SHALL BE AT THE CONTRACTOR'S EXPENSE.

APPLICANT/LESSEE:

8051 CONGRESS AVENUE BOCA RATON, FL 33487-1307 OFFICE: (561) 226-9457

PROJECT INFORMATION:

SITE NAME: BURLINGTON-AVON LANDFILL SITE ID: CT46143A


277 HUCKLEBERRY HILL ROAD AVON, CT 06001 (HARTFORD COUNTY)

PLANS PREPARED BY:

TOWER ENGINEERING PROFESSIONALS

326 TRYON ROAD RALEIGH, NC 27603-3530 OFFICE: (919) 661-6351 www.tepgroup.net

May 4, 2023

04-20-23	PRELIMINARY
05-02-23	PRELIMINARY
05-04-23	CONSTRUCTION

DRAWN BY: CLR | CHECKED BY: MJC

SHEET TITLE:

GENERAL NOTES I

REVISION:

SHEET NUMBER:

N-1

2

TEP#: 265144.833086

CONCRETE (CONTINUED):

- 4. THE MINIMUM 28-DAY COMPRESSIVE STRENGTH OF THE CONCRETE SHALL BE A MINIMUM OF 30 MPA, EXCEPT AS NOTED OR DIRECTED IN THE SOIL REPORT. THE CONCRETE, WHEN POURED, SHALL CONTAIN 7% AIR ENTRAINMENT WITH AN ALLOWABLE VARIATION OF +2%.
- 5. CONTRACTOR MUST TAKE SLUMP TEST AT LEAST ONCE FROM EACH TRANSIT MIXER AFTER A MINIMUM OF 5% CONCRETE LOAD HAD BEEN DISCHARGED. SLUMP, UNLESS NOTED OTHERWISE ON THE DRAWINGS, SHALL BE 75 MM.
- 6. MIXED CONCRETE ON SITE (REMOTE AREAS) WITH THE CORRECT PROPORTION OF CEMENT, SAND, GRAVEL, AND AIR-ENTRAINING AGENT ALREADY ADDED, THE DRY PREMIX IS TO BE MIXED IN A CONCRETE BATCHER IN STRICT ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS.
- 7. BEFORE POURING CONCRETE, THE TRANPORTING EQUIPMENT AND FORMS SHALL BE CLEANED AND ALL DEBRIS AND ICE SHALL BE REMOVED FROM PLACES TO BE OCCUPIED BY THE CONCRETE. ANY WATER THAT HAS ACCUMALATED IN THE FORMS SHALL BE REMOVED.
- 8. ALL CONCRETE SHALL BE VIBRATED AND WORKED AROUND THE REINFORCEMENTS, EMBEDDED FIXTURES AND INTO THE CORNERS OF THE FORMS. ANY EXCESS WATER THAT ACCUMALATES WHILE THE CONCRETE IS BEING POURED SHALL BE REMOVED.
- 9. THE DESIGN ENGINEER SHALL RECEIVE A MINIMUM OF 24 HOURS NOTICE OF EVERY POUR.
- 10. THE CONCRETE IN FOUNDATIONS MUST BE POURED IN CONTINOUS POURS BETWEEN CONSTRUCTION JOINTS. NO CONSTRUCTION JOINTS OTHER THAN THOSE SHOWN ON SITE SPECIFIC DRAWINGS WILL BE PERMITTED. THE CONTRACTOR SHALL PROVIDE EFFICIENT EQUIPMENT TO COMPLETE THE POURING OF EACH SECTION IN ONE CONTINOUS POUR.
- 11. ALL FRAMEWORK SHALL BE BUILT IN ACCORDANCE WITH THE INTERNATIONAL BUILDING CODE SHALL BE THOROUGHLY BRACED AND PLUMBED SO THAT THE FINISHED CONCRETE WILL CONFORM TO THE SHAPES, LINES, GRADES, AND DIMENSIONS INDICATED ON THE SITE DRAWINGS.
- 12. FORMS AND SHORING SHALL NOT BE REMOVED UNTIL THE CONCRETE IS ADEQUATELY SET. THEIR REMOVAL SHALL BE DONE IN SUCH A MANNER AS TO ENSURE THE COMPLETE SAFETY OF THE STRUCTURE.
- 13. FORMS WHICH SUPPORT THE WEIGHT OF THE CONCRETE, OR OF SUPERIMPOSED LOADS, SHALL NOT BE REMOVED UNTIL THE CONCRETE IS STRONG ENOUGH TO CARRY ITS OWN WEIGHT, AND SUCH SUPERIMPOSED LOADS AS MAY BE PLACED UPON IT.
- 14. THE CONCRETE SHALL BE MAINTAINED IN A MOIST CONDITION FOR AT LEAST 5 DAYS AFTER IT HAS BEEN POURED.
- 15. ALL SURFACES WHICH ARE NOT PROTECTED BY FORMS OR A SEALED WATERPROOF COATING SHALL BE KEPT MOIST BY CONTINOUS SPRINKLING, OR OTHER MEANS SUCH AS COVERING WITH MOIST SAND, SAWDUST, OR BURLAP.
- 16. WHERE NECESSARY, THE CONCRETE SHALL BE PROTECTED AGAINST THE WEATHER BY A FRAMED HOUSING, TARPAULINS, OR OTHER SUITABLE COVERING.

REINFORCING STEEL (REBAR):

- 1. REINFORCING STEEL SHALL MEET CODE AND BE PLACED ACCORDING TO THE APPLICABLE DRAWINGS. THE MINIMUM THICKNESS OF CONCRETE OVER THE STEEL SHALL BE AT LEAST 3".
- 2. ALL REINFORCEMENTS THAT ARE REQUIRED FOR A DAYS POUR ON CONCRETE SHALL BE SECURELY FIXED IN PLACE IN SUFFICIENT TIME TO PERMIT INSPECTION BEFORE CONCRETING BEGINS.
- 3. THE DESIGN ENGINEER SHALL BE GIVEN 24 HOURS NOTICE BEFORE THE CONCRETE IS TO BE POURED. FAILURE TO COMPLY MAY NECESSITATE, BUT NOT BE LIMITED TO, THE REMOVAL OF THE POURED CONCRETE AT THE CONTRACTOR'S EXPENSE.

GROUTING:

1. WHERE GROUT IS INDICATED ON THE DRAWINGS UNDER STRUCTURAL BASE PLATES, THIS SHALL BE A NON-SHRINK, NON-FERROUS TYPE, METHODS OF MIXING AND PLACING MUST BE IN STRICT ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.

COLD WEATHER CONCRETING:

- THE CONTRACTOR SHALL PROVIDE AND HAVE ON THE SITE READY FOR USE, ADEQUATE EQUIPMENT FOR HEATING CONCRETE MATERIALS AND PROTECTING FRESH CONCRETE DURING FREEZING OR NEAR FREEZING WEATHER CONDITIONS, ACCORDING TO THE INTERNATIONAL BUILDING CODE, 2012 EDITION.
- 2. ALL CONCRETE MATERIALS, REBAR, FORMS, FILLERS, AND THE EARTH WITH WHICH THE CONCRETE IS TO COME INTO CONTACT WITH, SHALL BE FREE FROM FROST AND ICE.
- 3. WHENEVER THE SURROUNDING TEMPERATURE IS BELOW 39°F, ALL CONCRETE POURED IN THE FORMS SHALL HAVE A TEMPERATURE OF 68°F FOR 4 DAYS.
- THE HOUSING, COVERING, OR OTHER PROTECTION USED FOR THE CURING SHALL REMAIN IN PLACE AND INTACT FOR AT LEAST 24 HOURS AFTER THE ARTIFICIAL HEATING IS DISCONTINUED.

5. SALT, CALCIUM CHLORIDE, OR OTHER CHEMICALS SHALL NOT BE USED IN THE CONCRETE MIX TO PREVENT THE WATER CONTENT FROM FREEZING.

UTILITIES:

- 1. CONTRACTOR SHALL CONTACT A SUBSURFACE UTILITY LOCATOR FOR LOCATION OF EXISTING UTILITIES PRIOR TO COMMENCEMENT OF ANY CONSTRUCTION ACTIVITIES. LOCATION OF EXISTING SEWER, WATER LINES, GAS LINES, CONDUITS OR OTHER STRUCTURES ACROSS, UNDERNEATH, OR OTHERWISE ALONG THE LINE OF PROPOSED WORK ARE NOT NECESSARILY SHOWN ON THE PLANS, AND IF SHOWN ARE ONLY APPROXIMATELY CORRECT. CONTRACTOR ASSUMES SOLE RESPONSIBILITY FOR VERIFYING LOCATION AND ELEVATION OF ALL UNDERGROUND UTILITIES (INCLUDING TEST PITS BY HAND IF NECESSARY) IN AREAS OF CONSTRUCTION PRIOR TO STARTING WORK. CONTACT ENGINEER IMMEDIATELY IF LOCATION OF ELEVATION IS DIFFERENT FROM THAT SHOWN ON THE PLANS, OR IF THERE APPEARS TO BE A CONFLICT.
- 2. CONTRACTOR SHALL COORDINATE ALL UTILITY CONNECTIONS WITH APPROPRIATE UTILITY OWNERS AND CONSTRUCTION MANAGER.
- 3. DAMAGE BY THE CONTRACTOR TO UTILITIES OR PROPERTY OF OTHERS, INCLUDING EXISTING PAVEMENT AND OTHER SURFACES DISTURBED BY THE CONTRACTOR DURING CONSTRUCTION SHALL BE REPAIRED TO PRE-CONSTRUCTION CONDITIONS BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE CLIENT, FOR GRASSES AREAS, SEED AND MULCH SHALL BE ACCEPTABLE.
- 4. THE CONTRACTOR SHALL COORDINATE WITH THE OWNER THE REQUIREMENTS FOR AND LIMITS OF OVERHEAD AND/OR UNDERGROUND ELECTRICAL SERVICE,
- 5. THE CONTRACTOR SHALL COORDINATE THE LOCATION OF NEW UNDERGROUND TELEPHONE SERVICE WITH THE TELEPHONE UTILITY AND THE OWNER'S REQUIREMENTS.
- 6. ALL UNDERGROUND UTILITIES SHALL BE INSTALLED AND TESTED SATISFACTORY PRIOR TO COMMENCING ANY PAVING OPERATIONS WHERE SUCH UTILITIES ARE WITHIN THE LIMITS OF PAVEMENT.

GRADING:

- 1. THE CONTRACTOR SHALL REWORK (DRY, SCARIFY, ETC...) ALL MATERIAL NOT SUITABLE FOR SUB GRADE IN ITS PRESENT STATE. IF THE MATERIAL, AFTER REWORKING, REMAINS UNSUITABLE THEN THE CONTRACTOR SHALL UNDERCUT THIS MATERIAL AND REPLACE WITH APPROVED MATERIAL AT HIS EXPENSE. ALL SUB GRADES SHALL BE PROOF ROLLED WITH A FULLY LOADED TANDEM AXLE DUMP TRUCK PRIOR TO PAVING. ANY SOFT MATERIAL SHALL BE REWORKED OR REPLACED.
- 2. THE CONTRACTOR IS REQUIRED TO MAINTAIN ALL DITCHES, PIPES, AND OTHER DRAINAGE STRUCTURES FREE FROM OBSTRUCTION UNTIL WORK IS ACCEPTABLE BY THE OWNER. THE CONTRACTOR IS RESPONSIBLE FOR ANY DAMAGES CAUSED BY FAILURE TO MAINTAIN DRAINAGE STRUCTURES IN OPERABLE CONDITION.
- 3. ALL MATERIALS AND WORKMANSHIP SHALL BE WARRANTED FOR ONE (1) YEAR FROM DATE OF ACCEPTANCE.

GROUNDING:

- I. CONTRACTOR SHALL VERIFY THAT GROUNDING ELECTRODES SHALL BE CONNECTED IN A RING USING #2 SOLID TINNED COPPER WIRE. THE TOP OF THE GROUND RODS AND THE RING CONDUCTOR SHALL BE 2 FEET BELOW FINISHED GRADE. GROUNDING ELECTRODES SHALL BE DRIVEN ON 10'-0" CENTERS (15'-0" MAXIMUM; PROVIDE AND INSTALL AS REQUIRED PER TYPICAL GROUNDING PLAN ON THIS SET).
- 2. BONDING OF THE GROUNDING CONDUCTOR (NEUTRAL) AND THE GROUNDING CONDUCTOR SHALL BE AT THE SERVICE DISCONNECTING MEANS. BONDING JUMPER SHALL BE INSTALLED PER CSA.
- 3. GROUND RING CONNECTION CONDUCTORS SHALL BE OF EQUAL LENGTH, MATERIAL, AND BONDING TECHNIQUE.
- 4. CONTRACTOR SHALL ENSURE GROUND RING IS WITHIN 12 TO 36 INCHES OF THE EQUIPMENT PAD. PROVIDE AND INSTALL GROUNDING CONNECTIONS SHOWN IN DETAILS AS NEEDED PER EXISTING SITE GROUNDING SYSTEM, CONTRACTOR SHALL VERIFY ALL EXISTING SITE GROUNDING CONDITIONS BEFORE STARTING WORK OR PURCHASING EQUIPMENT.
- . BOND CIGBE TO EXTERNAL GROUND RING WITH 2 RUNS OF #2 SOLID TINNED COPPER CONDUCTOR IN PVC. CONNECT BAR END WITH 2 HOLE LUG, AND "CADWELD" THE OTHER END TO THE EXTERNAL GROUND ROD.
- 5. THE PREFERRED LOCATION FOR COAX GROUNDING IS AT THE BASE OF THE TOWER PRIOR TO THE COAX BEND, BONDING IS SHOWN ON THE ICE BRIDGE DUE TO DIFFICULTY WITH WELDING OR ATTACHING TO TOWER LEGS, CONTRACTOR SHALL ADVISE CONSTRUCTION MANAGER PRIOR TO PLACING CIGBE ON ICE BRIDGE IF MOUNTING TO TOWER LEG IS POSSIBLE.
- 7. CONTRACTOR SHALL VERIFY EXISTING GROUNDING BOND TO THE FENCE POST OR EXTERNAL GROUND RING IN AT (2) PLACES. PROVIDE AND INSTALL GROUNDING CONNECTIONS AS REQUIRED TO MEET THESE CONDITIONS.

APPLICANT/LESSEE:

8051 CONGRESS AVENUE BOCA RATON, FL 33487-1307 OFFICE: (561) 226-9457

PROJECT INFORMATION:

SITE NAME: BURLINGTON-AVON LANDFILL SITE ID: CT46143A

277 HUCKLEBERRY HILL ROAD AVON, CT 06001 (HARTFORD COUNTY)

PLANS PREPARED BY:

TOWER ENGINEERING PROFESSIONALS

326 TRYON ROAD RALEIGH, NC 27603-3530 OFFICE: (919) 661-6351 www.tepgroup.net

May 4, 202

_	05.04.00	000000000000000000000000000000000000000
2	05-04-23	CONSTRUCTION
1	05-02-23	PRELIMINARY
0	04-20-23	PRELIMINARY
REV	DATE	ISSUED FOR:
	2 	1 05-02-23 0 04-20-23

DRAWN BY: CLR | CHECKED BY: MJC

SHEET TITLE:

GENERAL NOTES II

SHEET NUMBER:

: REVISION:

N-2

TEP#: 265144.833086

September 14, 2023

Greg Hines SBA Communications Corporation 8051 Congress Avenue Boca Raton, FL 33487 (561) 226-9532 Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 (919) 661-6351

PHX Structures@tepgroup.net

Subject:

Structural Analysis Report

Owner Designation:

Site Number:

Site Name:

CT46143-A

Burlington Avon Landfill

Engineering Firm Designation:

TEP Project Number:

265144.882085

Site Data:

277 Huckleberry Hill Road, Avon, Hartford County, CT 06001

Latitude 41° 47' 17.28", Longitude -72° 55' 5.71"

131.0± Foot - Monopole

Dear Greg Hines,

Tower Engineering Professionals is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the stress level for the tower and foundation structure, under the following load case, to be:

LC1: Existing + Proposed + Reserved Loading
Note: See Table 1 for the existing, proposed, and reserved loading

Sufficient Capacity

Structure Capacity	Foundation Capacity
30.4%	23.4%

The analysis has been performed in accordance with the ANSI/TIA-222-H <u>Structural Standard for Antenna Supporting Structures and Antennas - Addendum 2</u> and the 2022 <u>Connecticut State Building Code</u>.

All modifications and equipment proposed in this report shall be installed in accordance with the appurtenances listed in Table 1 for the determined available structural capacity to be effective.

We at *Tower Engineering Professionals* appreciate the opportunity of providing our continuing professional services to you and *SBA Communications Corporation*. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: Anqi Wang / PHX

Respectfully submitted by:

Aaron T. Rucker, P.E.

09/14/2023

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Existing, Proposed, and Reserved Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary)

Table 4 - Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Additional Calculations

1) INTRODUCTION

The tower is a proposed 131.0± foot monopole tower designed by Sabre Industries in June of 2023.

2) ANALYSIS CRITERIA

TIA-222 Revision:

ANSI/TIA-222-H

Type of Analysis:

Comprehensive

Risk Category:

Ш

Wind Speed:

120 mph (Ultimate)

Exposure Category:

С

Topographic Category:

1 (Kzt = 1.0)

Ice Thickness:

1.50 in

Wind Speed with Ice:

50 mph

Service Wind Speed:

60 mph

Table 1 - Existing, Proposed, and Reserved Antenna and Cable Information

Existing/ Proposed/ Reserved	Mount Level (ft)	Ant CL (ft)	Qty	Antenna Model	Mount Type	Qty Coax	Coax Size	Coax Location	Owner/ Tenant
			3	DBSpectra DS7C09P36U-D	Platform	3	1-5/8		Town of Avon
Proposed	130.0	130.0	1	TX RX Systems 432F-83W-01T	Mount	1	1/2	Inside	
			3	Commscope NHHSS-65B-R2B				Inside	Verizon
			3	Commscope NHH-65B-R2B			1-5/8		
			3	Samsung Telecom. MT6407-77A	Ring Mount	2			
Proposed 110	110.0	110.0	3	Samsung Telecom. B2/B66A RRH ORAN					
			3	Samsung Telecom. B5/B13 RRH ORAN					
			3	Samsung Telecom. CBRS RRH-RT4401-48A					
			1	Raycap DB-B1-6C-12AB-0Z					
			3	Andrew SBNHH-1D65C		6 2 1	1-5/8 3/4 7/16	Inside	AT&T
Proposed 90.0	90.0	90.0 90.0	3	Andrew APTDC-BDFDM-DBW	Pipe Mount				
	30.0		3	Powerwave LGP2140 TMA					
			3	CCI TMABPDB7823VG12A					
		00.0	3	RFS Celwave APXVAR18_43-C-NA20	Pipe	12	7/8	Inside	T-Mobile
Proposed	80.0	80.0	6	RFS Celwave ATMAA1412D-1A20	Mount	12	1/0		

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Source
Tower and Foundation Design	Sabre Industries, dated June 29, 2023 Job No. 521586	SBA Communications
Geotechnical Report	Delta Oaks Group, dated June 28, 2023 Project GEO 23-19365-01	SBA Communications
Correspondence	Correspondence in reference to the existing, proposed, and reserved loading.	SBA Communications

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Analysis Assumptions

- 1) The tower and foundation were built and maintained in accordance with the manufacturer's specification.
- 2) Unless specified by the client or tower mapping, the location of the existing and proposed coax is assumed by TEP and listed in Table 1.
- 3) All tower components are in sufficient condition to carry their full design capacity.
- Serviceability with respect to antenna twist, tilt, roll, or lateral translation, is not checked and is left to the carrier or tower owner to ensure conformance.
- All antenna mounts and mounting hardware are structurally sufficient to carry the full design capacity requirements of appurtenance wind area and weight as provided by the original manufacturer specifications. It is the carrier's responsibility to ensure compliance to the structural limitations of the existing and/or proposed antenna mounts. TEP did not perform a site visit to verify the size, condition or capacity of the antenna mounts and did not analyze antennas supporting mounts as part of this structural analysis report.
- 6) The soil properties below 18-ft were not provided in the geotechnical report and were assumed to match the layer above.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

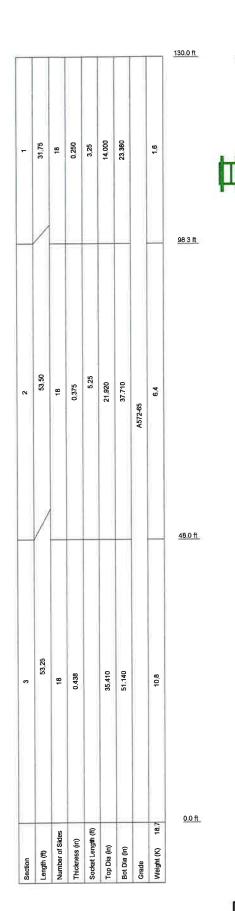
Table 3 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (k)	øP _{allow} (k)	% Capacity	Pass / Fail
L1	130 - 98.25	Pole	TP23.38x14x0.25	1	-7.43	1029.12	19.4	Pass
L2	98.25 - 48	Pole	TP37.71x21.92x0.375	2	-16.91	2491.73	29.1	Pass
L3	48 - 0	Pole	TP51.14x35.41x0.438	3	-33.15	4118.80	30.3	Pass
							Summary	
						Pole (L3)	30.3	Pass
						Rating =	30.3	Pass

Table 4 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail	
1	Anchor Rods		27.9	Pass	
1	Base Plate		30.4	Pass	
1	Base Foundation Structural	- 1	21.6	Pass	
1	Base Foundation Soil Interaction	-	23.4	Pass	

	20.49/
Structure Rating (max from all components) =	30.4%


Notes:

4.1) Recommendations

- If the load differs from that described in Table 1 of this report or the provisions of this analysis are 1) found to be invalid, another structural analysis should be performed.
- The tower and its foundation have sufficient capacity to carry the proposed load configuration. 2) No modifications are required at this time.

See additional documentation in "Appendix B - Additional Calculations" for calculations supporting the % capacity listed.

APPENDIX A TNXTOWER OUTPUT

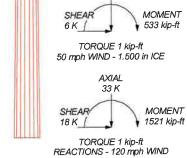
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

Tower is located in Hartford County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.

Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.

Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.


in uncariess with height.

5. Deflections are based upon a 60 mph wind.

6. Tower Risk Category II.

7. Topographic Category 1 with Crest Height of 0.00 ft

8. TOWER RATING: 30.3%

ALL REACTIONS ARE FACTORED AXIAL

54 K

Burlington Avon Landfill (CT46143-A) Tower Engineering Professionals, Inc. Project: TEP No. 265144.882085 326 Tryon Road Client: SBA Communications Corporation Drawn by: awang Approx.

Code: TIA-222-H Date: 09/08/23 Scale: NTS Raleigh, NC 27603 Code: TIA-222-H Phone: (919) 661-6351 FAX: (919) 661-6360 Dwg No. E-1 Path

tnxTower	Job	Burlington Avon Landfill (CT46143-A)	Page 1 of 15
Tower Engineering Professionals, Inc. 326 Tryon Road	Project	TEP No. 265144.882085	Date 13:11:30 09/08/23
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360	Client	SBA Communications Corporation	Designed by awang

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Hartford County, Connecticut.

Tower base elevation above sea level: 468.00 ft.

Basic wind speed of 120 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
 √ Use Code Safety Factors Guy
- ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz

Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

- Distribute Leg Loads As Uniform Assume Legs Pinned
- ✓ Assume Rigid Index Plate
 ✓ Use Clear Spans For Wind Area
- Use Clear Spans For White Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
 √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs
- Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque
 Include Angle Block Shear Check
 Use TIA-222-H Bracing Resist. Exemption
 Use TIA-222-H Tension Splice Exemption
 Poles
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets
- √ Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

tnxTower	Job	Burlington Avon Landfill (CT46143-A)	Page 2 of 15
Tower Engineering Professionals, Inc. 326 Tryon Road	Project TEP No. 265144.882085		Date 13:11:30 09/08/23
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360	Client	SBA Communications Corporation	Designed by awang

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
Lì	130.00-98.25	31.75	3.250	18	14.000	23.380	0.250	1.000	A572-65 (65 ksi)
L2	98.25-48.00	53.50	5.250	18	21.920	37.710	0.375	1.500	À572-65 (65 ksi)
L3	48.00-0.00	53.25		18	35.410	51.140	0.438	1.750	A572-65 (65 ksi)

				Та	pered P	ole Pr	opertie	s			
Section	Tip Dia.	Area in²	I in ⁴	r in	C in	I/C in³	J in ⁴	It/Q in ²	w in	w/t	_
LI	14.177 23.702	10.911 18.354	260.611 1240.54		7.112 11.877	36.644 104.449	521.565 2482.715	5.456 9.179	2.02- 3.67:		
L2	23.174 38.234	25.644 44.438	1503.85		11.135 19.157	135.053 408.511	3009.686 15661.730	12.824 22.223	3.19 5.97		
L3	37.464 51.861	48.564 70.407	7504.48		17.989 25.979	417.182 880.210	15018.850 45764.232	24.287 35.210	5.46 8.23	_	
Tower Elevatio	Guss n Are (per fo	ea .	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A,	Weight M	Stite: Spa	e Angle h Bolt icing ionals	Double Angle Stitch Bolt Spacing Horizontals	Double Ang Stitch Bol Spacing Redundani
ft	ft ²	?	in					_	in	in	in

Elevation	Area (per face)	Thickness	A_f	Factor A_r		Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing Horizontals	Stitch Bolt Spacing Redundants
ft	ft²	in				in	in	in
L1			1	1	1			
130.00-98.25								
L2 98.25-48.00			1	1	1			
L3 48.00-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat Weight Clear Width or Perimeter Face Allow Exclude Component Placement Total Number Description Shield From Туре Number Per Row Spacing Diameter orplfft Leg Torque Calculation *** *****

Feed Line/Linear Appurtenances - Entered As Area											
Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight		
	Leg	snieu	Torque Calculation	Туре	ft	Tiamoor		ft²/ft	plf		
Misc Safety Line 3/8	С	No	No	CaAa (Out Of Face)	130.00 - 0.00	1	No Ice 1/2" Ice 1" Ice	0.04 0.14 0.24	0.220 0.750 1.280		
tep Pegs (5/8" SR)	С	No	No	CaAa (Out	130.00 - 0.00	1	2" Ice No Ice	0.44 0.01	2.340 0.209		

Inx Tower Job Burlington Avon Landfill (CT46143-A) Page 3 of 15 Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360 TEP No. 265144.882085 Date 13:11:30 09/08/23 Client SBA Communications Corporation FAX: (919) 661-6360 Designed by awang

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg	Onicia	Torque Calculation	-)	fi			ft²/ft	plf
6-in. w/ 30" step				Of Face)			1/2" Ice	0.11	0.591
0 III. W/ 50 Blop				,			1" Ice	0.21	1.583
							2" Ice	0.41	5.401
130	С	No	No	Inside Pole	130.00 - 0.00	3	No Ice	0.00	1.010
EC7-50(1-5/8")	C	INO	140	miside i ole	150.00 0.00		1/2" Ice	0.00	1.010
							1" Ice	0.00	1.010
							2" Ice	0.00	1.010
20 C 4 E 0 (4 (011)	-	NT-	NI-	Inside Pole	130.00 - 0.00	1	No Ice	0.00	0.160
EC4-50(1/2")	C	No	No	Hisiae Pole	130.00 - 0.00	1	1/2" Ice	0.00	0.160
							1" Ice	0.00	0.160
							2" Ice	0.00	0.160
110							2 100		
HFT1206-24SVL-21	С	No	No	Inside Pole	110.00 - 0.00	2	No Ice	0.00	1.920
0(1-5/8)	0	110	110				1/2" Ice	0.00	1.920
0(1-5/0)							1" Ice	0.00	1.920
							2" Ice	0.00	1.920
90									* ^^^
IFT1206-24SVL-21	C	No	No	Inside Pole	90.00 - 0.00	6	No Ice	0.00	1.920
0(1-5/8)							1/2" Ice	0.00	1.920
							1" Ice	0.00	1.920
							2" Ice	0.00	1.920
3/4" DC	C	No	No	Inside Pole	90.00 - 0.00	2	No Ice	0.00	1.240
							1/2" Ice	0.00	1.240
							1" Ice	0.00	1.240
							2" Ice	0.00	1.240
8107971/DB(7/16)	C	No	No	Inside Pole	90.00 - 0.00	1	No Ice	0.00	0.081
010///1/22(///							1/2" Ice	0.00	0.081
							1" Ice	0.00	0.081
							2" Ice	0.00	0.081
3" Flexible Conduit	C	No	No	Inside Pole	90.00 - 0.00	1	No Ice	0.00	1.040
J Hexible Collabit	•	2.0					1/2" Ice	0.00	1.040
							1" Ice	0.00	1.040
							2" Ice	0.00	1.040
80							37. 7	0.00	0.012
WR-VG66ST-BRD(C	No	No	Inside Pole	80.00 - 0.00	12	No Ice	0.00	0.912
7/8)							1/2" Ice	0.00	0.912
							1" Ice	0.00	0.912
							2" Ice	0.00	0.912

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	C_AA_A In Face	$C_A A_A$ Out Face	Weight
section	ft		ft ²	ft ²	ft ²	ft^2	K
L1	130.00-98.25	A	0.000	0.000	0.000	0.000	0.00
DI	150.00 50.22	В	0.000	0.000	0.000	0.000	0.00
		Č	0.000	0.000	0.000	1.588	0.16
L2	98.25-48.00	Ā	0.000	0.000	0.000	0.000	0.00
<i>D2</i>	70.20 10.00	В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	2.513	1.36
L3	48.00-0.00	Ā	0.000	0.000	0.000	0.000	0.00

tnxTower	Job	Burlington Avon Landfill (CT46143-A)	Page 4 of 15
Tower Engineering Professionals, Inc. 326 Tryon Road	Project	TEP No. 265144.882085	Date 13:11:30 09/08/23
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360	Client	SBA Communications Corporation	Designed by awang

Tower Section	Tower Elevation	Face	A_R	A_F	$C_A A_A$ In Face	C _A A _A Out Face	Weight
Section	ft		ft^2	ft^2	ft ²	ft²	K
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	2.400	1.61

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C_AA_A In Face	$C_A A_A$ Out Face	Weight
Decitori	ft	Leg	in	ft ²	ft ²	ft ²	ft²	K
L1	130.00-98.25	A	1.696	0.000	0.000	0.000	0.000	0.00
21	130.00 70.00	В		0.000	0.000	0.000	0.000	0.00
		Č		0.000	0.000	0.000	23.131	0.35
L2	98.25-48.00	Ā	1.621	0.000	0.000	0.000	0.000	0.00
	90.25 10.00	В		0.000	0.000	0.000	0.000	0.00
		Č		0.000	0.000	0.000	36.609	1.65
L3	48.00-0.00	Ä	1.452	0.000	0.000	0.000	0.000	0.00
LJ	40.00-0.00	В		0.000	0.000	0.000	0.000	0.00
		ć		0.000	0.000	0.000	33.516	1.87

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	130.00-98.25	-0.387	0.224	-2.124	1.226
L2	98.25-48.00	-0.395	0.228	-2.489	1.437
L3	48.00-0.00	-0.398	0.230	-2.633	1.520

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	5		Vert fi fi	٥	ft		ft²	ft²	K
			ft	0.000	130.00	No Ice	1.25	1.25	0.02
5/8" x 20' Lightning Rod	C	None		0.000	130.00	1/2" Ice	3.26	3.26	0.02
						1" Ice	5.29	5.29	0.06
						2" Ice	9.40	9.40	0.15
130									
DS7C06P36U-D	Α	From	4.00	0.000	130.00	No Ice	2.08	2,08	0.03
DB/C001300 B		Centroid-Le	0.000			1/2" Ice	2.95	2.95	0.04
		g	0.000			1" Ice	3.66	3.66	0.07
		ь	0.500			2" Ice	4.69	4.69	0.12
DS7C06P36U-D	В	From	4.00	0.000	130.00	No Ice	2.08	2.08	0.03

tnxTower

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360

Job	Burlington Avon Landfill (CT46143-A)	Page 5 of 15
Project	TEP No. 265144.882085	Date 13:11:30 09/08/23
Client	SBA Communications Corporation	Designed by awang

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weight
	Leg		Laierai Vert fi	100	ft		ft²	ft²	K
			ft ft						
		Centroid-Le	0.000			1/2" Ice	2.95	2.95	0.04
		g	0.000			1" Ice	3.66	3.66	0.07
						2" Ice	4.69	4.69	0.12
DS7C06P36U-D	C	From	4.00	0.000	130.00	No Ice	2.08	2.08	0.03
		Centroid-Le	0.000			1/2" Ice	2.95	2.95	0.04
		g	0.000			1" Ice	3.66	3.66	0.07
	_	_	4.00	0.000	120.00	2" Ice	4.69	4.69 1.20	0.12 0.05
431-86A-01-T	C	From	4.00	0.000	130.00	No Ice 1/2" Ice	1.60 1.76	1.34	0.03
		Centroid-Le	0.000			1" Ice	1.93	1.49	0.08
		g	0.000			2" Ice	2.28	1.49	0.12
D1 (C 34 (FID 201 1)	C	Mono		0.000	130.00	No Ice	23.81	23.81	1.59
Platform Mount [LP 301-1]	С	None		0.000	150.00	1/2" Ice	30.24	30.24	2.10
						1" Ice	36.33	36.33	2.73
						2" Ice	48.05	48.05	4.34
110									
NHHSS-65B-R2B w/ Mount	Α	From Leg	4.00	0.000	110.00	No Ice	8.32	7.00	0.09
Pipe		_	0.000			1/2" Ice	8.88	8.19	0.16
•			0.000			1" Ice	9.40	9.08	0.24
						2" Ice	10.47	10.90	0.42
NHHSS-65B-R2B w/ Mount	В	From Leg	4.00	0.000	110.00	No Ice	8.32	7.00	0.09
Pipe			0.000			1/2" Ice	8.88	8.19	0.16
			0.000			1" Ice	9.40	9.08	0.24
					440.00	2" Ice	10.47	10.90	0.42
NHHSS-65B-R2B w/ Mount	C	From Leg	4.00	0.000	110.00	No Ice	8.32	7.00	0.09
Pipe			0.000			1/2" Ice	8.88 9.40	8.19 9.08	0.16 0.24
			0.000			1" Ice 2" Ice	10.47	10.90	0.42
2000 (CD DOD /1)		F I	4.00	0.000	110.00	No Ice	9.04	7.48	0.08
NHH-65B-R2B w/ Mount	Α	From Leg	0.000	0.000	110.00	1/2" Ice	9.90	8.86	0.15
Pipe			0.000			1" Ice	10.77	10.27	0.23
			0.000			2" Ice	12.28	12.33	0.43
NHH-65B-R2B w/ Mount	В	From Leg	4.00	0.000	110.00	No Ice	9.04	7.48	0.08
Pipe	ъ	110m Leg	0.000	0.000		1/2" Ice	9.90	8.86	0.15
1 ipc			0.000			1" Ice	10.77	10.27	0.23
			****			2" Ice	12.28	12.33	0.43
NHH-65B-R2B w/ Mount	С	From Leg	4.00	0.000	110.00	No Ice	9.04	7.48	0.08
Pipe	-	J	0.000			1/2" Ice	9.90	8.86	0.15
			0.000			1" Ice	10.77	10.27	0.23
						2" Ice	12.28	12.33	0.43
MT6407-77A w/ Mount Pipe	Α	From Leg	4.00	0.000	110.00	No Ice	4.91	2.68	0.10
			0.000			1/2" Ice	5.26	3.14	0.14
			0.000			1" Ice	5.61	3.62	0.18
					440.00	2" Ice	6.36	4.63	0.29
MT6407-77A w/ Mount Pipe	В	From Leg	4.00	0.000	110.00	No Ice	4.91	2.68	0.10
			0.000			1/2" Ice	5.26	3.14	0.14
			0.000			1" Ice	5.61	3.62	0.18
	_	F 7	4.00	0.000	110.00	2" Ice No Ice	6.36 4.91	4.63 2.68	0.29 0.10
MT6407-77A w/ Mount Pipe	C	From Leg	4.00	0.000	110.00	1/2" Ice	5.26	3.14	0.10
			0.000			1" Ice	5.61	3.62	0.14
			0.000			2" Ice	6.36	4.63	0.10
DE442013 25 A	A	From I ac	4.00	0.000	110.00	No Ice	1.87	1.25	0.29
RF4439D-25A	A	From Leg	0.000	0.000	110.00	1/2" Ice	2.03	1.39	0.09
			0.000			1" Ice	2.21	1.54	0.11
			0.000			2" Ice	2.59	1.87	0.17

tnxTower

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360

Job	Burlington Avon Landfill (CT46143-A)	Page 6 of 15
Project	TEP No. 265144.882085	Date 13:11:30 09/08/23
Client	SBA Communications Corporation	Designed by awang

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	$C_A A_A$ Side	Weight
	208		Vert ft ft ft	•	ft		ft²	ft²	K
			0.000			1/2" Ice	2.03	1.39	0.09
			0.000			1" Ice	2.21	1.54	0.11
						2" Ice	2.59	1.87	0.17
RF4439D-25A	C	From Leg	4.00	0.000	110.00	No Ice	1.87	1.25	0.07
			0.000			1/2" Ice	2.03	1.39	0.09
			0.000			1" Ice	2.21	1.54	0.11
						2" Ice	2.59	1.87	0.17
RF4440D-13A	Α	From Leg	4.00	0.000	110.00	No Ice	1.87	1.13	0.07
			0.000			1/2" Ice	2.03	1.27	0.09
			0.000			1" Ice	2.21	1.41	0.11
					110.00	2" Ice	2.59	1.72	0.16
RF4440D-13A	В	From Leg	4.00	0.000	110.00	No Ice	1.87	1.13	0.07
			0.000			1/2" Ice	2.03	1.27 1.41	0.09
			0.000			1" Ice	2.21		0.11 0.16
	_		4.00	0.000	110.00	2" Ice	2.59 1.87	1.72 1.13	0.10
RF4440D-13A	С	From Leg	4.00	0.000	110.00	No Ice 1/2" Ice	2.03	1.13	0.07
			0.000			1" Ice	2.03	1.41	0.11
			0.000			2" Ice	2.59	1.72	0.16
CDDC DDIID#1401 404		F I	4.00	0.000	110.00	No Ice	0.99	0.50	0.02
CBRS RRHRT4401- 48A	Α	From Leg	4.00 0.000	0.000	110.00	1/2" Ice	1.12	0.60	0.03
			0.000			1" Ice	1.26	0.70	0.04
			0.000			2" Ice	1.55	0.94	0.06
CBRS RRHRT4401- 48A	В	From Leg	4.00	0.000	110.00	No Ice	0.99	0.50	0.02
CBRS RRAR 14401- 46A	ь	Prom Log	0.000	0.000	110.00	1/2" Ice	1.12	0.60	0.03
			0.000			1" Ice	1.26	0.70	0.04
			0.000			2" Ice	1.55	0.94	0.06
CBRS RRHRT4401- 48A	С	From Leg	4.00	0.000	110.00	No Ice	0.99	0.50	0.02
CBRS RRIK14401-40A		1 TOM LOG	0.000	0.000		1/2" Ice	1.12	0.60	0.03
			0.000			1" Ice	1.26	0.70	0.04
			*****			2" Ice	1.55	0.94	0.06
DB-B1-6C-12AB-0Z	С	From Leg	4.00	0.000	110.00	No Ice	3.36	2.19	0.03
<i>DB D</i> 1 00 12112 02			0.000			1/2" Ice	3.60	2.39	0.06
			0.000			1" Ice	3.84	2.61	0.09
						2" Ice	4.34	3.05	0.16
Pipe Mount [PM 601-3]	C	None		0.000	110.00	No Ice	3.17	3.17	0.20
						1/2" Ice	3.79	3.79	0.23
						1" Ice	4.42	4.42	0.28
						2" Ice	5.76	5.76	0.40
Sector Mount [SM 502-3]	C	None		0.000	110.00	No Ice	29.82	29.82	1.67
						1/2" Ice	42.21	42.21	2.27
						1" Ice	54.43	54.43	3.05
						2" Ice	78.49	78.49	5.18
90					00.00	NT T	11.45	7.70	0.05
SBNHH-1D65C	Α	From Leg	1.00	0.000	90.00	No Ice	11.47	7.72	0.05
			0.000			1/2" Ice	12.09	8.31 8.91	0.12 0.19
			0.000			1" Ice	12.72		
	_		1.00	0.000	00.00	2" Ice No Ice	13.98 11.47	10.14 7.72	0.36 0.05
SBNHH-1D65C	В	From Leg	1.00	0.000	90.00	No ice 1/2" Ice	11.47	8.31	0.03
			0.000			1" Ice	12.09	8.91	0.12
			0.000					10.14	0.19
20 PA S D D	~	F 7	1.00	0.000	90.00	2" Ice No Ice	13.98 11.47	7.72	0.36
SBNHH-1D65C	C	From Leg	1.00	0.000	90.00	1/2" Ice	12.09	8.31	0.03
			0.000			1" Ice	12.09	8.91	0.12
			0.000			2" Ice	13.98	10.14	0.19
				0.000	00.00	No Ice	0.05	0.10	
APTDC-BDFDM-DB	Α	From Leg	1.00	0.000	90.00	NO ICE	0.05	U. III	0.00

tnxTower

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360

Job	Burlington Avon Landfill (CT46143-A)	Page 7 of 15
Project	TEP No. 265144.882085	Date 13:11:30 09/08/23
Client	SBA Communications Corporation	Designed by awang

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Vert ft ft ft	.0 ((fi		ft²	ft²	K
			0.000			1/2" Ice	0.08	0.14	0.00
			0.000			1" Ice	0.12	0.19	0.00
						2" Ice	0.22	0.31	0.01
APTDC-BDFDM-DB	В	From Leg	1.00	0.000	90.00	No Ice	0.05	0.10	0.00
All the both but bo	~		0.000			1/2" Ice	0.08	0.14	0.00
			0.000			1" Ice	0.12	0.19	0.00
						2" Ice	0.22	0.31	0.01
APTDC-BDFDM-DB	С	From Leg	1.00	0.000	90.00	No Ice	0.05	0.10	0.00
AT THE-BUT DIM-BB	Č	110111 200	0.000			1/2" Ice	0.08	0.14	0.00
			0.000			1" Ice	0.12	0.19	0.00
			0.000			2" Ice	0.22	0.31	0.01
I CD21401	A	From Leg	1.00	0.000	90.00	No Ice	1.10	0.35	0.01
LGP21401	Λ	From Leg	0.000	0.000	70.00	1/2" Ice	1.24	0.44	0.02
			0.000			1" Ice	1.38	0.54	0.03
			0.000			2" Ice	1.69	0.77	0.05
× GB9 (10)	~	r	1.00	0.000	90.00	No Ice	1.10	0.35	0.01
LGP21401	В	From Leg	1.00	0.000	90.00	1/2" Ice	1.24	0.44	0.02
			0.000			1" Ice	1.38	0.54	0.02
			0.000			2" Ice	1.69	0.77	0.05
			- 00	0.000	00.00			0.77	0.03
LGP21401	C	From Leg	1.00	0.000	90.00	No Ice	1.10		
			0.000			1/2" Ice	1.24	0.44	0.02
			0.000			1" Ice	1.38	0.54	0.03
						2" Ice	1.69	0.77	0.05
TMABPDB7823VG12A	Α	From Leg	1.00	0.000	90.00	No Ice	0.98	0.33	0.02
			0.000			1/2" Ice	1.10	0.41	0.03
			0.000			1" Ice	1.23	0.50	0.04
						2" Ice	1.52	0.71	0.06
TMABPDB7823VG12A	В	From Leg	1.00	0.000	90.00	No Ice	0.98	0.33	0.02
		_	0.000			1/2" Ice	1.10	0.41	0.03
			0.000			1" Ice	1.23	0.50	0.04
						2" Ice	1.52	0.71	0.06
TMABPDB7823VG12A	С	From Leg	1.00	0.000	90.00	No Ice	0.98	0.33	0.02
111111111111111111111111111111111111111	_		0.000			1/2" Ice	1.10	0.41	0.03
			0.000			1" Ice	1.23	0.50	0.04
						2" Ice	1.52	0.71	0.06
Pipe Mount [PM 501-3]	С	None		0.000	90.00	No Ice	4.46	4.46	0.16
Tipe Would [TWI 501 5]	·	110110				1/2" Ice	5.52	5.52	0.21
						1" Ice	6.66	6.66	0.29
						2" Ice	9.16	9.16	0.49
80									
APXVAR18_43-C-NA20	Α	From Leg	1.00	0.000	80.00	No Ice	9.65	6.03	0.07
AFA VAR16_43-C-NA20	А	TIOM Dog	0.000	0.000	*****	1/2" Ice	10.11	6.47	0.13
			0.000			1" Ice	10.57	6.90	0.20
			0.000			2" Ice	11.52	7.78	0.36
4 DVV 4 D 10 42 C N 4 2 0	В	From Leg	1.00	0.000	80.00	No Ice	9.65	6.03	0.07
APXVAR18_43-C-NA20	D	rioin Leg	0.000	0.000	00.00	1/2" Ice	10.11	6.47	0.13
			0.000			1" Ice	10.57	6.90	0.20
			0.000			2" Ice	11.52	7.78	0.36
4 D3/01 4 D 1 0 3 1 4 2 0 3 1 4 2 0	_	Erom I ac	1.00	0.000	80.00	No Ice	9.65	6.03	0.07
APXVAR18_43-C-NA20	С	From Leg	1.00	0.000	30.00	1/2" Ice	10.11	6.47	0.13
			0.000			1" Ice	10.11	6.90	0.20
			0.000			2" Ice	11.52	7.78	0.26
/m/ 1 mm s 1 1 1 1 1 mm s 2 1 - · ·		Car Tar	1 00	0.000	80.00	No Ice	1.00	0.41	0.01
(2) ATMAA1412D-1A20	Α	From Leg	1.00	0.000	60.00	1/2" Ice		0.50	0.01
			0.000			1/2" Ice 1" Ice	1.13 1.26	0.59	0.02
						i ice	1 /D	17.37	0.17
			0.000						
(2) ATMAA1412D-1A20	В	From Leg	1.00	0.000	80.00	2" Ice No Ice	1.55 1.00	0.81 0.41	0.06 0.01

tnxTower	Јоь Burlington Avon Landfill (СТ46143-A)	Page 8 of 15
Tower Engineering Professionals, Inc. 326 Tryon Road	Project TEP No. 265144.882085	Date 13:11:30 09/08/23
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360	Client SBA Communications Corporation	Designed by awang

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	$C_A A_A$ Side	Weigh
	Leg		Lateral Vert ft ft	٥	ft		ft²	ft²	K
			0.000			1/2" Ice	1.13	0.50	0.02
			0.000			1" Ice	1.26	0.59	0.03
			0.000			2" Ice	1.55	0.81	0.06
(2) ATMAA1412D-1A20	С	From Leg	1.00	0.000	80.00	No Ice	1.00	0.41	0.01
(2) ATMAAT+12D 11120	Ü	Trom Deg	0.000			1/2" Ice	1.13	0.50	0.02
			0.000			1" Ice	1.26	0.59	0.03
						2" Ice	1.55	0.81	0.06
Pipe Mount [PM 501-3]	С	None		0.000	80.00	No Ice	4.46	4.46	0.16
Tipo Mount [Fina Sor 5]						1/2" Ice	5.52	5.52	0.21
						1" Ice	6.66	6.66	0.29
						2" Ice	9.16	9.16	0.49

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0.9 Dead+1.0 Wind 180 deg - No Ice	
16	1.2 Dead+1.0 Wind 210 deg - No Ice	
17	0.9 Dead+1.0 Wind 210 deg - No Ice	
18	1.2 Dead+1.0 Wind 240 deg - No Ice	
19	0.9 Dead+1.0 Wind 240 deg - No Ice	
20	1.2 Dead+1.0 Wind 270 deg - No Ice	
21	0.9 Dead+1.0 Wind 270 deg - No Ice 1.2 Dead+1.0 Wind 300 deg - No Ice	
22 23	0.9 Dead+1.0 Wind 300 deg - No Ice	
23 24	1.2 Dead+1.0 Wind 330 deg - No Ice	
25	0.9 Dead+1.0 Wind 330 deg - No Ice	
26	1.2 Dead+1.0 Ice+1.0 Temp	
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	
22	112 2000 110 11110 100 100 110 110 110 1	

tnxTower	Job	Burlington Avon Landfill (CT46143-A)	Page 9 of 15
Tower Engineering Professionals, Inc. 326 Tryon Road	Project	TEP No. 265144.882085	Date 13:11:30 09/08/23
Raleigh, NC 27603 Phone: (919) 661-6351 F4Y: (919) 661-6360	Client	SBA Communications Corporation	Designed by awang

Comb.	Description	
No.		
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-fl
L1	130 - 98.25	Pole	Max Tension	1	0.00	0.00	0.00
Li	130 - 76.23	1010	Max. Compression	26	-17.67	1.20	-0.69
			Max. Mx	20	-7.44	109.94	-0.64
			Max. My	14	-7.44	0.79	-109.28
			Max. Vy	20	-7.90	109.94	-0.64
			Max. Vx	14	7.86	0.79	-109.28
			Max. Torque	24			0.72
L2	98.25 - 48	Pole	Max Tension	1	0.00	0.00	0.00
22	, 0.20		Max. Compression	26	-33.02	1.56	-0.90
			Max. Mx	20	-16.91	657.70	-2.10
			Max. My	14	-16.91	2.27	-655.38
			Max. Vy	20	-14.06	657.70	-2.10
			Max. Vx	14	14.02	2.27	-655.38
			Max, Torque	24			0.85
L3	48 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-53.96	2.05	-1.19
			Max. Mx	20	-33.15	1518.88	-3.68
			Max. My	14	-33.15	3.87	-1514.75
			Max. Vy	20	-18.23	1518.88	-3.68
			Max. Vx	14	18.19	3.87	-1514.75
			Max. Torque	38			1.05

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, 2 K
Pole	Max. Vert	35	53.96	5.45	-3.15
	Max. H _x	20	33.16	18.21	-0.03
	Max. Hz	2	33.16	-0.03	18.18
	Max. M.	2	1514.22	-0.03	18.18

Page Job tnxTower 10 of 15 Burlington Avon Landfill (CT46143-A) Date Project Tower Engineering 13:11:30 09/08/23 TEP No. 265144.882085 Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360 Client Designed by SBA Communications Corporation

awang

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
	Max. Mz	8	1517.97	-18.21	0.03
	Max. Torsion	38	1.05	3.14	5.44
	Min. Vert	25	24.87	9.08	15.73
	Min. H _x	8	33.16	-18.21	0.03
	Min. H _z	14	33.16	0.03	-18.18
	Min, M _x	14	-1514.75	0.03	-18.18
	Min. M _z	20	-1518.88	18.21	-0.03
	Min. Torsion	32	-1.05	-3.14	-5.44

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	Shear _z	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	27.63	0.00	0.00	0.21	0.36	0.0
1.2 Dead+1.0 Wind 0 deg - No Ice	33.16	0.03	-18.18	-1514.22	-2.96	-0.8
0.9 Dead+1.0 Wind 0 deg - No	24.87	0.03	-18.18	-1505.54	-3.05	-0.8
1.2 Dead+1.0 Wind 30 deg - No Ice	33.16	9.13	-15.76	-1313.02	-761.71	-0.5
0.9 Dead+1.0 Wind 30 deg - No	24.87	9.13	-15.76	-1305.51	-757.42	-0.5
Ice 1.2 Dead+1.0 Wind 60 deg - No	33.16	15.79	-9.11	-759.93	-1316.24	-0.0
Ice 0.9 Dead+1.0 Wind 60 deg - No	24.87	15.79	-9.11	-755.61	-1308.75	-0.0
Ice 1.2 Dead+1.0 Wind 90 deg - No	33.16	18.21	-0.03	-3.15	-1517.97	0.5
Ice 0.9 Dead+1.0 Wind 90 deg - No	24.87	18.21	-0.03	-3.20	-1509.31	0.5
Ice 1.2 Dead+1.0 Wind 120 deg -	33.16	15.76	9.06	754.55	-1312.83	0.8
No Ice 0.9 Dead+1.0 Wind 120 deg -	24.87	15.76	9.06	750.13	-1305.37	0.8
No Ice 1.2 Dead+1.0 Wind 150 deg -	33.16	9.08	15.73	1310.14	-755.80	1.0
No Ice 0.9 Dead+1.0 Wind 150 deg -	24.87	9.08	15.73	1302.51	-751.55	1.0
No Ice 1.2 Dead+1.0 Wind 180 deg -	33.16	-0.03	18.18	1514.75	3.87	0.8
No Ice 0.9 Dead+1.0 Wind 180 deg -	24.87	-0.03	18.18	1505.94	3.73	0.8
No Ice 1.2 Dead+1.0 Wind 210 deg -	33.16	-9.13	15.76	1313.55	762.63	0.3
No Ice 0.9 Dead+1.0 Wind 210 deg -	24.87	-9.13	15.76	1305.90	758.10	0.3
No Ice 1.2 Dead+1.0 Wind 240 deg -	33.16	-15.79	9.11	760.46	1317.16	-0.0
No Ice 0.9 Dead+1.0 Wind 240 deg -	24.87	-15.79	9.11	756.00	1309.43	-0.0
No Ice 1.2 Dead+1.0 Wind 270 deg -	33.16	-18.21	0.03	3.68	1518.88	-0.:
No Ice 0.9 Dead+1.0 Wind 270 deg -	24.87	-18.21	0.03	3.59	1509.99	-0.:
No Ice 1.2 Dead+1.0 Wind 300 deg - No Ice	33.16	-15.76	-9.06	-754.02	1313.75	-0.5

tnxTower	Job Burlington Avon Landfill (CT46143-A)	Page 11 of 15
Tower Engineering Professionals, Inc. 326 Tryon Road	Project TEP No. 265144.882085	Date 13:11:30 09/08/23
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360	Client SBA Communications Corporation	Designed by awang

Load Combination	Vertical	$Shear_x$	Shear _z	Overturning Moment, M_x	Overturning Moment, M ₌	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 300 deg -	24.87	-15.76	-9.06	-749.74	1306.04	-0.88
No Ice						
1.2 Dead+1.0 Wind 330 deg -	33.16	-9.08	-15.73	-1309.61	756.71	-1.02
No Ice						
0.9 Dead+1.0 Wind 330 deg -	24.87	-9.08	-15.73	-1302.12	752.23	-1.02
No Ice						0.00
1.2 Dead+1.0 Ice+1.0 Temp	53.96	-0.00	0.00	1.19	2.05	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	53.96	0.01	-6.28	-527.99	1.47	-0.91
Ice+1.0 Temp						0.50
1.2 Dead+1.0 Wind 30 deg+1.0	53.96	3.15	-5.44	-457.43	-263.45	-0.52
Ice+1.0 Temp				2/2.0/	457.00	0.00
1.2 Dead+1.0 Wind 60 deg+1.0	53.96	5.45	-3.15	-263.96	-457.20	-0.00
Ice+1.0 Temp				0.56	505.05	0.53
1.2 Dead+1.0 Wind 90 deg+1.0	53.96	6.29	-0.01	0.56	-527.87	0.52
Ice+1.0 Temp			2.14	0.65.05	-456.52	0.91
1.2 Dead+1.0 Wind 120	53.96	5.44	3.14	265.27	-430.32	0.91
deg+1.0 Ice+1.0 Temp		2.14	5.44	459.23	-262.28	1.05
1.2 Dead+1.0 Wind 150	53.96	3.14	5.44	439.23	-202.20	1.05
deg+1.0 Ice+1.0 Temp	06	0.01	6.28	530.47	2.82	0.91
1.2 Dead+1.0 Wind 180	53.96	-0.01	6.28	330.47	2.02	0.51
deg+1.0 Ice+1.0 Temp	53.06	-3.15	5.44	459.90	267.73	0.52
1.2 Dead+1.0 Wind 210	53.96	-3.13	3.44	439.90	207.73	0.52
deg+1.0 Ice+1.0 Temp	52.06	-5,45	3.15	266.44	461.48	-0.00
1.2 Dead+1.0 Wind 240	53.96	-3.43	3.13	200.44	701.70	0.00
deg+1.0 Ice+1.0 Temp	53,96	-6.29	0.01	1.91	532.16	-0.52
1.2 Dead+1.0 Wind 270	33.90	-0.29	0.01	1.71	332.10	0.32
deg+1.0 Ice+1.0 Temp	53.96	-5.44	-3.14	-262.79	460.81	-0.91
1.2 Dead+1.0 Wind 300	33.70	-5.77	3.11	202.17	100701	
deg+1.0 Ice+1.0 Temp	53.96	-3.14	-5.44	-456.75	266.56	-1.05
1.2 Dead+1.0 Wind 330	33.90	-5.14	3.11	100175		
deg+1.0 Ice+1.0 Temp Dead+Wind 0 deg - Service	27.63	0.01	-4.07	-337.32	-0.38	-0.20
Dead+Wind 30 deg - Service	27.63	2.04	-3.52	-292.48	-169.49	-0.11
Dead+Wind 60 deg - Service	27.63	3.53	-2.04	-169.21	-293.08	-0.00
Dead+Wind 90 deg - Service	27.63	4.07	-0.01	-0.54	-338.04	0.11
Dead+Wind 120 deg - Service	27.63	3.52	2.03	168.33	-292.32	0.20
	27.63	2.03	3.52	292.16	-168.17	0.23
Dead+Wind 150 deg - Service	27.63	-0.01	4.07	337.76	1.14	0.20
Dead+Wind 180 deg - Service	27.63	-2.04	3.52	292.92	170.25	0.11
Dead+Wind 210 deg - Service	27.63	-3.53	2.04	169.65	293.84	-0.00
Dead+Wind 240 deg - Service	27.63	-4.07	0.01	0.98	338.80	-0.11
Dead+Wind 270 deg - Service	27.63	-3.52	-2.03	-167.89	293.08	-0.20
Dead+Wind 300 deg - Service Dead+Wind 330 deg - Service	27.63	-2.03	-3.52	-291.72	168.93	-0.23

	Su	m of Applied Forces	5	Sum of Reactions				
Load	PX	PY	PZ	PX	PY	PZ	% Erro	
Comb.	K	K	K	K	K	K		
1	0.00	-27.63	0.00	0.00	27.63	0.00	0.000%	
2	0.03	-33.16	-18.18	-0.03	33.16	18.18	0.000%	
3	0.03	-24.87	-18.18	-0.03	24.87	18.18	0.000%	
4	9.13	-33.16	-15.76	-9.13	33.16	15.76	0.000%	
5	9.13	-24.87	.15.76	-9.13	24.87	15.76	0.000%	
6	15.79	-33.16	-9.11	-15.79	33.16	9.11	0.000%	
7	15.79	-24.87	-9.11	-15.79	24.87	9.11	0.000%	
8	18.21	-33.16	-0.03	-18.21	33.16	0.03	0.000%	
9	18.21	-24.87	-0.03	-18.21	24.87	0.03	0.000%	

Solution Summary

tnxTower	Job Burlington Avon Landfill (CT46143-A)	Page 12 of 15
Tower Engineering Professionals, Inc. 326 Tryon Road	Project TEP No. 265144.882085	Date 13:11:30 09/08/23
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360	Client SBA Communications Corporation	Designed by awang

	Sur	n of Applied Force.	5		Sum of Reaction					
Load	PX	PY	PZ						PZ	% Erro
Comb.	K	K	K	K	K	K				
10	15.76	-33.16	9.06	-15.76	33.16	-9.06	0.000%			
11	15.76	-24.87	9.06	-15.76	24.87	-9.06	0.000%			
12	9.08	-33.16	15.73	-9.08	33.16	-15.73	0.000%			
13	9.08	-24.87	15.73	-9.08	24.87	-15.73	0.000%			
14	-0.03	-33.16	18.18	0.03	33.16	-18.18	0.000%			
15	-0.03	-24.87	18.18	0.03	24.87	-18.18	0.000%			
16	-9.13	-33.16	15.76	9.13	33.16	-15.76	0.000%			
17	-9.13	-24.87	15.76	9.13	24.87	-15.76	0.000%			
18	-15.79	-33.16	9.11	15.79	33.16	-9.11	0.000%			
19	-15.79	-24.87	9.11	15.79	24.87	-9.11	0.000%			
20	-18.21	-33.16	0.03	18.21	33.16	-0.03	0.000%			
21	-18.21	-24.87	0.03	18.21	24.87	-0.03	0.000%			
22	-15.76	-33.16	-9.06	15.76	33.16	9.06	0.000%			
23	-15.76	-24.87	-9.06	15.76	24.87	9.06	0.000%			
24	-9.08	-33.16	-15.73	9.08	33.16	15.73	0.000%			
25	-9.08	-24.87	-15.73	9.08	24.87	15.73	0.000%			
26	0.00	-53.96	0.00	0.00	53.96	-0.00	0.000%			
27	0.01	-53.96	-6.28	-0.01	53.96	6.28	0.000%			
28	3.15	-53.96	-5.44	-3.15	53.96	5.44	0.000%			
29	5.45	-53.96	-3.15	-5.45	53.96	3.15	0.000%			
30	6.29	-53.96	-0.01	-6.29	53.96	0.01	0.000%			
31	5.44	-53.96	3.14	-5.44	53.96	-3.14	0.000%			
32	3.14	-53.96	5.44	-3.14	53.96	-5.44	0.000%			
33	-0.01	-53.96	6.28	0.01	53.96	-6.28	0.000%			
34	-3.15	-53.96	5.44	3.15	53.96	-5.44	0.000%			
35	-5.45	-53.96	3.15	5.45	53.96	-3.15	0.000%			
36	-6.29	-53.96	0.01	6.29	53.96	-0.01	0.000%			
37	-5.44	-53.96	-3.14	5.44	53.96	3.14	0.000%			
38	-3.14	-53.96	-5.44	3.14	53.96	5.44	0.000%			
39	0.01	- 27.63	-4.07	-0.01	27.63	4.07	0.000%			
40	2.04	-27.63	-3.52	-2.04	27.63	3.52	0.000%			
41	3.53	-27.63	-2.04	-3.53	27.63	2.04	0.000%			
42	4.07	-27.63	-0.01	-4.07	27.63	0.01	0.000%			
43	3.52	-27.63	2.03	-3.52	27.63	-2.03	0.000%			
44	2.03	-27.63	3.52	-2.03	27.63	-3.52	0.000%			
45	-0.01	-27.63	4.07	0.01	27.63	-4.07	0.000%			
46	-2.04	-27.63	3.52	2.04	27.63	-3.52	0.000%			
47	-3.53	-27.63	2.04	3.53	27.63	-2.04	0.000%			
48	-4.07	-27.63	0.01	4.07	27.63	-0.01	0.000%			
49	-3.52	-27.63	-2.03	3.52	27.63	2.03	0.000%			
50	-2.03	-27.63	-3.52	2.03	27.63	3.52	0.000%			

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00012017
3	Yes	4	0.00000001	0.00007953
4	Yes	4	0.00000001	0.00087876
5	Yes	4	0.00000001	0.00057233
6	Yes	4	0.00000001	0.00091330
7	Yes	4	0.00000001	0.00059540
8	Yes	4	0.00000001	0.00006852
9	Yes	4	0.00000001	0.00004476
10	Yes	4	0.00000001	0.00096952

tnxTower	Јов Burlington Avon Land	Fill (CT46143-A) Page 13 of 15
Tower Engineering Professionals, Inc. 326 Tryon Road	Project TEP No. 26514	4.882085 Date 13:11:30 09/08/23
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360	Client SBA Communication	ns Corporation Designed by awang

11	Yes	4	0.0000001	0.00063384
12	Yes	4	0.0000001	0.00083751
13	Yes	4	0.0000001	0.00054509
14	Yes	4	0.0000001	0.00013155
15	Yes	4	0.0000001	0.00008703
16	Yes	4	0.0000001	0.00095576
17	Yes	4	0.0000001	0.00062302
18	Yes	4	0.0000001	0.00091953
19	Yes	4	0.00000001	0.00059841
20	Yes	4	0.0000001	0.00007978
21	Yes	4	0.0000001	0.00005225
22	Yes	4	0.0000001	0.00084682
23	Yes	4	0.0000001	0.00055085
24	Yes	4	0.0000001	0.00098067
25	Yes	4	0.00000001	0.00064123
26	Yes	4	0.0000001	0.00000536
27	Yes	4	0.0000001	0.00058063
28	Yes	4	0.0000001	0.00065868
29	Yes	4	0.0000001	0.00066141
30	Yes	4	0.00000001	0.00057630
31	Yes	4	0.00000001	0.00067516
32	Yes	4	0.0000001	0.00066257
33	Yes	4	0.0000001	0.00058646
34	Yes	4	0.00000001	0.00068352
35	Yes	4	0.00000001	0.00067893
36	Yes	4	0.0000001	0.00058617
37	Yes	4	0.00000001	0.00066724
38	Yes	4	0.00000001	0.00068167
39	Yes	4	0.00000001	0.00000670
40	Yes	4	0.0000001	0.00001050
41	Yes	4	0.0000001	0.00001163
42	Yes	4	0.00000001	0.0000001
43	Yes	4	0.00000001	0.00001544
44	Yes	4	0.00000001	0.00001047
45	Yes	4	0.00000001	0.00000685
46	Yes	4	0.00000001	0.00001392
47	Yes	4	0.0000001	0.00001191
48	Yes	4	0.0000001	0.00000001
49	Yes	4	0.0000001	0.00001037
50	Yes	4	0.0000001	0.00001621

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	0
L1	130 - 98.25	8.844	47	0.620	0.003
L2	101.5 - 48	5.353	47	0.524	0.001
L3	53.25 - 0	1.377	47	0.247	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	0	ft
130.00	5/8" x 20' Lightning Rod	47	8.844	0.620	0.003	60713

tnxTower	Job Burlington Avon Landfill (CT46143-A)	Page 14 of 15
Tower Engineering Professionals, Inc. 326 Tryon Road	Project TEP No. 265144.882085	Date 13:11:30 09/08/23
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360	Client SBA Communications Corporation	Designed by awang

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	•	fi
110.00	NHHSS-65B-R2B w/ Mount Pipe	47	6.340	0.558	0.002	15178
90.00	SBNHH-1D65C	47	4.143	0.467	0.001	10063
80.00	APXVAR18_43-C-NA20	47	3.219	0.409	0.001	9602

Maximum Tower Deflections - Design Wind								
ection	Elevation	Horz.	Gov.	Tilt	Twist			
No.		Deflection	Load	11±2	6			
	ft	in	Comb.	•				
L1	130 - 98.25	39.618	18	2.771	0.012			
L2	101.5 - 48	23.999	18	2.349	0.005			
L3	53.25 - 0	6.176	18	1.106	0.001			

	Critical Deflectio	ns and	Radius o	of Curvat	Curvature - Design Wi			
Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature		
ft		Comb.	in	•	0	ft		
130.00	5/8" x 20' Lightning Rod	18	39.618	2.771	0.012	13721		
110.00	NHHSS-65B-R2B w/ Mount Pipe	18	28.416	2.500	0.007	3429		
90.00	SBNHH-1D65C	18	18.581	2.093	0.004	2264		
80.00	APXVAR18 43-C-NA20	18	14,439	1.834	0.003	2154		

Pole Design Data									
Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
No.	ft		ft	ft		in ²	K	K	ϕP_{π}
L1	130 - 98.25 (1)	TP23.38x14x0.25	31.75	0.00	0.0	17.592	-7.43	1029.12	0.007
L2	98.25 - 48 (2)	TP37.71x21.92x0.375	53.50	0.00	0.0	42.594	-16.91	2491.73	0.007
L3	48 - 0 (3)	TP51.14x35.41x0.438	53.25	0.00	0.0	70.407	-33.15	4118.80	0.008

Compression Checks

Pole Bending Design Data								
Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio Mux	M_{uy}	ϕM_{ny}	Ratio M _{uy}
710.	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	ϕM_{av}
L1 L2	130 - 98.25 (1) 98.25 - 48 (2)	TP23.38x14x0.25 TP37.71x21.92x0.375	110.25 658.84	593.82 2320.48	0.186 0.284	0.00	593.82 2320.48	0.000

Inx Tower Job Burlington Avon Landfill (CT46143-A) Page 15 of 15 Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6360 TEP No. 265144.882085 Date 13:11:30 09/08/23 Client SBA Communications Corporation FAX: (919) 661-6360 Designed by awang

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
110	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	$\phi M_{n\nu}$
L3	48 - 0 (3)	TP51.14x35.41x0.438	1520.93	5164.96	0.294	0.00	5164.96	0.000

Pole Shear Design Data								
Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T _u	ϕT_n	Ratio T _u
1100	ft		K	K	ϕV_n	kip-ft	kip-fl	ϕT_n
L1	130 - 98.25 (1)	TP23.38x14x0.25	7.92	308.74	0.026	0.00	599.42	0.000
L2	98.25 - 48 (2)	TP37.71x21.92x0.375	14.07	747.52	0.019	0.00	2342.66	0.000
L3	48 - 0 (3)	TP51.14x35.41x0.438	18.24	1235.64	0.015	0.00	5486.57	0.000

Pole Interaction Design Data									
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{nv}	ΦV_n	ϕT_n	Ratio	Ratio	
L1	130 - 98.25 (1)	0.007	0.186	0.000	0.026	0.000	0.194	1.000	4.8.2
L2	98.25 - 48 (2)	0.007	0.284	0.000	0.019	0.000	0.291	1.000	4.8.2
L3	48 - 0 (3)	0.008	0.294	0.000	0.015	0.000	0.303	1.000	4.8.2

Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	130 - 98.25	Pole	TP23.38x14x0.25	1	-7.43	1029.12	19.4	Pass
L2	98.25 - 48	Pole	TP37.71x21.92x0.375	2	-16.91	2491.73	29.1	Pass
L3	48 - 0	Pole	TP51.14x35.41x0.438	3	-33.15	4118.80	30.3	Pass
כם	40 - 0	10.0					Summary	
						Pole (L3)	30.3	Pass
						RATING =	30.3	Pass

Program Version 8.1.1.0 - 6/3/2021 File:C:/Users/awang/Desktop/265144_CT46143-A/P-406742_L-882085_CT46143-A_Burlington Avon Landfill_Structural Analysis/tnxtower/Burlington Avon Landfill (CT46143-A).eri

APPENDIX B ADDITIONAL CALCULATIONS

ASCE 7 Hazards Report

Address:

No Address at This Location

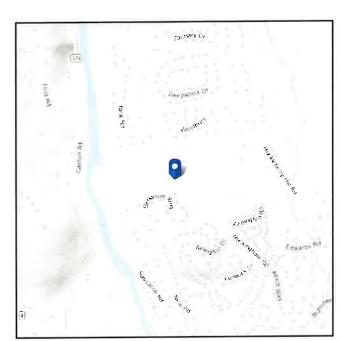
Standard:

Risk Category: II

ASCE/SEI 7-16

41.78805 Latitude:

Longitude: -72.918156


Soil Class:

D - Default (see

Elevation: 468.02372064604987 ft

(88 DVAN)

Section 11.4.3)

Wind

Results:

Wind Speed

116 Vmph

120 Vmph per jurisdiction

10-year MRI

75 Vmph

25-year MRI

84 Vmph

50-year MRI

89 Vmph

100-year MRI

96 Vmph

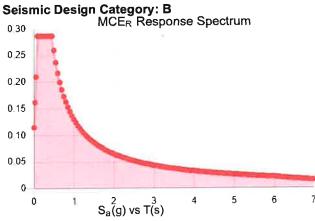
Data Source:

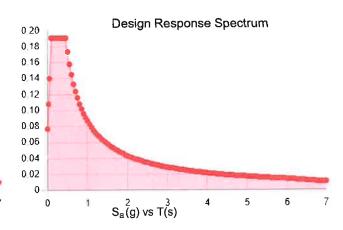
ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2

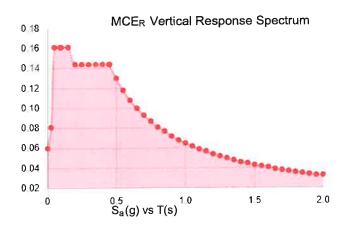
Date Accessed:

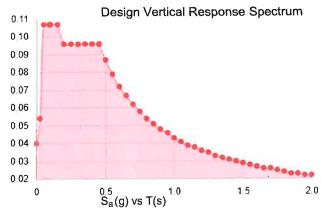
Fri Sep 08 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


D - Default (see Section 11.4.3)


Site Soil Class:


Results:

S _s :	0.179	S _{D1} :	0.087
S ₁ :	0.054	T_L :	6
F _a :	1.6	PGA:	0.096
F _v :	2.4	PGA _M :	0.153
S _{MS} :	0.287	F _{PGA} :	1.6
S _{M1} :	0.13	l _e :	1
Sps :	0.191	C _v :	0.7

Data Accessed:

Fri Sep 08 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.50 in.

Concurrent Temperature: 5 F

Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

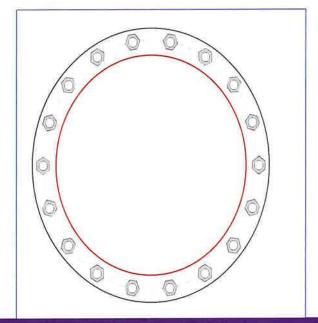
Date Accessed: Fri Sep 08 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.


In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Monopole Base Plate Connection

Site Info		
	Site Name	Burlington- Avon Land

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
J _{ar} (in)	2.25

Applied Loads					
Moment (kip-ft)	1520.92				
Axial Force (kips)	33.15				
Shear Force (kips)	18.24				

Connection Properties

Anchor Rod Data

(18) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 58" BC

Base Plate Data

63.75" OD x 2.25" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data

N/A

Pole Data

51.14" x 0.4375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 68.04	φPn_t = 243.75	Stress Rating
Vu = 1.01	φVn = 149.1	27.9%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
	12.00	(Flexural)
Max Stress (ksi):	13.66	(Flexural)
Max Stress (ksi): Allowable Stress (ksi):	45	(Flexural)

Drilled Pier Foundation

TIA-222 Revison: H Tower Type: Monopole

and di	2000
Moment (kip-ft)	1520.92
Axial Force (kips)	33.16
Shear Force (kips)	18.23

Additional Longitudinal Rebar
Input Effective Depths (else Actual):
Shear Design Options
Check Shear along Depth of Pier:
Utilize Shear-Friction Methodology:
Override Critical Depth:

Check Limitation Apply TIA-222-H Section 15.5:

Material Properties	4.5 ksi	60 ksi	60 ksi
Material	Concrete Strength, fc:	Rebar Strength, Fy:	Tie Yield Strength, Fyt:

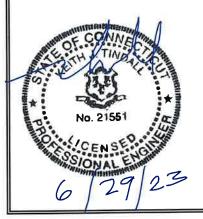
.9	19 ft	0.5 ft		elow grade	7 ft	46	10	3 in	7	4.5 in
Pier Design Data	Depth	Ext. Above Grade	Pier Section 1	From 0.5' above grade to 19' below grade	Pier Diameter	Rebar Quantity	Rebar Size	Clear Cover to Ties	Tie Size	Tie Spacing

		Cilialy Sis incoding	
	Soil Lateral Check	Compression	Uplift
	D _{v=0} (ft from TOC)	6.73	
	Soil Safety Factor	5.70	9
	Max Moment (kip-ft)	1626,14	
	Rating	23.4%	10
	Soil Vertical Check	Compression	Upliff
	Skin Friction (kips)	442.85	×
	End Bearing (kips)	2660.34	200
	Weight of Concrete (kips)	135.08	k
	Total Capacity (kips)	3103.18	ĸ
	(kips)	168.24	×
Rebar & Pier Options	Rating	5.4%	/16
	Reinforced Concrete Flexure	Compression	Uplift
Embedded Pole Inputs	Critical Depth (ft from TOC)	6.54	165
Belled Pier Inputs	Critical Moment (kip-ft)	1625.95	*
	Critical Moment Capacity	9076.55	(*
	Rating	17.9%	34
	Reinforced Concrete Shear	Compression	Upliff
	Critical Depth (ft from TOC)	15.81	C
	Critical Shear (kip)	357.94	×
	Critical Shear Capacity	1658.95	
	Rating	21.6%	

tructural Foundation Rating)	21.6%
Soil Interaction Rating	23.4%

		sse	sse	sse	SSS	sse	Ф	Ф
	Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesive	Cohesive
	SPT Blow Count							
	Ult. Net Bearing Capacity (ksf)							89.67
	Ultimate Skin Friction Uplift Override (ksf)	00'0	00.0	0.14	0.20	0.29	4.00	4.00
	Ultimate Skin Friction Comp Override (ksf)	00.0	00'0	0.19	0.26	0.39	4.00	4.00
	Calculated Calculated Ultimate Skin Ultimate Skin Ultimate Skin Friction Comp Friction Uplift Override (ksf) (ksf) (ksf)	0000	0000	0.000	0.000	0.000	4.500	4.50
	Calculated Ultimate Skin Friction Comp (ksf)	0.000	0.000	0.000	0.000	0.000	4.500	4.50
7	Angle of Friction (degrees)	0	0	35	36	41	0	0
# of Layers	Cohesion (ksf)	0	0	0	0	0	10	10
	V _{concrete} (pcf)	150	150	150	150	150	150	150
	Y _{soll} (pcf)	115	120	120	120	130	150	150
	Thickness (ft)	2	2	2	2	5	5	1
N/A	Bottom (ft)	2	4	9	8	13	18	19
er Depth	Top (ft)	0	2	4	9	8	13	18
Groundwater Depth	Layer	T	2	3	4	Ŋ	9	7

Structural Design Report


131' Monopole

Site: Burlington Avon Landfill, CT Site Number: CT46143

Prepared for: SBA NETWORK SERVICES INC by: Sabre Industries TM

Job Number: 521586 Revision A June 29, 2023

Monopole Profile	1
Foundation Design Summary	2
Pole Calculations	3-16
Foundation Calculations	17-25

Digitally Signed By Keith Tindall DN: c=US, st=Texas, l=Alvarado, o=SABRE INDUSTRIES, INC., cn=Keith Tindall, email=kjtindall@sabreindustries.com Date: 2023.06.29 15:34:32

14" 1/4 53,6 21,92" 7231 A572-65 0,2953 130 53-3 51,14" 35.41 12969 7/16" Overall Steel Height (ft) ottom Diameter (in) Lap Splice (ft) Top Diarneter (in) ness (in)

Designed Appurtenance Loading

	Elev	Description	Tx-Line
	138	(1) 50 SQFT	(8) 1 5/8"
	122,5	(1) 125 Sq. Ft. EPA (2,000 lbs)	(8) 1 5/8"
27' 1 8" × 20"	110	(1) 150 Sq. Ft. EPA (2250 lbs)	(8) 15/8"
@ 60°,180°,300°	100	(1) 150 Sq. Ft. EPA (2250 lbs)	(8) 1 5/8"
	90	(1) 175 Sq. Ft. EPA (2500 lbs)	(8) 1 5/8"
20.5' 6" × 20" @ 60",180°,300°	80	(1) 150 Sq. Ft, EPA (2250 lbs)	(12) 1 5/8"

108' † 8" x 20" @ 60°,180°,300°

98" † 8" x 20" @ 60",180°,300°

8° x 20° @ 60°,180°,300°

78 † 8" x 20" @ 60",180",300"

8" † 10.5" x 25.5" @ 90",360° -4"↑ 10.5" x 25.5" @ 180°

Design Criteria - ANSI/TIA-222-H

Wind Speed (No Ice)	120 mph		
Wind Speed (Ice)	50 mph		
Design Ice Thickness	1,50 in		
Risk Category			
Exposure Calegory	C		
Topographic Factor Procedure	Method 1 (Simplified)		
Topographic Category	1		
Ground Elevation	468 ft		
Seismic Importance Factor, le	1,00		
0 2-sec Spectral Response, Ss	0,182 g		
1-sec Spectral Response, S1	0.064 g		
Site Class	В		
Seismic Design Calegory	A		
Basic Seismic Force-Resisting System	Telecommunication Tower (Pole: Steel		

Limit State Load Combination Reactions

Load Combination	Axial (kips)	Shear (kips)	Moment (ft-k)	Deflection (ft)	Sway (deg)
1.2 D + 1.0 Wo	43,46	48.17	4630.55	10.47	8.9
0.9 D + 1.0 Wo	32,55	48.02	4571.06	10.31	8.75
1 2 D + 1 0 Di + 1 0 Wi	71.7	15.17	1527.91	3,65	3,19
1.2 D + 1.0 Ev + 1.0 Eh	44_16	1.09	114.34	0,28	0.25
0.9 D - 1.0 Ev + 1.0 Eh	31,74	1.08	112,61	0.28	0.24
1 0 D + 1 0 Wo (Service @ 60 mph)	36.2	10.77	1034 29	2,38	2

Base Plate Dimensions

Ì	Shape	Diameter	Thickness	Bolt Circle	Boll Qty	Bolt Diameter
1	Round	63,75"	2,25"	58"	18	2 25"

Anchor Bolt Dimensions

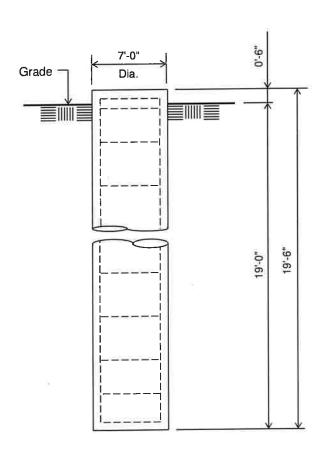
Length	Diameter	Hole Diameter	Weight	Туре	Finish
84"	2.25*	2,625"	2179 8	A615-75	Galv

Material List

Display	Value
A	3' - 3"

Notes

- 1) Antenna Feed Lines Run Inside Pole
- 2) All dimensions are above ground level, unless otherwise specified.
- 3) Weights shown are estimates. Final weights may vary.
- 4) Full Height Step Bolts
- 5) Anchor bolt template must be 1/2" thick minimum-50 ksi
- 6) Tower Rating: 92,9%
- This tower and foundation design shown on the following page meets or exceeds the requirements of the 2022 Connecticut Building Code.



No.: 521586 Date: 06/29/23 By: KJT

Revision A

Customer: SBA NETWORK SERVICES INC Site: Burlington Avon Landfill, CT CT46143

131' Monopole

ELEVATION VIEW

(27.79 Cu. Yds.) (1 REQUIRED; NOT TO SCALE)

Notes:

- 1) Concrete shall have a minimum 28-day compressive strength of 4,500 psi, in accordance with ACI 318-14.
- 2) Rebar to conform to ASTM specification A615 Grade 60.
- 3) All rebar to have a minimum of 3" concrete cover.
- 4) All exposed concrete corners to be chamfered 3/4".
- 5) The foundation design is based on the geotechnical report by Delta Oaks Group, Project GEO 23-19365-01, dated June 28, 2023.
- 6) See the geotechnical report for drilled pier installation requirements, if specified.
- 7) This foundation is designed for a max capacity ratio of 95%.
- 8) The bottom anchor bolt template shall be positioned as closely as possible to the bottom of the anchor bolts.

	Rebar Schedule for Pier
Pier	(46) #10 vertical rebar w/ #7 ties, (2) within top 5" of pier, then 4.5" C/C

(c)2017 Guymast Inc. (USA 222-H) - Monopole Spatial Analysis Fax:(416)736-4372 Web:www.guymast.com Tel:(416)736-7453 Processed under license at:

on: 29 jun 2023 at: 14:56:05 Sabre Towers and Poles

131' Monopole / Burlington Avon Landfill, CT

* All pole diameters shown on the following pages are across corners. See profile drawing for widths across flats.

POLE GEOMETRY

=========

: = 10-01 0117										
	SECTION NAME			THICK -NESS	RESIS ♦*Pn	STANCES *Mn	SPLICE TYPE	OVERI	AP RATIO	w/t
ft			in	in	kip	ft-kip		ft		
130.0					010					
	Α	18		0.250	810.	6 227.0	,			8.6
101 5			22.75			3 593.4				
101.5			22.75							
	A/B	18						3.25	1.70	
08.7			23.24			4 913.7				
98.2						4 913.7				
	В	18								9.8
F2 2			36.71			4 2321.3				
23.2						4 2321.3				
	B/C	18						5.2	1.70	
40.0						5 2821.7				
48.0		51515	37.55			5 2821.7				
	C	18								14.0
						9 5161.4				
0.0		• • • • • •		******	,					
POLE A	SSEMBLY									
=====										
SECTION	BAS	E		BOLTS	AT BAS	E OF SEC	TION		. CA	LC
NAME	ELE	V NUI	MBER TY	PE	DIAM	STREM	IGTH TH	READS IN	BA	SE
	f				in		ksi	IEAK PLANI		ft.
	т	τ			711		KJI			
Α	98.25	0	0 A3		0.00 0.00	9	92.0		98.2	
В	48.00		0 A3			9	92.0		9 48.0 9 0.0	
С	0.00	и	Ø A3	25	0.00	-	2.0	`	. 0.0	
POLE S	ECTIONS									
SECTION	No.of	LENGTI	H OUTSIDE	.DIAMET	ER BE	ND MA	AT- FL	ANGE.ID	FLANGE	.WELD
				т т	DP RA	D EF	RIAL BO	т тор	. GROUP	.ID
NAME	SIDES									
NAME	SIDES	-	*		* :-	I)		ВОТ	TOP
NAME	SIDES	f				I)		ВОТ	ТОР
NAME A		31.	t i	n :	in 22 0.	II in 625	1 6		0	TOP 0
		31.	t i 75 23.7 50 38.3	n 14	in 22 0. 25 0.	II in 625	1 6	9 9		ТОР

* - Diameter of circumscribed circle

MATERIAL TYPES ***********

TYPE OF SHAPE		TYPE NO	NO OF ELEM.	OR	RIENT	HEIGHT	WIDTH	.THI WEB	CKNESS. FLANGE		ULARITY ECTION. ORIENT
	()			&	deg	in	in	in	in		deg
PL PL PL		1 2 3	_		0.0 0.0 0.0	23.74 38.30 51.93	0.25 0.38 0.44	0.250 0.375 0.438	0.250 0.375 0.438	0.00 0.00 0.00	0.0 0.0 0.0

& - With respect to vertical

MATERIAL PROPERTIES

MATERIAL TYPE NO.	ELASTIC MODULUS ksi	UNIT WEIGHT pcf	STRI Fu ksi	ENGTH Fy ksi	THERMAL COEFFICIENT /deg
1	29000.0	490.0	80.0	65.0	0.00001170
2	29000.0	490.0	80.0	65.0	0.00001170
3	29000.0	490.0	80.0	65.0	0.00001170

^{*} Only 5 condition(s) shown in full

LOADING CONDITION A

120 mph wind with no ice. Wind Azimuth: 0♦ (1.2 D + 1.0 Wo)

LOADS ON POLE

LOAD	ELEV APPLYLOADAT		LOAD	FORC	ES	MOME	NTS	
TYPE		RADIUS	AZI	AZI	HORIZ	DOWN	VERTICAL	TORSNAL
111.2	ft	ft			kip	kip	ft-kip	ft-kip
С	137.000	0.00	0.0	0.0	2.5650	0.6000	0.0000	0.0000
С	128.000	0.00	0.0	0.0	0.0000	1.2780	0.0000	0.0000
c	125.000	0.00	0.0	0.0	0.0367	0.0168	0.0000	0.0000
c	121.500	0.00	0.0	0.0	0.0000	1.2131	0.0000	0.0000
č	121.500	0.00	0.0	0.0	6.2536	2.4000	0.0000	0.0000
Č	115.000	0.00	0.0	0.0	0.0360	0.0168	0.0000	0.0000
č	109.000	0.00	0.0	0.0	0.0000	1.0883	0.0000	0.0000
č	109.000	0.00	0.0	0.0	7.3362	2.7000	0.0000	0.0000
c	105.000	0.00	0.0	0.0	0.0354	0.0168	0.0000	0.0000
č	99.000	0.00	0.0	0.0	0.0000	0.9884	0.0000	0.0000
č	99.000	0.00	0.0	0.0	7.1904	2.7000	0.0000	0.0000
c	95.000	0.00	0.0	0.0	0.0346	0.0168	0.0000	0.0000
č	89.000	0.00	0.0	0.0	0.0000	0.8886	0.0000	0.0000
c	89.000	0.00	0.0	0.0	8.2048	3.0000	0.0000	0.0000
č	85.000	0.00	0.0	0.0	0.0338	0.0168	0.0000	0.0000
č	79.000	0.00	0.0	0.0	0.0000	1.1831	0.0000	0.0000
c	79.000	0.00	0.0	0.0	6.8605	2.7000	0.0000	0.0000

^{*} Some concentrated wind loads may have been derived from full-scale wind tunnel testing

C	75.000	0.00	0.0	0.0	0.0329	0.0168	0.0000	0.0000
C	65.000	0.00	0.0	0.0	0.0320	0.0168	0.0000	0.0000
C	55.000	0.00	0.0	0.0	0.0309	0.0168	0.0000	0.0000
	45.000	0.00	0.0	0.0	0.0296	0.0168	0.0000	0.0000
c	35.000	0.00	0.0	0.0	0.0281	0.0168	0.0000	0.0000
c c c	25.000	0.00	0.0	0.0	0.0261	0.0168	0.0000	0.0000
C	15.000	0.00	0.0	0.0	0.0235	0.0168	0.0000	0.0000
D	130.000	0.00	180.0	0.0	0.0414	0.0492	0.0000	0.0000
D	101.500	0.00	180.0	0.0	0.0546	0.0672	0.0000	0.0000
D	101.500	0.00	180.0	0.0	0.0586	0.1807	0.0000	0.0000
D	98.250	0.00	180.0	0.0	0.0586	0.1807	0.0000	0.0000
D	98.250	0.00	180.0	0.0	0.0630	0.1204	0.0000	0.0000
D	83.250	0.00	180.0	0.0	0.0630	0.1204	0.0000	0.0000
D	83.250	0.00	180.0	0.0	0.0714	0.1417	0.0000	0.0000
D	68.250	0.00	180.0	0.0	0.0714	0.1417	0.0000	0.0000
D	68.250	0.00	180.0	0.0	0.0784	0.1630	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0784	0.1630	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0821	0.3805	0.0000	0.0000
D	48.000	0.00	180.0	0.0	0.0821	0.3805	0.0000	0.0000
D	48.000	0.00	180.0	0.0	0.0829	0.2174	0.0000	0.0000
D	36.000	0.00	180.0	0.0	0.0829	0.2174	0.0000	0.0000
D	36.000	0.00	180.0	0.0	0.0844	0.2373	0.0000	0.0000
D	24.000	0.00	180.0	0.0	0.0844	0.2373	0.0000	0.0000
D	24.000	0.00	180.0	0.0	0.0826	0.2572	0.0000	0.0000
D	12.000	0.00	180.0	0.0	0.0826	0.2572	0.0000	0.0000
D	12.000	0.00	180.0	0.0	0.0847	0.2771	0.0000	0.0000
D	0.000	0.00	180.0	0.0	0.0847	0.2771	0.0000	0.0000

120 mph wind with no ice. Wind Azimuth: 0♦ (0.9 D + 1.0 Wo)

LOADS ON POLE

LOAD	ELEV	APPLYLOA	DAT	LOAD	FORC	ES	MOMI	ENTS
TYPE		RADIUS	AZI	AZI	HORIZ	DOWN	VERTICAL	TORSNAL
	ft	ft			kip	kip	ft-kip	ft-kip
					Η.	_		
С	137.000	0.00	0.0	0.0	2.5650	0.4500	0.0000	0.0000
C	128.000	0.00	0.0	0.0	0.0000	0.9585	0.0000	0.0000
c	125.000	0.00	0.0	0.0	0.0367	0.0126	0.0000	0.0000
Ċ	121.500	0.00	0.0	0.0	0.0000	0.9098	0.0000	0.0000
c	121.500	0.00	0.0	0.0	6.2536	1.8000	0.0000	0.0000
Č	115.000	0.00	0.0	0.0	0.0360	0.0126	0.0000	0.0000
č	109.000	0.00	0.0	0.0	0.0000	0.8162	0.0000	0.0000
c	109.000	0.00	0.0	0.0	7.3362	2.0250	0.0000	0.0000
č	105.000	0.00	0.0	0.0	0.0354	0.0126	0.0000	0.0000
c	99.000	0.00	0.0	0.0	0.0000	0.7413	0.0000	0.0000
c	99.000	0.00	0.0	0.0	7.1904	2.0250	0.0000	0.0000
Č	95.000	0.00	0.0	0.0	0.0346	0.0126	0.0000	0.0000
Ċ	89.000	0.00	0.0	0.0	0.0000	0.6664	0.0000	0.0000
Č	89.000	0.00	0.0	0.0	8.2048	2.2500	0.0000	0.0000
č	85.000	0.00	0.0	0.0	0.0338	0.0126	0.0000	0.0000
č	79.000	0.00	0.0	0.0	0.0000	0.8873	0.0000	0.0000
č	79.000	0.00	0.0	0.0	6.8605	2.0250	0.0000	0.0000
c	75.000	0.00	0.0	0.0	0.0329	0.0126	0.0000	0.0000
Ċ	65.000	0.00	0.0	0.0	0.0320	0.0126	0.0000	0.0000
č	55.000	0.00	0.0	0.0	0.0309	0.0126	0.0000	0.0000
Č	45.000	0.00	0.0	0.0	0.0296	0.0126	0.0000	0.0000
č	35.000	0.00	0.0	0.0	0.0281	0.0126	0.0000	0.0000
c	25.000	0.00	0.0	0.0	0.0261	0.0126	0.0000	0.0000
č	15.000	0.00	0.0	0.0	0.0235	0.0126	0.0000	0.0000

D	130.000	0.00	180.0	0.0	0.0414	0.0369	0.0000	0.0000
D	101.500	0.00	180.0	0.0	0.0546	0.0504	0.0000	0.0000
D	101.500	0.00	180.0	0.0	0.0586	0.1355	0.0000	0.0000
D	98.250	0.00	180.0	0.0	0.0586	0.1355	0.0000	0.0000
D	98.250	0.00	180.0	0.0	0.0630	0.0903	0.0000	0.0000
D	83.250	0.00	180.0	0.0	0.0630	0.0903	0.0000	0.0000
D	83.250	0.00	180.0	0.0	0.0714	0.1063	0.0000	0.0000
D	68.250	0.00	180.0	0.0	0.0714	0.1063	0.0000	0.0000
D	68.250	0.00	180.0	0.0	0.0784	0.1222	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0784	0.1222	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0821	0.2853	0.0000	0.0000
D	48.000	0.00	180.0	0.0	0.0821	0.2853	0.0000	0.0000
D	48.000	0.00	180.0	0.0	0.0829	0.1631	0.0000	0.0000
D	36.000	0.00	180.0	0.0	0.0829	0.1631	0.0000	0.0000
D	36.000	0.00	180.0	0.0	0.0844	0.1780	0.0000	0.0000
D	24.000	0.00	180.0	0.0	0.0844	0.1780	0.0000	0.0000
D	24.000	0.00	180.0	0.0	0.0826	0.1929	0.0000	0.0000
D	12.000	0.00	180.0	0.0	0.0826	0.1929	0.0000	0.0000
D	12.000	0.00	180.0	0.0	0.0847	0.2078	0.0000	0.0000
D	0.000	0.00	180.0	0.0	0.0847	0.2078	0.0000	0.0000

LOADING CONDITION Y

50 mph wind with 1.5 ice. Wind Azimuth: 0♦ (1.2 D + 1.0 Di + 1.0 Wi)

LOADS ON POLE

LOAD	ELEV	APPLYLO	ADAT	LOAD	FORC	ES	MOM	ENTS
TYPE		RADIUS	AZI	AZI	HORIZ	DOWN	VERTICAL	TORSNAL
	ft	ft			kip	kip	ft-kip	ft-kip
C	137.000	0.00	0.0	0.0	1.2160	1.4654	0.0000	0.0000
С	128.000	0.00	0.0	0.0	0.0000	1.2780	0.0000	0.0000
c	125.000	0.00	0.0	0.0	0.0494	0.0288	0.0000	0.0000
C	121.500	0.00	0.0	0.0	0.0000	1.2131	0.0000	0.0000
C	121.500	0.00	0.0	0.0	1.8284	5.8205	0.0000	0.0000
C	115.000	0.00	0.0	0.0	0.0482	0.0288	0.0000	0.0000
C	109.000	0.00	0.0	0.0	0.0000	1.0883	0.0000	0.0000
C	109.000	0.00	0.0	0.0	2.1356	6.5068	0.0000	0.0000
С	105.000	0.00	0.0	0.0	0.0469	0.0288	0.0000	0.0000
c	99.000	0.00	0.0	0.0	0.0000	0.9884	0.0000	0.0000
c	99.000	0.00	0.0	0.0	2.0852	6.4707	0.0000	0.0000
c	95.000	0.00	0.0	0.0	0.0455	0.0288	0.0000	0.0000
C	89.000	0.00	0.0	0.0	0.0000	0.8886	0.0000	0.0000
С	89.000	0.00	0.0	0.0	2.3693	7.1458	0.0000	0.0000
C	85.000	0.00	0.0	0.0	0.0441	0.0288	0.0000	0.0000
c	79.000	0.00	0.0	0.0	0.0000	1.1831	0.0000	0.0000
c	79.000	0.00	0.0	0.0	1.9719	6.3875	0.0000	0.0000
c	75.000	0.00	0.0	0.0	0.0425	0.0288	0.0000	0.0000
c	65.000	0.00	0.0	0.0	0.0407	0.0288	0.0000	0.0000
C	55.000	0.00	0.0	0.0	0.0387	0.0288	0.0000	0.0000
C	45.000	0.00	0.0	0.0	0.0365	0.0288	0.0000	0.0000
C	35.000	0.00	0.0	0.0	0.0339	0.0288	0.0000	0.0000
C	25.000	0.00	0.0	0.0	0.0307	0.0288	0.0000	0.0000
c	15.000	0.00	0.0	0.0	0.0264	0.0288	0.0000	0.0000
D	130.000	0.00	180.0	0.0	0.0153	0.0856	0.0000	0.0000
D	120.500	0.00	180.0	0.0	0.0153	0.0856	0.0000	0.0000
D	120.500	0.00	180.0	0.0	0.0173	0.1002	0.0000	0.0000
D	111.000	0.00	180.0	0.0	0.0173	0.1002	0.0000	0.0000
D	111.000	0.00	180.0	0.0	0.0191	0.1147	0.0000	0.0000
D	101.500	0.00	180.0	0.0	0.0191	0.1147	0.0000	0.0000
D	101.500	0.00	180.0	0.0	0.0203	0.2318	0.0000	0.0000
D	98.250	0.00	180.0	0.0	0.0203	0.2318	0.0000	0.0000

D	98.250	0.00	180.0	0.0	0.0216	0.1755	0.0000	0.0000
D	83.250	0.00	180.0	0.0	0.0216	0.1755	0.0000	0.0000
D	83.250	0.00	180.0	0.0	0.0240	0.2047	0.0000	0.0000
D	68.250	0.00	180.0	0.0	0.0240	0.2047	0.0000	0.0000
D	68.250	0.00	180.0	0.0	0.0260	0.2333	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0260	0.2333	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0270	0.4553	0.0000	0.0000
D	48.000	0.00	180.0	0.0	0.0270	0.4553	0.0000	0.0000
D	48,000	0.00	180.0	0.0	0.0271	0.2944	0.0000	0.0000
D	36.000	0.00	180.0	0.0	0.0271	0.2944	0.0000	0.0000
D	36.000	0.00	180.0	0.0	0.0274	0.3182	0.0000	0.0000
D	24.000	0.00	180.0	0.0	0.0274	0.3182	0.0000	0.0000
D	24.000	0.00	180.0	0.0	0.0266	0.3404	0.0000	0.0000
D	0.000	0.00	180.0	0.0	0.0270	0.3578	0.0000	0.0000

Seismic - Azimuth: 0♥ (1.2 D + 1.0 Ev + 1.0 Eh)

LOADS ON POLE

LOAD	ELEV	APPLYLO	ADAT	LOAD	FOR	ES	MOMI	ENTS
TYPE		RADIUS	AZI	AZI	HORIZ	DOWN	VERTICAL	TORSNAL
	ft	ft			kip	kip	ft-kip	ft-kip
С	137.000	0.00	0.0	0.0	0.0405	0.6109	0.0000	0.0000
c	128.000	0.00	0.0	0.0	0.0755	1.3012	0.0000	0.0000
c	125,000	0.00	0.0	0.0	0.0009	0.0171	0.0000	0.0000
c	121.500	0.00	0.0	0.0	0.0646	1.2351	0.0000	0.0000
c	121.500	0.00	0.0	0.0	0.1278	2.4436	0.0000	0.0000
C	115.000	0.00	0.0	0.0	0.0008	0.0171	0.0000	0.0000
c	114.120	0.00	0.0	0.0	0.0890	1.9273	0.0000	0.0000
c	109.000	0.00	0.0	0.0	0.0467	1.1081	0.0000	0.0000
C	109.000	0.00	0.0	0.0	0.1159	2.7490	0.0000	0.0000
C	105.000	0.00	0.0	0.0	0.0007	0.0171	0.0000	0.0000
c	99.000	0.00	0.0	0.0	0.0351	1.0064	0.0000	0.0000
c	99.000	0.00	0.0	0.0	0.0958	2.7490	0.0000	0.0000
c	95.000	0.00	0.0	0.0	0.0005	0.0171	0.0000	0.0000
c	89.000	0.00	0.0	0.0	0.0255	0.9047	0.0000	0.0000
С	89.000	0.00	0.0	0.0	0.0862	3.0545	0.0000	0.0000
C	85,000	0.00	0.0	0.0	0.0004	0.0171	0.0000	0.0000
C	79.000	0.00	0.0	0.0	0.0268	1.2046	0.0000	0.0000
С	79.000	0.00	0.0	0.0	0.0613	2.7490	0.0000	0.0000
c	75.000	0.00	0.0	0.0	0.0003	0.0171	0.0000	0.0000
C	74.750	0.00	0.0	0.0	0.1552	7.7735	0.0000	0.0000
C	65.000	0.00	0.0	0.0	0.0003	0.0171	0.0000	0.0000
С	55.000	0.00	0.0	0.0	0.0002	0.0171	0.0000	0.0000
C	45.000	0.00	0.0	0.0	0.0001	0.0171	0.0000	0.0000
С	35.000	0.00	0.0	0.0	0.0001	0.0171	0.0000	0.0000
C	26.620	0.00	0.0	0.0	0.0339	13.1368	0.0000	0.0000
C	25.000	0.00	0.0	0.0	0.0000	0.0171	0.0000	0.0000
C	15.000	0.00	0.0	0.0	0.0000	0.0171	0.0000	0.0000
D	130.000	0.00	180.0	180.0	0.0000	0.0000	0.0000	0.0000
D	0.000	0.00	180.0	180.0	0.0000	0.0000	0.0000	0.0000

LOADING CONDITION AL

Seismic - Azimuth: 0♦ (0.9 D - 1.0 Ev + 1.0 Eh)

LOADS	ON	POI	_E

LOAD	ELEV	APPLYLO	ADAT	LOAD	FORC	ES	MOMI	ENTS
TYPE		RADIUS	AZI	AZI	HORIZ	DOWN	VERTICAL	TORSNAL
	ft	ft			kip	kip	ft-kip	ft-kip
C	137.000	0.00	0.0	0.0	0.0405	0.4391	0.0000	0.0000
С	128.000	0.00	0.0	0.0	0.0755	0.9353	0.0000	0.0000
c	125,000	0.00	0.0	0.0	0.0009	0.0123	0.0000	0.0000
c	121.500	0.00	0.0	0.0	0.0646	0.8878	0.0000	0.0000
c	121.500	0.00	0.0	0.0	0.1278	1.7564	0.0000	0.0000
c	115.000	0.00	0.0	0.0	0.0008	0.0123	0.0000	0.0000
c	114.120	0.00	0.0	0.0	0.0890	1.3853	0.0000	0.0000
c	109.000	0.00	0.0	0.0	0.0467	0.7964	0.0000	0.0000
c	109.000	0.00	0.0	0.0	0.1159	1.9760	0.0000	0.0000
c	105.000	0.00	0.0	0.0	0.0007	0.0123	0.0000	0.0000
С	99.000	0.00	0.0	0.0	0.0351	0.7233	0.0000	0.0000
c	99.000	0.00	0.0	0.0	0.0958	1.9760	0.0000	0.0000
C	95.000	0.00	0.0	0.0	0.0005	0.0123	0.0000	0.0000
C	89.000	0.00	0.0	0.0	0.0255	0.6504	0.0000	0.0000
c	89.000	0.00	0.0	0.0	0.0862	2.1955	0.0000	0.0000
C	85.000	0.00	0.0	0.0	0.0004	0.0123	0.0000	0.0000
C	79.000	0.00	0.0	0.0	0.0268	0.8658	0.0000	0.0000
C	79.000	0.00	0.0	0.0	0.0613	1.9760	0.0000	0.0000
С	75.000	0.00	0.0	0.0	0.0003	0.0123	0.0000	0.0000
C	74.750	0.00	0.0	0.0	0.1552	5.5874	0.0000	0.0000
C	65.000	0.00	0.0	0.0	0.0003	0.0123	0.0000	0.0000
С	55.000	0.00	0.0	0.0	0.0002	0.0123	0.0000	0.0000
С	45.000	0.00	0.0	0.0	0.0001	0.0123	0.0000	0.0000
С	35.000	0.00	0.0	0.0	0.0001	0.0123	0.0000	0.0000
С	26.620	0.00	0.0	0.0	0.0339	9.4424	0.0000	0.0000
C	25.000	0.00	0.0	0.0	0.0000	0.0123	0.0000	0.0000
c	15.000	0.00	0.0	0.0	0.0000	0.0123	0.0000	0.0000
D	130.000	0.00	180.0	180.0	0.0000	0.0000	0.0000	0.0000
D	0.000	0.00	180.0	180.0	0.0000	0.0000	0.0000	0.0000

(USA 222-H) - Monopole Spatial Analysis

(c)2017

Guymast Inc.

Tel:(416)736-7453

Fax:(416)736-4372

Web:www.guymast.com

Processed under license at:

Sabre Towers and Poles

on: 29 jun 2023 at: 14:56:05

131' Monopole / Burlington Avon Landfill, CT

MAXIMUM POLE DEFORMATIONS CALCULATED(w.r.t. wind direction)

MAST ELEV ft	DEFLECTIOHORIZONTAL ALONG		DOWN	ROTAT TILT ALONG		TWIST
130.0	10.47A	-0.02N	1.16F	8.90A	-0.02N	0.00B
	**********	90	0.045	D CCA	-0.02N	0.00B
120.5	9.05A	-0.02N	0.94F	8.66A	-6.62N	0.000
111.0	7.68A	-0.02N	0.74F	8.21A	-0.02N	0.00B

101.5	6.39A	-0.02N	0.56F	7.55A	-0.02N	0.00B
98.2	5.98A	-0.01N	0.51F	7.37A	-0.02N	0.00B
83.2	4,21A	-0.01N	0.30F	6.29A	-0.02N	0.00B
68.2	2.74A	-0.01N	0.1 5K	5.01A	-0.01N	0.00B
53.2	1.61A	0.00N	0.07K	3.67A	-0.01N	0.00B
48.0	1.30A	0.00N	0.05K	3.27A	-0.01N	0.00B
36.0	0.71A	Ø.00N	0.02K	2.36A	-0.01N	0.00B
24.0	0.31A	0.00N	0.01K	1.51A	0.00N	0.00B
12.0	0.07A	0.00N	0.00F	0.72A	0.00N	0.00B
0.0	0.00A	0.00A	0.00A	0.00A	0.00A	0.00A

MAXIMUM POLE FORCES CALCULATED(w.r.t. to wind direction)

MAST ELEV	TOTAL AXIAL	SHEAR.w.r.t ALONG	.WIND.DIR ACROSS	MOMENT.w.r.i ALONG ft-kip	t.WIND.DIR ACROSS	TORSION
ft	kip	kip	kip	ft-kip	ft-kip	ft-kip
130.0	1.47 AA	2.57 T	0.00 R	-17.96 N	0.00 R	0.00 R
120.5	10.62 AA	9.27 T		-53.09 E		
	10.62 AG	9.27 P	0.00 X	-53.09 E	-0.01 E	-0.01 E
111.0	11.60 AG	9.76 P	0.00 X	-150.03 F	0.03 B	-0.05 E
111.0	11.60 AG	9.76 P	0.01 X	-150.03 F	0.03 F	-0.05 E
401 F		17.62 P		-310.01 C	0.09 B	-0.11 E
101.5	20.32 AD	17.71 N	-0.07 X	-310.08 C	-0.17 X	-0.11 E
	28.53 AD	25.09 N	-0.07 X	-376.99 C	0.13 B	-0.13 E
98.2	28.53 AA	25.20 A	-0.14 N	-376.94 I	0.20 I	-0.13 E
				-834.25 A		
83.2	39.25 Z	34.38 A	-0.11 T	-834.25 A	1.95 N	0.41 B
	49.92 Z	42.34 A	-0.11 T	-1462.30 A	3.36 N	0.74 B
68.2	49.92 Z	42.36 A	-0.11 N	-1462.29 A	3.36 N	0.74 B
				-2134.88 A	4.92 N	0.98 B
53.2		43.59 A	-0.11 T	-2134.88 A	4.93 N	0.98 B
	55.86 Z	44.02 A	-0.11 T	-2373.58 A	5.48 N	1.05 B
48.0	55.86 Z	44.06 A	-0.13 N	-2373.57 A	5.47 N	1.05 B
	59.42 Z	45.08 A	-0.13 N	-2926.29 A	7.01 N	1.18 B
36.0	59.42 Z	45.08 A	-0.14 N	-2926.29 A	7.02 N	1.18 B
	63.30 Z	46.15 A	-0.14 N	-3487.28 A	8.65 N	1.28 B

base reaction	71.70 Z	-48.17 A	0.13 N	4630.55 A	-11.86 N	-1.36 B
	71.70 Z	48.17 A	-0.13 N	-4630.55 A	11.86 N	1.36 B
12.0	67.46 Z	47.15 A	-0.13 N	-4055.57 A	10.29 N	1.34 B
12.0	67.46 Z	47.15 A	-0.14 N	-4055.57 A	10.29 N	1.34 B
24.0	63.30 Z	46.14 A	-0.14 N	-3487.28 A	8.65 N	1.28 B

COMPLIANCE WITH 4.8.2 & 4.5.4

ELEV	AXIAL	BENDING	SHEAR + TORSIONAL		SATISFIED	D/t(w/t)	MAX ALLOWED
ft							
130.00	0.00AA	0.08N	0.01T	0.08L	YES	8.64A	45.2
400 50			0.02T	0.17E	YES	10.62A	45.2
120.50	0.01AG	0.16E	0.02P	0.17E	YES	10.62A	45.2
444 00		0.33F	0.02P	0.34F	YES	12.60A	45.2
111.00	0.01AG	0.33F	0.02P			12.60A	45.2
	0.02AG	0.52C	0.03P	0.53C	YES	14.58A	45.2
101.50	0.01AD		0.02N	0.36C	YES	9.60A	45.2
		0.39C	0.02N			10.05A	
98.25	0.01AA	0.41I	0.03A				
			0.03A				45.2
83.25	0.02Z	0.64A	0.03A	Ø.65A	YES	11.90A	45.2
			0.03A		YES	13.98A	45.2
68.25			0.03A		YES	13.98A	45.2
			0.03A		YES	16.06A	45.2
53.25	0.01Z	0.79A	0.02A			13.72A	45.2
			0.02A			14.34A	45.2
48.00	0.01Z	0.84A				14.04A	45.2
76 00	0.012	0.86A	0.02A	0.87A	YES	15.47A	45.2
36.00	0.01Z	0.86A	0.02A				45.2
			0.02A			16.90A	45.2
24.00	0.01Z	0.88A	0.02A		YES	16.90A	45.2
47.00		0.89A	0.02A	0.90A	YES	18.33A	45.2
12.00	0.01Z	0.89A	0.02A	0.90A	YES	18.33A	45.2
	0.01Z	0.90A	0.02A	0.91A	YES	19.75A	45.2

0.00

MAXIMUM LOADS ONTO FOUNDATION(w.r.t. wind direction)

TORSION ft-kip	t.WIND.DIR ACROSS ft-kip	MOMENT.w.r. ALONG ft-kip	HEAR.w.r.t.WIND.DIR ALONG ACROSS kip kip		DOWN kip
1.36	11.86	-4630.55	-0.13	48.17	71.70
B	N	A	N	A	7

(c)2017 Guymast Inc.

(USA 222-H) - Monopole Spatial Analysis

Tel:(416)736-7453

Fax: (416)736-4372

Web:www.guymast.com

Processed under license at:

Sabre Towers and Poles

on: 29 jun 2023 at: 14:56:20

131' Monopole / Burlington Avon Landfill, CT

LOADING CONDITION A

60 mph wind with no ice. Wind Azimuth: 0♦ (1.0 D + 1.0 Wo)

LOADS ON POLE

LOAD	DAD ELEV APPLYLOAD.		OAT LOAD		FORCES		MOMENTS	
TYPE		RADIUS	AZI	AZI	HORIZ	DOWN	VERTICAL	TORSNAL
	ft	ft			kip	kip	ft-kip	ft-kip
С	137.000	0.00	0.0	0.0	0.5737	0.5000	0.0000	0.0000
C	128.000	0.00	0.0	0.0	0.0000	1.0650	0.0000	0.0000
c	125.000	0.00	0.0	0.0	0.0082	0.0140	0.0000	0.0000
c	121.500	0.00	0.0	0.0	0.0000	1.0109	0.0000	0.0000
c	121,500	0.00	0.0	0.0	1.3988	2.0000	0.0000	0.0000
c	115,000	0.00	0.0	0.0	0.0081	0.0140	0.0000	0.0000
c	109,000	0.00	0.0	0.0	0.0000	0.9069	0.0000	0.0000
č	109.000	0.00	0.0	0.0	1.6410	2.2500	0.0000	0.0000
Č	105.000	0.00	0.0	0.0	0.0079	0.0140	0.0000	0.0000
č	99.000	0.00	0.0	0.0	0.0000	0.8237	0.0000	0.0000
c	99.000	0.00	0.0	0.0	1.6084	2.2500	0.0000	0.0000
č	95.000	0.00	0.0	0.0	0.0077	0.0140	0.0000	0.0000
c	89.000	0.00	0.0	0.0	0.0000	0.7405	0.0000	0.0000
č	89.000	0.00	0.0	0.0	1.8353	2.5000	0.0000	0.0000
č	85.000	0.00	0.0	0.0	0.0076	0.0140	0.0000	0.0000
č	79.000	0.00	0.0	0.0	0.0000	0.9859	0.0000	0.0000
č	79.000	0.00	0.0	0.0	1.5346	2.2500	0.0000	0.0000

^{*} Only 1 condition(s) shown in full

^{*} Some concentrated wind loads may have been derived from full-scale wind tunnel testing

c	75.000	0.00	0.0	0.0	0.0074	0.0140	0.0000	0.0000
C	65.000	0.00	0.0	0.0	0.0071	0.0140	0.0000	0.0000
C	55.000	0.00	0.0	0.0	0.0069	0.0140	0.0000	0.0000
c	45,000	0.00	0.0	0.0	0.0066	0.0140	0.0000	0.0000
C	35.000	0.00	0.0	0.0	0.0063	0.0140	0.0000	0.0000
c	25.000	0.00	0.0	0.0	0.0058	0.0140	0.0000	0.0000
C	15.000	0.00	0.0	0.0	0.0053	0.0140	0.0000	0.0000
D	130,000	0.00	180.0	0.0	0.0093	0.0410	0.0000	0.0000
D	101.500	0.00	180.0	0.0	0.0122	0.0560	0.0000	0.0000
D	101.500	0.00	180.0	0.0	0.0131	0.1506	0.0000	0.0000
D	98.250	0.00	180.0	0.0	0.0131	0.1506	0.0000	0.0000
D	98.250	0.00	180.0	0.0	0.0141	0.1004	0.0000	0.0000
D	83.250	0.00	180.0	0.0	0.0141	0.1004	0.0000	0.0000
D	83.250	0.00	180.0	0.0	0.0160	0.1181	0.0000	0.0000
D	68.250	0.00	180.0	0.0	0.0160	0.1181	0.0000	0.0000
D	68.250	0.00	180.0	0.0	0.0175	0.1358	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0175	0.1358	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0184	0.3170	0.0000	0.0000
D	48.000	0.00	180.0	0.0	0.0184	0.3170	0.0000	0.0000
D	48.000	0.00	180.0	0.0	0.0185	0.1812	0.0000	0.0000
D	36.000	0.00	180.0	0.0	0.0185	0.1812	0.0000	0.0000
D	36.000	0.00	180.0	0.0	0.0189	0.1978	0.0000	0.0000
D	24.000	0.00	180.0	0.0	0.0189	0.1978	0.0000	0.0000
D	24.000	0.00	180.0	0.0	0.0185	0.2144	0.0000	0.0000
D	12.000	0.00	180.0	0.0	0.0185	0.2144	0.0000	0.0000
D	12.000	0.00	180.0	0.0	0.0190	0.2309	0.0000	0.0000
D	0.000	0.00	180.0	0.0	0.0190	0.2309	0.0000	0.0000

MAXIMUM POLE DEFORMATIONS CALCULATED(w.r.t. wind direction)

MAST ELEV ft	DEFLECTIOHORIZONTAL ALONG		DOWN	ROTATIO		TWIST
130.0	2.381	0.00F	0.06E	2.001		
120.5	2.051		0.05E	1.95I		
111.0				1.841		
101.5				1.70I		
98.2				1.651		
83.2	0.95I	0.00F	0.02E	1.41I		
68.2	0.621	0.00F	0.01E	1.12I	0.00F	0.001
53.2	0.361				Ø.00F	0.001
48.0				0.731		
36.0				0.531		
24.0				0.341		0.001
12.0	0.021					0.001
0.0				0.00A		
		• • • • • • • •				

MAXIMUM POLE FORCES CALCULATED(w.r.t. to wind direction)

MAST ELEV	TOTAL AXIAL	SHEAR.w.r.t	ACROSS	MOMENT.w.r.t	ACROSS	
ft	kip	kip	kip	ft-kip	ft-kip	ft-kip
130.0	0.50 F	0.57 F	0.00 F	-4.02 E	0.00 F	
120.5		2.07 F	0.00 F	-11.94 B	0.00 I	0.00 I
120.5	5.00 K	2.07 I	0.00 C	-11.94 E	0.00 L	0.00 I
444.0	5.48 K	2.18 I	0.00 C	-33.77 I	0.00 F	0.00 C
111.0	5.48 L	2.19 I	0.00 B	-33.77 I		0.00 C
	9.16 L	3.95 I	0.00 B	-69.77 I	0.01 B	0.00 I
101.5	9.16 B		-0.01 I	-69.79 L	-0.02 I	0.00 I
				-84.84 E		
98.2	12.72 E	5.62 I		-84.85 E	0.03 I	0.00 E
	17.50 E	7.68 I	0.02 F	-187.19 I	-0.39 F	0.01 I
83.2	17.50 D	7.69 I	0.02 F	-187.19 I	-0.39 F	0.01 I
			0.02 F	-327.60 I	-0.74 F	0.02 I
68.2	22.52 D			-327.60 I	-0.74 F	0.02 I
	24.58 D			-477.68 I		
53.2	24.58 D	9.75 I		-477.68 I		0.02 I
	26.25 D	9.85 I	0.02 F	-530.93 I		
48.0	26.25 D	9.85 I		-530.91 I	-1.18 F	0.02 I
	28.44 D	10.08 I	0.02 F	-654.05 I	-1.48 F	0.03 I
36.0	28.44 D	10.08 I	0.02 F	-654.05 I	-1.48 F	0.03 I
	30.84 D	10.31 I	0.02 F	-779.04 I		0.03 I
24.0	30.84 D	10.32 I	0.02 F	-779.04 I		0.03 I
	33.42 D	10.54 I	0.02 F	-905.83 I	-2.03 F	0.03 I
12.0	33.42 D	10.54 I		-905.83 I		
	36.20 D	10.77 I	0.02 F	-1034.29 I	-2.31 F	0.03 I
base						
	36.20 D	-10.77 I	-0.02 F	1034.29 I	2.31 F	-0.03 I

COMPLIANCE WITH 4.8.2 & 4.5.4

ELEV	AXIAL	BENDING	SHEAR + TORSIONAL	TOTAL S	ATISFIED	D/t(w/t)	MAX ALLOWED
ft							
130.00							
	0.00F	0.02E	0.00F	0.02E	YES	8.64A	45.2

120 50	0.01F	0.04B	0.00F	0.04B	YES	10.62A	45.2
120.50	0.01K	Ø.04E	0.001	0.04E	YES	10.62A	45.2
444 00	0.00K	0.071	0.001	0.081	YES	12.60A	45.2
111.00	0.00L	0.071	0.001	0.081	YES	12.60A	45.2
404 50	0.01L	0.121	0.011	0.12I	YES	14.58A	45.2
101.50	0.00B	0.08L	0.00C	0.08L	YES	9.60A	45.2
00.75	0.01B	0.09E	0.01C	0.10E	YES	10.05A	45.2
98.25	0.01E	0.09E	0.011	0.10E	YES	9.82A	45.2
02.25	0.01E	0.14I	0.011	0.151	YES	11.90A	45.2
83.25	0.01D	0.14I	0.011	0.151	YES	11.90A	45.2
CD 25		0.181	0.011	0.191	YES	13.98A	45.2
68.25	0.01D	0.18I	0.011	0.191	YES	13.98A	45.2
53.25						16.06A	45.2
55.25	0.01D	0.181	0.011	0.18I	YES	13.72A	45.2
48.00	0.01D	0.18I	0.011	0.191	YES	14.34A	45.2
48.00	Ø.01D	0.191	0.011	0.201	YES	14.04A	45.2
75.00	0.01D	0.191	0.001	0.201	YES	15.47A	45.2
36.00	0.01D	0.191	0.001	0.201	YES	15.47A	45.2
24.00						16.90A	
24.00			0.001		YES	16.90A	45.2
12.00						18.33A	
12.00	0.01D	0.201	0.001	0.211	YES	18.33A	45.2
0.00		0.201	0.001	0.21I	YES	19.75A	45.2
0.00						1.5.4	

MAXIMUM LOADS ONTO FOUNDATION(w.r.t. wind direction)

DOWN	SHEAR.w.r.t	.WIND.DIR ACROSS	MOMENT.w.r.t.WIND.DIR ALONG ACROSS		TORSION	
kip	kip	7.4	ft-kip	ft-kip	ft-kip	
36.20 D	10.77 I	0.02 F	-1034.29 I	-2.31 F	0.03 I	

Seismic Load Effects Equivalent Lateral Force Procedure ANSI/TIA-222-H

		Description	h, (ft.)	w. (kips)	Ver W (kips)	Vertical Distribution of Seismic Forces	n of Seismic Fe, or E _h	Forces Ev (kips)	1.2 D + 1.0 E _V	0.9 D - 1.0 E _V
							(kips)	10	(kips)	(kips)
Parameters	;	Antenna Load	137.00	0.5000	0.5000	8,589.1496	0.0405	0.0109	0.6109	0.4391
Risk Category	= 1		128.00	1.0650	0.0000	15,989.6798	0.0755	0.0232	1.3012	0.9353
m	1.500	Step Bolts/Safety Climb Load	125.00	0.0140	0.0000	200.5412	600000	0.0003	0.0171	0.0123
Ss	0.182	Antenna Load	121.50	2.0000	2.0000	27,080.7182	0.1278	0.0436	2.4436	1.7564
S,	0.064	Line Deadload	121.50	1,0109	0.000	13,687.9490	0.0646	0.0220	1.2351	0.8878
Site Class	В	Step Bolts/Safety Climb Load	115.00	0.0140	0.0000	169.9930	0.0008	0.0003	0.0171	0.0123
T _L (sec)	6.000	Structure - Section 1	114.12	1.5774	0.0000	18,863,9593	0.0890	0.0344	1.9273	1.3853
Ē.	0.900	Antenna Load	109.00	2.2500	2.2500	24,567.5493	0.1159	0.0490	2.7490	1.9760
ш^	0.800	Line Deadload	109.00	0.9069	0.0000	9,902.3602	0.0467	0.0198	1.1081	0.7964
S _{MS}	0.164	Step Bolts/Safety Climb Load	105.00	0.0140	0.0000	141.9467	0.0007	0.0003	0.0171	0.0123
S _{M1}	0.051	Antenna Load	00.66	2.2500	2.2500	20,301.6564	0.0958	0.0490	2.7490	1.9760
Sos	0.109	Line Deadload	99.00	0.8237	0.0000	7,432.2108	0.0351	0.0180	1.0064	0.7233
S _{D1}	0.034	Step Bolts/Safety Climb Load	95.00	0.0140	0.0000	116.4062	0.0005	0.0003	0.0171	0.0123
ŗ°	0.312	Antenna Load	89.00	2.5000	2.5000	18,265.4763	0.0862	0.0545	3.0545	2.1955
9	1.000	Line Deadload	89.00	0.7405	0.0000	5,410.2341	0.0255	0.0161	0.9047	0.6504
а	1.500	Step Bolts/Safety Climb Load	85.00	0.0140	0.0000	93.3762	0.0004	0.0003	0.0171	0.0123
్టు	0.030	Antenna Load	79.00	2.2500	0.000	12,980.1411	0.0613	0.0490	2.7490	1.9760
E (ksi)	29,000	Line Deadload	79.00	0.9859	0.0000	5,687,6094	0.0268	0.0215	1.2046	0.8658
l _{top} (in ⁴)	261	Step Bolts/Safety Climb Load	75.00	0.0140	0.0000	72.8617	0.0003	0.0003	0.0171	0.0123
l _{bot} (in ⁴)	22,922	Structure - Section 2	74,75	6.3623	0.0000	32,893.6098	0.1552	0.1387	7.7735	5.5874
l _{avg} (in ⁴)	11,592	Step Bolts/Safety Climb Load	65.00	0.0140	0.0000	54.8684	0.0003	0.0003	0.0171	0.0123
$g (in/s^2)$	386.4	Step Bolts/Safety Climb Load	55.00	0.0140	00000	39.4028	0,0002	0.0003	0.0171	0.0123
W _t (kips)	36.143	Step Bolts/Safety Climb Load	45.00	0.0140	00000	26.4725	0.0001	0.0003	0.0171	0.0123
W _u (kips)	9.500	Step Bolts/Safety Climb Load	35.00	0.0140	0.0000	16.0868	0.0001	0.0003	0.0171	0.0123
W _∟ (kips)	26.643	Structure - Section 3	26.62	10.7520	0.0000	7,182.1027	0.0339	0.2344	13.1368	9,4424
L _p (in)	1560	Step Bolts/Safety Climb Load	25.00	0.0140	0.0000	8,2574	0.0000	0.0003	0.0171	0.0123
f ₁ (Hertz)	0.406	Step Bolts/Safety Climb Load	15.00	0.0140	0.0000	3.0001	0.0000	0.0003	0.0171	0.0123
T (sec)	2.464		×	36.14	9.5000	229,777.62	1.08	0.79	44.16	31.74
ۍ e	1.9820									
V _s (kips)	1.084									
Seismic Design Category	۷									

SO#: 521586A

Site Name: Burlington Avon Landfill, CT

(per 4.9.9)

Date: 6/29/2023

Round Base Plate and Anchor Rods, per ANSI/TIA 222-H

Pole Data

Diameter: 51.140 in (flat to flat)
Thickness: 0.4375 in
Yield (Fy): 65 ksi
of Sides: 18 "0" IF Round
Strength (Fu): 80 ksi

Reactions

Moment, Mu:	4630.55	ft-kips
Axial, Pu:	43.46	kips
Shear, Vu:	48.17	kips

Anchor Rod Data

Quantity:	18		
Diameter:	2.25	in	
Rod Material:	A615		
Strength (Fu):	100	ksi	
Yield (Fy):	75	ksi	
BC Diam. (in):	58	BC Override:	58

Plate Data

Diameter (in):	63.75	Dia. Override:	63.75
Thickness:	2.25	in	
Yield (Fy):	50	ksi	
Eff Width/Rod:	9.02	in	
Drain Hole:	2.625	in. diameter	

Drain Location: 23.25 in. center of pole to center of drain hole

Center Hole: 38.5 in. diameter

Anchor Rod Results

Maximum Put:	211.09 Kips
Фt*Rnt:	243.75 Kips
Vu:	2.68 Kips
Φv*Rnv:	149.10 Kips
Tension Interaction Ratio:	0.75
Maximum Puc:	215.31 Kips
Фс*Rnc:	268.39 Kips
Vu:	2.68 Kips
Фс*Rnvc:	120.77 Kips
Compression Interaction Ratio:	0.80
Maximum Interaction Batio:	80.3% Pass

Base Plate Results

Base Plate (Mu/Z):	41.0 ksi	
Allowable Φ^* Fy: Base Plate Interaction Ratio:	45.0 ksi 91.1% Pass	(per AISC)

LPile for Windows, Version 2019-11.009

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved

This copy of LPile is being used by:

Sabre Industries Sioux City, IA

Serial Number of Security Device: 227885948

This copy of LPile is licensed for exclusive use by:

Sabre Communications Corporation

Use of this program by any entity other than Sabre Communications Corporation is a violation of the software license agreement.

.....

Files Used for Analysis

......

Path to file locations: \Program Files (x86)\Ensoft\Lpile2019\files\

Name of input data file: 521586A.lp11d

Name of output report file: 521586A.lp11o

Name of plot output file: 521586A.lp11p

Name of runtime message file: 521586A.lp11r

Date and Time of Analysis

Date and Time Of Analysis

Date: June 29, 2023 Time: 15:18:01

.....

Problem Title

Site : Burlington Avon Landfill, CT

Tower : 131' Monopole

Prepared for : SBA NETWORK SERVICES INC

Job Number : 521586 Revision A

Engineer : KJT

Program Options and Settings

Computational Options:

- Conventional Analysis

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 999
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 100.0000 in
- Number of pile increments = 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Report only summary tables of pile-head deflection, maximum bending moment, and maximum shear force in output report file.
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined = 1
Total length of pile = 19.500 ft
Depth of ground surface below top of pile = 0.5000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
55577		
1	0.000	84.0000
2	19.500	84.0000

Input Structural Properties for Pile Sections:

Section 1 is a round drilled shaft, bored pile, or CIDH pile = 19.500000 ft Length of section 84.000000 in Shaft Diameter 0.0000 lbs Shear capacity of section Ground Slope and Pile Batter Angles 0.000 degrees Ground Slope Angle 0.000 radians 0.000 degrees Pile Batter Angle 0.000 radians Soil and Rock Layering Information The soil profile is modelled using 6 layers Layer 1 is soft clay, p-y criteria by Matlock, 1970 Distance from top of pile to top of layer = 0.500000 ft Distance from top of pile to bottom of layer = 2.500000 ft Effective unit weight at top of layer = 115.000000 pcf Effective unit weight at bottom of layer = 115.000000 pcf Undrained cohesion at top of layer = 14.400000 psf Undrained cohesion at bottom of layer = 14.400000 psf Epsilon-50 at top of layer = 0.100000 Epsilon-50 at bottom of layer = 0.100000 Layer 2 is soft clay, p-y criteria by Matlock, 1970 Distance from top of pile to top of layer = 2.500000 ft Distance from top of pile to bottom of layer = 4.500000 ft Effective unit weight at top of layer = 120.000000 pcf Effective unit weight at bottom of layer = 120.000000 pcf Undrained cohesion at top of layer = 14.400000 psf Undrained cohesion at bottom of layer = 14.400000 psf Epsilon-50 at top of layer = 0.100000 Epsilon-50 at bottom of layer = 0.100000 /er 3 is sand, p-y criteria vy ... Distance from top of pile to top of layer = 6.500000 ft Effective unit weight at top of layer = 120.000000 pcf Effective unit weight at bottom of layer = 120.000000 pcf Friction angle at top of layer = 35.000000 deg. Thickion angle at bottom of layer = 35.000000 deg. Thickion angle at bottom of layer = 90.000000 pci = 90.000000 pci Layer 3 is sand, p-y criteria by Reese et al., 1974 Layer 4 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer

Distance from top of pile to bottom of layer = 8.500000 ft

Effective unit weight at top of layer = 120.000000 pcf

6.500000 ft

Pile Section No. 1:

```
Effective unit weight at bottom of layer = 120.000000 pcf
Friction angle at top of layer = 36.000000 deg.
Friction angle at bottom of layer = 36.000000 deg.
Subgrade k at top of layer = 225.000000 pci
Subgrade k at bottom of layer = 225.000000 pci
```

Layer 5 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	=	8.500000	ft
Distance from top of pile to bottom of layer	=	13.500000	ft
Effective unit weight at top of layer	=	130.000000	
Effective unit weight at bottom of layer	=		•
Friction angle at top of layer	=		_
Friction angle at bottom of layer	=	41.000000	-
Subgrade k at top of layer		225.000000	
Subgrade k at bottom of layer	=	225.000000	pci

Layer 6 is strong rock (vuggy limestone)

Distance from top of pile to top of layer	=	13.500000 ft
Distance from top of pile to bottom of layer	=	19.500000 ft
Effective unit weight at top of layer	=	150.000000 pcf
Effective unit weight at bottom of layer	=	150.000000 pcf
Uniaxial compressive strength at top of layer	=	16700. psi
Uniaxial compressive strength at bottom of layer	=	16700. psi

(Depth of the lowest soil layer extends 0.000 ft below the pile tip)

**** Warning - Possible Input Data Error ****

Values entered for effective unit weight of rock were outside the limits of 50 pcf to 150 pcf.

The maximum input value, in layer 1, for effective unit weight = 150.00 pcf
This data may be erroneous. Please check your data.

Summary of Input Soil Properties
Samuel y St. English and a second sec

Layer	Soil Type	Layer	Effective	Cohesion	Angle of	Uniaxial	E50	
Num.	Name	Depth	Unit Wt.		Friction	qu	or	kpy
	(p-y Curve Type)	ft	pcf	psf	deg.	psi	krm	pci

1	Soft	0.5000	115.0000	14.4000	••	221	0.10000	4.4
	Clay	2.5000	115.0000	14.4000	**		0.10000	5.5
2	Soft	2.5000	120.0000	14.4000	.55	20	0.10000	200
	Clay	4.5000	120.0000	14.4000	120	**	0.10000	**
3	Sand	4.5000	120.0000	N/A	35.0000	(5.5)	**	
90.0000	(Reese, et al.)	6.5000	120.0000	25	35.0000		**	
90.0000 4	Sand	6.5000	120.0000		36.0000	5000	**	
225.0000	9							

	(Reese, et al.)	8.5000	120.0000	2.7	36.0000	==	5.7	
225.0000	Sand	8.5000	130.0000		41.0000	**	**	
225.0000 225.0000 6	(Reese, et al.)	13.5000	130.0000	**	41.0000	**	**	
	Strong Rock	13.5000	150.0000		**	16700.	**	22
	(Vuggy Limestone)	19.5000	150.0000		**	16700.	**	**

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 2

Load	Load	C	ondition		Condition	Axial Thrust	Compute Top y	Run Analysis
No.	Type		1	2		Force, 1bs	vs. Pile Length	
****							******	********
1	1	V =	67607 1bs	M =	77988211. in-lbs	60996.	No	Yes
2	1	V =	11337 lbs	M =	13064716: in-lbs	38105.	No	Yes

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Dimensions and Properties of Drilled Shaft (Bored Pile):

19.500000 ft Length of Section 84.000000 in Shaft Diameter Concrete Cover Thickness (to edge of long rebar) 3.875000 in 46 bars Number of Reinforcing Bars 60000. psi Yield Stress of Reinforcing Bars Modulus of Elasticity of Reinforcing Bars 29000000. psi 5542. sq. in. Gross Area of Shaft 58.271360 sq. in. Total Area of Reinforcing Steel 1.05 percent Area Ratio of Steel Reinforcement 3.846816 in Edge-to-Edge Bar Spacing 0.750000 in Maximum Concrete Aggregate Size 5.13 Ratio of Bar Spacing to Aggregate Size

Offset of Center of Rebar Cage from Center of Pile = 0.0000 in

Axial Structural Capacities:

......

Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As = 24470.662 kips
Tensile Load for Cracking of Concrete = -2609.093 kips
Nominal Axial Tensile Capacity = -3496.282 kips

Reinforcing Bar Dimensions and Positions Used in Computations:

Bar	Bar Diam.	Bar Area	Х	Υ
Number	inches	sq. in.	inches	inches
Manager	Thenes	200000000		
1	1.270000	1.266769	37.490000	0.00000
2	1.270000	1.266769	37.140816	5.104888
3	1.270000	1.266769	36.099769	10.114681
4	1.270000	1.266769	34.386252	14.936057
5	1.270000	1.266769	32.032183	19.479202
6	1.270000	1.266769	29.081416	23.659487
7	1.270000	1.266769	25.588917	27.399040
8	1.270000	1.266769	21.619745	30.628201
9	1.270000	1.266769	17,247838	33.286817
10	1.270000	1.266769	12.554637	35.325362
11	1.270000	1.266769	7.627566	36.705862
12	1.270000	1.266769	2.558408	37.402602
13	1.270000	1,266769	-2.558408	37.402602
14	1.270000	1.266769	-7.627566	36.705862
15	1.270000	1.266769	-12.554637	35.325362
16	1.270000	1.266769	-17.247838	33.286817
17	1.270000	1.266769	-21.619745	30.628201
18	1.270000	1,266769	-25.588917	27.399040
19	1.270000	1.266769	-29.081416	23.659487
20	1.270000	1.266769	-32.032183	19.479202
21	1.270000	1,266769	-34.386252	14.936057
22	1.270000	1.266769	-36.099769	10.114681
23	1.270000	1.266769	-37.140816	5.104888
24	1.270000	1.266769	-37.490000	0.00000
25	1.270000	1.266769	-37.140816	-5.104888
26	1.270000	1.266769	-36.099769	-10.114681
27	1.270000	1.266769	-34.386252	-14.936057
28	1.270000	1.266769	-32.032183	-19.479202
29	1.270000	1.266769	-29.081416	-23.659487
30	1,270000	1.266769	-25.588917	-27.399040
31	1.270000	1.266769	-21.619745	-30.628201
32	1.270000	1.266769	-17.247838	-33.286817
33	1,270000	1.266769	-12.554637	-35.325362
34	1.270000	1.266769	-7.627566	-36.705862
35	1,270000	1.266769	-2.558408	-37.402602
36	1.270000	1.266769	2.558408	-37.402602
37	1.270000	1.266769	7.627566	-36.705862
38	1.270000	1.266769	12.554637	-35.325362
39	1.270000	1.266769	17.247838	-33.286817
40	1.270000	1.266769	21.619745	-30.628201
41	1.270000	1.266769	25.588917	-27.399040
42	1.270000	1.266769	29.081416	-23.659487
43	1.270000	1.266769	32.032183	-19.479202
44	1.270000	1.266769	34.386252	-14.936057
45	1.270000	1.266769	36.099769	-10.114681
46	1.270000	1.266769	37.140816	-5.104888

NOTE: The positions of the above rebars were computed by LPile

Minimum spacing between any two bars not equal to zero = 3.847 inches between bars 31 and 32.

Ratio of bar spacing to maximum aggregate size = 5.13

Concrete Properties:

Compressive Strength of Concrete	=	4500. psi
Modulus of Elasticity of Concrete	=	3823676. psi
Modulus of Rupture of Concrete	=	-503.115295 psi
Compression Strain at Peak Stress	=	0.002001
Tensile Strain at Fracture of Concrete	=	-0.0001152
Maximum Coarse Aggregate Size	=:	0.750000 in

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 2

Number	Axial Thrust Force
	kips
1	38.105
2	60.996

Summary of Results for Nominal Moment Capacity for Section 1

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

Load No.	Axial Thrust kips	Nominal Mom. Cap. in-kip	Max. Comp. Strain
1	38.105	120807.238	0.00300000
2	60.996	121469.864	0.00300000

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axial Load No.	Resist. Factor	Nominal Ax. Thrust kips	Nominal Moment Cap in-kips	Ult. (Fac) Ax. Thrust kips	Ult. (Fac) Moment Cap in-kips	Bend. Stiff. at Ult Mom kip-in^2

1	0.65	38.105263	120807.	24.768421	78525	2.3996E+09
2	0.65	60.996491	121470.	39.647719	78955.	2.4140E+09
1	0.75	38.105263	120807.	28.578947	90605.	2.3176E+09
2	0.75	60.996491	121470.	45.747368	91102.	2.3318E+09
1	0.90	38.105263	120807.	34.294737	108727	1.5656E+09
2	0.90	60.996491	121470.	54.896842	109323.	1.5769E+09

Layering Correction Equivalent Depths of Soil & Rock Layers

Top of Equivalent

Layer No.	Layer Below Pile Head ft	Top Depth Below Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	F0 Integral for Layer lbs	F1 Integral for Layer lbs
1	0.5000	0.00	N . A .	No	0.00	1589.
2	2.5000	2.0001	Yes	No	1589.	1814.
3	4.5000	0.8985	No	No	3404.	35214.
4	6.5000	2.8178	Yes	No	38618.	82234.
5	8.5000	4.1757	Yes	No	120852.	565730.
6	13.5000	13.0000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, 1bs, and Load 2 = Slope, S, radians
Load Type 3: Load 1 = Shear, V, 1bs, and Load 2 = Rot. Stiffness, R, in-lbs/rad.
Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs

Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

 	Pile-head Load 1	Load Type 2	Pile-head Load 2	Axial Loading lbs	Pile-head Deflection inches		Max Shear in Pile lbs	Max Moment in Pile in-lbs
V, 1b V, 1b		M, in-lb M, in-lb	7.80E+07 1.31E+07	60996. 38105.		-0.00644 -2.48E-04	-1839836. -298155.	

Maximum pile-head deflection = 0.6135234298 inches Maximum pile-head rotation = -0.0064376210 radians = -0.368849 deg.

The analysis ended normally.

IBC 1807.3.2.1

Moment (ft·k)	4,874.26	
Shear (k)	50.71	
Caisson diameter (ft)	7	
Caisson height above ground (ft)	0.5	
Caisson height below ground (ft)	26	
Lateral soil pressure (lb/ft²)	386.54	
Ground to application of force, h (ft)	96.63	
Applied lateral force, P (lb)	50,705	
Lateral soil bearing pressure, S ₁ (lb/ft)	3,350.00	
Diameter, b (ft)	7	
Α	5.06	$= (2.34P)/(S_1b)$
Minimum depth of embedment, d (ft)	25.75	$= 0.5A[1 + (1 + (4.36h/A))^{1/2}]$

Avon Police Department

60 West Main St., Avon, CT 06001 Telephone (860) 409-4200 Facsimile (860) 409-4206

Paul J. Melanson, Chief of Police

"To Protect and To Serve"

September 8, 2023

State of Connecticut Siting Council Ten Franklin Square New Britain, CT, 06051

Dear Council Members,

In reference to Council Petition No. 1547 – SBA Communications Corporation proposed replacement of an existing telecommunications facility located at 277 Huckleberry Hill Road, Avon, Connecticut, Motorola Solutions plans to commence installation of public safety communications equipment at the site in April of 2024.

Sincerely,

Paul Melanson Chief of Police

CC. Ken Baldwin

