STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

IN RE:	:	
	:	
A PETITION FOR A DECLARATORY	:	PETITION NO
RULING ON THE NEED TO OBTAIN A	:	
SITING COUNCIL CERTIFICATE FOR THE	:	
PROPOSED MODIFICATION OF AN	:	
EXISTING WIRELESS	:	
TELECOMMUNICATIONS FACILITY AT	:	
52 NEW BRITAIN AVENUE, ROCKY HILL,	:	MARCH 7, 2022

PETITION FOR A DECLARATORY RULING: INSTALLATION HAVING NO SUBSTANTIAL ADVERSE ENVIRONMENTAL EFFECT

I. Introduction

CONNECTICUT

Pursuant to Sections 16-50j-38 and 16-50j-39 of the Regulations of Connecticut State Agencies ("R.C.S.A."), DISH Wireless, LLC ("DISH") hereby petitions the Connecticut Siting Council (the "Council") for a declaratory ruling ("Petition") that no Certificate of Environmental Compatibility and Public Need ("Certificate") is required under Section 16-50k(a) of the Connecticut General Statutes ("C.G.S.") for the modification of an existing wireless telecommunications facility at 52 New Britain Avenue, Rocky Hill, Connecticut (the "Existing Facility").

II. Existing Facility

The Existing Facility is located on an approximately ½ acre parcel owned by the Town of Rocky Hill, and is the site of the Rocky Hill Volunteer Fire Department - Station 2. The Facility consists of a 182-foot tall monopole and associated compound owned by Crown Castle.

Attachment 1 contains the owner's authorization permitting DISH to file this Petition. The Facility was originally approved by the Town of Rocky Hill on November 30, 1998 as documented in Attachment 2.

III. DISH Facility

DISH's proposed facility is illustrated on the plans submitted as **Attachment 3**. DISH proposes the shared use of the Existing Facility to provide FCC licensed services. DISH will install three (3) panel antennas and six (6) remote radiohead units (RRH) on a new platform mount installed at the centerline height of approximately 130' AGL.

DISH has confirmed that the Existing Facility is capable of supporting the addition of DISH's

antennas and tower mounted equipment, as documented in the tower Structural Analysis Report annexed hereto as **Attachment 4**, and once new mounts are installed as documented in the Mount Analysis Report annexed hereto as **Attachment 5**.

DISH's 5' x 7' lease area is located adjacent to the existing monopole. In order to accommodate its ground equipment, DISH will remove two (2) existing bollards and install four (4) new bollards around the lease area perimeter. Within its lease area, DISH will install a 5' x 7' steel platform for its ground equipment, supported by four (4) 12" x 12" footpads at grade.

IV. The Proposed Modification Will Not Have A Substantial Adverse Environmental Effect

1. Physical Environmental Effects

The attachment of DISH's antennas to the existing monopole, and the installation of radio and electrical equipment within the expanded equipment area will not involve a significant alteration to the physical and environmental characteristics of the Property. No native trees will need to be removed and no on-site or off-site wetlands or watercourses will be impacted by the proposed facility expansion.

2. Visual Effects

Given the height of the existing tower, 182' AGL, which has existing antennas at multiple levels, DISH's proposed antenna installation at a centerline height of approximately 130' AGL would have a minimal visual impact. The proposed equipment area will impact a small portion of the existing paved parking area and will also have a minimal visual impact.

3. FCC Compliance

Radio frequency ("RF") emissions resulting from AT&T's shared use of the Existing Facility will be well below the standards adopted by the Federal Communications Commission ("FCC"). Included in **Attachment 6** is a Radio Frequency Emissions Analysis Report prepared by EBI Consulting. This report confirms that the modified facility will operate well within the RF emission standards established by the FCC.

V. Notice to the City, Property Owner and Abutting Landowners

On March 7, 2022, a copy of this Petition was sent to The Honorable Lisa J. Marotta, Mayor, The Honorable Edward Charamut, Deputy Mayor, John Mehr, Town Manager, and Kim Ricci, Town Planner for the Town of Rocky Hill. A notice of DISH's intent to file this Petition was also sent to the owners of land that may be considered to abut the Property. Included in **Attachment 7** is a sample abutter's letter and the list of those abutting landowners who were sent notice.

VI. Conclusion

Based on the information provided above, the Petitioners respectfully requests that the Council issue a determination in the form of a declaratory ruling that the installation of a temporary tower at the Property will not have a substantial adverse environmental effect and does not require the issuance of a Certificate of Environmental Compatibility and Public Need pursuant to § 16-50k of the General Statutes.

Respectfully submitted,

Denise Sabo Northeast Site Solutions Agent for AT&T (860) 209-4690 denise@northeastsitesolutions.com

Attachments

Cc: The Honorable Lisa J. Marotta, Mayor Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067

The Honorable Edward Charamut, Deputy Mayor Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067

John Mehr, Town Manager Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067

Kim Ricci, Town Planner Town of Rocky Hill 761 Old Main Street Rocky Hill, CT 06067

Crown Castle - Tower Owner 3 Corporate Park Drive, Suite 101, Clifton Park, NY 12065

ATTACHMENT 1

tyler olt division

Situs: 52 NEW BRITAIN AVENUE

ROCKY HILL TOWN OF CO 2 FIREHOUSE 761 OLD MAIN STREET ROCKY HILL CT 06067-1517 057/353 12/15/1957 **CURRENT OWNER**

GENERAL INFORMATION

PARCEL ID: 6855

S 007392 057/353 08-354 C EXEMP Living Units
Neighborhood S
Alternate ID C
Vol / Pg
Map/Lot C
Zoning C

Class: 907

Card: 1 of 1

Printed: March 5, 2020

08-354-001 12/09/2012

			0.000,000,000,000,000
01 E	Тс		

Property Notes

	Influence % Value	314,000	į
Land Information	Size Influence Factors		· cotteso
	Size	AC 0.5700	
	Туре	Primary A	Total Acres: .57

	₹	Assessment Information	rmation		
	Assessed	Appraised	Cost	Income	Market
Land	219,800	314,000	314,000	0	0
Building	544,110	777,300	777,300	0	0
Total	763,910	1,091,300	1,091,300	0	0
Value Flag Gross Building:		Manual B3 Effect	Manual Override Reason Base Date of Value Effective Date of Value		

	Date Issued	03/15/18	10/31/17	09/10/16	10/28/15	06/18/15
	Source	From Conversion				
Entrance Information	Entry Code	Measured + 1visit				
	Q	ST				
	Date	10/04/12				
	Entrance Information	Entrance Information Source ID	ID Entry Code Source Source From Conversion From Conversion	ID Entry Code Source ST Measured + 1visit From Conversion	ID Entry Code Source ST Measured + 1visit From Conversion	Entrance Information ID

Date Issued Number 03/15/18 2018-352 10/31/17 2018-19E 09/10/16 2017-104	Number 2018-352 2018-198 2017-104	Price Purpose 25,000 CM 20,000 CM 20,000 MS	Remove And Replace (3) Antenna: Sprint To Add Three (3) Antennas. At&T To Add Three (3) Antennas. Patrofit Lights In Fire Station	% Complete
	2015-457	25,000 LL 44,000 SN	Replace Existing Message Boards	0 0

	Grantee	ROCKY HILL TOWN OF
		ition
Sales/Ownership History	Deed Reference Deed Type	057/353
	Validity	No Consideration
	Price Type	Vacant - Land Only Sale
	Transfer Date	12/15/57

₹	
$\overline{\mathbf{c}}$	
~	
Ш	
Σ	
₹	
5	
$\ddot{\circ}$	
•	
- 5	
(1)	
. 5	
100	
ر د ب	

Situs: 52 NEW BRITAIN AVENUE

L PROPERTY RECORD CARD

2019

Parcel Id: 6855

Class: 907

Card: 1 of 1

TOWN OF ROCKY HILL

Printed: March 5, 2020

Building Information

Year Built/Eff Year 1958 /
Building # 1
Structure Type Police/Fire Statio
Identical Units 1
Total Units 1 Grade B
Covered Parking
Uncovered Parking
DBA CO 2 FIREHOU

Line Type +/- Meas1 Meas2 # Stops Ident Units Line Type +/- Meas1 Meas2 # Stops Ident Units
Meas1 Meas2 # Stops Ident Units Line Type
o.
o.
o.
o.
+/- Meas1 Meas2 # Stops Ident Units
Meas2 # Stops Ident Units
Ident Units

Functional ကက

Plumbing Physical

Cooling Central Central

Heating Hot Air Hot Air

Partitions Normal Normal

Wall Height Ext Walls Construction Interior/Exterior Information

Brick & Con Fire Resistant Brick & Con Fire Resistant

2 2

260 Municipal 222 Municipal

4,199 3,074 Area

02

2 2

Perim Use Type

Int Fin

Line Level From - To

2 2

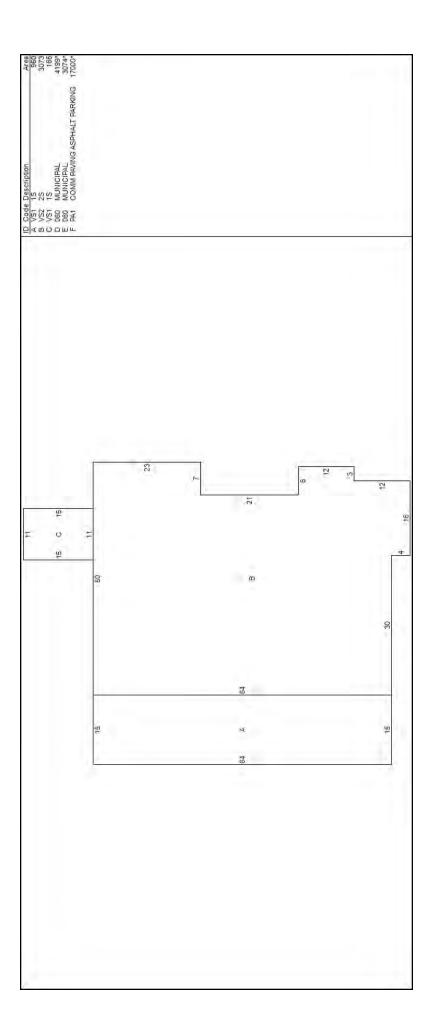
Normal Normal

	Line Ty	1 Asp	
	Use Value/RCNLD	456,520	299,700
uation Detail	% Good % Complete Use Value/RCNLD	09	09
Interior/Exterior Valuation Detail	%		
	Area Use Type	4,199 Municipal	3,074 Municipal
	Line	_	7

Line	Туре	Yr Blt	Yr Blt Meas1	Meas2	Qty	Area	Grade	Phy Fun	Value
_	Asph Pav	1958			_	17,000	O	⋖	21,040

2019 tyler commercial property record CARD

Parcel Id: 6855


Situs: 52 NEW BRITAIN AVENUE

Class: 907

Printed: March 5, 2020

Card: 1 of 1

TOWN OF ROCKY HILL

Addtional Property Photos

Situs: 52 NEW BRITAIN AVENUE

RECORD CARD 2019
Parcel Id: 6855

Class: 907

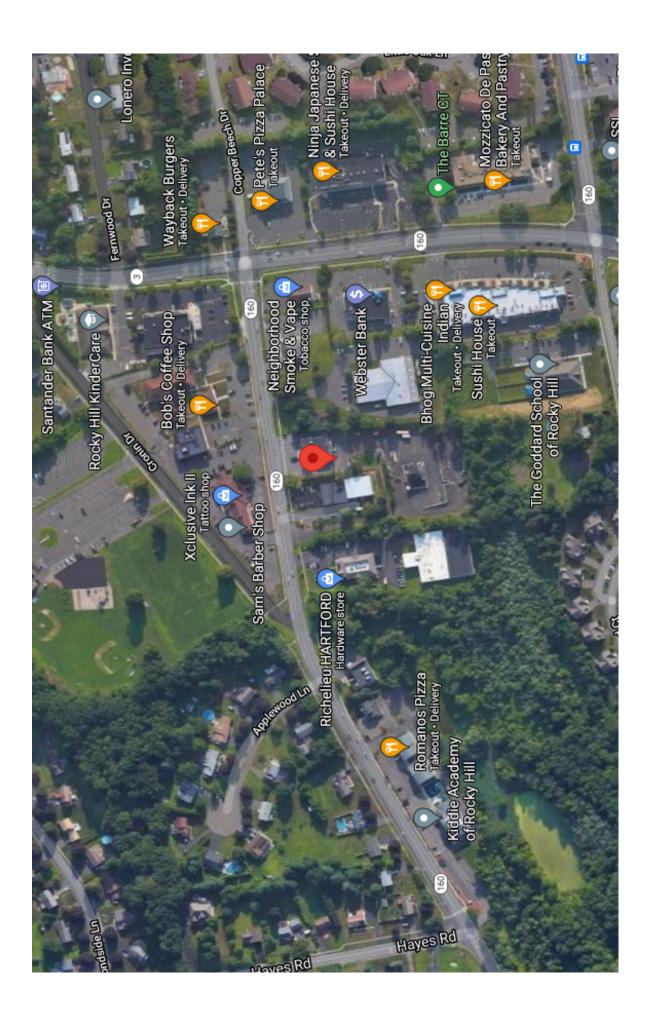
ass: 907

Card: 1 of 1

Printed: March 5, 2020

	Net Operating Income		
Income Detail (Includes all Buildings on Parcel)	Total Expenses		
	Other Expenses		
	Expense Adj		
	Expense Adj %		
	Effective Expense Expense Gross Model % Adj % Adj		
	Vac Additional Adj Income	0	
	Vac Adj		
	Vac		
ome Detail	Potential Vac Gross Model		
<u>n</u>	Econ Adjust		
	Income Rate		
	Units Net Area Income Rate	7,273	
	Units	0	
		Shell Income Use Groul 0	
	el ription	ncome ncome	
	Use Mod Inc Model Grp Type Mod Description	Shell	
	Ž Ž	_	
	Mod	σ	
	Use	00	

Building Cost Detail - Building 1 of 1		Total Gross Building Area	Replace, Cost New Less Depr 756 Percent Complete	Number of Identical Units Economic Condition Factor	Final Building Value 756	Value per SF 10
	Income					
	Rent					
Apartment Detail - Building 1 of 1	Per Bldg Beds Baths Units					
	Line Use Type					


Notes - Building 1 of 1

756,220 100 1

7,273

756,220

103.98	g on Parcel)	0.090000	7 273
Value per SF	Income Summary (Includes all Building on Parcel)	Total Net Income Capitalization Rate Sub total Residual Land Value Final Income Value	Total Gross Rent Area Total Gross Building Area

ATTACHMENT 2

Nº 13621

TOWN OF ROCKY HILL, CONN. BUILDING PERMIT

	Estimated Cost (structural) \$.009,707.00
	Fee \$waived
APPLICANTS PERMIT	November 30,19.98.
PERMISSION IS HEREBY GRANTED	TOConn.StruxInc860-677-9255
to erect a addition	***************************************
Location R.H. Fire Station #2 N.Britain	AveNo. of families or units
ZonedLot Area	Frontage
Front yard setbackRight side yard.	Left side yard
Rear yardDimensions of building	gNo. stories
	OwnerTown of Rocky Hill
The recipient of this permit accepts this permit	t on the condition that he, as owner or as representing the ordinances of the Town of Rocky Hill and the State Statutes
License No	Building Official
Permission must be obtained from the Office of in the highway. Surface and roof water must not be of	the Town Engineer before Building Materials can be placed connected with the Storm Sewer.

699 OLD MAIN STREET • PO BOX 657 • ROCKY HILL, CT 06067 • FAX (860) 258-7638

August 27, 2001

To: Jennifer Charland

From: J-P. Langlois, Building Official

Re: Communication Tower, 52 New Britain Avenue

Dear Jennifer;

This letter is in reference to a communication tower that was installed under building permit #13621 at 52 New Britain Avenue in Rocky Hill, Connecticut.

A final inspection was performed on January 25, 2001 and was approved.

Should you have any questions, please feel free to contact the Building Department At (860) 258-2745.

Birthplace of the Brigantine "Minerva"

ATTACHMENT 3

dish wireless...

DISH Wireless L.L.C. SITE ID: BOBDL00067A

DISH Wireless L.L.C. SITE ADDRESS:

52 NEW BRITAIN AVENUE ROCKY HILL, CT 06067

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES, NOTHING IN THESE PLANS IS TO BE CONSTRUCT TO PERMIT WORK NOT CONFORMING TO THESE CODES.

CODE TYPE
BUILDING
BUILDING
2018 CT STATE BUILDING CODE/2015 INC W/ CT AMENDMENTS
ELECTRICAL
2018 CT STATE BUILDING CODE/2017 INC W/ CT AMENDMENTS

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
M-1	ABUTTER MAP
M-2	WETLAND MAP
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
N-3	EQUIFMENT FENTIONS NOT IT-TOWNE DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIPMENT. CONTRACTOR SHALL YERRIY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROLECT GENERALLY CONSISTS OF THE FOLLOWING:

- TOWER SCOPE OF WORK:

 INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)

 INSTALL (7) PROPOSED ANTENNA PLATFORM MOUNT

 INSTALL PROPOSED MURPERS

 INSTALL OF PROPOSED REWL (2 PER SECTOR)

 INSTALL (7) PROPOSED HER

- GROUND SOPE OF WORK:

 INSTALL (1) PROPOSED METAL PLATFORM
 INSTALL (1) PROPOSED HE BRIDGE
 INSTALL (1) PROPOSED PEO BRIDGE
 INSTALL (1) PROPOSED POWER CONDUIT
 INSTALL (1) PROPOSED POWER CONDUIT
 INSTALL (1) PROPOSED POWER CONDUIT
 INSTALL (1) PROPOSED TECTO CONDUIT
 INSTALL (1) PROPOSED TECTO CONDUIT
 INSTALL (1) PROPOSED TECTO WINWTOH (F. PECUIPED)
 INSTALL (1) PROPOSED REER NO (F. REQUIPED)
 INSTALL (1) PROPOSED REER NO (F. REQUIPED)
 INSTALL (1) PROPOSED REER NO (F. REQUIPED)
 INSTALL (1) PROPOSED REER NO (F. REQUIPED)

- INSTALL (1) PROPOSED METER SOCKET

SITE PHOTO

LINDERGROUND SERVICE ALERT CRYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455

CALL 2 WORKING DAYS LITTLITY NOTIFICATION PRIOR TO CONSTRUCTION

811

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION, A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANTARY SEMER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCISKINGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

SITE INFORMATION PROJECT DIRECTORY DISH Wireless L.L.C. 699 OLD MAIN STREET 5701 SOUTH SANTA FE DRIVE ROCKY HILL, CT 06067 LITTLETON, CO 80120 TOWER TYPE: MONOPOLE TOWER OWNER: CROWN CASTLE 2000 CORPORATE DRIVE TOWER CO SITE ID: 842872 CANONSBURG, PA 15317 556625 (877) 486-9377 COUNTY: HARTFORD SITE DESIGNER: INFINIGY 2500 W. HIGGINS RD. STE. 500 HOFFMAN ESTATES, IL 60169 LATITUDE (NAD 83); 41" 39" 36 89" N 41.660247 N (847) 648-4068 LONGITUDE (NAD 83): 72° 40' 50.58" W ZONING JURISDICTION: CONNECICUT SITTING COUNCIL SITE ACQUISITION: CORWIN DIXION CORWIN, DIXION@CROWNCASTLE.0 ZONING DISTRICT: C-COMMERCIAL CONSTRUCTION MANAGER: JAVIER SOTO PARCEL NUMBER: ROCK-000008-000000-00035 (617) 839-6514 OCCUPANCY GROUP: RF ENGINEER: BOSSENER CHARLES BOSSENER CHARLES@DISH COL CONSTRUCTION TYPE: II-R

DIRECTIONS

DIRECTIONS FROM HARTFORD-BRAINARD AIRPORT:

NORTHEAST UTILITES

POWER COMPANY:

TELEPHONE COMPANY:

DEPART AND HEAD TOWARD MAXIM RD,TURN LEFT ONTO MAXIM RD,BEAR RIGHT ONTO BRAINARD RD,TURN RIGHT ONTO ARPORT RD,TAKE THE RAMP ON THE LEFT FOR CT-15 SOUTH / 19-1 SOUTH / 19-5 SOUTH AND HEAD TOWARD NEW HAVEN / WETHERSPELD,AT BOTT 25S, HEAD RIGHT ON THE RAMP FOR CT-3 SOUTH TOWARD WETHERSPELD,TUNN RIGHT ONTO CT-160 / NEW BRITAIN AVE,TURN LEFT,ARRIVE AT 52 NEW BRITAIN AVETURN LE

VICINITY MAP

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY**&** FROM ZERO TO INFINIGY

the solutions are endless 2500 W. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.HEINIGY.COM

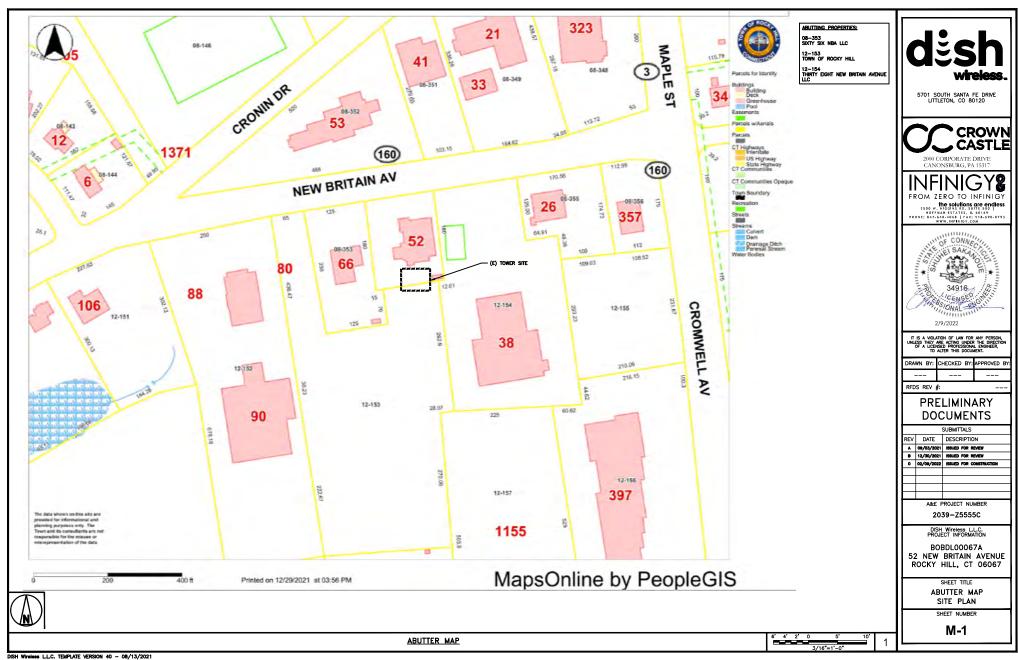
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	-				

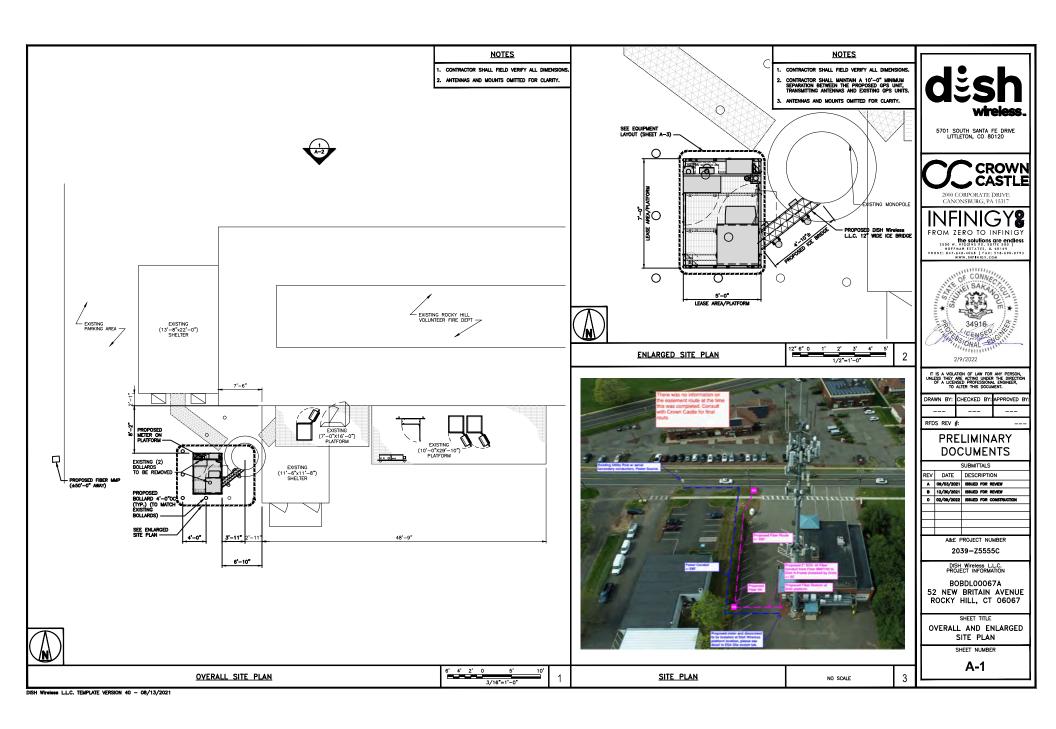
PRELIMINARY **DOCUMENTS**

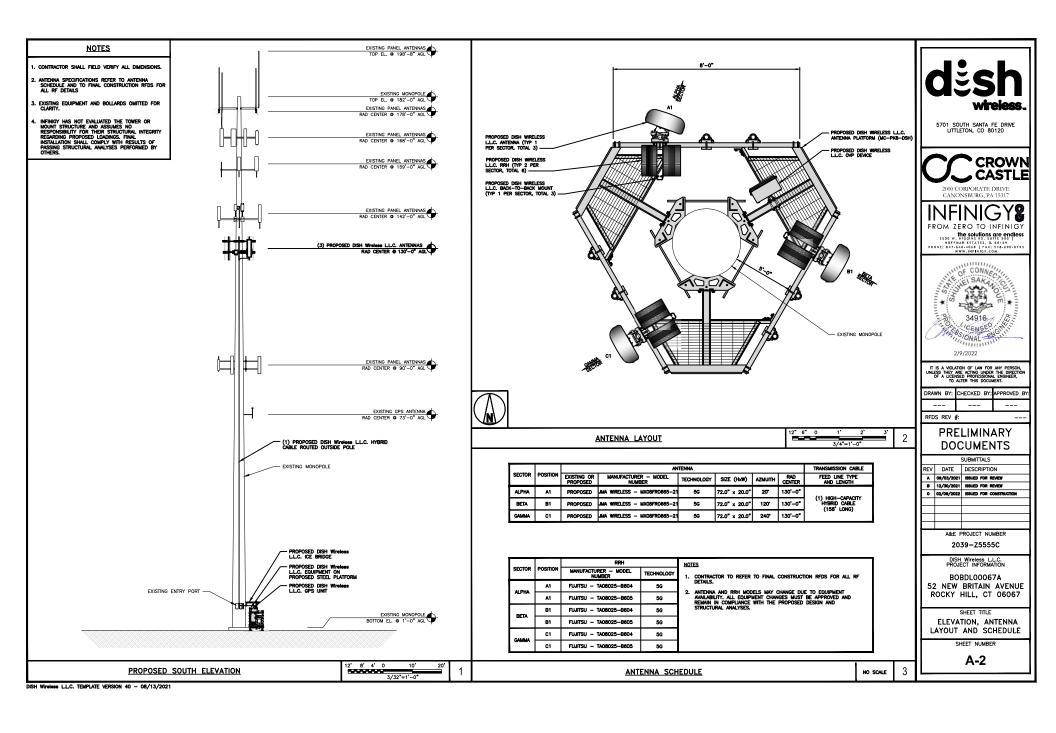
	SUBMITTALS				
REV	DATE	DESCRIPTION			
A	09/03/2021	ISSUED FOR REVIEW			
В	12/30/2021	ISSUED FOR REVIEW			
0	02/09/2022	ISSUED FOR CONSTRUCTION			
A&E PROJECT NUMBER					

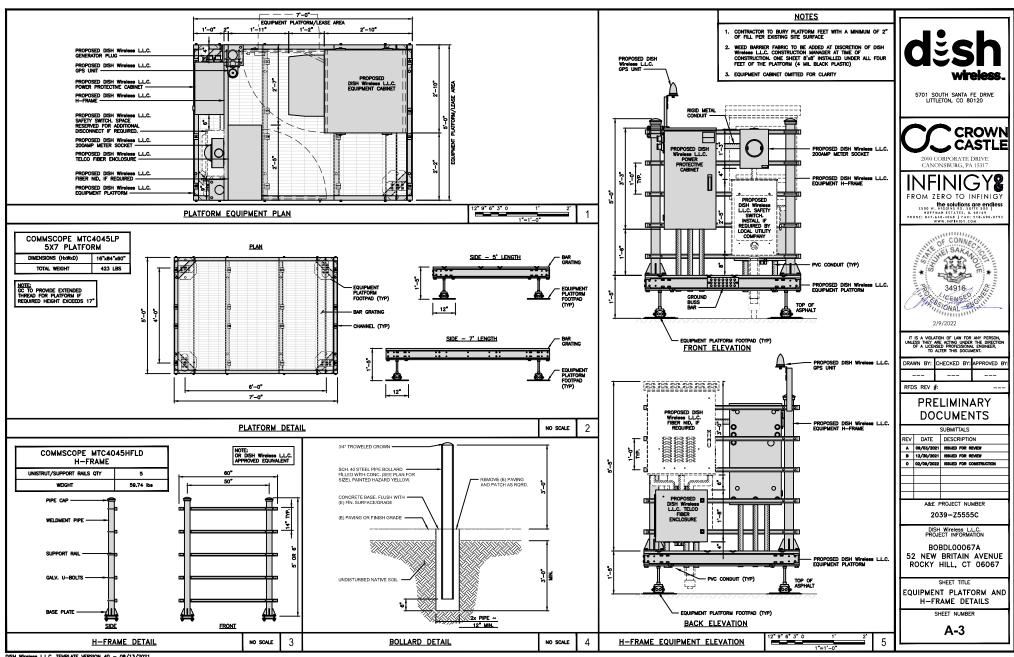
2039-Z5555C

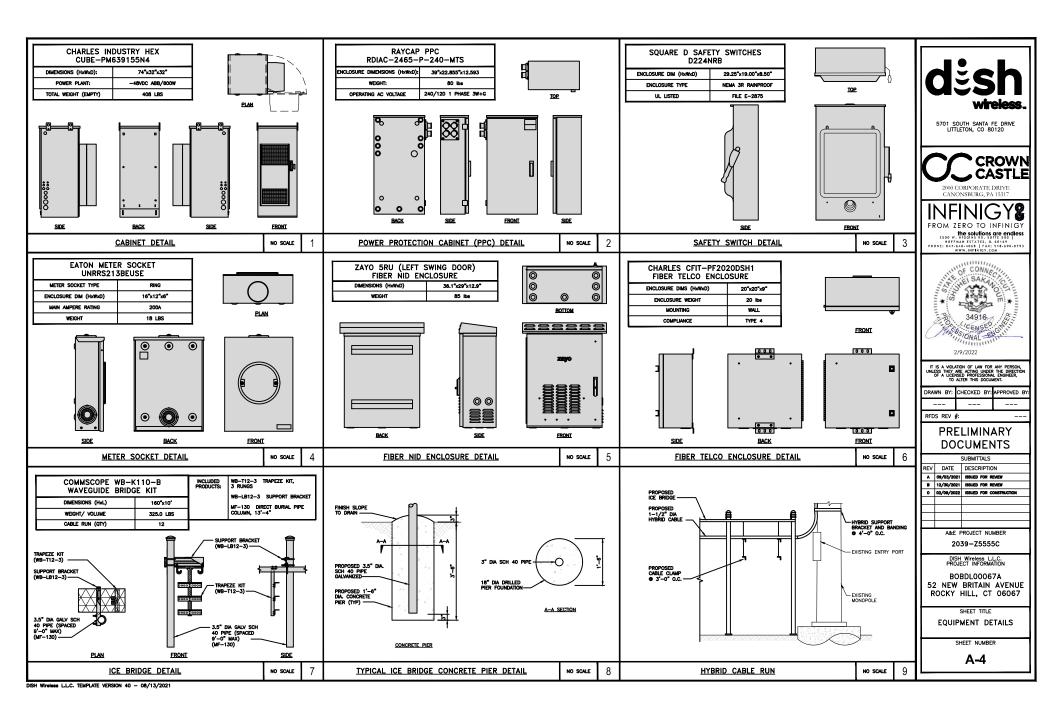

DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00067A

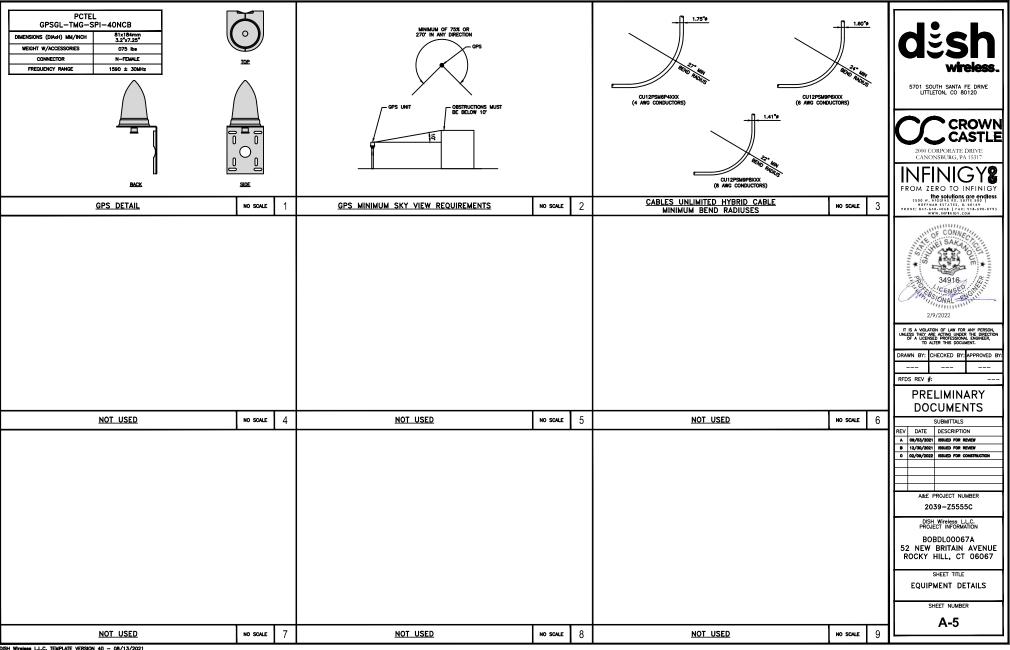
52 NEW BRITAIN AVENUE ROCKY HILL, CT 06067

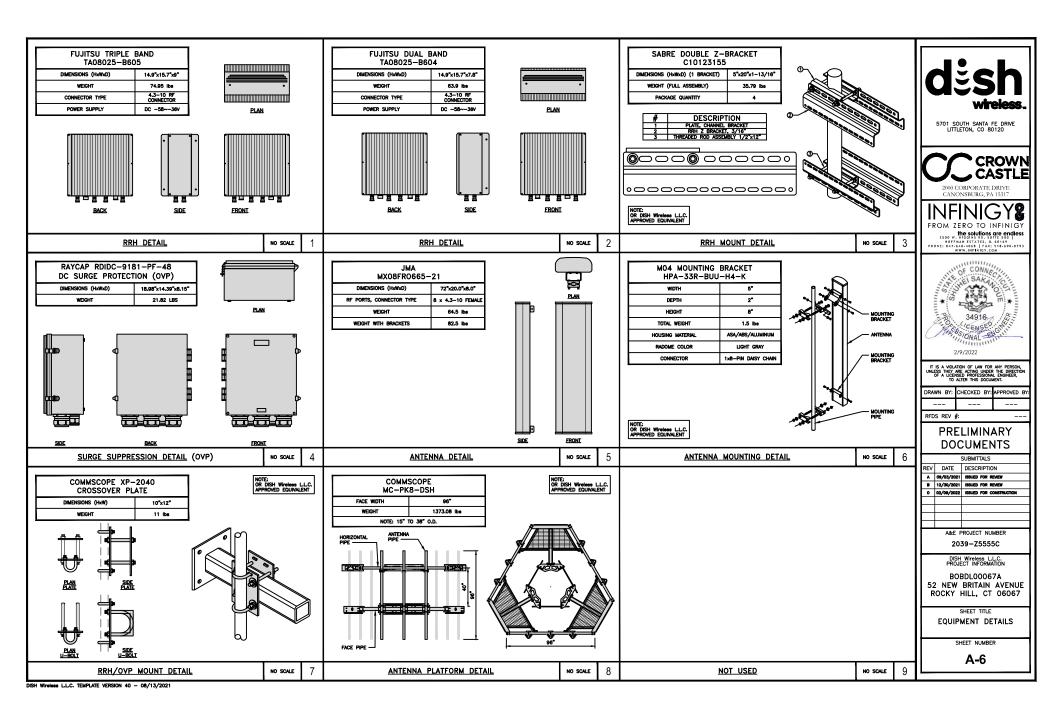

> SHEET TITLE TITLE SHEET

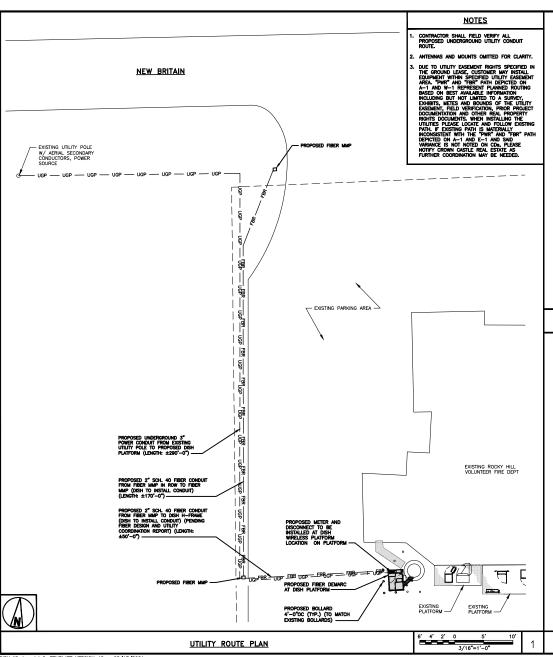

SHEET NUMBER

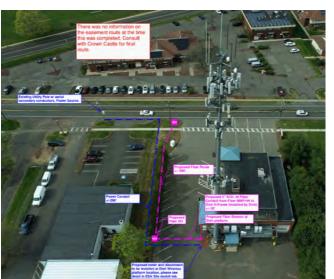

T-1











DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

- CONTRACTOR SHALL INSPECT THE DISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARSING DURNON THE BID PERSON ON REGARDS TO THE CONTRACTOR'S FUNCTIONS. THE SCOPE OF WORK OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURNO THE BID PERSON WITH THE PROJECT MANAGER POR CHARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NET STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS.
 VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT COMBINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES

OVERALL UTILITY ROUTE PLAN

NO SCALE

3

dësh wireless

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY**&**

FROM ZERO TO INFINIGY
the solutions are endless
solutions on suite soci |
HOFFMAN ESTATES, II. 60169
PHONE: 847-646-4988 | TAXI: 318-690-0793
WWW.INFINIOY.COM

2/9/2022

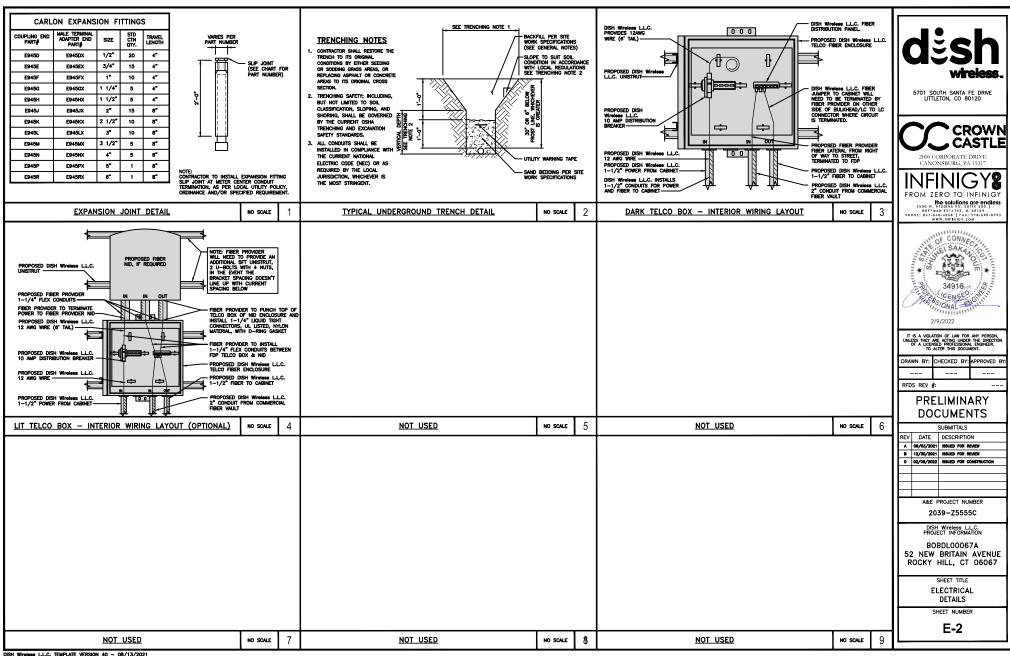
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:		CHECKED	BY:	APPROVED	BY:
RFDS REV #:					

PRELIMINARY DOCUMENTS

	SUBMITTALS				
REV	DATE	DESCRIPTION			
A	09/03/2021 ISSUED FOR REVIEW				
	12/30/2021	ISSUED FOR REVIEW			
٥	02/09/2022	ISSUED FOR CONSTRUCTION			

A&E PROJECT NUMBER 2039-Z5555C


DISH Wireless L.L.C. PROJECT INFORMATION


BOBDL00067A 52 NEW BRITAIN AVENUE ROCKY HILL, CT 06067

SHEET TITLE
ELECTRICAL/FIBER ROUTE
PLAN AND NOTES

SHEET NUMBER

E-1

NOTES

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF BOX PER 2014/17 NEC TABLE 310.15(8)(3)(a) OR 020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

#12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358.
0.5" CONDUIT - 0.122 90. IN AREA
0.75" CONDUIT - 0.215 90. IN AREA
2.0" CONDUIT - 1.316 90. IN AREA
3.0" CONDUIT - 1.30° 30. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND = 0.0633 SQ, IN

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND = 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND TOTAL = 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

NO SCALE

RFDS REV #:

B 12/30/2021 ISSUED FOR REMEW 0 02/09/2022 ISSUED FOR CONSTRUCTION

2039-Z5555C

DISH Wireless L.L.C. PROJECT INFORMATION

52 NEW BRITAIN AVENUE ROCKY HILL, CT 06067

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

3

E-3

PROPOSED CHARLES PANEL SCHEDULE ABB/GE INFINITY RECTIFIER 1 ABB/GE INFINITY RECTIFIER 2 ABB/GE INFINITY RECTIFIER 3 180 VOLTAGE AMPS 180 180 200A MCB, 14, 24 SPACE, 120/240V MB RATING: 65.000 AIC 11520 11520 L1 L2 11700 11700 VOLTAGE AMPS

PANEL SCHEDULE

DISH Wireless L.L.C. TEMPLATE VERSION 40 - 08/13/2021

NO SCALE

2

PPC ONE-LINE DIAGRAM

NOT USED

NO SCALE

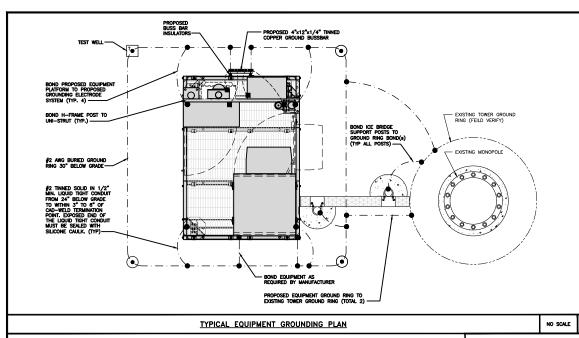
5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 CROWN CASTLE

CANONSBURG, PA 15317

VFINIGY**&**

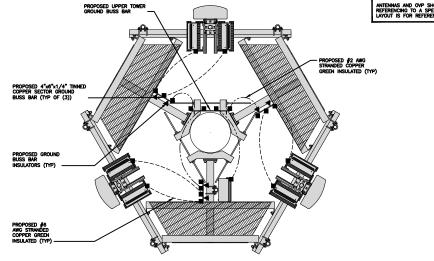
FROM ZERO TO INFINIGY the solutions are endless HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793

2/9/2022


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER.

J	TO ALTER THIS DOCUMENT.					
	DRAWN	BY:	CHECKED	BY:	APPROVED	BY

A&E PROJECT NUMBER


BOBDL00067A

SHEET TITLE

NOTES

ANTENNAS AND OVP SHOWN ARE GENERIC AND NO REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE PURPOSES ONLY

TYPICAL ANTENNA GROUNDING PLAN

 EXOTHERMIC CONNECTION TEST GROUND ROD WITH INSPECTION SLEEVE ■ MECHANICAL CONNECTION ---- #6 AWG STRANDED & INSULATED GROUND BUS BAR - - #2 AWG SOLID COPPER TINNED GROUND ROD BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless LLC. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURES'S PPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- EXTERIOR GROUND RING, #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING. lacksquare
- OR FOOTING.

 TOMER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GLY ANCHORS, WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE SULDING, AT LEAST TWO BOOKD SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BULDING, AT LEAST TWO BOOKD SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE RING BETWEEN THE TOWER RING GROUND SYSTEM AND THE RING BETWEEN THE TOWER RING BETWEEN SYSTEMS THE RING BETWEEN BOOKD SHALL BE BETWEEN THE RING BETWEEN BOOKD SHALL BE BUILDING. (o)
- BRILDING. ILLEST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE COMMENS OF THE BINLIDING. ILLEST AT TOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE COMMENS OF THE BINLIDING.

 BROUND RING UL LISTED COPPER CLAD STEEL MINIMAIN 1/2 DIAMETER BY EIGHT FEET LONG, GROUND RING CONDUCTOR.

 BROWN SHALL BE INSTALLED WITH INSPECTION SELEVES, GROUND ROSS SHALL BE ROMEN TO THE DEPTH OF GROUND RING CONDUCTOR.

 BROWN SHALL BE INSTALLED WITH \$2 AND SELEVES, AND OTHERWISE STRANGED GREEN RISULATED COPPER CONDUCTORS. BOND TO THE RITERIOR GROUND RING WITH 1/2 AND SHALL BE SHALL BE BOND ARE MORE WITH \$2 AND SHALL BE SHALL BE REFERENCE GROUND BAR ARE BOTH PRESENT, IN CROWN SHALL BE COMMENTED TO THE HARD-HALF AND TO THE INTERIOR GROUND RING RESENT, IN CROWN SHALL BE COMMENTED TO THE HARD-HALF AND TO THE INTERIOR GROUND RING RESENT OF THE CELL SITE BUILDING, BOND TO GROUND BANGE, LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING MING WITH 1/4 AND TO THE COMMENT OF THE FORE COMMENTED TO THE HARD SHALL BE THE ENTRANCE OF THE CELL SITE BUILDING, BOND TO GROUND RING WITH 1/4 AND TO THE WITH SHALL BUT THE SHALL BUT THE CROONED BE SHALL BE BE BONDED TO THE CELL BASE SHALL BE BONDED TO THE COROLAD RING. WITH A \$2 AND SOLD THROUGH CROUND RING. WITH A \$1 AND SOLD THROUGH CROUND RING WITH A \$2 AND SOLD THROUGH CROUND RING. WITH A \$1 AND SOLD THROUGH CROUND RING. WITH A \$2 AND

- Θ

- TINNED COPPER GOODUCTOR, PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRILDAE LEW MUN BUNCELU

 GROUND RING,

 DRING ALL DC POWER SYSTEM CHANGES INCLIDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS
 OR ADDITIONS, RECLIBER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BRITERY REPLACEMENTS AND

 KINSTALLATIONS OR CHANGES TO COMMENTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE
 COMMINIONS OR CHANGES TO COMMENTER SYSTEMS AND SHALL BY THE REPLACEMENTS AND
 COMMINIONS WERE ALL DC POWER SYSTEMS ARE EQUIPED WITH A MOSTER DC SYSTEM RETURN GROUND
 REFERENCE GROUND BAR
 TOWNER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.
 REFER TO DISH WINNESS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

GROUNDING KEY NOTES

- (M)
- N
- 0
- P

2

NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

VFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. Higgins RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTI OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS COCKLENT

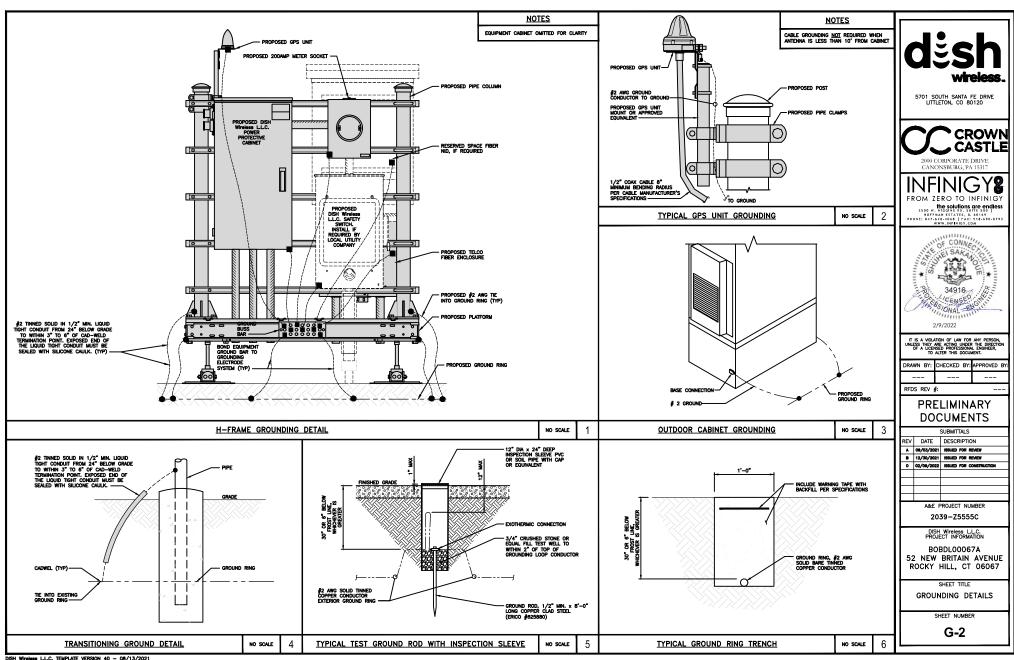
DRAWN BY:	CHECKED BY:	APPROVED BY:			
prop pro /					

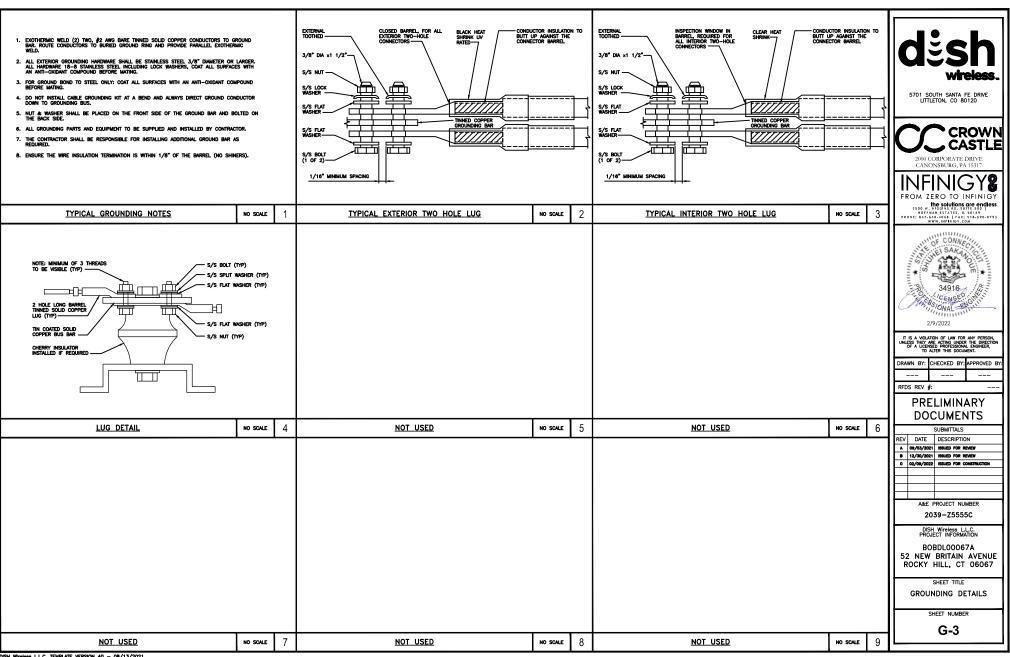
PRELIMINARY DOCUMENTS

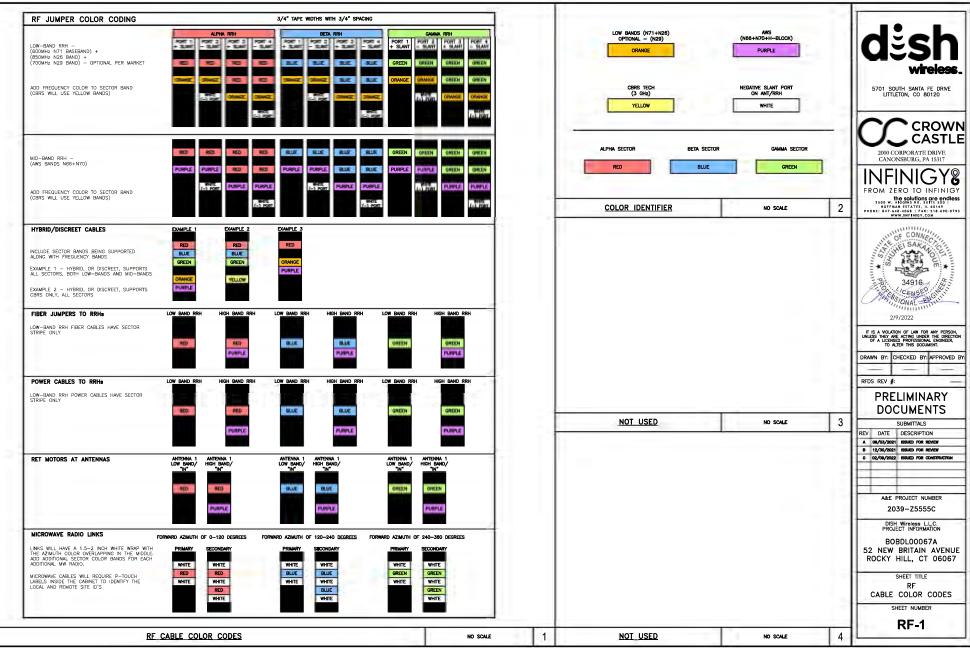
	SUBMITTALS			
REV DATE DESCRIPTION		DESCRIPTION		
^	A 09/03/2021 ISSUED FOR REMEW			
	12/30/2021	ISSUED FOR REVIEW		
•	02/09/2022	ISSUED FOR CONSTRUCTION		
Г	A&E PROJECT NUMBER			

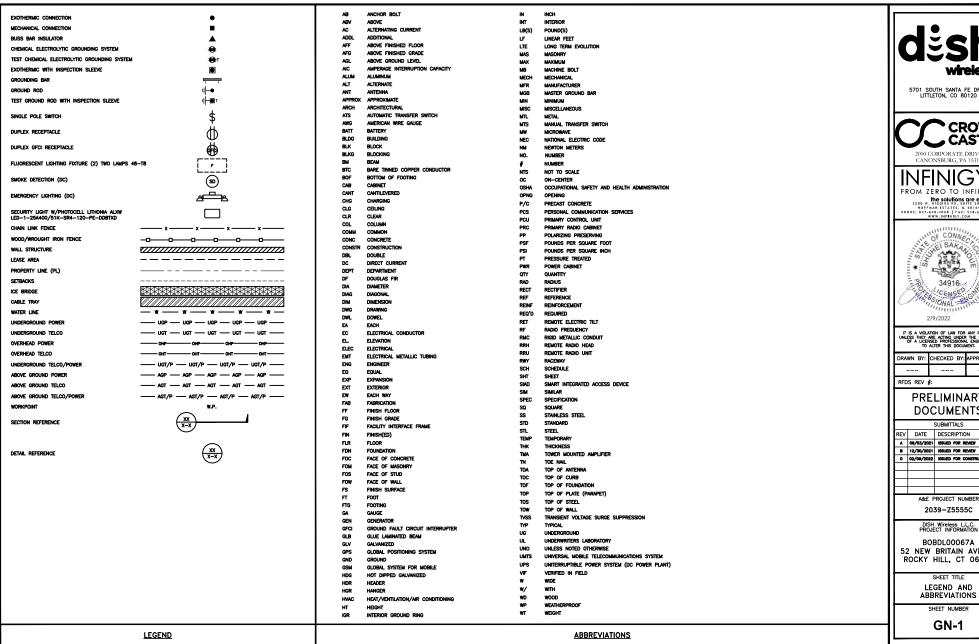
2039-Z5555C

BOBDL00067A 52 NEW BRITAIN AVENUE ROCKY HILL, CT 06067


> SHEET TITLE GROUNDING PLANS AND NOTES


> > SHEET NUMBER


3


NO SCALE

G-1

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

INFINIGY

FROM ZERO TO INFINIGY the solutions are endless

DRAWN BY:	CHECKED B	Y: APPROVED BY:

PRELIMINARY DOCUMENTS

	SUBMITTALS					
REV	DATE	DESCRIPTION				
٨	09/03/2021	ISSUED FOR REVIEW				
•	12/30/2021	ISSUED FOR REVIEW				
۰	02/09/2022	ISSUED FOR CONSTRUCTION				

2039-Z5555C

BOBDL00067A 52 NEW BRITAIN AVENUE ROCKY HILL, CT 06067

> LEGEND AND ABBREVIATIONS

> > SHEET NUMBER

GN-1

SITE ACTIVITY REQUIREMENTS:

- NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED
 (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless
 LLC. AND TOWER OWNER NOC & THE DISH Wireless LLC. AND TOWER OWNER CONSTRUCTION MANAGER.
- "LOOK LIP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMR REQUIREMENT.
- THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CHIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless LL.C. AND DISH Wireless LL.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.
- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION), AND DISH WIFIGES LLC. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TH—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless LL.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless LL.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019—A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless LL.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY HALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless LLLC. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY RASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEPUTE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, MID/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF DESCRIPTION.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPUSHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, RECULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE
 AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE
 OF INSTALLATION.
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DEM
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY, ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

FROM ZERO TO INFINIGY

the solutions are endless
2500 W, HIGGINS RD, SUITE 500 |
HOFFMAN ESTATES, IL 60169

2/9/2022

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRA	WN	BY:	CHECKED	BY:	APPROVED	BY:

PRELIMINARY

	DOCUMENTS				
	SUBMITTALS				
REV	DATE	DESCRIPTION			
Α.	09/03/2021	ISSUED FOR REMEW			
	12/30/2021	ISSUED FOR REVIEW			
٥	02/09/2022	ISSUED FOR CONSTRUCTION			
Г	A&F F	PROJECT NUMBER			

2039-Z5555C

PROJECT INFORMATION

BOBDL00067A 52 NEW BRITAIN AVENUE ROCKY HILL, CT 06067

SHEET TITLE
GENERAL NOTES

SHEET NUMBER

GN-2

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000
- ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'T AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON
- · CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- · CONCRETE EXPOSED TO EARTH OR WEATHER:
- . #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
 CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- . REAMS AND COLUMNS 1-1/2
- A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (I.e. PANEL BOARD AND CIRCUIT ID'S).
- PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (\$14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (∦14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
 ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR
- EXPOSED INDOOR LOCATIONS.

 16. ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO

ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FIUSH TO FINISH GRADE PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE RON LOCKHUT ON OUTSIDE AND INSIDE.

- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317 INFINICY® FROM ZERO TO INFINICY

the solutions are endless 2500 W, HIGGINS RD, SUITE 500 | HOFFMAN ESTATES, IL 60169 HONE: 847-648-4068 | FAX: 518-690-0793

2)7/2022

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:

RFDS REV #:

PRELIMINARY DOCUMENTS

SUBMITTALS				
REV	DATE DESCRIPTION			
A	09/03/2021	ISSUED FOR REVIEW		
	12/30/2021	ISSUED FOR REVIEW		
٥	02/00/2022	ISSUED FOR CONSTRUCTION		
	A&E PROJECT NUMBER			

2039-Z5555C

DISH Wireless L.L.C. PROJECT INFORMATION

BOBDL00067A 52 NEW BRITAIN AVENUE ROCKY HILL, CT 06067

SHEET TITLE
GENERAL NOTES

SHEET NUMBER

GN-3

GROUNDING NOTES:

- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL
- BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR
- GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED FOLIPMENT GROUND CONDUCTOR, STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS
- EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS: #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- ALL EXTERIOR GROUND CONDUCTORS RETWEEN FOLIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- ALIMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

 USE OF 90' BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45' BENDS CAN BE ADEQUATELY SUPPORTED.
- EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS
- ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND
- APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND
- CONNECTIONS ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING. IN ACCORDANCE WITH THE NEC.
- BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND
- GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT OF MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e.,
- NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END
- OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM. THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER, ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

INFINIGY

FROM ZERO TO INFINIGY the solutions are endless

2/9/2022

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	-				

RFDS REV #:

PRELIMINARY **DOCUMENTS**

	SUBMITTALS					
REV	DATE	DESCRIPTION				
A	09/03/2021	ISSUED FOR REVIEW				
	12/30/2021	ISSUED FOR REVIEW				
٥	02/09/2022	ISSUED FOR CONSTRUCTION				

A&E PROJECT NUMBER 2039-Z5555C

DISH Wireless L.L.C. PROJECT INFORMATION

BOBDL00067A 52 NEW BRITAIN AVENUE ROCKY HILL, CT 06067

> SHEET TITLE GENERAL NOTES

SHEET NUMBER GN-4

DISH Wireless L.L.C. TEMPLATE VERSION 40 - 08/13/2021

ATTACHMENT 4

Date: September 03, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 724-416-2000

Subject: Structural Analysis Report

Carrier Designation: **DISH Network Co-Locate**

> Site Number: BOBDL00067A Site Name: CT-CCI-T-842872

Crown Castle Designation: **BU Number:** 842872

> Site Name: **ROCKY HILL** JDE Job Number: 650057 **Work Order Number:** 1987177 **Order Number:** 556625 Rev. 1

Engineering Firm Designation: Crown Castle Project Number: 1987177

Site Data: 52 NEW BRITAIN AVENUE, ROCKY HILL, HARTFORD County, CT

Latitude 41° 39' 36.89", Longitude -72° 40' 50.58"

182 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity-94.4%

This analysis utilizes an ultimate 3-second gust wind speed of 118 mph as required by the 2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Subhash Mandal

Respectfully submitted by:

Maribel Dentinger Maribel Dentinger, P.E. Senior Project Engineer

Maribel Dentinger 09:52:51 -04'00'

Digitally signed by Maribel Dentinger Date: 2021.09.07

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC7
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 182 ft Monopole tower designed by ENGINEERED ENDEAVORS, INC. The tower has been modified multiple times to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 118 mph

Exposure Category:CTopographic Factor:1Ice Thickness:1.5 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elovation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)			
		3	fujitsu	TA08025-B604					
	130.0	130.0	130.0	3	fujitsu	TA08025-B605			
130.0				130.0	130.0	130.0	130.0	130.0 3 jma wireless	jma wireless
		1	raycap	RDIDC-9181-PF-48					
		1	tower mounts	Commscope MC-PK8-DSH					

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
	188.0	2	dbspectra	DS4C06F36D-D			
	185.0	1	austin antenna company	APC-1362			
	100.0	1	austin antenna company	APC-2163			
178.0	184.0	184.0	1	austin antenna company	APC-301	12	7/8
			1	austin antenna company	APC-4065		
	178.0	1	tower mounts Miscellaneous [NA 502-3]				
	177.0	2	radiowaves				
	175.0	1	telewave	ANT450D6-9			
		3	cci antennas	DMP65R-BU6D w/ Mount Pipe		ĺ	
400.0		3	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe	6 2	1-5/8 RC	
168.0	168.0	4	cci antennas	TPX-070821	3	7/8 3/8	
		3	ericsson	RRUS 32 B2	4	3/4	
		3	ericsson	RRUS 32 B2_CCIV2			
		3	ericsson	RRUS 32 B66			

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
	3		ericsson	RRUS 4449 B5/B12			
		3	ericsson	RRUS 4478 B14_CCIV2	-	Ì	
		3	ericsson	RRUS E2 B29			
		3	ericsson	RRUS-32 B30			
		3	powerwave technologies	7770.00 w/ Mount Pipe			
		6	powerwave technologies	LGP21401			
		3	quintel technology	QS66512-2 w/ Mount Pipe			
		1	raycap	DC6-48-60-18-8C			
		2	raycap	DC6-48-60-18-8C-EV			
		1	raycap	DC6-48-60-18-8F			
		1	tower mounts	Platform Mount [LP 304- 1_KCKR-HR-1]			
		3	ericsson	AIR 32 B2A B66AA_T-MOBILE w/ Mount Pipe			
5 5			3	ericsson	AIR6449 B41_T-MOBILE		
	159.0	3	ericsson	RADIO 4415 B25_TMO			
157.0	100.0	3	ericsson	RADIO 4449 B71 B85A_T- MOBILE	3	1-5/8	
		3	rfs celwave	APXVAALL24_43-U- NA20_TMO w/ Mount Pipe			
	157.0	3	tower mounts	8' x 2" Mount Pipe			
		1	tower mounts	Platform Mount [LP 305- 1_KCKR-HR-1]			
	144.0	3	alcatel lucent	1900MHZ RRH (65MHZ)			
	142.0	1	tower mounts	Pipe Mount [PM 601-3]			
142.0	140.0	3	alcatel lucent	800 EXTERNAL NOTCH FILTER	-	-	
		3	alcatel lucent	800MHZ RRH			
		3	powerwave technologies	TD-RRH8X20-25			
140.0	142.0	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	1 3	7/8 1-1/4	
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe		1-1/-	
	140.0	1	tower mounts	Platform Mount [LP 1201-1]			
	93.0	1	tower mounts	Miscellaneous [NA 507-1]			
	92.0	6	samsung telecommunications	MT6407-77A w/ Mount Pipe			
90.0		3	antel	BXA-70080-4BF-EDIN-0 w/ Mount Pipe	1 7	1/2 1-5/8	
	90.0	6	commscope NHH-65B-R2B w/ Mount Pipe				
		1	gps	GPS_A			
		1	rfs celwave	DB-T1-6Z-8AB-0Z			

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	samsung telecommunications	RFV01U-D1A		
		3	samsung telecommunications	RFV01U-D2A		
		1	tower mounts	Platform Mount [LP 1201-1]		
	88.0	3	samsung telecommunications	CBRS		
73.0		1	gps	GPS_A	1	1/2
73.0	73.0	1	tower mounts	Side Arm Mount [SO 701-1]		1/4

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	4713251	CCISITES
4-POST-MODIFICATION INSPECTION	4904967	CCISITES
4-POST-MODIFICATION INSPECTION	6040534	CCISITES
4-POST-MODIFICATION INSPECTION	6647989	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	4713252	CCISITES
4-TOWER MANUFACTURER DRAWINGS	4844402	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	4740398	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	4904956	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	6525881	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are included in Appendix C.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Elevation (ft)	Component Type	Size	Critical Element	P (K)	Pass / Fail
182 - 177	Pole	TP15.678x14.5x0.25	Pole	4.5%	Pass
177 - 172	Pole	TP16.856x15.678x0.25	Pole	7.8%	Pass
172 - 167	Pole	TP18.033x16.856x0.25	Pole	13.6%	Pass
167 - 162	Pole	TP19.211x18.033x0.25	Pole	24.7%	Pass
162 - 157	Pole	TP20.389x19.211x0.25	Pole	33.5%	Pass
157 - 152	Pole	TP21.567x20.389x0.25	Pole	46.2%	Pass
152 - 147	Pole	TP22.744x21.567x0.25	Pole	55.2%	Pass
147 - 142	Pole	TP23.922x22.744x0.25	Pole	62.4%	Pass
142 - 137	Pole	TP25.1x23.922x0.25	Pole	71.3%	Pass
137 - 136.83	Pole	TP26.023x25.1x0.25	Pole	71.6%	Pass
136.83 - 131.83	Pole	TP25.805x24.639x0.375	Pole	54.3%	Pass
131.83 - 126.83	Pole	TP26.972x25.805x0.375	Pole	59.1%	Pass
126.83 - 121.83	Pole	TP28.138x26.972x0.375	Pole	63.3%	Pass
121.83 - 116.83	Pole	TP29.305x28.138x0.375	Pole	66.8%	Pass
116.83 - 111.83	Pole	TP30.471x29.305x0.375	Pole	69.6%	Pass
111.83 - 106.83	Pole	TP31.638x30.471x0.375	Pole	71.9%	Pass
106.83 - 101.83	Pole	TP32.804x31.638x0.375	Pole	73.9%	Pass
101.83 - 96.83	Pole	TP33.971x32.804x0.375	Pole	75.5%	Pass
96.83 - 92.47	Pole	TP36.16x33.971x0.375	Pole	76.6%	Pass
92.47 - 86.45	Pole	TP35.642x34.239x0.375	Pole	82.4%	Pass
86.45 - 85	Pole	TP35.98x35.642x0.375	Pole	82.9%	Pass
85 - 84.75	Pole	TP36.038x35.98x0.375	Pole	83.0%	Pass
84.75 - 79.75	Pole	TP37.203x36.038x0.375	Pole	85.2%	Pass
79.75 - 75	Pole	TP38.31x37.203x0.375	Pole	87.0%	Pass
75 - 74.75	Pole + Reinf.	TP38.369x38.31x0.7	Reinf. 2 Tension Rupture	75.0%	Pass
74.75 - 74	Pole + Reinf.	TP38.543x38.369x0.7	Reinf. 2 Tension Rupture	75.3%	Pass
74 - 73.75	Pole	TP38.602x38.543x0.375	Pole	87.5%	Pass
73.75 - 68.75	Pole	TP39.767x38.602x0.375	Pole	89.2%	Pass
68.75 - 63.75	Pole	TP40.932x39.767x0.375	Pole	90.7%	Pass
63.75 - 58.75	Pole	TP42.098x40.932x0.375	Pole	92.1%	Pass
58.75 - 53.75	Pole	TP43.263x42.098x0.375	Pole	93.3%	Pass
53.75 - 49.08	Pole	TP45.804x43.263x0.375	Pole	94.4%	Pass
49.08 - 41.85	Pole	TP45.281x43.602x0.4375	Pole	81.2%	Pass
41.85 - 36.85	Pole	TP46.442x45.281x0.4375	Pole	81.8%	Pass
36.85 - 31.85	Pole	TP47.604x46.442x0.4375	Pole	82.3%	Pass
31.85 - 26.85	Pole	TP48.765x47.604x0.4375	Pole	82.8%	Pass
26.85 - 21.85	Pole	TP49.926x48.765x0.4375	Pole	83.2%	Pass
21.85 - 16.85	Pole	TP51.087x49.926x0.4375	Pole	83.6%	Pass
16.85 - 11.85	Pole	TP52.248x51.087x0.4375	Pole	83.9%	Pass
11.85 - 6.85	Pole	TP53.41x52.248x0.4375	Pole	84.2%	Pass
6.85 - 1.85	Pole	TP54.571x53.41x0.4375	Pole	84.5%	Pass
		i e	Pole	84.6%	

Elevation (ft)	Component Type	Size	Critical Element	P (K)	Pass / Fail
				Summary	
			Pole	94.4%	Pass
			Reinforcement	75.3%	Pass
			Overall	94.4%	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	91.8	Pass
1	Base Plate	0	86.7	Pass
1	Base Foundation (Structure)	0	89.1	Pass
1	Base Foundation (Soil Interaction)	0	62.8	Pass

Structure Rating (max from all components) =	94.4%
--	-------

Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

-	5.000	18	0.250		4.500	829		0.2	182.0 ft
2	5.000 5.	18	0.250 0.		67814	85615.		0.2	<u>177.0 ft</u>
က		18	0.250 0.		6.85615.6781	.03316		0.2	172.0 ft
4	5.000 5.000	18	0.250		0334	9.21118		0.2	167.0 ft
2	5.000 5	18	0.250		9.21118.	56720 38919 21		0.3	162.0 ft
9	5.000 5	18	0.250		.56720.38919.21			0.3	157.0 ft 152.0 ft
7	5.000	18	0.250		_	2.7442		0.3	147.0 ft
80	5.000	18	0.250		.92222.7442	10023.9222		0.3	142.0 ft
6		18	0.250		23.922	25.100		0.3	137.0 ft
1 10	530m00 5.000	8 18	3705250	3.753	623910023	886502125		503	133.1 ft
12	5.000	18 1	0.376		804	26.9 29		0.5 0	126.8 ft
13	5.000	18	0.375		26.972	28.138		9.0	121.8 ft
14	5.000	18	0.375		.63830.47129.30528.13826.97225.	129.30528.13826.		9.0	116.8 ft
15	5.000	18	0.375		29.305	47		9.0	<u>111.8 ft</u>
16	5.000	18	0.375		330.47	80431 63830		9.0	106.8 ft
17	5.000	18	0.375		431.63	132		9.0	<u>101.8 ft</u>
18	5.000	18	0.375		32.80431.	33.97		0.7	96.8 ft
19	.0 29 1385	18	5 0.375	5.021	CESSORIA 83.971	236.160	A572-65	1.3	07.4.6
22.10	5.00000 600 S.	88	370804867		200	20000000000000000000000000000000000000	¥	0000	87.4 ft 85.0 ft
23		18	0		020336.00	1037.2		0.7	<u>79.8 ft</u>
2000 24	5.000000000000000000000000000000000000	18 18	370007700375		COLUMN SERVICE	20 0000 0000000000000000000000000000000		10 Z	75.0 ft
28		18	0			93239 2		0.800021	68.8 ft
29	5.000	18	5 0.375		239.76	840.93		0.8	63.8 ft
30	0 5.000	18	5 0.375		42.09840.93239.76738	26342.09840		0.8	58.8 ft
31	5.000	18	0.375		42.09	43.26		0.9	<u>53.8 ft</u>
32	7.230.902	18	0.375	6.232	43.263	45.804		1.9	
1 33		8	38 438		83 .602	# 2 281		1 1.5	42.8 ft
5 34	00 5.0	18 18	38 0.4		14245.2	30446.4		1 111	36.8 ft
36 35	000 5.0	18 18	38 0.4		50446.4	76547.6		1.1	31.8 ft
37 3	000 5.0	18 1	138 0.4		76547	92648.		1.2 1.1	26.8 ft
38	000 5.0	18 1	438 0.4		92648	08749		1.2	21.8 ft
39	000	18	438 0.		08749	24851		1.2	<u>16.8 ft</u>
40	0000	18	438 0		.24851	41052		1.2	11.8 ft
41	848.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000	18	0.4380.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 438		54.553.41052.24851.08749.92648.76547.60446.44245.283602 43.263	55.050.57153.41052.24851.08749.92648.76547.60446.445281 45.80			6.8 ft
42	1.845	18	0.438	_	54.55	55.05%		28.10.5 1.3	1.8 ft 0.0 ft
Section	Length (ft)	Number of Sides	Thickness (in)	Socket Length (ft)	Top Dia (in)	Bot Dia (in)	Grade	Weight (K) 28	

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
Δ572_65	65 kei	80 kei			•

TOWER DESIGN NOTES

- 1. Tower is located in Hartford County, Connecticut.
- Tower designed for Exposure C to the TIA-222-H Standard.
- 3. Tower designed for a 118 mph basic wind in accordance with the TIA-222-H Standard.
- Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
- Deflections are based upon a 60 mph wind.
 Tower Risk Category II.
- 7. Topographic Category 1 with Crest Height of 0.000 ft8. TOWER RATING: 94.4%

ALL REACTIONS ARE FACTORED

AXIAL

107 K

TORQUE 1 kip-ft

50 mph WIND - 1.500 in ICE

AXIAL

65 K

TORQUE 2 kip-ft REACTIONS - 118 mph WIND

MOMENT ₹ 1695 kip-ft

MOMENT

5102 kip-ft

SHEAR'

12 K /

SHEAR^{*}

39 K

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Hartford County, Connecticut.
- Tower base elevation above sea level: 199.000 ft.
- Basic wind speed of 118 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.000 ft.
- Nominal ice thickness of 1.500 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.000 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50.000 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz

Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
 √ Has Asimuth Dish Coefficients
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
	6	Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	<u>in</u>	in	in	4.570.05
L1	182.000-	5.000	0.000	18	14.500	15.678	0.250	1.000	A572-65
L2	177.000 177.000-	5.000	0.000	18	15.678	16.856	0.250	1.000	(65 ksi) A572-65
LZ	172.000	5.000	0.000	10	13.076	10.000	0.230	1.000	(65 ksi)
L3	172.000-	5.000	0.000	18	16.856	18.033	0.250	1.000	A572-65
	167.000	0.000	0.000		10.000	10.000	01200		(65 ksi)
L4	167.000-	5.000	0.000	18	18.033	19.211	0.250	1.000	À572-65
	162.000								(65 ksi)
L5	162.000-	5.000	0.000	18	19.211	20.389	0.250	1.000	A572-65
	157.000								(65 ksi)
L6	157.000-	5.000	0.000	18	20.389	21.567	0.250	1.000	A572-65
17	152.000	E 000	0.000	10	04 567	22.744	0.250	1 000	(65 ksi)
L7	152.000- 147.000	5.000	0.000	18	21.567	22.744	0.250	1.000	A572-65 (65 ksi)
L8	147,000	5,000	0.000	18	22.744	23.922	0.250	1,000	A572-65
	142.000	0,000	0,000			_0,0	0,200		(65 ksi)
L9	142.000-	5.000	0.000	18	23.922	25.100	0.250	1.000	À572-65
	137.000								(65 ksi)
L10	137.000-	3.919	3.753	18	25.100	26.023	0.250	1.000	A572-65
	133.081								(65 ksi)
L11	133.081-	5.000	0.000	18	24.639	25.805	0.375	1.500	A572-65
L12	131.834 131.834	5.000	0.000	18	25.805	26.972	0.375	1.500	(65 ksi) A572-65
LIZ	126.834	5.000	0.000	10	25.605	20.972	0.373	1.500	(65 ksi)
L13	126.834	5.000	0.000	18	26.972	28.138	0.375	1.500	A572-65
	121.834	0.000	0.000				0.0.0		(65 ksi)
L14	121.834-	5.000	0.000	18	28.138	29.305	0.375	1.500	À572-65
	116.834								(65 ksi)
L15	116.834-	5.000	0.000	18	29.305	30.471	0.375	1.500	A572-65
1.40	111.834	5.000	0.000	40	00.474	04.000	0.075	4.500	(65 ksi)
L16	111.834- 106.834	5.000	0.000	18	30.471	31.638	0.375	1.500	A572-65 (65 ksi)
L17	106.834	5.000	0.000	18	31.638	32.804	0.375	1.500	(65 KSI) A572-65
L17	101.834	3.000	0.000	10	31.000	32.004	0.575	1.500	(65 ksi)
L18	101.834-	5.000	0.000	18	32.804	33.971	0.375	1.500	A572-65
	96.834								(65 ksi)
L19	96.834-87.449	9.385	5.021	18	33.971	36.160	0.375	1.500	A572-65
									(65 ksi)
L20	87.449-86.449	6.021	0.000	18	34.239	35.642	0.375	1.500	A572-65
L21	86.449-85.000	1.449	0.000	18	35.642	35.980	0.375	1.500	(65 ksi) A572-65
LZ I	00.449-05.000	1.449	0.000	10	33.042	33.960	0.373	1.500	(65 ksi)
L22	85.000-84.750	0.250	0.000	18	35.980	36.038	0.375	1.500	A572-65
	30.000 0 00	0.200	0.000		00.000	00.000	0.0.0		(65 ksi)
L23	84.750-79.750	5.000	0.000	18	36.038	37.203	0.375	1.500	À572-65
									(65 ksi)
L24	79.750-75.000	4.750	0.000	18	37.203	38.310	0.375	1.500	A572-65
L25	75 000 74 750	0.250	0.000	10	38.310	38.369	0.700	2 900	(65 ksi)
L25	75.000-74.750	0.250	0.000	18	30.310	30.309	0.700	2.800	A572-65 (65 ksi)
L26	74.750-74.000	0.750	0.000	18	38.369	38.543	0.700	2.800	A572-65
									(65 ksi)
L27	74.000-73.750	0.250	0.000	18	38.543	38.602	0.375	1.500	À572-65
									(65 ksi)
L28	73.750-68.750	5.000	0.000	18	38.602	39.767	0.375	1.500	A572-65
1.00	00 750 00 750	5 000	0.000	40	00 707	40.000	0.075	4.500	(65 ksi)
L29	68.750-63.750	5.000	0.000	18	39.767	40.932	0.375	1.500	A572-65
L30	63.750-58.750	5.000	0.000	18	40.932	42.098	0.375	1.500	(65 ksi) A572-65
LOU	30,730-30,730	0.000	0.000	10	TU.UUZ	74.000	0.010	1.000	(65 ksi)
L31	58.750-53.750	5.000	0.000	18	42.098	43.263	0.375	1.500	A572-65
	-								(65 ksi)
L32	53.750-42.848	10.902	6.232	18	43.263	45.804	0.375	1.500	A572-65
	10.010.11.515				40.555	4=	0.455		(65 ksi)
L33	42.848-41.848	7.232	0.000	18	43.602	45.281	0.438	1.750	A572-65
L34	41.848-36.848	5.000	0.000	18	45.281	46.442	0.438	1.750	(65 ksi) A572-65
L34	71.070-00.040	5.000	0.000	10	70.201	70.44Z	0.400	1.730	(65 ksi)
L35	36.848-31.848	5.000	0.000	18	46.442	47.604	0.438	1.750	A572-65
					· - · · · -				

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
									(65 ksi)
L36	31.848-26.848	5.000	0.000	18	47.604	48.765	0.438	1.750	A572-65
									(65 ksi)
L37	26.848-21.848	5.000	0.000	18	48.765	49.926	0.438	1.750	A572-65
									(65 ksi)
L38	21.848-16.848	5.000	0.000	18	49.926	51.087	0.438	1.750	A572-65
									(65 ksi)
L39	16.848-11.848	5.000	0.000	18	51.087	52.248	0.438	1.750	A572-65
									(65 ksi)
L40	11.848-6.848	5.000	0.000	18	52.248	53.410	0.438	1.750	A572-65
									(65 ksi)
L41	6.848-1.848	5.000	0.000	18	53.410	54.571	0.438	1.750	A572-65
									(65 ksi)
L42	1.848-0.000	1.848		18	54.571	55.000	0.438	1.750	A572-65
									(65 ksi)

				Tapeı	red Pol	le Prop	erties			
Section	Tip Dia. in	Area in²	I in ⁴	r in	C in	I/C in³	J in ⁴	It/Q in²	w in	w/t
	14.685	11.307	290.087	5.059	7.366	39.382	580.557	5.655	2.112	8.448
	15.881	12.242	368.123	5.477	7.964	46.222	736.731	6.122	2.319	9.277
L2	15.881	12.242	368.123	5.477	7.964	46.222	736.731	6.122	2.319	9.277
	17.077	13.176	459.031	5.895	8.563	53.609	918.667	6.589	2.527	10.106
L3	17.077	13.176	459.031	5.895	8.563	53,609	918.667	6.589	2.527	10.106
	18.273	14,111	563.794	6.313	9.161	61.543	1128,331	7.057	2.734	10.935
L4	18.273	14.111	563.794	6.313	9.161	61.543	1128.331	7.057	2.734	10.935
	19.469	15.046	683 395	6.731	9.759	70.026	1367.689	7.524	2.941	11.765
L5	19.469	15.046	683.395	6.731	9.759	70.026	1367.689	7.524	2.941	11.765
	20.665	15.980	818.816	7.149	10.358	79.055	1638,709	7.992	3.148	12.594
L6	20.665	15.980	818.816	7.149	10.358	79.055	1638.709	7.992	3.148	12.594
	21.861	16.915	971.040	7.567	10.956	88.632	1943.357	8.459	3.356	13.423
L7	21.861	16.915	971.040	7.567	10.956	88.632	1943.357	8.459	3.356	13.423
	23.057	17.849	1141.049	7.985	11.554	98.757	2283.600	8.926	3.563	14.252
L8	23.057	17.849	1141.049	7.985	11.554	98,757	2283,600	8.926	3.563	14.252
	24.253	18.784	1329.827	8.404	12.152	109.429	2661.403	9.394	3.770	15.081
L9	24.253	18.784	1329,827	8.404	12,152	109,429	2661,403	9.394	3.770	15.081
	25.449	19.718	1538.355	8.822	12.751	120.648	3078.735	9.861	3.978	15.91
L10	25.449	19.718	1538.355	8.822	12.751	120.648	3078.735	9.861	3.978	15.91
	26.386	20.451	1716.245	9.149	13.220	129.825	3434.748	10.227	4.140	16.56
L11	25.850	28.880	2148.134	8.614	12.517	171.623	4299.094	14.443	3.676	9.804
	26.146	30.269	2473.069	9.028	13.109	188.652	4949.393	15.137	3.882	10.351
L12	26.146	30.269	2473.069	9.028	13.109	188.652	4949.393	15.137	3.882	10.351
	27.330	31.657	2829.224	9.442	13.702	206,487	5662,170	15.831	4.087	10.899
L13	27.330	31.657	2829.224	9.442	13.702	206.487	5662.170	15.831	4.087	10.899
	28.515	33.045	3218.029	9.856	14.294	225.127	6440,292	16.526	4.292	11.446
L14	28.515	33.045	3218.029	9.856	14.294	225.127	6440.292	16.526	4.292	11.446
	29.699	34.434	3640.916	10.270	14.887	244.573	7286.623	17.220	4.498	11.994
L15	29.699	34.434	3640.916	10.270	14.887	244.573	7286.623	17.220	4.498	11.994
	30.883	35.822	4099.318	10.684	15.479	264.824	8204.030	17.914	4.703	12.541
L16	30.883	35.822	4099.318	10.684	15.479	264.824	8204.030	17.914	4.703	12.541
	32.068	37.210	4594.666	11.098	16.072	285.881	9195.377	18.609	4.908	13.089
L17	32.068	37.210	4594.666	11.098	16.072	285.881	9195.377	18.609	4.908	13.089
	33.252	38.599	5128.392	11.512	16.664	307.744	10263.533	19.303	5.114	13.636
L18	33.252	38.599	5128.392	11.512	16.664	307.744	10263.533	19.303	5.114	13.636
	34.437	39.987	5701.929	11.926	17.257	330,412	11411.361	19.997	5.319	14.184
L19	34.437	39.987	5701.929	11.926	17.257	330.412	11411.361	19.997	5.319	14.184
	36,660	42,593	6890.944	12.704	18.369	375,134	13790.955	21.301	5.704	15.211
L20	35.897	40.306	5839.518	12.022	17.393	335.735	11686.719	20.157	5.366	14.309
	36.134	41.976	6595.985	12.520	18.106	364.296	13200.650	20.992	5.613	14.968
L21	36.134	41.976	6595.985	12.520	18.106	364.296	13200.650	20.992	5.613	14.968
	36.477	42.378	6787.295	12.640	18.278	371.343	13583.522	21.193	5.672	15.126
L22	36.477	42.378	6787.295	12.640	18.278	371.343	13583.522	21.193	5.672	15.126
	36.536	42.448	6820.672	12.660	18.307	372.566	13650.319	21.228	5.683	15.154
L23	36,536	42.448	6820,672	12.660	18.307	372,566	13650,319	21.228	5.683	15.154

Section	Tip Dia.	Area	.1,	r	С	I/C	J	It/Q	W	w/t
	in	in ²	in ⁴	in	in	in ³	in ⁴	in ²	in	
	37.719	43.835	7511.389	13.074	18.899	397.443	15032.661	21.922	5.888	15.701
L24	37.719	43.835	7511.389	13.074	18.899	397.443	15032.661	21.922	5.888	15.701
	38.844	45.153	8209.344	13.467	19.462	421.821	16429.491	22.581	6.083	16.22
L25	38.793	83.563	14933.620	13.352	19.462	767.335	29886.890	41.789	5.511	7.872
	38.853	83.692	15003.134	13.372	19.491	769.736	30026.010	41.854	5.521	7.887
L26	38.853	83.692	15003.134	13.372	19.491	769.736	30026.010	41.854	5.521	7.887
	39.030	84.081	15212.972	13.434	19.580	776.962	30445.961	42.048	5,552	7.931
L27	39.080	45.430	8361.587	13.550	19.580	427.046	16734.176	22.719	6.124	16.33
	39.139	45.499	8399.939	13.570	19.610	428.357	16810.931	22.754	6.134	16.357
L28	39.139	45.499	8399.939	13.570	19.610	428.357	16810.931	22.754	6.134	16.357
	40.323	46.886	9191.815	13.984	20.202	455.003	18395.725	23.448	6.339	16.904
L29	40.323	46.886	9191.815	13.984	20.202	455.003	18395.725	23.448	6.339	16.904
	41.506	48.273	10031.958	14.398	20.794	482.453	20077.116	24.141	6.544	17.451
L30	41.506	48.273	10031.958	14.398	20.794	482.453	20077.116	24.141	6.544	17.451
	42.689	49.660	10921.795	14.812	21.386	510.707	21857.961	24.835	6.749	17.998
L31	42.689	49.660	10921.795	14.812	21.386	510.707	21857.961	24.835	6.749	17.998
	43.873	51.048	11862.754	15.225	21.978	539.765	23741.117	25.529	6.954	18.545
L32	43.873	51.048	11862.754	15.225	21.978	539.765	23741.117	25.529	6.954	18.545
	46.453	54.072	14098.573	16.127	23.268	605.910	28215.698	27.041	7.402	19.737
L33	45.676	59.939	14108.729	15.323	22.150	636.975	28236.023	29.975	6.904	15.78
	45.912	62.271	15820.627	15.919	23.003	687.770	31662.071	31.141	7.199	16.456
L34	45.912	62.271	15820.627	15.919	23.003	687.770	31662.071	31.141	7.199	16.456
	47.091	63.883	17081.742	16.332	23.593	724.027	34185.960	31.948	7.404	16.923
L35	47.091	63.883	17081.742	16.332	23.593	724.027	34185.960	31.948	7.404	16.923
	48.270	65.496	18408.155	16.744	24.183	761.215	36840.532	32.754	7.608	17.39
L36	48.270	65.496	18408.155	16.744	24.183	761.215	36840.532	32.754	7.608	17.39
	49.450	67.108	19801.515	17.156	24.772	799.335	39629.084	33.561	7.813	17.857
L37	49.450	67.108	19801.515	17.156	24.772	799.335	39629.084	33.561	7.813	17.857
	50.629	68.721	21263.469	17.568	25.362	838.386	42554.917	34.367	8.017	18.324
L38	50.629	68.721	21263.469	17.568	25.362	838.386	42554.917	34.367	8.017	18.324
	51.808	70.333	22795.666	17.981	25.952	878.368	45621.328	35.173	8.221	18.792
L39	51.808	70.333	22795.666	17.981	25.952	878.368	45621.328	35.173	8.221	18.792
	52.987	71.946	24399.755	18.393	26.542	919.282	48831.615	35.980	8.426	19.259
L40	52.987	71.946	24399.755	18.393	26.542	919.282	48831.615	35.980	8.426	19.259
	54.166	73.558	26077.383	18.805	27.132	961.127	52189.079	36.786	8.630	19.726
L41	54.166	73.558	26077.383	18.805	27.132	961.127	52189.079	36.786	8.630	19.726
	55.345	75.171	27830.198	19,217	27.722	1003.904	55697.016	37.593	8.834	20.193
L42	55.345	75.171	27830.198	19.217	27.722	1003.904	55697.016	37.593	8.834	20.193
	55.781	75.767	28497.398	19.370	27.940	1019.950	57032.294	37.891	8.910	20.366

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor Ar	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in				ĭn	in	in
L1 182 000-			1	1	1			
177.000								
L2 177.000-			1	1	1			
172.000								
L3 172.000-			1	1	1			
167.000								
L4 167.000-			1	1	1			
162.000			4	4	4			
L5 162.000- 157.000			1	1	1			
L6 157.000			1	1	1			
152.000			ı	'	II.			
L7 152.000			1	1	1			
147.000			•	•				
L8 147 000-			1	1	1			
142.000								
L9 142.000-			1	1	1			
137.000								
L10 137 000-			1	1	1			
133.081								
L11 133.081-			1	1	1			
131.834								
L12 131.834-			1	1	1			
126.834								

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Stitch Bolt Spacing
ft	ft ²	in				in	in	in
L13 126.834-			1	1	1			
121.834 L14 121.834-			1	1	1			
116.834			'	'	'			
L15 116 834-			1	1	1			
111.834								
L16 111.834-			1	1	1			
106.834 L17 106.834-			1	1	1			
101.834			·					
L18 101.834-			1	1	1			
96.834			4	4	4			
L19 96 834- 87 449			1	1	1			
L20 87 449-			1	1	1			
86 449								
L21 86.449-			1	1	1			
85.000			1	4	4			
L22 85.000- 84.750			1	1	1			
L23 84 750-			1	1	1			
79.750								
L24 79.750-			1	1	1			
75.000 L25 75.000-			1	1	0.952576			
74.750			ı	ı	0.952576			
L26 74 750-			1	1	0.950651			
74.000								
L27 74.000-			1	1	1			
73.750 L28 73.750-			1	1	1			
68.750			ľ	'	'			
L29 68.750-			1	1	1			
63.750								
L30 63.750-			1	1	1			
58.750 L31 58.750-			1	1	1			
53.750			'	•	,			
L32 53.750-			1	1	1			
42.848					,			
L33 42.848- 41.848			1	1	1			
L34 41 848			1	1	1			
36.848								
L35 36.848-			1	1	1			
31.848			1	4	4			
L36 31 848- 26 848			1	1	1			
L37 26 848-			1	1	1			
21.848								
L38 21.848-			1	1	1			
16.848 L39 16.848-			1	1	1			
11.848			I	1	I			
L40 11 848			1	1	1			
6.848								
L41 6.848-			1	1	1			
1.848 L42 1.848-			1	1	1			
0.000			ı	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En		Perimete	Weight
		From	_ t	-	Number	Per Row	_ d	Diamete	r	
		Torque	Type	ft			Position	r		kIf
		Calculation						in	in	
*	_									
LDF5-50A(7/8)	В	No	Surface Ar	140.000 -	1	1	-0.130	1.090		0.000
	_		(CaAa)	0.000	_	_	-0.130			
HB114-1-0813U4-	В	No	Surface Ar	140.000 -	3	3	-0.120	1.540		0.001
M5F(1-1/4)			(CaAa)	0.000			-0.080			
LDF4-50A(1/2)	В	No	Surface Ar	73.000 -	1	1	-0.150	0.630		0.000
231 1 007 (172)		110	(CaAa)	0.000		•	0.150	0.000		0.000
*			(Garia)	0.000			01100			
Safety Line 3/8	В	No	Surface Ar	182.000 -	1	1	0.250	0.375		0.000
,			(CaAa)	0.000			0.250			
*			, ,							
PL 5.75"x1"	Α	No	Surface Af	77.000 -	1	1	0.150	5.750	13.500	0.000
			(CaAa)	47.000			0.200			
PL 5.75"x1"	В	No	Surface Af	77.000 -	1	1	0.150	5.750	13.500	0.000
			(CaAa)	47.000			0.200			
PL 5.75"x1"	С	No	Surface Af	77.000 -	1	1	0.150	5.750	13.500	0.000
			(CaAa)	47.000			0.200			
* DI 5.75" 4"			0 (4(07.000		4	0.000	F 750	40.500	0.000
PL 5.75"x1"	Α	No	Surface Af	87.000 -	1	1	0.000	5.750	13.500	0.000
DI E 75"4"	В	Nia	(CaAa)	72.000 87.000 -	4	4	0.050 0.000	E 7E0	10 500	0.000
PL 5.75"x1"	ь	No	Surface Af	72.000	1	1	0.050	5.750	13.500	0.000
PL 5.75"x1"	С	No	(CaAa) Surface Af	72.000 87.000	1	4	0.000	5.750	13.500	0.000
PL 5.75 X1	C	INO		72.000	ı	1	0.050	5.750	13.500	0.000
*			(CaAa)	12.000			0.000			
CU12PSM9P6XXX(1-	С	No	Surface Ar	130.000 -	1	1	0.100	1.600		0.002
1/2)	J	140	(CaAa)	0.000	•	'	0.100	1.000		0.002
.,_,			(00,10)	01000			31.100			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	or	Shield	From	t		Number			
	Leg		Torque	Type	ft			ft²/ft	klf
			Calculation	1					
LDF5-50A(7/8)	С	No	No	Inside Pole	178.000 -	12	No Ice	0.000	0.000
					0.000		1/2" I ce	0.000	0.000
							1" I ce	0.000	0.000
							2" I ce	0.000	0.000
*									
LDF7-50A(1-5/8)	В	No	No	Inside Pole	168.000 -	6	No Ice	0.000	0.001
					0.000		1/2" I ce	0.000	0.001
							1" I ce	0.000	0.001
							2" I ce	0.000	0.001
WR-VG66ST-	В	No	No	Inside Pole	168.000 -	4	No Ice	0.000	0.001
BRD_CCIV2(7/8)					0.000		1/2" I ce	0.000	0.001
							1" I ce	0.000	0.001
							2" I ce	0.000	0.001
FB-L98B-034-	В	No	No	Inside Pole	168.000 -	1	No Ice	0.000	0.000
XXX(3/8)					0.000		1/2" Ice	0.000	0.000
							1" I ce	0.000	0.000
							2" Ice	0.000	0.000
2-1/2" Rigid	В	No	No	Inside Pole	168.000 -	2	No Ice	0.000	0.003
Conduit					0.000		1/2" I ce	0.000	0.003
							1" I ce	0.000	0.003
							2" I ce	0.000	0.003
FB-L98B-034-	В	No	No	Inside Pole	168.000 -	2	No Ice	0.000	0.000
XXX(3/8)					0.000		1/2" I ce	0.000	0.000
,							1" I ce	0.000	0.000
							2" I ce	0.000	0.000
WR-VG86ST-	В	No	No	Inside Pole	168.000 -	4	No Ice	0.000	0.001
BRD(3/4)					0.000		1/2" I ce	0.000	0.001
` '							1" I ce	0.000	0.001
							2" I ce	0.000	0.001
*									

Description	Face	Allow	Exclude	Componen	Placement	Total		C _A A _A	Weight
	or Leg	Shield	From Torque	t Type	ft	Number		ft²/ft	kIf
			Calculation						
HB158-21U6S24- xxM_TMO(1-5/8)	В	No	No	Inside Pole	157.000 - 0.000	3	No Ice 1/2" Ice 1" Ice 2" Ice	0.000 0.000 0.000 0.000	0.003 0.003 0.003 0.003
LDF4-50A(1/2)	Α	No	No	Inside Pole	90.000 - 0.000	1	No Ice 1/2" Ice 1" Ice 2" Ice	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
LDF7-50A(1-5/8)	Α	No	No	Inside Pole	90.000 - 0.000	7	No Ice 1/2" Ice 1" Ice 2" Ice	0.000 0.000 0.000 0.000	0.001 0.001 0.001 0.001

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	AF	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	7 400	7 1/1	7.4	In Face	Out Face	rroigin
n	ft		ft²	ft²	ft ²	ft ²	K
L1	182.000-177.000	A	0.000	0.000	0.000	0.000	0.000
	1021000 1111000	В	0.000	0.000	0.188	0.000	0.001
		Ċ	0.000	0.000	0.000	0.000	0.004
L2	177.000-172.000	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.188	0.000	0.001
		С	0.000	0.000	0.000	0.000	0.020
L3	172,000-167,000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.188	0.000	0.018
		С	0.000	0.000	0.000	0.000	0.020
L4	167.000-162.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.188	0.000	0.086
		С	0.000	0.000	0.000	0.000	0.020
L5	162.000-157.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.188	0.000	0.086
		С	0.000	0.000	0.000	0.000	0.020
L6	157,000-152,000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.188	0.000	0.123
		С	0.000	0.000	0.000	0.000	0.020
L7	152.000-147.000	Ā	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.188	0.000	0.123
		Ċ	0.000	0.000	0.000	0.000	0.020
L8	147.000-142.000	Ā	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.188	0.000	0.123
		С	0.000	0.000	0.000	0.000	0.020
L9	142.000-137.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	1.900	0.000	0.135
		С	0.000	0.000	0.000	0.000	0.020
L10	137.000-133.081	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	2.385	0.000	0.112
		С	0.000	0.000	0.000	0.000	0.016
L11	133.081-131.834	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.759	0.000	0.036
		С	0.000	0.000	0.000	0.000	0.005
L12	131.834-126.834	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	3.043	0.000	0.143
		С	0.000	0.000	0.507	0.000	0.027
L13	126.834-121.834	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	3.043	0.000	0.143
		С	0.000	0.000	0.800	0.000	0.032
L14	121.834-116.834	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	3.043	0.000	0.143
		С	0.000	0.000	0.800	0.000	0.032
L15	116.834-111.834	Α	0.000	0.000	0.000	0.000	0.000

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation			_	In Face	Out Face	
n	ft		ft ²	ft²	ft ²	ft ²	K
		В	0.000	0.000	3.043	0.000	0.143
		С	0.000	0.000	0.800	0.000	0.032
L16	111.834-106.834	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	3.043	0.000	0.143
		Č	0.000	0.000	0.800	0.000	0.032
L17	106.834-101.834	Ä	0.000	0.000	0.000	0.000	0.000
LII	100.034-101.034		0.000		3.043	0.000	0.143
		В		0.000			
1.40	101 001 00 001	C	0.000	0.000	0.800	0.000	0.032
L18	101.834-96.834	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	3.043	0.000	0.143
		С	0.000	0.000	0.800	0.000	0.032
L19	96.834-87.449	Α	0.000	0.000	0.000	0.000	0.015
		В	0.000	0.000	5.711	0.000	0.268
		С	0.000	0.000	1.502	0.000	0.059
L20	87.449-86.449	Α	0.000	0.000	0.528	0.000	0.006
		В	0.000	0.000	1.137	0.000	0.029
		Ċ	0.000	0.000	0.688	0.000	0.006
L21	86.449-85.000	Ä	0.000	0.000	1.389	0.000	0.009
LZI	00.445 05.000	В	0.000	0.000	2.270	0.000	0.041
		C		0.000			
1.00	05 000 04 750		0.000		1.620	0.000	0.009
L22	85.000-84.750	Α	0.000	0.000	0.240	0.000	0.001
		В	0.000	0.000	0.392	0.000	0.007
		С	0.000	0.000	0.280	0.000	0.002
L23	84.750-79.750	Α	0.000	0.000	4.792	0.000	0.029
		В	0.000	0.000	7.834	0.000	0.143
		С	0.000	0.000	5.592	0.000	0.032
L24	79.750-75.000	Α	0.000	0.000	6.469	0.000	0.028
		В	0.000	0.000	9.359	0.000	0.136
		C	0.000	0.000	7.229	0.000	0.030
L25	75.000-74.750	Ä	0.000	0.000	0.479	0.000	0.001
LLO	70.000 7 1.700	В	0.000	0.000	0.631	0.000	0.007
		C	0.000	0.000	0.519	0.000	0.002
1.26	74.750-74.000		0.000	0.000	1.438	0.000	0.002
L26	74.730-74.000	A					
		В	0.000	0.000	1.894	0.000	0.021
		C	0.000	0.000	1.558	0.000	0.005
L27	74.000-73.750	A	0.000	0.000	0.479	0.000	0.001
		В	0.000	0.000	0.631	0.000	0.007
		С	0.000	0.000	0.519	0.000	0.002
L28	73.750-68.750	Α	0.000	0.000	6.469	0.000	0.029
		В	0.000	0.000	9.779	0.000	0.144
		С	0.000	0.000	7.269	0.000	0.032
L29	68.750-63.750	Α	0.000	0.000	4.792	0.000	0.029
		В	0.000	0.000	8.149	0.000	0.144
		С	0.000	0.000	5.592	0.000	0.032
L30	63,750-58,750	Ä	0.000	0.000	4.792	0.000	0.029
200	00.700 00.700	В	0.000	0.000	8.149	0.000	0.144
		C	0.000	0.000	5.592	0.000	0.032
1.24	E0 7E0 E2 7E0						
L31	58.750-53.750	A	0.000	0.000	4.792	0.000	0.029
		В	0.000	0.000	8.149	0.000	0.144
		C	0.000	0.000	5.592	0.000	0.032
L32	53.750-42.848	Α	0.000	0.000	6.469	0.000	0.064
		В	0.000	0.000	13.789	0.000	0.313
		С	0.000	0.000	8.213	0.000	0.069
L33	42.848-41.848	Α	0.000	0.000	0.000	0.000	0.006
		В	0.000	0.000	0.671	0.000	0.029
		С	0.000	0.000	0.160	0.000	0.006
L34	41.848-36.848	Α	0.000	0.000	0.000	0.000	0.029
		В	0.000	0.000	3.357	0.000	0.144
		Č	0.000	0.000	0.800	0.000	0.032
L35	36.848-31.848	A	0.000	0.000	0.000	0.000	0.032
L00	00.070-01.070	В	0.000	0.000	3.357	0.000	0.029
1.00	24 040 00 040	C	0.000	0.000	0.800	0.000	0.032
L36	31.848-26.848	A	0.000	0.000	0.000	0.000	0.029
		В	0.000	0.000	3.357	0.000	0.144
		C	0.000	0.000	0.800	0.000	0.032
L37	26.848-21.848	Α	0.000	0.000	0.000	0.000	0.029
		В	0.000	0.000	3.357	0.000	0.144
		С	0.000	0.000	0.800	0.000	0.032
L38	21.848-16.848	Α	0.000	0.000	0.000	0.000	0.029

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft ²	ft ²	ft ²	K
		В	0.000	0.000	3.357	0.000	0.144
		С	0.000	0.000	0.800	0.000	0.032
L39	16.848-11.848	Α	0.000	0.000	0.000	0.000	0.029
		В	0.000	0.000	3.357	0.000	0.144
		С	0.000	0.000	0.800	0.000	0.032
L40	11.848-6.848	Α	0.000	0.000	0.000	0.000	0.029
		В	0.000	0.000	3.357	0.000	0.144
		С	0.000	0.000	0.800	0.000	0.032
L41	6.848-1.848	Α	0.000	0.000	0.000	0.000	0.029
		В	0.000	0.000	3.357	0.000	0.144
		С	0.000	0.000	0.800	0.000	0.032
L42	1.848-0.000	Α	0.000	0.000	0.000	0.000	0.011
		В	0.000	0.000	1.241	0.000	0.053
		С	0.000	0.000	0.296	0.000	0.012

Feed Line/Linear Appurtenances Section Areas - With Ice

n fl Leg in fl² fl² fl² fl² fl² K L1 182.000-177.000 A 1.510 0.000 0.	Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
L1					ft ²	ft²	ft ²	ft ²	Κ
B									
C			В						
L2			Ċ						
B	L2	177.000-172.000	Ā	1.506					
C			В						
L3			Ċ						
B	L3	172.000-167.000	Ā	1.502					
L4 167,000-162,000 A 1.497 0.000			В						
L4			C						
B	L4	167.000-162.000	Ā	1.497			0.000		
C			В				1.685		
L5			Ċ						
B	1.5	162.000-157.000	Ā	1.493					
C		.02.000	B						
L6 157,000-152,000 A 1.488 0.000			Č						
B	16	157 000-152 000	Ă	1 488					
C		1011000 1021000	В	11100					
L7			Č						
B	17	152 000-147 000	Ā	1 483					
L8 147.000-142.000 A 1.478 0.000 0.0	_,	102.000 111.000	R	1.100					
L8 147.000-142.000 A 1.478 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.140 0.000 0.140 0.000			Ċ		0.000			0.000	
B	1.8	147 000-142 000	Δ	1 478			0.000		
L9 142.000-137.000 A 1.473 0.000		147.000 142.000	B	1.470	0.000			0.000	
L9 142.000-137.000 A 1.473 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.194 L10 137.000-133.081 A 1.468 0.000			C						
B	19	142 000_137 000	Δ	1 473					
L10 137.000-133.081 A 1.468 0.000	LJ	142.000-107.000	B	1.470					
L10 137.000-133.081 A 1.468 0.000			Č				0.700		
B	I 10	137 000_133 081	Δ	1 468					
L11 133.081-131.834 A 1.465 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.005 0.000	LIO	107.000 100.001	B	1.400					
L11 133.081-131.834 A 1.465 0.000									
B	I 11	133 081_131 834	Δ	1.465					
L12	L11	100.001-101.004	B	1.400					
L12 131.834-126.834 A 1.462 0.000									
B 0.000 0.000 8.370 0.000 0.228	I 12	131 834_126 834	Δ	1 462					
L13 126.834-121.834 A 1.456 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0228 0.000 0.059 L14 121.834-116.834 A 1.450 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0227 0.000 0.000 0.000 0.000 0.000 0.058 L15 116.834-111.834 A 1.444 0.000 0.000 0.000 0.000 0.000 0.000 B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 L15 116.834-111.834 A 1.444 0.000 0.000 0.000 0.000 0.000 0.000 L15 116.834-111.834 A 1.444 0.000 0	LIZ	101,004-120,004	B	1.402					
L13 126.834-121.834 A 1.456 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.228 0.000 0.028 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0227 0.000			Č						
B 0.000 0.000 8.351 0.000 0.228 C 0.000 0.000 2.256 0.000 0.059 L14 121.834-116.834 A 1.450 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.227 C 0.000 0.000 0.000 0.000 0.059 L15 116.834-111.834 A 1.444 0.000 0.058	I 13	126 834-121 834	Δ	1.456					
C 0.000 0.000 2.256 0.000 0.059 L14 121.834-116.834 A 1.450 0.000 0.000 0.000 0.000 0.000 B 0.000 0.000 8.332 0.000 0.227 C 0.000 0.000 2.250 0.000 0.059 L15 116.834-111.834 A 1.444 0.000 0.000 0.000 0.000 0.000 B 0.000 0.000 8.312 0.000 0.227 C 0.000 0.000 2.244 0.000 0.058	LIJ	120.004-121.004	R	1.430					
L14 121.834-116.834 A 1.450 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.227 C 0.000 0.000 0.000 2.250 0.000 0.059 L15 116.834-111.834 A 1.444 0.000 0.000 0.000 0.000 0.000 B 0.000 0.000 8.312 0.000 0.227 C 0.000 0.000 2.244 0.000 0.058			C						
B 0.000 0.000 8.332 0.000 0.227 C 0.000 0.000 2.250 0.000 0.059 L15 116.834-111.834 A 1.444 0.000 0.000 0.000 0.000 0.000 B 0.000 0.000 8.312 0.000 0.227 C 0.000 0.000 2.244 0.000 0.058	1.14	121 934 116 934	٨	1.450					
C 0.000 0.000 2.250 0.000 0.059 L15 116.834-111.834 A 1.444 0.000 0.000 0.000 0.000 0.000 B 0.000 0.000 8.312 0.000 0.227 C 0.000 0.000 2.244 0.000 0.058	∟14	121.004-110.004	R	1.400					
L15 116.834-111.834 A 1.444 0.000 0.000 0.000 0.000 0.000 0.000 B 0.000 0.000 0.000 0.000 0.227 C 0.000 0.000 2.244 0.000 0.058			5				2 250		
B 0.000 0.000 8.312 0.000 0.227 C 0.000 0.000 2.244 0.000 0.058	1.15	116 834 111 934	Δ	1 111					
C 0.000 0.000 2.244 0.000 0.058	LIJ	110.004-111.004	Λ P	1.444					
			C					0.000	
E10 111.00 4 -100.004 A 1.407 0.000 0.000 0.000 0.000	1 16	111 834 106 834	٨	1 //27					
	LIU	111.004-100.034	^	1.701	0.000	0.000	0.000	0.000	0.000

Tower	Tower	Face	Ice	A_R	A _F	C _A A _A	C _A A _A	Weight
Sectio n	Elevation ft	or Leg	Thickness in	ft ²	ft²	In Face ft²	Out Face ft²	K
	10	B		0.000	0.000	8.291	0.000	0.226
		С		0.000	0.000	2.237	0.000	0.058
L17	106.834-101.834	Α	1.431	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	8.269	0.000	0.226
		C		0.000	0.000	2.231	0.000	0.058
L18	101.834-96.834	Α	1.424	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	8.246	0.000	0.225
L19	96.834-87.449	C A	1.413	0.000 0.000	0.000 0.000	2.224 0.000	0.000 0.000	0.058 0.015
LIS	30.034-07.443	В	1.413	0.000	0.000	15.413	0.000	0.421
		Č		0.000	0.000	4 153	0.000	0.108
L20	87.449-86.449	Ä	1.405	0.000	0.000	0.660	0.000	0.012
		В		0.000	0.000	2.303	0.000	0.051
		С		0.000	0.000	1.103	0.000	0.017
L21	86,449-85,000	Α	1.403	0.000	0.000	1.734	0.000	0.023
		В		0.000	0.000	4.104	0.000	0.080
	05 000 04 750	C		0.000	0.000	2.372	0.000	0.031
L22	85.000-84.750	A	1.401	0.000	0.000	0.299	0.000	0.004
		B C		0.000 0.000	0.000 0.000	0.708 0.409	0.000 0.000	0.014
L23	84.750-79.750	A	1.397	0.000	0.000	5.980	0.000	0.005 0.080
LZS	04.730-79.730	В	1.397	0.000	0.000	14.140	0.000	0.080
		C		0.000	0.000	8 177	0.000	0.108
L24	79.750-75.000	Ä	1.388	0.000	0.000	8.149	0.000	0.096
		В		0.000	0.000	15.874	0.000	0.280
		С		0.000	0.000	10.228	0.000	0.122
L25	75.000-74.750	Α	1.384	0.000	0.000	0.607	0.000	0.007
		В		0.000	0.000	1.013	0.000	0.016
		C		0.000	0.000	0.717	0.000	0.008
L26	74.750-74.000	Α	1.383	0.000	0.000	1.822	0.000	0.020
		В		0.000	0.000	3.039	0.000	0.048
L27	74 000 72 750	C A	1.382	0.000 0.000	0.000 0.000	2.150 0.607	0.000 0.000	0.024 0.007
LZ/	74.000-73.750	В	1.362	0.000	0.000	1.013	0.000	0.007
		C		0.000	0.000	0.716	0.000	0.018
L28	73.750-68.750	Ä	1.377	0.000	0.000	8.258	0.000	0.097
	10,100 00,100	В	1.077	0.000	0.000	17.792	0.000	0.304
		С		0.000	0.000	10.435	0.000	0.124
L29	68.750-63.750	Α	1.367	0.000	0.000	6.159	0.000	0.079
		В		0.000	0.000	15.903	0.000	0.288
		С		0.000	0.000	8.326	0.000	0.106
L30	63.750-58.750	Α	1.356	0.000	0.000	6.148	0.000	0.079
		В		0.000	0.000	15.847	0.000	0.286
1.24	E0 7E0 E2 7E0	C	1 245	0.000	0.000	8.304	0.000	0.105
L31	58.750-53.750	A B	1.345	0.000 0.000	0.000 0.000	6.136 15.787	0.000 0.000	0.078 0.284
		C		0.000	0.000	8.281	0.000	0.104
L32	53,750-42,848	Ä	1.324	0.000	0.000	8.257	0.000	0.129
		В		0.000	0.000	29.109	0.000	0.574
		С		0.000	0.000	12.889	0.000	0.185
L33	42.848-41.848	Α	1.307	0.000	0.000	0.000	0.000	0.006
		В		0.000	0.000	1.913	0.000	0.047
		С		0.000	0.000	0.425	0.000	0.011
L34	41.848-36.848	Α	1.298	0.000	0.000	0.000	0.000	0.029
		В		0.000	0.000	9.450	0.000	0.231
1.05	20 040 24 040	C	4.000	0.000	0.000	2.098	0.000	0.055
L35	36.848-31.848	A B	1.280	0.000 0.000	0.000 0.000	0.000 9.375	0.000 0.000	0.029 0.230
		Č		0.000	0.000	2.080	0.000	0.230
L36	31.848-26.848	A	1.260	0.000	0.000	0.000	0.000	0.034
_00	5510 251010	В	.1200	0.000	0.000	9.290	0.000	0.228
		Č		0.000	0.000	2.060	0.000	0.054
L37	26.848-21.848	Ä	1.237	0.000	0.000	0.000	0.000	0.029
		В		0.000	0.000	9.191	0.000	0.225
		С		0.000	0.000	2.037	0.000	0.053
L38	21.848-16.848	Α	1.209	0.000	0.000	0.000	0.000	0.029
		В		0.000	0.000	9.072	0.000	0.223
	10.010.11.717	C	4 4=6	0.000	0.000	2.009	0.000	0.052
L39	16.848-11.848	Α	1.173	0.000	0.000	0.000	0.000	0.029

Tower	Tower	Face	Ice	A_R	A_F	C _A A _A	C _A A _A	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
		В		0.000	0.000	8.920	0.000	0.219
		С		0.000	0.000	1.973	0.000	0.051
L40	11.848-6.848	Α	1.124	0.000	0.000	0.000	0.000	0.029
		В		0.000	0.000	8.711	0.000	0.215
		С		0.000	0.000	1.924	0.000	0.050
L41	6.848-1.848	Α	1.041	0.000	0.000	0.000	0.000	0.029
		В		0.000	0.000	8.359	0.000	0.208
		С		0.000	0.000	1.841	0.000	0.048
L42	1.848-0.000	Α	0.892	0.000	0.000	0.000	0.000	0.011
		В		0.000	0.000	2.855	0.000	0.072
		С		0.000	0.000	0.625	0.000	0.017

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	182.000-177.000	0.300	0.000	1.210	0.000
L2	177.000-172.000	0.300	0.000	1.232	0.000
L3	172.000-167.000	0.300	0.000	1.251	0.000
L4	167.000-162.000	0.300	0.000	1.268	0.000
L5	162.000-157.000	0.301	0.000	1.283	0.000
L6	157.000-152.000	0.301	0.000	1.297	0.000
L7	152.000-147.000	0.301	0.000	1.308	0.000
L8	147.000-142.000	0.301	0.000	1.319	0.000
L9	142.000-137.000	1.990	-1.608	2.786	-1.697
L10	137.000-133.081	2.817	-2.392	3.427	-2.420
L11	133.081-131.834	2.821	-2.395	3.435	-2.425
L12	131.834-126.834	2.588	-1.708	3.139	-1.604
L13	126.834-121.834	2.483	-1.350	3.022	-1.185
L14	121.834-116.834	2.510	-1.365	3.078	-1.208
L15	116.834-111.834	2.535	-1.379	3.132	-1.230
L16	111.834-106.834	2.559	-1.392	3.183	-1.251
L17	106.834-101.834	2.582	-1.404	3.231	-1.271
L18	101.834-96.834	2.604	-1.416	3.277	-1.291
L19	96.834-87.449	2.633	-1.432	3.339	-1.317
L20	87.449-86.449	1.720	-0.935	2.575	-1.016
L21	86.449-85.000	1.346	-0.732	2.169	-0.857
L22	85.000-84.750	1.350	-0.734	2.176	-0.860
L23	84.750-79.750	1.363	-0.741	2.196	-0.868
L24	79.750-75.000	1.154	-0.627	1.938	-0.767
L25	75.000-74.750	0.947	-0.515	1.657	-0.657
L26	74.750-74.000	0.949	-0.516	1.660	-0.658
L27	74.000-73.750	0.951	-0.517	1.663	-0.659
L28	73.750-68.750	1.307	-0.768	2.280	-1.131
L29	68.750-63.750	1.566	-0.931	2.633	-1.346
L30	63.750-58.750	1.591	-0.946	2.671	-1.367
L31	58.750-53.750	1.616	-0.960	2.707	-1.386
L32	53.750-42.848	1.992	-1.184	3.150	-1.615
L33	42.848-41.848	2.992	-1.778	4.111	-2.108
L34	41.848-36.848	3.001	-1.784	4.104	-2.109
L35	36.848-31.848	3.016	-1.793	4.124	-2.122
L36	31.848-26.848	3.030	-1.801	4.138	-2.133
L37	26.848-21.848	3.044	-1.809	4.146	-2.142
L38	21.848-16.848	3.057	-1.817	4.147	-2.147
L39	16.848-11.848	3.070	-1.825	4.136	-2.148
L40	11.848-6.848	3.082	-1.832	4.104	-2.141
L41	6.848-1.848	3.094	-1.839	4.024	-2.116
L42	1.848-0.000	3.102	-1.844	3.835	-2.049

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	,	Segment Elev.	No Ice	Ice
L1	25	Safety Line 3/8	177.00 - 182.00	1.0000	1.0000
L2	25	Safety Line 3/8	172.00 - 172.00 - 177.00	1.0000	1.0000
L3	25	Safety Line 3/8	167.00 - 172.00	1.0000	1.0000
L4	25	Safety Line 3/8	162.00 - 167.00	1.0000	1.0000
L5	25	Safety Line 3/8	157.00 - 162.00	1.0000	1.0000
L6	25	Safety Line 3/8	152.00 - 157.00	1.0000	1.0000
L7	25	Safety Line 3/8	147.00 - 152.00	1.0000	1.0000
L8	25	Safety Line 3/8	142.00 - 147.00	1.0000	1.0000
L9	17	LDF5-50A(7/8)	137.00 - 140.00	1.0000	1.0000
L9	18	HB114-1-0813U4-M5F(1- 1/4)	137.00 - 140.00	1.0000	1.0000
L9	25	Safety Line 3/8	137.00 - 142.00	1.0000	1.0000
L10	17	LDF5-50A(7/8)	133.08 - 137.00	1.0000	1.0000
L10	18	HB114-1-0813U4-M5F(1- 1/4)	133.08 - 137.00	1.0000	1.0000
L10	25	Safety Line 3/8	133.08 - 137.00	1.0000	1.0000
L11	17	LDF5-50A(7/8)	131.83 - 133.08	1.0000	1.0000
L11	18	HB114-1-0813U4-M5F(1- 1/4)	131.83 - 133.08	1.0000	1.0000
L11	25	Safety Line 3/8	131.83 - 133.08	1.0000	1.0000
L12	17	LDF5-50A(7/8)	126.83 - 131.83	1.0000	1.0000
L12	18	HB114-1-0813U4-M5F(1- 1/4)	126.83 - 131.83	1.0000	1.0000
L12	25	Safety Line 3/8	126.83 - 131.83	1.0000	1.0000
L12	35	CU12PSM9P6XXX(1-1/2)	126.83 - 130.00	1.0000	1.0000
L13	17	LDF5-50A(7/8)	121.83 - 126.83	1.0000	1.0000
L13	18	HB114-1-0813U4-M5F(1- 1/4)	121.83 - 126.83	1.0000	1.0000
L13	25	Safety Line 3/8	121.83 - 126.83	1.0000	1.0000
L13	35	CU12PSM9P6XXX(1-1/2)	121.83 - 126.83	1.0000	1.0000
L14	17	LDF5-50A(7/8)	126.63 116.83 - 121.83	1.0000	1.0000
L14	18	HB114-1-0813U4-M5F(1-	116.83 -	1.0000	1.0000
L14	25	Safety Line 3/8	121.83 - 116.83 121.83	1.0000	1.0000
L14	35	CU12PSM9P6XXX(1-1/2)	116.83 - 121.83	1.0000	1.0000
L15	17	LDF5-50A(7/8)	111.83 - 116.83	1.0000	1.0000
L15	18	HB114-1-0813U4-M5F(1- 1/4)	111.83 - 116.83	1.0000	1.0000
L15	25	Safety Line 3/8	111.83 - 116.83	1.0000	1.0000
	ı I		1 10.03	ļ	

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	Description	Segment Elev.	No Ice	Ice
L15	35	CU12PSM9P6XXX(1-1/2)	111.83 -	1.0000	1.0000
L16	17	LDF5-50A(7/8)	116.83 106.83 - 111.83	1.0000	1.0000
L16	18	HB114-1-0813U4-M5F(1- 1/4)	106.83 - 111.83	1.0000	1.0000
L16	25	Safety Line 3/8	106.83 - 111.83	1.0000	1.0000
L16	35	CU12PSM9P6XXX(1-1/2)	106.83 - 111.83	1.0000	1.0000
L17	17	LDF5-50A(7/8)	101.83 - 106.83	1.0000	1.0000
L17	18	HB114-1-0813U4-M5F(1- 1/4)	101.83 - 106.83	1.0000	1.0000
L17	25	Safety Line 3/8	101.83 - 106.83	1.0000	1.0000
L17	35	CU12PSM9P6XXX(1-1/2)	101.83 - 106.83	1.0000	1.0000
L18	17	LDF5-50A(7/8)	96.83 - 101.83	1.0000	1.0000
L18	18	HB114-1-0813U4-M5F(1- 1/4)	96.83 - 101.83	1.0000	1.0000
L18	25	Safety Line 3/8	96.83 - 101.83	1.0000	1.0000
L18	35	CU12PSM9P6XXX(1-1/2)	96.83 - 101.83	1.0000	1.0000
L19	17	LDF5-50A(7/8)	87.45 - 96.83	1.0000	1.0000
L19	18	HB114-1-0813U4-M5F(1- 1/4)	87.45 - 96.83	1.0000	1.0000
L19	25	Safety Line 3/8	87.45 - 96.83	1.0000	1.0000
L19	35	CU12PSM9P6XXX(1-1/2)	87.45 - 96.83	1.0000	1.0000
L20	17	LDF5-50A(7/8)	86.45 - 87.45	1.0000	1.0000
L20	18	HB114-1-0813U4-M5F(1- 1/4)	86.45 - 87.45	1.0000	1.0000
L20 L20	25	Safety Line 3/8 PL 5.75"x1"	86.45 - 87.45	1.0000 1.0000	1.0000 1.0000
L20	31 32	PL 5.75 X1"	86.45 - 87.00 86.45 -	1.0000	1.0000
L20	33	PL 5.75 X1"	87.00	1.0000	1.0000
L20	35	CU12PSM9P6XXX(1-1/2)	86.45 - 87.00 86.45 -	1.0000	1.0000
L20	17	LDF5-50A(7/8)	87.45 85.00 -	1.0000	1.0000
L21	18	HB114-1-0813U4-M5F(1-	86.45 85.00 -	1.0000	1.0000
L21	25	1/4) Safety Line 3/8	86.45 85.00 -	1.0000	1.0000
L21	31	PL 5.75"x1"	86.45 85.00 -	1.0000	1.0000
L21	32	PL 5.75"x1"	86.45 85.00 -	1.0000	1.0000
L21	33	PL 5.75"x1"	86.45 85.00 -	1.0000	1.0000
L21	35	CU12PSM9P6XXX(1-1/2)	86.45 85.00 -	1.0000	1.0000
L22	17	LDF5-50A(7/8)	86.45 84.75 -	1.0000	1.0000
L22	18	HB114-1-0813U4-M5F(1-	85.00 84.75 -	1.0000	1.0000
L22	25	1/4) Safety Line 3/8	85.00 84.75 -	1.0000	1.0000
L22	31	PL 5.75"x1"	85.00 84.75 -	1.0000	1.0000

Tower	Feed Line	Feed Line Description		Ka	Ka
Section	Record No.	Description	Feed Line Segment	No Ice	lce
			<i>Elev.</i> 85.00		
L22	32	PL 5.75"x1"	84.75 - 85.00	1.0000	1.0000
L22	33	PL 5.75"x1"	84.75 - 85.00	1.0000	1.0000
L22	35	CU12PSM9P6XXX(1-1/2)	84.75 - 85.00	1.0000	1.0000
L23	17	LDF5-50A(7/8)	79.75 - 84.75	1.0000	1.0000
L23	18	HB114-1-0813U4-M5F(1- 1/4)	79.75 - 84.75	1.0000	1.0000
L23	25	Safety Line 3/8	79.75 - 84.75	1.0000	1.0000
L23	31	PL 5.75"x1"	79.75 - 84.75	1.0000	1.0000
L23	32	PL 5.75"x1"	79.75 - 84.75	1.0000	1.0000
L23	33	PL 5.75"x1"	79.75 - 84.75	1.0000	1.0000
L23	35	CU12PSM9P6XXX(1-1/2)	79.75 - 84.75	1.0000	1.0000
L24	17	LDF5-50A(7/8)	75.00 - 79.75	1.0000	1.0000
L24	18	HB114-1-0813U4-M5F(1- 1/4)	75.00 - 79.75	1.0000	1.0000
L24	25	Safety Line 3/8	75.00 - 79.75	1.0000	1.0000
L24	27	PL 5.75"x1"	75.00 - 77.00	1.0000	1.0000
L24	28	PL 5.75"x1"	75.00 - 77.00	1.0000	1.0000
L24	29	PL 5.75"x1"	75.00 - 77.00	1.0000	1.0000
L24	31	PL 5.75"x1"	75.00 - 79.75	1.0000	1.0000
L24	32	PL 5.75"x1"	75.00 - 79.75	1.0000	1.0000
L24	33	PL 5.75"x1"	75.00 - 79.75	1.0000	1.0000
L24	35	CU12PSM9P6XXX(1-1/2)	75.00 - 79.75	1.0000	1.0000
L25	17	LDF5-50A(7/8)	74.75 - 75.00	1.0000	1.0000
L25	18	HB114-1-0813U4-M5F(1- 1/4)	74.75 - 75.00	1.0000	1.0000
L25	25	Safety Line 3/8	74.75 - 75.00	1.0000	1.0000
L25	27	PL 5.75"x1"	74.75 - 75.00	1.0000	1.0000
L25	28	PL 5.75"x1"	74.75 - 75.00	1.0000	1.0000
L25	29	PL 5.75"x1"	74.75 - 75.00	1.0000	1.0000
L25	31	PL 5.75"x1"	74.75 - 75.00	1.0000	1.0000
L25	32	PL 5.75"x1"	74.75 - 75.00	1.0000	1.0000
L25	33	PL 5.75"x1"	74.75 - 75.00	1.0000	1.0000
L25	35	CU12PSM9P6XXX(1-1/2)	74.75 - 75.00	1.0000	1.0000
L26	17	LDF5-50A(7/8)	74.00 - 74.75	1.0000	1.0000
L26	18	HB114-1-0813U4-M5F(1- 1/4)	74.00 - 74.75	1.0000	1.0000
L26	25	Safety Line 3/8	74.00 - 74.75	1.0000	1.0000
L26	27	PL 5.75"x1"	74.00 - 74.75	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	K a
Section	Record No.	·	Segment Elev.	No Îce	Ice
L26	28	PL 5.75"x1"	74.00 - 74.75	1.0000	1.0000
L26	29	PL 5.75"x1"	74.00 - 74.75	1.0000	1.0000
L26	31	PL 5.75"x1"	74.00 -	1.0000	1.0000
L26	32	PL 5.75"x1"	74.75 74.00 - 74.75	1.0000	1.0000
L26	33	PL 5.75"x1"	74.00 - 74.75	1.0000	1.0000
L26	35	CU12PSM9P6XXX(1-1/2)	74.00 - 74.75	1.0000	1.0000
L27	17	LDF5-50A(7/8)	73.75 - 74.00	1.0000	1.0000
L27	18	HB114-1-0813U4-M5F(1- 1/4)	73.75 - 74.00	1.0000	1.0000
L27	25	Safety Line 3/8	73.75 - 74.00	1.0000	1.0000
L27	27	PL 5.75"x1"	73.75 - 74.00	1.0000	1.0000
L27	28	PL 5.75"x1"	73.75 - 74.00	1.0000	1.0000
L27	29	PL 5.75"x1"	73.75 - 74.00	1.0000	1.0000
L27	31	PL 5.75"x1"	73.75 - 74.00	1.0000	1.0000
L27	32	PL 5.75"x1"	73.75 - 74.00	1.0000	1.0000
L27	33	PL 5.75"x1"	73.75 - 74.00	1.0000	1.0000
L27	35	CU12PSM9P6XXX(1-1/2)	73.75 - 74.00	1.0000	1.0000
L28	17	LDF5-50A(7/8)	68.75 - 73.75	1.0000	1.0000
L28	18	HB114-1-0813U4-M5F(1- 1/4)	68.75 - 73.75	1.0000	1.0000
L28	23	LDF4-50A(1/2)	68.75 - 73.00	1.0000	1.0000
L28	25	Safety Line 3/8	68.75 - 73.75	1.0000	1.0000
L28	27	PL 5.75"x1"	68.75 - 73.75	1.0000	1.0000
L28	28	PL 5.75"x1"	68.75 - 73.75	1.0000	1.0000
L28	29	PL 5.75"x1"	68.75 - 73.75	1.0000	1.0000
L28	31	PL 5.75"x1"	72.00 - 73.75	1.0000	1.0000
L28	32	PL 5.75"x1"	72.00 - 73.75	1.0000	1.0000
L28	33	PL 5.75"x1"	72.00 - 73.75	1.0000	1.0000
L28	35	CU12PSM9P6XXX(1-1/2)	68.75 - 73.75	1.0000	1.0000
L29	17	LDF5-50A(7/8)	63.75 - 68.75	1.0000	1.0000
L29	18	HB114-1-0813U4-M5F(1- 1/4)	63.75 - 68.75	1.0000	1.0000
L29	23	LDF4-50A(1/2)	63.75 - 68.75	1.0000	1.0000
L29	25	Safety Line 3/8	63.75 - 68.75	1.0000	1.0000
L29	27	PL 5.75"x1"	63.75 - 68.75	1.0000	1.0000
L29	28	PL 5.75"x1"	63.75 - 68.75	1.0000	1.0000
L29	29	PL 5.75"x1"	63.75 - 68.75	1.0000	1.0000
L29	35	CU12PSM9P6XXX(1-1/2)		1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	K a
Section	Record No.	_ 500.154.011	Segment	No Ice	Ice
			<i>Elev.</i> 68.75		
L30	17	LDF5-50A(7/8)	58.75 - 63.75	1.0000	1.0000
L30	18	HB114-1-0813U4-M5F(1- 1/4)	58.75 - 63.75	1.0000	1.0000
L30	23	LDF4-50A(1/2)	58.75 - 63.75	1.0000	1.0000
L30	25	Safety Line 3/8	58.75 - 63.75	1.0000	1.0000
L30	27	PL 5.75"x1"	58.75 - 63.75	1.0000	1.0000
L30	28	PL 5.75"x1"	58.75 - 63.75	1.0000	1.0000
L30	29	PL 5.75"x1"	58.75 - 63.75	1.0000	1.0000
L30	35	CU12PSM9P6XXX(1-1/2)	58.75 - 63.75	1.0000	1.0000
L31	17	LDF5-50A(7/8)	53.75 - 58.75	1.0000	1.0000
L31	18	HB114-1-0813U4-M5F(1- 1/4)	53.75 - 58.75	1.0000	1.0000
L31	23	LDF4-50A(1/2)	53.75 - 58.75	1.0000	1.0000
L31	25	Safety Line 3/8	53.75 - 58.75	1.0000	1.0000
L31	27	PL 5.75"x1"	53.75 - 58.75	1.0000	1.0000
L31	28	PL 5.75"x1"	53.75 - 58.75	1.0000	1.0000
L31	29	PL 5.75"x1"	53.75 - 58.75	1.0000	1.0000
L31	35	CU12PSM9P6XXX(1-1/2)	53.75 - 58.75	1.0000	1.0000
L32	17	LDF5-50A(7/8)	42.85 - 53.75	1.0000	1.0000
L32	18	HB114-1-0813U4-M5F(1- 1/4)	42.85 - 53.75	1.0000	1.0000
L32	23	LDF4-50A(1/2)	42.85 - 53.75	1.0000	1.0000
L32	25	Safety Line 3/8	42.85 - 53.75	1.0000	1.0000
L32	27	PL 5.75"x1"	47.00 - 53.75	1.0000	1.0000
L32	28	PL 5.75"x1"	47.00 - 53.75	1.0000	1.0000
L32	29	PL 5.75"x1"	47.00 - 53.75	1.0000	1.0000
L32	35	CU12PSM9P6XXX(1-1/2)	42.85 - 53.75	1.0000	1.0000
L33	17	LDF5-50A(7/8)	41.85 - 42.85	1.0000	1.0000
L33	18	HB114-1-0813U4-M5F(1- 1/4)	41.85 - 42.85	1.0000	1.0000
L33	23	LDF4-50A(1/2)	41.85 - 42.85	1.0000	1.0000
L33	25	Safety Line 3/8	41.85 - 42.85	1.0000	1.0000
L33	35	CU12PSM9P6XXX(1-1/2)	41.85 - 42.85	1.0000	1.0000
L34	17	LDF5-50A(7/8)	36.85 - 41.85	1.0000	1.0000
L34	18	HB114-1-0813U4-M5F(1- 1/4)	36.85 - 41.85	1.0000	1.0000
L34	23	LDF4-50A(1/2)	36.85 - 41.85	1.0000	1.0000
L34	25	Safety Line 3/8	36.85 - 41.85	1.0000	1.0000
L34	35	CU12PSM9P6XXX(1-1/2)	36.85 - 41.85	1.0000	1.0000

36.85 L35 18 HB114-1-0813U4-M5F(1- 31.85 - 1. 1/4) 36.85 L35 23 LDF4-50A(1/2) 31.85 - 1.		<i>K</i> _a <i>lce</i> 1.0000 1.0000
L35 17 LDF5-50A(7/8) 31.85 - 1. 36.85 23 LDF4-50A(1/2) 31.85 - 1. L35 23 LDF4-50A(1/2) 31.85 - 1.	.0000	1.0000
36.85 L35 18 HB114-1-0813U4-M5F(1- 31.85 - 1. 1/4) 36.85 L35 23 LDF4-50A(1/2) 31.85 - 1.	.0000	1.0000
L35 18 HB114-1-0813U4-M5F(1- 31.85 - 1. 1/4) 36.85 L35 23 LDF4-50A(1/2) 31.85 - 1.	.0000	
L35 23 LDF4-50A(1/2) 31.85 - 1.		1.0000
36.85	.0000	
L35 25 Safety Line 3/8 31.85 - 1.		1.0000
L35 35 CU12PSM9P6XXX(1-1/2) 31.85 - 1.	.0000	1.0000
36.85 L36 17 LDF5-50A(7/8) 26.85 - 1.	.0000	1.0000
31.85		
L36 18 HB114-1-0813U4-M5F(1- 26.85 - 1. 1/4) 31.85	.0000	1.0000
L36 23 LDF4-50A(1/2) 26.85 - 1.	.0000	1.0000
31.85 L36 25 Safety Line 3/8 26.85 - 1.	.0000	1.0000
31.85		
L36 35 CU12PSM9P6XXX(1-1/2) 26.85 - 1.	0000	1.0000
L37 17 LDF5-50A(7/8) 21.85 - 1.	.0000	1.0000
26.85 L37 18 HB114-1-0813U4-M5F(1- 21.85 - 1.	.0000	1.0000
1/4) 26.85	0000	4 0000
L37 23 LDF4-50A(1/2) 21.85 - 1.	.0000	1.0000
	.0000	1.0000
26.85 L37 35 CU12PSM9P6XXX(1-1/2) 21.85 - 1.	.0000	1.0000
26.85	0000	1 0000
21.85	0000	1.0000
L38 18 HB114-1-0813U4-M5F(1- 16.85 - 1.	0000	1.0000
	.0000	1.0000
21.85 L38 25 Safety Line 3/8 16.85 - 1.	.0000	1.0000
21.85		
L38 35 CU12PSM9P6XXX(1-1/2) 16.85 - 1.	.0000	1.0000
L39 17 LDF5-50A(7/8) 11.85 - 1.	.0000	1.0000
16.85 L39 18 HB114-1-0813U4-M5F(1- 11.85 - 1.	.0000	1.0000
1/4) 16.85		
L39 23 LDF4-50A(1/2) 11.85 - 1.	0000	1.0000
L39 25 Safety Line 3/8 11.85 - 1.	.0000	1.0000
16.85 L39 35 CU12PSM9P6XXX(1-1/2) 11.85 - 1.	.0000	1.0000
16.85		
	0000	1.0000 1.0000
1/4)		
	0000	1.0000 1.0000
L40 35 CU12PSM9P6XXX(1-1/2) 6.85 - 11.85 1.	.0000	1.0000
	0000	1.0000
L41 18 HB114-1-0813U4-M5F(1- 1.85 - 6.85 1.	0000	1.0000
	0000	1.0000
	0000	1.0000 1.0000
L42 17 LDF5-50A(7/8) 0.00 - 1.85 1.	.0000	1.0000
L42 18 HB114-1-0813U4-M5F(1- 0.00 - 1.85 1.	.0000	1.0000
L42 23 LDF4-50A(1/2) 0.00 - 1.85 1.	.0000	1.0000
	0000	1.0000 1.0000

Effective Width of Flat Linear Attachments / Feed Lines

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
Section	Necora No.		Elev.	n	Ratio
				Method	
L20	31	PL 5.75"x1"	86.45 -	Auto	0.0258
1.00	00	DI 5 75" 4"	87.00	Α .	0.0050
L20	32	PL 5.75"x1"	86.45 - 87.00	Auto	0.0258
L20	33	PL 5.75"x1"	86.45	Auto	0.0258
			87.00		
L21	31	PL 5.75"x1"	85.00 -	Auto	0.0187
L21	32	PL 5.75"x1"	86.45 85.00 -	Auto	0.0187
'	02	1 E 0.70 X1	86.45	71410	0.0107
L21	33	PL 5.75"x1"	85.00 -	Auto	0.0187
1.00	31	DL 5 75", 4"	86.45	Auto	0.0106
L22	31	PL 5.75"x1"	84.75 - 85.00	Auto	0.0126
L22	32	PL 5.75"x1"	84.75	Auto	0.0126
			85.00		
L22	33	PL 5.75"x1"	84.75 - 85.00	Auto	0.0126
L23	31	PL 5.75"x1"	79.75	Auto	0.0019
			84.75	, ,,,,,	
L23	32	PL 5.75"x1"	79.75 -	Auto	0.0019
L23	33	PL 5.75"x1"	84.75 79.75	Auto	0.0019
LZS	33	FL 3.73 X1	84.75	Auto	0.0019
L24	27	PL 5.75"x1"	75.00 -	Auto	0.0000
		5	77.00		
L24	28	PL 5.75"x1"	75.00 - 77.00	Auto	0.0000
L24	29	PL 5.75"x1"	75.00 -	Auto	0.0000
			77.00		
L24	31	PL 5.75"x1"	75.00 -	Auto	0.0000
L24	32	PL 5.75"x1"	79.75 75.00 -	Auto	0.0000
	32	1 L 3.73 X1	79.75	Auto	0.0000
L24	33	PL 5.75"x1"	75.00 -	Auto	0.0000
1.05	27	DL 5 75"4"	79.75	A 4 -	0.0407
L25	27	PL 5.75"x1"	74.75 - 75.00	Auto	0.0407
L25	28	PL 5.75"x1"	74.75 -	Auto	0.0407
			75.00		
L25	29	PL 5.75"x1"	74.75 -	Auto	0.0407
L25	31	PL 5.75"x1"	75.00 74.75 -	Auto	0.0407
			75.00		
L25	32	PL 5.75"x1"	74.75 -	Auto	0.0407
L25	33	PL 5.75"x1"	75.00 74.75 -	Auto	0.0407
		F L 3.73 X I	75.00	Auto	0.0407
L26	27	PL 5.75"x1"	74.00 -	Auto	0.0372
100		DI 6.76% AW	74.75	- د ۸	0.0070
L26	28	PL 5.75"x1"	74.00 - 74.75	Auto	0.0372
L26	29	PL 5.75"x1"	74.73	Auto	0.0372
			74.75		
L26	31	PL 5.75"x1"	74.00 -	Auto	0.0372
L26	32	PL 5.75"x1"	74.75 74.00 -	Auto	0.0372
			74.75		
L26	33	PL 5.75"x1"	74.00 -	Auto	0.0372

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Elev.	n	Ratio
				Method	
			74.75		
L27	27	PL 5.75"x1"	73.75 -	Auto	0.0000
1.07	00	DI 6 76" 4"	74.00	٠, ١	0.0000
L27	28	PL 5.75"x1"	73.75 - 74.00	Auto	0.0000
L27	29	PL 5.75"x1"	73.75	Auto	0.0000
	23	1 E 3.73 X1	74.00	7,010	0.0000
L27	31	PL 5.75"x1"	73.75	Auto	0.0000
			74.00		
L27	32	PL 5.75"x1"	73.75 -	Auto	0.0000
			74.00		
L27	33	PL 5.75"x1"	73.75 -	Auto	0.0000
1.00	0.7	DI 5 75% 48	74.00	۸	0.0000
L28	27	PL 5.75"x1"	68.75 - 73.75	Auto	0.0000
L28	28	PL 5.75"x1"	68.75	Auto	0.0000
	20	120.70 X1	73.75	, (0.0	0.0000
L28	29	PL 5.75"x1"	68.75 -	Auto	0.0000
			73.75		
L28	31	PL 5.75"x1"	72.00 -	Auto	0.0000
			73.75		
L28	32	PL 5.75"x1"	72.00 -	Auto	0.0000
L28	33	PL 5.75"x1"	73.75 72.00 -	Auto	0.0000
	33	1 L 3.73 X1	73.75	Auto	0.0000
L29	27	PL 5.75"x1"	63.75	Auto	0.0000
			68.75		
L29	28	PL 5.75"x1"	63.75 -	Auto	0.0000
			68.75		
L29	29	PL 5.75"x1"	63.75 -	Auto	0.0000
L30	27	PL 5.75"x1"	68.75 58.75 -	Auto	0.0000
L30	21	PL 5.75 X1	63.75	Auto	0.0000
L30	28	PL 5.75"x1"	58.75 -	Auto	0.0000
			63.75		
L30	29	PL 5.75"x1"	58.75 -	Auto	0.0000
			63.75		
L31	27	PL 5.75"x1"	53.75 -	Auto	0.0000
L31	00	DI 5.75%.4%	58.75	۸	0.0000
LSI	28	PL 5.75"x1"	53.75 - 58.75	Auto	0.0000
L31	29	PL 5.75"x1"	53.75	Auto	0.0000
		1 2 311 3 X 1	58.75	,	
L32	27	PL 5.75"x1"	47.00 -	Auto	0.0000
			53.75		
L32	28	PL 5.75"x1"	47.00 -	Auto	0.0000
100		DI C 75" 4"	53.75	A. 1	0.0000
L32	29	PL 5.75"x1"	47.00 -	Auto	0.0000
			53.75		

Discrete Tower Loads								
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft	Azimuth Adjustment °	Placement ft			
DS4C06F36D-D	Α	From Leg	6.000 0.000	0.000	178.000			

Description	Face	Offset	Offsets:	Azimuth	Placement
	or Leg	Type	Horz Lateral	Adjustment	
	Leg		Vert		
			ft	٥	ft
			ft ft		
			10.000		
APC-2163	Α	From Leg	6.000	0.000	178.000
			0.000 7.000		
APC-1362	В	From Leg	6.000	0.000	178.000
			0.000 7.000		
APC-4065	В	From Leg	6.000	0.000	178.000
		· ·	0.000		
APC-301	С	From Leg	6.000 6.000	0.000	178.000
Al 0-301	O	i ioni Leg	0.000	0.000	170.000
	_		6.000		
DS4C06F36D-D	С	From Leg	6.000 0.000	0.000	178.000
			10.000		
Miscellaneous [NA 502-3]	С	None		0.000	178.000
ANT450D6-9	Α	From Leg	4.000	0.000	168.000
,,			0.000		, 55.555
*			7.000		
DMP65R-BU6D w/ Mount Pipe	Α	From Leg	4.000	0.000	168.000
· ·		Ü	0.000		
DMP65R-BU6D w/ Mount Pipe	В	From Leg	0.000 4.000	0.000	168.000
Divil 031(-B00D w/ Modific) ipe	Ь	1 Tolli Leg	0.000	0.000	100.000
DIADOCO DILION (IA . D)	0		0.000	0.000	400.000
DMP65R-BU6D w/ Mount Pipe	С	From Leg	4.000 0.000	0.000	168.000
			0.000		
HPA-65R-BUU-H6 w/ Mount Pipe	Α	From Leg	4.000	0.000	168.000
			0.000 0.000		
HPA-65R-BUU-H6 w/ Mount Pipe	В	From Leg	4.000	0.000	168.000
			0.000		
HPA-65R-BUU-H6 w/ Mount Pipe	С	From Leg	0.000 4.000	0.000	168.000
•		J	0.000		
7770.00 w/ Mount Pipe	Α	From Leg	0.000 4.000	0.000	168.000
7770.00 W/Woditt1 ipe	^	i ioni Leg	0.000	0.000	100,000
	_		0.000		
7770.00 w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	168.000
			0.000		
7770.00 w/ Mount Pipe	С	From Leg	4.000	0.000	168.000
			0.000 0.000		
QS66512-2 w/ Mount Pipe	Α	From Leg	4.000	0.000	168.000
			0.000		
QS66512-2 w/ Mount Pipe	В	From Leg	0.000 4.000	0.000	168.000
			0.000		
OS66512 2 w/ Mount Pino	С	Erom Log	0.000	0.000	169 000
QS66512-2 w/ Mount Pipe	C	From Leg	4.000 0.000	0.000	168.000
		_	0.000	_	
		From Leg	4.000	0.000	168.000
(2) TPX-070821	В	1 Tom Leg	በ በበበ		
(2) TPX-070821	В	1 Tom Log	0.000 0.000		
(2) TPX-070821 (2) TPX-070821	В	From Leg	0.000 4.000	0.000	168.000
		_	0.000	0.000	168.000

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemen
	Leg		Lateral		
			Vert ft	•	ft
			ft ft		,,
			0.000		
DDI 10 22 D2	Б	Frank Law	0.000	0.000	100,000
RRUS 32 B2	В	From Leg	4.000 0.000	0.000	168.000
			0.000		
RRUS 32 B2	С	From Leg	4.000	0.000	168.000
			0.000 0.000		
RRUS 32 B2_CCIV2	Α	From Leg	4.000	0.000	168.000
_		· ·	0.000		
DDI 18 22 D2 CCIV/2	Б	Frank Law	0.000	0.000	460,000
RRUS 32 B2_CCIV2	В	From Leg	4.000 0.000	0.000	168.000
			0.000		
RRUS 32 B2_CCIV2	С	From Leg	4.000	0.000	168.000
			0.000		
RRUS 32 B66	Α	From Leg	0.000 4.000	0.000	168.000
141.00 02 000	, ,	r rom Log	0.000	0.000	100,000
			0.000		
RRUS 32 B66	В	From Leg	4.000	0.000	168.000
			0.000 0.000		
RRUS 32 B66	С	From Leg	4.000	0.000	168.000
		•	0.000		
DDUC 4440 B5/D40	Δ.	Formal and	0.000	0.000	400.000
RRUS 4449 B5/B12	Α	From Leg	4.000 0.000	0.000	168.000
			0.000		
RRUS 4449 B5/B12	В	From Leg	4.000	0.000	168.000
			0.000		
RRUS 4449 B5/B12	С	From Leg	0.000 4.000	0.000	168.000
14(00 4140 20/212	Ü	Trom Log	0.000	0.000	100.000
	_		0.000		
RRUS 4478 B14_CCIV2	Α	From Leg	4.000	0.000	168.000
			0.000 0.000		
RRUS 4478 B14_CCIV2	В	From Leg	4.000	0.000	168.000
			0.000		
RRUS 4478 B14_CCIV2	С	From Leg	0.000 4.000	0.000	168.000
KKU3 4478 B14_CCIV2	C	Fiolii Leg	0.000	0.000	100.000
			0.000		
RRUS E2 B29	Α	From Leg	4.000	0.000	168.000
			0.000 0.000		
RRUS E2 B29	В	From Leg	4.000	0.000	168.000
		Ŭ	0.000		
DDIIS ES DOS	С	Erom Loc	0.000 4.000	0.000	160 000
RRUS E2 B29	C	From Leg	4.000 0.000	0.000	168.000
			0.000		
RRUS-32 B30	Α	From Leg	4.000	0.000	168.000
			0.000 0.000		
RRUS-32 B30	В	From Leg	4.000	0.000	168.000
	_		0.000	2.000	. 30.000
DB 116	_		0.000		
RRUS-32 B30	С	From Leg	4.000	0.000	168.000
			0.000 0.000		
(2) LGP21401	Α	From Leg	4.000	0.000	168.000
		•	0.000 0.000		

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg		Lateral		
			Vert ft	۰	ft
			ft		,,
(2) LGP21401	В	From Leg		0.000	168.000
(2) 231 21 131	_	1.10.11.209	0.000	0,000	1001000
(2) L CD24404	0	Francia a	0.000	0.000	160,000
(2) LGP21401	С	From Leg	4.000 0.000	0.000	168.000
			0.000		
DC6-48-60-18-8C	В	From Leg	4.000 0.000	0.000	168.000
			0.000		
DC6-48-60-18-8C-EV	Α	From Leg	4.000	0.000	168.000
			0.000 0.000		
DC6-48-60-18-8C-EV	С	From Leg	4.000	0.000	168.000
			0.000		
DC6-48-60-18-8F	Α	From Leg	0.000 4.000	0.000	168.000
200 10 00 10 01	, ,	1 10111 20g	0.000	0.000	1001000
Al Oll Dine Mayort	۸	F==== 1 ===	0.000	0.000	100,000
4' x 2" Pipe Mount	Α	From Leg	4.000 0.000	0.000	168.000
			0.000		
4' x 2" Pipe Mount	В	From Leg	4.000 0.000	0.000	168.000
			0.000		
4' x 2" Pipe Mount	С	From Leg	4.000	0.000	168.000
			0.000 0.000		
Platform Mount [LP 304-1_KCKR-HR-1]	С	None	0.000	0.000	168.000
•	۸	From Log	4.000	0.000	157 000
AIR 32 B2A B66AA_T-MOBILE w/ Mount Pipe	Α	From Leg	4.000 0.000	0.000	157.000
			2.000		
AIR 32 B2A B66AA_T-MOBILE w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	157.000
			2.000		
AIR 32 B2A B66AA_T-MOBILE w/ Mount Pipe	С	From Leg	4.000	0.000	157.000
			0.000 2.000		
APXVAALL24_43-U-NA20_TMO w/ Mount Pipe	Α	From Leg	4.000	0.000	157.000
			0.000		
APXVAALL24_43-U-NA20_TMO w/ Mount Pipe	В	From Leg	2.000 4.000	0.000	157.000
· · · · · · · · · · · · · · · · · · ·			0.000		
APXVAALL24 43-U-NA20 TMO w/ Mount Pipe	С	From Leg	2.000 4.000	0.000	157.000
AFXVAALL24_45-0-NA20_1MO W/ Mount Fipe	C	i ioni Leg	0.000	0.000	137.000
			2.000		
AIR6449 B41_T-MOBILE	Α	From Leg	4.000 0.000	0.000	157.000
			2.000		
AIR6449 B41_T-MOBILE	В	From Leg	4.000	0.000	157.000
			0.000 2.000		
AIR6449 B41_T-MOBILE	С	From Leg	4.000	0.000	157.000
			0.000		
RADIO 4449 B71 B85A_T-MOBILE	Α	From Leg	2.000 4.000	0.000	157.000
		Ŭ	0.000		
RADIO 4449 B71 B85A_T-MOBILE	В	From Leg	2.000 4.000	0.000	157.000
TO LOTO THEO DE L'EDOCK_THIODICE	ی	i ioni Log	0.000	0.000	107.000
DADIO 4440 DZ4 D054 T 1100" T		F 1	2.000	2 222	457.000
RADIO 4449 B71 B85A_T-MOBILE	С	From Leg	4.000 0.000	0.000	157.000
			3.000		

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemer
	Leg	••	Lateral	•	
			Vert #	0	#
			ft ft		ft
RADIO 4415 B25_TMO	Α	From Leg	ft 4.000	0.000	157.000
10 10 44 10 B25_1MC	, ,	Trom Log	0.000 2.000	0.000	107.000
RADIO 4415 B25_TMO	В	From Leg	4.000	0.000	157.000
10 BIO 44 10 B25_1MO	J	Trom Log	0.000	0.000	107.000
RADIO 4415 B25 TMO	С	From Leg	2.000 4.000	0.000	157.000
NADIO 44 13 B23_1MO	C	i ioni Leg	0.000	0.000	137.000
8' x 2" Mount Pipe	Α	From Leg	2.000 4.000	0.000	157.000
o x z Wount ripe	^	i ioni Leg	0.000 0.000	0.000	137.000
8' x 2" Mount Pipe	В	From Leg	4.000	0.000	157.000
o X2 Modile i po	J	Trom Log	0.000 0.000	0.000	107.000
8' x 2" Mount Pipe	С	From Leg	4.000	0.000	157.000
	-		0.000 0.000		. 3
Platform Mount [LP 305-1_KCKR-HR-1]	С	None	0,000	0.000	157.000
800MHZ RRH	Α	From Leg	1.000	0.000	142.000
			0.000 -2.000		
800MHZ RRH	В	From Leg	1.000	0.000	142.000
		3	0.000 -2.000		
800MHZ RRH	С	From Leg	1.000	0.000	142.000
		3	0.000 -2.000		
800 EXTERNAL NOTCH FILTER	Α	From Leg	1.000	0.000	142.000
		-	0.000 -2.000		
800 EXTERNAL NOTCH FILTER	В	From Leg	1.000	0.000	142.000
		Č	0.000 -2.000		
800 EXTERNAL NOTCH FILTER	С	From Leg	1.000	0.000	142.000
		3	0.000	-	
1900MHZ RRH (65MHZ)	Α	From Leg	-2.000 1.000	0.000	142.000
	, ,		0.000	0.000	
1000MH7 DDH (65MH7)	D	From Leg	2.000	0.000	1/12 000
1900MHZ RRH (65MHZ)	В	From Leg	1.000 0.000	0.000	142.000
4000MHZ DDU (051 HZ)	_	For 1	2,000	0.000	440.000
1900MHZ RRH (65MHZ)	С	From Leg	1.000 0.000	0.000	142.000
Di M	0	Nien	2.000	0.000	440.000
Pipe Mount [PM 601-3] *	С	None		0.000	142.000
APXVSPP18-C-A20 w/ Mount Pipe	Α	From Leg	4.000 0.000	0.000	140.000
	_		2.000		
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	140.000
			2.000		
APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	4.000	0.000	140.000
			0.000 2.000		
APXVTM14-C-120 w/ Mount Pipe	Α	From Leg	4.000	0.000	140.000
·		<u> </u>	0.000		
APXVTM14-C-120 w/ Mount Pipe	В	From Leg	2.000 4.000	0.000	140.000
74 7W FWITT O 120 W/ WOUNTET IPE	5	1 Tolli Leg	0.000	0.000	1-10,000
	С		2.000 4.000	0.000	140.000
APXVTM14-C-120 w/ Mount Pipe		From Leg			

Leg	Description	Face	Offset	Offsets:	Azimuth	Placemer
TD-RRH8X20-25		or Lea	Type	Horz Lateral	Adjustment	
## # # # # # # # # # # # # # # # # # #		Leg				
TD-RRH8X20-25 A From Leg 4.000 0.000 140.00 140.00 170-RRH8X20-25 B From Leg 4.000 0.000 140.00 140.00 170-RRH8X20-25 B From Leg 4.000 0.000 140.00 140.00 170-RRH8X20-25 C From Leg 4.000 0.000 140.0					0	ft
TD-RRH8X20-25						
TD-RRH8X20-25						
TD-RRH8X20-25						
TD-RRH8X20-25 B From Leg 4,000 0,000 140,000 2,000 140,000 2,000 140,000 0,000 140,000 140,000 1,0000 140,000 1,0000 140,000 1,0000 140,000 1,0000 1,0000 140,000 1,0000 1	TD-RRH8X20-25	Α	From Leg		0.000	140.000
TD-RRHBX20-25 B From Leg 4.000 0.000 140.00			3	0.000		
TD-RRH8X20-25						
TD-RRH8X20-25	TD-RRH8X20-25	В	From Leg		0.000	140.000
TD-RRH8X20-25						
Platform Mount [LP 1201-1] C None	TD-RRH8X20-25	С	From Lea		0.000	140.000
Platform Mount (LP 1201-1) C None 0.000 140.00						
(2) NHH-65B-R2B w/ Mount Pipe		_		2,000		
(2) NHH-65B-R2B w/ Mount Pipe B From Leg 4,000 0,000 90,000 (2) NHH-65B-R2B w/ Mount Pipe C From Leg 4,000 0,000 90,000 BXA-70080-4BF-EDIN-0 w/ Mount Pipe B From Leg 4,000 0,000 90,000 BXA-70080-4BF-EDIN-0 w/ Mount Pipe B From Leg 4,000 0,000 90,000 BXA-70080-4BF-EDIN-0 w/ Mount Pipe C From Leg 4,000 0,000 90,000 BXA-70080-4BF-EDIN-0 w/ Mount Pipe B From Leg 4,000 0,000 90,000 BXA-70080-4BF-EDIN-0 w/ Mount Pipe C From Leg 4,000 0,000 90,000 0,000 90,000 CBRS B From Leg 4,000 0,000 90,000	Platform Mount [LP 1201-1]	С	None		0.000	140.000
(2) NHH-65B-R2B w/ Mount Pipe B From Leg 4,000 0,000 90,000 (2) NHH-65B-R2B w/ Mount Pipe C From Leg 4,000 0,000 0,000 90,000 (2) NHH-65B-R2B w/ Mount Pipe A From Leg 4,000 0,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From	(2) NHH-65B-R2B w/ Mount Pipe	Α	From Lea	4.000	0.000	90.000
(2) NHH-65B-R2B w/ Mount Pipe (2) NHH-65B-R2B w/ Mount Pipe (2) NHH-65B-R2B w/ Mount Pipe (3) NHH-65B-R2B w/ Mount Pipe (4) NHH-65B-R2B w/ Mount Pipe (5) From Leg (6) NHH-65B-R2B w/ Mount Pipe (6) NHH-65B-R2B w/ Mount Pipe (7) NHH-65B-R2B w/ Mount Pipe (8) NHH-65B-R2B w/ Mount Pipe (9) NHH-65B-R2B w	(=)					
(2) NHH-65B-R2B w/ Mount Pipe				0.000		
(2) NHH-65B-R2B w/ Mount Pipe	(2) NHH-65B-R2B w/ Mount Pipe	В	From Leg		0.000	90.000
(2) NHH-65B-R2B w/ Mount Pipe						
BXA-70080-4BF-EDIN-0 w/ Mount Pipe	(2) NHH 65B B2B w/ Mount Bino	C	From Log		0.000	00.000
BXA-70080-4BF-EDIN-0 w/ Mount Pipe	(2) Ni ii i-00B-R2B w/ Modift i ipe	C	r form Leg		0.000	30.000
BXA-70080-4BF-EDIN-0 w/ Mount Pipe B From Leg 4,000 0,						
BXA-70080-4BF-EDIN-0 w/ Mount Pipe B From Leg 4,000 0,000 90,000 BXA-70080-4BF-EDIN-0 w/ Mount Pipe C From Leg 4,000 0,000 0,000 90,000 0,	BXA-70080-4BF-EDIN-0 w/ Mount Pipe	Α	From Leg		0.000	90.000
BXA-70080-4BF-EDIN-0 w/ Mount Pipe B From Leg 0.000 0.000 0.000 90.000 0						
BXA-70080-4BF-EDIN-0 w/ Mount Pipe	DVA 70000 4DE EDIN 0 444 4 D				0.000	00.000
BXA-70080-4BF-EDIN-0 w/ Mount Pipe	BXA-70080-4BF-EDIN-0 W/ Mount Pipe	В	From Leg		0.000	90.000
BXA-70080-4BF-EDIN-0 w/ Mount Pipe						
CBRS A From Leg 4,000 0.000 90.000 CBRS B From Leg 4,000 0.000 90.000 CBRS B From Leg 4.000 0.000 90.000 CBRS C From Leg 4.000 0.000 90.000 (2) MT6407-77A w/ Mount Pipe A From Leg 4.000 0.000 0.000 (2) MT6407-77A w/ Mount Pipe B From Leg 4.000 0.000 0.000 (2) MT6407-77A w/ Mount Pipe C From Leg 4.000 0.000 0.000 0.000 (2) MT6407-77A w/ Mount Pipe C From Leg 4.000 0.000	BXA-70080-4BF-EDIN-0 w/ Mount Pipe	С	From Lea		0.000	90.000
CBRS A From Leg 4,000 0,000 90,000 CBRS B From Leg 4,000 0,000 90,000 CBRS B From Leg 4,000 0,000 90,000 CBRS C From Leg 4,000 0,000 0,000 PO,000 CBRS C From Leg 4,000 0,000 PO,000 PO,000 CBRS C From Leg 4,000 0,000 PO,000 CBRS C FROM Leg 4,000 PO,000 PO,000 PO,000 CBRS C FROM Leg 4,000 PO,000 P						
CBRS B From Leg 4,000 0,000 90,000 CBRS C FROM Leg 4,000 0,000 PO,000 CBRS C FROM Leg 4,000 PO,000 PO,000 CBRS C FROM Leg 4,000 PO,000						
CBRS B From Leg 4,000 0,000 90,000 CBRS C From Leg 4,000 0,000 90,000 (2,000 1	CBRS	Α	From Leg		0.000	90.000
CBRS B From Leg 4,000 0,000 90,000 CBRS C From Leg 4,000 0,000 90,000 CBBR C BBR						
CBRS C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe A From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ MT6407-77A	CRRS	R	From Lea		0.000	90 000
CBRS C From Leg 4.000 0.000 90.000 (2) MT6407-77A w/ Mount Pipe A From Leg 4.000 0.000 0.000 90.000 (2) MT6407-77A w/ Mount Pipe B From Leg 4.000 0.000 0.000 90.000 (2) MT6407-77A w/ Mount Pipe B From Leg 4.000 0.000	OBNO	Ь	r rom Log		0.000	30.000
Company Comp						
-2.000	CBRS	С	From Leg		0.000	90.000
(2) MT6407-77A w/ Mount Pipe						
(2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 2,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 90,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 (2) MT6407-77A w/ MT640	(2) MTG407 77A w/ Mount Dine	۸	Francia a		0.000	00.000
Canon Cano	(2) IVI I 0407-77A W/ IVIOUNT PIPE	A	From Leg		0.000	90.000
(2) MT6407-77A w/ Mount Pipe B From Leg 4,000 0,000 2,000 (2) MT6407-77A w/ Mount Pipe C From Leg 4,000 0,000 0,000 0,000 2,000 0,000 0,000 0,000 0,000 RFV01U-D1A A From Leg 4,000 0,000 0,000 0,000 RFV01U-D1A B From Leg 4,000 0,000 0,000 0,000 0,000 RFV01U-D1A C From Leg 4,000 0,000 0,000 0,000 0,000 0,000 RFV01U-D1A A From Leg 4,000 0,000 0,000 0,000 0,000 RFV01U-D1A A From Leg 4,000 0,000 0,000 0,000 0,000 RFV01U-D2A A From Leg 4,000 0,0						
0.000	(2) MT6407-77A w/ Mount Pipe	В	From Leg		0.000	90.000
(2) MT6407-77A w/ Mount Pipe C From Leg 4.000 0.000 90.000	•		5	0.000		
GPS_A A From Leg 4.000 0.000 0.000 0.000 RFV01U-D1A B From Leg 4.000 0.000 0.000 0.000 RFV01U-D1A C From Leg 4.000 0.000 0.000 0.000 0.000 RFV01U-D2A A From Leg 4.000 0.000	(0) MT0 407 774	_			0.005	00
GPS_A A From Leg 4.000 0.000 0.000 0.000 RFV01U-D1A A From Leg 4.000 0.000 0.000 RFV01U-D1A B From Leg 4.000 0.000 0.000 0.000 0.000 RFV01U-D1A C From Leg 4.000 0.000 0.000 0.000 RFV01U-D2A A From Leg 4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	(2) M16407-77A w/ Mount Pipe	С	From Leg		0.000	90.000
GPS_A A From Leg 4,000 0,000						
RFV01U-D1A A From Leg 4,000 0,000 90,000 0,000 90,000 RFV01U-D1A B From Leg 4,000 0,000 90,000 0	GPS A	Α	From Lea		0.000	90.000
RFV01U-D1A A From Leg 4.000 0.000 90.000 RFV01U-D1A B From Leg 4.000 0.000 90.000 RFV01U-D1A C From Leg 4.000 0.000 RFV01U-D1A C From Leg 4.000 0.000 90.000 RFV01U-D2A A From Leg 4.000 0.000 90.000 RFV01U-D2A A From Leg 4.000 0.000 90.000	<u> </u>		5 259		0.000	55,550
RFV01U-D1A B From Leg 4.000 0.000 0.000 RFV01U-D1A C From Leg 4.000 0.000 0.000 0.000 0.000 0.000 RFV01U-D2A A From Leg 4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				0.000		
RFV01U-D1A B From Leg 4.000 0.000 0.000 0.000 RFV01U-D1A C From Leg 4.000 0.000 0.000 0.000 0.000 RFV01U-D2A A From Leg 4.000 0.000 0.000 0.000 0.000 0.000	RFV01U-D1A	Α	From Leg		0.000	90.000
RFV01U-D1A B From Leg 4.000 0.000 90.000 0.000						
0.000 0.000 RFV01U-D1A C From Leg 4.000 0.000 90.000 0.000 RFV01U-D2A A From Leg 4.000 0.000 90.000 0.000	DE\/0111 D1A	D	From Log		0.000	an non
0.000 RFV01U-D1A C From Leg 4.000 0.000 90.000 0.000 0.000 RFV01U-D2A A From Leg 4.000 0.000 90.000 0.000	NI VOIO-DIA	D	i ioni Leg		0.000	90.000
RFV01U-D1A C From Leg 4.000 0.000 90.000 0.000 90.000 0.000						
0.000 0.000 RFV01U-D2A A From Leg 4.000 0.000 90.000 0.000	RFV01U-D1A	С	From Leg	4.000	0.000	90.000
RFV01U-D2A A From Leg 4.000 0.000 90.000 0.000			-	0.000		
0.000	DE//041/ DC4	•	E		0.000	00.000
	RFV01U-D2A	Α	From Leg		0.000	90.000
0.000						
	RFV01U-D2A	В	From Lea		0.000	90.000

Description	Face	Offset	Offsets:	Azimuth	Placeme
	or	Type	Horz	Adjustment	
	Leg		Lateral		
			Vert	۰	æ
			ft ft		ft
			π ft		
			0.000		
			0.000		
RFV01U-D2A	С	From Leg	4.000	0.000	90.000
			0.000		
			0.000		
DB-T1-6Z-8AB-0Z	В	From Leg	4.000	0.000	90.000
			0.000		
61 v 21 Mount Dine	^	From Low	0.000	0.000	00.000
6' x 2" Mount Pipe	Α	From Leg	4.000 0.000	0.000	90.000
			0.000		
6' x 2" Mount Pipe	В	From Leg	4.000	0.000	90.000
O X Z MOUNT 1 pc		1 Tolli Log	0.000	0.000	30.000
			0.000		
6' x 2" Mount Pipe	С	From Leg	4.000	0.000	90.000
= 	-	· · · · · · · · · · · · · · · · · · ·	0.000		22,000
			0.000		
(2) L 2.5x2.5x3/16x6'	Α	From Leg	4.000	0.000	90.000
•		<u> </u>	0.000		
			5.000		
(2) L 2.5x2.5x3/16x6'	В	From Leg	4.000	0.000	90.000
			0.000		
	_	_	5.000		_
(2) L 2.5x2.5x3/16x6'	С	From Leg	4.000	0.000	90.000
			0.000		
Oids Asses M 2004 100 100 01		N 1	5.000	0.000	05 000
Side Arm Mount [SO 102-3] Platform Mount [LP 1201-1]	A C	None		0.000	95.000
	C	None None		0.000	90.000 93.000
Miscellaneous [NA 507-1]	C A	None None		0.000 0.000	
Side Arm Mount [SO 102-3]	А	None		0.000	90.000
GPS_A	С	From Leg	3,000	0.000	73.000
			0.000		
			2.000		
Side Arm Mount [SO 701-1]	С	From Leg	1.500	0.000	73.000
			0.000		
*			0.000		
MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.000	0.000	130.000
too reduce 21 W Mount ipo	, ,		0.000	3.000	1001000
			0.000		
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.000	0.000	130.000
	_	 -	0.000		
			0.000		
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.000	0.000	130.000
·		-	0.000		
			0.000		
TA08025-B604	Α	From Leg	4.000	0.000	130.000
TA08025-B604	Α	From Leg	4.000 0.000	0.000	130.000
			4.000 0.000 0.000		
TA08025-B604 TA08025-B604	A B	From Leg	4.000 0.000 0.000 4.000	0.000	
			4.000 0.000 0.000 4.000 0.000		
TA08025-B604	В	From Leg	4.000 0.000 0.000 4.000 0.000 0.000	0.000	130.000
			4.000 0.000 0.000 4.000 0.000 0.000 4.000		130.000
TA08025-B604	В	From Leg	4.000 0.000 0.000 4.000 0.000 0.000 4.000 0.000	0.000	130.000
TA08025-B604 TA08025-B604	В	From Leg From Leg	4.000 0.000 0.000 4.000 0.000 4.000 4.000 0.000 0.000	0.000	130.000 130.000
TA08025-B604	В	From Leg	4.000 0.000 0.000 4.000 0.000 4.000 0.000 0.000 0.000 4.000	0.000	130.000 130.000
TA08025-B604 TA08025-B604	В	From Leg From Leg	4.000 0.000 0.000 4.000 0.000 0.000 4.000 0.000 4.000 0.000	0.000	130.000
TA08025-B604 TA08025-B604 TA08025-B605	B C A	From Leg From Leg	4.000 0.000 0.000 4.000 0.000 0.000 4.000 0.000 0.000 4.000 0.000	0.000 0.000 0.000	130.000 130.000
TA08025-B604 TA08025-B604	В	From Leg From Leg	4.000 0.000 0.000 4.000 0.000 0.000 4.000 0.000 4.000 0.000 0.000 4.000	0.000	130.000 130.000
TA08025-B604 TA08025-B604 TA08025-B605	B C A	From Leg From Leg	4.000 0.000 0.000 4.000 0.000 4.000 0.000 4.000 0.000 4.000 0.000 4.000 0.000	0.000 0.000 0.000	130.000 130.000
TA08025-B604 TA08025-B604 TA08025-B605 TA08025-B605	B C A B	From Leg From Leg From Leg	4.000 0.000 0.000 4.000 0.000 4.000 0.000 4.000 0.000 4.000 0.000 4.000 0.000 0.000	0.000 0.000 0.000	130.000 130.000 130.000
TA08025-B604 TA08025-B604 TA08025-B605	B C A	From Leg From Leg	4.000 0.000 0.000 4.000 0.000 4.000 0.000 4.000 0.000 4.000 0.000 4.000 0.000	0.000 0.000 0.000	130.000 130.000 130.000 130.000

Description	Face	Offset	Offsets:	Azimuth	Placement
	or	Type	Horz	Adjustment	
	Leg		Lateral		
			Vert		
			ft	٥	ft
			ft		
			ft		
RDIDC-9181-PF-48	Α	From Leg	4.000	0.000	130.000
		_	0.000		
			0.000		
(2) 8' x 2" Mount Pipe	Α	From Leg	4.000	0.000	130.000
		_	0.000		
			0.000		
(2) 8' x 2" Mount Pipe	В	From Leg	4.000	0.000	130.000
			0.000		
			0.000		
(2) 8' x 2" Mount Pipe	С	From Leg	4.000	0.000	130.000
			0.000		
			0.000		
Commscope MC-PK8-DSH	С	None		0.000	130.000

	Dishes										
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter			
				ft	•	0	ft	ft			
Radiowaves HPD2-4.7	Α	Paraboloid w/Shroud (HP)	From Leg	6.000 0.000 -1.000	75.000		178.000	2.042			
Radiowaves HPD2-4.7	В	Paraboloid w/Shroud (HP)	From Leg	6.000 0.000 -1.000	-24.000		178.000	2.042			
*											

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
2 3	0.9 Dead+1.0 Wind 0 deg - No Ice
4 5	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice

Comb.	Description
No.	·
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49 50	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L1	182 - 177	Pole	Max Tension	3	0.000	-0.000	-0.000
			Max. Compression	26	-2.774	0.557	0.422
			Max. Mx	20	-0.801	13.069	0.057
			Max. My	2	-0.806	0.110	12.974
			Max. Vy	20	-2.215	13.069	0.057
			Max. Vx	2	-2.213	0.110	12.974
			Max. Torque	4			0.866
L2	177 - 172	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-3.413	0.049	0.727
			Max. Mx	20	-1.014	26.782	-0.071
			Max. My	2	-1.061	-0.197	25.975
			Max. Vy	20	-2.932	26.782	-0.071
			Max. Vx	2	-2.731	-0.197	25.975
			Max. Torque	18			-1.292
L3	172 - 167	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-17.082	0.031	2.345
			Max. Mx	20	-5.510	51.136	0.709
			Max. My	2	-5.581	-0.383	50.307
			Max. Vy	20	-11.347	51.136	0.709
			Max. Vx	2	-11 106	-0.383	50.307
			Max. Torque	20			-2.183
L4	167 - 162	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-17.709	0.003	2.413
			Max. Mx	20	-5.905	108.717	0.647
			Max. My	2	-5.976	-0.574	106.685
			Max. Vy	20	-11.691	108.717	0.647
			Max. Vx	2	-11.450	-0.574	106.685
			Max. Torque	20			-2.183
L5	162 - 157	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-18.366	-0.026	2.476
			Max. Mx	20	-6.336	168.032	0.579
			Max. My	2	-6.405	-0.767	164.793
			Max. Vy	20	-12.043	168.032	0.579

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.			M= \/	Comb.	K 11.001	kip-ft	kip-ft
			Max. Vx	2	-11.801	-0.767	164.793
L6	157 - 152	Pole	Max. Torque Max Tension	20 1	0.000	0.000	-2.182 0.000
LO	137 - 132	Fole	Max. Compression	26	28.340	-0.065	2.558
			Max. Mx	20	-10.275	258.714	0.520
			Max. My	2	-10.352	-0.966	254.231
			Max. Vy	20	17.326	258.714	0.520
			Max. Vx	2	-17.077	-0.966	254.231
			Max. Torque	20			-2.180
L7	152 - 147	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-29.100	-0.105	2.634
			Max. Mx	20	-10.856	346.170	0.452
			Max. My	2	-10.930	-1.165	340.441
			Max. Vy	20	-17.672	346.170	0.452
			Max. Vx	2	-17.423	-1.165	340.441
1.0	447 440	D-I-	Max. Torque	20	0.000	0.000	-2.178
L8	147 - 142	Pole	Max Tension	1	0.000	0.000 -0.146	0.000
			Max. Compression Max. Mx	26 20	-29.889 -11.472	435,354	2.703 0.380
			Max. My	2	-11.543	-1.365	428.379
			Max. Vy	20	-18.020	435.354	0.380
			Max. Vx	2	-17.771	-1.365	428.379
			Max. Torque	20		.,,000	-2.175
L9	142 - 137	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-38.827	-0.245	2.807
			Max. Mx	20	-15.714	540.260	0.314
			Max. My	2	-15.787	-1.582	532.039
			Max. Vy	20	-21.728	540.260	0.314
			Max. Vx	2	-21.473	-1.582	532.039
1.40	407	D-I-	Max. Torque	20	0.000	0.000	-2.171
L10	137 - 133.081	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-38.858	-0.251	2.814
			Max. Mx	20	-15.754	543.865	0.312
			Max. My Max. Vy	2 20	-15.826 -21.728	-1.590 543.865	535.603 0.312
			Max. Vx	20	21.726	-1.590	535.603
			Max. Torque	20	-21.411	-1.590	-2.168
L11	133.081 - 131.834	Pole	Max Tension	1	0.000	0.000	0.000
	1011001		Max. Compression	26	-40.480	-0.390	2.938
			Max. Mx	20	-16.871	653.698	0.253
			Max. My	2	-16.942	-1.817	644.194
			Max. Vy	20	-22.210	653.698	0.253
			Max. Vx	2	-21.954	-1.817	644.194
			Max. Torque	20			-2.166
L12	131.834 - 126.834	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-47.577	-0.537	3.509
			Max. Mx	20	-20.512	776.924	0.278
			Max. My	2	-20.580	-2.048	766.409
			Max. Vy	20	-26.161	776.924	0.278
			Max. Vx Max. Torque	2	-25.939	-2.048	766.409 -2.413
L13	126.834 -	Pole	Max. Torque Max Tension	20 1	0.000	0.000	0.000
LIS	121.834	i die					
			Max. Compression	26 20	-48.820 21.407	-0.689	3.590
			Max. Mx	20 2	-21.497 -21.562	908.564 -2.280	0.199 896.960
			Max. My Max. Vy	20	-21.562 -26.534	-2.260 908.564	0.199
			Max. Vx	2	26.312	-2.280	896.960
			Max. Torque	20	20.012		-2.411
L14	121.834 - 116.834	Pole	Max Tension	1	0.000	0.000	0.000
	110.007		Max. Compression	26	-50.100	-0.845	3.665
			Max. Mx	20	-22.518	1042.066	0.117
			Max. My	2	-22.579	-2.513	1029.378
			Max. Vy	20	-26.909	1042.066	0.117
			Max. Vx	2	-26.687	-2.513	1029.378

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
1.45	440.004	5.1	Max Torque	20	0.000	0.000	-2.407
L15	116.834 -	Pole	Max Tension	1	0.000	0.000	0.000
	111.834		May Camanasian	00	E4 44C	4.005	0.707
			Max. Compression	26	-51.416	-1.005	3.737
			Max. Mx	20	-23.574	1177.439	0.034
			Max. My	2	-23.632	-2.746	1163.669
			Max. Vy	20	-27.285	1177.439	0.034
			Max. Vx	2	-27.064	-2.746	1163,669
1.40	444.004	D-I-	Max. Torque	20	0.000	0.000	-2.404
L16	111.834 -	Pole	Max Tension	1	0.000	0.000	0.000
	106.834		May Campragian	26	E0.700	1 100	2.005
			Max. Compression	26	-52.769	-1.168	3.805
			Max. Mx	20	-24.663	1314.692	-0.052
			Max. My	2	-24.718	-2.980	1299.844
			Max. Vy	20	-27.663	1314.692	-0.052
			Max. Vx	2	-27 443	-2.980	1299.844
	400.004		Max. Torque	20			-2.400
L17	106.834 -	Pole	Max Tension	1	0.000	0.000	0.000
	101.834						
			Max. Compression	26	-54.159	-1.334	3.869
			Max. Mx	20	-25.784	1453.837	-0.140
			Max. My	2	-25.836	-3.214	1437.915
			Max. Vy	20	-28.043	1453.837	-0.140
			Max. Vx	2	-27.823	-3.214	1437.915
			Max. Torque	20			-2.397
L18	101.834 -	Pole	Max Tension	1	0.000	0.000	0.000
	96.834						
			Max. Compression	26	-55.585	-1.504	3.929
			Max. Mx	20	-26.936	1594.883	-0.229
			Max. My	2	-26.985	-3.448	1577.891
			Max. Vy	20	-28.426	1594.883	-0.229
			Max. Vx	2	-28.206	-3.448	1577.891
			Max. Torque	20			-2.394
L19	96.834 -	Pole	Max Tension	1	0.000	0.000	0.000
	87.449						
			Max. Compression	26	-57.603	-1.655	3.980
			Max. Mx	20	-28.319	1720.090	-0.307
			Max. My	2	-28.366	-3.652	1702.168
			Max. Vy	20	-29.156	1720.090	-0.307
			Max. Vx	2	-28.937	-3.652	1702.168
			Max. Torque	20			-2.391
L20	87.449 -	Pole	Max Tension	1	0.000	0.000	0.000
	86.449						
			Max. Compression	26	-70.655	-2.663	3.682
			Max. Mx	20	-35.005	1914.569	-0.388
			Max. My	2	-35.058	-4.005	1895.286
			Max. Vý	20	-34.059	1914.569	-0.388
			Max, Vx	2	-33 788	-4.005	1895,286
			Max. Torque	20			-2.252
L21	86.449 - 85	Pole	Max Tension	1	0.000	0.000	0.000
		. 515	Max. Compression	26	-71.144	2.715	3.700
			Max. Mx	20	-35.371	1963.944	-0.352
			Max. My	2	-35 423	-4.012	1944.276
			Max. Vy	20	-34 166	1963.944	-0.352
			Max. Vx	2	-33.894	-4.012	1944.276
			Max. Torque	20	33.034	4.012	-2.251
L22	85 - 84.75	Pole	Max Tension	1	0.000	0.000	0.000
LZZ	00 - 04.73	ı Ole	Max. Compression	26	71.229	-2.727	3.707
			Max. Mx			1972.476	
			Max. My	20 2	-35.465 -35.516	-4.013	-0.347 1952.743
			-		-35.516 -34.152	-4.013 1972.476	
			Max. Vy	20			-0.347
			Max. Vx	2	-33.886	-4.013	1952.743
1.00	0175	Dolo	Max. Torque	20	0.000	0.000	-2.251
L23	84.75 -	Pole	Max Tension	1	0.000	0.000	0.000
	79.75		May Compression	26	72 044	2.005	2 760
			Max. Compression	26	-72.941	-2.905	3.762
			Max. Mx	20	-36.769	2143.978	-0.225
			Max. My	2	-36.817 34.405	-4.038 2143.078	2122.921
			Max. Vy	20	-34.495	2143.978	-0.225

0 "			0 ""		A : /		14: 4:
Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n N-	ft	Type		Load	1/	Moment	Moment
No.			14 17	Comb.	K	kip-ft	kip-ft
			Max. Vx	2	-34.225	-4.038	2122.921
1.04	70.75.75	Dala	Max. Torque	20	0.000	0.000	-2.251
L24	79.75 - 75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-74.660	-3.078	3.815
			Max. Mx	20	-38.049	2308.397	-0.111
			Max. My	2	-38.093	-4.060	2286.091
			Max. Vy	20	-34.806	2308.397	-0.111
			Max. Vx	2	-34.537	-4.060	2286.091
1.05	75 7475	Б.1	Max. Torque	20	0.000	0.000	-2.248
L25	75 - 74.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-74.790	-3.093	3.825
			Max. Mx	20	-38 172	2317.092	-0.105
			Max. My	2	-38.216	-4.061	2294.721
			Max. Vy	20	-34.804	2317.092	-0.105
			Max. Vx	2	-34.540	-4.061	2294.721
		5.	Max Torque	20	0.000	0.000	-2.246
L26	74.75 - 74	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-75.183	-3.116	3.828
			Max. Mx	20	-38.460	2343.214	-0.087
			Max. My	2	-38.503	-4.065	2320.646
			Max. Vy	20	-34.885	2343.214	-0.087
			Max. Vx	2	-34.616	-4.065	2320.646
1.07	74 70 75	Dala	Max. Torque	20	0.000	0.000	-2.246
L27	74 - 73.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-75.279	-3.127	3.833
			Max. Mx	20	-38.532	2351.933	-0.081
			Max. My	2	-38.576	-4.066	2329.300
			Max. Vy	20	-34.897	2351.933	-0.081
			Max. Vx	2 20	-34.634	-4.066	2329.300
L28	73.75 -	Pole	Max. Torque Max Tension	1	0.000	0.000	-2.246 0.000
LZO	68.75	rule	Max Tension	1	0.000	0.000	0.000
	00.75		Max. Compression	26	-77,266	-2.952	3.676
			Max. Mx	20	39 978	2527.630	-0.012
			Max. My	2	-40.017	-3.831	2503.426
			Max. Vy	20	-35.295	2527 630	-0.012
			Max. Vx	2	35.045	-3.831	2503 426
			Max. Torque	20	001010	0.001	2.245
L29	68.75 -	Pole	Max Tension	1	0.000	0.000	0.000
	63.75	. 5.5	max remover	•	0.000	0.000	0.000
			Max. Compression	26	-79.103	-3.163	3.741
			Max. Mx	20	-41.397	2704.716	0.181
			Max. My	2	-41.432	-3.781	2679.302
			Max. Vý	20	-35.610	2704.716	0.181
			Max. Vx	2	35.362	-3.781	2679.302
			Max. Torque	20			-2.112
L30	63.75 -	Pole	Max Tension	1	0.000	0.000	0.000
	58.75						
			Max. Compression	26	-80.972	-3.352	3.783
			Max. Mx	20	-42.846	2883.363	0.373
			Max. My	2	-42.877	-3.731	2856.748
			Max. Vy	20	-35.921	2883.363	0.373
			Max. Vx	2	-35.674	-3.731	2856.748
			Max. Torque	20			-2.110
L31	58.75 -	Pole	Max Tension	1	0.000	0.000	0.000
	53.75						
			Max. Compression	26	-82.874	-3.538	3.820
			Max. Mx	20	-44.323	3063.548	0.565
			Max. My	2	-44.351	-3.681	3035.743
			Max. Vy	20	-36.227	3063.548	0.565
			Max. Vx	2	-35.982	-3.681	3035.743
			Max. Torque	20			-2.108
L32	53.75 -	Pole	Max Tension	1	0.000	0.000	0.000
	42.848			0.0	0.4.000	0 = 1 =	0.6==
			Max. Compression	26	-84.628	-3.717	3.855
			Max. Mx	20	-45.725	3233.193	0.742
			Max. My	2	-45.750	-3.634	3204.285
			Max. Vy	20	-36.506	3233.193	0.742
			Max. Vx	2	-36.262	-3.634	3204.285

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Torque	20			-2.106
L33	42.848 -	Pole	Max Tension	1	0.000	0.000	0.000
200	41.848	1 010	max reneien	•	0.000	0.000	0.000
	41.040		Max. Compression	26	-89.426	-3.994	3.910
			Max. Mx	20	-49.384	3499.528	1.019
			Max. My	2	-49.406	-3.561	3468 920
			•				
			Max. Vy	20	-37.190	3499.528	1.019
			Max. Vx	2	-36.948	-3.561	3468.920
			Max. Torque	20			-2.104
L34	41.848 -	Pole	Max Tension	1	0.000	0.000	0.000
	36.848						
			Max. Compression	26	-91.448	-4.186	3.948
			Max. Mx	20	-51.099	3686.055	1.209
			Max. My	2	-51.118	-3.510	3654.280
			Max. Vy	20	37 493	3686.055	1.209
			Max. Vx	2	-37.253	-3.510	3654.280
			Max. Torque	20			-2.104
L35	36.848 -	Pole	Max Tension	1	0.000	0.000	0.000
	31.848						
			Max. Compression	26	-93.504	-4.380	3.985
			Max. Mx	20	-52.846	3874.068	1.397
			Max. My	2	-52.863	-3.460	3841.136
			Max. Vy	20	37.785	3874.068	1.397
			Max. Vx	2	37.547	-3.460	3841 136
					-37.347	-3.400	
1.00	04.040	Б.	Max Torque	20	0.000	0.000	-2.103
L36	31.848 -	Pole	Max Tension	1	0.000	0.000	0.000
	26.848						
			Max. Compression	26	-95.594	-4.575	4.023
			Max. Mx	20	-54.627	4063.504	1.585
			Max. My	2	-54.641	-3.410	4029.426
			Max. Vý	20	-38.064	4063,504	1.585
			Max. Vx	2	37.826	3.410	4029 426
			Max. Torque	20	07.020	0.410	-2.102
L37	26.848 -	Pole	Max Tension	1	0.000	0.000	0.000
LSI		Fule	wax rension	ı	0.000	0.000	0.000
	21.848			0.0	07.745	4 774	4.004
			Max. Compression	26	-97.715	-4.771	4.061
			Max. Mx	20	-56.439	4254.286	1.772
			Max. My	2	-56.450	-3.359	4219.072
			Max. Vy	20	-38.324	4254.286	1.772
			Max. Vx	2	-38.089	-3.359	4219.072
			Max. Torque	20			-2.102
L38	21.848 -	Pole	Max Tension	1	0.000	0.000	0.000
Loo	16.848	1 010	Wax Toriolon	•	0.000	0.000	0.000
	10.040		Max. Compression	26	-99.866	-4.966	4.098
			•				
			Max. Mx	20	-58.284	4446.315	1.957
			Max. My	2	-58.293	-3.309	4409.976
			Max. Vy	20	-38.563	4446.315	1.957
			Max. Vx	2	-38.330	-3.309	4409.976
			Max. Torque	20			-2.101
L39	16.848 -	Pole	Max Tension	1	0.000	0.000	0.000
	11.848						
			Max. Compression	26	-102.042	-5.160	4.134
			Max. Mx	20	-60 161	4639 478	2.142
			Max. My	2	-60 167	-3.259	4602.026
			•				
			Max. Vy	20	-38.779	4639.478	2.142
			Max. Vx	2	-38.547	-3.259	4602.026
			Max. Torque	20			-2.101
L40	11.848 -	Pole	Max Tension	1	0.000	0.000	0.000
	6.848						
			Max. Compression	26	-104.237	-5.349	4.169
			Max. Mx	20	-62.069	4833.719	2.325
			Max. My	2	-62.073	-3.210	4795.165
			Max. Vy	20	-38.995	4833.719	2.325
				20			
			Max. Vx		-38.766	-3.210	4795.165
	0.040	. .	Max. Torque	20	0.000	0.000	-2.100
L41	6.848 -	Pole	Max Tension	1	0.000	0.000	0.000
	1.848						
			Max. Compression	26	-106.436	-5.528	4.200
			Max. Mx	20	-64.009	5029.043	2.507

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. My	2	-64.010	-3.160	4989.399
			Max. Vy	20	-39.213	5029.043	2.507
			Max Vx	2	-38.986	-3.160	4989.399
			Max. Torque	20			-2.100
L42	1.848 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-107.233	-5.586	4.210
			Max. Mx	20	-64.719	5101.513	2.575
			Max. My	2	-64.719	-3.142	5061.469
			Max. Vy	20	-39.319	5101.513	2.575
			Max. Vx	2	-39.093	-3.142	5061.469
			Max. Torque	20			-2.100

	– 4:
Mavimiim	Reactions
IVIAXIIIIUIII	neachons

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, Z K
		Comb.	K	K	K
Pole	Max. Vert	30	107.233	-11.933	-0.011
	Max. H _x	21	48.563	39.266	0.037
	$Max. H_z$	3	48.563	0.020	39.040
	Max. M _x	2	5061.469	0.020	39.040
	$Max. M_z$	8	5087.225	-39.181	-0.042
	Max. Torsion	8	1.944	-39.181	-0.042
	Min. Vert	17	48.563	19.678	-33.752
	Min. H _x	8	64.751	-39.181	-0.042
	Min. H _z	14	64.751	-0.035	-39.040
	Min. M _x	14	-5058.718	-0.035	-39.040
	Min. M _z	20	-5101.513	39.266	0.037
	Min. Torsion	20	-2.100	39.266	0.037

Tower Mast Reaction Summary

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, Mz	
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	53.959	0.000	-0.000	-1.001	-0.877	-0.000
1.2 Dead+1.0 Wind 0 deg -	64.751	-0.020	-39.040	-5061.469	-3.142	-0.254
No Ice						
0.9 Dead+1.0 Wind 0 deg -	48.563	-0.020	-39.040	-4950.792	-2.719	-0.249
No Ice						
1.2 Dead+1.0 Wind 30 deg -	64.751	19.616	-33.752	-4375.170	-2554.571	-1.227
No Ice						
0.9 Dead+1.0 Wind 30 deg -	48.563	19.616	-33.752	-4279.478	-2498.440	-1.191
No Ice						
1.2 Dead+1.0 Wind 60 deg -	64.751	33.929	-19.446	-2521.902	-4408.402	-1.821
No Ice						
0.9 Dead+1.0 Wind 60 deg -	48.563	33.929	-19.446	-2466.594	-4311.905	-1.764
No Ice						
1.2 Dead+1.0 Wind 90 deg -	64.751	39,181	0.042	0.984	-5087.225	-1.944
No Ice	10.500	00.404				
0.9 Dead+1.0 Wind 90 deg -	48.563	39.181	0.042	1.360	-4975.984	-1.881
No Ice	04.754	00.000	10.510	0500 040	4440.544	4 000
1.2 Dead+1.0 Wind 120 deg	64.751	33.986	19.513	2522.019	-4413.544	-1.682
- No Ice	40.500	00.000	40.540	0.407.500	4040.004	4.000
0.9 Dead+1.0 Wind 120 deg	48.563	33.986	19.513	2467.500	-4316.991	-1.629
- No Ice	C4 754	40.005	22.000	4070 000	0550 547	0.000
1.2 Dead+1.0 Wind 150 deg	64.751	19.695	33.802	4376.223	-2559.517	-0.880
- No Ice	40 500	10.005	22.002	4004.050	0500 000	0.052
0.9 Dead+1.0 Wind 150 deg - No Ice	48.563	19.695	33.802	4281.258	-2503.388	-0.853
	64,751	0.035	39.040	5058.718	-1.941	0.347
1.2 Dead+1.0 Wind 180 deg	04.751	0.033	39.040	5050.7 10	-1.941	0.347

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
No. Lea	K	K	K	kip-ft	kip-ft	kip-ft
- No Ice 0.9 Dead+1.0 Wind 180 deg	48.563	0.035	39.040	4948.817	-1.689	0.342
- No Ice 1.2 Dead+1.0 Wind 210 deg	64.751	-19.678	33.752	4372.488	2564.315	1.452
- No Ice 0.9 Dead+1.0 Wind 210 deg	48.563	-19.678	33.752	4277.555	2508.476	1.416
- No Ice 1.2 Dead+1.0 Wind 240 deg - No Ice	64.751	-34.010	19.464	2522.839	4421.901	1.963
0.9 Dead+1.0 Wind 240 deg	48.563	-34.010	19.464	2468.181	4325.597	1.906
- No Ice 1.2 Dead+1.0 Wind 270 deg	64.751	-39.266	-0.037	-2.574	5101.513	2.100
- No Ice 0.9 Dead+1.0 Wind 270 deg	48.563	-39.266	-0.037	-2.244	4990.427	2.037
- No Ice 1.2 Dead+1.0 Wind 300 deg	64.751	-34.066	-19.518	-2525.488	4426.739	1.810
- No Ice 0.9 Dead+1.0 Wind 300 deg	48.563	-34.066	-19.518	-2470.209	4330.357	1.758
- No Ice 1.2 Dead+1.0 Wind 330 deg	64.751	-19.736	-33.793	-4377.168	2565.387	0.765
- No Ice 0.9 Dead+1.0 Wind 330 deg	48.563	-19.736	-33.793	-4281.488	2509.622	0.737
- No Ice	107 000	0.000	0.000	4 240	F F0C	-0.000
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	107.233 107.233	-0.006	-0.000 -11.904	-4.210 -1687.572	-5.586 -6.304	-0.151
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	107.233	5.971	-10.296	-1459.964	-853.249	-0.517
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	107.233	10.333	-5.934	-843.592	-1469.753	-0.734
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	107.233	11.933	0.011	-3.784	-1695.485	-0.759
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	107.233	10.347	5.952	835.552	-1471.057	-0.614
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	107.233	5.991	10.308	1452.156	-854.505	-0.282
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	107.233	0.009	11.904	1678.796	-6.006	0.172
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210	107.233	-5.985	10.296	1451.228	844.705	0.575
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240	107.233	-10.351	5.938	835.782	1462.197	0.771
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270	107.233	-11.952	-0.010	-4.693	1688.142	0.796
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300	107.233	-10.365	-5.953	-844.532	1463.423	0.638
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330	107.233	-6.000	-10.306	-1460.485	844.978	0.248
deg+1.0 Ice+1.0 Temp	50.050	0.005	0.540	1004 144	4 400	0.000
Dead+Wind 0 deg - Service	53.959	-0.005	-9.512 0.004	-1221.441	-1.402	-0.063
Dead+Wind 30 deg - Service	53.959 53.050	4.779 8.266	-8.224 4.729	-1055.959 -609.024	-616.722	-0.305
Dead+Wind 60 deg - Service	53.959		-4.738		-1063.850	-0.455
Dead+Wind 90 deg - Service	53.959	9.546	0.010	-0.553	-1227.590	-0.489
Dead+Wind 120 deg - Service	53.959	8.280	4.754	607.476	-1065.103	-0.427
Dead+Wind 150 deg - Service	53.959	4.798	8.236	1054.642	-617.931	-0.226
Dead+Wind 180 deg - Service	53,959	0.008	9.512	1219.210	-1.124	0.088
Dead+Wind 210 deg - Service	53.959	-4.794	8.224	1053.750	617.781	0.371
Dead+Wind 240 deg - Service	53.959	-8.286	4.742	607.684	1065.840	0.498
Dead+Wind 270 deg - Service	53.959	-9.567	-0.009	-1.421	1229.766	0.529
Dead+Wind 300 deg - Service	53.959	-8.300	-4.755	-609.916	1066.994	0.452
Dead+Wind 330 deg - Service	53.959	-4.809	-8.233	-1056.447	618.032	0.187

Solu	ution	Sum	marv
------	-------	-----	------

	Sur	n of Applied Force	26		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	ĸ	ĸ	K	ĸ	ĸ	K	70 LITOI
1	0.000	-53.959	0.000	0.000	53.959	0.000	0.000%
2	-0.020	-64.751	-39.040	0.000	64,751	39.040	0.000%
3	-0.020 -0.020	-04.751 -48.563	-39.040	0.020	48.563	39.040	
	-0.020 19.616					33.752	0.000%
4		-64.751	-33.752	-19.616	64.751		0.000%
5	19.616	-48.563	-33.752	-19.616	48.563	33.752	0.000%
6	33.929	-64.751	-19.446	-33.929	64.751	19.446	0.000%
7	33.929	-48.563	-19.446	-33.929	48.563	19.446	0.000%
8	39.181	-64.751	0.042	-39.181	64.751	-0.042	0.000%
9	39.181	-48.563	0.042	-39.181	48.563	-0.042	0.000%
10	33,986	-64.751	19.513	-33.986	64.751	-19.513	0.000%
11	33.986	-48.563	19.513	-33.986	48.563	-19.513	0.000%
12	19.695	-64.751	33.802	-19.695	64.751	-33.802	0.000%
13	19.695	-48.563	33.802	-19.695	48.563	-33.802	0.000%
14	0.035	-64.751	39.040	-0.035	64.751	-39.040	0.000%
15	0.035	-48.563	39.040	-0.035	48.563	-39.040	0.000%
16	-19.678	-64.751	33.752	19.678	64.751	-33.752	0.000%
17	-19.678	-48.563	33.752	19.678	48.563	-33.752	0.000%
18	-34.010	-64.751	19.464	34.010	64.751	-19.464	0.000%
19	-34.010	-48.563	19.464	34.010	48,563	-19.464	0.000%
20	-39.266	-64.751	-0.037	39.266	64.751	0.037	0.000%
21	-39.266	-48.563	-0.037	39.266	48.563	0.037	0.000%
22	-34.066	-64.751	-19.518	34.066	64.751	19.518	0.000%
23	-34.066	-48.563	-19.518	34.066	48.563	19.518	0.000%
24	-19.736	-64.751	-33.793	19.736	64.751	33.793	0.000%
25	-19.736	-48.563	-33,793	19.736	48.563	33,793	0.000%
26	0.000	-107.233	0.000	-0.000	107.233	0.000	0.000%
27	-0.006	-107 233	-11.904	0.006	107.233	11,904	0.000%
28	5,971	-107,233	-10.296	-5.971	107,233	10,296	0.000%
29	10.333	-107.233	-5.934	-10.333	107.233	5.934	0.000%
30	11.933	-107.233	0.011	-11.933	107.233	-0.011	0.000%
31	10.347	-107.233	5.952	-10.347	107.233	-5.952	0.000%
32	5.991	-107.233	10.308	-5.991	107,233	-10.308	0.000%
33	0.009	-107.233	11.904	-0.009	107.233	-11.904	0.000%
34	-5.985	-107.233	10.296	5.985	107.233	-10.296	0.000%
35	-10.351	-107.233	5.938	10.351	107.233	-5.938	0.000%
36	-11.952	-107.233	-0.010	11.952	107.233	0.010	0.000%
37	-10.365	-107.233	-5.953	10.365	107.233	5,953	0.000%
38	-6.000	-107.233	-10.306	6.000	107.233	10.306	0.000%
39	-0.005	-53.959	-9.512	0.005	53.959	9.512	0.000%
40	4.779	-53.959 -53.959	-9.512 -8.224	-4.779	53.959	8.224	0.000%
41 42	8.266	-53.959 53.050	-4.738 0.010	-8.266 -9.546	53.959 53.050	4.738	0.000%
	9.546	-53.959	0.010		53.959 53.050	-0.010	0.000%
43	8.280	-53.959 -53.959	4.754	-8.280 4.700	53.959 53.050	-4.754 9.226	0.000%
44	4.798	-53.959 -53.959	8.236	-4.798	53.959	-8.236 0.542	0.000%
45	0.008	-53.959	9.512	-0.008	53.959	-9.512	0.000%
46	-4.794	-53.959	8.224	4.794	53.959	-8.224	0.000%
47	-8.286	-53.959	4.742	8.286	53.959	-4.742	0.000%
48	-9.567	-53.959	-0.009	9.567	53.959	0.009	0.000%
49	-8.300	-53.959	-4.755	8.300	53.959	4.755	0.000%
50	-4.809	-53.959	-8.233	4.809	53.959	8.233	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000766
2	Yes	6	0.0000001	0.00018206
3	Yes	5	0.0000001	0.00065282
4	Yes	8	0.0000001	0.00027462
5	Yes	7	0.0000001	0.00062596

6	Yes	8	0.0000001	0.00028477
7	Yes	7	0.0000001	0.00065188
8	Yes	6	0.0000001	0.00095672
9	Yes	6	0.0000001	0.00030207
10	Yes	8	0.0000001	0.00027343
11	Yes	7	0.0000001	0.00062355
12	Yes	8	0.0000001	0.00028109
13	Yes	7	0.0000001	0.00064256
14	Yes	6	0.0000001	0.00024886
15	Yes	6	0.0000001	0.00007268
16	Yes	8	0.0000001	0.00028255
17	Yes	7	0.0000001	0.00064608
18	Yes	8	0.00000001	0.00027238
19	Yes	7	0.0000001	0.00062043
20	Yes	7	0.0000001	0.00009639
21	Yes	6	0.0000001	0.00031799
22	Yes	8	0.0000001	0.00028520
23	Yes	7	0.0000001	0.00065247
24	Yes	8	0.0000001	0.00027630
25	Yes	7	0.0000001	0.00062999
26	Yes	5	0.0000001	0.00037765
27	Yes	8	0.0000001	0.00060081
28	Yes	9	0.0000001	0.00032878
29	Yes	9	0.0000001	0.00033674
30	Yes	8	0.0000001	0.00060779
31	Yes	9	0.0000001	0.00032040
32	Yes	9	0.0000001	0.00032889
33	Yes	8	0.0000001	0.00059426
34	Yes	9	0.0000001	0.00032810
35	Yes	9	0.0000001	0.00031864
36	Yes	8	0.0000001	0.00060642
37	Yes	9	0.0000001	0.00033462
38	Yes	9	0.0000001	0.00032704
39	Yes	5	0.00000001	0.00047111
40	Yes	6	0.0000001	0.00064030
41	Yes	6	0.0000001	0.00068453
42	Yes	5	0.0000001	0.00082823
43	Yes	6	0.0000001	0.00062354
44	Yes	6	0.0000001	0.00066369
45	Yes	5	0.0000001	0.00047773
46	Yes	6	0.0000001	0.00067513
47	Yes	6	0.0000001	0.00062495
48	Yes	5	0.00000001	0.00087012
49	Yes	6	0.0000001	0.00068790
50	Yes	6	0.0000001	0.00064733

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	182 - 177	54.189	48	2.776	0.013
L2	177 - 172	51.283	48	2.774	0.012
L3	172 - 167	48.388	48	2.757	0.011
L4	167 - 162	45.514	48	2.733	0.010
L5	162 - 157	42.675	48	2.689	0.008
L6	157 - 152	39.892	48	2.625	0.007
L7	152 - 147	37.185	48	2.542	0.006
L8	147 - 142	34.574	48	2.444	0.005
L9	142 - 137	32.072	48	2.335	0.004
L10	137 - 133.081	29.688	48	2.218	0.004
L11	136.834 -	29.611	48	2.214	0.004
	131.834				
L12	131.834 -	27.321	48	2.153	0.004
	126.834				
L13	126.834 -	25.115	48	2.061	0.003
	121.834				
L14	121.834 -	23.007	48	1.965	0.003

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
	116.834				
L15	116.834 -	21.000	48	1.868	0.002
	111.834				
L16	111.834 -	19.096	48	1.769	0.002
	106.834				
L17	106.834 -	17.295	48	1.671	0.002
	101.834				
L18	101.834 - 96.834	15.597	48	1.574	0.002
L19	96.834 - 87.449	14.000	48	1.477	0.002
L20	92.47 - 86.449	12.688	48	1.394	0.001
L21	86.449 - 85	10.967	48	1.326	0.001
L22	85 - 84.75	10.569	48	1.298	0.001
L23	84.75 - 79.75	10.501	48	1.293	0.001
L24	79.75 - 75	9.199	48	1.194	0.001
L25	75 - 74.75	8.057	48	1.102	0.001
L26	74.75 - 74	7.999	48	1.100	0.001
L27	74 - 73.75	7.827	48	1.092	0.001
L28	73.75 - 68.75	7.770	48	1.087	0.001
L29	68.75 - 63.75	6.681	48	0.992	0.001
L30	63.75 - 58.75	5.691	48	0.899	0.001
L31	58.75 - 53.75	4.798	48	0.808	0.001
L32	53.75 - 42.848	3.999	48	0.719	0.001
L33	49.08 - 41.848	3.336	48	0.637	0.000
L34	41.848 - 36.848	2.416	48	0.571	0.000
L35	36.848 - 31.848	1.856	48	0.497	0.000
L36	31.848 - 26.848	1.375	48	0.424	0.000
L37	26.848 - 21.848	0.968	48	0.353	0.000
L38	21.848 - 16.848	0.636	48	0.283	0.000
L39	16.848 - 11.848	0.375	48	0.216	0.000
L40	11.848 - 6.848	0.184	48	0.150	0.000
L41	6.848 - 1.848	0.061	48	0.085	0.000
L42	1.848 - 0	0.004	48	0.023	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
178.000	DS4C06F36D-D	48	51.864	2.775	0.013	28777
177.000	Radiowaves HPD2-4.7	48	51.283	2.774	0.012	28777
168.000	ANT450D6-9	48	46.087	2.739	0.010	9588
157.000	AIR 32 B2A B66AA_T-MOBILE w/ Mount Pipe	48	39.892	2.625	0.007	3920
142.000	800MHZ RRH	48	32.072	2.335	0.004	2550
140.000	APXVSPP18-C-A20 w/ Mount Pipe	48	31.104	2.289	0.004	2599
130.000	MX08FRO665-21 w/ Mount Pipe	48	26.501	2.125	0.003	3252
95.000	Side Arm Mount [SO 102-3]	48	13.440	1.439	0.001	3400
93.000	Miscellaneous [NA 507-1]	48	12.844	1.402	0.001	3960
90.000	(2) NHH-65B-R2B w/ Mount Pipe	48	11.970	1.368	0.001	4315
73.000	GPS_A	48	7.600	1.072	0.001	3205

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	182 - 177	224.307	20	11.518	0.052
L2	177 - 172	212,328	20	11.508	0.051
L3	172 - 167	200.389	20	11.441	0.046
L4	167 - 162	188.535	20	11.343	0.040

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	۰
L5	162 - 157	176.819	20	11.162	0.034
L6	157 - 152	165.333	20	10.901	0.029
L7	152 - 147	154.156	20	10.558	0.025
L8	147 - 142	143.367	20	10.151	0.021
L9	142 - 137	133,021	20	9.701	0.018
L10	137 - 133,081	123,156	20	9.219	0.016
L11	136.834 -	122.837	20	9.202	0.015
	131.834			·	0.0.0
L12	131.834 -	113.356	20	8.949	0.014
-12	126.834	110.000	20	0.010	0.011
L13	126.834 -	104.220	20	8.566	0.013
LIO	121.834	104.220	20	0.000	0.013
L14	121.834 -	95.488	20	8.169	0.011
L14	116.834	33.400	20	0.103	0.011
L15	116.834	87.172	20	7.764	0,010
LIS		07.172	20	7.704	0.010
1.40	111.834	70.077	00	7.050	0.000
L16	111.834 -	79.277	20	7.356	0.009
	106.834	74.007	00	0.040	0.000
L17	106.834 -	71.807	20	6.948	0.008
	101.834				
L18	101.834 - 96.834	64.760	20	6.543	0.007
L19	96.834 - 87.449	58.132	20	6.142	0.006
L20	92.47 - 86.449	52.686	20	5.797	0.005
L21	86.449 - 85	45.542	20	5.513	0.005
L22	85 - 84.75	43.890	20	5.395	0.005
L23	84.75 - 79.75	43.608	20	5.374	0.005
L24	79.75 - 75	38.202	20	4.966	0.004
L25	75 - 74.75	33.458	20	4.583	0.004
L26	74.75 - 74	33.219	20	4.572	0.004
L27	74 - 73.75	32.504	20	4.539	0.004
L28	73.75 - 68.75	32.267	20	4.519	0.004
L29	68.75 - 63.75	27.746	20	4.124	0.003
L30	63.75 - 58.75	23.634	20	3.737	0.003
L31	58.75 - 53.75	19.922	20	3.358	0.002
L32	53.75 - 42.848	16.603	20	2.986	0.002
L33	49.08 - 41.848	13,850	20	2.647	0.002
L34	41.848 - 36.848	10.029	20	2.374	0.002
L35	36.848 - 31.848	7.707	20	2.063	0.001
L36	31.848 - 26.848	5.707	20	1.760	0.001
L37	26.848 - 21.848	4.020	20	1.464	0.001
L38	21.848 - 16.848	2.638	20	1.176	0.001
L39	16.848 - 11.848	1,555	20	0.895	0.001
L40	11.848 - 6.848	0.762	20	0.621	0.000
L40 L41	6.848 - 1.848	0.252	20	0.354	0.000
L41 L42	1.848 - 0	0.232	20	0.093	0.000
LTZ	1.040 - 0	0.010	20	0.000	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
178.000	DS4C06F36D-D	20	214.722	11.514	0.052	7798
177.000	Radiowaves HPD2-4.7	20	212,328	11.508	0.051	7798
168.000	ANT450D6-9	20	190.897	11.367	0.041	2558
157.000	AIR 32 B2A B66AA_T-MOBILE	20	165.333	10.901	0.029	1022
	w/ Mount Pipe					
142.000	800MHZ RRH	20	133.021	9.701	0.018	650
140.000	APXVSPP18-C-A20 w/ Mount	20	129.015	9.513	0.017	661
	Pipe					
130.000	MX08FRO665-21 w/ Mount Pipe	20	109.960	8.831	0.014	820
95.000	Side Arm Mount [SO 102-3]	20	55.810	5.984	0.006	835
93.000	Miscellaneous [NA 507-1]	20	53.334	5.831	0.006	971
90.000	(2) NHH-65B-R2B w/ Mount Pipe	20	49.706	5.686	0.005	1057
73.000	GPS_A	20	31.563	4.457	0.004	779

Compression Checks

Pole Design Data

Section	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio
No.						_			P_u
	ft		ft	ft		in²	K	K	ϕP_n
L1	182 - 181	TP15.678x14.5x0.25	5.000	0.000	0.0	11.494	-0.081	672.416	0.000 1
	181 - 180					11.681	-0.076	683.350	0.000
	180 - 179					11.868	-0.115	694.284	0.000
	179 - 178					12.055	-0.155	705.219	0.000
	178 - 177					12.242	-0.802	716.153	0.001
L2	177 - 176	TP16.856x15.678x0.25	5.000	0.000	0.0	12.429	-0.838	727.087	0.001
	176 - 175					12.616	-0.884	738.022	0.001
	175 - 174					12.803	-0.919	748.956	0.001
	174 - 173					12.990	-0.967	759.890	0.001
	173 - 172					13.177	-1.014	770.824	0.001
L3	172 - 171	TP18.033x16.856x0.25	5.000	0.000	0.0	13.363	-1.067	781.759	0.001
	171 - 170					13.550	-1.120	792.693	0.001
	170 - 169					13,737	-1.174	803.627	0.001
	169 - 168					13.924	-1.229	814.562	0.002
	168 - 167					14.111	-5.526	825.496	0.007
L4	167 - 166	TP19,211x18,033x0,25	5.000	0.000	0.0	14.298	-5.602	836.430	0.007
	166 - 165					14.485	-5.664	847.364	0.007
	165 - 164					14,672	-5.743	858.299	0.007
	164 - 163					14.859	-5.823	869.233	0.007
	163 - 162					15.046	-5.905	880 167	0.007
L5	162 - 161	TP20.389x19.211x0.25	5.000	0.000	0.0	15.233	-5.989	891.102	0.007
	161 - 160					15.419	-6.074	902.036	0.007
	160 - 159					15.606	-6.160	912.970	0.007
	159 - 158					15.793	-6.247	923.905	0.007
	158 - 157					15,980	-6.336	934.839	0.007
L6	157 - 156	TP21.567x20.389x0.25	5.000	0.000	0.0	16.167	-9.839	945.773	0.010
	156 - 155		0.000	0.000		16.354	-9.945	956.707	0.010
	155 - 154					16.541	-10.053	967.642	0.010
	154 - 153					16.728	-10.163	978.576	0.010
	153 - 152					16.915	-10.275	989.510	0.010
L7	152 - 151	TP22.744x21.567x0.25	5.000	0.000	0.0	17.102	-10.388	1000.440	0.010
	151 - 150	TI ZZII TIXZ IIOOTXOIZO	01000	0.000	0.0	17.288	-10.503	1011 380	0.010
	150 - 149					17.475	-10.619	1022.310	0.010
	149 - 148					17.662	-10.736	1033.250	0.010
	148 - 147					17.849	-10.856	1044 180	0.010
L8	147 - 146	TP23.922x22.744x0.25	5.000	0.000	0.0	18.036	-10.976	1055.120	0.010
	146 - 145			0.000		18.223	-11.098	1066.050	0.010
	145 - 144					18.410	-11 222	1076.980	0.010
	144 - 143					18.597	-11.346	1087,920	0.010
	143 - 142					18.784	-11.472	1098.850	0.010
L9	142 - 141	TP25.1x23.922x0.25	5.000	0.000	0.0	18.971	-12.156	1109.790	0.011
	141 - 140					19.158	-12.288	1120.720	0.011
	140 - 139					19.344	-15.433	1131 660	0.014
	139 - 138					19.531	-15.573	1142.590	0.014
	138 - 137					19.718	-15.714	1153.520	0.014
L10	137 - 136.834	TP26.023x25.1x0.25	3.919	0.000	0.0	19.749	-15.754	1155.340	0.014
	136.834 -					20.451	-6.784	1196.380	0.006
	133.081								
L11	136.834 -	TP25.805x24.639x0.375	5.000	0.000	0.0	29.922	-9.852	1750.450	0.006
	133.081								
	133.081 -					30.269	-16.871	1770.710	0.010
	131.834								
L12	131.834 -	TP26.972x25.805x0.375	5.000	0.000	0.0	30.546	-17.055	1786.950	0.010
	130.834	2010. 2/201000/1010	0.000	0.000	0.0	00.0.0			0.0.0
	130.834 -					30.824	-19.943	1803.200	0.011
	129.834					33,02		.0001200	3.311
	129.834 -					31.102	-20.131	1819.440	0.011
	128.834					.			
	128.834					31.379	-20.321	1835.690	0.011
						5			

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	φPn	Ratio Pu
740.	ft		ft	ft		in²	K	K	$\frac{P_n}{\Phi}$
	127.834 127.834 -					31.657	-20.512	1851.930	0.011
L13	126.834 126.834 -	TP28.138x26.972x0.375	5.000	0.000	0.0	31.935	-20.706	1868.170	0.011
	125.834 125.834 -					32.212	-20.902	1884.420	0.011
	124.834 124.834 -					32.490	-21.099	1900.660	0.011
	123.834 123.834 -					32.768	-21.297	1916.910	0.011
	122.834 122.834 -					33.045	-21.497	1933.150	0.011
L14	121.834 121.834 - 120.834	TP29.305x28.138x0.375	5.000	0.000	0.0	33.323	-21.698	1949.390	0.011
	120.834 - 119.834					33.601	-21.901	1965.640	0.011
	119.834 - 118.834					33.878	-22.106	1981.880	0.011
	118.834 - 117.834					34.156	-22.311	1998.130	0.011
	117.834 - 116.834					34.434	-22.518	2014.370	0.011
L15	116.834 - 115.834	TP30.471x29.305x0.375	5.000	0.000	0.0	34.711	-22.727	2030.610	0.011
	115.834 - 114.834					34.989	-22.936	2046.860	0.011
	114.834 - 113.834					35.267	-23.148	2063.100	0.011
	113.834 - 112.834					35.544	-23.360	2079.340	0.011
	112.834 - 111.834					35.822	-23.574	2095.590	0.011
L16	111.834 - 110.834	TP31.638x30.471x0.375	5.000	0.000	0.0	36.100	-23.789	2111.830	0.011
	110.834 - 109.834					36.377	-24.006	2128.080	0.011
	109.834 - 108.834					36.655	-24.223	2144.320	0.011
	108.834 - 107.834					36.933	-24.442	2160.560	0.011
	107.834 - 106.834					37.210	-24.663	2176.810	0.011
L17	106.834 - 105.834	TP32.804x31.638x0.375	5.000	0.000	0.0	37.488	-24.884	2193.050	0.011
	105.834 - 104.834					37.766	-25.108	2209.300	0.011
	104.834 - 103.834					38.043	-25.332	2225.540	0.011
	103.834 - 102.834					38.321	-25.557	2241.780	0.011
	102.834 - 101.834					38.599	-25.784	2258.030	0.011
L18	101.834 - 100.834	TP33.971x32.804x0.375	5.000	0.000	0.0	38.876	-26.012	2274.270	0.011
	100.834 - 99.834					39.154	-26.241	2290.520	0.011
	99.834 - 98.834					39.432	-26.471	2306.760	0.011
	98.834 - 97.834					39.709	-26.703	2323.000	0.011
	97.834 - 96.834					39.987	-26.936	2339.250	0.012
L19	96.834 - 95.743	TP36.16x33.971x0.375	9.385	0.000	0.0	40.290	-27.192	2356.970	0.012
	95.743 - 94.652					40.593	-27.524	2374.690	0.012
	94.652 - 93.561					40.896	-27.785	2392.410	0.012

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio Pu
740.	ft		ft	ft		in²	K	K	$\frac{P_n}{\Phi}$
	93.561 -					41.199	-28.319	2410.140	0.012
	92.47 92.47 -					42.593	-18.697	2491.700	0.008
L20	87.449 92.47 -	TP35.642x34.239x0.375	6.021	0.000	0.0	41.699	-16.013	2439.400	0.007
	87.449 87.449 - 86.449					41.977	-35.005	2455.630	0.014
L21	86.449 - 85 (21)	TP35.98x35.642x0.375	1.449	0.000	0.0	42.379	-35.371	2479.140	0.014
L22	85 - 84.75 (22)	TP36.038x35.98x0.375	0.250	0.000	0.0	42.448	-35.465	2483.200	0.014
L23	84.75 - 83.75 83.75 - 82.75 82.75 - 81.75 81.75 - 80.75	TP37.203x36.038x0.375	5.000	0.000	0.0	42.725 43.003 43.280 43.557	-35.709 -35.972 -36.236 -36.502	2499.430 2515.650 2531.880 2548.110	0.014 0.014 0.014 0.014
	80.75 - 79.75					43.835	-36.769	2564.340	0.014
L24	79.75 - 78.5625 78.5625 -	TP38.31x37.203x0.375	4.750	0.000	0.0	44.164 44.494	-37.083 -37.403	2583.610 2602.880	0.014 0.014
	77.375 77.375					44.823	-37.725	2622.150	0.014
	76.1875 76.1875 - 75					45.153	-38.049	2641,430	0.014
L25	75 - 74.75 (25)	TP38.369x38.31x0.7	0.250	0.000	0.0	83.692	-38.172	4895.990	0.008
L26	74.75 - 74 (26)	TP38.543x38.369x0.7	0.750	0.000	0.0	84.080	-38.460	4918.710	0.008
L27	74 - 73.75 (27)	TP38.602x38.543x0.375	0.250	0.000	0.0	45.499	-38.532	2661.710	0.014
L28	73.75 - 72.75 72.75 - 71.75 71.75 - 70.75 70.75 - 69.75 69.75 - 68.75	TP39.767x38.602x0.375	5.000	0.000	0.0	45.777 46.054 46.332 46.609 46.886	-38.864 -39.141 -39.419 -39.698 -39.978	2677.940 2694.170 2710.400 2726.630 2742.850	0.015 0.015 0.015 0.015 0.015
L29	68.75 - 67.75 67.75 - 66.75 66.75 - 65.75 65.75 - 64.75	TP40.932x39.767x0.375	5.000	0.000	0.0	47.164 47.441 47.719 47.996	-40.260 -40.542 -40.826 -41.111	2759.080 2775.310 2791.540 2807.770	0.015 0.015 0.015 0.015
L30	64.75 - 63.75 63.75 - 62.75 62.75 - 61.75 61.75 - 60.75 60.75 - 59.75	TP42.098x40.932x0.375	5.000	0.000	0.0	48.273 48.551 48.828 49.106 49.383	-41.398 -41.685 -41.973 -42.263 -42.554	2824.000 2840.220 2856.450 2872.680 2888.910	0.015 0.015 0.015 0.015 0.015
L31	59.75 - 58.75 58.75 - 57.75 57.75 - 56.75 56.75 - 55.75 55.75 - 54.75 54.75 - 53.75	TP43.263x42.098x0.375	5.000	0.000	0.0	49.660 49.938 50.215 50.493 50.770 51.048	-42.846 -43.139 -43.433 -43.729 -44.025 -44.323	2905.140 2921.370 2937.600 2953.820 2970.050 2986.280	0.015 0.015 0.015 0.015 0.015 0.015
L32	53.75 - 52.5825	TP45.804x43.263x0.375	10.902	0.000	0.0	51.371	-44.668	3005.230	0.015
	52.5825 - 51.415					51.695	-45.019	3024.170	0.015
	51.415 - 50.2475 50.2475 -					52.019 52.343	-45.371 -45.725	3043.120 3062.070	0.015 0.015
	49.08 49.08 -					54.072	-22.911	3163.200	0.007
L33	42.848 49.08 -	TP45.281x43.602x0.438	7.232	0.000	0.0	61.948	-26.085	3623.980	0.007
200	42.848 42.848	ISIES IN ISISSEMULTOS		3.300	0.0	62.271	-49.383	3642.850	0.014
L34	41.848 41.848 -	TP46.442x45.281x0.438	5.000	0.000	0.0	62.593	-49.724	3661.720	0.014
	40.848 40.848 -					62.916	-50.066	3680.580	0.014
	39.848 39.848 -					63.238	-50.409	3699.450	0.014

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	φPn	Ratio Pu
	ft		ft	ft		in²	K	К	$\frac{P_n}{\Phi}$
	38.848 38.848 -					63.561	-50.753	3718.310	0.014
	37.848								
	37.848 - 36.848					63.883	-51.099	3737.180	0.014
L35	36.848 - 35.848	TP47.604x46.442x0.438	5.000	0.000	0.0	64.206	-51.446	3756.050	0.014
	35.848 -					64.528	-51.794	3774.910	0.014
	34.848 34.848 -					64.851	-52.143	3793.780	0.014
	33.848 33.848 -					65.173	-52.494	3812.650	0.014
	32.848 32.848 -					65.496	-52.846	3831.510	0.014
	31.848								
L36	31.848 - 30.848	TP48.765x47.604x0.438	5.000	0.000	0.0	65.818	-53.200	3850.380	0.014
	30.848 - 29.848					66.141	-53.555	3869.240	0.014
	29.848 -					66.463	-53.911	3888.110	0.014
	28.848 28.848 -					66.786	-54.268	3906.980	0.014
	27.848 27.848 -					67.108	-54.627	3925.840	0.014
L37	26.848 26.848 -	TD40 026v40 765v0 420	E 000	0.000	0.0				
LS/	25.848	TP49.926x48.765x0.438	5.000	0.000	0.0	67.431	-54.987	3944.710	0.014
	25.848 - 24.848					67.753	-55.348	3963.570	0.014
	24.848 - 23.848					68.076	-55.710	3982.440	0.014
	23.848 -					68.398	-56.074	4001.310	0.014
	22.848 22.848 -					68.721	-56.439	4020.170	0.014
L38	21.848 21.848 -	TP51.087x49.926x0.438	5.000	0.000	0.0	69.043	-56.806	4039.040	0.014
	20.848	.,		5.000		69.366			
	20.848 - 19.848						-57.173	4057.910	0.014
	19.848 - 18.848					69.688	-57.542	4076.770	0.014
	18.848 - 17.848					70.011	-57.913	4095.640	0.014
	17.848 -					70.333	-58.284	4114.500	0.014
L39	16.848 16.848 -	TP52.248x51.087x0.438	5.000	0.000	0.0	70.656	-58.657	4133.370	0.014
	15.848 15.848 -					70.978	-59,031	4152,240	0.014
	14.848					71.301		4171.100	
	14.848 - 13.848						-59.406		0.014
	13.848 - 12.848					71.623	-59.783	4189.970	0.014
	12.848 - 11.848					71.946	-60.161	4208.830	0.014
L40	11.848 -	TP53.41x52.248x0.438	5.000	0.000	0.0	72.268	-60.540	4227.700	0.014
	10.848 10.848 -					72.591	-60.920	4246.570	0.014
	9.848 9.848 - 8.848					72.913	-61.302	4265.430	0.014
	8.848 - 7.848					73.236	-61.685	4284.300	0.014
L41	7.848 - 6.848 6.848 - 5.848	TP54.571x53.41x0.438	5.000	0.000	0.0	73.558 73.881	-62.069 -62.455	4303.170 4322.030	0.014 0.014
	5.848 - 4.848 4.848 - 3.848					74.203 74.526	-62.841 -63.229	4340.900 4359.760	0.014 0.015
	3.848 - 2.848					74.848	-63.619	4378.630	0.015
L42	2.848 - 1.848 1.848 - 0 (42)	TP55x54.571x0.438	1.848	0.000	0.0	75.171 75.767	-64.009 -64.719	4397.500 4432.360	0.015 0.015
_	(/				-				

¹ P_u / ϕP_n controls

Pole Bending Design Data

Section	Elevation	Size	Λ.4	1 A A	Dotio	Λ./	1 4 4	Ratio
Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
710.	ft		kip-ft	kip-ft	$\frac{M_{nx}}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{ny}}{\phi M_{ny}}$
L1	182 - 181	TP15.678x14.5x0.25	0.014	252.022	0.000	0.000	252.022	0.000
	181 - 180		0.108	260.355	0.000	0.000	260.355	0.000
	180 - 179		0.245	268.824	0.001	0.000	268.824	0.000
	179 - 178		0.438	277.429	0.002	0.000	277.429	0.000
	178 - 177		13.111	286.170	0.046	0.000	286.170	0.000
L2	177 - 176	TP16.856x15.678x0.25	15.614	295.046	0.053	0.000	295.046	0.000
	176 - 175		18.286	304.058	0.060	0.000	304.058	0.000
	175 - 174		21.041	313.204	0.067	0.000	313.204	0.000
	174 - 173		23.881	322.488	0.074	0.000	322.488	0.000
	173 - 172		26.782	331.906	0.081	0.000	331.906	0.000
L3	172 - 171	TP18.033x16.856x0.25	29.746	341.460	0.087	0.000	341.460	0.000
	171 - 170		32.773	351.149	0.093	0.000	351.149	0.000
	170 - 169		35.865	360.974	0.099	0.000	360.974	0.000
	169 - 168		39.022	370.935	0.105	0.000	370.935	0.000
	168 - 167		51.276	381.031	0.135	0.000	381.031	0.000
L4	167 - 166	TP19.211x18.033x0.25	62.599	391.262	0.160	0.000	391.262	0.000
	166 - 165		73.966	401.630	0.184	0.000	401.630	0.000
	165 - 164		85.482	412.133	0.207	0.000	412.133	0.000
	164 - 163		97.066	422.772	0.230	0.000	422.772	0.000
	163 - 162		108.719	433,546	0.251	0.000	433.546	0.000
L5	162 - 161	TP20.389x19.211x0.25	120.442	444.456	0.271	0.000	444.456	0.000
	161 - 160		132,234	455.501	0.290	0.000	455.501	0.000
	160 - 159		144.097	466.682	0.309	0.000	466.682	0.000
	159 - 158		156.029	477.998	0.326	0.000	477.998	0.000
	158 - 157		168.033	489.451	0.343	0.000	489.451	0.000
L6	157 - 156	TP21.567x20.389x0.25	189.990	501.038	0.379	0.000	501.038	0.000
	156 - 155		207.068	512.762	0.404	0.000	512.762	0.000
	155 - 154		224.214	524.620	0.427	0.000	524.620	0.000
	154 - 153		241.430	536.615	0.450	0.000	536.615	0.000
	153 - 152	TD00 744 04 507 0 05	258.715	548.745	0.471	0.000	548.745	0.000
L7	152 - 151	TP22.744x21.567x0.25	276.068	561.010	0.492	0.000	561.010	0.000
	151 - 150		293.490	573.412	0.512	0.000	573,412	0.000
	150 - 149		310.982	585.948	0.531	0.000	585.948	0.000
	149 - 148 148 - 147		328.542 346.171	598.621 611.428	0.549 0.566	0.000 0.000	598.621	0.000
L8	146 - 147	TP23.922x22.744x0.25	363.869	624.372	0.583	0.000	611.428 624.372	0.000
LO	147 - 146 146 - 145	1723.922822.74480.23	381.636	637.451	0.599	0.000	637.451	0.000
	145 - 144		399.473	650.666	0.614	0.000	650.666	0.000
	144 - 143		417.378	664.016	0.629	0.000	664.016	0.000
	143 - 142		435.354	677.502	0.643	0.000	677.502	0.000
L9	142 - 141	TP25.1x23.922x0.25	454.183	690.138	0.658	0.000	690.138	0.000
	141 - 140	11 20:1820:02280:20	473.102	702.209	0.674	0.000	702.209	0.000
	140 - 139		496.965	714.351	0.696	0.000	714.351	0.000
	139 - 138		518.581	726.562	0.714	0.000	726.562	0.000
	138 - 137		540.260	738.840	0.731	0.000	738.840	0.000
L10	137 - 136.834	TP26.023x25.1x0.25	543.865	740.884	0.734	0.000	740.884	0.000
	136.834 -		261.901	787 594	0.333	0.000	787.594	0.000
	133.081				0.000	0.000		
L11	136.834 -	TP25.805x24.639x0.375	364.184	1141.233	0.319	0.000	1141.233	0.000
	133.081				0.0.0	0.000		
	133.081		653.697	1167.992	0.560	0.000	1167.992	0.000
	131.834				0.000	0.000		
L12	131.834 -	TP26.972x25.805x0.375	675.928	1189.675	0.568	0.000	1189.675	0.000
	130.834	2010. 2201000	0.0.020		0.000	0.000		0.000
	130.834 -		698.832	1211.558	0.577	0.000	1211.558	0.000
	129.834							
	129.834 -		724,788	1233.642	0.588	0.000	1233.642	0.000
	128.834							
	128.834 -		750.819	1255.925	0.598	0.000	1255.925	0.000
	127.834			_			-	
	127.834 -		776.924	1278.408	0.608	0.000	1278.408	0.000
				_			_	

Section No.	Elevation	Size	M _{ux}	φM _{nx}	Ratio M _{ux}	Muy	φ M ny	Ratio M _{uy}
710.	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L13	126.834 126.834 -	TP28.138x26.972x0.375	803.103	1301.092	0.617	0.000	1301.092	0.000
	125.834 125.834 -		829.357	1323.975	0.626	0.000	1323.975	0.000
	124.834 124.834 - 123.834		855.683	1347.058	0.635	0.000	1347.058	0.000
	123.834 - 122.834		882.083	1370.342	0.644	0.000	1370.342	0.000
	122.834 - 121.834		908.567	1393.817	0.652	0.000	1393.817	0.000
L14	121.834 - 120.834	TP29.305x28.138x0.375	935.117	1417.500	0.660	0.000	1417.500	0.000
	120.834 - 119.834		961.742	1441.375	0.667	0.000	1441.375	0.000
	119.834 - 118.834		988.442	1465.458	0.674	0.000	1465.458	0.000
	118.834 - 117.834		1015.217	1489.733	0.681	0.000	1489.733	0.000
	117.834 - 116.834		1042.067	1514.217	0.688	0.000	1514.217	0.000
L15	116.834 - 115.834	TP30.471x29.305x0.375	1068.992	1538.892	0.695	0.000	1538.892	0.000
	115.834 - 114.834		1095.992	1563.767	0.701	0.000	1563.767	0.000
	114.834 - 113.834		1123.067	1588.842	0.707	0.000	1588.842	0.000
	113.834 - 112.834		1150.217	1614.117	0.713	0.000	1614.117	0.000
	112.834 - 111.834		1177.442	1639.592	0.718	0.000	1639.592	0.000
L16	111.834 - 110.834	TP31.638x30.471x0.375	1204.742	1665.267	0.723	0.000	1665.267	0.000
	110.834 - 109.834		1232.117	1691.142	0.729	0.000	1691.142	0.000
	109.834 - 108.834		1259.567	1717.217	0.733	0.000	1717.217	0.000
	108.834 - 107.834 107.834 -		1287.092	1743.492	0.738	0.000	1743.492	0.000
L17	106.834 - 106.834 -	TP32.804x31.638x0.375	1314.692 1342.367	1769.958 1796.633	0.743 0.747	0.000	1769.958 1796.633	0.000
LIT	105.834 - 105.834 -	1732.604831.03680.373	1370.125	1823.508	0.751	0.000	1823.508	0.000
	104.834 104.834 -		1397.950	1850.575	0.755	0.000	1850.575	0.000
	103.834 103.834		1425.858	1877,850	0.759	0.000	1877.850	0.000
	102.834 102.834 -		1453,833	1905.317	0.763	0.000	1905.317	0.000
L18	101.834 101.834 -	TP33.971x32.804x0.375	1481,892	1932.992	0.767	0.000	1932.992	0.000
	100.834 100.834 -		1510.025	1960.858	0.770	0.000	1960.858	0.000
	99.834 99.834 -		1538.233	1988.925	0.773	0.000	1988.925	0.000
	98.834 98.834 -		1566.525	2017.192	0.777	0.000	2017.192	0.000
	97.834 97.834 -		1594.883	2045.658	0.780	0.000	2045.658	0.000
L19	96.834 96.834 -	TP36.16x33.971x0.375	1625.917	2076.950	0.783	0.000	2076.950	0.000
	95.743 95.743 -		1657.092	2108.467	0.786	0.000	2108.467	0.000
	94.652 94.652 -		1688.483	2140.233	0.789	0.000	2140.233	0.000
	93.561 93.561 - 92.47		1720.092	2172.225	0.792	0.000	2172.225	0.000

Section	Elevation	Size	M _{ux}	φ M _{nx}	Ratio	Muy	φ M _{ny}	Ratio
No.				,	M _{ux}	,		Muy
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
	92.47 -		971.658	2320.425	0.419	0.000	2320.425	0.000
L20	87.449 92.47 -	TP35.642x34.239x0.375	908.917	2225.583	0.408	0.000	2225.583	0.000
	87.449 87.449 - 86.449		1914.567	2255.450	0.849	0.000	2255.450	0.000
L21	86.449 - 85 (21)	TP35.98x35.642x0.375	1963.942	2299.083	0.854	0.000	2299.083	0.000
L22	85 - 84.75 (22)	TP36.038x35.98x0.375	1972.475	2306.425	0.855	0.000	2306.425	0.000
L23	84.75 - 83.75	TP37.203x36.038x0.375	2006.650	2333.183	0.860	0.000	2333,183	0.000
	83.75 - 82.75		2040.883	2360.050	0.865	0.000	2360.050	0.000
	82.75 - 81.75		2075.183	2387.017	0.869	0.000	2387.017	0.000
	81.75 - 80.75		2109.550	2414.083	0.874	0.000	2414.083	0.000
	80.75 - 79.75		2143.975	2441.250	0.878	0.000	2441.250	0.000
L24	79.75 - 78.5625	TP38.31x37.203x0.375	2184.950	2473.650	0.883	0.000	2473.650	0.000
	78.5625 - 77.375		2226.008	2506.183	0.888	0.000	2506.183	0.000
	77.375 - 76.1875		2267.158	2538.850	0.893	0.000	2538.850	0.000
L25	76.1875 - 75 75 - 74.75 (25)	TP38.369x38.31x0.7	2308.400 2317.092	2571.658 4765.633	0.898 0.486	0.000 0.000	2571.658 4765.633	0.000
L26	74.75 - 74 (26)	TP38.543x38.369x0.7	2343.217	4810.367	0.487	0.000	4810.367	0.000
L27	74 - 73.75 (27)	TP38.602x38.543x0.375	2351.933	2606.342	0.902	0.000	2606.342	0.000
L28	73.75 - 72.75	TP39.767x38.602x0.375	2387.100	2634.192	0.906	0.000	2634.192	0.000
	72.75 - 71.75		2422.133	2662.133	0.910	0.000	2662.133	0.000
	71.75 - 70.75		2457.233	2690.167	0.913	0.000	2690.167	0.000
	70.75 - 69.75		2492.400	2718.292	0.917	0.000	2718.292	0.000
	69.75 - 68.75		2527.633	2746.517	0.920	0.000	2746.517	0.000
L29	68.75 - 67.75	TP40.932x39.767x0.375	2562.925	2774.825	0.924	0.000	2774.825	0.000
	67.75 - 66.75		2598.275	2803.217	0.927	0.000	2803.217	0.000
	66.75 - 65.75		2633.692	2831.700	0.930	0.000	2831.700	0.000
	65.75 - 64.75		2669.175	2860.275	0.933	0.000	2860.275	0.000
	64.75 - 63.75		2704.717	2888.933	0.936	0.000	2888.933	0.000
L30	63.75 - 62.75	TP42.098x40.932x0.375	2740.325	2917.675	0.939	0.000	2917.675	0.000
	62.75 - 61.75		2775.992	2946.500	0.942	0.000	2946.500	0.000
	61.75 - 60.75		2811.717	2975.408	0.945	0.000	2975.408	0.000
	60.75 - 59.75		2847.508	3004.400	0.948	0.000	3004.400	0.000
	59.75 - 58.75		2883.367	3033.475	0.951	0.000	3033.475	0.000
L31	58.75 - 57.75	TP43.263x42.098x0.375	2919.275	3062.633	0.953	0.000	3062.633	0.000
	57.75 - 56.75		2955.250	3091.867	0.956	0.000	3091.867	0.000
	56.75 - 55.75		2991.292	3121.175	0.958	0.000	3121.175	0.000
	55.75 - 54.75		3027.392	3150.567	0.961	0.000	3150.567	0.000
	54.75 - 53.75		3063.550	3180.033	0.963	0.000	3180.033	0.000
L32	53.75 - 52.5825	TP45.804x43.263x0.375	3105.842	3214.533	0.966	0.000	3214.533	0.000
	52.5825 - 51.415 51.415 -		3148.208 3190.658	3249.133 3283.833	0.969 0.972	0.000	3249.133 3283.833	0.000
	50.2475 50.2475		3233.192	3318.625	0.974	0.000	3318.625	0.000
	49.08 49.08 -		1645.783	3505.992	0.469	0.000	3505.992	0.000
L33	42.848 49.08 -	TP45.281x43.602x0.438	1816.617	4140.967	0.439	0.000	4140.967	0.000
	42.848 42.848 - 41.848		3499.525	4178.733	0.837	0.000	4178.733	0.000
L34	41.848 - 40.848	TP46.442x45.281x0.438	3536.708	4216.617	0.839	0.000	4216.617	0.000
	40.848 - 39.848		3573.958	4254.600	0.840	0.000	4254.600	0.000
	39.848 - 38.848		3611.258	4292.692	0.841	0.000	4292.692	0.000
	38.848 -		3648.625	4330.892	0.842	0.000	4330.892	0.000

Section No.	Elevation	Size	M _{ux}	ф M nx	Ratio	Muy	ф М пу	Ratio
NO.	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{uy}}{\phi M_{ny}}$
	37.848		2000 050	4200 400		0.000	4200 400	
	37.848 - 36.848		3686.058	4369.192	0.844	0.000	4369.192	0.000
L35	36.848 - 35.848	TP47.604x46.442x0.438	3723.542	4407.600	0.845	0.000	4407.600	0.000
	35.848 -		3761.083	4446.108	0.846	0.000	4446.108	0.000
	34.848 34.848 -		3798.692	4484.717	0.847	0.000	4484.717	0.000
	33.848 33.848 -		3836.350	4523.425	0.848	0.000	4523.425	0.000
	32.848							
	32.848 - 31.848		3874.067	4562.242	0.849	0.000	4562.242	0.000
L36	31.848 - 30.848	TP48.765x47.604x0.438	3911.842	4601.150	0.850	0.000	4601.150	0.000
	30.848 -		3949.675	4640.158	0.851	0.000	4640.158	0.000
	29.848 29.848 -		3987.567	4679.267	0.852	0.000	4679.267	0.000
	28.848 28.848		4025.508	4718.467	0.853	0.000	4718.467	0.000
	27.848							
	27.848 - 26.848		4063.508	4757.767	0.854	0.000	4757.767	0.000
L37	26.848 - 25.848	TP49.926x48.765x0.438	4101.558	4797.158	0.855	0.000	4797.158	0.000
	25.848 - 24.848		4139.658	4836.650	0.856	0.000	4836.650	0.000
	24.848 -		4177.817	4876.225	0.857	0.000	4876.225	0.000
	23.848 23.848 -		4216.025	4915.900	0.858	0.000	4915.900	0.000
	22.848 22.848 -		4254,283	4955.658	0.858	0,000	4955,658	0.000
L38	21.848	TD54 007,40 026,0 420				0.000		
L30	21.848 - 20.848	TP51.087x49.926x0.438	4292.600	4995.508	0.859		4995.508	0.000
	20.848 - 19.848		4330.958	5035.450	0.860	0.000	5035.450	0.000
	19.848 - 18.848		4369.358	5075.483	0.861	0.000	5075.483	0.000
	18.848 -		4407.817	5115.600	0.862	0.000	5115.600	0.000
	17.848 17.848 -		4446.317	5155.800	0.862	0.000	5155.800	0.000
L39	16.848 16.848 -	TP52.248x51.087x0.438	4484.858	5196.083	0.863	0.000	5196.083	0.000
	15.848 15.848 -		4523.450	5236.458	0.864	0.000	5236.458	0.000
	14.848							
	14.848 - 13.848		4562.083	5276.917	0.865	0.000	5276.917	0.000
	13.848 - 12.848		4600.758	5317.450	0.865	0.000	5317.450	0.000
	12.848 -		4639.475	5358.075	0.866	0.000	5358.075	0.000
L40	11.848 11.848 -	TP53.41x52.248x0.438	4678.242	5398.775	0.867	0.000	5398.775	0.000
	10.848 10.848 -		4717.042	5439.550	0.867	0.000	5439.550	0.000
	9.848							
	9.848 - 8.848 8.848 - 7.848		4755.892 4794.783	5480.408 5521.350	0.868 0.868	0.000 0.000	5480.408 5521.350	0.000
	7.848 - 6.848		4833.717	5562.358	0.869	0.000	5562.358	0.000
L41	6.848 - 5.848	TP54.571x53.41x0.438	4872.700	5603.450	0.870	0.000	5603.450	0.000
	5.848 - 4.848 4.848 - 3.848		4911.717 4950.783	5644.617 5685.858	0.870 0.871	0.000 0.000	5644.617 5685.858	0.000
	3.848 - 2.848		4989.892	5727.167	0.871	0.000	5727.167	0.000
	2.848 - 1.848		5029.042	5768 558	0.872	0.000	5768.558	0.000
L42	1.848 - 0 (42)	TP55x54.571x0.438	5101.517	5845.225	0.873	0.000	5845.225	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	φVn	Ratio	Actual	φ <i>T</i> _n	Ratio
No.	2/07at/o//	0.20	V_u	Ψ • π	V_u	T_u	Ψτη	T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	182 - 181	TP15.678x14.5x0.25	0.022	201.725	0.000	0.000	255.903	0.000
	181 - 180		0.109	205.005	0.001	0.000	264.293	0.000
	180 - 179		0.164	208.285	0.001	0.000	272.818	0.000
	179 - 178		0.221	211.566	0.001	0.000	281.479	0.000
1.0	178 - 177	TD40 050-45 070-0 05	2.215	214.846	0.010	0.128	290.275	0.000
L2	177 - 176	TP16.856x15.678x0.25	2.646	218.126	0.012	1.033	299.207	0.003
	176 - 175 175 - 174		2.705 2.810	221.406 224.687	0.012 0.013	1.033 1.263	308.273 317.476	0.003 0.004
	175 - 174 174 - 173		2.871	227.967	0.013	1.263	326.813	0.004
	173 - 173		2.933	231.247	0.013	1.263	336.287	0.004
L3	173 - 172	TP18.033x16.856x0.25	2.996	234.528	0.013	1.263	345.895	0.004
	171 - 170	11 10.0000010.000000.20	3.060	237.808	0.013	1.263	355.638	0.004
	170 - 169		3.125	241.088	0.013	1.263	365.517	0.003
	169 - 168		3.190	244.368	0.013	1.263	375.532	0.003
	168 - 167		11.291	247.649	0.046	1.832	385.681	0.005
L4	167 - 166	TP19.211x18.033x0.25	11.359	250.929	0.045	1.832	395.966	0.005
	166 - 165		11.483	254.209	0.045	2.183	406.386	0.005
	165 - 164		11.552	257.490	0.045	2.183	416.942	0.005
	164 - 163		11.621	260.770	0.045	2.183	427.632	0.005
	163 - 162		11.691	264.050	0.044	2.182	438.459	0.005
L5	162 - 161	TP20.389x19.211x0.25	11.760	267.331	0.044	2.182	449.421	0.005
	161 - 160		11.830	270.611	0.044	2.182	460.517	0.005
	160 - 159		11.901	273.891	0.043	2.181	471.750	0.005
	159 - 158		11.971	277.171	0.043	2.181	483.118	0.005
1.6	158 - 157	TD24 567, 20 200, 0 25	12.043	280.452	0.043	2.181	494.620	0.004
L6	157 - 156 156 - 155	TP21.567x20.389x0.25	17.049 17.118	283.732 287.012	0.060 0.060	2.180 2.180	506.258 518.033	0.004 0.004
	156 - 155 155 - 154		17.118	290.293	0.059	2.180	529.941	0.004
	154 - 153		17.166	293.573	0.059	2.179	541.985	0.004
	153 - 152		17.326	296.853	0.058	2.179	554.165	0.004
L7	152 - 151	TP22.744x21.567x0.25	17.395	300.133	0.058	2.178	566.480	0.004
	151 - 150		17.464	303.414	0.058	2.177	578.930	0.004
	150 - 149		17.533	306.694	0.057	2.177	591.516	0.004
	149 - 148		17.603	309.974	0.057	2.176	604.237	0.004
	148 - 147		17.672	313.255	0.056	2.176	617.093	0.004
L8	147 - 146	TP23.922x22.744x0.25	17.741	316.535	0.056	2.175	630.085	0.003
	146 - 145		17.811	319.815	0.056	2.174	643.212	0.003
	145 - 144		17.880	323.095	0.055	2.174	656.474	0.003
	144 - 143		17.950	326.376	0.055	2.173	669.872	0.003
	143 - 142	TD05 4 00 000 0 05	18.020	329.656	0.055	2.172	683.404	0.003
L9	142 - 141	TP25.1x23.922x0.25	18.896	332.936	0.057	2.171	697.072	0.003
	141 - 140		18.966	336.217	0.056	2.171	710.877	0.003
	140 - 139 139 - 138		21.599 21.664	339.497 342.777	0.064 0.063	2.170 2.169	724.816 738.890	0.003 0.003
	138 - 137		21.728	346.057	0.063	2.169	753.099	0.003
L10	137 - 136.834	TP26.023x25.1x0.25	21.728	346.602	0.063	2.168	755.472	0.003
	136.834 -	11 20.020020.100.20	9.343	358.913	0.026	0.906	810.092	0.001
	133.081		0.0.0	0001010	0.020	0,000	0.01002	0.00
L11	136.834 -	TP25.805x24.639x0.375	12.781	525.136	0.024	1.261	1156.133	0.001
	133.081							
	133.081 -		22.210	531.213	0.042	2.166	1183.050	0.002
	131.834							
L12	131.834 -	TP26.972x25.805x0.375	22.285	536.086	0.042	2.166	1204.850	0.002
	130.834							
	130.834 -		25.938	540.960	0.048	2.413	1226.858	0.002
	129.834							
	129.834 -		26.012	545.833	0.048	2.413	1249.058	0.002
	128.834		00.007	550 700	0.047	0.440	4074 407	0.000
	128.834 -		26.087	550.706	0.047	2.412	1271.467	0.002
	127.834		26 161	555 570	0.047	2 /11	1204 067	0.000
	127.834 - 126.834		26.161	555.579	0.047	2.411	1294.067	0.002
L13	126.834	TP28.138x26.972x0.375	26.235	560.452	0.047	2.411	1316.867	0.002
L10	125.834	20.100/20.072/0.073	20.200	550.70Z	J.U-T/	←. → 1 1	1510.001	0.002
	125.834 -		26.310	565.325	0.047	2.410	1339.867	0.002
					=			

Section	Elevation	Size	Actual	φ V _n	Ratio	Actual	φ <i>T</i> _n	Ratio
No.		0.20	V_u		Vu	T_u		Tu
	ft 124.834		K	K	ϕV_n	kip-ft	kip-ft	φTn
	124.834 -		26.385	570.199	0.046	2.409	1363.067	0.002
	123.834 123.834 -		26.459	575.072	0.046	2.409	1386.467	0.002
	122.834 122.834 -			579.945	0.046	2.408	1410.058	0.002
	121.834		26.535	579.945		2.400	1410.036	0.002
L14	121.834 - 120.834	TP29.305x28.138x0.375	26.609	584.818	0.045	2.407	1433.858	0.002
	120.834 -		26.684	589.691	0.045	2.407	1457.858	0.002
	119.834 119.834 -		26.759	594.564	0.045	2.406	1482.050	0.002
	118.834 118.834 -		26.834	599.438	0.045	2.405	1506.442	0.002
	117.834							
	117.834 - 116.834		26.909	604.311	0.045	2.404	1531.033	0.002
L15	116.834 - 115.834	TP30.471x29.305x0.375	26.984	609.184	0.044	2.404	1555.825	0.002
	115.834 -		27.059	614.057	0.044	2.403	1580.817	0.002
	114.834 114.834 -		27.134	618.930	0.044	2.402	1606.008	0.001
	113.834 113.834 -		27.209	623.803	0.044	2,402	1631,400	0.001
	112.834 112.834 -		27.285	628.677	0.043	2.401	1656.992	0.001
	111.834							
L16	111.834 - 110.834	TP31.638x30.471x0.375	27.360	633.550	0.043	2.400	1682.775	0.001
	110.834 -		27.436	638.423	0.043	2.400	1708.758	0.001
	109.834 109.834 -		27.511	643.296	0.043	2.399	1734.950	0.001
	108.834 108.834 -		27.587	648.169	0.043	2.398	1761.333	0.001
	107.834 107.834 -		27.663	653.042	0.042	2.398	1787.917	0.001
	106.834							
L17	106.834 - 105.834	TP32.804x31.638x0.375	27.739	657.916	0.042	2.397	1814.700	0.001
	105.834 - 104.834		27.815	662.789	0.042	2.396	1841.683	0.001
	104.834 -		27.891	667.662	0.042	2.396	1868.867	0.001
	103.834 103.834 -		27.967	672.535	0.042	2.395	1896.250	0.001
	102.834 102.834 -		28.043	677.408	0.041	2.394	1923.825	0.001
1.40	101.834	TD00 074 00 004 0 075						
L18	101.834 - 100.834	TP33.971x32.804x0.375	28.119	682.282	0.041	2.394	1951.608	0.001
	100.834 - 99.834		28.195	687.155	0.041	2.393	1979.583	0.001
	99.834 -		28.272	692.028	0.041	2.393	2007.758	0.001
	98.834 98.834 -		28.349	696.901	0.041	2.392	2036.133	0.001
	97.834 97.834 -		28.426	701.774	0.041	2.391	2064.708	0.001
1.10	96.834	TD26 16v22 071v0 275						
L19	96.834 - 95.743	TP36.16x33.971x0.375	28.510	707.091	0.040	2.391	2096.117	0.001
	95.743 - 94.652		28.760	712.407	0.040	2.390	2127.758	0.001
	94.652 -		28.844	717.724	0.040	2.389	2159.633	0.001
	93.561 93.561 -		29.156	723.041	0.040	2.389	2191.742	0.001
	92.47 92.47 -		18.425	747.509	0.025	1.267	2342.600	0.001
1.00	87.449	TD95 640-94 000-0 075						
L20	92.47 -	TP35.642x34.239x0.375	15.606	731.819	0.021	1.121	2245.292	0.000

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.	ft		Vu K	K		T _u kip-ft	kip-ft	T_u
	87,449 -		34.060	736.688	φ <i>V_n</i> 0.046	2.252	2275.258	φ <i>T_n</i> 0.001
	86.449		04.000	700.000	0.040	2.202	2270.200	0.001
L21	86.449 - 85 (21)	TP35.98x35.642x0.375	34.166	743.742	0.046	2.252	2319.050	0.001
L22	85 - 84.75 (22)	TP36.038x35.98x0.375	34.153	744.959	0.046	2.251	2326.642	0.001
L23	84.75 - 83.75	TP37.203x36.038x0.375	34.236	749.828	0.046	2.251	2357.150	0.001
	83.75 - 82.75		34.300	754.696	0.045	2.250	2387.858	0.001
	82.75 - 81.75		34.365	759.565	0.045	2.250	2418.767	0.001
	81.75 - 80.75		34.430	764.433	0.045	2.249	2449.875	0.001
	80.75 - 79.75		34.495	769.302	0.045	2.248	2481.183	0.001
L24	79.75 - 78.5625	TP38.31x37.203x0.375	34.576	775.083	0.045	2.248	2518.617	0.001
	78.5625 - 77.375		34.653	780.865	0.044	2.247	2556.325	0.001
	77.375 - 76.1875		34.729	786.646	0.044	2.247	2594.317	0.001
	76.1875 - 75		34.806	792.428	0.044	2.246	2632.592	0.001
L25	75 - 74.75 (25)	TP38.369x38.31x0.7	34.804	1468.800	0.024	2.246	4845.317	0.000
L26	74.75 - 74 (26)	TP38.543x38.369x0.7	34.885	1475.610	0.024	2.246	4890.383	0.000
L27	74 - 73.75 (27)	TP38.602x38.543x0.375	34.897	798.513	0.044	2.246	2673.183	0.001
L28	73.75 - 72.75	TP39.767x38.602x0.375	35.041	803.382	0.044	2.245	2705.883	0.001
	72.75 - 71.75		35.104	808.250	0.043	2.114	2738.775	0.001
	71.75 - 70.75		35.168	813.119	0.043	2.113	2771.867	0.001
	70.75 - 69.75 69.75 - 68.75		35.231 35.295	817.988 822.856	0.043 0.043	2.113 2.112	2805.158 2838.650	0.001 0.001
L29	68.75 - 67.75	TP40.932x39.767x0.375	35.358	827.725	0.043	2.112	2872.342	0.001
LZO	67.75 - 66.75	11 40.002,00.1 01 70.01 0	35.421	832.593	0.043	2.111	2906.233	0.001
	66.75 - 65.75		35.484	837.462	0.042	2.111	2940.317	0.001
	65.75 - 64.75		35.547	842.330	0.042	2.111	2974.608	0.001
	64.75 - 63.75		35.610	847.199	0.042	2.110	3009.092	0.001
L30	63.75 - 62.75	TP42.098x40.932x0.375	35.672	852.067	0.042	2.110	3043.775	0.001
	62.75 - 61.75		35.734	856.936	0.042	2.110	3078.658	0.001
	61.75 - 60.75		35.796	861.804	0.042	2.109 2.109	3113.742	0.001 0.001
	60.75 - 59.75 59.75 - 58.75		35.859 35.921	866.673 871.542	0.041 0.041	2.109	3149.017 3184.500	0.001
L31	58.75 - 57.75	TP43.263x42.098x0.375	35.982	876.410	0.041	2.108	3220.175	0.001
LOT	57.75 - 56.75	11 40.200.42.000.070	36.043	881.279	0.041	2.108	3256.050	0.001
	56.75 - 55.75		36.104	886.147	0.041	2.107	3292.125	0.001
	55.75 - 54.75		36.165	891.016	0.041	2.107	3328.400	0.001
	54.75 - 53.75		36.227	895.884	0.040	2.107	3364.875	0.001
L32	53.75 - 52.5825	TP45.804x43.263x0.375	36.300	901.568	0.040	2.106	3407.708	0.001
	52.5825 51.415		36.368	907.252	0.040	2.106	3450.808	0.001
	51.415 - 50.2475		36.437	912.936	0.040	2.106	3494.183	0.001
	50.2475 - 49.08		36.506	918.620	0.040	2.105	3537.833	0.001
1.00	49.08 - 42.848	TD45 004 40 000 0 400	17.858	948.961	0.019	1.000	3775.392	0.000
L33	49.08 - 42.848	TP45.281x43.602x0.438	19.334	1087.200	0.018	1.105	4247.492	0.000
1.04	42.848 - 41.848	TD40 440:45 004:0 400	37.190	1092.860	0.034	2.104	4291.833	0.000
L34	41.848 - 40.848	TP46.442x45.281x0.438	37.251	1098.510	0.034	2.104	4336.400	0.000
	40.848 - 39.848 39.848 -		37.311 37.372	1104.170 1109.830	0.034 0.034	2.104 2.104	4381.200 4426.233	0.000
	38.848 38.848 -		37.432	1115.490	0.034	2.104	4471.492	0.000
	37.848 37.848 -		37.432	1113,490	0.034	2.104	4516.983	0.000
L35	36.848 36.848	TP47.604x46.442x0.438	37.552	1121.130	0.033	2.103	4562.708	0.000
_00	55.515		3.1002	0.0 10	3.000		.552.700	3.550

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.	ft		V _u K	K	$\frac{V_u}{\phi V_n}$	T _u kip-ft	kip-ft	$\frac{T_u}{\phi T_n}$
	35.848		07.040	4400 470		0.400	4000.050	
	35.848 - 34.848		37.610	1132.470	0.033	2.103	4608.658	0.000
	34.848 -		37.668	1138.130	0.033	2.103	4654.833	0.000
	33.848		27 727	1112 700	0.022	0.400	4704 050	0.000
	33.848 - 32.848		37.727	1143.790	0.033	2.103	4701.250	0.000
	32.848 -		37.785	1149.450	0.033	2.103	4747.892	0.000
L36	31.848 31.848 -	TP48.765x47.604x0.438	37.841	1155.110	0.033	2.102	4794.758	0.000
200	30.848	THE TOTAL CONTINUE THE TANK THE CONTINUE THE					17011100	
	30.848 - 29.848		37.896	1160.770	0.033	2.102	4841.867	0.000
	29.848 -		37.952	1166.430	0.033	2.102	4889.200	0.000
	28.848		20.000	4470.000	0.000	0.400	4020 750	0.000
	28.848 - 27.848		38.008	1172.090	0.032	2.102	4936.758	0.000
	27.848 -		38.064	1177.750	0.032	2.102	4984.550	0.000
L37	26.848 26.848 -	TP49.926x48.765x0.438	38.116	1183,410	0.032	2.102	5032.575	0.000
Lor	25.848	11 10.020010.10000.100		1100,110	0.002	2.102	0002.010	0.000
	25.848 - 24.848		38.168	1189.070	0.032	2.102	5080.825	0.000
	24.848 -		38.220	1194.730	0.032	2.101	5129.308	0.000
	23.848		00.070	4000 000	0.000	0.404	5470.005	0.000
	23.848 - 22.848		38.272	1200.390	0.032	2.101	5178.025	0.000
	22.848 -		38.324	1206.050	0.032	2.101	5226.967	0.000
L38	21.848 21.848 -	TP51.087x49.926x0.438	38.372	1211.710	0.032	2.101	5276.142	0.000
L00	20.848	11 01:007 840:02080:400	30.072	1211.710	0.002	2.101	3270.142	0.000
	20.848 - 19.848		38.420	1217.370	0.032	2.101	5325.550	0.000
	19.848 -		38.468	1223.030	0.031	2.101	5375.183	0.000
	18.848		20.545	4000 000	0.004	0.404	5405.050	0.000
	18.848 - 17.848		38.515	1228.690	0.031	2.101	5425.050	0.000
	17.848 -		38.563	1234.350	0.031	2.101	5475.142	0.000
L39	16.848 16.848 -	TP52.248x51.087x0.438	38.606	1240.010	0.031	2.101	5525.467	0.000
200	15.848	TO GETE TO NOT THOSE THOSE					00201101	
	15.848 - 14.848		38.649	1245.670	0.031	2.101	5576.025	0.000
	14.848 -		38.692	1251.330	0.031	2.100	5626.808	0.000
	13.848		20.725	4050 000	0.004	0.400	5677.825	0.000
	13.848 - 12.848		38.735	1256.990	0.031	2.100	5677.625	0.000
	12.848 -		38.779	1262.650	0.031	2.100	5729.067	0.000
L40	11.848 11.848 -	TP53.41x52.248x0.438	38.822	1268.310	0.031	2.100	5780.550	0.000
L 10	10.848	11 00.11/02.210/0.100		1200.010	0.001			
	10.848 - 9.848		38.865	1273.970	0.031	2.100	5832.250	0.000
	9.848 - 8.848		38.908	1279.630	0.030	2.100	5884.191	0.000
	8.848 - 7.848		38.952	1285.290	0.030	2.100	5936.358	0.000
L41	7.848 - 6.848	TP54,571x53,41x0,438	38.995 39.039	1290.950 1296.610	0.030 0.030	2.100 2.100	5988.750	0.000
L4 I	6.848 - 5.848 5.848 - 4.848	1754.57 1855.4 180.436	39.039	1302.270	0.030	2.100	6041.383 6094.241	0.000
	4.848 - 3.848		39.126	1307.930	0.030	2.100	6147.325	0.000
	3.848 - 2.848		39.169	1313.590	0.030	2.100	6200.650	0.000
	2.848 - 1.848		39.213	1319.250	0.030	2.100	6254.191	0.000
L42	1.848 - 0 (42)	TP55x54.571x0.438	39.319	1329.710	0.030	2.100	6353.758	0.000

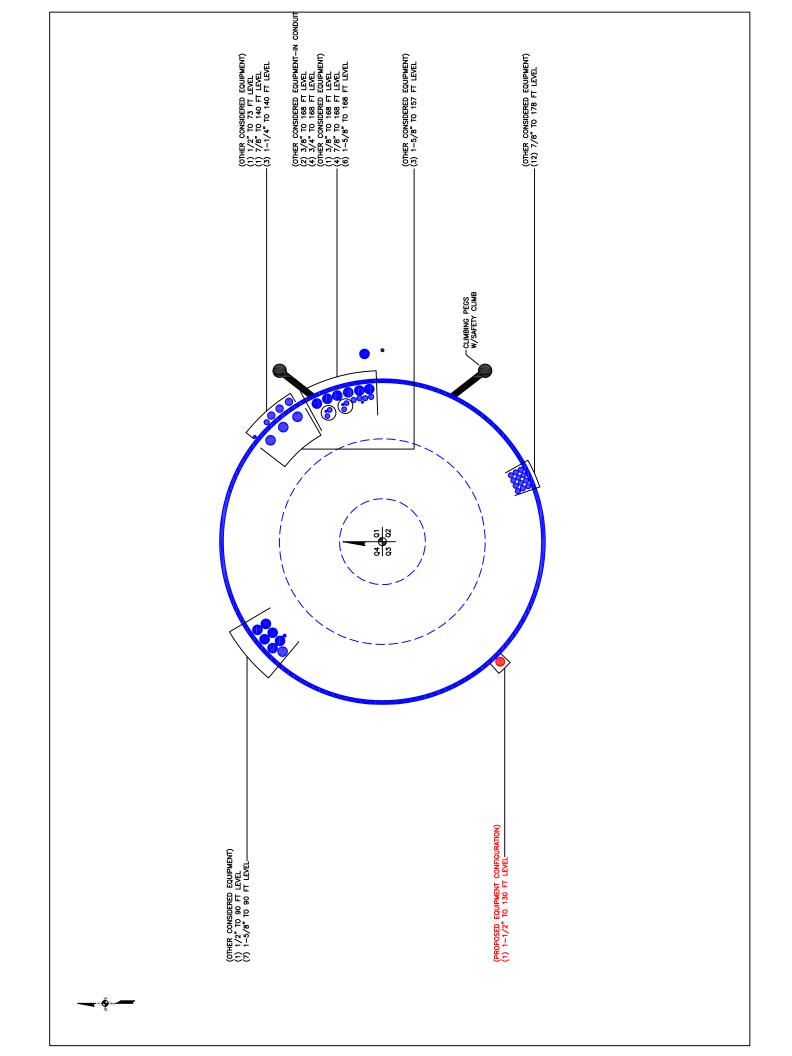
Pole Interaction Design Data

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.	£.	Pu	Mux	Muy	V _u	T_u	Stress	Stress	
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	182 - 181	0.000	0.000	0.000	0.000	0.000	0.000 1	1.050	4.8.2
	181 - 180	0.000	0.000	0.000	0.001	0.000	0.001	1.050	4.8.2
	180 - 179	0.000	0.001	0.000	0.001	0.000	0.001	1.050	4.8.2
	179 - 178 178 - 177	0.000 0.001	0.002 0.046	0.000 0.000	0.001 0.010	0.000 0.000	0.002 0.047	1.050 1.050	4.8.2 4.8.2
L2	176 - 177 177 - 176	0.001	0.048	0.000	0.010	0.000	0.054	1.050	4.8.2
LZ	177 - 176 176 - 175	0.001	0.055	0.000	0.012	0.003	0.062	1.050	4.8.2
	175 - 175 175 - 174	0.001	0.067	0.000	0.012	0.003	0.069	1.050	4.8.2
	174 - 173	0.001	0.074	0.000	0.013	0.004	0.076	1.050	4.8.2
	173 - 172	0.001	0.081	0.000	0.013	0.004	0.082	1.050	4.8.2
L3	172 - 171	0.001	0.087	0.000	0.013	0.004	0.089	1.050	4.8.2
	171 - 170	0.001	0.093	0.000	0.013	0.004	0.095	1.050	4.8.2
	170 - 169	0.001	0.099	0.000	0.013	0.003	0.101	1.050	4.8.2
	169 - 168	0.002	0.105	0.000	0.013	0.003	0.107	1.050	4.8.2
	168 - 167	0.007	0.135	0.000	0.046	0.005	0.144	1.050	4.8.2
L4	167 - 166	0.007	0.160	0.000	0.045	0.005	0.169	1.050	4.8.2
	166 - 165	0.007	0.184	0.000	0.045	0.005	0.193	1.050	4.8.2
	165 - 164	0.007	0.207	0.000	0.045	0.005	0.217	1.050	4.8.2
	164 - 163	0.007	0.230	0.000	0.045	0.005	0.239	1.050	4.8.2
1.5	163 - 162	0.007	0.251	0.000	0.044	0.005	0.260	1.050	4.8.2
L5	162 - 161 161 - 160	0.007 0.007	0.271 0.290	0.000 0.000	0.044 0.044	0.005 0.005	0.280 0.299	1.050 1.050	4.8.2 4.8.2
	160 - 159	0.007	0.309	0.000	0.044	0.005	0.299	1.050	4.8.2
	159 - 158	0.007	0.309	0.000	0.043	0.005	0.316	1.050	4.8.2
	158 - 157	0.007	0.343	0.000	0.043	0.003	0.352	1.050	4.8.2
L6	156 - 157 157 - 156	0.007	0.343	0.000	0.043	0.004	0.394	1.050	4.8.2
	156 - 155	0.010	0.404	0.000	0.060	0.004	0.418	1.050	4.8.2
	155 - 154	0.010	0.427	0.000	0.059	0.004	0.442	1.050	4.8.2
	154 - 153	0.010	0.450	0.000	0.059	0.004	0.464	1.050	4.8.2
	153 - 152	0.010	0.471	0.000	0.058	0.004	0.486	1.050	4.8.2
L7	152 - 151	0.010	0.492	0.000	0.058	0.004	0.506	1.050	4.8.2
	151 - 150	0.010	0.512	0.000	0.058	0.004	0.526	1.050	4.8.2
	150 - 149	0.010	0.531	0.000	0.057	0.004	0.545	1.050	4.8.2
	149 - 148	0.010	0.549	0.000	0.057	0.004	0.563	1.050	4.8.2
	148 - 147	0.010	0.566	0.000	0.056	0.004	0.580	1.050	4.8.2
L8	147 - 146	0.010	0.583	0.000	0.056	0.003	0.597	1.050	4.8.2
	146 - 145	0.010	0.599	0.000	0.056	0.003	0.613	1.050	4.8.2
	145 - 144	0.010	0.614	0.000	0.055	0.003	0.628	1.050	4.8.2
	144 - 143	0.010	0.629	0.000	0.055	0.003	0.642	1.050	4.8.2
L9	143 - 142 142 - 141	0.010 0.011	0.643 0.658	0.000 0.000	0.055 0.057	0.003 0.003	0.656 0.673	1.050 1.050	4.8.2 4.8.2
L9	142 - 141	0.011	0.674	0.000	0.057	0.003	0.673	1.050	4.8.2
	140 - 139	0.011	0.696	0.000	0.050	0.003	0.714	1.050	4.8.2
	139 - 138	0.014	0.714	0.000	0.063	0.003	0.732	1.050	4.8.2
	138 - 137	0.014	0.731	0.000	0.063	0.003	0.749	1.050	4.8.2
L10	137 - 136.834	0.014	0.734	0.000	0.063	0.003	0.752	1.050	4.8.2
	136.834 -	0.006	0.333	0.000	0.026	0.001	0.339	1.050	4.8.2
L11	133.081 136.834 -	0.006	0.319	0.000	0.024	0.001	0.325	1.050	4.8.2
	133.081 133.081 - 131.834	0.010	0.560	0.000	0.042	0.002	0.571	1.050	4.8.2
L12	131.834 - 130.834	0.010	0.568	0.000	0.042	0.002	0.580	1.050	4.8.2
	130.834 - 129.834	0.011	0.577	0.000	0.048	0.002	0.590	1.050	4.8.2
	129.834 - 128.834	0.011	0.588	0.000	0.048	0.002	0.601	1.050	4.8.2
	128.834 - 127.834 127.834 -	0.011 0.011	0.598 0.608	0.000	0.047 0.047	0.002 0.002	0.611 0.621	1.050 1.050	4.8.2 4.8.2
L13	126.834 126.834	0.011	0.617	0.000	0.047	0.002	0.631	1.050	4.8.2
	125.834 125.834 -	0.011	0.626	0.000	0.047	0.002	0.640	1.050	4.8.2
	124.834 124.834 - 123.834	0.011	0.635	0.000	0.046	0.002	0.649	1.050	4.8.2

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio Tu	Comb. Stress	Allow. Stress	Criteria
	ft	φ <i>P</i> _n	φ <i>M</i> _{nx}	φ <i>M</i> _{ny}	φ <i>V</i> _n	φΤη	Ratio	Ratio	400
	123.834 - 122.834	0.011	0.644	0.000	0.046	0.002	0.657	1.050	4.8.2
	122.834 - 121.834	0.011	0.652	0.000	0.046	0.002	0.665	1.050	4.8.2
L14	121.834 - 120.834	0.011	0.660	0.000	0.045	0.002	0.673	1.050	4.8.2
	120.834 - 119.834	0.011	0.667	0.000	0.045	0.002	0.681	1.050	4.8.2
	119.834 - 118.834	0.011	0.674	0.000	0.045	0.002	0.688	1.050	4.8.2
	118.834 - 117.834	0.011	0.681	0.000	0.045	0.002	0.695	1.050	4.8.2
	117.834 - 116.834	0.011	0.688	0.000	0.045	0.002	0.701	1.050	4.8.2
L15	116.834 - 115.834	0.011	0.695	0.000	0.044	0.002	0.708	1.050	4.8.2
	115.834 - 114.834	0.011	0.701	0.000	0.044	0.002	0.714	1.050	4.8.2
	114.834 - 113.834	0.011	0.707	0.000	0.044	0.001	0.720	1.050	4.8.2
	113.834 - 112.834	0.011	0.713	0.000	0.044	0.001	0.726	1.050	4.8.2
	112.834 - 111.834	0.011	0.718	0.000	0.043	0.001	0.731	1.050	4.8.2
L16	111.834 - 110.834	0.011	0.723	0.000	0.043	0.001	0.737	1.050	4.8.2
	110.834 - 109.834	0.011	0.729	0.000	0.043	0.001	0.742	1.050	4.8.2
	109.834 - 108.834	0.011	0.733	0.000	0.043	0.001	0.747	1.050	4.8.2
	108.834 - 107.834	0.011	0.738	0.000	0.043	0.001	0.751	1.050	4.8.2
	107.834 - 106.834	0.011	0.743	0.000	0.042	0.001	0.756	1.050	4.8.2
L17	106.834 - 105.834	0.011	0.747	0.000	0.042	0.001	0.760	1.050	4.8.2
	105.834 - 104.834	0.011	0.751	0.000	0.042	0.001	0.765	1.050	4.8.2
	104.834 - 103.834	0.011	0.755	0.000	0.042	0.001	0.769	1.050	4.8.2
	103.834 - 102.834	0.011	0.759	0.000	0.042	0.001	0.773	1.050	4.8.2
	102.834 - 101.834	0.011	0.763	0.000	0.041	0.001	0.776	1.050	4.8.2
L18	101.834 - 100.834	0.011	0.767	0.000	0.041	0.001	0.780	1.050	4.8.2
	100.834 - 99.834	0.011	0.770	0.000	0.041	0.001	0.783	1.050	4.8.2
	99.834 - 98.834	0.011	0.773	0.000	0.041	0.001	0.787	1.050	4.8.2
	98.834 - 97.834	0.011	0.777	0.000	0.041	0.001	0.790	1.050	4.8.2
	97.834 - 96.834	0.012	0.780	0.000	0.041	0.001	0.793	1.050	4.8.2
L19	96.834 - 95.743	0.012	0.783	0.000	0.040	0.001	0.796	1.050	4.8.2
	95.743 - 94.652	0.012	0.786	0.000	0.040	0.001	0.799	1.050	4.8.2
	94.652 - 93.561	0.012	0.789	0.000	0.040	0.001	0.802	1.050	4.8.2
	93.561 - 92.47	0.012	0.792	0.000	0.040	0.001	0.805	1.050	4.8.2
	92.47 - 87.449	0.008	0.419	0.000	0.025	0.001	0.427	1.050	4.8.2
L20	92.47 - 87.449	0.007	0.408	0.000	0.021	0.000	0.415	1.050	4.8.2
	87.449 - 86.449	0.014	0.849	0.000	0.046	0.001	0.865	1.050	4.8.2
L21	86.449 - 85	0.014	0.854	0.000	0.046	0.001	0.871	1.050	4.8.2

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	$\frac{-}{\phi P_n}$	φ <i>M</i> _{nx}	φ <i>M</i> _{ny}	${\phi V_n}$	$\frac{T_n}{\phi T_n}$	Ratio	Ratio	
	(21)	Ψιη	ψινιιιχ	ψινιην	Ψνη	Ψτη			
L22	85 - 84.75 (22)	0.014	0.855	0.000	0.046	0.001	0.872	1.050	4.8.2
L23	84.75 - 83.75	0.014	0.860	0.000	0.046	0.001	0.877	1.050	4.8.2
	83.75 - 82.75	0.014	0.865	0.000	0.045	0.001	0.881	1.050	4.8.2
	82.75 - 81.75	0.014	0.869	0.000	0.045	0.001	0.886	1.050	4.8.2
	81.75 - 80.75	0.014	0.874	0.000	0.045	0.001	0.890	1.050	4.8.2
	80.75 - 79.75	0.014	0.878	0.000	0.045	0.001	0.895	1.050	4.8.2
L24	79.75 -	0.014	0.883	0.000	0.045	0.001	0.900	1.050	4.8.2
LZ4	78.5625						0.905		
	78.5625 - 77.375	0.014	0.888	0.000	0.044	0.001		1.050	4.8.2
	77.375 - 76.1875	0.014	0.893	0.000	0.044	0.001	0.909	1.050	4.8.2
	76.1875 - 75	0.014	0.898	0.000	0.044	0.001	0.914	1.050	4.8.2
L25	75 - 74.75 (25)	0.008	0.486	0.000	0.024	0.000	0.495	1.050	4.8.2
L26	74.75 - 74 (26)	0.008	0.487	0.000	0.024	0.000	0.496	1.050	4.8.2
L27	74 - 73.75 (27)	0.014	0.902	0.000	0.044	0.001	0.919	1.050	4.8.2
L28	73.75 - 72.75	0.015	0.906	0.000	0.044	0.001	0.923	1.050	4.8.2
	72.75 - 71.75	0.015	0.910	0.000	0.043	0.001	0.926	1.050	4.8.2
	71.75 - 70.75	0.015	0.913	0.000	0.043	0.001	0.930	1.050	4.8.2
	70.75 - 69.75	0.015	0.917	0.000	0.043	0.001	0.933	1.050	4.8.2
	69.75 - 68.75	0.015	0.920	0.000	0.043	0.001	0.937	1.050	4.8.2
L29	68.75 - 67.75	0.015	0.924	0.000	0.043	0.001	0.940	1.050	4.8.2
LZJ	67.75 - 66.75	0.015	0.927	0.000	0.043	0.001	0.943	1.050	4.8.2
	66.75 - 65.75	0.015	0.930	0.000	0.042	0.001	0.947	1.050	4.8.2
	65.75 - 64.75	0.015	0.933	0.000	0.042	0.001	0.950	1.050	4.8.2
	64.75 - 63.75	0.015	0.936	0.000	0.042	0.001	0.953	1.050	4.8.2
L30	63.75 - 62.75	0.015	0.939	0.000	0.042	0.001	0.956	1.050	4.8.2
	62.75 - 61.75	0.015	0.942	0.000	0.042	0.001	0.959	1.050	4.8.2
	61.75 - 60.75	0.015	0.945	0.000	0.042	0.001	0.961	1.050	4.8.2
	60.75 - 59.75	0.015	0.948	0.000	0.041	0.001	0.964	1.050	4.8.2
	59.75 - 58.75	0.015	0.951	0.000	0.041	0.001	0.967	1.050	4.8.2
L31	58.75 - 57.75	0.015	0.953	0.000	0.041	0.001	0.970	1.050	4.8.2
	57.75 - 56.75	0.015	0.956	0.000	0.041	0.001	0.972	1.050	4.8.2
	56.75 - 55.75	0.015	0.958	0.000	0.041	0.001	0.975	1.050	4.8.2
	55 75 - 54 75	0.015	0.961	0.000	0.041	0.001	0.977	1.050	4.8.2
	54.75 - 53.75	0.015	0.963	0.000	0.040	0.001	0.980	1.050	4.8.2
L32	53.75 -	0.015	0.966	0.000	0.040	0.001	0.983	1.050	4.8.2
L02	52.5825 52.5825	0.015	0.969	0.000	0.040	0.001	0.985	1.050	4.8.2
	51.415	0.015	0.909	0.000	0.040	0.001	0.988	1.050	4.8.2
	51.415 - 50.2475 50.2475 -	0.015	0.972	0.000	0.040	0.001	0.988	1.050	4.8.2
	49.08 49.08 -	0.013	0.469	0.000	0.040	0.000	0.477	1.050	4.8.2
1 22	42.848	0.007	0.439	0.000	0.019	0.000		1.050	
L33	49.08 - 42.848 42.848 -	0.007	0.439	0.000	0.018	0.000	0.446 0.852	1.050	4.8.2 4.8.2
L34	42.848 - 41.848 -	0.014	0.839	0.000	0.034	0.000	0.854	1.050	4.8.2
L34	40.848 40.848 -								
	39.848 39.848 -	0.014 0.014	0.840 0.841	0.000	0.034 0.034	0.000	0.855 0.856	1.050 1.050	4.8.2 4.8.2
	38.848 38.848 -	0.014	0.842	0.000	0.034	0.000	0.857	1.050	4.8.2
	37.848 37.848 -	0.014	0.844	0.000	0.034	0.000	0.858	1.050	4.8.2
L35	36.848 36.848 -	0.014	0.845	0.000	0.033	0.000	0.860	1.050	4.8.2
200	35.848 35.848 -	0.014	0.846	0.000	0.033	0.000	0.861	1.050	4.8.2
	34.848	0.014	0.040	0.000	0.000	0.000	0.001	1.000	7.0.2

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio Tu	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φM _{nx}	φM _{ny}	φVn	φTn	Ratio	Ratio	
	34.848 - 33.848	0.014	0.847	0.000	0.033	0.000	0.862	1.050	4.8.2
	33.848 - 32.848	0.014	0.848	0.000	0.033	0.000	0.863	1.050	4.8.2
	32.848 - 31.848	0.014	0.849	0.000	0.033	0.000	0.864	1.050	4.8.2
L36	31.848 - 30.848	0.014	0.850	0.000	0.033	0.000	0.865	1.050	4.8.2
	30.848 - 29.848	0.014	0.851	0.000	0.033	0.000	0.866	1.050	4.8.2
	29.848 - 28.848	0.014	0.852	0.000	0.033	0.000	0.867	1.050	4.8.2
	28.848 - 27.848	0.014	0.853	0.000	0.032	0.000	0.868	1.050	4.8.2
	27.848 - 26.848	0.014	0.854	0.000	0.032	0.000	0.869	1.050	4.8.2
L37	26.848 - 25.848	0.014	0.855	0.000	0.032	0.000	0.870	1.050	4.8.2
	25.848 - 24.848	0.014	0.856	0.000	0.032	0.000	0.871	1.050	4.8.2
	24.848 - 23.848	0.014	0.857	0.000	0.032	0.000	0.872	1.050	4.8.2
	23.848 - 22.848	0.014	0.858	0.000	0.032	0.000	0.873	1.050	4.8.2
	22.848 - 21.848	0.014	0.858	0.000	0.032	0.000	0.874	1.050	4.8.2
L38	21.848 - 20.848	0.014	0.859	0.000	0.032	0.000	0.874	1.050	4.8.2
	20.848 - 19.848	0.014 0.014	0.860 0.861	0.000	0.032	0.000	0.875 0.876	1.050 1.050	4.8.2
	19.848 - 18.848 18.848 -	0.014	0.862	0.000	0.031 0.031	0.000	0.877	1.050	4.8.2 4.8.2
	17.848 17.848 -	0.014	0.862	0.000	0.031	0.000	0.878	1.050	4.8.2
L39	16.848 16.848 -	0.014	0.863	0.000	0.031	0.000	0.878	1.050	4.8.2
	15.848 15.848 -	0.014	0.864	0.000	0.031	0.000	0.879	1.050	4.8.2
	14.848 14.848 -	0.014	0.865	0.000	0.031	0.000	0.880	1.050	4.8.2
	13.848 13.848 -	0.014	0.865	0.000	0.031	0.000	0.880	1.050	4.8.2
	12.848 12.848 -	0.014	0.866	0.000	0.031	0.000	0.881	1.050	4.8.2
L40	11.848 11.848 -	0.014	0.867	0.000	0.031	0.000	0.882	1.050	4.8.2
	10.848 10.848 - 9.848	0.014	0.867	0.000	0.031	0.000	0.882	1.050	4.8.2
	9.848 - 8.848	0.014	0.868	0.000	0.030	0.000	0.883	1.050	4.8.2
	8.848 - 7.848	0.014	0.868	0.000	0.030	0.000	0.884	1.050	4.8.2
	7.848 - 6.848	0.014	0.869	0.000	0.030	0.000	0.884	1.050	4.8.2
L41	6.848 - 5.848	0.014	0.870	0.000	0.030	0.000	0.885	1.050	4.8.2
	5.848 - 4.848	0.014	0.870	0.000	0.030	0.000	0.886	1.050	4.8.2
	4.848 - 3.848	0.015	0.871	0.000	0.030	0.000	0.886	1.050	4.8.2
	3.848 - 2.848	0.015	0.871	0.000	0.030	0.000	0.887	1.050	4.8.2
	2.848 - 1.848	0.015	0.872	0.000	0.030	0.000	0.887	1.050	4.8.2
L42	1.848 - 0 (42)	0.015	0.873	0.000	0.030	0.000	0.888	1.050	4.8.2


¹ P_u / ϕP_n controls

Section Capacity Table

Section		Component	Size	Critical	Р	ø $P_{ extit{allow}}$	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
L1	182 - 177	Pole	TP15.678x14.5x0.25	1	-0.802	751.961	4.5	Pass
L2	177 - 172	Pole	TP16.856x15.678x0.25	2	-1.014	809.365	7.8	Pass
L3	172 - 167	Pole	TP18.033x16.856x0.25	3	-5.526	866.771	13.7	Pass
L4	167 - 162	Pole	TP19.211x18.033x0.25	4	-5.905	924.175	24.8	Pass
L5	162 - 157	Pole	TP20.389x19.211x0.25	5	-6.336	981.581	33.6	Pass
L6	157 - 152	Pole	TP21.567x20.389x0.25	6	-10.275	1038.985	46.3	Pass
L7	152 - 147	Pole	TP22.744x21.567x0.25	7	-10.856	1096.389	55.3	Pass
L8	147 - 142	Pole	TP23.922x22.744x0.25	8	-11.472	1153.792	62.5	Pass
L9	142 - 137	Pole	TP25.1x23.922x0.25	9	-15.714	1211.196	71.3	Pass
L10	137 - 133.081	Pole	TP26.023x25.1x0.25	10	-15.754	1213.107	71.6	Pass
L11	133.081 - 131.834	Pole	TP25.805x24.639x0.375	11	-16.871	1859.245	54.4	Pass
L12	131.834 - 126.834	Pole	TP26.972x25.805x0.375	12	-20.512	1944.526	59.2	Pass
L13	126.834 -	Pole	TP28.138x26.972x0.375	13	-21.497	2029.807	63.4	Pass
L14	121.834 121.834 -	Pole	TP29.305x28.138x0.375	14	-22.518	2115.088	66.8	Pass
L15	116.834 116.834 -	Pole	TP30.471x29.305x0.375	15	-23.574	2200.369	69.7	Pass
L16	111.834 111.834 -	Pole	TP31,638x30,471x0,375	16	-24,663	2285,650	72.0	Pass
	106.834							
L17	106.834 - 101.834	Pole	TP32.804x31.638x0.375	17	-25.784	2370.931	73.9	Pass
L18	101.834 - 96.834	Pole	TP33.971x32.804x0.375	18	-26.936	2456.212	75.5	Pass
L19	96.834 - 87.449	Pole	TP36.16x33.971x0.375	19	-28.319	2530,647	76.7	Pass
L20	87.449 - 86.449	Pole	TP35.642x34.239x0.375	20	-35.005	2578.411	82.4	Pass
L21	86 449 - 85	Pole	TP35.98x35.642x0.375	21	-35.371	2603.097	82.9	Pass
L22	85 - 84.75	Pole	TP36.038x35.98x0.375	22	-35.465	2607.360	83.0	Pass
L23	84.75 - 79.75	Pole	TP37.203x36.038x0.375	23	-36.769	2692.557	85.2	Pass
L24	79.75 - 75	Pole	TP38.31x37.203x0.375	24	-38.049	2773.501	87.1	Pass
L25	75 - 74.75	Pole	TP38.369x38.31x0.7	25	-38.172	5140.789	47.1	Pass
L26	74.75 - 74	Pole	TP38.543x38.369x0.7	26	-38.460	5164.645	47.2	Pass
L27	74 - 73.75	Pole	TP38.602x38.543x0.375	27	-38.532	2794.795	87.5	Pass
L28	73.75 - 68.75	Pole	TP39.767x38.602x0.375	28	-39.978	2879.992	89.2	Pass
L29	68.75 - 63.75	Pole	TP40.932x39.767x0.375	29	-41.398	2965.200	90.7	Pass
L30	63.75 - 58.75	Pole	TP42.098x40.932x0.375	30	-42.846	3050.397	92.1	Pass
L31	58.75 - 53.75	Pole	TP43.263x42.098x0.375	31	-44.323	3135.594	93.3	Pass
L32	53.75 - 42.848	Pole	TP45.804x43.263x0.375	32	-45.725	3215.173	94.4	Pass
L33	42.848 - 41.848	Pole	TP45.281x43.602x0.438	33	-49.383	3824.992	81.2	Pass
L34	41.848 - 36.848	Pole	TP46.442x45.281x0.438	34	-51.099	3924.039	81.8	Pass
L35	36.848 - 31.848	Pole	TP47.604x46.442x0.438	35	-52.846	4023.085	82.3	Pass
L36	31.848 - 26.848	Pole	TP48.765x47.604x0.438	36	-54.627	4122.132	82.8	Pass
L37	26.848 - 21.848	Pole	TP49.926x48.765x0.438	37	-56.439	4221.178	83.2	Pass
L38	21.848 - 16.848	Pole	TP51.087x49.926x0.438	38	-58.284	4320.225	83.6	Pass
L39	16.848 - 11.848	Pole	TP52.248x51.087x0.438	39	-60.161	4419.271	83.9	Pass
L40	11.848 - 6.848	Pole	TP53.41x52.248x0.438	40	-62.069	4518.328	84.2	Pass
L41	6.848 - 1.848	Pole	TP54.571x53.41x0.438	41	-64.009	4617.375	84.5	Pass
L42	1.848 - 0	Pole	TP55x54.571x0.438	42	-64.719	4653.978	84.6	Pass
							Summary	
						Pole (L32)	94.4	Pass
						RATING =	94.4	Pass

*NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Site BU: 842872 Work Order: 1987177

Pole Geometry

Copyright © 2019 Crown Castle

	Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	182	48.919	3.753	18	14.5	26.023	0.25	Auto	A572-65
2	136.834	49.385	5.021	18	24.64	36.16	0.375	Auto	A572-65
3	92.47	49.622	6.232	18	34.24	45.804	0.375	Auto	A572-65
4	49.08	49.08	0	18	43.60	55	0.4375	Auto	A572-65

Reinforcement Configuration

	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	49	75	plate	PL 5.75" x 1"	3			E2						E2						E2			
2	74	85	plate	PL 5.75" x 1"	3				E2						E2						E2		
3																							
4																							
5																							
6																							
7																							
8																							
9																							
10																							

Reinforcement Details

	B (in)	H (in)	Gross Area (in²)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	5.75	1	5.75	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	14.000	4.500	1.1875	A572-65
2	5.75	1	5.75	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	14.000	4.500	1.1875	A572-65

Connection Details for Custom Reinforcements

Reinforcement	End	# Bolts	N or X	Bolt Spacing (in)	Edge Dist (in)	Weld Grade (ksi)	Transverse (Horiz.) Weld Type	Horiz. Weld Length (in)	Horiz. Groove Depth (in)	Horiz. Groove Angle (deg)	Horiz. Fillet Size (in)	Vertical Weld Length (in)	Vertical Fillet Size (in)	Rev H Connection Capacity (kip)
PL 5.75" x 1"	Тор	8	N	3	3	-	-	-	-	-	-	-	-	-
PL 3.73 X I	Bottom	8	N	3	3	-	=	-	=	=	-	=	-	-

TNX Geometry Input

Section Height (ft) Section Length (ft) Company Company	Weight
1 182 - 177 5 18 14.500 15.678 0.25 A572-65 2 177 - 172 5 18 15.678 16.856 0.25 A572-65 3 172 - 167 5 18 16.856 18.033 0.25 A572-65 4 167 - 162 5 18 18.033 19.211 0.25 A572-65 5 162 - 157 5 18 19.211 20.389 0.25 A572-65 6 157 - 152 5 18 19.211 20.389 0.25 A572-65 7 152 - 152 5 18 20.389 21.567 0.25 A572-65 7 152 - 147 5 18 21.567 22.744 0.25 A572-65 8 147 - 142 5 18 22.744 23.922 0.25 A572-65 9 142 - 137 5 18 23.922 25.100 0.25 A572-65 10 137 <t< th=""><th>N 4 I & ! ! !</th></t<>	N 4 I & ! ! !
2 177 - 172 5 18 15.678 16.856 0.25 A572-65 3 172 - 167 5 18 16.856 18.033 0.25 A572-65 4 167 - 162 5 18 18.033 19.211 0.25 A572-65 5 162 - 157 5 18 19.211 20.389 0.25 A572-65 6 157 - 152 5 18 19.211 20.389 0.25 A572-65 6 157 - 152 5 18 20.389 21.567 0.25 A572-65 7 152 - 147 5 18 21.567 22.744 0.25 A572-65 8 147 - 142 5 18 22.744 23.922 0.25 A572-65 9 142 - 137 5 18 22.744 23.922 0.25 A572-65 10 137 - 136.834 3.919 3.753 18 25.100 26.023 0.25 A572-65 11 <th>Multiplier</th>	Multiplier
3 172 - 167 5 18 16.856 18.033 0.25 A572-65 4 167 - 162 5 18 18.033 19.211 0.25 A572-65 5 162 - 157 5 18 19.211 20.389 0.25 A572-65 6 157 - 152 5 18 20.389 21.567 0.25 A572-65 7 152 - 147 5 18 21.567 22.744 0.25 A572-65 8 147 - 142 5 18 22.744 23.922 0.25 A572-65 9 142 - 137 5 18 23.922 25.100 0.25 A572-65 10 137 - 136.834 3.919 3.753 18 25.100 26.023 0.25 A572-65 11 136.834 - 131.834 5 18 <th< td=""><td>1.000</td></th<>	1.000
4 167 - 162 5 18 18.033 19.211 0.25 A572-65 5 162 - 157 5 18 19.211 20.389 0.25 A572-65 6 157 - 152 5 18 20.389 21.567 0.25 A572-65 7 152 - 147 5 18 21.567 22.744 0.25 A572-65 8 147 - 142 5 18 22.744 23.922 0.25 A572-65 9 142 - 137 5 18 22.744 23.922 0.25 A572-65 9 142 - 137 5 18 23.922 25.100 0.25 A572-65 10 137 - 136.834 3.919 3.753 18 25.100 26.023 0.25 A572-65 11 136.834 - 131.834 5 18 24.639 25.805 0.375 A572-65 12 131.834	1.000
5 162 - 157 5 18 19.211 20.389 0.25 A572-65 6 157 - 152 5 18 20.389 21.567 0.25 A572-65 7 152 - 147 5 18 21.567 22.744 0.25 A572-65 8 147 - 142 5 18 22.744 23.922 0.25 A572-65 9 142 - 137 5 18 23.922 25.100 0.25 A572-65 10 137 - 136.834 3.919 3.753 18 25.100 26.023 0.25 A572-65 11 136.834 - 131.834 5 18 24.639 25.805 0.375 A572-65 12 131.834 5 18 25.805 26.972 0.375 A572-65 13 126.834 5 18 26.972 28.138 0.375 A572-65 14 121.834 5 18	1.000
6 157 - 152 5 18 20.389 21.567 0.25 A572-65 7 152 - 147 5 18 21.567 22.744 0.25 A572-65 8 147 - 142 5 18 22.744 23.922 0.25 A572-65 9 142 - 137 5 18 23.922 25.100 0.25 A572-65 10 137 - 136.834 3.919 3.753 18 25.100 26.023 0.25 A572-65 11 136.834 - 131.834 5 18 24.639 25.805 0.375 A572-65 12 131.834 - 126.834 5 18 25.805 26.972 0.375 A572-65 13 126.834 - 121.834 5 18 26.972 28.138 0.375 A572-65 14 121.834 - 116.834 5	1.000
7 152 - 147 5 18 21.567 22.744 0.25 A572-65 8 147 - 142 5 18 22.744 23.922 0.25 A572-65 9 142 - 137 5 18 23.922 25.100 0.25 A572-65 10 137 - 136.834 3.919 3.753 18 25.100 26.023 0.25 A572-65 11 136.834 - 131.834 5 18 24.639 25.805 0.375 A572-65 12 131.834 - 126.834 5 18 25.805 26.972 0.375 A572-65 13 126.834 - 121.834 5 18 26.972 28.138 0.375 A572-65 14 121.834 - 116.834 5 18 28.138 29.305 0.375 A572-65 15 116.834 - 116.834 5 18 29.305 30.471 0.375 A572-65 <	1.000
8 147 - 142 5 18 22.744 23.922 0.25 A572-65 9 142 - 137 5 18 23.922 25.100 0.25 A572-65 10 137 - 136.834 3.919 3.753 18 25.100 26.023 0.25 A572-65 11 136.834 - 131.834 5 18 24.639 25.805 0.375 A572-65 12 131.834 - 126.834 5 18 25.805 26.972 0.375 A572-65 13 126.834 - 121.834 5 18 26.972 28.138 0.375 A572-65 14 121.834 - 116.834 5 18 28.138 29.305 0.375 A572-65 15 116.834 - 111.834 5 18 29.305 30.471 0.375 A572-65 16 111.834 - 5 18 30.471 31.638 0.375 A572-65 17	1.000
9 142 137 5 18 23.922 25.100 0.25 A572-65 10 137 136.834 3.919 3.753 18 25.100 26.023 0.25 A572-65 11 136.834 - 131.834 5 18 24.639 25.805 0.375 A572-65 12 131.834 - 126.834 5 18 25.805 26.972 0.375 A572-65 13 126.834 - 121.834 5 18 26.972 28.138 0.375 A572-65 14 121.834 - 116.834 5 18 28.138 29.305 0.375 A572-65 15 116.834 - 111.834 5 18 29.305 30.471 0.375 A572-65 16 111.834 - 106.834 5 18 30.471 31.638 0.375 A572-65 17 106.834 - 5 18 31.638 32.804 0.375 A572-65 18 <td>1.000</td>	1.000
10 137 - 136.834 3.919 3.753 18 25.100 26.023 0.25 A572-65 11 136.834 - 131.834 5 18 24.639 25.805 0.375 A572-65 12 131.834 - 126.834 5 18 25.805 26.972 0.375 A572-65 13 126.834 - 121.834 5 18 26.972 28.138 0.375 A572-65 14 121.834 - 116.834 5 18 28.138 29.305 0.375 A572-65 15 116.834 - 111.834 5 18 29.305 30.471 0.375 A572-65 16 111.834 - 106.834 5 18 30.471 31.638 0.375 A572-65 17 106.834 - 101.834 5 18 31.638 32.804 0.375 A572-65 18 101.834 -	1.000
11 136.834 - 131.834 5 18 24.639 25.805 0.375 A572-65 12 131.834 - 126.834 5 18 25.805 26.972 0.375 A572-65 13 126.834 - 121.834 5 18 26.972 28.138 0.375 A572-65 14 121.834 - 116.834 5 18 28.138 29.305 0.375 A572-65 15 116.834 - 111.834 5 18 29.305 30.471 0.375 A572-65 16 111.834 - 106.834 5 18 30.471 31.638 0.375 A572-65 17 106.834 - 101.834 5 18 31.638 32.804 0.375 A572-65 18 101.834 - 96.834 5 18 32.804 33.971 0.375 A572-65	1.000
12 131.834 - 126.834 5 18 25.805 26.972 0.375 A572-65 13 126.834 - 121.834 5 18 26.972 28.138 0.375 A572-65 14 121.834 - 116.834 5 18 28.138 29.305 0.375 A572-65 15 116.834 - 111.834 5 18 29.305 30.471 0.375 A572-65 16 111.834 - 106.834 5 18 30.471 31.638 0.375 A572-65 17 106.834 - 101.834 5 18 31.638 32.804 0.375 A572-65 18 101.834 - 96.834 5 18 32.804 33.971 0.375 A572-65	1.000
13 126.834 - 121.834 5 18 26.972 28.138 0.375 A572-65 14 121.834 - 116.834 5 18 28.138 29.305 0.375 A572-65 15 116.834 - 111.834 5 18 29.305 30.471 0.375 A572-65 16 111.834 - 106.834 5 18 30.471 31.638 0.375 A572-65 17 106.834 - 101.834 5 18 31.638 32.804 0.375 A572-65 18 101.834 - 96.834 5 18 32.804 33.971 0.375 A572-65	1.000
14 121.834 - 116.834 5 18 28.138 29.305 0.375 A572-65 15 116.834 - 111.834 5 18 29.305 30.471 0.375 A572-65 16 111.834 - 106.834 5 18 30.471 31.638 0.375 A572-65 17 106.834 - 101.834 5 18 31.638 32.804 0.375 A572-65 18 101.834 - 96.834 5 18 32.804 33.971 0.375 A572-65	1.000
15 116.834 - 111.834 5 18 29.305 30.471 0.375 A572-65 16 111.834 - 106.834 5 18 30.471 31.638 0.375 A572-65 17 106.834 - 101.834 5 18 31.638 32.804 0.375 A572-65 18 101.834 - 96.834 5 18 32.804 33.971 0.375 A572-65	1.000
16 111.834 - 106.834 5 18 30.471 31.638 0.375 A572-65 17 106.834 - 101.834 5 18 31.638 32.804 0.375 A572-65 18 101.834 - 96.834 5 18 32.804 33.971 0.375 A572-65	1.000
17 106.834 - 101.834 5 18 31.638 32.804 0.375 A572-65 18 101.834 - 96.834 5 18 32.804 33.971 0.375 A572-65	1.000
18 101.834 - 96.834 5 18 32.804 33.971 0.375 A572-65	1.000
	1.000
10 00 034 03 47 0 205 5 034 10 23 034 26 160 0 235 4532 65	1.000
19 96.834 - 92.47 9.385 5.021 18 33.971 36.160 0.375 A572-65	1.000
20 92.47 - 86.449 6.021 18 34.239 35.642 0.375 A572-65	1.000
21 86.449 - 85 1.449 18 35.642 35.980 0.375 A572-65	1.000
22 85 - 84.75 0.25 18 35.980 36.038 0.375 A572-65	1.000
23 84.75 - 79.75 5 18 36.038 37.203 0.375 A572-65	1.000
24 79.75 - 75 4.75 18 37.203 38.310 0.375 A572-65	1.000
25 75 - 74.75 0.25 18 38.310 38.369 0.7 A572-65	0.953
26 74.75 - 74 0.75 18 38.369 38.543 0.7 A572-65	0.951
27 74 - 73.75 0.25 18 38.543 38.602 0.375 A572-65	1.000
28 73.75 - 68.75 5 18 38.602 39.767 0.375 A572-65	1.000
29 68.75 - 63.75 5 18 39.767 40.932 0.375 A572-65	1.000
30 63.75 - 58.75 5 18 40.932 42.098 0.375 A572-65	1.000
31 58.75 - 53.75 5 18 42.098 43.263 0.375 A572-65	1.000
32 53.75 - 49.08 10.902 6.232 18 43.263 45.804 0.375 A572-65	1.000
33 49.08 - 41.848 7.232 18 43.602 45.281 0.4375 A572-65	1.000
34 41.848 - 36.848 5 18 45.281 46.442 0.4375 A572-65	1.000
35 36.848 - 31.848 5 18 46.442 47.604 0.4375 A572-65	1.000
36 31.848 - 26.848 5 18 47.604 48.765 0.4375 A572-65	1.000
37 26.848 - 21.848 5 18 48.765 49.926 0.4375 A572-65	1.000
38 21.848 - 16.848 5 18 49.926 51.087 0.4375 A572-65	1.000
39 16.848 - 11.848 5 18 51.087 52.248 0.4375 A572-65	1.000
40 11.848 - 6.848 5 18 52.248 53.410 0.4375 A572-65	1.000
41 6.848 - 1.848 5 18 53.410 54.571 0.4375 A572-65	
42 1.848 - 0 1.848 18 54.571 55.000 0.4375 A572-65	1.000

TNX Section Forces

Inc	crement (ft):	5	TNX Output				
	<u> </u>				M _{ux} (kip-		
	Section He	ight (ft)	Pu	(K)	ft)	V _u (K)	
1	182 -	177		0.80	13.11	2.21	
2	177 -	172		1.02	26.78	2.93	
3	172 -	167		5.53	51.28	11.29	
4	167 -	162		5.91	108.72	11.69	
5	162 -	157		6.34	168.03	12.04	
6	157 -	152		10.27	258.71	17.33	
7	152 -	147		10.86	346.17	17.67	
8	147 -	142		11.47	435.35	18.02	
9	142 -	137		15.71	540.26	21.73	
10	137 -	136.834		15.75	543.86	21.73	
11	136.834 -	131.834		16.87	653.70	22.21	
12	131.834 -	126.834		20.51	776.92	26.16	
13	126.834 -	121.834		21.50	908.56	26.53	
14	121.834 -	116.834		22.52	1042.07	26.91	
15	116.834 -	111.834		23.57	1177.44	27.29	
16	111.834 -	106.834		24.66	1314.69	27.66	
17	106.834 -	101.834		25.78	1453.84	28.04	
18	101.834 -	96.834		26.94	1594.88	28.43	
19	96.834 -	92.47		28.32	1720.09	29.16	
20	92.47 -	86.449		35.01	1914.57	34.06	
21	86.449 -	85		35.37	1963.94	34.17	
22	85 -	84.75		35.47	1972.48	34.15	
23	84.75 -	79.75		36.77	2143.98	34.50	
24	79.75 -	75		38.05	2308.40	34.81	
25	75 -	74.75		38.17	2317.09	34.80	
26	74.75 -	74		38.46	2343.21	34.88	
27	74 -	73.75		38.53	2351.93	34.90	
28	73.75 -	68.75		39.98	2527.63	35.30	
29	68.75 -	63.75		41.40	2704.72	35.61	
30	63.75 -	58.75		42.85	2883.36	35.92	
31	58.75 -	53.75		44.32	3063.55	36.23	
32	53.75 -	49.08		45.72	3233.19	36.51	
33	49.08 -	41.848		49.38	3499.53	37.19	
34	41.848 -	36.848		51.10	3686.05	37.49	
35	36.848 -	31.848		52.85	3874.07	37.79	
36	31.848 -	26.848		54.63	4063.50	38.06	
37	26.848 -	21.848		56.44	4254.29	38.32	
38	21.848 -	16.848		58.28	4446.32	38.56	
39	16.848 -	11.848		60.16	4639.48	38.78	
40	11.848 -	6.848		62.07	4833.72	39.00	
41	6.848 -	1.848		64.01	5029.04	39.21	
42	1.848 -	0		64.72	5101.51	39.32	

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
182 - 177	Pole	TP15.678x14.5x0.25	Pole	4.5%	Pass
177 - 172	Pole	TP16.856x15.678x0.25	Pole	7.8%	Pass
172 - 167	Pole	TP18.033x16.856x0.25	Pole	13.6%	Pass
167 - 162	Pole	TP19.211x18.033x0.25	Pole	24.7%	Pass
162 - 157	Pole	TP20.389x19.211x0.25	Pole	33.5%	Pass
157 - 152	Pole	TP21.567x20.389x0.25	Pole	46.2%	Pass
152 - 147	Pole	TP22.744x21.567x0.25	Pole	55.2%	Pass
147 - 142	Pole	TP23.922x22.744x0.25	Pole	62.4%	Pass
142 - 137	Pole	TP25.1x23.922x0.25	Pole	71.3%	Pass
137 - 136.83	Pole	TP26.023x25.1x0.25	Pole	71.6%	Pass
136.83 - 131.83	Pole	TP25.805x24.639x0.375	Pole	54.3%	Pass
131.83 - 126.83	Pole	TP26.972x25.805x0.375	Pole	59.1%	Pass
126.83 - 121.83	Pole	TP28.138x26.972x0.375	Pole	63.3%	Pass
121.83 - 116.83	Pole	TP29.305x28.138x0.375	Pole	66.8%	Pass
116.83 - 111.83	Pole	TP30.471x29.305x0.375	Pole	69.6%	Pass
111.83 - 106.83	Pole	TP31.638x30.471x0.375	Pole	71.9%	Pass
106.83 - 101.83	Pole	TP32.804x31.638x0.375	Pole	73.9%	Pass
101.83 - 96.83	Pole	TP33.971x32.804x0.375	Pole	75.5%	Pass
96.83 - 92.47	Pole	TP36.16x33.971x0.375	Pole	76.6%	Pass
92.47 - 86.45	Pole	TP35.642x34.239x0.375	Pole	82.4%	Pass
86.45 - 85	Pole	TP35.98x35.642x0.375	Pole	82.9%	Pass
85 - 84.75	Pole	TP36.038x35.98x0.375	Pole	83.0%	Pass
84.75 - 79.75	Pole	TP37.203x36.038x0.375	Pole	85.2%	Pass
79.75 - 75	Pole	TP38.31x37.203x0.375	Pole	87.0%	Pass
75 - 74.75	Pole + Reinf.	TP38.369x38.31x0.7	Reinf. 2 Tension Rupture	75.0%	Pass
74.75 - 74	Pole + Reinf.	TP38.543x38.369x0.7	Reinf. 2 Tension Rupture	75.3%	Pass
74 - 73.75	Pole	TP38.602x38.543x0.375	Pole	87.5%	Pass
73.75 - 68.75	Pole	TP39.767x38.602x0.375	Pole	89.2%	Pass
68.75 - 63.75	Pole	TP40.932x39.767x0.375	Pole	90.7%	Pass
63.75 - 58.75	Pole	TP42.098x40.932x0.375	Pole	92.1%	Pass
58.75 - 53.75	Pole	TP43.263x42.098x0.375	Pole	93.3%	Pass
53.75 - 49.08	Pole	TP45.804x43.263x0.375	Pole	94.4%	Pass
49.08 - 41.85	Pole	TP45.281x43.602x0.4375	Pole	81.2%	Pass
41.85 - 36.85	Pole	TP46.442x45.281x0.4375	Pole	81.8%	Pass
36.85 - 31.85	Pole	TP47.604x46.442x0.4375	Pole	82.3%	Pass
31.85 - 26.85	Pole	TP48.765x47.604x0.4375	Pole	82.8%	Pass
26.85 - 21.85	Pole	TP49.926x48.765x0.4375	Pole	83.2%	Pass
21.85 - 16.85	Pole	TP51.087x49.926x0.4375	Pole	83.6%	Pass
16.85 - 11.85	Pole	TP52.248x51.087x0.4375	Pole	83.9%	Pass
11.85 - 6.85	Pole	TP53.41x52.248x0.4375	Pole	84.2%	Pass
6.85 - 1.85	Pole	TP54.571x53.41x0.4375	Pole	84.5%	Pass
1.85 - 0	Pole	TP55x54.571x0.4375	Pole	84.6%	Pass
				Summary	
			Pole	94.4%	Pass
			Reinforcement	75.3%	Pass
			Overall	94.4%	Pass

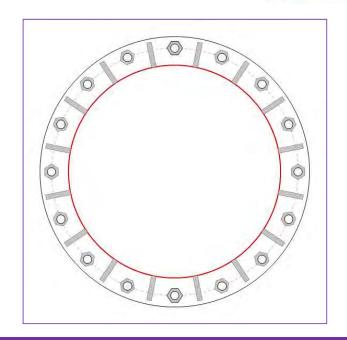
Additional Calculations

Section	Mom	ent of Inertia	a (in ⁴)		Area (in²)		% Ca _l	pacity*	
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2
182 - 177	368	n/a	368	12.24	n/a	12.24	4.5%		
177 - 172	459	n/a	459	13.18	n/a	13.18	7.8%		
172 - 167	564	n/a	564	14.11	n/a	14.11	13.6%		
167 - 162	683	n/a	683	15.05	n/a	15.05	24.7%		
162 - 157	819	n/a	819	15.98	n/a	15.98	33.5%		
157 - 152	971	n/a	971	16.91	n/a	16.91	46.2%		
152 - 147	1141	n/a	1141	17.85	n/a	17.85	55.2%		
147 - 142	1329	n/a	1329	18.78	n/a	18.78	62.4%		
142 - 137	1538	n/a	1538	19.72	n/a	19.72	71.3%		
137 - 136.83	1545	n/a	1545	19.75	n/a	19.75	71.6%		
136.83 - 131.83	2472	n/a	2472	30.27	n/a	30.27	54.3%		
131.83 - 126.83	2828	n/a	2828	31.66	n/a	31.66	59.1%		
126.83 - 121.83	3217	n/a	3217	33.04	n/a	33.04	63.3%		
121.83 - 116.83	3640	n/a	3640	34.43	n/a	34.43	66.8%		
116.83 - 111.83	4098	n/a	4098	35.82	n/a	35.82	69.6%		
111.83 - 106.83	4593	n/a	4593	37.21	n/a	37.21	71.9%		
106.83 - 101.83	5127	n/a	5127	38.60	n/a	38.60	73.9%		
101.83 - 96.83	5700	n/a	5700	39.99	n/a	39.99	75.5%		
96.83 - 92.47	6234	n/a	6234	41.20	n/a	41.20	76.6%		
92.47 - 86.45	6594	n/a	6594	41.97	n/a	41.97	82.4%		
86.45 - 85	6785	n/a	6785	42.38	n/a	42.38	82.9%		
85 - 84.75	6818	n/a	6818	42.45	n/a	42.45	83.0%		
84.75 - 79.75	7509	n/a	7509	43.83	n/a	43.83	85.2%		
79.75 - 75	8206	n/a	8206	45.15	n/a	45.15	87.0%		
75 - 74.75	8244	6733	14977	45.22	34.50	79.72	47.3%	75.0%	75.0%
74.75 - 74	8359	6792	15151	45.43	34.50	79.93	47.5%	75.3%	75.3%
74 - 73.75	8397	n/a	8397	45.50	n/a	45.50	87.5%		
73.75 - 68.75	9189	n/a	9189	46.88	n/a	46.88	89.2%		
68.75 - 63.75	10028	n/a	10028	48.27	n/a	48.27	90.7%		
63.75 - 58.75	10918	n/a	10918	49.66	n/a	49.66	92.1%		
58.75 - 53.75	11859	n/a	11859	51.05	n/a	51.05	93.3%		
53.75 - 49.08	12784	n/a	12784	52.34	n/a	52.34	94.4%		
49.08 - 41.85	15815	n/a	15815	62.27	n/a	62.27	81.2%		
41.85 - 36.85	17076	n/a	17076	63.88	n/a	63.88	81.8%		
36.85 - 31.85	18402	n/a	18402	65.49	n/a	65.49	82.3%		
31.85 - 26.85	19795	n/a	19795	67.11	n/a	67.11	82.8%		
26.85 - 21.85	21256	n/a	21256	68.72	n/a	68.72	83.2%		
21.85 - 16.85	22788	n/a	22788	70.33	n/a	70.33	83.6%		
16.85 - 11.85	24391	n/a	24391	71.94	n/a	71.94	83.9%		
11.85 - 6.85	26068	n/a	26068	73.56	n/a	73.56	84.2%		
6.85 - 1.85	27820	n/a	27820	75.17	n/a	75.17	84.5%		
1.85 - 0	28487	n/a	28487	75.76	n/a	75.76	84.6%		

Note: Section capacity checked using 5 degree increments.

Rating per TIA-222-H Section 15.5.

Monopole Base Plate Connection



Site Info	
BU#	842872
Site Name	Rocky Hill, CT
Order #	556625 Rev.1

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
I _{ar} (in)	3.125

Applied Loads	
Moment (kip-ft)	5101.51
Axial Force (kips)	64.72
Shear Force (kips)	39.32

^{*}TIA-222-H Section 15.5 Applied

Anchor Rod Data
(16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 64" BC
Base Plate Data
70" OD x 2" Plate (A871-60; Fy=60 ksi, Fu=80 ksi)
Stiffener Data
(16) 36"H x 6.5"W x 1.25"T, Notch: 0.75"

Connection Properties

plate: Fy= 65 ksi ; weld: Fy= 80 ksi	
horiz. weld: 0.625" fillet	
vert. weld: 0.375" fillet	

Pole Data

55" x 0.4375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

A	naiysis Kesuits	
Anchor Rod Summary		(units of kips, kip-i
Pu_t = 234.97	φPn_t = 243.75	Stress Ratii
Vu = 2.46	φVn = 149.1	91.8%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	40.37	(Roark's Flexural
Allowable Stress (ksi):	54	
Stress Rating:	71.2%	Pass
Stiffener Summary		
Horizontal Weld:	86.7%	Pass
Vertical Weld:	24.3%	Pass
Plate Flexure+Shear:	2.7%	Pass
Plate Tension+Shear:	38.1%	Pass
Plate Compression:	32.0%	Pass
Pole Summary		
Punching Shear:	3.9%	Pass
-		

CCIplate - Version 4.1.2 Analysis Date: 9/3/2021

Drilled Pier Foundation

BU#: 842872
Site Name: Rocky Hill, CT
Order Number: 556625 Rev.1
TIA-222 Revison: H
Tower Type: Monopole

Applie	Applied Loads	
	Comp.	Uplift
Moment (kip-ft)	5101.51	
Axial Force (kips)	64.75	
Shear Force (kips)	39.27	

3 ksi 60 ksi 40 ksi

Rebar Strength, Fy: Tie Yield Strength, Fyt:

Concrete Strength, fc:

Material Properties

Additional Longitudinal Rebar Input Effective Depths (else Actual):
Shear Design Options
Check Shear along Depth of Pier:
Utilize Shear-Friction Methodology:

Apply TIA-222-H Section 15.5: Check Limitation

CASTLE

		Soil Lateral Check	Compression	Uplitt
		$D_{v=0}$ (ft from TOC)	4.65	
		Soil Safety Factor	2.02	ı
		Max Moment (kip-ft)	5280.36	1
		Rating*	62.8%	-
		Soil Vertical Check	Compression	Uplift
Rebar 2, Fy	Rebar 3, Fy	Skin Friction (kips)	439.84	1
Override (ksi) Override (ksi)	Override (ksi)	End Bearing (kips)	659.53	-
		Weight of Concrete (kips)	101.71	-
		Total Capacity (kips)	1099.36	1
		(kips)	166.46	ı
Rebar & Pier Options	er Options	Rating*	14.4%	1
		Reinforced Concrete Flexure	Compression	Uplift
Embedded Pole Inputs	Pole Inputs	Critical Depth (ft from TOC)	4.53	
Belled Pier Inputs	er Inputs	Critical Moment (kip-ft)	5279.79	-
		Critical Moment Capacity	5869.41	-
		Rating*	85.7%	-
		Reinforced Concrete Shear	Compression	Upliff
		Critical Depth (ft from TOC)	14.39	
		Critical Shear (kip)	551.77	
		Critical Shear Capacity	589.76	
		Rating*	89.1%	-

From 0.833' above grade to 15.167' below grade
Pier Diameter 7 | ft

Rebar Quantity
Rebar Size
Clear Cover to Ties
Tie Size

Rebar Cage Diam

Pier Section 1

17.667 ft 0.833 ft

Depth Ext. Above Grade

Pier Design Data

89.1%	62.8%	15.5
Structural Foundation Rating*	Soil Interaction Rating*	*Bating per TIA-222-H Section 15 5

	Analysis	Analysis Kesults			Additions
	Soil Lateral Check	Compression	Uplift		Input Effective D
	$D_{v=0}$ (ft from TOC)	4.65	-		Shea
	Soil Safety Factor	2.02	1		Check Shear
	Max Moment (kip-ft)	5280.36	-		Utilize Shear-Fr
	Rating*	62.8%	-		Ove
-	Soil Vertical Check	Compression	Uplift		
	Skin Friction (kips)	439.84	1		
_	End Bearing (kips)	659.53	1		
	Weight of Concrete (kips)	101.71	1		
	Total Capacity (kips)	1099.36	1		
	Axial (kips)	166.46	ı		
	Rating*	14.4%	1		
	Reinforced Concrete Flexure	Compression	Uplift		
	Critical Depth (ft from TOC)	4.53	ı		
	Critical Moment (kip-ft)	5279.79	-		
	Critical Moment Capacity	5869.41	-		
	Rating*	82.7%	-		
	Reinforced Concrete Shear	Compression	Uplift		
	Critical Depth (ft from TOC)	14.39	-		
	Critical Shear (kip)	551 77	=		
	Critical Shear Capacity	589.76	=		
	Rating*	89.1%	-	Shear-Friction Methodology is Applied	dology is Applied

Tile Spacing In Rebar Quantity 4 Rebar Size 11 ar Cage Diameter 71 In From 15.167* below grade to 77.617* below grade Pier Diameter 7 It Rebar Quantity 20 Rebar Quantity 20 Rebar Guentity 20 Rebar Guentity 3 Tile Size 4 Tile Size 4 Tile Size 5 Tile Size 5		П									
200 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ے			u		w grade	ft			u	
ide to		4	11	71	Pier Section 2	de to 17.617' belo	7 1	20	11	3	3
Tie Spacing Rebar Quantity Rebar Size Pler See From 15.167 below grade Pier Diameter Pier Diameter Rebar Quantity Rebar Quantity Rebar Quentity The Size Tie Size	pacing	Quantity	oar Size	iameter	Pier Se	7' below grade	iameter	Quantity	oar Size	r to Ties	Tie Size

Soil Type	Cohesionless	Cohesive	Cohesive	Cohesive	Cohesive	Cohesive
SPT Blow Count						
Ult. Gross Bearing Capacity (ksf)	(1)					22.85
Ultimate Skin Friction Uplift Override (ksf)	00.00	00.00	96.0	2.32	2,32	2.32
Ultimate Skin Friction Comp Override	00:00	00.00	96.0	2.32	2,32	2.32
Calculated Ultimate Skin Friction Uplift (kcf)	0.000	1.650	0.963	2.321	2,321	2.321
Calculated Ultimate Skin Friction Comp	0.000	1.650	0.963	2.321	2,321	2.321
Angle of Friction (degrees)	0	0	0	0	0	0
Cohesion (ksf)	0	3	1.75	5	2	2
V _{concrete} (pcf)	150	150	150	150	87.6	87.6
V _{soil} (pcf)	110	120	110	135	73	73
Thickness Y _{soil} (ft) (pcf)	3.33 110	1.67 120	2 110	1.5	3.5	5.667 73
_			7 2 110		12 3.5 73	299
Thickness (ft)	3.33		5 7 2 110	1.5	3.5	299

of Layers

8.5

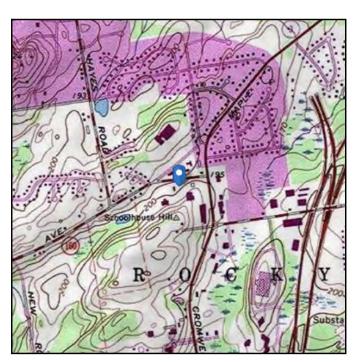
Groundwater Depth

Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16 Elevation:


Risk Category: ||

Soil Class: D - Default (see

Section 11.4.3)

Elevation: 198.53 ft (NAVD 88)

Latitude: 41.660247 Longitude: -72.680717

Wind

Results:

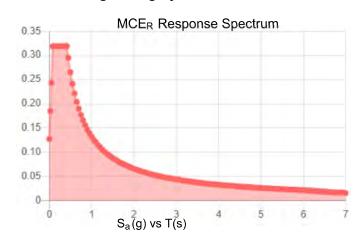
Wind Speed: 118 Vmph
10-year MRI 75 Vmph
25-year MRI 84 Vmph
50-year MRI 90 Vmph
100-year MRI 98 Vmph

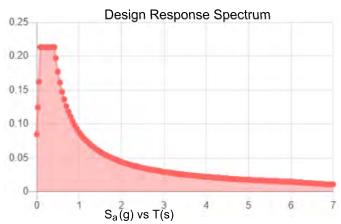
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1—CC.2-4, and Section 26.5.2

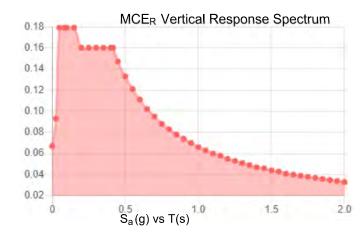
Date Accessed: Fri Sep 03 2021

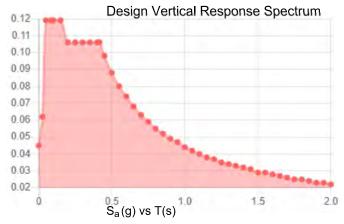
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil Class: D - Default (see Section 11.4.3)


Results:


S _s :	0.2	S_{D1} :	0.088
S_1 :	0.055	T_L :	6
F _a :	1.6	PGA :	0.109
F _v :	2.4	PGA _M :	0.173
S _{MS} :	0.319	F _{PGA} :	1.581
S _{M1} :	0.133	l _e :	1
S _{DS} :	0.213	C _v :	0.7

Seismic Design Category B

Data Accessed:
Date Source:

Fri Sep 03 2021

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.50 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Fri Sep 03 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

ATTACHMENT 5

Date: September 15, 2021

Kimley-Horn and Associates, Inc. 421 Fayetteville Street, Suite 600 Raleigh, NC 27601 (919) 677-2000 CrownMounts@kimley-horn.com

Subject: Mount Analysis - Conditional Passing Report

Carrier Designation: DISH Network Equipment Change-Out

Carrier Site Number: BOBDL00067A Carrier Site Name: CT-CCI-T-842872

Crown Castle Designation: BU Number: 842872

Site Name: ROCKY HILL JDE Job Number: 650057

Order Number: 556625, Rev. 1

Engineering Firm Designation: Kimley-Horn Project Number: 019558056

Site Data: 52 New Britain Avenue, Rocky Hill, Hartford County, CT 06067

Latitude 41° 39' 36.89" Longitude -72° 40' 50.58"

Structure Information: Tower Height & Type: 182 ft Monopole

Mount Elevation: 130 ft

Mount Type: 8 ft Platform w/ Support Rails

Kimley-Horn is pleased to submit this "Mount Analysis - Conditional Passing Report" to determine the structural integrity of DISH Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform w/ Support Rails

Sufficient

* See Section 4.1 for loading and structural modifications required for the mount to support the loading listed in Table 1.

This analysis utilizes an ultimate 3-second gust wind speed of 124 mph as required by the 2018 Connecticut State Building Code, Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Saja Alkhafaji, E.I.

Respectfully Submitted by:

Kyle Freehart, P.E.

Lic. #PEN.0034906, Exp. 01/31/2022 Kimley-Horn and Associates, Inc. COA #PEC.0000738

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556625, Rev. 1

1) INTRODUCTION

The mounting configuration consists of a proposed 8 ft Platform w/ Support Rails designed by CommScope.

2) ANALYSIS CRITERIA

Building Code: 2018 Connecticut State Building Code

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 124 mph

Exposure Category: С **Topographic Factor at Base:** 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 2 in Wind Speed with Ice: 50 mph Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb **Man Live Load at Mount Pipes:** 500 lb

Table 1 – Proposed Equipment Configuration

Elev	ation (ft)		Antennas		Mount / Modification
Mount	Centerline	#	Manufacturer	Model	Details
		3	Fujitsu	TA08025-B604	Draw as a d O ft Dlatfarra/
130	130	3	Fujitsu	TA08025-B605	Proposed 8 ft Platform w/
130	130	3	Jma wireless	MX08FRO665-21	Support Rails designed byCommScope
		1	Raycap	RDIDC-9181-PF-48	Commscope

September 15, 2021 CCI BU No. 842872

Page 4

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556625, Rev. 1

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Photos	-	10/07/2020	CCISites
Mount Design Drawings	Commscope	MC-PK8-DSH	On File

3.1) Analysis Method

RISA-3D (version 17.02.00), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A proprietary tool internally developed by Kimley-Horn was used to calculate wind loading on all appurtenances, dishes and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Mount Analysis (Revision D).

3.2) Assumptions

- 1) The antenna mounting system (including any considered modifications) was properly fabricated, installed and maintained in good condition in accordance with its original design, TIA standards, and/or manufacturer specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the provided reference information.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members that could not be verified at this time.
- 5) Any referenced prior structural modifications to the tower mounting system are assumed to be installed as shown per available data unless noted otherwise.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate ASTM A36 (Gr. 36) HSS (Rectangular) ASTM A36 (Gr. 36) Pipe ASTM A53 (Gr. B-35)

Connection Bolts ASTM A325

Threaded Rods ASTM A36 (Gr. 36)

This analysis may be affected if any assumptions are not valid or have been made in error. Kimley-Horn should be notified to determine the effect on the structural integrity of the antenna mounting system.

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556625, Rev. 1

4) ANALYSIS RESULTS

Table 3 – Mount Component Stresses vs. Capacity

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1, 2	Connections	-		39%	Pass
1, 2	Stand Off Horizontals	M12		27%	Pass
1, 2	Mount Pipes	MP8	130	23%	Pass
1, 2	Support Rails	M51		17%	Pass
1, 2	Platform Base	M48		11%	Pass

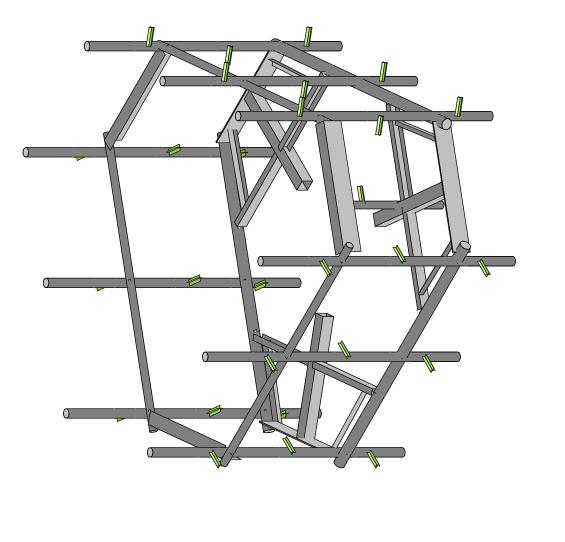
Structure Rating (max from all components) =	39%
--	-----

Notes:

4.1) Recommendations

The mounting configuration will have sufficient capacity to carry the referenced loading once the following modifications are completed:

Install a new Commscope MC-PK8-DSH platform with support rails. Vertically center all mount pipes and antennas between the face horizontals.


No additional modifications are required at this time provided that the above-listed changes are completed.

¹⁾ See additional documentation in Appendix C and Appendix D for calculations supporting the % capacity consumed.

²⁾ Rating per TIA-222-H, Section 15.5.

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556625, Rev. 1

APPENDIX A WIRE FRAME AND RENDERED MODELS

Envelope Only Solution

	842872	
Kimley-Horn and Associates, Inc.	SSA	019558056

	SK-2
	Sept 15, 2021 at 11:02 AM
•	842872.r3d

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556625, Rev. 1

APPENDIX B SOFTWARE INPUT CALCULATIONS

General Criteria	
TIA Standard	Н
IBC Edition	2015
Structure Class	-
Risk Category	II

Site-Specific Criteria		
Exposure Category	С	
Topographic Factor, K _{zt}	1.00	
Structure Base Elev. (AMSL), z _s (ft)	198,53	
Ground Effect Factor, K _e	0.99	

Mount & Structure Criteria			
Mount Elevation (A	AGL) (ft)	130.00	
Structure Height (182.00		
Structure Type	Monopole		

Constants	
Wind Direction Probability Factor, K _d	0.95
Gust Effect Factor, G _h	1
Shielding Factor, K _a (antenna)	0.9
Shielding Factor, K _a (mount)	0.9

Wind Summary		
Basic Wind Speed w/o Ice, V (mph)	124,00	
Velocity Pressure Coeff., K _z	1,34	
Velocity Pressure, q _z (w/o lce) (psf)	49.66	

Ice Load Summary	
Basic Wind Speed w/ Ice, V _i (mph)	50.00
Design Ice Thick. (ASCE 7-10) , t _i (in)	1
Velocity Pressure, q _z (w/ Ice) (psf)	8.07
Escalated Ice Thick. @ Mount, tiz (in)	2,29

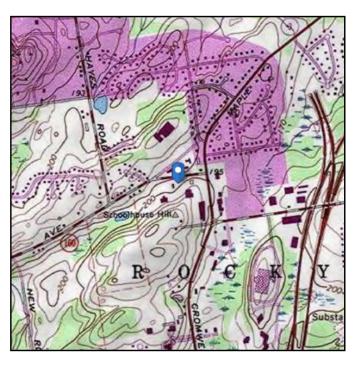
Seismic Load Summary	
Spectral Response (Short Periods), S _s	
Spectral Response (1-Sec. Period), S ₁	-
Site Class	-
Seismic Design Category	-
Seismic Risk Category	

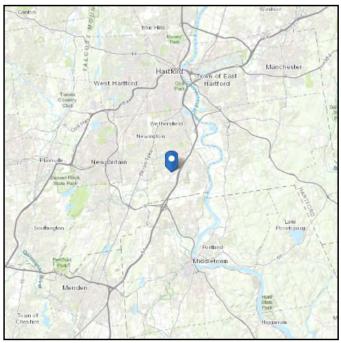
Snow Load Summary	
Ground Snow Load, pg (psf)	
Snow Load on Flat Roofs, pf (psf)	-

Date	September 15, 2021
Client	Crown Castle
Site#	842872
Site Name	ROCKY HILL
Project#	19558056

			Dim	ensions	(in)	Weight				Joint I	abels			EPA (ft²) Wind Force, F			ce, F _A (II	o)		
Antenna Name	Qty	Qty Shape	Diffictions (iii)			(lb)	Contractions									No Ice		With	ı Ice	
			Н	W	D	(ID)	Alp	oha	Вє	eta	Gar	nma	Delt	a Fi	ont	Side	Front	Side	Front	Side
MX08FRO665-21	3	Flat	72	20	8	82.5	A1B	A1T	B1B	B1T	G1B	G1T		7	.99	3,23	357.21	144.2	74.64	36.37
TA08025-B604	3	Flat	15	15.8	7.9	63.9	A1R		B1R		G1R			(.49	1.96	21,92	87.75	7.37	24.07
TA08025-B605	3	Flat	15	15.8	9.1	75	A1R		B1R		G1R			(.56	1.96	25.21	87.75	8.07	24.07
RDIDC-9181-PF-48	1	Flat	16.6	14.6	8.5	21.9	RA1							2	.01	1.17	89.91	52,21	24.54	16.72

Address:


No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 198.53 ft (NAVD 88)

Risk Category: || Latitude: 41.660247

Soil Class: D - Stiff Soil Longitude: -72.680717

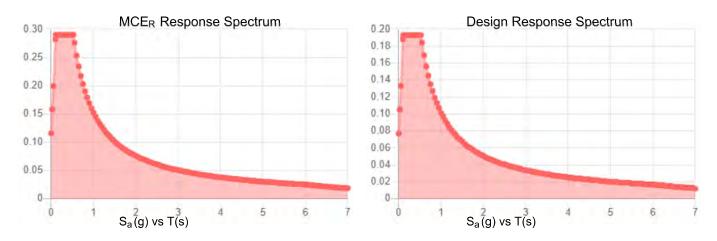
Wind

Results:

Wind Speed: 124 Vmph
10-year MRI 77 Vmph
25-year MRI 87 Vmph
50-year MRI 93 Vmph
100-year MRI 101 Vmph

Date Somessed: MS6ESE13-202Fig. 26.5-1A and Figs. CC-1—CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.181	S _{DS} :	0.193	
S_1 :	0.063	S_{D1} :	0.101	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA:	0.092	
S _{MS} :	0.29	PGA _M :	0.147	
S _{M1} :	0.152	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Mon Sep 13 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon Sep 13 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556625, Rev. 1

APPENDIX C SOFTWARE ANALYSIS OUTPUT

Designer : SSA Job Number : 019558056 Model Name : 842872 S ept 15, 2021 11:01 AM Checked By: ZAM

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	Density[lb/f	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	490	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	490	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	490	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	490	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	490	50	1.4	65	1.3
8	A913 Gr.65	29000	11154	.3	.65	490	65	1.1	80	1.1
9	A500 GR.C	29000	11154	.3	.65	490	46	1.6	60	1.2
10	A529 Gr. 50	29000	11154	.3	.65	490	50	1.1	65	1.1
11	A1011-33Ksi	29000	11154	.3	.65	490	33	1.5	58	1.2
12	A1011 36 Ksi	29000	11154	.3	.65	490	36	1.5	58	1.2
13	A1018 50 Ksi	29000	11154	.3	.65	490	50	1.5	65	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Ru	. A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	6.5"x0.37" Plate	PL6.5x0.375	Beam	None	A 1011 36 Ksi	Typical	2.438	.029	8.582	.11
2	6"x0.37" Plate	Plate 6x.37	Beam	None	A 1011 36 Ksi	Typical	2.22	.025	6.66	.097
3	L 2"x2"x1/4"	L2x2x4	Beam	None	A529 Gr. 50	Typical	.944	.346	.346	.021
4	Face Pipes(3.5x.16)	Pipe3.5x0.165	Beam	None	A500 GR.C	Typical	1.729	2.409	2.409	4.819
5	Antenna Pipes	Pipe 2.875x0.12	Beam	None	A500 GR.C	Typical	1.039	.987	.987	1.975
6	Channel(3.38x2.06)	C3.38x2.06x0	Beam	None	A1011 36 Ksi	Typical	1.75	.715	3.026	.034
7	Square Tubing	HSS4X4X6	Beam	None	A500 GR.C	Typical	4.78	10.3	10.3	17.5
8	Handrail Connector	L6.6x4.46x0.25	Beam	None	A 1011 36 Ksi	Typical	2.703	4.759	12.473	.055
9	Handrail	PIPE 2.0	Beam	None	A500 GR.C	Typical	1.02	.627	.627	1.25
10	Mount Pipe	PIPE 2.0	Beam	None	A53 Gr.B	Typical	1.02	.627	.627	1.25

Hot Rolled Steel Design Parameters

	Label	S hape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]L-tor	qu Kyy	Kzz	Cb	Function
1	M2	S quare Tubi	40			Lbyy					Lateral
2	М3	L 2"x2"x1/4"	27.295			Lbyy					Lateral
3	M4	L 2"x2"x1/4"	27.295			Lbyy					Lateral
4	M5	6.5"x0.37" P.	. 42			Lbyy					Lateral
5	M7	S quare Tubi	40			Lbyy					Lateral
6	M8	L 2"x2"x1/4"	27.295			Lbyy					Lateral
7	M9	L 2"x2"x1/4"	27.295			Lbyy					Lateral
8	M10	6.5"x0.37" P.	. 42			Lbyy					Lateral
9	M12	S quare Tubi	40			Lbyy					Lateral
10	M13	L 2"x2"x1/4"	27.295			Lbyy					Lateral
11	M14	L 2"x2"x1/4"	27.295			Lbyy					Lateral
12	M15	6.5"x0.37" P.	. 42			Lbyy					Lateral
13	M18	Face Pipes(96			Lbyy					Lateral
14	MP9	Antenna Pip	96			Lbyy					Lateral
15	MP7	Antenna Pip	96			Lbyy					Lateral
16	M25	Handrail	96			Lbyy					Lateral
17	M28	Handrail Co	42			Lbyy					Lateral
18	M29	Handrail Co	42		_	Lbyy					Lateral
19	M30	Handrail Co	42			Lbyy					Lateral

Designer : SSA Job Number : 019558056 Model Name : 842872 Sept 15, 2021 11:01 AM Checked By: ZAM

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu	. Куу	Kzz	Cb	Function
20	M61A	Channel(3.3	33			Lbyy						Lateral
21	M63A	Channel(3.3	33			Lbyy						Lateral
22	M60A	Channel(3.3	33			Lbyy						Lateral
23	M61B	Channel(3.3	33			Lbyy						Lateral
24	M62A	Channel(3.3	33			Lbyy						Lateral
25	M63B	Channel(3.3	33			Lbyy						Lateral
26	M75	PL 2.375x0.5	1.5									Lateral
27	MP8	Antenna Pip	96			Lbyy						Lateral
28	M48	Face Pipes(96			Lbyy						Lateral
29	MP3	Antenna Pip	96			Lbyy						Lateral
30	MP1	Antenna Pip	96			Lbyy						Lateral
31	M51	Handrail	96			Lbyy						Lateral
32	M62	Face Pipes(96			Lbyy						Lateral
33	MP6	Antenna Pip	96			Lbyy						Lateral
34	MP4	Antenna Pip	96			Lbyy						Lateral
35	M65A	Handrail	96			Lbyy						Lateral
36	MP2	Antenna Pip	96			Lbyy						Lateral
37	MP5	Antenna Pip	96			Lbyy			•			Lateral
38	M98	Mount Pipe	36			Lbyy						Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed Area (Me.	Surface(
1	Dead	DL			-1	13			
2	Dead of Ice	RL				13		38	
4	Structure Wind (0)	None						76	
5	Structure Wind (30)	None						76	
6	Structure Wind (45)	None						76	
7	Structure Wind (60)	None						76	
8	Structure Wind (90)	None						76	
9	Structure Wind (120)	None						76	
10	Structure Wind (135)	None						76	
11	Structure Wind (150)	None						76	
12	Structure Wind w/ Ice (0)	None						76	
13	Structure Wind w/ Ice (30)	None						76	
14	Structure Wind w/ Ice (45)	None						76	
15	Structure Wind w/ Ice (60)	None						76	
16	Structure Wind w/ Ice (90)	None						76	
17	Structure Wind w/ Ice (120)	None						76	
18	Structure Wind w/ Ice (135)	None						76	
19	Structure Wind w/ Ice (150)	None						76	
20	Antenna Wind (0)	None				26			
21	Antenna Wind (30)	None				26			
22	Antenna Wind (45)	None				26			
23	Antenna Wind (60)	None				26			
24	Antenna Wind (90)	None				26			
25	Antenna Wind (120)	None				26			
26	Antenna Wind (135)	None				26			
27	Antenna Wind (150)	None				26			
28	Antenna Wind w/ Ice (0)	None				26			
29	Antenna Wind w/ Ice (30)	None				26			

Designer : SSA Job Number : 019558056 Model Name : 842872 Sept 15, 2021 11:01 AM Checked By: ZAM

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	P oint	Distributed	A rea (Me	.Surface(
30	Antenna Wind w/ Ice (45)	None				26				
31	Antenna Wind w/ Ice (60)	None				26				
32	Antenna Wind w/ Ice (90)	None				26				
33	Antenna W ind w/ lce (120)	None				26				
34	Antenna W ind w/ lce (135)	None				26				
35	Antenna W ind w/ lce (150)	None				26				
36	Maintenance Live Lm (1)	OL1				1				
39	Maintenance Live Lm (4)	OL4				1				
41	Maintenance Live Lv (1)	OL6					1			

Load Combinations

1 Summary 1.00 + 1., Yes Y		Des cription	SoJ	P	SRSSBLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
1.4D	1																							
4 1.2D + 1.0W(30) Yes Y DL 1.2 5 1 21 1	2	1.4D	Yes	Υ	DL	1.4																		
5 1.2D + 1.0W(45) Yes Y DL 1.2 6 1 22 1	3	1.2D + 1.0W(0)	Yes	Υ	DL	1.2	4	1	20	1														
5 1.2D + 1.0W(45) Yes Y DL 1.2 6 1 22 1	4	1.2D + 1.0W(30)	Yes	Υ	DL	1.2	5	1	21	1														
7	5	1.2D + 1.0W(45)	Yes	Υ	DL			1		1														
8 1.2D + 1.0W(120) Yes Y DL 1.2 9 1 25 1	6	1.2D + 1.0W(60)	Yes	Υ	DL	1.2	7	1	23	1														
9 1.2D + 1.0W(135) Yes Y DL 1.2 10 1 26 1	7	1.2D + 1.0W(90)	Yes	Υ	DL	1.2	8	1	24	1														
10	8		Yes	Υ	DL	1.2	9	1	25	1														
11 1.2D + 1.0W(180) Yes Y DL 1.2 4 -1 20 -1	9	1.2D + 1.0W(135)	Yes	Υ	DL	1.2	10	1	26	1														
12 1.2D + 1.0W(210) Yes Y DL 1.2 5 -1 21 -1	10	1.2D + 1.0W(150)	Yes	Υ	DL	1.2	11	1	27	1														
13 1.2D + 1.0W(225) Yes Y	11	1.2D + 1.0W(180)	Yes	Υ	DL	1.2	4	-1	20	-1														
14 1.2D + 1.0W(240) Yes Y DL 1.2 7 -1 23 -1	12	1.2D + 1.0W(210)	Yes	Υ	DL	1.2	5	-1	21	-1														
15 1.2D + 1.0W(270) Yes Y DL 1.2 8 -1 24 -1	13	, , ,		Υ	DL			-1		-1														
16 1.2D + 1.0W(300) Yes Y DL 1.2 9 -1 25 -1	14	1.2D + 1.0W(240)	Yes	Υ	DL	1.2	7	-1	23	-1														
17 1.2D + 1.0W(315) Yes Y DL 1.2 10 -1 26 -1	15	, , ,			DL	1.2	8	-1	24	-1														
18	16	1.2D + 1.0W(300)	Yes	Υ	DL	1.2	9	-1	25	-1														
19 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 12 1 28 1 2 1 2 1 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 13 1 29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17	1.2D + 1.0W(315)	Yes	Υ	DL	1.2	10	-1	26	-1														
20 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 13 1 29 1 21 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 14 1 30 1 22 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 15 1 31 1 23 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 16 1 32 1 24 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 17 1 33 1 25 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 18 1 34 1 26 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 19 1 35 1 27 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 19 1 35 1 28 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 13 -1 39 -1 29 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 14 -1 30 -1 30 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 15 -1 31 -1 31 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 16 -1 32 -1 32 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 16 -1 32 -1 33 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 16 -1 32 -1 34 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 17 -1 33 -1 35 1.2D +1.0Di +1.0 Yes Y DL 1.2 RL 1 18 -1 34 -1 36 1.2D +1.5Lm(1) + Yes Y DL 1.2 RL 1 19 -1 35 -1 36 1.2D +1.5Lm(1) + Yes Y DL 1.2 RL 1 19 -1 35 -1 37 1.2D +1.5Lm(1) + Yes Y DL 1.2 RL 1 19 -1 35 -1 37 1.2D +1.5Lm(1) + Yes Y DL 1.2 RL 1 19 -1 35 -1 37 1.2D +1.5Lm(1) + Yes Y DL 1.2 RL 1 15 -1 5.059 DL 1.5 37 1.2D +1.5Lm(1) + Yes Y DL 1.2 R. 10.59 DL 1.5	18	1.2D + 1.0W(330)	Yes	Υ	DL	1.2	11	-1	27	-1														
21 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 14 1 30 1 22 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 15 1 31 1 23 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 16 1 32 1 24 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 17 1 33 1 25 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 18 1 34 1 26 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 19 1 35 1 27 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 12 -1 28 -1 28 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 13 -1 39 -1 29 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 14 -1 30 -1 30 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 15 -1 31 -1 31 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 15 -1 31 -1 31 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 16 -1 32 -1 32 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 17 -1 33 -1 33 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 17 -1 33 -1 34 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 18 -1 34 -1 34 1.2D + 1.5Lm(1) + Yes Y DL 1.2 RL 1 19 -1 35 -1 35 1.2D + 1.5Lm(1) + Yes Y DL 1.2 RL 1 19 -1 35 -1 36 <td>19</td> <td>1.2D + 1.0Di + 1.0</td> <td>Yes</td> <td>Υ</td> <td>DL</td> <td>1.2</td> <td>RL</td> <td>1</td> <td>12</td> <td>1</td> <td>28</td> <td>1</td> <td></td>	19	1.2D + 1.0Di + 1.0	Yes	Υ	DL	1.2	RL	1	12	1	28	1												
21 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 14 1 30 1	20	1.2D + 1.0Di + 1.0	Yes	Υ	DL	1.2	RL	1	13	1	29	1												
23 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 16 1 32 1 24 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 17 1 33 1 25 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 19 1 35 1 26 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 19 1 35 1 27 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 12 -1 28 -1 28 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 13 -1 39 -1 29 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 14 -1 30 -1 30 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 15 -1 31 -1 31 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 16 -1 32 -1 32 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 16 -1 32 -1 33 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 17 -1 33 -1 33 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 18 -1 34 -1 34 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 18 -1 34 -1 35 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 19 -1 35 -1 36 1.2D + 1.5Lm(1) + Yes Y DL 1.2 RL 1 19 -1 35 -1 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 22 .059 0L1 1.5 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 22 .059 0L1 1.5	21	1.2D + 1.0Di + 1.0	Yes	Υ	DL			1	14	1	30	1												
24 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 17 1 33 1	22	1.2D + 1.0Di + 1.0	Yes	Υ	DL	1.2	RL	1	15	1	31	1												
25 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 18 1 34 1	23				DL	1.2	RL	1	16	1	32	1												
26 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 19 1 35 1 27 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 12 -1 28 -1 28 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 13 -1 39 -1 29 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 14 -1 30 -1 30 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 15 -1 31 -1 31 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 16 -1 32 -1 32 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 17 -1 33 -1 33 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 18 -1 34 -1 34 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 19 -1 35 -1 35 1.2D + 1.5Lm(1) + Yes Y DL 1.2 RL 1 19 -1 35 -1 36 1.2D + 1.5Lm(1) + Yes Y DL 1.2 5 .059 21 .059 0L1 1.5 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 22 .059 0L1 1.5	24	1.2D + 1.0Di + 1.0	Yes	Υ	DL	1.2	RL	1	17	1	33	1												
26 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 19 1 35 1 <td>25</td> <td>1.2D + 1.0Di + 1.0</td> <td>Yes</td> <td>Υ</td> <td>DL</td> <td>1.2</td> <td>RL</td> <td>1</td> <td>18</td> <td>1</td> <td>34</td> <td>1</td> <td></td>	25	1.2D + 1.0Di + 1.0	Yes	Υ	DL	1.2	RL	1	18	1	34	1												
28 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 13 -1 39 -1 29 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 14 -1 30 -1 30 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 15 -1 31 -1 31 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 16 -1 32 -1 32 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 17 -1 33 -1 33 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 18 -1 34 -1 34 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 19 -1 35 -1 35 1.2D + 1.5Lm(1) + Yes Y DL 1.2 RL 1 19 -1 35 -1 36 1.2D + 1.5Lm(1) + Yes Y DL 1.2 5 .059 21 .059 0L1 1.5 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 22 .059 0L1 1.5	26	1.2D + 1.0Di + 1.0	Yes	Υ	DL	1.2	RL	1	19	1		1												
28 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 13 -1 39 -1	27			Υ	DL	1.2	RL	1	12	-1														
29 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 14 -1 30 -1 </td <td>28</td> <td></td> <td></td> <td>Υ</td> <td>DL</td> <td>1.2</td> <td>RL</td> <td>1</td> <td>13</td> <td>-1</td> <td>39</td> <td>-1</td> <td></td>	28			Υ	DL	1.2	RL	1	13	-1	39	-1												
31 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 16 -1 32 -1 32 -1 32 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 17 -1 33 -1 33 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 18 -1 34 -1 34 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 19 -1 35 -1 35 1.2D + 1.5Lm(1) + Yes Y DL 1.2 4 .059 20 .059 0L1 1.5 36 1.2D + 1.5Lm(1) + Yes Y DL 1.2 5 .059 21 .059 0L1 1.5 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 22 .059 0L1 1.5 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 22 .059 0L1 1.5	29			Υ	DL	1.2	RL	1																
32 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 17 -1 33 -1 33 -1 33 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 18 -1 34 -1 34 -1 34 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 19 -1 35 -1 35 1.2D + 1.5Lm(1) + Yes Y DL 1.2 4 .059 20 .059 OL1 1.5 36 1.2D + 1.5Lm(1) + Yes Y DL 1.2 5 .059 21 .059 OL1 1.5 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 22 .059 OL1 1.5	30	1.2D + 1.0Di + 1.0	Yes	Υ	DL	1.2	RL	1	15	-1	31	-1												
32 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 17 -1 33 -1	31	1.2D + 1.0Di + 1.0	Yes	Υ	DL	1.2	RL	1	16	-1	32	-1												
33 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 18 -1 34 -1 35 -1 35 1.2D + 1.5Lm(1) + Yes Y DL 1.2 RL 1 19 -1 35 -1 35 1.2D + 1.5Lm(1) + Yes Y DL 1.2 5 .059 DL 1.5 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 DL 1.5 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 DL 1.5 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 DL 1.5 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 DL 1.5 38 DL 1.5 38 DL 1.5 39 DL 1.5	32	1.2D + 1.0Di + 1.0	Yes	Υ	DL						33	-1												
34 1.2D + 1.0Di + 1.0 Yes Y DL 1.2 RL 1 19 -1 35 -1	33	1.2D + 1.0Di + 1.0	Yes	Υ	DL					-1	34	-1												
35 1.2D + 1.5Lm(1) + Yes Y DL 1.2 4 .059 20 .059 OL1 1.5 36 1.2D + 1.5Lm(1) + Yes Y DL 1.2 5 .059 21 .059 OL1 1.5 37 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 .059 22 .059 OL1 1.5	34	1.2D + 1.0Di + 1.0	Yes	Υ	DL																			
36 1.2D + 1.5Lm(1) +Yes Y DL 1.2 5 .059 21 .059 OL1 1.5 37 1.2D + 1.5Lm(1) +Yes Y DL 1.2 6 .059 22 .059 OL1 1.5	35	1.2D + 1.5Lm(1) +	Yes	Υ	DL			.059																
	36	1.2D + 1.5Lm(1) +	Yes	Υ	DL		5	.059	21	.059	OL1	1.5												
38 1.2D + 1.5Lm(1) + Yes Y DL 1.2 7 .059 23 .059 OL1 1.5	37	1.2D + 1.5Lm(1) +	Yes	Υ	DL	1.2	6	.059	22	.059	OL1	1.5												
	38	1.2D + 1.5Lm(1) +	Yes	Υ	DL			.059	23	.059	OL1	1.5												

Des igner : SSA

Job Number : 019558056 Model Name : 842872

Sept 15, 2021 11:01 AM Checked By: ZAM

Load Combinations (Continued)

	Des cription	So F	o	SRSSBLCF	ac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	RLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	RLC	Fac
39	1.2D + 1.5Lm(1) +			DL			.059						1 40	DLO	1 40		1 ac		1 40		1 ac	DLO	1 40
				DL		_	.059																
41	1.2D + 1.5Lm(1) +			DL			.059																
42	1.2D + 1.5Lm(1) +				1.2		.059																
43	1.2D + 1.5Lm(1) +				1.2		059																
44	1.2D + 1.5Lm(1) +				1.2		059																
45	1.2D + 1.5Lm(1) +				1.2		059																
46	1.2D + 1.5Lm(1) +				1.2		059																
47	1.2D + 1.5Lm(1) +				1.2		059																
48	1.2D + 1.5Lm(1) +			DL			059																
49	1.2D + 1.5Lm(1) +	Yes	Υ		1.2		059																
50	1.2D + 1.5Lm(1) +	Yes	Υ	DL			059	27	059	OL1	1.5												
51	1.2D + 1.5Lm(4) +	Yes	Υ		1.2	4	.059																
52	1.2D + 1.5Lm(4) +	Yes	Υ	DL			.059																
53	1.2D + 1.5Lm(4) +			DL		6																	
	· · · · · · · · · · · · · · · · · · ·			DL	1.2	7	.059																
	1.2D + 1.5Lm(4) +				1.2	8	.059																
	1.2D + 1.5Lm(4) +			DL		_	.059																
	1.2D + 1.5Lm(4) +			DL			.059																
				DL		_	.059																
	1.2D + 1.5Lm(4) +			DL			059																
				DL			059																
61	1.2D + 1.5Lm(4) +			DL			059																
62	1.2D + 1.5Lm(4) +			DL			059																
63	1.2D + 1.5Lm(4) +			DL		_	059																
64	1.2D + 1.5Lm(4) +				1.2		059																
65	1.2D + 1.5Lm(4) +				1.2	_	059																
66	1.2D + 1.5Lm(4) +				1.2		059																
67	1.2D + 1.5Lv(1) +	\rightarrow			1.2	4			.059														
68	1.2D + 1.5Lv(1) +		-		1.2		.059																
	1.2D + 1.5Lv(1) +	\rightarrow			1.2	6			.059														
	1.2D + 1.5Lv(1) + 1.2D + 1.5Lv(1) +				1.2	7			.059														
	1.2D + 1.5Lv(1) +				1.2 1.2	8	.059			_													
	1.2D + 1.5Lv(1) +			DL		_	.059																
	1.2D + 1.5Lv(1) +			DL			.059																
	1.2D + 1.5Lv(1) +			DL			059																
	1.2D + 1.5Lv(1) +			DL	1.2																		
	1.2D + 1.5Lv(1) +						059																
	1.2D + 1.5Lv(1) +						059																
	1.2D + 1.5Lv(1) +						059																
	1.2D + 1.5Lv(1) +						059																
							059																
	1.2D + 1.5Lv(1) +						059																

Envelope Joint Reactions

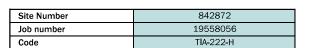
	Joint		X [b]	LC	Y [lb]	LC	Z [l b]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	P24	max	1261.759	18	1017.722	16	2458.435	30	518.803	6	593.124	7	1838.741	18
2		min	-1260.184	10	-1016.869	8	-73.68	6	-5730.785	30	-2035.381	30	-1830.964	10
3	P13	max	721.311	3	1474.591	15	2406.816	19	1261.821	31	5832.505	19	1809.434	7

Designer : SSA Job Number : 019558056 Model Name : 842872 Sept 15, 2021 11:01 AM Checked By: ZAM

Envelope Joint Reactions (Continued)

	Joint		X [b]	LC	Y [lb]	LC	Z [l b]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
4		min	-731.451	11	-1479.105	7	-81.373	11	23.424	7	-726.286	11	-1802.858	15
5	P1	max	1463.668	3	944.651	15	2519.609	24	4408.228	24	192.923	16	1829.949	12
6		min	-1456.801	11	-939.293	7	-51.633	16	-807.657	16	-3800.098	24	-1839.858	4
7	Totals:	max	3419.197	3	3382.673	15	6738.485	30						
8		min	-3419.202	11	-3382.644	7	1664.329	1						

Envelope AISC 15th (360-16): LRFD Steel Code Checks


	Member	Shape	Code Check	Loc[in]	LC	Shear Che	I٥	Dir	·IC	nhi*Pnc [lh]	nhi*Pnt [[h]	nhi*Mn v-v	nhi*Mn z-	. Cb	Egn
1	M62A	C3.38x2.0	.300	0	30	.053	28			47760.074	56700	2202.821	5751.945	1.643	H1-1b
2	M61A	C3.38x2.0	.288	0	24	.050	28			47760.074	56700	2202.821	5751.945	1.647	H1-1b
3	M60A	C3.38x2.0	.287	0	19	.050	28			47760.074	56700	2202.821	5751.945	1.642	H1-1b
4	M12	HSS4X4X6	.279	40	31	.121	24	V	_	188250.475		22045.5	22045.5	1.917	H1-1b
5	M10	PL6.5x0.375	.278	21	3	.163	36	v	30		78975	616.993	8011.936	1.425	H1-1b
6	M7	HSS4X4X6	.275	40	21	.123	24	٧		188250.475		22045.5	22045.5	1.927	H1-1b
7	M15	PL6.5x0.375	.271	21	14	.133	36	v	8	3658.14	78975	616.993	8005.49	1.424	H1-1b
8	M2	HSS4X4X6	.267	40	26	.116	24	٧		188250.475		22045.5	22045.5	1.976	H1-1b
9	M5	PL6.5x0.375	.263	21	8	.138	36	v	3	3658.14	78975	616.993	8007.142	1.424	H1-1b
10	M63A	C3.38x2.0	.262	0	24	.044	0	٧	19	47760.074	56700	2202.821	5751.945	1.661	H1-1b
11	M61B	C3.38x2.0	.259	0	3	.044	0	У	29	47760.074	56700	2202.821	5751.945	1.628	H1-1b
12	M63B	C3.38x2.0	.250	0	30	.043	0	у	24	47760.074	56700	2202.821	5751.945	1.662	H1-1b
13	MP8	Pipe 2.875	.242	26.274	4	.073	26		12	22398.073	42998.495	3144.258	3144.258	3.97	H1-1b
14	M75	PL 2.375x	.239	1.5	3	.240	0	у	23	38256.871	38475	400.783	1903.711	1.563	H1-1b
15	MP2	Pipe 2.875	.232	26.274	15	.078	26		7	22398.073	42998.495	3144.258	3144.258	4.178	H1-1b
16	MP5	Pipe 2.875	.220	26.274	10	.086	26		18	22398.073	42998.495	3144.258	3144.258	3.971	H1-1b
17	MP3	Pipe 2.875	.218	26.274	7	.074	26		12	22398.073	42998.495	3144.258	3144.258	3.906	H1-1b
18	MP6	Pipe 2.875	.214	26.274	10	.074	26		7	22398.073	42998.495	3144.258	3144.258	4.078	H1-1b
19	MP9	Pipe 2.875	.204	26.274	12	.093	26		3	22398.073	42998.495	3144.258	3144.258	2.851	H1-1b
20	MP4	Pipe 2.875	.197	26.274	18	.078	26		12	22398.073	42998.495	3144.258	3144.258	3.003	H1-1b
21	M8	L2x2x4	.187	0	3	.013	0	У	11	29527.563	42480	959.63	2190.068	2.206	H2-1
22	MP1	Pipe 2.875	.185	26.274	7	.082	26		9	22398.073	42998.495	3144.258	3144.258	4.015	H1-1b
23	M25	PIPE_2.0	.180	6.063	12	.083	92		9	15369.683	42228	2459.85	2459.85	1.697	H1-1b
24	M29	L6.6x4.46x	.179	41.779		.024	42	Z	11	51170.949	87561	2464.809	7125.374	1.136	H2-1
25	MP7	Pipe 2.875	.178	26.274	12	.083	26		14	22398.073	42998.495	3144.258	3144.258	4.236	H1-1b
26	M51	PIPE 2.0	.175	6.063	7	.084	3		16	15369.683	42228	2459.85	2459.85	1.763	H1-1b
27	M65A	PIPE_2.0	.175	3.537	3	.084	5		3	15369.683	42228	2459.85	2459.85	1.739	H1-1b
28	М3	L2x2x4	.170	0	8	.013	0	у	16	29527.563	42480	959.63	2190.068	2.215	H2-1
29	M13	L2x2x4	.169	0	14	.012	0	у	6	29527.562	42480	959.63	2190.068	2.228	H2-1
30	M30	L6.6x4.46x	.165	41.779	7	.024	42	Z	16	51170.949	87561	2464.809	7125.374	1.136	H2-1
31	M28	L6 6x4 46x	.158	41.779	12	.024	42	Z	6	51170.949	87561	2464.809	7125.374	1.136	H2-1
32	M4	L2x2x4	.143	0	17	.022	27	у	20	29527.562	42480	959.63	2190.068	2.232	H2-1
33	M14	L2x2x4	.142	0	6	.023	27	у	26	29527.563	42480	959.63	2190.068	2.255	H2-1
34	M9	L2x2x4	.133	0	12	.023	27	у	31	29527.563	42480	959.63	2190.068	2.193	H2-1
35	M62	Pipe3.5x0	.122	31.326	3	.059	48		17	45873.009	71580.6	6337.65	6337.65	1.898	H1-1b
36	M48	Pipe3.5x0	.120	31.326)	.057	48		15	45873.009	71580.6	6337.65	6337.65	2.053	H1-1b
37	M18	Pipe3.5x0	.120	31.326	13	.049	48		5	45873.009	71580.6	6337.65	6337.65	1.718	H1-1b
38	M98	PIPE_2.0	.061	18	3	.031	18		10	28843.414	32130	1871.625	1871.625	1.645	H1-1b

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556625, Rev. 1

APPENDIX D ADDITIONAL CALCULATIONS

Square/Rectangular Flange Connection

TIA-222-H

REACTIONS		
Moment, Mu (kip-ft)	5.981	About X
Axial, Pu (kips) - Negative for tension	-0.203	
Shear, Vu (kips)	2.458	

BOLT CONFIGURATION	
Bolt Quantity, n _b	4
Bolt Diameter, d _b (in)	0.625
Bolt Grade	A325
Width between bolts, s (in)	7.00

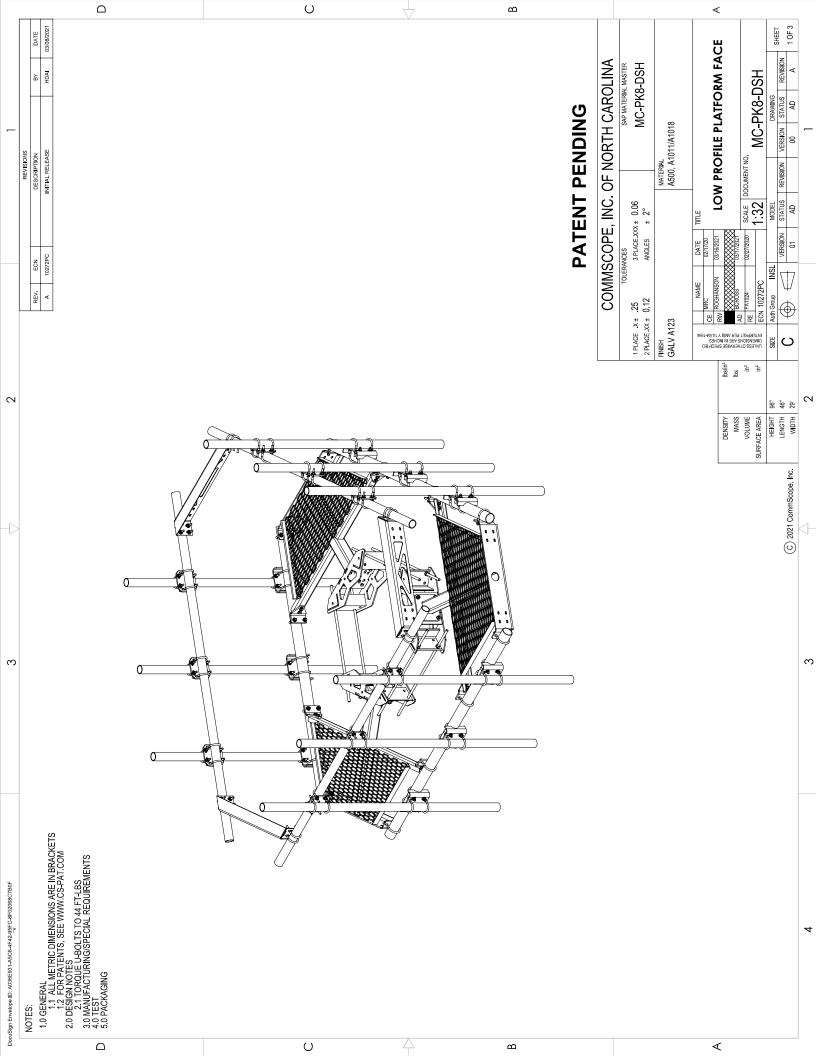
PLATE CONFIGURATION	
Plate Grade	A572-50
Thickness of plate, t (in)	0.750
Width of plate, w (in)	9.00

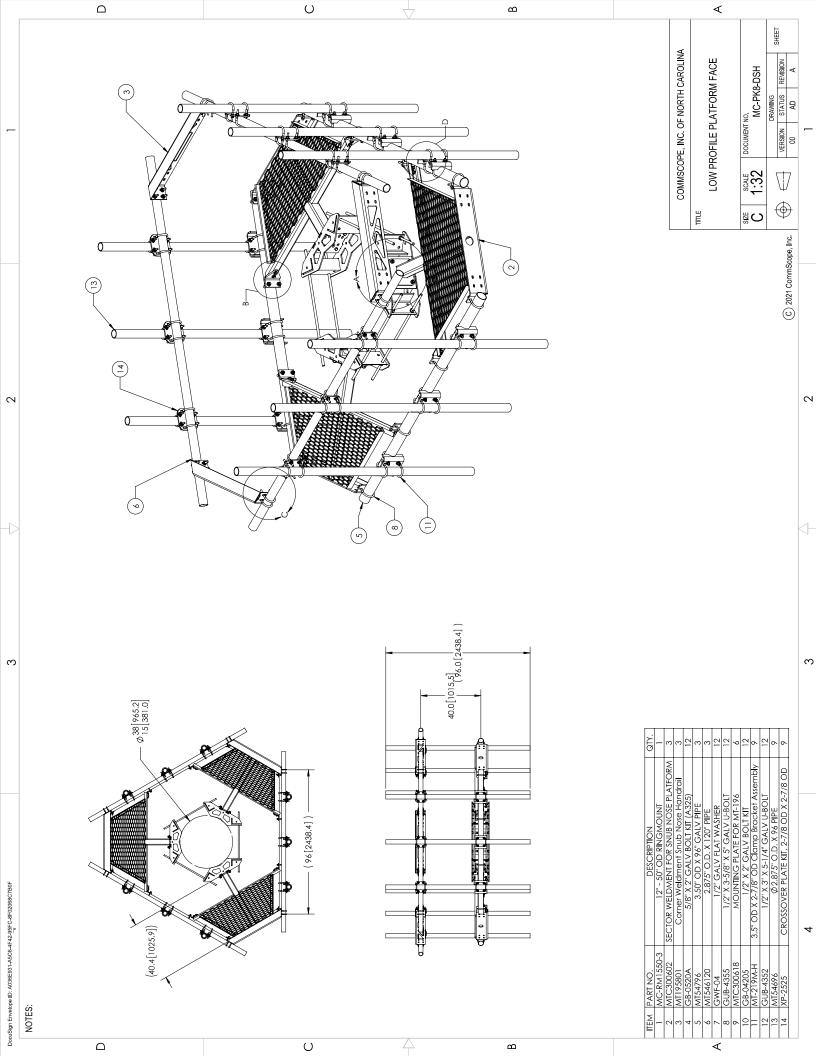
SUPPORT ARM CONFIGURAT	ION
Member Shape	Square
Member Grade	A500-46
Thickness of Member, t (in)	0.375
Width of member, w (in)	4.000

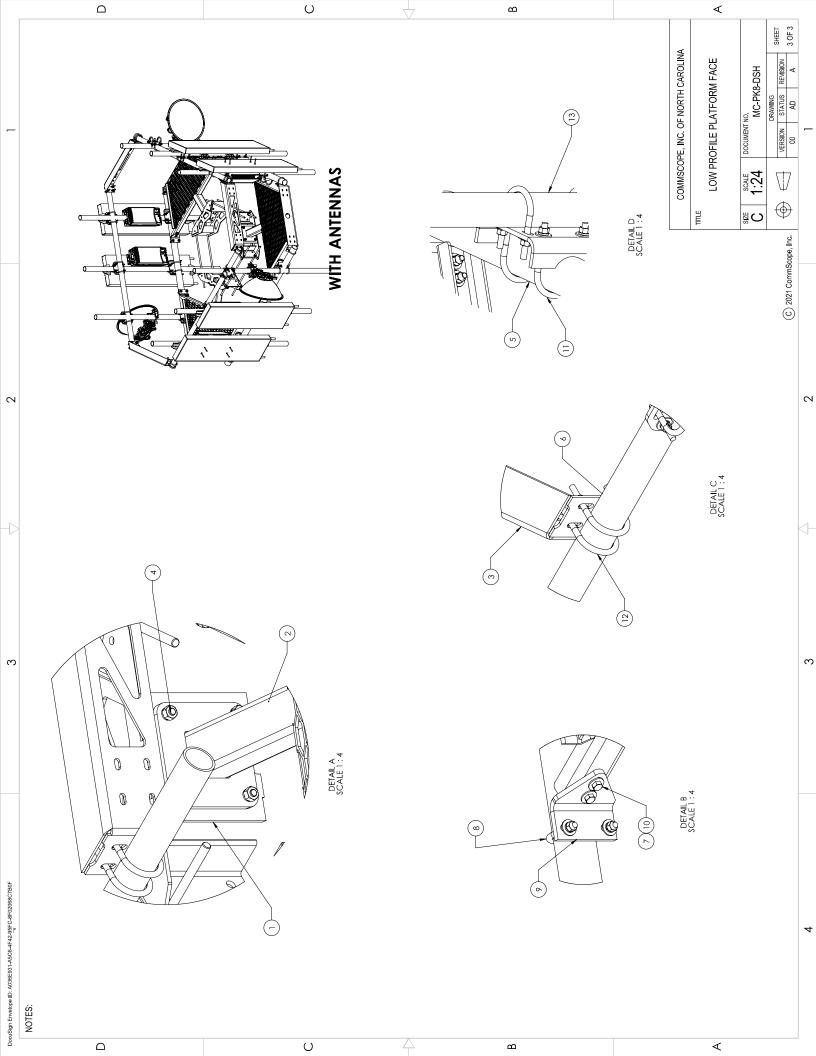
Stiffeners present?	100
---------------------	-----

Member/Node Under Consideration	P24
Controlling Load Combination	30

Normalize usages per TIA-222-H, Sec. 15.5


BOLT USAGE			
Maximum Tension in Bolt, Tub (kip)	7.301		
Nominal Tensile Strength, φRnt (kip)	20.340		
Tensile Usage (Section 4.9.6.1)	36%		


PLATE USAGE	
Ultimate flexural load in plate, Mu (kip-in)	11,630
Factored flexural capacity,	28.430
Flexural Usage	41%


SUPPORT ARM USAGE			
Ultimate flexural load in member, Mu (kip-ft)	5.981		
Factored flexural capacity, φMn (kip-ft)	25.592		
Flexural Usage	23%		

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556625, Rev. 1

APPENDIX E SUPPLEMENTAL DRAWINGS

Certificate Of Completion

Envelope Id: A036E931A5C64F4295FC8F02068C7B0F Status: Completed

Subject: Please DocuSign: 842872_556625_Rev.1_Conditional_DISH Network_130ft_MM.DD.2021_signed.pdf

Source Envelope:

Document Pages: 25 **Envelope Originator:** Signatures: 1 Certificate Pages: 1 Initials: 0 Manuel JaraPerez AutoNav: Enabled 401 Fayetteville St.

Suite 600

Envelopeld Stamping: Enabled Time Zone: (UTC-05:00) Eastern Time (US & Canada) Raleigh, NC 27601

Manuel.JaraPerez@kimley-horn.com

IP Address: 208.127.231.172

Sent: 9/15/2021 5:21:55 PM

Viewed: 9/15/2021 5:41:13 PM

Signed: 9/15/2021 5:41:21 PM

Record Tracking

Status: Original Holder: Manuel JaraPerez Location: DocuSign

9/15/2021 5:21:12 PM Manuel.JaraPerez@kimley-horn.com

Signer Events Signature **Timestamp**

Kyle Freehart Kyle Freehart kyle.freehart@kimley-horn.com -D8BEE252A3804C1...

Kimley-Horn Security Level: Email, Account Authentication

Signature Adoption: Pre-selected Style (None)

Using IP Address: 208.127.231.172

Electronic Record and Signature Disclosure:

Not Offered via DocuSign

Payment Events	Status	Timestamps
Completed	Security Checked	9/15/2021 5:41:21 PM
Signing Complete	Security Checked	9/15/2021 5:41:21 PM
Certified Delivered	Security Checked	9/15/2021 5:41:13 PM
Envelope Sent	Hashed/Encrypted	9/15/2021 5:21:55 PM
Envelope Summary Events	Status	Timestamps
Notary Events	Signature	Timestamp
Witness Events	Signature	Timestamp
NAC4	O'	T'
Carbon Copy Events	Status	Timestamp
Certified Delivery Events	Status	Timestamp
Intermediary Delivery Events	Status	Timestamp
Agent Delivery Events	Status	Timestamp
Editor Delivery Events	Status	Timestamp
In Person Signer Events	Signature	Timestamp
	a ;	- , ,

ATTACHMENT 6

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at: 52 NEW BRITAIN AVENUE, ROCKY HILL, CT 06067

CCATT LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 842872/ROCKY HILL

Customer Site ID: BOBDL00067A/CT-CCI-T-842872

Site Address: 52 NEW BRITAIN AVENUE, ROCKY HILL, CT 06067

Crow	rn Castle		
By: _		_Date:	
, -	Richard Zajac		

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOBDL00067A

842872

52 New Britain Avenue Rocky Hill, Connecticut 06067

November 18, 2021

EBI Project Number: 6221007183

Site Compliance Summary		
Compliance Status:	COMPLIANT	
Site total MPE% of FCC general population allowable limit:	23.25%	

November 18, 2021

Dish Wireless

Emissions Analysis for Site: BOBDL00067A - 842872

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **52 New Britain Avenue** in **Rocky Hill, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 52 New Britain Avenue in Rocky Hill, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 130 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd
Height (AGL):	130 feet	Height (AGL):	130 feet	Height (AGL):	130 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (W):	3,065.51	ERP (W):	3,065.51	ERP (W):	3,065.51
Antenna A1 MPE %:	1.03%	Antenna BI MPE %:	1.03%	Antenna C1 MPE %:	1.03%

environmental | engineering | due diligence

Site Composite MPE %					
Carrier	MPE %				
Dish Wireless (Max at Sector A):	1.03%				
T-Mobile	0.72%				
Verizon	12%				
AT&T	4.44%				
Police	1%				
Fire	1%				
Sprint	2.96%				
Clearwire	0.1%				
Site Total MPE % :	23.25%				

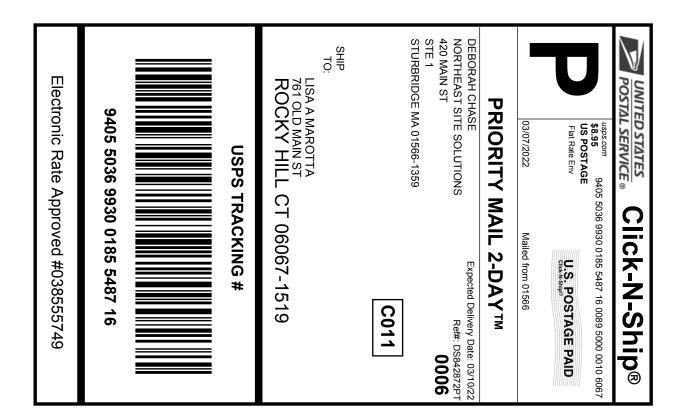
Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	1.03%			
Dish Wireless Sector B Total:	1.03%			
Dish Wireless Sector C Total:	1.03%			
Site Total MPE % :	23.25%			

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (μW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	130.0	2.09	600 MHz n71	400	0.52%
Dish Wireless 1900 MHz n70	4	542.70	130.0	5.08	1900 MHz n70	1000	0.51%
						Total:	1.03%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.


The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	1.03%
Sector B:	1.03%
Sector C:	1.03%
Dish Wireless Maximum MPE % (Sector A):	1.03%
Site Total:	23.25%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **23.25**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

ATTACHMENT 7

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0185 5487 16

558209878 03/07/2022 Trans. #: Print Date: Ship Date: 03/07/2022 03/10/2022 Delivery Date:

Priority Mail® Postage: Total:

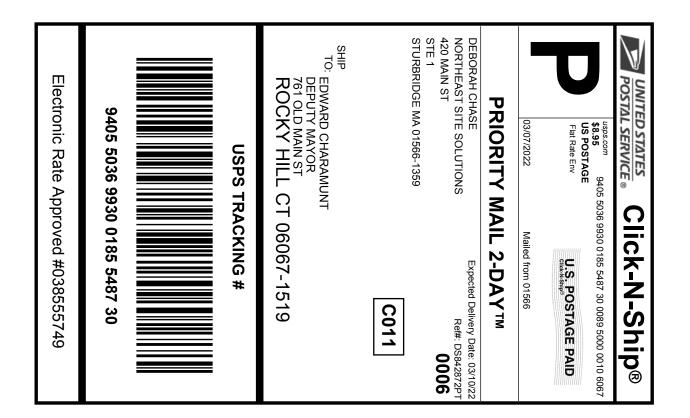
\$8.95 \$8.95

Ref#: DS842872PT

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST


STE 1

STURBRIDGE MA 01566-1359

LISA A MAROTTA

761 OLD MAIN ST

ROCKY HILL CT 06067-1519

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0185 5487 30

558209878 03/07/2022 Trans. #: Print Date: Ship Date: 03/07/2022 03/10/2022 Delivery Date:

Priority Mail® Postage: Total:

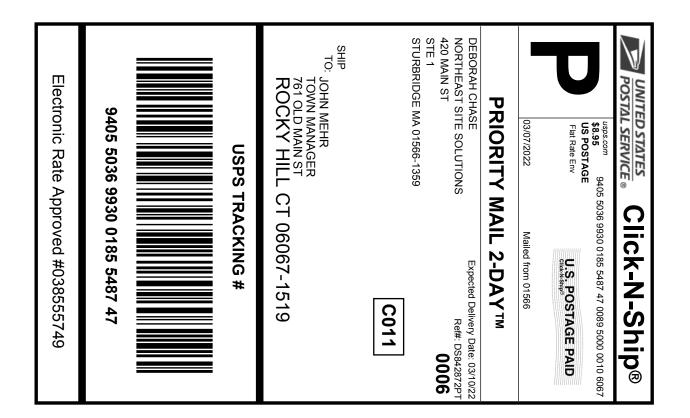
\$8.95 \$8.95

Ref#: DS842872PT

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST


STE 1

STURBRIDGE MA 01566-1359

EDWARD CHARAMUNT

DEPUTY MAYOR 761 OLD MAIN ST

ROCKY HILL CT 06067-1519

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0185 5487 47

558209878 03/07/2022 Trans. #: Print Date: Ship Date: 03/07/2022 03/10/2022 Delivery Date:

Priority Mail® Postage: \$8.95 Total:

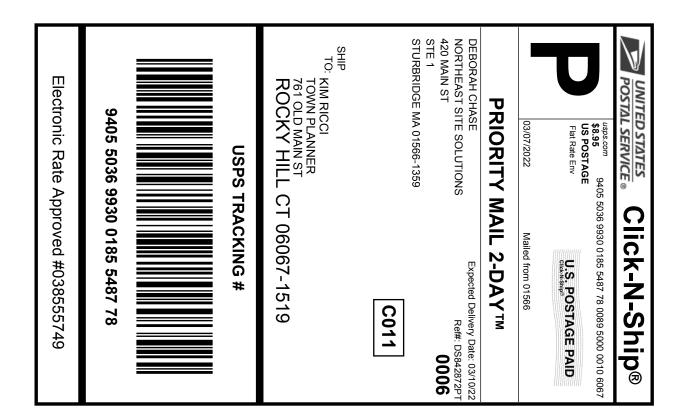
\$8.95

Ref#: DS842872PT

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST


STE 1

STURBRIDGE MA 01566-1359

JOHN MEHR

TOWN MANAGER 761 OLD MAIN ST

ROCKY HILL CT 06067-1519

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0185 5487 78

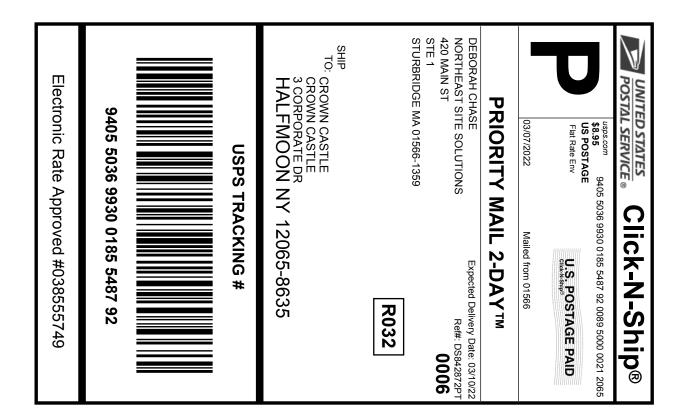
558209878 03/07/2022 Trans. #: Print Date: Ship Date: 03/07/2022 03/10/2022 Delivery Date:

Priority Mail® Postage: \$8.95 \$8.95 Total:

Ref#: DS842872PT From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST


STE 1

STURBRIDGE MA 01566-1359

KIM RICCI

TOWN PLANNER 761 OLD MAIN ST

ROCKY HILL CT 06067-1519

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0185 5487 92

558209878 03/07/2022 Trans. #: Print Date: Ship Date: 03/07/2022 03/10/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS842872PT

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

CROWN CASTLE CROWN CASTLE

3 CORPORATE DR

HALFMOON NY 12065-8635

CERTIFICATION OF SERVICE

I hereby certify that on the 7th day of March 2022, DISH Wireless, LLC provided notice of its intent to file a Petition for a declaratory ruling that a Certificate of Environmental Compatibility and Public Need is not required for the modification of a wireless telecommunications facility at 52 New Britain Avenue in Rocky Hill, Connecticut, to the following:

Abutters

SIXTY SIX NBA LLC PO BOX 189 ROCKY HILL CT 0606

ROCKY HILL, CT 06067 ROCKY HILL, CT 06067

TOWN OF ROCKY HILL 761 OLD MAIN STREET ROCKY HILL, CT 06067 TWO HUNDRED FIFTY SIX MIDDLE LLC C/O JCORP REALTY LLC 2 CORPORATE DRIVE STE 441 SHELTON, CT 06484

THIRTY EIGHT NEW BRITAIN AVENUE LLC

38 NEW BRITAIN AVENUE

Owner

TOWN OF ROCKY HILL 761 OLD MAIN STREET ROCKY HILL, CT 06067

Respectfully Submitted,

Victoria Masse Northeast Site Solutions 420 Main Street #2 Sturbridge, MA 01566

FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777

01:18 PM 03/09/2022 Oty Unit Price Product Price \$0.00 Prepaid Mail Rocky Hill, CT 06067 Weight: 0 1b 14.00 oz Mergin: 0 16 14.00 02 Acceptance Date: Wed 03/09/2022 Tracking #: 9405 5036 9930 0185 5487 16 \$0,00 Prepaid Mail 1 Rocky Hill, CT 06067 Weight: 0 lb 14.00 oz Acceptance Date: Wed 03/09/2022 Tracking #: 9405 5036 9930 0185 5487 30 \$0.00 Prepaid Mail 1
Rocky Hill, CT 06067
Weight: 0 ib 13.90 oz
Acceptance Date:
Wed 03/09/2022 Tracking #: 9405 5036 9930 0185 5487 47 \$0.00 Rocky Hill CT 06067 Weight: 0 ib 13.90 oz Prepaid Mail Acceptance Date: Wed 03/09/2022 Tracking #: 9405 5036 9930 0185 5487 78 \$0.00 Prepaid Mail 1 Clifton Park, NY 12065 Weight: O lb 14.00 oz Acceptance Date: Wed 03/09/2022 Tracking #: 9405 5036 9930 0185 5487 92 Grand Total: ************

VIA USPS CERTIFIED MAIL/ RETURN RECEIPT REQUESTED

TOWN OF ROCKY HILL 761 OLD MAIN STREET ROCKY HILL, CT 06067

RE: Proposed Modification to Existing Wireless Telecommunications Facility at 52
New Britain Avenue, Rocky Hill, Connecticut

To Whom It May Concern:

I am writing to you on behalf of DISH Wireless, LLC ("DISH"). DISH intends to file with the Connecticut Siting Council ("Council") a petition for declaratory ruling ("Petition") that a Certificate of Environmental Compatibility and Public Need is not required.

The Petition will provide details of the Existing Facility modification and explain why it will have no significant adverse environmental effect.

This letter serves as notice to you as an abutting property owner pursuant to § 16-50j-40 of the Regulations of Connecticut State Agencies. DISH will file the Petition on or about March 7, 2022 and will request that the Council place the Petition on some future agenda.

You may review the Petition at the office of the Council, which is located at Ten Franklin Square, New Britain, Connecticut, 06051, or at the Office of the Town Clerk at the Windsor Town Hall. All inquiries should be addressed to Council or to the undersigned.

Sincerely,

Victoria Masse Northeast Site Solutions 420 Main Street #2 Sturbridge, MA 01566

U.S. Postal Service™ **CERTIFIED MAIL® RECEIPT**

9440 Domestic Mail Only For delivery information, visit our website at www.usps.com® 고라마수 Certified Mail Fee ON WORZ \$ \$3.05

Extra Services & Fees (check box, add fee asiarpropriate)

Return Receipt (hardcopy)

\$ \$1.05 \$3.05 \$0.00 Return Receipt (electronic) Postmark Certified Mail Restricted Delivery \$0,00 Here Adult Signature Required Adult Signature Restricted Delivery \$ Postage 1970 03/07/2022 \$ Total Postage and Fees 공항 Sent To Tall Street and Apt. No., or PO Box No. 7057 Packy Racy HIL

LINCOLN MALL 560 LINCOLN ST STE 8 WORCESTER, MA 01605-1925

WORCESTER			j
03/07/2022	00)275-8	8///	03:11 PM
Product	Qty	Unit Price	Price
First-Class Mail® Letter	1		\$0.58
Rocky Hill, CT Weight: 0 lb 0. Estimated Deliv Wed 03/09/2	.40 oz /ery Dat	е	
Certified Mail@ Tracking #:)	840439	\$3.75
Return Receipt Tracking #:			\$3.05
9590 94 Total	102 7092	1251 80	87 19 \$7.38
First-Class Mail® Letter	1		\$0.58
Rocky Hill, CT Weight: 0 lb 0. Estimated Deliv Wed 03/09/2	40 oz Yery Dat 2022	е	
Certified Mail® Tracking #: 7021197 Return Receipt		840422	\$3.75 \$3.05
Tracking #:	102 7092	1251 80	
First-Class Mail® Letter	1		\$0.58
Shelton, CT 064 Weight: 0 lb 0. Estimated Deliv Wed 03/09/2 Certified Mail® Tracking #:	40 oz ery Dat 2022		\$3.75
Return Receipt Tracking #: 9590 94		1251 80	\$3.05 86 65
Total			\$7.38
First-Class Mail® Letter Rocky Hill, CT Weight: O lb O.	06067 40 oz		\$0.58
Estimated Deliv Wed 03/09/2 Certified Mail® Tracking #:	022		\$3.75
Return Receipt Total	0000057	192999	\$3.05 \$7.38
First-Class_Mail® Letter	1		\$0.58
Rocky Hill, CT Weight: O lb O. Estimated Deliv Wed 03/09/2 Certified Mail® Tracking #: 7021197	40 oz ery Dato 022		\$3.75
	02 6930	1104 64	
Total			\$7.38