STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

IN RE:	:	
	:	
A PETITION FOR A DECLARATORY	:	PETITION NO.
RULING ON THE NEED TO OBTAIN A	:	
SITING COUNCIL CERTIFICATE FOR THE	:	
PROPOSED MODIFICATION OF AN	:	
EXISTING WIRELESS	:	
TELECOMMUNICATIONS FACILITY AT	:	
41 MANITOCK HILL ROAD,	:	JUNE 21, 2022
WATERFORD. CONNECTICUT		

PETITION FOR A DECLARATORY RULING: INSTALLATION HAVING NO SUBSTANTIAL ADVERSE ENVIRONMENTAL EFFECT

I. Introduction

Pursuant to Sections 16-50j-38 and 16-50j-39 of the Regulations of Connecticut State Agencies ("R.C.S.A."), DISH Wireless, LLC ("DISH") hereby petitions the Connecticut Siting Council (the "Council") for a declaratory ruling ("Petition") that no Certificate of Environmental Compatibility and Public Need ("Certificate") is required under Section 16-50k(a) of the Connecticut General Statutes ("C.G.S.") for the modification of an existing wireless telecommunications facility at 41 Manitock Hill Road in Waterford, Connecticut (the "Existing Facility").

II. Existing Facility

The Existing Facility is located on an approximately 5-acre wooded parcel that is owned by the City of New London and is the site of a Water Tank. The Facility consists of a 136-foot self-support tower and associated compound, which is owned by Crown Castle, and currently includes the telecommunications equipment of several wireless carriers. **Attachment 1** contains the owner's authorization permitting DISH to file this Petition. The Facility was originally approved by the Town of Waterford Planning & Zoning Commission on September 29, 1997, as documented in **Attachment 2**.

III. DISH Facility

DISH's proposed facility is illustrated on the plans submitted as Attachment 3. DISH proposes the shared use of the Existing Facility to provide FCC licensed services. DISH will install three (3)) 600/1900 MHz 5G antennas and six (6) remote radiohead units (RRH) on a new platform mount installed at the centerline height of approximately 87' AGL.

DISH has confirmed that the Existing Facility is capable of supporting the addition of DISH's antennas and tower mounted equipment, as documented in the tower Structural Analysis Report annexed hereto as **Attachment 4**, and once new mounts are installed as documented in the Mount Analysis Report annexed hereto as **Attachment 5**.

DISH's 5' x 7' lease area is located to the West of the tower and adjacent to an existing covered equipment pad. In order to fully enclose its ground equipment, DISH will install a 9'-0" x 9'-0" fence extension. The new section of fence will match the existing compound fence. Within its lease area, DISH will install a 5' x 7' steel platform for its ground equipment, supported by four (4) 12" x 12" footpads at grade.

Installation of DISH's facility will cost approximately \$48,000 and will take approximately two (2) weeks to complete. Construction will occur during normal business hours, or as allowed by the tower and/or property owner.

IV. The Proposed Modification Will Not Have A Substantial Adverse Environmental Effect

1. <u>Physical Environmental Effects</u>

The attachment of DISH's antennas to the existing tower, and the installation of radio and electrical equipment within the expanded compound will not involve a significant alteration to the physical and environmental characteristics of the Property. No native trees will need to be removed and no on-site or off-site wetlands or watercourses will be impacted by the proposed facility expansion.

2. <u>Visual Effects</u>

Given the height of the existing tower, 136' AGL, which has existing antennas at multiple levels, DISH's proposed antenna installation at a centerline height of approximately 87' AGL would have a minimal visual impact. The proposed compound expansion will impact only a portion of the existing fenced perimeter and will also have a minimal visual impact.

3. FCC Compliance

Radio frequency ("RF") emissions resulting from DISH's shared use of the Existing Facility will be well below the standards adopted by the Federal Communications Commission ("FCC"). Included in **Attachment 6** is a Radio Frequency Emissions Analysis Report prepared by EBI Consulting. This report confirms that the modified facility will operate well within the RF emission standards established by the FCC.

V. Notice to the City, Property Owner and Abutting Landowners

On June 21, 2022, a copy of this Petition was sent to Robert Brule, First Selectman and Abby Piersall, Planning Director for the Town of Waterford. A notice of DISH's intent to file this Petition was also sent to the owners of land that may be considered to abut the Property. Included in **Attachment 7** is a sample abutter's letter and the list of those abutting landowners who were sent notice.

VI. Conclusion

Based on the information provided above, the Petitioners respectfully requests that the Council issue a determination in the form of a declaratory ruling that the installation of a temporary tower at the Property will not have a substantial adverse environmental effect and does not require the issuance of a Certificate of Environmental Compatibility and Public Need pursuant to § 16-50k of the General Statutes.

Respectfully submitted,

Denise Sabo Northeast Site Solutions Agent for DISH Wireless (860) 209-4690 denise@northeastsitesolutions.com

Attachments

Cc: Robert Brule, First Selectman & Waterford Town Hall 15 Rope Ferry Road Waterford, CT 06385

Abby Piersall, Planning Director Waterford Town Hall 15 Rope Ferry Road Waterford, CT 06385

City of New London - Property Owner Water Department 15 Masonic Street New London, CT 06320

Crown Atlantic Company - Tower Owner

ATTACHMENT 1

4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application Crown Castle telecommunications site at: 41 MANITOCK HILL ROAD, WATERFORD, CT 06385-2000

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: Customer Site ID: Site Address: 876338/WATERFORD BOBOS00882A/ 41 Manitock Hill Road, Waterford, CT 06385-2000

Date:

Crown Castle

By:

6/10/2022

Richard Zajac Site Acquisition Specialist

41 MANITOCK HILL ROAD

Location	41 MANITOCK HILL ROAD	Mblu	117/ / 4375/ /
Acct#	00395700	Owner	NEW LONDON CITY OF
Assessment	\$9,180	Appraisal	\$13,110
PID	4375	Building Count	1

Current Value

	Appraisal		
Valuation Year	Improvements	Land	Total
2017	\$2,250	\$10,860	\$13,110
	Assessment		
Valuation Year	Improvements	Land	Total
2017	\$1,58	0 \$7,600	\$9,180

Parcel Addreses

-	Additional Addresses	
	No Additional Addresses available for this parcel	

Owner of Record

Owner	NEW LONDON CITY OF	Sale Price	\$0
Co-Owner	WATER DEPT	Certificate	
		Book & Page	0173/0256
		Sale Date	06/11/1968
		Instrument	00

Ownership History

		Ownership Histo	ry		
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
NEW LONDON CITY OF	\$0		0173/0256	00	06/11/1968

Building Information

Bath Style: Kitchen Style: Num Kitchens Fireplace(s) Extra Opening(s) Gas Fireplace(s) % Attic Fin LF Dormer Foundation Bsmt Gar(s) Bsmt % SF FBM SF Rec Rm

Year Built: Living Area: 0 Replacement Cost: \$0

Building Percent Good: Building Attributes Field Description Style Outbuildings Model Grade: Stories Occupancy Exterior Wall 1 Exterior Wall 2 Roof Structure Roof Cover Interior Wall 1 Interior Wall 2 Interior Flr 1 Interior FIr 2 Heat Fuel Heat Type: AC Percent Total Bedrooms: Full Bthrms: Half Baths: Extra Fixtures Total Rooms:

Building Photo

(http://images.vgsi.com/photos/WaterfordCTPhotos//default.jpg)

Building Layout

Building Layout

(http://images.vgsi.com/photos/WaterfordCTPhotos//Sketches/4375_4375.j

Building Sub-Areas (sq ft)	<u>Legend</u>
No Data for Building Sub-Areas	

Fin Bsmt Qual	
Bsmt Access	
Usrfld 300	
Usrfld 301	

Extra Features

Extra Features	Legend
No Data for Extra Features	

Land

Land Use		Land Line Valuation	
Use Code	109	Size (Acres)	5.5
Description	Vacant W/ OB	Frontage	0
Zone	R-40	Depth	0
Neighborhood	600	Assessed Value	\$7.600
Alt Land Appr	No	Appraised Value	\$10,860
Category		2012 - 20	

Outbuildings

	Outbuildings					
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
SHD1	Shed	FR	Frame	200.00 S.F.	\$2,250	1

Valuation History

Appraisal				
Valuation Year	Improvements	Land	Total	
2020	\$2,250	\$10,860	\$13,110	
4000	\$2,250	\$10,860	\$13,110	

Assessment							
Valuation Year	Improvements	Land	Total				
2020	\$1,580	\$7,600	\$9,180				
4000	\$1,580	\$7,600	\$9,180				

ATTACHMENT 2

● VOL. 496 PAGE 0358 TOWN OF WATERFORD PLANNING & ZONING COMMISSION

NOTICE OF GRANT OF A SPECIAL PERMIT

This is to certify that on September 29, 1997 the Waterford Planning & Zoning Commission granted Special Permit #97-112/304.

Owner of Record: City of New London

Address: 41 Manitock Hill Road

Description of Premises:

As recorded in Volume 173, Page 256 of the Waterford Land Records.

Nature of Special Permit: Special Permit granted for the construction of a 140 foot lattice design communications tower by Sprint. Co-location for additional carriers is provided for on this tower.

Applicable Zoning Regulations: Section 3.6, 5.2.1, 5.2.3 and 23.

Permit findings, stipulations and conditions are filed in the office of the Town Clerk as stated in the minutes of the Planning & Zoning Commission meeting of September 29, 1997.

PLANNING & ZONING COMMISSION

By: Pamela Hagerman

Recording Secretary Planning & Zoning Commission

This notice is to be recorded on the land records of the Town of Waterford, indexed in the Grantor's Index under the name of the record owner.

RECEIVED FOR RECORD 41 02 PM. ATTEST

ATTACHMENT 3

DISH Wireless L.L.C. SITE ID: BOBOS00882A

DISH Wireless L.L.C. SITE ADDRESS:

41 MANITOCK HILL ROAD WATERFORD, CT 06385-2000

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES <u>CODE TYPE</u> <u>CODE</u> 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS BUILDING MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS

ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEA	
	SHEET TITLE	SHEET NO.
	TITLE SHEET	T-1
	ABUTTER MAP	Z-1
	WETLANDS MAP	Z-2
	OVERALL AND ENLARGED SITE PLAN	A-1
	ELEVATION, ANTENNA LAYOUT AND SCHEDULE	A-2
	EQUIPMENT PLATFORM AND H-FRAME DETAILS	A-3
	EQUIPMENT DETAILS	A-4
	EQUIPMENT DETAILS	A-5
L	EQUIPMENT DETAILS	A-6
	ELECTRICAL/FIBER ROUTE PLAN AND NOTES	E-1
	ELECTRICAL DETAILS	E-2
	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	E-3
	GROUNDING PLANS AND NOTES	G-1
	GROUNDING DETAILS	G-2
	GROUNDING DETAILS	G-3
	RF CABLE COLOR CODE	RF-1
THE FACILITY IS UNMANN FOR ROUTINE MAINTENAN	LEGEND AND ABBREVIATIONS	GN-1
DRAINAGE. NO SANITARY	GENERAL NOTES	GN-2
	GENERAL NOTES	GN-3
	GENERAL NOTES	GN-4
11"x17" PL(
CONTRAC THE JOB SITE. AND		

THIS IS NOT APPROVED I THE PROJEC	T AN EQUIN CT GI	ALL II VALENT ENERAL
TOWER SCO INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL REMOVE	PE ((3) (3) PRO (6) (1) (1) (3) EXIS	DF WOF PROPC PROPC PROPC PROPC PROPC DOUBL
GROUND SC INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL UNSTALL UTILIZE	OPE (1) (1) (1) (1) (1) (1) (1) (1) PRO PRO EXIS	OF WO PROPO PROPO PROPO PROPO PROPO PROPO PROPO PROPO PROPO POSED POSED TING M

	SITE INFORMATION		PROJECT DIRECTORY		
	PROPERTY OWNER: ADDRESS:	CITY OF NEW LONDON WATER DEPT 15 MASONIC ST NEW LONDON, CT 06320	APPLICANT:	DISH Wireless L.L.C. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120	
SCOPE OF WORK DT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE.	TOWER TYPE: Tower co site id:	SELF-SUPPORT 876338	TOWER OWNER:	CROWN CASTLE USA INC. 2000 CORPORATE DR. CANONSBURG, PA 15317 (877) 486–9377	
ECT GENERALLY CONSISTS OF THE FOLLOWING: OPE OF WORK: (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) (3) PROPOSED SECTOR FRAMES PROPOSED JUMPERS (6) PROPOSED RRUS (2 PER SECTOR) (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) (1) PROPOSED HYRPID CARLE	TOWER APP NUMBER: COUNTY: LATITUDE (NAD 83):	572906 NEW LONDON 41 [.] 21 ['] 16.70 ["] N 41.354639 N	SITE DESIGNER:	NB+C ENGINEERING SERVICES, LLC 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092	
(1) PROPOSED HIBRID CABLE (3) DOUBLE Z-BRACKETS (1 PER SECTOR) E EXISTING ABANDONED ANTENNA MOUNT COPE OF WORK: (1) PROPOSED METAL PLATFORM (1) PROPOSED ICE BRIDGE	LONGITUDE (NAD 83): ZONING JURISDICTION: ZONING DISTRICT:	-72'9'1.60"W -72.150444W TOWN OF WATERFORD R-40 - LOW DENSITY	SITE ACQUISITION	: CORWIN DIXON CORWIN.DIXON@CROWNCASTLE.CC	
 (1) PROPOSED PPC CABINET (1) PROPOSED EQUIPMENT CABINET (1) PROPOSED POWER CONDUIT (1) PROPOSED TELCO CONDUIT (1) PROPOSED TELCO-FIBER BOX (1) PROPOSED GPS UNIT (1) PROPOSED FIBER NID (IF REQUIRED) 	PARCEL NUMBER: OCCUPANCY GROUP:	RESIDENTIAL 152–0395700 U	CONSTRUCTION N	IANAGER: JAVIER SOTO JAVIER.SOTO@DISH.COM ARVIN SEBASTIAN ARVIN.SEBASTIAN@DISH.COM	
PROPOSED FIBER NID (IF REQUIRED) PROPOSED FENCE EXPANSION PROPOSED 9'-0" GATE EXISTING METER AND DISCONNECT	CONSTRUCTION TYPE: POWER COMPANY: TELEPHONE COMPANY:	II-B NORTHEAST UTILITIES COMCAST			
SITE PHOTO		DIRE	CTIONS		
	DIRECTIONS FRO START OUT GOI TURN LEFT ONT HWY/CT-349. I TURN LEFT ONT ROCK RIDGE RD OF WATER TOW	OM GROTON – NEW LOND NG NORTHWEST ON TOWE TO RAINVILLE AVE. TAKE MERGE ONTO I–95 S VIA TO WATERFORD PKWY. TU 9. FOLLOW ROAD TO END ER	ON AIRPORT: R AVE. TURN THE 1ST RIGH THE RAMP ON RN LEFT ONTC AND TAKE AC	LEFT ONTO POQUONNOCK RD. T ONTO CLARENCE B SHARP N THE LEFT. TAKE EXIT 81. CROSS RD. TURN LEFT ONTO CCESS ROAD TO SITE AT BASE	
	ge Rd Rock	VICIN	ITY MAP	Yorkshire Dr	
UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM Image: Construction of the constru	rist 😂	SITE LOCATION	ill Rd	PRITZ Pond	
GENERAL NOTES TY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED NE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL PROPOSED.	Nana's By	Dunkin'		Put Dr	
1"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED	Jortan Commons	aterford, CT	KOG F	Graham St	
CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON				Cilgou.	

NO SCALE

CONTRAC DB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

PCTEL OPSCL-TMG-SPI-40NCB DIMENSIONS (DIAXH) MM/INCH 81x184mm 3.2"x7.25" 075 Ibs CONNECTOR N-FEMALE FREQUENCY RANGE 1590 ± 30M			IOP IDP SIDE	1	
DESC	QTY BOBOS00882A		NU SCALE	1	CL GATE POST (TYP)
TWR TYPE: HYBRID BEND RADIUS	SELF-SUPPORT 30"	The preparer must deter This is the RAD center for	mine the lengths below the antennas on towe	ow. ers.	TENSION BAR:
RAD CENTER (ft)	87.0	For a rooftop, this is the t sections of	otal length of all verti the hybrid.	cal	GALVANIZED ×
ICE BRIDGE HEIGHT (ft)	10.0	This is the height of t	he bridge coverings.		GATE POSTS: 2 7/8" O.D.
ICE BRIDGE LENGTH (ft)	30.0	This is the length of the to more than one ice bridge lengths of hybrid if thi	tal ice bridge covering is used or total horizo is is inside a building.	gs, if ntal	SCHEDULE 40 PIPE (GALVANIZED).
LENGTH ACROSS PLATFORM (ft)	6.0	This is the length from the up the ice bridge or	e cabinet to the first b inside a radio room.	end	
LENGTH FROM TOWER TOP TO OVP (ft)	6.0	This is the horizontal leng OVP at the antenna leve lengths of hybrid on a	gth from the tower to t el or the total horizonta building or large self	the al	
VERTICAL LENGTH OF HYBRID INTO TOWER TOP OVP (ft)	3.0	Supporting This is the vertical length of the tower top OVP to the b	e tower. of hybrid that comes o peginning of the first b	ut to pend	(TYP) ROWN YP)
Additional Excess Hybrid to be added (To be determined by preparer)	LENGTH (ft)		ne monopole port.]	3,-6" 1" (1" (1" (1" (1" (1" (1" (1" (1" (1" (
Total Hybrid Length to Order (Rounded up to nearest whole number)	148				
HYBRID CABLE CAL			NO SCALE	Λ	TVI
III BIND CABLE CAL	<u>COLATOR</u>		NU SCALL	4	
NOT USED			NO SCALE	7	
				/	

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

- 1. CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

NO SCALE

SEE TRENCHING NOTE 1 WOR WITH SEEDING REAS, OR DR CONCRETE AL CROSS INCLUDING, SOIL PING, AND GOVERNED SHA AVATION L BE JANCE WITH NAL C) OR AS OCAL IEVER IS T.	KFILL PER SITE K SPECIFICATION GENERAL NOTES PE TO SUIT SOIL DITION IN ACCOR LOCAL REGULAT TRENCHING NOT	S 5) DANCE TONS E 2 E SITE S	DISH Wireless L.L.C. PROVIDES 12AWG WIRE (6' TAIL) PROPOSED DISH Wireless L.L.C. UNISTRUT PROPOSED DISH Wireless L.L.C. 10 AMP DISTRIBUTION BREAKER PROPOSED DISH Wireless L.L.C. 12 AWG WIRE PROPOSED DISH Wireless L.L.C. 1-1/2" POWER FROM CABINET DISH Wireless L.L.C. INSTALLS 1-1/2" CONDUITS FOR POWER AND FIBER TO CABINET
L UNDERGROUND TRENCH DETAIL	NO SCALE	2	DARK TELCO BOX – INTERIOR WI
NOT USED	NO SCALE	5	<u>NOT USED</u>
<u>NOT USED</u>	NO SCALE	8	<u>NOT USED</u>

PROPOSED CHARLES PANEL SCHEDULE																
LOAD SERVED	VOLT (WA	AMPS TTS)	TRIP	СКТ	PHASE		PHASE		PHASE		PHASE		TRIP	VOLT (WA	AMPS TTS)	LOAD SERVED
	L1	L2					_			L1	L2					
PPC GFCI OUTLET	180		15A	1		А	$\vdash \uparrow \neg$	2	304	2880		ABB/GE INFINITY				
CHARLES GFCI OUTLET		180	15A	3	\leq	В	$\vdash \frown$	4	JUA		2880	RÉCTIFIER 1				
-SPACE-				5	\leq	А		6	704	2880		ABB/GE INFINITY				
-SPACE-				7	\leq	В		8	JUA		2880	RÉCTIFIER 2				
-SPACE-				9	\Box	А		10	704	2880		ABB/GE INFINITY				
-SPACE-				11	\sim	В		12	SUA		2880	RÉCTIFIER 3				
-SPACE-				13	\leq	А		14	704	2880		ABB/GE_INFINITY				
-SPACE-				15	\Box	В		16	30A		2880	RECTIFIER 4				
-SPACE-				17	\Box	Α		18				-SPACE-				
-SPACE-				19	\leq	В		20				-SPACE-				
-SPACE-				21	\sim	А		22				-SPACE-				
-SPACE-				23	\Box	В		24				-SPACE-				
VOLTAGE AMPS	180	180								11520	11520					
200A MCB, 1¢, 24 SPA	CE, 120,	/240V	L1			L2				1						
MB RATING: 65,000 AIC			11700 11700		VOLTAGE AMPS											
		98				98		AM	PS							
			98 MAX		X AMPS											
				12	23			MAX	X 125%							

RVICE ENTRANCE PROPOSED POWER PROTECTIVE CABINET OVERALL UL LISTED POWER CENTER,		CHARLES NETWORK CABINET	THE ENGINEER OF RECORD HA CALCULATIONS AND THE AIC RA EQUIPMENT AND THE ELECTRICA
R 200A 200A N3R, 65K/10K AIC MAIN BREAKER WITH NTERLOCKED GENERATOR	(2) PROPOSED		THE ENGINEER OF RECORD HAT CALCULATIONS AND ALL BRANC (LISTED ON T-1) ARTICLE 210.
N FEED, 200A 65K AIC	0.75" EMT CONDUITS		THE (2) CONDUITS WITH (4) C THE ADJUSTMENT FACTOR OF & 2020 NEC TABLE 310.15(C)(1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		FOR RECTIFIER 1	#12 FOR #10 FOR #8 FOR #6 FOR
SPACE 07 08 30A PROPOSED 2 #10		FOR RECTIFIER 2	CONDUIT SIZING: AT 40% FILL 0.5" CONDUIT - 0.1 0.75" CONDUIT - 0.2
SPACE 11 12 30A PROPOSED 2 #10, 1 #10 CU GND. SPACE 13 14		FOR RECTIFIER 3	2.0" CONDUIT – 1.3 3.0" CONDUIT – 2.9 CABINET CONVENIENCE OUTLET
SPACE 15 16 30A PROPOSED 2 #10 SPACE 17 18		FOR RECTIFIER 4	#10 - 0.0 #10 - 0.0
SPACE SPACE SPACE SPACE SPACE SPACE SPACE	(1) PROPOSED 0.5" EMT CONDUIT		TOTAL 0.5" EMT CONDUIT IS ADEQUAT INCLUDING GROUND WIRE, AS I
SPACE 23 24 SPACE PROPOSED 2 #10, 1 #10 CU GND.		FOR CONVENIENCE OUTLET	RECTIFIER CONDUCTORS (2 COL #10 - 0.0
RCUIT WIRING SUPPLYING RECTIFIERS ARE TO BE RATED UI 1015-105	STC 600V AND PVC INS	SULATED IN THE SIZES SHOWN	TOTAL
E-LINE DIAGRAM. CONTRACTOR MAY SUBSTITUTE UL1015 WIRE FOR TH <u>REQUIRED:</u> P BREAKER — SQUARE D P/N:Q0230 P BREAKER — SQUARE D P/N:Q0115	HWN-2 FOR CONVENIEN	CE OUTLET BRANCH CIRCUIT.	INCLUDING GROUND WIRE, AS I PPC FEED CONDUCTORS (1 CC 3/0 - C #6 - C
			3.0" SCH 40 PVC CONDUIT IS
PPC UNE-LINE DIAGRAM			

<u>NOTES</u>			
AS PERFORMED ALL REQUIRED SHO RATINGS FOR EACH DEVICE IS ADEQ CAL SYSTEM.	PRT CIRCUIT PUATE TO PROTE	ECT THE	
AS PERFORMED ALL REQUIRED VOL CH CIRCUIT AND FEEDERS COMPLY D.19(A)(1) FPN NO. 4.	TAGE DROP WITH THE NEC		
CURRENT CARRYING CONDUCTORS E 80% PER 2014/17 NEC TABLE 31) FOR UL1015 WIRE.	EACH, SHALL AF 0.15(B)(3)(a) (PPLY OR	wireless
15A-20A/1P BREAKER: 0.8 x 30 25A-30A/2P BREAKER: 0.8 x 40 35A-40A/2P BREAKER: 0.8 x 55 45A-60A/2P BREAKER: 0.8 x 75	A = 24.0A A = 32.0A A = 44.0A A = 60.0A		5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
PER NEC CHAPTER 9, TABLE 4, A 122 SQ. IN AREA 213 SQ. IN AREA 316 SQ. IN AREA 907 SQ. IN AREA	ARTICLE 358.		
CONDUCTORS (1 CONDUIT): USING	G THWN-2, CU.		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	IN IN <ground IN</ground 		TOTALLY COMMITTED. NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300
TE TO HANDLE THE TOTAL OF (3)	WIRES,		ELKRIDGE, MD 21075 (410) 712-7092
NDUITS), USING ULAATE OU			
$\begin{array}{rcl} .0266 & \text{SQ. IN X 4} &=& 0.1064 & \text{SQ.} \\ .0082 & \text{SQ. IN X 1} &=& 0.0082 & \text{SQ.} \\ &=& 0.1146 & \text{SQ.} \end{array}$	IN IN <bare grou<br="">IN</bare>	JND	NUMBER CONNECTION
ATE TO HANDLE THE TOTAL OF (5) INDICATED ABOVE.	WIRES,		(Can a cz
ONDUIT): USING THWN, CU.			PEN.0028997
0.2679 SQ. IN X 3 = 0.8037 SQ.	IN ZOROLIND		BO LICENSE?
			SSIONAL ENGININ
= 0.0344 SQ.			and the second second second
ADEQUATE TO HANDLE THE TOTAL INDICATED ABOVE.	. OF (4) WIRES	,	06/08/2022 KRUPAKARAN KOLANDAIVELU, P.E.
	NO SCALE	1	LICENSE #PEN.0028997
	NO JOALL		IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT
			DRAWN BY: CHECKED BY: APPROVED BY:
			BPC BRN TA
			RFDS REV #:
			CONSTRUCTION DOCUMENTS
			SUBMITTALS
			REV DATE DESCRIPTION
			0 11/12/2021 ISSUED FOR CONSTRUCTION
			1 03/11/2022 ISSUED FOR CONSTRUCTION
			2 00/00/2022 ISSUED FOR CONSTRUCTION
			876338
			DISH Wireless L.L.C.
			ROROSOORS74
			41 MANITOCK HILL ROAD
			WATERFORD, CT
			06385-2000
			SHEET TITLE
			ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
			SHEET NUMBER
			E-3
	NO SCALE	3	

EXISTING TOWER GROUND RING (FEILD VERIFY)			EXOTHERMIC CONNECTION MECHANICAL CONNECTION GROUND BUS BAR GROUND ROD
			GROUNDING
EXISTING SST/GUY TOWER			1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
BOND ICE BRIDGE SUPPORT POSTS TO GROUND RING BOND(s) (TYP ALL POSTS)			2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A C COMPLIANCE WITH NEC SECTION 250 AND DISH Wirel REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS
			3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO A
			<u>GROUNDING KE</u>
			A <u>Exterior ground ring:</u> #2 awg solid copper, buried grade, or 6 inches below the frost line and appr or footing.
			B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG
			C INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSU PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOM WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GI INSULATED CONDUCTOR.
			D <u>BOND TO INTERIOR GROUND RING:</u> #2 AWG SOLID TINNED PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR (BUILDING.
	NO SCALE	1	E <u>GROUND ROD:</u> UL LISTED COPPER CLAD STEEL. MINIMUM RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. G GROUND RING CONDUCTOR.
NOTES	<u>S</u>		\bigcirc Cell reference ground bar: point of ground refe frames. All bonds are made with #2 awg unless n
ANTENNAS AND OVP SHOWN A REFERENCING TO A SPECIFIC LAYOUT IS FOR REFERENCE P	ARE GENERIC AN MANUFACTURER PURPOSES ONLY	ND NOT THIS	COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GRC INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE PRESENT, THE CRGB MUST BE CONNECTED TO THE HATC
			 USING (2) TWO #2 AWG STRANDED GREEN INSULATED C H <u>EXTERIOR CABLE ENTRY PORT GROUND BARS:</u> LOCATED A TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER INSPECTION SLEEVE
			I <u>TELCO GROUND BAR:</u> BOND TO BOTH CELL REFERENCE C
PROPOSED #2 AWG STRANDED COPPER GREEN INSULATED (TYP)			J <u>Frame bonding:</u> the bonding point for telecom equisity is not isolated from the equipments metal framework
/ PROPOSED UPPER TOWER			(K) <u>INTERIOR UNIT BONDS:</u> METAL FRAMES, CABINETS AND INI OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STR INTERIOR GROUND RING.
GROUND BAR			L <u>FENCE AND GATE GROUNDING:</u> METAL FENCES WITHIN 7 F BONDED TO THE EXTERIOR GROUND RING SHALL BE BON TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEE GATE POST AND ACROSS GATE OPENINGS.
The second secon			M <u>Exterior unit bonds:</u> metallic objects, external to to the exterior ground ring. Using #2 tinned soli
			N <u>ICE BRIDGE SUPPORTS:</u> EACH ICE BRIDGE LEG SHALL BE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELE GROUND RING.
PROPOSED #2 AWG STRANDED			O DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUI CONDUCTOR FROM THE DC POWER SYSTEM COMMON RET REFERENCE GROUND BAR
PROPOSED 4"x6"x1/4" COPPER			P TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICA
SECTOR GROUND BUSSBAR (TYP OF 3) PROPOSED BUSS BAR (TYP.)			REFER TO DISH Wireless L.L.C. GROUNDING NOTES.
N	NO SCALE	2	GROUNDING KFY NOTF
-		<u>~</u>	

 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GROUND BAR, ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERMIC WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR LARGER. ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING. DO NOT INSTALL CABLE CROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CONDUCTOR DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BOLTED ON THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACTOR. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AS REQUIRED. EINSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHINERS). 	EXTERNAL TOTHED CLOSED BARREL, FOR ALL BLACK HEAT SHRINK UV RATED S/S NUT S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT WASHER S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING	PR INSULATION TO AGAINST THE PR BARREL	EXTERNAL INSPECTION WINDOW IN BARREL, REQUIRED FOR ALL INTERIOR TWO-HOLE CONNECTORS ALL INTERIOR TWO-HOLE CONNECTOR BARREL S/S NUT S/S LOCK WASHER S/S FLAT TINNED COPPER GROUNDING BAR	<section-header><section-header><text><text><text></text></text></text></section-header></section-header>
TYPICAL GROUNDING NOTES NO SCALE 1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE 2	TYPICAL INTERIOR TWO HOLE LUG NO SCALE 3	
NOTE: MINIMUM OF 3 THREADS TO BE VISIBLE (TYP) S/S SPLIT WASHER (TYP) S/S FLAT WASHER (TYP) UG (TYP) TIN COATED SOLID COPPER BUS BAR HINSTALLED IF REQUIRED				Of/OB/2022 KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997 MI IS A VIOLATION OF LAW FOR ANY PERSON, NULESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSE THE DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: BPC BRN TA RFDS REV #: CONSTRUCTION DOCUMENTS
LUG DETAIL NO SCALE 4	NOT USED	NO SCALE 5	NOT USED NO SCALE 6	SUBMITTALS
				REV DATE DESCRIPTION 0 11/12/2021 ISSUED FOR CONSTRUCTION 1 03/11/2022 ISSUED FOR CONSTRUCTION 2 06/08/2022 ISSUED FOR CONSTRUCTION 2 06/08/2022 ISSUED FOR CONSTRUCTION 2 06/08/2022 ISSUED FOR CONSTRUCTION 4 4 4 4 4
NOT USED NO SCALE 7	NOT USED	NO SCALE 8	NOT USED NO SCALE 9	

AWS (N66+N70+H–BLOCK) PURPLE NEGATIVE SLANT PORT ON ANT/RRH WHITE	Gigsh b b b b c b c b c c c b c c c c c c c c c c
OR GAMMA SECTOR GREEN	THE STREAM OF TH
	OCONSTRUCTION BOCUMENTS
3	SUBMITTALS REV DATE DESCRIPTION 0 11/12/2021 ISSUED FOR CONSTRUCTION 1 03/11/2022 ISSUED FOR CONSTRUCTION 2 06/08/2022 ISSUED FOR CONSTRUCTION
1	A&E PROJECT NUMBER 876338 DISH Wireless L.L.C. PROJECT INFORMATION BOBOSO0882A 41 MANITOCK HILL ROAD WATERFORD, CT 06385–2000 SHEET TITLE RF CABLE COLOR CODES SHEET NUMBER RF-1
4	

<u>LEGEND</u>

ABBREVIATIONS

	ANCHOR BOLT	IN	INCH
	ABOVE	INT	INTERIOR
	ALTERNATING CURRENT	LB(S)	POUND(S)
	ADDITIONAL	I F	LINEAR FEFT
	ABOVE FINISHED FLOOR	LTE	LONG TERM EVOLUTION
	ABOVE FINISHED GRADE		
	ABOVE GROUND LEVEL		
	AMPERACE INTERRUPTION CAPACITY		
		MB	MACHINE BOLI
		MECH	MECHANICAL
	ALIERNAIE	MFR	MANUFACTURER
	ANTENNA	MGB	MASTER GROUND BAR
Х	APPROXIMATE	MIN	MINIMUM
	ARCHITECTURAL	MISC	MISCELLANEOUS
	AUTOMATIC TRANSFER SWITCH	MTL	METAL
	AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
	BATTERY	MW	MICROWAVE
	BUILDING		
	BLOCK		NATIONAL ELECTRIC CODE
		INIM	NEWION METERS
	BLUCKING	NO.	NUMBER
	BEAM	#	NUMBER
	BARE TINNED COPPER CONDUCTOR	NTS	NOT TO SCALE
	BOTTOM OF FOOTING	OC	ON-CENTER
	CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
	CANTILEVERED	OPNG	OPENING
	CHARGING		
	CEILING	F/C	
	CLEAR	PCS	PERSONAL COMMUNICATION SERVICES
		PCU	PRIMARY CONTROL UNIT
	COMMON	PRC	PRIMARY RADIO CABINET
		PP	POLARIZING PRESERVING
	CONCRETE	PSF	POUNDS PER SQUARE FOOT
R	CONSTRUCTION	PSI	POUNDS PER SQUARE INCH
	DOUBLE	PT	PRESSURE TREATED
	DIRECT CURRENT	PWR	
	DEPARTMENT		
	DOUGLAS FIR		QUANTIT
	DIAMETER	RAD	RADIUS
		RECT	RECTIFIER
		REF	REFERENCE
		REINF	REINFORCEMENT
	DRAWING	REQ'D	REQUIRED
	DOWEL	RET	REMOTE ELECTRIC TILT
	EACH	RF	RADIO FREQUENCY
	ELECTRICAL CONDUCTOR	RMC	
	ELEVATION		RIGID METALLIC CONDON
	ELECTRICAL		REMOTE RADIO HEAD
	ELECTRICAL METALLIC TUBING	KKU	REMOTE RADIO UNIT
	ENGINEER	RWY	RACEWAY
	FQUAI	SCH	SCHEDULE
		SHT	SHEET
		SIAD	SMART INTEGRATED ACCESS DEVICE
		SIM	SIMILAR
		SPEC	SPECIFICATION
	FABRICATION	SQ	SQUARE
	FINISH FLOOR	55	STAINI ESS STEFI
	FINISH GRADE	SU	STANDADD
	FACILITY INTERFACE FRAME		
	FINISH(ED)	SIL	SIEEL
	FLOOR	IEMP	
	έουνο	THK	THICKNESS
		ТМА	TOWER MOUNTED AMPLIFIER
	FACE OF CONCRETE	TN	TOE NAIL
	FACE OF MASUNRY	TOA	TOP OF ANTENNA
	FACE OF STUD	TOC	TOP OF CURB
	FACE OF WALL	TOF	TOP OF FOUNDATION
	FINISH SURFACE	TOP	τορ οε ριλτε (ρλαλρετ)
	FOOT	TOC	
	FOOTING	105	IUP UP SIEL
	GAUGE	IOW	TOP OF WALL
	GENERATOR	TVSS	TRANSIENT VOLTAGE SURGE SUPPRESSION
	GROUND FAULT CIRCUIT INTERRUPTER	TYP	TYPICAL
	GLUE LAMINATED REAM	UG	UNDERGROUND
		UL	UNDERWRITERS LABORATORY
		UNO	UNLESS NOTED OTHERWISE
	GLUBAL POSITIONING SYSTEM	UMTS	UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
	GROUND		LINITERRIDTIRIE DOWED SYSTEM (DO DOWED DI ANT)
	GLOBAL SYSTEM FOR MOBILE		VEDICIED IN SISTEM (DU FUWER PLANT)
	HOT DIPPED GALVANIZED	VIF	VERIFIED IN FIELD
	HEADER	W	WIDE
	HANGER	W/	WITH
	HEAT/VENTILATION/AIR_CONDITIONING	WD	WOOD
		WP	WEATHERPROOF
		WT	WEIGHT
	INTERIUR GRUUND RING		<u>-</u> ····

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS L.L.C. AND DISH WIRELESS L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

 CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
 THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY

DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

<u>GENERAL NOTES:</u>

BASIS.

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION 18. OCCURS OR FLEXIBILITY IS NEEDED. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE NEC. 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY). 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. • CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET • CONCRETE EXPOSED TO EARTH OR WEATHER: STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. • #6 BARS AND LARGER 2" 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR • #5 BARS AND SMALLER 1-1/2" EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR • CONCRETE NOT EXPOSED TO EARTH OR WEATHER: BETTER) FOR EXTERIOR LOCATIONS. • SLAB AND WALLS 3/4" 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. ● BEAMS AND COLUMNS 1-1/2" 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE 28. WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". 29. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. 30. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE. PHASE PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. TIE WRAPS ARE NOT ALLOWED. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER)

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL: TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT. #5 BARS AND LARGER 60 ksi DRAWINGS: THE NATIONAL ELECTRICAL CODE. 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND

AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE. psf. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45. 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS: #4 BARS AND SMALLER 40 ksi IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. ELECTRICAL INSTALLATION NOTES: 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES. AND TRIP HAZARDS ARE ELIMINATED. 3. 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION. 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. 6. CONFIGURATION. WIRE CONFIGURATION. POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S). 8. 9. WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED. BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).

RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND 14. NEC.

15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

wireless 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 TOTALLY COMMITTED. NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092 06/08/2022 KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT **PROFESSIONAL ENGINEER** LICENSE #PEN.0028997 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: BRN RPC TA RFDS REV #: ___ CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION 0 11/12/2021 ISSUED FOR CONSTRUCTION 1 03/11/2022 ISSUED FOR CONSTRUCTION 2 06/08/2022 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 876338 DISH Wireless L.L.C. PROJECT INFORMATION BOBOS00882A 41 MANITOCK HILL ROAD WATERFORD, CT 06385-2000 SHEET TITLE GENERAL NOTES SHEET NUMBER GN-3

GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. 11.

ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS. 13.

ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND 14. BAR.

APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND 15. CONNECTIONS.

ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. 16.

17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. All grounds that transition from below grade to above grade must be #2 bare solid tinned copper in 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

ATTACHMENT 4

Date: November 26, 2021

Morrison Hershfield 1455 Lincoln Park, Suite 500 Atlanta, GA 30346 (770)379-8500

Subject:	Structural Analysis Report		
Carrier Designation:	<i>DISH Network</i> Co-Locate Site Number:	BOBOS00882A	
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	876338 Waterford 671529 2048514 572906 Rev. 2	
Engineering Firm Designation:	Morrison Hershfield Project Num	ber: CN8-185R3 / 2200039	
Site Data:	41 Manitock Hill Road, Waterford CT 06385-2000 Latitude <i>41° 21' 16.7"</i> , Longitude 136 Foot – PiRod Self Support To	, New London County, -72° 9′ <i>1.6″</i> ower	

Morrison Hershfield is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity- 66.9%

This analysis utilizes an ultimate 3-second gust wind speed of 126 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 – Analysis Criteria.

Respectfully submitted by:

G. Lance Cooke, P.E. (CT License No. PEN.0028133) Senior Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Non-Carrier Equipment To Be Removed

Table 3 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary) Table 6 - Tower Component Stresses vs. Capacity – LC7 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 136 ft self-support tower designed by PiRod Manufactures, Inc.

The tower has been modified per reinforcement drawings prepared by Vertical Structures, Inc. in January 2009. Reinforcement consists of secondary horizontal members between the elevations 90' and 95' and 1-1/4" tie-rod assemblies for tower legs from 80' to 90'.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	126 mph
Exposure Category:	В
Topographic Factor:	1
Ice Thickness:	1 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
87.0	87.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe		1-3/8
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605	1	
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MTC3975083 (3)		

Table 2 - Non-Carrier Equipment To Be Removed

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
87.0	89.0	3	kathrein	800 10504 w/ Mount Pipe	6	7/8
		3	kathrein	860 10118		
	87.0	1	-	Sector Mount [SM 104-3]		

Table 3 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	137.0	3	rfs/celwave	APXVSPP18-C-A20 w/ Mount Pipe		
136.0		3	rfs/celwave	APXVTM14-C-120 w/ Mount Pipe	4	1-1/4
		3	alcatel lucent	TD-RRH8X20-25		
	136.0	1	-	Platform Mount [LP 405-1]		
Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
------------------------	-------------------------------------	--------------------------	-------------------------------	---------------------------------------	----------------------------	---------------------------
	126.0	3	rfs/celwave	IBC1900BB-1		
	130.0	3	rfs/celwave	IBC1900HG-2A		
		2	alcatel lucent	1900MHZ RRH (65MHZ)		
134.0		1	alcatel lucent	1900MHz RRH (65MHz)	-	-
	134.0	3	alcatel lucent	800MHZ 2X50W RRH W/FILTER		
		1	-	Pipe Mount [PM 601-3]		
107.0	107.0	12	decibel	DB844H90E-XY w/ Mount Pipe	10	4 4 / 4
127.0	127.0	1	-	Sector Mount [SM 411-3]		1-1/4
		3	ericsson	AIR6449 B41_T-MOBILE		
	110.0	3	ericsson	RADIO 4449 B71 B85A_T- MOBILE		
117.0	110.0	3	ericsson	RADIO 4460 B2/B25 B66_TMO	1	1_5/8
		3	rfs/celwave	APXVAALL24_43-U- NA20_TMO	-	1-5/0
	117 0	3	site pro 1	12' HD V-Frame [#VFA12-HD]		
	117.0	9	site pro 1	8' Antenna Pipe [#P2STD]		
		3	antel	BXA-80063/4CF w/ Mount Pipe		
		6	jma wireless	MX06FRO660-03 w/ Mount Pipe		
		3	VZW	Sub6 Antenna - VZS01 w/ Mount Pipe		
	107.0	3	samsung telecommunications	RFV01U-D1A	-	
107.0		3	samsung telecommunications	RFV01U-D2A	- 14	1-5/8
107.0		12	site pro 1	Crossover Plate [#VZWSMART- MSK1]		
		3	site pro 1	Tieback Assembly [#VZWSMART-SFK1]		
		3	site pro 1	V-Bracing Kit [#VZWSMART- SFK3]		
		1	commscope	RC2DC-3315-PF-48		
		1	tower mounts	Sector Mount [SM 402-3]		
		1	cci antennas	DMP65R-BU4D w/ Mount Pipe		
		1	cci antennas	DMP65R-BU6D w/ Mount Pipe		
		1	cci antennas	DMP65R-BU8D w/ Mount Pipe		
		1	cci antennas	OPA65R-BU4D w/ Mount Pipe	_	
		1	cci antennas	OPA65R-BU6D w/ Mount Pipe	6	1-1/4
97.0	97.0	1	cci antennas	OPA65R-BU8D w/ Mount Pipe	2	3/8
		3	powerwave technologies	7770.00 w/ Mount Pipe		
		3	ericsson	RRUS 4449 B5/B12		
		3	ericsson	RRUS 4478 B14_CCIV2		
		3	ericsson	RRUS 8843 B2/B66A_CCIV2		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	er Antenna Model		Feed Line Size (in)		
		6	powerwave technologies	LGP21401				
97.0 97.0	97.0	1	raycap	DC6-48-60-18-8F	-	-		
		1	raycap	DC9-48-60-24-8C-EV				
				3	kathrein	860 10118	w	
80.0	81.0	1	gps	GPS_A	1	1/2		
80.0		1	tower mounts	Side Arm Mount [SO 701-1]		1/2		
72.0	2 gps	GPS_A	2	1/2				
72.0 72.0		2	tower mounts	Side Arm Mount [SO 701-1]		1/2		

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	2035622	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	2068030	CCISITES
4-TOWER MANUFACTURER DRAWINGS	1441523	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2125417	CCISITES
4-POST-MODIFICATION INSPECTION	2376132	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 3 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Morrison Hershfield should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	136 - 133.625	Leg	1 1/2	2	-2.24	54.73	4.1	Pass
T2	133.625 - 130	Leg	1 1/2	14	-4.06	49.84	8.1	Pass
Т3	130 - 110	Leg	2	29	-35.06	117.05	30.0	Pass
T4	110 - 94.9427	Leg	2 1/4	107	-76.51	156.33	48.9	Pass
T5	94.9427 - 92.5938	Leg	2 1/4	149	-84.53	179.34	47.1	Pass

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T6	6 92.5938 - 90 Leg		2 1/4	161	-96.34	185.75	51.9	Pass
Т7	90 - 80	Leg	Pirod 105244 w/ (2) 1-1/4" Tie Rod	176	-104.30	265.00	39.4	Pass
Т8	80 - 60	Leg	Pirod 105217	184	-145.68	225.60	64.6	Pass
Т9	60 - 40	Leg	Pirod 105218	199	-179.88	315.72	57.0	Pass
T10	40 - 20	Leg	Pirod 105218	214	-209.37	315.72	66.3	Pass
T11	20 - 0	Leg	Pirod 105219	229	-236.35	419.86	56.3	Pass
T1	136 - 133.625	Diagonal	3/4	8	-0.92	5.77	15.9	Pass
T2	133.625 - 130	Diagonal	3/4	24	-1.33	5.88	22.7	Pass
Т3	130 - 110	Diagonal	7/8	40	-3.87	9.77	39.6	Pass
T4	110 - 94.9427	Diagonal	1	115	-5.08	14.70	34.6	Pass
T5	94.9427 - 92.5938	Diagonal	1	151	-5.36	14.41	37.2	Pass
T6	92.5938 - 90	Diagonal	1	166	-6.30	14.87	42.4	Pass
T7	90 - 80	Diagonal	L3x3x3/16	180	-7.52	25.34	29.7 66.4 (b)	Pass
Т8	80 - 60	Diagonal	L2 1/2x2 1/2x3/16	187	-6.33	14.57	43.5 58.1 (b)	Pass
Т9	60 - 40	Diagonal	L3x3x3/16	202	-5.81	20.18	28.8 48.1 (b)	Pass
T10	40 - 20	Diagonal	L3x3x3/16	217	-5.86	16.11	36.4 46.1 (b)	Pass
T11	T11 20 - 0 Diagonal		L3x3x5/16	232	-7.84	20.97	37.4	Pass
T2	133.625 - 130 Horizontal		3/4	16	-0.18	3.48	5.2	Pass
T3	130 - 110	Horizontal	3/4	43	-0.66	2.88	23.0	Pass
Т5	94.9427 - 92.5938	Secondary Horizontal	1 1/2	157	-1.46	50.44	2.9	Pass
Т6	92.5938 - 90	Secondary Horizontal	1 1/2	172	-1.67	49.85	3.3	Pass
T1	136 - 133.625	Top Girt	6x3/8	4	-0.65	5.14	12.7	Pass
Т3	130 - 110	Top Girt	7/8	31	-0.66	6.54	10.1	Pass
T4	110 - 94.9427	Top Girt	1	111	-1.58	8.78	18.1	Pass
T2	133.625 - 130	Bottom Girt	7/8	19	-0.56	6.44	8.7	Pass
Т3	130 - 110	Bottom Girt	7/8	36	-1.66	5.18	32.0	Pass
T6	92.5938 - 90	Bottom Girt	1	163	-1.67	7.17	23.3	Pass
	1						Summary	
						Leg (T10)	66.3	Pass
						Diagonal (T7)	66.4	Pass
						Horizontal (T3)	23.0	Pass
						Secondary Horizontal (T6)	3.3	Pass
						Top Girt (T4)	18.1	Pass
						Bottom Girt (T3)	32.0	Pass
						Bolt Checks	63.2	Pass
						Rating =	66.4	Pass

Table 6 - Tower Component Stresses vs. Capacity – LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	37.1	Pass
1	Base Foundation (Structure)	0	19.5	Pass
1	Base Foundation (Soil Interaction)		66.9	Pass

Structure Rating (max from all components) =	66.9%*

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

2) *Rating per TIA-222-H, Section 15.5.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

SYMBOL LIST										
MARK	SIZ	MARK	S	ZE						
А	Pirod 105244 w/ (2) 1-1/4"	Tie Rod	E	1 @ 2.625						
В	6x3/8		F	1 @ 2.34896						
С	SR 1		G	1 @ 2.01042						
D	1 @ 2.375									
		MATERIAL	STREN	GTH						
GRADE	E Fy	Fu	GRADE	Fy Fy	Fu					
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi					

TOWER DESIGN NOTES

Tower is located in New London County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
 Tower designed for a 126 mph basic wind in accordance with the TIA-222-H Standard.

4. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.

Deflections are based upon a 60 mph wind.
 Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 66.4%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE: DOWN: 245 K SHEAR: 24 K

> UPLIFT: -212 K SHEAR: 21 K

TORQUE 3 kip-ft 50 mph WIND - 1.0000 in ICE

> AXIAL 54 K

TORQUE 14 kip-ft REACTIONS - 126 mph WIND

Morrison Hershfield 1455 Lincoln Park, Suite 500 Atlanta, GA 30346 Phone: (770)379-8500 FAX: (770)379-8501

^{Job:} CN8-185R3/ 2200039		
Project: 876338 / Waterford		
^{Client:} Crown Castle USA	Drawn by: CSA	App'd:
^{Code:} TIA-222-H	Date: 11/26/21	Scale: NTS
Path:		Dwg No. F-

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 136.00 ft above the ground line. The base of the tower is set at an elevation of 0.00 ft above the ground line. The face width of the tower is 4.00 ft at the top and 14.00 ft at the base. This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower is located in New London County, Connecticut. Tower base elevation above sea level: 242.00 ft. Basic wind speed of 126 mph. Risk Category II. Exposure Category B. Simplified Topographic Factor Procedure for wind speed-up calculations is used. Topographic Category: 1. Crest Height: 0.00 ft. Nominal ice thickness of 1.0000 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in tower member design is 1. Tower analysis based on target reliabilities in accordance with Annex S. Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$. Maximum demand-capacity ratio is: 1.05. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not

considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

- ✓ Use Code Safety Factors Guys
 Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- √ Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section √ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- $\sqrt{}$ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- $\sqrt{}$ Use Azimuth Dish Coefficients
- $\sqrt{}$ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules

- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- ✓ SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- $\sqrt{\frac{1}{2}}$ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption
 - Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

<u>Triangular Tower</u>

Tower	Section	Geometry
-------	---------	----------

Tower Section	Tower Elevation	Assembly	Description	Section Width	Number	Section
5601011	Lievalion	Dalabase		WIGHT	Sections	Lengin
	ft			ft		ft
T1	136.00-133.63			4.00	1	2.38
T2	133.63-130.00			4.00	1	3.63
Т3	130.00-110.00			4.00	1	20.00
T4	110.00-94.94			4.50	1	15.06
T5	94.94-92.59			4.88	1	2.35
T6	92.59-90.00			4.93	1	2.59
T7	90.00-80.00			5.00	1	10.00
Т8	80.00-60.00			6.00	1	20.00
Т9	60.00-40.00			8.00	1	20.00
T10	40.00-20.00			10.00	1	20.00
T11	20.00-0.00			12.00	1	20.00

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft		Panels		in	in
T1	136.00-133.63	2.38	K Brace Down	No	Yes	0.0000	0.0000
T2	133.63-130.00	2.63	X Brace	No	Yes	0.0000	12.0000
Т3	130.00-110.00	2.38	X Brace	No	Yes	6.0000	6.0000
T4	110.00-94.94	2.35	X Brace	No	No	11.5000	0.0000
T5	94.94-92.59	2.35	X Brace	No	Yes	0.0000	0.0000
T6	92.59-90.00	2.01	X Brace	No	Yes	0.0000	7.0000
Τ7	90.00-80.00	10.00	X Brace	No	No	0.0000	0.0000
T8	80.00-60.00	10.00	X Brace	No	No	0.0000	0.0000
Т9	60.00-40.00	10.00	X Brace	No	No	0.0000	0.0000
T10	40.00-20.00	10.00	X Brace	No	No	0.0000	0.0000
T11	20.00-0.00	10.00	X Brace	No	No	0.0000	0.0000

		Tower Sect	ion Ge	ometry (c	ont'd)	
Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 136.00- 133.63	Solid Round	1 1/2	A572-50 (50 ksi)	Solid Round	3/4	A572-50 (50 ksi)
T2 133.63- 130.00	Solid Round	1 1/2	À572-50 (50 ksi)	Solid Round	3/4	Á572-50 (50 ksi)
T3 130.00- 110.00	Solid Round	2	À572-50 (50 ksi)	Solid Round	7/8	À572-50 (50 ksi)
T4 110.00- 94.94	Solid Round	2 1/4	A572-50 (50 ksi)	Solid Round	1	A572-50 (50 ksi)
T5 94.94-92.59	Solid Round	2 1/4	A572-50 (50 ksi)	Solid Round	1	A572-50 (50 ksi)
T6 92.59-90.00	Solid Round	2 1/4	A572-50 (50 ksi)	Solid Round	1	A572-50 (50 ksi)
T7 90.00-80.00	Truss Leg	Pirod 105244 w/ (2) 1-1/4" Tie Rod	A572-50 (50 ksi)	Equal Angle	L3x3x3/16	A36 (36 ksi)
T8 80.00-60.00	Truss Leg	Pirod 105217	A572-50 (50 ksi)	Equal Angle	L2 1/2x2 1/2x3/16	A36 (36 ksi)
T9 60.00-40.00	Truss Leg	Pirod 105218	A572-50 (50 ksi)	Equal Angle	L3x3x3/16	A36 (36 ksi)
T10 40.00- 20.00	Truss Leg	Pirod 105218	A572-50 (50 ksi)	Equal Angle	L3x3x3/16	A36 (36 ksi)
T11 20.00-0.00	Truss Leg	Pirod 105219	A572-50 (50 ksi)	Equal Angle	L3x3x5/16	A36 (36 ksi)

Tower Section Geometry (cont'd)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
ft	Туре	Size	Grade	Туре	Size	Grade
T1 136.00-	Flat Bar	6x3/8	A36	Solid Round		A572-50
133.63			(36 ksi)			(50 ksi)
T2 133.63-	Solid Round		A572-50	Solid Round	7/8	A572-50
130.00			(50 ksi)			(50 ksi)
T3 130.00-	Solid Round	7/8	A572-50	Solid Round	7/8	A572-50
110.00			(50 ksi)			(50 ksi)
T4 110.00-	Solid Round	1	A572-50	Solid Round		A572-50
94.94			(50 ksi)			(50 ksi)
T6 92.59-90.00	Solid Round		A572-50	Solid Round	1	A572-50
			(50 ksi)			(50 ksi)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Туре	Size	Grade	Туре	Size	Grade
<i>ft</i>	Mila Cirts						
	Name			4.00	Calid Days	0/4	
11130.00-	None	Flat Bar		A30	Solia Rouna	3/4	A572-50
133.63				(36 ksi)			(50 ksi)
T2 133.63-	None	Flat Bar		A36	Solid Round	3/4	A572-50
130.00				(36 ksi)			(50 ksi)
T3 130.00-	None	Solid Round		A572-50	Solid Round	3/4	A572-50
110.00				(50 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft T5 94 94-92 59	Solid Round	1 1/2	A572-50	Solid Round		A572-50
10 04.04 02.00		1 1/2	(50 ksi)			(50 ksi)
T6 92.59-90.00	Solid Round	1 1/2	A572-50	Solid Round		A572-50

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A _f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				Ar		Spacing	Spacing	Spacing
_	- 0						Diagonals	Horizontals	Redundants
ft	ft²	in					in	in	in
T1 136.00-	0.00	0.0000	A36	1	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
133.63			(36 ksi)						
T2 133.63-	0.00	0.0000	A36	1	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
130.00			(36 ksi)						
T3 130.00-	0.00	0.0000	A36	1	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
110.00			(36 ksi)						
T4 110.00-	0.00	0.0000	A36	1	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
94.94			(36 ksi)						
T5 94.94-	0.00	0.0000	A36	1	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
92.59			(36 ksi)						
T6 92.59-	0.00	0.0000	A36	1	1.03	1.05	Mid-Pt	Mid-Pt	Mid-Pt
90.00			(36 ksi)						
T7 90.00-	0.00	0.0000	A36	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
80.00			(36 ksi)						
T8 80.00-	0.00	0.0000	A36	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
60.00			(36 ksi)						
T9 60.00-	0.00	0.0000	A36	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
40.00			(36 ksi)						
T10 40.00-	0.00	0.0000	A36	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
20.00			(36 ksi)						
T11 20.00-	0.00	0.0000	A36	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
0.00			(36 ksi)						

			K Factors ¹								
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace	
	Angles	Rounds		x	x	X	X	X	X	X	
ft				Y	Y	Y	Y	Y	Y	Y	
T1 136.00-	No	Yes	1	1	1	1	1	1	1	1	
133.63				1	1	1	1	1	1	1	
T2 133.63-	No	Yes	1	1	1	1	1	1	1	1	
130.00				1	1	1	1	1	1	1	
T3 130.00-	No	Yes	1	1	1	1	1	1	1	1	
110.00				1	1	1	1	1	1	1	
T4 110.00-	No	Yes	1	1	1	1	1	1	1	1	
94.94				1	1	1	1	1	1	1	
T5 94.94-	No	Yes	1	1	1	1	1	1	1	1	
92.59				1	1	1	1	1	0.5	1	
T6 92.59-	No	Yes	1	1	1	1	1	1	1	1	
90.00				1	1	1	1	1	0.5	1	
T7 90.00-	Yes	No	1	1	1	1	1	1	1	1	
80.00				1	1	1	1	1	1	1	
T8 80.00-	Yes	No	1	1	1	1	1	1	1	1	

			K Factors ¹								
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace	
	Angles	Rounds		X	X	Х	X	X	X	Х	
ft				Y	Y	Y	Y	Y	Y	Y	
60.00				1	1	1	1	1	1	1	
T9 60.00-	Yes	No	1	1	1	1	1	1	1	1	
40.00				1	1	1	1	1	1	1	
T10 40.00-	Yes	No	1	1	1	1	1	1	1	1	
20.00				1	1	1	1	1	1	1	
T11 20.00-	Yes	No	1	1	1	1	1	1	1	1	
0.00				1	1	1	1	1	1	1	

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

Tower Section Geometry (cont'd)

	Truss-Leg K Factors											
	Truss-	Legs Used As Leg M	lembers	Truss-l	egs Used As Inner N	lembers						
Tower Elevation ft	Leg Panels	X Brace Diagonals	Z Brace Diagonals	Leg Panels	X Brace Diagonals	Z Brace Diagonals						
T7 90.00- 80.00	0.999	0.5	0.85	1	1	1						
T8 80.00- 60.00	1	0.5	0.85	1	1	1						
T9 60.00- 40.00	1	0.5	0.85	1	1	1						
T10 40.00- 20.00	1	0.5	0.85	1	1	1						
T11 20.00- 0.00	1	0.5	0.85	1	0.5	0.85						

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diago	nal	Тор С	Girt	Bottorr	n Girt	Mid	Girt	Long Hor	izontal	Short Hoi	rizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 136.00- 133.63	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
T2 133.63- 130.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
T3 130.00- 110.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T4 110.00- 94.94	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T5 94.94- 92.59	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T6 92.59- 90.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T7 90.00- 80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T8 80.00- 60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T9 60.00- 40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T10 40.00- 20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T11 20.00- 0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1

Tower Elevation ft	Reduno Horizoi	dant ntal	Redun Diago	dant nal	Redundar Diagoi	nt Sub- nal	Redunda Horizo	nt Sub- ontal	Redur Vert	ndant ical	Redunda	ant Hip	Redunda Diago	ant Hip onal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 136.00- 133.63	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 133.63- 130.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 130.00- 110.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 110.00- 94.94	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 94.94- 92.59	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 92.59- 90.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 90.00- 80.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 80.00- 60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 60.00- 40.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 40.00- 20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 20.00- 0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation	Leg Connection	Leg		Diagonal		Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Shor Horizor	t ntal
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1 136.00-	Flange	0.6250	0	0.0000	0	0.0000	0	0.0000	0	0.6250	0	0.0000	0	0.6250	0
133.63		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2 133.63-	Sleeve DS	0.6250	5	0.0000	0	0.0000	0	0.0000	0	0.6250	0	0.0000	0	0.6250	0
130.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 130.00-	Sleeve DS	0.7500	5	0.0000	0	0.0000	0	0.0000	0	0.5000	0	0.0000	0	0.5000	0
110.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 110.00-	Flange	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.5000	0	0.0000	0	0.5000	0
94.94		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 94.94-	Flange	0.0000	0	0.0000	0	0.0000	0	0.0000	0	0.5000	0	0.0000	0	0.5000	0
92.59		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 92.59-	Flange	1.0000	6	0.0000	0	0.0000	0	0.0000	0	0.5000	0	0.0000	0	0.5000	0
90.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 90.00-	Flange	1.0000	6	1.0000	1	0.0000	0	0.0000	0	0.5000	0	0.0000	0	0.5000	0
80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 80.00-	Flange	1.0000	6	1.0000	1	0.0000	0	0.0000	0	0.5000	0	0.0000	0	0.5000	0
60.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 60.00-	Flange	1.0000	6	1.0000	1	0.0000	0	0.0000	0	0.5000	0	0.0000	0	0.5000	0
40.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10 40.00-	Flange	1.0000	6	1.0000	1	0.0000	0	0.0000	0	0.5000	0	0.0000	0	0.5000	0
20.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T11 20.00-	Flange	1.2500	0	1.2500	1	0.0000	0	0.0000	0	0.6250	0	0.0000	0	0.6250	0
0.00		A-687		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacin	Width or Diameter	Perimete r	Weight
	Leg		Torque Calculation	Туре	ft	in	(Frac FW)		Row	g in	in	in	plf

Safety Line 3/8	С	No	No	Ar (CaAa)	90.00 -	0.0000	0.48	1	1	0.3750	0.3750		0.22
Safety Line 3/8	С	No	No	Ar (CaAa)	136.00 - 90.00	0.0000	0	1	1	0.3750	0.3750		0.22
Ladder Rung SR 3/4 (48"w 26"s)	С	No	No	Af (CaAa)	136.00 - 90.00	0.0000	0	1	1	1.3500	1.3500		2.71
HB114-1- 08U4-M5J(1- 1/4)	С	No	No	Ar (CaAa)	136.00 - 0.00	- 5.0000	-0.3	3	3	0.5000	1.5400		1.08
HB114- 21U3M12- XXXE(1-1/4)	С	No	No	Ar (CaAa)	136.00 - 0.00	- 5.0000	-0.3	1	1	0.5000	1.5400		1.22
T-Brackets (Af)	С	No	No	Af (CaAa)	136.00 - 0.00	- 7.0000	-0.35	1	1	1.0000	1.0000		8.40
LDF6-50A(1-	В	No	No	Ar (CaAa)	127.00 -	-	-0.4	6	6	0.5000	1.5500		0.60
LDF6-50A(1-	А	No	No	Ar (CaAa)	127.00 -	-	0.4	6	6	0.5000	1.5500		0.60
T-Brackets (Af)	С	No	No	Af (CaAa)	127.00 - 0.00	4.0000	-0.35	1	1	1.0000	1.0000		8.40
HCS 6X12	А	No	No	Ar (CaAa)	117.00 -	-	-0.4	3	3	0.5000	1.6600		2.40
4AVVG(1-5/8) HB158- 21U6S24- xxM_TMO(1-	С	No	No	Ar (CaAa)	0.00 117.00 - 0.00	3.0000	0.4	1	1	0.5000	1.9960		2.50
5/8) T-Brackets (Af)	С	No	No	Af (CaAa)	117.00 - 0.00	- 5.0000	-0.35	1	1	1.0000	1.0000		8.40
LDF7-50A(1-	В	No	No	Ar (CaAa)	107.00 -	-	0.37	12	6	0.5000	1.9800		0.82
HB158-1- 08U8-	В	No	No	Ar (CaAa)	107.00 - 0.00	4.0000	0.37	2	1	0.5000	1.9800		1.30
Feedline Ladder (Af)	В	No	No	Af (CaAa)	107.00 - 0.00	- 4.0000	0.4	1	1	3.0000	3.0000		8.40
LDF6-50A(1- 1/4)	В	No	No	Ar (CaAa)	97.00 - 0.00	- 2 0000	0.4	6	6	0.5000	1.5500		0.60
FB-L98-002- XXX(3/8)	В	No	No	Ar (CaAa)	97.00 -	- 8 0000	0	2	2	0.5000	0.3937		0.06
WR- VG86ST- BRDA(7/8)	В	No	No	Ar (CaAa)	97.00 - 0.00	8.0000	0	4	2	0.5000	0.8800		0.68
CU12PSM9P	А	No	No	Ar (CaAa)	87.00 -	0.0000	0	1	1	0.5000	1.4110		1.66
Feedline Ladder (Af)	A	No	No	Af (CaAa)	87.00 - 0.00	0.0000	0	1	1	3.0000	3.0000		8.40
FLC 12- 50J(1/2)	С	No	No	Ar (CaAa)	80.00 - 0.00	2.0000	-0.45	1	1	0.5000	0.6400		0.17
LDF4- 50A(1/2)	В	No	No	Ar (CaAa)	72.00 - 0.00	- 3.0000	-0.4	2	2	0.5000	0.6250		0.15

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	A _F	C _A A _A	$C_A A_A$	Weight
Sectio	Elevation		f1 2	f1 2	IN Face	Out Face	к
 	136 00-133 63	Δ	0.000	0.000	0.000	0.000	0.00
	100.00 100.00	B	0.000	0.000	0.000	0.000	0.00
		Č	0.000	0.000	2 482	0.000	0.04
Τ2	133 63-130 00	Ă	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	3.789	0.000	0.06
Т3	130.00-110.00	A	0.000	0.000	19.296	0.000	0.11
		В	0.000	0.000	15.810	0.000	0.06
		С	0.000	0.000	26.301	0.000	0.53
T4	110.00-94.94	А	0.000	0.000	21.502	0.000	0.16
		В	0.000	0.000	56.254	0.000	0.32
		С	0.000	0.000	23.762	0.000	0.53
T5	94.94-92.59	А	0.000	0.000	3.354	0.000	0.03
		В	0.000	0.000	13.067	0.000	0.07
		С	0.000	0.000	3.707	0.000	0.08
T6	92.59-90.00	A	0.000	0.000	3.704	0.000	0.03
		В	0.000	0.000	14.428	0.000	0.08
		С	0.000	0.000	4.093	0.000	0.09
Τ7	90.00-80.00	A	0.000	0.000	18.768	0.000	0.18
		В	0.000	0.000	55.627	0.000	0.31
		С	0.000	0.000	13.531	0.000	0.32
T8	80.00-60.00	A	0.000	0.000	41.382	0.000	0.42
		В	0.000	0.000	112.755	0.000	0.62
		С	0.000	0.000	28.342	0.000	0.65
Т9	60.00-40.00	A	0.000	0.000	41.382	0.000	0.42
		В	0.000	0.000	113.755	0.000	0.62
		С	0.000	0.000	28.342	0.000	0.65
T10	40.00-20.00	A	0.000	0.000	41.382	0.000	0.42
		В	0.000	0.000	113.755	0.000	0.62
		С	0.000	0.000	28.342	0.000	0.65
T11	20.00-0.00	Α	0.000	0.000	41.382	0.000	0.42
		В	0.000	0.000	113.755	0.000	0.62
		С	0.000	0.000	28.342	0.000	0.65

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	lce	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft ²	ft ²	ft ²	K
T1	136.00-133.63	Α	0.978	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	5.721	0.000	0.08
T2	133.63-130.00	Α	0.976	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	8.724	0.000	0.12
Т3	130.00-110.00	А	0.967	0.000	0.000	37.716	0.000	0.39
		В		0.000	0.000	30.110	0.000	0.29
		С		0.000	0.000	59.318	0.000	0.95
T4	110.00-94.94	Α	0.952	0.000	0.000	42.884	0.000	0.47
		В		0.000	0.000	78.671	0.000	0.98
		С		0.000	0.000	52.448	0.000	0.90
T5	94.94-92.59	Α	0.944	0.000	0.000	6.677	0.000	0.07
		В		0.000	0.000	20.084	0.000	0.23
		С		0.000	0.000	8.148	0.000	0.14
T6	92.59-90.00	А	0.941	0.000	0.000	7.369	0.000	0.08
		В		0.000	0.000	22.163	0.000	0.26
		С		0.000	0.000	8.986	0.000	0.15
T7	90.00-80.00	Α	0.934	0.000	0.000	35.473	0.000	0.42
		В		0.000	0.000	85.302	0.000	0.98
		С		0.000	0.000	30.408	0.000	0.53
T8	80.00-60.00	Α	0.916	0.000	0.000	76.663	0.000	0.93
		В		0.000	0.000	176.339	0.000	1.98

136 Ft Self Support Tower Structural Analysis Project Number CN8-185R3 / 2200039, Order 572906, Revision 2

Tower	Tower	Face	lce	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft ²	ft ²	ft ²	K
		С		0.000	0.000	65.212	0.000	1.10
Т9	60.00-40.00	A	0.886	0.000	0.000	76.037	0.000	0.92
		В		0.000	0.000	179.154	0.000	1.97
		С		0.000	0.000	64.162	0.000	1.08
T10	40.00-20.00	А	0.842	0.000	0.000	75.127	0.000	0.89
		В		0.000	0.000	176.932	0.000	1.91
		С		0.000	0.000	62.636	0.000	1.05
T11	20.00-0.00	А	0.754	0.000	0.000	73.325	0.000	0.84
		В		0.000	0.000	172.528	0.000	1.79
		С		0.000	0.000	59.607	0.000	0.99

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X	CPz
				Ice	Ice
	ft	in	in	in	in
T1	136.00-133.63	2.1792	1.1890	2.5820	1.9381
T2	133.63-130.00	4.4504	2.4199	4.1132	3.0537
Т3	130.00-110.00	2.2404	-10.3744	2.6918	-6.7936
T4	110.00-94.94	4.7427	-5.5013	5.0030	-3.5992
T5	94.94-92.59	6.3140	-3.2110	5.8891	-2.5515
T6	92.59-90.00	6.2575	-3.2002	5.4374	-3.0406
T7	90.00-80.00	5.1746	-3.4083	4.1905	-3.9574
T8	80.00-60.00	6.5829	-4.5584	5.9562	-4.1884
Т9	60.00-40.00	7.9022	-5.7721	7.9735	-4.6924
T10	40.00-20.00	9.3731	-6.9307	9.6747	-5.7397
T11	20.00-0.00	10.5727	-7.9147	11.0921	-6.8677

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	·	Segment	No Ice	Ice
			Elev.		
T1	3	Safety Line 3/8	133.63 -	0.6000	0.4702
			136.00		
T1	4	Ladder Rung SR 3/4 (48"w	133.63 -	0.6000	0.4702
		26"s)	136.00		
T1	6	HB114-1-08U4-M5J(1-1/4)	133.63 -	0.6000	0.4702
	-		136.00	0 0000	0 4700
11	/	HB114-21U3M12-XXXF(1-	133.63 -	0.6000	0.4702
TA	0	1/4) T Due shate (Af)	136.00	0.0000	0.4700
11	8	I-Brackets (At)	133.63 -	0.6000	0.4702
то	2	Sofaty Line 2/9	130.00	0,6000	0,6000
12	3	Salety Liffe 3/6	130.00 -	0.6000	0.6000
Т2	1	Ladder Rung SR 3/4 (48"w	130.00	0 6000	0 6000
12		26"s)	133.63	0.0000	0.0000
Т2	6	HB114-1-08U4-M5J(1-1/4)	130 00 -	0 6000	0 6000
12	Ŭ		133 63	0.0000	0.0000
T2	7	HB114-21U3M12-XXXF(1-	130.00 -	0.6000	0.6000
		1/4)	133.63		
T2	8	T-Brackets (Af)	130.00 -	0.6000	0.6000
		、 <i>`</i> ,	133.63		
Т3	3	Safety Line 3/8	110.00 -	0.6000	0.5619
		-	130.00		
Т3	4	Ladder Rung SR 3/4 (48"w	110.00 -	0.6000	0.5619
		26"s)	130.00		
Т3	6	HB114-1-08U4-M5J(1-1/4)	110.00 -	0.6000	0.5619
			130.00		
Т3	7	HB114-21U3M12-XXXF(1-	110.00 -	0.6000	0.5619
	-	1/4)	130.00	0.0000	0.50/0
Т3	8	I-Brackets (Af)	110.00 -	0.6000	0.5619

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
			Ĕlev.		
Т3	10	LDF6-50A(1-1/4)	130.00 110.00 - 127.00	1.0000	1.0000
Т3	11	LDF6-50A(1-1/4)	110.00 -	1.0000	1.0000
Т3	12	T-Brackets (Af)	110.00 -	0.6000	0.5619
Т3	18	HCS 6X12 4AWG(1-5/8)	110.00 -	0.6000	0.5619
Т3	19	HB158-21U6S24- xxM_TMO(1-5/8)	110.00 - 117.00	0.6000	0.5619
Т3	20	T-Brackets (Af)	110.00 - 117.00	0.6000	0.5619
Τ4	3	Safety Line 3/8	94.94 - 110.00	0.6000	0.6000
T4	4	Ladder Rung SR 3/4 (48"w 26"s)	94.94 - 110.00	0.6000	0.6000
T4	6	HB114-1-08U4-M5J(1-1/4)	94.94 - 110.00	0.6000	0.6000
T4	7	HB114-21U3M12-XXXF(1- 1/4)	94.94 - 110.00	0.6000	0.6000
T4	8	T-Brackets (Af)	94.94 - 110.00	0.6000	0.6000
14	10	LDF6-50A(1-1/4)	94.94 - 110.00	1.0000	1.0000
14	11	LDF6-50A(1-1/4)	94.94 - 110.00	1.0000	1.0000
14 T4	12		94.94 - 110.00	0.6000	0.6000
Т4 Т4	10	HB158-211/6S24-	94.94 - 110.00	0.0000	0.000
т4	20	xxM_TMO(1-5/8) T_Brackets (Af)	110.00	0.0000	0.0000
ТА	20	L DE7-504(1-5/8)	110.00	0.0000	0.000
T4	22	HB158-1-08U8-S8J18(1-	107.00 94.94 -	0.0000	0.6000
T4	24	5/8) Feedline Ladder (Af)	107.00 94.94 -	0.6000	0.6000
Т4	26	LDF6-50A(1-1/4)	107.00 94.94 -	0.6000	0.6000
T4	27	FB-L98-002-XXX(3/8)	97.00 94.94 -	0.6000	0.6000
T4	28	WR-VG86ST-BRDA(7/8)	97.00 94.94 -	0.6000	0.6000
Т5	3	Safety Line 3/8	97.00 92.59 -	0.6000	0.5433
Т5	4	Ladder Rung SR 3/4 (48"w	94.94 92.59 -	0.6000	0.5433
Т5	6	26 s) HB114-1-08U4-M5J(1-1/4)	94.94 92.59 -	0.6000	0.5433
Т5	7	HB114-21U3M12-XXXF(1-	94.94 92.59 - 94 94	0.6000	0.5433
Т5	8	T-Brackets (Af)	92.59 - 94 94	0.6000	0.5433
Т5	10	LDF6-50A(1-1/4)	92.59 - 94.94	1.0000	1.0000
Т5	11	LDF6-50A(1-1/4)	92.59 - 94.94	1.0000	1.0000
Т5	12	T-Brackets (Af)	92.59 - 94.94	0.6000	0.5433
Т5	18	HCS 6X12 4AWG(1-5/8)	92.59 - 94.94	0.6000	0.5433
Т5	19	HB158-21U6S24- xxM_TMO(1-5/8)	92.59 - 94.94	0.6000	0.5433
T5	20	T-Brackets (Af)	92.59 - 94.94	0.6000	0.5433

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev	K _a No Ice	K _a Ice
T5	22	LDF7-50A(1-5/8)	92.59 -	0.6000	0.5433
Т5	23	HB158-1-08U8-S8J18(1-	94.94 92.59 -	0.6000	0.5433
Т5	24	5/8) Feedline Ladder (Af)	94.94 92.59 -	0.6000	0.5433
Т5	26	LDF6-50A(1-1/4)	92.59 -	0.6000	0.5433
Т5	27	FB-L98-002-XXX(3/8)	94.94 92.59 -	0.6000	0.5433
Т5	28	WR-VG86ST-BRDA(7/8)	94.94 92.59 - 94.94	0.6000	0.5433
Т6	3	Safety Line 3/8	90.00 -	0.6000	0.4948
Т6	4	Ladder Rung SR 3/4 (48"w	90.00 -	0.6000	0.4948
Т6	6	26"s) HB114-1-08U4-M5J(1-1/4)	92.59 90.00 - 92.59	0.6000	0.4948
Т6	7	HB114-21U3M12-XXXF(1-	90.00 -	0.6000	0.4948
Т6	8	T-Brackets (Af)	90.00 -	0.6000	0.4948
Т6	10	LDF6-50A(1-1/4)	90.00 - 92.59	1.0000	1.0000
Т6	11	LDF6-50A(1-1/4)	90.00 -	1.0000	1.0000
Т6	12	T-Brackets (Af)	90.00 - 92.59	0.6000	0.4948
Т6	18	HCS 6X12 4AWG(1-5/8)	90.00 - 92.59	0.6000	0.4948
Т6	19	HB158-21U6S24- xxM_TMO(1-5/8)	90.00 - 92.59	0.6000	0.4948
Т6	20	T-Brackets (Af)	90.00 -	0.6000	0.4948
Т6	22	LDF7-50A(1-5/8)	90.00 -	0.6000	0.4948
Т6	23	HB158-1-08U8-S8J18(1-	90.00 -	0.6000	0.4948
Т6	24	Feedline Ladder (Af)	90.00 -	0.6000	0.4948
Т6	26	LDF6-50A(1-1/4)	90.00 - 92.59	0.6000	0.4948
Т6	27	FB-L98-002-XXX(3/8)	90.00 -	0.6000	0.4948
Т6	28	WR-VG86ST-BRDA(7/8)	90.00 -	0.6000	0.4948
Т7	2	Safety Line 3/8	80.00 -	0.6000	0.4512
Т7	6	HB114-1-08U4-M5J(1-1/4)	80.00 -	0.6000	0.4512
Т7	7	HB114-21U3M12-XXXF(1-	80.00 -	0.6000	0.4512
T7	8	T-Brackets (Af)	90.00 - 80.00 90.00	0.6000	0.4512
Т7	10	LDF6-50A(1-1/4)	80.00 -	1.0000	1.0000
Т7	11	LDF6-50A(1-1/4)	80.00 -	1.0000	1.0000
Τ7	12	T-Brackets (Af)	- 80.00 90.00	0.6000	0.4512
T7	18	HCS 6X12 4AWG(1-5/8)	80.00 -	0.6000	0.4512
T7	19	HB158-21U6S24-	80.00	0.6000	0.4512
Т7	20	T-Brackets (Af)	- 80.00 90.00	0.6000	0.4512
Т7	22	LDF7-50A(1-5/8)	80.00 -	0.6000	0.4512
Т7	23	HB158-1-08U8-S8J18(1-	80.00 -	0.6000	0.4512

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Flev	No Ice	Ice
Т7	24	5/8) Feedline Ladder (Af)	90.00 80.00 -	0.6000	0.4512
Τ7	26	LDF6-50A(1-1/4)	90.00 80.00 -	0.6000	0.4512
Т7	27	FB-L98-002-XXX(3/8)	90.00 80.00 -	0.6000	0.4512
T7	28	WR-VG86ST-BRDA(7/8)	- 80.00 90.00	0.6000	0.4512
Τ7	32	CU12PSM9P8XXX(1-3/8)	80.00 - 87.00	0.6000	0.4512
Τ7	33	Feedline Ladder (Af)	80.00 - 87.00	0.6000	0.4512
Т8	2	Safety Line 3/8	60.00 - 80.00	0.6000	0.5294
T8	6	HB114-1-08U4-M5J(1-1/4)	60.00 - 80.00	0.6000	0.5294
18	(HB114-21U3M12-XXXF(1- 1/4)	60.00 - 80.00	0.6000	0.5294
18 T8	8 10	I-Brackets (AI)	- 80.00 - 80.00	1.0000	1 0000
та	10	LDF6-50A(1-1/4)	80.00 60.00 -	1 0000	1.0000
T8	12	T-Brackets (Af)	80.00 60.00 -	0.6000	0.5294
Т8	18	HCS 6X12 4AWG(1-5/8)	80.00 60.00 -	0.6000	0.5294
Т8	19	HB158-21U6S24-	80.00 60.00 -	0.6000	0.5294
Т8	20	xxM_TMO(1-5/8) T-Brackets (Af)	80.00 60.00 -	0.6000	0.5294
Т8	22	LDF7-50A(1-5/8)	80.00 60.00 -	0.6000	0.5294
Т8	23	HB158-1-08U8-S8J18(1- 5/8)	60.00 - 80.00	0.6000	0.5294
Т8	24	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.5294
Т8	26	LDF6-50A(1-1/4)	60.00 - 80.00	0.6000	0.5294
Т8	27	FB-L98-002-XXX(3/8)	60.00 - 80.00	0.6000	0.5294
Т8	28	WR-VG86ST-BRDA(7/8)	60.00 - 80.00	0.6000	0.5294
Т8	32	CU12PSM9P8XXX(1-3/8)	60.00 - 80.00	0.6000	0.5294
18 To	33	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.5294
та	37	L DF4-50A(1/2)	80.00 80.00	0.0000	0.5294
Т9	2	Safety Line 3/8	72.00 40.00 -	0.6000	0.5970
Т9	6	HB114-1-08U4-M5J(1-1/4)	60.00 40.00 -	0.6000	0.5970
Т9	7	HB114-21U3M12-XXXF(1-	60.00 40.00 -	0.6000	0.5970
Т9	8	1/4) T-Brackets (Af)	60.00 40.00 -	0.6000	0.5970
Т9	10	LDF6-50A(1-1/4)	60.00 40.00 -	1.0000	1.0000
Т9	11	LDF6-50A(1-1/4)	40.00 -	1.0000	1.0000
Т9	12	T-Brackets (Af)	40.00 - 60.00	0.6000	0.5970
Т9	18	HCS 6X12 4AWG(1-5/8)	40.00 - 60.00	0.6000	0.5970

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
то	10	HB158-21116S24-	Elev.	0.6000	0 5070
	15	xxM_TMO(1-5/8)	60.00	0.0000	0.5570
19	20	I-Brackets (Af)	40.00 - 60.00	0.6000	0.5970
Т9	22	LDF7-50A(1-5/8)	40.00 -	0.6000	0.5970
Т9	23	HB158-1-08U8-S8J18(1-	40.00 -	0.6000	0.5970
Т9	24	Feedline Ladder (Af)	40.00 -	0.6000	0.5970
Т9	26	LDF6-50A(1-1/4)	60.00 40.00 -	0.6000	0.5970
Т9	27	FB-L98-002-XXX(3/8)	40.00 -	0.6000	0.5970
Т9	28	WR-VG86ST-BRDA(7/8)	40.00 -	0.6000	0.5970
Т9	32	CU12PSM9P8XXX(1-3/8)	60.00 40.00 -	0.6000	0.5970
Т9	33	Feedline Ladder (Af)	40.00 -	0.6000	0.5970
Т9	35	FLC 12-50J(1/2)	40.00 -	0.6000	0.5970
Т9	37	LDF4-50A(1/2)	40.00 -	0.6000	0.5970
T10	2	Safety Line 3/8	20.00 -	0.6000	0.6000
T10	6	HB114-1-08U4-M5J(1-1/4)	20.00 -	0.6000	0.6000
T10	7	HB114-21U3M12-XXXF(1-	20.00 -	0.6000	0.6000
T10	8	T-Brackets (Af)	20.00 -	0.6000	0.6000
T10	10	LDF6-50A(1-1/4)	20.00 -	1.0000	1.0000
T10	11	LDF6-50A(1-1/4)	20.00 -	1.0000	1.0000
T10	12	T-Brackets (Af)	20.00 -	0.6000	0.6000
T10	18	HCS 6X12 4AWG(1-5/8)	20.00 -	0.6000	0.6000
T10	19	HB158-21U6S24-	20.00 -	0.6000	0.6000
T10	20	T-Brackets (Af)	20.00 -	0.6000	0.6000
T10	22	LDF7-50A(1-5/8)	20.00 -	0.6000	0.6000
T10	23	HB158-1-08U8-S8J18(1-	20.00 -	0.6000	0.6000
T10	24	Feedline Ladder (Af)	20.00 -	0.6000	0.6000
T10	26	LDF6-50A(1-1/4)	20.00 -	0.6000	0.6000
T10	27	FB-L98-002-XXX(3/8)	20.00 -	0.6000	0.6000
T10	28	WR-VG86ST-BRDA(7/8)	20.00 -	0.6000	0.6000
T10	32	CU12PSM9P8XXX(1-3/8)	20.00 -	0.6000	0.6000
T10	33	Feedline Ladder (Af)	20.00 -	0.6000	0.6000
T10	35	FLC 12-50J(1/2)	20.00 - 40.00	0.6000	0.6000
T10	37	LDF4-50A(1/2)	20.00 - 40.00	0.6000	0.6000
T11	2	Safety Line 3/8	0.00 - 20.00	0.6000	0.6000
T11	6	HB114-1-08U4-M5J(1-1/4)	0.00 - 20.00	0.6000	0.6000
111	/	1/4)	0.00 - 20.00	0.0000	0.0000
T11	8	T-Brackets (Af)	0.00 - 20.00	0.6000	0.6000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
T11	10	LDF6-50A(1-1/4)	0.00 - 20.00	1.0000	1.0000
T11	11	LDF6-50A(1-1/4)	0.00 - 20.00	1.0000	1.0000
T11	12	T-Brackets (Af)	0.00 - 20.00	0.6000	0.6000
T11	18	HCS 6X12 4AWG(1-5/8)	0.00 - 20.00	0.6000	0.6000
T11	19	HB158-21U6S24-	0.00 - 20.00	0.6000	0.6000
		xxM_TMO(1-5/8)			
T11	20	T-Brackets (Af)	0.00 - 20.00	0.6000	0.6000
T11	22	LDF7-50A(1-5/8)	0.00 - 20.00	0.6000	0.6000
T11	23	HB158-1-08U8-S8J18(1-	0.00 - 20.00	0.6000	0.6000
		5/8)			
T11	24	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T11	26	LDF6-50A(1-1/4)	0.00 - 20.00	0.6000	0.6000
T11	27	FB-L98-002-XXX(3/8)	0.00 - 20.00	0.6000	0.6000
T11	28	WR-VG86ST-BRDA(7/8)	0.00 - 20.00	0.6000	0.6000
T11	32	CU12PSM9P8XXX(1-3/8)	0.00 - 20.00	0.6000	0.6000
T11	33	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T11	35	FLC 12-50J(1/2)	0.00 - 20.00	0.6000	0.6000
T11	37	LDF4-50A(1/2)	0.00 - 20.00	0.6000	0.6000

Discrete Tower Loads										
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight	
			ft ft ft	۰	ft		ft²	ft²	К	
***** APX\/SPP18-C-A20 w/	Δ	From Lea	4 00	80 0000	136.00	No Ice	4 60	4 01	0 10	
Mount Pine	А	1 Iom Log	0.00	00.0000	100.00	1/2"	5.05	4.01	0.10	
wount ipo			1 00				5 50	4 80	0.10	
			1.00			1" 100	5.50	4.05	0.20	
APX\/SPP18_C_A20 w/	в	From Leg	4 00	90 0000	136.00	No Ice	4 60	4 01	0.10	
Mount Pine	D	I IOIII Leg	0.00	30.0000	150.00	1/2"	5.05	4.01	0.10	
			1 00				5 50	4 80	0.10	
			1.00			1" Ice	0.00	4.05	0.20	
APX\/SPP18-C-A20.w/	C	From Lea	4 00	60 0000	136.00	No Ice	4 60	4 01	0 10	
Mount Pine	0	I IOIII Leg	0.00	00.0000	150.00	1/2"	5.05	4.01	0.10	
Mount ipe			1.00				5.00	4.45	0.10	
			1.00			1" Ico	5.50	4.05	0.25	
APX\/TM14 C 120 w/	٨	From Log	4 00	80 0000	136.00	No.loo	4.00	2.86	0.08	
Mount Dino	A	FIOIII Leg	4.00	00.0000	130.00	1/2"	4.09	2.00	0.00	
Mount Fipe			1.00			1/2	4.40	3.23	0.13	
			1.00			1" 100	4.00	3.01	0.19	
ADX//TM14 C 120 w/	D	From Log	4 00	<u>80 0000</u>	126.00	No loo	4.00	2.96	0.09	
AFAV INI 14-C-120 W/	D	FIOIII Leg	4.00	80.0000	130.00	1/2"	4.09	2.00	0.00	
Mount Pipe			0.00			1/2	4.40	3.23	0.13	
			1.00				4.00	3.01	0.19	
ADV/TM14 C 120/	C	From Log	4 00	80.0000	126.00	l ice	4.00	2.96	0.09	
Mount Dine	C	FIOID Leg	4.00	00.0000	130.00		4.09	2.00	0.08	
wount Pipe			0.00			1/2	4.48	3.23	0.13	
			1.00				4.00	3.01	0.19	
	٨	From Lor	4 00	0.0000	126.00		4.05	1 50	0.07	
I D-KKH8X20-25	А	From Leg	4.00	0.0000	130.00	INO ICE	4.05	1.53	0.07	
			0.00			1/2"	4.30	1./1	0.10	
			1.00			ICe	4.50	1.90	0.13	
	-		4.00		(00.00	1" Ice	4.05			
I D-RRH8X20-25	В	From Leg	4.00	0.0000	136.00	No Ice	4.05	1.53	0.07	
			0.00			1/2"	4.30	1.71	0.10	
			1.00			Ice	4.56	1.90	0.13	
	_					1" Ice				
TD-RRH8X20-25	С	From Leg	4.00	0.0000	136.00	No Ice	4.05	1.53	0.07	
			0.00			1/2"	4.30	1.71	0.10	
			1.00			Ice	4.56	1.90	0.13	
						1" Ice				

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
6' x 2" Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	136.00	No Ice 1/2" Ice	1.43 1.92 2.29	1.43 1.92 2.29	0.02 0.03 0.05
6' x 2" Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	136.00	No Ice 1/2" Ice	1.43 1.92 2.29	1.43 1.92 2.29	0.02 0.03 0.05
6' x 2" Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	136.00	No Ice 1/2" Ice 1" Ice	1.43 1.92 2.29	1.43 1.92 2.29	0.02 0.03 0.05
Platform Mount [LP 405-1]	A	None		0.0000	136.00	No Ice 1/2" Ice 1" Ice	20.88 28.89 37.04	20.88 28.89 37.04	1.80 2.28 2.87
1900MHz RRH (65MHz)	A	From Leg	1.00 0.00 0.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	2.32 2.53 2.74	2.24 2.44 2.65	0.06 0.08 0.11
1900MHZ RRH (65MHZ)	В	From Leg	1.00 0.00 0.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	2.32 2.53 2.74	2.24 2.44 2.65	0.06 0.08 0.11
1900MHZ RRH (65MHZ)	С	From Leg	1.00 0.00 0.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	2.32 2.53 2.74	2.24 2.44 2.65	0.06 0.08 0.11
800MHZ 2X50W RRH W/FILTER	A	From Leg	1.00 0.00 0.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	2.06 2.24 2.43	1.93 2.11 2.29	0.06 0.09 0.11
800MHZ 2X50W RRH W/FILTER	В	From Leg	1.00 0.00 0.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	2.06 2.24 2.43	1.93 2.11 2.29	0.06 0.09 0.11
800MHZ 2X50W RRH W/FILTER	С	From Leg	1.00 0.00 0.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	2.06 2.24 2.43	1.93 2.11 2.29	0.06 0.09 0.11
IBC1900BB-1	A	From Leg	1.00 0.00 2.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	0.97 1.09 1.22	0.46 0.56 0.66	0.02 0.03 0.04
IBC1900BB-1	В	From Leg	1.00 0.00 2.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	0.97 1.09 1.22	0.46 0.56 0.66	0.02 0.03 0.04
IBC1900BB-1	С	From Leg	1.00 0.00 2.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	0.97 1.09 1.22	0.46 0.56 0.66	0.02 0.03 0.04
IBC1900HG-2A	A	From Leg	1.00 0.00 2.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	0.97 1.09 1.22	0.46 0.56 0.66	0.02 0.03 0.04
IBC1900HG-2A	В	From Leg	1.00 0.00 2.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	0.97 1.09 1.22	0.46 0.56 0.66	0.02 0.03 0.04
IBC1900HG-2A	С	From Leg	1.00 0.00 2.00	0.0000	134.00	No Ice 1/2" Ice 1" Ice	0.97 1.09 1.22	0.46 0.56 0.66	0.02 0.03 0.04

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
Pipe Mount [PM 601-3]	A	None		0.0000	134.00	No Ice 1/2" Ice 1" Ice	3.17 3.79 4.42	3.17 3.79 4.42	0.20 0.23 0.28
(4) DB844H90E-XY w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	50.0000	127.00	No Ice 1/2" Ice 1" Ice	2.24 2.61 2.99	3.34 3.73 4.13	0.04 0.08 0.12
(4) DB844H90E-XY w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	50.0000	127.00	No Ice 1/2" Ice	2.24 2.61 2.99	3.34 3.73 4.13	0.04 0.08 0.12
(4) DB844H90E-XY w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	50.0000	127.00	No Ice 1/2" Ice	2.24 2.61 2.99	3.34 3.73 4.13	0.04 0.08 0.12
HSS 4"x4"x4'	A	From Face	0.50 0.00 1.00	0.0000	127.00	No Ice 1/2" Ice 1" Ice	2.09 2.39 2.70	0.00 0.00 0.00	0.04 0.05 0.07
HSS 4"x4"x4'	A	From Face	0.50 0.00 -1.00	0.0000	127.00	No Ice 1/2" Ice 1" Ice	2.09 2.39 2.70	0.00 0.00 0.00	0.04 0.05 0.07
HSS 4"x4"x4'	В	From Face	0.50 0.00 1.00	0.0000	127.00	No Ice 1/2" Ice 1" Ice	2.09 2.39 2.70	0.00 0.00 0.00	0.04 0.05 0.07
HSS 4"x4"x4'	В	From Face	0.50 0.00 -1.00	0.0000	127.00	No Ice 1/2" Ice 1" Ice	2.09 2.39 2.70	0.00 0.00 0.00	0.04 0.05 0.07
HSS 4"x4"x4'	С	From Face	0.50 0.00 1.00	0.0000	127.00	No Ice 1/2" Ice 1" Ice	2.09 2.39 2.70	0.00 0.00 0.00	0.04 0.05 0.07
HSS 4"x4"x4'	С	From Face	0.50 0.00 -1.00	0.0000	127.00	No Ice 1/2" Ice 1" Ice	2.09 2.39 2.70	0.00 0.00 0.00	0.04 0.05 0.07
Sector Mount [SM 411-3]	A	None		0.0000	127.00	No Ice 1/2" Ice 1" Ice	20.53 28.62 36.63	20.53 28.62 36.63	1.07 1.46 1.97
APXVAALL24_43-U- NA20_TMO	A	From Leg	4.00 0.00 2.00	80.0000	117.00	No Ice 1/2" Ice 1" Ice	14.67 15.43 16.21	5.32 5.99 6.68	0.15 0.26 0.38
APXVAALL24_43-U- NA20_TMO	В	From Leg	4.00 0.00 2.00	80.0000	117.00	No Ice 1/2" Ice 1" Ice	14.67 15.43 16.21	5.32 5.99 6.68	0.15 0.26 0.38
APXVAALL24_43-U- NA20_TMO	С	From Leg	4.00 0.00 2.00	80.0000	117.00	No Ice 1/2" Ice 1" Ice	14.67 15.43 16.21	5.32 5.99 6.68	0.15 0.26 0.38

AIR6449 B41_T-MOBILE	A	From Leg	4.00 0.00 2.00	80.0000	117.00	No Ice 1/2" Ice 1" Ice	5.27 5.70 6.14	2.03 2.36 2.70	0.11 0.15 0.20
AIR6449 B41_T-MOBILE	В	From Leg	4.00 0.00	80.0000	117.00	No Ice 1/2"	5.27 5.70	2.03 2.36	0.11 0.15

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
			2.00			Ice	6.14	2.70	0.20
AIR6449 B41_T-MOBILE	С	From Leg	4.00 0.00 2.00	80.0000	117.00	No Ice 1/2" Ice 1" Ice	5.27 5.70 6.14	2.03 2.36 2.70	0.11 0.15 0.20
RADIO 4449 B71 B85A_T- MOBILE	A	From Leg	4.00 0.00 2.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	1.97 2.15 2.33	1.59 1.75 1.92	0.07 0.09 0.12
RADIO 4449 B71 B85A_T- MOBILE	В	From Leg	4.00 0.00 2.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	1.97 2.15 2.33	1.59 1.75 1.92	0.07 0.09 0.12
RADIO 4449 B71 B85A_T- MOBILE	С	From Leg	4.00 0.00 2.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	1.97 2.15 2.33	1.59 1.75 1.92	0.07 0.09 0.12
RADIO 4460 B2/B25 B66_TMO	A	From Leg	4.00 0.00 2.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	2.14 2.32 2.51	1.69 1.85 2.02	0.11 0.13 0.16
RADIO 4460 B2/B25 B66_TMO	В	From Leg	4.00 0.00 2.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	2.14 2.32 2.51	1.69 1.85 2.02	0.11 0.13 0.16
RADIO 4460 B2/B25 B66_TMO	С	From Leg	4.00 0.00 2.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	2.14 2.32 2.51	1.69 1.85 2.02	0.11 0.13 0.16
(3) 8' Antenna Pipe [#P2STD]	A	From Leg	4.00 0.00 0.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
(3) 8' Antenna Pipe [#P2STD]	В	From Leg	4.00 0.00 0.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
(3) 8' Antenna Pipe [#P2STD]	С	From Leg	4.00 0.00 0.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
12' HD V-Frame [#VFA12- HD]	A	From Leg	2.00 0.00 0.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	13.20 19.50 25.80	9.20 14.60 19.50	0.66 0.80 1.01
12' HD V-Frame [#VFA12- HD]	В	From Leg	2.00 0.00 0.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	13.20 19.50 25.80	9.20 14.60 19.50	0.66 0.80 1.01
12' HD V-Frame [#VFA12- HD]	С	From Leg	2.00 0.00 0.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	13.20 19.50 25.80	9.20 14.60 19.50	0.66 0.80 1.01
*** BXA-80063/4CF w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	50.0000	107.00	No Ice 1/2" Ice	4.83 5.35 5.88	3.65 4.14 4.64	0.03 0.06 0.11
BXA-80063/4CF w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	50.0000	107.00	No Ice 1/2" Ice	4.83 5.35 5.88	3.65 4.14 4.64	0.03 0.06 0.11
BXA-80063/4CF w/ Mount Pipe	С	From Leg	4.00 0.00	50.0000	107.00	No Ice 1/2"	4.83 5.35	3.65 4.14	0.03 0.06

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
			0.00			Ice	5.88	4.64	0.11
RC2DC-3315-PF-48	A	From Leg	4.00 0.00 0.00	0.0000	107.00	No Ice 1/2" Ice 1" Ice	3.79 4.04 4.30	2.51 2.72 2.94	0.03 0.06 0.10
Sector Mount [SM 402-3]	A	None		0.0000	107.00	No Ice 1/2" Ice 1" Ice	18.87 26.47 33.99	18.87 26.47 33.99	0.85 1.21 1.70
*** (2) MX06FRO660-03 w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	50.0000	107.00	No Ice 1/2" Ice 1" Ice	6.54 7.06 7.60	5.55 6.05 6.57	0.10 0.18 0.28
(2) MX06FRO660-03 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	50.0000	107.00	No Ice 1/2" Ice	6.54 7.06 7.60	5.55 6.05 6.57	0.10 0.18 0.28
(2) MX06FRO660-03 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	30.0000	107.00	No Ice 1/2" Ice	6.54 7.06 7.60	5.55 6.05 6.57	0.10 0.18 0.28
Sub6 Antenna - VZS01 w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	50.0000	107.00	No Ice 1/2" Ice	4.92 5.26 5.62	2.69 3.15 3.63	0.10 0.14 0.19
Sub6 Antenna - VZS01 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	50.0000	107.00	No Ice 1/2" Ice	4.92 5.26 5.62	2.69 3.15 3.63	0.10 0.14 0.19
Sub6 Antenna - VZS01 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	30.0000	107.00	No Ice 1/2" Ice	4.92 5.26 5.62	2.69 3.15 3.63	0.10 0.14 0.19
RFV01U-D1A	A	From Leg	4.00 0.00 0.00	0.0000	107.00	No Ice 1/2" Ice 1" Ice	1.88 2.05 2.22	1.25 1.39 1.54	0.08 0.10 0.12
RFV01U-D1A	В	From Leg	4.00 0.00 0.00	0.0000	107.00	No Ice 1/2" Ice 1" Ice	1.88 2.05 2.22	1.25 1.39 1.54	0.08 0.10 0.12
RFV01U-D1A	С	From Leg	4.00 0.00 0.00	0.0000	107.00	No Ice 1/2" Ice	1.88 2.05 2.22	1.25 1.39 1.54	0.08 0.10 0.12
RFV01U-D2A	A	From Leg	4.00 0.00 0.00	0.0000	107.00	No Ice 1/2" Ice	1.88 2.05 2.22	1.01 1.14 1.28	0.07 0.09 0.11
RFV01U-D2A	В	From Leg	4.00 0.00 0.00	0.0000	107.00	No Ice 1/2" Ice	1.88 2.05 2.22	1.01 1.14 1.28	0.07 0.09 0.11
RFV01U-D2A	С	From Leg	4.00 0.00 0.00	0.0000	107.00	No Ice 1/2" Ice	1.88 2.05 2.22	1.01 1.14 1.28	0.07 0.09 0.11
(4) Crossover Plate [#VZWSMART-MSK1]	A	From Leg	4.00 0.00 0.00	0.0000	107.00	No Ice 1/2" Ice	0.05 0.07 0.09	0.05 0.07 0.09	0.01 0.02 0.02
(4) Crossover Plate [#VZWSMART-MSK1]	В	From Leg	4.00 0.00	0.0000	107.00	No Ice 1/2"	0.05 0.07	0.05 0.07	0.01 0.02

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
			0.00			lce 1" lce	0.09	0.09	0.02
(4) Crossover Plate	С	From Leg	4.00	0.0000	107.00	No Ice	0.05	0.05	0.01
[#VZWSMART-MSK1]			0.00 0.00			1/2" Ice 1" Ice	0.07 0.09	0.07 0.09	0.02 0.02
Tieback Assembly	А	From Leg	2.00	0.0000	107.00	No Ice	2.38	1.19	0.08
[#VZWSMART-SFK1]			0.00 0.00			1/2" Ice 1" Ice	3.41 4.45	1.71 2.22	0.11 0.13
Tieback Assembly	В	From Leg	2.00	0.0000	107.00	No Ice	2.38	1.19	0.08
[#VZWSMART-SFK1]			0.00 0.00			1/2" Ice 1" Ice	3.41 4.45	1.71 2.22	0.11 0.13
Tieback Assembly	С	From Leg	2.00	0.0000	107.00	No Ice	2.38	1.19	0.08
[#VZWSMART-SFK1]		0	0.00			1/2"	3.41	1.71	0.11
V Procing Kit	^	Erom Log	0.00	0.0000	107.00	Ice 1" Ice	4.45	2.22	0.13
V-Bracing Kit [#V/ZWSMART-SFK3]	A	FIOID Leg	2.00	0.0000	107.00	1/2"	4.24 4.78	3.90 4 46	0.13
[,,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.00			Ice 1" Ice	5.44	5.06	0.22
V-Bracing Kit	В	From Leg	2.00	0.0000	107.00	No Ice	4.24	3.96	0.13
[#VZWSMART-SFK3]			0.00			1/2" Ice 1" Ice	4.78 5.44	4.46 5.06	0.18 0.22
V-Bracing Kit	С	From Leg	2.00	0.0000	107.00	No Ice	4.24	3.96	0.13
[#VZWSMART-SFK3]			0.00 0.00			1/2" Ice 1" Ice	4.78 5.44	4.46 5.06	0.18 0.22
DMP65R-BU4D w/ Mount	А	From Lea	4.00	85.0000	97.00	No Ice	7.53	3.79	0.09
Pipe		5	0.00 0.00			1/2" Ice 1" Ice	8.04 8.57	4.23 4.68	0.16 0.22
DMP65R-BU6D w/ Mount	В	From Leg	4.00	90.0000	97.00	No Ice	11.96	5.97	0.11
Pipe		0	0.00			1/2"	12.70	6.63	0.20
			0.00			lce 1" lce	13.46	7.30	0.30
DMP65R-BU8D w/ Mount	С	From Leg	4.00	85.0000	97.00	No Ice	15.89	7.89	0.14
Pipe			0.00 0.00			1/2" Ice 1" Ice	16.81 17.76	8.74 9.60	0.25 0.38
OPA65R-BU4D w/ Mount	А	From Leg	4.00	85.0000	97.00	No Ice	8.10	4.03	0.08
Pipe			0.00 0.00			1/2" Ice 1" Ice	8.65 9.21	4.50 4.98	0.14 0.21
OPA65R-BU6D w/ Mount	В	From Leg	4.00	90.0000	97.00	No Ice	12.25	6.05	0.09
Pipe		-	0.00 0.00			1/2" Ice	13.00 13.76	6.71 7.39	0.18 0.27
OPA65R-BU8D w/ Mount	С	From Lea	4 00	90,000	97 00	No Ice	17 46	8 58	0 11
Pipe	C		0.00		0.100	1/2" Ice	18.46 19.48	9.49 10.42	0.22 0.35
7770.00 w/ Mount Pine	Δ	From Lea	4 00	90 0000	97 00	No Ice	5 75	4 25	0.06
		. Ioni Log	0.00	00.0000	51.00	1/2"	6.18	5.01	0.10
	_		0.00			Ice 1" Ice	6.61	5.71	0.16
7770.00 w/ Mount Pipe	В	From Leg	4.00	90.0000	97.00	No Ice	5.75	4.25	0.06
			0.00			1/2" Ice 1" Ice	6.18 6.61	5.01 5.71	0.10
7770.00 w/ Mount Pipe	С	From Leg	4.00	90.0000	97.00	No Ice	5.75	4.25	0.06
			0.00			1/2	0.10	5.01	0.10

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
			0.00			Ice	6.61	5.71	0.16
RRUS 4449 B5/B12	А	From Lea	4.00	0.0000	97.00	No Ice	1.97	1.41	0.07
		Ū	0.00 0.00			1/2" Ice 1" Ice	2.14 2.33	1.56 1.73	0.09 0.11
RRUS 4449 B5/B12	В	From Leg	4.00 0.00 0.00	0.0000	97.00	No Ice 1/2'' Ice	1.97 2.14 2.33	1.41 1.56 1.73	0.07 0.09 0.11
RRUS 4449 B5/B12	С	From Leg	4.00 0.00 0.00	0.0000	97.00	1" Ice No Ice 1/2" Ice	1.97 2.14 2.33	1.41 1.56 1.73	0.07 0.09 0.11
RRUS 4478 B14 CCIV2	А	From Lea	4 00	0 0000	97 00	No Ice	2 02	1 25	0.06
		1 Iom Log	0.00	0.0000	01.00	1/2"	2.20	1.40	0.08
	P	Energy Law	0.00	0.0000	07.00	Ice 1" Ice	2.39	1.55	0.10
RRUS 4476 B14_CCIV2	D	From Leg	4.00	0.0000	97.00	1/2"	2.02	1.25	0.06
	_		0.00			Ice 1" Ice	2.39	1.55	0.10
RRUS 4478 B14_CCIV2	С	From Leg	4.00	0.0000	97.00	No Ice	2.02	1.25	0.06
			0.00			1/2" Ice 1" Ice	2.20 2.39	1.40	0.08
RRUS 8843	А	From Leg	4.00	0.0000	97.00	No Ice	1.98	1.70	0.08
B2/B66A_CCIV2			0.00 0.00			1/2" Ice 1" Ice	2.16 2.34	1.86 2.04	0.10 0.12
RRUS 8843	В	From Leg	4.00	0.0000	97.00	No Ice	1.98	1.70	0.08
B2/B66A_CCIV2			0.00 0.00			1/2" Ice 1" Ice	2.16 2.34	1.86 2.04	0.10 0.12
RRUS 8843	С	From Leg	4.00	0.0000	97.00	No Ice	1.98	1.70	0.08
B2/B66A_CCIV2		5	0.00 0.00			1/2" Ice 1" Ice	2.16 2.34	1.86 2.04	0.10 0.12
(2) LGP21401	А	From Lea	4.00	0.0000	97.00	No Ice	1.10	0.21	0.01
		5	0.00			1/2"	1.24	0.27	0.02
			0.00			1" Ice	1.50	0.55	0.05
(2) LGP21401	В	From Leg	4.00	0.0000	97.00	No Ice	1.10	0.21	0.01
			0.00 0.00			1/2" Ice	1.24 1.38	0.27 0.35	0.02 0.03
						1" Ice			
(2) LGP21401	С	From Leg	4.00	0.0000	97.00	No Ice	1.10	0.21	0.01
			0.00			1/2" Ice 1" Ice	1.24 1.38	0.27 0.35	0.02
DC9-48-60-24-8C-EV	А	From Leg	4.00	0.0000	97.00	No Ice	2.74	4.78	0.03
			0.00 0.00			1/2" Ice 1" Ice	2.96 3.20	5.06 5.35	0.06 0.10
DC6-48-60-18-8F	В	From Lea	4.00	0.0000	97.00	No Ice	0.92	0.92	0.02
		3	0.00 0.00			1/2" Ice	1.46 1.64	1.46 1.64	0.04 0.06
8' x 2" Mount Pine	Δ	From Leg	4 00	0 0000	97 00		1 90	1 00	0.03
0 7 2 mount ipe	~	i ioni Ley	0.00	0.0000	57.00	1/2"	2.73	2.73	0.03
	-		0.00			Ice 1" Ice	3.40	3.40	0.06
8' x 2" Mount Pipe	В	From Leg	4.00	0.0000	97.00	No Ice	1.90	1.90	0.03
			0.00			lce	2.73 3.40	∠./3 3.40	0.04

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
8' x 2" Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	97.00	1" Ice No Ice 1/2" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
Sector Mount [SM 504-3]	A	None		0.0000	97.00	No Ice 1/2" Ice 1" Ice	31.05 43.83 56.44	31.05 43.83 56.44	1.71 2.33 3.14

MX08FRO665-21 w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	20.0000	87.00	No Ice 1/2" Ice 1" Ice	8.01 8.52 9.04	4.23 4.69 5.16	0.11 0.19 0.29
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	20.0000	87.00	No Ice 1/2" Ice	8.01 8.52 9.04	4.23 4.69 5.16	0.11 0.19 0.29
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	20.0000	87.00	No Ice 1/2" Ice	8.01 8.52 9.04	4.23 4.69 5.16	0.11 0.19 0.29
TA08025-B604	A	From Leg	4.00 0.00 0.00	0.0000	87.00	No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32	0.98 1.11 1.25	0.06 0.08 0.10
TA08025-B604	В	From Leg	4.00 0.00 0.00	0.0000	87.00	No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32	0.98 1.11 1.25	0.06 0.08 0.10
TA08025-B604	С	From Leg	4.00 0.00 0.00	0.0000	87.00	No Ice 1/2" Ice	1.96 2.14 2.32	0.98 1.11 1.25	0.06 0.08 0.10
TA08025-B605	A	From Leg	4.00 0.00 0.00	0.0000	87.00	No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32	1.13 1.27 1.41	0.08 0.09 0.11
TA08025-B605	В	From Leg	4.00 0.00 0.00	0.0000	87.00	No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32	1.13 1.27 1.41	0.08 0.09 0.11
TA08025-B605	С	From Leg	4.00 0.00 0.00	0.0000	87.00	No Ice 1/2" Ice	1.96 2.14 2.32	1.13 1.27 1.41	0.08 0.09 0.11
RDIDC-9181-PF-48	A	From Leg	4.00 0.00 0.00	0.0000	87.00	No Ice 1/2" Ice 1" Ice	2.01 2.19 2.37	1.17 1.31 1.46	0.02 0.04 0.06
*** Commscope MTC3975083 (3)	С	None		0.0000	87.00	No Ice 1/2" Ice	23.85 34.12 44.39	23.85 34.12 44.39	1.26 1.80 2.35
(2) 8' x 2" Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	87.00	No Ice 1/2" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
(2) 8' x 2" Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	87.00	No Ice 1/2" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
(2) 8' x 2" Mount Pipe	С	From Leg	4.00	0.0000	87.00	No Ice	1.90	1.90	0.03

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
			0.00 0.00			1/2" Ice 1" Ice	2.73 3.40	2.73 3.40	0.04 0.06
GPS_A	С	From Leg	3.00 0.00 1.00	20.0000	80.00	No Ice 1/2" Ice 1" Ice	0.26 0.32 0.39	0.26 0.32 0.39	0.00 0.00 0.01
Side Arm Mount [SO 701- 1]	С	From Leg	1.50 0.00 0.00	0.0000	80.00	No Ice 1/2" Ice 1" Ice	0.85 1.14 1.43	1.67 2.34 3.01	0.07 0.08 0.09
GPS_A	В	From Leg	3.00 0.00 0.00	20.0000	72.00	No Ice 1/2" Ice 1" Ice	0.26 0.32 0.39	0.26 0.32 0.39	0.00 0.00 0.01
GPS_A	С	From Leg	3.00 0.00 0.00	20.0000	72.00	No Ice 1/2" Ice 1" Ice	0.26 0.32 0.39	0.26 0.32 0.39	0.00 0.00 0.01
Side Arm Mount [SO 701- 1]	В	From Leg	1.50 0.00 0.00	0.0000	72.00	No Ice 1/2" Ice 1" Ice	0.85 1.14 1.43	1.67 2.34 3.01	0.07 0.08 0.09
Side Arm Mount [SO 701- 1]	С	From Leg	1.50 0.00 0.00	0.0000	72.00	No Ice 1/2" Ice 1" Ice	0.85 1.14 1.43	1.67 2.34 3.01	0.07 0.08 0.09
**** ****** ******									

Truss-Leg Properties

Section	Area	Area	Self	lce	Equiv.	Equiv.	Leg
Designation		Ice	Weight	Weight	Diamete	Diamete	Area
	in ²	in ²	К	K	r in	r Ice in	in²
Pirod 105244 w/ (2) 1-1/4" Tie Rod	1076.4663	2409.8852	0.73	0.26	7.4755	16.7353	6.1379
Pirod 105217	2296.2363	5394.9595	0.59	0.36	7.9730	18.7325	5.3014
Pirod 105218	2425.3141	5485 0952	0.72	0.35	8 4212	19.0455	7.2158
Pirod 105218	2425.3141	5246.1889	0.72	0.33	8.4212	18.2159	7.2158
Pirod 105219	2597.9095	5150.1891	1.09		9.0205	17.8826	9.4248

Load Combinations

Description

Comb. No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice

Comb.	Description
No.	
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 2/U deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+vvina 330 deg - Service

Maximum Member Forces

Sectio	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		.) [Comb.	K	kip-ft	kip-ft
T1	136 - 133.625	Leg	Max Tension	1	0.00	0.000	0.000
			Max. Compression	31	-2.24	-0.028	-0.016
			Max. Mx	8	-1.59	-0.138	-0.002
			Max. My	2	-1.60	0.004	0.141
			Max. Vy	8	0.21	-0.138	-0.002
			Max. Vx	2	-0.21	0.004	0.141
		Diagonal	Max Tension	9	0.84	0.000	0.000
		-	Max. Compression	8	-0.92	0.000	0.000
			Max. Mx	30	0.14	0.003	0.000
			Max. My	10	-0.01	0.000	0.000
			Max. Vy	30	-0.00	0.000	0.000
			Max. Vx	10	-0.00	0.000	0.000
		Top Girt	Max Tension	6	0.66	-0.018	-0.000
			Max. Compression	18	-0.65	-0.049	0.000
			Max. Mx	14	-0.33	-0.066	0.001
			Max. My	6	-0.33	-0.065	0.002
			Max. Vy	33	0.05	-0.062	0.000
			Max. Vx	6	0.00	0.000	0.000

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре		Load		Moment	Moment
NO.	100.005			Comb.	<u> </u>	kip-ft	kip-ft
12	133.625 -	Leg	Max Lension	1	2.77	0.372	-0.205
	130		Max Compression	10	-5 38	-0.419	-0.238
			Max. Compression Max Mx	8	-4.84	-0.469	-0.230
			Max. Mx Max. My	2	-5.31	0.010	0.485
			Max Vy	8	0.90	-0.469	-0.013
			Max. Vx	2	-0.93	0.010	0.485
		Diagonal	Max Tension	13	1.22	0.000	0.000
		0	Max. Compression	12	-1.33	0.000	0.000
			Max. Mx	33	0.17	-0.002	0.000
			Max. My	6	-1.16	-0.001	0.000
			Max. Vy	30	0.01	-0.002	0.000
			Max. Vx	6	0.00	0.000	0.000
		Horizontal	Max Tension	2	0.32	0.000	0.000
			Max. Compression	15	-0.18	0.000	0.000
			Max. Mx	26	0.12	0.008	0.000
			Max. My	8	0.07	0.000	-0.000
			Max. Vy	26	-0.01	0.000	0.000
		Dottom Cirt	Max. VX	8	0.00	0.000	0.000
		Bollom Gill	Max Compression	14	0.64	0.000	0.000
			Max. Compression	26	-0.50	0.000	0.000
			Max My	20	0.09	0.010	0.000
			Max Vv	26	-0.01	0.000	-0.000
			Max Vy	8	0.01	0.000	0.000
Т3	130 - 110	lea	Max Tension	7	30.04	1.556	-0.053
10	100 110	Log	Max Compression	10	-38 25	-0.227	-0.013
			Max. Mx	10	-38.24	-1.608	-0.081
			Max. Mv	20	-4.23	0.011	1.548
			Max. Vý	10	-2.76	-0.227	-0.013
			Max. Vx	20	2.62	0.004	0.240
		Diagonal	Max Tension	24	3.80	0.000	0.000
		-	Max. Compression	24	-3.87	0.000	0.000
			Max. Mx	30	0.79	-0.004	-0.000
			Max. My	22	-3.44	-0.001	0.001
			Max. Vy	30	0.01	-0.004	-0.000
			Max. Vx	22	-0.00	0.000	0.000
		Horizontal	Max Tension	6	0.55	0.000	0.000
			Max. Compression	11	-0.37	0.000	0.000
			Max. Mx	26	0.21	0.010	0.000
			Max. My	8	0.11	0.000	-0.000
			Max. Vy	20	-0.01	0.000	0.000
		Top Girt	Max Tension	2	0.00	0.000	0.000
		TOP OIL	Max Compression	14	-0.54	0.000	0.000
			Max Mx	26	0.02	0.000	0.000
			Max My	8	-0.00	0.000	-0.000
			Max Vv	26	0.01	0.000	0 000
			Max. Vx	8	0.00	0.000	0.000
		Bottom Girt	Max Tension	22	1.70	0.000	0.000
			Max. Compression	11	-1.66	0.000	0.000
			Max. Mx	26	0.13	0.012	0.000
			Max. My	8	0.25	0.000	-0.000
			Max. Vy	26	-0.01	0.000	0.000
			Max. Vx	8	0.00	0.000	0.000
T4	110 -	Leg	Max Tension	7	63.23	-0.178	-0.006
	94.9427					0.00-	C
			Max. Compression	10	-76.51	0.009	-0.009
			Max. Mx	10	-38.29	2.422	0.123
			Max. My	20	-4.34	-0.011	-2.278
			Max. Vy	10	-2.11	2.422	0.123
		Diagonal	Wax. VX	20	2.03	-0.011	-2.210 0.000
		Diagonal	Max Compression	24 24	5.02 _5.02	0.000	0.000
			Max. Compression Max Mv	24	2.68	-0.000	_0 000
			Max Mu	12	_A A2	_0.000	-0.000
			Max Wy	31	0.01	-0.001	0.002
			Max Vy	12	0.00	-0.001	-0 002
		Top Girt	Max Tension	10	1.72	0.000	0.000

Sectio	Elevation ft	Component Type	Condition	Gov.	Axial	Major Axis Moment	Minor Axis Moment
No.	11	Type		Comb.	К	kip-ft	kip-ft
			Max. Compression	22	-1.58	0.000	0.000
			Max. Mx	26	0.03	0.014	0.000
			Max. My	8	-0.17	0.000	-0.000
			Max. Vy	26	-0.01	0.000	0.000
			Max. Vx	8	0.00	0.000	0.000
15	94.9427 -	Leg	Max Tension	1	69.94	-0.028	-0.005
	92.5956		Max Compression	10	-84 53	-0 233	-0.000
			Max Mx	10	-84 48	0.291	0.001
			Max. Mv	12	-7.68	-0.012	-0.216
			Max. Vy	10	0.45	0.291	0.001
			Max. Vx	12	-0.23	0.033	0.047
		Diagonal	Max Tension	24	5.23	-0.004	0.000
			Max. Compression	20	-5.36	0.000	0.000
			Max. Mx	18	4.54	-0.007	-0.001
			Max. My	18	4.44	-0.007	0.001
			Max. Vy	31 10	0.01	-0.006	0.000
		Secondary	Max. VX Max Tension	22	-0.00	-0.007	0.001
		Horizontal	Max Tension	~~~	0.00	0.000	0.001
			Max. Compression	9	-0.45	-0.003	-0.002
			Max. Mx	20	0.40	-0.008	0.000
			Max. My	20	-0.43	-0.004	-0.002
			Max. Vy	34	0.02	-0.008	-0.000
			Max. Vx	8	0.00	0.000	0.000
Т6	92.5938 - 90	Leg	Max Tension	7	81.26	1.100	-0.009
			Max. Compression	10	-96.34	3.001	0.051
			Max My	10 Q	-90.00	3.055	-0.009
			Max Vv	18	-7.21	3 055	-0.009
			Max Vy Max Vx	8	-3.06	0.050	1 326
		Diagonal	Max Tension	20	6.09	-0.005	0.000
		5	Max. Compression	20	-6.30	0.000	0.000
			Max. Mx	10	4.09	-0.007	0.001
			Max. My	8	-3.21	-0.003	-0.001
			Max. Vy	31	0.01	-0.006	0.000
		o 1	Max. Vx	8	-0.00	0.000	0.000
		Horizontal	Max Tension	20	1.34	-0.005	0.001
			Max. Compression	7	-1.21	-0.006	-0.001
			Max. Mx	31	-0.15	-0.010	-0.000
			Max. My	20	-0.90	-0.007	-0.001
			Max Vy	8	0.02	0.000	0.000
		Bottom Girt	Max Tension	6	0.72	0.000	0.000
			Max. Compression	11	-0.67	0.000	0.000
			Max. Mx	26	0.04	0.017	0.000
			Max. My	16	-0.01	0.000	-0.000
			Max. Vy	26	-0.01	0.000	0.000
	00 00	1	Max. Vx	16	0.00	0.000	0.000
17	90 - 80	Leg	Max Compression	10	89.00	-2.867	0.007
			Max. Compression	6	-104.30	-3.026	-0.025
			Max. Mx Max. Mv	8	-8.99	-0.381	6 514
			Max. Vv	18	0.39	3.055	-0.009
			Max. Vx	16	-0.80	-0.359	6.380
		Diagonal	Max Tension	23	6.75	0.099	-0.016
		-	Max. Compression	10	-7.52	0.000	0.000
			Max. Mx	6	6.48	0.101	-0.014
			Max. My	12	-6.65	-0.081	0.039
			Max. Vy	8	-0.02	0.092	-0.012
ΤQ	80 - 60		Wax Tonsion	1∠ 7	-0.01	0.000	0.000
10	00-00	Ley	Max Compression	18	-145.68	5 519	-0.023
			Max. Mx	18	-127.75	5.692	-0.037
			Max. My	8	-10.39	-0.381	6.514
			Max. Vý	2	-0.36	5.574	0.009
			Max. Vx	4	-0.24	-0.360	-6.375
		Diagonal	Max Tension	24	6.19	0.000	0.000

136 Ft Self Support Tower Structural Analysis	
Project Number CN8-185R3 / 2200039, Order 572906,	Revision 2

Sectio	Elevation ft	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	11	i ypc		Comb.	к	kip-ft	kip-ft
			Max. Compression	20	-6.41	0.000	0.000
			Max. Mx	18	5.77	0.082	0.002
			Max. Mv	5	-5.79	-0.040	-0.009
			Max. Vv	31	-0.02	0.050	0.006
			Max. Vx	33	-0.00	0.000	0.000
Т9	60 - 40	Lea	Max Tension	7	156.58	-5.281	-0.024
		5	Max. Compression	18	-179.88	5.222	-0.030
			Max. Mx	6	140.07	-5.576	-0.049
			Max. Mv	8	-11.55	-0.038	5.478
			Max. Vv	22	-0.14	-5.452	-0.061
			Max. Vx	16	0.20	0.004	5.326
		Diagonal	Max Tension	20	5.62	0.000	0.000
		5	Max. Compression	20	-5.96	0.000	0.000
			Max. Mx	18	4.97	0.099	0.005
			Max. My	16	-3.12	0.014	0.009
			Max. Vv	31	-0.03	0.067	0.007
			Max. Vx	28	0.00	0.000	0.000
T10	40 - 20	Lea	Max Tension	7	182.59	-4.663	-0.021
		5	Max. Compression	18	-209.37	6.530	0.047
			Max. Mx	18	-209.37	6.530	0.047
			Max. Mv	8	-13.53	-0.238	5.766
			Max. Vý	37	0.44	-3.994	-0.043
			Max. Vx	16	0.27	-0.190	5.535
		Diagonal	Max Tension	20	5.39	0.000	0.000
		0	Max. Compression	18	-5.86	0.000	0.000
			Max. Mx	18	4.30	0.092	0.005
			Max. My	16	-3.29	0.017	0.009
			Max. Vy	29	0.04	0.062	0.008
			Max. Vx	28	0.00	0.000	0.000
T11	20 - 0	Leg	Max Tension	7	205.14	-4.904	-0.035
		-	Max. Compression	18	-236.35	0.000	-0.000
			Max. Mx	18	-224.01	6.530	0.047
			Max. My	8	-15.61	-0.530	8.761
			Max. Vy	37	-0.75	-3.994	-0.043
			Max. Vx	8	0.99	-0.530	8.761
		Diagonal	Max Tension	7	6.94	0.000	0.000
		-	Max. Compression	18	-7.84	0.000	0.000
			Max. Mx	8	1.43	0.132	-0.012
			Max. My	2	3.27	0.099	-0.017
			Max. Vy	29	0.05	0.111	0.012
			Max Vx	28	0.00	0 0 0 0	0 000

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
Lea C	Max. Vert	18	245.21	20.83	-11.76
5	Max. H _v	18	245.21	20.83	-11.76
	Max. H ₂	7	-212.15	-18.36	10.40
	Min. Vert	7	-212.15	-18.36	10.40
	Min. H _x	7	-212.15	-18.36	10.40
	Min. H _z	18	245.21	20.83	-11.76
Leg B	Max. Vert	10	240.47	-19.79	-11.87
0	Max. H _x	23	-203.27	17.23	10.42
	Max. H _z	23	-203.27	17.23	10.42
	Min. Vert	23	-203.27	17.23	10.42
	Min. H _x	10	240.47	-19.79	-11.87
	Min. H _z	10	240.47	-19.79	-11.87
Leg A	Max. Vert	2	233.07	0.44	22.39
-	Max. H _x	21	12.73	0.76	1.06
	Max. H _z	2	233.07	0.44	22.39
	Min. Vert	15	-200.42	-0.40	-19.56
	Min. H _x	9	12.64	-0.71	1.05
	Min. H _z	15	-200.42	-0.40	-19.56

_

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M₂	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only 1.2 Dead+1.0 Wind 0 deg -	44.60 53.52	0.00 -0.01	0.00 -31.76	9.416 -2609.524	-13.779 -16.126	-0.000 10.098
0.9 Dead+1.0 Wind 0 deg -	40.14	-0.01	-31.76	-2605.174	-11.932	10.073
1.2 Dead+1.0 Wind 30 deg -	53.52	16.28	-28.32	-2308.740	-1351.047	14.480
0.9 Dead+1.0 Wind 30 deg -	40.14	16.28	-28.32	-2305.250	-1343.181	14.450
1.2 Dead+1.0 Wind 60 deg -	53.52	29.11	-16.86	-1359.722	-2383.583	4.720
0.9 Dead+1.0 Wind 60 deg -	40.14	29.11	-16.86	-1358.847	-2372.922	4.691
1.2 Dead+1.0 Wind 90 deg - No Ice	53.52	34.62	0.01	11.885	-2814.010	-9.654
0.9 Dead+1.0 Wind 90 deg -	40.14	34.62	0.01	9.023	-2802.221	-9.673
1.2 Dead+1.0 Wind 120 deg	53.52	28.36	16.44	1354.840	-2334.586	-9.621
0.9 Dead+1.0 Wind 120 deg	40.14	28.36	16.44	1348.294	-2324.044	-9.628
1.2 Dead+1.0 Wind 150 deg	53.52	15.35	26.68	2241.497	-1299.612	-5.832
0.9 Dead+1.0 Wind 150 deg	40.14	15.35	26.68	2232.431	-1291.859	-5.819
1.2 Dead+1.0 Wind 180 deg	53.52	0.01	31.10	2602.265	-17.229	-10.096
0.9 Dead+1.0 Wind 180 deg - No Ice	40.14	0.01	31.10	2592.208	-13.036	-10.071
1.2 Dead+1.0 Wind 210 deg - No Ice	53.52	-16.28	28.32	2331.580	1317.618	-14.479
0.9 Dead+1.0 Wind 210 deg - No Ice	40.14	-16.28	28.32	2322.345	1318.155	-14.449
1.2 Dead+1.0 Wind 240 deg - No Ice	53.52	-29.67	17.18	1397.526	2376.272	-4.721
0.9 Dead+1.0 Wind 240 deg - No Ice	40.14	-29.67	17.18	1390.899	2373.969	-4.692
1.2 Dead+1.0 Wind 270 deg - No Ice	53.52	-34.62	-0.01	10.757	2780.704	9.653
0.9 Dead+1.0 Wind 270 deg - No Ice	40.14	-34.62	-0.01	7.901	2777.296	9.672
1.2 Dead+1.0 Wind 300 deg - No Ice	53.52	-27.79	-16.11	-1317.097	2275.251	9.625
0.9 Dead+1.0 Wind 300 deg - No Ice	40.14	-27.79	-16.11	-1316.302	2273.121	9.628
1.2 Dead+1.0 Wind 330 deg - No Ice	53.52	-15.35	-26.68	-2218.709	1266.337	5.832
0.9 Dead+1.0 Wind 330 deg - No Ice	40.14	-15.35	-26.68	-2215.386	1266.958	5.819
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	92.22 92.22	-0.00 -0.00	-0.00 -7.93	12.542 -640.999	-33.919 -33.911	-0.000 2.757
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	92.22	4.09	-7.10	-567.263	-367.847	3.227
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	92.22	7.39	-4.28	-333.079	-631.430	0.847
aeg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	92.22	8.60	0.00	12.807	-729.219	-2.080
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	92.22	7.22	4.18	353.376	-622.497	-2.470
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	92.22	3.95	6.86	580.292	-361.026	-1.877
deg+1.0 ice+1.0 Temp 1.2 Dead+1.0 Wind 180	92.22	0.00	7.85	662.451	-34.306	-2.757

Tower Mast Reaction Summary

tnxTower Report - version 8.1.1.0

92.22

-4.09

7.10

592.490

299.624

-3.227

deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210

136 Ft Self Support Tower Structural Analysis Project Number CN8-185R3 / 2200039, Order 572906, Revision 2

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	92.22	-7.46	4.32	360.186	566.479	-0.847
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 270	92.22	-8.60	-0.00	12.404	661.006	2.080
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 300	92.22	-7.15	-4.14	-326.272	551.018	2.470
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 330	92.22	-3.95	-6.86	-555.068	292.817	1.878
deg+1.0 lce+1.0 Temp						
Dead+Wind 0 deg - Service	44.60	-0.00	-7.58	-615.097	-13.728	2.412
Dead+Wind 30 deg - Service	44.60	3.89	-6.76	-543.414	-331.827	3.452
Dead+Wind 60 deg - Service	44.60	6.95	-4.02	-317.260	-577.886	1.127
Dead+Wind 90 deg - Service	44.60	8.27	0.00	9.603	-680.469	-2.298
Dead+Wind 120 deg -	44.60	6.77	3.92	329.621	-566.218	-2.298
Service						
Dead+Wind 150 deg -	44.60	3.66	6.37	540.878	-319.577	-1.398
Service						
Dead+Wind 180 deg -	44.60	0.00	7.43	626.856	-13.990	-2.412
Service						
Dead+Wind 210 deg -	44.60	-3.89	6.76	562.361	304.107	-3.452
Service						
Dead+Wind 240 deg -	44.60	-7.08	4.10	339.792	556.385	-1.128
Service		o o=				
Dead+Wind 2/0 deg -	44.60	-8.27	-0.00	9.335	652.755	2.298
Service	11.00	0.01	0.0-	007 000	500.000	0.000
Dead+Wind 300 deg -	44.60	-6.64	-3.85	-307.092	532.290	2.298
Service	11.00	0.00	0.07	504 665	004.070	4 6 6 6
Dead+Wind 330 deg -	44.60	-3.66	-6.37	-521.937	291.858	1.398
Service						

Solution Summary

	0	· · · · · · · · · · · · · · · · · · ·			Ourse of Decetion		
1 1	Sun	n of Applied Force	PS		Sum of Reactio	ns 	0/ 5
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comp.	K	<u> </u>	K	K	K	K	
1	0.00	-44.60	0.00	0.00	44.60	0.00	0.000%
2	-0.01	-53.52	-31.76	0.01	53.52	31.76	0.000%
3	-0.01	-40.14	-31.76	0.01	40.14	31.76	0.000%
4	16.28	-53.52	-28.32	-16.28	53.52	28.32	0.000%
5	16.28	-40.14	-28.32	-16.28	40.14	28.32	0.000%
6	29.11	-53.52	-16.86	-29.11	53.52	16.86	0.000%
7	29.11	-40.14	-16.86	-29.11	40.14	16.86	0.000%
8	34.62	-53.52	0.01	-34.62	53.52	-0.01	0.000%
9	34.62	-40.14	0.01	-34.62	40.14	-0.01	0.000%
10	28.36	-53.52	16.44	-28.36	53.52	-16.44	0.000%
11	28.36	-40.14	16.44	-28.36	40.14	-16.44	0.000%
12	15.35	-53.52	26.68	-15.35	53.52	-26.68	0.000%
13	15.35	-40.14	26.68	-15.35	40.14	-26.68	0.000%
14	0.01	-53.52	31.10	-0.01	53.52	-31.10	0.000%
15	0.01	-40.14	31.10	-0.01	40.14	-31.10	0.000%
16	-16.28	-53.52	28.32	16.28	53.52	-28.32	0.000%
17	-16.28	-40.14	28.32	16.28	40.14	-28.32	0.000%
18	-29.67	-53.52	17.18	29.67	53.52	-17.18	0.000%
19	-29.67	-40.14	17.18	29.67	40.14	-17.18	0.000%
20	-34.62	-53.52	-0.01	34.62	53.52	0.01	0.000%
21	-34.62	-40.14	-0.01	34.62	40.14	0.01	0.000%
22	-27.79	-53.52	-16.11	27.79	53.52	16.11	0.000%
23	-27.79	-40.14	-16.11	27.79	40.14	16.11	0.000%
24	-15.35	-53.52	-26.68	15.35	53.52	26.68	0.000%
25	-15.35	-40.14	-26.68	15.35	40.14	26.68	0.000%
26	0.00	-92.22	0.00	0.00	92.22	0.00	0.000%
27	-0.00	-92.22	-7.93	0.00	92.22	7.93	0.000%
28	4.09	-92.22	-7.10	-4.09	92.22	7.10	0.000%
29	7.39	-92.22	-4.28	-7.39	92.22	4.28	0.000%
30	8.60	-92.22	0.00	-8.60	92.22	-0.00	0.000%
31	7.22	-92.22	4.18	-7.22	92.22	-4.18	0.000%

136 Ft Self Support Tower Structural Ar	nalysis
Project Number CN8-185R3 / 2200039,	Order 572906, Revision 2

	Sun	n of Applied Force	s		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
32	3.95	-92.22	6.86	-3.95	92.22	-6.86	0.000%
33	0.00	-92.22	7.85	-0.00	92.22	-7.85	0.000%
34	-4.09	-92.22	7.10	4.09	92.22	-7.10	0.000%
35	-7.46	-92.22	4.32	7.46	92.22	-4.32	0.000%
36	-8.60	-92.22	-0.00	8.60	92.22	0.00	0.000%
37	-7.15	-92.22	-4.14	7.15	92.22	4.14	0.000%
38	-3.95	-92.22	-6.86	3.95	92.22	6.86	0.000%
39	-0.00	-44.60	-7.58	0.00	44.60	7.58	0.000%
40	3.89	-44.60	-6.76	-3.89	44.60	6.76	0.000%
41	6.95	-44.60	-4.02	-6.95	44.60	4.02	0.000%
42	8.27	-44.60	0.00	-8.27	44.60	-0.00	0.000%
43	6.77	-44.60	3.92	-6.77	44.60	-3.92	0.000%
44	3.66	-44.60	6.37	-3.66	44.60	-6.37	0.000%
45	0.00	-44.60	7.43	-0.00	44.60	-7.43	0.000%
46	-3.89	-44.60	6.76	3.89	44.60	-6.76	0.000%
47	-7.08	-44.60	4.10	7.08	44.60	-4.10	0.000%
48	-8.27	-44.60	-0.00	8.27	44.60	0.00	0.000%
49	-6.64	-44.60	-3.85	6.64	44.60	3.85	0.000%
50	-3.66	-44.60	-6.37	3.66	44.60	6.37	0.000%

		Non-Line	ear Converge	ence Results
	0 10	N/ /	<u> </u>	
Load	Converged?	Number	Displacement	Force
Combination	Vee	or Cycles		
1	Yes	4	0.0000001	0.00000001
2	Yes	4	0.00000001	0.00000594
3	Yes	4	0.00000001	0.00000240
4	Yes	4	0.00000001	0.00000769
5	Yes	4	0.00000001	0.00000395
0	Yes	4	0.00000001	0.00000766
0	Yes	4	0.00000001	0.00000348
0	Voc	4	0.00000001	0.00000733
9 10	Ves	4	0.00000001	0.00000586
10	Voc	4	0.00000001	0.00000333
12	Ves	4	0.00000001	0.00000233
12	Ves	4	0.00000001	0.00000722
14	Ves	4	0.00000001	0.00000790
14	Ves	4	0.00000001	0.00000730
16	Ves	4	0.00000001	0.00000340
17	Ves	4	0.00000001	0.00000394
18	Yes	4	0.00000001	0.00000587
10	Yes	4	0.00000001	0.00000232
20	Yes	4	0.00000001	0.00000232
20	Yes	4	0.00000001	0.00000375
22	Yes	4	0.00000001	0.00000789
23	Yes	4	0.00000001	0.00000347
24	Yes	4	0.00000001	0.00000722
25	Yes	4	0.00000001	0 00000339
26	Yes	4	0.00000001	0.00000001
27	Yes	4	0.00000001	0.00002655
28	Yes	4	0.00000001	0.00002757
29	Yes	4	0.00000001	0.00002851
30	Yes	4	0.00000001	0.00002811
31	Yes	4	0.00000001	0.00002745
32	Yes	4	0.00000001	0.00002768
33	Yes	4	0.00000001	0.00002799
34	Yes	4	0.0000001	0.00002742
35	Yes	4	0.0000001	0.00002678
36	Yes	4	0.0000001	0.00002720
37	Yes	4	0.0000001	0.00002757
38	Yes	4	0.0000001	0.00002686
39	Yes	4	0.00000001	0.0000001
40	Yes	4	0.0000001	0.0000001
41	Yes	4	0.0000001	0.00000405
42	Yes	4	0.0000001	0.0000001

136 Ft Self Support Tower Structural Analysis Project Number CN8-185R3 / 2200039, Order 572906, Revision 2

43 44	Yes Yes	4 4	0.00000001 0.00000001	0.00000001 0.00000001
46	Yes	4	0.0000001	0.0000001
47 48	Yes	4	0.00000001	0.00000001
49 50	Yes Yes	4 4	0.00000001 0.00000001	0.00000001 0.00000001

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	0
T1	136 - 133.625	4.054	42	0.2578	0.0285
T2	133.625 - 130	3.925	42	0.2577	0.0285
Т3	130 - 110	3.706	42	0.2564	0.0294
Τ4	110 - 94.9427	2.624	42	0.2372	0.0244
T5	94.9427 -	1.877	42	0.2038	0.0168
	92.5938				
Т6	92.5938 - 90	1.775	42	0.1962	0.0166
Τ7	90 - 80	1.664	42	0.1870	0.0163
Т8	80 - 60	1.279	42	0.1638	0.0142
Т9	60 - 40	0.683	42	0.1086	0.0094
T10	40 - 20	0.293	42	0.0682	0.0056
T11	20 - 0	0.071	42	0.0290	0.0021

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	0	ft
136.00	APXVSPP18-C-A20 w/ Mount	42	4.054	0.2578	0.0285	27167
404.00		10	0.040	0.0570	0.0005	07407
134.00	1900MHz RRH (65MHz)	42	3.946	0.2578	0.0285	2/16/
127.00	(4) DB844H90E-XY w/ Mount	42	3.527	0.2548	0.0298	13619
	Pipe					
117.00	APXVAALL24 43-U-NA20 TMO	42	2.983	0.2464	0.0281	41526
107.00	BXA-80063/4CF w/ Mount Pipe	42	2.469	0.2323	0.0225	133547
97.00	DMP65R-BU4D w/ Mount Pipe	42	1.971	0.2098	0.0170	14234
87.00	MX08FRO665-21 w/ Mount Pipe	42	1.541	0.1785	0.0157	16966
80.00	GPS A	42	1.279	0.1638	0.0142	21001
72.00	GPS_A	42	1.014	0.1431	0.0122	21893

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	۰
T1	136 - 133.625	16.810	8	1.0677	0.1199
T2	133.625 - 130	16.275	8	1.0674	0.1201
Т3	130 - 110	15.366	8	1.0621	0.1236
T4	110 - 94.9427	10.880	8	0.9828	0.1029
T5	94.9427 - 92 5938	7.784	8	0.8443	0.0704
Т6	92.5938 - 90	7.359	8	0.8127	0.0695
Τ7	90 - 80	6.899	8	0.7748	0.0680
Т8	80 - 60	5.304	8	0.6787	0.0595
Т9	60 - 40	2.831	8	0.4495	0.0394
T10	40 - 20	1.215	8	0.2822	0.0233
T11	20 - 0	0.294	8	0.1199	0.0088
Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Load Comb	in	0	0	Curvature ft
136.00	APXVSPP18-C-A20 w/ Mount	8	16.810	1.0677	0.1199	6453
134 00	Pipe 1900MHz RRH (65MHz)	8	16 363	1 0676	0 1200	6453
127.00	(4) DB844H90E-XY w/ Mount	8	14.626	1.0553	0.1255	3225
	Pipe					
117.00	APXVAALL24_43-U-NA20_TMO	8	12.372	1.0209	0.1181	10039
107.00	BXA-80063/4CF w/ Mount Pipe	8	10.238	0.9623	0.0946	34516
97.00	DMP65R-BU4D w/ Mount Pipe	8	8.172	0.8692	0.0711	3415
87.00	MX08FRO665-21 w/ Mount Pipe	8	6.391	0.7395	0.0658	4085
80.00	GPS A	8	5.304	0.6787	0.0595	5066
72.00	GPSA	8	4.205	0.5926	0.0514	5279

Bolt Design Data

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load per Bolt	Ratio Load Allowable	Allowable Ratio	Criteria
T2	133.625	Lea	A325N	0.6250	5	1.08	27.61	0.039	1.05	Bolt DS
T3	130	Lea	A325N	0.7500	5	7.65	39.76	0.192	1.05	Bolt DS
T6	92.5938	Leg	A325N	1.0000	6	13.54	54.52	0.248	1.05	Bolt Tension
Τ7	90	Leg	A325N	1.0000	6	14.83	54.52	0.272	1.05	Bolt Tension
		Diagonal	A325N	1.0000	1	6.75	10.16	0.664	1.05	Member Block Shear
Т8	80	Leg	A325N	1.0000	6	21.00	54.52	0.385	1.05	Bolt Tension
		Diagonal	A325N	1.0000	1	6.19	10.66	0.581	1.05	Member Block Shear
Т9	60	Leq	A325N	1.0000	6	26.10	54.52	0.479	1.05	Bolt Tension
		Diagonal	A325N	1.0000	1	5.62	11.68	0.481	1.05	Member Block Shear
T10	40	Leq	A325N	1.0000	6	30.43	54.52	0.558	1.05	Bolt Tension
		Diagonal	A325N	1.0000	1	5.39	11.68	0.461	1.05	Member Block Shear
T11	20	Diagonal	A325N	1.2500	1	6.94	23.70	0.293	1.05	Member Block Shear

Compression Checks

		Leg l	Design [Data	(Comp	pressio	on)		
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φ P _n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
T1	136 - 133.625	1 1/2	2.38	2.38	76.0 K=1.00	1.7672	-2.24	52.13	0.043 1
T2	133.625 - 130	1 1/2	3.63	2.63	84.0 K=1.00	1.7672	-4.06	47.47	0.085 ¹
Т3	130 - 110	2	20.00	2.38	57.0 K=1.00	3.1416	-35.06	111.47	0.314 ¹
T4	110 - 94.9427	2 1/4	15.06	2.35	50.1 K=1.00	3.9761	-76.51	148.89	0.514 ¹
Τ5	94.9427 - 92.5938	2 1/4	2.35	1.18	25.2 K=1.00	3.9761	-84.53	170.80	0.495 ¹
Т6	92.5938 - 90	2 1/4	2.59	0.58	12.4	3.9761	-96.34	176.91	0.545 ¹

136 Ft Self Support Tower Structural Analysis Project Number CN8-185R3 / 2200039, Order 572906, Revision 2

Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
					K=1.00				
Τ7	90 - 80	Pirod 105244 w/ (2) 1-1/4" Tie Rod	10.02	10.02	35.1 K=1.00	6.1379	-104.30	252.38	0.413 ¹
Т8	80 - 60	Pirod 105217	20.03	10.02	37.8 K=1.00	5.3014	-145.68	214.86	0.678 ¹
Т9	60 - 40	Pirod 105218	20.03	10.02	32.4 K=1.00	7.2158	-179.88	300.68	0.598 ¹
T10	40 - 20	Pirod 105218	20.03	10.02	32.4 K=1.00	7.2158	-209.37	300.68	0.696 ¹
T11	20 - 0	Pirod 105219	20.03	10.02	28.4 K=1.00	9.4248	-236.35	399.87	0.591 ¹

¹ P_u / ϕP_n controls

Truss-Leg Diagonal Data

Section No.	Elevation ft	Diagonal Size	L _d ft	Kl/r	$\phi P_n \\ K$	A in²	V _u K	¢V _n K	Stress Ratio
Τ7	90 - 80	0.5	1.35	109.8	276.20	0.1963	0.81	3.48	0.232
T8	80 - 60	0.5	1.47	120.0	238.57	0.1963	0.36	3.34	0.108
Т9	60 - 40	0.5	1.46	119.0	324.71	0.1963	0.20	3.38	0.059
T10	40 - 20	0.5	1.46	119.0	324.71	0.1963	0.44	3.38	0.129
T11	20 - 0	0.625	1.45	94.4	424.12	0.3068	0.99	6.96	0.143

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	А	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T1	136 - 133.625	3/4	3.10	3.01	134.8 K=0.70	0.4418	-0.92	5.50	0.167 ¹
T2	133.625 - 130	3/4	4.78	2.32	133.5 K=0.90	0.4418	-1.33	5.60	0.238 ¹
Т3	130 - 110	7/8	5.05	2.45	120.9 K=0.90	0.6013	-3.87	9.30	0.416 ¹
T4	110 - 94.9427	1	5.39	2.60	112.5 K=0.90	0.7854	-5.08	14.00	0.363 ¹
Τ5	94.9427 - 92.5938	1	5.44	2.63	113.7 K=0.90	0.7854	-5.36	13.73	0.391 ¹
Т6	92.5938 - 90	1	5.35	2.59	111.8 K=0.90	0.7854	-6.30	14.17	0.445 ¹
Τ7	90 - 80	L3x3x3/16	11.42	5.26	109.4 K=1.03	1.0900	-7.52	24.13	0.312 ¹
Т8	80 - 60	L2 1/2x2 1/2x3/16	12.50	5.63	136.4 K=1.00	0.9020	-6.33	13.87	0.456 ¹
Т9	60 - 40	L3x3x3/16	13.80	6.33	127.4 K=1.00	1.0900	-5.81	19.22	0.302 ¹
T10	40 - 20	L3x3x3/16	15.24	7.08	142.6 K=1.00	1.0900	-5.86	15.35	0.382 ¹
T11	20 - 0	L3x3x5/16	16.80	7.84	159.7 K=1.00	1.7800	-7.84	19.97	0.393 ¹

¹ P_u / ϕP_n controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	А	P _u	φ P _n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
T2	133.625 - 130	3/4	4.00	3.88	173.6 K=0.70	0.4418	-0.18	3.31	0.055 ¹
Т3	130 - 110	3/4	4.43	4.26	190.9 K=0.70	0.4418	-0.66	2.74	0.242 ¹

¹ P_u / ϕP_n controls

Secondary Horizontal Design Data (Compression)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ P _n	Ratio P.,	
	ft		ft	ft		in²	K	K	ϕP_n	
T5	94.9427 - 92.5938	1 1/2	4.90	2.36	83.0 K=1.10	1.7672	-1.46	48.04	0.030 ¹	
Т6	92.5938 - 90	1 1/2	4.96	2.39	84.0 K=1.10	1.7672	-1.67	47.47	0.035 ¹	

¹ P_u / ϕP_n controls

		Top Girt	Desig	n Dat	a (Coi	mpres	sion)			
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φ P _n	Ratio P _u	
	ft		ft	ft		in ²	K	K	ϕP_n	
T1	136 - 133.625	6x3/8	4.00	2.91	322.2 K=1.00	2.2500	-0.65	4.90	0.133 ¹	
		KL/R > 200 (C) - 4								
Т3	130 - 110	7/8	4.01	3.85	147.7 K=0.70	0.6013	-0.66	6.23	0.106 ¹	
T4	110 - 94.9427	1	4.52	4.34	145.7 K=0.70	0.7854	-1.58	8.36	0.190 ¹	

¹ P_u / ϕP_n controls

Bottom Girt Design	Data (Compression)
--------------------	--------------------

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
T2	133.625 - 130	7/8	4.00	3.88	148.8 K=0.70	0.6013	-0.56	6.14	0.091 1
Т3	130 - 110	7/8	4.49	4.32	165.9 K=0.70	0.6013	-1.66	4.93	0.336 ¹
Т6	92.5938 - 90	1	4.99	4.80	161.2 K=0.70	0.7854	-1.67	6.83	0.244 ¹

¹ P_u / ϕP_n controls

Tension Checks

		Leg	Desig	in Dat	a (Te	nsion)			
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ P _n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
T2	133.625 - 130	1 1/2	3.63	1.00	32.0	1.7672	2.77	79.52	0.035 ¹
Т3	130 - 110	2	20.00	0.50	12.0	2.1885	30.04	106.69	0.282 ¹ #
T4	110 - 94.9427	2 1/4	15.06	2.35	50.1	3.9761	63.23	178.92	0.353 ¹
T5	94.9427 - 92.5938	2 1/4	2.35	1.17	24.9	3.9761	69.94	178.92	0.391 ¹
T6	92.5938 - 90	2 1/4	2.59	0.58	12.4	3.9761	81.26	178.92	0.454 ¹
Τ7	90 - 80	Pirod 105244 w/ (2) 1-1/4" Tie Rod	10.02	10.02	35.1	6.1379	89.00	276.20	0.322 ¹
T8	80 - 60	Pirod 105217	20.03	10.02	37.8	5.3014	126.02	238.57	0.528 ¹
Т9	60 - 40	Pirod 105218	20.03	10.02	32.4	7.2158	156.58	324.71	0.482 ¹
T10	40 - 20	Pirod 105218	20.03	10.02	32.4	7.2158	182.59	324.71	0.562 ¹
T11	20 - 0	Pirod 105219	20.03	10.02	28.4	9.4248	205.14	424.12	0.484 ¹

¹ P_u / ϕP_n controls

[#] Based on net area of leg in section below

	Truss-Leg Diagonal Data									
Section No.	Elevation ft	Diagonal Size	L _d ft	Kl/r	φP _n K	A in ²	V _u K	¢V _n K	Stress Ratio	
T7	90 - 80	0.5	1.35	109.8	276.20	0.1963	0.81	3.48	0.232	
Т8	80 - 60	0.5	1.47	120.0	238.57	0.1963	0.36	3.34	0.108	
Т9	60 - 40	0.5	1.46	119.0	324.71	0.1963	0.20	3.38	0.059	
T10	40 - 20	0.5	1.46	119.0	324.71	0.1963	0.44	3.38	0.129	
T11	20 - 0	0.625	1.45	94.4	424.12	0.3068	0.99	6.96	0.143	

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	K	K	ϕP_n
T1	136 - 133.625	3/4	3.10	3.01	192.5	0.4418	0.84	19.88	0.042 ¹
T2	133.625 - 130	3/4	4.78	2.32	148.3	0.4418	1.22	19.88	0.061 ¹
Т3	130 - 110	7/8	5.05	2.45	134.3	0.6013	3.80	27.06	0.140 ¹
T4	110 - 94.9427	1	5.39	2.60	125.0	0.7854	5.02	35.34	0.142 ¹
T5	94.9427 -	1	5.44	2.63	126.3	0.7854	5.23	35.34	0.148 ¹
	92.5938								
T6	92.5938 - 90	1	5.35	2.59	124.2	0.7854	6.09	35.34	0.172 ¹
T7	90 - 80	L3x3x3/16	11.42	5.26	69.3	0.6593	6.75	28.68	0.235 ¹
T8	80 - 60	L2 1/2x2 1/2x3/16	11.93	5.38	86.2	0.5183	6.19	22.55	0.275 ¹
Т9	60 - 40	L3x3x3/16	13.13	6.02	79.5	0.6593	5.62	28.68	0.196 ¹
T10	40 - 20	L3x3x3/16	14.50	6.73	88.6	0.6593	5.39	28.68	0.188 ¹
T11	20 - 0	L3x3x5/16	16.80	7.84	105.3	1.0127	6.94	44.05	0.157 ¹

¹ P_u / ϕP_n controls

Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	А	P _u	φ P _n	Ratio P _u
	ft		ft	ft		in ²	K	К	ϕP_n
T2 T3	133.625 - 130 130 - 110	3/4 3/4	4.00 4.37	3.88 4.20	248.0 268.9	0.4418 0.4418	0.32 0.66	19.88 19.88	0.016 ¹ 0.033 ¹

¹ P_u / ϕP_n controls

	Secondary Horizontal Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ Ρ _n	Ratio P _u	
	ft		ft	ft		in ²	K	K	ϕP_n	
T5	94.9427 - 92.5938	1 1/2	4.90	2.36	151.0	1.7672	1.46	79.52	0.018 ¹	
Т6	92.5938 - 90	1 1/2	4.96	2.39	152.7	1.7672	1.67	79.52	0.021 ¹	

¹ P_u / ϕP_n controls

Top Girt Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ P _n	Ratio P _u	
	ft		ft	ft		in ²	K	K	ϕP_n	
T1	136 - 133.625	6x3/8	4.00	2.91	322.2	2.2500	0.66	72.90	0.009 1	
Т3	130 - 110	7/8	4.01	3.85	211.0	0.6013	0.66	27.06	0.024 ¹	
T4	110 - 94.9427	1	4.52	4.34	208.1	0.7854	1.72	35.34	0.049 ¹	

¹ P_u / ϕP_n controls

	Bottom Girt Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ P _n	Ratio P _u	
	ft		ft	ft		in ²	K	K	ϕP_n	
T2	133.625 - 130	7/8	4.00	3.88	212.6	0.6013	0.64	27.06	0.024 1	
Т3	130 - 110	7/8	4.49	4.32	237.0	0.6013	1.70	27.06	0.063 ¹	
Т6	92.5938 - 90	1	4.99	4.80	230.3	0.7854	1.67	35.34	0.047 ¹	

¹ P_u / ϕP_n controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
T1	136 - 133.625	Leg	1 1/2	2	-2.24	54.73	4.1	Pass
T2	133.625 - 130	Leg	1 1/2	14	-4.06	49.84	8.1	Pass
Т3	130 - 110	Leg	2	29	-35.06	117.05	30.0	Pass
T4	110 - 94.9427	Leg	2 1/4	107	-76.51	156.33	48.9	Pass
T5	94.9427 -	Leg	2 1/4	149	-84.53	179.34	47.1	Pass

Section	Elevation	Component	Size	Critical	Р	øP _{allow}	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
	92.5938							
T6	92.5938 - 90	Leg	2 1/4	161	-96.34	185.75	51.9	Pass
T7	90 - 80	Leg	Pirod 105244 w/ (2) 1-1/4"	176	-104.30	265.00	39.4	Pass
			Tie Rod					
T8	80 - 60	Leg	Pirod 105217	184	-145.68	225.60	64.6	Pass
Т9	60 - 40	Leg	Pirod 105218	199	-179.88	315.72	57.0	Pass
T10	40 - 20	Leg	Pirod 105218	214	-209.37	315.72	66.3	Pass
T11	20 - 0	Leg	Pirod 105219	229	-236.35	419.86	56.3	Pass
T1	136 - 133.625	Diagonal	3/4	8	-0.92	5.77	15.9	Pass
12	133.625 - 130	Diagonal	3/4	24	-1.33	5.88	22.7	Pass
13	130 - 110	Diagonal	//8	40	-3.87	9.77	39.6	Pass
14	110 - 94.9427	Diagonal	1	115	-5.08	14.70	34.6	Pass
15	94.9427 - 92.5938	Diagonal	1	151	-5.36	14.41	37.2	Pass
Т6	92.5938 - 90	Diagonal	1	166	-6.30	14.87	42.4	Pass
T7	90 - 80	Diagonal	L3x3x3/16	180	-7.52	25.34	29.7	Pass
		-					66.4 (b)	
T8	80 - 60	Diagonal	L2 1/2x2 1/2x3/16	187	-6.33	14.57	43.5	Pass
							58.1 (b)	
Т9	60 - 40	Diagonal	L3x3x3/16	202	-5.81	20.18	28.8	Pass
							48.1 (b)	
T10	40 - 20	Diagonal	L3x3x3/16	217	-5.86	16.11	36.4	Pass
							46.1 (b)	_
T11	20 - 0	Diagonal	L3x3x5/16	232	-7.84	20.97	37.4	Pass
12	133.625 - 130	Horizontal	3/4	16	-0.18	3.48	5.2	Pass
13	130 - 110	Horizontal	3/4	43	-0.66	2.88	23.0	Pass
15	94.9427 -	Secondary	1 1/2	157	-1.46	50.44	2.9	Pass
TO	92.5938	Horizontal	4.4/0	470	4.07	40.05	2.2	Dees
10	92.5938 - 90	Secondary	1 1/2	172	-1.07	49.85	3.3	Pass
Τ1	136 - 133 625	Top Girt	6x3/8	4	-0.65	5 1/	12.7	Pass
T3	130 - 110	Top Girt	7/8	- 31	-0.00	6 54	10.1	Pass
T4	110 - 94 9427	Top Girt	1	111	-0.00	8 78	18.1	Pass
T2	133 625 - 130	Bottom Girt	7/8	19	-0.56	6 4 4	87	Pass
T3	130 - 110	Bottom Girt	7/8	36	-1.66	5 18	32.0	Pass
T6	92 5938 - 90	Bottom Girt	1	163	-1.67	7 17	23.3	Pass
	02.0000 00						Summarv	1 400
						Leg (T10)	66.3	Pass
						Diagonal	66.4	Pass
						(Ť7)		
						Horizontal	23.0	Pass
						(T3)		
						Secondary	3.3	Pass
						Horizontal		
						(T6)		_
						Top Girt	18.1	Pass
						(T4)	00.0	-
						Bottom Girt	32.0	Pass
						(13)	00.0	D -
						Bolt	63.2	Pass
						DATING -	66 4	Pace
						RATING -	00.4	rass

APPENDIX B

BASE LEVEL DRAWING

--

APPENDIX C

ADDITIONAL CALCULATIONS

Truss Leg Reinforcement

Н

TIA-222 Revision:

Existing Tie Rods						
Diameter, de:	1.25	in				
Unbraced Length, Le:	14.18	in				
Yield Strength, Fye:	50	ksi				

New Tie Rods					
Diameter, dn:	1.25	in			
Unbraced Length, Ln:	14.18	in			
Offset, X:	0.625	in			
Yield Strength, Fyn:	50	ksi			

	Results			
	Demand	Capacity	Rating*	Check
Compression (Existing Tie Rods), kip:	20.24	47.51	40.6%	Pass
Compression (New Tie Rods), kip:	20.24	47.51	40.6%	Pass
Compression (Modified Tie Rods), kip:	101.18	257.98	37.4%	Pass
Tension (Existing Tie Rods), kip:	17.38	55.22	30.0%	Pass
Tension (New Tie Rods), kip:	17.38	55.22	30.0%	Pass
Tension (Modified Tie Rods), kip:	86.92	276.12	30.0%	Pass

*Section 15.5 Applied

CROWN

Adjustments for tnx							
Diameter of modified truss leg, Deqv:	1.614	in					
Leg K Factor Adjustment, K:	0.999						

Truss Leg		
Width, w:	12	in
Unbraced Length, Lleg:	10	ft

Reactions from tnx		
Compression, C:	101.18	kip
Tension, T:	86.92	kip

Output from tnx		
KL/r Modified Leg, KLtnx:	45.4	

Length Factors		
Length Factor of Existing Tie Rods, Ke:	1	
Length Factor of New Tie Rods, Kn:	1	
Length Factor of the Leg, Kleg:	1	

Self Support Anchor Rod Capacity

Site Info	
BU #	876338
Site Name	Waterford
Order #	572906 Rev. 2

Analysis Considerations		
TIA-222 Revision	Н	
Grout Considered:	Yes	
I _{ar} (in)	1.75	

Applied Loads		
	Comp.	Uplift
Axial Force (kips)	245.21	212.15
Shear Force (kips)	23.92	21.10

*TIA-222-H Section 15.5 Applied

Considered Eccentricity	
Leg Mod Eccentricity (in)	0.000
Anchor Rod N.A Shift (in)	0.000
Total Eccentricity (in)	0.000
** /	

*Anchor Rod Eccentricity Applied

Analysis Results **Connection Properties** Anchor Rod Data Anchor Rod Summary (units of kips, kip-in) (6) 1-1/4" ø bolts (A687 N; Fy=105 ksi, Fu=125 ksi) φPn_t = 90.84 Pu_t = 35.36 Stress Rating l_{ar} (in): 1.75 Vu = 3.52 φVn = 57.52 37.1% Mu = n/a φMn = n/a Pass

Analysis Date: 11/26/2021

SST Unit Base Foundation

BU # : 876338 Site Name: Waterford App. Number: 572906 Rev. 2

TIA-222 Revision: H

Top & Bot. Pad Rein. Different?:	
Tower Centroid Offset?:	
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions		
Global Moment, M :	2814.04	ft-kips
Global Axial, P :	53.52	kips
Global Shear, V :	34.62	kips
Leg Compression, P_{comp} :	245.21	kips
Leg Comp. Shear, V _{u_comp} :	23.92	kips
Leg Uplift, P_{uplift}:	212.15	kips
Leg Uplift. Shear, V u_uplift:	21.1	kips
Tower Height, H :	136	ft
Base Face Width, BW :	14	ft
BP Dist. Above Fdn, bp_{dist}:	2.5	in

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier :	3.0	ft
Ext. Above Grade, E :	0.50	ft
Pier Rebar Size, Sc :	8	
Pier Rebar Quantity, mc :	15	
Pier Tie/Spiral Size, St :	4	
Pier Tie/Spiral Quantity, mt :	7	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	3	in

Pad Properties		
Depth, D:	6.00	ft
Pad Width, W ₁ :	23.00	ft
Pad Thickness, T :	3.25	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	9	
Pad Rebar Quantity (Bottom dir. 2), mp₂ :	46	
Pad Clear Cover, cc _{pad} :	3	in

Material Properties			
Rebar Grade, Fy :	60	ksi	
Concrete Compressive Strength, F'c:	3	ksi	
Dry Concrete Density, δc :	150	pcf	

Soil Properties				
Total Soil Unit Weight, γ :	120	pcf		
Ultimate Gross Bearing, Qult:	8.000	ksf		
Cohesion, Cu :	0.000	ksf		
Friction Angle, φ :	36	degrees		
SPT Blow Count, N _{blows} :	25			
Base Friction, μ :				
Neglected Depth, N:	3.3	ft		
Foundation Bearing on Rock?	No			
Groundwater Depth, gw:	N/A	ft		

Foundation Analysis Checks						
Capacity Demand Rating* Check						
Lateral (Sliding) (kips)	244.48	34.62	13.5%	Pass		
Bearing Pressure (ksf)	6.00	2.42	40.4%	Pass		
Overturning (kip*ft)	4550.85	3046.28	66.9%	Pass		
Pier Flexure (Comp.) (kip*ft)	847.27	77.74	8.7%	Pass		
Pier Flexure (Tension) (kip*ft)	505.31	68.58	12.9%	Pass		
Pier Compression (kip)	3374.26	249.35	7.0%	Pass		
Pad Flexure (kip*ft)	6695.87	795.60	11.3%	Pass		
Pad Shear - 1-way (kips)	777.96	125.51	15.4%	Pass		
Pad Shear - Comp 2-way (ksi)	0.164	0.034	19.5%	Pass		
Flexural 2-way (Comp) (kip*ft)	5260.90	46.64	0.8%	Pass		
Pad Shear - Tension 2-way (ksi)	0.164	0.033	18.9%	Pass		
Flexural 2-way (Tension) (kip*ft)	5260.90	41.15	0.7%	Pass		

*Rating per TIA-222-H Section 15.5

Structural Rating*:	19.5%
Soil Rating*:	66.9%

CROWN

<-- Toggle between Gross and Net

Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Default (see
Section 11.4.3)

 Elevation:
 242 ft (NAVD 88)

 Latitude:
 41.354639

 Longitude:
 -72.150444

Wind

Results:

Wind Speed:	126 Vmph
10-year MRI	76 Vmph
25-year MRI	86 Vmph
50-year MRI	98 Vmph
100-year MRI	104 Vmph
Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Thu Nov 25 2021

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Default (see Sect	tion 11.4.3)	
S _s :	0.194	S _{D1} :	0.084
S ₁ :	0.053	Τ _L :	6
F _a :	1.6	PGA :	0.107
F _v :	2.4	PGA M :	0.17
S _{MS} :	0.31	F _{PGA} :	1.586
S _{M1} :	0.127	l _e :	1
S _{DS} :	0.206	C _v :	0.7
Seismic Design Category	В		

Data Accessed: Date Source: Thu Nov 25 2021

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Thu Nov 25 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

ATTACHMENT 5

INFINIGY8

FROM ZERO TO INFINIGY the solutions are endless Michael McWilliams Infinigy Engineering, PLLC Crown Castle 1033 Watervliet Shaker Road 8000 Avalon Blvd, Suite 700 Albany, NY 12205 Alpharetta, GA 30009 518-690-0790 770-375-4936 structural@infinigy.com Subject: Mount Replacement Analysis Report Carrier Designation: Dish Network 5G Carrier Site Number: BOBOS00882A Carrier Site Name: N/A Crown Castle BU Number: 876338 Crown Castle Designation: Crown Castle Site Name: WATERFORD Crown Castle JDE Job Number: 671529 Crown Castle Order Number: 572906 Rev.1 Infinigy Engineering, PLLC Report Designation: 1039-Z0001-B Engineering Firm Designation: Site Data: 41 Manitock Hill Road, Waterford, New London County, CT, 06385-2000 Latitude 41°21'16.70" Longitude -72°9'1.60" Structure Information: Tower Height & Type: 136.0 ft Self Support Mount Elevation: 87.0 ft 10.5 ft Sector Frame Mount Type:

Dear Michael McWilliams,

Infinigy Engineering, PLLC is pleased to submit this "**Mount Replacement Analysis Report**" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Sector Frame Sufficient *Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 126 mph as required by the 2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Iker Moreno, EIT

Respectfully Submitted by: Emmanuel Poulin, P.E. 518-690-0790 <u>structural@infinigy.com</u> CT PE License No. 22947

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity Table 4 - Tieback End Reactions 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

1) INTRODUCTION

This is a proposed 3 sector 10.5 ft Sector Frame, designed by Commscope.

2) ANALYSIS CRITERIA

2015 IBC
TIA-222-H
11
126 mph
В
1.0
1.0
1.5 in
50 mph
0.162
0.058
30 mph
250 lb
500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
87.0	87.0	3	JMA WIRELESS	MX08FRO665-21	10 E ft Santar France
		3	FUJITSU	TA08025-B604	10.5 It Sector Frame
		3	FUJITSU	TA08025-B605	
		1	RAYCAP	RDIDC-9181-PF-48	3FG211D-10-3-120}

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	572906 Rev.1	CCI Sites
Mount Manufacturer Drawings	Commscope	SFG21HD-10-3- 126	Infinigy

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

Infinigy Mount Analysis Tool V2.1.7, a tool internally developed by Infinigy, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM A500 (GR B-46)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A307

This analysis may be affected if any assumptions are not valid or have been made in error. Infinigy Engineering, PLLC should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Sector Frame, Worst Case Sector)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP1		27.5	Pass
1,2	Horizontal(s)	HOR2		15.8	Pass
	Standoff(s)	M19A	87.0	27.2	Pass
	Bracing(s)	M23B		36.4	Pass
	Mount Connection(s)			32.4	Pass

Structure Rating (max from all components) =

36.4%

Notes: 1)

See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

2) See additional documentation in "Appendix D – Additional Calculations" for detailed mount connection calculations.

Table 4 - Tieback Connection Data Table

Tower Connection Node No.	Existing / Proposed	Resultant End Reaction (Ib)	Connected Member Type	Connected Member Size	Member Compressive Capacity (lb) ²	Notes
N31	Proposed	773.6	Leg	Pirod 105244 w/ (2) 1-1/4" Tie Rod	12,478.5	1,2

Notes:

1) Tieback connection point is within 25% of either end of the connected tower member

2) Reduced member compressive capacity according to CED-STD-10294 *Standard for Installation of Mounts and Appurtenances*

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope SFG21HD-10-3-126

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

IM 876338 Nov 10, 2021 at 2:46 PM
1039-Z0001-B 876338_loaded_loaded.r3d

APPENDIX B

SOFTWARE INPUT CALCULATIONS

Program Inputs

PROJECT INI	FORMATION
Client:	Crown Castle
Carrier:	Dish Network
Engineer:	Iker Moreno

SITE INFO	RMATION				
Risk Category:	=				
Exposure Category:	В				
Topo Factor Procedure:	Method 1, Category 1				
Site Class:	D - Stiff Soil (Assumed				
Ground Elevation:	242.00	ft *Rev H			

MOUNT INFORMATION						
Mount Type:	Sector	Frame				
Num Sectors:	3					
Centerline AGL:	87.00	ft				
Tower Height AGL:	136.00	ft				

TOPOGRA	PHIC DATA	
Topo Feature:	N	/A
Slope Distance:	N/A	ft
Crest Distance:	N/A	ft
Crest Height:	N/A	ft

FACTORS						
Directionality Fact. (K _d):	0.950					
Ground Ele. Factor (K _e):	0.991	*Rev H Only				
Rooftop Speed-Up (K _s):	1.000	*Rev H Only				
Topographic Factor (K _{zt}):	1.000					
Gust Effect Factor (G _h):	1.000					

CODE STANDARDS							
Building Code:	2015 IBC						
TIA Standard:	TIA-222-H						
ASCE Standard:	ASCE 7-10						

WIND AND	ICE DATA	
Ultimate Wind (V _{ult}):	126	mph
Design Wind (V):	N/A	mph
Ice Wind (V _{ice}):	50	mph
Base Ice Thickness (t _i):	1.5	in
Flat Pressure:	72.696	psf
Round Pressure:	43.617	psf
Ice Wind Pressure:	6.868	psf

SEISMIC	C DATA		
Short-Period Accel. (S _s):	0.162	g	
1-Second Accel. (S ₁):	0.058	g	
Short-Period Design (S _{DS}):	0.173		
1-Second Design (S _{D1}):	0.093		
Short-Period Coeff. (F _a):	1.600		
1-Second Coeff. (F _v):	2.400		
Amplification Factor (A _s):	3.000		
Response Mod. Coeff. (R):	2.000		

Infinigy Load Calculator V2.1.7

Program Inputs

Infinigy Load Calculator V2.1.7

			APPURT	TENANCE IN	FORMATION	J					
Appurtenance Name	Elevation	Otv	ĸ	a (nsf)	$EDA (ft^2)$	$EDA (ft^2)$	Wind F_z	Wind F_{x}	Weight	Seismic	Member
	Elevation	Qty.	ľa.	Υ _z (μ31)	EPA _N (IL)	$EPA_T(IL)$	(lbs)	(lbs)	(lbs)	F (lbs)	(a sector)
JMA WIRELESS MX08FRO665-21	87.0	3	0.90	36.35	8.01	3.21	262.03	105.01	82.50	21.38	MP1
FUJITSU TA08025-B604	87.0	3	0.90	36.35	1.96	0.98	64.23	32.10	63.90	16.56	MP1
FUJITSU TA08025-B605	87.0	3	0.90	36.35	1.96	1.13	64.23	36.95	75.00	19.44	MP1
RAYCAP RDIDC-9181-PF-48	87.0	1	0.90	36.35	2.01	1.17	65.81	38.21	21.85	5.66	MP1

Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 242 ft (NAVD 88)

 Latitude:
 41.354639

 Longitude:
 -72.150444

Wind

Results:

Wind Speed:
10-year MRI
25-year MRI
50-year MRI
100-year MRI

126 Vmph per the State of Connecticut allows ASCE 7-16 wind speed values
79 Vmph
99 Vmph
109 Vmph

Date Socessed:

AGE M/GHD972002,1Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class:	D - Stiff Soil			
Results:				
S _S :	0.162	S _{DS} :	0.172	
S ₁ :	0.058	S _{D1} :	0.093	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.081	
S _{MS} :	0.259	PGA M:	0.129	
S _{M1} :	0.14	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Tue Nov 09 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Tue Nov 09 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

: Infinigy Engineering PLLC : IM : 1039-Z0001-B : 876338

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	HOR1	N3	N4			2.5" STD pipe	Beam	Pipe	A53 Gr.B	Typical
2	HOR2	N1	N2			2.5" STD pipe	Beam	Pipe	A53 Gr.B	Typical
3	TB1	N29A	N31			2" STD Pipe	Column	Pipe	A53 Gr.B	Typical
4	MP4	N28	N30			2" STD Pipe	Column	Pipe	A53 Gr.B	Typical
5	MP2	N35A	N33A			2" STD Pipe	Column	Pipe	A53 Gr.B	Typical
6	MP1	N29	N31A			2" STD Pipe	Column	Pipe	A53 Gr.B	Typical
7	M17	N15	N30A			RIGID	None	None	RIGID	Typical
8	M18	N16	N31B			RIGID	None	None	RIGID	Typical
9	M18A	N10	N29B			RIGID	None	None	RIGID	Typical
10	M19	N12	N29C			RIGID	None	None	RIGID	Typical
11	M20	N30B	N6			RIGID	None	None	RIGID	Typical
12	M21	N29D	N5			RIGID	None	None	RIGID	Typical
13	M22	N32	N8			RIGID	None	None	RIGID	Typical
14	M23	N31C	N7			RIGID	None	None	RIGID	Typical
15	M24	N29A	N33			RIGID	None	None	RIGID	Typical
16	M23A	N36	N34			RIGID	None	None	RIGID	Typical
17	M24A	N37	N35			RIGID	None	None	RIGID	Typical
18	M18B	N18	N36			1.5" STD pire	Beam	Pipe	A53 Gr.B	Typical
19	M19A	N20	N34			1.5" STD pire	Beam	Pipe	A53 Gr.B	Typical
20	M20A	N17	N37			1.5" STD pire	Beam	Pipe	A53 Gr.B	Typical
21	M21A	N19	N35			1.5" STD pire	Beam	Pipe	A53 Gr.B	Typical
22	M22A	N38	N39			3/4" solid round	Beam	Pipe	A36 Gr.36	Typical
23	M23B	N41	N40			3/4" solid round	Beam	Pipe	A36 Gr.36	Typical
24	M24B	N42	N45			3/4" solid round	Beam	Pipe	A36 Gr.36	Typical
25	M25	N43	N44			3/4" solid round	Beam	Pipe	A36 Gr.36	Typical
26	M26	N38	N44			3/4" solid round	Beam	Pipe	A36 Gr.36	Typical
27	M27	N43	N39			3/4" solid round	Beam	Pipe	A36 Gr.36	Typical
28	M28	N42	N40			3/4" solid round	Beam	Pipe	A36 Gr.36	Typical
29	M29	N45	N41			3/4" solid round	Beam	Pipe	A36 Gr.36	Typical

Hot Rolled Steel Properties

	Label	E [psi]	G [psi]	Nu	Therm (/1	.Density[k/	. Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	2.9e+7	1.115e+7	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	2.9e+7	1.115e+7	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	2.9e+7	1.115e+7	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	2.9e+7	1.115e+7	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	2.9e+7	1.115e+7	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	2.9e+7	1.115e+7	.3	.65	.49	35	1.6	60	1.2
7	A1085	2.9e+7	1.115e+7	.3	.65	.49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design R	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	1.5" STD pire	PIPE 1.5	Beam	Pipe	A53 Gr.B	Typical	.749	.293	.293	.586
2	2" STD Pipe	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
3	3/4" solid round	3/4" Solid Rod	Beam	Pipe	A36 Gr.36	Typical	.442	.016	.016	.031
4	2.5" STD pipe	PIPE 2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
5	3.5" STD	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04

: Infinigy Engineering PLLC : IM : 1039-Z0001-B : 876338

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	<u>Z [in]</u>	Temp [F]	Detach From Diap
1	N1	12	0	0	0	
2	N2	138	0	0	0	
3	N3	12	37.75	0	0	
4	N4	138	37.75	0	0	
5	N5	18	0	3	0	
6	N6	18	37.75	3	0	
7	N7	132	0	3	0	
8	N8	132	37.75	3	0	
9	N10	75	37.75	3	0	
10	N12	75	0	3	0	
11	N15	75	37.75	-34.87	0	
12	N16	75	0	-34.87	0	
13	N17	39	0	0	0	
14	N18	39	37.75	0	0	
15	N19	111	0	0	0	
16	N20	111	37.75	0	0	
17	N29A	33	34.75	0	0	
18	N31	18	34.75	-150	0	
19	N29B	75	37.75	0	0	
20	N28	18	-44.12	3	0	
21	N29	132	-44.12	3	0	
22	N30	18	81.88	3	0	
23	N31A	132	81.88	3	0	
24	N33A	75	81.88	3	0	
25	N35A	75	-44.12	3	0	
26	N30A	75	37.75	-37.87	0	
27	N31B	75	0	-37.87	0	
28	N29C	75	0	0	0	
29	N29D	18	0	0	0	
30	N30B	18	37.75	0	0	
31	N31C	132	0	0	0	
32	N32	132	37.75	0	0	
33	N33	33	37.75	0	0	
34	N34	78	37.75	-34.87	0	
35	N35	78	0	-34.87	0	
36	N36	72	37.75	-34.87	0	
37	N37	72	0	-34.87	0	
38	N38	41.06209	37.75	-2.178941	0	
39	N39	41.06209	0	-2.178941	0	
40	N40	108.93791	0	-2.178941	0	
41	N41	108.93791	37.75	-2.178941	0	
42	N42	80.068654	37.75	-32.684122	0	
43	N43	69.931346	37.75	-32.684122	0	
44	N44	69.931346	0	-32.684122	0	
45	N45	80.068654	0	-32.684122	0	

Hot Rolled Steel Design Parameters

	Label	Shape	Length	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torque[i	. Kyy	Kzz	Cb	Funct
1	HOR1	2.5" STD	126	50	50	Lbyy	50	50				Lateral
2	HOR2	2.5" STD	126	50	50	50		50				Lateral
3	TB1	2" STD Pi	150.748			Lbyy						Lateral
4	MP4	2" STD Pi	126	37.75	37.75	Lbyy		37.75				Lateral
5	MP2	2" STD Pi	126	37.75	37.75	Lbyy		37.75				Lateral
6	MP1	2" STD Pi	126	37.75	37.75	Lbyy		37.75				Lateral
7	M18B	1.5" STD	48.01			Lbyy						Lateral

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torque[i	. Kyy	Kzz	Cb	Funct
8	M19A	1.5" STD	48.01			Lbyy						Lateral
9	M20A	1.5" STD	48.01			Lbyy						Lateral
10	M21A	1.5" STD	48.01			Lbyy						Lateral
11	M22A	3/4" solid	37.75			Lbyy						Lateral
12	M23B	3/4" solid	37.75			Lbyy						Lateral
13	M24B	3/4" solid	37.75			Lbyy						Lateral
14	M25	3/4" solid	37.75			Lbyy						Lateral
15	M26	3/4" solid	56.472			Lbyy						Lateral
16	M27	3/4" solid	56.472			Lbyy						Lateral
17	M28	3/4" solid	56.472			Lbyy						Lateral
18	M29	3/4" solid	56.472			Lbyy						Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Member)	Surface(Plate/Wall)
1	Self Weight	DĹ		-1	_		5			
2	Wind Load AZ	WLZ					10			
3	Wind Load AZ	None					10			
4	Wind Load AZ	None					10			
5	Wind Load AZ	WLX					10			
6	Wind Load AZ	None					10			
7	Wind Load AZ	None					10			
8	Wind Load AZ	None					10			
9	Wind Load AZ	None					10			
10	Wind Load AZ	None					10			
11	Wind Load AZ	None					10			
12	Wind Load AZ	None					10			
13	Wind Load AZ	None					10			
14	Distr. Wind Lo	WLZ						29		
15	Distr. Wind Lo	WLX						29		
16	Ice Weight	OL1					5	29		
17	Ice Wind Load	OL2					10			
18	Ice Wind Load	None					10			
19	Ice Wind Load	None					10			
20	Ice Wind Load	OL3					10			
21	Ice Wind Load	None					10			
22	Ice Wind Load	None					10			
23	Ice Wind Load	None					10			
24	Ice Wind Load	None					10			
25	Ice Wind Load	None					10			
26	Ice Wind Load	None					10			
27	Ice Wind Load	None					10			
28	Ice Wind Load	None					10			
29	Distr. Ice Wind	OL2						29		
30	Distr. Ice Wind	OL3						29		
31	Seismic Load Z	ELZ			259		5	-		
32	Seismic Load X	ELX	259				5			
33	Service Live L	LL				1				
34	Maintenance L	LL				1				
35	Maintenance L	LL				1				
36	Maintenance L	LL				1				

Joint Loa	Joint Loads and Enforced Displacements (BLC 33 : Service Live Loads)									
1	Joint Label N2	L,D,M	Direction Y	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2 -250						
Joint Loa	ds and Enforced Displa	cements (BLC 34 : M	aintenance Loa	d 1)						
1	Joint Label N29D	L,D,M	Direction Y	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2 -500						
Joint Loa	ds and Enforced Displa	cements (BLC 35 : M	aintenance Loa	d 2)						
1	Joint Label N29C	L,D,M L	Direction Y	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2 -500						
Joint Loa	ds and Enforced Displa	cements (BLC 36 : M	aintenance Loa	d 3)						

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2
1	N31C	L	Y	-500

Member Point Loads (BLC 1 : Self Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Y	-41.25	10
2	MP1	Y	-41.25	82
3	MP1	Y	-63.9	%25
4	MP1	Y	-75	%50
5	MP1	Y	-21.85	%75

Member Point Loads (BLC 2 : Wind Load AZI 0)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	10
2	MP1	Z	-131.02	10
3	MP1	Х	0	82
4	MP1	Z	-131.02	82
5	MP1	Х	0	%25
6	MP1	Z	-64.23	%25
7	MP1	Х	0	%50
8	MP1	Z	-64.23	%50
9	MP1	Х	0	%75
10	MP1	Z	-65.81	%75

Member Point Loads (BLC 3 : Wind Load AZI 30)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	-55.69	10
2	MP1	Z	-96.46	10
3	MP1	Х	-55.69	82
4	MP1	Z	-96.46	82
5	MP1	Х	-28.1	%25
6	MP1	Z	-48.67	%25
7	MP1	Х	-28.71	%50
8	MP1	Z	-49.72	%50
9	MP1	Х	-29.46	%75
10	MP1	Z	-51.02	%75

Member Point Loads (BLC 4 : Wind Load AZI 60)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	-62.47	10

Member Point Loads (BLC 4 : Wind Load AZI 60) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
2	MP1	Z	-36.07	10
3	MP1	X	-62.47	82
4	MP1	Z	-36.07	82
5	MP1	Х	-34.75	%25
6	MP1	Z	-20.06	%25
7	MP1	Х	-37.91	%50
8	MP1	Z	-21.88	%50
9	MP1	Х	-39.07	%75
10	MP1	Z	-22.56	%75

Member Point Loads (BLC 5 : Wind Load AZI 90)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-52.5	10
2	MP1	Z	0	10
3	MP1	X	-52.5	82
4	MP1	Z	0	82
5	MP1	Х	-32.1	%25
6	MP1	Z	0	%25
7	MP1	Х	-36.95	%50
8	MP1	Z	0	%50
9	MP1	Х	-38.21	%75
10	MP1	Z	0	%75

Member Point Loads (BLC 6 : Wind Load AZI 120)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	-62.47	10
2	MP1	Z	36.07	10
3	MP1	Х	-62.47	82
4	MP1	Z	36.07	82
5	MP1	Х	-34.75	%25
6	MP1	Z	20.06	%25
7	MP1	Х	-37.91	%50
8	MP1	Z	21.88	%50
9	MP1	Х	-39.07	%75
10	MP1	Z	22.56	%75

Member Point Loads (BLC 7 : Wind Load AZI 150)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-55.69	10
2	MP1	Z	96.46	10
3	MP1	Х	-55.69	82
4	MP1	Z	96.46	82
5	MP1	X	-28.1	%25
6	MP1	Z	48.67	%25
7	MP1	Х	-28.71	%50
8	MP1	Z	49.72	%50
9	MP1	Х	-29.46	%75
10	MP1	Z	51.02	%75

Member Point Loads (BLC 8 : Wind Load AZI 180)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	10
2	MP1	Z	131.02	10
3	MP1	X	0	82
4	MP1	Z	131.02	82
Member Point Loads (BLC 8 : Wind Load AZI 180) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
5	MP1	X	0	%25
6	MP1	Z	64.23	%25
7	MP1	Х	0	%50
8	MP1	Z	64.23	%50
9	MP1	X	0	%75
10	MP1	Z	65.81	%75

Member Point Loads (BLC 9 : Wind Load AZI 210)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	55.69	10
2	MP1	Z	96.46	10
3	MP1	Х	55.69	82
4	MP1	Z	96.46	82
5	MP1	Х	28.1	%25
6	MP1	Z	48.67	%25
7	MP1	Х	28.71	%50
8	MP1	Z	49.72	%50
9	MP1	Х	29.46	%75
10	MP1	Z	51.02	%75

Member Point Loads (BLC 10 : Wind Load AZI 240)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	62.47	10
2	MP1	Z	36.07	10
3	MP1	Х	62.47	82
4	MP1	Z	36.07	82
5	MP1	X	34.75	%25
6	MP1	Z	20.06	%25
7	MP1	Х	37.91	%50
8	MP1	Z	21.88	%50
9	MP1	Х	39.07	%75
10	MP1	Z	22.56	%75

Member Point Loads (BLC 11 : Wind Load AZI 270)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	52.5	10
2	MP1	Z	0	10
3	MP1	Х	52.5	82
4	MP1	Z	0	82
5	MP1	Х	32.1	%25
6	MP1	Z	0	%25
7	MP1	Х	36.95	%50
8	MP1	Z	0	%50
9	MP1	Х	38.21	%75
10	MP1	Z	0	%75

Member Point Loads (BLC 12 : Wind Load AZI 300)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	62.47	10
2	MP1	Z	-36.07	10
3	MP1	Х	62.47	82
4	MP1	Z	-36.07	82
5	MP1	Х	34.75	%25
6	MP1	Z	-20.06	%25
7	MP1	Х	37.91	%50

Member Point Loads (BLC 12 : Wind Load AZI 300) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
8	MP1	Z	-21.88	%50
9	MP1	X	39.07	%75
10	MP1	Z	-22.56	%75

Member Point Loads (BLC 13 : Wind Load AZI 330)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	55.69	10
2	MP1	Z	-96.46	10
3	MP1	X	55.69	82
4	MP1	Z	-96.46	82
5	MP1	Х	28.1	%25
6	MP1	Z	-48.67	%25
7	MP1	X	28.71	%50
8	MP1	Z	-49.72	%50
9	MP1	X	29.46	%75
10	MP1	Z	-51.02	%75

Member Point Loads (BLC 16 : Ice Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Y	-134.834	10
2	MP1	Y	-134.834	82
3	MP1	Y	-65.959	%25
4	MP1	Y	-70.295	%50
5	MP1	Y	-69.273	%75

Member Point Loads (BLC 17 : Ice Wind Load AZI 0)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	10
2	MP1	Z	-16.21	10
3	MP1	Х	0	82
4	MP1	Z	-16.21	82
5	MP1	X	0	%25
6	MP1	Z	-6.27	%25
7	MP1	Х	0	%50
8	MP1	Z	-6.27	%50
9	MP1	Х	0	%75
10	MP1	Z	-6.6	%75

Member Point Loads (BLC 18 : Ice Wind Load AZI 30)

	Member Label	Direction	Magnitude[lb.lb-ft]	Location[in,%]
1	MP1	Х	-7.49	10
2	MP1	Z	-12.97	10
3	MP1	Х	-7.49	82
4	MP1	Z	-12.97	82
5	MP1	X	-2.95	%25
6	MP1	Z	-5.1	%25
7	MP1	Х	-2.98	%50
8	MP1	Z	-5.16	%50
9	MP1	Х	-3.14	%75
10	MP1	Z	-5.44	%75

Member Point Loads (BLC 19 : Ice Wind Load AZI 60)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-10.84	10

Member Point Loads (BLC 19 : Ice Wind Load AZI 60) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
2	MP1	Z	-6.26	10
3	MP1	Х	-10.84	82
4	MP1	Z	-6.26	82
5	MP1	X	-4.45	%25
6	MP1	Z	-2.57	%25
7	MP1	Х	-4.62	%50
8	MP1	Z	-2.66	%50
9	MP1	Х	-4.89	%75
10	MP1	Z	-2.82	%75

Member Point Loads (BLC 20 : Ice Wind Load AZI 90)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-11.29	10
2	MP1	Z	0	10
3	MP1	X	-11.29	82
4	MP1	Z	0	82
5	MP1	Х	-4.76	%25
6	MP1	Z	0	%25
7	MP1	Х	-5.02	%50
8	MP1	Z	0	%50
9	MP1	Х	-5.32	%75
10	MP1	Z	0	%75

Member Point Loads (BLC 21 : Ice Wind Load AZI 120)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	-10.84	10
2	MP1	Z	6.26	10
3	MP1	Х	-10.84	82
4	MP1	Z	6.26	82
5	MP1	Х	-4.45	%25
6	MP1	Z	2.57	%25
7	MP1	Х	-4.62	%50
8	MP1	Z	2.66	%50
9	MP1	Х	-4.89	%75
10	MP1	Z	2.82	%75

Member Point Loads (BLC 22 : Ice Wind Load AZI 150)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-7.49	10
2	MP1	Z	12.97	10
3	MP1	X	-7.49	82
4	MP1	Z	12.97	82
5	MP1	X	-2.95	%25
6	MP1	Z	5.1	%25
7	MP1	Х	-2.98	%50
8	MP1	Z	5.16	%50
9	MP1	Х	-3.14	%75
10	MP1	Z	5.44	%75

Member Point Loads (BLC 23 : Ice Wind Load AZI 180)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	10
2	MP1	Z	16.21	10
3	MP1	X	0	82
4	MP1	Z	16.21	82

Member Point Loads (BLC 23 : Ice Wind Load AZI 180) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
5	MP1	X	0	%25
6	MP1	Z	6.27	%25
7	MP1	Х	0	%50
8	MP1	Z	6.27	%50
9	MP1	Х	0	%75
10	MP1	Z	6.6	%75

Member Point Loads (BLC 24 : Ice Wind Load AZI 210)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	7.49	10
2	MP1	Z	12.97	10
3	MP1	Х	7.49	82
4	MP1	Z	12.97	82
5	MP1	Х	2.95	%25
6	MP1	Z	5.1	%25
7	MP1	Х	2.98	%50
8	MP1	Z	5.16	%50
9	MP1	Х	3.14	%75
10	MP1	Z	5.44	%75

Member Point Loads (BLC 25 : Ice Wind Load AZI 240)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	10.84	10
2	MP1	Z	6.26	10
3	MP1	Х	10.84	82
4	MP1	Z	6.26	82
5	MP1	Х	4.45	%25
6	MP1	Z	2.57	%25
7	MP1	Х	4.62	%50
8	MP1	Z	2.66	%50
9	MP1	Х	4.89	%75
10	MP1	Z	2.82	%75

Member Point Loads (BLC 26 : Ice Wind Load AZI 270)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	11.29	10
2	MP1	Z	0	10
3	MP1	Х	11.29	82
4	MP1	Z	0	82
5	MP1	Х	4.76	%25
6	MP1	Z	0	%25
7	MP1	X	5.02	%50
8	MP1	Z	0	%50
9	MP1	X	5.32	%75
10	MP1	Z	0	%75

Member Point Loads (BLC 27 : Ice Wind Load AZI 300)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	10.84	10
2	MP1	Z	-6.26	10
3	MP1	Х	10.84	82
4	MP1	Z	-6.26	82
5	MP1	Х	4.45	%25
6	MP1	Z	-2.57	%25
7	MP1	X	4.62	%50

Member Point Loads (BLC 27 : Ice Wind Load AZI 300) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
8	MP1	Z	-2.66	%50
9	MP1	Х	4.89	%75
10	MP1	Z	-2.82	%75

Member Point Loads (BLC 28 : Ice Wind Load AZI 330)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	7.49	10
2	MP1	Z	-12.97	10
3	MP1	X	7.49	82
4	MP1	Z	-12.97	82
5	MP1	Х	2.95	%25
6	MP1	Z	-5.1	%25
7	MP1	X	2.98	%50
8	MP1	Z	-5.16	%50
9	MP1	Х	3.14	%75
10	MP1	Z	-5.44	%75

Member Point Loads (BLC 31 : Seismic Load Z)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Z	-10.692	10
2	MP1	Z	-10.692	82
3	MP1	Z	-16.563	%25
4	MP1	Z	-19.44	%50
5	MP1	Z	-5.664	%75

Member Point Loads (BLC 32 : Seismic Load X)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	-10.692	10
2	MP1	X	-10.692	82
3	MP1	X	-16.563	%25
4	MP1	X	-19.44	%50
5	MP1	Х	-5.664	%75

Member Distributed Loads (BLC 14 : Distr. Wind Load Z)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	HOR1	SZ	-43.617	-43.617	0	%100
2	HOR2	SZ	-43.617	-43.617	0	%100
3	TB1	SZ	-43.617	-43.617	0	%100
4	MP4	SZ	-43.617	-43.617	0	%100
5	MP2	SZ	-43.617	-43.617	0	%100
6	MP1	SZ	-43.617	-43.617	0	%100
7	M17	SZ	0	0	0	%100
8	M18	SZ	0	0	0	%100
9	M18A	SZ	0	0	0	%100
10	M19	SZ	0	0	0	%100
11	M20	SZ	0	0	0	%100
12	M21	SZ	0	0	0	%100
13	M22	SZ	0	0	0	%100
14	M23	SZ	0	0	0	%100
15	M24	SZ	0	0	0	%100
16	M23A	SZ	0	0	0	%100
17	M24A	SZ	0	0	0	%100
18	M18B	SZ	-43.617	-43.617	0	%100
19	M19A	SZ	-43.617	-43.617	0	%100

Member Distributed Loads (BLC 14 : Distr. Wind Load Z) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
20	M20A	SZ	-43.617	-43.617	0	%100
21	M21A	SZ	-43.617	-43.617	0	%100
22	M22A	SZ	-43.617	-43.617	0	%100
23	M23B	SZ	-43.617	-43.617	0	%100
24	M24B	SZ	-43.617	-43.617	0	%100
25	M25	SZ	-43.617	-43.617	0	%100
26	M26	SZ	-43.617	-43.617	0	%100
27	M27	SZ	-43.617	-43.617	0	%100
28	M28	SZ	-43.617	-43.617	0	%100
29	M29	SZ	-43.617	-43.617	0	%100

Member Distributed Loads (BLC 15 : Distr. Wind Load X)

INFINIG

OM ZERO TO INFINIGY

the solutions are endless

8

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	HOR1	SX	-43.617	-43.617	0	%100
2	HOR2	SX	-43.617	-43.617	0	%100
3	TB1	SX	-43.617	-43.617	0	%100
4	MP4	SX	-43.617	-43.617	0	%100
5	MP2	SX	-43.617	-43.617	0	%100
6	MP1	SX	-43.617	-43.617	0	%100
7	M17	SX	0	0	0	%100
8	M18	SX	0	0	0	%100
9	M18A	SX	0	0	0	%100
10	M19	SX	0	0	0	%100
11	M20	SX	0	0	0	%100
12	M21	SX	0	0	0	%100
13	M22	SX	0	0	0	%100
14	M23	SX	0	0	0	%100
15	M24	SX	0	0	0	%100
16	M23A	SX	0	0	0	%100
17	M24A	SX	0	0	0	%100
18	M18B	SX	-43.617	-43.617	0	%100
19	M19A	SX	-43.617	-43.617	0	%100
20	M20A	SX	-43.617	-43.617	0	%100
21	M21A	SX	-43.617	-43.617	0	%100
22	M22A	SX	-43.617	-43.617	0	%100
23	M23B	SX	-43.617	-43.617	0	%100
24	M24B	SX	-43.617	-43.617	0	%100
25	M25	SX	-43.617	-43.617	0	%100
26	M26	SX	-43.617	-43.617	0	%100
27	M27	SX	-43.617	-43.617	0	%100
28	M28	SX	-43.617	-43.617	0	%100
29	M29	SX	-43.617	-43.617	0	%100

Member Distributed Loads (BLC 16 : Ice Weight)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	HOR1	Y	-9.142	-9.142	0	%100
2	HOR2	Y	-9.142	-9.142	0	%100
3	TB1	Y	-8.132	-8.132	0	%100
4	MP4	Y	-8.132	-8.132	0	%100
5	MP2	Y	-8.132	-8.132	0	%100
6	MP1	Y	-8.132	-8.132	0	%100
7	M17	Y	-3.337	-3.337	0	%100
8	M18	Y	-3.337	-3.337	0	%100
9	M18A	Y	-3.337	-3.337	0	%100
10	M19	Y	-3.337	-3.337	0	%100
11	M20	Y	-3.337	-3.337	0	%100

Infinigy Engineering PLLC
IM
1039-Z0001-B
876338

Member Distributed Loads (BLC 16 : Ice Weight) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
12	M21	Y	-3.337	-3.337	0	%100
13	M22	Y	-3.337	-3.337	0	%100
14	M23	Y	-3.337	-3.337	0	%100
15	M24	Y	-3.337	-3.337	0	%100
16	M23A	Y	-3.337	-3.337	0	%100
17	M24A	Y	-3.337	-3.337	0	%100
18	M18B	Y	-7.173	-7.173	0	%100
19	M19A	Y	-7.173	-7.173	0	%100
20	M20A	Y	-7.173	-7.173	0	%100
21	M21A	Y	-7.173	-7.173	0	%100
22	M22A	Y	-4.851	-4.851	0	%100
23	M23B	Y	-4.851	-4.851	0	%100
24	M24B	Y	-4.851	-4.851	0	%100
25	M25	Y	-4.851	-4.851	0	%100
26	M26	Y	-4.851	-4.851	0	%100
27	M27	Y	-4.851	-4.851	0	%100
28	M28	Y	-4.851	-4.851	0	%100
29	M29	Y	-4.851	-4.851	0	%100

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	HOR1	SZ	-14.765	-14.765	0	%100
2	HOR2	SZ	-14.765	-14.765	0	%100
3	TB1	SZ	-16.428	-16.428	0	%100
4	MP4	SZ	-16.428	-16.428	0	%100
5	MP2	SZ	-16.428	-16.428	0	%100
6	MP1	SZ	-16.428	-16.428	0	%100
7	M17	SZ	0	0	0	%100
8	M18	SZ	0	0	0	%100
9	M18A	SZ	0	0	0	%100
10	M19	SZ	0	0	0	%100
11	M20	SZ	0	0	0	%100
12	M21	SZ	0	0	0	%100
13	M22	SZ	0	0	0	%100
14	M23	SZ	0	0	0	%100
15	M24	SZ	0	0	0	%100
16	M23A	SZ	0	0	0	%100
17	M24A	SZ	0	0	0	%100
18	M18B	SZ	-18.817	-18.817	0	%100
19	M19A	SZ	-18.817	-18.817	0	%100
20	M20A	SZ	-18.817	-18.817	0	%100
21	M21A	SZ	-18.817	-18.817	0	%100
22	M22A	SZ	-37.139	-37.139	0	%100
23	M23B	SZ	-37.139	-37.139	0	%100
24	M24B	SZ	-37.139	-37.139	0	%100
25	M25	SZ	-37.139	-37.139	0	%100
26	M26	SZ	-37.139	-37.139	0	%100
27	M27	SZ	-37.139	-37.139	0	%100
28	M28	SZ	-37.139	-37.139	0	%100
29	M29	S7	-37 139	-37 139	0	%100

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	HOR1	SX	-14.765	-14.765	0	%100
2	HOR2	SX	-14.765	-14.765	0	%100
3	TB1	SX	-16.428	-16.428	0	%100

Infinigy Engineering PLLC
IM
1039-Z0001-B
876338

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
4	MP4	SX	-16.428	-16.428	0	%100
5	MP2	SX	-16.428	-16.428	0	%100
6	MP1	SX	-16.428	-16.428	0	%100
7	M17	SX	0	0	0	%100
8	M18	SX	0	0	0	%100
9	M18A	SX	0	0	0	%100
10	M19	SX	0	0	0	%100
11	M20	SX	0	0	0	%100
12	M21	SX	0	0	0	%100
13	M22	SX	0	0	0	%100
14	M23	SX	0	0	0	%100
15	M24	SX	0	0	0	%100
16	M23A	SX	0	0	0	%100
17	M24A	SX	0	0	0	%100
18	M18B	SX	-18.817	-18.817	0	%100
19	M19A	SX	-18.817	-18.817	0	%100
20	M20A	SX	-18.817	-18.817	0	%100
21	M21A	SX	-18.817	-18.817	0	%100
22	M22A	SX	-37.139	-37.139	0	%100
23	M23B	SX	-37.139	-37.139	0	%100
24	M24B	SX	-37.139	-37.139	0	%100
25	M25	SX	-37.139	-37.139	0	%100
26	M26	SX	-37.139	-37.139	0	%100
27	M27	SX	-37.139	-37.139	0	%100
28	M28	SX	-37.139	-37.139	0	%100
29	M29	SX	-37 139	-37 139	0	%100

Load Combinations

	Description	S	PDel	<u>S B</u>	Fa	E	3	Fa	B	Fa	B	Fa	B	Fa	B	Fa	B	Fa	В	Fa	. B	Fa	B	Fa
1	1.4DL	Yes	Y		1.	4																		
2	1.2DL + 1WL AZI 0	Yes	Y		1.	2	2	1	14	1	15													
3	1.2DL + 1WL AZI 30	Yes	Y		1.	2	3	1	14	.866	15	.5												
4	1.2DL + 1WL AZI 60	Yes	Υ		1.	2	4	1	14	.5	15	.866												
5	1.2DL + 1WL AZI 90	Yes	Υ		1.	2	5	1	14		15	1												
6	1.2DL + 1WL AZI 120	Yes	Υ		1.	2	6	1	14	5	15	.866												
7	<u>1.2DL + 1WL AZI 150</u>	Yes	Υ	•	1.	2	7	1	14	8	15	.5												
8	1.2DL + 1WL AZI 180	Yes	Υ		1.	2	8	1	14	-1	15													
9	1.2DL + 1WL AZI 210	Yes	Υ		1.	2	9	1	14	8	15	5												
10	1.2DL + 1WL AZI 240	Yes	Υ		1.	2	10	1	14	5	15	8												
11	1.2DL + 1WL AZI 270	Yes	Y		1.	2	11	1	14		15	-1												
12	1.2DL + 1WL AZI 300	Yes	Y		1.	2	12	1	14	.5	15	8												
13	1.2DL + 1WL AZI 330	Yes	Υ		1.	2	13	1	14	.866	15	5												
14	0.9DL + 1WL AZI 0	Yes	Υ			9	2	1	14	1	15													
15	0.9DL + 1WL AZI 30	Yes	Υ			9	3	1	14	.866	15	.5												
16	0.9DL + 1WL AZI 60	Yes	Υ			9	4	1	14	.5	15	.866												
17	0.9DL + 1WL AZI 90	Yes	Υ			9	5	1	14		15	1												
18	0.9DL + 1WL AZI 120	Yes	Υ			9	6	1	14	5	15	.866												
19	0.9DL + 1WL AZI 150	Yes	Υ			9	7	1	14	8	15	.5												
20	0.9DL + 1WL AZI 180	Yes	Υ			9	8	1	14	-1	15													
21	0.9DL + 1WL AZI 210	Yes	Υ			9	9	1	14	8	15	5												
22	0.9DL + 1WL AZI 240	Yes	Υ	•		9 [,]	10	1	14	5	15	8												
23	0.9DL + 1WL AZI 270	Yes	Υ			9 [.]	11	1	14		15	-1												
24	0.9DL + 1WL AZI 300	Yes	Υ			9 ·	12	1	14	.5	15	8												
25	0.9DL + 1WL AZI 330	Yes	Y	•		9 [.]	13	1	14	.866	15	5												
26	1.2D + 1.0Di	Yes	Y		1.	2	16	1																

Ξ

: Infinigy Engineering PLLC : IM : 1039-Z0001-B : 876338

Load Combinations (Continued)

	Description S	PDel.	S B	Fa	В	Fa	B	Fa	B	Fa	В	Fa B.	Fa	В	Fa	B	Fa	В	Fa	B J	Fa
27	1.2D + 1.0Di +1.0Wi AZI 0 Yes	Y	1	1.2	16	1	17	1	29	1	30										
28	1.2D + 1.0Di +1.0Wi AZI 30 Yes	Y	1	1.2	16	1	18	1	29	.866	30	.5									
29	1.2D + 1.0Di +1.0Wi AZI 60 Yes	Y	1	1.2	16	1	19	1	29	.5	30	.866									
30	1.2D + 1.0Di +1.0Wi AZI 90 Yes	Y	1	1.2	16	1	20	1	29		30	1									
31	1.2D + 1.0Di +1.0Wi AZI 120 Yes	Y	1	1.2	16	1	21	1	29	5	30	.866									
32	1.2D + 1.0Di +1.0Wi AZI 150 Yes	Y	1	12	16	1	22	1	29	8	30	5									
33	1.2D + 1.0Di +1.0Wi AZI 180 Yes	Ý	1	12	16	1	23	1	29	-1	30									_	
34	1 2D + 1 0Di +1 0Wi AZI 210 Yes	V	1	1.2	16	1	24	1	20	- 8	30	- 5									
35	1 2D + 1 0Di +1 0Wi AZI 240 Yes	- V	1	1.2	16	1	25	1	20	- 5	30	- 8		-						-	
36	1 2D + 1 0Di +1 0Wi AZI 270 Yes	V	1	1.2	16	1	26	1	20	0	30	1									
27	1.2D + 1.0Di + 1.0Wi AZI 300 Yes	V		1.2	16	1	20	1	29	5	20	- 8								-	_
20	1.2D + 1.0Di + 1.0Wi AZI 300 Tes	I V	1	1.2	10	1	21	1	29	.0	20	0 E								_	
30	$(1.2 \pm 0.28 d_{0})DI \pm 1.0E AZ V_{00}$	Y V		1.2	10		20		29	.000	30	3									
39	(1.2 + 0.25ds)DL + 1.0E AZTes	Y		1.2.	31	966	32	E													
40	(1.2 + 0.2Sds)DL + 1.0EAZYes	Y		1.2.	31	.800	32	.5													
41	(1.2 + 0.2Sds)DL + 1.0E AZYes	Y	1	1.2.	31	.5	32	.866					_								
42	(1.2 + 0.2Sds)DL + 1.0E AZYes	Y	1	1.2.	31	_	32	1													
43	(1.2 + 0.2Sds)DL + 1.0E AZYes	Y	1	1.2.	31	5	32	.866									<u> </u>				
44	(1.2 + 0.2Sds)DL + 1.0E AZYes	Y	1	1.2.	31	8	32	.5													
45	(1.2 + 0.2Sds)DL + 1.0E AZYes	Y	1	1.2.	31	-1	32														
46	(1.2 + 0.2Sds)DL + 1.0E AZYes	Y	1	1.2.	31	8	32	5													
47	(1.2 + 0.2Sds)DL + 1.0E AZYes	Y	1	1.2.	31	5	32	8													
48	(1.2 + 0.2Sds)DL + 1.0E AZYes	Y	1	1.2.	31		32	-1													
49	(1.2 + 0.2Sds)DL + 1.0E AZYes	Y	1	1.2.	31	.5	32	8													
50	(1.2 + 0.2Sds)DL + 1.0E AZ Yes	Y	1	1.2.	31	.866	32	5													
51	(0.9 - 0.2Sds)DL + 1.0E AZIYes	Y	1	.865	31	1	32														
52	(0.9 - 0.2Sds)DL + 1.0E AZIYes	Y	1	.865	31	.866	32	.5													
53	(0.9 - 0.2Sds)DL + 1.0E AZIYes	Ý	1	.865	31	5	32	.866													
54	(0.9 - 0.2Sds)DL + 1.0E AZIYes	Ý	1	.865	31		32	1													
55	(0.9 - 0.2Sds)DL + 1.0F AZL Yes	Ý		865	31	- 5	32	866													
56	(0.9 - 0.2Sds)DL + 1.0E AZL Yes	V	1	865	31	- 8	32	5													
57	(0.9 - 0.2Sds)DL + 1.0E AZL Yes	V		865	31	1	32	.0												_	_
50	(0.9 - 0.25 ds)DL + 1.0E AZI Ves		1	865	21	- 8	22	5												_	
50	(0.0 0.25ds)DL + 1.0E AZITes	I		000	21	0	22	0												-	
59	(0.9 - 0.23ds)DL + 1.0E AZITes	Y		.000	31	5	32	0													
60	(0.9 - 0.25ds)DL + 1.0E AZIYes	Y		.800	31	-	32	-1													
61	(0.9 - 0.25ds)DL + 1.0E AZIYes	Y	1	.800	31	.5	32	ö												_	
62	(0.9 - 0.25ds)DL + 1.0E AZIYes	Y	1	.865	31	.866	32	5													
63	1.0DL + 1.5LL + 1.0SWL (6Yes	Y	1	1	2	.227	14	.227	15		33	1.5					<u> </u>				
64	1.0DL + 1.5LL + 1.0SWL (6Yes	Y	1	1	3	.227	14	.196	15	.113	33	1.5									
65	1.0DL + 1.5LL + 1.0SWL (6Yes	Y	1	1	4	.227	14	.113	15	.196	33	1.5					<u> </u>				
66	1.0DL + 1.5LL + 1.0SWL (6Yes	Y	1	1	5	.227	14		15	.227	33	1.5									
67	1.0DL + 1.5LL + 1.0SWL (6Yes	Y	1	1	6	.227	14	1	15	.196	33	1.5									
68	1.0DL + 1.5LL + 1.0SWL (6Yes	Y	1	1	7	.227	14	1	15	.113	33	1.5									
69	1.0DL + 1.5LL + 1.0SWL (6Yes	Y	1	1	8	.227	14	2	15		33	1.5									
70	1.0DL + 1.5LL + 1.0SWL (6Yes	Y	1	1	9	.227	14	1	15	1	33	1.5									
71	1.0DL + 1.5LL + 1.0SWL (6Yes	Y	1	1	10	.227	14	1	15	1	33	1.5									
72	1.0DL + 1.5LL + 1.0SWL (6Yes	Y	1	1	11	.227	14		15	2	33	1.5									
73	1.0DL + 1.5LL + 1.0SWL (6Yes	Y	1	1	12	.227	14	.113	15	1	33	1.5									
74	1.0DL + 1.5LL + 1.0SWL (6Yes	Ý	1	1	13	.227	14	.196	15	1	33	1.5									
75	1.2DL + 1.5LL Yes	Ý	1	1.2	33	1.5															
76	1.2DL + 1.5LM-MP1 + 1SWYes	Ŷ	1	12	34	1.5	2	.057	14	.057	15										
77	1.2DL + 1.5LM-MP1 + 1SW Yes	V	1	12	34	1 5	3	.057	14	.049	15	.028									
78	1 2DL + 1 5LM-MP1 + 1SW Yes	V		1.2	2/	1.5	1	057	1/	028	15	049									
70	1 2DL + 1 5LM-MP1 + 1SW Vac	V	1	1.2	21	1.5	4	057	14	.520	15	057								-	
20	$12DL + 15LM_MP1 + 15W_Mc2$			1.2	21	1.5	6	057	14	- 0	15	049									
00	$1.201 + 1.51 M_MD1 + 1.51M_MO2$			1.2	24	1.0	7	057	14	_ 0	15	028					-				
01	1.201 ± 1.51 M MD1 ± 1.500 Tes	Ϋ́		1.2	34	1.5	1	057	14	0	10	.020									
82	1.20L + 1.5LW-WP1 + 15WYes	Y		1.2	34	1.5	Ø	.037	14	0	15										
83	1.20L + 1.5LW-WP1 + 1SWYes	<u> </u>	1	1.2	34	1.5	9	.057	14	U	15	U									

RISA-3D Version 17.0.4 [L:\...\...\...\...\2021.10.27 - MA\Report\Risa\876338_loaded_loaded.r3d] Page 14

Load Combinations (Continued)

Description	<u>S</u>	PDel.	<u>.S B</u>	. Fa	B	Fa	. <u>B</u>	Fa	B	Fa	B	Fa	B	Fa	B	Fa	B	Fa	B	Fa	B	Fa
84 1.2DL + 1.5LM-MP1 + 1SW	/Yes	Y	1	1.2	34	1.5	10	.057	14	0	15	0										
85 1.2DL + 1.5LM-MP1 + 1SW	/Yes	Y	1	1.2	34	1.5	11	.057	14		15	0										
86 1.2DL + 1.5LM-MP1 + 1SW	/Yes	Y	1	1.2	34	1.5	12	.057	14	.028	15	0										
87 1.2DL + 1.5LM-MP1 + 1SW	/Yes	Y	1	1.2	34	1.5	13	.057	14	.049	15	0										
88 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	2	.057	14	.057	15											
89 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	3	.057	14	.049	15	.028										
90 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	4	.057	14	.028	15	.049										
91 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	5	.057	14		15	.057										
92 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	6	.057	14	0	15	.049										
93 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	7	.057	14	0	15	.028										
94 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	8	.057	14	0	15											
95 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	9	.057	14	0	15	0										
96 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	10	.057	14	0	15	0										
97 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	11	.057	14		15	0										
98 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	12	.057	14	.028	15	0										
99 1.2DL + 1.5LM-MP2 + 1SW	/Yes	Y	1	1.2	35	1.5	13	.057	14	.049	15	0										
100 1.2DL + 1.5LM-MP3 + 1SW	/Yes	Y	1	1.2	36	1.5	2	.057	14	.057	15											
101 1.2DL + 1.5LM-MP3 + 1SW	/Yes	Y	1	1.2	36	1.5	3	.057	14	.049	15	.028										
102 1.2DL + 1.5LM-MP3 + 1SW	/Yes	Y	1	1.2	36	1.5	4	.057	14	.028	15	.049										
103 1.2DL + 1.5LM-MP3 + 1SV	/Yes	Y	1	1.2	36	1.5	5	.057	14		15	.057										
104 1.2DL + 1.5LM-MP3 + 1SW	/Yes	Y	1	1.2	36	1.5	6	.057	14	0	15	.049										
105 1.2DL + 1.5LM-MP3 + 1SW	/Yes	Y	1	1.2	36	1.5	7	.057	14	0	15	.028										
106 1.2DL + 1.5LM-MP3 + 1SW	/Yes	Y	1	1.2	36	1.5	8	.057	14	0	15											
107 1.2DL + 1.5LM-MP3 + 1SW	/Yes	Y	1	1.2	36	1.5	9	.057	14	0	15	0										
108 1.2DL + 1.5LM-MP3 + 1SW	/Yes	Y	1	1.2	36	1.5	10	.057	14	0	15	0										
109 1.2DL + 1.5LM-MP3 + 1SV	/Yes	Y	1	1.2	36	1.5	11	.057	14		15	0										
110 1.2DL + 1.5LM-MP3 + 1SW	/Yes	Y	1	1.2	36	1.5	12	.057	14	.028	15	0										

Envelope Joint Reactions

	Joint	X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb	LC	MZ [lb-ft]	LC
1	N31	113.998	6	77.261	37	763.168	7	0	110	Ō	110	0	110
2		-114.137	12	18.865	55	-764.426	13	0	1	0	1	0	1
3	N30A	636.802	79	1451.737	33	632.243	25	-150.409	54	0	110	472.785	105
4		-1356.633	109	360.022	14	-1870.619	32	-592.433	38	0	1	-238.108	87
5	N31B	1358.288	102	521.108	27	1792.076	27	-21.672	19	0	110	176.673	105
6		-638.321	84	39.413	19	-265.143	20	-208.318	31	0	1	-88.021	87
7	Totals:	709.639	17	2022.606	27	1104.021	14						
8		-709.639	23	518.6	58	-1104.021	8						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code	Loc[in]	LC	Shear	Loc[in]Dir	LC	phi*Pncphi*Pnt [phi*Mn phi*Mn Cb Eqn
1	M23B	3/4" Solid R.	.364	37.75	28	.009	0	7	2462.257 14313.8 178.929 178.929 2H1-1a
2	MP1	PIPE 2.0	.275	44.625	101	.044	81.3	106	28535.1 32130 1871.625 1871.625 1 H1-1b
3	M19A	PIPE 1.5	.272	48.01	31	.185	48.01	105	17451.0 23593.5 1105.125 1105.125 3H1-1b
4	M22A	3/4" Solid R.	.267	37.75	76	.013	37.75	7	2462.257 14313.8 178.929 178.929 2H1-1a
5	MP4	PIPE 2.0	.216	44.625	81	.037	44.6	86	28535.1 32130 1871.625 1871.625 4H1-1b
6	M18B	PIPE 1.5	.185	48.01	87	.136	48.01	87	17451.0 23593.5 1105.125 1105.125 2H1-1b
7	M21A	PIPE 1.5	.184	0	8	.153	2.5	106	17451.0 23593.5 1105.125 1105.125 3H1-1b
8	M28	3/4" Solid R.	.160	0	105	.006	56.4	2	1100.282 14313.8 178.929 178.929 3 H1-1b*
9	HOR2	PIPE 2.5	.158	99.75	8	.103	99.75	8	43998.1 50715 3596.25 3596.25 1H1-1b
10	M24B	3/4" Solid R.	.154	37.75	29	.010	0	7	2462.257 14313.8 178.929 178.929 2 H1-1b*
11	MP2	PIPE 2.0	.153	44.625	7	.047	81.3	7	28535.1 32130 1871.625 1871.625 4H1-1b
12	TB1	PIPE 2.0	.148	75.374	30	.008	150	36	6233.091 32130 1871.625 1871.625 1H1-1b
13	HOR1	PIPE_2.5	.144	99.75	8	.113	21	7	43998.1 50715 3596.25 3596.25 1 H1-1b

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code	Loc[in]	LC	Shear	Loc[in]Dir	LC	phi*Pnc	.phi*Pnt [phi*Mn	phi*Mn	Cb Eqn
14	M27	3/4" Solid R.	.118	0	87	.006	56.4	87	1100.282	14313.8	178.929	178.929	2H1-1b*
15	M25	3/4" Solid R.	.110	37.75	87	.010	37.75	7	2462.257	14313.8	178.929	178.929	2H1-1b*
16	M20A	PIPE 1.5	.104	0	8	.115	2.5	84	17451.0	23593.5	1105.125	1105.125	2H1-1b
17	M26	3/4" Solid R.	.015	56.472	19	.010	56.4	7	1100.282	14313.8	178.929	178.929	2H1-1b*
18	M29	3/4" Solid R.	.000	0	110	.000	0	110	1100.282	14313.8	178.929	178.929	1 H1-1a

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[K]
1	General			••••	••••
2	RIGID		11	39	0
3	Total General		11	39	0
4					
5	Hot Rolled Steel				
6	A36 Gr.36	3/4" Solid Rod	8	376.9	.047
7	A53 Gr.B	PIPE 1.5	4	192	.041
8	A53 Gr.B	PIPE 2.0	4	528.7	.153
9	A53 Gr.B	PIPE 2.5	2	252	.115
10	Total HR Steel		18	1349.7	.356

APPENDIX D

ADDITIONAL CALCUATIONS

Bolt Calculation Tool, V1.5.1

PROJECT DATA				
Site Name:	WATERFORD			
Site Number:	876338			
Connection Description:	Mount to Tower			

MAXIMUM BOLT LOADS					
Bolt Tension:	3292.22	lbs			
Bolt Shear:	1649.32	lbs			

WORST CASE BOLT LOADS ¹				
Bolt Tension:	3292.22	lbs		
Bolt Shear:	443.69	lbs		

WORST CASE CONNECTION SLIP LOADS ²				
Sliding Force:	1448.87	lbs		
Torsion About Leg:	0.00	lbs-ft		

BOLT PROPERTIES				
Bolt Type:	Threaded Rod	-		
Bolt Diameter:	0.625	in		
Bolt Grade:	A307	-		
# of Threaded Rods:	2	-		
Leg Diameter:	1.25	in		
Threads Excluded?	No	-		

¹ Worst case bolt loads correspond to Load combination #32 on member M17 in RISA-3D, which causes the maximum demand on the bolts.

² Worst Case slip loads correspond to Load combination #32 on member M17 in RISA 3D, which causes the maximum slip demand on the connection.

Member Information

J nodes of M17, M18

BOLT CHECK		
Tensile Strength	10170.07	
Shear Strength	6902.91	
Max Tensile Usage	32.4%	
Max Shear Usage	23.9%	
Interaction Check (Worst Case)	0.11	≤1.05
Result	Pass	

SLIP CHECK (WORST CASE)		
Torsional Slip Resistance	325.04	
Sliding Resistance	6240.74	
Torsional Slip Usage	0.0%	
Sliding Usage	23.2%	
Interaction Check	0.05	≤1.05
Result	Pass	

ATTACHMENT 6

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: 876338

BOBOS00882A 41 Manitock Hill Road Waterford, Connecticut 06385

May 22, 2022

EBI Project Number: 6222003236

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	34.93%			

environmental | engineering | due diligence

May 22, 2022

Attn: Dish Wireless

Emissions Analysis for Site: 876338 - BOBOS00882A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **41 Manitock Hill Road** in **Waterford, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 41 Manitock Hill Road in Waterford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

environmental | engineering | due diligence

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 87 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665-	Make / Model:	JMA MX08FRO665-	Make / Model:	JMA MX08FRO665-
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd
Height (AGL):	87 feet	Height (AGL):	87 feet	Height (AGL):	87 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts
ERP (VV):	1,424.17	ERP (VV):	1,424.17	ERP (W):	1,424.17
Antenna AI MPE %	1.14%	Antenna BI MPE %	1.14%	Antenna CI MPE %:	1.14%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	1.14%			
Nextel	0.39%			
Sprint	3.09%			
Metro PCS	0.69%			
AT&T	8.75%			
Verizon	17.15%			
T-Mobile	3.72%			
Site Total MPE % :	34.93%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	1.14%			
Dish Wireless Sector B Total:	1.14%			
Dish Wireless Sector C Total:	1.14%			
Site Total MPE % :	34.93%			

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	110.82	87.0	2.43	600 MHz n71	400	0.61%
Dish Wireless 1900 MHz n70	4	245.22	87.0	5.37	1900 MHz n70	1000	0.54%
				Total:	1.14%		

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	1.14%		
Sector B:	1.14%		
Sector C:	1.14%		
Dish Wireless			
Maximum MPE %	1.14%		
(Sector A):			
Site Total:	34.93%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **34.93**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

ATTACHMENT 7

CERTIFICATION OF SERVICE

I hereby certify that on the 21st day of June 2022, DISH Wireless, LLC provided notice of its intent to file a Petition for a declaratory ruling that a Certificate of Environmental Compatibility and Public Need is not required for the modification of a wireless telecommunications facility at 41 Manitock Hill Road in Waterford, Connecticut, to the following:

Abutters

Michael S Johnson & Anthony M Siderwic 46 Manitock Hill Rd Waterford, CT 06385

Town Of Waterford 15 Rope Ferry Rd Waterford, CT 06385

William F Dawley & Joanne C Dawley 131 Fog Plain Road Waterford, CT 06385 Mathon Fund I LLC 6328 N 181ST Ave Waddell, AZ 85355

Benajah Farm Limited Partnership PO Box 717 Waterford, CT 06385

Owner

City of New London 15 Masonic Dr New London, CT 06320

Respectfully Submitted,

Victoria Masse Northeast Site Solutions 420 Main Street #2 Sturbridge, MA 01566 June 21, 2022

VIA USPS CERTIFIED MAIL/ RETURN RECEIPT REQUESTED

City of New London 15 Masonic Dr New London, CT 06320

RE: Proposed Modification to Existing Wireless Telecommunications Facility at 41 Manitock Hill Road in Waterford, Connecticut

To Whom It May Concern:

I am writing to you on behalf of DISH Wireless, LLC ("DISH"). DISH intends to file with the Connecticut Siting Council ("Council") a petition for declaratory ruling ("Petition") that a Certificate of Environmental Compatibility and Public Need is not required.

The Petition will provide details of the Existing Facility modification and explain why it will have no significant adverse environmental effect.

This letter serves as notice to you as an abutting property owner pursuant to § 16-50j-40 of the Regulations of Connecticut State Agencies. DISH will file the Petition on or about June 21, 2022 and will request that the Council place the Petition on some future agenda.

You may review the Petition at the office of the Council, which is located at Ten Franklin Square, New Britain, Connecticut, 06051, or at the Office of the Town Clerk at the Waterford Town Hall. All inquiries should be addressed to Council or to the undersigned.

Sincerely,

Victoria Masse Northeast Site Solutions 420 Main Street #2 Sturbridge, MA 01566

Text your tracking number to 28777 (2USPS) to get the latest status. Standard W

CR DISH LINCULIN MALL 560 LINCOLN ST STE 8 WURDESTER, MA 01605-1925 (800)275-8777 09:49 AM 06/23/2022 ------Unit Price Qty Product Price -----\$0.58 First-Class Mail® 1 Letter Waterford, CT 06385 Weight: 0 1b 0.40 oz Estimated Delivery Date Sat 06/25/2022 \$3.75 Certified Mail® Tracking #: 70212720000157462518 \$3.05 Return Receipt Tracking #: 9590 9402 7040 1225 8324 19 \$7.38 Total \$0.58 First-Class Mail® 1 Letter Waterford, CT 06385 Weight: 0 1b 0.40 oz Estimated Delivery Date Sat 06/25/2022 \$3.75 Certified Mail® Tracking #: 70212720000157462501 \$3.05 Return Receipt Tracking #: 9590 9402 7040 1225 8324 26 \$7.38 Total \$0.58 First-Class Mail® 1 Letter Waterford, CT 06385 Weight: 0 1b 0.40 oz Estimated Delivery Date Sat 06/25/2022 \$3.75 Certified Mail® Tracking #: 70212720000157462495 \$3.05 Return Receipt Tracking #: 9590 9402 7040 1225 8324 40 \$7.38

	First-Class Mail® 1	\$0.58
	New London CT 06320	
	Weight: 0 1b 0.40 oz	
	Estimated Delivery Date	
	Certified Mail®	\$3 75
	Tracking #:	ψ0.70
	70212720000157462464 Return Receipt	40 OF
	Tracking #:	\$3.05
	9590 9402 7040 1225 832	4 57
	lotal	\$7.38
	First-Class Mail® 1	\$0.58
	Letter Waddell AZ 85355	
	Weight: 0 1b 0.40 oz	
	Estimated Delivery Date	
· · ·	Tue U6/28/2U22 Certified Mail®	¢2 75
	Tracking #:	φ0.75
	70212720000157462471 Return Receipt	40 OF
	Tracking #:	\$3.UD
	9590 9402 6930 1104 642	7 85
	Iotal	\$7.38
	First-Class Mail@ 1 Letter	\$0.58
	Waterford, CT 06385	
	Weight: 0 1b 0.40 oz Estimated Delivery Date	
	Sat 06/25/2022	
	Certified Mail®	\$3.75
	70212720000157462488	
	Return Receipt	\$3.05
	11acK1ng #: 9590 9402 7040 1225 832	1 00
	Total	\$7.38
	Grand Total:	\$44.28
	Credit Card Remitted	\$44.28
	Card Name: VISA	
	Approval #: 08056G	
	Transaction #: 508	
	ALD: AUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	р
	PIN: Not Required CHASE VIS	SA

	Every household in the U.S. is	now
	of 8 free test kits.	7 L
	Ga ta www.covidtests.gov	

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0278 9695 96 Priority Mail® Postage: \$8.95 Trans. #: 566086187 Total. \$8.95 Print Date: 06/21/2022 06/21/2022 Ship Date: xpected Delivery Date: 06/23/2022 From: DEBORAH CHASE Ref#: DS-876338 NORTHEAST SITE SOLUTIONS 420 MAIN ST STE 1 STURBRIDGE MA 01566-1359 To: ROBERT J BRULE FIRST SELECTMAN 15 ROPE FERRY RD WATERFORD CT 06385-2806 * Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

UNITED STATES POSTAL SERVICE Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

EXAMPLE STATES Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

UNITED STATES POSTAL SERVICE Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

UNITED STATES POSTAL SERVICE Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

			. –	- 14	
		ITEL	2 <u>57/</u>	<u>17</u> 17 17 17	S
	Fi	ARMINGT	ON	(VA	iner dinar il)
FAR	2 MINGTO	10 MAIN N, CT O	l ST 6032-99	98	
06/23/2022	(8)	0)275-	8777	04	1:39 PM
Product		Qty	Unit Price	~	Price
Prepaid Mail West Hen Weight: Acceptan Thu Tracking	rietta, 0 lb 2 ce Date 06/23/2 #:	1 NY 14 2.00 oz	586		\$0.00
9405 Discussion Maria	5036 9	930 02	78 9696	26	
Prepaid Mail Waterfor Weight: Acceptan Thu Tracking 9405	d, CT (0 1b 1 ce Date 06/23/2 #: 5036 9	1 06385 2.80 o: 9: 2022 930 02	z 78 9696	02	\$0.00
Prepaid Mail New Lond Weight: 1 Acceptan Thu (Tracking 9405	on, CT D 1b 1 De Date D6/23/2 #: 5036 9	1 06320 2.90 of :: :022 930 027	z 78 9696	19	\$0.00
Prepaid Mail Waterford Weight: (Acceptand Thu (Tracking 9405	d, CT 0) lb 1 >e Date)6/23/2 #: 5036 9	1 6385 2.90 oz ; 022 930 027	z 78 9695	96	\$0.00
Grand Total:					\$0.00
*********** Every ho eligibl Go *****	e to re to re f 8 fro to www ****** Preview rack yo	******* d in th eceive ee test .covidt ******** W your pur Pac	Mail kages	is no is set ov	***** W *****
https://	Sign u inform	o for F addeliv	REĒ O ery.usp	IS.CO	1
All sales Refunds fo Thank	final o r guara you fo	on stam anteed or your	ps and service busine	posta s oni ss.	age. ly,
Go to: http or scan this	s about s:://pos /code v	t your statexp vitth yo	experie ecience ur nobi	nce .com/ le de	Pos vice,
				and the set of the set	