Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

June 20, 2023

VIA HAND DELIVERY

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Petition No. 1508 - Enfield Solar One, LLC and VCP, LLC d/b/a Verogy – Petition for a Declaratory Ruling that a Certificate of Environmental Compatibility and Public Need is not Required for the Construction, Operation and Maintenance of a 4.0 MWAC Solar Photovoltaic Project at 110 North Street, Enfield, Connecticut

Dear Ms. Bachman:

In accordance with Condition Nos. 5 and 6 of the Siting Council's July 21, 2022 approval of Petition No. 1508, enclosed are fifteen (15) copies of the Stormwater General Permit-Notice of Permit Authorization from the Department of Energy and Environmental Protection; and the Final Structural Calculations and Design Drawings for the Enfield Solar One, LLC facility, stamped and signed by a Connecticut professional engineer licensed. Also, as requested by Condition No. 3 and as mentioned in the Spill Prevention Control and Countermeasure Plan ("SPCC") included in the Petition No. 1508 record, the spill response contractor for the project will be Clean Harbors Environmental (860) 583-6866.

Please feel free to contact me if you have any questions. Thank you in advance for your assistance and cooperation.

Sincerely,

Kunig mm

Kenneth C. Baldwin

Enclosures Copy to: Ellen Zoppo-Sassu, Enfield Town Manager

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

79 Elm Street • Hartford, CT 06106-5127

www.ct.gov/deep

Affirmative Action/Equal Opportunity Employer

NOTICE OF PERMIT AUTHORIZATION

Date: 6/13/23

ATTN: Bradley Parsons, Director of Design and Permitting

Mailing Address: Verogy 124 LaSalle Road, 2nd Floor West Hartford, CT 06107 Site Information: Enfield One Solar, LLC 110 North Street Enfield, CT 06082

RE: General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities Permit No. GSN003845, issued to Verogy Application No. 202207691

Dear Mr. Parsons:

The Department of Energy and Environmental Protection, Water Permitting and Enforcement Division of the Bureau of Materials Management and Compliance Assurance, has completed the review of the Enfield Solar One (located at 110 North Road) registration for the **General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities, effective 12/31/2020 (general permit)**. The project is compliant with the requirements of the general permit and the discharge(s) associated with this project is (are) authorized to commence as of the date of this letter. Permit No. GSN003845 has been assigned to authorize the stormwater discharge(s) from this project.

Should you have any questions about this letter or any other question concerning the general permit, please feel free to contact Christopher Stone, P.E. at 860-424-3850 or chris.stone@ct.gov.

Sincerely, Karen L. Allen, PE Supervising Sanitary Engineer Water Permitting and Enforcement Division Bureau of Materials Management and Compliance Assurance

Prepared For:

Verogy

Enfield Solar One

SFDC ID# 17071

1x78,52 FTS - Structural Calculations 41°59'42.02"N, 72°31'32.12"W Enfield, CT 06082

A product of Northern States Metals (NSM) 3207 Innovation Place, Youngstown, Ohio, 44509-4023 Prepared By: JRD Checked By: JS

Solar FlexRack Engineering Analysis

Table of Contents

Inputs	Page #					
Tracker Load Sheet	1					
Global Parameters	2-3					
Load Combinations	4					
Loads at 0° (Stow Position) – 1x78 (Configuration Controls Rack, Post)						
Isometric View	5					
Solar Panel Dead Load	6					
Projected Snow Load	7					
Seismic Design X-Direction	8					
Seismic Design Z-Direction	9					
Static - Wind Uplift Load	10					
Static – Wind Downward Load	11					
Inertial – Wind Uplift Load	12					
Inertial – Wind Downward Load	13					
Results at 0° (Stow Position) – 1x78 (Configuration Controls Rack, Post)						
Hot Rolled Code Check	14					
Main Beam Code Check (HSS Member Detail)	15-16					
Vertical Rail Code Check (Rolled Hat Channel Detail)	17-18					
Drive Post Code Check	19-20					
Idler Post Code Check						
Loads at 55° – 1x78 (Configuration Controls Rack, Post)						
Isometric View	23					
Solar Panel Dead Load	24					
Projected Snow Load	25					
Seismic Design X-Direction	26					
Seismic Design Z-Direction						
Static - Wind Uplift Load	28					
Static – Wind Downward Load	29					
Inertial – Wind Uplift Load	30					
Inertial – Wind Downward Load	31					

Solar FlexRack Engineering Analysis

Results at 55° – 1x78 (Configuration Controls Rack, Post)			
Hot Rolled Code Check	32		
Main Beam Code Check (HSS Member Detail)	33-34		
Vertical Rail Code Check (Rolled Hat Channel Detail)	35-36		
Drive Post Code Check	37-38		
Idler Post Code Check	39-40		
Foundation Calculation			
Foundation Calculation Report	41-89		
Corrosion Analysis			
Corrosion Analysis Report			

Customer:	Verogy
SEDC ID #:	17071
Project/Location:	Enfield Solar One - Enfield, CT 06082
Date/Engineer:	02/01/23 - Nomiki Zembillas

Solar Flexrack Loading Analysis

Configuration Data

Configuration 1: 1x	78 FTS	Configuration 2:	1x52 FTS	
Horiz. Length (N-S):	294.84 ft	Horiz. Length (N-S):	197.02 ft	
Array Surface Area:	2203.53 ft ²	Array Surface Area:	1472.47 ft ²	
Number of Posts:	13	Number of Posts:	9	

Design Data Summary

Module Length:	7.47 ft
Solar Panel Dead Load:	2.21 psf
Max Stow Wind Speed:	107 mph
Max Operation:	35 mph
Snow Load:	35 psf
Ground Clearance:	48.52 in
Exposure Category:	С
Building Classification:	1
Hurricane Region?:	0

Snow Load Parameters

Flat Roof Snow Load, Pr	Pf=0.7*Ce*Ct*I*Pg	Tilt Angle	С,	P _s ps
Sloped Roof Snow Load, P ₃ :	Ps = Pf*Cs	0 - 15	1.00	21.17
		20	0.91	19.26
Snow Exposure Category, Ce:	0.9	25	0.82	17.36
Snow Thermal Factor, Ct:	1.2	30	0.73	15.45
Snow Importance Factor, I:	0.8	35	0.64	13.55
Pé	21.17 psf	40	0.55	11.64
		45	0.46	9.74
Snow Density:	18.55 pcf	50	0.37	7.83
Snow Height:	22.64 in	55	0.28	5.93

Snow Load Design

"A" EL "B"

Wind Load Parameters

Exposure Coefficient, Kz: 0.85	Wind Load: gh = 0.00256*kz*kzt*kd*V ²	n:	2.9	Hz
Topographic Factor, Kzt: 1.00	qh _{vult} 21.04 psf	Damping Ratio	2.50	%
Wind Directionality Factor, Kd: 0.85	qh ₁₅ 3.75 psf	nL/Vult:	0.178	
		nL/V35:	0.422	
Elevation Eactor: Ke: 0.993433256				

Wind Load Design

	Perimeter Loading																
	Stow Position																
					Static								Inertial				
Tilt Angle	A Distribution	B Distribution	GCp Up	GCp Dn	A*qz*GCp Up	B*qz*GCp Up	A*qz*GCp Dn	B*qz*GCp Dn	A Distribution	B Distribution	Mod. Factor	GCp Up	GCp Dn	A*qz*GCp Up	B*qz*GCp Up	A*qz*GCp Dn	B*qz*GCp Dn
0	2.00	0.00	-0.38	0.27	-15.84	0.00	11.28	0.00	1.15	0.85	0.54	-0.91	0.81	-22.12	-16.34	19.50	14.40
	Tilted Position (35 mph max)																
					Static							_	Inertial				
Tilt Angle	A Distribution	B Distribution	GCp Up	GCp Dn	A*qz*GCp Up	B*qz*GCp Up	A*qz*GCp Dn	B*qz*GCp Dn	A Distribution	B Distribution	Mod. Factor	GCp Up	GCp Dn	A*qz*GCp Up	B*qz*GCp Up	A*qz*GCp Dn	B*qz*GCp Dn
5	1.95	0.05	-0.56	0.54	-4.12	-0.12	3.91	0.11	1.72	0.28	0.30	-0.87	0.84	-5, 59	-0.91	5.40	0.88
10	1.89	0.11	-0.76	0.68	-5.41	-0.31	4.81	0.28	1.72	0.28	0.30	-1.07	0.98	-6.86	-1.12	6.32	1.03
15	1.84	0.17	-0.71	0.89	-4.88	-0.44	6.14	0.55	2.00	0.00	0.06	-0.77	0.95	-5.77	0.00	7.15	0.00
20	1.78	0.22	-0.79	0.92	-5.30	-0.65	6.10	0.75	2.00	0.00	0.06	-0.86	0.98	-6.41	0.00	7.32	0.00
25	1.73	0.28	-0.79	0.84	-5.13	-0.82	5,46	0.87	2.00	0.00	0.06	-0.86	0.91	-6.41	0.00	6.79	0.00
30	1.67	0.33	-0.80	0.78	-5.03	-0.99	4.91	0.97	2.00	0.00	0.06	-0.87	0.85	-6.49	0.00	6.33	0.00
35	1.62	0.39	-0.81	0.93	-4.90	-1.17	5.65	1.35	2.00	0.00	0.06	-0.87	0.99	-6.53	0.00	7.45	0.00
40	1.56	0.44	-0.88	0.87	-5.17	-1.46	5.07	1.43	2.00	0.00	0.06	-0.95	0.93	-7.09	0.00	6.96	0.00
45	1.51	0.50	-0.90	0.92	-5.07	-1.67	5.20	1.71	2.00	0.00	0.06	-0.96	0.98	-7.19	0.00	7.36	0.00
50	1.45	0.55	-0.90	0.92	-4.88	-1.85	5.01	1.90	2.00	0.00	0.06	-0.96	0.98	-7.19	0.00	7.36	0.00
55	1.40	0.61	-0.98	1.02	-5.14	-2.23	5.36	2.32	2.00	0.00	0.06	-1.04	1.09	-7.82	0.00	8.14	0.00

Seismic Load Parameters / Design

S _S :	0.172	$S_{DS:} S_{DS} = (2/3) \times F_a \times S_S$	Site Class: D	
S ₁ :	0.055	S _{DS:} 0.183	Seismic Design Category: B	This Base Shear Value represents the seismic effect of the panel weight on the rack. This Base
Site Coefficient, F _{ac}	1.600	S _{D1:} S _{D1} = (2/3) x F _V x S ₅		Shear includes 20% of the design snow load when the flat roof snow load exceeds 30 psf per
Site Coefficient, F _V	2.400	S _{D1:} 0.088	Seismic Response Coefficient, Cs: 0.092	ASCE. A separate term in the Risa load combination accounts for the remaining Dead Load caused by member self-weight.
Response Modification Coefficent, R:	2	Cu = 1.7	Panel Seismic Load, V = Cs x (Panel DL)	caused by member sen-weight.
Importance Factor, I _{e:}	1	TL = 6	V= 0.203 psf	

Note: GCp values for 20° and 45° were not given in results from RWDI and are assumed to be the higher value of the two adjacent values.

Loading analysis and design in accordance with wind and snow load information obtained from ASCE 7-16 Minimum Design Loads for Building and Other Structures

Model Settings	
Solution	
Members	
Number of Reported Sections	20
Number of Internal Sections	200
Member Area Load Mesh Size (in ²)	1
Consider Shear Deformation	Yes
Consider Torsional Warping	Yes
oonsider refsional warping	165
Wall Panels	
Approximate Mesh Size (in)	12
Transfer Forces Between Intersecting Wood Walls	Yes
Increase Wood Wall Nailing Capacity for Wind Loads	Yes
Include P-Delta for Walls	Yes
Optimize Masonry and Wood Walls	Yes
Maximum Number of Iterations	3
	• •
Processor Core Utilization	
Single	No
Multiple (Optimum)	Yes
Maximum	No
	•
Axis	
Vertical Global Axis	V
Global Axis corresponding to vertical direction	Ý
Convert Existing Data	Yes
Default Member Orientation	
Default Global Plane for z-axis	XZ
Plate Axis	
Plate Local Axis Orientation	Nodal
Codes	
Hot Rolled Steel	AISC 15th (360-16): ASD
Stiffness Adjustment	Yes (Iterative)
Notional Annex	None
Connections	AISC 15th (360-16): ASD
Cold Formed Steel	AISI S100-16: ASD
Stiffness Adjustment	Yes (Iterative)
Wood	None
Temperature	< 100F
Concrete	None
Masonry	None
Aluminum	None
Structure Type	Building
Stiffness Adjustment	Yes (Iterative)
Stainless	None
Stiffness Adjustment	Yes (Iterative)
Concrete	

Concrete	
Compression Stress Block	Rectangular Stress Block
Analyze using Cracked Sections	Yes
Leave room for horizontal rebar splices (2*d bar spacing)	No

Model Settings (Continued)

List forces which were ignored for design in the Detail Report	Yes
Rebar	

Column Min Steel	1
Column Max Steel	8
Rebar Material Spec	ASTM A615
Warn if beam-column framing arrangement is not understood	No

Shear Reinforcement	
Number of Shear Regions	4
Region 2 & 3 Spacing Increase Increment (in)	4

Seismic

RISA-3D Seismic Load Options

Code	ASCE 7-16
Risk Category	l or ll
Drift Cat	Other
Base Elevation (ft)	
Include the weight of the structure in base shear calcs	Yes

Site Parameters	
$S_1(q)$	0.055
SD ₁ (g)	0.088
$SD_{s}(g)$	0.183
T _L (sec)	6

Structure Characteristics

TZ (sec)	
T X (sec)	
C,X	0.02
C _t Exp. Z	0.75
C _t Exp. X	0.75
RZ	2
RX	2
$\Omega_0 Z$	2
Ω ₀ X C _d Z	2
C _d Z	2
C _d X	2
ρΖ	1
ρΧ	1

3/23/2023 2:56:44 PM Checked By : JRD

5	
~	
21	
0	
-	
CT.	
č	
- 21	
ō	
~	
2	
2	
хı	
O	
_	
a	
Ω,	
õ	
~	
-	

	_							_		_					_								_
Factor					0.45	0.45						0.14	0.14	0.14	0.14	0.105	0.105	0.105	0.105	-0.14	-0.14	-0.14	-0.14
BLC					OL3	OL3						Sds*DL	Sds*DL	Sds*DL	Sds*DL	Sds*DL	Sds*DL	Sds*DL	Sds*DL	Sds*DL	Sds*DL	Sds*DL	Sds*DL
Factor			0.6	0.6	0.75	0.75	0.25	0.25	0.6	0.6						0.75	0.75	0.75	0.75				
BLC			OL3	OL3	SL	SL	SL	SL	OL3	OL3						SL	SL	SL	SL				
Factor		1	0.6	0.6	0.45	0.45	0.45	0.45	0.6	0.6		0.7	-0.7	0.7	-0.7	0.525	-0.525	0.525	-0.525	0.7	-0.7	0.7	-0.7
BLC		SL	WL+X	ML-X	OL1	OL2	WL+X	ML-X	ML+X	WL-X		ELX	ELX	ELZ	ELZ	ELX	ELX	ELZ	ELZ	ELX	ELX	ELZ	ELZ
Factor	1	1	1	1	1	1	1	1	0.6	0.6		1	1	+	1	1	1	1	1	0.6	0.6	0.6	0.6
BLC	DL	DL	DL	DL	DL	DL	DL	DL	Ы	DL		Ы	DL	Ы	DL								
P-Delta	Y	٢	Y	Υ	Y	Y	Y	٢	≻	۲		۲	Y	۲	Y	Y	Y	Y	Υ	Υ	Y	٢	Y
Solve	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Description		IBC 16-10	IBC 16-12 (A)	IBC 16-12 (B)	IBC 16-13 (A) (static wind)	IBC 16-13 (B) (static wind)	Total WL + 0.25 SL	Total WL + 0.25 SL	IBC 16-15 (A)	IBC 16-15 (B)	Seismic	IBC 16-12 C (A)	IBC 16-12 C (B)	IBC 16-12 (D) (A)	IBC 16-12 (D) (B)	IBC 16-14 (A) (A)	IBC 16-14 (A) (B)	IBC 16-14 (B) (A)	IBC 16-14 (B) (B)	IBC 16-16 (A) (A)	IBC 16-16 (A) (B)	IBC 16-16 (B) (A)	IBC 16-16 (B) (B)
	-	2	ო	4	5	9	7	∞	თ	10	11	12	13	14	15	16	17	18	19	20	21	22	23

I

	SK-2	Mar 23, 2023	23 0201 - 1x78 FTS - Phono 545W - 0°.r3d	Page 6
	Enfield Solar One			
2.21 psf 2.21 psf Loads: BLC 2, Solar Panels	Vernav	ZN	17071	-

	SK-3	Mar z3, 2023 23_0201 - 1x78 FTS - Phono 545W - 0°.r3d	Page 7
	Enfield Solar One		
Loads: BLC 3, Snow	Verogy	NZ 17071	

		SK-6	Mar 23. 2023	23 0201 - 1x78 FTS - Phono 545W - 0° r3d	Page 10
		Enfield Solar One			
Lie the second s	Loads: BLC 6, Wind Uplift - Static	Verogy		17071	

	SK-7	Mar 23, 2023	23_0201 - 1x78 FTS - Phono 545W - 0°.r3d	Page 11
	Enfield Solar One			
Loads: BLC 7, Wind Downforce - Static	Varnav	ZN	17071	

		SK-8	Mar 23, 2023	78 FTS - Phono 🤅	Page 12
balance in the second sec		Enfield Solar One			
	Loads: BLC 8, Wind Uplift - Dynamic	Verogy	NZ	17071	

	SK-9	Mar 23, 2023	23_0201 - 1x78 FTS - Phono 545W - 0°.r3d	Page 13
19.5 pst	Enfield Solar One			
Loads: BLC 9. Wind Downforce - Dvnamic	Verogy	NZ	17071	

3/23/2023 3:10:06 PM Checked By : JRD

_ I
Checks
Code
r Steel
Membe
ASD
(360-16):
15TH
AISC
Envelope

Eqn	H1-1b	H3-6	H3-6	H1-1b	H1-1b	H1-1a*	H1-1a*	H1-1a*	H1-1a*	H1-1b*	H1-1a*	H1-1a*	H1-1a*	H1-1a*	H1-1b*
Сb	-	-	-	1	1	-	1	-	1	1	1	1	1	1	-
Mnzz/om [k-in]	289.457	139.548	139.548	84.074	84.074	84.074	84.074	84.074	84.074	84.074	84.074	84.074	84.074	84.074	84.074
Mnyy/om [k-in]	130.007	106.058	106.058	35.079	35.079	35.079	35.079	35.079	35.079	35.079	35.079	35.079	35.079	35.079	35.079
Pnt/om [k]	132.635	84.078	84.078	59.947	59.947	59.947	59.947	59.947	59.947	59.947	59.947	59.947	59.947	59.947	59.947
Pnc/om [k]	93.696	11.417	11.417	21.092	21.092	21.092	21.092	21.092	21.092	21.092	21.092	21.092	21.092	21.092	21.092
СС	14	5	5	5	5	12	13	12	12	12	12	13	13	13	13
Dir	z	٨	>	٨	γ	,	٨	٨	٨	٨	٨	٨	٨	٨	λ
Loc[in]	0	9.277	9.277	109.513	109.513	0	0	0	0	0	0	0	0	0	0
LC Shear Check	0.009	0.703	0.703	0.007	0.007	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.002
С	5	5	5	5	5	2	2	2	2	2	2	2	2	2	2
Loc[in]	100	9.277	9.277	0	0	0	0	0	0	0	0	0	0	0	0
Code Check	0.52	0.966	0.965	0.208	0.208	0.208	0.202	0.2	0.214	0.174	0.208	0.202	0.2	0.214	0.174
Shape	W6X15	5X4X.134	5X4X.134	W6X7	W6X7	W6X7	W6X7	W6X7	W6X7	W6X7	W6X7	W6X7	W6X7	W6X7	W6X7
Member	DP1	Tube 1	Tube 2	Idler Post 6	Idler Post 7	Idler Post 5	Idler Post 4	Idler Post 3	9 Idler Post 2	10 Idler Post 1	11 Idler Post 8	12 Idler Post 9	13 Idler Post 10	14 Idler Post 11	15 Idler Post 12
	-	2	ო	4	5	9	2	ω	თ	10	1	12	13	14	15

etail Report: Tube 1		Unity Check: 0.966 (a	xial/bending)	Load Combination: Lo	C 5: IBC 16−13 (A) (static wi
	x z	nput Data: Shape: Member Type: Length (in): Material Type: Design Rule: Number of Internal Sections:	5X4X.134 Beam 1762.539 Hot Rolled Steel Typical 191	l Node: J Node: I Release: J Release: I Offset (in): J Offset (in):	GZ VX11 Fixed Fixed N/Z N/Z
Material Properties:					
Material:	A500 Gr. 60	Therm. Coeff. (1e ⁵ °F ⁻¹):	0.65	R _y :	1.
E (ksi):	29000	Density (k/ft³):	0.49	F _u (ksi):	7
G (ksi):	11154	F _v (ksi):	60	R _t :	1.1
Nu:	0.3	3			
Shape Properties:					
d (in):	5	I _{yy} (in⁴):	6.17	Area (in²):	2.3
b _f (in):	4	$I_{zz}(in^4)$:	8.714	J (in⁴):	10.86
t (in):	0.134	11.			
Design Properties:					
L _{b y-y} (in) :	285	К _{у-у} :	1	Max Defl Ratio:	L/137
$L_{b z-z}$ (in):	285	K _{z-z} :	1	Max Defl Location:	1530.62
L _{comp top} (in):	Lbyy	y sway:	No	Span:	
L _{comp bot} (in):	285	z sway:	No		
L _{torque} (in):	N/A	Function:	Lateral		
		Seismic DR:	None		
		Tube	21		
GA					• VX1E
Diagrams:		0.	147 at 1716.156 in		2.511 at 1762.539 i
		-1.19 a y Deflection	t 1530.626 in	-1.128 at 0 in	ction (in)
5.412e-05 at 269.019 in		1.451 at 13		0.025 at 324.	

 -2.733e-06 at 556.591 in
 -1.53 at 547.315 in
 -0.077 at 9.277 in

 Axial Force (kips)
 y Shear Force (kips)
 z Shear Force (kips)

AISC 15th (360-16): ASD Code Check

Limit State	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial				
Applied Loading - Shear + Torsion	-	-	-	-
Axial Tension Analysis	0.000 k	84.078 k	-	-
Axial Compression Analysis	0.000 k	11.417 k	-	-
Flexural Analysis (Strong Axis)	47.13 k-in	139.548 k-in	-	-
Flexural Analysis (Weak Axis)	13.435 k-in	106.058 k-in	-	-
Shear Analysis (Major Axis y)	18.677 k	26.564 k	0.703	Pass
Shear Analysis (Minor Axis z)	13.873 k	20.787 k	0.667	Pass
Bending & Axial Interaction Check (UC Bending Max)	-	-	0.966	Pass
Torsional Analysis	72.136 k-in	108.481 k-in	0.665	Pass

Petail Report: VP 6		Unity Check: 0.943	(unial) benuing)		nbination: LC 2: IBC 16
<u>۴</u>	1	nput Data:			
	X	Shape:	V-HU-2.25X0.055X1.25	I Node:	V6
	″	Member Type:	Beam	J Node:	V60
	→ ^z	Length (in):	43.307	I Release:	Fixed
		Material Type: Design Rule:	Cold Formed Steel Typical	J Release: I Offset (in):	Fixed N/A
		Number of Internal Sections:		J Offset (in):	N//
Material Properties:					
	553 Grade 50	Nu:	0.3	F _y (ksi):	5
E (ksi):	29500	Therm. Coeff. (1e ⁵ °F ⁻¹):	0.65	F_{u} (ksi):	7
G (ksi):	11346	Density (k/ft ³):	0.49	Γ _u (κsi).	/
G (KSI).	11540	Density (k/Tt.).	0.49		
Shape Properties:					
D (in):	2.25	C _w (in ⁶):	0.21	S _{e,z} (in ³):	0.25
B (in):	1.25	r _o (in):	1.875	S _{etz} (in ³):	0.1
t (in):	0.055	X _c (in):	1.274	S _{fz} (in³):	0.16
R (in):	0.112	m (in):	0.172	S _{fy,z} (in ³):	0.16
d (in):	1.25	j (in):	1.589	S _{ev} (in³):	0.23
I _{yy} (in⁴):	0.308	r _z (in):	0.84	S _{etv} (in ³):	0.23
I_{zz} (in ⁴):	0.303	r _y (in):	0.848	S _{fy} (in ³):	0.23
Area (in ²):	0.428	x ₀ (in):	-1.446	S _{fy,y} (in ³):	0.32
J (in⁴):	0.000432				
Design Properties:					
L _{by-y} (in):	N/A	K _{y-y} :	1	Max Defl Ratio:	L/1000
L _{b z-z} (in):	N/A	К _{z-z} :	1	Max Defl Location:	
L _{comp top} (in) :	Lbyy	R:	N/A	Span:	N/
L _{comp bot} (in):	N/A	y sway:	No		
с _ь :	1	z sway:	No		
С _{т у-у} :	N/A	a (in):	N/A		
C _{m z-z} :	N/A	Function:	Lateral		
		VP	6		
• V6B					• V6C
100					
Diagrams:		0.012 at 0 in			
5			0.012 at 43.307 in		
				-1	.838 at 19.602 in
					-1.954 at 43.307
		y Deflection	n (in)	z Deflect	
				0.314 at 23.933	in
-4.903e-07 at 1	9.602 in				.314 at 19.374 in
-4.30JE-07 AL					

AISI S100-16: ASD Code Check

Limit State	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial				
Applied Loading - Shear + Torsion				
Axial Tension Analysis	0.000 k	12.829 k	-	-
Axial Compression Analysis	0.000 k	4.413 k	-	-
Flexural Analysis (Strong Axis)	0.000 k-in	3.903 k-in	-	-
Flexural Analysis (Weak Axis)	6.664 k-in	7.094 k-in	-	-
Shear Analysis (Major Axis y)	0.000 k	0.945 k	0.000	Pass
Shear Analysis (Minor Axis z)	0.314 k	3.952 k	0.08	Pass
Bending & Axial Interaction Check (UC Bending Max)	-	-	0.943	Pass

=

Detail Report: DP1		Unity Check: 0.52 (a)	(ial/bending)	Load Combination: LC 5: IE	BC 16-13 (A) (static win
<u>م</u> ک ۲۷	Ing	out Data:			
	× × ×	Shape: Member Type: Length (in): Material Type: Design Rule: Number of Internal Sections:	W6X15 Column 100 Hot Rolled Steel Typical 191	I Node: J Node: I Release: J Release: I Offset (in): J Offset (in):	D1 D2 Fixec N/A N/A
Material Properties:					
Material:	A992	Therm. Coeff. (1e ⁵ °F ⁻¹):	0.65	R _y :	1.1
E (ksi):	29000	Density (k/ft ³):	0.49	F _u (ksi):	6
G (ksi):	11154	F _v (ksi):	50	R _t :	1.
Nu:	0.3	y ()		· ·t·	
Shape Properties:					
d (in):	5.99	Area (in²):	4.43	S _w (in⁴):	3.34
b _f (in):	5.99	Z_{yy} (in ³):	4.75	r _T (in):	1.6
t _f (in):	0.26	$Z_{zz}(in^3)$:	10.8	J (in⁴):	0.10
t _w (in):	0.23	C_w(in ⁶):	76.5	k _{det} (in):	0.7
I _{yy} (in⁴):	9.32	W _{no} (in ²):	8.58	k _{des} (in):	0.5
I _{zz} (in ⁴):	29.1				
Design Properties:					
L _{by-y} (in):	N/A	К _{у-у} :	1	Max Defl Ratio:	L/9
L _{b z-z} (in):	N/A	K _{z-z} :	1	Max Defl Location:	NL (
L _{comp top} (in) :	Lbyy	y sway:	No	Span:	N//
L _{comp bot} (in) :	N/A	z sway:	No		
L _{torque} (in):	N/A	Function: Seismic DR:	Lateral None		
		DP1			
● D1					D2
					02
Diagrams:					
5					_
		y Deflection	-1.029 at 100 in (in)	z Deflection	-1.982e-05 at 100 i (in)
2.847 at 0 in					
2	.721 at 100 in				
		-0.108 at 0 in		-4.464e-06 at 0 in	
Axial Force (kips)		y Shear Force((kips)	z Shear Force	(kips)

AISC 15th (360-16): ASD Code Check

Limit State	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial				
Applied Loading - Shear + Torsion	-	-	-	-
Axial Tension Analysis	0.000 k	132.635 k	-	-
Axial Compression Analysis	2.721 k	93.696 k	-	-
Flexural Analysis (Strong Axis)	146.219 k-in	289.457 k-in	-	-
Flexural Analysis (Weak Axis)	0.003 k-in	130.007 k-in	-	-
Shear Analysis (Major Axis y)	0.108 k	27.554 k	0.004	Pass
Shear Analysis (Minor Axis z)	0.001 k	55.954 k	0.000	Pass
Bending & Axial Interaction Check (UC Bending Max)	-	-	0.52	Pass

etail Report: Idler Post 2		Unity Check: 0.214	l (axial/bending)	Load Combi	nation: LC 2: IBC 16-
<u>م</u> ن م	1	nput Data:			
	x	Shape:	W6X7		N918
	1	Member Type:	Column		N917
× ^z	z	Length (in):	109.513		Fixed
		Material Type:	Hot Rolled Steel		Custom
	7	Design Rule:	Typical		N/A
		Number of Internal Section	s: 191	J Offset (in):	N/A
Material Properties:					
Material:	A992	Therm. Coeff. (1e⁵°F⁻¹):	0.65	R _y :	1.1
E(ksi):	29000	Density (k/ft³):	0.49	F _u (ksi):	65
G (ksi):	11154	F _y (ksi):	50	R _t :	1.1
Nu:	0.3	y.		t	
Shape Properties:					
d (in):	5.772	Area (in²):	2.002	S _w (in⁴):	0.898
b _f (in):	3.94	Z_{yy} (in ³):	1.303	s _w (iii): r _T (in):	1.04
			4.6	r _τ (in): J (in ⁴):	0.01
t _f (in):	0.165	$Z_{zz}(in^3)$:			
$t_w(in)$:	0.129	$C_w(in^6)$:	13.227	k _{det} (in):	0.69
$I_{yy}(in^4)$:	1.683	W _{no} (in²):	5.523	k _{des} (in):	0.4
l _{zz} (in ⁴):	11.955				
Design Properties:					
L _{by-y} (in) :	N/A	К _{у-у} :	1	Max Defl Ratio:	L/1000
L _{b z-z} (in):	N/A	K _{z-z} :	1	Max Defl Location:	(
L _{comp top} (in):	Lbyy	y sway:	No	Span:	N/A
L _{comp bot} (in):	N/A	z sway:	No		
L _{torque} (in):	N/A	Function:	Lateral		
		Seismic DR:	None		
		Id	ller Post 2		
•					•
N918					N917
		1		1	
Diagrams:		1.50	04e-07 at 105.478 in		
				-	
				-	
		y Deflectio	on (in)	z Deflection	(in)
4.514 at 0 in		y Deflectio	on (in)	z Deflection	(in)
• · · · · · · · · · · · · · · · · · · ·	100 512 in	y Deflection	on (in)	z Deflection	(in)
• · · · · · · · · · · · · · · · · · · ·	109.513 in	y Deflection	on (in)	z Deflection	(in)
• · · · · · · · · · · · · · · · · · · ·	109.513 in	y Deflection	on (in)	z Deflection	(in)
• · · · · · · · · · · · · · · · · · · ·	109.513 in	y Deflection	on (in)	z Deflection	(in)

AISC 15th (360-16): ASD Code Check

Limit State	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial				
Applied Loading - Shear + Torsion	-	-	-	-
Axial Tension Analysis	0.000 k	59.947 k	-	-
Axial Compression Analysis	4.514 k	21.092 k	-	-
Flexural Analysis (Strong Axis)	0.000 k-in	84.074 k-in	-	-
Flexural Analysis (Weak Axis)	0.000 k-in	35.079 k-in	-	-
Shear Analysis (Major Axis y)	0.000 k	14.892 k	0.000	Pass
Shear Analysis (Minor Axis z)	0.000 k	23.357 k	0.000	Pass
Bending & Axial Interaction Check (UC Bending Max)	-	-	0.214	Pass

	CK 11	SN-11 Mar 23. 2023	23_0201 - 1x78 FTS - Phono 545W - 55°.r3d	Page 24
Jod L22	Enfield Color One			
		verogy NZ	17071	

	SK-12 Mor 22, 2003	23_0201 - 1x78 FTS - Phono 545W - 55°.r3d	– – – – – – – – – – – – – – – – – – –
	Enfield Solar One		
Loads: BLC 3, Snow	Verogy	1NZ 17071	

	SK-13	Mar 23, 2023 23 0201 - 1x78 FTS - Phono 545W - 55°.r3d	Page 26
	Enfield Solar One		
Loads: BLC 4, Seismic X	Verogy	NZ 17071	

	SK-15	Mar 23, 2023	23_0201 - 1x78 FTS - Phono 545W - 55°.r3d	Page 28
 8	Enfield Solar One			
Loads: BLC 6, Wind Uplift - Static	Verogy	NZ	17071	

	SK-16	Mar 23, 2023	23_0201 - 1x78 FTS - Phono 545W - 55°.r3d	Page 29
e de la constanción de la cons	Enfield Solar One			
Loads: BLC 7, Wind Downforce - Static	Veroov	ZN	17071	

		SK-17 Mar 23, 2023 23.0201 - 1778 ETS - Dhono 646101 - 65° r34	23_0201 - 1X/8 F 13 - Friorio 343W - 53 .150 Page 30
Sed CS:		Enfield Solar One	
	Loads: BLC 8, Wind Uplift - Dynamic	Verogy	1/0/1

	-	SK-18	Mar 23, 2023	23_0201 - 1x78 FTS - Phono 545W - 55°.r3d	Page 31
		Enfield Solar One			
Ž Ž Loads: BLC 9. Wind Downforce - Dynamic		Verogy	ZN	17071	

Company : Verogy Designer : NZ Job Number : 17071 Model Name : Enfield Solar One

3/23/2023 3:30:36 PM Checked By : JRD

Checks
Code
r Steel
Membe
: ASD
360-16)
15TH (
AISC
- A -

Eqn	H1-1b	H3-6	H3-6	H1-1b	H1-1b	H1-1b									
СЬ	1	1	-	1	1	1	-	+	1	+	1	1	1	1	-
Mnzz/om [k-in]	289.457	139.548	139.548	84.074	84.074	84.074	84.074	84.074	84.074	84.074	84.074	84.074	84.074	84.074	84.074
Mnyy/om [k-in]	130.007	106.058	106.058	35.079	35.079	35.079	35.079	35.079	35.079	35.079	35.079	35.079	35.079	35.079	35.079
Pnc/om [k] Pnt/om [k]	132.635	84.078	84.078	59.947	59.947	59.947	59.947	59.947	59.947	59.947	59.947	59.947	59.947	59.947	59.947
	93.696	11.417	11.417	21.092	21.092	21.092	21.092	21.092	21.092	21.092	21.092	21.092	21.092	21.092	21.092
С	15	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Dir	z	z	z	γ	γ	7	>	>	٨	>	٨	λ	٨	٨	>
Loc[in]	53.684	9.277	9.277	109.513	109.513	109.513	109.513	109.513	109.513	109.513	109.513	109.513	109.513	109.513	109.513
LC Shear Check	0.012	0.576	0.576	0.028	0.028	0.023	0.023	0.023	0.024	0.02	0.023	0.023	0.023	0.024	0.02
С	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Loc[in]	0	9.277	9.277	0	0	0	0	0	0	0	0	0	0	0	0
Shape Code Check Loc[in]	0.534	0.547	0.547	0.57	0.57	0.464	0.476	0.474	0.497	0.407	0.464	0.476	0.474	0.497	0.407
Shape	W6X15	5X4X.134	5X4X.134	W6X7	W6X7	W6X7									
Member	DP1	Tube 1	Tube 2	Idler Post 6	Idler Post 7	Idler Post 5	Idler Post 4	Idler Post 3	Idler Post 2	Idler Post 1	Idler Post 8	Idler Post 9	Idler Post 10	Idler Post 11	Idler Post 12
	-	2	ო	4	5	9	7	ω	6	10	11	12	13	14	15

Detail Report: Tube 1		Unity Check: 0.576 (Load Combinatio	n: LC 4: IBC 16-12 (I	
^× ∧×	Ir	nput Data:			
	x	Shape:	5X4X.134	I Node:	GA
		Member Type:	Beam	J Node:	VX1E
z z	Z	Length (in):	1762.539	I Release:	Fixed
	>	Material Type:	Hot Rolled Steel	J Release:	Fixed
		Design Rule:	Typical	l Offset (in):	N/A
		Number of Internal Sections:	191	J Offset (in):	N/A
Material Properties:					
Material:	A500 Gr. 60	Therm. Coeff. (1e ⁵ °F ⁻¹):	0.65	R _y :	1.5
E(ksi):	29000	Density (k/ft ³):	0.49	F _u (ksi):	70
G (ksi):	11154	F _v (ksi):	60	R _t :	1.2
Nu:	0.3	y c-v		- t	
Shape Properties:					
d (in):	5	l _{yy} (in ⁴):	6.17	Area (in²):	2.34
b _f (in):	4	l _{zz} (in ⁴):	8.714	J (in⁴):	10.861
t (in):	0.134	-			
Design Properties:					
L _{by-y} (in):	285	К _{у-у} :	1	Max Defl Ratio:	L/4568
L _{b z-z} (in):	285	K _{z-z} :	1	Max Defl Location:	278.296
L _{comp top} (in):	Lbyy	y sway:	No	Span:	1
L _{comp bot} (in):	285	z sway:	No		
L _{torque} (in):	N/A	Function:	Lateral		
torque ()	,	Seismic DR:	None		
		Tube 1			

Company : Verogy Designer : NZ Job Number : 17071 Model Name : Enfield Solar One

AISC 15th (360-16): ASD Code Check

Limit State	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial				
Applied Loading - Shear + Torsion	-	-	-	-
Axial Tension Analysis	0.000 k	84.078 k	-	-
Axial Compression Analysis	0.000 k	11.417 k	-	-
Flexural Analysis (Strong Axis)	7.63 k-in	139.548 k-in	-	-
Flexural Analysis (Weak Axis)	15.562 k-in	106.058 k-in	-	-
Shear Analysis (Major Axis y)	15.278 k	26.564 k	0.575	Pass
Shear Analysis (Minor Axis z)	11.983 k	20.787 k	0.576	Pass
Bending & Axial Interaction Check (UC Bending Max)	-	-	0.547	Pass
Torsional Analysis	61.428 k-in	108.481 k-in	0.566	Pass

etail Report: VP 4	AV	Unity Check: 0.309			nation: LC 4: IBC 16-12
∧ [×]		Input Data:		Sector Contractor	
1	X	Shape:	V-HU-2.25X0.055X1.25	I Node:	V4E
		Member Type: Length (in):	Beam 43.307	J Node: I Release:	V40 Fixed
		Material Type:	Cold Formed Steel	J Release:	Fixed
		Design Rule:	Typical	I Offset (in):	N/A
		Number of Internal Sections:		J Offset (in):	N/A
Material Properti	es:				
Material:	A653 Grade 50	Nu:	0.3	F _y (ksi):	50
E (ksi):	29500	Therm. Coeff. (1e ⁵ °F ⁻¹):	0.65	F _u (ksi):	7
G (ksi):	11346		0.49	u · ·	
hape Properties	:				
D (in):	2.25	C _w (in ⁶):	0.21	S _{e,z} (in ³):	0.25
B (in):	1.25		1.875	S _{etz} (in ³):	0.1
t(in):	0.055		1.274	S_{fz} (in ³):	0.16
R(in):	0.112		0.172	$S_{fy,z}$ (in ³):	0.16
d (in):	1.25		1.589	$S_{e,y}$ (in ³):	0.23
I _{yy} (in⁴):	0.308		0.84	S_{ety} (in ³):	0.23
I_{zz} (in ⁴):	0.303	2	0.848	S_{fy} (in ³):	0.23
Area (in ²):	0.428	y	-1.446	$S_{fy,y}^{ty}$ (in ³):	0.32
J (in⁴):	0.000432	0		iy,y X	
Design Propertie	s:				
L _{b y-y} (in) :	N/A	К _{у-у} :	1	Max Defl Ratio:	L/1000
L _{b z-z} (in):	N/A	К _{z-z} :	1	Max Defl Location:	
L _{comp top} (in):	Lbyy	R:	N/A	Span:	N//
L _{comp bot} (in):	N/A	y sway:	No		
C _b :	1	z sway:	No		
С _{ту-у} :	N/A	a (in):	N/A		
C _{m z-z} :	N/A	Function:	Lateral		
		VP	4		
● V4B					• V4C
Diagrams:		0.067 at 0 in			9.606 at 43.307 i
		y Deflection	-0.041 at 43.307 in	-10.666 at 0 in z Deflect	ion (in)
	0.026 at 19.374 in	7.883e-05 at 0 in		0.033 at 23.933	
0.000 + 00					
-0.026 at 23.	933 in Force (kips)	-7.877e-05 at 23.933 in y Shear Force		z Shear Fo	.098 at 19.374 in

Company : Verogy Designer : NZ Job Number : 17071 Model Name : Enfield Solar One

AISI S100-16: ASD Code Check

Limit State	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial				
Applied Loading - Shear + Torsion				
Axial Tension Analysis	0.000 k	12.829 k	-	-
Axial Compression Analysis	0.026 k	10.351 k	-	-
Flexural Analysis (Strong Axis)	0.002 k-in	3.903 k-in	-	-
Flexural Analysis (Weak Axis)	2.171 k-in	7.093 k-in	-	-
Shear Analysis (Major Axis y)	0.000 k	0.945 k	0.000	Pass
Shear Analysis (Minor Axis z)	0.098 k	3.952 k	0.025	Pass
Bending & Axial Interaction Check (UC Bending Max)	-	-	0.309	Pass

Detail Report: DP1		Unity Check: 0.534 (ax	Load Combination: LC 4: IBC 16-12		
^ ^y ^ y	Ir	nput Data:			
	(Shape:	W6X15	I Node:	D1
		Member Type:	Column	J Node:	D2
> ^z	z I	Length (in):	100	I Release:	Fixed
		Material Type: Design Rule:	Hot Rolled Steel Typical	J Release: I Offset (in):	Fixed N/A
		Number of Internal Sections:	191	J Offset (in):	N/A N/A
Material Properties:				_	
Material:	A992	Therm. Coeff. (1e⁵°F⁻¹):	0.65	R _y :	1.1
E (ksi):	29000	Density (k/ft³):	0.49	F _u (ksi):	65
G (ksi):	11154	F _y (ksi):	50	R _t :	1.1
Nu:	0.3	·			
Shape Properties:					
d (in):	5.99	Area (in²):	4.43	S _w (in ⁴):	3.34
b _f (in):	5.99	Z_{yy} (in ³):	4.75	r _T (in):	1.61
$t_f(in)$:	0.26	Z_{zz} (in ³):	10.8	J (in ⁴):	0.101
t _w (in):	0.23	$C_{w}(in^{6}):$	76.5	k _{det} (in):	0.75
I_{yy} (in ⁴):	9.32	$W_{no}(in^2)$:	8.58	k _{des} (in):	0.51
y_{yy} (iii).	29.1	w no (III).	0.50	Kdes (III).	0.51
I _{zz} (in ⁴):	29.1				
Design Properties:					
L _{by-y} (in) :	N/A	К _{у-у} :	1	Max Defl Ratio:	L/93
L _{b z-z} (in):	N/A	K _{z-z} :	1	Max Defl Location:	0 N/A
L _{comp top} (in) :	Lbyy	y sway:	No	Span:	N/A
L _{comp bot} (in) :	N/A	z sway:	No		
L _{torque} (in):	N/A	Function:	Lateral		
		Seismic DR:	None		
		DP1			
● D1					• D2
Diagrams:			1.075 at 100 in		
Diagrams.					
			• •		-2.241e-05 at 100 in
		y Deflection (in)	-	ection (in)
1.137 at 0 in				4.06e-06 at 0 in	
1.011 a	at 100 in				
		-0.238 at 0 in			

AISC 15th (360-16): ASD Code Check

Applied Loading - Bending/AxialApplied Loading - Shear + TorsionAxial Tension Analysis0.000 k132.635 k-Axial Compression Analysis1.137 k93.696 k-Axial Compression Analysis (Strong Axis)152.834 k-in289.457 k-in-Flexural Analysis (Weak Axis)0.003 k-in130.007 k-in-Shear Analysis (Major Axis y)0.238 k27.554 k0.009Shear Analysis (Minor Axis z)0.001 k55.954 k0.000					
Applied Loading - Shear + TorsionAxial Tension Analysis0.000 k132.635 k-Axial Compression Analysis1.137 k93.696 k-Axial Compression Analysis (Strong Axis)152.834 k-in289.457 k-in-Flexural Analysis (Weak Axis)0.003 k-in130.007 k-in-Shear Analysis (Major Axis y)0.238 k27.554 k0.009Shear Analysis (Minor Axis z)0.001 k55.954 k0.000	Limit State	Required	Available	Unity Check	Result
Axial Tension Analysis 0.000 k 132.635 k - Axial Compression Analysis 1.137 k 93.696 k - Flexural Analysis (Strong Axis) 152.834 k-in 289.457 k-in - Flexural Analysis (Weak Axis) 0.003 k-in 130.007 k-in - Shear Analysis (Major Axis y) 0.238 k 27.554 k 0.009 Shear Analysis (Minor Axis z) 0.001 k 55.954 k 0.000	Applied Loading - Bending/Axial				
Axial Compression Analysis 1.137 k 93.696 k - Flexural Analysis (Strong Axis) 152.834 k-in 289.457 k-in - Flexural Analysis (Weak Axis) 0.003 k-in 130.007 k-in - Shear Analysis (Major Axis y) 0.238 k 27.554 k 0.009 Shear Analysis (Minor Axis z) 0.001 k 55.954 k 0.000	Applied Loading - Shear + Torsion	-	-	-	-
Flexural Analysis (Strong Axis) 152.834 k-in 289.457 k-in - Flexural Analysis (Weak Axis) 0.003 k-in 130.007 k-in - Shear Analysis (Major Axis y) 0.238 k 27.554 k 0.009 Shear Analysis (Minor Axis z) 0.001 k 55.954 k 0.000	Axial Tension Analysis	0.000 k	132.635 k	-	-
Flexural Analysis (Weak Axis) 0.003 k-in 130.007 k-in - Shear Analysis (Major Axis y) 0.238 k 27.554 k 0.009 Shear Analysis (Minor Axis z) 0.001 k 55.954 k 0.000	Axial Compression Analysis	1.137 k	93.696 k	-	-
Shear Analysis (Major Axis y) 0.238 k 27.554 k 0.009 Shear Analysis (Minor Axis z) 0.001 k 55.954 k 0.000	Flexural Analysis (Strong Axis)	152.834 k-in	289.457 k-in	-	-
Shear Analysis (Minor Axis z) 0.001 k 55.954 k 0.000	Flexural Analysis (Weak Axis)	0.003 k-in	130.007 k-in	-	-
	Shear Analysis (Major Axis y)	0.238 k	27.554 k	0.009	Pass
Bending & Axial Interaction Check (UC Bending Max) 0.534	Shear Analysis (Minor Axis z)	0.001 k	55.954 k	0.000	Pass
	Bending & Axial Interaction Check (UC Bending Max)	-	-	0.534	Pass

etail Report: Idler Post 6		Unity Check: 0.57 (axia	/bending)	Load Combina	ation: LC 4: IBC 16-12
N ^Y N ^Y	Ir	nput Data:			
×		Shape:	W6X7	l Node:	164
		Member Type:	Column	J Node:	168
		Length (in):	109.513	I Release:	Fixed
		Material Type:	Hot Rolled Steel	J Release:	Custon
		Design Rule: Number of Internal Sections:	Typical 191	I Offset (in):	N/A N/A
		Number of Internal Sections:	191	J Offset (in):	
Material Properties:					
Material:	A992	Therm. Coeff. (1e⁵°F⁻¹):	0.65	R _y :	1.
E (ksi):	29000	Density (k/ft³):	0.49	F _u (ksi):	6
G (ksi):	11154	F _y (ksi):	50	R _t :	1.
Nu:	0.3	y.		,	
Shape Properties:					
d (in):	5.772	Area (in²):	2.002	S _w (in ⁴):	0.89
b _f (in):	3.94	Z_{yy} (in ³):	1.303	s _w (m). r _τ (in):	1.04
υ _f (in). t _f (in):	0.165	Z_{yy} (in).	4.6	J (in ⁴):	0.01
	0.165	Z_{zz} (in ³):	4.6		0.6
t_w (in):		C _w (in ⁶):		k _{det} (in):	
I_{yy} (in ⁴):	1.683	W _{no} (in ²):	5.523	k _{des} (in):	0.4
l _{zz} (in ⁴):	11.955				
Design Properties:					
L _{b y-y} (in) :	N/A	К _{у-у} :	1	Max Defl Ratio:	L/16
$L_{b z-z}$ (in):	N/A	К _{z-z} :	1	Max Defl Location:	
	Lbyy	y sway:	No	Span:	N/.
L _{comp bot} (in):	N/A	z sway:	No		
L _{torque} (in):	N/A	Function:	Lateral		
loique x>		Seismic DR:	None		
		Idler Pc	ost 6		
•					•
16A					16B
		1		1	
Diagrams:					
		-0.6	572 at 109.513 in		
		y Deflection (ir		z Deflectio	n (in)
0.89 at 0 in		0.422 at 0 in			
0.828 at 109.5	13 in				
0.020 at 109.5					
Axial Force (kips)	· · · ·	y Shear Force(ki	ns)	z Shear Force	(kinc)

AISC 15th (360-16): ASD Code Check

Limit State	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial				
Applied Loading - Shear + Torsion	-	-	-	-
Axial Tension Analysis	0.000 k	59.947 k	-	-
Axial Compression Analysis	0.89 k	21.092 k	-	-
Flexural Analysis (Strong Axis)	46.183 k-in	84.074 k-in	-	-
Flexural Analysis (Weak Axis)	0.000 k-in	35.079 k-in	-	-
Shear Analysis (Major Axis y)	0.422 k	14.892 k	0.028	Pass
Shear Analysis (Minor Axis z)	0.000 k	23.357 k	0.000	Pass
Bending & Axial Interaction Check (UC Bending Max)	-	-	0.57	Pass

SOLAR FLEXRACK

ENFIELD SOLAR ONE FOUNDATION CALCULATIONS

General Design Basis

Foundation design was derived in part from a review by SFR's in-house professional geotechnical foundation engineer of published soil and geologic mapping, noting local geohazards known to exist in proximity of the site. Foundation design parameters were developed based on applying experience and generally accepted geotechnical foundation engineering principles and practices to an independent review and evaluation of the field and laboratory data (borehole logs and laboratory index, strength, and settlement data) appended to a geotechnical evaluation report prepared by others. While due consideration was given to the opinions and interpretations expressed by the consultant who prepared the report, SFR formulated its own professional opinions surrounding the gathered data and assumes full responsibility for its independent interpretation and evaluation of the provided field and laboratory information, and its application of this information to the design of foundations to support SFR's unique racking system.

Axial Design Basis

Experience and available field and laboratory strength information were used to develop a multilayer geologic model which was used to evaluate the response of a W6x15 and a W6x7 to the design axial load. The governing axial loads considered and the corresponding ASCE 7 basic load combinations (as applicable) are shown in Table 1.

Section	Load	ASCE 7 Basic Load Combination
	Axial Down: 4,244 lb.	D + S
W6x15	Axial Up: 709 lb.	0.6D + 0.6W
	Axial (Frost): 6,758 lb.	N/A
	Axial Down: 4,005 lb.	D + 0.45O + 0.75S + 0.75L
W6x7	Axial Up: 1,695 lb.	0.6D + 0.6W
	Axial (Frost): 5,469 lb.	N/A

Table 1: Design Axial Loads	
-----------------------------	--

The subsurface investigation program included nine boreholes. In each borehole, measurements of Standard penetration resistance with depth (following ASTM D1586) were made. Individual and averaged penetration resistance values are plotted with depth on Figure 1, attached to these calculations for reference. Under a total stress analysis, an averaged unit frictional resistance for each layer was estimated from empirical correlations contained in published literature. From the available geotechnical information and records of nearby soil climate, a 2.5-foot frost depth was considered, and frost action forces were calculated using an averaged tangential frost stress (adfreeze bond) of 9.4 pounds per square inch (psi) across the upper 30 inches of subsurface material. Classical soil mechanics were applied to the subsurface materials below 30 inches.

Axial Calculations

From the multilayer analysis, an averaged allowable unit frictional resistance ($f_{s, all}$) of 55 pounds per square foot (psf) was considered for the subsurface materials to a depth of 4 feet, and 320 psf thereafter to a depth of 15 feet below ground surface. These values include a minimum safety factor of 2.0. In the calculation of axial capacity, post tip resistance was not considered. From this information, the minimum axial embedment depth requirement for a given section was computed from the following relationship:

$$d_{e,axial} = \frac{P_{max,axial}}{\sum_{1}^{n} f_{s,all,i} x A_{s,i}} + 2.5 ft.$$

Where:

 $d_{e, axial} = minimum axial embedment depth requirement \\ P_{max, axial} = maximum axial load (lb.) \\ f_{s,all,i} = allowable side unit frictional resistance applied over the ith layer \\ A_{s,i} = section unit surface area (ft.²/ft.) across the ith layer \\ n = total number of layers \\ h_i = thickness of ith layer$

In the calculation of drive post (W6x15) axial capacity, the contribution to axial resistance from the upper 30 inches of subsurface material was neglected. The axial calculation is as follows.

Layer 1: 0 ft. - 4 ft. $P_1 = f_{s,i} x A_{s,i} x h_i = 55 \text{ lb}/\text{ft}^2 \times 1.997 \text{ ft}.^2/\text{ft} \times 1.5 \text{ ft.} = 165 \text{ lb}.$

⊷ P_{max}, axial – P₁ = 6,758 lb. – 165 lb. = 6,593 lb.

Where P1 = load transfer to ith layer

Layer 2 4 ft. - 15 ft.:
$$d_{e,axial} = \frac{P_{net,axial}}{f_{s,i}A_{s,i}} = \frac{6,593 \ lb.}{320 \frac{lb.}{ft^2} x \ 1.997 \ \frac{ft^2}{ft}} = 10.3 \ ft.$$

Where P_{net axial} = remaining net load to be transferred to soil.

In the calculation of idler post (W6x7) axial capacity, the contribution to axial resistance from the upper 30 inches of subsurface material was neglected. The axial calculation is as follows.

Layer 1: 0 ft. - 4 ft. $P_1 = f_{s,i} x A_{s,i} x h_i = 55 \text{ lb}/\text{ft}^2 \times 1.616 \text{ ft}.^2/\text{ft} \times 1.5 \text{ ft.} = 133 \text{ lb}.$

•• $P_{max, axial} - P_1 = 5,469 \text{ lb.} - 133 \text{ lb.} = 5,336 \text{ lb.}$

Where P₁ = load transfer to ith layer

Layer 2 4 ft. - 15 ft.:
$$d_{e,axial} = \frac{P_{net,axial}}{f_{s,i}A_{s,i}} = \frac{5,336 \ lb.}{320 \frac{lb.}{fr^2} x \ 1.616 \frac{ft^2}{ft}} = 10.3 \ ft.$$

Where P_{net. axial} = remaining net load to be transferred to soil.

•• de, axial = 2.5 ft. + 1.5 ft. + 10.3 ft. = 14 ft. 4 in.

Lateral Design Basis

Experience and the averaged records of penetration resistance and undrained strength with depth and the site-specific subsurface conditions were used to develop a model in LPILE to evaluate the lateral response of the driven W6x15 and W6x7 to the design loads. The design loads (ASCE 7) considered are shown in Table 2.

			LATERAL LOADS				
SECTION		AXIAL (D +S) (1)	STRONG AXIS SHEAR (D + 0.6W)	STRONG AXIS MOMENT (D + 0.6W)	WEAK AXIS SHEAR (D – 0.7E) (N/A)	WEAK AXIS MOMENT (D + 0.7E)	
	W6x15	4,244 lb.*. (down)	244 lb.**	148,301 lb. in.**	-510 lb.*	28,302 lbin.**	
	W6x7	4,005 lb.*. (down)	-403 lb.**	34,869 lbin.**	50 lb.	140 lbin.*	

*0 deg. slew ** 55 deg. slew (1) D +0.45O + 0.25S + 0.75L

In the application of lateral loading to the post, SFR conservatively applied the largest loads from select load cases regardless of whether the loads occurred together. Further, in the estimation of the post response to the design axial and lateral loads, the contribution to lateral resistance from the upper 12 inches of subsurface material was neglected. The input parameters used in the multilayer model are shown in Table 3.

LAYER	DEPTH	p-y RELATIONSHIP	UNIT WEIGHT Y	$\begin{array}{c} \text{COHESION} \\ \textbf{C}_{u} \end{array}$	ANGLE OF SHEARING RESISTANCE Ø	STRAIN AT 50 % STRESS £ ₅₀	LATERAL SUBGRADE MODULUS k
1	0 – 4 ft.	Sand	100 pcf		28°		0*
2	4 – 15 ft.	Gund	115 pcf		28°		0*

Table 3: Modeled Subsurface Conditions

*LPILE Default Value

Lateral Calculations

Finite difference numerical methods (LPILE) were applied to calculate the response of the W6x15 and W6x7 posts to the design axial and lateral loads. The result of these calculations is contained in Table 4 below. As stated above, to model the loss of the upper 12 inches of subsurface material, the design loads were applied to each section modeled 12 inches above ground surface.

SECTION	MIN EMBEDMENT DEPTH	DEFLECTION AT GRADE (STRONG AXIS)	DEFLECTION AT GRADE (WEAK AXIS)	MAXIMUM MOMENT (STRONG AXIS)	MAXIMUM MOMENT (WEAK AXIS)
W6x15	10 ft. 0 in.	0.60 in.	0.39 in.	154,665 lbin.	42,441 lbin.
W6x7	8 ft. 6 in.	0.35 in.	0.041 in.	46,519 lbin.	1,359 lbin.

Table 4. Lateral Analysis of MCv1E and MCv7 Deat

LPILE outputs are attached to these design calculations for reference.

Conclusion

From a comparison of the minimum embedment depth requirements to satisfy axial and lateral stability, axial stability governs the design and the minimum design embedment depth required for a W6x15 to resist the design axial and lateral loads is 14 ft. 4 in. and the minimum embedment depth required for the W6x7 post to resist the design axial and lateral loads is 14 ft. 4 in.

FIGURES

LPILE OUTPUTS

W6X15 DRIVE POST

DEFLECTION WITH DISTANCE FROM 12 IN ABOVE GRADE

LPile for Windows, Version 2019-11.007 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved == This copy of LPile is being used by: Northern States Metals Youngstown, OH Serial Number of Security Device: 562484555 This copy of LPile is licensed for exclusive use by: Northern States Metals, Youngsto Use of this program by any entity other than Northern States Metals, Youngsto is a violation of the software license agreement. _____ - -Files Used for Analysis - -Path to file locations: \Quoting\SOLAR PRODUCTS\Verogy\2023\Enfield Solar One - Enfield, CT 06082\Geotech\Design\LPILE\Year 0\ Name of input data file: Enfield_1 ft_W6x15_Avg_SA.lp11d Name of output report file: Enfield_1 ft_W6x15_Avg_SA.lp11o Name of plot output file: Enfield_1 ft_W6x15_Avg_SA.lp11p Name of runtime message file: Enfield_1 ft_W6x15_Avg_SA.lp11r

Date and Time of Analysis _ _ Date: February 9, 2023 Time: 11:40:15 - -Problem Title _____ - -Project Name: Enfield Solar One Location: Enfield, CT Client: Verogy Engineer: K. Dy Description: Lateral analysis of W6x15 post (strong axis) _____ - -Program Options and Settings _____ - -Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed = 500 = 1.0000E-05 in - Deflection tolerance for convergence = 100.0000 in - Maximum allowable deflection - Number of pile increments = 50

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry
Number of pile sections defined = 1
Total length of pile = 14.300 ft
Depth of ground surface below top of pile = 1.0000 ft
Pile diameters used for p-y curve computations are defined using 2 points.
p-y curves are computed using pile diameter values interpolated with depth

over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	5.9900
2	14.300	5.9900

Input Structural Properties for Pile Sections:

Pile Section No. 1: Section 1 is an elastic pile Cross-sectional Shape = Strong H-Pile Length of section 14.300000 ft = Flange Width 5.990000 in = Section Depth 5.990000 in = = Flange Thickness 0.260000 in Web Thickness 0.230000 in = = Section Area 4.372900 sq. in = 28.721483 in^4 Moment of Inertia Elastic Modulus = 29000000. psi _____ Ground Slope and Pile Batter Angles _____ Ground Slope Angle 0.000 degrees = 0.000 radians = = 0.000 degrees Pile Batter Angle 0.000 radians = Soil and Rock Layering Information _____ The soil profile is modelled using 2 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 1.000000 ft Distance from top of pile to bottom of layer = 4.000000 ft Effective unit weight at top of layer = 100.000000 pcf = 100.000000 pcf Effective unit weight at bottom of layer Friction angle at top of layer = 28.000000 deg. Friction angle at bottom of layer = 28.000000 deg. = 25.000000 pci Subgrade k at top of layer Subgrade k at bottom of layer = 25.000000 pci Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 4.000000 ft

Effect Effect Fricti Subgra Subgra	nce from top of pile cive unit weight at t cive unit weight at b ion angle at top of l ion angle at bottom of ade k at top of layer ade k at bottom of la Default values for s of the lowest soil la	op of layer oottom of laye ayer of layer wyer subgrade k wil oyer extends 0	r l be computed .700 ft below	the pile tip)	<pre>pcf deg. deg. pci pci r.</pre>		
	Summa	iry of Input S					
Layer	Soil Type	Layer	Effective	Angle of			
Layer	Name	Depth	Unit Wt.	Friction	kpy		
Num.	(p-y Curve Type)	ft	pcf	deg.	pci		
1	Sand	1.0000	100.0000	28.0000			
25.0000	(Reese, et al.)	4.0000	100.0000	28.0000			
25.0000 2	Sand	4.0000	115.0000	30.0000	default		
	(Reese, et al.)	15.0000	115.0000	30.0000	default		
p-y Modification Factors for Group Action							
Distribution of p-y modifiers with depth defined using 2 points							
Point	Depth X p-	mult	y-mult				

ft	pindre	y mare
2.500	0.7000	1.0000
15.000	1.0000	1.0000
	2.500	ft 2.500 0.7000

--Static Loading Type --

Static loading criteria were used when computing p-y curves for all analyses.

_____ Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1 Condition Axial Thrust Load Load Condition Compute Top y Run Analysis Туре 1 2 Force, lbs No. vs. Pile Length _ _ _ _ _ _ _ _ _ -----_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ---------1 1 V = 244.000000 lbs M = 148301. in-lbs 4224. No Yes V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles. _____ Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness _____ Axial thrust force values were determined from pile-head loading conditions Number of Pile Sections Analyzed = 1 Pile Section No. 1: Moment-curvature properties were derived from elastic section properties

	Layerin	g Correction	Equivalent	Depths of So	il & Rock La	yers
	_					
	Top of	Equivalent				
	Layer	Top Depth	Same Layer	Layer is	F0	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	lbs	lbs
1	1.0000	0.00	N.A.	No	0.00	1936.
2	4.0000	2.8148	Yes	No	1936.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

--Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Applied mo	e at pile h ment at pil st load on	e head			= 14836	4.0 lbs 01.0 in-lbs 24.0 lbs
Depth Soil Res.	Deflect. Soil Spr.	Bending Distrib.	Shear	Slope	Total	Bending
Х	y.	Moment	Force	S	Stress	Stiffness
р	Es*H	Lat. Load				
feet	inches	in-lbs	lbs	radians	psi*	lb-in^2
lb/inch	lb/inch	lb/inch				
0.00	0.6017	148301.	244.0000	-0.01465	16430.	8.33E+08
0.00	0.00	0.00				
0.2860	0.5525	149346.	244.0000	-0.01404	16539.	8.33E+08
0.00	0.00	0.00				
0.5720	0.5053	150383.	244.0000	-0.01342	16647.	8.33E+08

0.00	0.00	0.00				
0.8580		151410.	244.0000	-0.01280	16755.	8.33E+08
0.00	0.00	0.00	244.0000	0.01200	10/55.	0.552100
1.1440		152429.	236.2465	-0.01217	16861.	8.33E+08
-4.5184		0.00	290.2409	0.0121/	10001.	0.992100
1.4300		153385.	202.7773	-0.01154	16961.	8.33E+08
-14.9859	136.4934	0.00	202.7775	0.01194	10901.	0.992100
1.7160		154155.	133.6525	-0.01091	17041.	8.33E+08
-25.2966	256.6458	0.00		0000000		01992.00
2.0020		154618.	30.9054	-0.01027	17089.	8.33E+08
-34.5793	393.0534	0.00				
2.2880	0.2678	154665.	-100.7038	-0.00963	17094.	8.33E+08
-42.1161	539.7912	0.00				
2.5740	0.2358	154206.	-233.8199	-0.00900	17046.	8.33E+08
-35.4574	516.0663	0.00				
2.8600	0.2060	153321.	-364.6968	-0.00836	16954.	8.33E+08
-40.8112	679.8851	0.00				
3.1460	0.1784	151946.	-511.6475	-0.00774	16810.	8.33E+08
-44.8245	862.3762	0.00				
3.4320	0.1529	150033.	-673.6305	-0.00711	16611.	8.33E+08
-49.5712	1113.	0.00				
3.7180	0.1296	147528.	-851.5833	-0.00650	16350.	8.33E+08
-54.1309	1434.	0.00				
4.0040		144377.	-1049.	-0.00590	16021.	8.33E+08
-61.1035	1936.	0.00				
4.2900			-1267.	-0.00531	15617.	8.33E+08
-66.0252	2544.	0.00				
4.5760		135831.	-1500.	-0.00474	15130.	8.33E+08
-69.3977	3316.	0.00				0 005 00
4.8620	0.05651	130339.	-1741.	-0.00419	14557.	8.33E+08
-70.8680	4304.	0.00	1000	0 00067	12007	0 225.00
5.1480			-1983.	-0.00367	13897.	8.33E+08
-70.1233	5592.	0.00	2200	0 00017	12140	0 225.00
5.4340 -61.2316	0.03132 6710.	116838.	-2208.	-0.00317	13149.	8.33E+08
		0.00	-2390.	-0.00271	12226	8.33E+08
5.7200 -44.6211	0.02125 7206.	108942. 0.00	-2390.	-0.002/1	12520.	0.330+00
6.0060		100514.	-2515.	-0.00228	11447.	8.33E+08
-28.5842	7710.	0.00	-2515.	-0.00220	1144/.	0.551+00
6.2920		91744.	-2587.	-0.00188	10533.	8.33E+08
-13.4566	8222.	0.00	2307.	0.00100	10555.	0.992100
6.5780		82810.	-2610.	-0.00152	9601.	8.33E+08
0.4893	8742.	0.00				0.000
6.8640		73876.	-2586.	-0.00120	8670.	8.33E+08
13.0448	9269.	0.00				
7.1500	-0.00842	65092.	-2523.	-9.13E-04	7754.	8.33E+08
24.0623	9804.	0.00				
7.4360	-0.01110	56587.	-2424.	-6.62E-04	6867.	8.33E+08
33.4520	10347.	0.00				
7.7220	-0.01297	48473.	-2296.	-4.46E-04	6021.	8.33E+08
41.1770	10897.	0.00				
8.0080		40841.	-2144.	-2.62E-04	5225.	8.33E+08
47.2481	11455.	0.00				

8.2940	-0.01476	33763.	-1974.	-1.08E-04	4487.	8.33E+08
51.7167 8.5800	12021. -0.01490	0.00 27292.	-1792.	1.78E-05	3812.	8.33E+08
54.6687	12595.	0.00	-1/92.	1./85-05	5012.	0.336+00
8.8660	-0.01464	21463.	-1602.	1.18E-04	3204.	8.33E+08
56.2169	13176.	0.00	1002.	1.102 04	5204.	0.952100
9.1520	-0.01409	16296.	-1408.	1.96E-04	2665.	8.33E+08
56.4940	13765.	0.00				
9.4380	-0.01330	11793.	-1216.	2.54E-04	2196.	8.33E+08
55.6460	14362.	0.00				
9.7240	-0.01234	7944.	-1028.	2.95E-04	1794.	8.33E+08
53.8248	14966.	0.00				
10.0100	-0.01128	4729.	-847.6179	3.21E-04	1459.	8.33E+08
51.1830	15578.	0.00				
10.2960	-0.01014	2117.	-677.6463	3.35E-04	1187.	8.33E+08
47.8680	16198.	0.00				
10.5820	-0.00898	68.0977	-519.9718	3.39E-04	973.0504	8.33E+08
44.0169	16826.	0.00				
10.8680	-0.00781	-1462.	-376.2229	3.36E-04	1118.	8.33E+08
39.7529	17461.	0.00				
11.1540	-0.00667	-2524.	-247.6353	3.28E-04	1229.	8.33E+08
35.1816	18104.	0.00				
11.4400	-0.00556	-3171.	-135.1157	3.16E-04	1297.	8.33E+08
30.3892	18754.	0.00				0 005 00
11.7260	-0.00450		-39.3125	3.03E-04	1327.	8.33E+08
25.4402	19413.	0.00	20. 24.00	2 205 24	1226	0.005.00
12.0120	-0.00348	-3450.	39.3100	2.89E-04	1326.	8.33E+08
20.3771	20079.	0.00	100 2001		1200	0 225.00
12.2980	-0.00252	-3199.	100.3961	2.75E-04	1300.	8.33E+08
15.2208 12.5840	20753. -0.00160	0.00 -2769.	143.6258	2.63E-04	1255.	8.33E+08
9.9713	21434.	-2789. 0.00	143.0230	2.032-04	1255.	0.332+00
12.8700	-7.15E-04	-2221.	168.6474	2.52E-04	1198.	8.33E+08
4.6101	22124.	0.00	100.04/4	2.522 04	1190.	0.952100
	1.35E-04	-1619.	175.0196	2.44E-04	1135.	8.33E+08
-0.8967	22820.	0.00	1/3.0190	21442 04		0.992100
13.4420	9.62E-04	-1027.	162.1655	2.39E-04	1073.	8.33E+08
-6.5940	23525.	0.00				
13.7280	0.00177		129.3445	2.36E-04	1019.	8.33E+08
-12.5325	24237.	0.00				
14.0140	0.00258	-145.7266	75.6443	2.34E-04	981.1454	8.33E+08
-18.7614	24958.	0.00				
14.3000	0.00338	0.00	0.00	2.34E-04	965.9494	8.33E+08
-25.3204	12843.	0.00				

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection	=	0.60168976	inches
Computed slope at pile head	=	-0.01464993	radians
Maximum bending moment	=	154665.	inch-lbs

Maximum shear force -2610. lbs = Maximum shear force = -2610. lbs Depth of maximum bending moment = 2.28800000 feet below pile head Depth of maximum shear force = 6.57800000 feet below pile head Number of iterations 10 = Number of zero deflection points = 2 _____ - -Summary of Pile-head Responses for Conventional Analyses _____ Definitions of Pile-head Loading Conditions: Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians Load Load Load Axial Pile-head Pile-head Max Shear Max Moment Case Type Pile-head Type Pile-head Loading Deflection Rotation in Pile in Pile 2 Load 2 lbs inches No. 1 Load 1 radians lbs in-lbs

1 V, lb 244.0000 M, in-lb 148301. 4224. 0.6017 -0.01465 -2610. 154665.

Maximum pile-head deflection = 0.6016897617 inches Maximum pile-head rotation = -0.0146499345 radians = -0.839379 deg.

The analysis ended normally.

LPile for Windows, Version 2019-11.007 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved == This copy of LPile is being used by: Northern States Metals Youngstown, OH Serial Number of Security Device: 562484555 This copy of LPile is licensed for exclusive use by: Northern States Metals, Youngsto Use of this program by any entity other than Northern States Metals, Youngsto is a violation of the software license agreement. _____ - -Files Used for Analysis - -Path to file locations: \Quoting\SOLAR PRODUCTS\Verogy\2023\Enfield Solar One - Enfield, CT 06082\Geotech\Design\LPILE\Year 0\ Name of input data file: Enfield_1 ft_W6x15_Avg_WA.lp11d Name of output report file: Enfield_1 ft_W6x15_Avg_WA.lp11o Name of plot output file: Enfield_1 ft_W6x15_Avg_WA.lp11p Name of runtime message file: Enfield_1 ft_W6x15_Avg_WA.lp11r

Page 59

Date and Time of Analysis _ _ Date: February 9, 2023 Time: 11:42:55 - -Problem Title _____ - -Project Name: Enfield Solar One Location: Enfield, CT Client: Verogy Engineer: K. Dy Description: Lateral analysis of W6x15 post (weak axis) _____ - -Program Options and Settings _____ - -Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed = 500 = 1.0000E-05 in - Deflection tolerance for convergence = 100.0000 in - Maximum allowable deflection - Number of pile increments = 50

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry
Number of pile sections defined = 1
Total length of pile = 14.300 ft
Depth of ground surface below top of pile = 1.0000 ft
Pile diameters used for p-y curve computations are defined using 2 points.
p-y curves are computed using pile diameter values interpolated with depth

over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	5.9900
2	14.300	5.9900

Input Structural Properties for Pile Sections:

Pile Section No. 1: Section 1 is an elastic pile Cross-sectional Shape = Weak H-Pile Length of section = 14.300000 ft Flange Width 5.990000 in = Section Depth 5.990000 in = Flange Thickness = 0.260000 in Web Thickness 0.230000 in = Section Area = 4.372900 sq. in = 9.318824 in^4 Moment of Inertia = 29000000. psi Elastic Modulus _____ Ground Slope and Pile Batter Angles _____ Ground Slope Angle = 0.000 degrees 0.000 radians = Pile Batter Angle = 0.000 degrees 0.000 radians = Soil and Rock Layering Information _____ The soil profile is modelled using 2 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 1.000000 ft Distance from top of pile to bottom of layer = 4.000000 ft Effective unit weight at top of layer = 100.000000 pcf = 100.000000 pcf Effective unit weight at bottom of layer Friction angle at top of layer = 28.000000 deg. Friction angle at bottom of layer = 28.000000 deg. = 25.000000 pci Subgrade k at top of layer Subgrade k at bottom of layer = 25.000000 pci Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 4.000000 ft

Distance from top of pile to bottom of layer = 15.00000 ft Effective unit weight at top of layer = 115.00000 pcf Effective unit weight at bottom of layer = 115.00000 pcf Friction angle at top of layer = 30.00000 deg. Friction angle at bottom of layer = 0.0000 pci Subgrade k at top of layer = 0.0000 pci Subgrade k at bottom of layer = 0.0000 pci NOTE: Default values for subgrade k will be computed for this layer. (Depth of the lowest soil layer extends 0.700 ft below the pile tip)							
	Summa	ary of Input S					
Layer	Soil Type	Layer	Effective	Angle of			
Layer	Name	Depth	Unit Wt.	Friction	kpy		
Num.	(p-y Curve Type)	ft	pcf	deg.	pci		
1	Sand	1.0000	100.0000	28.0000			
25.0000	(Reese, et al.)	4.0000	100.0000	28.0000			
25.0000 2	Sand	4.0000	115.0000	30.0000	default		
	(Reese, et al.)	15.0000	115.0000	30.0000	default		
 p-y Modification Factors for Group Action							
Distribution of n w modifions with donth defined weins 2 reints							
Distribution of p-y modifiers with depth defined using 2 points							
Point	Depth X p-	mult	y-mult				

ft	pindre	y mare
2.500	0.7000	1.0000
15.000	1.0000	1.0000
	2.500	ft 2.500 0.7000

--Static Loading Type --

Static loading criteria were used when computing p-y curves for all analyses.

_____ Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1 Condition Axial Thrust Load Load Condition Compute Top y Run Analysis Туре 1 2 Force, lbs No. vs. Pile Length _ _ _ _ _ _ _ _ _ --------------1 1 V = 510.000000 lbs M = 28302. in-lbs 4224. No Yes V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles. _____ Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness _____ Axial thrust force values were determined from pile-head loading conditions Number of Pile Sections Analyzed = 1 Pile Section No. 1: Moment-curvature properties were derived from elastic section properties

	Layerin	g Correction	Equivalent	Depths of So	il & Rock La	yers
Layer No.	Top of Layer Below Pile Head ft	Equivalent Top Depth Below Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	F0 Integral for Layer lbs	F1 Integral for Layer lbs
1 2	1.0000 4.0000	0.00 2.8148	N.A. Yes	No No	0.00 1936.	1936. N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

--Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Applied mo	e at pile h ment at pil st load on	e head			= 2830	0.0 lbs 02.0 in-lbs 24.0 lbs
Depth Soil Res.	Deflect. Soil Spr.	Bending Distrib.	Shear	Slope	Total	Bending
Х	У	Moment	Force	S	Stress	Stiffness
р	Es*H	Lat. Load				
feet	inches	in-lbs	lbs	radians	psi*	lb-in^2
lb/inch	lb/inch	lb/inch				
0.00	0.3930	28302.	510.0000	-0.01041	10062.	2.70E+08
0.00	0.00	0.00				
0.2860	0.3579	30201.	510.0000	-0.01004	10672.	2.70E+08
0.00	0.00	0.00				
0.5720	0.3241	32094.	510.0000	-0.00964	11281.	2.70E+08

0.00	0.00	0.00				
0.8580		33981.	510.0000	-0.00922	11887.	2.70E+08
0.00	0.00	0.00	510.0000	0.00522	1100/.	2.702100
1.1440		35862.	502.2464	-0.00878	12492.	2.70E+08
-4.5184		0.00	50212101	0.000/0	121721	21,02.00
1.4300		37683.	468.7770	-0.00831	13077.	2.70E+08
-14.9860	222.2289	0.00	1001///0	0.00001	100771	21702100
1.7160		39321.	401.6670	-0.00782	13603.	2.70E+08
-24.1224	406.3729	0.00				
2.0020		40667.	307.4170	-0.00732	14036.	2.70E+08
	594.8032	0.00				
2.2880		41643.	194.8518	-0.00679	14350.	2.70E+08
-34.7955	777.9669	0.00				
2.5740	0.1311	42201.	89.8478	-0.00626	14529.	2.70E+08
-26.3956	691.0517	0.00				
2.8600	0.1105	42441.	-3.5163	-0.00572	14606.	2.70E+08
-28.0124	869.8863	0.00				
3.1460	0.09180	42343.	-102.1217	-0.00519	14575.	2.70E+08
-29.4500	1101.	0.00				
3.4320	0.07492	41890.	-206.8949	-0.00465	14429.	2.70E+08
-31.6066	1448.	0.00				
3.7180	0.05987	41058.	-318.7667	-0.00412	14162.	2.70E+08
-33.5868	1925.	0.00				
4.0040	0.04661	39822.	-439.1553	-0.00361	13764.	2.70E+08
-36.5698	2693.	0.00				
4.2900	0.03508	38148.	-566.2114	-0.00312	13226.	2.70E+08
-37.4722	3666.	0.00				
4.5760	0.02522	36026.	-693.5386	-0.00264	12544.	2.70E+08
-36.7278	4998.	0.00				
4.8620	0.01693	33464.	-805.1532	-0.00220	11721.	2.70E+08
-28.3157	5740.	0.00				
5.1480		30563.	-885.1474	-0.00180	10789.	2.70E+08
-18.3010	6221.	0.00				
5.4340	0.00459	27441.	-931.9661	-0.00143	9785.	2.70E+08
-8.9826	6710.	0.00				
5.7200		24208.	-948.4209	-0.00110	8746.	2.70E+08
-0.6065	7206.	0.00				
6.0060		20963.	-938.0436	-8.14E-04	7703.	2.70E+08
	7710.	0.00				a 705 00
6.2920		17793.	-904.8422	-5.68E-04	6684.	2.70E+08
12.6942	8222.	0.00	052 0742		5742	2 705.00
6.5780	-0.00686	14768.	-853.0743	-3.61E-04	5712.	2.70E+08
17.4735	8742.	0.00		1 025 04	1900	
6.8640		11947.	-787.0433	-1.92E-04	4806.	2.70E+08
21.0061 7.1500	9269. -0.00817	0.00 9372.	710 0220	-5.62E-05	3978.	2.70E+08
23.3526	9804.	9372.	-/10.9239	-3.020-05	5970.	2.700+00
7.4360		7069.	-628.6190	4.82E-05	3238.	2.70E+08
24.6106	10347.	0.009. 0.00	-020.0190	4.020-03	3230.	2./01400
7.7220	-0.00784	5055.	-543.6500	1.25E-04	2591.	2.70E+08
24.9051	10897.	0.00	545.0500	1.270-04	2771.	2.701+00
8.0080		3334.	-459.0794	1.78E-04	2037.	2.70E+08
24.3785	11455.	0.00		1.702 04	2057.	2.702100
	******	0.00				

8.2940	-0.00662	1899.	-377.4648	2.12E-04	1576.	2.70E+08
23.1825	12021.	0.00				
8.5800	-0.00585	737.0207	-300.8412	2.28E-04	1203.	2.70E+08
21.4700	12595.	0.00	220 7274	2 225 04	1001	2 705.00
8.8660	-0.00505	-172.4022	-230.7271	2.32E-04	1021.	2.70E+08
19.3890	13176.	0.00				
9.1520	-0.00426	-853.4177	-168.1521	2.26E-04	1240.	2.70E+08
17.0766	13765.	0.00				
9.4380	-0.00350	-1333.	-113.6995	2.12E-04	1394.	2.70E+08
14.6556	14362.	0.00				
9.7240	-0.00280	-1640.	-67.5612	1.93E-04	1493.	2.70E+08
12.2315	14966.	0.00				
10.0100	-0.00218	-1802.	-29.5991	1.71E-04	1545.	2.70E+08
9.8910	15578.	0.00				
10.2960	-0.00163	-1848.	0.5895	1.48E-04	1560.	2.70E+08
7.7014	16198.	0.00				
10.5820	-0.00117	-1803.	23.6062	1.25E-04	1545.	2.70E+08
5.7116	16826.	0.00				
10.8680	-7.77E-04	-1690.	40.1894	1.02E-04	1509.	2.70E+08
3.9523	17461.	0.00				
11.1540	-4.62E-04	-1530.	51.1564	8.19E-05	1458.	2.70E+08
2.4387	18104.	0.00				
11.4400	-2.14E-04	-1341.	57.3524	6.37E-05	1397.	2.70E+08
1.1720	18754.	0.00				
11.7260	-2.51E-05	-1138.	59.6067	4.80E-05	1332.	2.70E+08
0.1418	19413.	0.00				
12.0120		-933.1771	58.6980	3.48E-05	1266.	2.70E+08
-0.6713	20079.	0.00				
12.2980	2.14E-04	-736.0980	55.3267	2.42E-05	1203.	2.70E+08
-1.2933	20753.	0.00				
12.5840	2.81E-04	-554.1169	50.0965	1.60E-05	1144.	2.70E+08
-1.7546	21434.	0.00				
12.8700	3.24E-04	-392.7000	43.5035	1.00E-05	1092.	2.70E+08
-2.0875	22124.	0.00				
13.1560	3.50E-04	-255.7989	35.9321	5.89E-06	1048.	2.70E+08
-2.3247	22820.	0.00				
13.4420	3.64E-04	-146.2331	27.6582	3.34E-06	1013.	2.70E+08
-2.4969	23525.	0.00				
13.7280	3.73E-04	-66.0499	18.8591	1.99E-06	987 .1 773	2.70E+08
-2.6308	24237.	0.00				
14.0140	3.78E-04	-16.8419	9.6288	1. 46E-06	971.3622	2.70E+08
-2.7481	24958.	0.00				
14.3000	3.83E-04	0.00	0.00	1.35E-06	965.9494	2.70E+08
-2.8631	12843.	0.00				

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection	=	0.39301705 inches
Computed slope at pile head	=	-0.01041092 radians
Maximum bending moment	=	42441. inch-lbs

Maximum shear force = -948.42090565 lbs Depth of maximum bending moment = 2.86000000 feet below pile head Depth of maximum shear force = 5.72000000 feet below pile head Number of iterations = 10 Number of zero deflection points = 2 _____ - -Summary of Pile-head Responses for Conventional Analyses _____ Definitions of Pile-head Loading Conditions: Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians Load Load Load Axial Pile-head Pile-head Max Shear Max Moment Case Type Pile-head Type Pile-head Loading Deflection Rotation in Pile in Pile No. 1 2 Load 2 lbs inches radians Load 1 lbs in-lbs

1 V, lb 510.0000 M, in-lb 28302. 4224. 0.3930 -0.01041 -948.4209 42441.

Maximum pile-head deflection = 0.3930170458 inches Maximum pile-head rotation = -0.0104109192 radians = -0.596502 deg.

The analysis ended normally.

W6X7 IDLER POST

DEFLECTION WITH DISTANCE FROM 12 IN ABOVE GRADE

LPile for Windows, Version 2019-11.007 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved == This copy of LPile is being used by: Northern States Metals Youngstown, OH Serial Number of Security Device: 562484555 This copy of LPile is licensed for exclusive use by: Northern States Metals, Youngsto Use of this program by any entity other than Northern States Metals, Youngsto is a violation of the software license agreement. _____ - -Files Used for Analysis - -Path to file locations: \Quoting\SOLAR PRODUCTS\Verogy\2023\Enfield Solar One - Enfield, CT 06082\Geotech\Design\LPILE\Year 0\ Name of input data file: Enfield_1 ft_W6x7_Avg_SA.lp11d Name of output report file: Enfield_1 ft_W6x7_Avg_SA.lp11o Name of plot output file: Enfield_1 ft_W6x7_Avg_SA.lp11p Name of runtime message file: Enfield 1 ft_W6x7_Avg_SA.lp11r

Date and Time of Analysis _ _ Date: February 9, 2023 Time: 11:51:42 - -Problem Title _____ - -Project Name: Enfield Solar One Location: Enfield, CT Client: Verogy Engineer: K. Dy Description: Lateral analysis of W6x7 post (strong axis) _____ - -Program Options and Settings _____ - -Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed = 500 = 1.0000E-05 in - Deflection tolerance for convergence = 100.0000 in - Maximum allowable deflection - Number of pile increments = 50

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry Number of pile sections defined = 1 Total length of pile = 14.300 ft Depth of ground surface below top of pile = 1.0000 ft Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	3.9050
2	14.300	3.9050

Input Structural Properties for Pile Sections:

Pile Section No. 1: Section 1 is an elastic pile Cross-sectional Shape = Strong H-Pile Length of section 14.300000 ft = Flange Width 3.905000 in = Section Depth 5.790000 in = = Flange Thickness 0.160000 in Web Thickness 0.135000 in = = Section Area 1.988050 sq. in = 11.746035 in^4 Moment of Inertia Elastic Modulus = 29000000. psi _____ Ground Slope and Pile Batter Angles _____ Ground Slope Angle = 0.000 degrees 0.000 radians = = 0.000 degrees Pile Batter Angle 0.000 radians = Soil and Rock Layering Information _____ The soil profile is modelled using 2 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 1.000000 ft Distance from top of pile to bottom of layer = 4.000000 ft Effective unit weight at top of layer = 100.000000 pcf Effective unit weight at bottom of layer = 100.000000 pcf Friction angle at top of layer = 28.000000 deg. Friction angle at bottom of layer = 28.000000 deg. = 25.000000 pci Subgrade k at top of layer Subgrade k at bottom of layer = 25.000000 pci Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 4.000000 ft

Distance from top of pile to bottom of layer = 15.000000 ft Effective unit weight at top of layer = 115.000000 pcf Effective unit weight at bottom of layer = 115.000000 deg. Friction angle at top of layer = 30.000000 deg. Subgrade k at top of layer = 0.0000 pci Subgrade k at bottom of layer = 0.0000 pci NOTE: Default values for subgrade k will be computed for this layer. (Depth of the lowest soil layer extends 0.700 ft below the pile tip)						
	Summa	iry of Input S				
Layer	Soil Type	Layer	Effective	Angle of		
Layer	Name	Depth	Unit Wt.	Friction	kpy	
Num.	(p-y Curve Type)	ft	pcf	deg.	pci	
1	Sand	1.0000	100.0000	28.0000		
25.0000	(Reese, et al.)	4.0000	100.0000	28.0000		
25.0000 2	Sand	4.0000	115.0000	30.0000	default	
	(Reese, et al.)	15.0000	115.0000	30.0000	default	
	р-у Modif	ication Facto	rs for Group	Action		
Distribut	tion of p-y modifiers	; with depth d	efined using	2 points		
Point	Depth X p-	mult	y-mult			

ft	pindre	y mare
2.500	0.7000	1.0000
15.000	1.0000	1.0000
	2.500	ft 2.500 0.7000

--Static Loading Type --

Static loading criteria were used when computing p-y curves for all analyses.

_____ Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1 Condition Axial Thrust Load Load Condition Compute Top y Run Analysis Туре 1 2 Force, lbs No. vs. Pile Length _ _ _ _ _ _ _ _ _ --------------1 1 V = 403.000000 lbs M = 34869. in-lbs 4005. No Yes V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles. _____ Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness _____ Axial thrust force values were determined from pile-head loading conditions Number of Pile Sections Analyzed = 1 Pile Section No. 1: Moment-curvature properties were derived from elastic section properties

	laverin	g Correction	Fauivalent	Depths of So	il & Rock La	vers
Layer No.	Top of Layer Below Pile Head ft	Equivalent Top Depth Below Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	F0 Integral for Layer lbs	F1 Integral for Layer lbs
1 2	1.0000 4.0000	0.00 2.8258	N.A. Yes	No No	0.00 1631.	1631. N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

--Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Applied mo	e at pile h ment at pil st load on	e head			= 3486	03.0 lbs 59.0 in-lbs 05.0 lbs
Depth Soil Res.	Deflect. Soil Spr.	Bending Distrib.	Shear	Slope	Total	Bending
Х	У	Moment	Force	S	Stress	Stiffness
р	Es*H	Lat. Load				
feet	inches	in-lbs	lbs	radians	psi*	lb-in^2
lb/inch	lb/inch	lb/inch				
0.00	0.3529	34869.	403.0000	-0.00933	7811.	3.41E+08
0.00	0.00	0.00				
0.2860	0.3214	36378.	403.0000	-0.00897	8062.	3.41E+08
0.00	0.00	0.00				
0.5720	0.2913	37882.	403.0000	-0.00860	8311.	3.41E+08

0.00	0.00	0.00				
0.8580		39381.	403.0000	-0.00821	8561.	3.41E+08
0.00	0.00	0.00	403.0000	-0.00821	8501.	J.41L+00
1.1440		40874.	397.7367	-0.00780	8809.	3.41E+08
-3.0672	44.8076	0.00		0.00/00	0005.	5.410100
1.4300		42325.	375.4154	-0.00739	9050.	3.41E+08
-9.9405	163.3500	42525. 0.00	J/J.41J4	-0.00/55	<i>J</i> U J U .	J.41L+00
1.7160		43654.	331.1027	-0.00695	9271.	3.41E+08
-15.8827	295.8688	45054. 0.00	551.1027	-0.00000)2/1.	5.411+00
2.0020		44789.	268.0333	-0.00651	9460.	3.41E+08
	444.5481	0.00	208.0555	-0.00051	9400.	J.41L+08
2.2880		45672.	186.3553	-0.00605	9606.	3.41E+08
	657.2041	0.00	100.5555	-0.00005	5000.	5.411+00
2.5740		46234.	100.9421	-0.00559	9700.	3.41E+08
-23.0477		40234. 0.00	100.9421	-0.00555	5700.	J.41L+08
2.8600		46519.	14.0115	-0.00512	9747.	3.41E+08
-27.6112	936.2618	40319. 0.00	14.0115	-0.00512	5/4/.	J.41L+08
3.1460		46471.	-88.0298	-0.00465	9739.	3.41E+08
-31.8535	1295.	0.00	-00.0290	-0.00405	5755.	J.41L+08
3.4320		46042.	-203.6983	-0.00419	9668.	3.41E+08
-35.5524	1761.	40042. 0.00	-203.0985	-0.00419	5008.	J.41L+08
-35.3524 3.7180	0.05570	45188.	-321.5452	-0.00373	9526.	3.41E+08
-33.1229	2041.	45188. 0.00	-321.3432	-0.005/5	9520.	5.410+00
4.0040	0.04370	43938.	451 7707	-0.00328	0210	3.41E+08
4.0040	3359.	45958. 0.00	-451.7787	-0.00528	9318.	5.410+08
	0.03320	0.00 42177.	-601.1885	-0.00284	9026.	3.41E+08
4.2900 -44.2979	4579.	42177. 0.00	-001.1005	-0.00284	9020.	5.410+00
4.5760	4379. 0.02417	39889.	-740.8603	-0.00243	8645.	3.41E+08
-37.0959	5267.	0.00	-740.0005	-0.00245	0045.	5.410+00
4.8620	0.01652	37159.	-851.9300	-0.00204	8191.	3.41E+08
-27.6301	5740.	0.00	-051.9500	-0.00204	0191.	5.410+00
			-930.9221	-0.00168	7683.	3.41E+08
5.1480 -18.4026	6221.	34098. 0.00	-930.9221	-0.00108	/683.	3.412+08
5.4340	0.00496	30815.	070 1520	-0.00136	71 27	3.41E+08
			-979.1528	-0.00130	7137.	5.410+08
-9.7039	6710. 8.40E-04	0.00	000 0001	0.00100	6572.	2 415.00
5.7200		27414.	-990.0521	-0.00106	05/2.	3.41E+08
-1.7642 6.0060	7206. -0.00234	0.00			6000	2 415,00
		23989.	-992.8575	-8.04E-04	6002.	3.41E+08
5.2459 6.2920	7710. -0.00468	0.00 20621.	-964.6121	-5.80E-04	E440	3.41E+08
11.2141	8222.		-904.0121	-2.005-04	5442.	5.410+00
		0.00	017 7720		4004	3.41E+08
6.5780	-0.00631	17383. 0.00	-91/.//29	-3.88E-04	4904.	3.410+08
16.0815	8742.		956 1250	-2.28E-04	4207	2 415,00
6.8640		14333.	-856.1359	-2.200-04	4397.	3.41E+08
19.8376	9269.	0.00	792 4600		2020	2 415.00
7.1500 22.5138	-0.00788 9804.	11513. 0.00	-783.4609	-9.82E-05	3928.	3.41E+08
			702 2410	4 055 06	2504	2 415,00
7.4360		8958.	-703.3418	4.95E-06	3504.	3.41E+08
24.1757	10347.	0.00 6685.	-610 1000	0 37E AF	2126	2 /16.00
7.7220 24.9162	-0.00785		-619.1000	8.37E-05	3126.	3.41E+08
24.9162 8.0080	10897.	0.00 4706.	E22 7062	1 415 64	2202	2 /15-09
			-533.7062	1.41E-04	2797.	3.41E+08
24.8471	11455.	0.00				

8.2940	-0.00688	3018.	-449.7251	1.80E-04	2516.	3.41E+08
24.0929	12021.	0.00				
8.5800	-0.00621	1614.	-369.2856	2.03E-04	2283.	3.41E+08
22.7833	12595.	0.00				
8.8660	-0.00548	477.7616	-294.0711	2.14E-04	2094.	3.41E+08
21.0479	13176.	0.00				
9.1520	-0.00474	-410.5061	-225.3298	2.14E-04	2083.	3.41E+08
19.0111	13765.	0.00				
9.4380	-0.00401	-1075.	-163.8988	2.07E-04	2193.	3.41E+08
16.7879	14362.	0.00				
9.7240	-0.00332	-1541.	-110.2417	1.94E-04	2271.	3.41E+08
14.4808	14966.	0.00				
10.0100	-0.00268	-1837.	-64.4947	1. 77E-04	2320.	3.41E+08
12.1782	15578.	0.00				
10.2960	-0.00211	-1989.	-26.5185	1.57E-04	2345.	3.41E+08
9.9525	16198.	0.00	2019209	1.072 01	20101	51122.00
10.5820	-0.00160	-2023.	4.0474	1.37E-04	2351.	3.41E+08
7.8599	16826.	0.00		1.5/2 01	2002.	51112100
10.8680	-0.00117	-1965.	27.7294	1.17E-04	2341.	3.41E+08
5.9408	17461.	0.00	27.7234	1.1/2 04	2341.	5.412.00
11.1540	-8.00E-04	-1836.	45.1663	9.79E-05	2320.	3.41E+08
4.2205	18104.	0.00	49.1009	J./JL 0J	2520.	5.412100
11.4400	-4.96E-04	-1657.	57.0598	8.03E-05	2290.	3.41E+08
2.7104	18754.	0.00	57.0500	0.0JL-0J	2250.	J.41 L+00
11.7260	-2.49E-04	-1447.	64.1299	6.46E-05	2255.	3.41E+08
1.4096	19413.	0.00	04.1299	0.402-05	2255.	3.410+00
12.0120	-5.24E-05	-1219.	67.0753	5.12E-05	2217.	3.41E+08
			07.0755	5.122-05	221/.	5.410+00
0.3068	20079.	0.00	CC 5414	4 015 05	2170	2 415.00
12.2980	1.02E-04	-987.5923	66.5414	4.01E-05	2179.	3.41E+08
-0.6179	20753.	0.00	63 0050	2 425 05	24.44	2 445.00
12.5840	2.23E-04	-763.3435	63.0950	3.13E-05	2141.	3.41E+08
-1.3906	21434.	0.00	F7 00F0	2 465 25	24.07	2 445.00
12.8700	3.17E-04	-555.3677	57.2052	2.46E-05	2107.	3.41E+08
-2.0417	22124.	0.00			0076	
13.1560		-371.3636	49.2334	1.99E-05	2076.	3.41E+08
-2.6039	22820.	0.00				
13.4420	4.54E-04	-217.9780	39.4293	1.70E-05	2051.	3.41E+08
-3.1095	23525.	0.00				
13.7280	5.08E-04	-101.1875	27.9357	1. 54E-05	2031.	3.41E+08
-3.5885	24237.	0.00				
14.0140	5.59E-04	-26.6502	14.8007	1.47E-05	2019.	3.41E+08
-4.0659	24958.	0.00				
14.3000	6.09E-04	0.00	0.00	1.46E-05	2015.	3.41E+08
-4.5592	12843.	0.00				

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection	=	0.35286507 in	nches
Computed slope at pile head	=	-0.00933136 ra	adians
Maximum bending moment	=	465 1 9. in	nch-lbs

Maximum shear force = -998.83210457 lbs Depth of maximum bending moment = 2.86000000 feet below pile head Depth of maximum shear force = 5.72000000 feet below pile head Number of iterations = 9 Number of zero deflection points = 2 - -Summary of Pile-head Responses for Conventional Analyses _____ Definitions of Pile-head Loading Conditions: Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians Load Load Axial Pile-head Pile-head Load Max Shear Max Moment Case Type Pile-head Type Pile-head Loading Deflection Rotation in Pile in Pile 2 Load 2 lbs inches No. 1 Load 1 radians lbs in-lbs

1 V, lb 403.0000 M, in-lb 34869. 4005. 0.3529 -0.00933 -998.8321 46519.

Maximum pile-head deflection = 0.3528650652 inches Maximum pile-head rotation = -0.0093313622 radians = -0.534648 deg.

The analysis ended normally.

LPile for Windows, Version 2019-11.007 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved == This copy of LPile is being used by: Northern States Metals Youngstown, OH Serial Number of Security Device: 562484555 This copy of LPile is licensed for exclusive use by: Northern States Metals, Youngsto Use of this program by any entity other than Northern States Metals, Youngsto is a violation of the software license agreement. _____ - -Files Used for Analysis - -Path to file locations: \Quoting\SOLAR PRODUCTS\Verogy\2023\Enfield Solar One - Enfield, CT 06082\Geotech\Design\LPILE\Year 0\ Name of input data file: Enfield_1 ft_W6x7_Avg_WA.lp11d Name of output report file: Enfield_1 ft_W6x7_Avg_WA.lp11o Name of plot output file: Enfield_1 ft_W6x7_Avg_WA.lp11p Name of runtime message file: Enfield 1 ft_W6x7_Avg_WA.lp11r

Date and Time of Analysis _ _ Date: February 9, 2023 Time: 12:13:17 - -Problem Title _____ - -Project Name: Enfield Solar One Location: Enfield, CT Client: Verogy Engineer: K. Dy Description: Lateral analysis of W6x7 post (weak axis) _____ - -Program Options and Settings _____ - -Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed = 500 = 1.0000E-05 in - Deflection tolerance for convergence = 100.0000 in - Maximum allowable deflection - Number of pile increments = 50

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

--Pile Structural Properties and Geometry --Number of pile sections defined = 1 Total length of pile = 14.300 ft Depth of ground surface below top of pile = 1.0000 ft Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	5.7900
2	14.300	5.7900

Input Structural Properties for Pile Sections:

Pile Section No. 1: Section 1 is an elastic pile Cross-sectional Shape = Weak H-Pile Length of section = 14.300000 ft Flange Width 3.905000 in = Section Depth 5.790000 in = Flange Thickness = 0.160000 in Web Thickness 0.135000 in = Section Area = 1.988050 sq. in = 1.589053 in^4 = 29000000. psi Moment of Inertia Elastic Modulus _____ Ground Slope and Pile Batter Angles _____ Ground Slope Angle = 0.000 degrees 0.000 radians = Pile Batter Angle = 0.000 degrees 0.000 radians = Soil and Rock Layering Information _____ The soil profile is modelled using 2 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 1.000000 ft Distance from top of pile to bottom of layer = 4.000000 ft Effective unit weight at top of layer = 100.000000 pcf = 100.000000 pcf Effective unit weight at bottom of layer Friction angle at top of layer = 28.000000 deg. Friction angle at bottom of layer = 28.000000 deg. = 25.000000 pci Subgrade k at top of layer Subgrade k at bottom of layer = 25.000000 pci Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 4.000000 ft

Distance from top of pile to bottom of layer = 15.000000 ft Effective unit weight at top of layer = 115.000000 pcf Effective unit weight at bottom of layer = 115.000000 deg. Friction angle at top of layer = 30.000000 deg. Subgrade k at top of layer = 0.0000 pci Subgrade k at bottom of layer = 0.0000 pci NOTE: Default values for subgrade k will be computed for this layer. (Depth of the lowest soil layer extends 0.700 ft below the pile tip)						
	Summa	iry of Input S				
Layer	Soil Type	Layer	Effective	Angle of		
Layer	Name	Depth	Unit Wt.	Friction	kpy	
Num.	(p-y Curve Type)	ft	pcf	deg.	pci	
1	Sand	1.0000	100.0000	28.0000		
25.0000	(Reese, et al.)	4.0000	100.0000	28.0000		
25.0000 2	Sand	4.0000	115.0000	30.0000	default	
	(Reese, et al.)	15.0000	115.0000	30.0000	default	
	р-у Modif	ication Facto	rs for Group	Action		
Distribut	tion of p-y modifiers	; with depth d	efined using	2 points		
Point	Depth X p-	mult	y-mult			

ft	pindre	y mare
2.500	0.7000	1.0000
15.000	1.0000	1.0000
	2.500	ft 2.500 0.7000

--Static Loading Type --

Static loading criteria were used when computing p-y curves for all analyses.

_____ Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1 Condition Axial Thrust Load Load Condition Compute Top y Run Analysis Туре 1 2 Force, lbs No. vs. Pile Length _ _ _ _ _ _ _ _ _ ---------------1 1 V = 50.000000 lbs M = 140.000000 in-lbs 4005. No Yes V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles. _____ Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness _____ Axial thrust force values were determined from pile-head loading conditions Number of Pile Sections Analyzed = 1 Pile Section No. 1: Moment-curvature properties were derived from elastic section properties

	Layerin	g Correction	Equivalent	Depths of So	il & Rock Lag	yers
Layer No.	Top of Layer Below Pile Head ft	Equivalent Top Depth Below Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	F0 Integral for Layer lbs	F1 Integral for Layer lbs
1 2	1.0000 4.0000	0.00 2.8163	N.A. Yes	No No	0.00 1901.	1901. N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

--Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Applied mo	e at pile he ment at pile st load on p	e head			= 14	0.0 lbs 0.0 in-lbs 5.0 lbs
Depth Soil Res.	Deflect. Soil Spr.	Bending Distrib.	Shear	Slope	Total	Bending
X	у	Moment	Force	S	Stress	Stiffness
р	Es*H L	_at. Load				
feet	inches	in-lbs	lbs	radians	psi*	lb-in^2
lb/inch	lb/inch	lb/inch				
0.00	0.04072	140.0000	50.0000	-0.00128	2270.	4.61E+07
0.00	0.00	0.00				
0.2860	0.03636	329.0738	50.0000	-0.00126	2614.	4.61E+07
0.00	0.00	0.00				
0.5720	0.03208	517.8107	50.0000	-0.00123	2958.	4.61E+07

	0.00	0.00	0.00				
	0.8580	0.02793	706.0176	50.0000	-0.00118	3301.	4.61E+07
	0.00	0.00	0.00	50.0000	0.00110	5501.	4.01210/
	1.1440	0.02397	893.5017	48.2234	-0.00112	3642.	4.61E+07
	0353	148.2624	0.00				
	1.4300	0.02023	1068.	41.9692	-0.00105	3960.	4.61E+07
	6093	442.7280	0.00		0.00200	22001	
	1.7160	0.01676	1210.	31.3129	-9.64E-04	4220.	4.61E+07
	6006	737.1936	0.00				
	2.0020	0.01361	1309.	18.1151	-8.71E-04	4400.	4.61E+07
-4.0	0904	1032.	0.00				
2	2.2880	0.01079	1359.	3.9437	-7.71E-04	4490.	4.61E+07
-4.3	1680	1326.	0.00				
	2.5740	0.00831	1358.	-7.9358	-6.70E-04	4488.	4.61E+07
-2.	7548	1137.	0.00				
	2.8600	0.00619	1323.	-16.8611	-5.70E-04	4424.	4.61E+07
-2.4	4464	1357.	0.00				
	3.1460	0.00440	1258.	-24.5360	-4.74E-04	4306.	4.61E+07
-2.0	0261	1581.	0.00				
	3.4320	0.00293	1167.	-30.6640	-3.84E-04	4141.	4.61E+07
	5450	1809.	0.00				
	3.7180	0.00176	1058.	-35.1142	-3.01E-04	3941.	4.61E+07
	0483	2041.	0.00				
	4.0040	8.65E-04	934.5282	-38.7908	-2.27E-04	3717.	4.61E+07
	0943	4343.	0.00				
	4.2900	2.05E-04	797.5942	-41.1615	- 1. 62E-04	3468.	4.61E+07
	2872	4801.	0.00	40.0054	1 005 04	2244	4 615.07
	4.5760	-2.50E-04	656.4607	-40.9954	-1.08E-04	3211.	4.61E+07
	3840	5267.	0.00	20 7024		2000	4 615.07
	4.8620 8998	-5.38E-04 5740.	519.1784 0.00	-38.7924	-6.45E-05	2960.	4.61E+07
	5.1480	-6.93E-04	391.9627	-35.0928	-3.06E-05	2729.	4.61E+07
	2562	6221.	0.00	- 55.0920	-3.002-05	2729.	4.010+07
	5.4340	-7.48E-04	279.1421	-30.4281	-5.59E-06	2523.	4.61E+07
	4621		0.00	50.4201	J.JJL 00	2525.	4.01210/
	5.7200			-25,2839	1.16E-05	2348.	4.61E+07
	5357	7206.	0.00	23.2033	11102 05	29101	1.012100
	6.0060			-20.0733	2.24E-05	2206.	4.61E+07
	5008	7710.	0.00				
	6.2920	-5.78E-04		-15.1225	2.80E-05	2096.	4.61E+07
1.	3842	8222.	0.00				
(6.5780	-4.76E-04	0.7038	-10.6663	2.97E-05	2016.	4.61E+07
1.3	2126	8742.	0.00				
(6.8640	-3.74E-04	-29.1692	-6.8512	2.86E-05	2068.	4.61E+07
1.0	0106	9269.	0.00				
-	7.1500	-2.80E-04		-3.7456	2.58E-05	2100.	4.61E+07
	7992	9804.	0.00				
	7.4360			-1.3532	2.19E-05	2116.	4.61E+07
	5950	10347.	0.00				
	7.7220			0.3716	1. 77E-05	2118.	4.61E+07
	4102	10897.	0.00			.	
	8.0080			1.5082	1.36E-05	2112.	4.61E+07
0.3	2522	11455.	0.00				

8.2940	-3.56E-05		2.1551	9.89E-06	2100.	4.61E+07
0.1248	12021.	0.00				
8.5800	-7.71E-06	-39.0033	2.4178	6.68E-06	2086.	4.61E+07
0.02829	12595.	0.00				
8.8660	1.02E-05	-30.6107	2.3989	4.09E-06	2070.	4.61E+07
-0.03931	13176.	0.00				
9.1520	2.04E-05	-22.6497	2.1913	2.11E-06	2056.	4.61E+07
-0.08166	13765.	0.00				
9.4380	2.47E-05	-15.6274	1.8739	6.81E-07	2043.	4.61E+07
-0.1033	14362.	0.00				
9.7240	2.50E-05	-9.8062	1.5092	-2.66E-07	2032.	4.61E+07
-0.1092	14966.	0.00				
10.0100	2.29E-05	-5.2608	1.1438	-8.27E-07	2024.	4.61E+07
-0.1038	15578.	0.00				
10.2960	1.94E-05	-1.9325	0.8089	-1.10E-06	2018.	4.61E+07
-0.09134	16198.	0.00				
10.5820	1.53E-05	0.3219	0.5231	-1.16E-06	2015.	4.61E+07
-0.07524	16826.	0.00				
10.8680	1.14E-05	1.6897	0.2942	-1.08E-06	2018.	4.61E+07
-0.05812	17461.	0.00				
11.1540	7.93E-06	2.3712	0.1227	-9.29E-07	2019.	4.61E+07
-0.04184	18104.	0.00				
11.4400	5.05E-06	2.5575	0.00359	-7.46E-07	2019.	4.61E+07
-0.02757	18754.	0.00				
11.7260	2.81E-06	2.4163	-0.07104	-5.60E-07	2019.	4.61E+07
-0.01592	19413.	0.00				
12.0120	1.20E-06	2.0852	-0.1104	-3.93E-07	2018.	4.61E+07
-0.00702	20079.	0.00				
12.2980	1.18E-07	1.6693	-0.1237	-2.53E-07	2018.	4.61E+07
-7 .12 E-04	20753.	0.00				
12.5840	-5.37E-07	1.2434	-0.1191	-1.45E-07	2017.	4.61E+07
0.00335	21434.	0.00				
12.8700	-8.74E-07	0.8556	-0.1037	-6.63E-08	2016.	4.61E+07
0.00563	22124.	0.00				
13.1560	-9.92E-07	0.5334	-0.08271	-1.46E-08	2016.	4.61E+07
0.00660	22820.	0.00				
13.4420	-9.74E-07	0.2883	-0.05992	1.60E-08	2015.	4.61E+07
0.00668	23525.	0.00				
13.7280	-8.83E-07	0.1217	-0.03776	3.12E-08	2015.	4.61E+07
0.00623	24237.	0.00				
14.0140	-7.60E-07	0.02829	-0.01758	3.68E-08	2015.	4.61E+07
0.00553	24958.	0.00				
14.3000	-6.30E-07	0.00	0.00	3.79E-08	2015.	4.61E+07
0.00472	12843.	0.00				

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection	=	0.04071970 inc	hes
Computed slope at pile head	=	-0.00127648 rad	ians
Maximum bending moment	=	1359. inc	h-lbs

Maximum shear force = 50.0000000 lbs Depth of maximum bending moment = 2.28800000 feet below pile head Depth of maximum shear force = 0.28600000 feet below pile head Number of iterations = 6 Number of zero deflection points = 3 - -Summary of Pile-head Responses for Conventional Analyses _____ Definitions of Pile-head Loading Conditions: Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians Load Load Axial Pile-head Pile-head Load Max Shear Max Moment Case Type Pile-head Type Pile-head Loading Deflection Rotation in Pile in Pile No. 1 2 Load 2 lbs inches Load 1 radians lbs in-lbs

1 V, lb 50.0000 M, in-lb 140.0000 4005. 0.04072 -0.00128 50.0000 1359.

Maximum pile-head deflection = 0.0407197009 inches Maximum pile-head rotation = -0.0012764825 radians = -0.073137 deg.

The analysis ended normally.

3207 INNOVATION PL, YOUNGSTOWN, OH 44509 SOLARFLEXRACK.COM

April 3, 2023

Verogy 150 Trumbull Street Hartford, CT 06103

SUBJECT: Corrosion Evaluation for Enfield Solar One Solar Project in Enfield, Hartford County, Connecticut

To Whom it Concerns,

Solar FlexRack (SFR) has reviewed gathered information and has completed a site-specific corrosion hazard evaluation to estimate metal loss for metal exposed to the atmosphere at the subject solar site. A summary of SFR's methodologies and results is presented in this letter.

Basis of Buried Metal Corrosion Evaluation

In the development of a methodology to evaluate the corrosion hazard of a ground-mount solar site, SFR has reviewed methodologies applicable to buried metal advocated by various industry corrosion experts including the American Water Works Association (AWWA), the National Association of Corrosion Engineers (NACE), the American Association of State Highway Transportation Officials (AASHTO), and the Federal Highway Administration (FHWA). Each of these entities routinely uses buried metal in the construction and maintenance of infrastructure.

Each of the above entities generally classifies a corrosion hazard based on measured geochemical and electrochemical properties using a numerical ranking scheme which results in a qualitative ranking ranging from "mildly/moderately corrosive" to "highly corrosive." Some of the readily measurable geochemical and electrochemical properties commonly considered in the evaluation of corrosion potential include:

- apparent minimum electrical resistivity,
- soil pH,
- water-soluble chlorides,
- water-soluble sulfates,
- oxidation-reduction (redox) potential, and,
- gravimetric water content.

Owing to the relatively light steel sections which commonly serve as foundations for SFR solar projects; corrosion hazard evaluation guidelines and associated metal loss rates developed by FHWA and adopted by AASHTO from research conducted on buried galvanized steel reinforcement strips were adopted internally by SFR for application to its solar projects. These guidelines can be found in Technical Publication No. FHWA-NHI-00-044. For the subject site, the soil chemistry data contained in Table 1 was available and was considered.

LOCATION	DEPTH (ft.)	рН	SULFATES (mg/kg)	SULFIDES (mg/kg)	CHLORIDES (mg/kg)	REDOX (mV)	MIN SOIL RESISTIVITY (Ω-cm)
B-2	0-4	8.3	18	NR	NR	NR	31,560
B-4	0-4	6.9	9	NR	NR	NR	63,020
B-9	0-4	8.7	23	NR	NR	NR	33,580

Table 1: Laboratory Corrosion Suite Results

NR = Not Reported

Based mainly on the measured soil parameters, a mildly corrosive environment to buried steel was considered by SFR. Other metrics suggest a mildly corrosive to non-corrosive environment.

Buried Metal Loss Calculations

From SFR's review of FHWA guidelines developed from the above-described studies, for galvanized steel in moderately corrosive environments, the suggested zinc metal loss rate is 0.58 mil/yr. for the first 2 years and 0.16 mil/yr. thereafter until depletion, and the loss rate for unprotected carbon steel is 0.47 mil/yr. To account for increasingly corrosive environments (on a qualitative basis), the FHWA suggests an incremental 25 percent increase be applied to these metal loss rates for corresponding incremental increases in corrosion potential. Accordingly, given the available information, the above metal loss rates as prescribed by FHWA were utilized in the analysis.

Using the factored loss rates for zinc metal, a 3-mil hot-dipped galvanic coating will be depleted in approximately 14 years, after which time, consumption of the carbon steel will begin (both sides). Table 2 shows the estimated stress utilization ratio in the new and corroded sections (expressed as a percent) for a design event occurring at year 0 and for a design event occurring at year 35 for a W6x7 post extending 67 inches above ground surface, and a W6x15 post extending approximately 70 inches above ground surface. This analysis accounts for minor terrain irregularities.

Section	Element	Steel Thickness at Year 0 (in.)	Steel Thickness at Year 35 (in.)	Percent Loss	Utilization Ratio at Year 0 (%)	Utilization Ratio at Year 35 (%)
W6x7	Web	0.129	0.109	15.3	57.0	68.0
VV 6x7	Flange	0.165	0.145	12.0	57.0	66.0
W6x15	Web	0.230	0.210	8.6	53.4	59.0
¥¥8X15	Flange	0.260	0.240	7.6	53.4	59.0

		_				
ear 35	Utilization at	Percent	Resultant	Time and	Thickness with	Table 2: Steel
٠	Utilization at	Feiceill	nesultant	nine and	THICKNESS WILL	Table 2. Sleel

The stress utilization ratio is the ratio of the applied stress to the available stress capacity (compression and flexure) of a given steel section. A stress utilization ratio of 100 percent indicates that the applied stress in the section has reached its allowable limit. A stress utilization ratio exceeding 100 percent indicates the section is overstressed. The controlling state of stress in the section arising from the design event occurring at year 0 and that in the corroded section at year 35 result from the controlling ASCE 7 basic load combination shown below in Table 3.

Table 3: Controlling ASCE Load Combination
--

Year 0	W6x7	D + 0.6W			
Year 35	***0^7	D + 0.8W			
Year 0	W6x15	D + 0.6W			
Year 35	CLYDAA	D + 0.0W			

In Table 3, as applicable, D is the dead load, W is the wind load, S is the snow load and E is the earthquake load. Buried metal loss for the section considered is plotted with time on Figure 1 attached to this letter.

Basis of Atmospheric Corrosion Evaluation

In the adoption of a methodology to evaluate the long-term corrosion hazard to the portions of the rack and foundation exposed to the atmosphere, SFR applied International Organization for Standardization (ISO) guidelines. These guidelines can be found in ISO publications ISO 8044-2020, ISO 9223-2012, ISO 9224-2012, ISO 9225-2012, ISO 9226-2012, and ISO 11303-2002. Computations used to evaluate metal loss with time consider mainly averaged annual climatic conditions and specific exposure to suspended atmospheric salts (excluding direct saltwater spray and/or road-deicing solutions), and exposure to atmospheric sulfur compounds (urban and industrial air pollution).

Atmospheric Metal Loss Calculations

Pursuant to ISO 9223, the zinc metal loss rate in the first year may be calculated using the following relationship:

$$\boldsymbol{r_{corr}} = 0.0129 P_d^{0.44} e^{0.46RH + f_{Zn}} + 0.0175 S_d^{0.57} e^{0.008RH + 0.085T}$$

Where

r _{corr}	is first-year corrosion rate of zinc metal (µ/yr.)
Т	is the average annual ambient temperature (°C)
RH	is the average annual relative humidity (%)
Pd	is the average annual sulfur dioxide (SO2 deposition rate $({}^{mg}\!/_{m}{}^{2}{}_{d})$
Sd	is the average annual chloride ion (CI) deposition rate (mg/m^2d)
fzn	is a temperature factor = -0.071(T-10) for T > 10 $^{\circ}$ C

The proportion of the variance (R^2) in the dependent variable that is predictable (from the independent variable) is 0.82. An R^2 of 1.0 indicates that the regression predictions perfectly fit the data.

In the estimation of the atmospheric corrosion potential to exposed metal, field testing on galvanized steel coupons was not available to estimate the first-year metal loss and so a cursory review of available geographic, physiographic, and climatic information was undertaken. The region is mapped by the Köppen climate classification as a humid, subtropical climate. From a brief review of the past 10 years of wind direction information from local meteorological stations, the prevailing direction appears to be from southeasterly direction. The nearest mapped point-sources of industrial fossil fuel emissions appear to include the Berkshire Power gas power plant located approximately 7 miles northwest, the Essential Power Massachusetts LLC gas power plant located approximately 8 miles northwest, the Masspower gas power plant located approximately 8 miles northwest, the Masspower gas power plant located approximately 8 miles northwest, the Masspower gas power plant located approximately 8 miles northwest, the Masspower gas power plant located approximately 8 miles northwest gas pow

approximately 13 miles southwest, and the Stony Brook oil power plant located approximately 14 miles north. A US Environmental Protection Agency monitored point-source of sulfur dioxide emissions was not identified. The nearest mapped source of urban emissions appear to be the city of Hartford, located approximately 18 miles northeast of the site. The project site location is inland and rural in nature, and a source of direct salt spray was not apparent. Soil chemistry results indicate a low concentration of chloride ions. According to United States Geological Survey (USGS) quadrangles, the area of interest sits at an elevation of approximately 180 feet above mean sea level. According to the US Department of Agriculture Natural Resources Conservation Service (NRCS), the average annual precipitation ranges between 36 and 71 inches and the area is reported to be well drained. The extreme-event (100 year) air freezing index is mapped by the National Oceanic and Atmospheric Administration to be up to 1,000 degree-Fahrenheit days.

Available National Atmospheric Deposition Program (NADP) mapping was reviewed for annual chloride and sulfur deposition rates for the subject site. An average annual sulfur dioxide (SO₂) deposition rate of 1.09 milligrams per square meter per day ($^{mg}/_m^2/_d$) and an average annual chloride (Cl⁻) deposition rate of 0.66 $^{mg}/_m^2/_d$ were considered in the analysis. From available meteorological data, an average annual air temperature of 10.8 Celsius degrees, and an average annual relative humidity of 70.1 percent were considered. SFR also considered the estimated ISO corrosivity mapping from the Whole Building Design Group (WBDG), which indicated a Corrosivity Category of C2. As the NADP mapped values indicated a C2 environment from analysis, SFR considered the upper bound zinc loss rate values from ISO. From this information and the relationship above, a first-year zinc metal loss rate on the order of 0.028 mil/yr. was utilized in the analysis. These calculations assume that the panels are installed and provide the rack with some shelter from direct meteoric water.

Pursuant to ISO 9224-2012, from the first-year metal loss rate, the total future metal loss can be computed beyond year 20 using the following relationship:

 $D = r_{corr}(20^{b} + b(20^{b-1})(t-20))$

Where

Dis the total metal loss (μ)r_corris the first-year corrosion rate of zinc metal (μ/yr.)tis the exposure time (yr.)bis the metal-environment-specific time component (dimensionless, usually < 1)</td>

It is understood that zinc coating performance up to year 35 (t > 20 yr.) is desired. Given this extended exposure time and uncertainties involved with estimations of metal loss made beyond year 20, the short-term b-factor in the above expression was increased from the suggested t < 20 yr. value (0.813) by two standard deviations to achieve a 95 percent confidence interval in the statistical data.

Using the above long-term loss relationship for zinc metal, up to 0.60 mil of zinc electroplating will be lost by year 35. The minimum thickness of zinc electroplating associated with G90 protection is 0.76 mil. Following depletion of the zinc electroplating, bare carbon steel will be consumed at a rate of 0.98 mil/yr. Zinc metal loss is plotted with time on Figure 2 attached to this letter.

Conclusions

From the buried metal loss calculations and the calculated utilization ratios shown in Table 2, it is not unreasonable to conclude that galvanized steel post foundations at the subject solar site will perform in a satisfactory manner during a design event occurring up to at least year 35.

From the atmospheric metal loss calculations, a G-90 galvanic coating may be expected to provide corrosion protection up to year 35 and the racking members may be expected to perform in a satisfactory manner during a design event occurring up to year 35.

Limitations

The above analyses were based on best practices as adopted internally by SFR. Other methodologies or practices by other engineering professionals may yield different results. The analyses were based upon a reasonable effort to identify corrosion hazards to buried metal and to metal exposed to the conditions at the subject site. A more comprehensive approach to estimate metal loss rates could include field testing of buried hot-dipped zinc-coated steel coupons and unburied electroplated zinc-coated steel coupons in general accordance with ISO 9225. Direct atmospheric gas sampling and analysis in accordance with ISO 9226 could also be considered. The above analyses are provided at the customer's request for informational purposes in lieu of these options, and SFR's Standard Warranty as agreed to by contract remains in full-effect and is unchanged.

<u>Closure</u>

SFR appreciates the opportunity to be of service to you and we look forward to working with you in the future. Please do not hesitate to contact us if there are questions or further need.

Respectfully Submitted,

Prepared by:

KML. Dy

Kuchanda I. Dy, PE Geotechnical Engineer

Approved by:

Michael Herman Director of Renewable Energy

Attachments Figure 1: Buried Metal Loss with Time Figure 2: Atmospheric Metal Loss with Time Reviewed by:

Greg Huzyak, PE Director of Engineering

FIGURES

Page 96

PROPOSED SOLAR POWER SITE: ENFIELD SOLAR ONE 41°59'42.02"N, 72°31'32.12"W 110 NORTH STREET ENFIELD, CT 06082

ARRAY LOCATION

PROJECT SITE

SHEET INDEX: FLEXTRACK S-SERIES

S1	PV MODULE SPECIFICATION SHEETS	•	٠		
S2	1X78 RACK PLAN VIEW, ELEVATION, & NOTES	٠	٠		
S3	1X52 RACK PLAN VIEW, ELEVATION, & NOTES	•	•		
S4	ISO VIEW, BILL OF MATERIAL, & HARDWARE DETAILS	0	٠		
S5	TRACKER CONNECTIONS - DRIVE POST & SPLICE CONNECTION DETAILS	0	٠		
S6	TRACKER CONNECTIONS - IDLER POST & VERTICAL RAIL CONNECTION DETAILS	0	•		
S7	TRACKER CONNECTIONS - DAMPER & PANEL CONNECTION DETAILS	0	•		
	LEGEND: ISSUED O REVISED, BUT NOT ISSUED	SIGN-OFF MAR. 13, 2023	STAMPED SET April 6, 2023		
		ISSU	ANCE,	/REVIS	SION

PREPARED FOR: VEROGY

150 TRUMBULL STREET HARTFORD, CT 06103

GENERAL NOTES:

1. CODES AND STANDARDS: IBC 2021 NEC 2020 AISC 360-16

AISI S100-16 ASCE 7-16

2. WIND DESIGN PARAMETERS: ULTIMATE DESIGN WIND SPEED, V - 107 MPH RISK CATEGORY - 1 WIND EXPOSURE CATEGORY C, $K_z = 0.85$ WIND EAFOSINE GALESONT C, $k_{\rm H}$ = 0.00 TOPOGRAPHICAL FACTOR, $k_{\rm H}$ = 1.00 WIND DIRECTIONALITY FACTOR, $k_{\rm H}$ = 0.85 GUST FACTOR & NET PRESSURE COEFFICIENT, GCN -GCN COEFFICIENTS DETERMINED BASED ON RWDI WIND TUNNEL TESTING (RWDI PROJECT NO. 1401529) -SEE SFR STRUCTURAL REPORT FOR PROJECT SPECIFIC GCN COEFFICIENTS.

3. SNOW DESIGN PARAMETERS: GROUND SNOW LOAD - 35 PSF EXPOSURE CATEGORY, Ce - 0.90 SNOW THERMAL FACTOR, Ct - 1.20 SNOW IMPORTANCE FACTOR, I - 0.80 SNOW REDUCTION FACTOR SLIPPERY SURFACES, Cs

TILT ANGLE	Cs VALUE		
0°-15°	1.00		
20'	0.91		
25'	0.82		
30'	0.73		
35'	0.64		
40'	0.55		
45 '	0.46		
50'	0.37		
55'	0.28		

4. EARTHQUAKE DESIGN PARAMETERS - EQUIVALENT LATERAL FORCE: RISK CATEGORY - I

SITE CLASS – D SEISMIC IMPORTANCE FACTOR, le – 1.0 RESPONSE MODIFICATION COEFFICIENT, R - 2 SPECTRAL RESPONSE ACCELERATION PARAMETERS

MAPPED	DESIGN
S _S - 0.172g	S _{DS} - 0.183g
S ₁ – 0.055g	S _{D1} - 0.088g

SEISMIC DESIGN CATEGORY - D SEISMIC RESPONSE COEFFICIENT, Cs - 0.092

5.

5. FOUNDATIONS: FOUNDATION DESIGN DERIVED FROM GEOTECHNICAL REPORT PROVIDED BY DOWN TO EARTH CONSULTING DATED MAR. 2022 (FILE NO. 0032-060.00)

6. APPLICABLE INSTALLATION TOLERANCES (PER SINGLE TRACKER):

- N-S POST SPACING: ±1 ½" N-S SLOPE: 5%
- E-W POST ALIGNMENT: ±34"

IDLER POST HEIGHT OUT OF STRING-LINE: ±1" POST PLUMB: ±1'

POST TWIST: ±3" TUBE TWIST: ±2

POST TOLERANCES ARE REFERENCED AT TOP-OF-POST LOCATION. DRIVE POST HEIGHT ABOVE GRADE IS 3" ABOVE IDLER POSTS MINIMUM RECOMMENDED CLEARANCE BETWEEN TRACKERS NO LESS THAN 12".

POST EMBEDMENT AND ABOVE GRADE TOLERANCES ARE SHOWN ON S2-S3. S2-S3 TOLERANCES GIVEN TO ASSIST WITH VARIATIONS IN GRADE.

HAVE BEEN PULLED INTO FIRM CONTACT

В. RESPECTIVE CONNECTION DETAIL(S).

RESPONSIBILITY OF THE CONTRACTOR.

3. PV MODULE INFORMATION: NAME/MODEL: MONO_PERC BM6-10B-T 545W DIMENSIONS: 89.685" LONG X 44.646" WIDE X 1.378" TALL WEIGHT: 61 29 LBS VERSION: UL-EN-VERSION 2022.11.18

9. MATERIALS AND COATINGS: A. PILES:

B. HARDWARE:

- OR STAINLESS STEEL.
- C. COLD FORMED STEEL:

DRIVEN PILES. -SEE IBC 2021, TABLE 1705.7, ITEMS 1-5 ASTM A325 BOLTS AND FASTENERS ...

-SEE AISC 360-16, SECTION N5.6 ASTM A307 BOLTS AND FASTENERS -NOT REQUIRED

MIN	MINIMUM
MAX	MAXIMUM
он	OVERHANG
PAG	POST ABOVE GRADE
REF	REFERENCE
DIA	DIAMETER
TYP	TYPICAL
VERT	VERTICAL
STD	STANDARD
RV	RECEIVER
CP	CLAMP
s/c	STOCK CODE
,	

0 PREPARED BY: S SOLAR FLEXRACK A DIVISION OF NORTHERN STATES METALS 3207 INNOVATION PLACE YOUNGSTOWN, OHIO 44509 PHONE: 1-888-380-8138 GY AR ON F 06082 OLA CT (VERO CONNECTIONS: SNUG TIGHT: ALL CONNECTIONS TO BE SNUG TIGHT PER THE RESEARCH ENFIELD SC ENFIELD, (COUNCIL OF STRUCTURAL CONNECTIONS (AISC RCSC) UNLESS OTHERWISE NOTED PERFORM VISUAL INSPECTION TO ENSURE PLIES IN THE CONNECTION $\underline{\text{TURN-OF-NUT:}}$ SOME ASTM F3125 GRADE A325 BOLTS MUST BE FASTENED BY TURN OF THE NUT METHOD PER THE RESEARCH COUNCIL OF STRUCTURAL CONNECTIONS (AISC RCSC). FIRST ENSURE FASTENER IS SNUG TIGHT. THEN TURN NUT TO ANGLE BEYOND INITIAL TORQUE MARK AS CALLED OUT IN DESIGN ACCOUNTS FOR COMPLETE INSTALLATION PRIOR TO A CLIMATIC OR DESIGN EVENT PER CONTRACT DOCUMENTS, MEANS AND METHODS FALL UNDER THE I. W-SECTIONS: A992 STEEL HOT DIPPED GALVANIZED PER ASTM A123. I. 3/10 DE F3125 GRADE A325 HOT DIPPED GALVANIZED PER ASTM A153. ΗEET II. 5%" TO BE F3125 GRADE A325 HOT DIPPED GALVANIZED PER ASTM A153. III. 1/2" TO BE F3125 GRADE A325 HOT DIPPED GALVANIZED PER ASTM A153. IV. 3/8"Ø TO BE A449 MECHANICAL GALVANIZED PER MAGNI 560. Ś V. 5/6"∅ TO BE A449 MECHANICAL GALVANIZED PER MAGNI 560 OR STAINLESS STEEL. VER VI. 1/4" TO BE A449 MECHANICAL GALVANIZED PER MAGNI 560 I. ALL COLD FORM STEEL TO BE PRE GALVANIZED PER A653 UNLESS OTHERWISE NOTED. 10. SPECIAL INSPECTIONS: THE FOLLOWING SPECIAL INSPECTIONS MAY BE REQUIRED PER IBC CHAPTER 17. CHECK WITH LOCAL BUILDING OFFICIAL FOR APPLICABILITY. (CONTINUOUS) (PERIODIC) A MARK l Innovation Place town, OH 44509-4023 ne (888) 380-8138 **ABBREVIATIONS** вс BEARING CRADLE C-C CD CTA DIM EOP HORIZ HDG PLN SWG EOT CENTER TO CENTER CRITICAL DIMENSION CENTRAL TUBE AXIS DIMENSION END OF PANEL HORIZONTAL HOT DIPPED GALVANIZED ğ PLAIN SWAGED 3207 Ingsto Phon END OF TUBE by the puring it by the purinform inform

BIFACIAL TWINPLUS MODULE SERIES

Phono[®] Solar

HIGH EFFICIENCY MONO-PERC BM6-10B-T

535-555W

EXTRAORDINARY PRODUCT PERFORMANCE

- Up to 25% additional power yield benefited from bifacial technology
- Lower power loss in cell connection and under shading conditions
- Competitive high-temperature performance with ameliorated temperature coefficient
- Higher power generation with multi-busbar and half-cut technology

HIGH QUALITY RELIABILITY

- Optimized electrical design lowers hot spot risk and operating current
- Corrosion resistance guarantees enhanced reliability in harsh environments
- Minimized Risk of microcrack and snail trail

EASY INSTALLATION

- Framed design improves mounting and racking method compatibility
- Safer and easier handling during transportation and installation

PID RESISTANT

• Industry-leading cell processing techonology and electrical design ensures solid PID resistance

IEC 61215, IEC 61730, UL 61730

- ISO 9001:2015 / Quality management system
- ISO 14001:2015 / Standards for environmental management system ISO 45001:2018 / International standards for occupational health & safety

	1000V	PS535M8	3-24/THB	PS540M	8-24/THB	PS545M	8-24/THB	PS550M8	3-24/THB	PS555M8	3-24/THB
Model	1500V	PS535M8	H-24/THB	PS540M8	H-24/THB	PS545M8	H-24/THB	PS550M8	H-24/THB	PS555M8	H-24/THB
Festing Co	ndition	STC	NOCT								
Rated Pow	ver (Pmpp)	535	398	540	402	545	405	550	409	555	413
Rated Curr	rent (Impp)	12.97	10.48	13.06	10.55	13.15	10.63	13.24	10.70	13.33	10.77
Rated Volt	age (Vmpp)	41.25	37.98	41.35	38.07	41.45	38.16	41.55	38.25	41.64	38.34
Short Circ	uit Current (Isc)	13.52	10.92	13.62	11.00	13.72	11.09	13.82	11.17	13.92	11.25
Open Circu	uit Voltage (Voc)	49.29	46.53	49.39	46.62	49.49	46.72	49.59	46.81	49.69	46.91
Module Ef	ficiency (%)	20	.71	20	.90	21	.10	21	.29	21	.48
	ficiency [%] lard Testing Conditi						.10	21	.29	21	.48

BIF	ACIAL ELECTRICAL VA	LUES				
5%	Maximum Power (W)	554	559	564	569	574
	Module Efficiency (%)	21.44	21.64	21.84	22.04	22.24
15%	Maximum Power (W)	591	597	602	608	613
	Module Efficiency (%)	22.88	23.10	23.31	23.53	23.74
25%	Maximum Power (W)	629	635	640	646	652
	Module Efficiency (%)	24.33	24.56	24.79	25.02	25.24

MECHANICAL CHA	RACTERISTI	cs	
Cell Type	Monocrysta	alline 182mm x 91mm	
	Length: 227	78mm (89.69 inch)	
Dimension (L× W × H)	Width: 1134	4mm (44.65 inch)	
	Height: 35r	nm (1.38 inch)	
Weight	27.8kg (61.	29 lbs)	
Front Glass	3.2mm Tou	ghened Glass	
Frame	Anodized A	Aluminium Alloy	
Cable	4mm² (IEC) (+):450mm	, ,(-):250mm or Customized Length	
Junction Box	IP 68 Rated		
TEMPERATURE RA	TINGS		
Voltage Temperature Co	pefficient	-0.28%/°C	
Current Temperature Co	pefficient	+0.05%/°C	
Power Temperature Co	efficient	-0.35%/°C	
Tolerance		0~+5w	
NOCT		45±2°C	

70±5%

ABSOLUTE MAXIMUM RATING	
Operating Temperature	From -40 to +85°C
Hail Diameter ៧ 80km/h	Up to 25mm
Front Side Maximum Static Loading	5400Pa
Rear Side Maximum Static Loading	2400Pa
Maximum Series Fuse Rating	30A
PV Module Classification	II
Module Fire Performance(UL 61730)	Type 4
Maximum System Voltage	DC 1000V/1500V

20' GP	40' HQ
155	620

Phono[®] Solar

Bifaciality

PHONO SOLAR TECHNOLOGY CO., LTD reserves the right to make necessary adjustments to the information described herein at any time without further notice. The specifications and certificates contained in this datasheet may deviate slightly from our actual products due to the on-going innovation and product enhancement. Please be sure to use the most recent version of data.

44 CELLS

ECTRICAL CHARACTERISTICS

 $\underbrace{\begin{array}{c}10\\ S4\end{array}}^{10} \underbrace{\frac{1}{4}-20}_{S4} \text{ LOCKNUT (S/C 7356)}$

COMPONENTS	
-S	
MATERIAL	FINISH
ASTM A992 GR. 50 STEEL	HDG PER ASTM A123
+/-55° ROTATION	ACRYLIC URETHANE COATING
ASTM A325	HDG PER ASTM F2329
ASTM F436	ASTM B695 MECH GALV.
ASTM A194 2H	HDG PER ASTM F2329
ASTM A572 (GR50 STEEL)	PREGALVANIZED G90
ASTM A572 (GR50 STEEL)	HDG PER ASTM A123
ASTM A325	HDG PER ASTM F2329
ASTM A563	HDG PER ASTM F2329
ASTM F436	ASTM B695 MECH GALV.
ASTM A500 GR.C GR. 60 Steel	COATED PER ASTM A1057 ZT 60
GRADE 5 STEEL	HDG PER ASTM F2329
ASTM A325	HDG PER ASTM F2329
ASTM A500 GR.C	PREGALVANIZED G90
ASTM A500 GR.C	PREGALVANIZED G90
ASTM A992 GR. 50 STEEL	HDG PER ASTM A123
ASTM A572 (GR50 STEEL)	PREGALVANIZED G90
ASTM A572 (GR50 STEEL)	PREGALVANIZED G90
ASTM A572 (GR50 STEEL)	PREGALVANIZED G90
-	-
ASTM A572 (GR50 STEEL)	PREGALVANIZED G90
ACETAL-RTP 0899X88199	BLACK WITH UV PROTECTION
ALUMINUM	ALUMINUM
FC-0208-50 PER MPIF STD 35	BLACK ZN-NI (ASTM B841 TYPE D&E GR. 8)
ASTM A449 (SAE J429) GRADE 5	BLACK ZN-NI (NINKLAD 1000B)
GRADE G STEEL	MAGNI 560
ASTM A653 SS GR.50	PREGALVANIZED G90
ASTM A449 GRADE 5	MAGNI 560
GRADE 2 STEEL	MAGNI 560
ASTM A325	HDG PER ASTM F2329
ASTM A563	HDG PER ASTM F2329
ASTM F436 1035/1065 SPRING STEEL	ASTM B695 MECH GALV.
GRADE 5 STEEL	ASTM B695 MECH GALV. HDG PER ASTM F2329
GRADE 5 STEEL	HDG PER ASTM F2329 HDG PER ASTM F2329
ASME B18.16.4	MAGNI 560
-	
ASTM A36 (GR 36 STEEL)	HDG PER ASTM A123
ASTM A36 (GR 36 STEEL)	PREGALVANIZED G90
ASTM A449 GRADE 5	MAGNI 560
NE SERIES STEEL	MAGNI 560
ASTM A653 SS GR. 50 STEEL	PREGALVANIZED G90

F 84 58 7307 VERTICAL RAIL CONNECTION CHANNEL LT G90

ALL BURN M. FL	Copying in part or as a whole is prohibited. This is only to be used by the party described in the "Title": saction. This is proprietary information of Northern States Metals. Co. All Rights Reserved. © Copyright, Northern States Metals, Co. All Rights Reserved.		ISO VIEW, BILL OF MATERIAL,	UEROGY ENFIELD SOLAR ONE ENFIELD, CT 06082	
EC		3207 Innovation Place Youngstown, OH 44509-4023	& hakdware details	DATE: 04/06/2023 JUB # 17071	Sheet
	RFV DESCRIPTION CHE HY DATE	Phone (888) 380-8138		DRAWN BY: NSZ DECK BY? JRD PAGE: S4 of S7	S7

